博士学位論文

Li-P-S系超イオン伝導体の構造に関する研究

小野寺 陽平

目次

第1章	京 序論				1
1-1	リチウムイオン	二次電池			1
	1-1-1 リチウム	イオン二次電池と	は		1
	1-1-2 リチウム	イオン二次電池の	原理	•••••	2
	1-1-3 リチウム	イオン二次電池の	特性		3
1-2	リチウムイオン	二次電池材料とし	ての固体電解質		6
1-3	ガラスの結晶化	で得られる超イオ	ン伝導"準安定"	'結晶	11
1-4	中性子回折を利	用したリチウムイ:	オン伝導体の構成	告研究	16
1-5	本研究の目的	•••••			17
第1	章参考文献 …	•••••			18
第2章	着 構造解	所および電気伝導	享の原理 …		19
2-1	中性子回折の原	〔理			19
	2-1-1 中性子精	数乱の基礎 …			19
	2-1-2 結晶構道	告解析の原理 ・・・			24
	A 結晶	」による回折			24
	B 빗~	-トベルト解析 ・・・			26
	2-1-3 ガラス	構造解析の原理			28
	A 構造	皆因子 S(Q)と二体分	布関数 g(r) …		28
	B リノ	バースモンテカルロ	モデリング ・・・	•••••	31
	2-1-4 中性子預	修行時間法の原理			34
	2-1-5 X 線回抄	Fと原子散乱因子	••••••		35
2-2	電気伝導測定0)原理		•••••	38

2-2-1 電気伝導度の定義と基本的な関係式382-2-2 直流法と交流法392-2-3 交流インピーダンス法40

2-2-4 等価回路		43
2-2-5 活性化エネル	~ギーの導出	45
第2章参考文献		46

第3章	美	尾験方法			•••••••••		• • • • • • • •	47
3-1	試料の作	乍製 …			••••••	•••••	• • • • • • • •	47
	3-1-1	メカニカル	/アロイング	•••••	•••••	• • • • • • • • •	• • • • • • • •	47
	3-1-2	熱処理			• • • • • • • • • • •	• • • • • • • • •		48

	3-1-3 X 線による試料の同定	52
3-2	熱分析	53
3-3	密度測定	55
3-4	交流インピーダンス測定	56
3-5	放射光 X 線回折実験	58
3-6	パルス中性子回折実験	60
第3	章参考文献	63

第4章 (Li₂S)_x(P₂S₅)_{100-x} ガラスのイオン伝導性と構造…… 64

4-1	(⁷ Li ₂ S) _x (P ₂ S ₅) _{100-x} ガラスの作製	64
4-2	電気伝導度測定	67
4-3	動径分布関数による構造解析	68
	4-3-1 数密度	68
	4-3-2 隣接原子構造	68
	4-3-3 Li ₂ S の導入によるガラスの構造変化のモデル・・・・・・	75
4-4	リバースモンテカルロ(RMC)モデリングによる解析	76
	4-4-1 RMC モデリングの条件	76
	4-4-2 RMC モデリングの結果と考察	78
第4	章参考文献	91

第5章 Li₇P₃S₁₁準安定結晶のイオン伝導性と構造 …… 92

5-1	⁷ Li ₇ P ₃ S ₁₁ 準安定結晶の作製	92
5-2	電気伝導度測定	94
5-3	結晶構造解析	95
5-4	RMC モデリングによる準安定結晶のガラス化	99
5-5	⁷ Li ₇ P ₃ S ₁₁ 結晶のイオン伝導に対する考察	04
第5	章参考文献	116

付録 回折データからの S(Q)の導出 ………………………… 119

- 謝辞128

第1章 序論

1-1 リチウムイオン二次電池[1,2]

1-1-1 リチウムイオン二次電池とは

リチウムイオン二次電池は、放電時に化学エネルギーを電気エネルギーに変換し、充電時に電気エネルギーを化学エネルギーに変換して蓄積できる、電解 質中のリチウムイオンが電気伝導を担っている化学電池の1つである。"リチウ ムイオン二次電池"という名称は、「リチウムイオン二次電池におけるすべての リチウムは、常時、金属リチウムより安定なリチウムイオン(以下、「Liイオ ン」と称す)の状態で存在している」ということを強調するために、最初に実 用化に成功したソニー株式会社が命名したものである。リチウムイオン二次電 池には非水系の電解液が用いられており、水の分解電圧を超える高い起電力が 得られ、エネルギー密度が高いことから、ノートパソコンや携帯電話のような 小型のパーソナル機器の電源として利用されている。リチウムイオン二次電池 に要求される性質は、

①エネルギー密度が高いこと
 ②出力密度が高いこと
 ③温度特性が良いこと
 ④自己放電が少なく保存性が良いこと
 ⑤充放電においてサイクル寿命が長いこと
 ⑥エネルギー変換効率が高いこと
 ⑦取り扱いが容易であること
 ⑧ 安全性・信頼性が高いこと
 ⑨ 無公害であること
 ⑩経済性に優れていること

など非常に多岐にわたり、これらの性質は電池を構成する電極や電解質の性能 に大きく依存するため、高性能のリチウムイオン二次電池の開発を目指す研究 の多くは電池材料の探索に傾注されてきた。これまでに、数多くの電極と電解 質を組み合わせたリチウムイオン二次電池が開発されてきたが、上記に示した ①から⑩までの要求を満たし、現在市販されているリチウムイオン二次電池と して、「リチウム含有遷移金属化合物(LiCoO₂) | 有機電解液(リチウム塩を 極性の有機溶媒に溶かした溶液) | 炭素(グラファイト)」の組み合わせがある。 正極である LiCoO₂ は Li イオンを含んでおり、負極においても Li は炭素に電子 を供与し、Li^{δ+}C₆^{δ-}のようにイオン化した状態で存在していることが確かめられ ている。現在では、その特性向上を目指して、LiCoO₂やグラファイトに代わる 電極材料を用いた電池についても研究・開発が進められている。

1-1-2 リチウムイオン二次電池の原理

「LiCoO₂(正極) | 有機電解液 | C₆(負極)」の組み合わせで構成されるリ チウムイオン二次電池の充電過程では、負極において、電解液中に存在する Li イオンが外部回路の電子とともに C₆層間に挿入される。C₆は強固な共有結合 によって形成された炭素原子のシートが弱いファン・デル・ワールス力によっ て積層した層状物質で、Liのような高い電子供与性をもつ原子を層間に取り込 むことができる[3]。負極における電極反応は、以下の式によって記述される。

$$C_6 + xLi^+ + xe^- \rightarrow Li_xC_6 \quad (0 \le x \le 1)$$

$$(1-1-1)$$

一方、正極においては、LiCoO₂中のLiが外部回路へ電子を放出し、Liイオン となって電解液中に脱離する[4]。すなわち、

$$LiCoO_2 \rightarrow Li_{1-x}CoO_2 + xLi^+ + xe^-$$
(1-1-2)

のような反応が進行する。LiCoO₂も、CoO₂層間にLiイオンを挟んで積層した 層状化合物である。(1-1-1)式および(1-1-2)式から、リチウムイオン二次電池に おける正味の充電反応は、

$$C_6 + \text{LiCoO}_2 \rightarrow \text{Li}_x C_6 + \text{Li}_{1-x} \text{CoO}_2$$
(1-1-3)

と記述することができる(図1-1-1(a))。Liがグラファイトの層間に挿入される と、負極の電位は金属リチウムの場合とほぼ等しくなる。また、LiCoO₂から Liが引き抜かれると高酸化状態のCo⁴⁺が生じ、正極の電位は金属リチウムに対 して4V程度高くなる。したがって、両極間には約4Vの起電力が生じる。この ような充電状態で両極に負荷をつなぐことにより、図1-1-1(b)に示すような放 電反応が生じ、外界に仕事を行うことができる。

$$\operatorname{Li}_{x}C_{6} + \operatorname{Li}_{1-x}CoO_{2} \longrightarrow C_{6} + \operatorname{Li}CoO_{2}$$
(1-1-4)

このように、両極ともインターカレーション反応を利用していることから、リ チウムイオン二次電池はロッキングチェア電池、もしくはスウィング電池とも 呼ばれている。

図 1-1-1 リチウムイオン二次電池の原理図。 (a)充電過程、(b)放電過程。

1-1-3 リチウムイオン二次電池の特性

リチウムイオン二次電池の最大の特徴は、起電力が約 4V と飛びぬけて高い ことである。他の電池の起電力は、例えばニッケルカドミウムおよびニッケル 水素電池の場合、それぞれ約 1.3V、鉛蓄電池でも約 2V である。起電力とは両 電極間の電位差のことで、リチウムイオン二次電池のようなロッキングチェア 型の電池では、起電力は Li 量 x の関数となる。図 1-1-2 に、リチウムイオン二 次電池の放電曲線を示す。図から分かるように、リチウムイオン二次電池は、 電池の容量が尽きるまで約 4V の高い電圧を維持することが可能である。

リチウムイオン二次電池において、エネルギー密度は最も重要視される電池 特性である。実際のエネルギー密度は、電池を構成する全ての部品の重量に基 づいて算出する必要があるが、通常、エネルギー密度について議論する場合に は、電極物質の重量をベースとする"理論エネルギー密度"が用いられる。例 えば、「LiCoO₂ | 有機電解液 | C_6 」のリチウムイオン二次電池では、平均起電 力が 3.9V なので、その理論重量エネルギー密度は 369Wh/kg となる。表 1-1-1 に、各種電池の理論エネルギー密度を示す。

一方、リチウムイオン二次電池のもう一つの重要な特性は、取り出し可能な 電力を表す出力特性である。電池の作動電圧は放電電流の増加とともに低下し、 ついには定められた電圧水準を維持できなくなる。これは各種の分極が電流と ともに増加するからである。ここでの分極とは、開回路電圧と電流を流したと きの動的電圧の差のことを指す。作動電圧は起電力から分極を差し引いたもの であるから、すなわち、起電力が高いことは出力特性にとってきわめて有利で ある。定められた電圧水準を一定時間維持できる最大の電流とその電圧の積を 電池の最大出力(W)と考えることができ、最大出力を電池重量で割ったものを 出力密度(W/kg)という。出力密度は電池の設計思想によって大きく変動し、 例えば、エネルギー密度の大きな電池を設計すれば出力密度は小さくなる傾向 が顕著である。リチウムイオン二次電池は起電力が高いため、比較的大きなエ ネルギー密度(~70Wh/kg)を持ちつつ、50W/kgという高出力密度を示すよう な電池を開発することが可能である。

二次電池においては、充放電毎に電極反応が繰り返される。1回の充放電の 後、電極が完全に元の状態に戻ることが理想であるが、電極反応は通常、電極 物質の体積変化に伴う不可逆な変化が生じるため、完全に元の状態に戻ること はない。この変化が蓄積すると、電極反応に関与できない領域が現れてくる。 このため、電池の様々な特性において、充放電の繰り返し(サイクル)による 劣化は避けることができない。初期の容量で現在の容量を規格化したものを容 量保存率と呼び、容量保存率とサイクル数の関係はサイクル特性と呼ばれる。 サイクル特性は、エネルギー密度、出力密度と並んで、リチウムイオン二次電 池における重要な特性である。図1-1-3に、「LiCoO₂ | 有機電解液 | C₆」のリチ ウムイオン二次電池のサイクル特性を示す[1]。図に示すように、500 サイクル ほどの充放電を繰り返しても、リチウムイオン二次電池は 80%の容量を保持し ていることが分かる。このように、サイクル特性に優れることもリチウムイオ ン二次電池の特長の一つである。

	電池	電池の構成 (負極/ 正極/ その他)	電荷授 受数(n)	平均起電力 (V)	重量エネル ギー密度 (Wh/ kg)
_	アルカリマンガン乾電池	Zn/ MnO ₂ / H ₂ O	2	1.3	271
次	酸化銀電池	Zn/Ag ₂ O	2	1.55	280
電 池	塩化チオニル・ リチウム電池	Li/ 0.5SOCl ₂	1	3.6	403
<u> </u>	鉛蓄電池	Pb/ PbO ₂ / 2H ₂ SO ₄	2	2.0	167
次	ニッケルカドミウム電池	Cd/ 2NiOOH/ 2H ₂ O	2	1.3	210
電	ニッケル水素電池	LaNi₅H ₆ ∕ 6NiOOH	6	1.3	211
池	リチウムイオン二次電池	C ₆ / Li _x CoO ₂	1	3.9	369

表 1-1-1 各種電池の理論重量エネルギー密度[1]

図 1-1-2 リチウムイオン二次電池の様々な電流における放電曲線[1]。

サイクル数

図 1-1-3 リチウムイオン二次電池 (C₆/ 有機電解液/LiCoO₂)のサイクル 特性[1]。

1-2 リチウムイオン二次電池材料としての固体電解質

有機電解液が使われている現行のリチウムイオン二次電池には、長期の安定 性や信頼性の点で不安が残っている。すなわち、有機電解液が可燃性であるこ とから、過充電や短絡などの異常時において、加熱による発火や漏液からの引 火といった危険性を潜在的に抱えている。このような問題を解決し、電池の安 全性、信頼性を大幅に改善するためには、有機電解液を不燃性の固体電解質に 置き換えることが有効だと考えられており、「全固体リチウムイオン二次電池」 の開発と実用化が期待されている。現行のリチウムイオン二次電池に用いられ ている有機電解液のイオン伝導度が 10⁻² ~ 10⁻³ S/cm であることから、全固体リ チウムイオン二次電池を実現するためには、少なくとも 10⁻³ S/cm を超えるイオ ン伝導度を有する固体電解質の開発が必要とされる。

イオンは電子に比べて非常に大きなサイズを持っているので、液体中で動く ことが可能であっても、固体中で動くことは困難である。よって、固体におい て高いイオン伝導性を発現するためには、イオンが動くことのできる特別な構 造をとる必要がある。高いLiイオン伝導性を示す固体電解質としては、有機ポ リマーをベースとするものと無機化合物が挙げられる。

ポリマー固体電解質は、ガラス転移温度以上の過冷却液体状態でイオン伝導 性を発現する材料である。過冷却液体状態において、イオンは流動するポリマ ーの主鎖や副鎖に連動して動いている。このとき、有機ポリマーは流動してい るものの独特の架橋構造を持っているため、巨視的には固体状態(ゴム状態) を保持しながらも高いイオン伝導性を実現している。このような系はカップル 系イオン伝導体と呼ばれる。

無機化合物の固体電解質は、さらに結晶物質とガラス物質に分類される。結 晶は原子が規則正しく配列した熱力学的に安定な固体である。これまでに、格 子欠陥や層状構造、平均構造などを導入することによって、結晶は電解質溶液 に匹敵するほどの高いイオン伝導性を示すことが分かっている。一方、ガラス は結晶のような長距離秩序を持たない熱力学的に準安定な固体である。ガラス は熱力学的に安定な結晶に比べて非常に乱れた空隙の多い構造をとっており、 自由体積が大きいため、イオン移動度の高い材料が得やすい。また、室温を含 む比較的広い温度域で使用できること、粒界がなく成形性や加工性に優れるこ と、そして異方性がないことなど、固体電解質として優れた性能を併せ持って いる。

無機化合物の固体電解質における大きなメリットは、カチオン輸率が1にな ることである。イオン伝導性の結晶やガラスにおいて、イオンは骨格構造とは 連動せず独立に動くことができる。このような系はデカップル系イオン伝導体 と呼ばれる。可動イオンのみが独立して動くことができるイオン伝導(シング ルイオン伝導)は、イオンの伝導に伴う副反応が起こりにくく、電池の長寿命 化や安全性の向上などに大きく寄与すると認識されている。このことは無機固 体材料が不燃性であることと併せ、電池用の固体電解質材料として大きなメリ ットである。これに対して、熱力学的には液体状態にあるカップル系のポリマ ー固体電解質では、特定のイオンだけを伝導させるシングルイオン伝導が原理 的に困難である。したがって、全固体リチウムイオン二次電池の電解質材料と しては、無機固体電解質の方がより理想的な材料と考えられる。

図 1-2-1 に、無機固体電解質のイオン伝導度と温度の一般的な関係を示す。 融液中でイオンは比較的自由に存在できるため、通常、融液は高いイオン伝導 度を示す。これに対して結晶では凝固に伴い原子構造が規則的に配列した状態 へ相転移するため、イオン伝導度は大きく低下する。一方、ガラスは結晶と同 じ固体ではあるものの、融液を急冷することで作製されることから、その構造 は融液の構造を凍結したものに近いと考えられ、ガラスにおいては比較的高い イオン伝導度が保持される。一部の結晶物質には、融液に匹敵するほどの高い イオン伝導性の結晶相を有するものも存在するが、そのような結晶相は高温に おいて発現するものがほとんどであり、室温における結晶相のイオン伝導度は ガラスと比べて著しく低い。よって、"室温において、ガラスは結晶に比べて高 いイオン伝導度を示す"という傾向がある。それ故、これまでの無機固体電解 質材料の探索は、ガラスに関する研究が先行して行われてきた。

リチウムイオン伝導ガラスの初期の研究では、融液急冷法が酸化物系に適用 され、Liイオン濃度を高めたガラスが数多く開発された。例えば Li₂O-SiO₂系 について、Li₂O 含量が約 66 mol%の組成までガラス化が可能なことが報告され ている[5]。図 1-2-2 に Li₂O-SiO₂ 系ガラスの電気伝導度の組成依存性を示す。電 気伝導度は Li₂O 組成の増加に伴って増大し、60 mol%付近になると、500K に おける電気伝導度は 10⁻² S/cm という非常に高い値に到達する。このように、Li₂O を含むガラス系においては、Li₂O 濃度を極端に高めることによって、ほとんど 例外なく高いイオン伝導性を発現することが知られている[6]。

しかし、表 1-2-1 に示すように、酸化物ガラスの室温における電気伝導度は 10⁻⁶ S/cm 程度と低く、室温付近が主な動作環境として想定されるリチウムイオ ン二次電池の電解質材料としては不十分な値であった。そのため、酸化物ガラ スに代わって、硫化物イオンを含む硫化物ガラスが注目された。硫化物イオン は酸化物イオンより大きな分極率をもつため、自らの電子分布を調節し、構造 を歪ませることなく Li イオンを伝導させることができると考えられ、硫化物ガ ラスはより高いイオン伝導性を示すものと予想された。実際、表 1-2-1 に示す ように、Li₂S-B₂S₃系[8]、Li₂S-SiS₂系[9]、Li₂S-P₂S₅系[10]、Li₂S-GeS₂系[11]など の硫化物ガラスは、Li イオン濃度を高めることによって、室温で 10⁻⁴ S/cm という高い電気伝導度を示した。しかし、10⁻⁴ S/cm というオーダーの伝導度でもま だリチウムイオン二次電池へ応用するには伝導度が低く、また、Li₂S-SiS₂系以 外の硫化物ガラスは減圧封管中でしか合成できないという作製法上の問題も抱

えていた。

最近、融液急冷法に代わる電池用の固体電解質を得るための画期的な合成手 法として、游星型ボールミル装置を使用したメカニカルアロイング法が注目さ れている。融液急冷法によって得られるリチウムイオン伝導ガラスを全固体電 池に応用するためには、いったん粉砕し微粉末として電極材料の微粒子との良 好なコンタクトをとり、電極物質の利用率を高める必要がある。これに対して メカニカルアロイング法は、試料粉末を機械的に混合、破砕を繰り返すことに よってガラス材料を合成する手法であり、直接微粉末となった試料が得られる ため、合成した試料をそのまま電池材料として用いることができる。また、こ の方法は融液急冷法に比べ、常温常圧下における固相反応で試料を合成可能な ことも大きな特徴である。LioS-SiSo系リチウムイオン伝導ガラスにおいても、 メカニカルアロイング法による合成が行われた[12]。図 1-2-3 に示すように、メ カニカルアロイングによるガラス化が進むとともに電気伝導度は急激に増加し、 最終的に 10⁻⁴ S/cm という、 融液急冷法によって作製されたガラスとほぼ同等の 高い電気伝導度が得られている。さらに、融液急冷法では作製が困難であった Li₂S-P₂S₅系ガラスも、メカニカルアロイング法を用いることにより比較的容易 に合成され、 Li_2S -SiS₂系と同等の 10^4 S/cm オーダーに近い高い電気伝導度を示 すことが見出された[13]。Li₂S-SiS₂系および Li₂S-P₂S₅系について、融液急冷法 とメカニカルアロイング法のそれぞれで作製したガラスの電気伝導度を表 1-2-2にまとめる。

Temperature⁻¹

図 1-2-1 一般的な無機固体電解質のイオン伝導度の温度依存性の模式図。

図 1-2-2 Li₂O-SiO₂系ガラスの電気伝導度[6]。

表 1-2-1 酸化物および硫化物系リチウムイオン伝導ガラスの室温における 電気伝導度

	ガラフ知己	室温における電気伝導度 σ		
	カノヘ組成	(S/cm)		
	$(Li_2O)_{60}(SiO_2)_{40}$	10 ⁻⁶	[6]	
酸化物ガラス	$(Li_2O)_{66}(B_2O_3)_{34}$	10 ⁻⁶	[6]	
	$(Li_2O)_{62.5}(P_2O_5)_{37.5}$	1.61×10^{-7}	[7]	
	$(Li_2S)_{69}(B_2S_3)_{31}$	2.40×10^{-4}	[8]	
硫化物ガラス	$(Li_2S)_{60}(SiS_2)_{40}$	5.0×10^{-4}	[9]	
	$(Li_2S)_{50}(GeS_2)_{50}$	$4.0 imes 10^{-5}$	[11]	
	$(Li_2S)_{70}(P_2S_5)_{30}$	1.6×10^{-4}	[10]	

図 1-2-3 メカニカルアロイング法によって合成された(Li₂S)₆₀(SiS₂)₄₀ ガラスの電 気伝導度の温度依存性[12] (□:出発物質、○:20時間メカニカルアロイング 処理した試料、Δ:90時間メカニカルアロイング処理した試料)。比較として、 融液急冷法によって合成された (Li₂S)₆₀(SiS₂)₄₀ ガラスの伝導度(●)を示す。

表 1-2-2 異なる合成法によって作製した硫化物系リチウムイオン伝導ガラスの 室温における電気伝導度の比較

ガラス組成	融液急冷法によって作製	メカニカルアロイング法によって作製
$(Li_2S)_{60}(SiS_2)_{40}$	5.0×10^{-4} S/cm[9]	1.5×10^{-4} S/cm[12]
$(Li_2S)_{70}(P_2S_5)_{30}$	1.6×10^{-4} S/cm[10]	5.4×10^{-5} S/cm[13]

1-3 ガラスの結晶化で得られる超イオン伝導 "準安定"結晶

図 1-3-1 に、メカニカルアロイング法によって合成された(Li₂S)_x(P₂S₅)_{100-x} 試料の 25℃ における電気伝導度を示す[13]。x=60、70、75 においてはガラス試料が、x=80、87.5 においては原料である Li₂S が一部析出した試料が得られている。 図より、Li₂S を高濃度に添加した(Li₂S)_x(P₂S₅)_{100-x} 試料は、10⁴S/cm のオーダーの高い電気伝導度を示すことが示された。

Li₂S-P₂S₅ 系試料の (Li₂S)₇₀(P₂S₅)₃₀ 組成における電気伝導度の温度依存性を 図 1-3-2 に示す[14]。室温において、一般的な固相反応法によって合成された結 晶が 10⁻⁸ S/cm オーダーという低い伝導度を示したのに対し、メカニカルアロイ ング法によって合成されたガラスは 5.4 × 10⁻⁵ S/cm という高い伝導度を示した。 一方で、ガラスを 240°C で加熱することによって得られた試料においては、電 気伝導度が元のガラスよりも約一桁上昇し、室温で 2.2 ×10⁻³ S/cm という極め て高い伝導度を示すことが明らかになった。図 1-3-3 に、(Li₂S)₇₀(P₂S₅)₃₀ ガラス の示差熱分析結果を示す[15]。 210°C 付近にガラス転移に伴う吸熱変化が、 230°C 付近に結晶化に伴う鋭い発熱ピークが観測され、その後 400°C 付近に大 きな発熱を示す多段階の熱変化が観測された。結晶化ピークが 230°C に存在す ることから、ガラスから超イオン伝導性の結晶相が析出したと考えられる。

図1-3-4 に (Li₂S)₇₀(P₂S₅)₃₀ガラスを様々な温度において熱処理した試料のX 線回折パターンおよび固相反応によって得られた結晶の回折パターンを示す [15]。240°Cでの熱処理によって、これまで報告例がなかった回折パターンを持 つ新規な結晶相が析出し、360°C での熱処理ではさらに結晶性が良くなった結 晶相が得られた。一方、さらに高い550°C での熱処理では新規結晶相は消失し、 安定結晶である Li₃PS₄ と Li₄P₂S₆が得られた。それぞれの熱処理温度で結晶化さ せた試料の室温における電気伝導度を図1-3-5 に示す[15]。 伝導度は熱処理温 度の上昇とともに増大し、360°C での熱処理で 3.2×10³ S/cm という最大値を示 したが、550°C で熱処理することで伝導度は 1.1×10⁶ S/cm まで急激に低下した。 このようにして得られた超イオン伝導性の準安定結晶は、これまでに報告され ているリチウムイオン伝導体の中で最も優れたイオン伝導性を示す。図 1-3-6 に、様々なリチウムイオン伝導体の室温における電気伝導度と伝導の活性化エ ネルギーの相関を示す[15]。図より、準安定結晶は、代表的なリチウムイオン 伝導体の中でも最も高い電気伝導度と最も低い活性化エネルギーを兼ね備えた、 極めて優れた固体電解質であることが分かる。

(Li₂S)₇₀(P₂S₅)₃₀ ガラスの結晶化によって得られた準安定結晶について、これまでにラマン分光法と放射光 X 線回折実験による構造研究が行われている。ラマン分光法の結果から、準安定結晶は、同じく高いイオン伝導性を示す Ag₇P₃S₁₁結晶と同様に、[P₂S₇]⁴⁻と[PS₄]³⁻の 2 種類の局所構造ユニットによって構成されていることが分かった[14]。さらに、大型放射光施設 SPring-8 を利用した放射

光 X 線回折実験が行われ、リートベルト法による結晶構造解析によって、三斜 晶系(P-1)の結晶構造であることが明らかにされた[16]。以後、準安定結晶を

"Li₇P₃S₁₁"と記述する。図 1-3-7 に示すように、放射光 X 線回折によって得ら れた Li₇P₃S₁₁の結晶構造において、 $[P_2S_7]^4 > [PS_4]^{3-}$ が 1:1 の割合で規則正しく配 列し、Li イオンは、 $[P_2S_7]^4 > [PS_4]^{3-}$ の間に分布している。しかしながら、結晶 構造が同定されたにもかかわらず、「Li₇P₃S₁₁において、Li イオンがなぜ、どの ようにして動いているのか」という問題は明らかにされていない。これは、X 線回折実験によって得られたリチウムイオンの存在位置にまだ議論の余地が残 されているためである。電磁波である X 線は、原子を構成する電子と干渉し、 散乱されるため、X 線に対する散乱能は重原子になるほど大きくなる。よって、 Li、P、S の 3 種の元素を含む Li₇P₃S₁₁の X 線回折パターンにおいて、リチウム に関する情報は相対的に非常に小さくなっていると考えられる。したがって、 構造学的視点から Li₇P₃S₁₁のイオン伝導メカニズムをより深く議論するために は、Li イオンの位置を精度良く決定できるプローブを用いた研究が必要である。

図 1-3-1 メカニカルアロイング法によって合成された(Li₂S)_x(P₂S₅)_{100-x} 試料の 25°C における電気伝導度の組成依存性[13]。ガラス試料は *x*=60、70、75 に おいて得られている。

図 1-3-2 (Li₂S)₇₀(P₂S₅)₃₀ 試料の電気伝導度の温度依存性[14]。

図 1-3-3(Li₂S)₇₀(P₂S₅)₃₀ ガラスの示差熱分析結果[15]。

図 1-3-4 (Li₂S)₇₀(P₂S₅)₃₀ ガラスを様々な温度で加熱した試料の X 線回折パタ ーン[15]。(a) 熱処理をしていないガラス、(b) 240℃ で加熱した試料、(c)360℃ で加熱した試料、(d)550℃ で加熱した試料、(e) 固相反応で作製した結晶。

図 1-3-5 (Li_2 S)₇₀(P_2 S₅)₃₀ ガラスを様々な温度で加熱した試料の室温での電気伝 導度 σ_{25} および伝導の活性化エネルギー E_a [15]。

図 1-3-6 様々なリチウムイオン伝導体における伝導の活性化エネルギー と室温での電気伝導度の相関図[15]。

図 1-3-7 放射光 X 線回折によって得られた Li₇P₃S₁₁の結晶構造[16]。

1-4 中性子回折を利用したリチウムイオン伝導体の構造研究

水素やリチウムのような軽元素の構造観察においては、X線よりも中性子を 用いた実験がより有効である。前述のように、X線に対する原子の散乱能は原 子番号に比例するため、X線回折実験からは軽元素に関する構造情報は得られ にくい。それに対して、中性子は原子核と相互作用するため、各元素の中性子 に対する散乱能は原子番号には依存せず、それぞれの原子種によって異なる。 図1-4-1に各元素のX線および中性子に対する散乱能を比較する[17]。図より、 リチウムは中性子に対して負の散乱振幅を持ち、その絶対値も他の元素に匹敵 するほどに大きいことが分かる。このことから、X線回折の場合と比べ、中性 子回折においては回折パターンに対するリチウムの寄与は大きくなる。したが って、中性子回折実験はリチウムの存在位置や存在環境を調べるのに極めて有 効な手法と考えられる。

しかしながら、リチウムイオン伝導体の構造研究は、核磁気共鳴(NMR)や ラマン分光、X線光電子分光(XPS)などによる報告がその多くを占めており、 中性子回折を用いた研究報告例は非常に少ない。特に、Li₂S-P₂S系ガラスと、 その結晶化によって得られる Li₇P₃S₁₁ 準安定結晶に関する中性子を用いた構造 解析はこれまでに報告例がない。

図 1-4-1 中性子干渉性散乱振幅 b_{coh}および X 線原子散乱因子 f (Q)(Q= 0 Å⁻¹)の原子番号との相関図。

1-5 本研究の目的

本研究では、リチウムイオン伝導体である(Li₂S)_x(P₂S₅)_{100-x} ガラスおよび Li₇P₃S₁₁ 準安定結晶を研究対象として、以下の点について明らかにすることを目 的とした。

- (1) MA 法によって作製した(Li₂S)_x(P₂S₅)_{100-x} ガラスに対して電気伝導度測定 を行い、Li₂S 量と電気伝導度との関係について示す。また、放射光 X 線お よびパルス中性子回折データを併用したリバースモンテカルロ(RMC)モ デリングにより、(Li₂S)_x(P₂S₅)_{100-x} ガラスの 3 次元構造を視覚化し、本系の電 気伝導度特性とガラス構造との関係について明らかにする。
- (2) (Li₂S)₇₀(P₂S₅)₃₀ ガラスを熱処理することで作製した Li₇P₃S₁₁ 準安定結晶に 対して電気伝導度測定を行い、(Li₂S)₇₀(P₂S₅)₃₀ ガラスと比較して電気伝導度 が一桁以上向上することを確認する。また、放射光 X 線およびパルス中性 子回折データを併用したリートベルト解析および RMC モデリングの結果か ら、Li₇P₃S₁₁ 準安定結晶が高い電気伝導度を示すための構造学的要因につい て明らかにする。

- 第1章 参考文献
- [1] 工藤徹一、日比野光宏、本間格: リチウムイオン電池の科学 内田老鶴圃 (2010) 3-17.
- [2] 金村聖志: リチウムイオン電池の技術展開 (2002) 3-14.
- [3] N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, J. E. Fischer, *Material Science and Engineering*, **40** (1979) 1-4.
- [4] W. D. Johnston, R. R. Heike and D. Sestrich, *Journal of Physics and Chemistry of Solids*, 7 (1958) 1-13.
- [5] M. Tatsumisago, T. Minami and M. Tanaka, *Journal of the American Ceramic Society*, 64 (1981) C97-C98.
- [6] M. Tatsumisago, K. Yoneda, N. Machida and T. Minami, Journal of Non-Crystalline Solids, 95-96 (1987) 857-864
- [7] S. W. Martin and C. A. Angell, Journal of Non-Crystalline Solids, 83 (1986) 185-207.
- [8] M. Menetrier, A. Hojjaji, C. Estournes and A. Levasseur, Solid State Ionics, 48 (1991) 325-330.
- [9] A. Pradel and M. Ribes, *Solid State Ionics*, **18-19** (1986) 351-355.
- [10] Z. Zhang and J. H. Kennedy, Solid State Ionics, 38 (1990) 217-224.
- [11] J. L. Souquet, E. Robinel, B. Barrau and M. Ribes, *Solid State Ionics*, **3-4** (1981) 317-321.
- [12] H. Morimoto, H. Yamashita, M. Tatsumisago and T. Minami, *Journal of the American Ceramic Society*, 82 (1999) 1352-1354.
- [13] M. Tatsumisago, S. Hama, A. Hayashi, H. Morimoto and T. Minami, *Solid State Ionics*, **154-155** (2002) 635-640.
- [14] F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, *Advanced Matarials*, 17 (2005) 918-921.
- [15] F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, *Electrochemical and Solid-State Letters*, 8 (2005) A603-A606.
- [16] H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi and M. Tatsumisago, *Solid State Ionics*, **178** (2007) 1163-1167.
- [17] V. F. Sears, Neutron News, 3 (1992) 26-37.

第2章 構造解析および電気伝導測定の原理

2-1 中性子回折の原理[1-2]

2-1-1 中性子散乱の基礎

厚さ dx、単位体積中に N 個の原子を含む試料に線束 Φ の中性子が入射した 場合、単位時間当たりに散乱される中性子の数は、

$$\Phi N \sigma \mathrm{d} x$$
 (2-1-1)

で与えられる。ここで、 σ は原子 1 個あたりのすべての方向への散乱の確率として定義される全散乱断面積である。この中で、 Ω 方向の立体角 d Ω 中に散乱される中性子の数は、

$$\Phi N \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}x \mathrm{d}\Omega \tag{2-1-2}$$

と書くことができる。 $d\sigma/d\Omega$ は微分散乱断面積と呼ばれ、 Ω 方向の単位立体角 への散乱の確率を与える。式(2-1-2)を全立体角について積分すれば式(2-1-1)が 得られることから、 σ と $d\sigma/d\Omega$ の間には、

$$\sigma = \int_{\text{all direction}} \left(\frac{d\sigma}{d\Omega}\right) d\Omega$$
 (2-1-3)

の関係が成り立つ。

ここで、1 個の孤立した原子によって中性子が弾性散乱される場合を考える。 中性子は、原子核との間に働く核力によって散乱される。核力の及ぶ範囲は約 10^{-14} m 程度であり、中性子の波長(~ 10^{-10} m)に比べて著しく小さい。よって、散 乱ポテンシャル V(r)を以下のような δ 関数で記述することができる。

$$V(\mathbf{r}) = \frac{h^2}{2\pi M} b\delta(\mathbf{r})$$
(2-1-4)

このポテンシャルはフェルミの擬ポテンシャルと呼ばれる。式(2-1-4)において、 hはプランク定数、Mは中性子の質量、rが原子核の位置、bが原子核による散 乱波の確率振幅として定義される散乱長である。ボルン近似を用いることによ って、 $V(\mathbf{r})$ から散乱断面積を求めることができる。1 個の孤立した原子によって 弾性的に散乱される場合、微分散乱断面積 d σ / d Ω は、

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = bb^* = |b|^2 \tag{2-1-5}$$

と記述でき、散乱は等方的になる。ここで、 b^* はbの複素共役である。

原子の集団からの中性子の散乱強度を求めるには、各原子からの散乱波の位相を考え、相互の干渉効果を取り入れなければならない。図 2-1-1 に示すような点 r_i および点 r_j にそれぞれ2つの同じ散乱体i、jが存在し、それらの距離が $r_{ij}(=r_j-r_i)$ となる場合を考える。入射および散乱方向の単位ベクトルをそれぞれ s_0 、sとし、入射および散乱方向の波数ベクトルをそれぞれ k_0 、kとすると、2つの散乱体による散乱の間の行路差 ΔL は、

$$\Delta L = s \cdot (\mathbf{r}_j - \mathbf{r}_i) - s_0 \cdot (\mathbf{r}_j - \mathbf{r}_i)$$
(2-1-6)

となる。また、2つの散乱の間の位相差 $\Delta \phi$ は、行路差に波の位相 $2\pi/\lambda$ (λ は入射する中性子の波長)をかけることで表すことができ、

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta L$$

= $\mathbf{k} \cdot (\mathbf{r}_j - \mathbf{r}_i) - \mathbf{k}_0 \cdot (\mathbf{r}_j - \mathbf{r}_i)$
= $(\mathbf{k} - \mathbf{k}_0) \cdot (\mathbf{r}_j - \mathbf{r}_i)$
= $\mathbf{Q} \cdot \mathbf{r}_{ij}$ (2-1-7)

となる。ここで、Q は散乱ベクトルと呼ばれる。式(2-1-7)から分かるように、 散乱中性子の間の位相差 $\Delta \phi$ は散乱ベクトル Q と散乱体間の距離 r_{ij} のスカラー 積によって表すことができる。2 点間の距離 r_{ij} に比べて散乱を観測している点 を十分遠くにとると、2 つの散乱波に対して散乱角 2 θ は同じであると考えて良 い。このとき、散乱ベクトル Q の大きさは、

$$|\mathbf{Q}| = |(\mathbf{k} - \mathbf{k}_{\theta})| = |\mathbf{k}|\sin\theta + |\mathbf{k}_{\theta}|\sin\theta \qquad (2-1-8)$$

となり、ここで、波数ベクトル koの大きさは、

$$\left|\boldsymbol{k}_{\boldsymbol{\theta}}\right| = \frac{2\pi}{\lambda} \tag{2-1-9}$$

であるから、散乱の前後で波の波長が変化しない弾性散乱の場合、

$$\left|\boldsymbol{\mathcal{Q}}\right| = \boldsymbol{\mathcal{Q}} = \frac{4\pi \sin\theta}{\lambda} \tag{2-1-10}$$

という関係が得られる。

図 2-1-1 2つの同じ散乱体による波の散乱。

議論をN個の原子からなる系について拡張した場合、各原子による散乱長を b_i とすると、原子の集団としての微分散乱断面積 $d\sigma/d\Omega$ は、

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \sum_{i} \sum_{j} b_{i} b_{j}^{*} \exp\{\mathrm{i}\boldsymbol{Q} \cdot (\boldsymbol{r}_{j} - \boldsymbol{r}_{i})\}$$
(2-1-11)

と書くことができる。この原子の一団が一様にランダムに存在している場合、 式(2-1-11)は次のように2つに分けて記述することができる。

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} + \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{inc}} \tag{2-1-12}$$

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = |\langle b \rangle|^2 \left| \sum_{i} \exp(\mathrm{i}\boldsymbol{Q} \cdot \boldsymbol{r}_i) \right|^2$$
(2-1-13)

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{inc}} = N\left\{\left(|b|^2\right) - |\left\langle b\right\rangle|^2\right\}$$
(2-1-14)

ここで、< >はランダム分布に対する平均を、| |²は複素振幅の絶対値の二乗 を表す。式(2-1-13)は散乱波の位相を含む量であり、干渉性微分散乱断面積と呼 ばれる。また、は干渉性散乱長と呼ばれる。一方、式(2-1-14)は散乱角によ らない一様な散乱を与え、その大きさは各原子の散乱長の二乗偏差となってい る。この式はN個の原子についてのものであり、式(2-1-14)を原子数で規格化し た値、すなわち<| b |²>-| |²を非干渉性散乱断面積と呼ぶ。この非干渉性散 乱は一般的に純粋に単一原子によって構成されている系では生じないが、N個 の原子からなる散乱体の構成原子の種類が異なる場合、もしくは同じ種類の原 子であっても同位体を含む場合に生じる。

但し、単一原子の系による散乱においても原子核がスピンを持つ場合、両者 のスピンが平行か反平行かによってスピン量子数の異なる複合核を作り、それ ぞれ異なった散乱長を持つようになるため非干渉性散乱が生じる。一般的に、 原子核の核スピンを *I*、正負のスピンに対応した複合核の散乱長を *b*₊、*b*_とす ると、以下のように干渉性散乱と非干渉性散乱を記述することができる。

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = \left|\frac{I+1}{2I+1}b_{+} + \frac{I}{2I+1}b_{-}\right|$$
(2-1-15)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm inc} = \frac{I(I+1)}{2I+1} \left| b_{+} - b_{-} \right|^{2}$$
(2-1-16)

表 2-1-1 に、各元素およびその同位体についての中性子散乱に関するパラメー タ(散乱長 b、非干渉性散乱断面積 σ_{inc} 、吸収断面積 σ_{abs})と自然界における各 同位体の存在比を示す[3]。表より、散乱長および断面積は原子核の核種によっ て決まり、その大きさは原子番号に依存していないことが分かる。

元素	質量数	同位体存在比 (%)	$b(10^{-14} \text{m})$	$\sigma_{\rm inc}$ (barn)	$\sigma_{\rm abs}$ (barn)	
Н			-0.3739	80.26	0.3326	
(H)	1	99.985	-0.374	80.27	0.3326	
(D)	2	0.015	0.6671	2.05	0.000519	
Li			-0.190	0.92	70.5	
(⁶ Li)	6	7.5	0.20	0.46	940.0	
(⁷ Li)	7	92.5	-0.222	0.78	0.0454	
Cu			0.7718	0.55	3.78	
	63	69.1	0.6477	0.006	4.50	
	65	30.9	1.0204	0.40	2.17	
Zr			0.716	0.02	0.185	
	90	51.48	0.65	0	0.011	
	91	11.23	0.88	0.15	1.17	
	92	17.11	0.75	0	0.22	
	94	17.4	0.83	0	0.0499	
	96	2.8	0.55	0	0.0229	

表 2-1-1 各元素とその同位体の中性子散乱に関するパラメータ[3] と自然界での存在比

2-1-2 結晶構造解析の原理

A 結晶による回折

結晶の場合、その構造は単位胞を周期的に並べることで表現できることから、 単位胞内における原子の位置により回折強度がどのような影響を受けるかを考 えればよい。例として、図 2-1-2 に示すような格子定数 *a* の立方格子の単位胞 において *x* 軸上でのみ位置が変わる原子からの散乱を考える。原点(000)に原子 A が存在し、原子 C がある(*h*00)面において散乱が起こった場合、原子 A およ び C からの 2 つの散乱波の行路差 MCN は、ブラッグの条件より次のようにな る。

$$MCN = 2d_{h00}\sin\theta = \lambda \tag{2-1-17}$$

ここで、h00面は単位胞の x 軸を 1/h の位置で横切る面であるから、

$$d_{h00} = \frac{a}{h}$$
(2-1-18)

である。同様にして、原子 A および B からの 2 つの散乱波の行路差 KBL は式 (2-1-17)、式(2-1-18)より、

$$KBL = \frac{AB}{AC}\lambda = \frac{hx}{a}\lambda$$
(2-1-19)

散乱波の位相差 φ は、行路差に(2π / λ)をかけることで求められる。

$$\varphi = \frac{2\pi}{\lambda} \times \frac{hx}{a} \lambda = \frac{2\pi hx}{a} \tag{2-1-20}$$

この関係は、

$$\varphi = 2\pi \left(\frac{hx}{a} + \frac{ky}{b} + \frac{lz}{c}\right) \tag{2-1-21}$$

と一般化することができる。

図 2-1-2 (h00)面からの回折。

式(2-1-21)の関係は、いかなる形状の単位胞にも適用できる。中性子回折の場合、単位胞中に存在する各原子からの散乱波の振幅は、散乱長 b で与えられ、 各散乱波の位相は式(2-1-21)で与えられるので、どのような散乱波も複素表示で 表現できる。

$$A\exp(i\phi) = b\exp[2\pi i(h\frac{x}{a} + k\frac{y}{b} + l\frac{z}{c})]$$
(2-1-22)

よって、単位胞中の原子によって散乱された波の総和は、以下の式で求めることができる。

$$F_{hkl} = \sum_{j=1}^{N} b_j \exp\left[2\pi i \left(h\frac{x}{a} + k\frac{y}{b} + l\frac{z}{c}\right)\right]$$
(2-1-23)

ここで、 F_{hkl} は結晶構造因子と呼ばれ、Nは単位胞中の原子の数を表す。結晶構造因子 F_{hkl} は一般的に複素数であり、足し合わせた散乱波の振幅と位相の両方を表す。 F_{hkl} の絶対値は、1 個の原子(または電子)によって散乱された波の振幅を単位として表わした単位胞からの波の振幅を表す。

式(2-1-23)に示した結晶構造因子に対して熱振動等による原子変位を考慮すると、以下のように記述することができる。

$$F_{hkl} = \sum_{j=1}^{N} b_j \exp\left(-T_j\right) \exp\left[2\pi i \left(h\frac{x}{a} + k\frac{y}{b} + l\frac{z}{c}\right)\right]$$
(2-1-24)

ここで、T_iは単位胞のj番目の原子変位パラメータである。

式(2-1-24)で記述できる結晶構造因子 F_{hkl} を用いることにより、結晶による干渉性微分散乱断面積は以下のように記述できる。

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = N \sum_{j=1}^{N} |F_{hkl}(\mathbf{Q})|^2 \delta(\mathbf{Q} - \mathbf{H})$$
(2-1-25)

ここで、Nは結晶に存在する全原子数、Hは、

$$\boldsymbol{H} = h\boldsymbol{a}^* + k\boldsymbol{b}^* + l\boldsymbol{c}^* \tag{2-1-26}$$

で記述される逆格子ベクトルである。ここで、h、k、lは結晶面を示す整数である。式(2-1-26)は、Q=H の場合のみ回折が起こる干渉性のブラッグ反射を表している。

B リートベルト解析 [4-6]

リートベルト解析は、粉末 X線・中性子回折パターン全体を対象として格子 定数および構造パラメータを直接精密化する解析法で、1969年にリートベルト が角度分散中性子回折のために考案した手法[4]であるが、現在では、特性 X線 もしくは放射光を用いる角度分散 X線回折とパルス中性子源を利用する飛行時 間法中性子回折にも応用されている。

リートベルト解析は、仮定した初期構造に基づいて、回折パターン全体を対象としてカーブフィッティングを行う方法である。回折実験によって得られた データ y_i の i 番目の測定点 Q_i に対する計算強度を $f(Q_i; x_1, x_2, ...) = f_i(x)$ 、統計 的重みを w_i としたとき、重み付き残差二乗和

$$S(x) = \sum_{i} w_{i} [y_{i} - f_{i}(x)]^{2}$$
(2-1-27)

を最小とする一組の可変パラメータ x を非線形最小二乗法により精密化する手法である。測定点 Q_iにおける個々のブラッグ反射の寄与を合計し、バックグラウンド強度 B(Q_i)を加えるとモデル関数 f_i(x)が得られる。

$$f_i(x) = \Phi(Q_i) A(Q_i) s \sum_K m_K |F_K|^2 E_K P_K L(Q_K) G(Q_i - Q_K) + B(Q_i) \quad (2-1-28)$$

ここで、式(2-1-28)の各パラメータは、

である。

単位胞中に存在する原子の番号をjとし、その原子の占有率を g_j 、散乱長を b_j 、原子変位パラメータを T_j 、原子座標(分率座標)を x_j, y_j, z_j とすれば、結 晶構造因子 F_K は、

$$F_{K} = \sum_{j} g_{j} b_{j} T_{j} \exp\left[2\pi i \left(h x_{j} + k y_{j} + l z_{j}\right)\right]$$
(2-1-29)

と記述できる。

T_iは等方性熱近似の場合、

$$T_{j} = \exp\left[-B_{j}\left(\frac{\sin\theta}{\lambda}\right)^{2}\right]$$
(2-1-30)

となる。ここで、 B_j を等方性原子変位パラメータという。 B_j は主に原子jの熱振動の大きさに関係するパラメータである。

本研究では、リートベルト解析プログラム GSAS[6]を用いて結晶構造解析を 行った。

2-1-3 ガラス構造解析の原理

A 構造因子 S(Q)と二体分布関数 g(r)

試料からの干渉性散乱強度を1原子あたりの強度に規格化した量を構造因子 S(Q)と呼ぶ。単原子の場合、S(Q)は以下のように表わされる。

$$S(Q) = \frac{1}{N} \left\langle \left| \sum_{n=1}^{N} \exp(i Q \cdot r_n) \right|^2 \right\rangle$$
 (2-1-31)

ここで、Nはその系に存在する原子の数である。式(2-1-13)と式(2-1-31)より、 S(Q)と干渉性微分散乱断面積の間には、

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = Nb^2 S(Q) \tag{2-1-32}$$

が成り立つ。よって、

$$S(Q) = \frac{1}{Nb^2} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}}$$
(2-1-33)

として S(Q)が得られる。

さらに、実空間上のある原子より距離 r に他の原子を見出す確率として定義 される二体分布関数 g(r)は、その S(Q)のフーリエ変換によって得ることができ る。

$$g(r) = 1 + \frac{1}{2\pi^2 r \rho_0} \int_0^\infty Q(S(Q) - 1) \sin Q r dQ$$
 (2-1-34)

次に、試料が2元系の場合について考える。2元系のS(Q)の定義については、 Faber-Ziman 型や Bhatia-Thornton 型などが提案されているが、本研究では、 Faber-Ziman 型構造因子[7]を用いて構造解析を行う。例として、原子 A と原子 B によって構成される2元系の場合について考える。この系において、原子 A および原子 B がそれぞれ、 N_A 、 N_B 個含まれ、原子分率が c_A 、 c_B 、散乱長が b_A 、 b_B 、全原子数が $N(N_A+N_B)$ である。Faber-Ziman の定義[7]において、干渉 性散乱強度($d\sigma/d\Omega$)_{coh}と構造因子S(Q)の間に以下の関係が成り立つ。

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{coh}} = N[\langle b \rangle^2 S(Q) + \langle b^2 \rangle - \langle b \rangle^2]$$
(2-1-35)

ここで、

$$\langle b \rangle = c_{\rm A} b_{\rm A} + c_{\rm B} b_{\rm B} \tag{2-1-36}$$

$$\langle b^2 \rangle = c_{\rm A} b_{\rm A}^2 + c_{\rm B} b_{\rm B}^2$$
 (2-1-37)

である。この定義は、原子の種類を区別した原子分布を取り扱うのに適している。*S(Q)*は、それぞれの原子間の相関を記述した部分構造因子 *S_{i-f}(Q)*を用いて以下のように表わされる。

$$S(Q) = \frac{c_{\rm A}^2 b_{\rm A}^2}{\langle b \rangle^2} S_{\rm AA}(Q) + 2 \frac{c_{\rm A} b_{\rm A} c_{\rm B} b_{\rm B}}{\langle b \rangle^2} S_{\rm AB}(Q) + \frac{c_{\rm B}^2 b_{\rm B}^2}{\langle b \rangle^2} S_{\rm BB}(Q) \quad (2-1-38)$$

よって S(Q)は、i 原子の周りのj 原子の分布を反映した部分構造因子 $S_{i-j}(Q)$ の重 み付き和によって与えられる。3元系以上に一般化すると、S(Q)は以下のよう に記述できる。

$$S(Q) = \sum_{i,j} w_{i-j} S_{i-j}(Q)$$
(2-1-39)

ここでw_{i-i} は重み因子で、以下のように定義される。

$$w_{i-j} = \frac{\xi \cdot c_i c_j b_j b_j}{\langle b \rangle^2} \tag{2-1-40}$$

$$\langle b \rangle = \sum c_i b_i \tag{2-1-41}$$

また、個々の部分構造因子 $S_{i-j}(Q)$ は部分二体分布関数 $g_{i-j}(r)$ と次のフーリエ変換の関係にある。

$$S_{i-j}(Q) = 1 + \int_0^\infty 4\pi r^2 \rho_0 \left(g_{i-j}(r) - 1 \right) \frac{\sin Qr}{Qr} dr$$
(2-1-42)

$$g_{i\cdot j}(r) = 1 + \frac{1}{2\pi^2 r \rho_0} \int_0^\infty Q(S_{i\cdot j}(Q) - 1) \sin Q r dQ$$
 (2-1-43)

ここで、 ρ_0 は全原子の数密度、すなわち ($\sum N_i/V$) である。

実際の実験においては、測定できる Q範囲は有限であるため、S(Q)から g(r) へのフーリエ変換の積分範囲は $[0, \infty]$ とはならない。よって、

$$g(r) = 1 + \frac{1}{2\pi^2 r \rho_0} \int_{Q_{\min}}^{Q_{\max}} Q(S(Q) - 1) \sin Q r dQ \qquad (2-1-44)$$

となり、*Q*範囲に下限値と上限値がある。*Q*範囲が有限であることから、フーリエ変換の打ち切り誤差が生じるため、打ち切り誤差を小さくするためには、広い*Q*範囲で*S(Q)を*測定することが必要である。

g(r)と動径分布関数 RDF(r)は次式によって関連付けられる。

$$RDF(r) = 4\pi r^2 \rho_0 g(r)$$
 (2-1-45)

実験から得られた S(Q)をフーリエ変換することによって得られる動径分布関数 RDF(r)に対してガウス関数フィッティングによりピーク分離し、そのガウス 関数の面積 A から、i 原子周りの j 原子の配位数 N_{i-j}を次式によって計算することができる。

$$N_{i-j} = \frac{A}{w_{i-j}} c_j$$
 (2-1-46)

ここで、*w_{i-j}* は式(2-1-40)に示した *i-j* 相関の重み因子、*c_j*は*j* 原子の原子分率である。図 2-1-3 に、原子分布と構造因子 *S*(*Q*)ならびに動径分布関数 *RDF*(*r*)の関係を示す。

図 2-1-3 原子分布と S(Q)ならびに動径分布関数 RDF(r)の関係。

B リバースモンテカルロモデリング[8,9]

リバースモンテカルロ(RMC)モデリングは、液体や非晶質物質の3次元構造を 視覚化するための有力な手法として注目されている。RMCモデリングでは、初 期構造モデルを設定し、そのモデルの構造因子 $S^{C}(Q_{i})$ もしくは二体分布関数 $g^{C}(r_{i})$ が実験で得られた $S^{E}(Q_{i})$ もしくは $g^{E}(r_{i})$ と一致するように原子座標を繰り 返し変化させて構造モデルを構築する。すなわち、可能な限り実験データを再 現させるために、次式を最小にする構造モデルを形成させる。

$$\chi^{2} = \frac{\sum_{i=1}^{n} \left[S^{E}(Q_{i}) - S^{C}(Q_{i}) \right]^{2}}{\sigma^{2}}$$
(2-1-47)

もしくは

$$\chi^{2} = \frac{\sum_{i=1}^{n} \left[g^{E}(r_{i}) - g^{C}(r_{i}) \right]^{2}}{\sigma^{2}}$$
(2-1-48)

ここで、*n*はデータ点の数、σは実験値の標準偏差を表す。

RMCモデリングでは、1つの原子を動かす前後で χ^2 を計算し、 χ^2 が小さくなれば原子を動かした後の原子分布を採用する。一方、 χ^2 が小さくならなかったときは、原子を動かす前後で計算された χ^2 の値を用いた以下の式で与えられる確率によって原子を動かした後の原子分布を採用する。

$$p = \exp\left[-\frac{\left(\chi_{\text{new}}^2 - \chi_{\text{old}}^2\right)}{2}\right]$$
(2-1-49)

ここで、 χ_{old}^2 は原子を動かす前の χ^2 の計算値、 χ_{new}^2 は原子を動かした後の χ^2 の計算値である。

実際に計算で用いる原子の数は実験データやコンピュータの性能に依存する。 原子を配置する RMC セルのサイズは原子の個数と密度から自動的に決定され る。RMC モデリングのフローチャートを図 2-1-4 に示す。

本研究では、RMCA[8]および RMC++[9]プログラムを用いて RMC モデリン グを行った。

図 2-1-4 RMC モデリングのフローチャート。

2-1-4 中性子飛行時間法の原理

中性子回折実験では、原子炉中性子源を用いた方法とスポレーション(核破 砕)中性子源を用いた方法が利用されている。原子炉中性子源を用いた場合、 原子炉において定常的に発生している白色中性子をモノクロメータで単色化さ せ、一定波長の中性子を試料に入射し、その散乱強度を散乱角 2θの関数として 測定する(角度分散法)。一方、スポレーション中性子源を用いた場合、中性子 源における核破砕反応によってパルス的に発生する白色中性子を試料に入射し、 特定の角度における散乱強度を波長λの関数として測定する(エネルギー分散 法)。このとき、波長λの決定には飛行時間法(Time-of-Flight: TOF)が用いら れる。本研究では、スポレーション中性子源から発生するパルス中性子を用い た TOF 法による中性子回折実験を行った。

中性子は物質波であり、その運動量pは de Broglieの式によって記述できる。

$$p = mv = \frac{h}{\lambda} \tag{2-1-50}$$

ここで、mは中性子の静止質量、vは中性子の速度、hはプランク定数、 λ は中 性子の波長である。さらに、中性子の飛行距離をL、飛行時間をtとすると、v= L/tという関係から、 λ を時間tの関数として表すことができる。

$$\lambda = \frac{h}{mL} \cdot t \tag{2-1-51}$$

さらに、(2-1-51)式をブラッグの条件と(2-1-10)式にそれぞれ代入すれば、結晶の面間隔 *d* および散乱ベクトル *Q* を *t* の関数として表すことができる。

$$d = \frac{h}{2 \, mL \sin \theta} \cdot t \tag{2-1-52}$$

$$Q = \frac{4\pi mL\sin\theta}{h} \cdot \frac{1}{t}$$
(2-1-53)

スポレーション中性子を用いる場合、短波長の中性子を利用することができる ため、原子炉中性子源を利用するのと比べて数倍高い*Q*領域の回折データを測 定することができる。これにより、高次反射の情報を結晶構造解析に取り込む ことで原子座標の解析精度を向上させることができ、さらに、広い*Q*領域で*S*(*Q*) をフーリエ変換することで高い実空間分解能もつ二体分布関数 g(r)を得ることができる。

2-1-5 X 線回折と原子散乱因子[10]

X線は電子の電磁力との相互作用によって散乱される(図 2-1-5)。すなわち、 X線にとって原子核の周りに広がる電子雲が散乱体となる。それ故、電子雲の サイズはX線の波長に対して無視できないサイズであり、同一原子といえども 電子雲における各電子によって散乱されたX線はお互いに干渉することになる。

図 2-1-5 2 種類のプローブと原子との散乱。

原子中にある分布を持って存在している複数の電子によるX線の干渉性散乱 振幅を計算するためには、原子核から距離 r だけ離れている点における電子密 度 $\rho(r)$ を考える必要がある。電子の分布を ρ で表し、 $\int \rho dV = 1$ という関係が成 り立ち、さらに、入射 X 線および散乱 X 線の波数ベクトルを k_0 および k とし た場合、距離 r だけ離れた電子からの散乱波は、原点からの散乱波との間に位 相差 Q·r を生じる。このとき、散乱波の振幅は以下のように近似できる。

$\exp\{i\mathbf{Q}\cdot\mathbf{r}\}\rho \mathrm{d}V \tag{2-1-54}$

ここで、λ は入射 X 線の波長である。よって、1 個の電子からの干渉性散乱の 振幅は、電子によって占有されているすべての体積について積分を行うことで 求められるので、電子1 個あたりの散乱振幅 *f*eは、次式で与えられる。

$$f_{\rm e} = \int \exp\{i\boldsymbol{Q}\cdot\boldsymbol{r}\}\rho dV \qquad (2-1-55)$$

すべての軌道が埋まっている内殻電子などの電子分布は、通常球対称と考えて 良いので、これらの閉殻電子の分布を重ね合わせて電子分布を考えることによ り、複数の電子を有する原子による散乱振幅を見積もることができる。原子核 を原点にとり、球対称な電子分布を距離rのみの1次元の関数として扱い、p=p(r) と仮定する。このときの散乱振幅 fe は次のようになる。

$$f_{\rm e} = \int_0^\infty 4\pi r^2 \rho(r) \frac{\sin Qr}{Qr} dr \qquad (2-1-56)$$

したがって、複数の電子を含んでいる原子からの干渉性散乱振幅 f(Q)は、電子 1 個あたりの散乱振幅の和として、以下のように表現できる。

$$f(Q) = \sum_{n} f_{en} = \sum_{n} \int_{0}^{\infty} 4\pi r^{2} \rho(r) \frac{\sin Qr}{Qr} dr \qquad (2-1-57)$$

このf(Q)はX線原子散乱因子と呼ばれる。原子中の電子密度分布は、ハートリ ーーホック近似などによって原子内電子の波動関数から求めることができる。 代表的な値は、International Table for X-ray Crystallography Volume C に記載され ている以下の近似式を用いてf(Q)が計算されている[11]。

$$f(Q) = \sum_{j=1}^{5} A_j \exp\left[-B_j \left(\frac{\sin\theta}{\lambda}\right)^2\right] + C$$
(2-1-58)

式(2-1-58)を用いて求めた Li、P、S の原子散乱因子 f(Q)を図 2-1-6 に示す。図より、f(Q)は原子番号に比例して大きくなっていることが分かる。また、各原子において f(Q)は Q の増加とともに減少し、Q が小さい領域においてそれぞれの原子番号に近づいている。

このように、X線回折と中性子回折との大きな違いは、回折を起こす波長 λ の領域で、中性子の散乱能である散乱長bがほぼ一定であるのに対して、X線の原子散乱因子f(Q)がQ依存性を示すことである。よって、X線構造解析を行う上で、中性子における $b \geq f(Q)$ に置き換える必要がある。すなわち、X線回折データの解析において、式(2-1-29)に示した結晶構造因子 F_K は

$$F_{K} = \sum_{j} g_{j} f_{j}(Q) T_{j} \exp\left[2\pi i \left(h x_{j} + k y_{j} + l z_{j}\right)\right]$$
(2-1-59)

となり、また、式(2-1-40)および式(2-1-41)に示した重み因子 wi.jは

$$w_{i-j}(Q) = \frac{c_i c_j f_i(Q) f_j(Q)}{\langle f(Q) \rangle^2}$$
(2-1-60)

$$\langle f(Q) \rangle = \sum c_i f_i(Q)$$
 (2-1-61)

と置き換えられる。

図2-1-6 文献[11]の値を用いて計算したLi、PおよびSのX線原子散乱因子f(Q)。

2-2 電気伝導測定の原理[12-15]

2-2-1 電気伝導度の定義と基本的な関係式

一般に電気伝導度 o は、電流密度 J、電場 E により次式で定義される。

$$J=\sigma E \tag{2-2-1}$$

面間隔 Lの試料に電圧 Vがかかっている場合、式(2-2-1)より、

$$J = \sigma \frac{V}{L} \tag{2-2-2}$$

となる。さらに、試料の断面積をSとすると、電流Iおよび試料の抵抗Rは、

$$I = \frac{J}{S} \tag{2-2-3}$$

$$R = \frac{V}{I} \tag{2-2-4}$$

であるから、式(2-2-2)より、電気伝導度σについて以下の関係が得られる。

$$\sigma = \frac{JL}{V} = \frac{IL}{SV} = \frac{L}{SR}$$
(2-2-5)

よって、試料の電気伝導度 σ を得るためには、試料の断面積 S、厚さ L、電気抵抗 R を正確に求める必要がある。

2-2-2 直流法と交流法

試料の電気抵抗を測定する手法には、試料に直流電圧を印加する直流法と交流電圧を印加する交流法の2種類がある。イオン伝導体の電気抵抗を直流法で測定する場合、直流電圧を印加し続けると、図 2-2-1(a)のようにイオンが負極側へ片寄ってしまう。よって、時間とともに電流が流れなくなり、イオン伝導に由来する電気抵抗を測定することができない。一方、交流電圧を印加する交流法では、図 2-2-1(b)のように分極が起こらないため、試料のイオン伝導に由来する電気抵抗を測定することができる。さらに、交流法では 2-2-4 節で述べるように、周波数を変化させることで、バルク抵抗、粒界抵抗および電極界面抵抗をそれぞれ分離することができる。

(a)

図 2-2-1 (a) 直流電流を印加したときおよび(b) 交流電流を印加したとき のイオンの動き。

2-2-3 交流インピーダンス法

インピーダンスは、ある周波数における回路の交流電流の妨げになる量として定義される。一般的に、交流回路におけるインピーダンスZは、交流電圧と 交流電流をそれぞれ時間の関数*E*(*t*)、*I*(*t*)とすると、式(2-2-6)のように表される。

$$Z = \frac{E(t)}{I(t)} \tag{2-2-6}$$

交流電圧 E(t)は sin(ωt)のような三角関数で表すこともできるが、数学的取り 扱いを一般化するために複素数 exp($i\omega t$)を用いて以下のように表される。

$$E(t) = |V| \{\cos(\omega t) + i\sin(\omega t)\} = |V| \exp\{i\omega t\}$$
(2-2-7)

ここで|V|は交流電圧の振幅、 ω は角度周波数で、 $\omega=2\pi f(f: 交流周波数)$ である。これに対し、電流は一般的に位相がずれるので、交流電流の振幅を|I|、位相のずれを ϕ とすると、交流電流 I(t)は、

$$I(t) = |I| \exp\left\{i(\omega t - \varphi)\right\}$$
(2-2-8)

と表される。(2-2-7)、(2-2-8)を(2-2-6)に代入すると、以下の関係が得られる。

$$Z = \left(\frac{|V|}{|I|}\right) \exp\left(i\phi\right) \tag{2-2-9}$$

抵抗 R に入出力する交流信号は位相変化をみせないので、抵抗 R のインピー ダンス Z_Rは、オームの法則に従う単純な抵抗である。

$$Z_R = R$$
 (2-2-10)

一方、コンデンサーCに関するインピーダンス Z_C は、以下のように求められる。まず、コンデンサーに蓄えられる電荷Q(t)は、電位E(t)と静電容量Cより、

$$Q(t) = CE(t) \tag{2-2-11}$$

と表わされる。式(2-2-11)を時間 t について微分すると、

$$\frac{\mathrm{d}Q(t)}{\mathrm{d}t} = C \frac{\mathrm{d}E(t)}{\mathrm{d}t} \tag{2-2-12}$$

ここで、

$$I(t) = \frac{\mathrm{d}Q(t)}{\mathrm{d}t} \tag{2-2-13}$$

より、式(2-2-13)に式(2-2-7)と式(2-2-12)を代入すると、

$$I(t) = i\omega CE(t) \tag{2-2-14}$$

となる。よって、コンデンサーのインピーダンス Z_cは、以下のようになる。

$$Z_{C} = \frac{E(t)}{I(t)} = \frac{E(t)}{i\omega C E(t)} = \frac{1}{i\omega C}$$
(2-2-15)

ここで、抵抗 R とコンデンサーC が並列に接続された RC 並列回路を考える。 この並列回路のインピーダンス Z_{RC} は、

$$\frac{1}{Z_{RC}} = \frac{1}{Z_R} + \frac{1}{Z_C}$$
(2-2-16)

で表わすことができるので、上式に式(2-2-10)および式(2-2-15)を代入すると、

$$\frac{1}{Z_{RC}} = \frac{1}{R} + \frac{1}{\frac{1}{i\omega C}} = \frac{1 + i\omega RC}{R}$$
(2-2-17)

$$Z_{RC} = \frac{R}{1 + i\omega RC} = \frac{R}{1 + (\omega RC)^2} - i\frac{\omega R^2 C}{1 + (\omega RC)^2}$$
(2-2-18)

となる。よって、インピーダンス Z_{RC} を実数部 Z'と虚数部 Z" に分けると、以下のような関係が得られる。

$$Z = Z' - iZ''$$
(2-2-19)

$$Z' = \frac{R}{1 + (\omega RC)^2}$$
(2-2-20)

$$Z'' = \frac{\omega R^2 C}{1 + (\omega R C)^2}$$
(2-2-21)

式(2-2-20)と式(2-2-21)からωを消去すると、実数部 Z'と虚数部 Z"の関係は以下のようになる。

$$\left(Z' - \frac{R}{2}\right)^2 + Z''^2 = \left(\frac{R}{2}\right)^2$$
 (2-2-22)

横軸にインピーダンスの実数成分|Z|、縦軸に虚数成分|Z"|をプロットしたスペ クトルを Cole-Cole プロットと呼ぶ。図 2-2-2 に、式(2-2-22)を用いて計算した *RC* 並列回路(*R*=1kΩ)の Cole-Cole プロットを示す。*RC* 並列回路のインピー ダンスを Cole-Cole プロットすると、図に示すような半円を描く。Cole-Cole プ ロットにおいて、データは角度周波数ωが大きくなるにつれて高抵抗側から低 抵抗側に円弧を描く。

図 2-2-2 RC 並列回路 ($R=1k\Omega$) についての Cole-Cole プロット。

2-2-4 等価回路

本研究では、粉末試料を成型した円盤状のペレットを用いてインピーダンス 測定を行う。粉末を成型したペレットは微小な試料の粒が集合したものであり、 ペレット試料を電極で挟んだ状態は、図 2-2-3 のようなモデルで描くことがで きる。図より、ペレット試料にはバルク(bulk: b)、粒界(grain boundary: gb)、 試料/電極界面における電荷移動(charge transfer: ct)の3つの電気化学的な成分 が存在すると考えられ、それぞれのインピーダンスは異なった値を示す。

バルク、粒界、電極/試料界面などを電気回路に等価として表したものを等価 回路と呼び、その代表的なものは抵抗 R と容量 C の直列(R_s、C_s)または並列(R_p、 C_p)結合の集中定数系で表すことができる(図 2-2-4)。実際の材料はもっと複雑 で、有限個の抵抗、容量の組み合わせで完全な等価回路をつくることはできな いが、電気化学反応が特徴ある挙動を示す場合には、基本的な等価回路を参考 にして、それに対応した抵抗、容量因子を近似することができる。図 2-2-5 に、 粉末から成型したペレット試料の等価回路を示しており、左からバルク抵抗 R_b、 粒界抵抗 R_{gb}、電極界面における電荷移動抵抗 R_{ct}に対応する。また、この回路 の Cole-Cole プロットは図 2-2-6 のようになり、周波数の高い側からバルク、粒 界、電極界面での電荷移動に対応する半円が現れ、それらの直径からバルク抵 抗、粒界抵抗、電極界面電荷移動抵抗を求めることができる。本研究では、測 定したインピーダンスを Cole-Cole プロットし、その軌跡からバルク抵抗を求 める。そしてバルク抵抗とペレットの形状から、系の電気伝導度を式(2-2-5)を 用いて算出した。

図 2-2-3 ペレット試料における 3 つの抵抗要素。

図 2-2-4 抵抗と容量の直列および並列回路。

図 2-2-5 ペレット試料における等価回路。

図 2-2-6 ペレット試料における等価回路(図 2-2-5)に対応した Cole-Cole プロット。

2-2-5 活性化エネルギーの導出

電気伝導度は温度に依存し、それに関係するすべての式は次のような経験式

$$\sigma T = A \exp\left(-\frac{E_{\rm a}}{k_{\rm B}T}\right) \tag{2-2-23}$$

を満足する。この関係式は Arrhenius の式と呼ばれ、ある温度での化学反応の速度を予測するときによく用いられる。この式において、 σ は電気伝導度、Tは絶対温度(K)である。Aは前指数因子または頻度因子、 E_a は伝導の活性化エネルギーと呼ばれる。式(2-2-23)について、両辺の自然対数をとると、

$$\ln(\sigma T) = \ln A - \frac{E_a}{k_B T}$$
(2-2-24)

となり、図 2-2-7 のように、 $\ln(\sigma T)$ を温度の逆数 1/T に対してプロット(Arrhenius プロット)すると、縦軸との切片が $\ln A$ 、傾きが(- E_a/k_B)になるので、これらの 値から活性化エネルギー E_a と前指数因子 A を求めることができる[15]。特に活 性化エネルギー E_a は、固体電解質をもっともよく特徴づけるパラメータであり、 良好な固体電解質は約 20kJ/mol の E_a を示す。本研究では、試料の電気伝導度 を室温から 200°C 付近まで測定して Arrhenius プロットを行うことで、 E_a を算 出した。

図 2-2-7 Li イオン伝導体 LiN₃の 2 つの結晶軸方向に対する電気伝導度の Arrhenius プロット[15]。ここで $\log \sigma T$ は、自然対数 $\log_e \sigma T$ (= $\ln \sigma T$)を示している。

- 第2章 参考文献
- [1] 星埜禎男、"実験物理学講座 22 中性子回折"、共立出版株式会社 (1976) 23-28.
- [2] 日本結晶学会、"結晶解析ハンドブック"、共立出版株式会社 (1999) 4-17.
- [3] V. F. Sears, *Neutron News*, **3** (1992) 26-37.
- [4] H. M. Rietveld, Journal of Applied Crystallography, 2 (1969) 65-71.
- [5] 日本分析化学会 X 線分析研究懇親会、"粉末 X 線解析の実際"、朝倉書店 (2002).
- [6] A.C. Larson and R.B. Von Dreele, *General Structure Analysis System (GSAS)*, Los Alamos National Laboratory Report LAUR, (2004) 86-748.
- [7] T. E.Faber and J. M. Ziman, *Philosophical Magazine*, **11** (1965) 153-173.
- [8] R.L. McGreevy, L. Pusztai, *Molecular Simulation*. 1 (1988) 359.
- [9] E. Evrard, L. Pusztai, Journal of physics: Condensed Matter, 17 (2005) S1-S13.
- [10] 早稲田嘉夫、松原英一郎、"X 線構造解析 原子の配列を決める",内田 老鶴圃 (1998) 59-78.
- [11]P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe and B. T. M. Willis, International Table for X-ray Crystallography Volume C: Mathematical, physical and chemical tables, (1983) 554-590.
- [12] 板垣昌幸、"電気化学インピーダンス法 原理・測定・解析"、丸善株式 会社、(2008).
- [13] 水田進、脇原將孝、"固体電気化学 実験法入門"、講談社サイエンティフ ィク (2001).
- [14]本田信、柳川洋、"インピーダンス測定ハンドブック -インピーダンス測 定とその応用-"、日本ヒューレット・パッカード株式会社.
- [15]工藤徹一、苗木和雄、"固体アイオニクス" 講談社サイエンティフィック (1986).

第3章 実験方法

3-1 試料の作製

(⁷Li₂S)_x(P₂S₅)_{100-x} ガラス試料および ⁷Li₇P₃S₁₁ 準安定結晶試料を作製するため、 以下表 3-1-1 に示す出発原料を使用した。

表 3-1-1 (⁷Li₂S)_x(P₂S₅)_{100-x}系の作製に用いた出発原料

出発原料	純度(%)	メーカー
$^{7}\text{Li}_{2}\text{S}$	99.9	(株) 高純度化学研究所
Р	99.9999	三津和化学薬品(株)
S	99.99	(株)高純度化学研究所

第1章で中性子回折実験はリチウムに関する構造パラメータを精度良く求める ために極めて有効あることを述べた。そのリチウムの散乱長 *b* は表 2-1-1 で示 すように -0.190×10^{-14} m であるが、吸収断面積 σ_{abs} は 70.5barn(λ =1.798Å)と非常 に大きい。その理由として、リチウムには ⁶Li と ⁷Li の同位体があり、それぞれ の *b* ならびに σ_{abs} は、 ⁶Li (*b*=0.20×10⁻¹⁴m、 σ_{abs} =940.0barn) そして ⁷Li (*b*= -0.222×10^{-14} m、 σ_{abs} =0.0454barn) であることに起因している。それ故、吸収断 面積の小さい ⁷Li (\leq 99.94%)に同位体置換された ⁷Li₂S を用いた。

作製した試料は活性が高く、吸湿性を持つために非常に酸化しやすい。その ため、すべての試料は Ar ガスによって置換したグローブボックス中で取り扱 った。グローブボックスは、銅触媒とモレキュラーシーブをそれぞれ充填した 2 つのカラムを備えたガス循環精製装置に接続され、循環ポンプによって Ar ガスが循環されている。本研究に用いたガス循環精製装置付きグローブボック スを図 3-1-1 に、Ar ガスが循環する配管の模式図を図 3-1-2 に示す。300°C に 加熱された銅触媒によって酸素が、モレキュラーシーブによって水分が除去さ れるため、高純度の Ar ガス雰囲気下で作業を行うことができる。本研究では、 試料作製だけでなく、実験準備もグローブボックス内で行っている。

3-1-1 メカニカルアロイング

(⁷Li₂S)_x(P₂S₅)_{100-x}ガラス試料は、メカニカルアロイング(mechanical alloying: MA)法によって作製した。MA法は、機械的なエネルギーにより原料粉末を固 体のまま原子レベルで混合させる方法で、代表的な固相反応法の一つである。 MA法によって、原料粉末を機械的に合金化、非晶質化することが可能であり、 溶融や急冷といった複雑な工程を経ないで非平衡相を作り出すことが可能であ る。MA を行うボールミル装置には幾つかの種類があるが、本研究では、原料 に与えるエネルギーが極めて大きい遊星型ボールミル装置(Fritsh P-5)を使用した。

遊星型ボールミルによる MA の模式図を図 3-1-3 に示す。また、遊星型ボールミル装置の外観および粉砕容器を図 3-1-4、図 3-1-5 にそれぞれ示す。粉砕容器の中に粉砕ボールと原料となる粉末試料を入れ、その容器を自転・公転させると、ボールとボール、そしてボールと容器の内壁との間で激しい衝突運動が生じ、叩かれ、擦り合わされた原料粉末は原子レベルで混合する。尚、本研究で使用した出発原料の粒子サイズは数百から数十ミクロン程度であり、原料粉末の酸化を避けるため、Ar ガス雰囲気中において MA を行った。はじめに、Pおよび S 粉末を 2:5 の組成比で混合し、150 時間 MA 処理して P_2S_5 ガラスを作製した。次に、作製した P_2S_5 ガラスに 7Li_2S を混合し、さらに 50 時間 MA 処理を施すことによって、粉末状の($^7Li_2S)_x(P_2S_5)_{100-x}$ ガラスを作製した。それぞれのMA の詳細な条件を以下に示す。

表 3-1-1 MA 法による P₂S₅の作製条件

メカニカルアロイング装置	量 : 遊星型ボールミル Fritsch P-5
容器	:ジルコニア製粉砕容器 (容量 80cc)
球	:ジルコニア製粉砕ボール(直径 10mm) 20 個
出発原料	:PおよびS (合計3g)
回転数	: 300 rpm
時間	:150 時間
雰囲気	: Ar ガス

表 3-1-2 MA 法による(${}^{7}Li_{2}S$)_x(P₂S₅)_{100-x}の作製条件 メカニカルアロイング装置 : 遊星型ボールミル Fritsch P-5 容器 : ジルコニア製粉砕容器 (容量 80cc) 球 : ジルコニア製粉砕ボール(直径 10mm) 20 個 出発原料 : ${}^{7}Li_{2}S$ および P₂S₅ (合計 3 g) 回転数 : 300 rpm 時間 : 50 時間 雰囲気 : Ar ガス

3-1-2 熱処理

MA 法によって作製した(${}^{7}Li_{2}S$)₇₀($P_{2}S_{5}$)₃₀ガラスを直径 10 mm のホウケイ酸ガ ラス (PYREX ガラス) 管に真空封入し、ガラスの結晶化温度以上で 2 時間熱 処理を行った後、空冷することで ${}^{7}Li_{7}P_{3}S_{11}$ 準安定結晶試料を作製した。結晶化 温度については、後述する DSC 測定の結果を参考にした。図 3-1-6 に、熱処理 に用いた管状型電気炉を示す。

図 3-1-1 ガス循環精製装置付きグローブボックス。

露点測定用端子

図 3-1-2 ガス循環精製の流れ。

図 3-1-3 メカニカルアロイング (MA) 法の原理。

図 3-1-4 遊星型ボールミル装置 Fritsh P-5。

図 3-1-5 MA に用いたジルコニア製粉砕容器。(a)ジルコニア製粉砕ボールと ジルコニア製粉砕容器、およびテフロンで作製した密閉用リング。(b)Ar 雰 囲気中で密閉するため、O-リングを備えた SUS 製のオーバーポット用いる。 (c)粉砕容器を内部にセットして密閉したオーバーポット。

図 3-1-6 ガラス試料の熱処理に用いた管状型電気炉。

3-1-3 X線による試料の同定

作製した試料は、粉末 X 線回折装置を用いて X 線回折パターンを測定し、試料の確認を行った。本研究では、(株) リガク製の回転対陰極 X 線装置 SmartLab (線源: Cu)を使用し、室温でステップスキャン法による測定を行った。装置 の外観を図 3-1-7 に示す。尚、作製した粉末試料は吸湿性が高く酸化しやすい ため、グローブボックス内でアルミニウム製試料板に均一に充填した後、 X 線 回折測定用密封セル(図 3-1-7(b))に密封して実験を行った。

図 3-1-7 (a)回転対陰極 X 線装置 Smartlab。(b) X 線回折測定用密封セル。 (c)密封セルを用いた X 線回折測定の様子。

3-2 熱分析[1,2]

MA 法によって作製した($^{7}Li_{2}S$)_x($P_{2}S_{5}$)_{100-x}ガラス試料について、ガラス転移温 度や結晶化温度などの熱物性に関する情報を得るために、示差走査熱量測定 (Differential Scanning Calorimetry: DSC) 測定を行った。実験には、(株) リガ ク製の示差走査熱量計 DSC-8270 を用いた(図 3-2-1)。示差走査熱量計は、物 質の温度を連続的に変化させた時に生ずる物理的・化学的変化に伴う吸発熱を 定量的に測定する装置である。図 3-2-2 に示差走査熱量計の概念図を示す。電 気炉の中に水平な金属プレートがあり、その上に測定試料と基準試料が対称な 位置に置かれている。試料位置の裏面には示差熱電対が溶接されており、温度 差 ΔT を検出している。電気炉の温度を一定の速度で上昇させていくと、2 つ の試料が共に同じ温度で昇温するが、ある温度で測定試料が物理的・化学的変 化によって吸熱もしくは発熱反応を起こした場合、基準試料との間に温度差が 生じる。この温度差は、試料が乗っている金属プレート等を通して流れる熱流 によって緩和される。このとき、試料に単位時間当たりに流れ込む(または出 て行く)熱量は、試料と周囲との温度差、つまり試料と基準物質との温度差に 比例する。そのため、温度差 ΔT が生じた時刻から温度差が再び無くなる時刻 までを積分すれば、試料に出入りした熱量を定量的に知ることができる。測定 の結果得られる定常状態におけるベースラインと、試料のガラス転移、結晶化、 融解についての ΔT 信号を重ねることで、図 3-2-3 に示すような DSC 曲線が得 られる。

DSC 測定は室温から 450°C までの温度範囲で昇温過程でのみ行い、昇温速度 は 10°C/min とした。基準試料は Al₂O₃粉末を使用した。Al₂O₃は、測定温度範 囲内では相転移、分解をせず、熱的に安定である。試料の酸化を防ぐため、測 定試料はグローブボックス内でアルミニウムセルに密封し、測定中は試料室中 に Ar ガスを 800ml/min の流量で流した。尚、測定条件を揃えるため、基準試料 の Al₂O₃粉末もアルミニウムセルに密封した。表 3-2-1 に、DSC 測定の条件を まとめる。

表 3-2-1 DSC 測定の条件

実験装置: RIGAKU示差走查熱量計 DSC-8270

RIGAKU 熱分析ワークステーション Thermo Plus DSC-8270 試料:ガラス試料粉末 (⁷Li₂S)_x(P₂S₅)_{100-x} x=0、20、40、50、60、70 基準物質:Al₂O₃粉末 測定セル:アルミニウムセル(密封型) 測定温度:室温~450°C 温度走査速度:10°C/min 測定雰囲気:Arガス 流量 800 ml/min

図 3-2-1 示差走查熱量計 DSC-8270。

図 3-2-2 示差走査熱量計の概念図。

図 3-2-3 DSC 曲線の例。

3-3 密度測定

各試料の真密度をテトラリン浸漬によるアルキメデス法によって測定した。 アルキメデス法は、液体中で固体が同体積の液体の重量と同じだけの浮力を受けること(アルキメデスの原理)を用いて試料の密度を求める方法である。

試料および試料を入れるアルミニウムセルについて、

1) セルの乾燥重量W_{cell}

- 2) セル+試料の乾燥重量W_{cell+sample}
- 3) セルのテトラリン中での重量 W_{cell}^L および温度
- 4) セル+試料のテトラリン中での重量 $W_{cell+sample}^{L}$ および温度

を電子天秤によって測定する。尚、試料の湿化および酸化を防止するために、 測定はグローブボックス内で行った。

1)~4)の重量と測定した温度におけるテトラリンの密度 ρ^L より、試料の体積 V_{sample} が以下のように求められる。

$$V_{sample} = \frac{\left(W_{cell+sample} - W_{cell}\right) - \left(W_{cell+sample}^{L} - W_{cell}^{L}\right)}{\rho^{L}}$$
(3-3-1)

ここで、 ρ^L は文献[3]に記載されている値を用いた。得られた V_{sample} と試料の乾燥重量より、試料の真密度 d_{sample} を以下の式によって求めることができる。

$$d_{sample} = \frac{\left(W_{cell+sample} - W_{cell}\right)}{V_{sample}}$$
(3-3-2)

測定は各試料につき数回行い、その平均値を求めた。得られた真密度 d_{sample} から、以下の式によって試料の原子数密度 ρ_0 を計算した。

$$\rho_0 = \frac{d_{sample} \times N_A \times n}{M} \tag{3-3-3}$$

ここで、 N_A はアボガドロ数(6.0221×10²³/mol)、Mは試料のモル質量、nは試料の化学式単位当たりに含まれている原子の数であり、 $Li_7P_3S_{11}$ についてはn=21である。

3-4 交流インピーダンス測定

作製した粉末試料は、錠剤成形機((株)島津製作所製)と油圧プレス機を用 いてペレット状(直径13mm、厚さ1mm~3mm)に成形した。ペレット内部に ガスが残らないように、ペレット成形時は真空ポンプを用いて試料成形機内を 真空に引いた。ペレット試料を電極で挟む際、試料表面の粗さなどによって電 子が散乱され、接触抵抗が生じることが予想される。鏡面加工された金属面を 使用してペレットを作製しているが、微細な凹凸は表面上に存在するものと考 えられる。接触抵抗により、測定される抵抗は実際の試料のものよりも大きな 値を示す。本実験では、ペレット試料の両面に対して、銀ペーストの塗布を行 い、試料-電極間の凹凸をなくし、接触抵抗を可能な限り抑えるようにした。銀 ペーストを塗布したペレット状の試料は、図 3-4-1 に示すような密封セルに封 入し、測定に用いた。

四端子法による交流インピーダンス測定には、LCR メーター(Wayne Kerr Electronics 製、図 3-4-2) および AUTOLAB (ECO CHEMIE 製、図 3-4-2) を使 用した。LCR メーターは 10Hz~3MHz の周波数範囲で、AUTOLAB は 1mHz~ 1MHz の周波数範囲で測定が可能である。それぞれの周波数特性を考慮し、基本 的には LCR メーターを用いて測定を行い、より抵抗が大きいと考えられる試料 に対しては、低周波数まで測定が可能な AUTOLAB を用いて測定を行った。

交流インピーダンス測定の様子を図 3-4-2 に示す。試料セルは電気炉内部に 設置し、温度を変化させながら測定を行った。表 3-4-1 に交流インピーダンス 測定の条件をまとめる。

表 3-4-1 交流インピーダンス測定の条件

実験装置:LCR メーター(Wayne Kerr Electronics 製)

AUTOLAB (ECO CHEMIE 製)

- 試料:ペレット状ガラス試料(⁷Li₂S)_x(P₂S₅)_{100-x} x = 0、20、40、50、60、70 ペレット状結晶試料 ⁷Li₇P₃S₁₁
- 測定温度:室温、30°C~200°C

印加電圧:0.05 V

交流周波数:100Hz~3 MHz (LCR メーター)

$2mHz \sim 1 MHz (AUTOLAB)$

各周波数での測定回数:5

電極:銀ペースト((株)ニラコ製)塗布による銀電極

図 3-4-1 電気伝導度測定用密閉セル。

図 3-4-2 交流インピーダンス測定の様子。試料セルは点線で示された電気炉 内に設置されている。

3-5 放射光 X 線回折実験[4]

放射光とは、高エネルギーの荷電粒子が磁場中で Lorentz 力によって曲げら れるときに放射される電磁波である。放射光は、指向性が良い、赤外から X 線 までの広く連続的な波長領域の光を含む、偏光している、輝度がきわめて高い などの特徴を有しており、実験室の X 線回折装置では得ることが難しい高輝度 かつ短波長領域の X 線を得ることができる。このため、現在では真空紫外から X 線に至る短い波長領域の最も優れた光源として、幅広い科学技術分野に利用 されている。

放射光 X 線回折実験は SPring-8 の BL04B2 ビームラインに設置されている非 晶質物質用二軸回折計を用いて行われた。図 3-5-1 に SPring-8 の概略図を示す。 BL04B2 ビームラインは 37 keV 以上の高エネルギーX 線を用いている。光源は 偏向電磁石で、水平方向の発散は 0.73 mrad に制限されている。高エネルギー 領域でエネルギー分解能よりも強度重視の集光光学系を実現するため、水平 1 枚振りの湾曲分光結晶が採用されている。結晶のブラッグ角は 3 °に固定されて おり、結晶面を変更することによりエネルギーを変更することができる。現在 では、Si 111 (37.8 keV、113.4 keV)および Si 220 (61.7 keV)が利用できる。

BL04B2 ビームラインには、非晶質物質用二軸回折計、ワイセンベルグカメ ラ、超臨界流体測定用の小角 X 線散乱用回折計、ダイヤモンドアンビルセル用 IP 回折計がタンデムに配置されている.本研究では、 $(^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラスお よび $^{7}Li_{7}P_{3}S_{11}$ 準安定結晶のX線回折データを高い散乱ベクトルQまで高い精度 で測定するため、非晶質物質用二軸回折計において 61.7 keV (λ = 0.2013 Å)の X 線を用いた。図 3-5-2 に非晶質物質用二軸回折計を示す。測定にはカプトン膜 の窓を備えた SUS 製の密閉セル(図 3-5-3)を用い、透過法によって測定を行った。 セルの厚さは 2 mm で十分な統計精度を得るため、試料については 8 時間程度、 空のセルについては 1 時間程度測定を行った。表 3-5-1 に、放射光 X 線回折実 験の測定条件をまとめる。また、回折データからの構造因子 S(Q)の導出につい ては、付録の A-1 に記述する。

表 3-5-1 放射光 X線回折実験の測定条件

実験装置:非晶質物質用二軸回折計(SPring-8、BL04B2 ビームライン) 試料:ガラス試料粉末 (⁷Li₂S)_x(P₂S₅)_{100-x} x=0、20、40、50、60、70 結晶試料粉末 ⁷Li₇P₃S₁₁ 測定セル:カプトン窓付き SUS 製密閉セル 測定温度:室温

図 3-5-1 SPring-8 の概略図。

図 3-5-2 非晶質物質用二軸回折計(BL04B2)。

図 3-5-3 放射光 X 線回折実験に用いた密閉型試料セル。

3-6 パルス中性子回折実験[5,6]

パルス中性子回折実験は、イギリスにあるラザフォード・アップルトン研究 所の中性子施設 ISIS に設置されている中性子回折装置 GEM (General material diffractometer)を用いて行った。

ISIS は2つのパルス中性子源を持つ実験施設である。ISIS では、800 MeV に 加速された陽子がそれぞれのターゲットステーションに設置されたタングステ ン(W)に照射され、スポレーション中性子が取り出される。図 3-6-1 に GEM が設置されている ISIS のターゲットステーションの見取り図を示す。GEMは、 結晶と非晶質物質の両方に利用できる中性子回折装置として設計されている。 GEM の検出器は 7.270 m²の広い面積を 1.2~171.4°の広い散乱角をカバーする ように配置されているため、高分解能かつ高強度な中性子回折データを測定す ることが可能である。第一飛行経路上には、コンピュータによって制御された B₄C 製のスリット群と2つのディスクチョッパーが配置されており、これらに よって入射する中性子ビームは試料位置で幅 15mm、高さ 40mm に絞られ、波 長は 0.05 ~ 3.40Å に制限される。図 3-6-2 に、GEM における検出器の配置図を 示す。試料は真空引きした試料槽内にセットされ、検出器が試料槽の外側を囲 むように設置されている。GEM に設置されている検出器は、すべて ZnS/⁶Li シ ンチレーション検出器である。各検出器は数十~百個ごとに並列に並べられた モジュールとしてまとめられ、さらにモジュールは定められた散乱角範囲をカ バーする "検出器バンク"に配列されている。各バンク内の検出器は、一定の 分解能となるように配置される。すなわち、

$$Qt = \frac{2m}{\hbar} (L_1 + L_2) \sin \theta = const.$$
(3-6-1)

を満たすように配置されており、等しい散乱ベクトル Q を持つ散乱中性子は、 散乱角が異なっても同一時刻にカウントされる。ここで、 L_2 は試料から検出器 までの中性子の飛行距離であり、第二飛行距離(secondary flight path)と呼ばれる。 GEM には 8 個の検出器バンクが設置されており、それらに関する各パラメータ を表 3-6-1 にまとめて示す。

測定試料は、図 3-6-3 に示す直径 8 mm、壁厚 0.3 mm の円筒形バナジウム(V) 製の試料セルに Ar ガス雰囲気中で封入して測定した。*S(Q)*を得るため、 I)試 料+試料セル、II) 空の試料セル、III) バナジウムロッド、IV) バックグラウン ドの 4 種類の散乱強度を測定した。表 3-6-1 に、パルス中性子回折実験の測定 条件をまとめる。また、回折データからの構造因子 *S(Q)*の導出については、付 録の A-2 に記述する。 表 3-6-1 パルス中性子回折実験の測定条件 実験装置:中性子回折装置 GEM (ISIS、ターゲットステーション 1) 試料:ガラス試料粉末 (⁷Li₂S)_x(P₂S₅)_{100-x} x=0、40、70 結晶試料粉末 ⁷Li₇P₃S₁₁ 測定セル:円筒形バナジウムセル 測定温度:室温

図 3-6-1 GEM が設置されている ISIS のターゲットステーション1の見取り図。

図 3-6-2 GEM の検出器配置図[6]。

表 3-6-1 GEM の各検出器	バンクのパラ	メータ[6]。
-------------------	--------	---------

Detector Bank	Scattering angle 2θ (deg)	Range in azimuthal angle ϕ (deg)	Secondary flight path L ₂ (m)	Number of detector elements/ modules	Solid angle Ω (sr)	Resolution $\Delta Q/Q(\%)$	Minimum accessible momentum transfer Q_{min} (\hat{A}^{-1})
Bank0	1.21-3.18	±90.0	2.757-2.767	80/4	0.008	5-10	0.04
Bank1	5.32-12.67	± 45.0	2.365-2.376	330/6	0.056	4.7	0.17
Bank2	13.44-21.59	± 43.4	1.477-2.100	320/4	0.093	2.4	0.43
Bank3	24.67-45.61	± 42.5	1.077-1.893	900/10	0.478	1.7	0.79
Bank4	50.07-74.71	± 44.4	1.028-1.436	1400/14	0.988	0.79	1.56
Bank5	79.07-106.60	± 44.5	1.376-1.383	2160/18	1.135	0.51	2.35
Bank5X	106.02-114.19	± 42.7	1.377-1.387	720/18	0.378	0.5	2.95
Bank6	142.50-149.72	±69.3	1.544-1.738	560/14	0.280	0.34	3.50
Bank7	149.98-171.40	± 66.6	1.035-1.389	800/10	0.443	0.35	3.57

図 3-6-3 パルス中性子回折実験に用いたバナジウム製密閉型試料セル。

第3章参考文献

- [1] 株式会社リガク、"Thermo Plus 2 シリーズ示差走査熱量計 DSC8270 取扱 説明書".
- [2] 株式会社リガク、"リガク示差走査熱量計" http://www.rigaku.co.jp/technique/d05.html.
- [3] F. A. Gonçalves, K. Hamano and J. V. Sengers, *International Journal of Thermophysics*, **10** (1989) 845-856.
- [4] S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki and I. Sakai, *Nuclear Instruments* and Methods, A 467-468 (2001) 1030-1033.
- [5] W.G. Williams, R.M. Ibberson, P. Day and J.E. Enderby, Physica B 241–243 (1998) 234-236.
- [6] A.C. Hannon: in: J. Lindon, G. Tranter, J. Holmes (Eds.), Encyclopedia of Spectroscopy and Spectrometry, vol. 2, Academic Press, London, 2000, p. 1479.

第4章 (Li₂S)_x(P₂S₅)_{100-x} ガラスのイオン伝導性と構造

4-1 (⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの作製

本研究では、MA法によって作製した(${}^{7}Li_{2}S$)_x(P₂S₅)_{100-x}ガラスについて、電気 伝導度測定、放射光 X 線回折実験、パルス中性子回折実験を行い、得られた回 折データを用いて RMC モデリングを行った。表 4-1-1 に作製した (${}^{7}Li_{2}S$)_x(P₂S₅)_{100-x}ガラスの種類と行った実験について整理する。

組成	電気伝導度測定	放射光 X 線 回折実験	パルス中性子 回折実験	RMC モデリング
$({}^{7}Li_{2}S)_{0}(P_{2}S_{5})_{100}$ (=P ₂ S ₅)	0	0	0	0
$(^{7}\text{Li}_{2}\text{S})_{20}(\text{P}_{2}\text{S}_{5})_{80}$	0	0	_	0
$(^{7}\text{Li}_{2}\text{S})_{40}(\text{P}_{2}\text{S}_{5})_{60}$	0	0	0	0
$(^{7}\text{Li}_{2}\text{S})_{50}(\text{P}_{2}\text{S}_{5})_{50}$	0	0	_	_
$(^{7}\text{Li}_{2}\text{S})_{60}(\text{P}_{2}\text{S}_{5})_{40}$	0	0	_	0
$(^{7}\text{Li}_{2}\text{S})_{70}(\text{P}_{2}\text{S}_{5})_{30}$	0	0	0	0

表 4-1-1 MA 法によって作製した(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスと行った実験

上記の実験を開始する前に X 線回折測定および DSC 測定による予備実験を 行い、作製した(⁷Li₂S)_x(P₂S₅)_{100-x}ガラス試料について評価した。図 4-1-1 に、150 時間 MA 処理を施した P₂S₅ガラス、出発原料として用いた P 粉末および S 粉 末の X 線回折パターンを示す。MA 処理によって S の結晶構造に由来する回折 ピークは消失し、非晶質構造を示すハローパターンが得られた。MA 法によっ て得られた P₂S₅ガラスに対して ⁷Li₂S を添加し、さらに 50 時間 MA 処理を施し た(⁷Li₂S)_x(P₂S₅)_{100-x}試料(x = 20、40、50、60、70、75)の X 線回折パターンを図 4-1-2 に示す。比較のため、出発原料として用いた ⁷Li₂S 粉末および P₂S₅ガラス (x=0)の回折パターンも一緒に示している。 $x \le 70$ の領域においてガラス化を示 すハローパターンが観測された。一方、x = 75の試料については、⁷Li₂S とは異 なる幾つかの回折ピークが観察された。これらの回折ピークは、さらに 50 時間 MA 処理を行っても消失することはなかった。そのため、本研究では $({}^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラス試料の組成範囲を $0 \le x \le 70$ とした。

 $({}^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラス(x = 0、20、40、50、60、70)のDSC曲線を図4-1-3 に示す。 $P_{2}S_{5}$ ガラス(x = 0)において、170°C付近に発熱ピーク(凸型)が、280°C 付近に吸熱ピーク(凹型)が現れている。170°C付近の発熱ピークはガラス試 料の結晶化によるものである。一方、x = 0の280°C付近に現れる吸熱ピークの 位置は $P_{2}S_{5}$ の融点と良く一致していることから、試料の融解によるものである。 図中に矢印で示した結晶化ピークはx = 20において低温側に大きくシフトした 後、 ${}^{7}Li_{2}S$ 量の増加に伴って高温側にシフトし、x = 50において完全に消失した。 ところが、x=20あたりから融解ピークの直前に新たな発熱ピークが現れた。 $x \ge$ 50のガラスでは低温側に存在していた結晶化ピークが消失するため、このピー クが第1結晶化ピークとなる。また、融解ピークにおいて、その位置は ${}^{7}Li_{2}S$ が添加されてもほとんど変化しないが、ピーク強度は徐々に小さくなり、x = 50で消失することが観察された。以上のような理由から、電気伝導度測定の温度 範囲は室温から各組成における第1結晶化ピーク温度までとした。

図 4-1-1 MA 法によって作製した P₂S₅ 試料および出発原料として用いた P 粉末、S 粉末の X 線回折パターン。

図 4-1-2 MA法によって作製した(⁷Li₂S)_x(P₂S₅)_{100-x}試料および出発原料として 用いた ⁷Li₂S 粉末の X 線回折パターン。

図 4-1-3 MA 法によって作製した(⁷Li₂S)_x(P₂S₅)_{100-x} 試料の DSC 曲線。

4-2 電気伝導度測定

 $({}^{7}\text{Li}_{2}\text{S})_{x}(\text{P}_{2}\text{S}_{5})_{100-x}$ ガラス(x = 0、20、40、50、60、70)試料の電気伝導度測定を 行った。 $({}^{7}\text{Li}_{2}\text{S})_{x}(\text{P}_{2}\text{S}_{5})_{100-x}$ ガラスの ${}^{7}\text{Li}_{2}\text{S}$ 量と電気伝導度 σ_{RT} (27°C)および活性 化エネルギー E_{a} の関係を図 4-2-1 に示す。 σ_{RT} は ${}^{7}\text{Li}_{2}\text{S}$ 量の増加に伴って指数関 数的に上昇し、x = 70で $\sigma_{\text{RT}} = 9.09 \times 10^{-5}$ S/cm に達した。一方、 E_{a} は ${}^{7}\text{Li}_{2}\text{S}$ 量の増 加に伴って急激に減少し、x = 70で $E_{a} = 42.3$ kJ/mol を示した。

図 4-2-1 交流インピーダンス測定によって得られた($^{7}Li_{2}S$)_x($P_{2}S_{5}$)_{100-x} ガラスの室温における電気伝導度 σ_{RT} (〇)および活性化エネルギー E_{a} (◆)の組成依存性。

4-3 動径分布関数による構造解析

構造因子 S(Q)をフーリエ変換することによって得られる動径分布関数 RDF(r)から(⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの局所構造について議論する。また、ここで 得られた構造情報は、次節で述べる RMC モデリングの制約条件として利用す る。

4-3-1 数密度

表 4-3-1 に、アルキメデス法によって測定した(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの原子 数密度 ρ₀を示す。これらの値を用いて *RDF*(*r*)を導出した。

x	$ ho_0$ (Å ⁻³)
0	0.0368
20	0.0398
40	0.0411
50	0.0425
60	0.0436
70	0.0481

表 4-3-1 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの原子数密度 ρ₀

4-3-2 隣接原子構造

放射光 X 線回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの *S*(*Q*)を図 4-3-1 に、その *RDF*(*r*)を図 4-3-2 に示す。ここで、フーリエ変換の *Q*範囲を 0.4 $\leq Q \leq 25$ Å⁻¹ とした。x = 0 試料の *RDF*(*r*)上において、*r*=2.1 Å 付近の短距離側に 肩を持った第 1 ピークが存在する。この短距離側の肩は ⁷Li₂S 量の増加に伴い 速やかに消失し、第 1 ピークの位置は短距離側へシフトした。同時に、⁷Li₂S の 添加に伴い *r*=2.5 Å 付近に新たにピークが成長した。

ここで、 P_2S_5 の結晶構造について述べると、図 4-3-3 に示すように、 P_2S_5 は PS4 四面体を基本ユニットとする P_4S_{10} 分子から構成されている。PS4 四面体中 の3 個のS 原子は、他の PS4 四面体と共有している架橋 S 原子であり、残り 1 個のS 原子は P 原子と二重結合をもつ非架橋 S 原子である。図 4-3-4 に P_2S_5 の 結晶構造から求めた各相関の部分二体分布関数 $g_{i,j}(r)$ を示す。P-S 相関の $g_{i,j}(r)$ については非架橋 S 原子と架橋 S 原子についてそれぞれ計算した結果、r=2.1 Å 付近に存在する第 1 ピークは P-架橋 S 相関に、短距離側に存在する肩は P-非架橋 S 相関に対応することがわかった。また、この第 1 ピークに対してガウ
ス関数を用いたカーブフィッティングを行った(図 4-3-5)。ここで、 $x \le 20$ については2つのガウス関数を用いたが、 $x \ge 40$ では第1ピークの短距離側の肩が消失していることから、1つのガウス関数のみとした。

図4-3-6にパルス中性子回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの S(Q)を、また、図 4-3-7 に RDF(r)を示す。放射光 X 線回折の場合と同様に、RDF(r) 上の r=2.1 Å 付近に P-S 相関に対応する第1 ピークが存在し、⁷Li₂S 量の増加に 伴って第1ピークの短距離側の肩が消失している。一方、図 4-3-7 に示すよう に、⁷Li₅S 量の増加に伴って r=2.5Å 付近に存在する負のピークが成長する。ピ ーク強度が負であることから、このピークは⁷Liと他の原子との相関を表して いる。図 4-3-7 には、Li₂S の結晶構造から計算した Li-S 相関 gli-S(r)に中性子回 折の重み因子 wissを考慮したグラフも示している[2]。中性子回折の場合、Li-S 相関は 2.47 Å に負のピークとして観測される。x = 40 および 70 の RDF(r)と比 較すると、2.5 Å 付近に成長する負のピークと Li₂S 結晶における Li-S 相関ピー クの位置が良く対応していることがわかる。これらの RDF(r)の 2.0-2.5Å 付近ピ ークに対してガウス関数フィッティングを行った結果を図 4-3-8 に示す。P-S 相 関に関しては放射光 X 線回折の場合と同様の解析を行った。また、負のピーク として観測される Li-S 相関については、そのピーク形状が長距離側に肩をもつ 非対称な形であるため、2 つのガウス関数を用いてカーブフィッティングを行 った。

RDF(*r*)に対するカーブフィッティングによって得られたピークの面積から、 各相関の配位数を計算することができる。表 4-3-2 に、P 原子周りの S 原子の 配位数 N_{P-S} を示す。x = 0において、短距離側の肩については放射光 X 線回折 とパルス中性子回折実験の両方で 1.0、メインピークについてはそれぞれ 3.1 お よび 3.0 と計算され、 N_{P-S} は全体でほぼ 4 となった。さらに、 7Li_2S の添加量が 増加しても N_{P-S} は変化しないことがわかった。また、表 4-3-3 に示すように、 7Li 原子周りの S 原子の配位数 N_{Li-S} は 7Li_2S 量の増加と共に増加することがわか った。

図 4-3-1 放射光 X 線回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの構造因子 S(Q)。

図 4-3-2 放射光X線回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの 動径分布関数 *RDF*(*r*)。

図 4-3-3 (a)P₂S₅の結晶構造[1]。結晶構造は(b)P₄S₁₀分子によって構成されている。

図 4-3-4 放射光 X 線回折実験によって得られた(⁷Li₂S)₀(P₂S₅)₁₀₀ (=P₂S₅)ガ ラスの動径分布関数 *RDF*(*r*)と結晶 P₂S₅の構造パラメータ[1]から計算した 部分二体分布関数 *g_{i-f}*(*r*)。

図 4-3-5 放射光 X 線回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの *RDF*(*r*)における第1ピークに対するガウス関数によるフィッティング。

図 4-3-6 放射光 X 線回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの構造因子 S(Q)。

図 4-3-7 パルス中性子回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの動径分布関数 *RDF*(*r*)と、Li₂S の結晶構造[2]から計算した Li-S 相関の重み付き部分二体分布関数 *w*_{Li-S}×*g*_{Li-S}(*r*)。

図 4-3-8 パルス中性子回折実験によって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの *RDF*(*r*)に対するガウス関数によるフィッティング。

表 4-3-2 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの放射光 X 線およびパルス中性子回折実験 によって得られた *RDF*(*r*)から計算された P 原子周りの S 原子の配位数, N P-S

X	N _{P-S} (放射光 X 線)	N _{P-S} (パルス中性子)
0	1.0+3.1=4.1	1.0+3.0=4.0
20	0.9+3.0= 3.9	—
40	4.0	4.1
50	4.0	—
60	3.9	—
70	4.1	4.0

表 4-3-3 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスのパルス中性子回折実験によって得られた *RDF*(*r*)から計算された Li イオン周りの S 原子の配位数, N Li-S

x	N _{Li-S}
40	2.7+0.5=3.2
70	1.6+2.0=3.6

4-3-3 Li₂S の導入によるガラスの構造変化のモデル

すべての組成において N_{P-S} が4であることから、⁷Li₂S 量に依存することなく (⁷Li₂S)_x(P_2S_5)_{100-x}ガラスは PS_4 四面体を構造ユニットとするネットワーク構造が 構築されていると考えられる。また、第1ピークの形状の変化は、 PS_4 四面体 ネットワークの寸断によって非架橋 S 原子が増加した結果であると言える。よ って、⁷Li₂S の導入による構造変化を図 4-3-9のように考えた。電気的中性条件 を考慮すると、⁷Li₂S が添加されても PS_4 四面体を保持するためには1個の⁷Li₂S ユニットに対して 2 個の非架橋 S が生成されなければならない。このとき、1 個の架橋 S から 2 個の非架橋 S が生じ、 PS_4 四面体ネットワークが寸断される。 このように、⁷Li₂S の導入によって、⁷Liの数と同数の非架橋 S が新たに生成さ れることになる。表 4-3-4 に、各組成について計算した非架橋 S 原子と架橋 S 原子の割合を示す。

図 4-3-9 PS₄四面体ネットワークへ Li₂S ユニットが導入されたときの構造変化のモデル。 (a) PS₄四面体ネットワークへ1 個の Li₂S ユニットが導入されると、(b) 1 個の架橋 S が切れて2 個の非架橋 S が生成される。これによって電荷の均衡が保たれる。

表 4-3-4 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの各組成に存在する非架橋 S と架橋 S の割合

x	非架橋 S (%)	架橋 S (%)
0	40.0	60.0
20	47.6	52.4
40	58.8	41.2
50	66.7	33.3
60	76.9	23.1
70	90.9	9.1

4-4 リバースモンテカルロ(RMC) モデリングによる解析

4-4-1 RMC モデリングの条件

(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの RMC モデリングによる構造解析をx = 0、20、40、 60、70 について行った。4-3-3 節で述べたように、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの構 造を議論するには、Li イオンの導入によって生成される非架橋 S を考慮して解 析を行うことが重要である。よって本研究では、S 原子を非架橋 S (Non-Bridging Sulfur: NBS) と架橋 S (Bridging Sulfur: BS) とに区別し、⁷Li、P、NBS および BS から成る 4 元系ガラスとみなして RMC モデリングを行った。表 4-4-1 に、 各組成の RMC モデリングに用いた原子の個数と RMC セルのサイズをまとめる。 NBS と BS のそれぞれの原子数は、表 4-3-4 の割合を用いて求めた。表 4-3-1 に 示した各ガラスの数密度を満たすように、立方体の RMC セルに原子をランダ ムに配置したモデルを作製し、RMC モデリングの初期配置とした。

また、*RDF*(*r*)による局所構造解析の結果から、RMC モデリングを行う際に以下のような制約条件を与えた。

- (1) $N_{\text{P-NBS}} + N_{\text{P-BS}} = 4$ (PS₄四面体の構成)
- (2) N_{NBS-P}=1、N_{BS-P}=2 (NBS および BS 周りの P 原子の配位数)
- (3) 各相関に対する最近接原子間距離の制限

(1)は P 原子周りの NBS と BS の数の総和が 4 となるように設定しており、これ により PS4 四面体を構成した。また、(2)によって NBS と BS 周りの P 原子の配 位数を制限した。(3)は原子同士が近づくことができる最近接距離である。この 最近接距離は、放射光 X 線ならびにパルス中性子回折実験によって得られた動 径分布関数から求めた(表 4-4-2)。

本研究では、RMC モデリングの精度を上げるために、x = 0、40、70 については放射光 X 線ならびにパルス中性子回折によって得られた2種類のS(Q)を同時に使用した。一方、x = 20、60 については、放射光 X 線回折によって得られたS(Q)のみを使用した。

表 4-4-1 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの RMC モデリングに用いた 原子の個数と RMC セルのサイズ

⇒+− 氷1	原子の個数					RMC 空間の
武个子	⁷ Li	Р	NBS	BS	合計	サイズ[ų]
$x = 0 (= P_2 S_5)$	—	1400	1400	2100	4900	51.1×51.1×51.1
x = 20	322	1288	1610	1771	4991	50.1×50.1×50.1
x = 40	720	1080	1800	1260	4860	49.1×49.1×49.1
x = 60	1302	868	2170	651	4991	48.5×48.5×48.5
<i>x</i> = 70	1666	714	2380	238	4998	47.0×47.0×47.0

表 4-4-2 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの RMC モデリングに用いた 最近接原子間距離

业4∉	⁷ Li	⁷ Li	⁷ Li	⁷ Li	חח	Р	Р	NBS	NBS	BS
武州	-Li	-P	-NBS	-BS	P-P	-NBS	-BS	-NBS	-BS	-BS
<i>x</i> = 0		—	—	—	3.10	1.80	2.00	2.90	2.75	2.75
<i>x</i> = 20	2.80	2.90	2.30	2.65	3.20	1.80	1.80	3.00	2.75	2.75
<i>x</i> = 40	2.50	2.90	2.30	2.65	3.20	1.80	1.80	3.00	2.80	2.80
<i>x</i> = 60	2.50	2.90	2.25	2.65	3.20	1.80	1.80	3.00	2.80	2.80
<i>x</i> = 70	2.50	2.90	2.25	2.65	3.20	1.90	1.90	3.00	3.00	3.00

4-4-2 RMC モデリングの結果と考察

図 4-4-1 から図 4-4-5 に、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの放射光 X 線およびパルス 中性子回折実験によって得られた S(Q)(実線)と RMC モデリングによって得 られた S(Q)(破線)を示す。すべての組成において、実験値と計算値との間で 良い一致が得られている。さらに、表 4-4-3 に示すように、すべての組成にお いて制約条件(1)および(2)が良く達成されている。RMC モデリングによって得 られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの 3 次元構造を図 4-4-6 にそれぞれ示す。

図 4-4-7 に、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの 3 次元構造から計算した部分二体分布 関数 $g_{i-f}(r)$ を示す。4 元系ガラスにおける 10 種類の相関が精度良く分離されて いる。これらの $g_{i-f}(r)$ を用いることで、さらに詳細に配位数の解析を行うことが できる。配位数を計算する際に、各相関の $g_{i-f}(r)$ の第1ピーク強度が最も大きく なる位置を最近接相関距離 r_1 とし、さらに、 r_1 の長距離側で $g_{i-f}(r)$ がはじめて最 小値となる距離を r_{max} と定め、 r_{max} までの範囲で配位数を計算した。

まず、P 原子の配位環境について議論する。図 4-4-8 および図 4-4-9 に、 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの各組成における P 原子周りの NBS の配位数 N_{P-NBS} お よび P 原子周りの BS の配位数 Np-BS の分布を示す。配位数の計算には、表 4-4-3 示した各組成の r_{max} の値をそれぞれ用いた。x = 0 (P_2S_5) ガラスにおいては、P 原子は3個のBSと1個のNBSの計4個のS原子に囲まれてPS₄四面体を構成 している。⁷Li₂Sの添加によってP原子周りのNBSの配位数が増加する一方で、 BSの配位数が減少していることが分かった。ここで、PS4四面体とネットワー ク構造の関係をより明確にするため、図 4-4-10 に示すように、PS₄四面体ユニ ットを構成する BS の数 n によってそれぞれ O^n (n = 0、1、2、3) と分類する ことにする。x = 0においては Q^3 ユニットのみで構成されており、 Q^3 ユニット 同士が連結した3次元的なネットワーク構造が形成されていると考えられる。 ⁷Li₂S の添加に伴い Q^3 ユニットの割合は減少し、x = 40 においては、 Q^2 ユニッ トが全体の半数に近い割合を占めるようになる。Q²ユニットは2個の PS₄四面 体と連結しているので、Q²ユニットが増加することによって、ガラス構造では 鎖状の PS₄ ネットワークが増えてくると考えられる。さらに x = 60 になると、 Q^1 ユニットが著しく増加していることが分かる。 Q^1 ユニットは1個のBSしか 持たず、PS4ネットワークを延長することができない。そして、x=70において は、Q³ および Q²ユニットが消失し、ガラス構造は Q¹ および Q⁰ユニットのみ で構成されるようになる。この場合、Q⁰ユニットは PS₄四面体が単独に存在し ていることを意味し、Q¹ユニット同士はお互いに連結して P₂S₇二量体が形成さ れることになる。

次に、Li イオン周りの NBS の配位数 $N_{\text{Li-NBS}}$ の分布を図 4-4-11 に示す。ここで、各組成における配位数の計算には、表 4-4-4 に記載している r_{max} を用いている。図より、 $N_{\text{Li-NBS}}$ 分布の中心が 7 Li₂S 量の増加とともに 2 から 4 へとシフ

トしている。このようにLiイオンはNBSの近傍に存在することから、LiイオンはPS4四面体のネットワークの寸断によって生じたNBSの周囲に分布していくことが判明した。

Liイオンの空間分布について、フラクタル次元を用いて評価を行った。回転 半径 *R*の球体内に *N* 個の粒子が存在し、

$$N \sim R^D \tag{4-4-1}$$

の関係が成立するとき、D はフラクタル次元を示す。式(4-4-1)の両辺について 対数をとり、D について整理すると、

$$D = \frac{\log[N(R)]}{\log R} \tag{4-4-2}$$

が得られる。よって、粒子の個数 N および回転半径 R についての両対数プロットの傾きから、粒子の分布に関する D 値を求めることができる[3,4]。図 4-4-12 に、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの Li イオン周りの Li イオンの平均的な配位数 $\overline{N}_{\text{Li-Li}}$ と配位数の計算範囲 r の関係を両対数でプロットしたグラフを示す。ここで、 直線は両対数プロットに対するフィッティングの結果である。各組成の D 値を まとめると表 4-4-5 に示すように、すべての組成において D が 3.0 という値が 得られた。この結果は Li イオンが ⁷Li₂S の添加量に関わらず、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの中で一様に分布していることを示唆している。

図4-4-13に、 r_{max} = 4.0 Å内で計算した \overline{N}_{Li-Li} と⁷Li₂Sの添加量xの関係を示す。 図より、Li イオンの周囲 4.0Å 以内に存在している Li イオンの数が x とともに 増加していることが分かる。さらに、4.0 Å 以内に存在している Li イオン同士 を線で繋いで(⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの 3 次元構造を描くと、図 4-4-14 が得られ る。ここで、水色の四面体は PS₄ 四面体を示している。Li イオンは一様に導入 されるため、x が低い組成において Li イオンは互いに孤立した状態となる。一 方、⁷Li₂S 量が増加すると、PS₄ 四面体のネットワーク構造が寸断され、新たに 生成した NBS の周辺で Li イオン同士が近距離で存在するようになる。そして 近距離の Li-Li 相関が増えていくことで、Li イオンによるネットワークが PS₄ 四面体の隙間を縫うようにガラス全体に展開され、Li-Li 相関に沿って Li イオ ンの 拡散 経路 が 一気に 拡大 していく ことを示 している。この 事が (⁷Li₂S)_x(P₂S₅)_{100-x}ガラスの電気伝導度が⁷Li₂S 量に伴って指数関数的に上昇した 要因であると考えられる。

図 4-4-1 (⁷Li₂S)₀(P₂S₅)₁₀₀ (=P₂S₅)ガラスの中性子およびX線回折によって得られた構造因子 *S*(*Q*)と RMC モデリングによって得られた構造因子 *S*(*Q*)。

図 4-4-2 (⁷Li₂S)₂₀(P₂S₅)₈₀ ガラスの X 線回折によって得られた構造因子 *S*(*Q*)と RMC モデリングによって得られた構造因子 *S*(*Q*)。

図 4-4-3 (⁷Li₂S)₄₀(P₂S₅)₆₀ ガラスの中性子および X 線回折によって得られ た構造因子 *S*(*Q*)と RMC モデリングによって得られた構造因子 *S*(*Q*)。

図 4-4-4 (⁷Li₂S)₆₀(P₂S₅)₄₀ガラスのX線回折によって得られた構造因子 S(Q)とRMCモデリングによって得られた構造因子S(Q)。

図 4-4-5 (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの中性子および X 線回折によって得られ た構造因子 *S*(*Q*)と RMC モデリングによって得られた構造因子 *S*(*Q*)。

試料		$N_{\text{P-NBS}} + N_{\text{P-BS}} = 4$	$N_{\text{NBS-P}}=1$	$N_{\text{BS-P}}=2$
<i>x</i> =0	r_{\min} / r_{\max}	1.80/ 2.35	1.80/ 2.05	2.00/ 2.35
(P ₂ S ₅ ガラス)	達成率(%)	96.9	98.9	96.9
<i>x</i> =20	r_{\min} / r_{\max}	1.80/ 2.30	1.80/ 2.30	1.80/ 2.30
	達成率(%)	94.7	93.2	91.7
<i>x</i> =40	r_{\min} / r_{\max}	1.80/ 2.30	1.80/ 2.30	1.80/ 2.30
	達成率(%)	96.9	95.2	96.6
<i>x</i> =60	r_{\min} / r_{\max}	1.80/ 2.30	1.80/ 2.30	1.80/ 2.30
	達成率(%)	97.4	93.5	94.2
<i>x</i> =70	r_{\min} / r_{\max}	1.90/ 2.25	1.90/ 2.25	1.90/ 2.25
	達成率(%)	98.7	97.8	97.1

表 4-4-3 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの RMC モデリングに用いた 配位数の束縛条件とその達成率

図 4-4-7 RMC モデリングによって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの部分二体分 布関数 g_{i-j}(r)。

図 4-4-8 RMC モデリングによって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの各組成に おける P 原子周りの非架橋 S 原子 (NBS) の配位数 N_{P-NBS}の分布。

図 4-4-9 RMC モデリングによって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの各組成に おける P 原子周りの架橋 S 原子(BS)の配位数 N_{P-BS}の分布。

図 4-4-10 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスにおいて考えられる PS₄ 局所構造ユニット。

図 4-4-11 RMC モデリングによって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの各組成に おける Li イオン周りの NBS の配位数の分布。

表 4-4-4 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの Li イオン周りの NBS の配位数の計算に用 いた各組成の r_{max}の値

x	r _{max}
20	3.10
40	3.10
60	2.95
70	3.00

図 4-4-12 (${}^{7}Li_{2}S$)_x(P₂S₅)_{100-x}ガラスにおけるLiイオンに対するLiイオンの配 位数 N_{Li-Li} の配位数の計算範囲 rに対する log-log プロットおよびフィッティングの結果。

X	D
20	3.03
40	3.03
60	3.03
70	3.01

表 4-4-5 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの Li イオン分布についての フラクタル次元解析の結果

図 4-4-13 (⁷Li₂S)_x(P₂S₅)_{100-x}ガラスにおける Liイオンに対する Liイオンの 配位数 N_{Li-Li}の組成依存性。ここで、r_{max}=4.0Å までの範囲で配位数を計 算している。

$$x = 0$$

x = 40

x = 70

x = 60

図 4-4-14 RMC モデリングによって得られた(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの 3 次元 構造。4.0Å 以内の距離にある Li イオン同士を赤い線で繋いで示している。

第4章 参考文献

- [1] A. Vos, R. Olthof, F. van Bolhuis and R. Botterweg, *Acta Crystallographica*, 19 (1965) 864-867.
- [2] P. Villars, L. D. Calvert, *Person's Handbook of Crystallographic Data for Intermetallic Phases*, Cleveland, OH, (1985).
- [3] 高安秀樹: フラクタル 朝倉書店 (1986) 154-161.
- [4] 高安秀樹: フラクタル科学 朝倉書店 (1987) 5-57.

第5章 Li₇P₃S₁₁準安定結晶のイオン伝導性と構造

5-1⁷Li₇P₃S₁₁ 準安定結晶の作製

図 5-1-1 に、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの DSC 曲線を示す。この結果は、図 1-3-3 と良く一致しており、240°C 付近の鋭い発熱ピークは Li₇P₃S₁₁ 準安定結晶(以 下、「Li₇P₃S₁₁結晶」と称す)が析出する結晶化ピークである。本研究では、良 質な ⁷Li₇P₃S₁₁結晶を得るため、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスに対して 260°C で 2 時間 熱処理を行った。得られた ⁷Li₇P₃S₁₁結晶のX線回折パターンを図 5-1-2 に示す。 この ⁷Li₇P₃S₁₁結晶を試料として電気伝導度測定、放射光 X線回折実験およびパ ルス中性子回折実験を行い、⁷Li₇P₃S₁₁結晶の電気伝導特性と構造との関係につ いて調べた。

図 5-1-1 MA 法によって作製した(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの DSC 曲線。

図 5-1-2 ⁷Li₇P₃S₁₁ 結晶および (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの X 線回折パターン。

5-2 電気伝導度測定

⁷Li₇P₃S₁₁結晶および(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスに対して電気伝導度測定を行った。 図 5-2-1 に、⁷Li₇P₃S₁₁結晶および(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの電気伝導度 σ の温度依存性を示す。また、電気伝導度の温度依存性から計算した ⁷Li₇P₃S₁₁結晶および (⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの活性化エネルギーの値 E_a を室温での電気伝導度 σ_{RT} と 共に表 5-2-1 にまとめて示す。これにより、⁷Li₇P₃S₁₁結晶の σ_{RT} が(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの約も一桁以上大きいこと、⁷Li₇P₃S₁₁結晶の E_a が(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの約半分であることを確認した。

図 5-2-1⁷Li₇P₃S₁₁結晶と(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの電気伝導度 σ の温度依存性。

表 5-2-1 $^{7}Li_{7}P_{3}S_{11}$ 結晶と($^{7}Li_{2}S$)₇₀($P_{2}S_{5}$)₃₀ ガラスの室温における電気伝導度 σ_{RT} および活性化エネルギーEa

	⁷ Li ₇ P ₃ S ₁₁ 結晶	$(^{7}\text{Li}_{2}\text{S})_{70}(P_{2}\text{S}_{5})_{30}$ ガラス
σ_{RT} (S/cm)	$1.78 imes 10^{-3}$	$9.09 imes10^{-5}$
E _a (kJ/mol)	22.5	42.3

5-3 結晶構造解析

図 5-3-1 に、パルス中性子回折実験および放射光 X 線回折実験によって得ら れた ⁷Li₇P₃S₁₁結晶の回折パターン、および両回折データを用いたリートベルト 解析の結果を示す。解析の結果、空間群は P_{1} (三斜晶) で、格子定数は、a=12.483(2) Å、b = 6.0310 (5) Å、c = 12.499(1) Å、a = 102.906(11) °、 β = 113.304(8) °、 γ = 74.495(11) ° であった。詳細な各原子の原子座標および等方性原子変位パラ メータを表 5-3-1 にまとめて示す。

図 5-3-2 に、リートベルト解析によって得られた ${}^{7}Li_{7}P_{3}S_{11}$ 結晶の結晶構造を 示す(点線はユニットセルを示している)。ユニットセル内には、 ${}^{7}Li$ が14 個、 Pが6個、Sが22個の合計42個の原子が含まれている。また、PS4構造ユニッ トを四面体で描画すると、 ${}^{7}Li_{7}P_{3}S_{11}$ 結晶の結晶構造は図 5-3-3のように表すこと ができる。図より、PS4 四面体と $P_{2}S_{7}$ 二量体が存在し、Li イオンはその周囲に 分布していることがわかる。さらに、図 5-3-4 に示すように、4.0 Å 以内の Li-Li 相関を直線で表すことで、PS4 四面体と $P_{2}S_{7}$ 二量体の間に生じた空間を切れ間 なく横切っている様子がわかる。すなわち、Li イオンの伝導経路は、この Li-Li 相関のネットワーク上、もしくはそのネットワークに沿って形作られるものと 考えられる。

図 5-3-1⁷Li₇P₃S₁₁結晶の(a)粉末中性子回折パターンおよび (b)放射光 X 線回折 パターンに対するリートベルト解析の結果。赤で示した点は実験値、水色で 示した実線は計算値、緑で示した目盛りはブラッグピークの位置、青で示し た実線は実験値と計算値の差を表す。

表 5-3-1⁷Li₇P₃S₁₁結晶のリートベルト解析の結果

試料	:	${}^{7}\text{Li}_{7}\text{P}_{3}\text{S}_{11}$
温度	:	室温
空間群	:	PĪ
格子定数	:	a = 12.483(2) Å, $b = 6.0310(5)$ Å, $c = 12.499(1)$ Å,
		$\alpha = 102.906(11)^{\circ}, \beta = 113.304(8)^{\circ}, \gamma = 74.495(11)^{\circ}$
解析精度	:	$\chi^2 = 30.74, R_{wp} = 5.68 \%$

構造パラメータ:

Atom	X	У	Z	$U_{ m iso}({ m \AA}^2)$
⁷ Li1	0.6764(7)	0.1305(16)	0.1449(7)	0.75(10)
⁷ Li2	0.6182(6)	0.6225(9)	0.8685(4)	0.43(5)
⁷ Li3	0.2675(7)	0.4910(14)	0.7345(6)	0.69(8)
⁷ Li4	-0.0732(11)	0.8322(17)	0.2341(8)	0.80(9)
⁷ Li5	0.3147(6)	0.6493(15)	0.2815(5)	0.80(8)
⁷ Li6	0.6635(7)	0.7505(17)	0.5118(5)	0.06(3)
⁷ Li7	0.1223(6)	0.1007(16)	0.1285(6)	0.80(8)
P1	0.7918(4)	0.0549(15)	0.4733 (5)	0.158(9)
P2	0.4887(6)	0.0101(11)	0.3004(4)	0.11(1)
P3	0.8426(6)	0.2573(9)	0.0709(5)	0.18(1)
S 1	0.8522(4)	0.2098(16)	0.6389(5)	0.27(1)
S2	0.8321(6)	0.1398(9)	0.3525(4)	0.092(8)
S 3	0.8379(5)	-0.3052(15)	0.4645(5)	0.011(4)
S 4	0.6093(4)	0.1714(8)	0.4440(4)	0.102(7)
S5	0.3232(3)	0.2098(7)	0.2830(4)	0.016(6)
S 6	0.5235(5)	0.0124(10)	0.1580(6)	0.121(9)
S 7	0.5133(3)	-0.3374(7)	0.3016(4)	0.054(7)
S 8	0.8472(5)	0.3285(8)	-0.0767(4)	0.047(8)
S 9	0.8272(5)	-0.0907(10)	0.0380(3)	0.092(9)
S10	0.6758(6)	0.4802(10)	0.0606(4)	0.008(4)
S11	0.9648(6)	0.3757(15)	0.2098(6)	0.003(3)

図 5-3-2⁷Li₇P₃S₁₁結晶の結晶構造。

図 5-3-3⁷Li₇P₃S₁₁結晶の結晶構造。

図 5-3-4⁷Li₇P₃S₁₁結晶の結晶構造における 4.0Å 以内の Liイオン同士のネットワーク。

5-4 RMC モデリングによる準安定結晶のガラス化

(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの熱処理による ⁷Li₇P₃S₁₁ 結晶の出現は、その逆に、 ⁷Li₇P₃S₁₁ 結晶の原子配列を強制的に乱すことで、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの原子 配列を再現できると考えられる。そこで、リートベルト解析から得られた ⁷Li₇P₃S₁₁ 結晶の構造を初期構造として、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの RMC モデリン グを行った。

RMC セル(空間)は、⁷Li₇P₃S₁₁結晶のユニットセルを利用して、a軸方向に 4 個、b軸方向に 8 個、c軸方向に 4 個ずつ並べた 4×8×4 セルとした。この RMC セル内には、Li が 1792 個、P が 768 個、S が 2816 個の合計 5376 個の原子が含 まれており、各原子の位置はリートベルト解析から得られた原子座標に基づい て与えられている。図 5-4-1 に、RMC モデリングの初期構造を示す。

最初に⁷Li₇P₃S₁₁結晶の回折データを基にして結晶における原子配列のゆらぎ を見る RMC モデリングを行った。RMC モデリングに用いた条件を表 5-4-1 に 示す。図 5-4-1 の初期構造モデルから、パルス中性子回折および放射光 X 線回 折から得られた g(r)を再現するように原子を移動させた結果、パルス中性子回 折および放射光 X 線回折実験から得られた g(r)と良い一致を示した(図 5-4-2)。 RMC モデリングにより得られた ⁷Li₇P₃S₁₁結晶の構造を図 5-4-3 に示す。原子配 列が僅かに乱れているが、これは結晶における原子の熱振動などによる原子の 位置ゆらぎを反映しているものと考えられる。図 5-4-4 に、得られた ⁷Li₇P₃S₁₁ 結晶の原子配列から計算した各原子相関の部分二体分布関数 $g_{i-j}(r)$ を示す。

図 5-4-1 RMC モデリングに用いる ⁷Li₇P₃S₁₁結晶の初期構造。

表 5-4-1⁷Li₇P₃S₁₁の RMC モデリングに用いた条件

試料 : ⁷Li₇P₃S₁₁ 原子の個数 : Li 1792 P 768 S 2618 計 5376

シミュレーションボックスサイズ: *a* = 49.932 Å, *b* = 48.248 Å, *c* = 49.996 Å, *α* = 102.906 °, *β* = 113.304 °, *γ* = 74.495 °

図 **5-4-2**⁷Li₇P₃S₁₁結晶の中性子および X 線回折によって得られた二体分布 関数 *g*(*r*)と RMC モデリングによって得られた二体分布関数 *g*(*r*)。

図 5-4-3 RMC モデリングによって得られた $^{7}Li_{7}P_{3}S_{11}$ 結晶の原子配列のゆらぎ。

図 **5-4-4 RMC** モデリングによって得られた ⁷Li₇P₃S₁₁ 結晶の部分二体分布 関数 *g_{i-j}(r*)。

次に、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの RMC モデリングを行った。初期構造モデル として、図 5-4-3 に示した ⁷Li₇P₃S₁₁ 結晶の構造を使用した。ここで、⁷Li₇P₃S₁₁ 結晶と(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスでは原子数密度が異なるので、⁷Li₇P₃S₁₁ 結晶の RMC セルに対して各辺を 1.019 倍広げている。RMC モデリングに用いた条件 を表 5-4-2 にまとめる。

図 5-4-5 に、RMC モデリングによって得られた(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの 3 次 元構造を示す。また、図 5-4-6 に、中性子および X 線回折によって得られた (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの S(Q) (実測値) と RMC モデリングによって得られた S(Q)(計算値)を示す。実測値と計算値が良く一致することから、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの構造を再現する 3 次元構造モデルが得られたと考えられる。尚、初期 構造をランダムな原子配列とした場合についても同様の RMC モデリングを行 っており、図 5-4-7 に示すように、図 5-4-5 と非常に類似した 3 次元構造が得ら れることを確認している。

表 5-4-2 (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの RMC モデリングの条件

試料 : (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラス 原子の個数 : Li 1792 P 768 S 2618 計 5376
RMC 空間のサイズ: a = 50.880 Å, b = 49.165 Å, c = 50.944 Å,

 $\alpha = 102.906^{\circ}, \beta = 113.304^{\circ}, \gamma = 74.495^{\circ}$

図 5-4-5⁷Li₇P₃S₁₁結晶の結晶構造を初期値とした RMC モデリングによっ て得られた(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの 3 次元原子配列。

図 5-4-6 中性子および X 線回折によって得られた(${}^{7}Li_{2}S$)₇₀($P_{2}S_{5}$)₃₀ ガラスの構造因子 S(Q)と ${}^{7}Li_{7}P_{3}S_{11}$ 結晶の結晶構造を初期値とした RMC モデリングによって得られた構造因子 S(Q)。

図 5-4-7 ランダム構造を初期値として用いた RMC モデリングによって 得られた(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの 3 次元構造原子配列。

5-5⁷Li₇P₃S₁₁結晶のイオン伝導に対する考察

Liイオンは1価の陽イオンとして安定なサイト間を移動し、イオン伝導に寄 与していると考えられる。よって、Liイオンが1価の陽イオンとして安定に存 在できるLiイオン周りの局所構造について把握することは重要である。そこで、 原子間結合距離から各イオンの実効的な価数を求めることができる Bond valence sumの方法を利用して、Liイオン周りの局所構造について評価した。

Bond valence $(s_{i,j})$ とは、陽イオン*i*とそれを取り囲む陰イオン($j=1, 2, \cdots$) との間の静電結合の強度のことである。Brown と Altermatt は、多くの無機化合物の構造解析データに基づき、 $s_{i,j}$ を

$$s_{i-j} = \exp\left(\frac{l_0 - L_{i-j}}{B}\right) \tag{5-5-1}$$

と表せば、Bはイオンの組み合わせに依らず常に一定値 0.37 Å となることを見 出した[2]。ここで、 l_0 は Bond valence パラメータと呼ばれ、イオン対 *i-j* につい て通常よく見られる配位形式と化合物の結晶構造から決定された定数である。 また、 L_{i-j} はイオン対 *i-j*の実測される結合距離である。そして、陽イオン *i* と結 合している陰イオン*j* についての s_{i-j} の総和が Bond valence sum と呼ばれる。

$$V_i = \sum_{j} s_{i-j} \tag{5-5-2}$$

Bond valence sum は、陽イオンiの実効的な価数とみなすことができる。本研究 では、Brese と O'Keeffe によって導出された Li-S 相関の Bond valence パラメー タである 1.94 Åを用い[3]、Liイオンの価数を計算した。計算結果を表 5-5-1 に まとめる。各サイトにおいて、Liイオンの bond valence sum は 1 に近い値にな っているのが分かる。これより、⁷Li₇P₃S₁₁結晶において、Liイオンが 1 価の陽 イオンとして存在するためには、4 個の S 原子に囲まれた LiS₄ 四面体サイト(以 下、【LiS₄】と称す) に置かれることが重要と考えられる。

Bond valence sum の結果から、 $({}^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスおよび ${}^{7}Li_{7}P_{3}S_{11}$ 結晶内の 【LiS4】に注目することにする。図 5-5-1 に、 $({}^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスおよび ${}^{7}Li_{7}P_{3}S_{11}$ 結晶の原子配列を【LiS4】のみで描画した 3 次元構造を示す。どちら の構造中においても【LiS4】が連続的に繋がっている様子がわかる。ここで、 Li イオン伝導について考えた場合、Li イオンが【LiS4】内から飛び出した後、 隣接する【LiS4】内に移動するためには、【LiS4】-【LiS4】間に存在する空隙(□) を有する S4 四面体(以下、【□S4】と称す)内を通過する必要がある。そこで、
$({}^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスおよび ${}^{7}Li_{7}P_{3}S_{11}$ 結晶内に存在する【LiS₄】および【□S₄】 に着目して再整理を行った。図 5-5-2 は、 $({}^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスおよび ${}^{7}Li_{7}P_{3}S_{11}$ 結晶の 3 次元構造を【LiS₄】および【□S₄】で表したものである。図より、【LiS₄】 は周囲を【□S₄】に囲まれており、それらを介して隣接する【LiS₄】と繋がっ ていることがわかる。図 5-5-3 に、隣接する【LiS₄】-【LiS₄】の様子を示す。【LiS₄】 -【LiS₄】の繋がり方には 2 通りの形態がある。 1 つは【LiS₄】がお互いの稜線 を共有する稜共有(図 5-5-3(a))、もう 1 つは【LiS₄】がお互いの頂点(S 原子) を共有する頂点共有である(図 5-5-3(b))。両者において、隣接する【LiS₄】の 間には必ず【□S₄】が存在するが、Li イオンが移動するためには、【□S₄】が Li イオンを一時的に収容できる空隙(□)を有することが必要である。そこで、 $({}^{7}Li_{2}S)_{70}(P_{2}S_{5})_{30}$ ガラスおよび ${}^{7}Li_{7}P_{3}S_{11}$ 結晶に含まれる【□S₄】のサイズおよび 形状に焦点を当てて解析を行った。

はじめに、RMC モデリングによって得られた S 原子の座標を用いて、5.4 Å 以下の S-S 相関から構成されるすべての S₄四面体(【⁷LiS₄】、【□S₄】および【PS₄】) を抽出した。ここで、5.4 Å のカットオフ値は、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスおよび ⁷Li₇P₃S₁₁結晶の部分二体関数 $g_{s-s}(r)$ から決定した。これらの中から【LiS₄】およ び【PS₄】を除外し、【□S₄】のみを抽出した。図 5-5-4 に、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラ スおよび ⁷Li₇P₃S₁₁結晶内に存在する【□S₄】のサイズ分布を示す。ここで、【□ S₄】のサイズは、S₄四面体に対する内接球の半径 r_{ins} を意味している。

次に、Liイオンを収容できる【 $\Box S_4$ 】の割合を求めるため、すべての【 $\Box S_4$ 】 に対して、

- (1) 【□S4】内に Li イオンを収容できる空間(内接球)が存在する
- (2) 【□S4】の頂点から内接球の中心までの距離が Li イオン半径と S イオン 半径の和よりも大きい

という 2 つの条件を満たす【 $\Box S_4$ 】を抽出した。解析の流れを図 5-5-5 に示す。 (1)については、内接球の半径 r_{ins} が Li イオンの半径 r_{Li} (= 0.59 Å) 以上とし、 (2)については、内接球の中心から各頂点 S までの距離 R_n (n = 1~4)がすべて 2.10 Å以上とした。ここで、2.10 Å以上の条件を与えた理由として、S-S 相関の部 分二体分布関数 $g_{s-s}(r)$ から S イオン同士が最も近付くことができる距離が 3.0 Å であり (図 5-4-4 を参照)、S イオンの実効的なイオン半径 r_s を 1.5 Å とした場 合、【 $\Box S_4$ 】の頂点から内接球の中心までの距離が Li イオンと S イオンの半径 の和より大、すなわち 2.10 Å以上の距離 (> $r_{Li} + r_s = 1.5$ Å + 0.59 Å)を必要と するためである。上記 2 つの条件を満たす【 $\Box S_4$ 】の存在量とサイズ分布の関 係を図 5-5-6 に示す。解析の結果、 $^7Li_7P_3S_{11}$ 結晶が有する Li イオンを収容でき る【 $\Box S_4$ 】の量は、(7Li_2S)70(P_2S_5)30 ガラスが有するそれよりも多いことがわか った。

さらに、【LiS₄】を「赤球」で、Li イオンを収容できる【□S₄】を「青球」で 表したときの空間分布を図 5-5-8 に示す。⁷Li₇P₃S₁₁結晶の場合、「赤球」と「青 球」は規則的なネットワークを形成し、連続的に繋がっている様子が観察され る。これに対して、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの場合、「赤球」と「青球」のネット ワークが不規則で、部分的に分断されていることがわかる。そこで、【LiS₄】(赤 球)周りの Li イオンを収容できる【□S₄】(青球)の配位数を求めるため、【LiS₄】 -【□S₄】相関(赤球-青球)の部分二体分布関数、加えて【LiS₄】-【LiS₄】 相関(赤球-赤球)および【□S₄】-【□S₄】相関(青球-青球)についても それぞれ計算した。これらの結果を図 5-5-9 に示す。特に、【LiS₄】-【□S₄】 相関(赤球-青球)の部分二体分布関数から r = 2.7 Å の範囲内で【LiS₄】(赤球) 周りの Li イオンを収容できる【□S₄】(青球)の配位数について計算した結果、 図 5-5-10 に示すような分布を得ることができた。その平均の配位数は、⁷Li₇P₃S₁₁ 結晶の場合、3.91 個であり、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの場合は約半分の 1.94 個で あった。

一方、式(2-1-23) のアレニウスプロットから得られた活性化エネルギー E_a は、 (⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの場合、 $E_a^{Glass} = 42.3 \text{ kJ/mol}$ 、⁷Li₇P₃S₁₁結晶の場合、 $E_a^{Crystal} = 22.5 \text{ kJ/mol}$ であるため、

$$E_{\rm a}^{\rm Crystal} \sim \frac{E_{\rm a}^{\rm Glass}}{2}$$
 (5-5-3)

の関係が成り立つ。ここで、⁷Li⁻⁷Li 間において Li イオンが移動可能な活性化 エネルギーの大きさが $E_a \sim E_a^{Crystal}$ 程度であると仮定すれば、Li イオンの移動に 対する自由度は、【LiS4】周りの Li イオンを収容できる【 $\Box S_4$ 】の配位数と強 い相関があると考えられる。すなわち、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの場合、【LiS4】 周りの Li イオンを収容できる【 $\Box S_4$ 】の配位数が ⁷Li₇P₃S₁₁結晶のそれと比較し て約半分であるため、Li イオンの移動が制限された状態となり、電気伝導度測 定において、式(5-5-3)のような関係として現れたものと考えられる。

以上のことから、 $(Li_2S)_{70}(P_2S_5)_{30}$ ガラスと $^7Li_7P_3S_{11}$ 結晶の構造学的特徴が、 $^7Li_7P_3S_{11}$ 結晶の電気伝導度を $(Li_2S)_{70}(P_2S_5)_{30}$ ガラスのそれに比べて一桁以上向上させ、活性化エネルギー E_a を半減させる要因になったと結論付けることができる。

bond	$L_{ m Li-S}$ / Å		S	bond	L _{Li-S} / Å		S
Li1-S2	2.553(5)		0.190	Li5-S1	2.523(5)		0.206
Li1-S6	2.280(5)		0.397	Li5-S5	2.627(4)		0.156
Li1-S9	2.641(4)		0.152	Li5-S7	2.414(4)		0.278
Li1-S10	2.555(5)		0.189	Li5-S8	2.563(4)		0.186
		$\Sigma s_{\text{Li-S}}$	0.93			$\Sigma s_{\text{Li-S}}$	0.83
Li2-S5	2.734(4)		0.117	Li6-S3	2.393(5)		0.294
Li2-S6	2.419(5)		0.274	Li6-S4	2.686(5)		0.133
Li2-S7	2.700(4)		0.128	Li6-S5	2.464(4)		0.243
Li2-S8	2.841(4)		0.088	Li6-S7	2.593(4)		0.171
Li2-S10	2.503(4)		0.218			$\Sigma s_{\text{Li-S}}$	0.84
		$\Sigma s_{\text{Li-S}}$	0.83	Li7-S5	2.640(5)		0.153
Li3-S2	2.498(5)		0.221	Li7-S8	2.486(5)		0.229
Li3-S3	2.475(5)		0.236	Li7-S9	2.384(4)		0.299
Li3-S7	2.820(5)		0.093	Li7-S11	2.595(4)		0.170
Li3-S10	2.349(4)		0.331			$\Sigma s_{\text{Li-S}}$	0.85
		$\Sigma s_{\text{Li-S}}$	0.88				
Li4-S1	2.556(5)		0.189				
Li4-S2	2.452(5)		0.251				
Li4-S9	2.360(4)		0.321				
Li4-S11	2.633(5)		0.154				
		$\Sigma s_{\text{Li-S}}$	0.92				

表 5-5-1 $^{7}Li_{7}P_{3}S_{11}$ の結晶構造における Li-S 相関長 L_{Li-S} および bond valence sum

図 5-5-1 【LiS₄】を用いて描画した(a)⁷Li₇P₃S₁₁結晶および(b)(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの3次元構造。

図 5-5-2 【LiS₄】(赤) と【□S₄】(青)を用いて描画した(a)⁷Li₇P₃S₁₁ 結晶および (b)(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの3次元構造。

図 5-5-3 (a) 稜共有および(b) 頂点共有によって繋がった 2 つの【LiS₄】(赤)。 どちらの結合形態においても、2 つの LiS₄ 四面体の間には【□S₄】(青)が 存在している。

図 5-5-4 ⁷Li₇P₃S₁₁結晶および(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの原子配列から抽 出された【□S₄】のサイズ分布。

図 5-5-5 Liイオンを受け入れられる空隙を持った【□S4】を抽出するまでの 解析の概略。

図 5-5-6 ⁷Li₇P₃S₁₁ 結晶(a)および(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラス(b)の原子配列から 抽出された【□S₄】に対する Li イオン受け入れについての判定の様子。

図 5-5-7 ${}^{7}Li_{7}P_{3}S_{11}$ 結晶および(${}^{7}Li_{2}S$)₇₀($P_{2}S_{5}$)₃₀ガラスにおける Liイオンが 入ることができる【 $\Box S_{4}$ 】のサイズ分布。

図 5-5-8 (a)⁷Li₇P₃S₁₁結晶および(b)(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスにおける【LiS₄】ユニ ット(赤球)とLiイオンを受け入れられる【□S₄】(青球)の空間分布。

図 5-5-9 ⁷Li₇P₃S₁₁ 結晶および (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスについて計算された 【LiS₄】 - 【□S₄】 2元系の部分二体分布関数 *g_{i-j}(r*)。

図 5-5-10 (a)⁷Li₇P₃S₁₁結晶および (b)(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスについて計算さ れた【LiS₄】の近傍に存在する Li イオンを受け入れられる空隙を持ってい る【□S₄】の配位数分布。

第5章 参考文献

- H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi and M. Tatsumisago, *Solid State Ionics*, **178** (2007) 1163-1167.
- [2] I. D. Brown and D. Altermatt, Acta Crystallographica section B, 41 (1985) 244.
- [3] N. E. Brese and M. O'Keefe, Acta Crystallographica section B, 47 (1991) 192.

第6章 結言

本研究では、Li-P-S 系超イオン伝導体である(⁷Li₂S)_x(P₂S₅)_{100-x} ガラス($0 \le x \le$ 70)および ⁷Li₇P₃S₁₁ 準安定結晶を作製し、電気伝導度測定、放射光 X 線および パルス中性子回折実験を行った。その結果、以下のような成果を得ることがで きた。

1. $({}^{7}Li_{2}S)_{x}(P_{2}S_{5})_{100-x}$ ガラスについて

メカニカルアロイング (MA) 法によって、x = 0、20、40、50、60 および 70 の (⁷Li₂S)_x(P₂S₅)_{100-x} ガラスを作製し、交流インピーダンス法による電気伝導度 測定を行った結果、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの電気伝導度は ⁷Li₂S 量の増加に伴 って指数関数的に上昇し、x = 70 で最大値を示すことを明らかにした。特に、 (⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスの室温での電気伝導度 (σ_{RT}) は 9.09×10⁻⁵ S/cm であり、 その活性化エネルギー (E_a^{Glass}) は 42.3 kJ/mol であった。

同時に、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスに対して放射光 X 線およびパルス中性子回折 実験を行い、これらの回折データを用いたリバースモンテカルロ(RMC)モデ リングにより、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの 3 次元構造を視覚化することに成功し た。得られたガラス構造から、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラスの中に PS₄四面体が存在 し、その PS₄四面体を構造ユニットとするネットワーク構造が構築されている ことを示した。また、⁷Li₂S 量の増加に伴って PS₄四面体によるネットワーク構 造が寸断され、Liイオンが系内に取り込まれるが、Liイオンの空間分布をフラ クタル次元(D) によって評価した結果、すべての組成において D = 3.0 である ことから、Liイオンが「一様」に分布していることを明らかにした。

さらに、4.0 Å以内の⁷Li⁻⁷Li 相関を直線で表すことで、(⁷Li₂S)_x(P₂S₅)_{100-x} ガラ ス内の Li イオン拡散経路について考察した。Li イオンは一様に導入されるた め、⁷Li₂S 量が少ない場合、Li イオンは孤立した状態となる。一方、⁷Li₂S 量が 増加すると、PS₄ 四面体のネットワーク構造が寸断され、新たに生成した非架 橋 S 原子の周辺で Li イオン同士が近距離で存在することになり、Li イオンの 拡散経路が急激に拡大すると考えられる。このように、 (⁷Li₂S)_x(P₂S₅)_{100-x} ガラ スの電気伝導度が ⁷Li₂S 量の増加に伴って指数関数的に上昇することの構造学 的要因について提案を行った。

2. ⁷Li₇P₃S₁₁ 準安定結晶について

(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスに対して 260℃ で約 2 時間の熱処理を行い、⁷Li₇P₃S₁₁ 結晶を作製した。⁷Li₇P₃S₁₁に対して室温で電気伝導度測定を行った結果、 $\sigma_{RT} = 1.78 \times 10^{-3}$ S/cm および $E_a^{\text{Crystal}} = 22.5$ kJ/mol となり、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスと比較 して電気伝導度が一桁以上向上し、 E_a が半減することを確認した。また、放射 光 X 線およびパルス中性子回折実験を行い、これらの回折データを併用した結 晶構造解析(リートベルト解析)の結果から、⁷Li₇P₃S₁₁結晶の空間群は P_1 (三 斜晶)で、その格子定数は a = 12.483(2) Å、b = 6.0310 (5) Å、c = 12.499(1) Å、a = 102.906(11)°、 $\beta = 113.304(8)$ °、 $\gamma = 74.495(11)$ °であることを明らかにした。

(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの熱処理による準安定相である⁷Li₇P₃S₁₁結晶の出現は、 その逆に、⁷Li₇P₃S₁₁結晶の原子配列を強制的に乱すことで、(⁷Li₂S)₇₀(P₂S₅)₃₀ガ ラスの原子配列を再現できると考え、結晶構造解析より得られた⁷Li₇P₃S₁₁結晶 の構造を初期構造として、(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの RMC モデリングを行った。 その結果、(⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの実測値 *S*(*Q*)と計算値のそれが良く一致し、 (⁷Li₂S)₇₀(P₂S₅)₃₀ガラスの構造を再現させることに成功した

原子間結合距離から各イオンの実効的な価数を求める Bond valence sum (経 験則)から、Liイオンの価数が 1+となるためには、Liイオンの周辺に4つのS 原子、すなわち LiS4 四面体が必要となることを示した。さらに、Liイオン伝導 特性を考察するため、隣接する LiS4-LiS4 四面体間に存在する「Li イオンを収 容できる□S4 四面体 (□は空隙)」に着目し、LiS4 四面体周りの「Li イオンを 収容できる□S4 四面体」の配位数を(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスおよび ⁷Li₇P₃S₁₁結晶 についてそれぞれ計算した。その結果、⁷Li₇P₃S₁₁結晶は 3.91 個、(⁷Li₂S)₇₀(P₂S₅)₃₀ ガラスは約半分の 1.94 個であった。この構造学的な違いは、(Li₂S)₇₀(P₂S₅)₃₀ ガ ラスに対して熱処理を行い ⁷Li₇P₃S₁₁結晶が析出することで、系内の Li イオン伝 導経路が急激に増加することに対応していると考えられる。以上、 (Li₂S)₇₀(P₂S₅)₃₀ ガラスに比べて ⁷Li₇P₃S₁₁ 結晶の室温での電気伝導度が一桁以上 向上し、活性化エネルギー E_a が半減するというイオン伝導特性の要因を構造学 的観点から初めて明らかにした。

付録 回折データからの S(Q)の導出

A-1 放射光 X 線回折データからの S(Q)の導出

放射光 X 線回折実験によって測定された散乱強度から S(Q)を求めるには、偏 光や吸収および非干渉性散乱の補正や規格化などを行い、絶対強度として試料 の干渉性散乱強度を得る必要がある。実験で観測される散乱強度 I_{obs}(θ)は、干 渉性散乱強度 I_{coh}(θ) および非干渉性散乱強度 I_{inc}(θ)と下記の関係になる。

$$\beta[I_{\text{obs}}(\theta) - I_{\text{BG}}(\theta)] = P(\theta)A(\theta)[I_{\text{coh}}(\theta) + I_{\text{inc}}(\theta)]$$
(A-1-1)

ここで、 $I_{BG}(\theta)$ は空セルの測定強度、 $P(\theta)$ は偏光因子、 $A(\theta)$ は吸収因子、 β は規格化定数である。偏光因子 $P(\theta)$ は下記の式を用いて計算された。

$$P(\theta) = \frac{1}{\cos^2(2\theta) + p\sin(2\theta)}$$
(A-1-2)

ここで $p = 0.05 \sim 0.1$ の定数である。吸収因子 $A(\theta)$ の計算は下記の式を用いて行われた[1]。

$$A(\theta) = \frac{\exp(-\mu t)[1 - \exp\{\mu t(\sec 2\theta - 1)\}]}{\mu t(\sec 2\theta - 1)}$$
(A-1-3)

ここで、各原子の吸収係数 μ は文献[2]から引用した。よって、偏光および吸収 についての補正を行った散乱強度 $I_{\text{corrected}}(\theta)$ が以下のように得られる。

$$I_{\text{corrected}}(\theta) = \frac{\left[I_{\text{obs}}(\theta) - I_{\text{BG}}(\theta)\right]}{P(\theta) A(\theta)}$$
(A-1-4)

得られた補正散乱強度 $I_{corrected}(\theta)$ を式(2-1-10)によって Q の関数に変換するとと もに、高角度領域法によって絶対強度への規格化を行った。散乱角が十分大き い領域においては、散乱強度は個々の原子からの散乱の和で表すことができる と考えられる。したがって、

$$\beta = \frac{\int_{Q_{\min}}^{Q_{\max}} \left[\left\{ \left(f(Q) \right)^2 + I_{inc}(Q) \right\} \right] dQ}{\int_{Q_{\min}}^{Q_{\max}} I_{corrected}(Q) dQ}$$
(A-1-5)

より規格化定数 β を決定することができる。ここで、f(Q)に関しては、文献[4] の値 A、B、Cを参照して、

$$f(Q) = \sum_{i=1}^{5} A_i \exp\left[-B_i \left(\frac{\sin\theta}{\lambda}\right)^2\right] + C$$
 (A-1-6)

で計算し、<*f*(*Q*)>は

$$\langle f(Q) \rangle = \sum_{i} c_{i} f_{i}(Q)$$
 (A-1-7)

で表される。得られた β より、試料の干渉性散乱強度 $I_{coh}(Q)$ と非干渉性散乱強度 $I_{inc}(Q)$ の和を以下の式によって求めることができ、

$$[I_{\rm coh}(Q) + I_{\rm inc}(Q)] = \beta I_{\rm corrected}(Q)$$
(A-1-8)

Faber-Ziman の定義[5]より、構造因子 S(Q)を導出した。

$$S(Q) = \frac{\{I_{\rm coh}(Q) + I_{\rm inc}(Q)\} - \langle f(Q)^2 \rangle - I_{\rm inc}^{\rm calc}(Q)}{\langle f(Q) \rangle^2} + 1$$
(A-1-9)

ここで、

$$\left\langle f(Q)^2 \right\rangle = \sum_i c_i f_i^2(Q)$$
 (A-1-10)

である。また、非干渉性散乱強度の計算値 $I_{inc}^{calc}(Q)$ は、次式で計算された。

$$I_{\rm inc}^{\rm calc}(Q) = \sum_{i} c_i I_{\rm inc}(Q) \tag{A-1-11}$$

ここで、*I*_{inc}(*Q*)は各原子の非干渉性散乱強度であり、散乱文献[6]で報告されている値 *D*、*E*、*F*を用いて以下のように計算される。

$$I_{\rm inc}(Q) = Z - \left(\sum_{j=1}^{3} D_j \exp\left[-E_j \left(\frac{\sin\theta}{\lambda}\right)^2\right] + F\right)^2$$
(A-1-12)

ここで、Zは各原子の原子番号である。

A-2 パルス中性子回折データからの S(Q)の導出

パルス中性子回折実験においては、Ⅰ)試料+試料セル、Ⅱ)空の試料セル、 Ⅲ)バナジウムロッド、Ⅳ)バックグラウンドの4種類の散乱強度を測定し、 それらを用いて試料の干渉性散乱強度を求め、*S(Q)*を導出する。中性子散乱強 度から*S(Q)*の導出までは、大きく分けて以下の5つの段階を経る必要がある。

- (1) 散乱強度の測定
- (2) 入射中性子数に対する規格化
- (3) 補正項の計算
- (4) バナジウムロッドによる規格化
- (5) Faber-Ziman の定義を用いた規格化

以下に(1)~(5)の各段階について述べる。また、*S*(*Q*)の導出までの流れを図 A-2-1 にまとめる。

(1) 散乱強度の測定

測定された4種類散乱強度を以下にまとめる。

- $I_{s+c}^{ex}(\lambda, \theta)$: セルに入れた試料の散乱強度
- $I_{c}^{ex}(\lambda, \theta)$: セルのみの散乱強度
- $I_v^{ex}(\lambda, \theta)$: バナジウムロッドの散乱強度
- $I_{R}^{ex}(\lambda, \theta)$: バックグラウンドの強度

バナジウムロッドは熱中性子に対してほぼ完全な非干渉性散乱体と見なすこと ができ、その散乱強度は入射中性子エネルギー分布や装置の計測システムの特 性を再現するものと考えられる.このため、試料の散乱強度を規格化するのに 用いられる。

(2) 入射中性子数に対する規格化

測定は試料、セル、バナジウムロッド、バックグラウンドでそれぞれ4時間 程度であるが、各々の測定時間において計測時間が異なるため、入射中性子数 で散乱強度を規格化する。 (3) 補正項の計算

原子核による散乱で得られる情報は弾性散乱(干渉性、非干渉性)、非弾性散 乱(干渉性、非干渉性)等があるが、これらの情報の中には複数の原子核によっ て散乱された原子構造を反映しない多重散乱が含まれている。また中性子は散 乱の過程で原子核に吸収される。構造解析において必要とされるのは1回の干 渉性散乱のみであるので、その他の散乱による情報を排除する。

I)吸収補正

散乱過程における中性子の吸収により散乱強度は減衰する。減衰因子を次の ように表す。

 $A_{ssc}(\lambda, \theta)$: 試料で散乱された中性子が入射、散乱される過程で試料、

セルによって減衰する程度を表す因子

 $A_{csc}(\lambda, \theta)$: セルで散乱された中性子が入射、散乱される過程で試料、

セルによって減衰する程度を表す因子

 $A_{c,c}(\lambda, \theta)$:試料で散乱された中性子が入射、散乱される過程でセルに

よって減衰する程度を表す因子

 $A_{v,v}(\lambda, heta)$: バナジウムで散乱された中性子が入射、散乱される過程で バナジウム自身によって減衰する程度を表す因子

減衰因子 $A_{S, SC}$ 、 $A_{C, SC}$ 、 $A_{C, C}$ 、 $A_{V, V}$ は Paalman と Pings の方法[7]により λ 依存性を考慮した近似式を用いて計算した。

$$A_{s,sc}(\lambda,\theta) = \exp\left(A_{s,sc}(\theta) + B_{s,sc}(\theta)\lambda + C_{s,sc}(\theta)\lambda^2\right)$$
(A-2-1)

$$A_{C,SC}(\lambda,\theta) = \exp\left(A_{C,SC}(\theta) + B_{C,SC}(\theta)\lambda + C_{C,SC}(\theta)\lambda^2\right)$$
(A-2-2)

$$A_{C,C}(\lambda,\theta) = \exp\left(A_{C,C}(\theta) + B_{C,C}(\theta)\lambda + C_{C,C}(\theta)\lambda^2\right)$$
(A-2-3)

$$A_{V,V}(\lambda,\theta) = \exp\left(A_{V,V}(\theta) + B_{V,V}(\theta)\lambda + C_{V,V}(\theta)\lambda^2\right)$$
(A-2-4)

上に示されるような減衰の補正を考慮して、観察される散乱強度は次式のよう に表される。

$$I_{S+C}^{ex}(\lambda,\theta) = A_{S,SC}(\lambda,\theta) \quad I_S(\lambda,\theta) + A_{C,SC}(\lambda,\theta) - I_S(\lambda,\theta) + I_B^{ex}(\lambda,\theta) \quad (A-2-5)$$

$$I_C^{ex}(\lambda,\theta) = A_{C,C}(\lambda,\theta) - I_C(\lambda,\theta) + I_B^{ex}(\lambda,\theta)$$
(A-2-6)

$$I_{V}^{ex}(\lambda,\theta) = A_{V,V}(\lambda,\theta) - A_{C,C}(\lambda,\theta) + I_{V}(\lambda,\theta) + I_{B}^{ex}(\lambda,\theta)$$
(A-2-7)

- ここで $I_{s}(\lambda,\theta)$ 、 $I_{c}(\lambda,\theta)$ 、 $I_{v}(\lambda,\theta)$ は真の散乱強度を示し、 $I_{s+c}^{ex}(\lambda,\theta)$ 、 $I_{c}^{ex}(\lambda,\theta)$ 、 $I_{B}^{ex}(\lambda,\theta)$ 、 $I_{v}^{ex}(\lambda,\theta)$ は観察される散乱強度を示す。
- Ⅱ)非干渉性散乱、多重散乱補正非干渉性散乱、多重散乱の項を含めて真の散乱強度は次のように表される。

$$I_{S}(\lambda,\theta) = C_{S}\left\{ (b_{C}^{S})^{2} S(Q) + (b_{i}^{S})^{2} + \Delta_{C}^{S}(\lambda) + \Delta_{i}^{S}(\lambda) \right\}$$
(A-2-8)

$$I_V(\lambda,\theta) = C_V\left\{ (b_i^S)^2 + \Delta_i^V(\lambda) \right\}$$
(A-2-9)

ここで、

- $b_i^s b_i^v$: 試料元素、バナジウムの非干渉性散乱振幅
- Δ^s_c(λ) : 試料における中性子の2次以上の干渉性多重散乱

 $\Delta_i^s(\lambda)$ $\Delta_i^v(\lambda)$: 試料、バナジウムにおける中性子の2次以上の非干渉性多重乱

*C*_s *C*_v : 入射中性子、装置、試料に依存した因子

である。多重散乱補正は、Vineyard ならびに Blech と Averbach の方法[8]で行った。二次以上の多重散乱は無限等比級数的に減衰すると仮定することにより、以下の多重散乱補正式を導出した。

 σ_s, σ_r :吸収を含まない場合と含む場合の1次の中性子全散乱断面積 $\delta(\lambda)$:試料、バナジウムの形状{円柱状試料(半径r、高さh)}に依存した量

$$\Delta_{C}^{s}(\lambda) = (b_{C}^{s})^{2} \left(\frac{\frac{\sigma_{S}^{s}}{\sigma_{T}^{s}} \delta^{s}(r)}{1 - \frac{\sigma_{S}^{s}}{\sigma_{T}^{s}} \delta^{s}(r)} \right)$$
(A-2-10)

$$\Delta_{i}^{s}(\lambda) = (b_{i}^{s})^{2} \left(\frac{\frac{\sigma_{s}^{s}}{\sigma_{T}^{s}} \delta^{s}(r)}{1 - \frac{\sigma_{s}^{s}}{\sigma_{T}^{s}} \delta^{s}(r)} \right)$$
(A-2-11)

$$\Delta_{i}^{V}(\lambda) = (b_{i}^{V})^{2} \left(\frac{\frac{\sigma_{s}^{V}}{\sigma_{T}^{s}} \delta^{V}(r)}{1 - \frac{\sigma_{s}^{V}}{\sigma_{T}^{V}} \delta^{V}(r)} \right)$$
(A-2-12)

(4) バナジウムロッドによる規格化

多重散乱過程で表された装置、試料に依存する定数は次のように表される。 ここで、

- $g(\theta)$:角度依存性を持つ装置定数
- $I_0(\lambda)$:入射中性子の強度スペクトル
- $\eta(\lambda)$:波長依存性をもつディテクタの検出効率
- N_s、N_v : 試料ならびにバナジウム中の散乱体となる全原子数

を示す。実験で得られる散乱強度は入射中性子のエネルギー分布や装置の検出 特性に比例している。この因子を取り除くためにバナジウムロッドの散乱強度 で規格化を行う。

$$\frac{I_{S}(\lambda,\theta)}{I_{V}(\lambda,\theta)} = \frac{N_{S}\left\{ b_{C}^{S} \right\} S(Q) + \left(b_{i}^{S} \right)^{2} + \Delta_{C}^{S}(\lambda) + \Delta_{i}^{S}(\lambda) \right\}}{N_{V}\left\{ b_{i}^{V} \right\}^{2} + \Delta_{i}^{V}(\lambda) \right\}}$$
(A-2-13)

これによって、干渉性散乱強度 I(Q)が得られる。

$$I(Q) = \frac{N_{S} \left\{ (b_{C}^{S}) S(Q) + (b_{i}^{S})^{2} + \Delta_{C}^{S}(\lambda) + \Delta_{i}^{S}(\lambda) \right\}}{N_{V} \left\{ (b_{i}^{V})^{2} + \Delta_{i}^{V}(\lambda) \right\}}$$
(A-2-14)

(5) Faber-Ziman 型構造因子 *S*(*Q*)の導出 Faber-Ziman の定義[5]より、構造因子 *S*(*Q*)は次式で表される。

$$S(Q) = \frac{\frac{I_{S}(\lambda,\theta)N_{V}}{I_{V}(\lambda,\theta)N_{S}} \{ (b_{i}^{V})^{2} + \Delta_{i}^{V}(\lambda) \} - \{ (b_{i}^{S})^{2} + \Delta_{C}^{S}(\lambda) + \Delta_{i}^{S}(\lambda) \}}{(b_{C}^{S})^{2}}$$
(A-2-15)

図 A-2-1 中性子回折実験から干渉性散乱強度 *I(Q)*および構造因子 *S(Q)*を求めるまでの流れ。

付録参考文献

- K. Nishikawa, Y. Sakamoto and T. Iijima, *Japanese Journal of Applied Physics*, 30 (1991) 1303-1306.
- [2] S. Sasaki, KEK report, No. 90-16 (1991).
- [3] 大野英雄、古川和男、"金属物理セミナー"、Vol. 3 (1978) 129-138.
- [4] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe and B. T. M. Willis, International Table for X-ray Crystallography Volume C: Mathematical, physical and chemical tables, (1983) 554-590.
- [5] T. E.Faber and J. M. Ziman, *Philosophical Magazine*, **11** (1965) 153-173.
- [6] J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, R. J. Howerton, J. Phys. Chem. Ref. Data 4 (1993) 61.
- [7] H.H. Paalman and C.J. Pings, Journal of Applied Physics, 33 (1962) 2635-2639.
- [8] I.A. Blech and B.L. Averbach, *Physical Review*, **137** (1965) 1113-1116.

謝辞

本研究の機会を与えてくださり、また研究を遂行するにあたって非常に多く の御指導と御鞭撻を頂いた京都大学原子炉実験所の福永俊晴教授に深く感謝い たします。

京都大学原子炉実験所の杉山正明准教授(現京都大学原子炉実験所教授)、伊藤恵司助教(現岡山大学教育学部准教授)、森一広助教に心より御礼申し上げま す。特に、森一広助教には電気伝導測定および構造解析といった本研究の根幹 をなすデータに関する議論、そして博士論文の執筆において非常に多くの御助 力を頂きました。厚く御礼申し上げます。

日ごろの研究生活におきましては、秘書の鶴田八千世さん、森妙子さん、そ して北口雅暁助教(京都大学原子炉実験所・川端研究室)に大変御世話になり ました。さらに、日常生活を暖かく支えていただいた粒子線基礎物性研究部門 の皆様、福永研究室の西川泰隆氏ならびに卒業生の皆様、原子力基礎工学研究 部門・義家研究室の皆様に厚く御礼を申し上げるとともに、将来における皆様 のさらなる御活躍を祈願いたします。

高エネルギー加速器研究機構の大友季哉教授には、海外での中性子散乱実験 に御同行頂き、現地での実験および得られたデータの解析について多くの御助 言を頂きました。厚く御礼申し上げます。

高輝度光科学研究センターの小原真司博士には、SPring-8 BL04B2 ビームラインにおける放射光 X 線回折実験ならびにデータ解析、そしてリバースモンテカルロモデリングにおいて多くの御助言をいただきました。厚く御礼申し上げます。

ラザフォードアップルトン研究所の Alex C. Hannon 博士には、GEM 分光器に おけるパルス中性子回折実験およびデータ解析について御助力いただきました。 厚く御礼申し上げます。

最後に、ここまでの学生生活を物心両面で援助し、温かく見守ってください ました両親、そして祖母に心から感謝いたします。