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Chapter 1 

General Introduction 

 

The broad object of this work is to investigate the behavior of dopants when they are 

introduced into the perovskite-type oxides, such as clarification of their site occupation and 

valence state.  By such investigation, some puzzled phenomena in protonic conductivity and 

phase transition greatly attributed to the dopants are anticipated to be revealed.  In addition, 

some meaningful and practical knowledge is generated for guiding the further research of 

mixed protonic and electronic conductor for cathode material of fuel cells based on protonic 

conductive electrolytes. 

In this chapter, essential knowledge relevant to the perovskite-type oxide, protonic 

ceramic fuel cells, especially their cathode material, is provided in brief. 

 

1.1 Perovskite-type Oxides 

1.1.1 Structure 

Perovskite-type structure derives from the mineral perovskite, CaTiO3, which was 

named to honor a Russian mineralogist Count Lev Alekseevich Perovskii (1792-1856).  

There are several alternative ways to view the perovskite structure [00Smy].  A common one 

which is adopted in this work is shown in Figure 1.1, with cubic structure of pm-3m space 

group for example.  There are two sites for cation occupation.  One 12-fold coordinated site 

locates at the corners of the unit cell (0,0,0), and is generally called as A-site.  The other 

6-fold coordinated site locates at the body center (
2
1 ,

2
1 ,

2
1 ), and is called as B-site.  Oxide 

ions occupy the face centers of the unit cell with the coordinates of (0,
2
1 ,

2
1 ), (

2
1 ,0,

2
1 ) and (

2
1 ,

2
1 ,0).  The formula of perovskite-type structure can therefore be expressed as ABO3. 
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Figure 1.1 Unit cell of cubic perovskite-type structure of pm-3m space group. 

 

The construction of perovskite-type structure greatly depends on the radii of the cations 

occupying A and B-sites. [99Hay, 01Ito, 04Li, 07Zha, 09Bha]  Since A and B sites are twelve-fold and 

six-fold coordinated, respectively, the cations with relatively larger size are expected to 

occupy the A-site, while smaller ones intend for B-site.  In order to evaluate the influence of 

cation radius on the perovskite-type structure more quantitatively, Goldschmidt introduced a 

term of tolerance factor t [26Gol] as given in Eq. (1-1), where Ar  and Br  are the average radii 

for the cations in A and B site, respectively, and Or  is the radius of oxide ion. 

( )OB

OA

2 rr
rr

t
+

+
=                                 (1-1) 

Several works have been conducted to clarify the relation between the tolerance factor and the 

perovskite-type structure, with different range estimated for the existence of cubic structure 

[99Hay, 04Li, 07Zha].  Anyhow, it is generally admitted that cubic structure is preferred when the 

tolerance factor approaches to 1.  And structural distortion generally occurs for relaxation if 

the tolerance factor deviates significantly from 1.  For example, by using the Shannon radii 

[76Sha], the tolerance of BaZrO3, which is of cubic structure at ambient environment [03Lev], is 

calculated to be 1.01, very close to 1.  And the tetragonal [02Aoy] and hexagonal [94Aki] 
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structures are reported for BaTiO3, whose tolerance factor is 1.07.  When relatively larger 

cation of Ce(IV) is introduced to occupy the B-site to form BaCeO3, a tolerance factor of 0.94 

is calculated and structures of orthorhombic [72Jac] and tetragonal [81Lon] are reported for 

measurement in ambient environment.  Therefore, the tolerance factor is a meaningful 

indicator for evaluating the structure variation tendency in certain extent. 

As has been mentioned, relatively large cations occupy the twelve-coordinated A-site, 

and relatively small cations occupy the six-coordinated B-site.  Thus, by introducing dopant 

cations with different radii into the material with perovskite-type structure, different site 

occupation is expected to occur.  For example, in the BaTiO3 system, it was reported by Tsur 

et al. [01Tsu] that for doping of cations with relatively small radii, such as Lu(III) and Yb(III), 

the dopant cations were confirmed to occupy the B-site.  However, when the radii of the 

dopant cations increase, Jeong et al. [04Jeo], Park et al. [09Par] found that Y(III) cations occupied 

both the A and B-sites, behaving as an amphoteric dopant.  The similar amphoteric 

phenomenon was also observed for doping Dy(III) [01Tsu, 06Mia, 09Par] and Ho(III) [01Kis, 01Tsu] into 

BaTiO3.  When the cations with much larger radii were doped into BaTiO3, Takeda [68Tak] 

found that Eu(II) cations only occupied A-site.  And the same A-site occupation of Sm(III) 

cations was also confirmed by Goodman [63Goo], Tsur et al. [01Tsu].  The similar phenomena of 

dependence of site occupation on the radii of dopant cations were also reported in some other 

perovskite-type oxides, such as BaCeO3 [97Mak, 04Wu, 05Wu1, 05Wu2], etc.  However, the relevant 

research is insufficient for the system of BaZrO3.  Although several works [08Aza, 10Yam, 11Gia] 

have been conducted to reveal the site occupancy of dopant in Y-doped BaZrO3, which 

attracts great interest due to its high protonic conductivity, unfortunately, no definitely 

confident conclusion was obtained. 
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1.1.2 Protonic Conductivity 

The perovskite-type oxides are gifted many amazing characteristics, one of which is 

ionic conductivity.  In the 1970s, Takahashi and Iwahara [71Tak] first reported fast ionic 

conductivity in Ti- and Al- based compositions.  And until now, a family of perovskite-type 

oxides with remarkably high oxide ionic conductivity has been developed, such as 

La1-xCaxAlO3-δ [93Miz], La0.8Sr0.2Ga1-yMgyO3-δ [94Ish, 96Hua, 98Hua], etc.  Later in the 1980s, 

protonic conductivity in perovskite-type oxide was also discovered by Iwahara [81Iwa, 83Iwa] in 

trivalent cations of Yb(III), Y(III) and Sc(III) doped SrCeO3.  And it became a hot subject in 

the relevant research field due to the possibility for application as electrolyte in fuel cells, 

hydrogen pumps, and various sensors, etc.[03Sch]  After the research for about 30 years, 

several oxides of perovskite-type structure were confirmed to be protonic conductive in 

humid atmosphere [99Kre, 99Nor, 03Kre].  A high protonic conductivity about 10-2 Scm-1 was first 

obtained in 10% Y-doped BaCeO3 for measurement in humid H2 [00Kat], which satisfies the 

requirement in conductivity of 10-2 S·cm-1 for electrolyte in fuel cells [01Ste].  However, 

BaCeO3 is unstable in CO2 contained atmosphere [93Gap, 93Sch, 96Tan].  In contrast, doped 

BaZrO3 exhibits significant stability against CO2 [00Kat, 09Gu1], together with remarkably high 

protonic conductivity in humid atmosphere (about 10-2 S·cm-1 at 450oC [09Yam]), therefore, is 

regarded to be a promising candidate for electrolyte in fuel cells.  In addition to BaCeO3 and 

BaZrO3, several other perovskite-type oxides, such as La1-xSrxScO3-δ [97Nom, 99Lyb, 02Nom], 

La1-xSrxYO3-δ [97Rui, 00Rui] and La1-xBaxScO3-δ [01Kim, 02Lee] etc., also exhibit protonic conduction 

in humid atmosphere.  However, their conductivities are not comparable to the values of 

doped BaZrO3 and BaCeO3 until now, and further investigation is essential. 

Referring to the mechanism of protonic conductivity in perovskite-type oxides, trivalent 

cation (M(III)) doped BaZrO3 is taken as example for explanation.  When dopant cations are 

introduced into BaZrO3, they conventionally occupy the B-site in BaZrO3, namely partially 
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replace the Zr(IV) cations.  Then oxide ion vacancies ( ••
oV ) are generated consequently for 

charge compensation, as given in Eq. (1-2). 

••×× ++→++ O
'
Zr2O32Zr V2M2ZrOOOM2Zr                   (1-2) 

When the material is placed in humid atmosphere, water molecules are absorbed, and as 

given in Eq. (1-3), dissociate into hydroxide, which fill oxide ion vacancies, and protons, 

which form hydroxide ions with lattice oxide ions.  The protons rotate around the lattice 

oxide ions and jump in the network among them, by which the protonic conductivity is 

generated.  This way of free proton migration is also referred to be as Grotthuss mechanism 

[82Iwa, 86Nor, 04Nor].  From Eq. (1-3), it is clear that the existence of oxide ion vacancies is 

essential for protonic conductivity. 

•×•• →++ OOO2 2OHOVOH                          (1-3) 

However, as has been illustrated in 1.1.3, it is also possible for dopant cations to occupy 

the A-site.  Under such circumstance, as shown in Eq. (1-4), the dopant cations with 

relatively higher valence state substitute Ba(II) cations.  Then, oxide ion vacancies are 

consumed for charge compensation.  Therefore, the A-site occupation of dopant cations is 

unfavorable for protonic conductivity.  And understanding the site occupation of dopants, 

also their influences on proton incorporation is considered to be meaningful for further 

elevating the protonic conductivity. 

×•••× ++→++ OBaO32Ba O2M2BaOVOM2Ba                   (1-4) 

 

1.2 Solid Oxide Fuel Cell and Protonic Ceramic Fuel Cell 

As an alternative method for electrochemically converting chemical energy of 

hydrocarbon fuels into electricity, fuel cells is gaining increasing attention in recent years for 

clean and efficient distributed power generation.  And solid oxide fuel cell (SOFC), which 

uses oxide ion conductor as electrolyte, is the most efficient one, with the conversion 
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efficiency approaching 75% [03Sin].  The way how SOFC works can be understood briefly 

from the schematic in Figure 1.2.  Oxide ions are formed by reducing oxygen molecules at 

the cathode, and move across the electrolyte to the cathode, then react with fuel, such as H2 

for example, to produce water.  And simultaneously, current is generated in the closed 

circuit.  However, although SOFC is attractive for high efficiency, it meets some 

unconquerable disadvantages such as fuel dilution at the anode due to by-product of water, 

and high operation temperature around 800 to 1000oC for generation of significant oxide ionic 

conductivity, resulting in the severe requirement for structural materials. 

 
Figure 1.2 Schematic of a solid oxide fuel cell.  Oxide ions move in electrolyte from anode 

to cathode, and react with hydrogen molecules to generate water molecules and electrons at 

the anode. 

 

In contrary, fuel cells based on protonic conductive ceramic as electrolytes, generally 

named as protonic ceramic fuel cells (PCFCs) [03Coo, 04Coo], operate at the intermediate 

temperature range about 600 to 700oC [09Lef], therefore, some common materials like stainless 

steel can be applied as separator or structural materials.  The schematic of PCFC is as shown 

in Figure 1.3.  Different from SOFC, protons play the role of carriers in PCFC, and move in 
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the electrolyte from anode to cathode.  Then protons react with oxygen and electrons at the 

cathode to form water.  Therefore, no dilution of fuel occurs for PCFC, indicating a more 

efficient fuel usage. Based on these advantages, PCFC attracts great interest.  Although it is 

not practically commercialized like SOFC, some exiting results have been achieved in 

laboratory scale.  Ito et al. [05Ito] prepared a cell with the BaCe0.8Y0.2O3-δ as electrolyte which 

was deposited by pulsed laser deposition (PLD) on Pd hydrogen permeation membrane as 

supporting anode.  And a maximum power density of 1.4 Wcm-2, which is the record for 

PCFC until now, was obtained.  The reported PCFC performances with Y-doped BaZrO3 as 

electrolyte are summarized in Table 1.1.  The performance is greatly dependent on the 

electrolyte thickness, and is not comparable to that of the PCFC with doped BaCeO3 as 

electrolyte.  Therefore, further effort is essential in thinning the electrolyte, and elevating the 

electrode performance. 

 
Figure 1.3 Schematic of a protonic ceramic fuel cell.  Protons move in electrolyte from 

anode to cathode, and react with oxygen molecules and electrons to form water molecules at 

the cathode.
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1.3 Cathode Materials for PCFCs 

Conventionally, cathode reaction for PCFCs, as given in Eq. (1-5), occurs at the 

three-phase-boundary (TPB) where electrolyte, gas and cathode meet, as shown in Figure 

1.4(a). 

OH2e4OH4 22 →++ −+                          (1-5) 

Based on such mechanism, a couple of electronic conductive materials has been verified for 

application as cathode material, such as metals like Pt [82Iwa, 85Uch, 88Iwa, 90Iwa], Ag [07Igu, 07Igu], etc., 

and electronic conductive oxides like La0.7Sr0.3FeO3-δ [05Yam], La0.6Sr0.4CoO3-δ [04Maf], 

La0.8Sr0.2Co0.8Fe0.2O3-δ [08Epi], Ba0.5Sr0.5Co0.8Fe0.2O3-δ [09Gu2], La0.6Ba0.4Co0.8O3-δ [93Iwa], 

Ba0.5Pr0.5CoO3-δ [02Hib], etc.  And in order to elevate the cathode performance, attempts for 

preparing composite cathode were also conducted [07Yan, 09Fab, 10Per], by which TPB was 

expected to be increased. 

  
(a) (b) 

Figure 1.4 Reactive sites for cathode reaction of (a) three-phase-boundary, where cathode, 

electrolyte, and gas phases meet, and (b) surface of cathode material. 

 

However, compared with increasing reactive sites for cathode reaction by extending 

TPB, it is more attractive if the whole interface between the cathode and gas phase is reactive 

[10Fab], as shown in Figure 1.4(b).  Theoretically, such idea can be realized if the cathode 

material is mixed protonic and electronic conductive.  Thus, protons can migrate across the 
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interface between electrolyte and cathode, and move to the surface of cathode, thereby the 

cathode reaction can occur at the entire surface of cathode.  Relatively limited works have 

been conducted for preparing the mixed protonic and electronic conductor.  Song et al. [03Son, 

05Son, 07Son] attempted to introduce Eu and Yb into SrCeO3.  And Fabbri et al [09Fae] doped Yb, 

Eu, Sm into SrCeO3 and BaCeO3.  However, their researches did not succeed in obtaining a 

novel mixed protonic and electronic conductor appropriate for the application as cathode for 

PCFCs.  Anyhow, such work is attractive and worth continuously challenging. 
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Chapter 2 

Evaluation of Site Occupation of Sc, Y, Sm, Eu and Dy in BaZrO3 by Comparing Lattice 

Volumes of Ba-rich and Ba-poor Samples 

 

2.1 Introduction 

As illustrated in Chapter 1, the protons, which are the carriers for protonic conductivity, 

are introduced by dissociative dissolving of water molecules into oxide ion vacancies.  By 

doping of trivalent cations into BaZrO3, oxide ion vacancies are consumed or generated, 

corresponding to the A or B-site occupation of the dopant cations, respectively.  Therefore, 

site selectivity of dopant cations has direct influence on the protonic conductivity that which 

site dopant cations occupy when they are doped into BaZrO3.  However, the research about 

the site occupation of dopant cations in BaZrO3 is limited.  In this chapter, the site selectivity 

of Sc, Y, Sm, Eu and Dy is evaluated by comparing the lattice volume of Ba-rich and Ba-poor 

samples. 

 

2.2 Experimental 

2.2.1 Material Preparation 

Samples were fabricated by conventional solid state reaction.  Starting materials were 

prepared by mixing BaCO3, ZrO2, and M2O3 (M = Sc, Y, Sm ,Eu or Dy) at the desired ratios.  

After ball-milling for 24 h, the mixtures were pressed into pellets under 9.8 MPa and heated at 

1000 oC for 10 h.  The samples were then ball-milled for 10 h, and pressed into pellets under 

9.8 MPa again, followed by a subsequent heat treatment at 1300 oC for 10 h.  The procedure 

of the ball-milling for 10 h and heat treatment at 1300 oC for 10 h was repeated for three times 

at most.  After that, the samples were ball-milled for 10 h and mixed with an organic binder 

solution consisting of water, polyvinyl alcohol, glycerin and ethanol.  The mixtures were 
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then pressed into pellets at 392 MPa, followed by a subsequent heat treatment at 600 oC for  

8 h to remove the binder solution.  Finally, the pellets were heated up to the sintering 

temperature of 1600 oC at a heating rate of 4 oCmin-1, and kept for 24 h in O2 flow, then 

furnace-cooled to room temperature.  In this work, structures of the samples were identified 

by X-ray diffraction analysis (XRD, PANalytical B. V., X'Pert-ProMPD, Cu Kα).  Rietveld 

refinement was carried out by utilizing a commercial software X’Pert HighScore Plus 

(PANalytical B. V.) to determine lattice volumes.  And morphologies of the sintered pellets 

were evaluated by a scanning electron microscope (SEM, Keyence Co., VE-7800). 

 

2.2.2 Measurement of Water Content 

Water contents of the hydrated samples were measured by Karl-Fischer titration 

method.  The sintered pellets were broken into pieces about 2 mm in length, and hydrated for 

72 h at the desired temperature in atmosphere of 5% H2O - Ar or 5% H2O - O2 for saturation 

of water.  Powder samples were not used, in order to eliminate the interference of surface 

water.  After that, the samples were quenched at room temperature to hold the water 

absorbed, and subsequently placed in a furnace already kept at 1000oC to dehydrate, as shown 

in Figure 2.1.  Water vapor was carried by dry N2 flow (200 ml/min) into the titration cell, 

and induced a reaction consuming I2 molecules to form I- anions as Eq. (2-1).  The same 

amount of I- anions were oxidized electrochemically to I2 molecules as Eq. (2-2), where the 

end point is detected by a bipotentiometric method.  Thus, by measuring the electrons 

exchanged during the electrolysis, the water contents in the samples were determined. 

[ ] [ ]INHC2CHSONHCOHCHNHC3SOOHI 253342533243222 +→++++     (2-1) 

−− +→ e2II2 2                           (2-2) 
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Figure 2.1 Schematic of Karl-Fischer Moisture Titrator for measuring the water content of 

the samples. 

 

2.3 Methodology 

The method adopted in this work for verifying whether the dopant cation occupies both 

the A and B-sites is first reported by Tsur et al. [01Tsu].  In this work, some refinements in 

theoretical consideration have been made. 

When the dopant cations are amphoteric, the equilibrium constants of the reactions of 

their incorporation into A and B-sites, as given in Eq. (1-4) and (1-2), can be written as    

Eq. (2-3) and (2-4), respectively. 

••×

×•

=
O32Ba

OBa

VOM
2
Ba

O
2
M

2
BaO

Occupation-A aaa

aaa
K                         (2-3) 

××

••

=
O32Zr

O
'
Zr2

OOM
2
Zr

V
2
M

2
ZrO

Occupation-B aaa

aaa
K                          (2-4) 

The Schottky reactions in A and B-sites of BaZrO3 and their equilibrium constants can be 

expressed as Eq. (2-5), (2-7) and Eq. (2-6), (2-8), respectively.  Although the formation of 

intrinsic Schottky disorder in the BaZrO3 system is considered to be difficult due to high 

formation energy [10Sto], the variants of activity of ''
BaV  and ''''

ZrV  ( ''''
ZrV

a  and ''''
ZrV

a ) can be 

thermodynamically treated. 
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Schottky reaction in A-site: 

BaOVVOBa O
''

BaOBa ++→+ ••××                        (2-5) 

××

••

=
OBa

O
''

Ba

OBa

BaOVV
Schottky-A aa

aaa
K                          (2-6) 

Schottky reaction in B-site: 

2O
''''

ZrOZr ZrO2VV2OZr ++→+ ••××                      (2-7) 

2
OZr

ZrO
2
VV

schottky-B

OZr

2O
''''

Zr

××

••

=
aa

aaa
K                          (2-8) 

By combining Eq. (2-3) and (2-6) to cancel the activity of BaO ( BaOa ), it gives: 

3
V

2
VOM

3
O

2
M

2
Schottky-A

Occupation-A

O
''

Ba32

OBa

••

×•

=
aaa

aa

K
K

                       (2-9) 

And by combining Eq. (2-4) and (2-8) to cancel the activity of ZrO2 (
2ZrOa ), it gives: 

3
V

2
VOM

3
O

2
M

2
Schottky-B

Occupation-B

O
''''

Zr32

O
'
Zr

••

×

=
aaa

aa

K
K

                      (2-10) 

Therefore, Eq. (2-11) can be achieved by combining Eq. (2-9) and (2-10) to cancel the 

activity of M2O3 (
32OMa ). 

''''
Zr

''
Ba

'
Zr

Ba

V

V

Schottky-A

Schottky-B

Occupation-B

Occupation-A

M

M )(
a

a

K
K

K
K

a

a
=

•

                   (2-11) 

Since activity is a product of concentration and activity coefficient, Eq. (2-11) can also 

be expressed in the form of Eq. (2-12), where γ and brackets represent the activity coefficient 

and the concentration of the specified defect, respectively. 

][Vγ

][Vγ
)(

][Mγ

][Mγ
''''

ZrV

''
BaV

Schottky-A

Schottky-B

Occupation-B

Occupation-A
'
ZrM

BaM

''''
Zr

''
Ba

'
Zr

Ba

K
K

K
K

=
•

•

               (2-12) 

Therefore, if all the activity coefficients are treated as constants due to diluted species, 
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an important proportional relationship as given in Eq. (2-13) can be achieved between the 

concentration ratio of the dopant cations occupying Ba-site to that of Zr-site, and the 

concentration ratio of the vacancies existing in Ba-site to that in Zr-site. 

][V
][V

][M
][M

''''
Zr

''
Ba

'
Zr

Ba ∝
•

                            (2-13) 

Kuwabara et al. reported that by using first principle calculation to evaluate the defect 

equilibrium in BaZrO3 at 1627oC (1700 K), which is close to the sintering temperature of 

1600oC in our work, the difference in formation energy between ''''
ZrV  and ''

BaV  is smaller for 

a Ba-rich sample than for a Ba-poor sample for the system satisfying the electroneutrality 

condition [10Ku1, 10Ku2], inferring that comparing to the Ba-rich sample, the concentration ratio 

of the ''
BaV  to ''''

ZrV  is higher in the Ba-poor sample, as given in Eq. (2-14).  And if the 

sample is slightly doped, it is reasonable to consider that such relationship still works. 

poorBa
''''

Zr

''
Ba

richBa
''''

Zr

''
Ba

][V
][V

][V
][V

−−
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⎠

⎞
⎜⎜
⎝

⎛
<⎟⎟

⎠

⎞
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⎛
                     (2-14) 

By comparing Eq. (2-13) and (2-14), it gives: 

poorBa
'
Zr

Ba

richBa
'
Zr

Ba

][M
][M

][M
][M

−

•

−

•

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
                    (2-15) 

It means that if the dopant cation is amphoteric and its concentration in the sample is 

kept constant, compared with the Ba-rich sample, the concentration of the dopant cations 

occupying A-site will be higher, while the concentration of the dopant cations occupying 

B-site will be lower in the Ba-poor sample.  In experiment, the difference in occupation of 

dopant cations in A and B-sites for Ba-rich and Ba-poor samples is supposed to be 

qualitatively evaluable from the lattice volumes of the samples. 
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2.4 Results and Discussion 

2.4.1 Confirmation of B-site Occupation of Dopants 

The lattice volumes of the samples of BaZr1-yMyO3-δ (M = Sc, Y, Sm, Eu, Dy) with the 

dopant concentration varying from y = 0 to 0.03 are shown in Figure 2.2.  It can be observed 

that when doped with Y, Dy, Eu or Sm, the lattice volumes of the samples increased with the 

increasing dopant concentration.  Meanwhile, no obvious change in the lattice volumes was 

observed for the samples doped with Sc. 

 
Figure 2.2 Lattice volumes of the samples of BaZr1-yMyO3-δ (M = Sc, Y, Sm, Eu, Dy) with 

the dopant concentration increasing from y = 0 to 0.03.  The samples were sintered at 

1600oC for 24 h in O2 flow. 

 

According to Vegard’s Law, replacing lattice cations by larger ones will induce an 

expansion in lattice volume.  Since the six-fold coordinated radii of the cations of Y(III) 

(0.900 Å), Dy(III) (0.912 Å), Eu(III) (0.947 Å) and Sm(III) (0.958 Å) are larger than that of 

the Zr(IV) cation (0.72 Å) [76Sha], and the reported radius of twelve-fold coordinated Sm(III) 

cation (1.24 Å [76Sha]), also the radius obtained by extrapolation [09Par] of the cations of Y(III) 

(1.251 Å), Dy(III) (1.255 Å ) and Eu(III) (1.295 Å) are smaller than that of Ba(II) (1.61 [76Sha]), 

the expanding of the lattice volume with the increasing dopant concentration is considered to 
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be attributed to the B-site occupation of significantly large amount of dopant cations.  While 

for doping of Sc, since the six-fold coordinated radius of the Sc(III) cation (0.745 Å [76Sha]) is 

close to that of the Zr(IV) cation, substituting the Zr(IV) cations with the Sc(III) cations does 

not induce obvious change in the lattice volume.  Therefore, it is rather difficult to judge 

whether Sc occupies A or B-site from Figure 2.2, although Sc is generally recognized to be of 

B-site occupation. 

 

2.4.2 Investigation of Possibility of A-site Occupation of Dopants 

The conclusion can be drawn from the analysis in 2.4.1 that a significantly large 

amount of Y(III), Sm(III), Eu(III) and Dy(III) cations occupy B-site when they are doped into 

BaZrO3, but it cannot be treated as equal to that these cations occupy B-site solely.  Even 

though the dopant cations partially occupy A-site of BaZrO3, if their amount in A-site is 

relatively less than that in B-site, a combined effect leading to the expansion of lattice volume 

will be expressed eventually.  For example, although an increase of lattice volume with the 

increasing dopant concentration of Y was shown in Figure 2.2 clearly, some phenomena of 

the possible A-site occupation of Y(III) cations were already reported as well [08Aza, 10Yam]. 

In order to apply the method explained in 2.3, Ba-poor (nominal concentration of Ba: 

0.99), Ba-rich (nominal concentration of Ba: 1.01) and stoichiometric (nominal concentration 

of Ba: 1.00) samples with the dopant concentration of 0.01 were prepared.  The lattice 

volumes of these samples are summarized in Figure 2.3.  The lattice volume differences, 

which are defined as the lattice volumes of the Ba-rich samples minus those of the Ba-poor 

samples, are as shown in Figure 2.4, with the reported values of doped BaTiO3 [01Tsu] for 

comparison.  It is observed that for the samples doped with Eu and Sm, the differences 

between the lattice volumes of the Ba-rich and Ba-poor samples are larger than that of the 

undoped samples.  While, for doping of Dy and Y, the values of the lattice volume 
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differences are close to that of the undoped one.  And when doped with Sc, the value of the 

lattice volume difference is less than that of the undoped samples. 

 
Figure 2.3 Lattice volumes of the samples of Ba1.01Zr0.99M0.01O3-δ, BaZr0.99M0.01O3-δ and 

Ba0.99Zr0.99M0.01O3-δ (M = Sc, Y, Sm, Eu, Dy), which were sintered at 1600oC for 24 h in O2 

flow. 

 

 
Figure 2.4 Lattice volume differences, identified as the lattice volume of the Ba-rich sample 

(Ba1.01Zr0.99M0.01O3-δ (M = Sc, Y, Sm, Eu, Dy)) minus that of the Ba-poor sample 

(Ba0.99Zr0.99M0.01O3-δ (M = Sc, Y, Sm, Eu, Dy)).  The reported values of doped BaTiO3 [01Tsu] 

are plotted for comparison.  The doped BaZrO3 samples were all sintered at 1600oC for 24 h 

in O2 flow. 
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In respect of the undoped samples, their lattice volumes can be regarded to mainly 

depend on the concentrations of vacancies in various sites.  However, the variation of the 

lattice volume of doped samples is a combination of the effects not only induced from 

vacancies, but also the occupation of dopant cations in different sites.  In order to evaluate 

the influence of the vacancies on the lattice volume, a series of the undoped samples with 

intentionally introduced deficiency of Ba were prepared, with the lattice volumes of the 

perovskite-type phases summarized in Figure 2.5.  The circles indicate that a single phase 

was obtained after being sintered at 1600 oC.  The triangles indicate that the samples were 

identified to be composed of perovskite-type and zirconia phases.  As confirmed in Figure 

2.5, there is small fluctuation of lattice volume, suggesting that the contribution from 

vacancies in A-site to the lattice volume is negligible compared to the experimental error.  

As shown in Figure 2.4, the differences in lattice volumes of the samples doped with Eu and 

Sm are greatly larger than that of the undoped samples (or fluctuation of lattice volume).  

Therefore, in such circumstance, not only the influence of vacancies, but also that of 

occupation of dopant cations in different sites should be taken into account.  Since the radii 

of Eu(III) and Sm(III) cations are larger than that of Zr(IV) cation, but smaller than that of 

Ba(II) cation, larger difference in lattice volume than that of undoped samples is considered to 

be greatly attributed to the fact that compared with other dopant cations, relatively more 

Eu(III) and Sm(III) cations occupy A-site in a Ba-poor sample.  However, as recognized in 

2.4.1, a large portion of Eu(III) and Sm(III) cations was confirmed to occupy B-site.  

Namely, Eu and Sm are amphoteric for doping into BaZrO3. 

For doping of Y and Dy, the values of the lattice volume differences are close to that of 

the undoped samples, indicating that the variation in Ba concentration induced no obvious 

change in the occupation of the dopant cations.  We consider that Dy(III) and Y(III) cations 

mainly occupy B-site.  Although Y is reported to be also a possible amphoteric dopant for 
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BaZrO3 [08Aza, 10Yam], it is unable to confirm the corresponding phenomenon in our work.  

This may be related to the sensitivity of the method we adopted, or the possibility that the 

capability of Y occupying A-site is not comparable to that of Eu and Sm.  In addition, for 

doping of Sc, the value of the lattice volume difference is less than that of the undoped ones.  

The reason for this phenomenon is not clear at present. 

 
Figure 2.5 Lattice volume of the perovskite phase in the samples with the nominal 

composition of Ba1-xZrO3-δ (x = 0, 0.01, 0.02, 0.025, 0.05, 0.075, 0.1 and 0.2).  All the 

samples were sintered at 1600oC for 24h in O2 flow. 

 

Another interesting phenomenon was observed in the morphologies of the sintered 

pellets.  As shown in Figure 2.6, for doping of Eu, the Ba-poor and stoichiometric samples 

exhibited fine grain size around 0.35 μm.  While for the Ba-rich sample, the grains grown up 

obviously.  Similar phenomena were also observed for the doping of the other dopants as 

well.  In the work of Imashuku et al. [07Ima], growth of grain size in the Y-doped Ba-rich 

sample was also reported.  Although the reason for such phenomenon is not very clear, one 

hypothesis is that for the Ba-rich samples, liquid phase forms during the sintering process at 

1600 oC [07Ima], from which the growth of the grain may be benefitted. 
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(a) Ba0.99Zr0.99Eu0.01O3-δ (b) BaZr0.99Eu0.01O3-δ 

 

(c) Ba1.01Zr0.99Eu0.01O3-δ  

Figure 2.6 Morphologies of cross-section of the Eu doped samples with various Ba 

concentrations of (a) Ba-poor, (b) stoichiometry and (c) Ba-rich.  All the samples were 

sintered at 1600oC for 24 h in an O2 flow. 

 

2.4.3 Water Content of BaZr0.8M0.2O3-δ (M = Sc, Y, Sm, Eu, Dy) 

The results of the measurement of water contents of the samples of BaZr0.8M0.2O3-δ (M 

= Sc, Y, Sm, Eu, Dy) hydrated in 5% H2O - Ar or 5% H2O - O2 are shown in Figure 2.7.  

The results revealed that when hydrated in humid O2, the concentrations of hydroxide ions of 

the samples doped with Dy, Eu or Sm were much lower than those of the samples doped with 

Sc or Y.  When hydrated in humid Ar, comparing with those hydrated in humid O2, no 

significant difference was observed for the samples of BaZr0.8M0.2O3-δ (M = Sc, Y, Sm, Eu).  

While for the sample of BaZr0.8Dy0.2O3-δ, a great elevation in concentration of hydroxide ions 

was observed when hydrated in humid Ar. 
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Figure 2.7 Concentrations of hydroxide ions per unit cell and hydration degree of the samples 

of BaZr0.8M0.2O3-δ (M = Sc, Y, Sm, Eu, Dy) hydrated in the atmosphere of 5% H2O- Ar or 5% 

H2O - O2.  The samples for hydration of the size about 2 mm in length, broken from the 

pellets sintered at 1600oC for 24 h in an O2 flow. 
 

One possible reason for lower water content in the Eu and Sm doped samples is 

considered to be attributed to the partial A-site occupation of these dopants, which reduces the 

oxide ion vacancies and obstructs the hydration reaction in consequence.  And it is also 

possible that by doping of Eu and Sm, a significant change of the material property may 

occur. 

 

2.5 Conclusions 

(1) With the method of comparing the lattice volumes of doped and undoped Ba-rich, and 

Ba-poor samples, it was confirmed that for doping Eu or Sm, not only B-site, but also A-site 

seemed to be occupied by the dopant cations.  Therefore, Eu and Sm are considered to be 

amphoteric dopants for BaZrO3. 

(2) For doping of Sc, Y or Dy into BaZrO3, the dopant cations mainly occupied B-site.  
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Although some possible A-site occupation phenomena of Y were reported [08Aza, 10Yam], 

restricted to the sensitivity of the method applied in this work, or the significantly low 

concentration of Y occupying the A-site, the relevant A-site occupation phenomena was not 

observed with the method of this work.  Further investigations are conducted in the 

following chapters (Chapter 3 and 4). 

(3) The concentrations of hydroxide ions in the Sm and Eu doped BaZrO3 were greatly lower 

than those in the Sc and Y doped samples, regardless whether hydrated in humid Ar or humid 

O2.  And the concentration of hydroxide ions in the sample of Dy doped sample hydrated in 

humid Ar was obviously higher than that hydrated in humid O2.   
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Chapter 3 

Evaluation of Site Occupation of Y by Powder X-ray Diffraction Based on Anomalous 

Dispersion Effect 

 

3.1 Introduction 

According to the research until now, Y is the optimal acceptor dopant for BaZrO3 to 

generate protonic conductivity [03Kre, 09Yam, 10Fab].  However, as described in Chapter 1, if Y 

plays the role as a donor dopant, namely partitioning into A-site of BaZrO3, oxide ions which 

are essential for introducing protons are consumed, resulting in a detrimental effect for 

protonic conductivity.  Several works have been conducted in order to clarify the site 

occupation of Y in BaZrO3.  Yamazaki et al. [10Yam] prepared a series of samples of 

Ba1-xZr0.8Y0.2O3-δ by introducing Ba deficiency intentionally.  In their work, only the cubic 

perovskite-type single phase was identified for the samples with the Ba-deficiency up to 0.06 

by X-ray diffraction (XRD) analysis with the tube source of Cu Kα (8.04 keV).  A decrease 

of conductivity and water content with the increasing Ba-deficiency was confirmed, which 

leaded to the conclusion that Y(III) cations partitioned into A-site in the Ba-deficient sample, 

resulting in a decrease of oxide ion vacancies which were necessary for introducing protons.  

However, decrease of oxide ion vacancies is not the only reason which will lower the protonic 

conductivity.  Structure distortion and precipitation of other phases, which are attributed to 

the nonstoichiometric composition and probably difficult to be observed with conventional 

laboratory XRD, may also influence the protonic conductivity.  In the work of Azad et al. 

[08Aza], diffraction pattern of BaZr0.9Y0.1O3-δ was collected by high resolution neutron 

diffraction.  By Rietveld refinement, they reported the sample of BaZr0.9Y0.1O3-δ was a single 

phase of perovskite-type (α), or a mixture of two phases of perovskite-type (α and β), greatly 

depending on the preparation methods.  In phase α, Y(III) cations were solely of B-site 
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occupation, and in phase β, a part of Y (III) cations occupied A-site.  A recent work of 

Giannici et al. [11Gia] reported the collecting of diffraction pattern of Y-doped BaZrO3 with 

synchrotron radiation with the incident energy about 31 keV (wavelength of 0.4 Å).  Aided 

by the results of EXAFS and Raman spectroscopy, they found that for the sample with 

stoichiometric composition, no evidence of A-site occupation of Y(III) cations was observed.  

Their work showed the advantage of high-brightness monochromatic X-ray in structure 

analysis.  And in this work, we utilized synchrotron radiation to collect the diffraction 

patterns of Y-doped BaZrO3 with the incident energy close to the Y K absorption edge. 

 

3.2 Methodology 

Intensity (Ihkl) of (hkl) reflection can be expressed as Eq. (3-1), where Fhkl, p ,and LP 

represent structure factor, multiplicity, and Lorentz polarization factor, respectively. 

LPpFI hklhkl ××= 2||                              (3-1) 

In addition, the definition of structure factor Fhkl is given in Eq. (3-2), where xj, yj, zj are 

coordinates of position j in a unit cell, and fj is scattering factor of ions occupying the position 

j.  i is the imaginary unit. 

)]i(2exp[ jjj
j

jhkl zlykxhfF ×+×+×π−∑=                   (3-2) 

The perovskite-type structure factor can be shortened as Eq. (3-3) - (3-6), depending on 

the parity of the sum of Miller indices as (h + k + l). 

For the case that (h + k + l) is even,  

If h, k, l are all even, OBA 3)( fffFhkl ++=                    (3-3) 

Otherwise, OBA )( fffFhkl −+=                     (3-4) 

For the case that (h + k + l) is odd,  

If h, k, l are all odd, OBA 3)( fffFhkl −−=                    (3-5) 
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Otherwise, OBA )( fffFhkl +−=                     (3-6) 

fA, fB, fO are the scattering factors of cations in A and B-site, and oxide ions, respectively. 

It can therefore be observed from Eq. (3-3) - (3-6) that in addition to the contribution 

from the oxide ions, when the sum of the Miller indices is even, the structure factor is a sum 

of the contributions from all the cations in A and B-sites, regardless of their occupancy in 

either site.  However, for the case that the sum of the Miller indices is odd, the structure 

factor depends on the difference in individual occupancy of the cations in A and B-sites.  

Thus, by comparing the structure factors of reflections with different Miller indices, the site 

occupancy of certain cation is determinable.  In addition, as given in Eq. (3-1), since the 

diffraction intensity of certain reflection is proportional to the square of the absolute value of 

its structure factor, the comparison of structure factors is equivalent to that of intensities.  

And such work can be performed by the Rietveld refinement. 

The scattering factor for ion n is as given in Eq. (3-7). 

)(''i)(')/(sin0, EfEfθff nnnn ++λ=                   (3-7) 

As shown in Figure 3.1, although the term of )/(sin0, λθf n  of Ba(II) cation is significantly 

larger than those of the cations of Y(III) and Zr(IV), the difference in )/(sin0, λθf n  between 

Y(III) and Zr(IV) cations is very small due to their adjacent position in the periodic table.  

Referring to the term of )(''i)(' EfEf nn + , which is named as anomalous dispersion term, 

as shown in Figure 3.2, if the XRD analysis is performed with the X-ray of Cu Kα (8.04 keV), 

the difference in either the real part or the imaginary part is still very small.  However, a 

dramatic drop in )(' Ef n  of Y occurs near the energy of Y K-edge, which is named as the 

anomalous dispersion effect, and the difference in )(' Ef n  between Y and Zr increases 

obviously.  Based on such phenomenon, if the X-ray with the energy near Y K-edge can be 

applied, the difference in scattering factor between Y(III) and Zr(IV) cations can be enlarged,  
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Figure 3.1 Scattering factors of fn, 0(sinθ/λ), before taking anomalous dispersion terms into 

account. 

 

Figure 3.2 Anomalous dispersion terms of Y and Zr.  Difference in either f’(E) or f’’(E) 

between Y and Zr is small at incident energy of Cu Kα (8.04 keV).  And dramatic drop of 

f’(E) of Y occurs when incident energy approaches Y K-edge (17.037 keV), resulting in an 

increase of the difference in f’(E) between Y and Zr. 
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by which the contributions from Y(III) and Zr(IV) cations to the structure factor is 

consequently separable, and site occupancy of Y(III) cations becomes determinable with 

better precision. 

 

3.3 Experimental 

Samples with nominal compositions of BaZr0.8Y0.2O3-δ and Ba0.9Zr0.8Y0.2O3-δ were 

prepared by conventional solid state reaction method as described in Chapter 2.  For 

sintering, two different heating processes were adopted.  One process is initially heating the 

pellets to 1600 oC at a heating rate of 4 oCmin-1 and keeping for 24 h, then furnace cooling to 

room temperature.  After that, the pellets were heated to 1600 oC, kept for 24 h again, and 

quenched at room temperature.  The other process is inserting the pellets directly into the 

furnace already heated up to 1600 oC.  After being kept for 24 h, the pellets were quenched 

at room temperature.  In the followings, these two processes are named as “slow heating 

process” and “rapid heating process”, respectively. 

Total compositions of the samples with the nominal compositions of BaZr0.8Y0.2O3-δ 

and Ba0.9Zr0.8Y0.2O3-δ were identified to be Ba0.97Zr0.81Y0.19O3-δ and Ba0.89Zr0.81Y0.19O3-δ, 

respectively, by inductive coupled plasma-atomic emission spectroscopy (ICP-AES, Seiko 

Instruments Inc., SPS4000).  Microstructure was observed by SEM and a transmission 

electron microscope (TEM, JEOL, JEM-2100F).  The TEM samples were thinned by an ion 

slicer (JEOL, EM-09100IS).  Local composition was identified by energy dispersion X-ray 

spectroscopy (EDX, JEOL, JED-2300) equipped with TEM.  Powder XRD analysis was 

performed with laboratory tube X-ray source of Cu Kα, and also at SPring-8 with the 

approval of the Japan Synchrotron Radiation Research Institute (JASRI) as industrial 

application proposal (proposal No. 2010B1850) by using the beam line of BL19B2 with the 

nominal X-ray energies of 16.898 keV and 17.023 keV, close to the energy of Y K-edge of 
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17.037 keV, and calibrated to be 16.908 keV and 17.026 keV, respectively.  The samples for 

measurement were sealed in Lindemann glass made capillaries (Hilgenberg GmbH).  

Rietveld refinement was performed by a commercial software TOPAS (Bruker AXS GmbH). 

 

3.4 Results  

3.4.1 Morphology 

Morphologies of the cross-section area of the samples prepared by slow heating process 

are as shown in Figure 3.3. 

 

(a) BaZr0.8Y0.2O3-δ  

(b) Ba0.9Zr0.8Y0.2O3-δ (c) Ba0.9Zr0.8Y0.2O3-δ 

Figure 3.3 SEM images of the cross-section of the samples of with the nominal composition 

of (a) BaZr0.8Y0.2O3-δ, (b) and (c) Ba0.9Zr0.8Y0.2O3-δ.  Both the two samples were sintered at 

1600oC in an O2 flow for 48h in total and quenched at room temperature. 

 

For the sample with the nominal composition of BaZr0.8Y0.2O3-δ, dense morphology 
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with uniform grain size was obtained after being sintered at 1600 oC and subsequently 

quenched at room temperature.  However, the cross-section morphology of the sample with 

the nominal composition of Ba0.9Zr0.8Y0.2O3-δ was loose.  And a mixture of grains with two 

size scales can be observed from Figure 3.3(c), one is about 500 μm, and the other is 

relatively small, about 100 μm. 

 

3.4.2 X-ray Diffraction 

For the samples prepared by slow heating process, their diffraction patterns collected by 

utilizing the synchrotron radiation with the incident energy of 17.026 keV with the glancing 

angle (2θ) from 8.35o to 76.48o, and tube source X-ray of Cu Kα with the glancing angle from 

17.77o to 90.00o are plotted as a function of (sinθ/λ) for comparison in Figure 3.4.  By taking 

the (321) reflection for example, for the case using the X-ray of Cu Kα, a peak separation of 

Kα1 and Kα2 was observed for both the two samples.  Meanwhile, for the patterns collected 

by using the synchrotron radiation, in addition to the sharp peak (peak 1), an overlapping of 

small peak (peak 2) can be seen apparently for Ba0.9Zr0.8Y0.2O3-δ.  Such phenomenon was 

also confirmed for “all the peaks” at high angle region for the pattern of Ba0.9Zr0.8Y0.2O3-δ, 

suggesting the possibility of coexistence of two perovskite-type phases.  However, such 

phenomenon was unable to observe from the pattern collected by X-ray source of Cu Kα, due 

to the interference of overlapping of Cu Kα 1 and Kα 2.  In addition, all the peaks in the 

pattern of BaZr0.8Y0.2O3-δ collected by synchrotron radiation exhibited a small slope at the left 

side of the sharp main peak, just like the (321) reflection as shown in Figure 3.4.  And the 

poorly symmetric peaks were also confirmed from the pattern collected by Cu Kα. 

Identified with X-ray source of Cu Kα, the (321) reflections of the samples prepared by 

rapid heating process are shown in Figure 3.5.  Compared with the case for BaZr0.8Y0.2O3-δ 

prepared by slow heating process, an improvement of peak symmetry was observed from the 
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peak shape.  However, due to the interference of overlapping of Cu Kα 1 and Kα 2, no 

conclusion can be drawn whether only one perovskite-type pattern exists. 

 

Figure 3.4 Comparison of the XRD patterns of the samples with the nominal composition of 

Ba0.9Zr0.8Y0.2O3-δ and BaZr0.8Y0.2O3-δ.  The patterns were taken under synchrotron radiation 

with the X-ray energy of 17.026 keV, and conventional tube source of Cu Kα (8.04 keV). 
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Figure 3.5 XRD pattern of (321) reflection of the sample with the nominal composition of 

BaZr0.8Y0.2O3-δ and Ba0.9Zr0.8Y0.2O3-δ collected by X-ray source of Cu Kα.  During the 

sintering process, the sample was inserted directly into the furnace already heated up to 1600 
oC, and the quenched at room temperature after sintered at 1600 oC for 24 h. 

 

3.4.3 TEM Observation 

For the sample with the nominal composition of Ba0.9Zr0.8Y0.2O3-δ, since phase 

separation was confirmed from the XRD pattern, EDX equipped with TEM was applied to 

identify the precise composition of each phase.  The TEM samples were preliminarily sliced 

by a beam of argon ions (Ar+), therefore, a gradual change in sample thickness formed.  The 

schematic of the cross-section of the samples is shown in Figure 3.6.  Since the electrons 

from the incident beam will diverge in the sample, the EDX results are expected to be 

dependent on the measuring position for the sample where grains with different compositions 

exist.  For Point 1 in Figure 3.6, the electron beam strikes the grain at the thinnest part of the 

sample where only monolayer of grains exists.  The electrons are thereby expected to 

diverge solely in the target grain.  For Point 3, since the target grain size is large, the 

divergence of electrons is localized in the interior of the target grain.  However, for Point 2 
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where multiple layers of grains exist and the target grain size is small, the electrons from the 

incident beam will probably diverge not only in the target grain, but also down to the bottom 

layer.  Therefore, compared with Point 2, the measurements for Point 1 and Point 3 are 

considered to be more precisely.  In this work, 36 points were measured by EDX with the 

results summarized in Figure 3.7.  The EDX results can be divided into four groups.  The 

symbols of open circles correspond to the compositions of large grains, as Point 3 in Figure 

3.6, with the average composition of Ba0.74Zr0.55Y0.45O3-δ, greatly Y-rich and Ba-deficient.  

The open triangles mean the compositions of small grains, as Point 1, with the average 

composition of Ba0.87Zr0.96Y0.04 O3-δ, which is Y-poor.  The solid squares indicate the results 

of EDX performed at the position as Point 2, which are considered to be not precise 

significantly.  In addition, two greatly Zr-rich points were detected as indicated in the TEM 

image of Figure 3.8, with their compositions marked as solid rhombuses in Figure 3.7.  They 

are considered to be attributed to unreacted ZrO2 from the starting material. 

 

Figure 3.6 Schematic (left) of the position dependence of electron beam divergence in the 

sample when using EDX to determine the composition of individual grains.  The positions 

where incident beam of electrons hit the sample, as marked as point 1 to 3 in the left 

schematic, correspond to the positions marked identically in the right TEM image. 

 

Furthermore, as shown in Figure 3.9, planar defects along )111(  and )111( planes 

were observed in both the two samples.  And much more periodic planar defects were 

confirmed for the relatively much nonstoichiometric sample of Ba0.9Zr0.8Y0.2O3-δ. 
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Figure 3.7 Summary of results by using EDX equipped with TEM to evaluate the grain 

composition in the sample with the nominal composition of Ba0.9Zr0.8Y0.2O3-δ. 

 

3.4.4 Rietveld Refinement 

For the sample with the nominal composition of BaZr0.8Y0.2O3-δ prepared by slow 

heating process, the composition identified by ICP-AES of Ba0.97Zr0.81Y0.19O3-δ was used for 

Rietveld refinement.  Several constraints were established for precise refinement.  The 

concentration of the cations and vacancies in both the A and B-sites must satisfy the site 

restrictions, as given in Eq. (3-8) and (3-9). 

A-site restriction:  1][V][Y][Ba ''
BaBaBa =++ •×                (3-8) 

B-site restriction:  1][V][Y][Zr ''''
Zr

'
ZrZr =++×                 (3-9) 
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Figure 3.8 Unreacted ZrO2 observed by TEM in the sample with the nominal composition of 

Ba0.9Zr0.8Y0.2O3-δ. 

 

(a) BaZr0.8Y0.2O3-δ (b) Ba0.9Zr0.8Y0.2O3-δ 

Figure 3.9 Periodic planar defects observed by TEM in the samples with the nominal 

compositions of (a) BaZr0.8Y0.2O3-δ, and (b) Ba0.9Zr0.8Y0.2O3-δ. 
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Compared to the formation energy of the vacancies in A-site ( ''
BaV ), that of the 

vacancies in B-site ( ''''
ZrV ) is high significantly [10Sto] to treat reasonably the concentration of 

vacancies in B-site negligible.  Therefore, Eq. (3-9) can be shortened as Eq. (3-10). 

B-site restriction:  1][Y][Zr '
ZrZr =+×                     (3-10) 

In addition, the relation among concentrations of all the cations should satisfy the 

composition relation identified by ICP-AES, as given in Eq. (3-11). 

0.19:0.81:0.97])[Y]([Y:]r[Z:][Ba '
ZrBaZrBa =+•××                (3-11) 

By combing Eq. (3-10) and (3-11), if make the concentration of Y occupying the B-site 

( ][Y'
Zr ) as variable, the concentrations of all the cations can be expressed as the functions of 

][Y'
Zr , as given in Eq. (3-12) - (3-14). 

81
])[Y(197][Ba

'
Zr

Ba
−×

=×                           (3-12) 

][Y1][Zr '
ZrZr −=×                              (3-13) 

81
][Y10019][Y

'
Zr

Ba
×−

=•
                          (3-14) 

Based on these constraints, Rietveld refinement for the pattern measured with the 

synchrotron radiation with the incident energy of 17.026 keV was firstly performed on 

TOPAS, by using a cubic pm-3m unit cell for fitting.  Fittings of reflections of (031) and 

(222) are shown in Figure 3.10.  The factor of Rwp is 16.35 %, a high value, indicating poor 

quality of this refinement, which is attributed to the poor peak symmetry.  Then, the 

tetragonal p4/mbm unit cell suggested by Giannici et al. [11Gia] was attempted for Rietveld 

refinement, as shown in Figure 3.11.  However, although the lattice constants (a = 5.9732 Å, 

c = 4.2215 Å) obtained from the refinement of the pattern collected by incident energy of 

17.026 keV are comparable to those reported by Giannici et al. for the 15 % Y-doped BaZrO3 

(a = 5.9716 Å, c = 4.2267 Å), the Rwp for this refinement is 17.62 %, indicating no  
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Figure 3.10 Rietveld refinement fitting of reflections of (a) (031), and (b) (222) of the sample 

with the nominal composition of BaZr0.8Y0.2O3-δ. The XRD pattern was collected with 

incident X-ray energy of 17.026 keV.  Only single cubic perovskite-type (pm-3m) phase is 

assumed to exist in this refinement.  Observed pattern (blue), calculated pattern (red), 

difference (black, at bottom) and the Bragg peaks of the candidate phases (vertical lines) are 

shown. 

 

Figure 3.11 Rietveld refinement fitting of reflections of (a) (103)c & (301)c & (310)c , and (b) 

(222)c of the sample with the nominal composition of BaZr0.8Y0.2O3-δ.  The XRD pattern was 

collected with the incident X-ray energy of 17.026 keV.  Tetragonal perovskite-type 

(p4/mbm) single phase was adopted for this refinement.  Observed pattern (blue), calculated 

pattern (red), difference (black, at bottom) and the Bragg peaks of the candidate phases 

(vertical lines) are shown.  (hkl)c indicates Miller indices in cubic system. 
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improvement in refinement quality.  Especially for the (222) reflection, there is definitely no 

peak splitting due to different lattice constant along different orientation for tetragonal 

structure, such as the case for {310} reflections as shown in Figure. 3.11(a).  However, as 

can be confirmed from Figure. 3.11(b), the peak belonging to (222) reflection is also poorly 

symmetric.  We also considered about the possibility that this small slope appearing at the 

relatively low angle side of the main peak may be attributed to the reported phenomenon of 

relatively higher Y content near the grain boundary [08Cer, 09Igu], therefore, the lattice constant 

near the grain boundary is expected to be larger than that of the bulk.  However, in this work, 

such phenomenon was not confirmed by EDX equipped with TEM.  Then, we suggested that 

there might be a quasi-equilibrated phase whose Y content is slightly higher than the main 

perovskite-type phase.  By comparing the relation between the lattice constant and the Y 

content [09Ima], the Y content in such phase is approximately 0.02 higher than that in the main 

phase, therefore, in addition to the main perovskite-type phase of Ba0.97Zr0.81Y0.19O3-δ, another 

slightly Y-rich perovskite-type phase of Ba0.97Zr0.79Y0.21O3-δ was assumed here, and cubic 

pm-3m unit cell was assigned to both of the two perovskite-type phases for Rietveld 

refinement.  The profile for the fitting is shown in Figure 3.12.  Rwp decreased to 7.27 %, 

showing a good quality of refinement.  The site occupancy of all the cations evaluated by the 

Rietveld refinement is summarized in Table 3.1, together with the results by fitting the pattern 

obtained from incident energy of 16.908 keV. 

For the sample with the nominal composition of Ba0.9Zr0.8Y0.2O3-δ, the compositions of 

the two perovskite-type phases identified by EDX of Ba0.87Zr0.96Y0.04O3-δ and 

Ba0.74Zr0.55Y0.45O3-δ were used for Rietveld refinement.  In addition, the Y2O3 phase 

confirmed by diffraction pattern was also taken into account.  The constraints for the relation 

among all the cations were established similar to that of BaZr0.8Y0.2O3-δ as has been illustrated.  

The profile of Rietveld refinement is exhibited in Figure 3.13.  A low value of 7.45 % was
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obtained for Rwp, implying a good quality of refinement.  

 

3.5 Discussion 

As summarized in Table 3.1, for the sample with the nominal composition of 

BaZr0.8Y0.2O3-δ, which was identified to be slightly Ba-deficient as Ba0.97Zr0.8Y0.2O3-δ, all the 

Y(III) cations are evaluated to be of B-site occupation.  For the sample with intentionally 

introduced Ba-deficiency of 0.1, in addition to the precipitation of Y2O3 solid solution, the 

coexistence of two perovskite-type phases was confirmed.  One of the two phases was of 

relatively large grain size and lattice constant, with a high Y content of 0.45.  A part of the 

Y(III) cations in this phase were evaluated to occupy A-site.  The other perovskite-type 

phase is relatively small in both the grain size and the lattice constant, and low in the Y 

content.  But all the Y(III) cations in this phase were evaluated to be of A-site occupation.  

The results obtained from utilizing the synchrotron radiation with the incident energies of 

17.026 keV and 16.908 keV show good consistency.  Although the total amount of doped Y 

was different for these perovskite-type phases, it is obvious that with the increasing 

Ba-deficiency, the Y content occupying A-site increased. 

Although it remains unclear for the reason of the slope at the low angle side near the 

main peak in the sample of BaZr0.8Y0.2O3-δ prepared by slow heating process, since the peak 

symmetry of the diffraction pattern of the samples prepared by rapid heating process 

improved, such phenomenon is possibly attributed to a kinetic reason depending on the route 

for sample preparation.  According to the BaO - ZrO2 - YO1.5 pseudo-ternary phase diagram 

reported by Imashuku et al. [10Ima], the composition of the Ba-deficient sample of 

Ba0.89Zr0.81Y0.19O3-δ locates in the two phase region of BaZrO3 (solid solution) and ZrO2 

(cubic), indicated as solid circle in Figure 3.14, greatly different from the coexistence of Y2O3 

and two perovskite-type phases identified in this work.  While, in another estimated 
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pseudo-ternary phase diagram reported by Yamazaki et al. [10Yam], the composition of 

Ba0.89Zr0.81Y0.19O3-δ is in the two phase region of BaZrO3 (solid solution) and Y2O3 (cubic), as 

shown in Figure 3.15. 

 
Figure 3.14 BaO - YO1.5 - ZrO2 pseudo-ternary phase diagram reported by Imashuku      

et al. [10Ima]  The solid circle indicates the composition of Ba0.89Zr0.81Y0.19O3-δ, which is in the 

two phase region of BaZrO3 (solid solution) and ZrO2 (cubic). 

 

And by comparing the preparation route, as listed in Table 3.2, the method adopted by 

Yamazaki et al. [10Yam] is similar to the slowing heating process of this work.  And the 

method of Imashuku et al. [10Ima] is the same as the rapid heating process of this work.  By 

combining these reported achievements with the results obtained in this work, we suggest the 

dependence of phase relationship on the heating process as shown in Figure. 3.16 and 3.17.  

For the slow heating process, phase relationship at low temperature might develop during 

heating to the sintering temperature of 1600 oC, since a significant difference exists in the 

phase diagram between 1600 oC and lower temperature [10Ima], these preliminarily formed low 
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temperature phases thereby will obstruct the phase equilibrium at 1600 oC in the desired time.  

When slowly cooled to room temperature, phase transition may also possibly occur.  

Contrarily, for the rapid heating process, the time for temperature changing between room 

temperature and sintering temperature is greatly reduced, and only the phase relationship of 

1600 oC is expected to be developed.  Therefore, the phases of the samples prepared by the 

slow heating process are considered to be at the quasi-equilibrated status. 

 

Figure 3.15 BaO - YO1.5 - ZrO2 pseudo-ternary phase diagram reported by Yamazaki et al. 
[10Yam]  The solid circle indicates the composition of Ba0.89Zr0.81Y0.19O3-δ, which is in the two 

phase region of BaZrO3 (solid solution) and Y2O3 (cubic). 

 

The observation of periodic planar defects is also interesting.  The phase composition 

of Ba0.74Zr0.55Y0.45O3-δ, which was identified in the sample with the nominal composition of
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Figure 3.16 Heating profile for the process of slow heating and cooling.  Samples were 

gradually heated up to the sintering temperature, and finally furnace cooled after being 

sintered. 

 

 

(b) 

Figure 3.17 Heating profile for the process of rapid heating and cooling.  Samples were 

directly inserted into the furnace already kept at the sintering temperature, and finally 

quenched to the room temperature after being sintered. 
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Ba0.9Zr0.8Y0.2O3-δ, is greatly Ba-deficient, beyond the common knowledge for the available 

Ba-deficiency in BaZrO3 system [10Yam].  However, since the nonstoichiometry is partially 

accommodated in the planar defects, the composition in the area away from the planar defects 

is expected not to be the value of chemical analysis by EDX equipped with TEM.  The 

compositions used for Rietveld refinement in this work are EDX values, thus they are not 

very precise.  However, period of these planar defects is long, and consequently does not 

have remarkable influence on the composition.  Hence, the simulated result by Rietveld 

refinement is still acceptable.  In addition, since these periodic planar defects divide the bulk 

into several discontinuous layers, it is reasonable to consider that proton conduction is 

probably obstructed by these defects.  And the poor reproducibility of bulk conductivity for 

the samples even with the same composition but prepared by different preparation methods 

[10Fab] may possibly due to the dependence of formability of the planar defects on these 

preparation methods. 

 

3.6 Conclusions 

(1) Anomalous dispersion effect near Y K-edge was applied in powder X-ray diffraction for 

measuring the sample prepared by slowing heating process.  By Rietveld refinement, it 

revealed that for the sample of BaZr0.8Y0.2O3-δ, which was composed of two perovskite-type 

phases, Y only occupied the B-site.  For the sample of Ba0.9Zr0.8Y0.2O3-δ, in addition to the 

precipitation of Y2O3, coexistence of two perovskite-type phases was confirmed.  In one 

Y-poor phase, all doped Y was evaluated to be of A-site occupation.  And in the other 

greatly Y-rich phase, in addition to B-site occupation, a partial amount of Y was estimated to 

occupy A-site. 

(2) Dependence of phase relationship on preparation method was investigated.  For the slow 

heating process, in which the samples were gradually heated up to the sintering temperature, 
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phase relationship of lower temperature is considered to be established preliminarily, 

obstructing the phase equilibrium at the sintering temperature in desired time.  Phase 

transition also possibly occurred when the sample was furnace cooled to room temperature.  

On the contrary, during the rapid heating process, since the sample was inserted directly into 

the furnace already kept at the sintering temperature, and subsequently quenched to the room 

temperature, only the phase relationship at the sintering temperature is expected to be 

established. 

(3) Periodic planar defects were observed in both the samples nominally stoichiometric and 

Ba-deficient.  And the relatively larger amount of planar defects existed in the more 

Ba-deficient sample.  These defects probably obstruct the proton conduction. 
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Chapter 4 

Evaluation of Site Occupation of Sc, Sm, Eu and Dy in BaZrO3 by Powder X-ray 

Diffraction with Synchrotron Radiation 

 

4.1 Introduction 

The synchrotron radiation has attractive advantages in XRD analysis as already shown 

in Chapter 3, such as high brightness and monochromaticity.  In this chapter, powder XRD 

analyses were further applied to evaluate the site occupation of Sc, Dy, Sm and Eu in doped 

BaZrO3. 

 

4.2 Experimental 

The Sc-doped BaZrO3 with the nominal compositions of BaZr0.8Sc0.2O3-δ and 

Ba0.9Zr0.8Sc0.2O3-δ, Eu-doped sample of BaZr0.8Eu0.2O3-δ, and Dy-doped sample of 

BaZr0.8Dy0.2O3-δ were prepared by conventional solid state reaction method as in Chapter 2 

and 3.  For sintering, the heating profile is the same as the “slow heating process” as 

described in Chapter 3. 

Sample compositions were measured by ICP-AES, and energy dispersive X-ray 

spectroscopy (EDX, EDAX, Genesis-XM2) equipped with a scanning electron microscope 

(SEM, Keyence Corporation, VE-7800).  Powder XRD analysis was performed by using the 

BL19B2 beam line at SPring-8 with the approval of the Japan Synchrotron Radiation 

Research Institute (JASRI) as industrial application proposal (proposal No. 2010B1850).  

The incident energy was 17.026 keV.  The samples for measurement were sealed in 

Lindemann glass made capillaries.  Rietveld refinement was performed by TOPAS. 
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4.3 Results 

4.3.1 Evaluation of Site Occupation of Sc in BaZrO3 

The total compositions of the samples are summarized in Table 4.1.  Since coexistence 

of perovskite-type and Sc2O3 phases was confirmed from the XRD pattern of the Ba-deficient 

sample of Ba0.9Zr0.8Sc0.2O3-δ, EDX was applied to evaluate the composition of individual 

grains, with the results plotted in the pseudo-ternary phase diagram of BaO - ZrO2 - ScO1.5 as 

shown in Figure 4.1.  Only the perovskite-type phase was detected by EDX, and the average 

composition is calculated to be Ba1.00Zr0.87Sc0.13O3-δ. 

 

Table 4.1 Total compositions of the as-sintered samples measured by ICP-AES. 

Dopant Nominal composition Actual composition 

Sc 
Ba0.9Zr0.8Sc0.2O3-δ Ba0.93Zr0.84Sc0.16O3-δ 

BaZr0.8Sc0.2O3-δ BaZr0.81Sc0.19O3-δ 

Sm BaZr0.8Sm0.2O3-δ Ba0.98Zr0.81Sm0.19O3-δ 

Eu BaZr0.8Eu0.2O3-δ Ba0.96Zr0.82Eu0.18O3-δ 

Dy BaZr0.8Dy0.2O3-δ Ba0.97Zr0.81Dy0.19O3-δ 

 

It is interesting to consider with the reported pseudo-ternary phase diagram of BaO - 

ZrO2 - ScO1.5 established at 1600 oC [07Ima], as shown in Figure 4.2.  The total composition of 

this sample identified by ICP-AES is marked as solid triangle, located in the two phase area 

of BaZrO3 solid solution and Sc2O3.  The solid circle indicates the composition of BaZrO3 

solid solution confirmed by EDX.  By extending the lines connecting these two points, the 

intersection point of this line with the abscissa is located in the region for single Sc2O3 phase.  

It implies that the coexistence of perovskite-type BaZrO3 solid solution and Sc2O3 phases for 

the sample with the total composition of Ba0.93Zr0.84Sc0.16O3-δ confirmed by experimental 

analysis also meets the phase relationship, and therefore can be considered to be in 

equilibrium at the sintering temperature. 
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Figure 4.1 EDX Results of grain compositions of the sample with the nominal composition of 

Ba0.9Zr0.8Sc0.2O3-δ plotted in pseudo-ternary phase diagram of BaO - ZrO2 - ScO1.5. 

 

Then Rietveld refinements were performed based on the similar compositional 

constraints established as illustrated in 3.4.4 for Y-doped BaZrO3.  It is generally regarded 

that only in the Ba-deficient sample can dopant cations partition into A-site.  However, for 

the Sc-doped samples prepared in this work, there is no Ba-deficiency for the perovskite-type 

phase in either the nominally stoichiometric or Ba-deficient sample, therefore, it is considered 

that Sc cations cannot partition into A-site due to lack of available open seats, and were 

preliminarily fixed in B-site.  Thus, the batches of Rietveld refinement for the Sc-doped 

samples here are not with the purpose to evaluate the site occupation of Sc, but verify the 

reasonability of fixing Sc in B-site.  Cubic perovskite-type structure model of pm-3m was 

used for the refinements.  The fitting profiles for the samples with the nominal compositions 
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of Ba0.9Zr0.8Sc0.2O3-δ and BaZr0.8Sc0.2O3-δ are exhibited in Figure 4.3 and 4.4, respectively.  

And the Rwp for these two refinements are 8.75 % and 8.47 %, respectively, indicating good 

fitting qualities.  Therefore, assigning Sc for B-site occupation is considered to be 

reasonable. 

 

Figure 4.2 Comparison of the phase relationship observed in Ba0.9Zr0.8Sc0.2O3-δ in this work 

with the reported BaO - ZrO2 - ScO1.5 pseudo-ternary phase diagram established at 1600 oC 
[07Ima].  The solid triangle indicates the total composition evaluated by ICP-AES.  The solid 

circle indicates the grain composition of Sc-doped BaZrO3 phase evaluated by EDX.  And 

the solid square represents the Sc2O3 phase, which is obtained as the intersection point of the 

abscissa and the line through the points of total composition and composition of Sc-doped 

BaZrO3 phase. 

 

4.3.2 Evaluation of Site Occupation of Sm in BaZrO3 

The fitting profile of the sample with the nominal composition of BaZr0.8Sm0.2O3-δ by 

using the composition given in Table 4.1 is as shown in Figure 4.5.  Cubic structure model 

of pm-3m was used in this refinement.  The refined formula is expressed as 

(Ba0.9899Sm0.0101)(Zr0.8182Sm0.1818)O3-δ, indicating about 5.26 % of Sm occupied A-site in this 
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sample with Ba-deficiency of 0.02.  However, Rwp was calculated to be 14.38 %, which 

means the refinement result is not very good.  The reason for this high Rwp value is attributed 

to the poor symmetry of the peaks, as can be observed in the inset in Figure 4.5 taking the 

(321) reflection for example.  The same phenomenon was also confirmed in the nominally 

stoichiometric Y-doped BaZrO3, as described in Chapter 3.  For refinement of higher quality, 

further precise analysis to evaluate the structure and composition of this sample is essential. 

 

4.3.3 Evaluation of Site Occupation of Eu in BaZrO3 

Since only the peaks of perovskite-type pattern with good symmetry are observed from 

the XRD pattern, the sample with the nominal composition of BaZr0.8Eu0.2O3-δ is considered 

to be of perovskite-type single phase, and the cubic structure model of pm-3m was used for 

the Rietveld refinement.  The fitting profile is shown in Figure 4.6, and a value of 8.75 % 

was obtained for Rwp, indicating a good quality for the fitting.  The refined formula is 

expressed as (Ba0.9783Eu0.0191)(Zr0.8356Eu0.1644)O3-δ, therefore, about 10.41 % of Eu occupies 

the A-site in this sample. 

 

4.3.4 Evaluation of Site Occupation of Dy in BaZrO3 

The sample with the nominal composition of BaZr0.8Dy0.2O3-δ is also considered to be 

of perovskite-type single phase from the XRD pattern.  The cubic structure model of pm-3m 

was used for the Rietveld refinement.  The fitting profile is shown in Figure 4.7, and a value 

of 9.21 % was obtained for Rwp, indicating an acceptable fitting quality.  The refined formula 

is expressed as (Ba0.9792Dy0.0095)(Zr0.8177Dy0.1823)O3-δ, from which about 4.95 % of Dy 

occupying the A-site is evaluated. 
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4.4 Discussion 

A combined summary of the results of Chapter 2 to 4 is preferred here.  In Chapter 2, 

by evaluating the lattice volume difference between the Ba-rich and Ba-poor samples, Sc was 

determined to be only of B-site occupation, which is the same as the conclusion drawn in this 

chapter.  Sm and Eu were evaluated to be amphoteric dopants for BaZrO3 for occupying 

both the A and B-sites in Chapter 2.  And the same results were also achieved in this chapter 

that relatively large amount of about 5.26 % of the doped Sm partitioned into A-site for the 

sample containing a slight Ba-deficiency of 0.02, and about 10.41 % of the doped Eu 

partitioned into A-site for the sample containing a Ba-deficiency of 0.04.  However, in 

Chapter 2, Y and Dy were evaluated to solely occupy the B-site.  But the results of Chapter 3 

imply that for the slightly Ba-deficient sample, Y was estimated to be only of B-site 

occupation.  When much Ba-deficiency is introduced, some of the doped Y also partitioned 

into A-site.  While in this Chapter, for the sample with slight Ba-deficiency of 0.03, a small 

amount of Dy was evaluated to occupy A-site.  Anyhow, compared with the amount of Sm 

and Eu occupying the A-site, the amount of A-site occupying Dy was relatively small.  The 

reason for the difference in the results referring to the site occupancy evaluation of Y and Dy 

in BaZrO3 is considered to be dependent on the sensitivity of the analysis method.  In 

comparison with the method by applying the high-brightness monochromatic synchrotron 

radiation for XRD pattern collection in Chapter 3 and 4, the method adopted in Chapter 2 as 

evaluating the lattice volume difference is more susceptible to experimental errors. 

By combining the results obtained from Chapter 2 to Chapter 4, the capacity occupying 

A-site of the dopants can be sequenced as Eu > Sm > Dy > Y > Sc.  And such sequence is 

comparable to the six-fold coordinated Shannon radii for trivalent cations as Sm(III) (0.958 

Å), Eu(III) (0.947 Å) > Dy(III) (0.912 Å) > Y(III) (0.900 Å) > Sc(III) (0.745 Å) [76Sha].  

Therefore, it can also be concluded that the site occupation of dopants in BaZrO3 greatly 
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depends on their radii.  For larger dopant cations, they exhibit stronger capability for A-site 

occupation. 

 

4.5 Conclusions 

Synchrotron radiation was applied for XRD pattern collection.  By utilizing the 

Rietveld refinement, the site occupation of Sc, Sm, Eu and Dy in BaZrO3 were evaluated.  

The results revealed that Sc was only of B-site occupation.  In addition to the B-site 

occupation, a small amount of Dy was evaluated to occupy the A-site for the sample with 

Ba-deficiency of 0.03.  Meanwhile, relatively larger amounts of Sm and Eu occupying A-site 

were evaluated, implying more amphoteric behaviors of Sm and Eu when doped into BaZrO3. 
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Chapter 5 

Atmosphere Dependence of Valence State of Dy in BaZrO3 

 

5.1 Introduction 

In Chapter 2, the water content of Dy-doped BaZrO3 exhibited obvious dependence on 

the atmosphere for hydration.  Relatively high water content was measured when the sample 

was hydrated in humid Ar.  And an obvious decrease of water content was observed when 

the hydration atmosphere altered from humid Ar to O2.  Such phenomenon probably 

attributes to the decreased sites for water molecule accommodation, namely oxide ion 

vacancies in perovskite-type oxides, in oxidizing atmosphere.  And it is common for 

perovskite-type oxides containing multivalent cations, which intend to be oxidized to higher 

valence states, resulting in a consumption of oxide ion vacancies for charge compensation 

[85Miz, 89Miz, 91Miz, 95Tai]. 

Brauer et al. [80Bra] reported a partial existence of tetravalent dysprosium cations (Dy 

(IV)) when doped into BaCeO3.  But a later work of Soderholm et al. [87Sod] did not trace the 

existence evidence of Dy(IV) in BaCeO3.  However, since the six-fold coordinated radius of 

Zr(IV) cation (0.72 Å [76Sha]) is smaller than that of Ce(IV) cation (0.87 Å [76Sha]), and the 

Dy(III) cation (0.912 Å [76Sha]) is much larger than Dy(IV) cation (0.78 Å [74Kno]), it might be 

easier for Dy cations to exist as tetravalent in BaZrO3 than in BaCeO3.  If so, the atmosphere 

dependence of water content in Dy-doped BaZrO3 can be understood.  In this work, in order 

to verify the valence of Dy in the BaZrO3 system, solid solutions of BaZr0.8DyxY0.2-xO3-δ (x = 

0.05, 0.1, 0.15) were prepared.  And the atmosphere dependence of valence state of Dy was 

investigated from crystal structures, conductivities, and water incorporation behaviors. 

 

  

66



5.2 Experimental 

Samples were prepared by conventional solid state reaction.  The same process was 

performed before sintering as described in Chapter 2 and 3.  For sintering, the pellets were 

heated up to the sintering temperature of 1600 oC at the rate about 4 oCmin-1 in an O2 flow, 

kept for 24 h, and finally furnace cooled to room temperature.  Morphologies of the sintered 

pellets were observed by SEM.  Total compositions were measured by ICP-AES.  

Structures of the samples were identified by XRD. And the lattice volumes were calculated by 

Rietveld refinement with X’Pert HighScore Plus. 

After mechanically polishing the surface of a sintered pellet, palladium thin films were 

deposited by electroless plating as electrodes.  The impedance spectra of the pellet were 

collected by a.c. impedance spectroscopy in the frequency range from 10 Hz to 7 MHz using 

a frequency response analyzer (Solartron SI 1260) with applied voltage of 100 mV.  In order 

to saturate water in pellet quickly, the pellet was held at 700 oC for more than 30 h, and then 

cooled to 100 oC at a rate of 0.2 oCmin-1.  The impedance was measured at the interval of 50 

min.  An equivalent circuit model was fitted to the impedance spectra by using Z Plot 

(Scribner Associates Inc.).  By a.c. impedance measurement, two semicircles were observed 

as shown in Figure 5.1.  Based on the equivalent circuit, the two circles came from bulk and 

grain boundary, and the diameters of the semicircles corresponded to their resistances.  It is 

reported that the capacitances corresponding to bulk and grain boundary are about the 

magnitude of 10-11 F and 10-9 F, respectively [86Ger, 99Dus].  Therefore, these semicircles could 

be identified whether belonged to bulk or grain boundary by evaluating the capacitance.  

Then, the bulk conductivities were calculated by utilizing the cross-section area and length of 

the pellet. 

Water contents of the hydrated samples were measured by Karl-Fischer titration 

method, as described in Chapter 2.  In this work, samples with the size of 2 mm in length, 
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which were broken from sintered pellets, were placed in atmosphere of 5% H2O - Ar or 5% 

H2O - O2 at various temperatures for 72 h for water saturation. 

 

Figure 5.1 Impedance spectra of BaZr0.8Dy0.2O3-δ measured in the atmosphere of 30% - H2 at 

147oC.  The sample was sintered at 1600oC for 24 h in an O2 flow.  RGB and CGB are 

resistance and capacitance of grain boundary, respectively.  And Rbulk and Cbulk are resistance 

and capacitance of bulk, respectively. 

 

5.3 Results 

5.3.1 Structure and Morphology 

XRD patterns of BaZr0.8DyxY0.2-xO3-δ (BZDY), as shown in Figure 5.2, indicated that 

regardless of the variation of Dy and Y contents, all the sintered samples were of 

perovskite-type single phase, implying that Dy and Y dissolved into the lattice of BaZrO3 
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with arbitrary ratio when the nominal atomic ratio of Ba : Zr : (Dy + Y) is 1 : 0.8 : 0.2.  As 

shown in Figure 5.3, there was little difference in morphologies of the samples with different 

Dy and Y contents.  All the pellets were dense after sintering.  The crystal lattice volume of 

BZDY after being sintered, and annealed in H2 and O2 subsequently, are shown in Figure 5.4.  

It is interesting that the lattice volume of as-sintered BZDY decreased with the increasing Dy 

content, indicated as solid circles in Figure 5.4, although the six-coordinated radius of Dy(III) 

cation (0.912 Å [76Sha]) is larger than that of Y(III) cation (0.900 Å [76Sha]).  After being 

annealed in H2 for 72 h at 600 oC, as shown as symbols of blue solid squares in Figure 5.4, an 

expansion of lattice volume from the oxidized state was observed in each Dy-doped sample.  

The Dy content dependence in the variation of lattice volume became smaller.  When 

annealed in O2 at 600 oC for 72 h again, as indicated as solid triangles in Figure 5.4, the lattice 

volumes became small again and approached to the former values for the as-sintered samples.  

However, little variation of lattice volume of the solely Y-doped sample was observed. 

 

Figure 5.2 XRD patterns of BaZr0.8Dy0.2-xYxO3-δ (x = 0, 0.05, 0.1, 0.15, 0.2).  All the 

samples were sintered at 1600oC for 24h in an O2 flow. 
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(a) BaZr0.8Y0.2O3-δ (b) BaZr0.8Dy0.05Y0.15O3-δ 

(c) BaZr0.8Dy0.1Y0.1O3-δ (d) BaZr0.8Dy0.15Y0.05O3-δ 

 

(e) BaZr0.8Dy0.2O3-δ  

Figure 5.3 SEM images of cross-sections of pellets of BaZr0.8DyxY0.2-xO3-δ (x = 0, 0.05, 0.1, 

0.15, 0.2) sintered at 1600oC for 24h in an O2 flow. 

 
5.3.2 Water Incorporation Behavior 

The results of water content measurement of BZDY hydrated in 5% H2O - Ar or 5% 

H2O - O2 are as shown in Figure 5.5.  The values of BaZr0.8Dy0.2O3-δ and BaZr0.8Y0.2O3-δ  
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Figure 5.4 Lattice volume of BaZr0.8Dy0.2-xYxO3-δ (x = 0, 0.05, 0.1, 0.15, 0.2), evaluated after 

being sintered at 1600oC for 24 h in O2, and subsequently annealed for 72 h in H2, then 

annealed for 72 h in O2 again, respectively. 

 

Figure 5.5 Concentration of hydroxide ions per unit cell of BaZr0.8DyxY0.2-xO3-δ (x = 0.05, 0.1, 

0.15) measured by Karl-Fischer titration method in 5% H2O - O2 or 5% H2O - Ar.  The 

samples for measurement were of the size about 2 mm in length, broken from pellets sintered 

at 1600oC for 24 h in an O2 flow.  The reported values of BaZr0.8Y0.2O3-δ and 

BaZr0.8Dy0.2O3-δ were plotted for comparison. 
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already shown in Figure 2.7 in Chapter 2 are plotted for comparison.  The results revealed 

that although there was little difference in the concentrations of hydroxide ions per unit cell of 

BaZr0.8Y0.2O3-δ between the measurements in 5% H2O - Ar and 5% H2O - O2, for all the 

Dy-doped samples, higher concentrations of hydroxide ions were obtained when the samples 

were hydrated in humid Ar than O2. 

 

5.3.3 Conductivity Dependence on Atmosphere 

The results of the measurements of the bulk conductivities of the samples of 

BaZr0.8M0.2O3-δ (M = Sc, Y, Dy) are summarized in Figure 5.6.  It was observed that for the 

Sc and Y doped samples, there was little difference in conductivities measured in the 

atmosphere of wet O2 or Ar.  As reported [08Ima], the bulk conductivity of BaZr0.8Sc0.2O3-δ was 

more than one order of magnitude lower than that of BaZr0.8Y0.2O3-δ, although the 

 

Figure 5.6 Conductivities of the samples of BaZr0.8M0.2O3-δ (M = Sc, Y, Dy) as a function of 

temperature plotted in the Arrhenius form. 
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concentrations of hydroxide ions of the BaZr0.8M0.2O3-δ (M = Sc, Y) samples are comparable, 

as shown in Figure 2.7.  For the sample of BaZr0.8Dy0.2O3-δ, comparing to the measurements 

in dry O2 or dry Ar, an elevation in bulk conductivity was observed in humid atmosphere, 

indicating the generation of protonic conduction in humid Ar.  The bulk conductivities of 

BaZr0.8Dy0.2O3-δ measured in humid Ar and H2 were higher than in humid O2, and comparable 

to that of BaZr0.8Y0.2O3-δ. 

 

Figure 5.7 Bulk conductivities of (a) BaZr0.8Dy0.05Y0.15O3-δ, (b) BaZr0.8Dy0.1Y0.1O3-δ, (c) 

BaZr0.8Dy0.15Y0.05O3-δ, and reported values of (d) BaZr0.8Dy0.2O3-δ measured in various 

atmospheres as a function of temperature plotted in the Arrhenius form.  The bulk 

conductivity of BaZr0.8Y0.2O3-δ measured in 5% H2O - H2 is plotted as dash line as reference. 

 

The bulk conductivities of the Dy-doped samples measured in various atmospheres are 

as shown in Figure 5.7.  For all the samples, the bulk conductivities measured in humid Ar 

and O2 were higher than those measured in dry Ar and O2, respectively, indicating the 

generation of protonic conductivity in humid atmospheres.  In comparison with the 
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measurements in the three kinds of humid atmospheres, the protonic conductivity in 5% H2O 

- O2 and 5% H2O - H2 decreased with the increasing Dy content, while the protonic 

conductivity in 5% H2O - Ar did not change so much.  In addition, an interesting 

phenomenon has been observed in the color of the Dy-doped samples.  The Dy-doped 

samples appeared black after being sintered, but changed to white after the conductivity 

measurement in 5% H2O - H2.  The photograph of BaZr0.8Dy0.2O3-δ is shown in Figure 5.8 

for example.  And the Dy-doped samples remained black after the conductivity measurement 

in 5% H2O - O2.  Empirically, black appearance of perovskite-type oxides probably reminds 

of electronic conduction, such as La1-xSrxCoO3-δ, La1-xSrxCo1-yFeyO3-δ, La1-xSrxMnO3-δ, etc.  

However, significant electronic conductivity was not observed for BZDY. 

 

Figure 5.8 Photograph of the pellet of BaZr0.8Dy0.2O3-δ.  The color of the as-sintered pellet 

was black, and changed to white after the conductivity measurement in 5% H2O - H2. 

 

5.4 Discussion 

Referring to the decreasing lattice volume of as-sintered samples with the increasing Dy 

content, it is rather contradictory if all the Dy cations in the sintered BZDY are trivalent, since 
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lattice volume is expected to expand by introducing more Dy due to the larger six-coordinated 

radius of the Dy(III) cation (0.912 Å [76Sha]) than that of the Y(III) cation (0.900 Å [76Sha]), 

based on Vegard’s Law.  There are two possible explanations for this abnormal phenomenon.  

One is that although Dy and Y are mainly of B-site occupation, a partial amount of the dopant 

cations occupy A-site with different contents.  Since the twelve-fold coordinated radii of the 

cations of Dy(III) (1.255 Å [09Par]) and Y(III) (1.234 Å [09Par]) are smaller than that of Ba(II) 

(1.610 Å [76Sha]), substituting the Ba(II) cations will consequently induce the lattice volume 

shrinkage.  As illustrated in Chapter 2 and 3, no A-site occupation of Y was confirmed by 

Rietveld refinement for analyzing the diffraction pattern of nominally stochiometric 

BaZr0.8Y0.2O3-δ, while about 5% of the doped Dy was estimated to occupy A-site of 

BaZr0.8Dy0.2O3-δ, indicating a relatively large capacity for Dy to occupy A-site compared with 

Y.  However, such small amount of Dy cations occupying A-site is not expected to 

sensitively result in a great change in lattice volume.  The other possible explanation is 

partial existence of tetravalent Dy cations in the oxidizing atmosphere, by which the 

phenomena of lattice volume variation in Figure 5.4 can be understood.  The reaction of 

incorporation of Dy(IV) into the B-site of BaZrO3 for sintering in O2 atmosphere is given as 

Eq. (5-1).  Since the six-fold coordinated radius of Dy(IV) cation (0.78 Å [74Kno]) is smaller 

than that of Y(III) cation (0.900 Å [76Sha]), it is reasonable that the lattice volume of BZDY 

decreases with the increasing Dy content.  When subsequently annealed in H2, the Dy 

cations are reduced to trivalent, as given in Eq. (5-2), and the radius of the Dy cation therefore 

increases to 0.912 Å [76Sha], by which the lattice volume increased.  When annealed in O2 

again, as expressed in Eq. (5-3), the Dy(III) cations are oxidized to be tetravalent again, and 

the lattice volume approaches to those of the as-sintered samples. 

×× +→++ Zr22Zr32 Dy4ZrO4OZr4ODy2                   (5-1) 

••×× ++→++ O2
'
ZrO2Zr VOHDy2OHDy2                    (5-2) 
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××•• +→++ OZr2O
'
Zr O2Dy4OV2Dy4                      (5-3) 

After being annealed in H2 at 600 oC for 72 h, the Dy cations in BZDY are considered to be of 

trivalent, whose radius is slightly larger than that of the Y(III) cation.  However, increase of 

lattice volume of the H2-annealed sample with the increasing Dy content was not clearly 

observed as expected.  This is considered to be attributed to the relatively large capacity for 

Dy to occupy A-site than Y.  The way how lattice volume changes with the increasing Dy 

content is a combination of the expansion effect by substituting Y(III) cations with larger 

Dy(III) cations in B-site, and the shrinkage effect by partitioning of Dy(III) cations into A-site 

where larger Ba(II) cations occupy. 

As given in Eq. (5-3), in O2 atmosphere, with the oxidization of Dy cations from 

trivalent to tetravalent, oxide ion vacancies, which are essential for introducing protons by 

dissociative dissolving of water molecules as given in Eq. (1-3), are consumed.  Therefore, 

compared to humid Ar and H2, lower hydroxide ion concentrations were obtained in humid 

O2.  Since the conductivity is a function of the carrier concentration, low concentration of 

hydroxide ions causes poor protonic conductivity, therefore, lower bulk conductivity was 

observed in the humid O2 atmosphere, compared to the measurements performed in humid Ar 

and H2. 

 

5.5 Conclusions 

(1) Single phase of BZDY was obtained by conventional solid state reaction method.  After 

being sintered at 1600 oC, all the samples exhibited dense cross-section morphology.   

(2) The lattice volume of the as-sintered BZDY decreased with the increasing Dy content.  

After being annealed in the H2 atmosphere, the difference in lattice volume of the samples 

with various compositions became small. 

(3) The concentrations of hydroxide ions per unit cell of all the Dy-doped samples were 
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higher when hydrated in humidified Ar, compared with those hydrated in humid O2.  And 

the bulk conductivities of BZDY measured in humid Ar were therefore higher than that in 

humid O2.  The highest bulk conductivities were obtained for the measurement in humid H2. 

(4) These phenomenon strongly implied that a partial amount of Dy cations existed as 

tetravalent in BaZrO3. 
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Chapter 6 

Preparation of La1-xSrxSc1-yFeyO3-δ (LSSF) Aiming Mixed Protonic and Electronic 

Conductive Cathode for PCFCs 

 

6.1 Introduction 

As illustrated in Chapter 1, several perovskite-type oxides with remarkably high 

electronic conductivity under oxidizing atmosphere were attempted for the application as 

cathode in PCFCs, such as La1-xSrxCoO3-δ (LSC) [04Maf], La1-xSrxFeO3-δ (LSF) [05Yam], 

La1-xSrxCo1-yFeyO3-δ (LSCF) [08Epi], etc.  In these materials, there are two ways for the system 

to maintain electroneutrality when divalent Sr cations are introduced to substitute trivalent La 

cations.  One is by generating oxide ion vacancies, as given in Eq. (6-1). 

••×× ++→++ O
'
La32OLa VSr2OLaOSrO2La2                   (6-1) 

The other is by oxidizing the conventionally trivalent Fe and Co cations to tetravalent, as 

given in Eq. (6-2) and (6-3). 

•××× ++→+++ Fe
'
La32FeOLa Fe2Sr2OLaFe2OSrO2La2              (6-2) 

•××× ++→+++ Co
'
La32CoOLa Co2Sr2OLaCo2OSrO2La2             (6-3) 

By hopping of electrons among the cations of different valence states, LSC, LSF and LSCF 

exhibit high electronic conductivities. [83Miz, 85Miz, 89Miz, 92Miz, 95Ta1, 95Ta2] 

However, the ideal cathode material for PCFCs is expected to be mixed protonic and 

electronic conductive [10Fab], therefore, the whole interface between cathode and gas phase is 

also reactive site for the cathode reaction, as given in Eq. (1-5).  In addition, La1-xSrxScO3-δ 

(LSS) is reported to be a proton conductor [97Nom, 99Lyb, 02Nom], which exhibits about 4.6 × 10-3 

Scm-1 at 600oC [06Liu].  Therefore, considering the mechanism for the electronic 

conductivity in LSF, if Fe can be introduced into the Sc site of LSC, the resulting new 

compound of La1-xSrxSc1-yFeyO3-δ (LSSF) would possibly exhibit a mixed protonic and 
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electronic conductivity. 

 

6.2 Experimental 

Samples were fabricated by conventional solid state reaction.  The starting materials 

were prepared by mixing La2O3, SrCO3, Sc2O3 and Fe2O3 powders for LSSF, La2O3, SrCO3 

and Co3O4 powders for LSC, La2O3, SrCO3, Co3O4 and Fe2O3 powders for LSCF, at the 

desired ratios.  After ball-milling for 24 h, the mixtures were pressed into pellets under 9.8 

MPa and heated at 1000 oC for 10 h.  The samples were then ball-milled for 10 h, and 

pressed into pellets under 9.8 MPa again, followed by a subsequent heat treatment for 10 h, at 

1300 oC for LSSF, and 1000 oC for LSC and LSCF.  The process of the ball-milling for 10 h 

and heat treatment at 1300 oC / 1000 oC for 10 h was repeated for three times at most, in order 

to acquire a single phase confirmed by XRD analysis.  After that, the samples were 

ball-milled for 10 h and mixed with an organic binder solution consisting of water, polyvinyl 

alcohol, glycerin and ethanol.  The mixtures were then pressed into pellets at 392 MPa, 

followed by a subsequent heat treatment at 600 oC for 8 h to remove the binder solution.  

Finally, the pellets were sintered for 24 h at 1500 oC for LSSF, and 1300 oC for LSC and 

LSCF. 

Water contents of the hydrated samples were measured by Karl-Fischer titration 

method as illustrated in Chapter 2.  In the present work, samples with the size of 2 mm in 

length which were broken from the sintered pellets were adopted to hydrate at 300 oC for 48 h 

in humid atmosphere of 5% H2O - 19% O2 - Ar.  Conductivities were measured by a.c. 

2-terminal method as described in Chapter 5.  In this work, silver paste (Fujikura Kasei) was 

painted on both surfaces of the pellets as electrodes.  And the conductivity measurements 

were performed in the atmosphere of 5% H2O - 19% O2 - Ar. 
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Nonstoichiometries of oxide ions (δ) in the LSSF samples were determined by classical 

titration method [50Jon, 53Jon].  About 30 mg of the LSSF sample and sufficient amount of solid 

KI were dissolved in 1M HNO3 solution in a sealed glass tube.  Before being sealed, the 

glass tube was filled with N2 gas to avoid undesired oxidation of I- anions by O2 gas in air.  

The total reaction is given in Eq. (6-4).  In the reaction, I- anions are oxidized to I2, and Fe3+ 

and Fe4+ cations in the LSSF samples are reduced to Fe2+ cations.  Then, by titrating the 

generated I2 with 0.1 M Na2S2O3 solution, the nonstoichiometries of oxide ions in the LSSF 

samples were determined. 

22
2323

δ311

I)
2

2(OH)3(FeSc)(1SrLa)(1

I)2(H)2(6OFeScSrLa

δ−+
+δ−++−++−→

δ−++δ−+

++++

−+
−−−

yxyyxx

yxyyxx

    (6-4) 

 

6.3 Results and Discussion 

6.3.1 Structure Identifications of LSC, LSCF and LSSF 

Crystallographic structures of the prepared LSC samples were identified as 

rhombohedral with the Sr contents between 0.1 and 0.5, and as cubic with the Sr contents of 

0.6 and 0.7.  The structures of the prepared La0.6Sr0.4Co1-yFeyO3-δ samples were identified as 

rhombohedral regardless of the Sr contents.  The results of the preparation of LSSF are 

summarized in Figure 6.1.  In the figure, the abscissa and ordinate represent the 

compositions of the cations in A and B-sites in La1-xSrxSc1-yFeyO3-δ by showing the ratios of 

the Sr and Fe contents, respectively.  And the filled circles indicate the samples with a single 

phase of perovskite-type structure obtained after the heat treatment at 1300 oC.  The filled 

inverted-triangles indicate that the samples were not of single phase after the heat treatment at 

1300 oC, but became single phase after being sintered at 1500 oC.  Meanwhile, a few of the 

prepared samples were not of single phase either after being heat-treated at 1300 oC or after 
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the subsequent sintering at 1500 oC, as indicated by cross symbols.  It can be concluded that 

single phase LSSF could be prepared in a wide composition range. 

 

Figure 6.1 La2O3 - SrO - Fe2O3 - Sc2O3 tetragonal composition diagram.  : Perovskite-type 

single phase was acquired after the thermal treatment at 1300 oC, : Perovskite-type single 

phase was acquired after the sintering at 1500 oC, : Single phase was not acquired either 

after the thermal treatment at 1300 oC or after the sintering at 1500 oC.  Isoconcentration 

lines of oxide ion vacancies are drawn based on the assumption of predomination of Fe(IV) 

cations. 

 

Since for perovskite-type oxides, protons are introduced by dissociative dissolving of 

water molecules into the oxide ion vacancies in the material, which implies that the higher the 

concentration of oxide ion vacancies contained in the sample, the larger the amount of protons 

would be introduced in humid atmosphere.  Thus, it is meaningful to determine the 

concentration of the oxide ion vacancies, namely, the nonstoichiometry of oxide ions (δ), in 
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the samples before hydration.  Since the Fe(III) cations in B site of perovskite-type oxides 

tend to be oxidized to Fe(IV) cations in atmospheric air, it is assumed here that after doping 

Sr into A site, Fe(IV) cations form prior to that of oxide ion vacancies for charge 

compensation.  For the LSSF samples where the Sr content is larger than the Fe content, all 

the Fe cations are assumed to be tetravalent.  Based on this assumption, the δ for LSSF can 

be estimated from Eq. (6-5).  The isoconcentration lines of oxide ion vacancies are drawn in 

Figure 6.1, indicating that the samples having higher Sr contents and lower Fe contents 

contain higher concentrations of oxide ion vacancies, offering a considerably greater 

possibility of introducing hydroxide ions by hydration. 

2
yx −

=δ                             (6-5) 

Structures of the LSSF samples with different compositions were identified as cubic, 

orthorhombic and rhombohedral.  The XRD patterns of the samples of La0.8Sr0.2Sc1-yFeyO3-δ 

with the Fe content varying from 0 to 1 are shown in Figure 6.2 for example, and only the 

shifts of peak positions were observed.  Since the structures of La0.8Sr0.2ScO2.9 and 

La0.8Sr0.2FeO3-δ can be identified as orthorhombic by comparing with the JCPDS cards of 

LaScO3 (JCPDS 00-026-1148) and LaFeO3 (JCPDS 01-088-0641), respectively, it is 

considered to be reasonable that the structures of the La0.8Sr0.2Sc1-yFeyO3-δ samples with the 

Fe content varying from 0 to 1 are also orthorhombic.  It was also observed that with the 

increase of the Sr content, the structure of the samples transferred from orthorhombic to cubic.  

For example, La1-xSrxSc0.6Fe0.4O3-δ with x = 0.2, 0.3 and 0.4 have orthorhombic structures, but 

when x > 0.5, cubic LSSF was identified.  This phenomenon can be explained by using the 

tolerance factor given in Eq. (1-1).  The tolerance factors of LSSF calculated from the 

Shannon radii [76Sha] are plotted in Figure 6.3.  With the increasing Sr content, the tolerance 

factor increased and approached to 1.  Since the ideal perovskite is a cubic structure with the 

tolerance factor of 1 [29], approaching of the tolerance factor to 1 implies an improvement in 
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structural symmetry of LSSF, which was observed as the change of structure to cubic in the 

present work. 

 

Figure 6.2 XRD patterns of La0.8Sr0.2Sc1-yFeyO3-δ (y = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1) 

after the heat treatment at 1300 oC for 10 h in air. 

 

The lattice volumes of LSSF and LSCF as a function of the Fe content are shown in 

Figure 6.4.  The lattice volume of LSCF increased, while the lattice volume of LSSF 

decreased clearly with the increasing Fe content.  This is because the radii of Fe(IV) cation 

(0.585 Å [76Sha]) and Fe(III) cation (0.55 Å [76Sha]) are larger than those of Co(IV) cation (0.53 

Å [76Sha]) and Co(III) cation (0.545 Å [76Sha]), but smaller than that of Sc(III) cation (0.745 Å 

[76Sha]).  The lattice volumes of LSSF and LSC as a function of the Sr content are shown in 
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Figure 6.5.  Since the radius of Sr(II) cation (1.44 Å [76Sha]) is close to that of La(III) cation 

(1.36 Å [76Sha]), there was no significant change in the lattice volume with the increase of the 

Sr content for both the LSSF and LSC. 

 

Figure 6.3 Tolerance factors of La1-xSrxSc1-yFeyO3-δ (y = 0.3, 0.4) as a function of the Sr 

content. 

 

Figure 6.4 Lattice volumes of La1-xSrxSc1-yFeyO3-δ (x = 0.2, 0.3) and La0.6Sr0.4Co1-yFeyO3-δ as 

a function of the Fe content.  The LSSF and LSCF samples were obtained after the sintering 

at 1500 oC and 1300 oC, respectively. 
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Figure 6.5 Lattice volumes of La1-xSrxSc1-yFeyO3-δ (y = 0.3, 0.4) and La1-xSrxCoO3-δ as a 

function of the Sr content.  The LSSF and LSC samples were obtained after the sintering at 

1500 oC and 1300 oC, respectively. 

 

6.3.2 Hydration Behaviors of LSC, LSCF and LSSF 

(a) LSCF 

The measured water contents and concentrations of hydroxide ions per unit cell of the 

La0.6Sr0.4Co1-yFeyO3-δ samples are shown in Figure 6.6.  The concentrations of hydroxide 

ions per unit cell for all the samples were less than 2.6×10-3.  Since the protonic conductivity 

of perovskite-type oxides is generated by the moving of protons, which are introduced into 

the oxides in the form of hydroxide ions by dissolving of water as given in Eq. (1-3), a great 

dependence of the protonic conductivity on the concentration of hydroxide ions is implied.  

Therefore, such low concentrations of hydroxide ions in the LSCF samples may indicate their 

negligible protonic conductivities. 
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Figure 6.6 Water content and concentration of hydroxide ions per unit cell of 

La0.6Sr0.4Co1-yFeyO3-δ as a function of the Fe content.  The measured samples were about   

2 mm in length, broken from pellets sintered at 1300 oC. 

 

(b) LSC 

As shown in Figure 6.7, the concentrations of hydroxide ions per unit cell of the LSC 

samples were less than 3.0×10-3, and thus the protonic conductivity of LSC was also 

considered to be negligible.  Meanwhile, when the Sr contents of the LSC samples were less 

than 0.4, the concentration of the hydroxide ions were of a lower magnitude.  When the Sr 

content increased from 0.4 to 0.6, the concentration of hydroxide ions increased slightly.  

Comparing with the nonstoichiometry of oxide ions of LSC measured at 300oC in air reported 

by Mizusaki et al. [89Miz], a certain degree of similarity exists between the two profiles, which 

implies the dependence of introduction of hydroxide ions on the concentration of oxide ion 

vacancies.  This is because the increase of the Sr content of LSC directly results in an 

increase of the concentration of oxide ion vacancies. 
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Figure 6.7 Water content and the concentration of hydroxide ions per unit cell of 

La1-xSrxCoO3-δ as a function of the Sr content.  The measured samples were of the size about 

2 mm in length, broken from pellets sintered at 1300 oC.  The reported nonstoichiometry of 

oxide ions in LSC [89Miz] is plotted for comparison. 

 

(c) LSSF 

The results of the measurement of water contents of LSSF samples are plotted 

three-dimensionally in Figure 6.8.  The concentration of the hydroxide ions varied 

dramatically with the variation of composition.  When the Fe content was constant, the 

concentration of hydroxide ions increased with the increasing Sr content.  Meanwhile, when 

the Sr content was constant, the concentration of hydroxide ions decreased with the increasing 

Fe content.  And as shown in Figure 6.1, when the Sr content or Fe content is kept constant, 

the oxide ion vacancies increases with the decreasing Fe content or increasing Sr content, 

respectively.  Since the hydroxide ions are introduced by dissolving water into the oxide ion 

vacancies, the observed tendency can be related to the increase or decrease of the 
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concentration of oxide ion vacancies.  However, there was no linear relationship between the 

concentrations of hydroxide ions and oxide ion vacancies.  For example, the concentration of 

hydroxide ions per unit cell of La0.8Sr0.2ScO3-δ is as high as 1.32×10-1, but by introducing just 

a small amount of Fe, y = 0.05, a dramatic drop in the concentration of hydroxide ions can be 

observed, to the value of 2.60×10-2.  The effect of the Fe content is also evident, as seen in 

Figure 6.9 by comparing the concentration of hydroxide ions of the LSSF samples whose 

compositions are on the isoconcentration lines of oxide ion vacancies.  Understanding this 

interesting phenomenon is not quite easy.  Empirically, introduction of a small amount of Fe 

cations causes a large change of the chemical properties of oxide ions and oxide ion vacancies, 

that is, the hydration enthalpy increases greatly. 

 

Figure 6.8 Three-dimensional plots of the concentration of hydroxide ions per unit cell of 

LSSF.  The measured samples were of the size about 2 mm in length, broken from pellets 

sintered at 1500 oC. 
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Figure 6.9 Concentration of hydroxide ions per unit cell of LSSF with the compositions on 

the isoconcentration lines of oxide ion vacancies as a function of Fe content.  The 

isoconcentration lines of oxide ion vacancies are drawn based on the assumption of 

predomination of Fe(IV) cations as shown in Figure 6.1. 

 

6.3.3 Nonstoichiometry of Oxide Ions by Titration 

The plotted isoconcentration lines of oxide ion vacancies are based on the assumption 

that all the Fe cations in the LSSF samples, which contain more Sr cations than Fe cations, are 

tetravalent.  However, there might be a certain amount of Fe(III) cations coexisting with the 

Fe(IV) cations in reality, which implies the possibility of deviation of the real values of δ 

from the assumed ones.  In order to check whether such assumption is reasonable, 

nonstoichiometry of oxide ions (δ) with the compositions on the isoconcentration lines of 

oxide ion vacancies were confirmed by the titration method.  The results are shown in Figure 

6.10.  As can be seen, the measured values of δ for the samples with the compositions on the 

isoconcentration lines of δ with the values of 0.05 and 0.1 were close to the assumed values, 

indicating the predomination of Fe(IV) cations in these LSSF samples.  On the other hand, 

the δ measured for the samples with the compositions on the isoconcentration lines of δ with 
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the values of 0 and 0.15 were greater than the value estimated, indicating that significant 

amounts of the Fe(III) cations were coexistent with the Fe(IV) cations.  Thus, the assumption 

is valid in the cases of isoconcentration lines of δ of 0.05 and 0.1.  Small refinements might 

be needed in the case of δ of 0 and 0.15, but these are tolerable deviations. 

 

Figure 6.10 Concentration of the oxide ion vacancies of LSSF as a function of the Fe content 

by the titration method. 

 

6.3.4 Conductivity of LSSF 

The conductivities were measured for the LSSF samples (La0.8Sr0.2Sc0.95Fe0.05O3-δ, 

La0.7Sr0.3Sc0.95Fe0.05O3-δ, La0.8Sr0.2Sc0.9Fe0.1O3-δ, La0.7Sr0.3Sc0.9Fe0.1O3-δ, La0.5Sr0.5Sc0.8Fe0.2O3-δ 

and La0.3Sr0.7Sc0.7Fe0.3O3-δ) which were confirmed to have relatively high concentrations of 

hydroxide ions, as shown in Figure 6.11.  For the samples of La0.8Sr0.2Sc0.95Fe0.05O3-δ, 

La0.8Sr0.2Sc0.9Fe0.1O3-δ, La0.7Sr0.3Sc0.95Fe0.05O3-δ, the bulk conductivities and grain boundary 

conductivities were identified by analyzing the impedance spectra.  While for the other 

samples, only the bulk conductivities were identified.  The conductivities of all the examined 
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samples were close to each other and to the total conductivity of La0.97Sr0.03ScO3-δ single 

crystal reported by Liu et al. [06Liu], while about two orders of magnitude less than the total 

conductivity of La0.7Sr0.3FeO3-δ reported by Yamamoto et al. [87Yam].  It is generally accepted 

that an ideal cathode material for fuel cells should possess high electronic conductivity (~100 

S cm-1) and ionic conductivity close to that of the electrolyte material [01Ste, 02Sim].  From this 

point of view, LSSF may not be a promising mixed protonic and electronic conductor for the 

application as a cathode material in PCFCs. 

 

Figure 6.11 Conductivities of LSSF with relatively high proton concentrations as a function 

of temperature plotted in the Arrhenius form.  For comparison, the reported total 

conductivities of La0.97Sr0.03ScO3-δ [06Liu] and La0.7Sr0.3FeO3-δ [87Yam] are also plotted. 

 

6.4 Conclusions 

(1) After being heat-treated at 1300 oC, and then sintered at 1500 oC, single phase of LSSF 

was obtained in a wide composition range. 
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(2) The concentrations of hydroxide ions in the LSC and LSCF samples hydrated at 300 oC in 

the atmosphere of 5% H2O - 16% O2 - Ar were quite low. 

(3) The concentrations of hydroxide ions in the LSSF samples hydrated at 300 oC in the 

atmosphere of 5% H2O - 16% O2 - Ar increased with increasing Sr content while keeping the 

Fe content of the samples constant, and decreased with increasing Fe content while keeping 

the Sr content constant.  Comparing the samples with equal concentrations of oxide ion 

vacancies, the concentrations of hydroxide ions in the samples decreased with the increasing 

Fe content, indicating that the Fe content contained in the sample plays an important role in 

the hydration properties. 

(4) The conductivities of the LSSF samples were close to that of LSS, but about two orders 

lower than that of LSF.  Therefore, LSSF is considered probably not to be a promising 

mixed protonic and electronic conductor for application as a cathode material in PCFCs 
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Chapter 7 

Summary 

 

Dopant cations play important roles in conduction properties of perovskite-type oxides.  

The generation of protonic conductivity in BaZrO3 is based on occupation of trivalent cations 

in B-site to substitute tetravalent Zr cations, and oxide ion vacancies are generated 

consequently for charge compensation.  Since the mechanism of proton introduction in 

perovskite-type oxides can be expressed in brief as dissociative dissolving of water molecules 

into oxide ion vacancies, the B-site occupation of trivalent dopant cations benefits the 

protonic conductivity.  Meanwhile, if the trivalent dopant cations partition into A-site to 

substitute divalent Ba cations, oxide ion vacancies are consumed, and therefore, obstructions 

occur for the hydration reaction for proton introduction, as well as the generation of protonic 

conductivity.  Hence, clarifying the site occupation of dopant cations in BaZrO3 is 

meaningful for further increasing the protonic conductivity. 

In addition, the mechanism for the electronic conductivity in perovskite-type oxides, 

such as La1-xSrxFeO3-δ (LSF), La1-xSrxCo1-yFeyO3-δ (LSCF), etc, is attributed to hopping of 

electrons among multivalent dopant cations.  Thus, in order to develop mixed protonic and 

electronic conductors for the application as cathode material in protonic ceramic fuel cells 

(PCFCs), it is essential to investigate the doping behavior when the multivalent dopant cations 

are introduced into the protonic conductive base materials. 

In this dissertation, a systematic investigation of the site occupation of dopants of Sc, Y, 

Sm, Eu and Dy in BaZrO3 was performed.  The atmosphere dependence of valence state of 

Dy in Y-codoped BaZrO3 (BZDY), and the properties of a new material of 

La1-xSrxSc1-yFeyO3-δ (LSSF) were also investigated as a preliminary step for the further 

development of mixed protonic and electronic conductors. 
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Chapter 2 

Site occupation of the dopants of Sc, Y, Sm, Eu and Dy was investigated by comparing 

the lattice volume difference between undoped Ba-rich and B-poor samples with that of the 

doped samples.  The results revealed that for doping Eu or Sm into BaZrO3, not only B-site, 

but also A-site was occupied by the dopant cations.  Therefore, Eu and Sm are considered to 

be amphoteric dopants for BaZrO3.  For doping Sc, Y or Dy into BaZrO3, restricted by the 

sensitivity of the method applied in this chapter, these dopant cations were only confirmed to 

mainly occupy B-site.  In order to check whether there was small amount of these dopant 

cations occupying A-site, more sensitive methods were applied as the following works in 

Chapter 3 and 4.  In addition, by evaluating water content contained in hydrated samples, it 

was observed that the concentrations of hydroxide ions in the Sm and Eu-doped BaZrO3 were 

greatly lower than those in the Sc and Y-doped samples, regardless of the hydration 

atmospheres of humid Ar and humid O2.  And the concentration of hydroxide ions in the 

Dy-doped sample hydrated in humid Ar was obviously higher than that hydrated in humid O2.  

Clear dependence of hydration behavior on oxygen partial pressure was only recognized in 

the Dy-doped sample. 

 

Chapter 3 

In order to investigate the site occupation of Y in BaZrO3 more precisely, X-ray 

diffraction (XRD) pattern was collected by using synchrotron radiation based on anomalous 

dispersion effect with incident X-ray energies of 17.026 keV and 16.908 keV, close to the Y 

K absorption edge of 17.037 keV.  The samples with the nominal compositions of 

Ba0.9Zr0.8Y0.2O3-δ and BaZr0.8Y0.2O3-δ for measurement by synchrotron radiation were 

prepared by slow heating process, in which the samples were gradually heated to the sintering 

temperature of 1600 oC at a heating rate of 0.4 oCmin-1.  By Rietveld refinement, Y in the 
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sample of BaZr0.8Y0.2O3-δ was evaluated to only occupy B-site.  For the sample of 

Ba0.9Zr0.8Y0.2O3-δ, in addition to the precipitation of Y2O3, coexistence of two perovskite-type 

phases was confirmed.  In one Y-poor phase, all doped Y was evaluated to be of A-site 

occupation.  And in the other greatly Y-rich phase, in addition to B-site occupation, a partial 

amount of Y was estimated to occupy A-site.  However, a discrepancy between the phase 

relationship in the sample prepared by the slow heating process in this work and the reported 

BaO - ZrO2 - YO1.5 pseudo-ternary phase diagram was confirmed, which is considered to be 

attributed to the route for material preparation.  And therefore, dependence of phase 

relationship on preparation method was studied.  The results revealed that for the slow 

heating process, in which the samples were gradually heated up to the sintering temperature, 

phase relationship of lower temperature is considered to be established preferentially, 

obstructing the phase equilibrium at the sintering temperature in desired time.  On the 

contrary, during the rapid heating process, in which the samples were inserted directly into the 

furnace already kept at the sintering temperature and subsequently quenched to the room 

temperature, only the phase relationship at the sintering temperature is expected to be 

established.  In addition, periodic planar defects were observed in both the samples 

nominally stoichiometric and Ba-deficient by TEM.  And the relatively larger amount of 

planar defects existed in the more Ba-deficient sample.  

 

Chapter 4 

Site occupation of Sc, Sm, Eu and Dy in BaZrO3 were investigated by utilizing Rietveld 

refinement to analyze the XRD patterns collected by synchrotron radiation with the incident 

energy of 17.026 keV.  The results revealed that Sc was only of B-site occupation.  And in 

addition to the B-site occupation, a small amount of Dy was evaluated to occupy A-site for 

the sample with Ba-deficiency of 0.03.  Meanwhile, a relatively larger amount of Sm and Eu 
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occupying the A-site was evaluated, implying that Sm and Eu are amphoteric dopants for 

BaZrO3, which is in accordance with the results achieved in Chapter 2. 

 

Chapter 5 

In Chapter 2, an interesting phenomenon was observed that for the Dy-doped BaZrO3, 

higher water content was measured in humid Ar than humid O2, which was considered to be 

relative to the change in valence state of Dy with atmosphere altering.  Therefore, in this 

chapter, in order to investigate the atmosphere dependence of the valence state of Dy, samples 

of BaZr0.8DyxY0.2-xO3-δ (x = 0, 0.05, 0.1, 0.15, 0.2) with perovskite-type single phase were 

prepared by conventional solid state reaction method.  The lattice volumes of the as-sintered 

BZDY samples decreased with the increasing Dy content.  But after being annealed in the H2 

atmosphere, the difference in lattice volume of the samples with various compositions became 

small.  Higher values of the concentrations of hydroxide ions per unit cell, and the bulk 

conductivities of all the Dy-doped samples were obtained in humidified Ar than in humidified 

O2.  The highest bulk conductivities were obtained for the measurement in humid H2.  All 

these phenomena strongly implied that a partial amount of Dy cations existed as tetravalent in 

BaZrO3 in oxidizing atmosphere. 

 

Chapter 6 

In this chapter, an attempt for preparing the mixed protonic and electronic conductor for 

cathode for PCFCs was performed.  The conventional multivalent dopant of Fe was doped 

into the protonic conductor of La1-xSrxScO3-δ (LSS) to prepare a new perovskite-type oxide of 

La1-xSrxSc1-yFeyO3-δ (LSSF).  The samples were prepared by solid state reaction method.  

After being heat-treated at 1300 oC, and then sintered at 1500 oC, single phase of LSSF was 

obtained in a wide composition range.  The concentrations of hydroxide ions in the LSSF 
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samples hydrated at 300 oC in the atmosphere of 5% H2O - 16% O2 - Ar increased with the 

increasing Sr content while keeping the Fe content of the samples constant, and decreased 

with the increasing Fe content while keeping the Sr content constant.  Comparing the 

samples with equal concentrations of oxide ion vacancies, the concentrations of hydroxide 

ions in the samples decreased with the increasing Fe content, indicating that the Fe content in 

the sample plays an important role in the hydration properties.  The conductivities of the 

LSSF samples were close to that of LSS, but about two orders lower than that of LSF.  

Therefore, LSSF is considered probably not to be a promising mixed protonic and electronic 

conductor for application as a cathode material in PCFCs. 
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