- 1 Cooperative web sharing against predators promotes group living in spider
- 2 mites
- 3

4 Shuichi Yano

5 Affiliation: Laboratory of Ecological Information, Graduate School of Agriculture,

6 Kyoto University,

- 7 Address: Sakyo-ku, Kyoto 606-8502, Japan
- 8 e-mail: yano@kais.kyoto-u.ac.jp
- 9 Tel.: 81-75-753-6144
- 10 Fax: 81-75-753-6144

11	Abstract I examined spider mite cooperative web sharing against predation as a
12	factor promoting group living. Tetranychus urticae and Tetranychus kanzawai infest
13	leaf surfaces under webs made of silk threads. Experimental observation of predation
14	by the predatory mite Euseius sojaensis on spider mites of different group sizes
15	revealed that fewer spider mites were preyed upon when the web-building period
16	before the attack was prolonged, suggesting that established webs help protect spider
17	mites. Moreover, per capita predation on spider mites was diluted in larger groups.
18	This was not due to predator satiation but seemingly because webs had been
19	completed while the initial prey was consumed. Spider mites lived more closely
20	together in the presence of a predator, showing that the degree of group living is
21	facultative. In the presence of a preceding spider mite with an established web, a
22	newcomer spider mite gain protection by taking residence in the established webs;
23	sharing the web was not disadvantageous for the preceding mite. The proportion of
24	individuals preyed upon did not differ between preceding and newcomer mites,
25	suggesting that there was no interference against the latter. These interactions were
26	consistent between heterospecific spider mites. Because there was no detectable

27	indirect interaction between mites sharing fresh webs, cooperative web sharing
28	seemed to be a major force promoting group living in the spider mites. Moreover, the
29	distances between spider mites did not differ between heterospecific and conspecific
30	groups, demonstrating that mites living together do not distinguish between species;
31	hence, heterospecific mites may cooperate and live together in the same manner as
32	conspecifics.
33	
34	Key words Apparent interspecific cooperation • dilution effect • group size • indirect

35 interaction • cooperative web sharing

36 Introduction

37 Individuals living in a group can reduce their risk of predation by means of 38cooperative defense, the dilution effect, and by early warning (Krause and Ruxton 392002 and references therein). On the other hand, group members incur costs in terms of increased exposure to natural enemies and increased intraspecific competition 40 41(Fitzgerald 1993; Rasa 1997; Prokopy and Roitberg 2001). Therefore, the degree of 42conspecific aggregation should reflect the costs and benefits of group living (Rasa 1997; Spieler 2003; Semeniuk and Dill 2004; Despland and Huu 2007). From this 43viewpoint, heterospecific individuals may also live together in a group when the 44 benefit of interspecific grouping to individuals overwhelms the cost of interspecific 45competition between them. These interspecific interactions have been reported 46 among conspecific organisms such as birds (Krams and Krama 2002), spiders 47(Hodge and Storfer-Issera 1997), shellfishes (Briones-Fourzan et al. 2008), and 48mammals (Barry and Mundy 2002). This study reports that related spider mite 49species with common potential predators live together and cooperate in the same 50manner as conspecifics; this co-habitation is probably a byproduct of intraspecific 51

52 cooperation.

53Tetranychus urticae and Tetranychus kanzawai are polyphagous spider mites (e.g., Jeppson et al. 1975; Gotoh et al. 1999). They live together on dozens of wild 5455and cultivated host plant species and often co-occur on the same plant specimen (Kondo and Takafuji 1985; Morishita 1992; 1997; Takafuji and Morishita 2001; 5657Osakabe et al. 2002; Ohno et al. 2010). Mated mite adult females (founder 58individuals) construct complicated, irregular webs on leaf surfaces (Saito 1983), feeding and reproducing inside the webs, and ultimately forming aggregations that 59include juveniles that also contribute to the web building (Hazan, 1974; Clotuche et 60 61 al., 2009). Mated adult females of these mites disperse to new hosts, primarily by walking (Kondo and Takafuji 1985; Margolies and Kennedy 1985; Morishita 1992; 6263 1997). Ambulatory dispersing adult females of T. urticae often follow trails left by preceding females and join webs built by conspecifics, which results in group living 64 at a new colony site (Yano 2008). Although mites normally aggregate on their host 65 plants (Strong et al. 1997; Oku et al. 2005; Yano 2008), a typical tetranychid colony 66 67in the wild contains less than five adult females (Yano, unpublished data).

68	As an ultimate factor promoting conspecific group living of spider mites,
69	cooperative defense against predators using webs has been reported in the bamboo
70	spider mite Stigmaeopsis longus (Saito 1986a; 1986b; Mori et al. 1999). In contrast,
71	virtually no attention has been paid to the benefit of group living as cooperative
72	defense in either T. urticae and T. kanzawai. This may be because spider mites of this
73	genus never exhibit aggressive defensive behaviors, though aggressive defense
74	against predators does occur in mites belonging to the genus Stigmaeopsis and in
75	social caterpillars (McClure and Despland 2011). Another reason for the lack of
76	attention to the benefit of cooperative defense in Tetranychus may be that specialist
77	predatory mites such as Phytoseiulus persimilis and Neoseiulus womersleyi can
78	easily suppress spider mite populations at high densities (e.g., Chant 1961;
79	Hamamura 1986), which implies that collective webs are ineffective as a defense.
80	However, the apparently antagonistic interactions between spider mites and
81	specialist predatory mites may only be one potential outcome because spider mite
82	webs should exclude remaining potential predators. Indeed, some studies have
83	suggested that spider mite webs are effective against generalist predators (McMurtry

et al. 1970; Sabelis and Bakker 1992). Therefore, interactions between spider mites
and generalist predatory mites should be examined as a factor promoting spider mite
group living.

87 In general, the effectiveness of a defensive trait against potential enemies 88 becomes apparent only when the trait is absent. For example, some myrmecophytes 89 are only heavily attacked by herbivorous insects when symbiont ants, i.e., the 90 defensive trait of the plant, are artificially excluded from the plants (Vasconcelos 1991; Gaume et al. 1997). From this viewpoint, antagonistic interactions between 9192spider mites and potential predators will be detectable only before founder spider 93 mite females (that had dispersed from previous host plants) complete webs on new host plants. Euseius sojaensis is a generalist predatory mite that feeds on plant 94products and many spider mite species (Osakabe et al. 1986; Amano 1996). 95 Although E. sojaensis cannot penetrate completed spider mite webs (Osakabe 1988; 96 Ozawa and Yano 2009), the predatory mite readily preys on spider mites outside the 97 webs (Ozawa and Yano 2009). Therefore, the predator is considered to be a typical 98potential predator of T. urticae and T. kanzawai. 99

100	In this study, I examine why the spider mite species T. urticae and T. kanzawai
101	live in groups, and why different spider mite species may live close together, by
102	investigating cooperative web sharing against the potential predator E. sojaensis.
103	
104	Materials and methods
105	
106	Mites
107	
108	Single populations of the two spider mite species were collected in Kyoto, Japan;
109	that of <i>T. urticae</i> (green form) was collected from a rose garden, and the <i>T. kanzawai</i>
110	population was collected from a strawberry garden. Both populations were
111	maintained on expanded primary leaves of the kidney bean Phaseolus vulgaris
112	(Leguminosae), pressed onto water-saturated cotton in Petri dishes (90-mm diameter,
113	14-mm depth). The E. sojaensis study population was collected from kudzu vines
114	Pueraria lobata (Willd) Ohwi (Leguminosae) in Kyoto and was reared on tea pollen
115	on 50 \times 50-mm squares of Parafilm (Parafilm M; American National Can Co.,

116 Chicago, IL, USA) placed on water-saturated cotton in Petri dishes (for details, see 117Shirotsuka and Yano 2011). The dishes were placed in transparent plastic containers 118 and kept at $25 \pm 2^{\circ}$ C and $50 \pm 5\%$ relative humidity, with a photoperiod of 16L8D (hereafter described as "laboratory conditions"). 119 Adult females of the spider and predatory mites used in the following 120121experiments were similar in size (≤ 0.5 mm). Detailed observations and transfer using 122a fine brush were possible only under a stereomicroscope. Webs are usually invisible even under a microscope (e.g., Clotuche et al. 2009). Because mated adult females 123124represent the dispersing stage of spider mites, I used 2- to 4-day-old mated females 125(hereafter "females") of *T. urticae* and *T. kanzawai* in the following experiments. By using these females as prey, I simulated an early stage of web building in the 126127presence or absence of predators. 128129Effects of group size and webs on predation rates on spider mites

130

131 To examine effects of spider mite group size and the degree of web building on

132	predation by E. sojaensis, I confined different numbers (1, 2, and 4) of each spider
133	mite species on 15 \times 15-mm bean leaf squares. Unless otherwise noted, I thereafter
134	used bean leaf squares of the same size. One to four adult females correspond to a
135	typical colony size of tetranychid mites in the wild (Yano, unpublished data). I then
136	introduced an <i>E. sojaensis</i> female onto each leaf square after different time lags (0, 1,
137	4, and 24 h), which allowed spider mites to build different degrees of webs before
138	predator attack. I did not monitor at more frequent intervals because spider mites
139	seem to have diurnal rhythms (e.g., Clotuche et al. 2011). I used 3- to 5-day-old
140	starved E. sojaensis females that had previously been isolated for 48 h in 1.5-ml
141	microtubes (Treff AG, Degersheim, Switzerland) with a water droplet. This was to
142	promote immediate predation and to easily judge predation, because the transparent
143	body of a starved predator turns a vivid vermillion after consuming prey. Thereafter,
144	all starved E. sojaensis were prepared in the same manner. No E. sojaensis females
145	died during the starvation treatment. The number of replicates for each combination
146	of group sizes and time lags was >20. Preliminary experiments showed that
147	predation by a starved E. sojaensis female on a T. urticae or a T. kanzawai female on

a leaf square reached a plateau 12 h after introduction (Fig. 1). Therefore, the
proportion of consumed prey (predation rates) in all experiments was measured 24 h
after predator introduction. The data were analyzed with a Wald test (SAS Institute
Inc. 1998).

- 162 sojaensis in the same period was examined. I confined a female of each spider mite
- 163 species on the bean leaf squares. After 24 h, I carefully removed the females with

164	minimal damage to the webs, and counted the number of eggs laid. All spider mite
165	eggs were deposited within webs. I then introduced a starved E. sojaensis onto each
166	leaf square. After another 24 h, I counted the number of consumed eggs.
167	
168	Degree of spider mite group living in response to a predator
169	
170	To examine whether spider mites lived together in response to predators, I measured
171	the distance between pairs of spider mite females in relation to predator presence. I
172	introduced two females onto each of 24 leaf squares for each spider mite species. To
173	avoid predation during observation, I allowed the females to build webs for 24 h
174	under laboratory conditions, after which the females were sufficiently protected by
175	webs (see "Results"). I then introduced one starved E. sojaensis female each onto
176	half of the leaf squares ($n = 12$, predator presence) for each spider mite species while
177	the rest of the squares served as controls ($n = 12$, predator absence for each species).
178	Because the body length of <i>E. sojaensis</i> was <0.5 mm, leaf area occupied by the
179	predator was <1/1,000 of the leaf square, which may be considered negligible. After

180	1, 4, and 24 h, I measured the distances between the centers of the idiosomas of the
181	female spider mites to the nearest 1 mm as a degree of group living. As decimal
182	fractions were rounded off, the minimum distance was 1 mm. A replicate (T. urticae,
183	predator absence) in which a spider mite female escaped from the leaf square was
184	excluded from the data. A three-way ANOVA (SAS Institute Inc. 1998) was then
185	performed on square root-transformed data.
186	
187	Pros and cons of lodging and hosting spider mites in the presence of a predator
188	
189	To simulate the conditions in which a preceding spider mite female has already
190	established a web, an initial female (hosting female) was introduced to a leaf square.
191	After 24 h, when the whole surface of the leaf square was more or less covered by
192	web, a second lodging female and a starved E. sojaensis female were introduced to
193	the square. To discriminate between conspecific spider mites, I randomly selected
194	one and marked it with a dab of blue pigment ink on the dorsal setae. I examined
195	four combinations (i.e., TuTu, TkTk, TuTk and TkTu) of the two spider mite species.

The number of replicates for each combination was >20. Predation rates were
measured 24 h after predator introduction.

198To examine costs and benefits of hosting and lodging, predation rates on 199hosting and lodging females were compared with those in the absence of respective partners. Thus, the predation rate on lodging females was compared with that of 200 201solitary females without webs (group size = 1, time lag = 0 h in the above 202experiment) while that on hosting females was compared with that on solitary females with webs (group size = 1, time lag = 24 h). The rates were compared using 203204 Fisher's exact probability test. 205Indirect interaction between spider mites sharing webs in the absence of a predator 206207 Indirect interactions among herbivores include both exploitative competition and 208plant-mediated interactions (e.g., Kaplan and Denno 2007). To examine whether 209

- there were either competitive or facilitative indirect interactions between spider mite
- 211 females sharing webs, I introduced one female (initial female) onto each of forty 10

212	\times 10-mm leaf squares per species (<i>T. urticae</i> and <i>T. kanzawai</i>); 40 squares served as
213	controls without initial females. These leaf squares were maintained under
214	laboratory conditions. After 24 h, I carefully removed the initial females with
215	minimal damage to the webs, and counted the number of eggs laid. I then introduced
216	one <i>T. urticae</i> female (test female) each onto half of the leaf squares in each
217	treatment and one T. kanzawai female (test female) onto each of the remaining
218	squares. After another 24 h, I counted the cumulative egg numbers laid and
219	calculated egg numbers laid by each test female by subtracting the egg number of the
220	initial female from the cumulative number. Because the number of eggs laid within a
221	certain period is considered the most sensitive performance index of spider mite
222	females (Yano et al. 1998; Gotoh et al. 1999; Agrawal 2000; Yano et al. 2003), any
223	indirect interaction, either exploitative competition or plant mediated interaction,
224	between females sharing webs should result in lower (or higher) egg numbers laid by
225	the test female. A one-way ANOVA (SAS Institute Inc. 1998) was performed on the
226	data for each test female species.

228 Do spider mites living together distinguish between species?

230	To examine whether females living together distinguish between species, I
231	introduced two females onto a 15 \times 15-mm leaf square in the following
232	combinations: two <i>T. urticae</i> ($n = 32$), two <i>T. kanzawai</i> ($n = 31$), or one female of
233	each species ($n = 33$). I then measured the distances between females to the nearest 1
234	mm at 3, 6, 12, 24, and 48 h after the introduction. A one-way ANOVA (SAS
235	Institute Inc. 1998) was performed on square root-transformed data for each time
236	point.
237	
238	Results
239	
240	Effects of group size and webs on predation rates on spider mites
241	
242	Both group size and time lag for web building had significant effects on per
243	capita predation rates on T. urticae and T. kanzawai (Table 1). Decreased predation

with increased time lag indicates that completed webs may effectively defend spider
mites from predation while decreased (per capita) predation with increasing group
size indicates a dilution effect (Fig. 2). Each *E. sojaensis* individual consumed less
than one spider mite in average.

The number (\pm SE) of immobilized spider mites consumed by *E. sojaensis* individuals in 24 h was 2.24 \pm 0.17 (n = 21) for *T. urticae* and 3.30 \pm 0.16 (n = 20) for *T. kanzawai*. These results demonstrate that predators consuming at most one living spider mite in a 24-h period in this experiment were not satiated. Predators may have consumed less active spider mites rather than those that were immobilized because of the protection provided by webs and the mobility of prey mites (possible avoidance behavior).

In addition, the number (\pm SE) of spider mite eggs consumed by *E. sojaensis* individuals in 24 h was 0.43 \pm 0.23 (n = 14) for *T. urticae* and 1.08 \pm 0.46 (n = 13) for *T. kanzawai*, while initial egg numbers were 7.21 \pm 0.49 (n=14) and 9.00 \pm 0.60 (n=13), respectively.

260 Degree of spider mite group living in response to a predator

262	The distances between females differed significantly with respect to the presence of
263	a predator (Table 2), although the differences became less obvious over time after
264	predator introduction (Fig. 3). Thus, spider mite females lived more closely together
265	in response to predator presence. In addition, no spider mites were preyed upon
266	during this experiment.
267	
268	Pros and cons of lodging and hosting spider mites in the presence of a predator
269	
270	The predation rates on lodging and hosting females did not differ significantly (Table
271	3, comparison A), suggesting that there was no interference against lodging females.
272	Indeed, interference behaviors among females were never observed. Moreover, the
273	predation rate on lodging females was lower than that on solitary mites without webs
274	(Table 3, comparison B); the predation rate on hosting females did not differ from
275	that on solitary females with webs (Table 3, comparison C). These patterns were

276 consistent across all combinations of spider mite species.

277

278 Indirect interaction between spider mites sharing webs in the absence of a predator

280	The number of eggs laid by a test female within 24 h did not differ among treatments
281	for either T. urticae (Fig. 4a), T. kanzawai (Fig. 4b), indicating that there was
282	virtually no indirect interaction between heterospecific and conspecific mites sharing
283	fresh webs.
284	
285	Do spider mites living together distinguish between species?
286	
287	Up to 24 h after introduction, the average distance between spider mite females was
288	approximately 3 mm (on a 15 \times 15-mm square) for all combinations. That is, the
289	mites lived relatively close together even in the absence of a predator. The distance

- 290 between females did not differ significantly among heterospecific and conspecific
- 291 groups at any point; P = 0.18 (3 h), 0.84 (6 h), 0.42 (12 h), 0.49 (24 h), and 0.25 (48

h) (Fig. 5). These data show that spider mite females living together do notdistinguish between species.

294

295 **Discussion**

296

297The decrease in predation on spider mites with increased time lag for web building 298indicates that established webs protected spider mites from predation. Previous studies (McMurtry et al. 1970; Osakabe 1988; Sabelis and Bakker 1992; Ozawa and 299300 Yano 2009) also report that established spider mite webs are effective against 301 generalist predators. Although spider mite webs contain many eggs, all eggs are deposited within webs where E. sojaensis cannot easily access. Therefore, E. 302303 sojaensis consumed only a small fraction of the eggs. Moreover, considering the relative size of a spider mite (0.5 mm) and an egg (<0.15mm; Crooker 1985), effects 304 305 of egg consumption on predation rates seemed negligible, if any. Compared with the spider mite short generation time of about 10 days at 25°C, a web establishment 306 period as long as 24 h may be considerable. Therefore, any trait that reduces 307

308	predation risk during this 24-h period should confer selective advantage to the spider
309	mites. From this viewpoint, group living during web production seems to reduce the
310	predation rate on spider mites. This dilution effect was not due to the satiation of
311	predatory mites because they had the potential to consume more than twice the
312	number of immobilized prey in the same period. Therefore, it is likely that the tested
313	predatory mites were unable to consume more living prey because webs had been
314	completed beforehand.
315	The closer group living of spider mites in the presence of a predator implies
316	that the degrees of group living in the two spider mite species are facultative; i.e., the
317	benefit of closer group living in the presence of a predator may outweigh its possible
318	cost. Because no spider mite was preyed upon in the presence of previously
319	established webs, indirect cues for predator presence, e.g., odors from injured
320	conspecifics (Grostal and Dicke 1999; Oku et al. 2003), may be ruled out; the spider
321	mites living closely together may have instead detected direct cues for predator
322	presence, e.g., odors and wastes (Grostal and Dicke 1999, 2000; Pallini et al. 1999).
323	The closer group living of spider mites in the presence of a predator had decreased

324 over time probably because amount of established webs may have affected spider 325 mites' behaviors and/or because they became increasingly aware that predators were 326 unable to access them.

327Dispersing adult females of T. urticae readily follow conspecific trails and join conspecific webs (Yano 2008). The benefit of these behaviors was explicitly 328 329demonstrated in the present study in the practice of cooperative web sharing. In the 330 presence of a predator and a preceding spider mite with an established web, a secondarily introduced (lodging) female gained protection from predation by lodging 331332in the web: sharing the web was not a disadvantage for the hosting female. This 333 asymmetric cost-benefit of lodging and hosting females seems to explain why they shared webs. Otherwise, if the benefit of a lodging individual were achieved at a cost 334335for the hosting individual, such altruistic behavior should have evolved only between 336 conspecific relatives. Moreover, the proportion of predated individuals did not differ between hosting and lodging mites, suggesting that there was no interference against 337the latter. The above interactions were consistent in pairs of heterospecifics, 338 339indicating that spider mites sharing webs do not distinguish between species.

340	Although there was no direct interference between spider mites sharing webs,
341	living in proximity to others may have fitness costs associated with indirect
342	competition, i.e., exploitive and/or plant-mediated competition (Tilman 1982;
343	Kaplan and Denno 2007). However, such indirect competition seemed negligible
344	both within and between spider mite species sharing webs. Because the feeding
345	modes of the two related spider mite species were identical, fine-scale resource
346	partitioning between individuals living in close proximity (e.g., Daugherty 2009)
347	seems unlikely. Oku et al. (2009) demonstrated a web-building cost for T. urticae
348	adult females in terms of reduced egg production during the initial 24 h of web
349	building. Therefore, females introduced secondarily may have offset the costs of
350	possible indirect competition with initial females by reducing web-building costs,
351	that is, by sharing established webs. There may be some competition after web
352	establishment, i.e., following the initial 24 h of web building; however, living in
353	proximity to others after the initial 24 h would no longer be necessary because spider
354	mites were seldom preyed upon after that time. The rarity of predation after this 24 h
355	period is attributable to (1) spider mites remaining within webs and (2) continued

356	feeding within webs that are extended over leaf surfaces, leading to heavy infestation
357	(Yano, unpublished data). Web extension in this manner is reflected in Figure 5,
358	which shows that between-female distances increased slightly after 24 h of web
359	building. Therefore, living in proximity to others during web establishment should
360	always be advantageous in the end, perhaps explaining why the spider mites always
361	live in groups. Le Goff et al. (2010) reported significant positive group effects on
362	egg production in <i>T. urticae</i> virgin females. However, such a positive group effect on
363	egg production was not detected in the present experiment using mated females (i.e.,
364	dispersing stage) of the two spider mite species.
365	Although the two spider mite species co-occur on the same host plants (Kondo
366	and Takafuji 1985; Morishita 1992; 1997; Takafuji and Morishita 2001; Osakabe et
367	al. 2002; Ohno et al. 2010) and have the potential to live closely together on a single
368	leaf, as demonstrated here, strong natural selection for heterospecific cooperation (in
369	comparison to conspecific cooperation) remains questionable. The apparent
370	cooperation between heterospecifics may rather be a byproduct of cooperation
371	between conspecifics that live together. The two spider mite species discriminate to

some extent between heterospecific and conspecific mates before copulation (Ozawa
and Takafuji 1987), suggesting that there has been selection for discrimination
between species when necessary. Therefore, the fact that the spider mites did not
distinguish between species when living together on a leaf likely indicates that some
advantage is gained by sharing webs with heterospecifics.

There is a complete post-mating reproductive barrier between *T. urticae* and *T. kanzawai* (Ozawa and Takafuji 1987), indicating that they are distinct biological species. Therefore, the apparent cooperative web sharing between these two species raises the question of how the two distinct species evolved. The most plausible explanation may be allopatric speciation; *T. urticae* expanded its distribution to southwestern areas of Japan (Kyoto) as recently as the late 1970s (Gotoh and Shinkaji 1981).

Although spider mite webs afford effective protection against generalist predatory mites, the webs are ineffective against mites that specialize in preying on web-spinning spider mites (McMurtry et al. 1970; Sabelis and Bakker 1992). This is an example of apparent trade-offs in adaptation to different prey (Levins and

388	MacArthur 1969). Moreover, some specialist predatory mites use spider mite webs
389	as prey-searching cues (Pratt and Croft 1999; Roda et al. 2001; Furuichi et al. 2005).
390	Therefore, group living of spider mites may be costly against such specialist
391	predatory mites. This possible trade-off in cooperative web sharing against specialist
392	and generalist predatory mites may in turn determine spider mite optimal group sizes
393	in the wild; this is a topic that remains to be addressed in future investigations.
394	
395	Acknowledgments I thank Dr. T. Czeschlik, Dr. J. C. Choe, and anonymous
396	reviewers for valuable suggestions. This work was supported by the Japan Society
397	for the Promotion of Science (Basic Research C, grant number 21580066). The
398	present experiment complies with the current laws of Japan. The author declares that
399	he has no conflict of interest.
400	
401	References
402	Agrawal AA (2000) Host range evolution: adaptation and trade-offs in fitness of
403	mites on alternate hosts. Ecology 81:500-508

404	Amano H (1996) Natural enemies. In: Ehara S, Shinkaji N (eds) Principles of Plant
405	Acarology. Zenkoku Noson Kyoiku Kyokai, Tokyo, pp 159-174 (in Japanese)
406	Barry RE, Mundy PJ (2002) Seasonal variation in the degree of heterospecific
407	association of two syntopic hyraxes (Heterohyrax brucei and Procavia capensis)
408	exhibiting synchronous parturition. Behav Ecol Sociobiol 52:177-181
409	Briones-Fourzán P, Ramírez-Zaldívar E, Lozano-Álvarez E (2008) Influence of
410	conspecific and heterospecific aggregation cues and alarm odors on shelter
411	choice by syntopic spiny lobsters Biol Bull 215:182-190
412	Chant DA (1961) An experiment in biological control of Tetranychus telarius (L.)
413	(Acarina: Tetranychidae) in a greenhouse, using Phytoseiulus persimilis
414	Athias-Henriot (Phytoseiidae). Can Entomol 93:437-443
415	Clotuche G, Le Goff G, Mailleux AC, Deneubourg JL, Detrain C, Hance T (2009)
416	How to visualize the spider mite silk? Microsc Res Techniq 72:659-664
417	Clotuche G, Mailleux AC, Astudillo FA, Deneubourg JL, Detrain C (2011) The
418	formation of collective silk balls in the spider mite Tetranychus urticae Koch.
419	PLos ONE 6(4): e18854

420	Crooker A (1985) Embryonic and juvenile development In: Helle W, Sabelis MW
421	(eds) Spider Mites: their Bilology, Natural Enemies and Control. Vol. 1A
422	Elsevier, Amsterdam, pp 149-163
423	Daugherty MP (2009) Specialized feeding modes promote coexistence of competing
424	herbivores: insights from a metabolic pool model. Environ Entomol 38:667-676
425	Despland E, Huu AL (2007) Pros and cons of group living in the forest tent
426	caterpillar: separating the roles of silk and of grouping. Entomol Exp Appl
427	122:181-189
428	Fitzgerald TD (1993) Sociality in caterpillars. In: Stamp NE, Casey TM (eds)
429	Caterpillars: ecological and evolutionary constraints on foraging. Chapman &

Hall, New York, pp 372-403 430

Furuichi H, Yano S, Takafuji A, Osakabe Mh (2005) Prey preference of the predatory 431

- mite Neoseiulus womersleyi Schicha is determined by spider mite webs. J Appl 432
- 433Entomol 129:336-339
- Gaume L, Mckey D, Anstett MC (1997) Benefits conferred by "timid" ants: active 434anti-herbivore protection of the rainforest tree Leonardoxa africana by the 435

436	minute ant <i>Petalomyrmex phylax</i> . Oecologia 112:209-216
437	Gotoh T, Shinkaji N (1981) Critical photoperiod and geographical variation of
438	diapause induction in the two-spotted spider mite, Tetranychus urticae Koch
439	(Acarina: Tetranychidae). Jap J Appl Entomol Zool 25:113-118 (in Japanese,
440	with English summary)
441	Gotoh T, Gomi K, Nagata T (1999) Incompatibility and host plant differences among
442	populations of Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl
443	Entomol Zool 34:551-561
444	Grostal P, Dicke M (1999) Direct and indirect cues of predation risk influence
445	behavior and reproduction of prey: a case for acarine interactions. Behav Ecol
446	10:422-427
447	Grostal P, Dicke M (2000) Recognising one's enemies: a functional approach to risk
448	assessment by prey. Behav Ecol Sociobiol 47:258-264

- 449 Hamamura T (1986) Studies on the biological control of Kanzawa spider mite,
- 450 Tetranychus kanzawai Kishida by the chemical resistant predacious mite,
- 451 Amblyseius longispinosus (Evans) in tea fields (Acarina: Tetranychidae,

452	Phytoseiidae). Bull Natl Res Inst Tea 21:121-201 (in Japanese with English
453	summary)
454	Hazan A, Gerson U Tahori AS (1974). Spider mite webbing. I. The production of
455	webbing under various environmental conditions. Acarologia 16:68-84
456	Hodge MA, Storfer-Issera A (1997) Conspecific and heterospecific attraction: a
457	mechanism of web-site selection leading to aggregation formation by
458	web-building spiders. Ethology 103:815-826
459	Jeppson LR, Keifer HH, Baker EW (1975) Mites Injurious to Economic Plants.
460	University of California Press, Berkeley
461	Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects
462	revisited: a quantitative assessment of competition theory. Ecol Lett 10:977-994
463	Kondo A, Takafuji A (1985) Resource utilization pattern of two species of
464	tetranychid mites (Acari: Tetranychidae). Res Popul Ecol 27:145-157
465	Krams I, Krama T (2002) Interspecific reciprocity explains mobbing behaviour of
466	the breeding chaffinches, Fringilla coelebs. Proc R Soc Lond B 269: 2345-2350
467	Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

468	Le Goff GJ, Mailleux A-C, Detrain C, Deneubourg J-L, Clotuche G, Hance T (2010)
469	Group effect on fertility, survival and silk production in the web spinner
470	Tetranychus urticae (Acari: Tetranychidae) during colony foundation. Behaviour
471	147:1169-1184
472	Levins DA, MacArthur RH (1969) A hypothesis to explain the incidence of
473	monophagy. Ecology 50:910-911
474	Margolies DC, Kennedy GG (1985) Movement of the two-spotted spider mite
475	Tetranychus urticae Koch (Acari: Tetranychidae), among hosts in a
476	corn-peanut agroecosystem. Entomol Exp Appl 37:55-61
477	McClure M, Despland E (2011) Defensive responses by a social caterpillars are
478	tailored to different predators and change with larval instar and group size.
479	Naturwissenschaften 98:425-434
480	McMurtry JA, Huffaker CB, van de Vrie M (1970) Ecology of tetranychid mites and
481	their natural enemies: A review. I. Tetranychid enemies: their biological
482	characters and the impact of spray particles. Hilgardia 40:331-390
483	Mori K, Saito Y, Sakagami T (1999) Effects of nest web and female attendance on

48	34
τu	דר כ

survival of young in the subsocial spider mite Schizotetranychus longus (Acari:

- 485 Tetranychidae). Exp Appl Acarol 23:411-418
- 486 Morishita M (1992) Movement of two species of tetranychid mites (Acarina:
- 487 Tetranychidae) from border vegetation to watermelon fields. Jpn J Appl Entomol
- 488 Zool 36:25-30 (in Japanese, with English summary)
- 489 Morishita M (1997) Intercrop movement of the two-spotted spider mite, Tetranychus
- 490 urticae Koch (Acari: Tetranychidae) from chrysanthemum to pea field. Jpn J
- 491 Appl Entomol Zool 41:33-38 (in Japanese, with English summary)
- 492 Ohno S, Miyagi A, Ganaha-Kikumura T, Gotoh T, Kijima K, Ooishi T, Moromizato
- 493 C, Haraguchi D, Yonamine K, Uezato T (2010) Non-crop host plants of
- 494 *Tetranychus* spider mites (Acari: Tetranychidae) in the field in Okinawa, Japan:
- 495 determination of possible sources of pest species and inference on the cause of
- 496 peculiar mite fauna on crops. Appl Entomol Zool 45:465-475
- 497 Oku K, Yano S, Osakabe Mh, Takafuji A (2003) Spider mites assess predation risk
- 498 by using the odor of injured conspecifics. J Chem Ecol 29:2609-2613
- 499 Oku K, Yano S, Osakabe Mh, Takafuji A (2005) Mating strategies of Tetranychus

500	kanzawai (Acari: Tetranychidae) in relation to mating status of females. Ann
501	Entomol Soc Am 98:625-628
502	Oku K, Magalhaes S, Dicke M (2009) The presence of webbing affects the
503	oviposition rate of two-spotted spider mites, Tetranychus urticae (Acari:
504	Tetranychidae). Exp Appl Acarol 49:167-172
505	Osakabe Mh (1988) Relationships between food substances and developmental
506	success in Amblyseius sojaensis Ehara (Acarina: Phytoseiidae). Appl Entomol
507	Zool 23:45-51
508	Osakabe Mh, Inoue K, Ashihara W (1986) Feeding, reproduction and development
509	of Amblyseius sojaensis Ehara (Acarina: Phytoseiidae) on two species of spider
510	mites and on tea pollen. Appl Entomol Zool 21:322-327
511	Osakabe Mh, Hirose T, Sato M (2002) Discrimination of four Japanese Tetranychus

- 512 species (Acari: Tetranychidae) using PCR-RFLP of the inter-transcribed spacer
- 513 region of nuclear ribosomal DNA. Appl Entomol Zool 37:399-407
- 514 Ozawa A, Takafuji A (1987) Inter-specific crosses between Tetranychus urticae
- 515 Koch and *Tetranychus kanzawai* Kishida. Jpn J Appl Entomol Zool 31:51-54 (in

- 516 Japanese, with English summary)
- 517 Ozawa M, Yano S (2009) Pearl bodies of Cayratia japonica (Thunb.) Gagnep.
- 518 (Vitaceae) as alternative food for a predatory mite *Euseius sojaensis* (Ehara)
- 519 (Acari: Phytoseiidae) Ecol Res 24:257-262
- 520 Pallini A, Janssen A, Sabelis MW (1999) Spider mites avoid plants with predators.
- 521 Exp Appl Acarol 23:803-815
- 522 Pratt PD, Croft BA (1999) Expanded distribution of the bamboo spider mite,
- 523 Schizotetranychus longus (Acari: Tetranychidae), and predation by Neoseiulus

fallacies (Acari: Phytoseiidae). Acarologia 40:191-197

- 525 Prokopy RJ, Roitberg BD (2001) Joining and avoiding behavior in non-social insects.
- 526Annu Rev Entomonl 46:631-665
- 527 Rasa OA (1997) Aggregation in a desert tenebrionid beetle: a cost/benefit analysis.
- 528 Ethology 103:466-487
- 529 Roda A, Nyrop J, English-Loeb G, Dicke M (2001) Leaf pubescence and two-spotted
- 530 spider mite webbing influence phytoseiid behavior and population density.
- 531 Oecologia 129:551-560

532	Sabelis MW, Bakker FM (1992) How predatory mites cope with the web of their
533	tetranychid prey: a fubctional view on dorsal chaetotaxy in the Phytoseiidae.
534	Exp Appl Acarol 16:203-225
535	Saito Y (1983) The concept of "life types" in Tetranychidae. An attempt to classify
536	the spinning behaviour of Tetranichidae. Acarologia 24:377-391
537	Saito Y (1986a) Biparental defence in a spider mite (Acari: Tetranychidae) infesting
538	Sasa bamboo. Behav Ecol Sociobiol 18:377-386
539	Saito Y (1986b) Prey kills predator: counter-attack success of a spider mite against
540	its specific phytoseiid predator. Exp Appl Acarol 2:47-62
541	SAS Institute Inc (1998) SAS/STAT user's guide, release 6.03 edition. SAS Institute,
542	Cary
543	Semeniuk CAD, Dill LM (2004) Cost/benefit analysis of group and solitary resting
544	in the cowtail stingray, Pastinachus sephen. Behav Ecol 16:417-426
545	Shirotsuka K, Yano S (2011) How to avoid cannibalism within laboratory predatory
546	mite populations under successive rearing. Jap J Appl Entomol Zool 55:25-27
547	(in Japanese with English legends)

548	Spieler M (2003) Risk of predation affects aggregation size: a study with tadpoles of
549	Phrynomantis microps (Anura: Microhylidae). Anim Behav 65:179-184
550	Strong WB, Croft BA, Slone DH (1997) Spatial aggregation and refugia of the mites
551	Tetranychus urticae and Neoseiulus fallacis (Acari: Tetranychidae,
552	Phytoseiidae) on hop. Environ Entomol 26:859-865
553	Takafuji A, Morishita M (2001) Overwintering ecology of two species of spider
554	mites (Acari: Tetranychidae) on different host plants. Appl Entomol Zool
555	36:169-175
556	Tilman D (1982) Resource Competition and Community Structure. Princeton
557	University Press, Princeton
558	Vasconcelos HL (1991) Mutualism between Maieta guianensis Aubl., a
559	myrmecophytic melastome, and one of its ant inhabitants: ant protection
560	against insect herbivores. Oecologia 87:295-298
561	Yano S (2008) Collective and solitary behaviors of the two-spotted spider mite
562	(Acari: Tetranychidae) are induced by trail following. Ann Entomol Soc Am

563 101:247-252

564	Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the
565	host plant range of the phytophagous mite, Tetranychus urticae Koch (Acari:
566	Tetranychidae). A method for quantifying host plant acceptance. Exp Appl
567	Acarol 22:595-602
568	Yano S, Kanaya M, Takafuji A (2003) Genetic basis of color variation in leaf scars
569	induced by the Kanzawa spider mite. Entomol Exp Appl 106:37-44

571 Figure Legends

Fig. 1 A preliminary test confirming predation saturation over time. There was no
predation of spider mite females after the initial 12 h. Hence, predation rate was
measured subsequently 24 h after predator introduction.

575

576Fig. 2 Effects of group size and webs on predation rates on spider mites. Bars 577indicate per capita predation rate on active (a) T. urticae and (b) T. kanzawai with different group sizes and time lags for web building. Decreased predation with 578increased time lag indicates that completed webs may effectively defend spider mites 579580from predation while decreased (per capita) predation with increasing group size indicates a dilution effect. 581582Fig. 3 Degree of spider mite group living in response to a predator. Distances 583between conspecific spider mites are shown in relation to predator presence 1, 4, and 584

- 585 24 h after predator introduction. Spider mites lived more closely together in response
- 586 to predator presence, although the differences became less obvious over time after

587 predator introduction.

588

589	Fig. 4 Indirect interactions between spider mites sharing a web in the absence of a
590	predator. The number of eggs laid by a test female within 24 h did not differ among
591	treatments for either a T. urticae and b T. kanzawai, indicating that there was
592	virtually no indirect interaction between heterospecific and conspecific mites sharing
593	fresh webs.
594	
595	Fig. 5 Do spider mites living together distinguish between species? <i>Lines</i> indicate
596	distances between spider mite females. There were no significant differences among
597	the three groups at any point, suggesting that spider mite females living together do
598	not distinguish between species.

a) T. urticae b) *T. kanzawai* Per capita predation (%) Time lag 24 (h) 24 (h) Group size Group size

Fig.2

