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SEMI-ALGEBRAIC PARTITION
AND BASIS OF BOREL-MOORE HOMOLOGY
OF HYPERPLANE ARRANGEMENTS

KO-KI ITO AND MASAHIKO YOSHINAGA

(Communicated by Alexander N. Dranishnikov)

ABSTRACT. We describe an explicit semi-algebraic partition for the comple-
ment of a real hyperplane arrangement such that each piece is contractible and
so that the pieces form a basis of Borel-Moore homology. We also give an ex-
plicit correspondence between the de Rham cohomology and the Borel-Moore
homology.

1. INTRODUCTION

Semi-algebraic partitions of algebraic sets have been studied in various fields of
mathematics from geometry to computational algebra. The general theory says
that any algebraic set has a semi-algebraic triangulation. However, not only trian-
gulations, but also other types of “efficient” decompositions are sometimes useful.
The following are motivating examples.

Example 1.1. CP" =C"UC" ' U---UC U {pt}.
Example 1.2. Consider C* = C\ {0}. Put
Sy = {re”|r>0,0<6<2n},
S1 = {z]z€eR,z> 0}
Then C* = Sy U S;.

Both of these decompositions reflect (co)homological structures of the manifolds
naturally. More precisely, they are

(i) disjoint unions of contractible semi-algebraic subsets, and
(ii) the closures of the pieces form a basis of Borel-Moore (locally finite) homol-
ogy HPM (X, 7Z) (or ordinary cohomology H*(X,Z) via Poincaré duality).
The purpose of this paper is to generalize Example to hyperplane arrange-
ments defined over the real number field R.
There is another reason to expect the existence of such partitions. The comple-
ment of a complex hyperplane arrangement is known to be a minimal space [T}, 2, [6],
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that is, a space homotopy equivalent to a finite CW complex with exactly as many
k-cells as the k-th Betti number, for all k. If the arrangement is defined over R, then
the real structures (e.g., chambers) are related to the topology of the complexified
complement (|7, [12]). With the help of real structures, the minimal CW complex
has been explicitly described in [8] and [I0]. It is natural to expect that the dual
stratification to a minimal CW complex induces a partition satisfying (i) and (ii)
above.

2. PRELIMINARY

Let A = {Hy,...,H,} be an affine hyperplane arrangement in the real vector
space RY. Let us fix a defining affine linear form a; in such a way that H; = {a; =
0}. Let L(A) be the set of nonempty intersections of elements of A. We denote by
LP(A) the set of all p-dimensional affine subspaces X € L(A).

For an affine subspace X C RY, let us denote by X¢ = X ®g C the complexifica-
tion. Denote by ch(A) the set of all chambers and by M(A) = C*\ Uy 4 He the
complement to the complexified hyperplanes.

Let F be a generic flag in R?,

Fi0=F'cF'crlc.-cF' =R,
where each F4? is a generic g-dimensional affine subspace, that is, dim F¢ N X =
q+dimX — ¢ for X € L(A). Let {hq,...,he} be a system of defining equations of
F, that is,
Fl={hgg1=---=h; =0}, for¢g=0,1,...,0—1,
where each h; is an affine linear form on RY. Define
cht(A) ={C ech(A)|CNFI#0 and CNFI'=p}.
We assume that F satisfies the following:

Assumption 2.1. For ¢=0,...,¢, FL, denotes
{hgt1 =hgy2 =+ =hg=0,hy > 0}.
(1) For an arbitrary chamber C, if it belongs to ch®(A), then C N F? C F,.
(2) For any two X, X' € L(A) with dimX = dim X' = £ — q (i.e. satisfying
X NF1={1lpt} and X' NF? = {1pt}), if X # X', then
he(X NF9) # hy(X' N F9).
Note that such a flag always exists. Indeed, we first choose a generic hyperplane

F*1in such a way that F*~1 does not separate O-dimensional intersections L°(A).
In a similar fashion, we choose F*~2 c F*~1 inductively.

Let us denote M? := (F¢) N M(A) = FE \ Uyea Hc. We have the following
propositions (see [5, [I1]).

Proposition 2.1. Let A be an arrangement and W9 a q-dimensional generic sub-
space. Let ANW? be the arrangement on W induced by A.
(1) Then L(ANW?Y) is isomorphic to LZ*~9(A) = {X € L(A) | dim X > {—q}
as posets.
(2) Then the natural inclusion ¢ : M(A) N W2 — M(A) induces isomorphisms

ix : Hy(M(A) N W9, Z) =5 Hy(M(A), Z),
fork=0,1,...,q.
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Proposition 2.2. Let A be a real arrangement and F a generic flag. Then

[ch%(A)| = by(M(A)).

Let X,Y C C’ be subsets. We denote by Y the closure of Y in C* (with respect
to the classical topology) and clx (Y) =X NY.

For given C' € ch%Z(A), clz.(C) = CNF4 C R’ is a g-dimensional polytope which
does not intersect F4~1. By Assumption 2] the vertices of clzq(C) have mutually
different and positive heights with respect to h, (noting that 7971 = Fin{h, = 0}).
There is a unique vertex p € clz«(C) at which hy|c1 ., () attains the minimum. Then
by Proposition 211 (1), there exists a unique intersection X € L(A) satisfying
{p} = Xc N F4. (Note that in case C' € ch%(A), we consider X¢ = R’.)

Definition 2.2. Let X C R’ be an affine subspace. Denote by 7(X) the linear
subspace through the origin which is parallel to X and dim7(X) = dim X, and
define

Ax)={Hec A|7(H) D 7(X)}
to be the set of hyperplanes parallel to X. Note that Ax :={H € A| H D> X} C
Aix)-

Deﬁnitiori2.3. Let C € ch%(A). We denote by Ce ch(Ajx,) the unique chamber
with C C C.

Using this notation, we shall define a partial ordering < in ch%(A).
Definition 2.4. For C,C’ € ch%(A), we denote C' < C” if and only if ¢’ C C.
The following is easy.

Lemma 2.5. If C < C’, then he(Xc NF?) < he(Xer N F9).

3. MINIMAL PARTITION
In this section, we shall introduce the semialgebraic partition.

Definition 3.1. Let p;,ps € RY. The set Sep(pi, p2) of separating hyperplanes is
defined by

Sep(p1,p2) :=={H € A | [p1,p2] N H # 0},

where [p1, po] is the closed line segment connecting two points p; and ps.
Similarly, we also denote by Sep(C1, Cs) the set of separating hyperplanes of two
chambers C4, Cs.

Lemma 3.2. Let C,C" € ch%(A). If Xc = X¢v, then Sep(C,C") C Ax,.

Proof. Let H € Sep(C,C") and choose a defining equation f, i.e., H = {f = 0}.
Since H separates C' and C’, we may assume C C {f > 0} and C' C {f < 0}.
Hence X¢ NF7 C clpe(C) C {f > 0}. Similarly, X¢r N F? C clr(C") C {f < 0}.
We have XcNF? C {f > 0}n{f <0}NF?= HNF? Then the inclusion Xc C H
follows from Proposition 2] (1). This means that H € Ax,. O

Lemma 3.3. Let C € ch%(A) and C’ € ch?(A).

(1) If C" C C, then either C < C' (with q=¢') or ¢ <.
(2) If q=¢ and he(Xc N F?) < he(Xer N F9), then Ax,, NSep(C,C") # 0.
(3) If g < ¢, then Ax_, NSep(C,C") # 0.
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Proof. (1) First note that C' N F7~! = (CNF?)NFrL. Since hgl&nrq attains the
minimum at X¢ NF?, hyls-7, > 0. Hence C'NF1~ ! = () and we have ¢’ > ¢q. The
assertions thus follow from Definition 241

(2) Suppose that Ax_, N Sep(C,C’) = 0. Then C' and C’ are contained in the
same chamber D € ch(Ax,,) of Ax_,. Since hglc,,(p) attains the minimum at
XcoNF1, we have hg(XcNF?) > he(Xcr NF?). This contradicts the assumption.

(3) Suppose that Ax_, N Sep(C,C") = (). Then C and C’ are contained in
the same chamber D € ch(Ax_,) of Ax_,. Obviously DN F7~1 = () and hence
C NF?={. This contradicts C € ch%(A). O

From now on we fix a base point pc € C'NF9 for each C' € ch%(A). It is easily
seen that the constructions below do not depend on the choice of p¢.
We can identify C* with the tangent bundle TR? 22 R x R by

R x R¢ — C*
(x,v) +— x++/—1v.

We also denote x by Re(z + +/—1v).
Now we introduce the main object of this paper.

Definition 3.4. For a chamber C € ch(A), we define

_ — /| ver(Xe),r € RY and
S0 = ey e | T < Septren)

If C € ch%(A), S(C) is an open subset of R® x 7(X¢), hence a real (2¢ — q)-
dimensional manifold.

Example 3.5. Let H = {0} C R and the arrangement A = {H}. Fix a generic
flag F© = {—1}. There are two chambers Cy = Ry and C; = Rsg. Then
ch%(A) = {Cp} and ch’(A) = {C1}. Then S(Cy) = Sy and S(C;) = S; as defined
in Example

Example 3.6. Let A = {H;, Hy, H3} be an arrangement of lines on R? and fix
a generic flag F* as in Figure Ml Then ch%(A) = {Co},ch=(A) = {C1,Cy, C3},
ch%(A) = {C4,Cs}. By definition, we also have X¢, = R?, X¢, = Hy, X¢, =
HQ,XCS = Hg, and XC4 = H1 N Hg, X05 = H1 N Hg, 'A[XCO] = @, A[Xcl] = {Hl},
-A[Xc2] = A[Xcg] = {H,, H3}, -A[Xc4] = 'A[Xcs] =A Cy=R2 C, =C,UCy,UCs,
5’; = CyUCs, 6‘; = C3UCYy, C~'4 = (Y4, CN'5 = (5. Using these data, we can describe
S(C). For example, S(Cy) = Cy, S(Cs) = C5. Other pieces are shown in Figure [Il
(In the figure, a dotted line indicates the direction to which v cannot be directed.)

Remark 3.7. The above example shows that our decomposition is not always a
Whitney stratification. Indeed, dim S(C1) = 3 and cly4)(S(C1))\S(C1) = C2UCs.
However the subset C U Cj3 is not a union of our 2-dimensional components S(Cjy)

and S(Cs).

Lemma 3.8. The real part Re S(C) = {Re(z) € R | z € S(C)} of S(C) coincides
with C.

Proof. Assume x € Re S(C). Then there exists v € R such that z++/—1v € S(C).
Let H € A[x.]. By definition, v € 7(X¢) C 7(H), and H ¢ Sep(pc, ). Hence
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A - {H17H25H3}

2 2
R ehiH(4) = {Co}
chh-(A) = {C, Cs, C3}
ch%(A) = {C4,C5}
]:'0 fl

FI1GURE 1. Example 3.6]

pc and x are not separated by any hyperplane H belonging to A[x.); we have
ReS(C) c C.

Conversely, assume x € C. Since z and pe are contained in the same chamber
of A[x,, we have Sep(pc,z) N Ax.] = 0. Choose v € T(X¢) \ UHeA\A[XC] T(H).
Then z ++/—1v € S(C). O

Lemma 3.9. If C' € ch%(A), then S(C) is a contractible (2¢ — q)-dimensional
manifold.
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Proof. Let us prove that S(C) is star-shaped. For a point x + /—1v € S(C),
consider the path p(t) with parameter 0 <t < 1:

p(t) =1 —t)pc + tlx +v—1v) = (1 — t)pc + tz) + v —1tv.
We have p(1) = z + v/—1v and p(0) = pe. It suffices to prove that p(t) € M(A)
for 0 <t < 1. If Rep(t) = (1 — t)pc + tx ¢ H, then obviously we have p(t) ¢ Hc.
Suppose (1 — t)pc + tx € H for some t with 0 < ¢ < 1. Then, by assumption,

H € Sep(pc, ). By the definition of S(C), v is transverse to H, so is tv, which
means p(t) € M(A). Hence S(C) is star-shaped. O

Now we have the following:

Theorem 3.10. The complement M(A) of A is a disjoint union of S(C), C €
ch(A), namely,

MA) = || S(©).
Céech(A)
Proof. First we prove that S(C)NS(C’) = when C # C’. Suppose this is not the
case. Then there exists a point = + +/—1v € S(C) N S(C’).

(a) If both C, C”" are in ch%(A) and X¢ # X¢v, then we may assume hg(Xc N
F1) < hg(XeNFT). From LemmaZ5lwe have ¢’ £ C. By Lemmal33 (2),
there exists H € Ax_, N Sep(C,C"). By definition of S(C"),  + v/ —1v €
S(C") implies that

(3.1) Ax,, NSep(, per) = 0
and
(32) NS T(XC/).

It follows from (BI) that « and pc are separated by H, and from ([B:2)) that
v € 7(H). (Note that 7(X¢/) C 7(H).) Then we have z + /—1v ¢ S(C),
which contradicts the assumption; this concludes S(C) N S(C’) = 0.

(b) Next we consider the case that C' and C” are in ch%(A) and X¢ = X¢v. By
Lemma[32 C and C’ are separated by a hyperplane H € Ax,. This implies
that H separates C and C’. By Lemmal3.8, we have Re S(C)NRe S(C") = 0.

(c) Finally, we consider the case C'€ch%(A) and C’ € ch‘}_i(.A), with ¢<¢’. Then
again by Lemma [3.3|(3), there exists a hyperplane H € Ax_, separating C
and C’. As in the case (a), we obtain = + /—1v ¢ S(C). Therefore
S(C)ynsc’) = 0.

Next we prove that

MA) = | S(©).
Cech(A)
Let 2 4+ /—1v € M(A). Recall that A, is the set of all hyperplanes parallel to v,
namely, Ap,) = {H € A | 7(H) > v}. Since v is parallel to hyperplanes in Ay,  is
not contained in H € Ap,j. We can choose a chamber D € ch(A[,)) such that x € D.
Let ¢ = min{i | DN F" # 0}. Since the closure clzq(D) is a convex polytope in
F4 which does not intersect with F9~1, there exists a unique point p € clzq(D) of
the minimum with respect to h,. We can choose X € L(A) such that p = X N F.
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Note that X = (¢4 H and then v € 7(X). There exists C' € ch%(A) satisfying
Xc =X and C C D. We prove that

r++v—1v e S(C).

It is enough to prove that v ¢ 7(H) for H € Sep(z,pc). Note that z and pc
are contained in the same chamber D € ch(Ay,). Hence if H € Sep(x,pc), then
H ¢ Ap,). By definition of Ay, v ¢ 7(H). Therefore v is transverse to H, which
means that x + v/—1v € S(C). O

4. BAsis oF BM-HOMOLOGY

In this section, we shall prove that the closures {clw(4)(S(C))}cecns (a) form a
basis of Hf/_”q(l\/l(A), Z). In §4.0] we determine orientations on our spaces. In §4.2]
we recall the constructions of a basis {[oc] | C € ch%(A)} of Hy(M(A),Z) from
[10]. By computing intersection numbers of cly(S(C)) and [o¢-], in §421 we prove
the main result.

4.1. Orientations. In this section, we shall define orientations for F?, X< and
S(C) by choosing an ordered basis of the tangent spaces. (See chapter 3 of [3] for
generalities of orientations and intersections of manifolds.)

Recall that the subspace F9 is defined by {z € Rf | hyi1(x) = -+ = hy(z) = 0},
where h; (i =1,...,¢) are linear forms. Hence (hy, ..., hq) forms a coordinate of the
space 7. We consider the orientation defined by the ordered basis (Op,, ..., 0h,)
of T,F9 = 7(F9). In particular, the orientation of R’ is determined by the ordered
basis (Op,,--.,0h,). If C belongs to ch%(A), then X¢ is an affine subspace com-
plemental to 2. So (hgt1, ..., he) forms a coordinate of X, and we consider the
orientation determined by the dual basis (Op,,,,...,0k,) With an order. Note that
the intersection number F9¢ - X¢ = (—1)4¢~9) . X - F9 equals +1.

Next we consider the orientation of S(C). By definition, the tangent space of
S(C) at pe is expressed as

Ty S(C) = Ty C & V—1-7(X0).
Thus we define the orientation by (9, Ohys- - - Ohys \/—_16hq+1, ceeyV/=10h,). The
case ¢ = 0 defines an orientation on C* by (9n,,---,0n,, V—10h,, .., V/—10h,)-
We should note that this orientation is different from the usual one defined by
(Ohy s V=10, ,Onys VV—10hy, - - s Onyy V—10h,)-

The rest will be used in §81 Let I = {i1,...,i,} C {1,...,n} be an ordered
subset of ¢ indices, A(I) := {H;,,...,H; } be a subarrangement consisting of ¢
hyperplanes. Assume H;,,..., H; are independent, that is, do;, A--- Adaj, # 0
or equivalently the intersection X (I) := H;, N---MN H;, is a nonempty subspace of
codimension q.

Definition-Lemma 4.1. The set of chambers ch(A(I)) consists of 2¢ chambers.
There is a unique chamber, denoted by Co(I) € ch(A(I)), which satisfies Cp(I) N
Fa=t =.

Proof. The Poincaré polynomial of C*\ Uier Hic is (1+1)?%. In particular, b, = 1.
Hence by Proposition 2.2 |ch%-(A(1))| = 1. O

Choose a normal vector w;, L H;, for each H;, such that Cy(I) is contained
in the half-space H;, + Rso - w;,. Suppose H;,, ..., H; are independent (i.e., the
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intersection X (I) = H;, N---N H;, has codimension ¢ with ¢ < £). Since F is
generic, 9N X (I) is 0-dimensional. Thus by the identification R*/ X (I) ~ F9, the
normal vectors w;, , ..., w;, induce a basis of F7.

Definition 4.2. For an ordered g-tuple I = {i1,...,i,} C {1,...,n}, define e(I)

by
0 if H;,,..., H;, are dependent,
eI)=4¢ 1 if (ws,...,w;,) induces a positive basis of F49,
—1 if (ws,, ..., w;,) induces a negative basis of F9.

4.2. Minimal CW-decomposition. Here we recall results from [I0, §5.2]. For
each C' € ch%(A), there exists a continuous map, unique up to homotopy,

oc : (D%,0D?) — (M%,M9™1),
from the g-dimensional disk to the complement M? = M(A) N F¢ such that

(Transversality) oc(0) = pc € C N F9, and o¢(D?) intersects C' N
F4 transversally in F{ at the point; o¢(D?) h C' = {pc}, and
(Non-intersecting) oc(D?) N C’" = for C" € ch%-(A)\{C}.

These properties guarantee the following homotopy equivalence ([10] 4.3.1]):

(4.1) M? ~ M9 U0 || »p7).
Cech®(A)

where the right-hand side is obtained by attaching g-dimensional disks to M9~1
along doc : 0D — M7 for C' € ch%(A).

Recall that T, M9 ~ 7(F?) & /=1 - 7(F?). We introduce an orientation on
oc by identifying Tp.oc (DY) with /=1 - 7(F?), equivalently, by an ordered basis
(V=10h,,...,V/=14,).

Proposition 4.1 ([10]). (1) [o¢] € Hy(M?,MI~1:Z), (C € ch’(A)) forms a basis.

(2) Hy(M?,Z) = Hy(M?,M?~ 15 Z) = Hy(M(A), Z).

We construct the basis of HQB/XIQ(IVI(A), 7). Let C € ch%(A). Lemma B.8 indi-
cates that

(4.2) clweay(S(C)) = (C x V=1-7(X¢)) N M(A),

which is a closed oriented (2¢—q)-dimensional submanifold of M(.A) because dim X
= £ —q. The closed submanifold cly(4)(S(C)) determines a cycle [cly.4)(S(C))] €
Hyi Y, (M(A), Z).

Theorem 4.3. The classes {[clu(a)(S(C))]}cecns (a) form a basis of the (2(—q)-th

Borel-Moore homology group HQB/X[q(M(A), 7).

Proof. We compute the intersection number of [cly(4)(S(C))] € H3M (M(A)) and
[0(C")] € Hy(M(A)), and show that the intersection matrix

I([clma) (S(C))]s [0(C)D e echt ()

is a triangular matrix with each diagonal entry (—1)2¢=%),
We fix an ordering on {C4, ..., Cp} = ch%(A) in such a way that C; < C; = i <
Jj (e.g. choose an ordering with hqy(Xc, NF?) < hy(Xe,NF?) < -+ < he(Xe,NF9)).
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Since F9¢ and X are mutually complementary in R?, the tangent space Toe C* can
be expressed as

T,.C =T, RE @ vV-1 -T, . Flo V-1 -7(Xc).
The above-mentioned properties and (£2) imply that cly4)(S(C)) intersects
transversally to o¢ if and only if pcr € C. In fact, we have Tpe clma)(S(C)) =
R‘@v/~=1-7(X¢) and T, ocr (D) = /=1-T,_, F4, which implies the transversality
and its intersection number is (—1)9(¢~9). O

5. RELATIONS WITH OS-TYPE GENERATORS

o

As is mentioned in {Il there is a canonical isomorphism ¢ : H1(M(A),Z) —
HZB/XIq(M(A), Z) between cohomology and Borel-Moore homology of M(.A). In this
section, we describe ¢ explicitly by using the basis introduced in the previous
sections.

First note that both H;™ (M(A),Z) and H9(M(A), Z) are dual to the homology
group Hy(M(A),Z). The pairing Hy;™ (M(A), Z) x Hy(M(A),Z) — Z is defined by
the intersection I(-,-), and H9(M(A),Z) x H,(M(A),Z) — Z is defined by the cap
product N (or the integration if we consider de Rham cohomology).

The structure of the cohomology ring H?(M(A),Z) is well studied (see e.g. []),
and especially, by Arnold-Brieskorn’s result, it is generated by logarithmic forms

1 dai
w; = ;
271'\/ -1 (67

fori=1,...,n. The g-th cohomology group H9(M(A),Z) is spanned by w;, .. i, =
Wiy Awiyg A+ Awg, with Hy ..., H;, linearly independent.

Theorem 5.1. Let I = {i1,...,iq} C{1,...,n} be an ordered index (see 1] for
notation). Then
pwr) = (=) De(1) - [elm(S(C))],
C

where C runs over all chambers C € ch%-(A) satisfying C C Co(I) and 7(X¢) =
T(X(1))-
Proof. Let us define S(I) C C* to be
S(I)=Co(I)®vV—-1-7(X(I)).

Then cly4)(S(I)) is a disjoint union of cly(S(C))’s with C' running over all cham-
bers C' € ch%(A) satisfying C' C Co(I) and 7(X¢) = 7(X(I)). It is enough to show
that ¢(wy) = (—1)9¢=9De(I) - cly(S(I)). To do this, we shall consider the pairing
with the homology class [oc/] € Hy(M?,M?~1,Z) = H,(M(A),Z).

First we compute | (o] WI- The complement C*\ U,c; Hic is homotopy equiva-
lent to (C*)9 =~ (S')?. The top homology H,(C*\ Uier Hic, Z) = Z is rank one. If
C' C Cy(I), then [o¢r] is transverse to Cy(I). By applying Proposition 1] to the

arrangement A(I) = {H;,,..., H; }, we obtain the fact that [o¢/] is a generator of
Hy(C“\ U;e; Hic, Z). Similarly, if C" ¢ Co(I), then [oc/] = 0. We have

/ { e(I) i ¢ Co(l),
w[ =
locr]

0 else.
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By a computation similar to the proof of Theorem 3] we have

1(S(I)], [o]) = { (1)1 i ¢ € Co(),

0 else.

This completes the proof. O

Remark 5.2. The correspondences between chambers and de Rham cohomology

gr

oups were investigated by Varchenko and Gel'fand in [9]. Indeed, the cycle S(I)

appeared in their paper.

10.

11.

12.

60
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