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SEMI-ALGEBRAIC PARTITION

AND BASIS OF BOREL-MOORE HOMOLOGY

OF HYPERPLANE ARRANGEMENTS

KO-KI ITO AND MASAHIKO YOSHINAGA

(Communicated by Alexander N. Dranishnikov)

Abstract. We describe an explicit semi-algebraic partition for the comple-
ment of a real hyperplane arrangement such that each piece is contractible and
so that the pieces form a basis of Borel-Moore homology. We also give an ex-
plicit correspondence between the de Rham cohomology and the Borel-Moore
homology.

1. Introduction

Semi-algebraic partitions of algebraic sets have been studied in various fields of
mathematics from geometry to computational algebra. The general theory says
that any algebraic set has a semi-algebraic triangulation. However, not only trian-
gulations, but also other types of “efficient” decompositions are sometimes useful.
The following are motivating examples.

Example 1.1. CP
n = C

n � C
n−1 � · · · � C

1 � {pt}.
Example 1.2. Consider C∗ = C \ {0}. Put

S0 = {reiθ | r > 0, 0 < θ < 2π},
S1 = {z | z ∈ R, z > 0}.

Then C∗ = S0 � S1.

Both of these decompositions reflect (co)homological structures of the manifolds
naturally. More precisely, they are

(i) disjoint unions of contractible semi-algebraic subsets, and
(ii) the closures of the pieces form a basis of Borel-Moore (locally finite) homol-

ogy HBM
∗ (X,Z) (or ordinary cohomology H∗(X,Z) via Poincaré duality).

The purpose of this paper is to generalize Example 1.2 to hyperplane arrange-
ments defined over the real number field R.

There is another reason to expect the existence of such partitions. The comple-
ment of a complex hyperplane arrangement is known to be a minimal space [1, 2, 6],
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that is, a space homotopy equivalent to a finite CW complex with exactly as many
k-cells as the k-th Betti number, for all k. If the arrangement is defined over R, then
the real structures (e.g., chambers) are related to the topology of the complexified
complement ([7, 12]). With the help of real structures, the minimal CW complex
has been explicitly described in [8] and [10]. It is natural to expect that the dual
stratification to a minimal CW complex induces a partition satisfying (i) and (ii)
above.

2. Preliminary

Let A = {H1, . . . , Hn} be an affine hyperplane arrangement in the real vector
space R

�. Let us fix a defining affine linear form αi in such a way that Hi = {αi =
0}. Let L(A) be the set of nonempty intersections of elements of A. We denote by
Lp(A) the set of all p-dimensional affine subspaces X ∈ L(A).

For an affine subspace X ⊂ R�, let us denote by XC = X ⊗R C the complexifica-
tion. Denote by ch(A) the set of all chambers and by M(A) = C

� \
⋃

H∈A HC the
complement to the complexified hyperplanes.

Let F be a generic flag in R�,

F : ∅ = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ F� = R
�,

where each Fq is a generic q-dimensional affine subspace, that is, dimFq ∩ X =
q + dimX − � for X ∈ L(A). Let {h1, . . . , h�} be a system of defining equations of
F , that is,

Fq = {hq+1 = · · · = h� = 0}, for q = 0, 1, . . . , �− 1,

where each hi is an affine linear form on R�. Define

chqF (A) = {C ∈ ch(A) | C ∩ Fq �= ∅ and C ∩ Fq−1 = ∅}.
We assume that F satisfies the following:

Assumption 2.1. For q = 0, . . . , �, Fq
>0 denotes

{hq+1 = hq+2 = · · · = h� = 0, hq > 0}.
(1) For an arbitrary chamber C, if it belongs to chqF (A), then C ∩ Fq ⊂ Fq

>0.
(2) For any two X, X ′ ∈ L(A) with dimX = dimX ′ = � − q (i.e. satisfying

X ∩ Fq = {1pt} and X ′ ∩ Fq = {1pt}), if X �= X ′, then

hq(X ∩ Fq) �= hq(X
′ ∩ Fq).

Note that such a flag always exists. Indeed, we first choose a generic hyperplane
F�−1 in such a way that F�−1 does not separate 0-dimensional intersections L0(A).
In a similar fashion, we choose F�−2 ⊂ F�−1 inductively.

Let us denote Mq := (Fq
C
) ∩ M(A) = Fq

C
\
⋃

H∈A HC. We have the following
propositions (see [5, 11]).

Proposition 2.1. Let A be an arrangement and W q a q-dimensional generic sub-
space. Let A ∩W q be the arrangement on W q induced by A.

(1) Then L(A∩W q) is isomorphic to L≥�−q(A) = {X ∈ L(A) | dimX ≥ �−q}
as posets.

(2) Then the natural inclusion i : M(A) ∩W q ↪→ M(A) induces isomorphisms

ik : Hk(M(A) ∩W q,Z)
∼=−→ Hk(M(A),Z),

for k = 0, 1, . . . , q.
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Proposition 2.2. Let A be a real arrangement and F a generic flag. Then
|chqF (A)| = bq(M(A)).

Let X,Y ⊂ C
� be subsets. We denote by Y the closure of Y in C

� (with respect
to the classical topology) and clX(Y ) = X ∩ Y .

For given C ∈ chqF (A), clFq (C) = C∩Fq ⊂ R� is a q-dimensional polytope which
does not intersect Fq−1. By Assumption 2.1, the vertices of clFq (C) have mutually
different and positive heights with respect to hq (noting that Fq−1 = Fq∩{hq = 0}).
There is a unique vertex p ∈ clFq (C) at which hq|clFq (C) attains the minimum. Then
by Proposition 2.1 (1), there exists a unique intersection XC ∈ L(A) satisfying

{p} = XC ∩ Fq. (Note that in case C ∈ ch0F (A), we consider XC = R
�.)

Definition 2.2. Let X ⊂ R� be an affine subspace. Denote by τ (X) the linear
subspace through the origin which is parallel to X and dim τ (X) = dimX, and
define

A[X] := {H ∈ A | τ (H) ⊃ τ (X)}
to be the set of hyperplanes parallel to X. Note that AX := {H ∈ A | H ⊃ X} ⊆
A[X].

Definition 2.3. Let C ∈ chqF (A). We denote by C̃ ∈ ch(A[XC ]) the unique chamber

with C ⊂ C̃.

Using this notation, we shall define a partial ordering 
 in chqF (A).

Definition 2.4. For C,C ′ ∈ chqF (A), we denote C 
 C ′ if and only if C ′ ⊂ C̃.

The following is easy.

Lemma 2.5. If C 
 C ′, then hq(XC ∩ Fq) ≤ hq(XC′ ∩ Fq).

3. Minimal partition

In this section, we shall introduce the semialgebraic partition.

Definition 3.1. Let p1, p2 ∈ R�. The set Sep(p1, p2) of separating hyperplanes is
defined by

Sep(p1, p2) := {H ∈ A | [p1, p2] ∩H �= ∅},
where [p1, p2] is the closed line segment connecting two points p1 and p2.

Similarly, we also denote by Sep(C1, C2) the set of separating hyperplanes of two
chambers C1, C2.

Lemma 3.2. Let C,C ′ ∈ chqF (A). If XC = XC′ , then Sep(C,C ′) ⊂ AXC
.

Proof. Let H ∈ Sep(C,C ′) and choose a defining equation f , i.e., H = {f = 0}.
Since H separates C and C ′, we may assume C ⊂ {f ≥ 0} and C ′ ⊂ {f ≤ 0}.
Hence XC ∩ Fq ⊂ clFq (C) ⊂ {f ≥ 0}. Similarly, XC′ ∩ Fq ⊂ clFq (C ′) ⊂ {f ≤ 0}.
We have XC ∩Fq ⊂ {f ≥ 0}∩{f ≤ 0}∩Fq = H∩Fq. Then the inclusion XC ⊂ H
follows from Proposition 2.1 (1). This means that H ∈ AXC

. �

Lemma 3.3. Let C ∈ chqF (A) and C ′ ∈ chq
′

F (A).

(1) If C ′ ⊂ C̃, then either C 
 C ′ (with q = q′) or q < q′.
(2) If q = q′ and hq(XC ∩ Fq) < hq(XC′ ∩ Fq), then AXC′ ∩ Sep(C,C ′) �= ∅.
(3) If q < q′, then AXC′ ∩ Sep(C,C ′) �= ∅.
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Proof. (1) First note that C̃ ∩Fq−1 = (C̃ ∩Fq)∩Fq−1. Since hq| ˜C∩Fq attains the

minimum at XC ∩Fq, hq| ˜C∩Fq > 0. Hence C ′∩Fq−1 = ∅ and we have q′ ≥ q. The
assertions thus follow from Definition 2.4.

(2) Suppose that AXC′ ∩ Sep(C,C ′) = ∅. Then C and C ′ are contained in the
same chamber D ∈ ch(AXC′ ) of AXC′ . Since hq|clFq (D) attains the minimum at
XC′ ∩Fq, we have hq(XC ∩Fq) ≥ hq(XC′ ∩Fq). This contradicts the assumption.

(3) Suppose that AXC′ ∩ Sep(C,C ′) = ∅. Then C and C ′ are contained in

the same chamber D ∈ ch(AXC′ ) of AXC′ . Obviously D ∩ Fq′−1 = ∅ and hence
C ∩ Fq = ∅. This contradicts C ∈ chqF (A). �

From now on we fix a base point pC ∈ C ∩ Fq for each C ∈ chqF (A). It is easily
seen that the constructions below do not depend on the choice of pC .

We can identify C
� with the tangent bundle TR� ∼= R

� × R
� by

R� × R� −→ C�

(x, v) �−→ x+
√
−1v.

We also denote x by Re(x+
√
−1v).

Now we introduce the main object of this paper.

Definition 3.4. For a chamber C ∈ ch(A), we define

S(C) =

{
x+

√
−1v ∈ C

�

∣∣∣∣ v ∈ τ (XC), x ∈ R� and
v /∈ τ (H), for H ∈ Sep(pC , x)

}
.

If C ∈ chqF (A), S(C) is an open subset of R� × τ (XC), hence a real (2� − q)-
dimensional manifold.

Example 3.5. Let H = {0} ⊂ R and the arrangement A = {H}. Fix a generic
flag F0 = {−1}. There are two chambers C0 = R<0 and C1 = R>0. Then
ch0F (A) = {C0} and ch1F (A) = {C1}. Then S(C0) = S0 and S(C1) = S1 as defined
in Example 1.2.

Example 3.6. Let A = {H1, H2, H3} be an arrangement of lines on R
2 and fix

a generic flag F• as in Figure 1. Then ch0F (A) = {C0}, ch1F (A) = {C1, C2, C3},
ch2F (A) = {C4, C5}. By definition, we also have XC0

= R2, XC1
= H1, XC2

=
H2, XC3

= H3, and XC4
= H1 ∩H3, XC5

= H1 ∩H2, A[XC0
] = ∅, A[XC1

] = {H1},
A[XC2

] = A[XC3
] = {H2, H3}, A[XC4

] = A[XC5
] = A, C̃0 = R2, C̃1 = C1 ∪ C2 ∪ C3,

C̃2 = C2 ∪C5, C̃3 = C3 ∪C4, C̃4 = C4, C̃5 = C5. Using these data, we can describe
S(C). For example, S(C4) = C4, S(C5) = C5. Other pieces are shown in Figure 1.
(In the figure, a dotted line indicates the direction to which v cannot be directed.)

Remark 3.7. The above example shows that our decomposition is not always a
Whitney stratification. Indeed, dimS(C1) = 3 and clM(A)(S(C1))\S(C1) = C2∪C3.
However the subset C2 ∪C3 is not a union of our 2-dimensional components S(C4)
and S(C5).

Lemma 3.8. The real part ReS(C) = {Re(z) ∈ R� | z ∈ S(C)} of S(C) coincides

with C̃.

Proof. Assume x ∈ ReS(C). Then there exists v ∈ R� such that x+
√
−1v ∈ S(C).

Let H ∈ A[XC ]. By definition, v ∈ τ (XC) ⊂ τ (H), and H /∈ Sep(pC , x). Hence
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Figure 1. Example 3.6

pC and x are not separated by any hyperplane H belonging to A[XC ]; we have

ReS(C) ⊂ C̃.

Conversely, assume x ∈ C̃. Since x and pC are contained in the same chamber
of A[XC ], we have Sep(pC , x) ∩ A[XC ] = ∅. Choose v ∈ τ (XC) \

⋃
H∈A\A[XC ]

τ (H).

Then x+
√
−1v ∈ S(C). �

Lemma 3.9. If C ∈ chqF (A), then S(C) is a contractible (2� − q)-dimensional
manifold.
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Proof. Let us prove that S(C) is star-shaped. For a point x +
√
−1v ∈ S(C),

consider the path p(t) with parameter 0 ≤ t ≤ 1:

p(t) = (1− t)pC + t(x+
√
−1v) = ((1− t)pC + tx) +

√
−1tv.

We have p(1) = x +
√
−1v and p(0) = pC . It suffices to prove that p(t) ∈ M(A)

for 0 ≤ t ≤ 1. If Re p(t) = (1− t)pC + tx /∈ H, then obviously we have p(t) /∈ HC.
Suppose (1 − t)pC + tx ∈ H for some t with 0 < t ≤ 1. Then, by assumption,
H ∈ Sep(pC , x). By the definition of S(C), v is transverse to H, so is tv, which
means p(t) ∈ M(A). Hence S(C) is star-shaped. �

Now we have the following:

Theorem 3.10. The complement M(A) of A is a disjoint union of S(C), C ∈
ch(A), namely,

M(A) =
⊔

C∈ch(A)

S(C).

Proof. First we prove that S(C)∩S(C ′) = ∅ when C �= C ′. Suppose this is not the
case. Then there exists a point x+

√
−1v ∈ S(C) ∩ S(C ′).

(a) If both C,C ′ are in chqF (A) and XC �= XC′ , then we may assume hq(XC ∩
Fq) < hq(XC′∩Fq). From Lemma 2.5 we have C ′ �
 C. By Lemma 3.3 (2),

there exists H ∈ AXC′ ∩ Sep(C,C ′). By definition of S(C ′), x +
√
−1v ∈

S(C ′) implies that

(3.1) AXC′ ∩ Sep(x, pC′) = ∅

and

(3.2) v ∈ τ (XC′).

It follows from (3.1) that x and pC are separated by H, and from (3.2) that
v ∈ τ (H). (Note that τ (XC′) ⊂ τ (H).) Then we have x +

√
−1v /∈ S(C),

which contradicts the assumption; this concludes S(C) ∩ S(C ′) = ∅.
(b) Next we consider the case that C and C ′ are in chqF (A) and XC = XC′ . By

Lemma 3.2, C and C ′ are separated by a hyperplaneH ∈ AXC
. This implies

thatH separates C̃ and C̃ ′. By Lemma 3.8, we have ReS(C)∩ReS(C ′) = ∅.
(c) Finally, we consider the case C∈chqF (A) and C ′∈chq

′

F (A), with q<q′. Then
again by Lemma 3.3(3), there exists a hyperplane H ∈ AXC′ separating C

and C ′. As in the case (a), we obtain x +
√
−1v /∈ S(C). Therefore

S(C) ∩ S(C ′) = ∅.
Next we prove that

M(A) =
⋃

C∈ch(A)

S(C).

Let x+
√
−1v ∈ M(A). Recall that A[v] is the set of all hyperplanes parallel to v,

namely, A[v] = {H ∈ A | τ (H) � v}. Since v is parallel to hyperplanes in A[v], x is
not contained in H ∈ A[v]. We can choose a chamber D ∈ ch(A[v]) such that x ∈ D.

Let q = min{i | D ∩ F i �= ∅}. Since the closure clFq (D) is a convex polytope in
Fq which does not intersect with Fq−1, there exists a unique point p ∈ clFq (D) of
the minimum with respect to hq. We can choose X ∈ L(A) such that p = X ∩Fq.
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Note that X =
⋂

H∈Ap
H and then v ∈ τ (X). There exists C ∈ chqF (A) satisfying

XC = X and C ⊂ D. We prove that

x+
√
−1v ∈ S(C).

It is enough to prove that v /∈ τ (H) for H ∈ Sep(x, pC). Note that x and pC
are contained in the same chamber D ∈ ch(A[v]). Hence if H ∈ Sep(x, pC), then
H /∈ A[v]. By definition of A[v], v /∈ τ (H). Therefore v is transverse to H, which

means that x+
√
−1v ∈ S(C). �

4. Basis of BM-homology

In this section, we shall prove that the closures {clM(A)(S(C))}C∈chqF (A) form a

basis of HBM
2�−q(M(A),Z). In §4.1, we determine orientations on our spaces. In §4.2,

we recall the constructions of a basis {[σC ] | C ∈ chqF (A)} of Hq(M(A),Z) from
[10]. By computing intersection numbers of clM(S(C)) and [σC′ ], in §4.2, we prove
the main result.

4.1. Orientations. In this section, we shall define orientations for Fq, XC and
S(C) by choosing an ordered basis of the tangent spaces. (See chapter 3 of [3] for
generalities of orientations and intersections of manifolds.)

Recall that the subspace Fq is defined by {x ∈ R� | hq+1(x) = · · · = h�(x) = 0},
where hi (i = 1, . . . , �) are linear forms. Hence (h1, . . . , hq) forms a coordinate of the
space Fq. We consider the orientation defined by the ordered basis (∂h1

, . . . , ∂hq
)

of TxFq = τ (Fq). In particular, the orientation of R� is determined by the ordered
basis (∂h1

, . . . , ∂h�
). If C belongs to chqF (A), then XC is an affine subspace com-

plemental to Fq. So (hq+1, . . . , h�) forms a coordinate of XC , and we consider the
orientation determined by the dual basis (∂hq+1

, . . . , ∂h�
) with an order. Note that

the intersection number Fq ·XC = (−1)q(�−q) ·XC · Fq equals +1.
Next we consider the orientation of S(C). By definition, the tangent space of

S(C) at pC is expressed as

TpC
S(C) � TpC

C ⊕
√
−1 · τ (XC).

Thus we define the orientation by (∂h1
, ∂h2

, . . . , ∂h�
,
√
−1∂hq+1

, . . . ,
√
−1∂h�

). The

case q = 0 defines an orientation on C� by (∂h1
, . . . , ∂h�

,
√
−1∂h1

, . . . ,
√
−1∂h�

).
We should note that this orientation is different from the usual one defined by
(∂h1

,
√
−1∂h1

, ∂h2
,
√
−1∂h2

, . . . , ∂h�
,
√
−1∂h�

).
The rest will be used in §5. Let I = {i1, . . . , iq} ⊂ {1, . . . , n} be an ordered

subset of q indices, A(I) := {Hi1 , . . . , Hiq} be a subarrangement consisting of q
hyperplanes. Assume Hi1 , . . . , Hiq are independent, that is, dαi1 ∧ · · · ∧ dαi� �= 0
or equivalently the intersection X(I) := Hi1 ∩ · · · ∩Hiq is a nonempty subspace of
codimension q.

Definition-Lemma 4.1. The set of chambers ch(A(I)) consists of 2q chambers.
There is a unique chamber, denoted by C0(I) ∈ ch(A(I)), which satisfies C0(I) ∩
Fq−1 = ∅.

Proof. The Poincaré polynomial of C� \
⋃

i∈I Hi,C is (1+ t)q. In particular, bq = 1.
Hence by Proposition 2.2, |chqF (A(I))| = 1. �

Choose a normal vector wik ⊥ Hik for each Hik such that C0(I) is contained
in the half-space Hik + R>0 · wik . Suppose Hi1 , . . . , Hiq are independent (i.e., the
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intersection X(I) = Hi1 ∩ · · · ∩ Hiq has codimension q with q ≤ �). Since Fq is

generic, Fq ∩X(I) is 0-dimensional. Thus by the identification R�/X(I) � Fq, the
normal vectors wi1 , . . . , wiq induce a basis of Fq.

Definition 4.2. For an ordered q-tuple I = {i1, . . . , iq} ⊂ {1, . . . , n}, define ε(I)
by

ε(I) =

⎧⎨
⎩

0 if Hi1 , . . . , Hiq are dependent,
1 if (wi1 , . . . , wiq ) induces a positive basis of Fq,
−1 if (wi1 , . . . , wiq ) induces a negative basis of Fq .

4.2. Minimal CW-decomposition. Here we recall results from [10, §5.2]. For
each C ∈ chqF (A), there exists a continuous map, unique up to homotopy,

σC : (Dq, ∂Dq) −→ (Mq,Mq−1),

from the q-dimensional disk to the complement Mq = M(A) ∩ Fq
C
such that

(Transversality) σC(0) = pC ∈ C ∩ Fq , and σC(D
q) intersects C ∩

Fq transversally in Fq
C
at the point; σC(D

q) � C = {pC}, and
(Non-intersecting) σC(D

q) ∩ C ′ = ∅ for C ′ ∈ chqF (A)\{C}.
These properties guarantee the following homotopy equivalence ([10, 4.3.1]):

(4.1) Mq � Mq−1 ∪(∂σC)

⎛
⎝ ⊔

C∈chqF (A)

Dq

⎞
⎠ ,

where the right-hand side is obtained by attaching q-dimensional disks to Mq−1

along ∂σC : ∂Dq → Mq−1 for C ∈ chqF (A).

Recall that TpC
Mq � τ (Fq) ⊕

√
−1 · τ (Fq). We introduce an orientation on

σC by identifying TpC
σC(D

q) with
√
−1 · τ (Fq), equivalently, by an ordered basis

(
√
−1∂h1

, . . . ,
√
−1∂hq

).

Proposition 4.1 ([10]). (1) [σC ] ∈ Hq(M
q,Mq−1;Z), (C ∈ chqF (A)) forms a basis.

(2) Hq(M
q,Z) � Hq(M

q,Mq−1;Z) � Hq(M(A),Z).

We construct the basis of HBM
2�−q(M(A),Z). Let C ∈ chqF (A). Lemma 3.8 indi-

cates that

(4.2) clM(A)(S(C)) = (C̃ ×
√
−1 · τ (XC)) ∩M(A),

which is a closed oriented (2�−q)-dimensional submanifold ofM(A) because dimXC

= �− q. The closed submanifold clM(A)(S(C)) determines a cycle [clM(A)(S(C))] ∈
HBM

2�−q(M(A),Z).

Theorem 4.3. The classes {[clM(A)(S(C))]}C∈chqF (A) form a basis of the (2�−q)-th

Borel-Moore homology group HBM
2�−q(M(A),Z).

Proof. We compute the intersection number of [clM(A)(S(C))] ∈ HBM
2�−q(M(A)) and

[σ(C ′)] ∈ Hq(M(A)), and show that the intersection matrix

I([clM(A)(S(C))], [σ(C ′)])C,C′∈chqF (A)

is a triangular matrix with each diagonal entry (−1)q(�−q).
We fix an ordering on {C1, . . . , Cb} = chqF (A) in such a way that Ci 
 Cj =⇒ i <

j (e.g. choose an ordering with hq(XC1
∩Fq) ≤ hq(XC2

∩Fq) ≤ · · · ≤ hq(XCb
∩Fq)).
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Since Fq and XC are mutually complementary in R�, the tangent space TpC
C� can

be expressed as

TpC
C

� = TpC
R

� ⊕
√
−1 · TpC

Fq ⊕
√
−1 · τ (XC).

The above-mentioned properties and (4.2) imply that clM(A)(S(C)) intersects

transversally to σC′ if and only if pC′ ∈ C̃. In fact, we have TpC
clM(A)(S(C)) =

R�⊕
√
−1·τ (XC) and TpC′σC′(Dq) =

√
−1·TpC′Fq, which implies the transversality

and its intersection number is (−1)q(�−q). �

5. Relations with OS-type generators

As is mentioned in §1, there is a canonical isomorphism ϕ : Hq(M(A),Z)
∼=−→

HBM
2�−q(M(A),Z) between cohomology and Borel-Moore homology of M(A). In this

section, we describe ϕ explicitly by using the basis introduced in the previous
sections.

First note that both HBM
2�−q(M(A),Z) and Hq(M(A),Z) are dual to the homology

group Hq(M(A),Z). The pairing HBM
2�−q(M(A),Z)×Hq(M(A),Z) → Z is defined by

the intersection I(·, ·), and Hq(M(A),Z)×Hq(M(A),Z) → Z is defined by the cap
product ∩ (or the integration if we consider de Rham cohomology).

The structure of the cohomology ring Hq(M(A),Z) is well studied (see e.g. [4]),
and especially, by Arnold-Brieskorn’s result, it is generated by logarithmic forms

ωi =
1

2π
√
−1

dαi

αi
,

for i = 1, . . . , n. The q-th cohomology group Hq(M(A),Z) is spanned by ωi1,...,iq =
ωi1 ∧ ωi2 ∧ · · · ∧ ωiq with Hi1 , . . . , Hiq linearly independent.

Theorem 5.1. Let I = {i1, . . . , iq} ⊆ {1, . . . , n} be an ordered index (see §4.1 for
notation). Then

ϕ(ωI) = (−1)q(�−q)ε(I) ·
∑
C

[clM(S(C))],

where C runs over all chambers C ∈ chqF (A) satisfying C ⊂ C0(I) and τ (XC) =
τ (X(I)).

Proof. Let us define S(I) ⊂ C� to be

S(I) = C0(I)⊕
√
−1 · τ (X(I)).

Then clM(A)(S(I)) is a disjoint union of clM(S(C))’s with C running over all cham-
bers C ∈ chqF (A) satisfying C ⊂ C0(I) and τ (XC) = τ (X(I)). It is enough to show

that ϕ(ωI) = (−1)q(�−q)ε(I) · clM(S(I)). To do this, we shall consider the pairing
with the homology class [σC′ ] ∈ Hq(M

q,Mq−1,Z) ∼= Hq(M(A),Z).
First we compute

∫
[σC′ ]

ωI . The complement C� \
⋃

i∈I Hi,C is homotopy equiva-

lent to (C∗)q � (S1)q. The top homology Hq(C
� \

⋃
i∈I Hi,C,Z) ∼= Z is rank one. If

C ′ ⊂ C0(I), then [σC′ ] is transverse to C0(I). By applying Proposition 4.1 to the
arrangement A(I) = {Hi1 , . . . , Hiq}, we obtain the fact that [σC′ ] is a generator of

Hq(C
� \

⋃
i∈I Hi,C,Z). Similarly, if C ′ �⊂ C0(I), then [σC′ ] = 0. We have∫

[σC′ ]

ωI =

{
ε(I) if C ′ ⊂ C0(I),
0 else.
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By a computation similar to the proof of Theorem 4.3, we have

I([S(I)], [σC′ ]) =

{
(−1)q(�−q) if C ′ ⊂ C0(I),
0 else.

This completes the proof. �
Remark 5.2. The correspondences between chambers and de Rham cohomology
groups were investigated by Varchenko and Gel′fand in [9]. Indeed, the cycle S(I)
appeared in their paper.
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