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Abstract 

The problem of the potential formation in a quuistaliomu:y pluma Rowing along 

open masnetic fields lo a wall is heated usin& a kineLic description (or the motion of 

particles. lnRuences of spatial variation o( magnelic field strensth, ionin.tion of neutral 

gae,existenceofenergeticelectrons,andsecondaryeledronemilllliononpol.ential(or

mationateinvestiptedtheoretically. UniversalpropertiesolthequasisLationaryplasma 

Dow are demonstrated. 

In cha.pter I, historici.l survey of theon~tical worb related to this thesis, otnd the 

purpoee and sc:ope of this work are described. 

In chapter 2, the plasma.sheaih equation for a collisionless plasma senerated in a 

divergent open magnetic field is formulated. Outsidetheshealh, an analytic solution 

of this equation is obtained. The ion distribution function, the wall potential, and the 

ener8)' and pauicle flux are explicitly calculated. The plasma-sheath equati011 is i.lso 

solved nu~rically for YVious profiles of the macnetic field. 

In chapter 3, effeets o{ an expanding m•netic field on the pla&mi. presheal.h are 

investigated numerically. It is shown that pot.enUal drop in the presheath is remarkably 

increased by applying an expandiq mapetic field. An effeet of a nonuniform masnetic 

fieldon thesheathformationisalsodiscussed. 

In chapter 4, the electrostil.tic potential in il. collisioaless plasma flowing out through 

lhe mloJMtiC lhroal is analyzed under lhe condition of no particle source in il. plasma. A 



monotonically fallinA pot.ential is (ound Lo build up due Lo nonuniformity of the m~~&netic 

fteld only if the seneraliled Bohm criterion is marginally satisfied at \he mqnetic throat. 

A pot.ential profile is stronAly dependent upon the particle density of electrons ttapped 

iutheopenresWn. 

lnchapler5,developmentolthesteady-statepot.entialinalwo-electron-tempera.ture 

plasma in ((mtact with the wall is investisaled in onler to clarify contribution of enersetic 

electrons to the sheath and presheathformal.ion. Thedoublela,yers\ructureisCoundto 

beset up in the pl~~~~madue Loself-consistentseparationoftwoelecLroJJspecie&. 

lnchapter6,theelecLrostaticshea.tharu:l.theheatHowofa\wo-electron-temperature 

l'lil>f.ma in the presence of secondary electron emis&ion are invesliga.t.ed. It is shown that 

the ~piKe-Charse elfect of hot ekctrons afl'ecl.a to suppress seeondary elecUOn eminion, 

if the hot· to cold-electron tempera.tureratioiso(theorderoflD. 

In chapter 7, the main results of this \hais are summarincl. The problelrui lef't in 

this the>isarealsomentioned. 
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Willl!l 

Introduction 

Fonna.tion o( the eleclroslatic potential in a plasma Rowing loa wall, one oi the oldest 

problem in plasmiL physics, is important for nurly all plasma applications ; A plasma 

must be bounded by some confining struc:ture, e.s., a limiter or the wall of the Y&Cuum 

ve~sel. Since edge plasmas in fusion devices, for inst.anee, are of powing interest, it is 

increasin&iy important. Nevertheleas, bec1.wse of its inherent difficulty it hu only been 

solved in some special cues. The Miilysis is complicated not only by the efl'ecls involved 

at the boundary but also by sl.rq inhomogeneity, which requires a kinetic treatment. 

The prolmm of calculatiag the characteristics of a plasma Bowing along a spatially 

varying macnetic field arises in a number of plasma eonfigurations for fusion research. 

Potential along masnetic field lines in the repon bounded by a wall becomes an issue 

when we approach the subjed of the Wal thermal transport of electrons in mirror 

machines jl,2] or the subject of the plasma flow in the open-field line region of field

reversed configuril.tions (3). Knowlei~ of Lhe potentiiil vuiil.tion as well u the ion 

pa.rLide and eneru fluxes Lo the will is important in the lheory of diverl.ols and limiters 



of closed dericu like stellerators or LokamUs (4,5]. Moreover, knowledJe of the potential 

variali<>ll along an ex.pandins masnetic field is the key Lo knowina parameten ol a plasma 

(ordesignoradirectenergyconvertorandforevaluationo£ilsefficiency(6,7].lnthe 

l're,;enceofadive~aentopenmagneticfield,ionsareacceleratedl.oll'ardthewallandtheir 

density drops acconl..inaJy. Therefore, spatial variation of the rnasnetic field provides a 

potential formation mechanism. The expanding macnetic field will be available not. only 

fur enlaryment or the potential drop alolll field lines but We for stabilization or the 

sheath potential. 

On the other hand, a plasma with enerplic electrons is produced due to stroll& 

6eldsoiradiofrequency waves in various laboratory devices, e.g., in Krape-offlayer of 

Lokamak (8,9) or in the open end reaion of the tandem mirror (10). The appearance o( 

energeticelectronsispredict.edLohavedramaticeffectsonthepotentialfonnat.ioninthe 

pla.;ma because the potential profile is closely iiS50Ciated with the electrone distribution. 

llot.terelectronsalsoinducellignificantemi$6iono£secondaryelectrons, which can lead 

to marked reduction of the sheath potential andenh;utCI!JIII!ntoftheheatllowt.owalls. 

Thus, an admixture or the enerset.ic eledroru; and the secondary electron emiseion from 

the wall are of interest in the 1tudy of potential formation 1111d pluma tr&n~port. 

In this thesis, we theoretically examine the behavior of a plasma llowiR& to a wall 

in the presence of a nonuniform magnetic field, an eneraetic eledron population, or 

the secondary electron emiuion. The fo11owing sections present hislorical survey of 

theoretical works that describe the behavior of a plasma in contact with a wall, and 

describe the purpose and Kopeofthis work. 



1.1 SURVEY OF THE THEORY OF A PLASMA 

IN CONTACT WITH A WALL 

This »urvey is n:shided to th~oretin.l investiptions o( polentiill formation in a 

plasma bounded by ;absorbing walls. Proye&& of the theoretical treatment of this proD-

lem has bRn m;ade by a number of wod1ers Oftr mMy yean;. One or the earliest kinetic 

analysis of the potential in i!. bounded collisionless plasma was performed by Lanamuir 

[II) and Tonks and Lansmuir (12) in context of disch;uge pliWJlas about six decades ago. 

Their Wnous model is ch;yacl.t!rized by the frM fall of ions onynating from ionization of 

cold neutrals. Tonks and LanJmUir introduced the subdivisioa in separ1.te pluma and 

sheath regions whh two scales o( the Debye lenath lD and system length £, and solved 

theplasmaequationincylindricalandinplanegeomet.rybyseriesexp&nsion. Over the 

yearsthereha.vebeen anumberofrefinemenl&tothiaea.rly work(l2-38). 

Theexplicitformulationandclearinterpretationofthesheathconditionisduelo 

Bohm (13]. Bohm suges~d that there may be a small electric field in the pl•ma that 

accelerates ions up lo and beyond the acoustic velocity before they en~r the sheath. 

A decade la~r, Harrison and Thompr;on (14] more thoroU&hly solved the TOJJb and 

Lan&muir pl;u;ma equation in plane ~OJmtry and derived a ~neralized kinetic formu· 

lalion or Bohm's sheath criterion valid under rather seneral coDCiilions [15,16,17]. The 

validity or the ~neralized Bohm cri~riOJJ ror the c;u;e or low velocity ions located at the 

plasma-sheath boundary was subsequenll.y discussed by Hall [18,19]. 

CarU&O and Cavaliere (20] reiavesti8ated the plane problem with emphasis oa a sys-



tem&lic two-scale founalism. Unfortunately, the separation ofler13th scales makes makh· 

ing one solution to the other impoeaible. The plasma-sheath equation was then solved 

numerically by Parker (21] for radial variations o{ the potential in a plasma column and 

Self (22] for potential variations alon& the uis of a plasma column with finite lD/ L 

avoiding Lbe subdivision in plasma aDd sheath rqions. Self also obtained numerical 

solutions Lo the asymptotic problem lD/ L -+ 0 in various geometries [23). Woods [24.) 

and Kino and Shaw [25) showed that a simple fluid approach is suitable to describe basic 

l"eatures of the sysl.cm with reasonable ~~JtWment. This provides a basis for numerous 

subsequent investigations accounting for various additional effects. 

The first model to include warm ions in the quasineutral plasma region is due to 

Hu and Ziering [26], who anume that the distribution of ions incident at the plasma

sheath boundary is an accelerated cutofF Maxwelliu. Emmert et aJ. (27) extended the 

model of Hu ilKI Ziering, allowing for a ~neral ion distribution function. The ion source 

distributionfunctionischosensuchthattheiondistributionisMaxwellianintheabscnce 

of ilJ\Y electric fields. They solve the resulting integrodifl"erenlial plasma-sheath equation 

numerically for small but finite values o{ lD/ L. An analytic solution of the qua&.ineutral 

integral plasma equation is also provided, which compared well the numerical solutions 

for smaU lD/L in the plasma rqion. 

Bissell and Johnson (28) have developed an analytic model of the plasma. rqion 

baseduponaMaxwellianionsourcefunction.Thiscboiceofsource(unction,foracon-

stant potential, lei'ds to an ion difiribution function that is singular at zero velocity. 

The generalized Bohm criterion is used as the boundary condition at the pluma-sbeath 



boundary. In a later paper, Bissell [29) showed that the model o{ Emmert E"f al. satisfies 

the generalized Bobm criterion at the boundary. Scheuer iiUid Emmert. (30] analytically 

solved for the quasineutral potential profile with a Maxwellian ion source [unction with· 

out applying the generalized Bohm criterion a a boundary condition. The solutions 

are shown to obey this criterion within numerical error. Bissell et al. (31) presented 

a detailed discU&Sion of thE" source models and a comparison with Huid theories, and 

Scheuer and Emmert (32) also showed applicability of the fluid equation to the presheath 

for collisionless plumas with a &OUKe of warm ions. 

Riemann (33,34,35) and Berg ~ al. (36] discussed the basic features or the plasma· 

sheath transition and their relation l.o the Bohm criterion using a. zero-Debye-length 

model. h is shown that the generalited. Bohm criterion is marginally satisfied if the 

electrk:fieldissi~J~u\arattbesheathedge,asitisinthemoc:lelsofBisselland Johnson, 

and Scheuer and Emmert. Riemann also poin!.s out that the field sina:ularity at th<= 

boundary is adirectco~~~equenceofthe&OUrce region. Schwaser and Birdsall (37) and 

Procassini~al. [38)usedafullykineticparticle-in-cellmoc:leltoHif·consist.entlydeter· 

mine the steady-stale pot.ential profiles in a collisionless bounded plasma. The resul!.s or 

the potential drops obtained (rom the simulatious are compiired well to those from the 

theories.lntheseinvestigationstheionkineticsissovernedbyionizationofneutrals. 

A collision dominated plasma is usually described in terms of difl'usion and mobilhy. 

The efl'ects of charge exeha~J~ecollisions or CoulombcollisioRJ on the presheath have been 

treated by many workefll (39-50). Persson (39) and Self and Ewald (40) baa treated the 

problem of a weakly ionized plasma, in which the dominant process is charse exchange 



collisions. They use Ruid equations to describe the ion motion and obh.in solutions for the 

densityandvelociLyofLheionsaea(unctionofposition. Perssonisthefinsttorecosnize 

the universal role ol ion inertia for the presheath mechanism. A kinetic approach was 

used by Chekmarev [41), who take into account ion-neutral collisions by U&i.ng Hamel's 

collision model. Thefintself-conaisl.entkineticanalysisofacollisional presheath was 

presenled by Riemann [42]. For a. charge excha~ model with cold neutrals baeed on 

the usumption of constant mean free path , Riemann was able to &ive the analytic 

solution or the plasma sheath transition including the ion distribution function and the 

self-consistent potential variation. Biehleret al. (45] extended the analysis to a charge 

exchanse model with hot neutrals on the assumption oi constant collision frequency. 

Scheuer and Emmert [46]trealed ion collisions by us.ing the BCK collision operator, otnd 

Koch and Hitchon [47] numerically investigated the efl"ccts of chaz-ge exchange collisions 

using •nore realistic collision model. These works showed that as the number of charge 

exchangecollisionsincreases,thepresheath potentialdropalsoincreaeesduetotherole 

olioninertia. 

Particle simulation oi lra115porl in a bounded Coulomb collisional plasma was car

ried out by Takizuka et al. [48]. A particle-in-cell code has been coupled to a Monte 

Carlo binary particle model of Coulomb collisiOIIB : This code provides a fully kinetic 

self-consistent description of transport and potential (ormation in one spatial dimension 

Md two velocity components. The dependence o{ plasma transport on Coulomb colli

sionality is investigated by v;u-ying collision frequency, and the limitations o{ the fluid 

description of collisional plasma.transportarediecussed. Several yean later, Procassini 



and Birdsall(4.9] reinvest.igat.ed ~ransport in a bounded Coulomb collisional pl~~t~mil using 

a simulation code billed upon the Silllle methodology, bu~ increa~ing ~he number of par· 

tides per grid cell. Procassini and Birdsaii(SO] ill&o combined particle-in-cell me~hods 

withcharged/neutralinteractiOJJstocalculatep.lasmatransportthroughahighrecydiJII 

divert.or 5erape-oll" layer in a t.okamak. 

In the models mentioned above, the plasma is either unmapetized or the magnetic 

field is uniform and normal to the wall. The Lorenz~ force in aD oblique ffiii!IIC!~ic field 

or in a spatially Yarying mi.!'U!tic field provides a mechat~ism of the presheath formatiOJJ 

(51-59,64-66]. To evaluate t.ransport l.o limiten or divert.or plates of tob.maks, Chodura 

(51,52,53) acoounted for field lines intenecti111 the wall at small angle, dis~inguishing a 

p.lasma presheath and a m~tic presheath. Beyond the Bohm criterion at the sheath 

boundary Chodura postulates a second condition of supersonic flow along magnetic field 

lines at the entrance of the magnetic presheath. DeWald and Bailey (54) used a particle· 

in-cell method for modeling a boundary plaama in which ~he magnetic field interseds 

thewallatanobliqueangle. 

Plasmil flow alq il ncmuniform magnetic field to a wall remained unsolved until re· 

cenlly. Sato et al. (55) Cormulated the pliWDa-sheath equiltion for a collisionleas pluma 

with a finit.e-temperature particle &ouKe in ilfl expandiJII magnetic field. They analyt

ically solve the plasma equation for a model magnetic field and exp]ieitly express the 

potential profile, the potential at the sheath edge, and the wall pol.ential as weU as the 

particle and energy ftuxes. Hussein ilnd Emmert (56) numerically simulated the same 

problem solved by Sato et al. for a wider ranp o( mirror ratios and compared their 



simulillion resulls with the analytical solutions. Huuein and Emmert also investipted 

the dependence or the presbeath potential on the spatial distribution both or the par

tide source and or the masnelic field strength. In a later paper, Sato and Miyawald 

(S7) systematically investipted elfeels o[ an expand.ins magMlic field on the sheath and 

prnsheath [ormation by numerically solving the plasma equation. Sato and Miyawaki also 

check validity of their previous analysis (55) and simulation resulls obtained by Hussein 

and Emmert (56]. 

Hussein and Emmerl(58) developed a kinetic code [or simulation of plasma How in 

thl' ed~e region or slellaralors, considerillJ diver.nt magnetic field lines and neutral ps 

recycling at the neutralizer plate. Hitchon et al. (59) numerically treated a stellarator 

divertor ilfi a collisional presheath under the inHuence of a magnetic field, inlroducins a 

simplified model witl1 a BGK collision term and the averaged mapetic moment. 

Potential control alo111 spatially varying magnetic ftux tubes has been a main sub

ject or mirror confinement. Althoush there have been several models to calculate the 

uilll potential profile [60-63), the region considered in alma;t all worb was restricted 

to the confinement region. Rognlien and Brengle [64] investigated the characteristics 

of a plasma flowins throush a magnetic mirror, using the ftuid code that solves [our 

lime-dependent moment equations. Rosnlien and Brengle round the sonic transition o[ 

the plasma Row velocity at the mirror throat. Recently, Sato et al. (65,66) kinetically 

treated the problem of the potential formation in a collisionle55 quasistillionary plasma 

Rowing through the magnetic throat to a wall. Necessary conditions [or the formation 

of stationary potential are derived on the assumption or no particle source in a plasma. 



Sat.o el al. [66) also discuss pO&Bibility of potential control in the open reaion by the com-

bination of aa expandir13 masnetic field and the ECRU healin&, illushalin& numerical 

solutionstoPoisson'sequation. 

Each or the preceding models assumes thai. the electron consists of only one com-

poncnt. Formation of double layer in a multi-component pliiBma, which is a physically 

inlereslingsubjecl,hiiBbeenstudiedextensivelyduringlhelasltwodecades(seethcre-

views (67,68,69) and the references therein). The expansion of a two-electron-population 

plasma into vacuum has also been examined in connection with the expandir13 corona of 

a laser-produced plasma both experimentally and theoretically ; Tbe development or a 

rarefaction shock in a plasma, which hasadoublelayerstructure, has been verified by 

a number of theoretical analyses [70-73]. The number of theoretical works on a plasma 

llow with difFerent compoa.ents of neptive particles, however, is limited (15,73-78). 

Boyd and Thompson [15) presen1-ed a modified form of the Bohm criterion in a plasma 

with negative ions. ltatani (74) discustedcomplex behaviors of the sheath of a plasma 

with ne1ative ions, calculating structure of the sheath potential. The possibility of 

bifureation of the potential al the plasma-sheath boundary is pointed out as one of the 

seasons of complexity of reactive plasmas. Takamura (75) analyzed the shealh potential ,/. 

apditsstructureforaplasmawitbaaenerseticelectronpopulation.neftuidequations 

are solved for a three component plasma by Schott (76) to describe the efl'ect of energetic 

primary electrons on the whole bounduy layer includilll the shealh resiOD- Br;Uthwaile 

andAilen[77)discussedtbeconditionforthesheathformalioninaplasmawiLhnegative 

ions for the special case of a spherical probe col\ectir13 cold ions. Recently, Sato and 



Miyawaki (78] investigaLed development or the steady-state potential owin& to ioni:ntion 

or neutral gas in a two-electron-temperature pli115ma using the VI8110Y-PoiBBOR equation. 

AstablestationarypotentialstructuresatisCyingtheVIasov-Poissonequationisobtained 

over the whole range or plasma pariUDeten;. The current-rree double layer is round to 

build up in a plasma both due to se!C-consistent separation oC two electr011 species and 

duetoionizationofcoldneutrals. 

One or practically important subjects to undenstand plasma-wall interactions in fusion 

ri'Seillch is the inDuence or secondary electron emission due to particle bombardment 

at the wall (79,82-85]. Electron injection from an emissive plMe hu also remarkable 

elfecls on potential development and plasma transport (80,81]. The space-charp elfect 

ofoecondary electfOJl was firstdisc:ussed by Langmuir (II], and the elfectorseccmdary 

electron emission on heat transport throush the sheath was fint desc:ribed by Hobbs 

and Wes&OD (79). Hobbs ;md We&IIOII show that a double sheath structure is Conned in 

front or the wall under strong secondary electron emission so ;u. to limit the coefficient or 

electron emililiiion to a value smaller than unity. The situation Cor a hot electfOJl-emitting 

boundary has been invest.igaLed by Shcherbinio (80] and Prewett and Allen (81]. 

Harbour and Harrison (82,83] analytically aHeSRd the elrects or secondary electron 

emission upon the plasrnil. transport ilrtd upon the potential or the sheath at divertot 

tarset or a tokamak fusion reactor. Sizonenko (84] found the solution to the sheath 

equation correspondins to a negative charsed sheath under strong secondary electron 

emission. The rate or plasma electron coolins due to contact with the wall was calculated. 

Franklin and Han (85] examined the beam-plasma instability due to secondary electron 

10 



emission usingpou:ticle-in-c:ellsimulations. 

Recently, lshi&uto and Sat.o (86] investipted potential formation due to contKt be

tween an emissive plane electtode and eollisionless plasma by usirl! a one-dimensional 

pou:tide-in-cell model. The shudure 1.11d potential drop in the sheath are shown for a 

wide r1.11ge of paramete[S of 111 injected elechon beam. Sato and Miyawaki [87] inves

tia;ated theheatftowofatwo-electron-temperaturepliWJlain thepresenceofelectron 

emission. The hotter electron is found to form the negative space-charge layer, provided 

a hot- t.ocold-electrontempera.turera.lioislargerthan 10 ;Thislayerhastheefl'ect 

exhibitingsecondou:y electron emission. 

1.2 PURPOSE AND SCOPE OF THE PRESENT WORK 

As mentioned in the historical survey, one important aspect of a plasma flowing to 

a wall that was not included. in analyses published before the present series of works is 

spatial variation of the magnetic field : nonuniformity oC the magnetic field provides the 

presheath mechanism through divergence of panicle ftux and convertion of kinetic energy 

perpendicul;u: t.o field lines int.o parallel kinetic energy. Anothet aspect isex.istenceof 

energetic electrons which hilll dramatic efl'ects on the potential {ormatioo through self

consistent separation ol two electron species and through inductioo ol secondary electron 

emission. In tbe open region of priKtical confinement systems for fueioa research, one 

needs to consider these aspects in order to de~Cribe the behavior of a plasma Rowing t.o 

II 



a wall. 

The present series oC works have sLarted with the purpose to Rri(y characteristics 

of the polenr.ial rormed in open field plasmas related to the controlled thermonuclear 

research. Influences o( an expanding masnetic field, exi&tence of enersetic electrons, 

and/or secondary electron emission on the plasma flow are investigated on the base of 

the kinetic theory. 

In chapter 2 and 3, sheath and presheath of acollisionless plasmaoriginatin& in an ex

llalldingmagneticfieldareinvestigatedbyusingbothanalyticandnumericalapproacbes. 

In chapter 2, the integodilrerential plasma-sheath equation Cor a plasma with arbitrary 

ion temperature is rormulated. Oulaide the sheath, this equation is solved analytically. 

In addition, the wall pot.ential, ener&Y and particle Ruxes, and the ion distribution (unc

tionareexpressedexplicitly.Theoonditionforsheathl'ormationischeckedbyapplying 

the generali:cd Bohm criterion to the analytic soJ11tion. The pb111ma-sheath equation is 

also solved numericallyforvari0111 profiles of the magnel.ic field. 

In chapter 3, the dependence of the presheath potential profile on spatial variation of 

themagnet.icfieldandtheparticlesourceisinvestigat.edbysolvin&thepleemaeqllation 

numerically. Numerical results are compared with the analytical sol11tion obtained in 

chapter2 in order todemonstratejusticeoftheanal)"is; Accuracy of the simulation 

code developed by Hussein and Emmert (56] is also checked by comparin& the n11merical 

results with the simulation ones. Results for various spatial profiles both of the magnetic 

field stren&th and or the particle source are shown to disc~~&~~ po&&ibility of potential 

control by applying an expandin& m~c field. An efl'ect of the nonuniform magnetic 
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field on the sheath formation is also discussed by using a calculated ion distribution 

function. 

In chapter 4, the problem of quasistationary pliiSIIIa Row through the m~~&netic throat 

toawallistreated. Necessaryconditionsforformationofamonotonicallyfallingst;\tic 

potential are derived under the iiS&umption of no particle source in the plasma. Poit.&On's 

equation for model distribution functions is solved numerically to examine the potential 

formation due to nonunirormity of the magnetic field. The dependence of the potential 

profile on the trapped-electron distribution function ia also invest.isated. 

In chapter 5 and 6, characteristics of the electr011tatic potential in a pluma with 

energetic electrons are desc.ribed. In chapter 5, development of the static potential in 

a two-electron-temperature plaama is Ulalyzed by a kinetic treatment. The potential 

structure is clarified, and the potential drop in a plasma is also evaluated. The charac

teristics of the current-free double layer analyzed in the prellt!llt Malysis are compared 

with those of the double la,yer experimentally observed by Hairapetian and Stense1[88J. 

In chapter 6, the sheatb equation of heat Row of a two-electron-temperature plasma 

in the presence of electron emiMion areso1ved in order to demonstrate the ell"ect.& of 

electrons emitted from the wall. Enhancement of the heat Row due to the electron 

emission are discussed by comparing reeults under conditions oC space-charge limitation 

with results in the absence o( electron emiMion. In addition, the space-charge ell"ect of 

hotter electrons to supress the secondary electron emission is described. 

Finally, the concludins remarks and several subjects left in future are described in 

chapter7. 
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CHAPTER 2_ 

Potential Formation in a Collisionless Plasma 

Produced in an Open Magnetic Field 

2.1 INTRODUCTION 

The problem of the potential formation in an open-field plasma. is importilDt for 

research on ma&neticallyconfined plasmubecauseitdetermineseharacterisl.icsofthe 

boundary layer. Potential along field lines in an open magnetic field beeomes an issue 

when we approach the subject of the axial thermal transport of electrons in mirror 

machines [I) or the subject of the plasma How in the open-field line resion of field-reversed 

confir;urations [2]. This problem is also of interest in connection with the interacl.ion of 

the pluma with the divertor eollector plate in dosed systems [3,4]. 

The first kinetic analysis ol the potential near a pluma boundary wu given by 

Tonks and Lanr;muir in the eontext of diseharse plasmas [5). They formulated the 

plasma.-shealh equation and within the limit ol small Debye length they obtained a 

solution to the plasma equation in series form (or various geometries. Over the years 
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there have been a nllmber of refin~nls to their work [6-10). An anlllytic sollltion to 

the pl-.ma eqllation in plane pomehy wu presented by Harrison and Thompson. In 

the early analyses a collisionless pluma with a cold·ion sollrce wu Ulillmed. Emmert 

et al. [9) improved the early works by considering a finite-t.emperat .. re ion sollrce and 

by introdllcing no apprOJCimal.ion with respect !.o the Debye leqth. Recenlly, by solving 

the pluma eqllation for the case of a Maxwelli&h particle source, which dift"ers fram the 

particle SOil ret given by Emmert et aJ., Bissell and Johnaon [10) indicated that the choice 

of a source function should be a considerable inllllence on the results. These previous 

inveatigatione, however, are restricted to the case of llnmacnetiaed plasmu or to the cue 

of plum.u magnetized by a uniform field. 

In this chapter, we investigate formation of a presheath and a sheath along field lines 

in a nonllniform open macnetic field using both analytic and numerical approaches. We 

consider a collisionless plasma in an axisymmetric magnetic field that expands to walk 

with a monotonically decreasin& axial profile. The expression by Emmert et al. for 

the ion sollrce function and the Bohzmaan law for the electrons are used to derive the 

plasma-sheath equation for the potential in the open magnetic field. Since the potential 

in the steady state is expected to have a monotonic profile, we can adopt a {llnction 

of the potential instead of that of the axial coordinate to uprese the apat.ial varial.ion 

of the magnetic field. This enables IIS!.ocarryolltananalysisalqthelinesofthat 

performed by Emmert et al .. We present resllits calculated from the analyt.ical solution 

!.o show the dependence of the potential on the mapet.k field profile, and also derive 

explicit formulu for the wall potent.ial, for energy and particle fluxe5, and for the ion 
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distribution funcLion by making use of the analytic fiOiution. The r;eneralized Bohm 

criterion is applied to the solution to make sure of the sheath formation (6,11-14]. IL 

is shown that the solution or the plasma equation always satisfies this criterion when 

the magnetic field has a monotonically decreasing axial pwfile. We also discu86 the 

generalized Bohm criterion in the case of a monotonically increasing magnetic Mid. The 

integrodill"erential equation is solved numerically for various profiles of the magnetic field. 

The content or this chapter is as follows. The intqrodillerential form of the plasma

sheathequation!orthepotentialinanopenmagneticfieldisformulatedinSee. 2.2. The 

solution obtained from the quasi neutral approximation is described and results calculated 

from the analytical solution are presented in Sec. 2.3. In Sec. 2.4 the condition for the 

sheath formation is discussed. The analytical solution is compared with the numerical 

solution o(the plasma-sheath equation in Sec. 2.5. The conclusions are given in Sec. 

2.6. 

2.2 PLASMA-SHEATH EQUATION 

We consider an axisymmetric ma&netic fieJd that is also symmetric about :~~ "' D and 

decrea&es monotonically for :11 > 0 as shown in Fir;. 2.1. The walls at :11 "' .ZL are 

IS5umed to be perfectly absorbior; and electrically lloating. The potentiallfi(z) in the 

steady staLe is expected to drop monotonically in the axial direction for z > 0 and the 

valuealz=O,I(Io, is defined as zero. ThesubsctiptOdenoLesthevalueatz=D 
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FIG. 2.1. The geomeur of the model and axial proi\es of the potential 

andoftbem&&netkfield51r1111Sih. 
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throushouLthbJchapter. Theion'sCOJIStillltofmotion istheeneru 

(2.1) 

where M is the mass, q is the chit.rge, and 11.1. iUid "''I it.R the perpendicular and paralleJ 

components oi the velocity. The masnetic: moment, 

p=~Mvi/B(z), (2.2) 

is taken as a constant of motion, like t, where B(z) is the 11Jit.61U!lic: fieJd strength at the 

point z. C011sidcring the plasma near the axis, we ne&ied radial dependence and also 

intesrateout theuromotion. 

Thekinetic:equationinthephaaespece(z,t,p)issimplydesc:ribedby 

O"uu(z,t,p)a{(~,p) = S(z,t,p), (2.3) 

who~ 

1f(Z,£,p) = {2(t -pB(z) -q;(z))/M}112 , (2.4) 

0'(= ±I) denotes the direction of the ion motion, /(z,e,p, 11) is the ion distribution rune

Lion, and S(z,t,p) is the distribution function of the ion source. Here, we assume symme

try about z = D, that is, S(z,t,p) = S(-z,t,/.1) and~z,t,p) = ~-z,t,p). Thebouad

ary conditions of the distribution runction it.R /(-L,t,j.i,+l) = Oand f(L,t,p, -I)= D. 
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All k>ns oft&ina~ing in ~he ma&netie field ue aceelerilled Loward the walls by the 

mgngtonically decreMiq elfective pgtenl.ial pB(z) + q41(z). The~- p space is separated 

intotworegions,thereflected rqion and thepassi~~&rogion. Any ion originating in the 

regign such that t < pllo eannot reach the center of the pluma. When 11 "' -I and 

z > 0 or when 11 "' I and z < 0, ions in this region are reftected at the turni~~& point, 

z1(t,p),determinedfrom 

e-pB(z,)-q<(l(z,)=O. (2.5) 

AU ions originatina: in ~he rqion such that t > pBo pass through the pluma along the 

field lines without a. ehange in direetion of the motion. lntqratiq Eq. (2.3) alq the 

trajectory ol a partiele on the boundary conditioDfi, we obtain the distribution function 

f(z,t,p,/1). The sum of /(z,~,p,+1) and /(z,t,p,-1) in each region of the t-p space 

ean be written as 

e>p/Jo, (2.6a) 

(2.6b) 

where z' is the point at which ions oft&inate. It is teen that although /(z,t,p,+l) and 

f(z,t,p, -1) are dependent oa the coordinate z, their aum becomea independent of z 

under the assumption of the symmetry of the system about z "' 0. 
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The ion density n,(z) is obtained by intepati~t~/(z,c,~,11) over lhe c- J1. space by 

using lhe Jacobian, CJ(vi,vn)/CJ(c,~) = 2B/(M211J); 

n,(z) = 2w!~z) ~ 1 de 1 d/~~~·:.~) . (2.7) 

Sub&Lituling Eqs. (2.6a) and (2.6b) inl.o Eq. (2.7), we obtain 

n,(z)"' .forB~z) (!."'de r'•• dp.-'-J.r. d~S(z',c,p.) 
M la vu(z,c,p.) o IIJI(z',c,p.) 

+J." .uJ.[•-"'•lll~ld~-'-/.r. dz'S(z',c,p.)). 
0 •/Bt "''(z,c,p.) .. ( • ..,) vu(z',c,p.) (2.8) 

ScpataUng Lhe area or inlegralion with respect to z' into lwo sedions, 0 S z' < :11: and 

;r; ~ z' ~ L, one C&ll int.erclumge the order oC int.eyalion in Eq. (2.8) with the aid of 

Eqs. (2.1) and (2.2). The int.eyalion over one section has a £onn very similar to lhat 

over another secUon, and then the inteyalion over the whole section can be wriUen as 

where c.= qq,(z') &Dd B, = B(z') ror z' <:~:,and c, = qq,(z) and B, = B(z) for z' 2: z. 

To calculat.e the density, we must describe the ion source. In this work we use the 

same expression for the ion source chosen by Emmert et al. [9): 



M' (-1•- .. l•lJ) S(s,e,_,) =< uv > non,h(z)-(k~)2 vn(s,e,p)exp -,-~- , 
4.11' •• '· (2.10) 

where < O'v >is the ionization ra!.e coefficient, no is the electron density al the midpoint, 

n~ is the neutral atom density, A: is Boltzmann's oonstUit, and T. is the ion Lemperature. 

Thefactorh(s)exptaH~thespat.ial variationoftheioni:talion rate. 

By substitutin& Eq. (2.10) into Eq. (2.9) and carrying out the integration over the 

e-pspac:e,theiondensityisgivenintheinteyalform 

n,(z) =< uv >non. (iW,) 112l' ds'/(z,z')h(z') , 
{2.11) 

whon 

-(B(z')-B(•))'" (~ .. (z')- .. 1•)) 
B(z') exp B(z')- B(s) kT, 

"'[(~•Oi>'l-.-<•l)'1 •'<•, xe B(z')-B(s) kT, ' 

/(z, z') = exp ( q.fl(r').\:;, 9'*·)) , z' > s , 

and erfc(z) is the eomplementll.l'y erfQl' {unction: 
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This expresr;ion is the same form 811 the expression obtained by Emmert et al. except 

l'or the se<:ond term of /(%, :t') for %1 < % tha.t comes (rom the spa.tial variation of the 

magnetic 6eld. h should be not.ed that the second term of /(%, %1) is iPC!ependent of 

the absolute value of the mapetic field strength, 8(%) and 8(%'), but is dependent on 

the ratio B(z)/8(%'). The int.qrand /(% 1 %1) f01% > %1 becomes independent of the 

masnetic field whe11 the ion souree is given by Eq. (2.10). 

In order to have a steady-state solution, we must introduce pnx:esee~~ that cause 

electrons to scatter in velocity space. To simplify the 1111alysis, we use the Boltzmann 

law (or electrons on the aasumpt.ion thil.t these pnx:esses are so stroll& that they cause 

the electrons toscatterduringaperiodoftimeshorterthanthetra.DIIit time of ions, 

n.,(z)=noexp(e~(:~:)/kT.), (2.12) 

where T. is the electroD temperature and -e is the electron charge. If the processes are 

not sufficiently strong, the electron distribution (unction dilrers (rom the Maxwellian, 

especiallynearthelossboundaryinvelocityspace,anditisafl"ectedbythevariation of 

the magnetic r~eld. 

SubstitutiDJ Eqs. (2.11) and (2.12) into Poi&Bon's equation, we obtain the intqrod· 

ifl"erentialequation 
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' '"'• (•«•1) q (•M)'''J.' Aoow=;w"' exp "'iT." - e < I11J >., 2'iff. D dz'/(z,x')h(z'), 

(2.13) 

where Aoo is the Debye len&th at z"' 0 described by Xi,0 = (okT./noe2. Equation (2.13) 

is the plasma-sheath equation !or the ion source siven by Eq. (2.10), which determines 

the potential alq field lines both in the presheath and tlae sheath rqions. 

2.3 ANALYTIC SOLUTION OF THE PLASMA EQUATION 

In its complete form the plasma-sheath equation is loo complicated to cany out the 

analysis, but it can, fortunately, be simplified in the plasma by dropping the second 

derivative term. The scale length !or potential variation in thepluma.isexpected to 

be the same order or the plasma length L, whereas inside the sheath it is comparable 

with the Oebye length. Then, il5 long ;u the plaamil dimension is larp compared with 

the Debye lensth, the solution obtained from Eq. (2.13) is approxi.mat.ed by the one 

obtained [rom the quasi-neutral approximation, Zn, "' n., which is called the pluma 

equation. The two solutions differ by the order of l"£o/L2 aDd the solutiOD to Eq. (2.13) 

sal.isfieschar&e neutralitytoLhes;uneorder. 

llisconvenienttosimplirytheexpreasionsbyintroducill!lthedhMnsionlesevariables 

s=%/L, Z=qfe, T=T./T., 

" 



>t"' -e~/kT., R"' Bo/8, (2.14) 

where the minor ralio R(.s) is the ratio o( the m~netic field stren&th at the midpoint 

to the locAl vAlue at the normalind axiAl eoordinate a. On the assumption of the 

monotonically varyinl potential, both the mirror ratio and the spatial variaUon oft the 

particle source can beexpre&&ed by the (unction oft because the coordinate 1 can be 

expressed by a single-vAlued (unction oi Cr. Making UBI! of the dirne1111ionlees variables, 

wecanwritethep.lasmaequationas 

exp(-t) = Z < o-v > ,.,.L (iW,) 111 fo 1 da'G('t(.s),i'(l))h('t(.')), (2.15) 

where 

[( R(•) )''1 xer(c R('t)-R(>Ir')z.,.(tr-'11') , .P'<+, 

G(t, '4'') = exp[Z-r(+- '4'')), "t';;e:t", 

and 'I''= +(a'). Equation (2.15) is not as simple to handle; however, we can obtain the 

approximate solution to this equation in the same manner u the analylill in Rer. [9). 

Difl"erentiatin& Eq. (2.14) with respect to .P and usin& the asymptotic expansi011 o( the 

error(undion(orz>1(15), 
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(2.16) 

we obtain 

/.
t ,d.' R('t')h('t') { I (R('t)- R(t"') 

exp(-~)=A 0 dtdt'R('t)(t->.t•)l/2 1- z.,.R(.P) 2(~-t"') 

-••1•1) 0 [( •1•1- R(•'l )']l t~t + z.,.<•- ~·)R(~) ' (2.17) 

where 

The biper-order lerm in Eq. (2.17) is neglected when the ion lemperature is low or 

when the loprithmic derivative of the mirror ratio is small. The inlegrand becomes 

infinilely large as 1'' approaches+, lllld then the approllimalion 

I (R(t)- R(t') dR(.P)) dR(t)/dt 
I- ZTR(t') 2(t'- t'') - --;w- '::::I+ 2Z.,.R(olo) (2.18) 

is valid when the mirror rialio varies smoothly. With the definition o( the elfective mirror 

rialio 

(2.19) 
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Eq. (2.17) can be writl.en approximately by Abel's integral equation. The solution is 

[16] 

AR(t)h(IJI)~ = ;;ii f dt'R.~=·~e~~~:·) . (2.20) 

The dilferent.ial.ion on the right.-hand side can be carried out to give the result 

+ I' d(l'dR.(1t')/d"t'- R.("t') exp(-t"')) . 
1o (1'-t"')l/~ (2.21) 

Integration of Eq. (2.21) yields .t:(t") from which the .shape of the potential is determined; 

1•1= l'at•!!!.(l''d'+'~)-' 
8 fa dt"' lo dt"' ' (2.22) 

where 1'1 is. the potential at the plasma-sheath boundary. 

Equation (2.21) is nol. yet the solution to the plasma equation, but is the solution to 

the approximitted equa.tion that is obtained from the plasma equation by difl"erentiitting 

with respect to 'II. Hence, Eq. (2.22) can satisfy the plasma equation only if the poten-

tial oJr.,whic:hcorrupondstoanintegralcoastant, has the appropriate value. One can 

determine the value or •• by .t:ubstituti~~& Eq. (2.21) into the plasma equation 
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where 0 :5 11 :5 '~'1- Equation (2.23) is sa&.islied approximately !"or 0 :5 t' :5 011 1 when 

tr1 baa the appropriate value becaue Eq. (2.21) is the solution to the approximat.ed 

equation. Considetin& the characteristic of the integrMd in Eq. (2.23) which rapidly 

decrea.ses fort'> 'i', the choice of Ill"" t, is most suitable to determine 1'1• 

lngeneral,theionsour«inthesheat.hcMbenesJect.edbecauseo[asmallthicknes& 

of the sheath Md a remarkable decrease in the ionization rate which is dependent on the 

electron density. Hence, !.he requirement that the electron current and the ion current 

must be equal at the wall enables us to determine the waH potential 'II.,. by using the 

solution to the plillima equation. The ion current is evalllil.t.ed by integrati113 Eq. (2.10) 

with respect to & and over the t- p.space. The requirement described above is expressed 

by 

( kT,)If2 ('t )=~(~)112 A/.91 dt'!!!._R("t')h((l') 
2..-m noexp " (Z'1")112 M o d't' R, ' 

(2.2-t) 

where m is the electron m;w; and R, is the mirror ratio at the pluma-sheath boundary. 

1r =-In [(~) 112 .-tl+Z'"/.9' dt'!!!._R(t"')h(t'')] 
"' ZM .,. o d(l' R1 • (2.25) 

The factor h(IJI') in Eqs. (2.23) and (2.25) is canceled by that in the derivative d1'/d't'. If 

the mirror ra&.ioiseltpreesed byafunclionolt, the potentiitls +,and olt.,. are independent 

of the profile of h(ll'), but are dependent on the profile of R('l'). It should be noted that, 
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in pracl.ice,themirrorralioisa[uneliono[theaxialcoordinal.e5. Then, the potentials 

1'1 and Ill., also depend on the spalial Yilriation o[ the particle source when the mii&Jietic 

6eld is not uniform beeause the profile of R(t) is dependent on h(1') through the profile 

of s(ol>). This result dilfers [rom that of the earlier worb [6,9); the potentials 111 1 and 

111 .. £or an unmagnetised plums are independent or the spatial variation of the particle 

source. Sinee the product of h(1'') aDd ds'/dt' is also found in e.x.presaionslor beat flux 

and the ion distribution function at the plasma-sheath boundary, which will be presented 

later f01: these qualities. 

A description of R(t) is required t.ocalculate 111 1 and t".,, and a specification o[ h{t") 

is also neeessary t.o determine 5(!JI). We now assume R(t) t.o be expressed in the simple 

form 

R(lll)=exp(o-111), (2.26) 

where o- is a posilive constant. When !l>(s) is monotonic with respec:t to s, R(s) also 

becomes monotonic. The efl"ec:live mirror ratio defined by Eq. (2.19) becomes 

R.(1]r) "' R(ll')/(1 + af2ZT) . 
(2.27) 

Considerin& the [act that the ionization rate dependents on the electron density, we 

adopt the expression [or h(t) presented by Harrison and Thompson, 

h(t) =exp(--y'li), (2.28) 
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which allows the ion soqree to be proportional to the -, power of the electron density. 

Usins the expres&ion (2.26), integration in Eq. ('l-21) can be carried oot and ds/dt is 

obtained, 

d8 exp[("l-ol*l ( I ) "iii"' d(l + o/2ZT) "JW + 2(o- l)exp((o -I)CrjE(o- l, Ill) , (2.291 

where the f11nction E(/1,z) isdefilll!d by the Dawson function (12j 

or by the error f11nction as follows: 

( 
(1/.//I)D(.;=p.j, 

E(P,•l= 
(I/./B)(,fi/2)erl(/1z), 

/1<0. 

p;::o. (2.30) 

lntegratins further after substitlltion of Eqs. (2.28) and (2.29) into Eqs. (2.22) and 

(2.25), we can obtain the expre&liion for s('l') &nd + .. by 111ing the fqnction E(/1, z). 

Figure 2.2 shows the dependence of t1 and ... on t.he mirror ratio at s = I for 

the model field R(olo) =exp(aCr). Tbroqh this chapter, this model field is used and a 

pa.rticleso11rceofhydrosen plll8mawith-,= I andwithT=I, IO,or IOOisconsideredin 

calculal.ing res11lls. The potent.ial't., increases very slowly, but 1'1 incre1111es considerably 

as R1 becomes larger. This tendency is obviollB in the case of small T: the value of 9'1 

for T=l enlarges by abo11t afactorof3 when R1 changes from I to 2. The normalized 
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FIG. :a.2. Tile 11ormali&ed poleRI.id al lke plwnil-shn.tb bo1111duy t'1 

and lbe normalized wall poteatial t., as a luDctiOD of tke mluor ralio &I 

lhe boRndiU)', R1 !!!!! Bo/Bh (or the model field R(t):exp(o-W). Hydropn 

plasma with r=l, 10, or 100 ue f;OIItidered. 
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pol.ential profile and the profile o( the mirror ratio for nrious value of cr are shown in 

Fig. 2.3, and the plasma density profile is plotted in Fig. 2.4. U is seen that the potentiill 

gradient at I'"" I hu a finite value and the model field presents a realistic profile to the 

openm~eticfield. 

The accuracy of the anillytic IIO!ution can be checked by calculating Eq. (2.15) numer

icallyafLersubetitutionofEq. (2.21). !lit found that t.heanalyticsolution (orvN"iow; 

values of both T and cr satisfies the plasma equation with an accuracy up to about one

tenth o( ((dR/d't)/ZrR)1, which indicates the validity of approximations introduced in 

Eq. (2.17). 

Using the solution, we can calculate the ion dittribution (unction explicitly. ~ 

now deri\11! the distribution (unction at the plum""shei!.t.h boundu:y with respect to 

the parallel velocity, f1(vn), whichisobti!.ined byinLegr01.ting the kinetic equation with 

respectto~andvL, 

O<V:<2q~i/M, (2.31a) 

(2.31b) 
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One can ch&JIIe the order of the integations of Eqs. (2.31a) and (2.31b) with the aid of 

Eqs. (2.1) and (2.2) and integral.!! with respect to vi after substitution oi'Eq. (2.10). To 

expre!IB the distribution [unction, it is convenient to use the normalized quillltitie& aad 

the normalised parallel velocity, 

As a result of further calculations, we obtain the ion distribution function normalized to 

(2.32a.) 

(2.32b) 
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For the CMe ollhe model field givtn by Eq. (2.26), the integralion in Eqs. (2.32a) and 

(2.32b)canalsobecarriedoutloobtaintheexprasionbylheuseofthefunction E({J,z} 

de6ned by Eq. (2.30). The results for various Y3lues of R1 are shown in Fig. 2.5. Tbe 

distribution funcliOJI changeli its shape al Vu2 = Z11 1 , and becomes wider with increuing 

R,. Ions having a mapetic moment are accelerated in the direction of the wall not only 

by the electric field but also by a gradient of the magnetic field strength. 

Becaueethedistributionfunctionaltheboundaryisindependentofh(lll),themean 

velochy and the particle and energy fluxes or the ion al the boundary must also be 

independent ol h('t'), the mean velocity and the particle and energy Ouxes olthe ions at 

the boundary must also be independent of h(ll'). The mean velocity normalized to the 

isothermal8011nd speed, C, = (k(T. +T,)/MJ1f.l, is easily obtained by equating the iOJI 

currenttotbeelectroJlcurrentM 

(2.33) 

We also obtain the normalized particle Dux at the boundary, 

(2.34) 

The dependence ol U1 and r1 on R1 is shown in Fig. 2.6. 

The ion ener11 flux ent.erin& the sheath is calculated by int.qrating the product 

(E- Zt"!)S(z,E,~)R(z) over the phase space (z,E,~) as 
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Q,"' I dz'lf I dV~Mv125(1'1,e,~)+ I d%'1( I cPv'ZkT.(!Jl1 - +')S(1'',t,~) 

(2.35) 

Substituting Eq. (2.10), the normalized ion energy ftux is obtained in the form 

Q1 "'nok(T,~T.)C, 
JiA. Z(Zr)l'~(~: r'ff'l {'' dt'~[2 + ZT(t',- Cr')]R(oJJ')h(t'') ,(2.36) 

which can also be integrated aaalytically lor the cue oi the model field expreued by Eq. 

(2.26). The first term in the integrand of Eq. (2.36) is the energy ftux resulting (rom the 

kinetic energy which ions have a.1. the point oi generation. The secOJld term is from the 

energy Dux thoU ions acquire in the plasma potential. The electron energy Oux into the 

sheilth is euily calculated when a Maxwellian distribution is assumed. The normalized 

electronenergylluxis 

The nor~ized ion energy flux a.1. the boundary is shown in Fi!- 2.7, together with the 

normalized total Rux, Q, "' Q, + Q, •. 

As shown in Pip. 2.5 and 2.6, the distribution function at the boundary broadens 

and the mean velocity increases as the mirror ratio becomes large. It is dosely connected 

with the condition for the sheath formation as discussed in the next section. We can 

predict from 
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~he a~ result that the solution of the pluma equil.tion for the monotoniu.lly increuin& 

mirrorratioalwayssatisfiestheeriterionforthesheathformalion at the plaema.-sheath 

boundary. 

2.4 APPLICATION OF THE GENERALIZED BOHM CRITERION 

We now show that the solution of the plaema equation satisfies the condition required 

for the sheath formation. ThesheMh is usurned to be so thin that the parliclesource 

inside the sheath can be neglected and the variation of the macnetic field in the sheath 

may be diMegarded. On this iiiiBUmption, we can apply the seneralized Bohm criterion to 

the solution or the plasma equation: an interpretation of the senerali1ed Bohm criterion 

was previously given by Bisse.11(14). 

It is ~n from Eqs. (2.6a), (2.6b), (2.7), and (2.8) tb;U the io11 den.ity in a sym-

metric system is senerally expressed by a function of Rand olo. The electron density is 

independent of R if the electron distribution function is ieotropic. Then, the solution of 

the plasma equation satisfies 

(2.38) 

iLl the pli1$ma·sheath boundary because the quasi-neutrality holds true in the plasma. 

Thetermontheleft-handsidecilllberewrittenil$ 
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(2.39) 

ontheaaumptionofnoparticlesourceinthesheath,andtberight-handsideis 

'"·""I "I ~T. •• ,"'n.T. ••• (2.40) 

for a Maxwt!llian eleetron distribl!tion. The expression (2.38) is obtained by dill"erentiat-

in&theintepalexpressionofiondens.ity in the sheath with respect tot-and by setting 

It equal to *•· SubstiMing Eqs. (2.39) and (2.40) into Eq. (2.38), we obtain 

(2.41) 

We partially dill"erentiate t.he ri&ht.-hand side of Eq. (2.15) with respect toR and use 

the asympt.otic expansion (2.16) of the complementary error function t.o get 

ff'f·~ld"il 

"' 2 _ 2 dR/d.l A(I+Z.,.)~ r••dt,!!!._R(lt')___!!!!L_ 
dt/ds ,.1 .,.R, n, .Ju dfl' R, (1',- t')1f2 . 

(2.42) 

When the mirror ratio becomes larse with increMing potential, the eecond term on the 

rhs has a positiYe Yalue because the intepal is always positive. Hence, when dR/d• > D 

and dt /ds > 0 the solution of the plasma equation always satisfies the criterion at the 
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(2.43) 

which is tbe exptftSion o[ the seneralized Bobm criterioll with the normalized velocity. 

The equality in Eq. (2.'13) is true when dRfds=O at the pluma-sbeatb boundary. This 

criterion can also be checked by usin& the distribution [unction expresed by Eqs. (2.32a) 

and (2.32b). Although Eq. (2.42) is the result [or tbe particle source given by Eq. (2.10), 

it ca11 be seen from Eq. (2.41) that the solution of the plasma equation for allY source 

function satisfies theseneralized Bohmcriterion when dR/Ib > Oand dtfds > 0 because 

the derivative /Jn,f/JR is always neptive at the pJasma-sheath boundary. 

The question arisin& [rom Eq. (2.41) is does the solution satisfy tbe genBalized 

Bohm criterion when dRfds < 0? This problem, in general, becomes bard to analyze 

completely because one must treat ions trapped in the weU of the efl'ective potential 

p/Jo/R(s) + Zeofo(.s) when dR/Ih < 0. Ir the density of the trapped ions is negli&ibly 

small near the boundary, however, one Cilll find that 8n,f8R becomes neptive. Wben 

happed ions near the boundary Cab be neglected lltld the ion source hu no particle 

originating with zero parallel velocity, one can generally show that the derivatives 8n,/8fl 

illld IJn,fBR always have neptive finite va.lues near the boundary. The potential sradient 

at the boundary must be a positive finite value to be connected to the sheath potential. 

Therefore, it is seen from Eq. (2.41) that in this C<UJe the solution of tbe plasma equation 

does not satisfy the generalized Bohm criterion. When there are ions generated at V.=O, 

that is, S(Vy =0) "/-O,careful treatment of trapped ionsisne«B~~~ty to estimate the 

second term on the rhs in Eq. (2.41) . 
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2.5 NUMERICAL SOLUTION OF THE PLASMA-SHEATH EQUATION 

For the purpose of showi111 the validity of tM analysis and Lo evaluate the ell'e<:t of 

the Debye length on the potential profile neu the wall, we now solve the phwna-shealh 

equation. Equation (2.13), which is the nonlineu inlegrodifl'erential equation, can be 

solvednumericallybytransformingitintoaeetoffiniledifl'erenceequations. We use the 

technique described in Ref. [9] for solving the equation. The boundary condir.ions on Eq. 

(2.13) are dll'/dslo = 0 ud •o"' 0; the normalized \l'all potentiiil +.,is determined liS 

a result of the calculation. To compare the numerical result with the analytic solution, 

we describe the model field R(.P) =exp(a-.P) using the analytic solution of the plasma 

equation. Then, theanalytiesolutionand theexpres.sion of'l!.,.canaleobe ueedas 

iniLialvalueso(olofortbenumericalcalculalion. nespatialvariationoftbeparticle 

souKe is expreseed by h('t)=exp( -'li) using the numerical50lution of the pi;~Sm;w;heath 

equati011. 

Fi&ure 2.8 shows the numerically calculaled polential together with the analytical 

solution (or the model field with a = 0.536, where the hydrogen plasma source with 

r = I is usumed. It is seen that agreement o[ the analytic solution with the numerical 

result is nearly per(ect in the plasma region when the wlue of Aoo/ Lis sufficiently small. 

The density profiles of both ions and electrons [or >.Dfl/ £=0.03 are shown in Fig. 2.9. We 

see from the result that the width of the sheath, in which the quasi-neutrality does not 

hold true, is about ten times u large u the Debye length, >.Dfl. There is the dill"erence 

between the analytic 50lutiOJJ and the numerical results of II'(•) in the section 
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FIG. 2.10. Comparison of the numerical solution of the plasma-sheath 

equation(thinlines)withtheana.lytiesolutionoftheplasmaeqoation(lhick 

lines) for the mode16eld R(t)==exp(a->JI) wilb (a) a-=0.536, (b) o==0.376, and 

(e) a=O.O, wheretheva.lueof>.oo/Lis0.005. 
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0 < s < 0.6 although the quasi-neutrality holds good. This difference is considered to 

llecausedmainlybythedifferenceoftheplasma-sheathboundary: the plasma-sheath 

boundary of the a.nalyticsolution iss= 0.7. Dependence of the potential profile on the 

magnetic field 1sshownin Fig. 2.10. 

2.6 CONCLUSIONS 

Wchaveformulatedtheplasma-shealhequationfora.collisionlessplasmaina.nopcn 

magnetic field that has monotonically decreasing .Wa.l profiles. The ion-source distri

bution function with a finite temperature chosen by Emmert et al. has b(oen used for 

the formulation. In the plasma, except for the sheath region, Abel's integral equation 

ca.nbederivedapproximalelyfromtheplasmaequationbydescribingthemagneticfield 

profile as an arbitraryfunctionofthepotential, and then an open magnetic field with 

variouskindsofaxialprofile. Theaccuracyoftheana.lyticsolutionwascheckednumer

icallybysubstitutingthesolutionintotheplasmaequation;itconfirmstheva.Jidityof 

the approximation. Thea.na.lyticsolutionisused to express the wall potential, the ion 

distribution function, and the particle and energy fluxes explicitly. Results show that 

the magnetic profile affeds the potential formed in the plasma. For the model field used 

in this chapter the presheath potential drop increases by about a factor of2 when the 

magnetic field at the boundary weakens to hlf of that at the center of the plasma, a.nd 

the ion distribution function be<:omeswiderwithincreasingofthepolenlialdrop. 



It has been shown that the solution of the plasma equation always satisfies the gen

eralized Bohm criterion at the plasma-sheath boundary when the magnetic field mono

tonJ(allydecreasesintheoutsidedirection. Wehavealsodiscussedthiscriterionwhen 

the magnetic field monotonically increases. 

The plasma-sheath equation is solved numerically for various profiles of the magnetie 

field. The sheath is formed near the walls with a width about len times as long as the 

Debyc length, and the analytic solution for any profile of the magnetic field agrees well 

with the numerical results in the presheath when the Debye length is sufficiently small. 

The potential drop in the sheath is larger than that in the presheath and i.s almost 

independentofthema.gneticfieldprofile. Consequently,althoughtheionenergyatthe 

wall is somewhat large as compared with that for a uniform magnetic field, the increase 

inenergyisnotexpectedtobesolargethatitcausesaremarkableincreaseinsputtering 

due to ions. 

The presheath potential near the wall has an important roll in impurity control 

in avarietyofreactorscenarios. If the potential drop in theplasmaislarge, ionized 

impurities will be reflected to a divertor or end plate without flowing into the main 

plasma. Therefore,anexpandingmagnetie/ieldisetrectivenotonlytoreducethepower 

deusityon targetsbutalsotopreventaninflowofimpurities. Thefactthatthepotential 

profile depends on the magnetic field profile also implies the possibility of potential 

controlintheopenrcgionbychangingthema.gneticfieldprofile. 

Concerning the potential formation in an open magnetic field, it is an open problem 

as to whether the static potential is formed or not when the magnetic field monotonically 



increases.lnthiscaseonemusttaketheexist.enceoftrappedionsintoconsideralionto 

treat this problem. 
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Effects of an Expanding Open Magnetic 

Field on the Plasma Presheath 

3.1 INTRODUCTION 

A plasma flowing to a wall in the presence of a nonuniform magnetic field is an 

important problem for research on magnetically confined plasmas as well as on the plasma 

source used in plasma processing. Potential developed in a plasma Rowing along a 

nonuniform open magnetic field becomes an issue when we approaeh the subjecl of the 

pli>Sm" flow, energy transport, an inflow of high·Z impurity ions, and plasma-surface 

interactionsinanopenregionofconfinementsyst.ems.lnthepresenceofilllexpanding 

magneticfield,ionsareacceleratedtowardtheplateandtheirdensitydropsaccordingly. 

If electrons remain dose to a Maxwellian distribution then the electrostatic potential will 

increase following the Boltzmann relation. Accelerated ions will also fadlitaLe formation 

of a shielding posiLivespacechargeilLlhe plasmilboundilry. Therefore, lheexpa.nding 



magnetic field ise:Kpected to be availablenotonlyforenlargemenlofthe potential drop 

along a field line but also for stabilization of the sheath potential. 

The problem of plasma flow to a walland the potential formation has drawn attention 

~incc the lir~l kinetic analysis in the context of discharge plasmas was done by Tonks 

and Langmuir[!] Progressonthetheoreticaltrcatmcntofthisproblemhasbeenmadc 

hy a numberofworkersover many years[2-4). In the previousanalysestheplasmais 

cith..runmagnetizedormagnetizedbyauniformlield. 

Recently, Sato and Miyawaki formulated the plasma-sheath equation for a collision-

le!-.~ plasma with a finite-temperature partid" source in an ('Xpanding magnetic field (5), 

in which the same ion source function used by Emmert et al. is adopted and Boltzmann 

derlrons 1~ dS5Umed. They obtained an analytic solution by introducing some simplify

urgapproxirnationsandprescntedthepotcntialprolile,thepotentialatthesheathedge, 

and the wall potential as well as theparticleandenergylluxestothesheathfordilferent 

magnetic mirror profil<?S. HuSS(lin and Emmert numerically simulated the same plil!:lrna 

and investigated the dependence of the presheath potential on both the spatial distribu

tionoftheparticlesourceandthemagnelicfieldstrengthprofiles(6).Theycomparethe 

simulation results with the analytical solution obtained by Sato and Miyawaki, show

ing that the simulation results agree well with Sato and Miyawaki for low mirror ratios 

butdcviatcasthemirrorratioincreases. Although they concluded that the differences 

between them is attributed to the approximation made in the analysis, the differences 

mainly originate in a particle source used in the analysis and in the simulation. The 

particle source in the analysis ha!i a spatial profile in proportion to the plasma particle 



densitybutthatinthesimulationhasauniformspatialprofile. 

In this chapter, we numerically analyze cffe.:ts of a nonuniform open magnetic field on 

potential formation m the plasma in contact with a wall by solving the plasma equation 

formulated previously. We compare the numerical results with the analytical ones and 

also with the simulation ones to show justice of approximations in the analysis carried 

by Sato Miyawaki and to check accuracy of the simulation code developed by Hussein 

and Emmert. Moreover, we investigated the dependence of the potential profile on the 

spatialdistributionoftheparticlesourceandshowupperandlowerlimitsofthepo!.ential 

dropinthepresheathtoindicatecontrolabilityofthepresheathpotentialbyapplyiug 

anexpandingmagneticfield. Wealsodiscussanelfectofthenonuniformmagneticficld 

onsheathformationusingacalculatediondistributionfunction. 

In Sec. 3.2, we describe the model and write the plasma equation. An effect of a 

nonuniform magnetic field on sheath formation is briefly discussed in Sec. 3.3. The 

numcricalresultsarepresentedanddiscussedinSec. 3.4,andtheconclusionsaregiven 

inSec.3.5 

3.2 MOOEL ANO PLASMA EQUATION 

ThemodelandcoordinatesystemusedthroughoutthischapterisillustratedinFig. 

3.1. The collisionless plasma contained between two perfectly absorbing walls located at 

.t == ±L is symmetric about z == 0. The Debye lellllth is assumed to be small compared 
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B(x) 

FIG. 3.1. The geomelry and coordina.le system, and axial profiles of !he 

polenlia.la.nd \be ma.gmeticfieldsllenglh. 
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with macroscopicsca.lelength,and thenquasineulrality along field lines holds true over 

the whole regionexceptthesheath region. 

Using the energy c and the magnetic moment p , we can describe the kinetic 

equation for ions by 

ovu(x,c,IJ/f(x;;"'·o) = S(z,c,p), (3.1) 

where 

vu(z,c,p) = (2(c- pB(z)- q,.t;(z)) /MJ''' (3.2) 

is the speed of ion alo~ the field Line, o(= ±I) denotes the direction of the ion motion, 

/(z,c,p,o) is the ion distribution function, S(x,c,p) is the source term for the ions, M 

ismass,qistheionchatge,o/l(z)istheelectrostatkpotentia.l,andB(z)isthemagnetk 

field strength. The ion source used by Emmert et aJ. is expressed in the form 

M' (-1•-o¢1•11) I I S(z,c,~J)=Soh(x),hr(kT,)'11]1(x,£,p)exp -,-T,- , 3.3 

where S0 is the source strength, k is Boltzmann's constant, T, is the source temperature, 

andh(x)expressesthespatialdistributionofthesource. Theboundaryconditionsofthe 

distribution function are /(-L,c,p,+l) = 0 and /(L,c,~J,-1) = 0. The distribution 

function f(x,e,p,o) is obtained by integrating Eq. (3.1) along the trajedory of ions 

andtheniondensityn,(x)iscalculatedbyintegratingthedistributionfunctionoverthe 

~ -p spll(.e. 
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Since the electrons are in a retarding electrostatic potential, the ele.;trons can be 

assumed to have a Boltzmann distribution with temperature T •. Results of particle 

simulation shows that the bulk of electrons approaches to the Boltzmann distribution 

everifthemeanfreepathismuchlargertha.nthescalelengthofapla.sma[7]. Weca.n 

equateiona..ndelectronchargedensitiesinthepresheathregiontoobtainthethepla.sma 

equation.lntrodudngthenondimensiona.lvaria.bles 

>l>(s) = -e¢(s)flt:T., R(s) = Bo/B(s), s = :s:/L, Z = qfe, 

'~"= T.fT,, 

wedescribetheplasmaequa.tionderivedbySaloa..ndMiyawak:iintheform 

rl()exp(-~(s))=ZSo£(~) 112 f ds'G(s,s')h(s'), (3.4) 

where 

G(s, i) = exp[Zr(>l>(s)- ~(s'))]erfc(ZT(o#(s)- >lr(s'))112J 

( R(•)-R(>'))''' ( R(•) , ) 
-~ exp R(s)-R(s')Zr(>l>(s)-ll<(s)) 

G(s,s') = exp[Zr(ll<(s) -ll<(s'))], 
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The electrostatk potential in the presbeath is obtained by solving Eq. (3.4) and the w;>ll 

potentialW,..alsodeterminedfromtberequiremento{equaJionandelectronftuxesto 

the wall. 

3.3 EFFECT ON SHEATH FORMATION 

The sheath is assumed to be so thin that the p;u:ticlesourcea.nd v;u:iation of the 

magneticfieldstrengthcanbeneglectedinsidethesheath. Thesolutionoftheplasma 

equationsatisfiesquasineutra.lityinthepresheathandthepou:ticleftuxisconservedin 

the sheath. Using quasineutra.lity at the sheath edge and conservation of the p;u:ticle 

flux in the sheath, we can derive the relation 

(3.5) 

where 1'11 =o (MvM2kT,) 1 1~ is the normalized pou:a.llel velocity and the brackets < > 

denote averaging with the ion distribution function [5). The ~ond term of rhs of Eq. 

(3.5) deseribes an eft:ect of the nonuniform magnet.ic field. When the magnetic field is 

expanding, that is dRjds > 0, the plasma equation for any source function satisfies the 

generalized Bohmcriterion, 

(3.6) 



because the derivative 8n,f8R in Eq. (3.5) is always negative at the sheath edge. The 

equality in Eq. (3.6) is true when the magnetic field is uniform or the field singularity 

appears at the sheath edge (8,9]. Appearance of the field singularity depends on both 

the spatial distnbution and the velocity distribution of the partidesource. If there is 

no particle source in the vicinity of the sheath edge or the particle source has no ions 

withu.roparallelspeedlikeEmmert'ssource,thefieldsingularitydoesnotappearsand 

the derivative doJ/fds has a finite value. In this case the generalized Bohm criterion is 

fulfilled with the inequality sign. Oversatis[a<:tion of the Bohmcriterion is favorable for 

formaliono[ashieldmgpositivespa<:echargeattheplasmaboundaryandthenonecan 

expectthatanexpandingmagneticfieldhasastabilizinge!Tectonthesheathpotential. 

3.4 NUMERICAL RESULTS AND DISCUSSION 

Forthepurposetodemonstrateelfect.softheexpandingmagneticfieldonthepresheath 

potential, we now solve the plasma equation expressed by the nonlinear integral equation. 

This equation can besolvednumericallybytransformingilintoasetoffinitedilference 

equations. We can obtain the numerical solution with a high accuracy better than 10-~ 

bytteratingonthepotentialuntHitconverges. Weexpressthemode)/ield R(s)asa 

functionofthecoordinatesandassumethetemperatureofionT,toequaltheeleetron 

temperatureT,. 

At first, toshowjusticeofsimplifyingappro.ximationsinlroducedin the analysis by 



Satoand Miyawilkiandtoche.:kaccuruyofthesimulationcodedevcloped by Hussein 

and Emmert, we compare the calculation results with the analytic..! ones and the sim

ulation ones. Figure 3.2 shows the potenti..J profile in the presheath of a collisionles.. 

hydrogen plasma flowing ..long a magnetic field with a magnetic mirror profile used by 

Satoand Miyawaki. Dilferenttwospati..Jprolilesoftheparticlesourcegeneratedifferent 

potential profiles. Thedottedlinesa.rethevaluescomputed bySatoand Miyawakifor 

the particle source with the spatial distribution h(8) =n(8)/noand brokenlinesarethe 

simulation result by Hussein and Emmert for the particle source with h(s) = I. The 

analyticalsolutionscloselyagreewiththenumericalresultsandanerrorduetotheap

proximations made in the analysis is smaller than two percent. The simulation results 

also agrees well with the numerical ones but deviate near the sheath edge. This differ-

enceseernstobeattributedtoconshudionofanumericalgridintheirsimulation,which 

mak.etheircodelessucuratenearthesheathedge. Fig. 3.3showsthedependenceofthe 

potentialatthesheathedgei' 1 andthatatthewaU i'.,onthemirrorratioR1• Excellent 

a.greementbetweentltenumerica.lresultsandtheanalytica.lsolutionisobta.inedoverthe 

wide range of the mirror ratio; the difference is within two percent over the range of R1 

from I to 10. Some difference is observed between numerical results and simulation ones, 

which is considered mainly an error due to construction of a computational grid in the 

simulation. Hussein and Emmert. have concluded that the differences between Sato and 

Miyawaki's results and theirs are attributed to the approximations made in the analysis 

in Ref. [5], comparing their simulation results with the analytical solution. We, however, 

canseefromFigs. 3.2and3.3thatthesedifferencesa.remainlyduetothe 
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FIG. 3.2. The normali•ed potential profile in !he presbnth for tbe pa.ni

cle!IOut<:ewitb !be spatial distribution (a)h(r)=n(l)/rlfl and (b)h(r)= I. 

The model ~eld bin Ref. [SJ is used for I be magnetic minor profile. A dotted 

Lineisthea.oa.lytinlwlution by Satoand Miya.wakiforh(r)=n(r)fn0,a.nd 

a broken line is the 9imnlation re~ult by Hussein and Emmell for h{r) = 1. 
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FIG.3.S. Tbenormalizedpotentialattbewallq..,Uldthatatthelbeatb 

edge 'l't a.s a function of the edge mirror ratio R1 fortbe particle soorce 

with (a) h(•) = n(s)/no and (b) h(•) = ]. The model field in Ref. [5] is 

used. Dotted lines are the ualytico.l solutions fortbe particle eonrce with 

h(•) = n{•)/no by Sa1.o ud Miyawa.ki, aDd broken lines are the simulation 

results for the particle source with h(s) = l by HusseiD aDd Emmert. 
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dilferen~ spa~ial profile of the particle source. 

ThedependenceoftheeledrOlltalicpotentialandtheparticledensityonthemagnetic 

mirror ratio'" illustrated in Figs. 3.4 and 3.5, where the spatial profile of the partkle 

source is given by the Gaussian of the form h(s) = exp(-Z5s1 ). The parabolk profile 

of the magnetic mirror ratio given by R(s) = I + (R1 - l)s2 is used heretol"ore. In 

theuseofaconstantmagneticfield,thepotentialchangesonlyoverthesourceregion 

and is constant elsewhere. Upon applying the expanding magnetic field, the potential 

conllnues to vary in the sourceless region. The potential drop increases with increasing 

of the edge magnetic mirrorratioR1. Wecancomputetheiondistributionfunction 

usmg the expression (3.31) in Ref. [5]. Figure 3.6 shows the ion distribution function 

at the sheath edge for various magnetic mirror ratiO!!. The expanding magnetic field 

accelerates ~he plasma toward the wall and then the plasma is predicted to satisfy a 

condition for sheath formation at the sheath edge. The value of< "j1-l >calculated 

fromtheiondistributionfunctionisequalto2.0intheuniformmagneticfieldandit 

becomes smaller ~han 2.0 in the presence of the nonuniform magnetic field. Then the 

generalized Bohm criterion is marginally satisfied iu the uniform magnetic field and is 

oversatisfied in the expanding magnetic field. The value of < "j1- 2 > also is chedted to 

agree with the value calctdated from Eq. {3.5). From these results we can expect that 

the expanding magnetic field have astabilitingefl"ectonsheath formation. 

lnthepresenceofthenonuniformmagnetkfield,thepotentialdropinthepreshea.th 

considerably depends on the spatial distribution of the particle source. Figures3.7 and 

3.8itlustratethedependenceofthepotentiala.ndtheparticledensityonthespa.tial 
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FIG. 3.4. The normalized polenlial profiles !or the ma.gnetie mirror ra.lio 

profile R(s) =I+ (RJ- l)s~ with R1 = 1.0, 2.0, a.ad 4..0, where the spa.lia.l 

diSiribuaion of the patliclesourceischosen a.s h(~)= e:tp(-251l). 

69 



L 0 

~ 0. 

' 
w ,6 

0, 

0,2 

0.0 
0.0 

FIG. 3.S. The profile of the normalized pluma density n(3)/IIG for lbe 

m~netic mirror r<Ltio R 1 = 1.0, 2.0. <Lnd 4.0. 
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FIG. 3.6, The uormalized ion distribution function at the sheath edge 

for various values of R1. The value< V1j"l > io equal to 2.0 in the use of 

the uniform magneticfieldUldsma.llertha.n 2.0intbecaseoftheexpanding 

magnetic field. 
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FIG. 3.7. Tbe norun.lized potential profile for the pa.rtialsource wilb 

the spatial distributions h(~)"' exl'(-15~1)(-), II(~)= I(----), aJid 

11(3) = exp(-25(1- ~)1 ) ( ·······). The magnetic minor u.tio profile is 

chosen as R(~) =I+ &2. 
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FIG. 3.8. The pro~\e o( 1.he aorma.lized pla.sma. density n(~)/no for the 

particle source wilh h($) = exp(-25$2) (-), h(•) =I(----), and 

h(•) =exp(-25(!-$}1)( -······). 



distribution of the particle source. The calculation is carried for thref! typical spatial 

distributions. lntbecascoftheparticlesourceneartheplate,thepotentialisonly 

developed over the region where the particle source exists. The only magnetic field 

in the source region affects the potential formation, but the magnetic field inside the 

particle source has no effed. This can be seen from Eq. (3.4) in which the integrand G 

isindependentofthema.gneticmirrorratioifs';::s. Onthecontrary,inthecaseofthe 

particlcsourccnearthecenler,thepolentialisdevelopednotonlyoverthesourceregion 

but also over the sourceless region. The potential development in the region outside 

the rarlldesourccistheresultoftheexpansionofthemagnetic Dux tube. Figure3.9 

shows the ion distribution at the sheath edge for various spatial profiles of the particle 

source. The plasma flow velocity at the sheath edge exceeds the ion sound velocity and 

the generalized Bohmcriterion is fulfilled with the inequality sign. 

From results shown in Fig. 3.7, we can predict that the potential >11 1 has the maximum 

value when the particle source is concentrated at the cent.er and has the minimum value 

when the particle source is locali~ed near the wall. The maximum value is indepe11dent of 

the mirrorratioprofilebutdependenton the mirror ratioatthesheath edge R1• Figure 

3.10 shows the dependence of the upper and lower limits of potentials >11 1 and >II., on 

the mirror ratio R1• The region bounded by these limits show the region in which we 

cancolllrolthcprcsheathpot.entia.lbychangingthemirrorratioandtheprofileofthe 

magnetic field. Broken lines are results for the particle source with h(a) = I. The wall 

potential increases gradually but thepotentialdropinthesheathdecrcasesslightly with 

the mirror ratio. Results in Figs. 3.7 and 3.10show that we can effectively control the 
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(or abe panicle sonro1wi1h h(s) = exp(-2Ss2) (-), lt(s)= l (----), 

and h(s) = exp(-25(J- s)1) ( ------). The value< t<j1-l >ill always smaJ.ler 

75 



FIG.3.10. Thenpperand\owerlimits(- and -------)oftbe 

normalized po;~te~tial at the 9heath edge, t 1, and those of the potential u 

the wall, '1'.,, as 1. functio;~n o;~( the edge mirro;~r u.tio;~ R1. Bra.cken lines a.re 

results for the pa.rticlesource with h(~) =I. 

76 



preshea.thpotentialinthesourceregionorintheregionoul.sidethesourcebya.pplying 

theexpa.ndingma.gnelicfieldwitha.nadequa.temirrorra.lioprofile. 

3.5 CONCLUSIONS 

Weha.veinvestiga.tedforma.tionofthepreshea.thpotentialinlhepresenceofa.nex

pa.ndingma.gneticfieldbynumericallysolvingtheplasma.equa.tionforlhecollisionless 

plasma. Wehavecheckedvalidityoftheanalysisandao:curacyofthesimulationcode 

by comparing the presentcalcula.tionresull.swith previously published analytical solu

tions and re.:ently published simulation resull.s. Results show that analytical solutions 

obtained by Satoand Miya.waki are available over a. wide rangeofthem.irror ratio, and 

thepresentresultofthepotentialprofilealsoa.greeswiththesimu\ationresultobtained 

by Hussein and Emmert in the inner region, but slightly deviates in the region near a 

wall. 

Wehaveanalyzedthedependenceofthepresheathpotentialprofileonthespatial 

profile of the particle source and that of the magnetic field strength. Results show that 

aparticlesourceprofilehasaconsiderableefl"ectonthepotentialdropinthepresence 

ofanonuniformmagneticfield. lfaplasmasourceexisl.sintheinterioroftheplasma, 

wecaneffectivelyenlar!ethepotentialdropin thepreshea.th byincreasingthema.gnetic 

mirror ratio. We have shown the upper and lowerlimil.softhe presheath potential as 

a. function of the magnetic mirror ratio. The pot.ential drops can be controlled within 



theselimitsbyapplyinganexpandingmagneticfieldwithaproperfieldstrengthprofile. 

Wehavealsodlscussedaneffectofanonuniformmagneticfieldonsheathformation 

bycalculatingtheiondistributionfunction. Theplasmaisacceleratedbythegradient 

of the magnetic field strength and the plasma flow velocity at the sheath edge exceeds 

the sound velocity. The plasma How in the presence of the expanding magnetic field 

satisfi~ the generalized Bohm criterion with the inequality sign if the sheath edge does 

notexhibitthethesingularity 
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Potential Formation in a Collisionless Plasma 

Flowing out through the Magnetic Throat 

4.1 INTRODUCTION 

Theproblemofcaiculatingtheeleclrostaticpotentialinpla!lmaf\owalongspatially 

varying magnetic field lines to a wall a.rises in vario,.s fusion devices as well as in plasma 

processing techniques. Knowledgeoftheeleclrostatic potential profile in acollisionless 

plasmaisnecessarytounderstand thebehaviorofplasmasintheend region of mirror 

machines(1,2J,in theedgelayeroffield-reversedconfigurations(J],orinthedivertot 

of loroidal herical systems [<1]. Moreover, knowledge of the potential variation is the 

key to knowins parameters of a plasma for design of a direct energy convertor and for 

evaluation of its efficiency (5-7]. Thisproblemisalsointerestinconnedion with high 

temperature divertor plasma operation of a toroidal ma.gnetk fusion system aiming at 

confinemenlimprovementandreductionoftheheatloa.donaplate\8]. 



The problem of the potential formation in plasma flow loa wall has drawn attention 

since the lirst kinelic analysis in the ~ontext of dischar~e plasmas was done by Tonks and 

Langmuir in 1929 [9]. Progress of the theoretical treil-tment of this problem has been made 

by a number of workers over mil-ny years (10-12). An important asped of a plasma flowing 

to a wall that remained ignored in these previous works, however, is spatial variation 

of the magnetic lield strength along field lines, whkh provide the presheath mechanism 

throughdivergenceofparticleflu:<andconversionofkineticenergyperpendicularlofield 

lin!!Sintopara.llelkineticenergy. 

The characteristics of plasma axial flow through a magnetic mirror was investigated 

using " Huid computer code by Rognlien and Brengle (13]. Calculations were made for 

severil-1 explicit examples lo study the behavior of plasma How. It requires a kinetic 

treatmenttoverifycharacteristicsofthepotentialformedinaplasmaescapingthrough 

a nonuniform magnetic field in detail. There have been several kinetic models which 

consider the potential profile along spatially varying magnetic field Jines in mirror systems 

inordertoevaluatethethermalbarrierdepth(H,IS]andtheheightofthep\ugpotential 

[16), but, these models are not applicable to a plasma escaping through the mirror throat 

to a wall. Recently, a plasma originating from ionization of warm neutrals in a divergent 

magnetic field was treated with kinetic analyses (17-19). Their analyses provide an 

important basisforthestudyofpotentialformationinaplasmamainlyproduced by 

recycling of the neutral gas, such as a plasma in the diverlor ~hamber of a toroidal 

system 

In this chapter, we investigate the ~haracteristics of the potential in collisionless 
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plasma. flow along spatially varying magnetic field linestoa.wa.llusinga.kinetictrea.t

ment. lonizationofneutra.lsisassumedtobeneglected. Wederivenecessa.ryconditions 

tobesatisfiedfortheformationofamonotonicallyfa.llingpotentia.lduetononuniformity 

of the magnetic field in a pla.llma flowing out through the magnetic throat. Moreover, 

we numerically solve Poisson's equation for model distribution functions to examine the 

potentia.lforma.Lionalongma.gneticfieldlines. Wealsoconsidertheeffectoftrapped 

electronsonthepresheathpotentialandbr•eflydiscussthecontrollabilityofthepolen· 

tialbythecombinationofaspatiallyvaryingmagneticfieldandtheelectroncyclolron 

heating. 

Theoutlineofthechapterisasfollows. Formationofthepresheathpotentialdueto 

nonuniformityofthemagneticfieldisdescribedbyusingthequasi-neulra.lityapprox.i

mationoftheplasmain5ec.4.2. Modeldistributionfunctionsofionsandelectronsare 

pickedouttoobtaintheexpressionoftheplasma-sheathequationinSec. 4.3. Results 

of numerical calculations are presented and discussed in Sec. 4.4. The conclusions are 

summarized in Sec. 4.5 

4.2 FORMATION OF A MONOTONICALLY FALLING POTENTIAL 

A spatially varying magnetic field provides formation mechanism of the presheath 

potentialthroughdivergenceoftheparticlefluxandaecelerationofplasmapa.rtidesby 

the parallel component of the Lorentz force. We consider a simple profile of magnetic 
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FIG. 4.1. Schemalk diagram Df the magnetic field profile (dolled line) 

a.nd tbeeleclloslalicpotentio.lprofile(solid line)intheopenregion. Typko.l 

paths of particles ueschema.tically shown io theresion between the minor 

throa.t and thefloatinswaU. 
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field strength as sketched in Fig. 4.1. Plasma. partieles coming out through the magnetic 

throat at z :o 0 r~eive the force from the expanding magnetic field wh.ich accelerate them 

towards the wall located at z = L, and their density drops accordingly. Ions eseaping 

from the throat are accelerated both by the magnetic field and by theel~troslatic 

potential. Mostofeleettoll.'lintheopenregion,whicheonsistofe\eetronspassingthrough 

the magnetic throatandeleetronstrappedbetweenthethroatandthewall, are reflected 

by the potential ¢(z). A plasma is neutralized at the wall, wh.ieb is perfectly absorbing 

and electrically floating. The ion motion is assumed to be eollisionless on the scale 

le"8th of the magnetic field variation. Wealsonegleetapartielesourceoutside the 

throat, a.ssumingtheparticledensityofa.plasmaoriginatingin the outer region much 

smallerthantheoneoftheplasma.flowingthroughthethroat. 

The distribution functions of ions and electrons satisfy the Vlasov equation. Thus we 

cangenerallyexpresslhesteady-statedishibutionfunetionasafundionofconstantsof 

motiononthea.ssumptionofnopartie\esouree. Theenergyofapartiele, 

(4.1) 

isa.constantofmotion,wherem,isthemiiSS,q,isthecha.rge,andt-J.andVJia.rethe 

perpendieularandparalleleomponenlsofveloeity. Theeleetrosta.ticpotentialformedin 

the plasma., <,lo(z), is defined as zero at z = 0. The magnetic moment, 

(4.2) 



ist .. kenasilconstilntofmotion,likee,wheretheminorratioR(z)istheratioofthe 

magnetic field strength Boat z = 0 to the local value B(z) at Wal coordinate z. The 

subscriptOdenotesthevalueat:.;=Othroughoutthischapter. 

Particledensityofspeciesjisobtilinedasilfunttionof4"(z)and R(:.;)byintegrating 

the distribution function f,(e,J<) over the velocity space, 

",(¢(<), R(<)) = J /,(<,p)J'". 

Theparticledensityofilplasmawith nop;u:titlesource is expressed by a function not 

explicitly dependent on z, but implicitly dependent on z through 4"(:r) and R(:t). The 

particle density n,(¢(:z:), R(z)) alwilys has a form different from nA.;I(z), R(z)) even if the 

distribution fundion J,(e,J<) is the same as f,(e,J<), beeau!le thesignofthe ion ch;u:ge, 

q, = Ze, is opposite to that of the electron charge, q, =-e. Here Z is the charge number 

of ions. The electrostatic potential is determined, in general, from Poisson's equation 

V'¢ = .[n.(¢1•),R(•I)- z~(¢i•),R(•i)]i•o (4.3) 

iftheprofileofR(:.:)isimposedexternally. Onecanseethat,aslongasthechracteristic 

scale length, L,, for potential variation is large compared to the Debye length >.,0 , the 

solution for ql(:z:) obtained from Eq. (4.3) is well approxima.ted by the one obtained from 

the quasi-neutral approximation Zn,- n., = 0. The two solutions differ by O(.q,/L~) 

and the solution toEq. (4.3)satisfycharge-neutrallly tothesameorder. Dilferentiilting 

Zn,- n, = 0 with respect to z, we obtain 
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(1.4) 

Then, if ~here is no singular poin~, we can determine the potential ¢(:z:) over the entire 

regionexceptforthesheathregionfromthedifferentialequation 

d¢(:z:) 8(Zn,- n.)/8RdR(:z:) 
J;- =- 8(Zn,- n.)/8¢ d;-

oncewegivethemagneticfield pro/ilebyafunctiono[:z: 

(4.5) 

We firs~ consider the potential formation in the open region between the magnetic 

throat and the wall using Eq. (4.5). Some electrons in the open region are trapped by 

a well of the effective potential p!Jo/R(x)- e¢(:z:) as il\u.strated in Fig. 4.1. Since the 

value of 8(Zn,- n,)/8R in Eq. (4.5)depends on a ratio of trapped- to reftected-electron 

density,trappedelectronswillha.veconsiderableefl'ectsuponthepotentialforma.tionin 

the plasma. The happed-elechon density, in !enera.l, becomes large with increasing the 

mirror ratio R(x) in the same ma.nner as the confined-ion density in a mirror system, 

while the particle density of escaping ionsa.nd thatofpassingelechonsdropin inverse 

proportion to R(x). One can easily see that 8(Zn, - n.)/8R is a.lwa.ys negative for 

an isotropic electron distribution (unction such as a Maxwellia.n, which fully fills the 

trappedregionofvelocityspace,becausetheelectrondensityisindependentofRfora.n 

isotropic distribut.lon function. The derivative 8(Zn,- n.)/8R is negative in the whole 

ra.ngeofRforallbutverysmalltrapped-eledrondensities. lnthiscase,weobta.ina 

monotonically falling solution <ji(x) to Eq. (4.5)continuing from x = 0 to x = L, if the 



denvative 8(Zn, -n,)/8</; is negative throughout the open region. This solution satisfies 

anecessaryconditionfortheformationofthestablesheathpotentialjustinfrontofthe 

wall, which is expressed by 8(Zn,- n.)/8</; ~ 0. The derivative 8(Zn, - n,)/8R can 

haveapositivevalueforverysmalltrapped-electrondensities,andlhenamonotonlcally 

fallingsolutionisobtainedifthederivative ll(Zn,-n.)/8</;ispositivefor z > 0. We, 

however, can exclude such a solution because it does notsalisfythenecessarycondition 

forthesheathformalionattheplasma-sheathboundary. 

The inequality 8(Zn, - n.)/8</; ~ 0 for the formation of a monotonically falling 

potential gives the restriction to the ion distribution function. Since ions streaming 

towards the wall are a-ccelerated by the effective potential JJB~/R(z) + Ze<f;(z), all ions 

moveinonedirectionifparticlesoriginatingintheopenregioncanbeneglected.lnthis 

case,theinequalityisrewriUenintheform[20] 

{4.6) 

by using the ion distribution function, where M is the ion mass. The expression (4.6) 

agre<!Swith thegeneralizedBohmcriterionforthestablesheathformationpresenledby 

Harrison and Thompson [10] when the electron distribution function is a Maxwellian 

with temperature T •. It is well known that the generalized Bohm criterion is satisfied 

only if the ion drift velocity is supersonic. Thus, the ion drift velocity in the outer 

region of the throat is larger than the ion acoustic velocitity when a monotonically 

falling potential builds up. Since the derivative an./8</;isalwaysfinite for a continuous 
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electron distribution function, the ion distribution function f, must be zero at "'I= 0 

to have a finite value of the integral in expression (4.6). On the other hand, the ion 

distribution fundionin the interior of the throat is expected tobecontinuousatthe 

separatrixwhichdividesthetrappedfromthepassingregionofvelodtyspace,provided 

trappedionsex.istinsidethethroat. Thesefactsmea.n thatthepassingionsmust be 

accelera.tedintheinsideregionclosetothethroatbeforetheirarrivalatthethroatso 

astosatisfycriterion(4.6). 

Nexl, we consider the potential formation at the inner region dose to the throat where 

thetrapped-iondensityissmallertha.nthepassing·iondensity.Theelectrondistribution 

[unclionintheinnerregionisexpectedtoapproachaMax:wel!ianduetoscatteringinside 

the throat. Since the derivative 8(Zn,- n,)JOR in Eq. (4.5)has a finite negative value 

in such a region, the sign ofi.I(Zn,-n,)/1.11/>tobe opposite tothatofdR(z)/dz for the 

formation of a monotonically varying potential must change from positive to negative at 

z=Oas:rincreases. Consequently,itisfoundthatamonotonicallydecreasingpotential, 

which is n...:essa.ry to accelerate ions, can build up in the vicinity of the throat only if 

criterion (4.6) is fulfilled withequalitya.lz=O. 

We briefly discuss the potential formed in the inner region of the magnetic throat 

suchastheplugcel\ofatandemmirrorsystem.Jntheinnerregionatadistancefrom 

thethroat,wherethetrapped-iondensityismuchlargerthanthepassing-iondensity,in 

general, the derivative 8(Zn,- n,)/8~ is negative and the derivative lJ(Zn,- n,)j8R is 

positive. On the contrary, 8(Zn,- n,)jlJ~ is positive and O(Zn,- n,)/8R is negative 

justinfrontofthethroat,asmentionedabove.llisseenfromthisfactthattheremust 
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be a $addle point in the intermediate region where the trappl!d-ion density becomes 

comparable with the passing-ion density if a monotonically varying potential builds up 

over the entire region. Equations Zn,-n, = 0, Q(Zn.-n.)/0¢ = Oand Q(Zn,-n.)jQR = 

0 hold hue at the saddle point simultaneously. Existence of such a saddle point will 

severely restricts distribution functions ofth plasma. It is an open problem as to 

whether the steady-stale continuous potential with a monotonically failing profile can 

build upornotthroughoutthesyslem. llisdifficulttocakulatethespatial profile of 

<,t'>(z)overtheentireregionusingakinetictreatment,becauseonemustsolvetheVlasov

Poissonequation self-consistently, determining thesepa.ratrix in velocity space under the 

considerationofionmotioninanonuniformma.gneticfield. 

4.3 MODEL DISTRIBUTION FUNCTIONS 

Weneedtoe:tpressthedistributionfunctionofelectronsa.ndionsinordertocalculate 

the axial potential profile between the magnetic throat <Uid the wall and the one in 

the vicinity of the throat. We unfortunately don't know <UIY kinetic a.na.lyses whieh 

calculate the distribution funetionofionsescapingthroughthema.gnetic throat, while 

manyca.lculationsforconfinl!d ionshavebeencarriedout byusingFokker-Planckcode 

There are difficulties in determining the distribution function of the escaping plasma 

andthepotentialprofilenearthema.gneticthroatself-consistent!y. Thepa.rtidedensity 

of ions varies along magnetic field lines through divergence of the particle flux and 



acceleration by the effective potential JJBo/R(z)+Ze4J(z). ion flow dynamics will roughly 

bedeS<:ribed by using adrift, asprea.dand anisotropy off,. Then we choose a model 

dislributionfunctionforescapingionsgivenby 

'( )- 2..,/Z ( M )'"( M ) 
' C,!J - erfc ((c.j.tT, 11 )l/1] 2~kT,II 2~kT,J. 

( ·--··) ( '"') xexp -~ exp -"fT.""" h(c-JJB0 -c,) 
•II •J. (4.7) 

Here erfc(y) is the complementary error function and h(y) is the Heaviside unit function 

defined by 

h(y)= { ~ 'y~O 
'y< 0 

Theculoffenergyc, > Oisintroduced soa.stomilintain the 6nitenessoftheintegral 

tncnterion(4.6), andthepa.rallel temperatureT,nand the perpendicular temperature 

T..1 are brought in t.oexpressasprea.d and anisotropy of the distribution function at the 

magnetic throat. Levelsurfaeesofthismodeldistributionfunction in VJi-vJ.spa.ceat 

R = 2 and -t4J/kT. = 1.7 are shown in Fig. 4.2(a). 

Electrons were 11$SUmed to be Maxwellian in almost all the previous analyses on 

the sheath [ormation[9-i2,17-J9]. The distribution function of electrons trapped in the 

expanding open magnetic field with large mirror ratio will, however, has a form different 

from that of electrons passing through the magnetic throat provided the interaction 

between themiswea.k. Since trapped electrons a.reexpectedtohaveconsiderableeffects 
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FIG. 4.2(a). Level sad~ otl R = 2 a.od t.P/kT. = -1.7 for the model 

ion disuibutioa function f, given by Eq. (4.7) with c0 /kT. = 0.187, T.u = T. 

and T..1 = lOT •. Here 11, is the pa.raJ.Iel ion thermal velocity. llatio of J, oa 

adj:u:entcontollnis0.79. 
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(b) 

FIG. 4.2{b). LeYelnrW:ea a.t R = 2 a.ad e~ji:T. = -1.7 for tbe model 

electron distribution fnction f. given by Eq. (4.8)witb cr= 10. Herev. is 

tbee\ectrontherma.l velocity. Ratio of f. on adjacenteontonrsia0.79. 
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on the potential formationasmentionedintheprevioussection,wedistinguishthedis-

tributionfunctioninthetrappedregionfromthatinthepassingregionofvelocityspace. 

The passingelectronsaresubjecttorelaxation inside themagnelic throat, thus we as-

sumethedistributionfunctioninthepassingregiontobeMaxwellian. Since the trapped 

electronsaresuppliedthroughscatt.eringofthepassingelectrons,thedistributionfunc-

tion must be continuous at theseparatrix which divides the trapped from the passing 

regionofvelocityspace. Wepickamodeldistributionfunctionfortheeledronsinthe 

form 

{4.8) 

whichiscontinuousoverthevelocityspace. Heremistheelectronmassandthefunction 

g(y)isdelinedby 

g(y): { !xp(o-y) 
,y;::o 
,y<O 

The reciprocal of the parameter cw describes the degree to which the trapped-electron 

phase space, £-p.80 < 0, is filled in : a : Ocorresponds to Maxwellian trapped electrons ; 

and increasing a from 0 to oo descri~s successively smaller num~rs of trapped electrons. 

Level surfaces of the model electron distribution {unction with a= 10 at R :=: 2 and 

-~~fk'F.: 1.7 ue shown in Fig. 4.2(b) 

The particledensityofspeciesjisobtainedasfunctionsof</land Rbyintegrating 

/ 1 over the velocity space. The resulting expression of the ion density is written in a 

relatively simple form 
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,J ('·-z••) 1 [('·-Z••)'"] \exp kT,n ere kT.u 

(R-11;")'" ( R <,-Z••) I [( R <,-Z••)''']\ -~r:;_ expj"':J~erc'jl:'J~ , 
4.9) 

andtheeleclrondensityis 

I (••) o(R-1) (R-1)''' ( R ••)[ 
n,(¢,R)=n0 exp kT. -l+a(R-l) ---e:- exp 'jf:'!W. (4.JO) 

The mean drift velocity of ions i!.l also obtained a.s a function of if> and R in the form 

V,{<,R)~ (2kT,,)'''[t-~~~ 1.,,('·-Z••)"'' [(•,-Z••)'''] 
.rM R T.11 1 kT.11 kT. 11 

_ (~~)"'(_I!_,,- Z••) "''[(_I!_,,- z,•)'''] )-' 
R T.n R-l kT,.1 R-1 kT..1. 

(4.11) 

TheseexpressionsarecontinuousiUiddift'erentiablewith respedtoRillld ¢,and then 

we can determine the presheath potential owin@: lo nonuniformity of the mllfj;nelic field 

from Eq. (4.5) if the prolile of the rnagnelic field strength is given by a function of~ 

exlernally. 

The ion flux per magnetic flux tube with unit cross section a.t the throat is given by 



r,="-("T·n)'''f.,,(~)""[(~)'"])-' z ~rM \ kT, 11 kT.11 (4.12) 

andtlleele<:tronRuxis 

r -"'(2kT,)'''[••"P(~)- o(R,-1)' "P(-'!!,___~)]• 
,- 2 'll"m kT, l+et(RL-1) RL-ikT. 

(4.13) 

where RL is the minor ratio at z = L. The wall potential¢., in Eq. (4.12), which is 

on~ of two boundary tonditions lo solve Poisson's equation, is uniquely determinl!d by 

lmposingtheumbipola.rilyofthelluxes,Zr,= r,. 

4.4 NUMERICAL RESULTS AND DISCUSSION 

To examine the polential formation, we tonsider two type of plasmas in the present 

paper Oneisa<:old-ionplasmaoril!linatingfromionization of cold neutrals inside the 

magnetic throat. We take temperatures as T.u = 0 and T,J. = 0 to model such a plasma. 

Another is a hot-ion plasma escaping from a device like a mirror machine, which is 

supplied by pitch-angle scattering of a confined plasma. We model the hot-ion plasma, 

taking T,11 == T. and T,.L =lOT,. The potentia.! ¢(:r) over the entire region except for the 

sheath region is determined by solving Zn,- n, == 0 or Eq. {4.5) if the magnetic field 

profile is imposed externally. A conlinuous solution of Zn,- n. = 0 with a monolonica.lly 



falltngprofileex.istsonlyifthesolutionsatisfiestheinequalities8(Zn,-n,)/8R:50and 

8(Zn,- n.)/8¢ :50 throughout the exterior of the magnetic throat, x ~ 0, as described 

in Sec. II. These inequalities restrict a range of parameters of the model distribution 

functions given by Eqs. (4.7) and (4.8). Figure 4.3 shows domains in a-- '• parameter 

space at any point in which we can obtain a solution of Eq. (4.5) continuous from :r. = 0 

to x = L. A lower limit of the cutoff energy '• of the model distribution function for 

IOns, which becomes in dependent of T.J. and RL, is evaluated by solving Zn,- n, = 0 

and 8(Zn,- n,)/8<1> = 0 at R=l simultaneously. A model plasma with the lower limit 

of'" the plasma marginally satisfies the generalized Bohm criterion expressed by Eq. 

(4.6)atthethroat. Anupperlimitofthecutoll"energyisdelerminedl"romsimultaneous 

equations Zn,- n. = 0 and 8(Zn,- n,)f8R = 0 at R = RL. The upper limit of£, 

decreases as a- becomes large, that is, as the trapped-electron density decreases. This 

value also drops with T,J., taking its minimum value at T.J. = 0. 

lnordertosatisfythegenerali1ed Bohmcriterion atx =O,ionscomingout through 

themagneticthroatmusthaveasupersonicdriftspeedandtheirdistributionfunction 

must be zero at VJI = 0. This fact implies the existence of the monotonically falling 

potentialtoaccelerateionsintheinnerregionnearthethroat.Figures4.4(a)and4.4(b) 

show potential profiles and drift velocity profiles for the cold-ion plasma with various 

valuesofthecutoffenergy£, in the vicinity of the throat, respectively. The magnetic 

field profile is given by R(Z) = 1 + (RL- l)(x/L)2 with RL = 10. Figures 4.5(a) and 

4.5(b) show results for the hot-ion plasma. The potential ¢(x) is determined by solving 

Eq. {4.5), which is derived by using the quasi-neutrality approximation, and 

95 



~ 

5.0 

<.0 

3.0 
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FIG. 4,3, Domain in a-£, space where monotonica.lly varying coolin nons 

po\entiillcan be formed in 1hecold-ion pli1.8ma.withT,n =Oa.ndT,J. =0 

, and in the bot+ion plasm& with T, 11 = T. ud T..1 = lOT. flowing lhroogh 

expanding magnetic field wilh various minor n.lios at the wa.ll. Here a is 

theredudngpa.rameteroflhemodelelectrondislribution function given by 

Eq. (4.8) a.nd ~.is thecntoft'eoergyoftbe mode\ ion disuibution function 

givenbyEq.(4.7). 
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FIG. 4.4{a). Poleotial profiles in the cold-ion plasma wilb T.u = 0 

ii.Dd T,.L = 0 aea:r the magnetic throil-1 of the model field Bo/B(z) = l + 
(Rt.- l)(r/L)2 with RL = 10. The values of the Cllloft' energy e0 are 

ceflt:T. = 0.5, 0.6, and 0.8. The generalized Bohm criterion is mo.rgioally 

satisfied atthethroatwheo ,cfi:T.=O.S. 
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FIG. 4.4(b), Profile of the ion drift veloc;ity of tbe cold-ion plasma Dear 

the magnetic throat of the model field Bo/B(t:) =I +(RL- l)(z/L)2 with 

RL = 10. The va.lu.es of tbe catofl" energy'' a.re ~,fkT. = 0.5, 0.6, and 0.8. 
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FIG. 4.6(a). Poten\i~ profile in the bot-ion plasma with T.n = T. 

and T,.1. = lOT• near the magnetic throat of the model field Bo/B(r) = 
I+ (RL- l)(z/L)2 with RL = 10. Values of the eoi.Oif eDergy !, ;ue 

£e/kT, = 0.187, 0.3 ud 0.6. The genera.llud Bohm criterion is marginally 

sati9fied a.tthethroalwhen!,fkT,=O.I87. 
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FIG. 4.S(b). Profiles of the ion drift velocity of the hot.-ion plasma. near 

thema.gneticthroa.tofthemodelfield. Theva.lneao{lhecololl'energyc,a.re 

c.fkT,=O.l87, 0.3, udo.s. 
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the drift velocity V,(z) is obtained from Eq. (4.11). We ignored ions trapped inside 

the throat in this calculation, assuming that their density, which vanishes at z"' 0, is 

much smaller than the passing-ion density near the throat. Calculating results confirm 

the fact described in Sec. II, that is, a monotonical potential profile builds up only if 

the generalized Bohm criterion is fulfilled with equality at the throat. For the critical 

value of the culoff energy, £e/kT."' 0.5 for the cold-ion plasma or £./kT. = 0.187 for the 

hot-ionplasma,thegradientofthepotentialhasafinitevalueatz=Oneverthelessthe 

gradient of R(z) is zero at the throat. The plasma flow is ;u;<:elerated fwm a subsonic 

velocitytoasupersonicvelocity,andthesonictra.nsitionforthecold-ionplasmaoccurs 

at the magnetic throat. Thepo.sitionofsonic tranBitionmovestotheinnerregionas 

temperatureT,nincreases. Forcut.offenergylargerthanthecritical value, one can find 

a continuous potential profile, but it is not monotonical as indicated in Figs. 4.4(a) and 

4.5(a). On the contrary, for cutoff enetgiO!:$ smaller than the critical value, one cannot 

obtainacontinuoussolution. 

Although the assumption of quasi-neutrality provides a good approximation for a 

smoothly varying potential in the plasma, one must numerically solve Poisson's equation 

to determine a potential profile over the entire region from the throa.tto the wall. If 

we approximate the problem as one-dimensional then we replace 'il~~ in Eq. (4.3) by 

,P~fd~?. and a.n a.ppropriate set of boundary conditions consisls of values of~ at the 

boundaries. The value of~ at the throat is defined lobe zero and the one at the wall 

is determined from the umbipolarity of the fluxes expressed by Eqs. (4.12) and (4.13), 

zr, = r •. Poisson's equation, Eq. (4.3), can be solved numerically by transforming it 
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intoasetoffinitedifferenceequations. We use asolutionofEq. (4.5) to guess an initial 

set of¢(x), and ensure sufficient resolution near the wall by introducing a nonuniform 

grid 

Figures4.6a.nd4.7showthenumericallyca.lculatedpotentialforthecold-ionplasma 

and for the hot-ion plasma flowing along the model field R(x) = I+ (Rt.-l)(x/L)l with 

RL = 10, respectively. Here the hydrogen plasma with >.oof L = 0.005 is assumed. The 

culoffenergyofthemodeliondistributionfunctionischQf!enas~<fkT.= O.Sforthceold

ion plasma and e0 fkT0 = 0.187 for the hot-ion plasma so as t.o satisfy the generalized 

Bohm criterion marginally at the throat. Formation me.:hanism of the presheath is 

provided by the magnetic field through particle acceleration and divergence of particle 

Rux. Ions with a finit.e T,J. re.:eive the foree along field lines from the magnctk field, 

eonverting their kinetic energy perpendicular to field lines into parallel kinetic energy. 

Aecelerationofhotionsbythisforceinducesthela.rgepotentialdropnearthemagnetic 

throat. This force does not act upon cold ions with T,.1. = 0, and then formation of the 

presheath potential in the cold-ion plasma is owing to divergent of the particle flux. 

The solid curves A, Band C in Fig. 4.6 and D, E and Fin Fig. 4.7 show solutions 

for successively smaller ratios of the trapped- to the tota.l-ele.:tron numbers. The density 

profilesoftrappedelectrons,passingelectrons,andpassingionsofthecold-ionplasma 

for a MaxweUian electron distribution (a = 0) are shown in Fig. 4.8. It is seen from Figs. 

4.6,4.7and4.8thatthetrappedele.:tronsremarkablyaffectaprofileofthepresheath 

potential. Formuchsmalltrapped-electrondensities,adescentofthepresheathpotential 

islocalizednearthemagneticthroat,andthenthepresheath 
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FIG. 4.8. Poteotial profile ofJ(r) in the eold-io11 p\asma.ftowiog through 

the model field Bo/B(:r,) = I+(Rt.-I)(~:/L)3 with Rt. = JOfor vuiou values 

ofthepa.ra.meter o olthemodelelectrondistributioDiuuction. Pua.meters 

of the model ion disnibution function ue c./kT. = 0.5, T.11 = 0 ud T,J. = 0. 

The v&luea ofet ud the corre~pondiug ratioa of napped- to '<llal-electron 

number9 are: (A) a= 0, N!/N. = 0.27 ; (B) a= I, N!/N • .:: 0.13 ; (C) 

a= 10, N!/N. = O.o3. 
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FIG. 4.7. Potential profile ~(r) io the bot.-ion pluma flowing th,ongb 

the model field Bg/B(r) = l + (RL -l)(r/L)1 with RL = 10 for various 

va]u.,.o[tbepa.n.me\.er.:.oftbemodelelectrondistribolioo function. Pa

ra.meteu of the model ion distribution function a.te ~dkT, = 0.167, T.n = T. 

and T..1. = JOT,. The valueo~ of a &lid the corresponding ruios of tn.pped-

1.<> total-electron numbers ~ : (D) a = 0, N!fN. = 0.22 ; (E) a = I, 

N!fN, = 0.09; (F) a= 10, N:fN. = O.Q2. 
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potentiala.pproachesasymptoticallytoaconstantvalueasthemirrorratioincrea.ses. For 

largetrapped-electrondensities,thepresheathhasagraduallyvaryingpotentialprofile 

aild the potential drop increases with increasmg of the mirror ratio. The sheath potential 

with width several Limes as large as the Debyc length is formed just in front of the wall. 

The increase of the presheath potentialdropduetotheexistenceoftrapped electrons 

leadstothede<:reaseofthesheathpotential. 

Thecontributionoftrappedelectronstotheincrea.seofthepresheathpotentialdrop 

suggests the possibility of effective potential control in the open region by increasing 

the trapped-electron density through ECRH (electron cyclotron resoniUice heating) or 

ionization of neutral gas in the region near the wall. Since the ECRH increases the 

electronenergyperpendkulartomagneticfieldlines,ele<:tronspassingthroughthemirror 

throatcanbekickedinthetrappedregionofvelocityspao:ebytherffield,andtheyare 

trapped until scattering out from the trapped region. In the open region with a large 

mirror ratio, such as the end regionofatandemmirror, almost all electrons originating 

[rom ionization near the wall are trapped in a well of the elfe<:tive potentialpB(z)-e¢(z). 

Hence, the ionization will contribute to the increase of the presheath potential drop 

providedthecoolingetrectofionizatlonisnotsolarge. Thelar!!;epolentialbarrieratthe 

preshealh inhibits the inflow of high-Z impurity ions from the wall towards a confined 

plasma. Moreover, it willpreventaremarkableincreaseofconvectiveelectron heat loss 

due to secondary electron emission from the wall. It is well known that secondary electron 

emisswnhasanegligiblysmallinfluenceonthepolentialdropatthepresheathunder 

the condition of a fixed electron temperature, while it remarkably reduces the potential 



dropattlleslleatll[21,22]. Tllus,onecanexpectth.tthelargepotentialdropattlle 

preslleatlladsasathermalinsulatorinplaceoftllesheathpolentialwhenalargenumber 

ofele<:tronsa.retrappedintheopenregionofasystemsucllasatandemmirror,evenif 

tllesheathpotentialdropisreducedt.oasmallvalueduetosecondaryelectronemission. 

The ECRH power necessuy to maintain the trapped-electron density is expected to be 

small compared with the convective electron heat outflow if the collision frequency is 

muchsmallerthantheoneinsidethetllroat. Aprecisecalculationconsideringthepower 

balanceofaplasmaarenecessarytomakesureofthepossibilityofpotentialcontrol. 

4.5 CONCLUSIONS 

We have investigated formationofthesteady-stateelectrostatic potential in acol

lisionlessplasmaflowingoutthrough the magnetic throat to a wall on thehaseofthe 

kinetic theory. Spatially va.ryingmagnetic field providesformationmechanismofthe 

presheatllpotentialthroughaccelerationofplasmaparticlesanddivergenceofputicle 

flux. A particle source in a plasma is assumed to be ignored. We have expressed Pois

son's equation for a theoretical model to examine potential formation along magnetic 

field lines from an inside point near the magnetic throat to the wall. It is found that 

the plasma flow must satisfies the generalized Bohm crit.erion at the magnetic throat to 

avoidthediscontinuityofthepotentialjust beyond the throat. A monotonically falling 

potentialcanbeformedonlyiftllegeneralized Bollmcriterionismarginallysatisfiedat 
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thethroal. lnthisca.se,ionspassingthroughthethroa.tareacceleraledfroma.subsonic 

velo~ity to a supersonic velocity before they arrive at the throat. 

Numerical solutions to Poisson's equation show that trapped electrons in the open 

regionaffectthepotentialformationremarkably. Forverysmalltrapped-electrondensi

ties,thepresheathpotentialdropislocalizednearthethroatandthepreshea.thpotential 

approaches asymptotically to a constant value as the magnetic field~trength decreases 

along magnetic field lines. For large trapped-electron densities, the presheath potential 

drop continuously increa.seswithdecreasingthemagnetic field strength along field lines. 

These resultssu~est the pOtisibility of effective potential control in the open region by 

the combination of an expanding magnetic field and the ECRH heating. 

Our results obtained fromtheanalysisandthenumericalcalculation present one of 

the bases o[ the total understanding of the polential forma.tion in the open repon of a 

mirrormachine,intheedgelayerofafieldreversedconfiguration,orinthedivertorofa 

toroidal herical system. The present results may also be applicable to a low density and 

high temperature plasma in a modified expanding bundle divertor of a tokamak aiming 

atimprovingtheenergyconfinementand redudngtheheatloadonthewall(5). 

REFERENCES 

[1) L. S. Hall, Nucl. Fusion 17,681 {1977). 

[2) G. D. Porter, Nucl. Fusion 22, 1279 (1982). 

108 



(3] L. C. Sleinha.uer, Phys. Fluids 29,3379 (1986). 

(4] T. Mizuuchi, 0. Molojima., S. Besshou, A. liyoshi, and K. Uo, 

J. Nucl. Mater. 121,3 (1984) 

]5) R. W. Moir and W. L. Barr, Nucl. Fusion 13,35 (1973). 

]6] W. L. Barr and R. W. Moir, Nucl. Te.:hnol./ Fusion 3, 98 (1983). 

(7] H. Momota., A. Ishida., Y. Kohzaki, G. H. Miley, S. Ohi, M. Ohnishi, 

K. Yoshikawa., K. Sa.to, L. C. Steinhauer, Y. Tomita, and M. Tusz~wski, 

Fusion Techno!. 21,2307 (1992). 

(8] N. Ohya.bu, KakuyugoKenkyu 66,525 (1991) 

[9] I. Langmuir, Phys. R~v. 33, 954 (1929) 

[10] E. R. Harrison and W. B. Thompson, Proc. Phys. Soc. London 74, 145 (1959). 

[11] G. A. Emmert, R. M. Wieland, A. T. Mense, and J. N. Davidson, 

Phys. Fluids23,803 (1980). 

[12] R. C. BisseU and P. C. Johnson, Phys. Fluids 30,779 (1987). 

[13] T. D. Rognlien and T. A. Brengle, Phys. Fluids 24, 871 (1981). 

[14] R. H. Cohen, Nud. Fusion 21, 209 (1981). 

[15) R. H. Cohen, Phys. Fluids26, 2774 (1983). 

[16) I. Katilnuma., Y. Kiwamot.o, K. Ishii, and S. Miyoshi, Phys. Fluids 29,4138 (1986). 

[17] K. Sat.o, F. Miyawaki, and W. Fukui, Phys. Fluids B 1, 725 {1989). 

[18) M.A. Hussein and G. A. Emmert, Phys. Fluids B 2, 218 (1990). 

(19] K. Sa.to and F. Miyawaki, Phys. Fluids B 3, 1963 (1991). 

[20] R. C. Bissell, Phys. Fluids 30,2264 (1987). 

109 



[21] G. D. Hobbs and J. A. Wesson, Plasma Phys. 9, 85 (1967). 

(22] K. Sato and F. Miyawaki, J. Phys. Soc. Jpn., 61, 1453 (1992). 

110 



Presheath and Current-Free Double Layer 

in a Two-Electron-Temperature Plasma 

5.1 INTRODUCTION 

A plasma with energ~tie electrons or a two-eledron-popu\ation plasma is produced 

in various laboratory devices. In tokamak experimenl$ using ion cyclotron frequency 

heating, lower-hybrid wave heating,orrfcurrent-drive, non-thermal electrons appear in 

scrape-otrlayerduetostrongrffields[l,2]. Inthetandemmirror,duringstrongeleclron 

cyclotron resonance healing, the electron distribution composed of two Maxwellians at 

differenttemperaturesisobservedintheopenendregioninfrontofendplates[3]. In 

thenegativeionsource,fastprima.ryelectronsforexdtationofhydrogenmoleculesand 

slow plasma electroru; for production of negative ions are required in order to improve 

volume productionofnegativehydrogen ions [4). 

Two-isothermalspeciesofeledronshavealsobeenobservedintheexpand.ingcorona 

ofaplasmaheatedbyalaser(Sj.Theexpansionofsuchaplasmaandthedevelopment 



ofapotentialdoublelayer,calledararefactionshock,havebeeninvestigatedtheoreti

cally, and general conditions under which rarefaction shocks can exist was derived (6,7]. 

Recently,alaboratoryexperimentoftheexpansionofatwo-electron-populationplasma 

ha.. been carried out by HairapetianandStentel (8]. They have also observed astation

ary,current-free,potentialdoublelayerwhichisformedduetoself-consistentseparation 

of the two electron spede!! in the same devices [9]. 

The appearance of energetic electrons is expected to have a remarkable effect on 

potential formation in the plasma because the potential formation is closely ll!ISOCiated 

with the electrons distribution. Whilethereha.sbeenconsiderabletheoreticalactivily 

in theproblemo[potentialformationinaplasmaboundedbythewallsincethekinetic 

analysis in the context of discharge plasma was done by Tonks and Langmuir (ID-13], we 

know of few attempt to verify the characteristics of the potential formed in two-electron

population plasmas. 

lnthischapter,wetheoreticallyinvestigatethesteady-statepotentialformationina 

two-electron-temperature plasma to show possibility of steady-state potential formation, 

to clarify thepotentialstructure,andtoevaluatethepotentialdropinsuchaplasma. 

The ions are assumed to be generated by ionization of neutral atofWI without thermal 

motion, and the electrons are assumed to have two Maxwellian distributions at different 

temperatures, T~ and T0 • We analytically sol~ the plasma equation, and check whether 

the analytic solution satisfies a condition for the formation of a stable sheath poten

tial. Resu]l$ calculated from the analytic wlution show that the potential drop in the 

presheathhaseitherasmallvaluecharacl.erizedbythecoldelectronsoralargeoneby 



thehote]eclronsifthelemperalureration/T,isoftheordero{JO. There is a critical 

value for the hot- tototalelectrondensityratioatwhich thepotentialdropofpt<!Sheath 

discontinuouslyincreasefromthelowleveltothehighoneaslhedensityratioincreascs. 

Wealsofindthatthesteady-statemonotonicallydecreasingpotential.whichconsisl!l 

ofthefirstpresheath,acurrent-freedoublelayer,lhesecondpresheath,andthesheath 

justinfrontofthewallcanbesetupinalowerrangeofthehot-tototal.eledrondensity 

ratioaroundthecriticalvalue. Thepresentdoublelayerbuildsupinthepla.>Jmawithout 

plasma current, whilemostdoublelayersobserved in experimenls{l4]or theoretically 

investigated[i5,16]requirethepresenceofapla.smacurrent. The double layer structure 

is sustained by self-consistent sepa.ration of the two electron species and generation of 

ions at the two presheathes. The formation mechanism is simila.r to that of the double 

layer experimentally observed by Hairapetian and Stenzel [9). 

In Sec. 5.2, we present the solution of the plasma equation, and brieHy discuss a 

condition for the formationofastablesheath potential. Theformationofthedouble 

layer and the solution of the plasma equation for the second presheath is described in 

Sec. 5.3. Resultscalculatedfromtheanalyticsolutionsaceillustratedanddiscussedin 

Sec. 5.4,andtheconclusionsacesummarizedinSec. 5.5. 

5.2 SOLUTION OF THE PLASMA EQUATION 

A collisionles.s plasma is assumed in a one-dimensional planar geometry with walls 



al ;r = ±L, which are perfedly absorbing and eleclrically Ooating. The eledrostatic 

potenlial ¢(;:;),which is defined to be zero at ;r = 0, isexpeded to be monotonically 

de~reaslng for x > 0 as shown Fig. 5.1. h is assumed that ions are generat.ed by 

ionization of neutral atoms with kinetic energy negligibly smaU as compared wilh lhe 

electron temperature. Following the same way of Harrison and Thompson (11], the ion 

densilyn,(;z;)atsomepoinl;z;isdescribedbya.kinelieequa.lion 

n,(;z;) = < uv >non.. {rl;z;'h(x') (2q(¢(;z;1- ¢(;:;)])-I/~ , (5.1) 

where q and M are the charge and mass of the ion, < "v > is the ionization rate 

coefficienl,noistheelectrondensityatz=O,andn,istheneutrala.lomdensity. The 

function h(;z;) expresses the spatial varialion of the ionizalion rate. For eleehons the 

dislribution composed of two Muwellians at different lempera.tures is ..dopted to give 

the electron density 

(5.2) 

where fl<IJ and nho are the cold and hot electron particle densities at ;r = 0, and T< and 

Th are the cold and hot electron temperatures. Substituting Eqs. (5.1) and (5.2) into 

Poisson's equation, we obtain lheintegrodifferentialequation 
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FIG. 5.1. A schema.lic dia.gra.m of the geometry of the problem 



where >.DO is the Debye length at:.:= 0 defined by >.k, = eokTJnoe2. 

The plasma equation, whieh deseribes the potential distribution in the plasma expeet 

the sheath, is obtained by negleelingtheseeondderival.ivetermofEq. (5.3). With the 

introductionofthedimensionlessvariables 

s=x/L, Z=q/e, a=nAO/no, r=T~/T., >lt(s)=-~t/J(x)/kT<, 

theplasmaequationiswriUenintheform 

(l-a)exp(->ll)+aexp(->l'/r)=A£~,_w~(>l'~~!)lfJ, (5.4) 

where 

A= <ov>n,(~~) 112 L 

and >II'= llt(s'). Equation (5.<1)isAbel's integral equation and itssolutionis[l7] 



The differentiation on the right-hand side in &j. (5.5) can be carried out to give the 

re<:iprocalofthenormalizedelectricfield 

:o-A~(W) [~-2(1-a)exp(-W)D(~ -27;exp(-W/r)D(#"F)] 

,o::;w::;w,, 
(5.6) 

which is inversely as h(W). Here D(:z:) is the Dawson funclion and >1< 1 is the potential at 

the plasma-sheath boundary. In the absence of a boundary condition there is always a. 

solutiontotheplasma.equationfora.nyvalueofW 1,butthesolutionsatisfiesthegeneral 

Bohmcriteriona.ttheboundaryonly ifdsfdW =Oattheboundary [18]. With the aid 

of this boundary condition, the valueofW 1 is determined (rom the equation 

2~ = (1-a)exp(-W,)D(F:'J +-J;exp(-W,jr)D(-N'J 
(5.7) 

Integra.tionofEq. (5.6)give the function s('l') fromwhichtheprofileofthepotential in 

theplasma.uptotheedgeoftheshea.th,theso-calledpresheath,isdeterrnined; 

•1•1 = J.<··~ (!.''•'~)-· o dW' o dW' (5.8) 
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It is seen from Eqs. (5.6)-(5.8) that while the profile of the potential depends on the 

shapeofh('ll), the potential at the boundaryi~independentofit. We can calculate the 

profile oflhepreshea.th potential from Eq. (5.8) once the function h(qt) issp«ified. 

The wall potential qt.,isdeterminedfromtherequirementtha.ttheelectronlluxa.nd 

the ion Ru~ must be equal at the wall. Since the particle number of ions generated in 

the sheath can be neglected in the limit as >.oofL __, 0, the ion llux is evaluated by 

integratingthepa.rticlesourceintheplasmaas 

zr = (zzkr,)''' J.":w!!!:..hl•'l ' ' no M A o dqt' ' (5.9) 

whichisindependentoftheshapeofh(qt) ~auseds/dqtisininversetoh("'). The 

integration in Eq. (5.9) can be carried out using Eq. (5.6). The electron llux of the 

two-tempcra.tureelectronisexpressedby 

(5.10) 

and then, weobta.intheequationfromwhichtheva.lueofqt .. isdeterminedas 

(1- <>)exp(-qt,.)+a--/Texp(-qt,.Jr) = 

(5.11) 



WenowderivethesheathequationandbrieAydiscussaconditionfortheformation 

of the sheath potentia.ls. Multiplying by d11Jfds a:nd integrating Poisson's equation, we 

obtain the equation which described the sheath potentia.] as follow; 

! (~)' (~) 1 = fdo~o•Zn,(W')- n.(olo') 
2 L ds /,., no 

Since the left band side of Eq. (~.12) is positive, the inequa.lity 

fdo~o'(Zn,- n,) ~ 0 

'·· 

(~.12) 

(~.13) 

mu.st hold over the ra:nge >11 1 < >li S >to,,., which is the condition for the formation of a 

stable sheath potential. For a maxwellian distribution of eledron, the inequa.lity (~.13) 

alwaysholdstrueoncethegeneralizedBohmcriterionissatisfiedat>li=>lil beo:auseof 

rapid decrease of the electron particle density with increase of the potentia.l. But, for 

electron which has a high energy component, theinequa.lity (5.13) doesn't always hold 

even 1fthe generalized Bohmcriterion is satisfied at the boundary. The ion density in 

thesheathisobtainfrom 

(5.14) 

by using the solution of the plasma equation, Eq. (5.6). Carrying out some integration, 

wecanwritetheinequality (5.13) as 



oJr- oJr,- ~ h:dift'(f. -l)''l-; f',w [(oJr- "~''J''l- (oJr,- ~~<'J''l] 

• [0-•I"PI-•'ID(J<') +oJi',.pl-•'i•lD(~] 

-(1 - a)[e~tp(-o¥ 1 )- eKp(-11')]- crT[exp(-oJrdT)- exp(oJr/T)] 

> 0 (5.15) 

][tlnscondltionisnotsatisfiedoverlhetange\1' 1 <II' :5 II'.,, thereisnotanonoscillat.ory 

>Olution which can reach to the potential II',.. In this ease, we can find another mono-

tomcally decreasing potential structure which consisls o{ the first presheath, a double 

layer,thesecondpresheath,andasheathasdescribedinthenextsection 

5.3 CURRENT-FREE DOUBLE LAYER AND 

THE SECOND PRESHEATH 

When asignoftheintegral in Eq. (5.12)changesfrompositivetonegativeasthe 

potential oJr increases, wecangetamonotonicallydecreasingsolutionofPoisson'sequa.-

Lion which can reach the wall potential by introducingformationofadouble layer and 

the second presheath downstream [rom the first presheath. A double layer is a localized 

electrostatic potential structure created by two equal but opposite space-charge layers. 

The potential of the double layer placed to the first presheath is calculated from Eq. 

(5.12), and the edge potential 'llo is determined from 



f,.Dd'lt'(Zn, -n.) =0 
},, (5.16) 

Thisdoublela.yerissurrounded by thefirstandse<:ond presheathes, and is sustained by 

the ioniza.tion of neutral atoms in the presheath regions. Appearance of the cold ion in 

thesecondpresheathenablethesteady-statedoublelayertobesetupinthep]a.<ma 

The thickness of il. double layer i~ generally from a few ten timeo:; to several hundred 

timesoftheDebyelength,thenthepartidesourceinsidethedoublelayernnbene-

glectedin thelirnita.s>.DO/L--0. Neglectingthepartidesourcein the double layer, we 

ca.ndescribetheiondensityinthesecondpresheathbytheequation 

(/. •• ,,,. '!•'I 1• ,dl '!•'I ) 
Zn,(s) = Ano 0 dill dii ('It_ io•)l/l +'"'!"'~('It- i'')l/l • (5.17) 

wherethefirstt.ermontherighthandsideistheparticledensityofionsproducedinthe 

first preshealh and lhesecondoneisthal produced in the second presheath. Equa.lizing 

the ion densily to the electron density Md introducing the transformation { = ~ - Ill o, 

theplasmaequationofthesecondpresheathiswrittenas 

{1- a)exp[-(i'o +{)]+aexp[-(>l'o+O/r] 

=A f~'~(ll'o +ht~)>li')IIJ +A j)JF!~ ~~>1'_:{~ 1~? . (5.18) 

Since the first integral on the right hMd $ide is a function of{, Eq. (5.18) b«omes 

Abel's integral equation a.nd its solutionis 
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( l•o+(i) J.'' ,d•' hi•'J I 
+aexp --,- -A 0 d>ll~(>llo+e'-'11')'/2 

(5.19) 

Pulling Eq. (5.6) into Eq. (5.19) and carrying out some integl'ation and derivation give 

the result 

;rA~('II) {(1-a) [(1fr-'llo)-'12 exp(-'1'0)-2exp(->ll)D{~] 

+a[("' ->Jr0 )- 111exp(->lto/TJ- ~exp(-'11/rJD{ Jcot- 'Ito)!•)] 

l ..,, dof!' ("'0 -!Jr')''' I I --J. -- -- --2(1-a)o<p(-•'JD(·'<" "0 >lt-1JI' i'->1-o ~ VYJ 

(5.20) 

The potential at theedgeofthesecond presheath, '1' 2 , isdeterminedfromtheboundary 

condition,d3/d1J!=0. 

In the limit as >.oo/L ..... o, tltepO!lilionofthe double layer, s0, is given by 

'" = (!.''•·~ + !''··~)-'!.''•'~ 0 d>ll' }.., 0 d'll' o dofl' (5.21) 
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It is soon from Eqs. (5.7), (5.15), (5.20), and (5.21) that the position s0 dependson the 

opatialprolileoftheparticlesourcebecausetheintegranddsfd>J/variesinversclyash(s), 

while the potentials W, 'llo, and >J/2 are independentofh(s). The potential profiles in 

thefirstandsecondpresheathesare,respectively,calculated[romtheintegrals 

. '"(. '')_, s(W) = sv fo d'll'~ fo d>~~'"Ji; , O<s< sv, (5.22) 

.,, 

sv < s <I, (5.23) 

which also depend on the spatial profile of the partide source. 

Since the cold electrons are reflected by the double layer pol.ential, the electron dis-

tribution function at the se<::ond preshealh is dose to a Maxwellian with the temperature 

TA· In this case, a nonoseillatory stable sheath potential is always formed just in front 

of the wall once the generalized Bohm criterion is satisfied at the edge of the second 

presheath. The ion tluxi.sevalualed by integratingthepartidesource as 

zr = (2ZkTc)''' ( f'd.>~~'!!!.._h(.') J."d>~~'!!!_h(.')) 
' flo M A Jo d>fl' + 'i'D d>fl' (5.24) 

Carrying out the integration in Eq. (5.24) and equating the electron and ion !luxes, we 

obtain the equation to determine the wall pol.ential as 



(1-a)exp(-IJ<,..)+ctv'Texp(-IJ<.,/r) 

= c::;:z) '''{II- •I [np(-•,JD (A +np(-.,)D (J•.- •o)] 

+•Vi [np(-•,J,)D ( fi) +np(-•,MD( Ji••- ••li,)] 

I •• [(• -· )'"]I I -;fo d>lo'tan-1 IJ<~-11'~ ~-2(1-ct)exp(-IJ<')D(.fii} 

(5.25) 

The potential 'lt., weakly depends on ZmfM, while the pot.entiab 'lth 'llo, and 11'2 are 

independent of it. 

Using the solution, wecanalsocalculat.e the ion distribution function explicitly. To 

express the distribution function, we usethenormalizedquantitiesand the normalized 

velocity, V = (Mv1f2kT.) 112. An ion generated at a points' :S s has a velocity of 

V = {Z[IJ<(s)-IJ<(s'))} 1/ 2 • (5.26) 

If f(V)dV is the number of ions at having velocities in the range V to V + dV, it follows 

that 

/(V)dV = Anoh(s')ds'fV , (5.27) 

wheretherighthandisthenumberofionsgeneratedpersecondbetweens'ands'+ds'. 

Ftom Eqs. (5.26) and (5.27), therefore, the distribution function at a points 2:: s', 

norma.lizedtono,isgivenby 

12< 



/~) = ~h(s')~ , (5.28) 

which is independent of the spatial profile of the particle source. Substilulin~ Eqs. {5.5) 

and (5.20), weeanexpressthedistributionfunction at theedgeofthesecond ptesheath 

in the form; 

h~) = 1r;312 {(t- a-)[(>~<'- 'l'v)- 111 exp(-4'n) -2exp(-'I'')D{ J>&o•- i'o)] 

+a [w- >~'o)- 1 12 exp(-i'v/"r)- ~exp(>ll'/"r)D {J(i~'- 'l'o)/r)] 

I!. ... ' dil" ('~' -'~<")'''I' 
-; 0 >li'-'1'" qr?_qr0 JWii-2(1-a)exp(-'I'")D(o/i") 

, 0 < V < (Z(>Ii,- >1ivJr12 , (5.29a) 

where 'I''= 11< 2 - V2JZ. The ion distribution is separated into two part.; due to the 

forma.tionofthedoublelayer. Theionsprodueedinthefil"!ltpresheatharea.eeelerated 

by the double layer to form a high-ener&Y beam expressed by Eq. (5.29b). In the same 
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manner, we can also ge~ ~he expression of the heat !lux using the solution of the plasma 

equation 

5.4 RESULTS AND DISCUSSION 

The plasma-sheath boundary potential is obtained by finding the value of'lt1 that 

satisfied Eq. (5.7) for a particular value of the temperature ratio T = Th/T< and the 

density ratioa:::nho/"<J. The results of the potential asafunctionofthedensity ra~io 

nho/no are shown in Fig. 5.2. Equation (5.7) has a triple root '11 1 = 3.82 when T = 10.8 

and 0: = 0.33, which is obtained by solving Eq. (5.7), da:Jd>lt 1 = 0, and Jla:jd'lt~ = 0 

assimultaneousequationsof'll~or,andr.. Whenr< 10.8,ithasasinglerootoverthe 

whole range ofnAO/"<J and then the potential '11 1 is continually changing from 0.85 to 

0.85 T as ~he densi~y ratio increases. When T > 10.8, however, i~ has three different roots 

in some range of nho/"<J. In this case, we must choose the smallest one as the boundary 

potentialinordertogetphysicallymeaningfulpolentialprofileinthepresheathbeeause 

the derivative dsjd'll, the reciprocal of the normali;ed electric field, must be a single 

value at any point in the real space. Following this fact we can see that the potential 

'111 discontinuously changes from a value of order of 1 toone of order ofr at some 

value of nu/TI{J when r > 10.8. His noted that the condition T > 10.8 agrees well with a 

necessaryconditiongivenby-r>S+.,/Mforrarefactionshockstoex:istinalaser-plasma 

corona(6,7J. 
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The normal.i~ed potential (solid Lines) at the plasma-she<llh 

boundaryasa(unctlono(tbeho1.-tototaldensityrationAo/n0 forvarious 

values of the temperature ratio, r = TA/To· The broken lines show lhe solu

tion of Eq. (5.7)whichdoesn'tsatisfy a condition (or the sheath formation 

expressedbythinequality(5.J5). 
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It is also noted that there is the range of nb.D/no where the condition for sheath 

formation described by the inequality (5.15) is not satisfied. In this range, which is 

mdlcatedbyusingbrokenlinesinFig.5.2,amonotonicallydecreasingpotentialstructure 

composed by the first prcsheath, acurrent·freedouble layer, the second presheath, and 

thesheathbuildsupintheplasmainsteadoftheusualpotentialstructurecomposed 

by the presheath and the sheath. The potential at the edge of the first and second 

presheathes, W1 and ol< 1 , are determined from the boundary condition, dsfdol< = 0, and 

that of the double layer, WD, is calculated from Eq. (5.16). Results forT= 20 shown 

10 Fig. 5.J(a) and forT= SO in Fig. 5.3(b) show that the potential drop in the 

firstpresheathisoftheorderofthecoldelectron temperatureandthatinthesecond 

presheathoftheorderofthehotelectronlemperature.Thepotentialattheedgeofthe 

doublelayer,oi<D,iscontinuouslychangingfromol<lt.ool<1 asthedensityratioincreases. 

The wall potential calculated from Eqs. (5.11) and (5.25) for a hydrogen plasma is 

shown in Fig. 5.4. The wall potential, which is mainly dominated by the hot electrons, is 

continuouslychangingregardlessofdiscontinuouschangeofthepresheathpotentialand 

the potential structure. In the rangeofthedensity ratio where the presheath potential 

is of the orderofthehot electron temperature, most cold electrons exist in the low 

potentialregionaroundthepla.smacenterbecauseofreflectionbythepotential.lnthis 

range,thecontributionofcoldclectronstothesheathformationbecomessmallasseen 

from Eq. (5.11), and then the wall potential W~ is asympt.otically approaching the fixed 

valueof3.56r. 

The potential profileofthepresheath which ends to the wall through the sheath is 
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plotted in Fig. 5.5 [or various values ofnho/n0. Here we take the spatial profile of 

the particle source in the form h(s) = n(s)/no, assuming the constant neutral atom 

density and the ionization rate proportional totheelectrondensity. Symbolsa,/,and 

e represent the results for the points in Fig. 5.2. It is noted that between point a and b 

thcpotcntialdropinthepresheathdrasticallyincreasesasnho/ri{Jincreases. 

The profile of the presheath potential for various value of the density ratio nM/ri{J 

in the range where the double layer and these.:ond prcsbeath build up at downstream 

of the first presheath is calculaled from Eqs. (5.22) and (5.23). Results are shown Fig. 

5.6, where 6, c, and drepresent the results for the points in Fig. S.J(a). The potential 

dropatlhecurrenl·freedoublelayer, which marks the transition betweenthefirstand 

secondprcsheathes,isillustraledbythebrokenline. Thepositionofthedoublelayer 

considerablydependsonthespatialprofileoftheparticlesource;iftheionizationofthe 

neutral gas is strong near the wall, thedoublelayerget near the wall. On the contrary, 

it move away from the wall iftbeparticlesourceislocalizedin theregionclosetothe 

centeroftheplasma. 

TheiondistributionfunctionattheedgeofthesecondpresheilthisshowninFig. 5.7. 

Duetotheformationofthedoublelayertheiondistributionfunctionisseparatedinto 

two parts. Thehighenergybearn-likepartwithasmallvelocityspreadisthedistribution 

functionoftheionsproducedinthefirstpresheathandacceleraledbythedoublelayer 

potenttal. ilnd a low energy pilrl is one of the ions produced in the se.:ond presheath. 

Theparticledensityofthecoldionsissmallerthanatenthofthatoftheenergeticions 

atthesecondpresheath. 
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The potential profile in the double layer is numerically calculat~d from Eq. (5.12). 

We obtain the plots in Fig. 5.8, where the Debyelength is defined using the cold ion 

temperature Tc and the particle density alz = 0. The potential changes gradually over 

the double layer, width of which is about fifty times as large as the Debye length. The 

corresponding profile of the particle density difference lin = Zn,-n. illustrated in Fig. 5.9 

shows that two equal but opposite space-charge layers create the locall~ed electrostatic 

potential structure. WhilethecoldelectronsarereHectedbythedoublela)'<!rpotential, 

many particleofthehotelectronscanreachthesecondpresheath beyond the double 

la}'<!r potential. The ions produced in the first presheath are accelerated toward the wall 

bythedoublelayerpotential. Inthefirststageofthedoublelayer,thespacccharge 

becomespositiveduelothereHedionofthecoldelechons,anditchangeslonegative 

m thesecondstagedue to acceleration of the ions and existence of the hot electrons. 

A rapid change of the space charge at z.::::: zn + 20.1.oo is due to existence of a small 

number of the cold ions produced in the second preshealh, which are reRected at the 

boundaryandcan'tmoveinthedoublela)'<!r. lnthepresentcalculationweneglectedion 

gcnerationatthedoublelayerbyputtingthelimitas.l.oo/L-0. Under the situation 

thattheiongenerationatthedoublelayercan not beignored,thespacechargemay 

change at the boundary continuously. ltisseen from the facts mentioned above that the 

doublelayerstrudureiscomposedoffourspecies,thati.s,thecoldelectrons, the hot 

electrons, the energetic ionsacceleratedbythedoublelayer,andasmallnumberofthe 

coldionsproducedinthesecondpresheath. 

A double-layer solution withoutcurrentofthe Vlasov-Poissonequationshas previ-
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ouslybeenfoundbyPerkinsandSun(i9J,but,thedoublelayerdescribedinthep""'ent 

chapterisdift'erentfromtheirsinthepresenceofparticleRux;acurrentlesssolutionin 

theiranalysisisfoundbysymmehizingthevelocitydistributionoftheplasma,sothal 

the solution involves no mass How. Recently, HairapetianandStenzel {9) have observed 

a stationary, current-free, double layer in a two-electron-population plasma, which is 

formed due to self-consistent separation of two electron species. The double layer in 

theirexperimentissunounded bythemonotonicallydecreasingpresheath potentials, 

andthepolentialdropatthedoublelayerisoftheorderofthe"eft'ective"temperature 

of energetic electrons. This double layer issei up ala place far from the end plate 

becauseionizationandcharge-exchangecollisionsarerestrictedtothevicinityofthegas 

valve located attheoppositesideoftheendplal.e. Although cold ions were not observed 

at downstream of the double layer, the formation mechanism and the chaza.eteristics 

described in their paper agree well with those presented in this chapter. 

5.5 CONCLUSIONS 

Wetheoreticallyhaveinvestigatedtheformationofanelectrostaticpotentialdueto 

ionization of neutral atoms in a two-electron-temperature plasma. The plasma equation 

is analytically solved to show the possibility of steady-state potential formation, and to 

evaluatethepotentialdropinsucha.p\asma. 

Thepotentialdropintheplasmaiscontinuouslychangingwithincreaseofthehot.-to 
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totalelectrondensityratioifthehot-tocoldelectront.empera.lureratioTh/Tcissma.ll. 

It, however, is allowed to have either a small value chara.c:terized by the cold electrons 

or a large one by the hot electrons if n;r, > 10.8, and discontinuously changes from 

thcsmallva.luetothelargeoneatacritica.lva.lueforthehot-tototalelectrondensity 

ratio. ltisfoundthatamonol.onica.llydecreasingpotentialstruclurecomposedbythe 

firstpresheath, acurrent-freedoublelayer, thesecondpresheath, and the sheath justin 

front of the wall can be steadily formed in a lower rangeofthedensity ratio around the 

critical value. Thedoublelayerisformedduetoself-consistentseparationoftwoelectron 

specicswithdilferenttemperaturesandgeneralionofcoldionsalthepresheathes. The 

formation mechanism of the present current-free double layer seems to be the same as that 

ofthedoublelayerrecentlyobservedinthelaboratoryexperiment(9).Thedoublelayer 

marks the transition between the first and second presheatheswithdifferentpotentia.l 

levels. The position of the double layer is altered by changing the spatial profile of the 

particle source, and ilsamplitudedependson the relative density and temperature of 

two electron species. 
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Heat Flow of a Two-Electron-Temperature 

Plasma through the Sheath in the 

Presence of Electron Emission 

6.1 INTRODUCTION 

Encrgeticelectronshavebeengenera.tedina.numberofexperimentaldevicesduring 

radio-frequencyhea.ting.lntokama.kexperiment.susingioncyclotronfrequencyheating, 

lower-hybrid wav~ heating, or rfcurrentdrive, nonthermalenergeticelectronsappearin 

thescrape-offlayerduetostrongrflields(l,2]. Inthetandemmirror,duringstrongelec-

Iron cyclotron resonance heilting, the electron distribution composed of two Muwellians 

atdifferenttemperaturesisobservedintheopen-endregioninfrontoftheendplates 

[3]. 

The appearance of energetic elechonsisexpected to have dramalic elfect.s on the 

formation of the plasma sheath. Production of energetic electrons makes the sheath 

vohagelarge[4],a.ndhenceionsputteringisincreasedowingtothehigherimpactenergy 



resulting from the large potentialdropatthesheath [5). On the other hand, energetic 

electrons induce significant emission of secondary electrons, which can lead to marked 

reduction of the sheath potential and enhancement of the heat flow to walls [6,7,8). 

Thus, effects of the secondary electron emission in a plasma with energetic electrons 

are of interest in the study of heat llow and impurity generation. It is weD known that 

the electron emission coefficient is not able to exceed an upper limit smaller than 1.0 

becauscanelectronspacechargelayerformedjuslinfrontofthesurfaceinhibit.sany 

further secondary emission [6). The energetic electrons contribute to building up the 

eleclronsp..cechargelayerifmanyofthemarereflectedbythesheathpotential.lnsuch 

a case, one can expect further reduction of the limited secondary electron emission due 

lotheexistenceofenergeticelectrons. 

The purpose of this chapter is to demonstrate the effects of electrons emitted from 

the wall in two-electron-temperature plasma. The sheath equation and the description 

of heat Row in thepresenceofelectronemission are derived in Sec. 6.2. The effects of 

these<:ondaryeledronemissionarediscussedinSec. 6.3bycomparingsolutionsofthe 

sheath equation obtained under conditions of space-charge limitation with the ones in 

theabsenceofeleclronemission. 

6.2 SHEATH EQUATION AND HEAT FLOW 

Forthepurposeofthischapter,itisa.dequatetoa.doptamodelidealizedby Hobbs 

, .. 



and Wesson [6). A plasma filling ~he half-space z > 0 is in contact with an infinite plane 

wall located at z = 0 as shown in Fig. 6.1. When the plasma impads upon the wall an 

electron-repelling plasma sheath mus~ be formed in order that ~he loss rate o[ electrons 

and ions can be so balanced Lhatthegloballossofcha.rgefromtheplasmaiszero. The 

electrostatic sheath potential</!, which isdefinedtobeleroatz = o:o,satisfies Poisson's 

equation 

(6.1) 

where n.1 is the density o!prima.ryeledrons, n, is the density of ions, and n.2 is the 

density of secondary electrons. For simplicity the ions are assumed to have a monoen-

ergetic distribution function and to arrive at the sheath edge with an inddent velocity 

v(oo)acceleratedbyapresheathpotential. Theyareacceleratedinthesheathandtheir 

dcnsityisdeterminedbythecontinuityequationas 

( 2Z•• )-'/' 
n, =n,(oo) 1- Mv2(oo) (6.2) 

lmpactofelectrons,ions,photon,metastableatomek.causetheemissionsofseconda.ry 

electrons. Using the fact that the total current is zero, we have 

Zn,(oo)v(oo) = (l-l,)n,1v,1 -l,n.(oo)v(oo)- J , (6.3) 
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FIG. 6.1. A schema~ic diagram of geome~ty of the problem. 



where'}', and'}', ilfe, respedively, the emission coefficients for electrons and ions 

incident upon the wall, and J is the emission ftuxdue to photons, metastable atoms, 

etc. !tis convenient Logenerali~e Eq. (6.3) in the form 

bydefininganeffedivecoefficicntofsecondaryemission 

"~'• + "1'./Z + Jf[Zn,{oo)v{oo)] 
"l' = I+ "1'./Z + Jf[Zn,(oo)v{oo)] 

(6.4) 

{6.5) 

Thesecondaryelectronsareemittedfromthewallwithnegligibleenergiesa.nd then 

they move towards the plasma with a velocity corresponding to acceleration by a potential 

difference 4J - 4J0 , where 4Jo = 4J(O). From the continuity equation, we have 

(6.6) 

Thus,theparticledensityofsecondaryelectronis 

{6.7) 

For primary electrons, the distribution function composed of two Maxwellia.ns at different 

temperatures is adopted to give 
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[ 7 (m•'(oo))'''] I "•(oo) ('0) 
n, 1 = Zn,(oo) 1-~ ~ n«(oo) + n...,(oo) exp kT; 

(6.8) 

where charge neutrality at x- oo, Zn,(oo) = n.1(oo) + nd(oo), has been assumed. 

Substituting Eqs (6.2), (6.7), il!ld (6.8) into Eq. (6.1), we now write Poisson's 

equation as 

,p0 z",(oo)•/ [ 7 (m•'(oo))'''] I "•(oo) ( •o) 
J;i=-,,-,1-~ ~ n .. (oo)+n...,(oo)exp W. 

+ ~ .. ,(!!._)1 +_2_( m•'(oo) )''' 
n.,(oo) + "•h(oo) kT~ I- "f 2e(~- <Po) 

- ( -_E!j_)-''') 1 Mv2(oo) ' (6.9) 

Multiplying by d,P/dr and integrating Poisson's equation from oo to z, we obtain 

where 

1 (d•)' 2W I( z•)''' ] 27 (m W)''' [ • J -- =- 1+- -1 -- -- 11'0 1-(1--)112 
2 d{ Z W 1--y M'l<0 Wo 

I 7 (mW)'''] - 1-- -- {(1-cr)[l-exp(-IJr)]+ar[l-exp(-IJr/r))}, 
1--y M>llo 

(6.10) 



'll(() = -e¢(:;;)/kT,, 

and the Debye length is defined by .\}J = t0kT,/Zn,(oo)e~. There arc unknown quantities, 

Wand '1<0 , and parameters, c. and-y, in Eq. (6.10). 

We shall now obtain equations whkh determine W and 'll0. Ftom the fact that the 

totalcurrentiszero,weobtaintheequationfordeterminingthewallpotential il'0 as 

I ' (mW)'''] 1-- -- \(t-a)exp(-'1<0)+av'Texp(->1'0/T)j 
1--y M'l<o 

(6.11) 

The right-hand side of Eq. (6.10) must be positive for the formation of the sheath 

potential, 0 < W < 11'0 , because the eledri.: field dW /df, always has a real value. The 

initial incidentenergyofions, W, is determined fromthisboundaryconditionatthe 

sheath edge. It has been shown that the generalized Bohm criterion is fulfilled with the 

equalitysignattheplasma-sheathboundary,ii'=0(9). This fact gives 

(6.12) 



which is a modified form of ~he Bohm criterion [10]. 

Equations (6.11) and (6.12) can be used for estimating values of W and illo. Utilizirl8 

the smallness of(m/M)'I~, we can obtain an approximate solution of Eq. (6.12) aa 

(6.13) 

which isindependentoftheemission coefficient. Sincetheincidentenergy W iscorre-

sponds to the potential drop in the presheath, Eq. (6.13) suggests the negligibly small 

inHuence of the secondary electron emission on the presheath potential. Ifr >I and 

u::::; (I- -,y 1 (27rm/rM)1P, the wall potential is characterized by the cold ion temper-

atureandthcvalueofill 0 canapproximatelyevaluatedby 

(6.14) 

On the contrary, the wall potential is characterized by the hot electron temperature, if 

a > (I - "')-'(27rm/r M) 1fl. In this range of the density ratio, the normalized wall 

potentialil/ 0 Jstoughlycstimatedby 

(6.15) 

Theemissionofseconda.ryelectronscausesaremarkablereductionofthesheathpotential 

when"' approaches 1.0, while the associated increase in the ion energy necessary to 

mainta.instabilityofthesheathisnegliglblysmall. 



The electronemi!l!:lionislimitedduetothespace-chargeeffectin the sheath. One 

ca.n see from Eq. (6.10) that the emission coefficientrycan not exceed an upper limit '"I< 

smaller than 1.0 because the right handsideofEq. (6.10) must be positive all over the 

sheath. The equation todeterminethevalue-,,isobtainedbyequalingtherighthand 

side ofEq. (6.10) at the wall as 

~ 1(1 +~)'''-II- 2c._ (~~!'.)'" ., 
Z W 1-ry M'llo 

I o (mW)'"] - 1-- -- {(1-o:)[l-exp(-Wo))+o:r(l-exp(-Wo/r)]} 
1-'""1 MWo 

=0 (6.16) 

For '"/ > ry, a very shallow potential well is formed just in front of the wall so as to reflect 

a fraction of the secondary electrons to the wall, satisfying dW/df."' 0 at the bottom 

of the potential well. Whenthecoefficientryexcee<:lsry,,anelectronspacechargelayer 

formed in frontofthewallinhibitsany further secondary emission. Asaresultofthe 

space-chargeeffect,theeffective-,ismaintainedequalto'""l<· Itshouldbenotedthatthe 

space charge of hot electrons has the effect of suppressing the electron emission when 

'11 0 isoftheorderofrbecausehot electrons reflected by the sheath potential contribute 

toformingthenegativespacechargelayer. The limiting values Wo.:, W., and '""le are 

determined by solving Eqs. (6.11), (6.12),and (6.16)simultaneously. 

We now evaluate the energy flux Q to the wall. Each primary electron striking the 

wall carries, on ""''~e, an energy of 2kT,(I + rfo~o/f,,)/(1 + r.~/f .. ), and the ratio 

of the particJefluxofhoteJectrons tothatofco)de)ectronsisexpressed by f,A/f .. = 
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a/(l- <l')T'I2 exp('l<o(l- 1/,.)]. Each ion has ~he energy kT<(W + 'l<o) at :t = 0. The 

secondary elec~rons make a negligible contribu~ion to Q at :t = 0 because or their low 

initial energy. Thus,theenergyftuxQisexpressedby 

( 2 1-a+a-r*exp('l<o(I-1/T)) W ) 
Q = Zn,(oo)v(oo)kT. 1 -yl a+ar112 exp(>l<o(l-l/r)) + Z + '~<o · 

(6.17) 

Thethermalinsulationeffedorthesheathcanbeevaluated.bycomparingtheene:rgy 

nux with the electron rree-ftowenergy flux expressed by 

(6.18) 

The energy flux ratio, F(-y);;;: Q/Q.,, is given by 

•( 2 l-a+a~11exp('1<0(1-l/r))+!!:+'l<o) 
I ')'I a+arl/2exp('1<0 (1 1/r)) Z (6.19) 

The smallest value or F is obtained when "I= 0, and the maximum value occurs when 
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6.3 CONSEQUENCES OF SECONDARY ELECTRON EMISSION 

In order to show the effecl.s of secondary electron emission on the sheath potential 

and heal flow, we now compare results obtained under the conditions of space-charge 

limitation with Lheonesintheabsenceofelectronemission. The normalized poWntial 

drop in thesheath,"'0 ,andthenormalizedineidentenergyofions, W,for)=Oarc 

determinedbysolvingEqs. (6.ll)and(6.12)simultaneously. Figure6.2showstheshcath 

potcntialandtheincidentenergyofionsasafunctionofthethefractionofhotelectrons 

at the sheath edge, o-:: n..,(oo)/[n..c(oo)+n,(oo)], and Fig. 6.Jshowsthe energy flux 

ratio, taking the temperature ratio r ;;; T~JT, as a puameter. The electron emission 

coefficienLJ,thenormalizedsheathpotentiali'0,,and thenormalizedincidentencrgy 

W,undertheconditionsofspace-chacge\imitationareobtainedfromnumericalsolution 

ofnonlinearsimultaneousequations,Eqs. (6.11),(6.12),and(6.16).Thelimitedelectron 

emissioncoefficient,),,isshownin Fig. 6.4,thesheathpotentialandtheinddentenergy 

ofionsarein Fig. 6.5, and theenergyfluxratioisin Fig. 6.6. 

Comparison of the results in Figs. 6.5 and 6.6 with those in Figs. 6.2 and 6.3. shows 

thatthenormalizedsheathpotentialimposedbyspa.ee-chargesaturationisasmallvalue 

oftheorderofi.Oifthefractionofhotelectronsislessthan (1--y)-1(211"m/rM) 111 . 

Theelectronemissionleadstoaconsiderablereductionofthesheathpotentialinthis 

range, so that the energy flux is enhanced loa value near the electron free-flow energy 

flux. The energy flux ratio F, has the maximum value at a particle density ratio around 

(i-J)- 1(2:>rm/rM) 111 • Comparison of the results also confirms the fact that S<:'condary 
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elec~ron emission has a negligibly sma.ll inHuence on the normalized incident energy of 

ions. 

h should be noted ~hat the electron emission is suppressed due to the space-charge 

effect of hot eleo;Lrons in the range<)> (I- -y)- 1(2trm/rM)'P if the temperature ratio 

isoftheorderof!O. Thesheathpotentia.loftheorderofrisselupandtheactiono[ 

the sheath as a thermal insulat.or is improved as a result of the suppression o[eleo;tron 

emission as shown in Figs. 6.5 and 6.6. The formation of the large sheath poten~ial 

duetotheexistenceofhotelectrons has beneficial and detrimental effects with regard 

to plasma-wall interactions. In the presence of a large sheath poten~ial, ion sputtering 

1s increased owing to the higher ion impact energy resulting from the sheath potential 

drop, butthetotalenergyfluxisdecreasedowingtothethermalinsula.tioneffectofthc 

sheath. 

6.4 CONCLUSIONS 

Theeffectsofsecondaryelectron emission on a plasma. sheath and heat flow in a 

two-electron-temperature plasma are investigated theoretically. It was found that if 

the pa.rticledensltyofhotelectronsa.t the sheath edgeismuchsmallerthan that of 

coldeleo;trons,e\eo;tronemissioninducesaremarkablereductionofthesheathpotential. 

The sheath potential hasavalueoftheorderofthe cold electron temperature under 

conditionsofspa.cech11Igelimitation,sothattheenergylluxoftheplasmaisenhanced. 



up to a value near to the electron free-How energy Dux. Suppression of the secondary 

electronemissionduetothespale-chargeeffectofhotelectronscanbeexpectedifthe 

hot- to cold-electron temperatureisoftheorderof10and thehotelectrondensityis 

comparable with the cold electron density. The sheath potential insuchaplasmahas 

a large value characterized by the hot electron temperature and the heat flow of the 

plasmaisimprovedasaresultofsuppressionofthesecondaryelectronemission. 
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Concluding Remarks 

In the present thesis, the potential formation in quasistationary plasma !low to a 

wall has been analyzed by akinetic treatment;Spatial variationofthemagneticfield, 

loni~ationofneutralatoms,energeticelectronpopulation,and/ortheseo:ondill"yeledron 

emission are considered in analyses. Results obtained in the preceding chapters are 

>ummarizcd, and thesubj«Lstobe investigated in future are suggested in this chapter. 

In chapter 2, the plasma-sheath equation has been formulated for acollisionless 

plasrnaoriginatinginanexpandingopenmagneticfield.Thisequationisapproximately 

reduced Abel'sinlegralequation in the plasmilexcept for the sheath, and then it can 

be solved analytically. The wall potential,theiondistributionfunction,andtheparticle 

andenergyDuxesareexplicitlyca.lculated. Resultshaveshownthatthema.gneticprofile 

remarkably affects the potential profile in the plasma. The generalized Bohm criterion 

for the sheath formation is always satisfied at the plasma-sheath boundary when the 

magneticfieldmonotonica.llydecreasesintheoutsidedirection. 

The plasma-sheath equation with small but finite values of the Debye length has also 

162 



been solved numerically for various profiles of ~he magnetic field. The sheath is formed 

near ~he wall with width about ~en times as long as the Debye length. The analytic 

solution agrees well with the numerical one in the presheath when the Debye length 1s a 

smallfra.ction(:510-3)oftheplasmalength 

lnchapler3,lhepresheathpolenlialinanexpandingmagneticfieldhasbeeninvesli

gated by numerically wiving the plasma equation for the collision less plasma. Numerical 

calculationsconfirmavailabilityoftheanalyticwlutionobtainedinchapter2overawide 

range of the magnetic field mirror ratio (R1 = I"' 10). Accura.cy of the simulation re· 

sult obtained by Hussein and Emmert is also checked. A particle source profile has a. 

considera.bleeffectonthepotentia.ldropin the presence of the nonuniform magnetic 

field. For a plasma. source localized near the center of the plasma., the increase of ~he 

presheath potentia.ldrop~<J!duetotheexpandingmagneticfield is roughly estimated 

by~</!<:: kT.(lnRJ)fe, where T. is the electron temperature. This sug;ests con~rollabil

ityofthepresheathpotential byapplyingthenonuniformmagneticfieldwithaproper 

field strength profile. The plasma flow along the expanding magnetic field satisfies the 

generalized Bohm criterion with the inequality sign if the sheath edge does not exhibit 

the singularity. 

lnchapt.er4,developmentofthe potential due to spatial variationofthemagnetk 

fieldinacollisionlesspla.smaflowingoutthroughlhemagneticthroatha.sbeeninvesti

gated. A particle source in a plasma is ignored in this analysis. The plasma flow must 

exceedthea.cousticspeedatthethroattoavoidthediscontinuityofthepotentialjust 

beyondthemagneticthroat. Amonotonicallyfallingpotentialtoacceleratetheescaping 



ion~ build up in the inner region near the throat only if the generalized Bohm criterion 

ismarginallysatislieda.tthethroat. 

Electrons trapped between the magnetic throat and the wall affect on the potential 

prolileintheplasmaramarkably. Forverysmalltrapped-electrondensities,thcpresheath 

potentialdropislocalizednearthethroat,anditapproachesasymptoticallyt.oacon

stantsmallva.lueatapointapartfromthethroat. Forlargetra.pped-partidedcnsities, 

the pre..heath potentialdropcontinuouslyincreaseswithdecreasingthemagnelic field 

strength. These results suggest thepossibilityofeffectivepotentialconlrolin the open 

region by the combination of an expanding magnetic field and the ECRH heating. 

In chapterS, anelectrosta.ticpotentialowingtoionizationofneutralatomsinatwo-

electron-tcmpera.tureplasmahasbeeninvestiga.ted. Theplasmaequalionisa.nalytica.lly 

solved to show the possibility of steady-state potential formation, and t.o evaluate the 

pot('ntia.l drop in such a plasma.. The potential drop in the presheath is allowed to have 

either a small value characterized by thecoldelectrontemperatureT.oralargeone 

characterized by the hot electron temperature Th if TA/T. > 10 : the potential drop 

dis.::ontinuouslychangesfromthesmallvaluetothelargeoneatacriticalvalueforthe 

hot-tototalel<'clrondensityratio(nho/llo"'0.2). A monotonically decreasing potential 

structure with a current-fr<'e double layer is steadily formed in a plasma with such a 

high temperature ratio in a lower rangeofthedensity ratio around the critical value. 

The double layer miltks the tra.nsition between the first and SKond presheathes with 

different potential levels. ltisformedduetoself-consistentsepa.rationoftwoeledron 

specieswithdifferentlemperaturesandduetogenerationofcoldionsatthepresheathes. 
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The formation m«hanism of the present eurrent-free double layer seems to be the sam~ 

as thatofthedoublelayer r«cntlyobserved in the laboratory e>;periment. 

lnchapter6, inftuencesofsecondaryel«tronemissiononaplasmashea.thandon 

heat flow of a two--el«hon-t.emperature plasma have been investigated theoretically. For 

particledensityofhotel«tronsverysmallerthanthatofcoldel«tronsatthesheath 

edge,el«tronemissioninducesaremarkablereductionofthesheathpotentialtoavalue 

oftheorderofthecoldelectrontemperature. Theenergyl\u>;oftheplasmaisenhanced 

up to a value near to the el«.tron froo-llow energy llu:t. Suppression of the se<:ondary 

electron emission due tothespace-chargeeffect of hotter el«tronscan be expected if 

thehot-tocold-eledrontemperatureisoftheorderoflOandthehotelechondensity 

JScompara.blewith the cold electron densityatthesheath edge. The heat 1\owofthe 

plasmaisimprovedasaresuhofsuppressionofthesecondaryelectronemission. 

Finally,severa.linlerestingsubjedstobee>;tendedinfuturefromthepresentanalyses 

are mentioned here. Concerningthepotentia.lformationinaspatia.llyvaryingmagnetic 

Jield, it is an open problem as to whether thesh.tic potential is formed or not in a 

plasmaHowinga.longaconvergentma.gneticlield. Theca.lculationofapotentia.l prolile 

over the entire region including the inside of the magnetic throat is practically mean

ingful for the study of plasma transport and plasma-wall int.era.ctions, but, it has also 

been left unsolved. Onemusttakethee:tist.enceoftrappedioMintoc<;~nsiderationto 

treat these problems, which require kin~tic treatment. Moreover, a precise calculation 

eonsideringthe power balance of a bounded plasma is necessary tQ makesure<;~fthe 

possibilityofpotentn•..lcontrolbythecombinationofane>;pandingma.gneticfieldand 



the ECRH heating. To give problems related to this work, plasma-wall transition in an 

oblique magnetic field where the presheath mechanism is provided by the Lorentt force is 

physically interesting. Unfortunately there are only few investigations on this problem, 

ami thcseg1vc no understandable pidure. Chacaderisticsofthe magnetic presheath 

rema.i11~ poorly U11dcrstood. Potential control in a bounded plasma by plate biassing, 

byeledronbeaminjection,orbyrfheatingisimportantfromtheengineeringpointof 

view ; lmpur1ty inHuxes into a main plasma and ion sputtering at the wall will be con

trolledthroughthepotentialformedinaboundedplasma. Thestudyofthesesubjects 

requiredevelopmentofaself-consislentfullykineticmodelindudingpartidecollisions, 

chargedfneutralinler~tionsorpartideinjeclionfromawall. 
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