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Abstract

The problem of the potential formation in a quasistationary plasma flowing along
open magnetic fields to a wall is treated using a kinetic description for the motion of
particles. Influences of spatial variation of magnetic field strength, ionization of neutral
gas, existence of energetic electrons, and secondary electron emission on potential for-
mation are investigated theoretically. Universal properties of the quasistationary plasma
flow are demonstrated.

In chapter 1, historical survey of theoretical works related to this thesis, and the
purpose and scope of this work are described.

In chapter 2, the plasma-sheath equation for a collisionless plasma generated in a
divergent open magnetic field is formulated. Outside the sheath, an analytic solution
of this equation is obtained. The ion distribution function, the wall potential, and the
energy and particle flux are explicitly calculated. The plasma-sheath equation is also
solved numerically for various profiles of the magnetic field.

In chapter 3, effects of an expanding magnetic field on the plasma presheath are
investigated numerically. It is shown that potential drop in the presheath is remarkably
increased by applying an expanding magnetic field. An effect of a nonuniform magnetic

field on the sheath formation is also discussed.

In chapter 4, the electrostatic potential in a collisionless plasma flowing out through

the magnetic throat is analyzed under the condition of no particle source in a plasma. A



monotonically falling potential is found to build up due to nonuniformity of the magnetic
field only if the generalized Bohm criterion is marginally satisfied at the magnetic throat.
A potential profile is strongly dependent upon the particle density of electrons trapped

in the open region.

In chapter 5, of the stead: potential in a.
plasma in contact with the wall is investigated in order to clarify contribution of energetic
electrons Lo the sheath and presheath formation. The double layer structure is found to
be set up in the plasma due to sell-consistent separation of two electron species.

In chapter 6, the electrostatic sheath and the heat flow of a two-electron-temperature
plasma in the presence of secondary electron emission are investigated. It is shown that
the space-charge effect of hot electrons affects to suppress secondary electron emission,
if the hot- to cold-electron temperature ratio is of the order of 10.

In chapter 7, the main results of this thesis are summarized. The problems left in

is thesis are also mentioned.
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cuapTER 1

Introduction

Formation of the electrostatic potential in a plasma flowing to a wall, one of the oldest
problem in plasma physics, is important for nearly all plasma applications ; A plasma
must be bounded by some confining structure, e.g., a limiter or the wall of the vacuum
vessel. Since edge plasmas in fusion devices, for instance, ate of growing interesL, it is
increasingly important. Nevertheless, because of its inherent difficulty it has only been
solved in some special cases. The analysis is complicated not only by the effects involved
at the boundary but also by strong inhomogeneity, which requires a kinetic treatment.

The problem of calculating the characteristics of a plasma flowing along a spatially
varying magnetic field arises in a number of plasma configurations for fusion research.
Potential along magnetic field lines in the region bounded by a wall becomes an issue
when we approach the subject of the axial thermal transport of electrons in mirror
machines (1,2] or the subject of the plasma flow in the open-field line region of field-
reversed configurations [3). Knowledge of the potential variation as well as the ion

particle and energy fluxes Lo the wall is important in the theory of divertors and limiters



of closed devices like stellerators or tokamaks [4,5]. Moreover, knowledge of the potential
variation along an expanding magnetic field is the key to knowing parameters of a plasma
for design of a direct energy convertor and for evaluation of its efficiency [6,7). In the
presence of a divergent open magnetic field, ions are accelerated toward the wall and their
density drops accordingly. Therefore, spatial variation of the magnetic field provides a
potential formation mechanism. The expanding magnetic field will be available not only
for enlargement of the potential drop along field lines but also for stabilization of the
sheath potential.

On the other hand, a plasma with energetic electrons is produced due to strong
fields of radio frequency waves in various laboratory devices, .g., in scrape-off layer of
tokamak [8,9) or in the open end region of the tandem mirror [10]. The appearance of
energelic electrons is predicted to have dramatic effects on the potential formation in the
plasma because the potential profile is closely associated with the electrons distribution.
Tlotter electrons also induce significant emission of secondary electrons, which can lead
to marked reduction of the sheath potential and enhancement of the heat flow to walls.
Thus, an admixture of the energetic electrons and the secondary electron emission from
the wall are of interest in the study of potential formation and plasma transport.

is thesis, we theoretically examine the behavior of a plasma flowing to a wall
in the presence of a nonuniform magnetic field, an energetic electron population, or
the secondary electron emission. The following sections present historical survey of
theoretical works that describe the behavior of a plasma in contact with a wall, and

describe the purpose and scope of this work.



11 SURVEY OF THE THEORY OF A PLASMA
IN CONTACT WITH A WALL

This survey is restricted Lo theoretical investigations of potential formation in a

plasma bounded by absorbing walls. Progress of the theoretical treatment of this prob-
lem has been made by a number of workers over many years. One of the earliest kinetic
analysis of the potential in a bounded collisionless plasma was performed by Langmuir
[11) and Tonks and Langmuir [12] in context of discharge plasmas about six decades ago.
Their famous model is characterized by the free fall of ions originating from ionization of
cold neutrals. Tonks and Langmuir introduced the subdivision in separate plasma and
sheath regions with two scales of the Debye length Ap and system length L, and solved
the plasma equation in cylindrical and in plane geometry by series expansion. Over the
years there have been a number of refinements to this early work [12-38).

The explicit formulation and clear interpretation of the sheath condition is due to
Bohm (13]. Bohm suggested that there may be a small electric field in the plasma that
accelerates ions up to and beyond the acoustic velocity before they enter the sheath.
A decade later, Harrison and Thompson [14) more thoroughly solved the Tonks and
Langmuir plasma equation in plane geometry and derived a generalized kinetic formu-
lation of Bohm’s sheath criterion valid under rather general conditions [15,16,17). The
validity of the generalized Bohm criterion for the case of low velocity ions located at the
plasma-sheath boundary was subsequently discussed by Hall [18,19).

Caruso and Cavaliere [20) reinvestigated the plane problem with emphasis on a sys-



tematic two-scale formalism. Unfortunately, the separation of length scales makes match-
ing one solution to the other impossible. The plasma-sheath equation was then solved
numerically by Parker [21] for radial variations of the potential in a plasma column and
Self [22] for potential variations along the axis of a plasma column with finite Ap/L
avoiding the subdivision in plasma and sheath regions. Seif also obtained numerical
solutions to the asymptotic problem Ap/L — 0 in various geometries [23]. Woods [24]
and Kino and Shaw [25] showed that a simple fluid approach is suitable to describe basic
features of the system with reasonable agreement. This provides a basis for numerous

subsequent investigations accounting for various additional effects.

The first model to include warm ions in the quasineutral plasma region is due to
Hu and Ziering [26], who assume that the distribution of ions incident at the plasma-
sheath boundary is an accelerated cutoff Maxwellian. Emmert et al. [27] extended the

model of Hu and Zic

ing, allowing for a general ion distribution function. The ion source

function is ch h that the ion distribution is lian in the absence

of any electric fields. They solve the resulting integrodifferential plasma-sheath equation
numerically for small but finite values of Ap/L. An analytic solution of the quasineutral
integral plasma equation is also provided, which compared well the numerical solutions

for small Ap/L in the plasma region.

Bissell and Johnson [28] have developed an analytic model of the plasma region
based upon a Maxwellian ion source function. This choice of source function, for a con-
stant potential, leads to an ion distribution function that is singular at zero velocity.

The generalized Bohm criterion is used as the boundary condition at the plasma-sheath



boundary. In a later paper, Bissell [29] showed that the model of Emmert et al, satisfies
the generalized Bohm criterion at the boundaty. Scheuer and Emmert (30] analytically
solved for the quasineutral potential profile with a Maxwellian ion source function with-
out applying the generalized Bohm criterion as a boundary condition. The solutions
are shown to obey this criterion within numerical error. Bissell et al. [31] presented
a detailed discussion of the source models and a compatison with fluid theories, and
Scheuer and Emmert (32) also showed applicability of the fluid equation to the presheath

for collisionless plasmas with a source of warm ions.

Riemann [33,34,35) and Berg et al. [36] discussed the basic featutes of the plasma-
sheath transition and their relation to the Bohm criterion using a zero-Debye-length
model. It is shown that the generalized Bohm criterion is marginally satisfied if the
electric field is singular at the sheath edge, as it is in the models of Bissell and Johnson,
and Scheuer and Emmert. Riemann also points out that the field singularity at the
boundary is a direct consequence of the source region. Schwager and Birdsall [37] and
Procassini et al. [38] used a fully kinetic particle-in-cell model to self-consistently deter-
mine the steady-state potential profiles in a collisionless bounded plasma. The results of
the potential drops obtained from the simulations are compared well to those from the

theories. In these investigations the ion kinetics is governed by ionization of neutrals.

A collision dominated plasma is usually described in terms of diffusion and mobility.

The effects of charg hange collisi Coulomb collisi the presheath have been

treated by many workers [39-50). Persson (39] and Self and Ewald (40) has treated the

problem of a weakly ionized plasma, in which the dominant process is charge exchange



collisions. They use fluid equations to describe the ion motion and obtain solutions for the
density and velocity of the ions as a function of position. Persson is the first to recognize
the universal role of ion inertia for the presheath mechanism. A kinetic approach was
used by Chekmarev [1], who take into account ion-neutral collisions by using Hamel’s
collision model. The first self-consistent kinetic analysis of a collisional presheath was
presented by Riemann [42]. For a charge exchange model with cold neutrals based on
the assumption of constant mean free path , Riemann was able to give the analytic
solution of the plasma sheath transition including the ion distribution function and the
self-consistent potential variation. Biehler et al. 45] extended the analysis to a charge
exchange model with hot neutrals on the assumption of constant collision frequency.
Scheuer and Emmert [46] treated ion collisions by using the BGK collision operator, and
Koch and Hitchon [47) numerically investigated the effects of charge exchange collisions
using more realistic collision model. These works showed that as the number of charge
exchange collisions increases, the presheath potential drop also increases due to the role

of ion inertia.

Particle simulation of transport in a bounded Coulomb collisional plasma was car-
ried out by Takizuka et al. [48]. A particle-in-cell code has been coupled to a Monte
Carlo binary particle model of Coulomb collisions : This code provides a fully kinetic
sell-consistent description of transport and potential formation in one spatial dimension
and two velocily components. The dependence of plasma transport on Coulomb colli-
sionalily is investigated by varying collision frequency, and the limitations of the fluid

description of collisional plasma transport are discussed. Several years later, Procassini



and Birdsall [49] reinvestigated transport in a bounded Coulomb collisional plasma using
a simulation code based upon the same methodology, but increasing the number of par-
ticles per grid cell. Procassini and Birdsall (50] also combined particle-in-cell methods
with charged/neutral interactions to calculate plasma transport through a high recycling.

divertor scrape-off layer in a tokamak.

In the models mentioned above, the plasma is ither unmagnetized or the magnetic
field is uniform and normal to the wall. The Lorenzt force in an oblique magnetic field
or in a spatially varying magnetic field provides a mechanism of the presheath formation
(51-59,64-66). To evaluate transport (o limiters or divertor plates of tokamaks, Chodura
(51,52,53) accounted for field lines intersecting the wall at small angle, distinguishing a
plasma presheath and a magnetic presheath. Beyond the Bohm criterion at the sheath
boundary Chodura postulates a second condition of supersonic flow along magnetic field
lines at the entrance of the magnetic presheath. DeWald and Bailey [54] used a particle-
in-cell method for modeling a boundary plasma in which the magnetic field intersects

the wall at an oblique angle.

Plasma flow along a nonuniform magnetic field to a wall remained unsolved until re-

cently. Sato et al. [55] the plasma-sheath equation for a collisionless plasma

with a finite-temperature particle source in an expanding magnetic field. They analyt-
ically solve the plasma equation for a model magnetic field and explicitly express the
potential profile, the potential at the sheath edge, and the wall potential as well as the
particle and energy fluxes. Hussein and Emmert [56] numerically simulated the same

problem solved by Sato et al. for a wider range of mirror ratios and compared their



simulation results with the analytical solutions. Hussein and Emmert also investigated
the dependence of the presheath potential on the spatial distribution both of the par-
ticle source and of the magnetic field strength. In a later paper, Sato and Miyawaki
(57) systematically investigated effects of an expanding magnetic field on the sheath and
presheath formation by numerically solving the plasma equation. Sato and Miyawaki also
check validity of their previous analysis [55) and simulation results obtained by Hussein

and Emmert (S6).

Hussein and Emmert [58] developed a kinetic code for simulation of plasma flow in
Uhe edge region of stellarators, considering divergent magnetic field lines and neutral gas
recycling at the neutralizer plate. Hitchon et al. [59] numerically treated a stellarator
divertor as a collisional presheath under the influence of a magnetic field, introducing a

simplified model with a BGK collision term and the averaged magnetic moment.

Potential control along spatially varying magnetic flux tubes has been a main sub-
ject of mirror confinement. Although there have been several models to calculate the
axial potential profile (6063, the region considered in almost all works was restricted
(o the confinement region. Rognlien and Brengle [64] investigated the characteristics
of a plasma flowing through a magnetic mirror, using the fluid code that solves four

time-dependent moment equations. Rognlien and Brengle found the sonic transition of

the plasma flow velocity at the mirror throat. Recently, Sato et al. [65,66) kinetically
treated the problem of the potential formation in a collisionless quasistationary plasma

flowing through the magnetic throat to a wall. Necessary conditions for the formation

of stationary potential are derived on the assumption of no paticle source in a plasma.



Sato et al. [66] also discuss poss

Ly of potential control in the open region by the com-
bination of an expanding magnetic field and the ECRH heating, illustrating numerical

solutions to Poisson’s equation.

Each of the preceding models assumes that the electron consists of only one com-
ponent. Formation of double layer in a multi-component plasma, which is a physically
interesting subject, has been studied extensively during the last two decades (see the re-
views [67,68,69] and the references therein). The expansion of a two-electron-population
plasma into vacuum has also been examined in connection with the expanding corona of

a laser-produced plasma both experi and ically ; The ofa

racefaction shock in a plasma, which has a double layer structure, has been verified by
a number of theoretical analyses (70-73]. The number of theoretical works on a plasma

flow with different components of negative particles, however, is limited [15,73-78).

Boyd and Thompson [15] presented a modified form of the Bohm criterion in a plasma.
with negative ions. Itatani 74] discussed complex behaviors of the sheath of a plasma
with negative ions, calculating structure of the sheath potential. The possibility of
bifurcation of the potential at the plasma-sheath boundary is pointed out as one of the
seasons of complexity of reactive plasmas. Takamura [75] analyzed the sheath potential
and its structure for a plasma with an energetic electron population. The fluid equations
are solved for a three component plasma by Schott [76] to describe the effect of energetic
primary electrons on the whole boundary layer including the sheath region. Braithwaite
and Allen (77) discussed the condition for the sheath formation in a plasma with negative

ions for the special case of a spherical probe collecting cold ions. Recently, Sato and



Miyawaki (78] investigated of the steady-state potential owing to ionization
of neutral gas in a two-electron-temperature plasma using the Vlasov-Poisson equation.

A stable stationary potential isfying the Vlasov-Poisson equation is obtained

over the whole range of plasma parameters. The current-free double layer is found to
build up in a plasma both due to self-consistent separation of two electron species and
due to ionization of cold neutrals.

One of practically imp bjects to understand pl i jons in fusion

research is the influence of secondary electron emission due to particle bombardment
at the wall [79,82-85). Electron injection from an emissive plane has also remarkable
effects on potential development and plasma transport [80,81). The space-charge effect
of secondary electron was first discussed by Langmuir [11], and the effect of secondary
electron emission on heat transport through the sheath was first described by Hobbs
and Wesson (79). Hobbs and Wesson show that a double sheath structure is formed in
front of the wall under strong secondary electron emission so as to limit the coefficient of
electron emission to a value smaller than unity. The situation for a hot electron-emitting

boundary has been investigated by Shcherbinin (80] and Prewett and Allen [81].

Harbour and Harrison (82,83) analytically assessed the effects of secondary electron
emission upon the plasma transport and upon the potential of the sheath at divertor
target of a tokamak fusion reactor. Sizonenko [84] found the solution to the sheath
equation corresponding to a negative charged sheath under strong secondary electron
emission. The rate of plasma electron cooling due to contact with the wall was calculated.

Franklin and Han [85) examined the beam-plasma instability due to secondary electron



emission using particle-in-cell simulations.

Recently, Ishiguro and Sato [86] investigated potential formation due to contact be-
tween an emissive plane electrode and collisionless plasma by using a one-dimensional
particle-in-cell model. The structure and potential drop in the sheath are shown for a
wide range of parameters of an injected electron beam. Sato and Miyawaki [87] inves-
tigated the heat flow of a two-electron-temperature plasma in the presence of electron
emission. The hotter electron is found to form the negative space-charge layer, provided
a hot- (o cold-electron temperature ratio is larger than 10 ; This layer has the cffect

exhi

ing secondary electron emission.

1.2 PURPOSE AND SCOPE OF THE PRESENT WORK

As mentioned in the historical survey, one important aspect of a plasma flowing to
a wall that was not included in analyses published before the present series of works is
spatial variation of the magnetic field : nonuniformity of the magnetic field provides the
presheath mechanism through divergence of paticle flux and conversion of kinetic energy
perpendicular to field lines into parallel kinetic energy. Another aspect is existence of
energetic electrons which has dramatic effects on the potential formation through self-
consistent separation of two electron species and through induction of secondary electron
emission. In the open region of practical confinement systems for fusion research, one

needs to consider these aspects in order to describe the behavior of a plasma flowing to



awall.

The present series of works have started with the purpose to verify characteristics
of the potential formed in open field plasmas related to the controlled thermonuclear
rescarch. Influences of an expanding magnetic field, existence of energetic electrons,

and/or secondary electron emission on the plasma flow are investigated on the base of

the kinetic theory.

In chapter 2 and 3, sheath and presheath of a collisionless plasma originating in an ex-
panding magnetic field are investigated by using both analytic and numerical approaches.
In chapter 2, the integrodifferential plasma-sheath equation for a plasma with arbitrary
fon temperature is formulated. Outside the sheath, this equation is solved analytically.
In addition, the wall potential, energy and particle fluxes, and the ion distribution func-
tion are expressed explicitly. The condition for sheath formation is checked by applying
the generalized Bohm criterion (o the analytic solution. The plasma-sheath equation is
also solved numerically for various profiles of the magnetic field.

In chapter 3, the dependence of the presheath potential profile on spatial variation of
the magnetic field and the particle source is investigated by solving the plasma equation
numerically. Numerical results are compared with the analytical solution obtained in
chapter 2 in order to demonstrate justice of the analysis ; Accuracy of the simulation
code developed by Hussein and Emmert [56] is also checked by comparing the numerical
results with the simulation ones. Results for various spatial profiles both of the magnetic
field strength and of the particle source are shown to discuss possibility of potential

control by applying an expanding magnetic field. An effect of the nonuniform magnetic



field on the sheath formation is also discussed by using a calculated ion distribution
function.

In chapter 4, the problem of quasistationary plasma flow through the magnetic throat
to a wall is treated. Necessary conditions for formation of a monotonically falling static
potential are derived under the assumption of no particle source in the plasma. Poisson’s
equation for model distribution functions is solved numerically to examine the potential
formation due to nonuniformity of the magnetic field. The dependence of the potential

profile on the trapped-electron distribution function s also i

In chapter 5 and 6, characteristics of the electrostatic potential in a plasma with
energetic electrons are described. In chapter 5, development of the static potential in
a two-electron-temperature plasma is analyzed by a kinetic treatment. The potential
structure is clarified, and the potential drop in a plasma is also evaluated. The charac-
teristics of the current-free double layer analyzed in the present analysis are compared
with those of the double layer experimentally observed by Hairapetian and Stenzel [88).

In chapter 6, the sheath equation of heat flow of a two-electron-temperature plasma
in the presence of electron emission are solved in order to demonstrate the effects of
electrons emitted from the wall. Enhancement of the heat flow due to the electron
emission are discussed by comparing results under conditions of space-charge limitation
with results in the absence of electron emission. In addition, the space-charge eflect of
hotter electrons to supress the secondary electron emission is described.

Finally, the concluding remarks and several subjects left in future are described in

chapter 7.
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CcHAPTER 2

Potential Formation in a Collisionless Plasma

Produced in an Open Magnetic Field

2.1 INTRODUCTION

The problem of the potential formation in an open-field plasma is important for
rescarch on magnetically confined plasmas because it determines characteristics of the
boundary layer. Potential along field lines in an open magnetic field becomes an issue
when we approach the subject of the axial thermal transport of electrons in mirror
machines (1] or the subject of the plasma flow in the open-field line region of field-reversed
configurations [2]. This problem is also of interest in connection with the interaction of
the plasma with the divertor collector plate in closed systems (3,4).

The first kinetic analysis of the potential near a plasma boundary was given by
Tonks and Langmuir in the context of discharge plasmas [5]. They formulated the
plasma-sheath equation and within the limit of small Debye length they obtained a

solution to the plasma equation in series form for various geometries. Over the years



there have been a number of refinements to their work [6-10]. An analytic solution to
the plasma equation in plane geometry was presented by Harrison and Thompson. In
the carly analyses a collisionless plasma with a cold-ion source was assumed. Emmert
et al. [9) improved the early works by considering a finite-temperature ion source and
by introducing no approximation with respect Lo the Debye length. Recently, by solving
the plasma equation for the case of a Maxwellian particle source, which differs from the
particle source given by Emmert et al., Bissell and Johnson 1] indicated that the choice
of a source function should be a considerable influence on the results. These previous
investigations, however, are restricted to the case of unmagnetized plasmas or to the case

of plasmas magnetized by a uniform field.

In this chapter, we investigate formation of a presheath and a sheath along field lines
in a nonuniform open magnetic field using both analytic and numerical approaches. We
consider a collisionless plasma in an axisymmetric magnetic field that expands to walls
with a monotonically decreasing axial profile. The expression by Emmert et al. for
the ion source function and the Boltzmann law for the electrons are used to derive the
plasma-sheath equation for the potential in the open magnetic field. Since the potential
in the steady state is expected to have a monotonic profile, we can adopt a function
of the potential instead of that of the axial coordinate to express the spatial variation
of the magnetic field. This enables us to carry out an analysis along the lines of that
performed by Emmert et al.. We present results calculated from the analytical solution
1o show the dependence of the potential on the magnetic field profile, and also derive

explicit formulas for the wall potential, for energy and particle fluxes, and for the ion



distribution function by making use of the analytic solution. The generalized Bohm
criterion is applied to the solution to make sure of the sheath formation (6,11-14]. It
is shown that the solution of the plasma equation always satisfies this criterion when
the magnetic field has a monotonically decreasing axial profile. We also discuss the
generalized Bohm criterion in the case of a monotonically increasing magnetic field. The
integrodifferential equation is solved numerically for various profiles of the magnetic field.

The content of this chapter is as follows. The integrodifferential form of the plasma-
sheath equation for the potential in an open magnetic field is formulated in Sec. 2.2. The

lution obtained from the i dmation is described and results calculated

from the analytical solution are presented in Sec. 2.3. In Sec. 2.4 the condition for the
sheath formation is discussed. The analytical solution is compared with the numerical
solution of the plasma-sheath equation in Sec. 2.5. The conclusions are given in Sec.

26.

2.2 PLASMA-SHEATH EQUATION

We consider an axisymmetric magnetic field that is also symmetric about z = 0 and
decreases monotonically for z > 0 as shown in Fig. 2.1. The walls at z = %L are
assumed (o be perfectly absorbing and electrically floating, The potential ¢(z) in the
steady state is expected Lo drop monotonically in the axial direction for z > 0 and the

value at = = 0, ¢y, is defined as zero. The subscript 0 denotes the value at z = 0
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FIG. 2.1.  The geometry of the model and axial profiles of the potential

and of the magnetic field strength.
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throughout this chapter. The ion’s constant of motion is the energy
1
= 3M0f+ 1) +04(z) @1

where M is the mass, g is the charge, and v, and vy are the perpendicular and parallel

components of the velocity. The magnetic moment,
1
u=3M/B(), (2.2)

is taken as a constant of motion, like ¢, where B(z) is the magnetic field strength at the
point z. Considering the plasma near the axis, we neglect radial dependence and also
integrate out the gyromotion.

The kinetic equation in the phase space (z, ¢, u) is simply described by

outz e LELH _ 52 ¢ ), 3
where
w(z.e,m) = {2[e -~ uB(z) - qd(2)) /MY, (24)

o(= 1) denotes the direction of the ion motion, f(z,¢, 4, 0) is the ion distribution func-
tion, and S(z, ¢, ) s the distribution function of the ion source. Here, we assume symme-

try about z = 0, thatis, S(z,¢, ) = S(-2,¢, u) and ¢(2, ¢, u) = (-1, ¢,4). The bound-

ary conditions of the distribution function are f(—L,e,p,+1) = 0and f(L,e,p,~1) = 0.



All ions originating in the magnetic field are accelerated toward the walls by the
monotonically decreasing effective potential uB(z) +¢4(z). The € — s space is separated
into two regions, the reflected region and the passing region. Any ion originating in the
region such that ¢ < uBy cannot reach the center of the plasma. When o = —1 and
2> 0o when o = 1 and z < 0, ions in this region ate reflected at the turning point,
2i(¢, ), determined from

¢ —pB(z) = gd(z) = 0. (25)
All ions originating in the region such that € > uBo pass through the plasma along the
field lines without a change in direction of the motion. Integrating Eq. (2.3) along the
trajectory of a particle on the boundary conditions, we obtain the distribution function
J(z,€,4,0). The sum of f(z,€,4,+1) and f(z,€,4,—1) in each region of the ¢ — u space

can be wrilten as

T feemo) =2 / de' ;((’z, ‘e:’) e>uBy, (263)
L (S e,m)
;f(:, eo)= 2/..1.,; dz’ ﬁ R e<uby, (2sb)

where z' is the point at which ions originate. It is seen that although f(z,¢, 4, +1) and
f(z,€,1,~1) are dependent on the coordinate z, their sum becomes independent of z

under the assumption of the symmetry of the system about z = 0.



The ion density n,(z) is obtained by integrating f(z,e,,0) over the & — 4 space by

using the Jacobian, 3(v3, u)/8(e, u) = 2B/(M?v);

215(:) f(z.6,1,0)
n(z)= ==~ ):/dt/d e @7

Substituting Eqs. (2.63) and (2.6b) into Eq. (27), we obtain

o) = w(/ ae [ o " “ otz z.u)/ S((:ee:))

L gpStehen)
w e i) e e, m)

d le=esa))/ B(x)
«),
)

. /- & jlt—v«xmnmd“

+ du

L g SEhan)
w(z.e,8) /x.(u)d qﬂt’.t.u)) T8

Separating the area of integration with respect to 2’ into two sections, 0 < 2' < z and
2 <2 S L, one can interchange the order of integration in Eq. (2.8) with the aid of
Eqs. (2.1) and (22). The integration over one section has a form very similat to that

over another section, and then the integration over the whole section can be written as

_4aB(z) (L, > 8, 1 Sz’ en)
n@) = = L d /. 'k/o Lo e} wiz. e ulze.n) (29)
where ¢, = g6(z') and B, = B(z') for 2' < z, and ¢, = g¢(z) and B, = B(z) for 2’ > z.

To calculate the density, we must describe the ion source. In this work we use the

same expression for the ion source chosen by Emmert et al. [9):
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& —-[e -
S(z,e ) =< w>...,n.,h(z)“(‘:m,.q,(z,e,u)exp( I “’,“"]) e

where < gv >is the ionization rate coefficient, ng is the electron density at the midpoint,
n, is the neutral atom density, k is Boltzmann’s constant, and 7, is the ion temperature.
The factor h(z) expresses the spatial variation of the ionization rate.

By substituting Eq. (2.10) into Eq. (2.9) and carrying out the integration over the

€ - space, the ion density is given in the integral form

e
n(z) =< av > nona (%) [ &Iz, 2)h(=) | @

where

Iz,2') = exp ("—’("',‘;:M’)) erfe [(——M”)“;_M’))m]

B(z) - B@)\" B(z) _ ¢9(z') — g9(z)
'( B(z) ) "‘"(B(z')-a(z) T )

BE) o) -ata))\'"]
xerfc [(B(:')—B(:) T ) l , T'<z,

>z,

1o, = o (D2 088))

and erfc(z) is the complementary error function :
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erfe(z) = jo exp(~t?)dt .

This expression is the same form as the expression obtained by Emmert et al. except
for the second term of I(z,2') for z' < z that comes from the spatial variation of the
magnetic field. It should be noted that the second term of /(z,z') is independent of
the absolute value of the magnetic field strength, B(z) and B(z'), but is dependent on
the ratio B(z)/B(z'). The integrand /(z,2') for z > z' becomes independent of the
magnetic field when the ion source is given by Eq. (2.10).

In order to have a steady-state solution, we must introduce processes that cause
electrons to scatler in velocity space. To simplify the analysis, we use the Boltzmann
law for electrons on the assumption that these processes are so strong that they cause

the electrons Lo scatter during a period of time shorter than the transit time of ions,
ne(z) = noexp(ed(z)/kT.) (212)

where T is the electron temperature and —e is the electron charge. If the processes are
not sufficiently strong, the electron distribution function differs from the Maxwellian,
especially near the loss boundary in velocity space, and it is affected by the variation of
the magnetic field.

Substituting Eqs. (2.11) and (2.12) into Poisson's equation, we obtain the integrod-

ifferential equation
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(%)m ]; " 2l 2 )

(2.13)

where Apo is the Debye length at z = 0 described by Ay = cokT./noe?. Equation (2.13)
is the plasma-sheath equation for the ion source given by Eq. (2.10), which determines

the potential along field lines both in the presheath and the sheath regions.

2.3 ANALYTIC SOLUTION OF THE PLASMA EQUATION

In its complete form the plasma-sheath equation is too complicated to carry out the
analysis, but it can, fortunately, be simplified in the plasma by dropping the second
derivative term. The scale length for potential variation in the plasma is expected to
be the same order of the plasma length L, whereas inside the sheath it is comparable
with the Debye length. Then, as long as the plasma dimension is large compared with
the Debye length, the solution obtained from Eq. (2.13) is approximated by the one
obtained from the quasi-neutral approximation, Zn, = n,, which is called the plasma
equation. The two solutions differ by the order of A3o/L? and the solution to Eq. (2.13)

salisfies charge neutrality to the same order.

Iti jent to simplify th ions by introducing the dimensionless variables

s=z/L, Z=gqfe,




V=-cd/kT., R=Bo/B, (2.14)

where the mirror ratio R(s) is the ratio of the magnetic field strength at the midpoint
to the local value at the normalized axial coordinate s. On the assumption of the
‘monotonically varying potential, both the mirtor ratio and the spatial variation of ¥ the
particle source can be expressed by the function of ¥ because the coordinate s can be
expressed by a single-valued function of ¥. Making use of the dimensionless variables,

we can write the plasma equation as

exp(—¥) = Z <ov> n,l.( j ds'G(¥(s), W(sDh(¥(s) , (219

2kT; )

where

G(¥, V) = exp(Zr(¥ — ¥")]erlc[Zr(¥ — ¥

(=5 "o

R(¥) N
xerfc [(WMW -y )) W<w,
G(¥, V') = exp[Z7(¥ - V)], vV,

and ¥ = W(s'). Equation (2.15) is not as simple to handle; however, we can obtain the
approximate solution to this equation in the same manner as the analysis in Ref. [9].
Differentiating Eq. (2.14) with respect to ¥ and using the asymptotic expansion of the

error function for z 3> 1 15],



Vrzexpladlerle(z) ~ 1+ 35 (- Lo @m 1)
&

@ (2.16)
we obtain
exp(—¥) = A/o' w%%{ - #(Wl (%
- 58 o [(%)zl} ' @m

where

Z(Z,)./z( M )ua

1+27 \%T,

A=<ov>n,lL *T,

The higher-order term in Eq. (2.17) is neglected when the ion temperature is low or
when the logatithmic derivative of the mirror ratio is small. The integrand becomes

infinitely large as ¥ approaches ¥, and then the approximation

.m(w;)~ 1 dRQ)/aY
“Tar ) =1 5zRm) (218)

is valid when the mirror ratio varies smoothly. With the definition of the effective mirror

ratio

_ R(Y)
R = TR /a0 22 R ' (2.19)



Eq. (2.17) can be written approximately by Abels integral equation. The solution is
(1)

L[ By

ds
AR(D)A(Y) 75 = W-v)7 (2.20)

xd‘ll

The differentiation on the right-hand side can be carried out to give the result

- ! (Rw
¥ = TARWIAW) \V¥

v ARV - R(Y)
+f w/- v ”"’"‘”) : (221)

Integration of Eq. (2.21) yields s(¥) from which the shape of the potential s determined;

sth = / N'dv' ( N':v ’ (2:22)
where ¥, is the potential at the plasma-sheath boundary.

Equation (2.21) is not yet the solution to the plasma equation, but is the solution to
the approximated equation that is obtained from the plasma equation by differentiating
with respect to ¥. Hence, Eq. (2.22) can satisly the plasma equation only if the poten-
tial ¥y, which corresponds to an integral constant, has the appropriate value. One can

determine the value of ¥, by substituting Eq. (2.21) into the plasma equation

_ gt 2r
exp(-¥) = AT

',G(w, V)R(V') , (2.23)




where 0 < ¥ < ¥,. Equation (2.23) is satisfied approximately for 0 < ¥ < ¥, when
¥ has the appropriate value because Eq. (2.21) is the solution to the approximated
equation. Considering the characteristic of the integrand in Eq. (2.23) which rapidly
decreases for ¥' > W, the choice of ¥ = ¥, is most suitable to determine ¥,.

In general, the ion source in the sheath can be neglected because of a small thickness
of the sheath and a remarkable decrease in the ionization rate which is dependent on the
electron density. Hence, the requirement that the electron current and the fon current
must be equal at the wall enables us to determine the wall potential ¥, by using the
solution to the plasma equation. The ion current is evaluated by integrating Eq. (2.10)
with tespect 1o s and over the ¢ —p space. The requirement described above is expressed
by

(L) nocots = e (20) " [ av e By,
2xm, (ZT)"’ VR,
(2.24)

where m is the electron mass and R, is the mirror ratio at the plasma-sheath boundary.

From this equation, we obtain

nw

" s

e
R MY

ot e

(2:25)
The factor h(¥) in Eqs. (2.23) and (2.25) is canceled by that in the derivative ds'/d¥". If
the mirror ratio is expressed by a function of ¥, the potentials ¥, and ¥,, are independent

of the profile of A(¥), but are dependent on the profile of R(¥). It should be noted that,



in practice, the mirror ratio is a function of the axial coordinate s. Then, the potentials
¥, and ¥, also depend on the spatial variation of the particle source when the magnetic
field is not uniform because the profile of R(¥) is dependent on h(¥) through the profile
of s(¥). This result differs from that of the earlier works [6,9); the potentials ¥, and
V., for an unmagnetized plasma are independent of the spatial variation of the particle
source. Since the product of A(¥) and ds'/d¥' is also found in expressions for heat flux

and the ion distribution function at the plasma-sheath boundary, which will be presented

later for these qualities.
A description of R(¥) is required (o calculate ¥, and ¥, and a specification of h(¥)
is also necessaty to determine s(¥). We now assume R(¥) o be expressed in the simple

form

R(¥) = exp(a¥) , (2.26)

where a is a posilive constant. When ¥(s) is monotonic with respect to s, R(s) also

becomes monotonic. The effective mirtor ratio defined by Eq. (2.19) becomes

R(¥) = ROW)/(1 + a/227) . e

Considering the fact that the ionization rate dependents on the electron density, we

adopt the expression for h(¥) presented by Hartison and Thompson,

h(¥) = exp(=71¥) , (2.28)



which allows the ion source to be proportional to the y power of the electron density.

Using the expression (2.26), integrati

in Eq. (2:21) can be carried out and ds/d¥ is
obtained,

ds _ expl(y - a)¥) ( 1
@V~ 7A(1 + af227)

ds 75+ e - Dexpl(a - DYEGE- 1, w)) \ @29)
where the function E(f,z) is defined by the Dawson function [12]
= 2y
D(z) = '[, exp()dt
o by the error function as follows:

(1/VB)D(V/=Fz) , B<0,

VBB, B20. (220)

B(B,2) [

Integrating further after substitution of Eqs. (2.28) and (2.29) into Eqs. (2.22) and
(2.25), we can obtain the expression for s(¥) and ¥,, by using the function E(8,z).
Figure 2.2 shows the dependence of ¥, and ¥, on the mirror ratio at s = 1 for
the model field R(¥) =exp(a¥). Through this chapter, this model field is used and a
particle source of hydrogen plasma with v = 1 and with 7=1, 10, or 100 is considered in
calculating results. The potential ¥, increases very slowly, but ¥y increases considerably
as Ry becomes larger. This tendency is obvious in the case of small 7: the value of ¥,

for 7=1 enlarges by about a factor of 3 when R, changes from 1 to 2. The normalized
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FIG. 2.2.  The normalized potential at the plasma-sheath boundaty ¥;
and the normalized wall potential ¥, as a function of the mitror ratio at
the boundaty, Ry = Bo/By, for the model field R(¥)=exp(a¥). Hydrogen

plasma with 7=1, 10, or 100 are considered.



potential profile and the profile of the mirror ratio for various value of a are shown in
Fig. 2.3, and the plasma density profile is plotted in Fig. 2.4. It is seen that the potential
gradient at s=1 has a finite value and the model field presents a realistic profile to the
open magnetic field.

The accuracy of the analytic solution can be checked by calculating Eq. (2.15) numer-
ically after substitution of Eq. (2.21). It is found that the analytic solution for various
values of both 7 and a satisfies the plasma equation with an accuracy up to about one-
tenth of ((dR/d¥)/Z7R]?, which indicates the validity of approximations introduced in
Eq. (217).

Using the solution, we can calculate the ion distribution function explicitly. We
now derive the distribution function at the plasma-sheath boundary with respect to
the parallel velocity, fi(vy), which is obtained by integrating the kinetic equation with
respect to z’ and vy,

_ i L S em)
_2110 d? /;(‘.’)dz—vn(z "k

0<ui<2qh/M, (2.312)

_ i+ 2n /M L, S(z'e,p)
Aty =2x [ o [ a2

- L SEew)
2 .
A /.;n.;.m i /..(«..) o ulz'en)’

~2h/M <o} . (231b)

k1
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FIG. 2.3.  The profile of the normalized potential ¥(s) calculated from
Eq. (2:22) for the model field R(¥)=exp(a¥) with (3) a=0.536, (b) a=0.376,
and (c) a=0.0, where the axial profile of the ion source with 7=1 is chosen
as A(¥)=exp(-¥).
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FIG. 24.  The profile of the normalized plasma density n(s)/no for the
model field with () @=0.536, (b) a=0.376, and (c) a=0.0.
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One can change the order of the integrations of Eqs. (2.31a) and (2.31b) with the aid of
Eqs. (2.1) and (2.2) and integrate with respect to v} after substitution of Eq. (2.10). To
express the distribution function, it is convenient to use the normalized quantities and

the normalized parallel velocity,

Vi = Mo/2kT. .
As a result of further calculations, we obtain the ion distribution function normalized to
no as

08y teze v

s s
o 2AZTY by, Y at V) RET = )

x ’exp(—Zr\V) —exp (-Rl_"—"zw)m')] R

o<W <zu, (2323)

LW 1427 (% .ds'
o = AzEn b YV

(¥) [exp(Zr¥; = 7W) exp(~Zr¥)

20, - rv,,')) exp (-n‘_”—;mzw')] .

20 <.
(2.326)



For the case of the model field given by Eq. (2.26), the integration in Eqs. (2.32a) and
(2.32b) can also be carried out Lo obtain the expression by the use of the function E(8,z)
defined by Eq. (2.30). The results for various values of R, are shown in Fig. 2.5. The
distribution function changes its shape at V;? = Z¥;, and becomes wider with increasing
Ry. Tons having a magnetic moment are accelerated in the direction of the wall not only
by the electric field but also by a gradient of the magnetic field strength.

Because the distribution function at the boundary is independent of A(¥), the mean
velocity and the particle and energy fluxes of the ion at the boundary must also be
independent of A(¥), the mean velocity and the particle and energy fluxes of the ions at
the boundary must also be independent of A(¥). The mean velocity normalized to the
isothermal sound speed, C, = [k(T. + T.)/M]'/?, is easily obtained by equating the ion

current Lo the electron cutrent as

<y >
U,=%

)m(llf)m”“’”‘ =¥ (2.33)

We also obtain the normalized particle flux at the boundary,

Rin(1) <oy >
ry= BN g eapu,

(234)

The dependence of Uy and Ty on R, is shown in Fig, 2.6.
The ion energy flux entering the sheath is calculated by integrating the product

(¢ - 2¥%1)5(z, €, w)R(z) over the phase space (z,¢,u) as
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Jar | f‘v’%Mv”S(z',e,y) + [a'r / PUZKT(¥ - V)S( e, )
(2.35)

Substituting Eq. (2.10), the normalized ion energy flux is obtained in the form
Q
@ = LT TG,

1+ 27 ol
VAT

d:
813+ 2r(¥, - V)ROVINE) ,
av ' 2.36)

which can also be integrated analytically for the case of the model field expressed by Eq.
(2.26). The first term in the integrand of Eq. (2.36) is the energy flux resulting from the
kinetic energy which fons have at the point of generation. The second term is from the
energy flux that ions acquire in the plasma potential. The electron energy flux into the
sheath is easily calculated when a Maxwellian distribution is assumed. The normalized

electron energy flux is

Q.g=(ﬂ)m( r )’"R,(H" ;Wl)exp(—\]l.,'. (237)

xm 1+71

The normalized ion energy flux at the boundary is shown in Fig. 2.7, together with the
normalized total flux, @ = @ + Qi

As shown in Figs. 2.5 and 2.6, the distribution function at the boundary broadens
and the mean velocity increases as the mirror ratio becomes large. It is closely connected
with the condition for the sheath formation as discussed in the next section. We can

predict from
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FIG. 2.5.  The normalized ion distribution function with r=1 at the

plasma-sheath boundaty for various values of R.
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FIG. 2.6. The normalized ion mean velocity U; and the normalized parti-

cle flux T at the plasma-sheath boundary as a function of the mirtor ratio R;.
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FIG. 2.7.

The normalized ion energy flux Q, and the normalized total
energy flux Q; = Q) + Qi at the plasma-sheath boundary as a fanction of

the mittor atio Ry, where Qi is the normalized electron energy flax.

45



the above result that the solution of the plasma equation for the monotonically increasing
mirror ratio always satisfies the criterion for the sheath formation at the plasma-sheath

boundary.

2.4 APPLICATION OF THE GENERALIZED BOHM CRITERION

We now show that the solution of the plasma equation satisfies the condition required
for the sheath formation. The sheath is assumed to be so thin that the particle source
inside the sheath can be neglected and the variation of the magnetic field in the sheath

may be disregarded. On thi ion, we can apply the generalized Bohm criterion to

the solution of the plasma equation: an interpretation of the generalized Bohm criterion
was previously given by Bissell [14].

It is seen from Eqs. (2.6a), (2.6b), (2.7), and (2.8) that the ion density in a sym-
metric system is generally expressed by a function of R and V. The electron density is
independent of R if the electron distribution function is isotropic. Then, the solution of
the plasma equation satisfies

7 (Gndl | OmdR)| - dne dY
s TR )|, T W (2.38)

at the plasma-sheath boundary because the quasi-neutrality holds true in the plasma.

‘The term on the left-hand side can be rewritten as
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2ne ¥,
W ds|,,

(2.39)

(W)
3 j —'-dV

on the assumption of no particle source in the sheath, and the right-hand side is

dn, 4
d¥ d:

(2.40)

|..:

for a Maxwellian electron distribution. The expression (2.38) is obtained by differentiat-
ing the integral expression of ion density in the sheath with respect to ¥ and by setting

¥ equal to ¥,. Substituting Eqs. (2.39) and (2:40) into Eq. (2.38), we obtain

2 = i) dR/ds B(n./m)
'T/o —JL'V“, = 2+2255 17 S 1 (241)

We partially differentiate the right-hand side of Eq. (2.15) with respect to R and use

the asymptotic expansion (2.16) of the complementary error function to get

/- f.(mdv
Cae 2.uz/d. AL+ Zr)no (W o, de' ROV) _H(Y)
- d¥fds|,,, " TR mJo T AW Ry (W)

(242)

When the mirror ratio becomes large with increasing potential, the second term on the

ths has a positive value because the integral is always positive. Hence, when dR/ds > 0

and d¥/ds > 0 the solution of the plasma equation always satisfies the criterion at the

plasma-sheath boundary,



7 = fi%
2l B s 2, @40)

which is the expression of the generalized Bohm criterion with the normalized velocity.
The equality in Eq. (2.43) is true when dR/ds=0 at the plasma-sheath boundary. This
criterion can also be checked by using the distribution function expressed by Eqs. (2.32a)
and (2.32b). Although Eq. (2.42) is the result for the particle source given by Eq. (2.10),
it can be seen from Eq. (2.41) that the solution of the plasma equation for any source
function satisfies the generalized Bohm criterion when dR/ds > 0.and d¥ /ds > 0 because
the derivative In, /OR is always negative at the plasma-sheath boundary.

The question arising from Eq. (2.41) is does the solution satisfy the generalized
Bohm criterion when dR/ds < 07 This problem, in general, becomes hard to analyze
completely because one must treat ions trapped in the well of the effective potential
1uBo/R(s) + ZeW(s) when dR/ds < 0. If the density of the trapped ions is negligibly
small near the boundary, however, one can find that an,/8R becomes negative. When
trapped ions near the boundary can be neglected and the ion source has no particle
originaling with zero parallel velocily, one can generally show that the derivatives an,/d¥
and On, /3R always have negative finite values near the boundaty. The potential gradient
at the boundary must be a positive finite value to be connected to the sheath potential.

Therefore, it is seen from Eq. (2.41) that i

is case the solution of the plasma equation
does not satisfy the generalized Bohm criterion. When there are ions generated at V=0,
that is, S(V = 0) # 0, careful treatment of trapped ions is necessary to estimate the

second term on the rhs in Eq. (241).



2.5 NUMERICAL SOLUTION OF THE PLASMA-SHEATH EQUATION

For the purpose of showing the validity of the analysis and to evaluate the effect of
the Debye length on the potential profile near the wall, we now solve the plasma-sheath
equation. Equation (2.13), which is the nonlinear integrodifferential equation, can be
solved numerically by transforming it into a set of finite difference equations. We use the
technique described in Rel. [9] for solving the equation. The boundary conditions on Eq.
(2.13) are d¥/dslo = 0 and o = 0; the normalized wall potential ¥, is determined as
a result of the calculation. To compare the numerical result with the analytic solution,
we describe the model field R(¥) =exp(a¥) using the analytic solution of the plasma
equation. Then, the analytic solution and the expression of ¥, can also be used as

ial values of ¥ for the numerical calculation. The spatial variation of the particle
source is expressed by h(¥)=exp(—V) using the numerical solution of the plasma-sheath
equation.

Figure 2.8 shows the numerically calculated potential together with the analytical
solution for the model field with a = 0.536, where the hydrogen plasma soutce with
7 = 1 is assumed. It is seen that agreement of the analytic solution with the numerical
result is nearly perfect in the plasma region when the value of Apo/L is sufficiently small.
‘The density profiles of both ions and electrons for Apo/L=0.03 are shown in Fig. 2.9. We
see from the result that the width of the sheath, in which the quasi-neutrality does not
hold true, is about ten times as large as the Debye length, Apo. There is the difference

between the analytic solution and the numerical results of ¥(s) in the section



R (s)

FIG. 2.8. The profile of the normalized potential ¥(s) for an ion source
with =1 for various values of Apo/ L, where the model field R(¥)=exp(a¥)
with a=0.536 is described by the use of the analytic solution, ¥, (heavy line)
of the plasma equation.
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FIG.2.9. The profile of the normalized potential ¥(s) and the normalized
density of ions and electrons, n(s)/no, for Apo/L=0.03, where a heavy line

is the analytic solution of the plasma equation.
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lines) for the model field R(¥)=exp(a¥) with () a=0.536, (b) @=0.376, and
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0 < s < 0.6 although the quasi-neutrality holds good. This difference is considered Lo

be caused mainly by the difference of the pl heath boundary: the pl heath

boundary of the analytic solution is s = 0.7. Dependence of the potential profile on the

magnetic field is shown in Fig. 2.10.

2.6 CONCLUSIONS

We have lated the pl heath equation for a collisi plasma in an open
magnetic field that has monotonically decreasing axial profiles. The ion-source distri-
bution function with a finite temperature chosen by Emmert et al. has been used for
the formulation. In the plasma, except for the sheath region, Abel’s integral equation
can be derived approximately from the plasma equation by describing the magnetic field
profile as an arbitrary function of the potential, and then an open magnetic field with
various kinds of axial profile. The accuracy of the analytic solution was checked numer-
ically by substituting the solution into the plasma equation; it confirms the validity of
the approximation. The analytic solution is used to express the wall potential, the ion
distribution function, and the particle and energy fluxes explicitly. Results show that
the magnetic profile affects the potential formed in the plasma. For the model field used
in this chapter the presheath potential drop increases by about a factor of 2 when the
magnetic field at the boundary weakens to half of that at the center of the plasma, and

the ion distribution function becomes wider with increasing of the potential drop.



1t has been shown that the solution of the plasma equation always salisfies the gen-
cralized Bohm criterion at the plasma-sheath boundary when the magnetic field mono-
tonically decreases in the outside direction. We have also discussed this criterion when
the magnetic field monotonically increases.

The plasma-sheath equation is solved numerically for various profiles of the magnetic
field. The sheath is formed near the walls with a width about ten times as long as the
Debye length, and the analytic solution for any profile of the magnetic field agrees well
with the numerical results in the presheath when the Debye length is sufficiently small.
“The potential drop in the sheath is larger than that in the presheath and is almost
independent of the magnetic field profile. Consequently, although the ion energy at the
wall is somewhat large as compared with that for a uniform magnetic field, the increase
in energy is not expected to be so large that it causes a remarkable increase in sputtering
due to ions.

The presheath potential near the wall has an important roll in impurity control
in a variely of reactor scenarios. If the potential drop in the plasma is large, ionized
impurities will be reflected to a divertor or end plate without flowing into the main
plasma. Therefore, an expanding magnetic field is effective not only to reduce the power
density on targets but also to prevent an inflow of impurities. The fact that the potential
profile depends on the magnetic field profile also implies the possibility of potential
control in the open region by changing the magnetic field profile.

Concerning the potential formation in an open magnetic field, it is an open problem

as Lo whether the static potential is formed or not when the magnetic field monotonically
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increases. In this case one must take the existence of trapped ions into consideration to

treat this problem.
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CHAPTER 3

Effects of an Expanding Open Magnetic
Field on the Plasma Presheath

3.1 INTRODUCTION

A plasma flowing to a wall in the presence of a nonuniform magnetic field is an
important problem for research on magnetically confined plasmas as well as on the plasma.
source used in plasma processing. Potential developed in a plasma flowing along a
nonuniform open magnetic field becomes an issue when we approach the subject of the
plasma flow, energy transport, an inflow of high-Z impurity ions, and plasma-surface
interactions in an open region of confinement systems. In the presence of an expanding
magnetic field, ions are accelerated toward the plate and their density drops accordingly.

If electrons remain close to a li

then the ic potential will
increase following the Boltzmann relation. Accelerated ions will also facilitate formation

of a shielding positive space charge at the plasma boundary. Therefore, the expanding



magnetic field is expected to be available not only for enlargement of the potential drop

along a field line but also for stabilization of the sheath potential.

“The problem of plasma flow to a wall and the potential formation has drawn attention
since the first kinetic analysis in the context of discharge plasmas was done by Tonks
and Langmuir (1. Progress on the theoretical treatment of this problem has been made
by a number of workers over many years [2-4). In the previous analyses the plasma is

cither unmagnetized o magnetized by a uniform field.

Recently, Sato and Miyawaki formulated the plasma-sheath equation for a collision-
less plasma with a finite-temperature particle source in an expanding magnetic field [3),
in which the same ion source [unction used by Emmert et al. is adopted and Boltzmann
clectrons is assumed. They obtained an analytic solution by introducing some simplify-
ing approximations and presented the potential profile, the potential at the sheath edge,
and the wall potential as well as the particle and energy fluxes to the sheath for different
magnetic mirror profiles. Hussein and Emmert numerically simulated the same plasma
and investigated the dependence of the presheath potential on both the spatial distribu-
Lion of the particle source and the magnetic field strength profiles [6). They compare the
simulation results with the analytical solution obtained by Sato and Miyawaki, show-
ing that the simulation results agree well with Sato and Miyawaki for low mirror ratios
but deviate as the mirror ratio increases. Although they concluded that the differences
between them is attributed to the approximation made in the analysis, the differences
mainly originate in a parlicle source used in the analysis and in the simulation. The

particle source in the analysis has a spatial profile in proportion to the plasma particle



density but that in the simulation has a uniform spatial profile .

In this chapter, we i lyze effects of a i open magnetic field on
potential formation in the plasma in contact with a wall by solving the plasma equation
formulated previously. We compare the numerical results with the analytical ones and
also with the simulation ones (o show justice of approximations in the analysis carried
by Sato Miyawaki and to check accuracy of the simulation code developed by Hussein
and Emmert. Moreover, we investigated the dependence of the potential profile on the
spatial distribution of the particle source and show upper and lower limits of the potential
drop in the presheath to indicate controlability of the presheath potential by applying
an expanding magnetic field. We also discuss an effect of the nonuniform magnetic field
on sheath formation using a calculated ion distribution function.

In Sec. 3.2, we describe the model and write the plasma equation. An effect of a
nonuniform magnetic field on sheath formation is briefly discussed in Sec. 3.3. The
numerical results are presented and discussed in Sec. 3.4, and the conclusions are given

in Sec. 3.5.

3.2 MODEL AND PLASMA EQUATION
The model and coordinate system used throughout this chapter is illustrated in Fig.

3.1, The collisionless plasma contained between two perfectly absorbing walls located at

= %L is symmetric about z = 0. The Debye length is assumed to be small compared
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FIG. 3.1.  The geometry and coordinate system, and axial profiles of the
potential and the magnetic field strength.
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with macroscopic scale length, and then quasineutrality along field lines holds true over
the whole region except the sheath region.
Using the energy ¢ and the magnelic moment 4 , we can describe the kinetic

equation for ions by

onle e ZLELD < 5(e e, @

where
w(z,e,4) = [2(¢ - uB(z) - 9(2)) /M)'* 2

is the speed of ion along the field line, o(= 1) denotes the direction of the ion motion,
J(z,€,,0) is the ion distribution function, 5(z, ¢, u) is the source term for the ions, M
is mass, g is the ion charge, ¢(z) is the electrostatic potential, and B(z) is the magnetic

field strength. The ion source used by Emmert et al. is expressed in the form

S(z,€,1) = Soh(z)

4,::;;):'41(1»1.1")"»( le- v'#(l)l) 33

where S, is the source strength, k is Boltzmann’s constant, T; is the source temperature,
and h(z) expresses the spatial distribution of the source. The boundary conditions of the
distribution function are f(~L,e,u,+1) = 0 and f(L,e,u,~1) = 0. The distribution
function f(z,¢, u,0) is obtained by integrating Eq. (3.1) along the trajectory of ions
and then ion density n,(z) is calculated by integrating the distribution function over the

€ = p space.
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Since the electrons are in a retarding electrostatic potential, the electrons can be

assumed to have a Boltzmann distribution with temperature T.. Results of particle

simulation shows that the bulk of electrons to the Boltzmann di:
ever if the mean free path is much larger than the scale length of a plasma (7). We can
equate ion and electron charge densities in Lhe presheath region to obtain the the plasma

equation. Introducing the nondimensional variables

U(s) = =eg(s)/kT.,  R(s)= Bo/B(s). s=z/L, Z=qfe,
and

T=TJ/T.,
we describe the plasma equation derived by Sato and Miyawaki in the form

.
noexp(=¥(s)) = ZSoL ( o ) L d5'G(s, $h(s") , (04
where

G(s, s') = exp[Zr(¥(s) - ¥(s']erfc[Zr(¥(s) - ¥(s")"?)

R(s) - R(s)\ " R(s) ,
(M) e (o - )
W
xerfe [(ﬁzf(ws) W(,’))) ].,v<s.

G(s,s') = exp[Z7(¥(s) - ¥(s))] , 2,



The electrostatic potential in the presheath is obtained by solving Eq. (3.4) and the wall
potential ¥, also determined from the requirement of equal ion and electron fluxes to

the wall.

3.3 EFFECT ON SHEATH FORMATION

The sheath is assumed (o be so thin that the particle source and variation of the
magnetic field strength can be neglected inside the sheath. The solution of the plasma
equation satisfies quasineutrality in the presheath and the particle flux is conserved in
the sheath. Using quasineutrality at the sheath edge and conservation of the particle
flux in the sheath, we can derive the relation

2

<yi> = +

dR/ds d(n,/n,
e

2
Z dWjds~ 9R
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where ¥y = (Mu}/2T.)"? is the normalized parallel velocity and the brackets < >
denote averaging with the ion distribution function [S). The second term of rhs of Eq.
(3.5) describes an eflect of the nonuniform magnetic field. When the magnetic field is
expanding, that is dR/ds > 0, the plasma equation for any source function satisfies the

generalized Bohm cri

<W> < 5 (3.6)



because the derivative On,/8R in Eq. (3.5) is always negative at the sheath edge. The
equality in Eq. (3.6) is true when the magnetic field is uniform or the field singularity
appears at the sheath edge (8,9]. Appearance of the field singularity depends on both
the spatial distribution and the velocity distribution of the particle source. If there is
no particle source in the vicinity of the sheath edge or the particle source has no ions
with zero parallel speed like Emmert’s source, the field singularity does not appears and

ion is

the derivative d¥/ds has a finite value. In this case the generalized Bohm crif
fulfilled with the inequality sign. Oversatisfaction of the Bohm criterion is favorable for
formation of a shielding positive space charge at the plasma boundary and then one can

expect that an expanding magnetic field has a stabilizing effect on the sheath potential.

3.4 NUMERICAL RESULTS AND DISCUSSION

For the purpose to demonstrate effects of the expanding magnetic field on the presheath
potential, we now solve the plasma equation expressed by the nonlinear integral equation.
This equation can be solved numerically by transforming it into a set of finite difference
equations. We can obtain the numerical solution with a high accuracy better than 10~*
by iterating on the potential until it converges. We express the model field R(s) as a
function of the coordinate s and assume the temperature of ion T; to equal the electron
temperature Te.

At first, to show justice of simplifying approximations introduced in the analysis by



Sato and Miyawaki and to check accuracy of the simulation code developed by Hussein
and Emmert, we compare the calculation results with the analytical ones and the sim-
ulation ones. Figure 3.2 shows the potential profile in the presheath of a collisionless
hydrogen plasma flowing along a magnetic field with a magnetic mirror profile used by
Sato and Miyawaki. Different two spatial profiles of the particle source generate different
potential profiles. The dotted lines are the values computed by Sato and Miyawaki for
the particle source with the spatial distribution h(s) = n(s)/no and broken lines are the
simulation result by Hussein and Emmert for the particle source with h(s) = 1. The
analytical solutions closely agree with the numerical results and an error due to the ap-
proximations made in the analysis is smaller than two percent. The simulation results
also agrees well with the numerical ones but deviate near the sheath edge. This differ-
ence seems Lo be attributed to construction of a numerical grid in their simulation, which
‘make their code less accurate near the sheath edge. Fig. 3.3 shows the dependence of the
potential at the sheath edge ¥, and that at the wall ¥, on the mirror ratio R,. Excellent
agreement between the numerical results and the analytical solution is obtained over the
wide range of the mirror ratio; the difference is within two percent over the range of R,
from 1 to 10. Some difference is observed between numerical results and simulation ones,
which is considered mainly an error due to construction of a computational grid in the
simulation. Hussein and Emmert. have concluded that the differences between Sato and
Miyawaki’s results and theirs are attributed to the approximations made in the analysis
in Ref. (5], comparing their simulation results with the analytical solution. We, however,

can see from Figs. 3.2 and 3.3 that these differences are mainly due to the
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FIG.3.2. The normalized potential profile in the presheath for the parti-
cle source with the spatial distribution (2) A(s) = n(s)/no and (b) A(s) = 1.
The model field bin Ref. (5] is used for the magnetic mirror profile. A dotted
line is the analytical solution by Sato and Miyawaki for A(s) = n(s)/no, and

a broken line is the simulation result by Hussein and Emmert for h(s) = 1.



FIG. 3, The normalized potential at the wall ¥, and that at the sheath

edge ¥, as a fanction of the edge mirtor ratio R, for the particle source
with (a) h(s) = n(s)/no and (b) A(s) = 1. The model field in Ref. [s] is
used. Dotted lines are the analytical solutions for the particle source with
h(s) = n(s)/no by Sato and Miyawaki, and broken lines are the simulation
tesults for the particle source with h(s) = 1 by Hussein and Emmert.



different spatial profile of the particle source.

‘The dependence of the electrostatic potential and the particle density on the magnetic
mirror ratio is illustrated in Figs. 3.4 and 3.5, where the spatial profile of the particle
source is given by the Gaussian of the form h(s) = exp(~25s?). The parabolic profile
of the magnetic mirror ratio given by R(s) = 1+ (R; — 1)s? is used heretofore. In
the case of a constant magnetic field, the potential changes only over the source region
and is constant elsewhere. Upon applying the expanding magnetic field, the potential
continues Lo vary in the sourceless region. The potential drop increases with increasing
of the edge magnetic mirror ratio R;. We can compute the ion distribution function
using the expression (3.31) in Ref. [5]. Figure 3.6 shows the ion distribution function
at the sheath edge for various magnetic mirror ratios. The expanding magnetic field
accelerates the plasma toward the wall and then the plasma is predicted to satisfy a
condition for sheath formation at the sheath edge. The value of < V." > calculated
from the ion distribution function is equal to 2.0 in the uniform magnetic field and it
becomes smaller than 2.0 in the presence of the nonuniform magnetic field. Then the
generalized Bohm criterion is marginally satisfied in the uniform magnetic field and is
oversatisfied in the expanding magnetic field. The value of < V." > also is checked to

agree with the value calculated from Eq. (3.5). From these results we can expect that

the expanding magnetic field have a stabilizing effect on sheath formation.
In the presence of the nonuniform magnetic field, the potential drop in the presheath
considerably depends on the spatial distribution of the particle source. Figures 3.7 and

3.8 illustrate the dependence of the potential and the particle density on the spatial
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FIG. 3.4.  The normalized potential profiles for the magnetic mirror ratio

profile R(s) =1+ (R, - 1)s? with R, = 1.0, 2.0, and 4.0, where the spatial
distribution of the particle source is chosen as A(s) = exp(~25s?).
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FIG. 3.5.  The profile of the normalized plasma density n(s)/ng for the
magpetic mirror ratio Ry = 1.0, 2.0, and 4.0.
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FIG. 3.6.  The normalized ion distribution function at the sheath edge
for various values of R,. The value < VH'z > is equal 10 2.0 in the case of
the uniform magnetic field and smaller than 2.0 in the case of the expanding

magnetic field.
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FIG.
particle source with A(s) = exp(=255%) (
h(s) = exp(=25(1 = 8)%) (-+=--==2).

The profile of the normalized plasma density n(s)/no for the
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distribution of the particle source. The calculation is cartied for three typical spatial
distributions. In the case of the particle source near the plate, the potential is only
developed over the region where the particle source exists. The only magnetic field
in the source region affects the potential formation, but the magnetic field inside the
particle source has no effect. This can be seen from Eq. (3.4) in which the integrand G
is independent of the magnetic mirror ratio if s' > s. On the contrary, in the case of the
particle source near the center, the potential is developed not only over the source region
but also over the sourceless region. The potential development in the region outside
the particle source is the result of the expansion of the magnetic flux tube. Figure 3.9
shows the ion distribution at the sheath edge for various spatial profiles of the particle
source. The plasma flow velocity at the sheath edge exceeds the ion sound velocity and
the generalized Bohm criterion is fulfilled with the inequality sign.

From results shown in Fig. 3.7, we can predict that the potential ¥ has the maximum
value when the particle source is concentrated at the center and has the minimum value
when the particle source is localized near the wall. The maximum value is independent of
the mirror ratio profile but dependent on the mirror ratio at the sheath edge R,. Figure
3.10 shows the dependence of the upper and lower limits of potentials ¥, and ¥,, on
the mirror ratio Ry. The region bounded by these limits show the region in which we
can control the presheath potential by changing the mirror ratio and the profile of the
‘magnetic field. Broken lines are results for the particle source with h(s) = 1. The wall
potential increases gradually but the potential drop in the sheath decreases slightly with

the mirror ratio. Results in Figs. 3.7 and 3.10 show that we can effectively control the



FIG. 3.9.  The normalized ion distribution function at the sheath edge
for the patticle source with A(s) = exp(~25s%) (——), A(s) = 1 (====),
and A(s) = exp(=25(1 = 3)?) (-------). The value < V™ > is always smaller
than 2.0,
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and

FIG. 3.10.  The upper and lower limits (
normalized potential at the sheath edge, ¥, and those of the potential at
the wall, ¥,, as a function of the edge mirror ratio R;. Bracken lines are

results for the particle source with h(s) = 1.



presheath potential in the source region or in the region outside the source by applying

the expanding magnetic field with an adequate mirror ratio profile.

35 CONCLUSIONS

We have investigated formation of the presheath potential in the presence of an ex-
panding magnetic field by numerically solving the plasma equation for the collisionless

plasma. We have checked vali of the analysis and accuracy of the simulation code

by comparing the present calculation results with previously published analytical solu-
tions and recently published simulation results. Results show that analytical solutions
obtained by Sato and Miyawaki are available over a wide range of the mirror ratio, and
the present result of the potential profile also agrees with the simulation result obtained
by Hussein and Emmert in the inner region, but slightly deviates in the region near a
wall.

We have analyzed the dependence of the presheath potential profile on the spatial
profile of the particle source and that of the magnetic field strength. Results show that
a particle source profile has a considerable effect on the potential drop in the presence
of a nonuniform magnetic field. If a plasma source exists in the interior of the plasma,
we can effectively enlarge the potential drop in the presheath by increasing the magnetic
mirror ratio. We have shown the upper and lower limits of the presheath potential as

a function of the magnetic mirror ratio. The potential drops can be controlled within

7



these limits by applying an expanding magnetic field with a proper field strength profile.

We have also discussed an effect of a nonuniform magnetic field on sheath formation
by calculating the ion distribution function. The plasma is accelerated by the gradient
of the magnetic field strength and the plasma flow velocity at the sheath edge exceeds
the sound velocity. The plasma flow in the presence of the expanding magnetic field
satisfies the generalized Bohm criterion with the inequality sign if the sheath edge does

not exhibit the the singularity.
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CHAPTER 4

Potential Formation in a Collisionless Plasma

Flowing out through the Magnetic Throat

4.1 INTRODUCTION

The problem of calculating the electrostatic potential in plasma flow along spatially
varying magnetic field lines to a wall arises in various fusion devices as well as in plasma
processing techniques. Knowledge of the electrostatic potential profile in a collisionless
plasma is necessary to understand the behavior of plasmas in the end region of mirror
machines [1,2], in the edge layer of field-reversed configurations (3], or in the divertor
of toroidal herical systems [4). Moreover, knowledge of the potential variation is the
key to knowing parameters of a plasma for design of a direct energy convertor and for
evaluation of its efficiency (5-7]. This problem is also interest in connection with high
temperature divertor plasma operation of a toroidal magnetic fusion system aiming at

confinement improvement and reduction of the heat load on a plate (8].
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The problem of the potential formation in plasma flow to a wall has drawn attention
since the first kinetic analysis in the context of discharge plasmas was done by Tonks and
Langmuir in 1929 (9). Progress of the theoretical treatment of this problem has been made
by a number of workers over many years [10-12). An important aspect of 2 plasma flowing
to a wall that remained ignored in these previous works, however, is spatial variation
of the magnetic field strength along field lines, which provide the presheath mechanism
through divergence of particle flux and conversion of kinetic energy perpendicular to field

lines into parallel kinetic energy.

The characteristics of plasma axial flow through a magnetic mirror was investigated
using a fiuid computer code by Rognlien and Brengle (13]. Calculations were made for
several explicit examples (o study the behavior of plasma flow. It requires a kinetic
treatment to verify characteristics of the potential formed in a plasma escaping through
a nonuniform magnetic field in detail. There have been several kinetic models which
consider the potential profile along spatially varying magnetic field lines in mirror systems
in order Lo evaluate the thermal barrier depth [14,15] and the height of the plug potential
(16), but, these models are not applicable to a plasma escaping through the mitror throat
1o a wall. Recently, a plasma originating from ionization of warm neutrals in a divergent
magnetic field was treated with kinetic analyses [17-19). Their analyses provide an
important basis for the study of potential formation in a plasma mainly produced by
recycling of the neutral gas, such as a plasma in the divertor chamber of a toroidal

system.

In this chapter, we investigate the characteristics of the potential in collisionless
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plasma flow along spatially varying magnetic field lines to a wall using a kinetic treat-
ment. lonization of neutrals is assumed to be neglected. We derive necessary conditions
1o be satisfied for the formation of a monotonically falling potential due to nonuniformity
of the magnetic field in a plasma flowing out through the magnetic throat. Moreover,
we numerically solve Poisson’s equation for model distribution functions to examine the
potential formation along magnetic field lines. We also consider the effect of trapped
electrons on the presheath potential and briefly discuss the controllability of the poten-
tial by the combination of a spatially varying magnetic field and the electron cyclotron
heating.

The outline of the chapter is as follows. Formation of the presheath potential due to
nonuniformity of the magnetic field is described by using the quasi-neutrality approxi-
‘mation of the plasma in Sec. 4.2. Model distribution functions of ions and electrons are
picked out to obtain the expression of the plasma-sheath equation in Sec. 4.3. Results
of numerical calculations are presented and discussed in Sec. 4.4. The conclusions are

summarized in Sec. 4.5

4.2 FORMATION OF A MONOTONICALLY FALLING POTENTIAL
A spatially varying magnetic field provides formation mechanism of the presheath
potential through divergence of the particle flux and acceleration of plasma particles by

the parallel component of the Lorentz force. We consider a simple profile of magnetic
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FIG. 4.1.  Schematic diagram of the magaetic field profile (dotted line)
and the electrostatic potential profile (solid line) in the open region. Typical
paths of particles are schematically shown in the region between the mitror

throat and the floating wall.



field strength as sketched in Fig. 4.1. Plasma particles coming out through the magnetic
throat at z = 0 receive the force from the expanding magnetic field which accelerate them
towards the wall located at z = L, and their density drops accordingly. lons escaping
from the throat are accelerated both by the magnetic field and by the electrostatic
potential. Most of electrons in the open region, which consist of electrons passing through
the magnetic throat and electrons trapped between the throat and the wall, are reflected
by the potential ¢(z). A plasma is neutralized at the wall, which is perfectly absorbing
and electrically floating. The ion motion is assumed to be collisionless on the scale
length of the magnetic field variation. We also neglect a particle source outside the
throat, assuming the particle density of a plasma originating in the outer region much
smaller than the one of the plasma flowing through the throat.

The distribution functions of ions and electrons satisfy the Vlasov equation. Thus we
can generally express the steady-state distribution function as a function of constants of

motion on the assumption of no particle source. The energy of a particle,

= gmd ) o) . wy

is a constant of motion, where m, is the mass, g, is the charge, and v, and v) are the

and parallel of velocity. The ic potential formed in

the plasma, ¢(z), is defined as zero at z = 0. The magnetic moment,

= 3mLRE) By «
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is taken as a constant of motion, like ¢, where the mirror ratio R(z) is the ratio of the
magnetic field strength Bo at z = 0 to the local value B(z) at axial coordinate z. The
subscript 0 denotes the value at z = 0 throughout this chapter.

Particle density of species j is obtained as a function of ¢(z) and R(z) by integrating

the distribution function f,(e, 1) over the velocity space,
n(8(2), R2)) = [ ffe,u)d.

The particle density of a plasma with no particle source is expressed by a function not
explicitly dependent on z, but implicitly dependent on z through ¢(z) and R(z). The
particle density n,(¢(z), R(z)) always has a form different from n,(¢(z), R(z)) even if the
distribution function f,(e, u) is the same as f.(e, u), because the sign of the ion charge,
g, = Ze, is opposite o that of the electron charge, g, = —¢. Here Z is the charge number

of ions. The electrostatic potential is determined, in general, from Poisson’s equation
96 = ¢ [n.(912), Riz)) = Zn. (402, R&)| o “3)

if the profile of R(z) is imposed externally. One can see that, as long as the characteristic
scale length, L, for potential variation is large compared to the Debye length Ap, the
solution for ¢(z) obtained from Eq. (4.3) is well approximated by the one obtained from
the quasi-neutral approximation Zn, — n, = 0. The two solutions differ by O()}/L?)
and the solution to Eq. (4.3) satisfy charge-neutrality to the same order. Differentiating

Zn, —n, = 0 with respect to 7, we obtain



8(Zn, — n) dd(z) , 8(Zn,
%%  dz ' R

(1.4)

Then, if there is no singular point, we can determine the potential d(z) over the entire

region except for the sheath region from the differential equation

do(z) _ _3(Zn, ~ n)/ORAR(z)

dr - " 9(Zn,-n)[0¢ dz ' 45)

once we give the magnetic field profile by a function of z.

We first consider the potential formation in the open region between the magnetic
throat and the wall using Eq. (4.5). Some electrons in the open region are trapped by
a well of the eflective potential uBo/R(z) — ed(z) as illustrated in Fig. 4.1. Since the
value of 8(Zn, - n,)/8R in Eq. (4.5)depends on a ratio of trapped- to reflected-electron
density, trapped electrons will have considerable effects upon the potential formation in
the plasma. The trapped-electron density, in general, becomes large with increasing the
mirror ratio R(z) in the same manner as the confined-ion density in a mirror system,
while the particle density of escaping ions and that of passing electrons drop in inverse
proportion to R(z). One can easily see that 8(Zn; — n.)/dR is always negative for
an isotropic electron distribution (unction such as a Maxwellian, which fully fills the
trapped region of velocity space, because the electron density is independent of R for an
isotropic disttibution function. The derivative 8(Zn, — n,)/OR is negative in the whole
range of R for all but very small trapped-electron densities. In this case, we obtain a

monotonically falling solution ¢(z) to Eq. (4.5)continuing from z = 0 to z = L, if the



derivative 8(Zn, —n,)/ is negative throughout the open region. This solution satisfies
a necessary condition for the formation of the stable sheath potential just in front of the
wall, which is expressed by 8(Zn, — n.)/8¢ < 0. The derivative 3(Zn, — n,)/dR can
have a positive value for very small trapped-electron densities, and then a monotonically
falling solution is obtained if the derivative 8(Zn, — n.)/34 is positive for z > 0. We,
however, can exclude such a solution because it does not satisfy the necessary condition
for the sheath formation at the plasma-sheath boundary.

The inequality (Zn, — n,)/8¢ < 0 for the formation of a monotonically falling
potential gives the restriction to the ion distribution function. Since ions streaming
towards the wall are accelerated by the effective potential yBo/R(z) + Zed(z), all ions
move in one direction if particles originating in the open region can be neglected. In this

case, the inequality is rewritten in the form [20]

(4.6)

by using the ion distribution function, where M is the ion mass. The expression (4.6)
agrees with the generalized Bohm criterion for the stable sheath formation presented by
Harrison and Thompson {10] when the electron distribution function is a Maxwellian
with temperature T.. It is well known that the generalized Bohm criterion is satisfied
only if the ion drift velocity is supersonic. Thus, the ion drift velocity in the outer
region of the throat is larger than the ion acoustic velocitity when a monotonically

falling potential builds up. Since the derivative 9n, /¢ is always finite for a continuous



electron distribution function, the ion distribution function f; must be zero at u = 0
to have a finite value of the integral in expression (4.6). On the other hand, the ion
distribution function in the interior of the throat is expected Lo be continuous at the
separatrix which divides the trapped from the passing region of velocity space, provided
trapped fons exist inside the throat. These facts mean that the passing ions must be
accelerated in the inside region close to the throat before their arrival at the throat so

as to satisfy criterion (4.6).

Next, we consider the potential formation at the inner region close to the throat where
the trapped-ion density is smaller than the passing-ion density. The electron distribution
function in the inner region is expected to approach a Maxwellian due to scattering inside
the throat. Since the derivative 8(Zn, — n,)/dR in Eq. (4.5)has a finite negative value
in such a region, the sign of 3(Zn, — n,.)/3¢ to be opposite to that of dR(z)/dz for the
formation of a monotonically varying potential must change from positive to negative at
£ = 0 as z increases. Consequently, it is found that a monotonically decreasing potential,
which is necessary to accelerate ions, can build up in the vicinity of the throat only if

criterion (4.6) is fulflled with equality at z = 0.

We briefly discuss the potential formed in the inner region of the magnetic throat
such as the plug cell of a tandem mirror system. In the inner region at a distance from
the throat, where the trapped-ion density is much larger than the passing-ion density, in
general, the derivative 3(Zn; — n,)/84 is negative and the derivative 8(Zn, — n.)/9R is
positive. On the contrary, 8(Zn; — n.)/d4 is positive and 8(Zn; — n.)/OR is negative

just in front of the throat, as mentioned above. It is seen from this fact that there must
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be a saddle point in the intermediate region where the trapped-ion density becomes
comparable with the passing-ion density if a monotonically varying potential builds up
over the entire region. Equations Zn,~n, = 0, 3(Zn,—n,)/8¢ = 0 and 8(Zn,—n,)/dR =
0 hold true at the saddle point simultaneously. Existence of such a saddle point will
severely restricts distribution functions of the plasma. 1t is an open problem as to
whether the steady-state continuous potential with a monotonically falling profile can
build up or not throughout the system. It is difficult to calculate the spatial profile of
@(z) over the entire region using a kinetic treatment, because one must solve the Vlasov-

Poisson cquation self-consistently, determining the separatrix in velocity space under the

of ion motion in a nonuniform magnetic field.

4.3 MODEL DISTRIBUTION FUNCTIONS

We need to express the distribution function of electrons and ions in order to calculate
the axial potential profile between the magnetic throat and the wall and the one in
the vicinity of the throat. We unfortunately don’t know any kinetic analyses which
calculate the distribution function of ions escaping through the magnetic throat, while
many calculations for confined ions have been carried out by using Fokker-Planck code.
There are difficulties in determining the distribution function of the escaping plasma
and the potential profile near the magnetic throat self-consistently. The particle density

of ions varies along magnetic field lines through divergence of the particle flux and



acceleration by the effective potential uBo/ R(z)+ Zeg(z). lon flow dynamics will roughly
be described by using a drift, a spread and anisotropy of f,. Then we choose a model

distribution function for escaping ions given by

L 2 M\ M
Menw) = W (2,::1‘,") (zka)

€= uBy
K

T )""’ (_%) Me-uBo-co) 47)

xesp (_
Here erfc(y) is the complementary error function and h(y) is the Heaviside unit function
defined by

1y20
1 y<0

The cutoff energy ¢, > 0 is introduced so as to maintain the finiteness of the integral

in criterion (4.6), and the parallel Ty and the

T., are brought in to express a spread and anisotropy of the distribution function at the
magnetic throat. Level surfaces of this model distribution function in v — v, space at
R=2and —eg/kT. = 1.7 are shown in Fig. 4.2(a).

Electrons were assumed to be Maxwellian in almost all the previous analyses on
the sheath formation[9-12,17-19]. The distribution function of electrons trapped in the
expanding open magnetic field with large mirror ratio will, however, has a form different
from that of electrons passing through the magnetic throat provided the interaction

between them is weak. Since trapped electrons are expected to have considerable effects
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FIG. 4.2(b).  Level surfaces at R = 2 and e/T. = ~ 1.7 for the model
electron distribution function f, given by Eq. (4.8) with a = 10. Here v, i

the electron thermal velocity. Ratio of /, on adjacent contours is 0.79.



on the potential formation as mentioned in the previous section, we distinguish the dis-
tribution function in the trapped region from that in the passing region of velocity space.
The passing electrons are subject to relaxation inside the magnetic throat, thus we as-
sume the distribution function in the passing region Lo be Maxwellian. Since the trapped
electrons are supplied through scattering of the passing electrons, the distribution func-
tion must be continuous at the separatrix which divides the trapped from the passing
region of velocity space. We pick a model distribution function for the electrons in the

form

_ m_\¥? 2 e —uBy (4.8)
Hewr=re (57) " exe(-57) 9 (SH).
which s continuous over the velacity space. Here mis the electron mass and the function

g(y) is defined by

1! vy20
) = { explay) L y<0

The reciprocal of the parameter a describes the degree to which the trapped-electron
phase space, e~uBy < 0, is filled in : & = O corresponds to Maxwellian trapped electrons ;

and increasing a from 0 to oo describ ively smaller numbers of trapped electrons.

Level surfaces of the model electron distribution function with & = 10 at R = 2 and
—e/kT. = 1.7 are shown in Fig. 4.2(b).

The particle density of species j is obtained as functions of ¢ and R by integrating
J, over the velocity space. The resulting expression of the ion density is written in a

relatively simple form



Tw/Tis

exp (,;,ﬁ-) ::[/(Z[(m)m] T+ (TalTa-1)R
()52

R=1Ty\" ( R e— zw) " ( R e —Zep\'""
VR T PR R ) (\R-TRL o)

n(¢R) =

and the electron density is

- T
"‘(“'R'”“I"‘P(:%)'1:(:(:11'1 (RR]) ""’(na%)l

(4.10)

‘The mean drift velocity of ions is also obtained as a function of ¢ and R in the form
(aTy\" e Zeg\"
iR = ( ™ ) - kT

R-1Ty R c-Zep R_e-zes\"|\”
'( R T..)""’(n—n ¥Tix )""[(n-n 1 ) :
@n)

These ions are i and dif i with respect to R and ¢, and then
we can determine the presheath potential owing to nonuniformity of the magnetic field
from Eq. (4.5) if the profile of the magnetic field strength is given by a function of z
externally.

The ion flux per magnetic flux tube with unit cross section at the throat is given by
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and the electron flux is

o (2T.)""? ede) _ _alRi—1) Ry Q:)
r.=7(;) [R"""(k_n)'ln(m-l)'“’ R-1%T.))"

(4.13)

where Ry is the mirtor ratio at z = L. The wall potential ¢, in Eq. (4.12), which is
one of two boundaty conditions Lo solve Poisson’s equation, is uniquely determined by

imposing the umbipolarity of the fluxes, ZT, = ..

4.4 NUMERICAL RESULTS AND DISCUSSION

To examine the potential formation, we consider two type of plasmas in the present
paper. One is a cold-ion plasma originating from ionization of cold neutrals inside the
magnetic throat. We take temperatures as Ty = 0 and T,, = 0 to model such a plasma.
Another is a hot-ion plasma escaping from a device like a mirror machine, which is
supplied by pitch-angle scattering of a confined plasma. We model the hot-ion plasma,
taking Tyy = T. and Toy = 10T.. The potential ¢(z) over the entire region except for the
sheath region is determined by solving Zn, — n, = 0 or Eq. (4.5) if the magnetic field

profile is imposed externally. A continuous solution of Zn, —n, = 0 with a monotonically



falling profile exists only if the solution satisfies the inequalities 8(Zn, — n,)/dR < 0 and
8(Zn, - )96 < 0 throughout the exterior of the magnetic throat, z > 0, as described
in Sec. II. These inequalities restrict a range of parameters of the model distribution
functions given by Eqs. (4.7) and (4.8). Figure 4.3 shows domains in a — ¢, parameter
space at any point in which we can obtain a solution of Eq. (4.5) continuous from z = 0
toz = L. A lower limit of the cutoff energy ¢, of the model distribution function for
ions, which becomes in dependent of T, and Ry, is evaluated by solving Zn, — n, = 0
and 3(Zn, - n,)/d¢ = 0 at R=1 simultaneously. A model plasma with the lower limit
of ¢, the plasma marginally satisfies the generalized Bohm criterion expressed by Eq.
(4.6) at the throat. An upper limit of the cutoff energy is determined from simultaneous
equations Zn, — n, = 0 and 8(Zn, — n.)/dR = 0 at R = R,. The upper limit of ¢,
decreases as a becomes large, that is, as the trapped-electron density decreases. This
value also drops with T.,, taking its minimum value at T, = 0.

In order to satisfy the generalized Bohm criterion at z = 0, ions coming out through
the magnetic throat must have a supersonic drift speed and their distribution function
must be zero at y = 0. This fact implies the existence of the monotonically falling
potential to accelerate ions in the inner region near the throat. Figures 4.4(a) and 4.4(b)
show potential profiles and drift velocity profiles for the cold-ion plasma with various
values of the cutoff energy ¢, in the vicinity of the throat, respectively. The magnetic
field profile is given by R(Z) = 1+ (R, — 1)(z/L)? with Ry = 10. Figures 4.5(a) and
4.5(b) show results for the hot-ion plasma. The potential ¢(z) is determined by solving

Eq. (4.5), which is derived by using the quasi-neutrality approximation, and
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FIG.4.3. Domain in a~e, space where monotonically varying continuous
potential can be formed in the cold-ion plasma with Tyy = 0 and iy = 0

, and in the hot-ion plasma with

=T. and T,y = 10T, flowing through
expanding magnetic field with various mirror ratios at the wall. Here o is
the reducing parameter of the model electron distribution function given by
Eq. (4.8) and ¢ is the cutoff energy of the model ion distribution function
given by Eq. (4.7).
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B(z)/Bo

FIG. 4.4(a).  Potential profiles in the cold-ion plasma with Ty = 0
and T,y = 0 near the magnetic throat of the model field Bo/B(z) = 1 +
(Ry ~ 1)(z/L)® with Ry = 10. The values of the catoff energy c. are
e./kT. = 0.5, 0.5, and 0.8. The generalized Bobm criterion is masginally
satisfied at the throat when ¢/kT, = 0S.
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FIG. 4.4(b).  Profile of the ion drift velocity of the cold-ion plasma near
the magnetic throat of the model field Bo/B(z) = 1 + (R, - 1)(z/L)? with
Ry = 10. The values of the cutoff energy ¢ are ec/kT, = 0.5, 0.6, and 0.8,
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B(x)/Bo

FIG. 4.5(a).  Potential profile in the hot-ion plasma with Ty = T,
and T,y = 107, near the magnetic throat of the model field Bo/B(z) =
1+ (Ry = 1)(z/L)* with Ry, = 10. Values of the cutoff energy e, are
€/kT. = 0.187, 0.3 and 0.5. The generalized Bobm criterion is marginally
satisfied at the throat when ec/kT. = 0.187.
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FIG. 4.5(b).  Profiles of the ion drift velocity of the hot-ion plasma near

the magnetic throat of the model field. The values of the cutoff energy ¢, are
€c/kT. = 0.187, 0.3, and 0.5.
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the drift velocity V;(z) is obtained from Eq. (4.11). We ignored ions trapped inside
the throat in this calculation, assuming that their density, which vanishes at z = 0, is
much smaller than the passing-ion density near the throat. Calculating results confirm
the fact described in Sec. 1, that is, a monotonical potential profile builds up only if
the generalized Bohm criterion is fulfilled with equality at the throat. For the critical
value of the cutoff energy, £./kT, = 0.5 for the cold-ion plasma or e./kT, = 0.187 for the
hot-ion plasma, the gradient of the potential has a finite value at z = 0 nevertheless the
gradient of R(z) is zero at the throat. The plasma flow is accelerated from a subsonic
velocity to a supersonic velocity, and the sonic transition for the cold-ion plasma occurs
at the magnetic throat. The position of sonic transition moves to the inner region as
temperature T, increases. For cutofl energy larger than the critical value, one can find
a continuous potential profile, but it is not monotonical as indicated in Figs. 4.4(a) and
4.5(a). On the contrary, for cutoff energies smaller than the critical value, one cannot

obtain a continuous solution.

Although the assumption of quasi-neutrality provides a good approximation for a
smoothly varying potential in the plasma, one must numerically solve Poisson’s equation

to determine a potential profile over the entire region from the throat to the wall. If

we imate the problem as one-dimensional then we replace ¥?¢ in Eq. (4.3) by
d*¢/dz?, and an appropriate set of boundary conditions consists of values of ¢ at the
boundaries. The value of ¢ at the throat is defined to be zero and the one at the wall
is determined from the umbipolarity of the fluxes expressed by Eqs. (4.12) and (4.13),

2T, = T.. Poisson’s equation, Eq. (4.3), can be solved numerically by transforming it
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into a set of finite difference equations. We use a solution of Eq. (4.5) to guess an initial
set of ¢(z), and ensure sufficient resolution near the wall by introducing a nonuniform
grid.

Figures 4.6 and 4.7 show the numerically calculated potential for the cold-ion plasma
and for the hot-ion plasma flowing along the model field R(z) = 1+ (R —1)(z/L)? with
Ry = 10, respectively. Here the hydrogen plasma with Apo/L = 0.005 is assumed. The
cutoff energy of the model ion distribution function is chosen as ¢./kT, = 0.5 for the cold-
ion plasma and e./kT, = 0.187 for the hot-ion plasma so as to satisfy the generalized
Bohm criterion marginally at the throat. Formation mechanism of the presheath is
provided by the magnetic field through particle acceleration and divergence of particle
flux. lons with a finite T, receive the force along field lines from the magnetic field,
converting their kinetic energy perpendicular to field lines into parallel kinetic energy.
Acceleration of hot ions by this force induces the large potential drop near the magnetic
throat. This force does not act upon cold ions with 7, = 0, and then formation of the
presheath potential in the cold-ion plasma is owing to divergent of the particle flux.

The solid curves A, B and C in Fig. 4.6 and D, E and F in Fig. 4.7 show solutions
for successively smaller ratios of the trapped- to the total-electron numbers. The density
profiles of trapped electrons, passing electrons, and passing ions of the cold-ion plasma
for a Maxwellian electron distribution (a = 0) ate shown in Fig. 4.8. It is seen from Figs.
4.6, 4.7 and 4.8 that the trapped electrons remarkably aflect a profile of the presheath
potential. For much small trapped-electron densities, a descent of the presheath potential

is localized near the magnetic throat, and then the presheath
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FIG. 4.6.  Potential profile ¢(z) in the cold-ion plasma flowing throngh
the model field Bo/B(z) = 1+(R,,~1)(z/L)? with Ry, = 10 for various values
of the parameter o of the model electron distribution function. Parameters
of the model ion distribution function are ec/kT, = 0.5,Tyy =0 and T, = 0.
The values of o and the corresponding ratios of trapped- (o total-electron
numbers are : (A) a = 0, N!/N, = 0.27 ; (B) a = 1, N!/N. = 0.13 ; (C)
a =10, N/N, =003
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FIG. 4.7.  Potential profile 4(z) in the hot-ion plasma flowing through
the model field Bo/B(z) = 1+ (Ry, - 1)(z/L)? with Ry = 10 for various
values of the parameter a of the model electron distribution fanction. Pa-
rameters of the model ion distribution function are c./kTe = 0.187,Ty = T.
and Ty, = 10T.. The values of o and the corresponding ratios of trapped-
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NN, =009 ; (F) o = 10, NN, = 002.
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potential approaches asymptotically to a constant value as the mirror ratio increases. For
large trapped-electron ensities, the presheath has a gradually varying potential profile
and the potential drop increases with increasing of the mirror ratio. The sheath potential
with width several limes as large as the Debye length is formed just in front of the wall.
‘The increase of the presheath potential drop due to the existence of trapped electrons

leads to the decrease of the sheath potential.

‘The contribution of trapped electrons to the increase of the presheath potential drop
suggests the possibility of effective potential control in the open region by increasing
the trapped-electron density through ECRH (electron cyclotron resonance heating) or
ionization of neutral gas in the region near the wall. Since the ECRH increases the
electron energy perpendicular to magnetic field lines, electrons passing through the mirror
throat can be kicked in the trapped region of velocity space by the tf field, and they are
trapped until scattering out from the trapped region. In the open region with a large
mirror ratio, such as the end region of a tandem mirror, almost all electrons originating
from ionization near the wall are trapped in a well of the effective potential uB(z)—e(z).
Hence, the ionization will contribute to the increase of the presheath potential drop
provided the cooling effect of ionization is not so large. The large potential barrier at the
presheath inhibits the inflow of high-Z impurity ions from the wall towards a confined
plasma. Moreover, it will prevent a remarkable increase of convective electron heat loss
due to secondary electron emission from the wall. It is well known that secondary electron
emission has a negligibly small influence on the potential drop at the presheath under

the condition of a fixed electron temperature, while it remarkably reduces the potential
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drop at the sheath [21,22). Thus, one can expect that the large potential drop at the
presheath acts as a thermal insulator in place of the sheath potential when a large number
of electrons are trapped in the open region of a system such as a tandem mirror, even if
the sheath potential drop is reduced to a small value due to secondary electron emission.
‘The ECRH power necessary to maintain the trapped-electron density is expected to be
small compared with the convective electron heat outflow if the collision frequency is
‘much smaller than the one inside the throat. A precise calculation considering the power

balance of a plasma are necessary to make sure of the possibility of potential control.

4.5 CONCLUSIONS

We have i i formation of the d; ic potential in a col-
lisionless plasma flowing out through the magnetic throat to a wall on the base of the
kinetic theory. Spatially varying magnetic field provides formation mechanism of the
presheath potential through acceleration of plasma particles and divergence of particle
flux. A particle source in a plasma is assumed to be ignored. We have expressed Pois-
son’s equation for a theoretical model to examine potential formation along magnetic
field lines from an inside point near the magnetic throat to the wall. It is found that
the plasma flow must satisfies the generalized Bohm criterion at the magnetic throat to
avoid the discontinuity of the potential just beyond the throat. A monotonically falling

potential can be formed only if the generalized Bohm criterion is marginally satisfied at
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the throat. In this case, ions passing through the throat are accelerated from a subsonic
velocity 10 a supersonic velocity before they arrive at the throat.
Numerical solutions to Poisson’s equation show that trapped electrons in the open

region affect the potential formation For very small trapped-electron densi-

Lies, the presheath potential drop is localized near the throat and the presheath potential
approaches asymptotically to a constant value as the magnetic field strength decreases
along magnetic field lines. For large trapped-electron densities, the presheath potential
drop continuously increases with decreasing the magnetic field strength along field lines.
These results suggest the possibility of effective potential control in the open region by
the combination of an expanding magnetic field and the ECRH heating,

Our results obtained from the analysis and the numerical calculation present one of
the bases of the total understanding of the potential formation in the open region of a
mirror machine, in the edge layer of a field reversed configuration, or in the divertor of a
toroidal herical system. The present results may also be applicable o a low density and
high temperature plasma in a modified expanding bundle divertor of a tokamak aiming

at improving the energy confinement and reducing the heat load on the wall [3).
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CHAPTER 5

Presheath and Current-Free Double Layer

in a Two-Electron-Temperature Plasma

5.1 INTRODUCTION

A plasma with energetic electrons or a two-electron-population plasma is produced
in various laboratory devices. In tokamak experiments using ion cyclotron frequency
heating, lower-hybrid wave heating, or rf current-drive, non-thermal electrons appear in
scrape-off layer due to strong tf fields (1,2). In the tandem mirror, during strong electron

cyclotron resonance heating, the electron distribution composed of two ians at

different temperatures is observed in the open end region in front of end plates [3]. In
the negative ion source, fast primary electrons for excitation of hydrogen molecules and
slow plasma electrons for production of negative ions are required in order to improve
volume production of negative hydrogen ions [4].

Two-isothermal species of electrons have also been observed in the expanding corona

of a plasma heated by a laser [5). The expansion of such a plasma and the development
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of a potential double layer, called a rarefaction shock, have been investigated theoreti-
cally, and general conditions under which rarefaction shocks can exist was derived [6,7].
Recently, a laboratory experiment of the expansion of  two-electron-population plasma
has been carried out by Hairapetian and Stenzel [8). They have also observed a station-
ary, current-free, potential double layer which is formed due to self-consistent separation

of the two electron species in the same devices (9).

‘The appearance of energetic electrons is expected to have a remarkable effect on
potential formation in the plasma because the potential formation is closely associated
with the electrons distribution. While there has been considerable theoretical activity
in the problem of potential formation in a plasma bounded by the wall since the kinetic
analysis in the context of discharge plasma was done by Tonks and Langmuir {10-13), we
know of few attempt to verify the characteristics of the potential formed in two-electron-

population plasmas.

In this chapter, we theoretically investigate the steady-state potential formation in a
two-electron-temperature plasma to show possibility of steady-state potential formation,
Lo clarify the potential structure, and to evaluate the potential drop in such a plasma.
The ions are assumed to be generated by ionization of neutral atoms without thermal
motion, and the electrons are assumed to have two Maxwellian distributions at different
temperatures, T, and T.. We analytically solve the plasma equation, and check whether
the analytic solution satisfies a condition for the formation of a stable sheath poten-
tial. Results calculated from the analytic solution show that the potential drop in the

presheath has either a small value characterized by the cold electrons or a large one by
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the hot electrons if the temperature ratio T, /T, is of the order of 10. There is a critical
value for the hot- to total electron density ratio at which the potential drop of presheath
discontinuously increase from the low level to the high one as the density ratio increases.

We also find that the steady-state monotonically decreasing potential which consists
of the first presheath, a current-free double layer, the second presheath, and the sheath
just in front of the wall can be set up in a lower range of the hot- (o total electron density
ratio around the critical value. The present double layer builds up in the plasma without
plasma current, while most double layers observed in experiments [14] or theoretically
investigated [15,16] require the presence of a plasma current. The double layer structure
is sustained by self-consistent separation of the two electron species and generation of
ions at the two presheathes. The formation mechanism is similar to that of the double
layer experimentally observed by Hairapetian and Stenzel [9).

In Sec. 5.2, we present the solution of the plasma equation, and briefly discuss a

condition for the formation of a stable sheath potential. The formation of the double

layer and the solution of the plasma equation for the second presheath is described in
Sec. 5.3. Results calculated from the analytic solutions are illustrated and discussed in

Sec. 5.4, and the conclusions are summarized in Sec. 5.5.

5.2 SOLUTION OF THE PLASMA EQUATION

A collisionless plasma is assumed in a one-dimensional planar geometry with walls
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at z = %L, which are perfectly absorbing and electrically floating. The electrostatic
potential ¢(z), which is defined to be zero at z = 0, is expected to be monotonically
decreasing for z > 0 as shown Fig. 5.1. It is assumed that ions are generated by
ionization of neutral atoms with kinetic energy negligibly small as compared with the
electron temperature. Following the same way of Harrison and Thompson [11], the ion

density n,(z) at some point z is described by a kinetic equation
- = e (2080 - 6@
n(z)=<ov> n,n./odz h(z )( o . (s.1)
where g and M are the charge and mass of the ion, < gv > is the ionization rate

coefficient, no is the electron density at z = 0, and n,, is the neutral atom density. The

function h(z) expresses the spatial variation of the ionization rate. For electrons the

composed of two ians at different is adopted to give

the electron density

ne(z) = neo expled(z)/kTe] + npo exp [ed(2) /KT, | (5.2)

where neg and nyo are the cold and hot electron particle densities at z = 0, and T, and

Ty are the cold and hot electron temperatures. Substituting Eqs. (5.1) and (5.2) into

Poisson’s equation, we obtain the integrodifferential equation
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FIG. 5.1. A schematic diagram of the geometry of the problem
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s = oo (B + e (1)
-<uv>n..(2—q) " [ahie) ota) - s 63)

where Apo is the Debye length at z = 0 defined by Xbo = cokTe/noc”.
The plasma equation, which describes the potential distribution in the plasma expect
the sheath, is obtained by neglecting the second derivative term of Eq. (5.3). With the

introduction of the dimensionless variables

=z/L, Z=gfe, a=nofno, T=Th/T., ¥(s)=—ed(z)/kT.,

the plasma equation is written in the form

N ,
(1—a]exp{—‘lH»aexp{—W/'r)=A/°d‘ll'%(—w':Lw,)W; R (54)

where

ZM)‘/’L

A= <av>n..(sz

and V' = ¥(s'). Equation (5.4) is Abel’s integral equation and its solution is [17)

s

¥ (L= @) exp(=V') + aexp(~¥'/r)
/; horllmal exp“, '):,I:x ) ©5)

ne



The differentiation on the right-hand side in Eq. (5.5) can be carried out to give the

reciprocal of the normalized electric field

-
dv

mh(v) 7. 21 @) exp(~4)D (V) ~ 25 exal- ‘l’/f)D(\/‘l_/f)]

, 0S¥,
(56)

which is inversely as A(¥). Here D(z) is the Dawson function and ¥, is the potential at
the plasma-sheath boundary. In the absence of a boundaty condition there is always a
solution to the plasma equation for any value of ¥, but the solution satisfies the general
Bohm criterion at the boundary only if ds/d¥ = 0 at the boundaty [18]. With the aid

of this boundary condition, the value of ¥, is determined from the equation

w0 () -

zﬁ-(l-a)exp( W,)D(\/—)+

Integration of Eq. (5.6) give the function s(¥) from which the profile of the potential in

the plasma up to the edge of the sheath, the so-called presheath, is determined ;

sN):/d‘l’N, (/ @y ',)_‘ o8
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It is seen from Eqs. (5.6)-(5.8) that while the profile of the potential depends on the
shape of h(¥), the potential at the boundary is independent of it. We can calculate the
profile of the presheath potential from Eq. (5.8) once the function A(¥) is specified.
The wall potential ¥, is determined from the requirement that the electron flux and
the fon flux must be equal at the wall. Since the particle number of ions generated in
the sheath can be neglected in the limit as Apo/L — 0, the ion flux is evaluated by

integrating the particle source in the plasma as

n
Zh=no (%) A (59)

which is independent of the shape of A(¥) because ds/d¥ is in inverse to A(¥). The
integration in Eq. (5.9) can be carried out using Eq. (5.6). The electron flux of the
two-temperature electron is expressed by

kTe
2rm

Te=no ( )m [(1 — a)exp(—W.) + av/Texp ('T"')] s ©10)

and then, we obtain the equation from which the value of ¥, is determined as

(1 - a)exp(=V.) + ay/Fexp(~¥o/r) =

W)m [(1 = a)exp(~¥2)D (01) + avF exp(~:/)D (\/\T/f)] .
(5.11)
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We now derive the sheath equation and briefly discuss a condition for the formation
of the sheath potentials. Multiplying by d¥//ds and integrating Poisson’s equation, we

obtain the equation which described the sheath potential as follow ;
1(Apo\? (d¥)* _ . Zn(¥) = n(V)
E(T) (T) = e (512)

Since the left band side of Eq. (5.12) is positive, the inequality
.
/'dl"(Zn. ~n) 20 (5.13)
!

must hold over the range ¥, < ¥ < W, which is the condition for the formation of a
stable sheath potential. For a maxwellian distribution of electron, the inequality (5.13)
always holds true once the generalized Bohm criterion is satisfied at ¥ = ¥, because of
rapid decrease of the electron particle density with increase of the potential. But, for
electron which has a high energy component, the inequality (5.13) doesn’t always hold
even if the generalized Bohm criterion is satisfied at the boundary. The ion density in
the sheath is obtain from

ds'  h(¥)
W - V)R (5.14)

by using the solution of the plasma equation, Eq. (5.6). Carrying out some integration,

we can write the inequality (5.13) as
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VoV - %]"«N'(% PRI 2/:111# [0 = vy - (o, - 0y
x [(l - a)exp(—¥)D (VIF) + avFexp(~¥//7)D (‘/W'/r']
=(1 - a)[exp(=¥1) = exp(~¥)] - arfexp(~¥,/7) — exp(¥/7)]

>0. (5.15)

If this condition is not satisfied over the range ¥, < ¥ < ¥, there is not a nonoscillatory
solution which can reach to the potential ¥,. In this case, we can find another mono-
tonically decreasing potential structure which consists of the first presheath, a double

layer, the second presheath, and a sheath as described in the next section.

5.3 CURRENT-FREE DOUBLE LAYER AND
THE SECOND PRESHEATH

When a sign of the integral in Eq. (5.12) changes from positive to negative as the
potential ¥ increases, we can get a monotonically decreasing solution of Poisson’s equa-
tion which can reach the wall potential by introducing formation of a double layer and
the second presheath downstream from the fist presheath. A double layer is a localized
electrostatic potential structure created by two equal but opposite space-charge layers.
The potential of the double layer placed to the first presheath is calculated from Eq.

(5.12), and the edge potential ¥p is determined from
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L 'l’:N'(Zn. -

(5.16)

This double layet is surrounded by the first and second presheathes, and is sustained by
the ionization of neutral atoms in the presheath regions. Appearance of the cold ion in
the second presheath enable the steady-state double layer to be set up in the plasma.

The thickness of a double layer is generally from a few ten times to several hundred
times of the Debye length, then the particle source inside the double layer can be ne-
glected in the limit as Apo/L — 0. Neglecting the particle source in the double layer, we
can describe the ion density in the second presheath by the equation

Zny(s) = Ang (/ dv’d",%¢ dw':‘;%) .67

where the first term on the right hand side is the particle density of ions produced in the
first presheath and the second one is that produced in the second presheath, Equalizing
the ion density to the electron density and introducing the transformation € = ¥ — ¥,

the plasma equation of the second presheath is written as

(1= a)exp(~(¥p +€)) + aexp[~(¥p +)/7)

L h(¥') ds' h(¥p + €')
AL e A R e

Since the first integral on the right hand side is a function of £, Eq. (5.18) becomes

Abel’s integral equation and its solution is
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AM"’D*E)— = ;3 (e[ - el + &)

(o +6) L hw) |
ranp (072, ) A ey - (519)

Putting Eq. (5.6) into Eq. (5.19) and carrying out some integration and derivation give

the result

u+(u:) {(1 —a) [(w —Up) M exp(~¥p) - 2exp(~¥)D (‘/m)]

ta [(w — W) M exp(~¥p/r) — %exp(-‘l/r'p (,/(w = "D)/i)l

Y (""’/" W:')m[ &~ 2(1 - a)exp(~¥)D (V)

—z%exp(—‘l'/rib (\/W)]} I sm

‘The potential at the edge of the second presheath, ¥, is determined from the boundary
condition, ds/d¥ = 0.

In the limit as Apo/L — 0, the position of the double layer, sp, is given by

“’=(/ g /‘””dw') [ (s.21)
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1t is seen from Eqs. (5.7), (5.15), (5.20), and (5.21) that the position s depends on the
spatial profile of the particle source because the integrand ds/d¥ varies inversely as h(s),
while the potentials ¥, ¥p, and ¥; are independent of h(s). The potential profiles in

the first and second presheathes are, respectively, calculated (rom the integrals

a(wn,,/o:fv'%(j:kw'w) , 0<s<sp, (5.22)
and
)
,(w)—;,,+(|-4,)jdww(] ‘“,) , sp<s<l,  (529)

which also depend on the spatial profile of the particle source.

Since the cold electrons are reflected by the double layer potential, the electron dis-
tribution function at the second presheath is close to a Maxwellian with the temperature
Th. In this case, a nonoscillatory stable sheath potential is always formed just in front
of the wall once the generalized Bohm criterion is satisfied at the edge of the second

presheath. The ion flux is evaluated by integrating the particle source as

2, = m(zzMﬁ)"’A ( [favsnwr+ [ dw'd—w,;.(w')) (5.29)

Cartying out the integration in Eq. (5.24) and equating the electron and ion fluxes, we

obtain the equation to determine the wall potential as



(1 - a)exp(—¥,) + av/Texp(—¥u/7)
= (15m2) "1 o) exp(-)D (31) + xpt-9)D (5 95)]
a7 [exp(=1/mD (377) + exp(=va/r)D (¥a o)
_%/:'dw’m\" ("’""")m I L (1 - a)exp(-¥)D (V)

Vp -V

sot-w10 (V7)) - (529)

The potential ¥, weakly depends on Zm/M, while the potentials ¥, ¥p, and ¥; are

independent of it.

Using the solution, we can also calculate the ion distribution function explicitly. To

express the distribution function, we use the normalized quantities and the normalized

velocity, V = (Mv?/2T.)"/%. An ion generated at a point &' < s has a velocity of

V= {Z[¥(s) - ¥ . (5:26)

If f(V)dV is the number of ions at having velocities in the range V to V +dV, it follows

J(V)dV = Angh(s")ds'/V , (s:21)

where the right hand is the number of ions generated per second between s’ and o' +ds’.

From Eqs. (5.26) and (5.27), therefore, the distribution function at a point s > o,

normalized to no, is given by
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1) _ 24,

no | 28

4

h(s') o (5.28)

which is independent of the spatial profile of the particle source. Substituting Eqgs. (5.5)

and (5.20), we can express the distribution function at the edge of the second presheath

in the form ;
% 2 {0~ [(¥ - o1 P exel-¥0) - 2exp(-9)D (VI ¥5)|

+a ’N' = Vo) P exp(~¥p/7) - %GXP(W’/f)D (\/(W’ = ¥o)/7 l

1 dv (-1 " -
- (wf‘_h) lﬁ-z(l-a)expi-‘i )D (V¥#)

xJo W -0
_z% exp(~¥"/7)D (\/W)l}

L0V <[2(¥ - W), (5.292)

B [~ 0= et 90 (/) 2 et 010 ()|

L 20 =) <V < (29)0 (5.29b)
where ¥ = W; — V3/Z. The ion distribution is separated into two parts due to the
formation of the double layer. The ions produced in the first presheath are accelerated

by the double layer to form a high-energy beam expressed by Eq. (5.29b). In the same
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manner, we can also get the expression of the heat flux using the solution of the plasma

equation.

5.4 RESULTS AND DISCUSSION

The plasma-sheath boundary potential is obtained by finding the value of ¥, that
satisfied Eq. (5.7) for a particular value of the temperature ratio 7 = T,/T. and the
density ratio a = no/no. The results of the potential as a function of the density ratio
nyo/ng are shown in Fig. 5.2. Equation (5.7) has a triple root ¥, = 3.82 when = 10.8
and o = 0.33, which is obtained by solving Eq. (5.7), da/d¥, = 0, and d®a/d¥? = 0
as simultaneous equations of ¥,, 7, and a. When 7 < 10.8, it has a single root over the
whole range of npo/no and then the potential ¥, is continually changing from 0.85 to
0.85 7 as the density ratio increases. When 7 > 10.8, however, it has three different roots
in some range of nyo/no. In this case, we must choose the smallest one as the boundary
potential in order to get physically meaningful potential profile in the presheath because
the derivative ds/d¥, the reciprocal of the normalized electric field, must be a single
value at any point in the real space. Following this fact we can see that the potential
¥, discontinuously changes from a value of order of 1 to one of order of r at some
value of njo/ng when 7 > 10.8. It is noted that the condition 7 > 10.8 agrees well with a
necessary condition given by 7 > 5+ /24 for rarefaction shocks to exist in a laser-plasma

corona [6,7).

126



/T

Tho/ Mo

FIG. 5.2.  The normalized potential (solid lines) at the plasma-sheath
boundary as a function of the hot- 1o total density ratio nao/n for various
values of the temperature ratio, r = Ty /Te. The broken lines show the solu-
tion of Eq. (5.7) which doesn't satisfy a condition for the sheath formation

expressed by the inequality (5.15).
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It is also noted that there is the range of npo/no where the condition for sheath
formation described by the inequality (5.15) is not satisfied. In this range, which is
indicated by using broken linesin Fig. 5.2, a monotonically decreasing potential structure
composed by the first presheath, a current-free double layer, the second presheath, and
the sheath builds up in the plasma in stead of the usual potential structure composed
by the presheath and the sheath. The potential at the edge of the first and second

presheathes, ¥, and 3, are determined from the boundary cor

ion, ds/d¥ = 0, and
that of the double layer, ¥ p, is calculated from Eq. (5.16). Results for r = 20 shown
in Fig. 53(a) and for 7 = 50 in Fig. 5.3(b) show that the potential drop in the
first presheath is of the order of the cold electron temperature and that in the second
presheath of the order of the hot electron temperature. The potential at the edge of the
double layer, ¥, is continuously changing from ¥, to ¥, as the density ratio increases.

The wall potential calculated from Eqs. (5.11) and (5.25) for a hydrogen plasma is
shown in Fig. 5.4. The wall potential, which is mainly dominated by the hot electrons, is
continuously changing regardless of discontinuous change of the presheath potential and
the potential structure. In the range of the density ratio where the presheath potential
is of the order of the hot electron temperature, most cold electrons exist in the low
potential region around the plasma center because of reflection by the potential. In this
range, the contribution of cold electrons to the sheath formation becomes small as seen
from Eq. (5.11), and then the wall potential ¥, is asymptotically approaching the fixed
value of 3.567.

The potential profile of the presheath which ends to the wall through the sheath is
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FIG. 5.3(s).  The normalized potentials at the edge of the first presheath,
1, at the edge of the double layer, ¥p, and at the edge of the second
presheath, ¥3, as a function of the density ratio nao/ng for 7 = 20.
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FIG. 5.4. The normalized wall potential as a function of the density ratio

for a hydrogen plasma with various values of the temperature ratio.
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plotted in Fig. 5.5 for various values of nyo/no. Here we take the spatial profile of
the particle source in the form h(s) = n(s)/no, assuming the constant neutral atom
density and the ionization rate proportional to the electron density. Symbols a, f, and
¢ represent the results for the points in Fig. 5.2 I is noted that between point a and b
the potential drop in the presheath drastically increases as nao/no increases.

The profile of the presheath potential for various value of the density ratio npo/no
in the range where the double layer and the second presheath build up at downstream
of the first presheath is calculated from Eqs. (5.22) and (5.23). Results are shown Fig,
5.6, where b, ¢, and d represent the results for the points in Fig. 5.3(a). The potential
drop at the current-free double layer, which marks the transition between the first and
second presheathes, is illustrated by the broken line. The position of the double layer
considerably depends on the spatial profile of the particle source ; if the ionization of the
neutral gas is strong near the wall, the double layer get near the wall. On the contrary,

move away from the wall if the particle source is localized in the region close to the
center of the plasma.

‘The ion distribution function at the edge of the second presheath is shown in Fig. 5.7.
Due to the formation of the double layer the ion distribution function is separated into
two parts. The high energy beam-like part with a small velocity spread is the distribution
function of the ions produced in the first presheath and accelerated by the double layer
potential, and a low energy part is one of the ions produced in the second presheath.
The particle density of the cold ions is smaller than a tenth of that of the energetic ions

at the second presheath.
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FIG. 5.5.  Profiles of the normalized presheath potential (thick lines) and

the patticle density (thin lines) for nao/np = 0.10, 0.28, and 0.50, where the
spatial profile of the particle source is chosen as A(s) = n(s)/no. The wall is
located at 3 = 1. Symbols a, ¢, and  represent results for the points in Fig.
5.2
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FIG. 5.6.  Profiles of the normalized presheath potential (thick lines) and
the particle density (thin Lines) for nao/no = 0.234, 0.244, and 0.260, where
profile of the particle source is chosen as A(s) = n(s)/no. The

the spati
broken lines show the potential drop at the double layer. Symbols b, ¢, and
d represent results for the density ratios marked in Fig. 5.3(a).
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FIG. 5.7.  The normalized ion distribution function at the edge of the
second presheath for Z = 1, 1 = 20, and npo/no = 0.234, where the velocity
is normalized as V' = v/(2kT./M)!/2.



The potential profile in the double layer is numerically calculated from Eq. (5.12).
We obtain the plots in Fig. 5.8, where the Debye length is defined using the cold ion

temperature T and the particle density at z = 0. The potential changes gradually over

the double layer, width of which is about fifty times as large as the Debye length. The
corresponding profile of the particle density difference én = Zn,—n, illustrated in Fig. 5.9
shows that two equal but opposite space-charge layers create the localized electrostatic
potential structure. While the cold electrons are reflected by the double layer potential,
many particle of the hot electrons can reach the second presheath beyond the double
layer potential. The ions produced in the first presheath are accelerated toward the wall
by the double layer potential. In the first stage of the double layer, the space charge
becomes positive due Lo the reflection of the cold electrons, and it changes to negative
in the second stage due to acceleration of the ions and existence of the hot electrons.
A rapid change of the space charge at z = zp + 20Apo is due to existence of a small
number of the cold ions produced in the second presheath, which are reflected at the
boundary and can’t move in the double layer. In the present calculation we neglected ion
generation at the double layer by putting the limit as Apo/L — 0. Under the situation
that the ion generation at the double layer can not be ignored, the space charge may
change at the boundary continuously. It is seen from the facts mentioned above that the
double layer structure is composed of four species, that is, the cold electrons, the hot
electrons, the energetic ions accelerated by the double layer, and a small number of the
cold ions produced in the second presheath.

A double-layer solution without current of the Vlasov-Poisson equations has previ-
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FIG. 5.8.  The profile of the normalized potential at the double layer,
whete zp is the position determined from Zn, = n. The Debye length is
defined using the particle density at = 0 and the cold electron temperature
T.. Symbols b, ¢, and d represent results for the density ratios marked in Fig.
5.3(a).

137



40.0 -20.0 0.0 20.0 40,
(= = 2p)/ A0

FIG. 5.9.  The profile of the density difference én = Zn, ~n, at the double
laer. A rapid change at z = zp+20 Apw is due to the reflection of cold ions,
which is produced in the second presheath, by the potential of the double
layer.
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ously been found by Perkins and Sun (1], but, the double layer described in the present
chapter is different from theirs in the presence of particle flux ; a currentless solution in
their analysis is found by symmetrizing the velocity distribution of the plasma, so that
the solution involves no mass flow. Recently, Hairapetian and Stenzel (3] have observed
a stationary, current-free, double layer in a two-electron-population plasma, which is

formed due to self-consistent separation of two electron species. The double layer in

their i is by the i decreasing presheath potentials,
and the potential drop at the double layer is of the order of the "effective” temperature
of energetic electrons. This double layer is set up at a place far from the end plate
because ionization and charge-exchange collisions are restricted to the vicinity of the gas
valve located at the opposite side of the end plate. Although cold ions were not observed
at downstream of the double layer, the formation mechanism and the characteristics

described in their paper agree well with those presented in this chapter.

5.5 CONCLUSIONS

We theoretically have investigated the formation of an electrostatic potential due to
ionization of neutral atoms in a two-electron-temperature plasma. The plasma equation

is analytically solved to show the possil

ity of steady-state potential formation, and to
evaluate the potential drop in such a plasma.

The potential drop in the plasma is continuously changing with increase of the hot- to



total electron density ratio if the hot- to cold electron temperature ratio Ta/T. is small.
It, however, is allowed to have either a small value characterized by the cold electrons
or a large one by the hot electrons if Ty/T. > 10.8, and discontinuously changes from
the small value to the large one at a critical value for the hot- to total electron density
ratio. It is found that a monotonically decreasing potential structure composed by the
first presheath, a current-free double layer, the second presheath, and the sheath just in

front of the wall can be steadily formed in a lower range of the density ratio around the

critical value. The double layer is formed due to self-consi tion of two el
species with different temperatures and generation of cold ions at the presheathes. The

formation ism of the present {ree double layer seems to be the that

of the double layer recently observed in the laboratory experiment [9]. The double layer
marks the transition between the first and second presheathes with different potential
levels. The position of the double layer is altered by changing the spatial profile of the
particle source, and its amplitude depends on the relative density and temperature of

two electron species.
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CHAPTER 6

Heat Flow of a Two-Electron-Temperature
Plasma through the Sheath in the

Presence of Electron Emission

6.1 INTRODUCTION

Encrgetic electrons have been generated in a number of experimental devices during
radio-frequency heating. In tokamak experiments using ion cyclotron frequency heating,
lower-hybrid wave heating, or tf cutrent drive, nonthermal energetic electrons appear in
the scrape-off layer due (o strong tf fields [1,2]. In the tandem mirror, during strong elec-
tron cyclotron resonance heating, the electron distribution composed of two Maxwellians
at different temperatures is obsetved in the open-end region in front of the end plates
).

The appearance of energetic electrons is expected to have dramatic effects on the
formation of the plasma sheath. Production of energetic electrons makes the sheath

voltage large [4], and hence ion sputtering is increased owing to the higher impact energy

143



resulting from the large potential drop at the sheath [S]. On the other hand, energetic
electrons induce significant emission of secondary electrons, which can lead to marked
reduction of the sheath potential and enhancement of the heat flow to walls [6,7,8).

Thus, effects of the secondary electron emissi

in a plasma with energetic electrons
are of interest in the study of heat flow and impurity generation. It is well known that
the electron emission coefficient is not able to exceed an upper limit smaller than 1.0
because an electron space charge layer formed just in front of the surface inhibits any
further secondary emission [6]. The energelic electrons contribute to building up the
clectron space charge layer if many of them are reflected by the sheath potential. In such
a case, one can expect [urther reduction of the limited secondary electron emission due
(o the existence of energetic electrons.

The purpose of this chapter is to demonstrate the effects of electrons emitted from
the wall in two-electron-temperature plasma. The sheath equation and the description
of heat flow in the presence of electron emission are derived in Sec. 6.2. The effects of
the secondary electron emission are discussed in Sec. 6.3 by comparing solutions of the
sheath equation obtained under conditions of space-charge limitation with the ones in

the absence of electron emission.

6.2 SHEATH EQUATION AND HEAT FLOW

For the purpose of this chapter, it is adequate to adopt a model idealized by Hobbs
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and Wesson [6]. A plasma filling the half-space z > O is in contact with an infinite plane
wall located at z = 0 as shown in Fig. 6.1. When the plasma impacts upon the wall an
electron-repelling plasma sheath must be formed in order that the loss rate of electrons
and ions can be so balanced that the global loss of charge from the plasma is zero. The
electrostatic sheath potential ¢, which is defined to be zero at z = oo, satisfies Poisson’s
equation
:% io(m. +na=2n) , (6.1)

where n, is the density of primary electrons, n, is the density of ions, and ne; is the
density of secondary electrons. For simplicity the ions are assumed to have a monoen-
ergetic distribution function and to arrive at the sheath edge with an incident velocity
(00) accelerated by a presheath potential. They are accelerated in the sheath and their

density is determined by the continuity equation as

22ep )"”

n, = n,(00) (l = Mvi(oo)

(62)

Impact of electrons, ions, photon, metastable atom etc. cause the emissions of secondary

electrons. Using the fact that the total current is zero, we have

Zn,(00)v(00) = (1 = Ye)nave = nm(o0)y(00) = J (6.3)
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FIG. 6.1. A schematic diagram of geometry of the problem.

146



where v, and 7, are, respectively, the emission coefficients for electrons and ions
incident upon the wall, and J is the emission flux due to photons, metastable atoms,

etc. It is convenient to generalize Eq. (6.3) in the form
Zn(00)u(e0) = (1 = Pave 64)

by defining an effective coefficient of secondaty emission

_ 2+ /2 + J/[Zni(o0)v(co)]
YE Tz + I 1Zn (o)) (65)

The secondaty electrons are emitted from the wall with negligible energies and then
they move towards the plasma with a velacity corresponding to acceleration by a potential

difference ¢ — g, where ¢y = $(0). From the continuity equation, we have

(6.6)
Thus, the particle density of secondary electron is
v [ _mi(e) \?
na = InlelyS (w-m 67

For primary electrons, the distribution function composed of two Maxwellians at different

temperatures is adopted to give
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mv(0)\ "] Neg(0) b
m s Z""“’” -5 (Z) | e (i)
na(oo) e
* edo) + nan() P (k_n)] ' (68)
where charge neutrality at z — 60, Zn,(00) = ne(00) + nea(00), has been assumed.

Substituting Eqs. (6.2), (6.7), and (6.8) into Eq. (6.1), we now write Poisson’s

equation as
¢ _ Zn(w)e mv’(eo) Y[ nedoo) $
i - -w., 7e(00) + na(00) na(oo) P (k'r)
4 — (o) (2)]+_1_( mv?(c0) )"’
7e00) + na(e0) P \ KT, 1= \2¢(¢ - ¢o)
(1 228 )""
Mvi(oo) : (6.9)
Multiplying by d#/dz and integrating Poisson's equation from 0o to z, we obtain

O A R

-[1-%(%% ]{(l-ai(l-exp{ )+ ar (1 = exp(=¥/r)]} |

(6.10)

where
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_z _ __Na(®) T -
=5 = ) (o) 7=T:‘ V(€)= —ed(2)/4T. ,

W = My(0)/24T. ,

and the Debye length is defined by A} = okT./Zn,(co)e?. There are unknown quantities,
W and Yo, and parameters, a and 7, in Eq. (6.10).
We shall now obtain equations which determine W and ¥o. From the fact that the

total current is zero, we obtain the equation for determining the wall potential ¥, as

(6.11)

The right-hand side of Eq. (6.10) must be pasitive for the formation of the sheath
potential, 0 < ¥ < Vo, because the electric field dW/d¢ always has a real value, The
initial incident energy of ions, W, is determined from this boundary condition at the
sheath edge. It has been shown that the generalized Bohm criterion is fulflled with the

equality sign at the plasma-sheath boundary, ¥ = 0 [9]. This fact gives
w [(1 —a)+ ;]
=5 () @) mlo-a sl

(6.12)
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which is a modified form of the Bohm criterion [10}.

Equations (6.11) and (6.12) can be used for estimating values of W and ¥o.

the smallness of (m/M)!/3, we can obtain an approximate solution of Eq. (6.12) as

o
’ (6.13)

lependent of the emis coefficient. Since the incident energy W is corre-
sponds to the potential drop in the presheath, Eq. (6.13) suggests the negligibly small
influence of the secondary electron emission on the presheath potential. If 7 >» 1 and
a < (1= )" (2m/rM)"", the wall potential is characterized by the cold ion temper-

ature and the value of ¥ can approximately evaluated by

Vo= —in {(l-ar' ’lzT(n%W)m—a\/F]} . (6.14)

On the contrary, the wall potential is characterized by the hot electron temperature, il
a > (1= 4)"'(2am/r M)'/2 In this range of the density ratio, the normalized wall

potential ¥y is roughly estimated by

(6.15)

‘The emission of secondary el kabl

reduction of the sheath potential
when « approaches 1.0, while the associated increase in the ion energy necessary to

maintain stability of the sheath is negligibly small.
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The electron emission is limited due to the space-charge effect in the sheath. One
can see from Eq. (6.10) that the emission coefficient ¥ can not exceed an upper limit .
smaller than 1.0 because the right hand side of Eq. (6.10) must be positive all over the
sheath. The equation to determine the value 7 is obtained by equating the right hand

side of Eq. (6.10) at the wall as

=0. (6.16)

For v > 4 a very shallow potential well is formed just in front of the wall so as (o reflect
a fraction of the secondary electrons to the wall, satisfying d¥/d€ = 0 at the bottom
of the potential well. When the coefficient v exceeds 7, an electron space charge layer
formed in front of the wall inhibits any further secondary emission. As a result of the
space-charge effect, the eflective  is maintained equal o 7. It should be noted that the
space charge of hot electrons has the effect of suppressing the electron emission when
Wo is of the order of Tbecause hot electrons reflected by the sheath potential contribute
to forming the negative space charge layer. The limiting values ¥o,, W,, and 7, are
determined by solving Eqs. (6.11), (6.12), and (6.16) simultaneously.

We now evaluate the energy flux Q to the wall. Each primary electron striking the
wall carries, on average, an energy of 2kT.(1 + T /Tec) /(1 + Ten/Tec), and the ratio

of the particle flux of hot electrons to that of cold electrons is expressed by 'en/Tec =
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af(1 - a)r /2 exp (¥a(1 - 1/7)). Each ion has the energy KTe(W + o) at = = 0. The
secondary electrons make a negligible contribution to Q at z = 0 because of their low

initial energy. Thus, the energy flux @ is expressed by

i (2 1matarleplla(i-1/n) W o
T-vl-a+arPexp(Vo(1-1/7) " Z © °f ~

(6.17)

The thermal insulation effect of the sheath can be evaluated by comparing the energy

flux with the electron [ree-flow energy flux expressed by

2T,

1z
Q= 2nfo0) | 2) KT [1-a) 40l (6.18)
*m

The energy flux ratio, F(7) = @/Qqy, is given by

P = (vmw) " 1~ e+ ar]

2 1-a+arlexp(Vo(l = 1/r)] W
K{ —a+armexp[w,(|_1/7)1"7”’"} -+ (6.19)

The smallest value of F is obtained when v = 0, and the maximum value occurs when

7=
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6.3 CONSEQUENCES OF SECONDARY ELECTRON EMISSION

In order to show the effects of secondary electron emission on the sheath potential
and heat flow, we now compare results obtained under the conditions of space-charge
limitation with the ones in the absence of electron emission. The normalized potential
drop in the sheath, Wo, and the normalized incident energy of ions, W, for v = 0 are
determined by solving Egs. (6.11) and (6.12) simultaneously. Figure 6.2 shows the sheath
potential and the incident energy of ions as a function of the the fraction of hot electrons
at the sheath edge, & = nr(00)/[nec(00) + nea(c0)), and Fig. 6.3 shows the energy flux
ratio, taking the temperature ratio r = T/T. as a parameter. The electron emission
coefficient v, the normalized sheath potential W, and the normalized incident energy
W, under the conditions of space-charge limitation are obtained from numerical solution
of nonlinear simultaneous equations, Eqs. (6.11), (6.12), and (6.16). The limited electron
emission coefficient, ., is shown in Fig. 6.4, the sheath potential and the incident energy
of ions are in Fig. 6.5, and the energy flux ratio is in Fig. 6.6.

Comparison of the results in Figs. 6.5 and 6.6 with those in Figs. 6.2 and 6.3. shows
that the normalized sheath potential imposed by space-charge saturation is a small value
of the order of 1.0 if the fraction of hot electrons is less than (1 = 7)™ (2xm/r M)/,
The electron emission leads to a considerable reduction of the sheath potential in this
range, so that the energy flux if enhanced Lo a value near the electron free-flow energy
flux. The energy flux ratio . has the maximum value at a particle density ratio around

(1= )" (2wm/rM)"2. Comparison of the results also confirms the fact that secondary
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FIG.6.2. Normalized sheath potential ¥ (broken line) and initial kinetic
energy of monoenergetic incident ions, W, (solid lines) in the absence of elec-
tron emission as a function of the density ratio @ = nea(00)/[nec(00)+nea(00)]

for various values of the temperatute ratio 7 = Ta/Te.
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FIG. 8.3. Ratio of the energy flux to the electron free-flow energy flux,

Q/Qcy, in the absence of electron emission as a fonction of the density

ratio for various values of the temperature ratio 7.
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FIG. 6.4. Limiting values of the secondary electron emission coefficient 7

as a function of the density ratio for various values of the temperature ratio 7.
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FIG. 6.5. Normalized sheath potential and il

o. and W, under conditions of space-charge limitation as a function of the

density ratio for various values of the temperature ratio.
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FIG. 6.6.  Ratio of the energy flux to the electron free-flow energy flux,
Fe, under conditions of space-charge limitation as a function of the density

ratio.
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electron emission has a negligibly small influence on the normalized incident energy of
ions.

It should be noted that the electron emission is suppressed due to the space-charge
effect of hot electrons in the range a > (1 = 7)~!(27m/rM)"/? if the temperature ratio
is of the order of 10. The sheath potential of the order of 7 is set up and the action of
the sheath as a thermal insulator is improved as a result of the suppression of electron
emission as shown in Figs. 6.5 and 6.6. The formation of the large sheath potential
due to the existence of hot electrons has beneficial and detrimental effects with regard
1o plasma-wall interactions. In the presence of a large sheath potential, ion sputtering
is increased owing to the higher ion impact energy resulting from the sheath potential
drop, but the total energy flux is decreased owing to the thermal insulation effect of the

sheath.

6.4 CONCLUSIONS

The effects of secondary electron emission on a plasma sheath and heat flow in a

plasma are i It was found that if
the particle density of hot electrons at the sheath edge is much smaller than that of
cold electrons, electron emission induces a remarkable reduction of the sheath potential.

‘The sheath potential has a value of the order of the cold electron temperature under

conditions of space charge limitation, so that the energy flux of the plasma is enhanced
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up to a value near to the electron free-flow energy flux. Suppression of the secondary
electron emission due to the space-charge effect of hot electrons can be expected if the
hot- to cold-electron temperature is of the order of 10 and the hot electron density is
comparable with the cold electron density. The sheath potential in such a plasma has
a large value characterized by the hot clectron temperature and the heat flow of the

plasma is improved as a result of suppression of the secondary electron emission.
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CHAPTER 7

Concluding Remarks

In the present thesis, the potential formation in quasistationary plasma flow to a
wall has been analyzed by a kinetic treatment ; Spatial variation of the magnetic field,
ionization of neutral atoms, energetic electron population, and/or the secondary electron
emission are considered in analyses. Results obtained in the preceding chapters are
summarized, and the subjects (o be invesligated in future are suggested in this chapter.

In chapter 2, the plasma-sheath equation has been formulated for a collisionless
plasma originating in an expanding open magnetic field. ‘This equation is approximately
reduced Abel’s integral equation in the plasma except for the sheath, and then it can
be solved analytically. The wall potential, the ion distribution function, and the particle
and energy fluxes are explicitly calculated. Results have shown that the magnetic profile
remarkably affects the potential profile in the plasma. The generalized Bohm criterion
for the sheath formation is always satisfied at the plasma-sheath boundary when the
magnetic field monotonically decreases in the outside direction.

The plasma-sheath equation with small but finite values of the Debye length has also
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been solved numerically for various profiles of the magnetic field. The sheath is formed
near the wall with width about ten times as long as the Debye length. The analytic
solution agrees well with the numerical one in the presheath when the Debye length is a

small fraction ( < 10-2) of the plasma length.

In chapter 3, the presheath potential in an expanding magnetic field has been investi-
gated by numerically solving the plasma equation for the collisionless plasma. Numerical
calculations confirm availability of the analytic solution obtained in chapter 2 over a wide
range of the magnetic field mirror ratio (R, = 1~ 10). Accuracy of the simulation re-
sult obtained by Hussein and Emmert is also checked. A particle source profile has a
considerable effect on the potential drop in the presence of the nonuniform magnetic
field. For a plasma source localized near the center of the plasma, the increase of the
presheath potential drop A¢ due to the expanding magnetic field is roughly estimated
by A¢ > kT.(InR,)/e, where T, is the electron temperature. This suggests controllabil-
ity of the presheath potential by applying the nonuniform magnetic field with a proper
field strength profile. The plasma flow along the expanding magnetic field satisfies the
generalized Bohm criterion with the inequality sign if the sheath edge does not exhibit
the singularity.

In chapter 4, development of the potential due to spatial variation of the magnetic
field in a collisionless plasma flowing out through the magnetic throat has been investi-
gated. A particle source in a plasma is ignored in this analysis. The plasma flow must
exceed the acoustic speed at the throat to avoid the discontinuity of the potential just

beyond the magnetic throat. A monotonically falling potential to accelerate the escaping
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fons build up in the inner region near the throat only if the generalized Bohm criterion

is marginally satisfied at the throat.

Electrons trapped between the magnetic throat and the wall affect on the potential

densities, the presheath

profile in the plasma For very small trapped-elect
potential drop is localized near the throat, and it approaches asymptotically to a con-
stant small value at a point apart from the throat. For large trapped-particle densities,
the presheath potential drop continuously increases with decreasing the magnetic field
strength. These results suggest the possibility of effective potential control in the open

region by the combination of an expanding magnetic field and the ECRH heating.

In chapter 5, an electrostatic potential owing to ionization of neutral atoms in a two-
electron-temperature plasma has been investigated. The plasma equation is analytically
solved to show the passibility of steady-state potential formation, and to evaluate the
potential drop in such a plasma. The potential drop in the presheath is allowed to have
cither a small value characterized by the cold electron temperature T, or a large one
characterized by the hot electron temperature T}, if T)/T. > 10 : the potential drop
discontinuously changes from the small value to the large one at a critical value for the
lot- to total electron density ratio (nso/no ~ 0.2). A monotonically decreasing potential
structure with a current-free double layer is steadily formed in a plasma with such a
high temperature ratio in a lower range of the density ratio around the critical value.
The double layer marks the transition between the first and second presheathes with
different potential levels. It is formed due to self-consistent separation of two electron

species with different temperatures and due to generation of cold ions at the presheathes.
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The formation mechanism of the present current-free double layer seems to be the same

as that of the double layer recently observed in the laboratory experiment.

In chapter 6, influences of secondary electron emission on a plasma sheath and on

heat flow of a. I plasma have been i i i For
particle density of hot electrons very smaller than that of cold electrons at the sheath
edge, electron emission induces a remarkable reduction of the sheath potential Lo a value
of the order of the cold electron temperature. The energy flux of the plasma is enhanced
up (o a value near to the electron free-flow energy flux. Suppression of the secondary
electron emission due to the space-charge effect of hotter electrons can be expected if
the hot- to cold-electron temperature is of the order of 10 and the hot electron density
is comparable with the cold electron density at the sheath edge. The heat flow of the

plasma is improved as a result of suppression of the secondary electron emission.

Finally, several interesting subjects to be extended in future from the present analyses
are mentioned here. Concerning the potential formation in a spatially varying magnetic
field, it is an open problem as to whether the static potential is formed or not in a
plasma flowing along a convergent magnetic field. The calculation of a potential profile
over the entire region including the inside of the magnetic throat is practically mean-
ingful for the study of plasma transport and plasma-wall interactions, but, it has also
been left unsolved. One must take the existence of trapped ions into consideration to
treat these problems, which require kinetic treatment. Moreover, a precise calculation
considering the power balance of a bounded plasma is necessary to make sure of the

possibility of potential control by the combination of an expanding magnetic field and



the ECRH heating. To give problems related to this work, plasma-wall transition in an
oblique magnetic field where the presheath mechanism is provided by the Lorenzt force is
physically interesting. Unfortunately there are only few investigations on this problem,
and these give no understandable picture. Characteristics of the magnetic presheath
remains poorly understood. Potential control in a bounded plasma by plate biassing,
by electron beam injection, or by rf heating is important from the engineering point of
view ; Impurity influxes into a main plasma and ion sputtering at the wall will be con-
trolled through the potential formed in a bounded plasma. The study of these subjects

require development of a self-consistent fully kinetic model including particle collisions,

charged/neutral interactions or particle injection from a wall.
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