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Abstract

Cryptography has been used for more than a thousand of years to
guarantee secure communications, and it is getting more and more im-
portant with the development of computers and networks. This thesis
discusses properties and complexity of Boolean functions related to
cryptography.

In Chapter 2, nonlinear Boolean functions are studied. Nonlinear-
ity is a basic concept in the design and analysis of private key cryp-
tosystems. Different types of private key cryptosystems require differ-
ent types of nonlinearity, and several nonlinearity criteria have been
proposed. Among them, the propagation criterion(PC) and the strict
avalanche criterion(SAC) are focused on in this chapter.

First, a necessary and sufficient condition is presented for a Boolean
function with n variables to satisfy the PC with respect to all but one
elements in {0,1}" = {(0,...,0)}. A necessary and sufficient condition
is also presented for a Boolean function with n variables to satisfy the
PC with respect to all but linearly independent elements in {0,1}" —
{(0,...,0)}. Second, the construction of Boolean functions with n
variables is discussed that satisfy the PC with respect to all but one or
three elements in {0,1}" — {(0,...,0)}. The methods can generate all
such functions from all perfectly nonlinear Boolean functions. Third, an
exact characterization of Boolean functions with n variables satisfying
the PC of degree n — 2 is obtained. Finally, relationships between the
PC and the SAC are discussed.

Recently, two strong cryptanalytic attacks applicable to many pri-
vate key ciphers were proposed. One is the differential cryptanalysis
proposed by Biham and Shamir, and the other is the linear cryptanal-
ysis proposed by Matsui. These attacks make use of linearity of the
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ciphers and decrypt them much faster than the exhaustive search. The
success of these attacks will require nonlinear Boolean functions with
large numbers of inputs and outputs as components of private key ci-
phers in the near future.

In Chapter 3, complexity of Boolean functions satisfying the PC is
discussed. First, it is shown that every Boolean function satisfying the
PC of degree 1 are unate in at most two of its variables and that every
Boolean function satisfying the PC of degree 2 is not unate in any one of
its variables. Second, the optimal lower bound of |logn|—1 is obtained
for the inversion complexity of the perfectly nonlinear Boolean functions
constructed by the method of Maiorana. Third, the nearly optimal
lower bound of n?/4—1 is presented for the formula size of every Boolean
function which satisfies the PC of degree 1. Fourth, the lower bound of
Q(n?) is obtained for the AT? VLSI complexity of perfectly nonlinear
Boolean functions with n/2 outputs each of whose output functions is
constructed by the method of Maiorana. Finally, an exponential lower
bound is presented for the numbers of nodes of ordered binary decision
diagrams of perfectly nonlinear Boolean functions with multiple outputs
constructed by the method of Nyberg.

Key management is a crucial problem when we use cryptosystems
in practical cases. One method of the management is the secret shar-
ing scheme proposed independently by Blakley and Shamir. Homoge-
neous Boolean functions and slice Boolean functions are considered to
be practically important functions representing access structures which
determine the strategy of the secret sharing scheme.

Homogeneous Boolean functions and slice Boolean functions are
also important for computational complexity theory. It is one of the
most difficult problems to prove a good lower bound on the circuit
size complexity of some explicitly defined Boolean function. The best
lower bounds proved on the circuit size complexity of explicitly de-
fined Boolean functions are only linear. Because of the difficulty of
this problem, more restricted types of circuits have been considered.
For some explicitly defined homogeneous Boolean functions, even ex-
ponential lower bounds have been proved on their monotone circuit size
complexity. These results, however, do not imply any nonlinear lower
bound on the circuit size complexity because negation can be at least
superpolynomially powerful for computing some homogeneous Boolean
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functions. On the other hand, it has been proved that negation is
powerless for computing slice Boolean functions.

In Chapter 4, circuit complexity of homogeneous Boolean functions
and slice Boolean functions are studied. First, it is shown that there ex-
ist k-homogeneous Boolean functions with the property that the mono-
tone circuit size complexity of its k-th slice is Q(,Cy/ log .Ci) and that
of its u(> k)-th slice is O(nlogn). This complexity gap is maximal
when k is constant. Second, a set of homogeneous Boolean functions
with circuit size complexity and monotone circuit size complexity al-
most equal is presented. For every Boolean function in this set, a lower
bound of w(n(logn)?) on the monotone circuit size complexity implies
the same lower bound on the circuit size complexity.
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Chapter 1

Introduction

1.1 Backgrounds

Cryptography has been used for more than a thousand of years to guar-
antee secure communications. And today, the development of comput-
ers and networks has been changing it drastically. Volumes of data
and information are stored and processed by computers and communi-
cated via public networks. Computers also enable complex and time-
consuming [¢ and has become
a science of information and data. security, cryptology, and has been
attracting many researchers.

Cryptography can be divided in two categories: private key cryp-
tography and public key cryptography. The security of public key
cryptography relies on some computationally difficult problems such
as factoring and discrete logarithms. The security of private key cryp-
tography relies on the fact that any efficient cryptanalysis has not yet
been found.

Nonlinearity is a basic concept for the security of private key cryp-
tography. Different types of private key ciphers require different types
of nonlinearity, and several nonlinearity criteria have been proposed as
design principles of private key ciphers. The propagation criterion(PC)
is one of the nonlinearity criteria, which was proposed by Preneel,
Leekwijk, Linden, Govaerts and Vandewalle[PLLGVOL]. It is an ex-
tended notion of the perfect nonlinearity, which was defined by Meier
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2 Chapter 1. Introduction

and | ]. The perfect i ity is one of the most
important nonlinearity criteria because the distance between the set
of perfectly nonlinear Boolean functions and the set of affine Boolean
functions is maximum. Perfectly nonlinear Boolean functions are, how-
ever, not balanced and their nonlinear order is at most one half of the
number of their variables and are not suitable for the direct application
to cryptography. Thus, it is valuable to investigate Boolean functions
that satisfy the PC for the systematic generation of cryptographically
useful Boolean functions.

Seberry, Zhang and Zheng[SZZ93] made an interesting research along
this line. They presented methods for the construction of balanced
Boolean functions satisfying the PC of high degrees. They proposed
methods for constructing balanced Boolean functions with n variables
satisfying the PC with respect to all but a few elements in {0,1}" —
{(0,...,0)} whose Hamming weights are large.

The first topic of this thesis is to characterize Boolean functions
satisfying the PC. Exact characterizations are presented for Boolean
functions satisfying the PC of degree n — 1 and n — 2 and for those
satisfying the PC with respect to all but a few elements in {0,1}" —
{©,-..,0)}.

Recently, two strong cryptanalytic attacks applicable to many pri-
vate key ciphers were proposed. These attacks make use of linearity of
the ciphers. One is the differential cryptanalysis, which was proposed
by Biham and Shamir[BS93]. By this cryptanalysis, the Data Encryp-
tion Standard(DES) with 16 rounds can be decrypted with 247 chosen
plaintexts. The other is the linear cryptanalysis, which was proposed
by Matsui [Mat94]. By this cryptanalysis, the DES with 16 rounds can
be decrypted with 2% known plaintexts.

The success of the differential cryptanalysis and the linear crypt-
analysis will require nonlinear Boolean functions with large numbers
of inputs and outputs as components of private key ciphers. Most of
the existing private key block ciphers including the DES is for 64-bit
blocks and the DES, for instance, has eight substitution boxes each
of which has 6 input bits and 4 output bits. In the near future, it
may be desired to design 128-bit-or-more block ciphers that have sub-
stitution boxes with large numbers of input and output bits. Thus,
it is practically intresting to investigate the complexity of nonlinear
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Boolean functions. It is also interesting from the theoretical point of
view to explore the effect of nonlinearity of Boolean functions on their
complexity.

The second topic of this thesis is complexity of Boolean functions
satisfying the PC. The discussion focuses on lower bounds of their com-
plexity because there exist a large number of Boolean functions satis-
fying the PC that are complex and difficult to compute.

Key management is an important problem when we use cryptosys-
tems in practical cases. One method of the management is the se-
cret sharing scheme proposed independently by Blakley[Bla79] and
Shamir[Sha79]. They proposed the k-out-of-n threshold scheme, which
enables us to construct from a given secret key n pieces of information
with the property that the key can be recovered only from any k or
more pieces of information. Their original idea can be generalized so
that the secret key can be recovered only from any one of particular
subsets of n pieces of information. A set of subsets of n pieces of infor-
mation from which the secret key can be recovered is called an access
structure.

It is natural to assume that, if the secret key can be recovered
from a subset of pieces of information, it can also be recovered from
any subset containing the subset. Under the assumption, every access
structure can be represented by a monotone Boolean function. Homo-
geneous Boolean functions and slice Boolean functions are monotone
and represent access structures considered to be practically important.
A k-homogeneous Boolean function represents an access structure in
which the secret key can be recovered from particular subsets consist-
ing of k pieces of information. A k-slice Boolean function represents an
access structure in which the secret key can be recovered from particu-
lar subsets consisting of k pieces of information or any subset consisting
of k + 1 pieces of information.

Homogeneous Boolean functions and slice Boolean functions are also
important for computational complexity theory. It is one of the most
difficult problems to prove a good lower bound on the circuit size com-
plexity of some explicitly defined Boolean function. Although, for al-
most all Boolean functions, their circuit size complexity is exponential
in the number of their inputs[Shad9), the best lower bounds proved
on the circuit size complexity of explicitly defined Boolean functions
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are linear[Blus4]. Because of the difficulty of proving a large lower
bound on the circuit size complexity, more restricted types of circuits
have been considered. Among them, monotone circuits is one of the
most popular models. Good lower bounds on the monotone circuit
size complexity have been obtained. For some explicitly defined ho-
mogeneous Boolean functions, even exponential lower bounds[Ands5,
AB86] have been proved on their monotone circuit size complexity.
These results do not imply any nonlinear lower bound on the circuit
size complexity because negation can be at least superpolynomially
powerful for computing some homogeneous Boolean functions(Raz85].
It is proved that negation is powerless for computing slice Boolean
functions[Ber82, Weg85, Vals6]. The monotone circuit size complex-
ity of n-input slice Boolean functions is larger than their circuit size
complexity at most by a multiplicative constant and an additive term
of O(n(log n)?)[Weg85, Val6]. Thus, if a lower bound of w(n(logn)?)
is proved on the monotone circuit size complexity of a slice Boolean
function, then the same lower bound can be obtained on its circuit size
complexity. Any good lower bound has not been proved on the mono-
tone circuit size complexity of explicitly defined slice Boolean functions.

From these facts, it is important to investigate slice Boolean func-
tions and to find monotone Boolean functions whose circuit size com-
plexity and monotone circuit size complexity are almost equal. The
third and last topic of the thesis is circuit complexity of homogeneous
Boolean functions and their slices.

1.2 Outline of the Thesis

This thesis studies properties and complexity of nonlinear Boolean func-
tions and circuit complexity of homogeneous Boolean functions and
their slices.

Chapter 2 discusses properties of nonlinearity criteria and relation-
ships among them. It focuses on the PC, the strict avalanche crite-
1ion(SAC), and the nonlinearity. Many of the results are proved with
the use of the Walsh transform of Boolean functions. First, a neces-
sary and sufficient condition is presented for a Boolean function with
n variables to satisfy the PC with respect to all but one elements in
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{0,1)" = {(0....,0)}. A necessary and sufficient condition is also pre-
sented for a Boolean function with n variables to satisfy the PC with
respect to all but linearly independent elementsin {0,1}"~{(0,...,0)}.
Second, the construction of Boolean functions with n variables is dis-
cussed that satisfy the PC with respect to all but one or three elements
in {0,1}"={(0,...,0)}. The proposed methods of construction exactly
characterize the Boolean functions satisfying the PC with respect to all
but one elements in {0,1}" — {(0,...,0)} and those satisfying the PC
with respect to all but three elemems in {0,1}" = {(0,...,0)}. Third,
an exact characterization of Boolean functions with n vanables satis-
fying the PC of degree n — 2 is achieved. This condition says that, for
every even n > 4, every Boolean function with n variables satisfying the
PC of degree n — 2 is perfectly nonlinear. Finally, some relationships
between the PC and the SAC are presented.

In Chapter 3, complexity of Boolean functions satisfying the PC is
discussed on several computation models. Investigated is the unateness,
the inversion complexity, the formula size, the area-time-square tradeoff
of VLSI circuits, and the numbers of nodes of OBDD’s(Ordered Binary
Decision Diagrams). First, some relationships are presented between
the unateness and the degree of the PC. Non-unateness of Boolean
functions satisfying the PC of degree more than 1 is proved. This im-
plies that the PC does not compatible with the unateness. Second,
the inversion complexity of perfectly nonlinear Boolean functions is
discussed. An optimal lower bound is obtained for every perfectly non-
linear Boolean function constructed by the method of Maiorana[Rue91).
This bound implies that many —-gates are necessary to compute such
functions. Third, a nearly optimal lower bound for the formula size
of every Boolean function which satisfies the PC of degree 1 is pre-
sented. This lower bound is also nearly optimal for every perfectly
nonlinear Boolean function. Finally, the area-time-square(AT?) VLSI
complexity[UlIs4] and the OBDD[Bry86] size of perfectly nonlinear
Boolean functions with multiple outputs is discussed. The results for
the two complexity measures show the effect of un-correlation among
the output functions to the computational complexity.

In Chapter 4, the circuit complexity of slice Boolean functions and
homogeneous Boolean functions is considered. It is known that for any
k-homogeneous Boolean function, its (k + 1)-th slice is not much more
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difficult to compute than its k-th slice[]Dun86). On the other hand, it
has been proved that there exist k-homogeneous Boolean functions such
that the monotone circuit complexity of their k-th slices is much larger
than that of their u(> k)-th slices|Weg86]. One topic in Chapter 4 is an
improvement of the latter result. An optimal lower bound is obtained
on the monotone circuit size complexity of the k-th slices for constant k.
The other topic is the homogeneous Boolean functions whose circuit size
complexity and monotone circuit size complexity are almost equal. For
these homogeneous Boolean functions with n variables, their monotone
circuit size complexity is larger than their circuit size complexity at
most by a constant factor and an additive term of O(n(logn)?).

Chapter 5 is the conclusion of this thesis with some open ques-
tions.



Chapter 2

Nonlinear Boolean Functions

2.1 Introduction

This chapter discusses properties of nonlinearity criteria and relation-
ships among them. It focuses on the propagation criterion(PC), the
strict avalanche criterion(SAC), and the nonlinearity.

First, a necessary and sufficient condition is presented for a Boolean
function with n variables to satisfy the PC with respect to all but one
elements in {0,1}" - {(0,...,0)}. From this condition, it follows that,
for every even n > 2, Boolean functions with n variables that satisfy
the PC of degree n—1 are perfectly nonlinear, that is, satisfy the PC of
degree n. It is also shown that Boolean functions with n variables that
satisfy the PC with respect to all but linearly independent elements are
perfectly nonlinear if n > 2 is even and that they satisfy the PC with
respect to all but one elements in {0,1}" — {(0,...,0)} if n > 3 is odd.

Second, we discuss the construction of Boolean functions with n
variables that satisfy the PC with respect to all but one or three ele-
ments in {0,1)" = {(0,....,0)}.

Seberry, Zhang and Zheng[SZZ93] presented methods for the con-
struction of balanced Boolean functions satisfying the PC of high de-
grees. For odd n > 3, they proposed a method for constructing bal-
anced Boolean functions with n variables satisfying the PC with respect
to all but one elements in {0,1)" — {(0,...,0)} and constructed bal-
anced Boolean functions satisfying the PC of degree n — 1. For even

7



8 Chapter 2. Nonlinear Boolean Functions

1> 4, they proposed a method for constructing balanced Boolean func-
tions with n variables satisfying the PC with respect to all but three
elements in {0,1}" — {(0,...,0)} and constructed balanced Boolean
functions satisfying the PC of degree about 2n/3. This result is op-
timal in the sense that, for even n > 4, Boolean functions with n
variables satisfying the PC with respect to all but less than three ele-
mentsin {0,1}"~{(0,...,0)} are perfectly nonlinear and that perfectly
nonlinear Boolean functions are not balanced.

This chapter shows that, for every odd n > 3, all Boolean functions
with n variables that satisfy the PC with respect to all but one elements
in {0,1}" = {(0,...,0)} are constructed from all perfectly nonlinear
Boolean functions with n.— 1 variables. It also presents, for every even
n> 2, a necessary and sufficient condition for a Boolean function to
satisfy the PC with respect to all but three linearly dependent elements
in {0,1}" = {(0,...,0)}. It shows that, for every even n > 4, all
Boolean functions with n variables that satisfy the PC with respect to
all but three linearly dependent elements in {0,1}" — {(0,...,0)} are
constructed from all perfectly nonlinear Boolean functions with n — 2
variables.

Third, this chapter discusses Boolean functions with n variables
satisfying the PC of degree n— 2. It shows that, for every even n > 4,
Boolean functions with n variables satisfying the PC of degree n — 2
are perfectly nonlinear, and that, for every odd n > 3, they satisfy the
PC with respect to all but one elements in {0,1}" — {(0,...,0)}.

Finally, some relationships between the PC and the SAC are pre-
sented. It is apparent from the definition that the set of Boolean func-
tions that satisfy the PC of degree 1 coincides with that of Boolean
functions that satisfy the SAC of order 0. It has been shown that the
Boolean functions that satisfy the SAC of order n — 2 are perfectly
nonlinear{AT90].

This chapter shows, for every odd n > 3, that Boolean functions
with n variables that satisfy the PC of degree n — 1 satisfy the SAC of
order 1, while those satisfying the PC of degree n — 2 necessarily not
and that there exist Boolean functions with n variables satisfying the
SAC of order 2 and not satisfying the PC of degree n — 1. For every
even n > 2, it shows that perfectly nonlinear Boolean functions with n
variables do not necessarily satisfy the SAC of order 1. It also shows
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that Boolean functions with n variables that satisfy the SAC of order
n—3 do not necessarily satisfy the PC of degree 2 for every n 3 3.
Section 2.2 contains the definitions of nonlinearity criteria. Section
2.3 is devoted to the discussion of Boolean functions with n variables
satisfying the PC with respect to all but one elements in {0,1}" —
(0,...,0)}, and those satisfying the PC with respect to all but linearly
independent elementsin {0,1)" —{(0, ..., 0)}. Section 2.4 discusses the
construction of Boolean functions satisfying the PC with respect to all
but one or all but three elements in {0,1)" — {(0,...,0)}. Section
2.5 discusses Boolean functions with n variables satisfying the PC of
degree n — 2. Section 2.6 shows the relationships between the PC and
the SAC.

2.2 Preliminaries

2.2.1 Walsh Transform and Boolean Functions
Let R and N denote the set of reals and the set of integers, respectively.

Definition 2.1 The Walsh transform of a real-valued function f :
{0,1}" = Ris

W) = 3 )17

z€{01)

where z = (21,...,2a), @ .
the dot product wizy @ -+ @ wW.

For simplicity, (W(f))(w) is often denoted by F(w). The inverse
Walsh transform is

)= (W (F))(z)

@) € {0,1)" and w - z denotes
o

1

Flw)(-1)*.
we{o1)™

The Walsh transform can be represented in a matrix form[Rue91].
For f : {0,1}" — R, let f(i) denote f(z1,...,2,) when ) + 2,2 +
- i Let [f] = [£(0), f(1)...., /(2" = 1)] and [F] =
<., F(2" = 1)]. The Walsh transform is represented as

[F) = [f}Ha
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where H, denotes the Hadamard matrix of order n. H, is defined
recursively by

H, = [1],
_ [Her Han
n =[5 an)

H, is a 2" x 2" symmetric non-singular matrix, and its inverse is 2" H,.
The inverse Walsh transform is represented as
[l =27"(FIH,.

A Boolean function is a function of the form £ : {0,1}* — {0,1}™.
£+ {0,1}" = {0,1}™ is called Boolean function with n inputs and
m outputs. Let Bym = {f|f : {0,1}" — {0,1}™}. For simplicity,
we denote B, as B, and call an Boolean function with n inputs and
1 output Boolean function with n inputs. Boolean functions with n
inputs are also called Boolean functions with n variables.

A normal form of representation is defined for Boolean functions
with n variables. Let N = {1,...,n}.

Definition 2.2 The algebraic normal form of a Boolean function f €
B, is a type of representation of f such that

i s} T Ty

D
{inmin}epl)
where p(N) is the power set of N, and agy,.q,) € {0,1} for every
{02} € p(N). o

Every Boolean function can be uniquely represented in an algebraic
normal form, and any two different Boolean functions cannot be repre-
sented in a same algebraic normal form.

The Walsh transform can be applied to Boolean functions in B,
when they are considered to be real-valued functions. For the analysis
of Boolean functions, it is often convenient to work with f : {0,1}" —
{~1,1}, where f(z) ' (~1)/=). The Walsh transform of f is

Fo)= ¥ f@)-1)rr= 3 (-1f@es

€{01)" ze(0,)"
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Definition 2.3 The autocorrelation function of a Boolean function f
{0,1)" = {0,1} is Cy : {0,1}" — N such that

Cylz) = Z J (ze:2),

where z @ z denotes (21 ® 21,...,Tn & zn). o

2.1 shows a between the
function of f and the Walsh transform of f. It states that the inverse
Walsh transform of £2 is Cy.

Proposition 2.1 For any Boolean function f, Cy = W™'(£?). O

Proposition 2.2 shows that the sum of F2(w)'s is constant for every
Boolean function f.
Proposition 2.2 Forany f €B,, Y. F* 22, o
welo1)"

2.2.2 Nonlinearity Criteria for Boolean Functions

For a set S, let |S| denote the number of elements in S. Let V, =

0,1} - {(0,...,0)}.

Definition 2.4 A Boolean function f € B, is balanced if and only if
l{alf(z) = 0}| = falf(z) = 1} = 2 o

An affine Boolean function h € B, is a Boolean function of the form

(@1, 2a) = G0 @ 0121 &+ B Qnn,y

where a; € {0,1} for 0 < i < n. The set of affine Boolean func-
tions with n variables is denoted as A,. The number of affine Boolean
functions with n variables is 2%,

The distance between two Boolean functions, f and g, with the
same number of variables, is d(f,9) = |{z | £(z) # 9(z)}].

The nonlinearity of f € B, is the minimum distance between f and
h€ A
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Definition 2.5 The noulineasity of f € By is mind(f, 1). o

The nonlinearity of f € B, can be represented with F.
Proposition 2.3 The nonlinearity of f € B, is

)|

o1

28003
o

Webster and Tavares [WT86] defined the strict avalanche criterion
for a design principle of substitution boxes of the DES. For any a €
{0,1}", let W(a) denote the Hamming weight of a, that is, the number
of I'sina.

Definition 2.6 A Boolean function f € B, is said to satisfy the strict
avalanche criterion(SAC) if and only if f(2) @ f(z ® a) is balanced (or
any a € {0,1}" such that W(a) =

For a Boolean function satisfying the SAC, any 1-bit change of in-
puts causes the change of the output with probability 1/2.

Let f(21,...,2s) € B,. For any iy,...,in such that 1 < i; <

© <ip < nandby,.. be(ul)let/b,, €

. denote the subfunction of f obtained by substituting by, .., bm
for 2y, ., Ty, Tespectively.

Fuxré [For90] extended the notion of the SAC and defined the SAC
of higher orders. The original definition by Forré was simplified by
Lloyd [Lo91]

Definition 2.7 [Llo91] A Boolean function f € B, is said to sat-
isfy the strict avalanche criterion of order m if and only if, for any
11,00y im such that 1 €4y < iy <++- <im < nand by,..., by € {0,1},
fle=h, € By satisfies the SAC. o

It is obvious from the definition that the original SAC of Definition
2.6 is equivalent to the SAC of order 0. The value of a function sat-
isfying the SAC depends on all of its variables. Lloyd[Llo91] proved
that the functions satisfying the SAC of order m also satisfy the SAC
of order k for every k such that 0 < k < m.
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Let SAC, (m) denote the set of f € B, satisfying the SAC of order
m. It is apparent from Definition 2.6 that every f € By U B, does not
satisfy the SAC. Thus, SAC,(n — 1) = SAC,(n) = ¢ for every n.
Definition 2.8 [MS90] A Boolean function f € B, is perfectly nonlin-
ear if and only if f(2) & f(z @ a) is balanced for any a € {0,1}" such
that 1€ W(a) < n. o

For a perfectly nonlinear Boolean function, any change of inputs
causes the change of the output with probability 1/2.

The following proposition directly follows from the definition of the
autocorrelation function and the perfect nonlinearity.

Proposition 2.4 Let f € B,. f is perfectly nonlinear if and only 1‘
Cy(z) = 0 for every z € V..

Meier and Staffelbach[MS90] proved that the set of perfectly nonlin-

ear Boolean functions coincides with the set of Boolean bent functions
defined by Rothaus{Rot76].
Definition 2.9 Let f € B,. f is defined to be a Boolean bent function
if and only if |F(w)] = 2/* for every w € {0,1}". o
Proposition 2.5 Let f € B,. f is perfectly nonlinear if and only ﬂ
[B@)] = 2772 for every w € {0,1}"

Prencel, et al [PLLGVO1] extended the notion of the perfect non-
linearity and defined the propagation criterion.

Definition 2.10 A Boolean function f € B, is said to satisfy the
propagation criterion(PC) of degree k if and only if f(z) & f(z @ a) is
balanced for every a € {0,1}" such that 1 < W(a) < k. o

Let PC,(k) denote the set of Boolean functions with n variables
satisfying the propagation criterion of degree k. PCy(n) is the set of
perfectly nonlinear Boolean functions with n variables.

Definition 2.11 A Boolean function f € B, is said to satisfy the
propagation criterion(PC) with respect to A C V,, if and only if f(z)aa
f(z @ a) is balanced for every a € A.

Proposition 2.6 Let f € B, and A C V,,. f satisfies the PC wnh
respect to A if and only if Cy(z) = 0 for every z € A.
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2.3 Propagation Criterion of Boolean
Functions

2.3.1 Propagation Criterion of Degree n —1

In this section, we investigate Boolean functions that satisfy the PC of
degree n — 1.

We begin by presenting a theorem that gives a necessary and suffi-
cient condition for f € B, to satisfy the PC with respect to all but one
clements in V,.. Before presenting the theorem, we prove two simple
lemmas.

Fora = (ay,...,a.) € {0,1}", let dec(a) = a; + 2as + -+ + 2" 1a,.

Lemma 2.1 Let m > 0 be an integer. The integers 7,y > 0 satisfying
the equation

I
is,
o for even m, z = 2™/2 and y =0, or z = 0 and y = 2™/2,

o forodd m, z = y = 2m-D/2,

(Proof) If one of z and y is 0, then m is even and the other is 2™/2.
1f we assume that « # 0 and y # 0, then, we can represent z and y
as

T =2,y =2%,,

respectively, where e, > 0, ¢, > 0, and ¢, > 1, ¢, > 1 are odd. Without
loss of generality, it can be assumed that e, > e; > 0. Then,

g 4 g = om
g4 ey 2 o gete

Since g2 + 2%%~)g,2 > 2 m — 2, > 1, which implies that g, +
2%ev=e)g,? is even. Thus, e, — e, = 0 since g and g, are odd. For

07+ gt = ot
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since ¢, + g,7 is a multiple of 2 but not of 4, m — 2e, = 1. Hence,
e =€, = (m—1)/2 and g, = ¢, = 1. This implies m is odd and
()2, o

Lemma 2.2 For every f € B,

[F20),..., F22" = 1)] = [Cy(0), .., Cy(2" — 1) Ha

(Proof) This lemma directly follows from Proposition 2.1. a

The following theorem presents a necessary and sufficient condition
for a Boolean function to satisfy the PC with respect to all but one
elements in V.

For every b= (by,...,bs) € {0,1}", let v, denote the (dec(b) +1)-th
column vector of Ha, and let (21, ..., Z) = biz1 @ -+ ® byza.

‘Theorem 2.1 Let b € V,. f € B, satisfies the PC with respect to
V. — {b} if and only i,

o for even n > 2, 1i(w)| =22 for every w € {0,1}",

® forodd n >3,

S22 i hew=0
|F(“)|'{o ifbow=1,

or

= [z fpu =1
|F(°’]|"{o ifbow=0.
(Proof) f € B, satisfies the PC with respect to V,, — {b} if and only if
Cy(a) = 0 for every a € V,, = {b}. Thus, from Lemma 2.2, [F?] can be
represented as

[£] = cy0w™ + ¢/p)uT,
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where vyT and v,T are the transposes of vy and vy, respectively. Let
up = (v +wT)/2 and w = (u? = wT)/2. Then, [F" fu able to be
represented as

[£2] = couo + crus,
where co = Cy(0) + Cy(b) and ¢; = Cy(0) — Cy(b). Since

up = [1®14(0),...,1® H(2" - 1)]

and

w = [(6(0)....b(2" = )],

sy [ @ ifbw
”“‘)‘{c, ifhew

Let ‘f‘(w]‘ = Fy for every w such that b-w = 0, and |F(w)| = £
for every w such that b-w = 1. Since 3 F2(w) = 2*",
we{o1)"

Baf-on,

Hence, from Lemma 2.1,
o When n is even, Fy = Fy = 2%/,

o When n is odd, £ = 0, F} = 20+1/2 or fy = 204172, fy

The theorem has been proved. o
Boolean functions in B, satisfying the PC with respect to V, —

{(1,...,1)} are the ones satisfying the PC of degree n — 1. Thus, the

following two corollaries are immediately derived from Theorem 2.1.

Corollary 2.1 For even n > 2, PCy(n — 1) = PCy(n). o
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Corollary 2.2 For odd n > 3, f € PCa(n — 1) if and only if,
24D/ i W(w) s even
O { 0 if W(w) is odd,

2040)/2 i W(w) is 0dd
0 if W(w) is even.

o

Corollary 2.3 Let n > 3 be odd and b € V,,. If f € B, satisfies the
PC with respect to V,, — {b}, then

fz)®f(z@b)=0o0r 1.
(Proof) For odd n > 3, if f € B, satisfies the PC with respect to
V. — {b}, then, from the proof of Theorem 2.1,

Cr(0) +Cyb) = 2

Cr(0) - C4(b) = 0,

C0)+C40) =
Cy(0) - Cs(b) =

For the former case, Cy(b) &
Cy(b) = 2* and Cy(b) = ~2* implies that f(z) ® f(z @ b) = 0 m
f(z)® f(z ®b) = 1, respectively.

From Theorem 2.1 and Proposition 2.3, the following corollary can
be derived immediately.
Corollary 2.4 Let n > 3 be odd. If f € B, satisfies the PC with

respect to all but one elements in V,, then the nonlinearity of f is
o1 g(n-1)/2,

The above corollary states that, for every odd n > 3, the nonlinear-
ity of f € B, which satisfies the PC with respect to all but one elements
in V, are high and uniquely determined.

The particular case of Corollary 2.4 is as follows.

Corollary 2.5 Let n > 3 be odd. If f € PC,(n — 1), then the nonlin-
earity of f is 2"! — 2* /2, o
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2.3.2 Propagation Criterion with Respect to All
or All but One Nonzero Elements

This section is devoted to a necessary and sufficient condition for a
Boolean function in B, to satisfy the PC with respect to all nonzero
vectors for even n and with respect to all but one nonzero vectors for
odd n.

Lemma 2.3 Let k be any integer such that 1 < k < nand by,..., by €
{0,1}" be linearly independent. let ry,...,74 € {0,1}. The number of
elements in {0,1}" satisfying

by(2,za) = 1

by(2neeaza) = i
are 2"k, a
Theorem 2.2 Let n and k be any integers such that n > 2 and 1 <
k< n. Let by,...,b € {0,1}" be linearly independent. If f € B,
satisfies the PC with respect to Vi — {by, .., b}, then,
1. when n is even, f € PCy(n),

2. when n is odd, for some i such that 1 < i < k, f satisfies the PC
with respect to V,, — {b;}.

(Proof) From Proposition 2.6, f satisfies the PC with respect to V, —
{b1,..,bi} if and only if Cy(a) = 0 for every a € Vo — {b1,..., b}
Thus from Lemma 2.2, [F%] can be represented as

= Cr0)0” + Cylb)on,™ + - + Cylbion, ™,

Let uo = v" and w; = (vo” +v,T)/2 for every i such that 1 < i < k,
then we can rewrite [F7] as

Coto + Cruy + -0+ cuk,
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where

x
@ = G0)-LCr),

o = 204(b).

4 = [1,...,1)
u o= [1@h,(0),...,1@5,(2" - 1) for 1 <i g
and Iy, is balanced for every b; € V,,

Fw) = 27+ 2" Yoy + oo+ ) = 27
wefo1)”

Thus,
20+ e+ ton =2

From Lemma 2.3, there exist some w € {0,1}" such that
Fw)

There also exist some w € {0,1}" such that, for any j such that 1 <
j<kandi,... i such that 1 < iy < +o- <i; < &,

0

FYw)=cotciy o0 ey
For the case where n is even. Since 2¢p + ¢ + -+ + ¢ = 2"*!,
cot(cotent...+ex) L]

(cotar)+(cotert...+ecx) gt

(Cote)+(oteat...+an) = 2*,

from Lemma 2.1,

Co=Ctey==cote=
Thus,
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Hence, for every w € {0,1}",

|Bw)| =22
For the case where n is odd. From Lemma 2.1,

e =00r 2",

and, for any j such that 1 € j < k and iy,...,ij such that 1 < iy <
<y <k

o+ ciy ey =0or 27
(i) If we assume that co = 0, then
coter oo =2"
Since ¢o + ¢; = 0 or 2"+ for every i such that 1 < i < K,
c=00r 2",

Thus, only any one of cy,...,cx is 2°* and the others are all 0. Hence,
for some by,

2+ 0/2 g
“lo

(ii) If we assume that co = 2"*!, then
coter e ton=0.

Since ¢ + ¢; = 0 or 2"*! for every i such that 1 < i <k,
¢ =0o0r —2"+,

Thus, only any oneof ¢y, .. ., cx is —2"+! and the others are all 0. Hence,
for some b;,

: 202 i hw=1
‘F(”)l’{o b w=0.

Hence, the theorem has been proved. o
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2.4 Construction of Boolean Functions
Satisfying the PC

‘This section gives an exact characterization of Boolean functions with
an odd number of inputs that satisfy the PC with respect to all but
one nonzero vectors. It also gives an exact characterization of Boolean
functions with an even number of variables that satisfy the PC with
respect to all but three nonzero vectors. The motivation of this research
is a method in [SZZ93] to construct balanced Boolean functions with
an odd number of variables that satisfy the PC with respect to all but
one nonzero vectors and that to construct balanced Boolean functions
with an even number of variables that satisfy the PC with respect to
all but three nonzero vectors.

2.4.1 Boolean Functions with an Odd Number of
Variables

This section presents, for odd n > 3, a spectral property of Boolean
functions in B, that satisfy the PC with respect to all but one elements
in V,. This is an exact characterization of such Boolean functions.

Seberry, et al.[S2293] presented a simple method that, for any odd
n > 3, generates balanced Boolean functions in B, satisfying the PC
with respect to all but one elements in V, from Boolean functions in
PCyoy(n—1).

In this section, it is shown that, for every odd n > 3, one can
construct all Boolean functions that satisfy the PC with respect to all
but one elements in V,, from all Boolean functions in PC,_y(n — 1).
It also gives a construction method that is slightly different from the
method of Seberry, et al. and that reflects spectral properties. Some
results are presented for the number of Boolean functions satisfying the
PC with respect to all but one nonzero vectors.

A lemma is proved which is a basis of the following discussion. It
states that, for any a € V,, for each column v of the matrix constructed
from i-th rows of H, such that the dot product of a and the binary
representation of i is equal to 0 or 1, there exists a column in Hy_;
that is equal to v or —v.
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‘We define some notations. For a matrix M, let col(M, i) be the i-th
column of M. For a = (a1,...,an) and 1 < i < n, let (), denotes
(ar,.. ).

Lemma 2.4 For every a € V,, let K,(a,0) and Ka(a,1) be 2%~ x 2
matrices that are constructed by removing all (dec(w) + 1)-th rows of
H,, where a-w=1and a-w = 0, respectively. Then,

o for each column v of Hy-1, Ky(a,0) has two columns that is equal
to v, and Kn(a,1) has v and —v,

o for every i such that 1 <i 27,
col(Ka(a,0),) = col(Ku(a, 1),1)
or
col(Kn(a,0),i) = —col(Kn(a,1), ).

(Proof) We prove the theorem by induction. When n = 1, since Hy =
1) and

11
ne[d ).
K1(1,0) = [1,1] and Ky(1,1) = [1,~1]. The theorem is proved for
n=1
For n > 2, we consider the following two cases: One is the case
where a, = 0 and the other is the case where a, = 1.
For the case where a, = 0. Since

@ (@1 001,0) = @ @1y oy, 1)

Hor Hi
s [Hn., -H,.,]'

-1((a)aeyi€)  Kaoa((a),-y0)

o[k
)= | K ahare) ~Ker(Ga)ers o)
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for ¢ = 0,1. When ¢ = 0, from the inductive assumption, for every
column of Hy_, Ky-1((a),_,,0) has exactly two columns which are
equal to it. Thus, by permuting the columns of Ky(a,0),
Hoy Hyyp Huio Huo
Hyz Hua —Haz —Haoa
is obtained. This implies that, for each column of H,_1, Kq(a,0) has
exactly two columns which are equal to it.
When ¢ = 1, for every column v' of Hu_z, Kn-1({a),_,,1) has v'
and —v'. Thus, for each column v of Hy-1, Ky (a,1) has v and —v.
Itis also easily derived from the inductive assumption that, for every
i such that 1 <i < 2",

col(Ky(a,0),i) = %col(Kn(a,1),i).

For the case where a, = 1. I a = (0,...,0,1), then
Ku(@,0) = [ Hox Haa ],
Kn(@,1) = [ Hooy —Haos |
It is apparent that the theorem holds for this case.
Ha#(0,..,0,1), since
@ @1y @ae1y0) = @ (@1 ey 1) B,
- Kor((@)y_y s Kaa((@)y_y €
e = [ QTS ki3]
for ¢ =0, 1. Since, for every j such that 1 < j < 2",
col(Kn-1({a) 1 ,0),7) = #col(Kn-1((a),_y 1), 5),
there exists some 2" x 2" non-singular matrix IT such that

Kua((@y©) Kaa((@)aey€)
Kya,0) = =t i |,
@ n [ Knrl{@has10) —Kna((ahaoy )
Tl is a matrix that exchanges I-th and (I+2"~")-th columns of Ku(a,c)
for every I such that 1 < 1< 2" and
col(Kn-1(a,18 ¢}, 1) = —col( Kn-1(a,c), ).

This is the same case as the one where a, = 0. Hence, the theorem has
been proved.
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An example of Lemma 2.4 is given below.

Example 2.1 Let n = 4 and a = (0,1,0,1). Let Hy = [vf,..., v}

and Hy = [vy, .., vs). Then,

L3
T N ey
[of o of of vl vl oy vls |

Ki(a,0)
= (oo v owow o

v v v v v v ou ],

b
Kia1) = [of of of of of oh ofy o]
= [vn Vg —Us Vs V3 vy —U1 —Ug
Vs Vg —V; —V2 V7 Vg —Us ""4'4]-
For each column v; of Hy, K4(a,0) has two columns that are equal to
v, and Ky(a,1) has a column that is equal to v and a column that is
equal to ~v.
. _ [ col(Ky(a,1),i) fori=1,2,56,9,10,13,14
col(Ky(a,0),1) = { —col(Ky(a,1),i) for i =3,4,7,8,11,12,15, 16.
a

The following theorem implies an injective mapping from the set of
Boolean functions in B, that satisfy the PC with respect to all but one
nonzero vectors to PCyy(n — 1) for odd n. > 3.

Theorem 2.3 Let n.> 3 be odd. Let f € By and b € V,. Suppose
satisfies the PC with sespect to Vs — {8). For an, .., agn-1 € {0,1)"
such that 0 < dec(a) < -++ < dec(az-1) < 2* — 1 and F(a;) # 0 for
1<ig 2" let fw € B,._, be defined as

1

[ (@ = 1)] = = [, .., Flam)]

Then, fw is perfectly nonlinear.
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(Proof) From the definition of the inverse Walsh transform,

1, i ) . .

- [F ()., @ = 1) Ha = [f(0),..., f2" = 1)]..
Since f satisfies the PC with respect to V, — {5},

204002 i hew=0 {2'"“’/* ifbw=1

i(“)iz{u ifh.

0 ifbrw=0.

Thus,
1 s - o 2o

v [Pl Flagm)] Kub,0) = [0, f2" - 1)

(@), fw @ = )] Kulb,0) = 2 [(0),.... f(2" = 1)].
where ¢ = 0 or ¢ = 1. From Lemma 2.4, for K, (b,c), there exists a
non-singular 2" x 2"-matrix II such that

Ka(b,¢) T = [ Huer (=1)Hams |
11 exchanges columns of matrices when operated from the right of them.
Hence,

[fw(0),- o, fuw(@ = 1)] [ Hamy (<1)°Haes | =

27 [f(0),....f@" -] I

This equation shows that, for every w € {0,1}"",

|(W(Fw)) ()] = 2.
‘This completes the proof. o

The following theorem states that the mapping in Theorem 2.3 is

surjective.

Theorem 2.4 Let n > 3 be odd and g € B,,. Let ay,...,a0-1 €
{0,1)", b € V, and ¢ € {0,1} such that 0 < dec(ay) < -+ <
dec(agn-1) < 2" —~1land bray = cfor 1 i< 2" Let F: {0,1}" =+ N
be defined as
ooy _ [ 2023 -1) fw=o
Flwy= { 0 otherwise
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and f = (W'(F)). If g is perfectly nonlinear, then f : {0,1}" =
{~1,1) and f satisfies the PC with respect to V, = {b}.

(Proof) Since F(w) = 0 when w # a; and b+ = ¢ for 1 <i < 2",
19 = %[ﬁ"(o),...,i‘(z"-u] H,
= Zi [Flan) ... Flagn-s)] Kaltyc)
- # 600 3271 = 1)) Kaltr)

From Lemma 2.4, for K, (b,c), there exists a non-singular 2" x 2*-matrix
1 such that

Ka(b,0) 1= [ Haey (<1)°Hoes |

T exchanges columns of matrices when operated from the right of them.
Hence,

[0 = o (300522 = D) [ Haer (<2 Humr |

G (-6,

Since |G(w)] = 2° for every w € {0,1)", £ {0,1)" = {~1,1} and,

from Theorem 2.1, f satisfies the PC with respect to Vo — {8}. O
From Theorem 2.3 and 2.4, it is obvious that the algorithm below

generates all the Boolean functions in B, that satisfy the PC with

respect to all but one nonzero vectors from all the Boolean functions

in PC,y(n = 1) for odd n > 3.

Algorithm 2.1

input p € PC,_y(n—1), b€ V, for odd n > 3.

output fo, f; € B, that satisfy the PC with respect to V, — {b}.
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procedure
1. Let c € {0,1} and @5,...,a5. € {0,1}" such that
0 < dec(af) < -+- < dec(agn) < 2" =1,
and, for 1 <7< 2%,

boaf=c.

20/~ 1) ifw=af
otherwise,

For Algorithm 2.1, since
Bo= ¥ (-ni@=o,
wefon

11 is balanced, and fo is not balanced since Fy(0) # 0. For every
P € PCyy(n—1) and b € V,, let Alg,(p,b) denotes the set of the
Boolean functions obtained by the above algorithm, which satisfy the
PC with respect to V,, — {8}. Since H, is non-singular, for any different
pairs (p,b) and (¢, ), Alga(p,b) N Alga(p/,¥) = 8. Thus the following
corollary can be obtained.
Corollary 2.6 For every odd n > 3, the number of Boolean functions
in B, which satisfy the PC with respect to all but one elements in V,
i8 2(2" = 1)|PCooy(n — 1], and the half of them are balanced. O

In particular, for the Boolean functions with n variables satisfying
the PC of degree n — 1, the following corollary is derived.
Corollary 2.7 For every odd n 3 3,

¢ [PCa(n = 1)| = 2|PCos(n = 1)),

« the number of balanced functions in PC(n—1) is [PCaoy(n—1)].

o
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2.4.2 Boolean Functions with an Even Number
of Variables

Theorem 2.2 says that, for even n 3> 2, Boolean functions which satisfy
the PC with respect to all but one or two nonzero vectors are perfectly
nonlinear, because less than three different nonzero vectors are always
linearly independent.

Seberry, et al.[S2293] presented a method for constructing balanced
Boolean functions satisfying the PC with respect to all but three ele-
ments in V, for every even n > 4. Their result is optimal in the sense
that there exist no balanced Boolean functions which satisfy the PC
with respect to all but less than three nonzero vectors. Perfectly non-
linear Boolean functions are not balanced.

Proposition 2.7 [SZZ93] Let n > 4 be even. For any pair of by, b, €
V, such that b, # by, there exist balanced Boolean functions in B
satisfying the PC with respect to V,, — {by, b2, b, @ by}.

In this section, for even n > 4, an exact characterization is presented
of Boolean functions in B, satisfying the PC with respect to all but
three linearly dependent elements in V,. A method of construction
of such Boolean functions are also presented, and some relationships
between the number of them and that of perfectly nonlinear Boolean
functions are given.

First, we present two simple lemmas.

Lemma 2.5 There exist no positive integers z, y, z and m such that
2Pt =2m,

(Proof) Suppose that z, , z are positive integers. Then, 7, y, z can be
represented as

z=2%q, y =2, 2 =2%,,

where e1,¢2,e3 > 0, and g,q2,qs are odd integers. Without loss of
generality, it may be assumed that 0 < e; < e; < e 2?2+ 9% + 22 =
2", then
22,7 4 g 4 glag? — om
q1? 4 2Hmalg,2 4 gUama)g? . gm-da
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Since the left-hand side of the above equation is greater than 3, m —
2e, > 2, which implies that the left-hand side is even. Thus, e — e, = 0
and es — e > 1. Then,

@+ gt = 2mmta ey,
Since both of g, and g; are odd, g;? + ¢2? is a multiple of 2 but not of
4. This contradicts that m — 2e; > 2 and 2(e; — ;) > 2. Hence, the
lemma has been proved. o

Lemma 2.6 Let w, z,y, z and m be positive integers. w? +r + 4+
Z2=2"ifand only if m is evenand w =z = y = z = 2™

(Proof) Suppose that w, z, y, z are positive integers. Then, they are
able to be represented as

w=2%g, 2 =2%g, y=2%g, 2 =2,
where ey, €3, €5, €4 > 0, and 1,2, s, g4 are odd integers. Without loss
of generality, it may be assumed that 0 < &3 < €2 < &0 < es. Since
w22+ 9%+ 22

gengyd gyt 4 gtegd 4 gD = om
@i 4 2ama)g,? 4 gama)y 2 4 gdamalg 2 o gmeza
Since the left-hand side of the above equation is greater than 4, m —
2€; > 2. Since the left-hand side is even, e; — &; = 0. Thus,
417 4 gp? + 222 gl 2 _ gmeta

Since .2 + ;2 is a multiple of 2 but not of 4 and 2% is a multiple
ofd,e3—e; =€~ =

o’ + 0’ + gt gl =2

For i =1,2,3,4, ¢; can be represented as g, = 2r, + 1, where r, > 0 is
an integer. Hence,

+ 1)+1> =gR-th,

Because Y r(r;+1)+1isodd, m—2¢; =2andry =ry=ry =1y = 0.

Hence, m is even and w y=z=2m-D02, o
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The following theorem presents a necessary and sufficient condition
for f € B, to satisfy the PC with respect to all but three lincarly
dependent elements in V, for even n. > 4.

Theorem 2.5 Let n > 4 be even and f € By. Let by, by, by be different
elements in V,, and be linearly dependent. f ¢ PC,(n) satisfies the PC
with respect to V,, — {1, by, b} if and only if

‘F(u) 7{ 2/ i b w=byrw=byrw=0

“lo otherwise

or

for different i, j
otherwise.

X 224 =0, b w=bw=1
|E@) = 3

(Proof) f € B, satisfies the PC with respect to V, — {by, by, bs} if and
only if Cy(a) = 0 for every a € Vo = {by, by, bs}. From Lemma 2.2, [
can be represented as

[

= C1(0)u" + Cy(br)us," + Cy(ba)vn, " + Cy(ba)us, ™

Let ug = v and u; = (0" +v,)/2 for i = 1,2,3, then [F"

] can be
written as

cotg + erus + Cuy + csuz,

I

C1(0) = (Cy(br) + Cy(b2) + Cy (b)),
o = 20).

w = (1.1,
u o= 184(0),..., 1842 - 1)
for i = 1,2,3, and Iy, is balanced for every b; € V,,

Fw) = 2% + 2N ey + e+ ¢5) = 27
wefo1)”
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Thus,
(co+er+cates)+ (co+er)+(cotea) + (co+ea) =22
Since
ot ifb=0andbj-w=11for

i=1,2,8andj € {1,2,3} - {i}
cotat+etey ifbrw=0fri=1,23,

I

from Lemma 2.1, 2.5, 2.6, there are following two cases:
Cl agtat+atag=c+a=c+a=ct+e=2"

C-2. only one of o+ ¢ + ¢z + 3, ¢ + €1, co+ €2 and ¢o + c3 is 22
and the others are 0.

For C-1, f € PCy(n).

For C-2, if ¢ + ¢y + 2 + €3 = 2"*, then F3(w) = 2" when
bew=byw=bsw=0. o+ =22, then F2(w) = 2"+ when
bi*w=0and b-w = by-w = 1 for different i, j, k. Hence, the theorem
has been proved. o

The next corollary can be proved in the same way as Corollary 2.3.

Corollary 2.8 Let n > 4 be even. Let by, by, by be different elements
in V, and be linearly dependent. If f € B, — PC,(n) satisfies the PC
with respect to V, — {b, by, bs}, then, for each of i € {1,2,3},

f@)® f(z@b)=0o0r L

(Proof) For even n > 4, if f € B, — PCy(n) satisfies the PC with
Tespect to V,, = {b1, by, by}, then, from the proof of Theorem 2.5,

C1(0) + Cy(br) + Cylba) + Cylbs) = 2"**
C(0) + Cy(br) = Cy(bs) - Cy(bs) = 0
C1(0) = Cy(br) + Cy(ba) - Cy(bs) =
C1(0) = Cy(br) = Cy(ba) + Cy(bs) =
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or, for different i, j, k € {1,2,3},

Cy(0) + Cy(br) + Cy(ba) + Cy(bs) =
Cy(0) + Cy(bi) = Cy(b)) = Cy(ba) = 2""
€)= C'/(b)+C/( )= Cyltn) =
Cy(0) = Cy(bi) = Cy(bj) + Cy(be) =

For the former case, C,(b.) = c,(b,) c,(b; = 2, and for the

latter case, Cy(b;) and Cy(b;) = . Cy(b) = 2" and
Cy(b) = —2" implies tha,t f(z) %l(z@b) 0 and £( z) o f(z@b)=1,
respectively. o

The following corollary can be easily derived from Theorem 2.5.
This presents a spectral property of the balanced Boolean functions
satisfying the PC with respect to all but three elements in Vs, for every
evenn > 4.

Corollary 2.9 Let n > 4 be even and f € B,. Let by, by, by € Vi
be different and linearly dependent. f is balanced and satisfies the PC
with respect to V, — {by, by, bs} if and only if

) 2V if b ew =0, by w = by - w = 1 for different
|F@)| ik € {1,2,3}
otherwise.

o

Corollary 2.10 Let n > 4 be even. The nonlinearity of any balanced
Boolean function in B, suus{ymg the PC with respect to all but three
elements in V), is 2"~1 — 20/

(Proof) This corollary directly follows from Proposition 2.3 and Theo-
rem 2.5, o

Seberry, et al.[SZ293] proved that the nonlinearities of balanced
Boolean functions satisfying the PC with respect to all but three nonzero
vectors are at least 2°~! — 2%/2, Corollary 2.10 determines the nonlin-
carity of balanced Boolean functions satisfying the PC with respect to
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all but three nonzero vectors uniquely, and shows that the lower bound
of the nonlinearity of Seberry, et al. is optimal.

In the following, it is shown that, for every even n 3 4, one can
construct all Boolean functions that satisfy the PC with respect to all
but three linearly dependent vectors in V,, from all Boolean functions
in PCuog(n = 2).

A lemma is proved for the basis of the following discussion.
Lemma 2.7 Let n > 2, a = (a1,...,a,),b = (by,...,b,) € Vy such
that a # b and ¢,d € {0,1}. Let Ko(a,c;b,d) be a 2"~ x 2" matrix
that is constructed by removing all (dec(w) + 1)-th rows of Hy, where
a-w#corb-w#d Then,

« for each column v of Hy_z, Ku(a,¢;b,d) has four columns that is
equal to v if ¢ = d = 0, and has two columns that is equal to v
and two columns that is equal to —v if ¢ # 0 or d # 0,

o for every i such that 1 < i < 2",

col(Ka(a,c;b,d), i) = col(Ka(a,c’;b,d'), i)
or
col(Kn(a,¢;b,d),i) = —col(Ka(a,¢; b,d"), ),
and, for {(c1,d1), (c2,da), (cs,da), (es, do)} = {0,1)%,
col(Ku(a,c1;b,dy), i) col(Ku(a,e2;b,dz), 1)

col(n(a,caibyds),i) = collKa(a, caibyda), ).

(Proof) This lemma can be proved by induction.

For every (a,c) and (5,d), Ka(a,c;b,d) = Kn(b,d;a,c). Whenn =
2, since

H=
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Ka((1,0,0:(0,1),0) = [1 11 1],
K((1,0),0,(0,1),1) = [1 -1 1 -1],
K((1,0)3(0,1),00 = [11 -1 -1],
Ka((1,0,3(0,0),1) = [1 -1 -1 1]
and, for a = (1,0),b= (1,1) and a = (0,1),b = (1, 1),
Kua,0:50) = [1111],
Ka(a,5;5,0) = [1 -1 1 -1],
Ki(a,0;5,1) = [1 -1 -1 1],
Kue,i,1) = [1 1 = -1].

Thus, the theorem is proved for n = 2 because Ho = [1].
For simplicity, let (a),._, = (a).

Fora, = b, . Since
(@ @an,0) = a (o wnen 1),
b (@ @a1,0) = be @1y e 1),

Hyoy Hyo
Hy=
(i i)

riwena= [ F2(0 20

From the inductive assumption, for every column o' of Has,
Ka-1({a) ¢ (b) ,d) has four columns that are equal to v' if ¢ = d = 0,
and has two columns that are equal to v and two columns that are
equal to —v' if ¢ = 1 or d = 1. Thus, for every column v of Hy_s,
Ku(a,c;b,d) has four columns that are equal to v if ¢ = d = 0, and has
two columns that are equal to v and two columns that are equal to —v
ife=lord=1.
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1t is apparent from the inductive assumption that, for every i such

that 1 << 2%
col(Ku(a,c;b,d),i) = +col(Ku(a,c’;b,d'),i).

It is also apparent that, for {(c1,d1), (c2, d2), (c3,ds), (cs, da)} = {0, 1)7,
col(Kn(aycr;b,dy),i) = col(Kn(a,cz;b,da),i)
col(Ka(a,c3;b,ds), i) E col(Ka(a,eg;b,dy), ).

Fora,=1,b,=0.

@ (@ waen0) = (0)- (),
@@ ywaen1) = (@) W) O1L
(i) Whena = (0,...,0,1),
Ka(@,0:0,0) = [ Kana((9),0) Kaa((8),0) ],
Ka(@,0i0,0) = [ Kaca(8),1) Kaea((),1) ],
Ku(@,135,0) = [ Kuea((8),0) —Kaca((8),0) ],
Koo, 1i5,1) = [ Kama((9),1) —Kama((),1) ]

From Lemma 2.4, for every column v of Ha_, Ka-1((b),0) has two
columns that are equal to v, and Kn—1({5),1) has v and —v. Thus,
Ky(a,c;b,d) has four columns equal to v if ¢ = d = 0, and has two
columns equal to v and two columns equal to —vif c=1ord =1.
Since, for every j such that 1 < j < 2"},

col(Kn-1((5),0),3) = Feol(Kn-1((8) ,1), ),
for every i such that 1 <7< 2°,

col(Ko(a,c;b,d),i) = Eeol(Ka(a,;b,d), ),
and also, for {(e1,dy), (cz,da), (2, da), (ex, da)} = {0,1)7,

col( Kn(a,ci3b,d1),i) = col(Kn(a,ca3b,d3),7)
b3

col(Ku(a,c5;b,d3), 1) col(Kn(a,c4;b,ds), ).
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(i) When a # (0,...,0,1),
Kala,c;b,d) =

Kaaa((a) i (0) ,d) Kn-1((a) i (0) ,d)
K@) 186 0),d) ~Kaoi(e) 1060, |

From the inductive assumption, for every i such that 1 < i < 2",
col(Kn-1({a) ; (b) ,d),i) = col(Kn-r((a), 1 @ ¢; (b) ,d), 1),

and, for every (c1,d1), (c2,dz) € {0,1}" such that (cy,dy) # (cz,ds),
col(Kn-s((a) 15 (0),di),i) = col(Kn-1((a),1 @ c1; (B) ,a),i)

e

coll(Kn-1({a) ,c2i (b)  d2),3) = col(Kn-a((a),1 @ cai (B} ,da), i)
‘Thus, there exists some 2" x 2"-matrix II, which permutes the columns
of matrices, such that, for every ¢ and d,

Kala,c;b,d) 1=

Ku-a((a) i (0),d)  Kn-a((a) ¢ (b) ,d)
Kuaa((a),6i(0),d) —Kaoa((a),c;(b),d) |

Thus, this case can be proved in the same way as the case where a, =
by =0.

Fora, 8

(i) When a = (0,...,0,1),

Ka(@0:0,0) = [ Kaca(9),0) Kaca((9),0) |,
Ka(@,00,0) = [ Kaa(8),1) Kaca((®),1) ]
K@ 2i6,0) = [ Kaoa(8),1) =Kaca((8),1) ],
Ku(@,1;8,1) = [ Kaca((8),0) =Kaca((8), 0].

This case can be proved in the same way as the case where @ =
(0,...,0,1) and b such that b, # 0.
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(i) When a # (0,...,0,1) and b # (0,...,0,1),

Ka(a,c;b,d) =

[ Kaa((a) ¢ (b) ,d) Kn-i((a) ¢ (b) ,d) ]
Kaa((0),186(),10d) —Kas((a),106;(8),104) |

In the same way as for the above case, it can be shown that there exists
some 2" x 2"-matrix II, which permutes the columns of matrices, such
that, for every ¢ and d,

> A ,6(b),d) K- 16 (b) ,d;
Ka(e,cib )T = [ o X Bl A ] :

This case can be proved in the same way as the case where a, = b, = 0.
This completes the proof. o

Example 2.2 Let n = 4 and a = (0,1,0,1), b = (1,0,0,1). Let

Hy=[o}..., o) and Hy = [o1, v, v5, v Then,
N
Ki(a,0:5,0) = [vf vf vl vl ]
vowow v v ow v v
9 4 4 4 4T
Ka,0i61) = [} of vh ol
TR
vo—u v - w —v v v
- 4t g4 T
Kiy(a,1;6,0) = |3 of ofy viy
= [ v -t o —w -n

v —v =

vov - —u
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i
K(a,3;6,1) = [of of of o]
R e e )
T3 e ] e o e e
For each column v; of Hy, K4(a,0; b, 0) has four columns that are equal
to v;, and each of Ky(a,0;b,1), Ky(a,1;6,0) and Ki(a,1;b,1) has two
columns that are equal to v; and two columns that are equal to —v;.
o
The following theorem implies an injective mapping from the set of
Boolean functions in B, that satisfy the PC with respect to all but three
linearly dependent nonzero vectors to PCn_p(n — 2) for even n > 4.
Theorem 2.6 Let n > 4 be even. Let f € B, and by, by, bs € V,, such
that by, by, by are different and linearly dependent. Suppose f satisfies
the PC with respect to Vi — {b, by, bs} and is not perfectly nonlinear.
For a,...,azn-1 € {0,1}" such that 1 < dec(ay) < +++ < dec(agn-1) <
2"~ Land F(a;) # 0 for 1 i < 2%, let fyy € B,y be defined as

(@) 2= )] = sz [F@), . Bl

Then fiy is perfectly nonlinear.

(Proof) Since f satisfies the PC with respect to Vo — {by, by, bs} and is
not perfectly nonlinear,

| N)‘:{ PN if by

o w=byw=10

0 otherwise
or
R 2/ if b -w=0,b;-w=b-w=1 for different
|£@) = i3,k € {1,2,3}
0 otherwise.

Without loss of generality, we can fix i = 1, j = 2, k = 3. Thus,
%[i‘(ﬂ),...,ﬁ‘(z"—l)]ﬁ. -1
;7[?(&,), o Blag)] Kalb,O5ba0) = [f]
[w@), ... fr(@? = 1) Kby, 000,) = 287 [F],



2.4. Construction of Boolean Functions Satisfying the PC 39

where ¢ = 0 or ¢ = 1. From Lemma 2.7, there exists a non-singular
2" x 2"-matrix II such that

Kby, 030, )1 = | Hog Hay (=1)°Haoz (<1)Haz |.

T exchanges columas of K, (by, 0; bz, ). Hence,

[fw] [ Hu-a Huco (“1)Haa (<1)Haca ]
which shows that

231 [{] m,

|(WGw) )]

for every w € {0,1}"2. This completes the proof.

o

The following theorem states that the mapping in Theorem 2.6 is
surjective.

Theorem 2.7 Let n > 4 be even and g € B,_y. Let ay,..., a0 €
{0,1}", by, bz, b5 € V,, and c,d € {0,1} such that 0 < dec(a;) < -+ <
dec(agn-1) <2 —1and by ai=c¢ by-ay =dand by-ai = c@dd for

1<i< 22 Let F:{0,1)" — N be defined as

_[2i-1) Hw=o
1o otherwise

F(w)
and f = W(F). If g is perfectly nonlinear, then f : {0,1}" — {-1,1}
and f satisfies the PC with respect to V, — {by, b, bs}.

(Proof) Since F(w) = 0 when w # a; and by - o = ¢ and by - a; = d for
1T ot

1 = 2—"[1"(0),..,,,2”(2"—1)]}1,.
[

Plan), .., Flagn-s)] Ka(bi, b2, d)

(2" = 1)] Ka(by,cib5,d).
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From Lemma 2.7, for Ky (b1, ¢; by, d), there exists a non-singular 2" x 2"~
matrix IT such that

Ka(bi, b, d) = [ Hacg Hooa (<1)Haca (<1)V4Hos |

T exchanges columns of Ko(by, ¢;by,d). Hence,

[fjm= I[ Haz Haca (~1)Haoa (-1)Ha |

=[G ¢ (-1)vG (-6,

0
%

Since |G(w)| = 28" for every w € {0,1}"%, £ : {0,1}" = {~1,1} and,
from Theorem 2.5, f satisfies the PC with respect to Va — {by, bz, bs}.
a

From Theorem 2.6 and 2.7, it is obvious that the algorithm below
generates all Boolean functions in B,, that satisfy the PC with respect
to all but three nonzero vectors and that is not perfectly nonlinear from
all Boolean functions in PC,_3(n — 2) for even n > 4.

Algorithm 2.2
input p € PCyg(n —2), by, by € V,, for even n > 4.

output fo), fio), f1,0 f1,1) € Bn that satisfy the PC with respect
t0 Vi = {ba, b, by @ by}

procedure
1. Let (c,d) € {0,1) and of?, ..., a{%% € {0,1}" such that
0 < dec(a{™) < -+ < dec(als?)) < 2° - 1,
and, for every i such that 1 < i € 2"2,

bi-ol = c, byoal) < d,
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2. Let

a n/241500 (ed)
Fea ={2 p(i-1) ifw=af

0 otherwise,
where Fiog) = W(Jica)-

; 1 15

3. Let [fien] = o [Fcw) Hae

a

For Algorithm 2.2, F.4(0) = 0 only if (¢, d) # (0,0). Thus, foa) is
balanced if (c,d) # (0,0) and not balanced otherwise.

The following corollary presents the relationship between the num-
ber of balanced Boolean functions satisfying the PC with respect to
all but three elements in V, and that of perfectly nonlinear Boolean
functions in B,_p.

Corollary 2.11 Let n > 4 be even. The number of balanced Boolean
fanctions in B, satisfying the PC with respect to all but three elemems
in Vs 901 Cz [PCpa(n — 2)]-

2.4.3 Examples

This section gives examples of Algorithm 2.1 and Algorithm2.2.

Example 2.3 Two Boolean functions in Bs are constructed that sat-
isfy the PC with respect to all but one nonzero vectors.
Let p € PCy(4) be

P21, 32,73, 74) = 2172 © T3T4.

Let b= (0,1,1,1,1).
The elements w's in {0,1}° that satisfy b+w = 0 are

0,1,6,7,10,11,12,13,18,19, 20,21, 24, 25,30, 31,

where each of the numbers represents dec(w). Thus,

[£)] = 10,0,8,88-8,0,0,8,8,0,0,0,0,8,—8,
8,8,0,0,0,0,8,-8,0,0,~8, -8, -8,8,0,0].
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: 1

[f] = [

= [1L1,4,-1,1,-1,1,1,1,1,-1,1,1,-1,-1,-1,

1,1,-1,1,1, B S Tt e P e Be P

The algebraic normal form of fo is

Jo(@1y 0, 75) = 2122 © 2123 © 2974 D T2T5 D T4Ts.
f1 can be generated in the same way as the above.

fi@n.,25) = £2© 5122 @ 1173 B ToT4 © 1925 D TaTs

= 228 fo(zn,.,s)-

The truth tables of fo and fy are shown in Figure 2.1 fo is balanced,
while f, is not balanced. fo, fy € PCs(3) since they satisfy the PC with
respect to Vs — {(0,1,1,1,1)}. For b=(0,1,1,1,1),

folz)® folz®b) = 1,

flz)@ filz@b) = 0.

o

Example 2.4 Four Boolean functions in Bg are constructed that sat-
isfy the PC with respect to all but three nonzero vectors.
Let p € PCy(4) be

P21, 22,25, 24) = 2122 @ 2324,

Let b, = (1,1,1,1,0,0), b, = (0,0,1,1,1,1) and b3 = (1,1,0,0,1,1).
The elements w's in {0,1}° that satisfy by -w = by -w = by -w = 0
are

0,3,12,15,21, 22, 25, 26,37, 38, 41,42, 48, 51, 60, 63,

where each of the numbers represents dec(w). Thus,

[Fow] = 116,0,0,16,0,0,0,0,0,0,0,0,16,0,0,-16,
0,0,0,0,0,16,16,0,0,16,~16,0,0,0,0,0,
0,0,0,0,0,16,16,0,0,16,~16,0,0,0,0,0,
~16,0,0,~16,0,0,0,0,0,0,0,0,~16,0,0,16].
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(f] = 5 [Fuo) He
= [,-1,1,-1,-1,-1,1,1,1,1,-1,-1,-1,1,-1,1,
1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,
1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,
-1,1,-1,1,1,1,-1,-1,-1,-1,1,1,1,-1,1,-1].

The algebraic normal form of fo,) is

foo(@126) = 21823 0123 © 2303 © 2124 D 2924 &
2125 D 2325 D 2176 D 36 D TsTo.

flony fo) and fu,1) can be generated in the same way as the above.

fon(@1,-00026) = 2123 © 223 B 2124 D 2274 B 1175 B
2375 © 2126 © T3Te  TsTe
218 23 ® flo0)(21,- -+ T6)-
3@ 2173 © T273 © 0174 B 2274 B 2175 B
2325 B 7176 D TaZ¢ D TsTe

= 1@ fog(en - 3)
fan(@n.. %) = 2182123 @ 0273 © 7174 © 2274 B 0125 S
325 @ 2176 B T3T6 D T5T6
238 foo(@n, -+, T6).

faoz, - )

u

fwa) fa0) and fo1) are balanced, while fg0) is not balanced. The
truth table of fi1) is presented in Figure 2.2. fwo), fo1), fa00 faun)
€ PCq(3) since they satisfy the PC with respect to Vi — {b1, ba, bs} and
the Hamming weights of by, by, by are all 4. Table 2.1 shows the values
of fiey,e1)(2) @ fier,en)( B b;) for (e, ¢2) € {0,1)? and i = 1,2,3. a
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Fe*s%6
xxxN 00 001 Ol 010 110 11 101 100

™ ’ 1 ‘ 1

001 1|1 1 1 1 1

o | 1 101 |1

010 1 1 1|1
| 1 1
mor |1 1 1 1|1
101 1 1 1 1
00 | 1 11 |1

Figure 2.2: Truth table of fi;)
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2.5 Boolean Functions Satisfying the PC
of Degree n — 2

2.5.1 Boolean Functions with an Even Number
of Variables
In this section, it is proved that, for every even n > 4, PCo(n — 2) =
PCy(n).
First, we present a simple lemma. For u € {0,1}*" and a € {0,1}",
let [u], denote the (dec(a) + 1)-th element of u.

Lemma 2.8 Letn > 2andby,..., by, bas1 € {0,1}". Letb; = (1,...,1,0
+1,...,1) for every i such that 1 < i < n and byyy = (1,...,1). For
Upprers Uiy and @ = (au, .., an) € {0,1}",

o if W(a) is even, then

[Vnsio =1,

[ 1ita=0
[”“-]"’{ -1 ife;=1,

« if W(a) is odd, then

(Wb ] = -1,

Table 2.1: The value of f(¢, ,)(2) & fie,.c0)(z @ bi)

by [ by [ by
foo [0 0[O0
Joy [O[T]T
foo [T[0[T
fon [1]1]0
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[ve

[ 1ifa=1
11 ifa=0,

(Proof) This lemma can be proved from the fact that,

[hslo = (1780,
and, for each i such that 1 <i < n,

[oh]a = (—1)@- 0B E-tan

Theorem 2.8 For every even n > 4, PCy(n — 2) = PC,(n).

(Proof) Let b; = (1,...,1,0,1,...,1) € {0,1}" for every i such that 1 <
i < nand by = (1,...,1) € {0,1}". Suppose that f € PCy(n — 2).
Then, Cy(a) = 0 for every a € {0,1}" such that 1 < W(a) < n—2.
Thus, s able to be represented as

[£7] = C10)n™ + Cybr)on + -+ + Crba)os, ™ + Cylbasa)va, ™

up = 1" and u; = (voT + v, T)/2 for every 1 < i < n+ 1. Then,
can be represented as

[#7] = couo + crus + -+ + capitings,
where

C1(0) = (Cy(br) + -+ + Cy(bas)),
20;(b).

From Lemma 2.8, for any odd s such that 1 < s < nand iy, .., i, such
that 0 iy <+ <i, n—1,

P2 = a0+ Y,
= =
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and, for any even ¢ such that 1 < t < n and ji, ..., Jj; such that 0 <
hi<e<iign-l,

.
(Y 2

=
Thus, for every pair of odd integers s and ¢ such that 1 < s,¢ <

nand s+t < nandiy,...,i, and ji,...,j such that {i),...,5,} N
{yeerd) =8 and 0 iy < +ov <, < nl and 0 € fy < 49 i §
n

=cotet =Y G
=

F0) + F’(z 2i) 4 FA( 22" + 22“ +22"

= 4o+ 2(c, +- +Cn+1)
2

Since n+2 is even, from Lemma 2.1, 2.5, 2.6, all of £2(0), F*(3 2%),
=

. . .
FA(302%), F3(3 2 + 3 2%) are equal to 2%, or only one of them is

= (=1 =
equal to 2"*? and the others are equal to 0.
In the former case, f is perfectly nonlineas
In the latter case, if £2(0) = 22, then F|
which contradicts that Y~ F?(w) = 2",
. we(ony
1f F2(0) = o+ ¢y + -+« + Cays = 0, then c = 2**1. For this case,
F(1,0,...,0) + £%(0,1,0,....,0) + F*(1,1,0,...,0)
(o +c1) + (co+ca) + (cot s+ o+ Cugr)

= 20t (cterttenn)
= g,

=0 for every w # 0,

From Lemma 2.1, 2.5, and ¢ = 2**1, there are following three cases:
Cla=2"a=-2"aq+g+ - +cnu=0

c2a

=2 e =2 g tost et =0,

C3 =2, =

"L Cp Oy oo et Cogy = 22
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For C-1. Since
F2(0,0,1,0,...,0) + £2(0,0,0,1,0,...,0) + £*(1,1,1,1,0,...,0)
= (co+cs)+(cotca) +(cotcstoe+cnsr)
= 2+ (co+cs+ e+ Cas1)

gn+2

the same argument as the above one shows that

C-11. 5 =2, ¢

" ot o5+t Capn = 0.

C1.2. c5==2"*1, ¢y = 2", co+ c5 4+ + Cup = 0.
C13. eg= =2"*), ¢y = =2, o+ 5+ - + Caga = 272,

For C-1.1, 1.2 and 1.3, the following three equations can be derived,
respectively,

F*(1,0,1,0,0,...,0) = co+ €1+ + Capa — (€1 + &3) = =2*+2,

F2(1,0,0,1,0,...,0) = co+¢1 ++++ + g1 — (€1 + ¢4) = =22,

F2(0,1,1,1,0,...,0) = co + e + ¢ + ¢4 = =277,

which are contradictions.
For C-2, This case can be proved in the same way as C-1.
For C-3. Since co + 3 ++++ + g1 = 2°2,
£%(0,0,1,0,...,0) + £%(0,0,0,1,0,...,0) + *(1,1,1,1,0,...,0)
= (cotes)+(cotes)+(cotes+e e +casr)

= 2+ (et tcasn)
o,

From Lemma 2.1, 2.5, there are following three cases:

C3L ey = 2", ¢y = =2, o+ 05+ + Cunt

ona,

C3.2 ¢5

e =2 et et tan = 27,
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C33. 0y = 2%, ¢ = 2, c+ g+ oo Can

0.

For C-3.1, 3.2 and 3.3, the following three equations can be derived,
respectively,

F2(1,1,0,1,0,...,0) = co + ¢ + ¢z + ¢4 = —2"*2,

FY1,1,1,0,0,...,0) = co + &1 + ¢+ 3 = =27,

F2(0,0,1,1,0,...,0) = co+ €1 + -+ + a1 — (c3 + €) = —2"*2,
which are contradictions. Hence, the theorem has been proved. O

Since perfectly nonlinear Boolean functions are not balanced, the
following corollary can be derived. It presents an upper bound of the
degree of the PC of balanced Boolean functions with an even number
of inputs.

Corollary 2.12 For every even n > 4, the degree of the PC of balanced
Boolean functions s less than n — 2. o

As for the lower bound, the following has been proved.

Proposition 2.8 [S2293] Let n > 4 be even. Suppose that n = 3t +c,
where ¢ = 0,1, or 2. Then, there exist balanced Boolean functions in
B, that satisfy the PC of degree 2¢— 1 when ¢ = 0,1 or 2t when ¢ = 2.

o

Table 2.2 shows the bounds of the degree of the PC of balanced
Boolean functions. The bounds are tight for n = 4,6.

2.5.2 Boolean Functions with an Odd Number of
Variables

In this section, it is shown that, for every odd n > 3, every f € PCy(n—
2) satisfies the PC with respect to all but one elements in V..
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Table 2.2: Bounds of the degree of the PC of balanced Boolean func-
tions

[mumber of variables [ 4 [6 [8 [ 10 [12 [ 14 [ 16 [18 [ 20 [ 22 [24]
[[upper bound [i3]s] 7] 9[u[13]15]17[19]21]
[Tower bound 32 5[ 7 8l o 12[13]15]

Lemma 2.9 Let z,y,z > 0 be integers and m > 0 be an even integer.
P+ +22=3-2"ifand onlyif s =y =z = 2"/2,

(Proof) z,y, z can be represented as
=29,y =27, 2 = 2%,

where ey, ea, e3 > 0, and each of ¢1,g2,gs is 0 or odd.

(i) If we assume that y =
that z is an integer.

=0, then 2% = 3 2™, which contradicts

(i) Suppose that = # 0, y # 0, z = 0. Then, 221, 4 2214,2 = 3.2™
Since, without loss of generality, we can assume that e > 1 3 0,

g1 4 22,2 = 3 gt

I &) = e, then 2 + g7 is a multiple of 2 but not of 4. This implies
that m — 2¢; = 1, which contradicts that m is even.

If ) < e, then the left-hand side is odd and m — 2, = 0. Thus,
@2 422-6)g)2 = 3, which implies that 2(e;—e;) = 1. This contradicts
that e, and e; are integers.

(iii) Suppose that none of z,y,z is 0. Without loss of generality, we
may assume that 0 < e; < €; < €3.
g 4 gt 4 g = 32
? 4 Plamalg? 4 el _ 3.gmete
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If we assume that ¢ # ¢ and e # e, or e
left-hand side is odd. This implies that m — 2,

e = e, then the
and

g2+ 2ama)g,2 4 9oy

Since g1, q2,05 2 L, er =€z =es=m/2and g =gy =g = 1.
If we assume that e, = e, and e; # €3, then g, + 2 = 3-2m~%1 —
22es=e1)gy2, Since g% + g;? is a multiple of 2 but not of 4, m — 2¢; = 1
or 2(es — €) = 1. This situation cannot occur because m is even.
Hence, the lemma has been proved. o
Theorem 2.9 For every odd n > 3, if f € PCy(n — 2), then, for some
b€ {0,1}" such that W(b) > n — 1, f satisfies the PC with respect to
Vi - {8}
(Proof) Suppose that f € PCy(n — 2). Then, Cy(a)
a € {0,1}" whose Hamming weight is at most n.— 2
represented as

0 for every
2] is able to be

[£7] = couo + cxs + -+ + Caprtnsn,
where, for every 1 <i < n+1,

U = 'UDTy

uo= (v + )2,

e = Cy(0) = (Cybr) + - + Cy(basr)),
2C4(by).

Hence, from Lemma 2.8, for every i, j such that 0 < i,j < n—1

and i # j,

F2) =+,

P2+ ) =cot e+ Cupr = (Ciaa + ¢ja1)-
Thus, for every i, j such that 0 < i,j < n—1and i #j,

F20) + FA(2') + FX(2) + F2(2 + )

= dao+2(ci+ -+ cna)
ez,
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Since n + 2 is odd, from Lemma 2.1, 2.5, 2.6, two of F2(0), F2(27),
F2(27) and FX(2' + 2/) are equal to 0, and two of them are equal to
1

I F2(0) = o + 1+ +++ + cags = 0, then ¢ = 2"*. For every i, j
such that 0 < i, € n— 1 and 1 7, sinco

B2 + P(2) + (2 + 7))
= 20+ (cterttcan)
g

each of F2(2%), F3(2/) and F2(2 + 2/) is equal to 0 or 2"*'. Thus,
each of ¢y, ..., ¢, is equal to 0 or =271, Since, for every i, j such that
0<ij<n—landi#j,

FY 2 4 2) = —(cina +¢ja1)

is equal to 0 or 2**1, at most only one of ¢y, ..., ¢, is equal to =27+,
and the others are equal to 0. If one of ¢y,...,c, is equal to =2+,
then ont = 0, otherwise, cu41 = —2"*, because cp = 2™+ and co +
¢+ ++++ caps = 0. Hence, one of cy,...,Coy1 is equal to —2"*! and
the others are equal to 0.

HF0)=cot e+ + Cag1 = 2"+, then ¢ = 0. Thus, for every
i such that 0 < i < n— 1, F3(2') = ci41, and ¢4, s equal to 0 or 271,
Since, for every i, j such that 0 < i,j Sn—1and i # j,

P2+ 2) = 2" — (e + ),
at most one of ¢y, ..., ¢y is 21, If one of cy, .., ¢ is equal to 2**,
then co4r = 0, otherwise, coq1 = 2*), because co = 0 and co + ¢; +
oty = 2

From the above discussion, there exist some i such that 1 < i < n+1
and Cy(a) = 0 for every a € V, — {b}. Hence, f satisfes the PC wlth
respect to all but one elements in V..

The following corollaries can be derived from the above two theo-
rems.

Corollary 2.13 For every odd n > 3,
[PCu(n = 2)| = 2(n +1)|PCocs (n — 1)},
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and the number of balanced Boolean functions in PCy(n — 2) is
(n+1)[PCass(n = 1)

(Proof) There exist n + 1 elements in V, whose Hamming weight is
at least n — 1. For each b € V,,, there exist 2[PC,_3(n — 1)| Boolean

functions that satisfy the PC with respect to V, — {b}, and half of them
are balanced. a

Corollary 2.14 For every odd n > 3, the nonlinearity of Boolean
functions in PCy(n — 2) is 2"~1 — 2(=1/2, o

2.6 Relationships Between the PC and
the SAC

This section presents some relationships between PC, (k) and SAC, (m).
Rothaus[Rot76] presented a few methods for constructing Boolean
bent functions. One of them gives Boolean bent functions of the form

f(z1, 1 20) = D ziZmsi ® 9(21, -, Tm),

where n = 2m and ¢ is an arbitrary Boolean function with m variables.
It is apparent, from definitions of the SAC and the PC, that Boolean
functions satisfying the PC of degree 1 also satisfy the SAC of order 0.
We show the relationships between SAC,(1) and PCy(k).
The following theorem shows that perfectly nonlinear Boolean func-
tions do not necessarily satisfy the SAC of order 1.

Theorem 2.10 For every even n 3> 2, PCy(n) € SAC,(1).
(Proof) Let n = 2m and

i) = Daitm.
i
Then f € PC,(n), and

Flenei(@1r-- - 50) = D 218 2m
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Thus,
flew=a(@1, s 200)®

flaam1(@nre e Tty T © L Tty oy Tnc) = 1.

This implies that f & SAC,(1). o

The following theorem shows that, for every odd n > 3, all the
Boolean functions with n variables satisfying the PC of degree n — 1
satisfy the SAC of order 1, while those satisfying the PC of degree n—2
necessarily not. We prove the theorem by using the following lemma.

Lemma 2.10 [For90] For any f € B,, f € SAC,(1) if and only if,
1 €SAC,(0) and
Y FwFwea(-1)%=0
wefo,1)”

for every a € {0,1)" whose Hamming weight is 1 and every i such that
the i-th bit of a is 0.

Theorem 2.11 For every odd n > 3,

1. PC,(n— 1) C SAC,(1),

2. PC,(n - 2) € SAC,(1).
(Proof) 1. Suppose that f € PCy(n—1). It is clear from the definition
that £ € SAC,(0). If n is odd, then F(w) = 0 either for every w €
{0,1)" whose Hamming weight is even or for every w € {0,1)" whose
Hamming weight is odd. For any a € {0,1)" whose Hamming weight

is 1, F(w) = 0 or Fw®a) =0, because the Hamming weight of either
worw®ais odd. Thus,

3 Fw)Fwea)(-1)%

wefon)”

which implies that f € SAC(1).
2. Let m = (n—1)/2 and p € By such that

P21, Tom) = T1%2m D T2T2mo1 D+ D TmZmr
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For b = (0,1,...,1) € {0,1)" and an,..., a1 € {0,1}" such that
0 < dec(ay) < -+ < dec(agn-1) € 2"~ 1and b-a; = Lfor1 < i < 2",
let

2#0/2(i — 1) fw=a;
otherwise.

Fw)= {

Let f = W™I(F). Then, f € PCy(n—2), because f € B, and f satisfies
the PC with respect to V, — {5} from Theorem 2.4.
Since

PO, 22, -, T2m) ® P(L, T2y 1 Tam) = Tam
and

b (0w, yw) = be (Lwn, .
fora = (1,0,...,0) € {0,1)",

Flag-1)F(agj-®a) = Flag- n)’(az,)
P

wn),

w23
The n- th bxc of a; is equa.l to 0 for i = 2"2 and equal to 1 for
i= 2
Z F)Fwea)(-1)n = 2712m 24 (-2")(-1)2"?
we{o,1)"
= 2%,
This implies that f ¢ SAC,(1). o

Example 2.5 We present an example of Boolean functions in B,, that
satisfy the PC of degree n—2 and that do not satisfy the SAC of order
1

Let n = 5. Let p € PCy(4) such that
(21,32, 83,24) = 0124 © 2973,

and b = (0,1,1,1,1). Let F(w,...,ws) be defined as in the proof of
Theorem 2.11. Table 2.3 shows the F(ws, .. ,ws).
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Table 2.3: F of Example 2.5

cowwwwoowwooooww

wyws) | F

ws,

Jsdsisdsdsdsdedsd
3
tfewococcocwwocwwwwoo

(wi, wa, ws, wa, ws)
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F(@1e 0 25) = 22 @ 2122 © 2975 B 2974 © T334 B 7125,

f € PCy(3) because f satisfies the PC with respect to Vs—{(0,1,1,1,1)}.

Let

F(1, 22,23, 20,05) = 2923 D 1274 ® 2374 D 75
at

= g(z2,23,24,75)-

Then,

9(2,23,24,25) © 9(22, 23, 24,25 © 1

and g does not satisfy the SAC. Thus, f ¢ SACs(1). o

The following theorem shows that, for every odd n > 3, Boolean
functions with n variables satisfying the PC of degree n — 1 do not
necessarily satisfy the SAC of order 2. The proof of this theorem uses
the following lemma.

Lemma 2.11 [For90] For any f € B,, f € SAC,(2) if and only if
f €SAC,(1) and

Y F)Fwea)(-1)

we{o1)"

for every a € {0,1}" whose Hamming weight is 2 and every i such thal
the i-th bit of a is 0.
Theorem 2.12 For every odd n > 3, PCy(n — 1) € SAC,(2).

(Proof) If n = 3, then PCsy(2) # ¢ and SAC:(2) = 5.
Forn > 5, let m = (n — 1)/2 and p € By such that

P21, 1 T2m) = 2120 @ T2Tam1 @ -+ D T

For ay,...,az-1 € {0,1}" such that 0 < dec(a) < ++- < dec(agn-1) <
2" — 1 and the Hamming weights of them are odd,

Plo)= 2("“'/z Bi-1) fw=a
otherwise.
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Let f = W™'(F). Then, f € PCa(n—1), because f € B, and f satisfies
the PC with respect to V, — {(1,...,1)} from Theorem 2.4.
Since
P(0,22,+ - 22m) B (L, 22, T2m) = Tam
and
W((0,0,ws,..,wn))
W((0,1,w,...,wa))
fora=(1,1,0,...,0) € {0,1}",
Flagj1)Flagjo ®a) = Flagj-1)F(az;)
T
-2 F= g, 2%

W((L,L,ws,...,w)),
W((1,0,ws,...,wn))s

The n-th bit of a; is equal to 0 for i =
i=2"241,...,2"". Thus,

Y FwFwea)(-1) = 2vin? 4 (—2nH)(—1)20?
wef{o1)”

..,2"? and equal to 1 for

= o
This implies that f ¢ SAC,(2). o

Example 2.6 We give an example of Boolean functions in B, that
satisfy the PC of degree n — 1 and that do not satisfy the SAC of order
2.

Let n = 5. Let p € PCy(4) such that

P21, 22,23, 24) = 2124 © T773.

Let F(wy,...,ws) be defined as in the proof of Theorem 2.12. Table
2.4 shows the F(uwy, ..., ws).

(@1, 0025) = 21 © 2122 @ 173 © 174 © 2374 © 2175 D T2

f € PCy(4) because f satisfies the PC with respect to Vs—{(1,1,1,1,1)}.
Let

£(0,1,23,24,5) = 2324 © 25 (33, 24,25).
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Table 2.4: F of Example 2.6

F

woccwcwscomwmowoow

F | (w1, w, w3, w4, ws)

(w3, wa, w3, we, ws)
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Then,

9(3,24,25) @ 9(3, 24,75 D 1)

and g does not satisfy the SAC. Thus, f ¢ SACs(2). o
Lemma 2.12 [PLLGV91] Let n > 3 and f € B,. Suppose that the
nonlinear order of f is 2. f satisfies the SAC of order m such that

0<m < n—2if and only if every variable z; occurs in at least (m +1)
second order terms of the algebraic normal form of f. a

It is obvious that SAC,(n—3) G SAC,(0) = PCy(1). It is implicitly
described in [PLLGV91] that SAC,(n—2) G PCa(n—1). For SAC,(n—
3) and PC,(2), the following theorem holds.

Theorem 2.13 SAC,(n — 3) & PC,(2) for every n > 3.
(Proof) Let

day ez = D s
1gicjSnign-2

It is sufficient to show that g ¢ PC,(2) because g € SACy(n — 3) from
Lemma 2.12. Since

gz = D 22,0 @ nEa-107),
1€i<jgn-2 1€k<n=2

fora=(0,...,0,1,1),

(@1, 20) B 9(21 D @y, .., Ta D ag) =0,
Hence, g ¢ PC,(2) o
Figure 2.3 and 2.4 show the relationships between the PC and the

SAC. In the two figures, if a directed path exists from the set A to the
set B, then the set A contains the set B.
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PCn (1) SACn (0)
Pc,i. @ SACa (1)

PCn (n-3) SACn (n-4)

PCn in-z) SAChn (n-3)

PCn {n-l) SACn (n-2)
PCn (n)

Figure 2.3: Relationships between the PC and the SAC (n is even)
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PCn (1)

SACn (0)

PCn (2) SACn (1)

PCn (n-3) SACn (n-4)

PCn (n-2) SACn (n-3)
|

PCn (n-1) SACn (n-2)

Figure 2.4: Relationships between the PC and the SAC (n is odd)
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2.7 Conclusion

This chapter discussed the properties of nonlinearity criteria and the
relationships among them. It focused on the PC, the SAC, and the
nonlinearity.

First, we discussed Boolean functions with n variables satisfying the
PC with respect to all but one elements in V,, and those satisfying the
PC with respect to all but linearly independent elements in V.. Second,
we discussed the construction of Boolean functions satisfying the PC
with respect to all but one or all but three elements in V,,. Third, we
showed that the Boolean functions with n variables satisfying the PC
of degree n — 2 are perfectly nonlinear for every even n > 4, and that
they satisfy the PC with respect to all but one elements in V, for every
odd n > 3. Finally, Some relationships were presented between the PC
and the SAC. Different relationships were proved between for Boolean
functions with an even number of variables and for those with an odd
number of variables.



Chapter 3

Complexity of Boolean
Functions Satisfying the PC

3.1 Introduction

In this chapter, complexity of Boolean functions satisfying the PC is
discussed on several computation models.

First, some relationships are presented between the unateness and
the degree of the PC. It is shown that, for n > 4, every Boolean function
with n variables satisfying the PC of degree 1 is unate in at most
two of its variables and that, for n > 4, there exist Boolean functions
with n variables that satisfy the PC of degree 1 and that are unate in
two of their variables. The proof of the latter implies the method of
construction for such functions. It is also shown that every Boolean
function satisfying the PC of degree 2 is not unate in any one of its
variables.

Second, inversion complexity of perfectly nonlinear Boolean func-
tions is discussed. The optimal lower bound [logn] — 1 is obtained for
every perfectly nonlinear Boolean function with n variables constructed
by the method of Maiorana[Rue91].

‘Third, it is mentioned that the formula size of every Boolean func-
tion with n variables which satisfies the PC of degree 1 is at least
n?/4 — 1. This lower bound is almost optimal for every perfectly non-
linear Boolean function.

65
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Fourth, the area-time-square(AT?) VLSI complexity[UlI84] of per-
fectly nonlinear Boolean functions with multiple outputs is discussed.
The main result of this topic is that, for every perfectly nonlinear
Boolean function with n inputs and n/2 outputs, each of whose output
functions is constructed by the method of Maiorana, AT? complexity
of any VLSI implementation is Q(n?).

Finally, the size of ordered binary decision diagrams(OBDDs)[Bry86]
is considered. A relationship is presented between a combinatorial prob-
lem and the OBDD size of perfectly nonlinear Boolean functions in a
subset of those each of whose output functions is constructed by the
method of Maiorana. It is also mentioned that, for any variable order-
ing and for every perfectly nonlinear Boolean function with n inputs
and n/2 outputs constructed by the method of Nyberg[Nyb91], there
exist some output function of the perfectly nonlinear Boolean function
such that the OBDD size of the output function is exponential in the
number of its inputs.

Computation models considered in this chapter is presented in Sec-
tion 3.2. Section 3.3 discusses perfectly nonlinear Boolean functions
with multiple outputs. The unateness and the inversion complexity are
discussed in Section 3.4. Section 3.5 mentions the formula size. The
AT? complexity of VLSI circuits and the OBDD size are considered in
Section 3.6 and Section 3.7, respectively.

3.2 Computation Models

3.2.1 Combinational Circuits and Formulae

A combinational circuit is defined as an acyclic directed graph whose
nodes correspond to the gates, the input terminals or the output ter-
minals of the circuit and whose edges correspond to the wires of the
circuit. A basis is a set of operations of gates constructing combina-
tional circuits, where a operation of each gate is a Boolean function
with a single output.

A combinational circuit on a basis B is an acyclic directed graph
with the following properties:

1. Nodes with fan-in(the number of incoming edges) zero are input
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nodes. Either an input variable or a constant is assigned to each
input node.

o

Nodes with fan-out(the number of leaving edges) zero and fan-in
one are output nodes. An output variable is assigned to each
output node.

@

The other nodes are computation nodes. A k-input function in B
labels a computation node with fan-in k. The incoming edges of
a computation node are numbered. If the output of the function
labeling a computation node does not depend on the numbering
of the inputs, we may withdraw the numbering of the incoming
edges of the node.

A combinational circuit on a basis B is called a B-circuit.

The fan-in and the fan-out of a circuit are the maximum fan-in
and the maximum fan-out of the computation nodes in the circuit,
respectively.

A formula is defined to be a circuit whose fan-out is one.

A Boolean function f € B, can be computed by a combinational
circuit C if C has exactly or more than n input nodes and there is a
many-to-one correspondence between z,.. ., 7,,0,1 and input nodes,
C has exactly m output nodes and there is a one-to-one correspondence
between i, ...,Ym and output nodes, and, for every (zy,...,z,) €
0,1)", (v, L

A basis B is complete if all the Boolean functions can be computed
by circuits on the basis B. For example, {V,A, =} is a complete basis,
while {V,A} is not complete.

Ym b T

3.2.2 VLSI Circuits

The grid model[Ull84] is adopted for VLSI circuits.

In the grid model, a rectangular grid is assumed. Wires run along
the grid lines. The spacing of grid lines can be viewed as the minimum
rtepetition rate at which wires on a certain layer can run and it is a
fixed constant. There are one or more layers and the number of them
is some fixed constant. Each layer has at most one wire on every grid
line.
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Circuit elements, such as input/output pads, contacts, logic ele-
ments and so on are located on the grid points. Two or more inputs or
outputs can be fed to one input pad or one output pad, respectively.
Wires that meet a grid point occupied by a circuit element are inputs
or outputs of the element. If more wires are needed by a circuit element
than can connect to a single grid point, the circuit element may be rep-
resented by a rectangle covering as many grid points as needed. The
fan-in of a circuit element is assumed to be limited by a fixed constant,
while the fan-out of a circuit element unbounded. It is also assumed
that wires carry signals in only one direction.

All the circuits are assumed to be convex and the area of a circuit
is defined to be that of the smallest rectangle whose sides are on grid
lines and which covers the circuit.

The unit of time is defined. Each input/output appear on some
input/output pad during a unit of time and signals propagate on wires
in a unit of time. The computation time of a circuit is defined to be the
number of units of time between the first input and the last output.

3.2.3 Ordered Binary Decision Diagrams

A binary decision diagram(BDD) is an acyclic directed graph that has
one source node and two sink nodes. Each node except two sink nodes
are labeled by an input variable and has two outgoing edges which are
labeled by 0 and 1, respectively. Two sink nodes are labeled by 0 and 1,
respectively. For each input variable that occurs as a label in a BDD, it
appears at most once on each path from a source node to a sink node.

A BDD represents a Boolean function f(zy,...,z,) € B, if, for
every (by,..,ba) € {0,1)", the path from the source node tracing each
edge outgoing from z; and labeled by b, leads to the sink node labeled
by f(biy-..,ba).

An ordered binary decision diagram(OBDD) is a BDD in which the
order of the occurrence of the variables on each path are determined
by a total ordering of the variables. If a variable z; precedes a variable
z; in the total ordering, then z; appears before z; on every path that
contains 7, and z;.
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3.2.4 Notations

When the computational complexity of Boolean functions is discussed,
not each definite function but sequences of functions { fy | fa € By for n €
N} are treated. The asymptotic behavior of the complexity of {f | fa €
Bym for n € N} is considered.

Definition 3.1 Let p: N — R and ¢ : N — R such that p(n) > 0
and g(n) > 0 for large n.

o If there exist some constant ¢ > 0 and . > 0 such that p(n)/q(n) <
¢ for every n > n,, then p = O(g).

o If, for any constant € > 0, there exists some constant n, > 0 such
that p(n)/q(n) < & for every n.> n, then p = o{q).

o Ifthere exist some constant ¢ > 0 and ne > Osuch that g(n)/p(n) <
¢ for every n > n, then p = Q(g).

o If, for any constant & > 0, there exists some constant n, > 0 such
that g(n)/p(n) < ¢ for every n > n,, then p = w(g).

o Ifp = O(g) and ¢ = O(p), then p = O(q).
o

3.3 Perfectly Nonlinear Boolean Functions
with Multiple Outputs

The definition of perfectly nonlinear Boolean functions can be extended
to those with multiple outputs.

Definition 3.2 [Nyb91] f € Bnyn is perfectly nonlinear if and only
if, for every a € Vy, f(z) ® f(z ® a) is balanced, that is, for every
be {0,1}",

I{z € {0,1}"|f(2) @ f(z @ a) = b} = 2™
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Nyberg [NybO1] presented a necessary and sufficient condition for
perfect nonlinearity.

Proposition 3.1 [Nybol]
ear if and only if, for every ¢

, fm) € Bum is perfectly nonlin-
n) € Vm,

cf=ci@ - @cnfm
is perfectly nonlinear. o

It is obvious from Proposition 3.1 that n is even if f € By is per-
fectly nonlinear. The following proposition presents the upper bound
of the number of outputs,

Proposition 3.2 [Nyb01) If f = (fi, .., fm) € By is perfectly non-
linear, then m < n/2. o

Perfectly nonlinear Boolean functions exist in B, /2. The upper bound
in the above proposition is optimal.

A method of construction of perfectly nonlinear Boolean functions
was presented by Maiorana [Rue91]. Let g € B, be any Boolean func-
tion and 7 € Biy be any permutation. Then, f € By represented
as

f(z,y) =7(z) -y @ g(z)

is perfectly nonlinear, where z = (zy,...,2:) and y = (1,.. ., ).

Proposition 3.3 Let n = 2k. Let f = (fi,...,fm) € Bam and, for
every i such that 1 < i < m, f; is represented as

fi(z,y) = mi(2) -y ® (=),

where 7 € By is a permutation and g; € By. Then, f is perfectly
noulinear if and only if, for every ¢ = (ci, . ,cm) € Viny

am @ D cmTm

is a permutation.
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(Proof) Since

e f(z,y)
= afi(z,9)® - ©cnfulz,y)

a(m(@) ¥©0(2) & & cn(Tn(z) ¥ & gm(z))
= (am(2)® - @ cnTn(z)) ¥y ® (101(2) © - & cmgm(2)),

for every ¢ = (ci,..-,¢n) € Viny i 171 @ =+ ® CmTm € Byy is @
permutation, then c- f is perfectly nonlinear.

If f is perfectly nonlinear, then, for every ¢ = (c1,...,cn) € Vi,
c- f is perfectly nonlinear. If c- f is perfectly nonlinear, then

c-fzp)@c-f(z,yob)
= @eafizy) e Pekilzyob)
= =

- estenvascyon

= @(C.(m(z) Y@ 0:(z)) @ (mi(z) - (v @) @ (=)
= (Cm(f) © o Demn(2)) b

is balanced for every b € Vi. Thus, ¢,y @+ ® cm is a permutation
for every ¢ = (¢1,...,¢n) € V. This completes the proof. o

Let n = 2k and m < k. Let

f=(fi,-.»fm) € PCy(n) and, for each i
Pum = { f| such that 1 <i <m, fi(z,y) = m(z) -y @ gi(),
For simplicity, Py = Py,

where 7, € By is a permutation and g; € By.

3.4 Unateness and Inversion Complexity

3.4.1 Unateness
We begin by defining the unate functions[Koh78].
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Figure 3.1: Boolean functions in PCy(2)

Definition 3.3 A Boolean function f(zi,...,,) € B, is said to be
positive(negative) in a variable z; if there exists a disjunctive expression
of f in which z, appears in uncomplemented(complemented) form. If
£ is positive(negative) in all of its variables, then f is simply said to be
positive(negative). o

Definition 3.4 A Boolean function f(z1,...,2,) € B, is said to be
unate in a variable z; if f is positive or negative in z,. If f is unate in
all of its variables, then f is simply said to be unate.

For example, f(z1, 3, 23) = 21 2 V 7773 is unate in 7, and z3 and
not unate in z;.
Proposition 3.4 Let f € B, f(21,...,2,) is positive in z; if and
only if flz=o < 1. o

Proposition 3.5 Let f € B, f(z1,...,,) is negative in z; if and
only if fleymo > fI. o

Figure 3.1 and 3.2 give all Boolean functions in PCy(2) and PCy(2),
respectively. From these figures, it is easily observed that both PCy(2)
and PCs(2) contain unate functions.

Suppose that f(zy,...,z,) € B, is unate in z,. Then, for every
(a1,++sau-1) € {0,1}"7", f(ay,...,an-1,0) = 0if f(as,...,Qp-1,1) =
Oor f(ay,...,an-1,1) = 0if f(ay, ...,an-1,0) = 0. This regularity does
not seem compatible with the PC. In the following, this conjecture is
shown to be correct for f € B, when n > 4. Before showing the results,
several lemmas are presented.

For f € Bum and c € {0,1}"™, let

£ = @1 z0) | (1, 20) = ).
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Figure 3.2: Boolean functions in PCy(2)

Lemma 3.1 Let n > 2 and f € PCy(1). Then, for every i such that

1<i<n, f(zi,...,za) is positive in z; if and only if £(0,...,0,1
,0,...,0) = 2"

(Proof) Suppose that i = n. Since f € PCy(1), f(z1,...,2a-1,0) @
F(@1y--12a-1,1) is balanced,that is,

H{(@haos [ flzamo # fleami} = 2772
Thus,

F(0,...,0,1)

= ¥ f@-n=
o

= Y (Flemo = fleam)
(D)n€{02)""

= 2{(#)-s | flenmo = 0,11,
2{{2)ay | flen=o = 1, flen

= 2" = 4l{(2)ay | flenmo = 0}l.

Hence, £(0,...,0,1) = 2*1 if and only if f(c) is positive in z,. The
same argument can be applied to the case where1<i<n—1. O

The following lemma can be proved in the same way as Lemma 3.1.
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Lemma 3.2 Let n > 2 and f € PC,(1). Then, for every i such that

1<i<n, f(zy,...,2,) is negative in z; if and only if F(0,...,0,1
J0) = ==t o

Lemma 3.3 Let f € B,. Then, f € PC,(k) if and only if

Y Pw)= 3 F

om0 =ty

gan-1

for every a € {0,1)" such that 1 < W(a) < k.

The lemma holds because Y~ F2(w]
wefo)

2% forevery f €B,. O

From Lemma 3.1 and 3.2, if (21,...,2) € PCa(1) is unate in z,
then
£20,---,0,1,0,...,00= 222 = 1 ).
4octor

From this fact, it is immediately derived that every Boolean function
satisfying the PC of degree 1 is unate in at most 4 of its variables. A
more strict result is given in the following.

Theorem 3.1 Let n > 4. If f € PC,(1), then f is unate in at most
two of its variables.
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(Proof) Without loss of generality, it can be assumed that f(z;,...,2,) €
PC,(1) is unate in z;, z; and 3. Then, from Lemma 3.1 and 3.2,
F2(1,0,0,0,...,0) + F*(0,1,0,0,....,0) + £%(0,0,1,0,....,0)
= 9Hn=1) 4 92n-1) 4 g2(n-1)
_ gty ginn,

gan-1

Since f(21,...,2a) € PCy(1), from Lemma 33, 3 F?(,
=
which causes a contradiction. o
‘The optimality of the above result can also be proved. The following
theorem presents an exact characterization of a Boolean function in
PC,(1) that is unate in two of its variables.

Theorem 3.2 Let n> 4 and f € PCy(1). f(21,...,,) is unate in z;
and ; if and only if f satisfies one of the following two conditions.
7 fwe {27,972~
)| = { {

1oL}

.| 0 otherwise
and one or three of nonzero F(w)'s are positive.
PN G T U AR B A A U e )
* [Fw)]= { 0 otherwise
and one or three of nonzero F(w)’s are positive.

(Proof) We prove the theorem only for the first condition. It can be

proved in the same way for the second condition.
Suppose that f € PC,(1) is unate in z, and z,. Then,

F%(1,0,0,...,0) + £%(0,1,0,...,0) = 221 4 92(n=1) — g2n-1,
Since 3 F(w) =
o=}

271 for every i such that 3 i < n,

(1,0,0,...,0), (0,1,0,...,0),
w#{ (1,01,...,1), (0,1,1,...,1), 3 = Fw) =
(0,0,1,...,1), (L,1,1,...,
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F(1,0,0,...
F(1,0,1,...
F(0,0,1,..

Since 3 F3(w)

B
Z Fw)= 2" fori = 1,2,

B+ By = Fy+ By = By + By = Py + Fy

From Lemma 2.1, there are following two cases:

€. [ = o = 27 [ = ] =0,

C2. |Fo| = |Fu| =
For C-1, let
b =(1,0,0,..
by =(1,0,1,.

Then, [£] can be represented as
p 1 (s
-zl

g (B[] + 20 [1n] + Fuo ] + Fou [i])

Since by ®by@by@by = (0,...,0), for every z € {0,1}", an even number
u( In.(r), Tn(2), In(z) and o (z) are equal to 1, and the others are equal

. Thus, an odd number of Fy, Fy, Fio and Foy must be equal to
2”*' and the others must be equal to —2"~! since f € B,.

Conversely, if an odd number of £y, £y, Fyg and Fy are equal to
2"~ and the others are equal to —2"~!, then f € PC,(1) and f is unate
in z; and 7,

The same argument as the above one can be applicable to C-2. O

Corollary 3.1 Let n > 4. For every i, j such that 1 < i < j < n,
there are 16 (21, ..., ,)'s in PCy(1) that are unate in z; and z;. O
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‘The proof of Theorem 3.2 gives a method of construction for Boolean
functions satisfying the PC of degree 1 and are unate in two of their
variables. This method can construct every such functions.

Example 3.1 Four Boolean functions are given that are in PCy(1) and
that are positive in z; and 2. Let

[£] = 10,8,8,0,0,0,0,0,0,0,0,0,0,8,8,0},
[&] = 10,8,5,0,0,0,0,0,0,0,0,0,0,8,8,0].

= [1,1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,~1],
s
[A] = (A

= [1,—1,1,71,1,1,—1,—1,1,1,—1,—1,1,71,1,71].

Thus,
Sol®1,22,23,24) = 2,1T324 V 21237V 2928374 V 22T3 T4
= (23D ) V(2324 B1),
Fi@1,22,23,20) = 217320V OTITGV 29T574 V 222977

(23 B 24 B 1)V 23(23 B 24).
The other two functions can be constructed in the same way as the
above. They are
2122 V 1T304 V 212377 V 227374 V 222577
2122 V (21 V 22)(23 © 74),
91(21, 22, 23, 24) 12y V 212324 V 21 T3 Tg V 292374 V 273 T4
= nn V(6 Va)(50nel)

90(21,22, 23, 24)

The truth tables of the above functions are presented in Figure 3.3.
o

The following theorem is on non-unateness of the Boolean functions
satisfying the PC of degree 2.
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Figure 3.3; Functions in PCy(1) and positive in z, and z,
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Theorem 3.3 Let n > 4. If f € PC,(2), then f is not unate in any
one of its variables.

(Proof) Suppose that f € PC,(2) is unate in z;. Then,
F(1,0,...,0) = 220,
Let 4, j be any integers such that 2 < i < j < n. Since f € PCa(2),
Y ) = 2,
iz
Y ) = 2,

T B) = 2

(Z P+ Y F?(u)) —2F%(1,0,...,00= ¥ F}w)=0.
=1 =) wibag=1

From uus equation, if F(w) # 0, then at most one of wy, ..., wy is 0 or
-0).

) , then, for every f € PC4(2), f is perfectly nonlinear and
F(w) = 16 for every w € {0,1}*, which is a contradiction.
Forn 25,
> P

widbo=1
" i A i
= F¥0,1,...,1,0,1,...,1)+ F*(0,1,...,1,0,1,...,1) +

) i . i
F(1,1,...,1,0,1,...,1) + F?(1,1,...,1,0,1,...,1)
gy

Thus, from Lemma 2.1, 2.5, 2.6, for every w € {0, 1}" such that only one
of wy,...,w, is 0 and F(w) #0, F2(w) = 22"2. For every w € {0,1}"
such that only one of wy, ..y is 0, since

¥ )= ¥ B -2
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and

F(1,0,...,0) = 22,
at most three of F2(w)'s are 22", while, since

P path

b=l b=l

et

at least four of F%(w)'s are 22°-%. This causes a contradiction. Thus,
the theorem has been proved. o

3.4.2 Inversion Complexity

This section shows that {A, V, ~}-circuits that compute a perfectly non-
linear Boolean function in P, requires many -gates.

It is easy to see that the fact that f is not unate in any one of its
variables does not necessarily imply that f has high inversion complex-
ity. For example, f(21,...,2p) = 1 +++ 2y V I7+++ Ty can be computed
with only one negation although f is not unate in any one of zy,...,z,.

Definition 3.5 The inversion complexity[Mar58] of a Boolean func-
tion f, I(f), is the smallest number of ~-gates necessary to compute /
by {A,V,~}-circuits.

Let @ = (ay,...,an), b = (by,...,by) and a,b € {0,1}". a < biif
and only if a, < b for every i such that 1 < i < n. a < bif and only if
a < band a; < b for some i such that 1 <i < n.

Definition 3.6 [Mar58] Let C = (a, .., o) be a sequence such that
o € {0,1}" for 1 <i < kand aj < ajy for 1 < j < k=1. Cis called
sign-variable chain of length k of f € B, if and only if

1 ifiisodd
0 ifiis even

for every i such that 1 <i < k. o

Definition 3.7 alt(f) is the length of the longest sign-variable chain
of f. o
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Inversion complexity I(f) is completely characterized by alt(f).

Lemma 3.4 [Mar58] For every f € By,

0 ifalt(f) =0
o { llogzalt(f)] otherwise.
a
The following proposition is trivial from the definition of alt.
Proposition 3.6 For every f € By, I(f) < [logy(n + 1)) o

Lemma 3.5 For every f € Py, I(f) > |logyn) - 1.

(Proof) Let n = 2k. f(z,y) = 7(z) -y @ g(z), where 7 € By be a
permutation and g € By.
Since 7 is a permutation, for some v € {0,1}*, x(v) = (1,...,1)
ang
foY)=no - dudg().
Let C = (a!,...,a*) such that o

(1,...,1,0,...,0) € {0,1}** for

every i such that 1 i < k. I g(v) = 0, then

o _ [ 1 ifiisodd,
f(")’{o if i is even.

and C is a sign-variable chain of . It also can be shown that there
exists a sign-vasiable chain of length k + 1 of f if g(v) = 1. This
completes the proof. o

Theorem 3.4 For every f € Py, [logyn) — 1 < I(f) < [log(n + 1))

o

The following two examples show that the bounds of Theorem 3.4
are optimal.

Example 3.2 For f(z,y) = 2131 @ - ® 2sys, f € Pox and I(f) =
Llog, k. o
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Example 3.3 Let n = 2k and f € B, such that
f(r,y) =10(@ @ ®n)© (110 © - O Tuh)-
Forl<ign+1,let

(yeas y 10 [0) € 0T
P4

Then, a;j < aj41 for every j such that 1< j < n, and

Thus, alt(f) = n + 1 and every circuit that computes f requires
|logy(n + 1)] negations.

3.5 Formula Size

In this section, a lower bound on the formula size of any Boolean func-
tion in PC,(1) is obtained with the use of the method of
Krapchenko[Kra71].

Some notations are defined in the following definition.

Definition 3.8 [Wegs7] Let Q,S C {0,1}" and f € B,. Let H(Q,S)
be the set of neighbors in (Q,S), i.e.,

(¢,5) € (Q, ) and there exists some i
such that 1 <i<n, g # siand g; = 5;
for every j such that 1 < j <nand j #i

HQS) = {(4-5)

Kos = QP
« PN
K(f) = max{Kqs|QC f7(1),SC £ (O)}

Lemma 3.6 [Weg87] Forevexy Boolean function f, Ly(f) > K(f)—
where U = B, - {®,
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Theorem 3.5 For every f € PCy (1), Ly(f) > n?/d4 — 1.
(Proof) Suppose that f € PC,(1). Then,

(n2n-2y2

I ie - 1))

This completes the proof. o

K(f) 2 Kp-ry 10 = > 0?4

The lower bound in Theorem 3.5 is almost optimal even for perfectly
nonlinear Boolean functions. For the perfectly nonlinear Boolean func-
tion f in Example 3.2, Ly(f) < n?/2 — 1 when n is a power of 2.

For the same f, Lg,(f) = n— 1. On the formula model, ® and
is essential for the efficient computation of the Boolean functions
satisfying the PC.

3.6 VLSI Complexity

This section gives some results on AT? complexity of VLSI circuits
computing f € Pum.

Lemma 3.7 [Ul184] Let I be any set of input variables and C a VLSI
chip. If no more than one third of the inputs in I are fed into an input
pad of C, then a line with a single jog can be drawn that divides C into
two parts each of which includes between one third and two thirds of
the inputs in 1.

The proofs of the results make use of the information flow
argument[UlI84). Let C be a VLSI chip of area A and time T com-
puting some function, and let L be a line on C satisfying the condition
of the above lemma. If some of the outputs on a side of L depend on
some of the inputs on the other side, then some amount of information
must be transferred across L during the computation. If the amount
of the information is proved to be at least , then A\ (VA + NT 2 I.
Thus, AT? = Q(I?).
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Theorem 3.6 Let n = 2k and f € Pyx. For every VLSI circuit that
computes f,

AT? = Q(n?).

(Proof) Let f = (fi,..., fi) € Paj such that, for 1 <i <k,
fi(z,y) = mi(2) -y @ 9i(=),

where 7; = (1,..., M) € Bi is a permutation and g; € By.

1 some input pad accepts £/3 = n/6 or more inputs, then T 3 1/
and AT? = Q(n?).

Suppose that each input pad accept less than k/3 inputs. Then,
Lemma 3.7 implies that the chip can be split in two parts by a line of
length at most VA + A so that each of the sides has between 1/3 and
2/3 of the inputs y = (u, ..., us), where A is the spacing of grid lines.
Without loss of generality, it can be assumed that the left side of the
chip contains at least half of the outputs. Let » = [k/3]. Choose r of
the inputs y on the right side of the chip and r of the outputs on the
left side of the chip. Without loss of generality, we can assume that
they are yy,...,y, and fy,.

Forc € V,, let

o= (W m) = am @ Oy,
Since 7§ is a permutation for every ¢ € V,,

[z 178
Thus,

=, (a) = 0} = 2

[(z13e(msa(0) = -+ = 75, (2) = O} < 271 (2 — 1) =2~ 2.

There exists a € {0,1}* such that, for any ¢ € V,, there exists some j
such that 1 < j < 7 and 7g,(a) # 0. Hence,

(@), s m1s(@), s (7ra(@), s Fra(a))

are linearly independent.
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Thus, for every pair of (y),, (v'), € {0,1}" such that (3), # (¢/),,
(F1(ay (), )y fr(an(w), s 0)) # (Fila, (), ), fola, (0, ,B)),
where b € {0,1}*"".
From the above discussions, during the computation, at least r bits

of information must be transferred across the line splitting the chip.
Hence, A" (VA + \)T > r and AT? = Q(n?)

The proof of Theorem 3.6 can be easily extended to prove the fol-
lowing corollary.

Corollary 3.2 Let ¢ be a constant such that 0 < ¢ < 1/2. Let f €
Py nj- For every VLSI circuit that computes f,
=Q((en)’).

o

It is considered to be more realistic that input/output pads are
located on the boundary of a VLSI chip. The following theorem can
also be proved in the same way as Theorem 3.6.

Theorem 3.7 Any VLSI circuit that receives inputs on the boundary
of the chip and outputs f € P, » requires

AT? = Q(um).

o

The above result has some implication for the VLSI implementa-

tion of cryptographic transformations. For nonlinear elements in secure

their ime-square VLSI complex-

ity is expected to grow at least in proportion to the number of inputs
and that of the outputs.
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3.7 OBDD Size

In this section, we consider the OBDD size of perfectly nonlinear Boolean
functions in a subset of Py .

For every perfectly nonlinear Boolean function, its outputs change
independently of each other if any change of inputs occurs. This in-
dependence induces a conjecture that, for every perfectly nonlinear
Boolean function, there exist no variable ordering such that all of the
output functions can be represented by OBDD's of small size.

We consider f = (fi,..., fs) € Pays such that, for every i such that
1<i<h

1(@,9) = (Pa") -y @ gi(a),

where P, is a k x k {0,1}-matrix and g; € By. For every (c1,...,cx) €
Vi, &P, @ - @ ci P is non-singular. Let P}, be the set of such
functions.

Let A be a matrix. Let rank(A) denote the rank of A and let
Alir,...,i]lj1, ., js] denote an a x b matrix whose (u,v)-element is
(iw Jo)-clement of A, where i, # i, and j, # ji for every p,q and s,t
such that 1 < p<g<aandl<s<t< b, respectively.

The following theorem gives a relationship between the OBDD size
of a perfectly nonlinear Boolean function in P}, and a combinatorial
problem,

Theorem 3.8 Let f = (fi,..., f) € PA, and, for each i such that
1<i<k,

fi(z9) = (Pa") -y @ 0(=),
where Py is a k x k {0,1)-matrix and g, € By. Let

(£ def : 2
(f) & min g rank(Rilis, el - dragal)-
1S mifam <k

Then, for any variable ordering, there exists some { such that 1 i < b
and the OBDD size of f; is (2'1).

(Proof) For each i such that 1 <i < k, fi(z,y) = yPu® @ gi(z).



3.7. OBDD Size 87

In a variable ordering of (z,y), suppose that z,, precedes ,, and
3, precedes ,, if 1 <p<g <k
Suppose that z,,,,, precedes Yy, ,,. Then, for some d such that 1 <
d < k, rank(Pg) 2 7(f), where Py = Pafvikpajar, - -, vil[us o upig)-
Thus,
[{ala= PT,be {0,114} > 20,

Let @ = (2w Zum) 30 ¥ = (ogmpprre-oUn)- Let o =

y=0- Then,

fi=y P @ d(a)

is a sub-function of fy by ing 0's for
Zuppmenr-+%u A Yuyoo Yoy, For the variable ordering
Zuys -+ agepays Yougmrans -+ Yoy ), the OBDD size of f is (21(1). Thus,

the OBDD size of fy is Q(2')) if 2, ,) precedes yuy, ,,-
For the case where g, ,, precedes Zy ,,, the theorem can be proved
in the same way. o
We conjecture that (f) > [k/4] for every f € P4
A method of construction was proposed by Nyberg[Nbel] for per-
fectly nonlinear Boolean functions in P3f,. Let R be a k x k matrix
which express a state transition function of a linear feedback shift reg-
ister(LFSR) of length k with a primitive feedback polynomial. Let
f=1(f1,...,fx) € Bas such that, for each i such that 1 <i < k,
fi(zv) = (R™'27) -y @ (),
where g; € By. Then, f € Pi{,.
Example 3.4 Let p be a polynomial over GF(2) such that
pz)=2'+z+1
p(z) is a primitive polynomial. The LFSR of p is in Figure 3.4. The
state transition function of the LFSR is described by R such that
0011
1

{1000
B=lo100
0010
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The following theorem can be immediately derived from the proof
of the OBDD size of integer multiplication in [BryS6].

Theorem 3.9 Suppose that f = (fi,...,fi) € P}, is constructed
with the method of Nyberg. Then, for any variable ordering, there
exists some i such that 1 < i < k and the OBDD size of f; is Q(24/1%).

o

3.8 Conclusion

This section have discussed the complexity of nonlinear Boolean func-
tions on several computation models.

First, unateness and inversion complexity have been discussed. It
has been shown that there exist Boolean functions which satisfy the
PC of degree 1 and unate in two of their variables and that Boolean
functions satisfying the PC of degree 2 is not unate in any one of its
variables. Inversion complexity of perfectly nonlinear Boolean functions
has been proved to be almost maximum.

Second, we have mentioned that the formula size of the Boolean
functions satisfying the PC of degree 1 is at least n*/4 — 1 and that
the lower bound is almost optimal even for perfectly nonlinear Boolean
functions.

Third, the area-time tradeoff of VLSI has been discussed. For every
Boolean function in a subset of perfectly nonlinear ones with multiple
outputs, AT? of VLSI computing the function has been proved to be
n?).

Finally, the size of OBDD has been considered. For any variable
ordering, every perfectly nonlinear Boolean functions constructed by

Figure 3.4: The linear feedback shift register of p
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the method of Nyberg has some output function such that the size of
OBDD representing the function is exponential in the number of its
inputs.
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Chapter 4

Circuit Complexity of
Homogeneous Boolean
Functions and Their Slices

4.1 Introduction

In this chapter, we consider the circuit complexity of slice Boolean
functions and homogeneous Boolean functions.

1t is known that for any k-homogeneous Boolean function, its (k+1)-
th slice is not much more difficult to compute than its k-th slice[Dun86].
On the other hand, it has been proved that there exist k-homogeneous
Boolean functions such that the monotone complexity of their k-th
slices is much larger than that of their u(> k)-th slices [Weg86]. One
topic is an improvement of the latter result. The optimal lower bound
is obtained on the monotone circuit size complexity of the k-th slices
for constant k.

The other topic is the homogeneous Boolean functions whose circuit
size complexity and monotone circuit size complexity are almost equal.
For these homogeneous Boolean functions with n variables, their mono-
tone circuit size complexity is larger than their circuit size complexity at
most by a constant factor and an additive term of O(n(logn)?). Hence,
a lower bound of w(n(logn)?) on the monotone circuit size complexity
implies the same lower bound on the circuit size complexity.

91
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In the next section, we define complexity measures of Boolean func-
tions on the circuit model. Section 4.3 presents the definitions of slice
Boolean functions and homogencous Boolean functions, and show their
basic properties. In Section 4.4, we present the £-homogeneous Boolean
functions whose k-th slice is much more difficult to compute than their
other slices. Section 4.5 presents a class of k-homogeneous Boolean
functions such that negation is powerless for computing them. Section
4.6 s the conclusion of this chapter.

4.2 Preliminaries

4.2.1 C i A for C i i 1
Circuits

The complexity of combinational circuits is measured by their size,
depth, and so on. In this chapter, we discuss only about the size of the
circuits. The size of a circuit C, Size(C), is the number of the gates in
the circuit C.

From the practical point of view, it may be necessary to bound the
fan-in and the fan-out of gates by some constants. Bounding the fan-in
of the gates in a circuit by some constant r means that all the Boolean
functions in the basis of the circuit have exactly or less than r inputs
and that the basis is finite.

For any finite and complete bases B and B', each Boolean function
in B' can be computed by a constant size circuit on B. Thus, for
any Boolean function f, each gate in a B'circuit computing f can be
replaced by a constant size B-circuit.

Proposition 4.1 Let B and B' be finite and complete bases. For any
Boolean function f, if a B-circuit C computes f, then there exists a
B-circuit C' computing f such that

Size(C') < c- Size(C),
where c is a constant depending on B and B'. o

For any f, the size of a circuit computing f is never getting larger
as the fan-out of the circuit is getting larger. The following proposition
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says that if a Boolean function f can be computed by an unbounded fan-
out combinational circuit C on a finite basis B, f can also be computed
by a combinational circuit C' with fan-out ¢ (> 2) on B whose size is
larger than those of the circuit C at most by a constant factor.

Proposition 4.2 [HKP84] Let f be a Boolean function and B be a
finite basis. For any unbounded fan-out B-circuit C computing f, a
B-circuit C' with fan-out ¢ (> 2) computing f can be constructed such
that

SIZE(C') < c- SIZE(C) + %

where g is the number of output nodes and ¢ is a constant which depend
on B and t. a

4.2.2 Circuit Complexity

The computational complexity of a Boolean function is measured by
the complexity of circuits computing the Boolean function. A Boolean
function can be computed by infinitely many circuits varying in com-
plexity. The computational complexity of a Boolean function is mea-
sured with the complexity of optimal circuits computing the Boolean
function.

Definition 4.1 The circuit size complexity of a Boolean function f on
a basis B, Cp(f), s the smallest size of B-circuits computing .

In this chapter, we discuss the circuit complexity of single-output
Boolean functions on finite bases with unbounded fan-out.

Proposition 4.3 [Sha49] Let E, C B, and |E,| = 2 for some e :
N — N. Then, for almost all Boolean functions, ¢'s, in Ex,

0= (gism)
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In the above proposition, “almost all” means that
Jlim {9 € Ba| C(9) = Qe(n)/ loge(n))}/|Ea| =

This proposition means that, for almost all sequences {g, | g» € E, forn €
N}, the circuit size complexity of each g, in the sequence is (e(n)/ log e(n)).

4.3 Slice Boolean Functions and Homo-
geneous Boolean Functions

4.3.1 Monotone Bool Fi i and M
Circuit Complexity

Homogeneous Boolean functions and slice Boolean functions are in the
class of monotone Boolean functions. We first define monotone Boolean
functions and show their properties.

Definition 4.2 Let a,b € {0,1)". A Boolean function f € B, is
monotone if and only if a < b implies £(a) < £(b). o

M, denotes the set of all n-input monotone Boolean functions. M,
coincides with the set of positive Boolean functions.

Monotone Boolean functions are also defined as Boolean functions
which can be computed by circuits on the basis Mz = {V,A,0,1}. The
Mp-circuits are called monotone circuits. The circuit size complexity
of monotone Boolean functions on the basis M, is called monotone
circuit size complexity. For any monotone Boolean function f, Cae,(f)
is denoted as Cp(f).

We define pseudo-complements of monotone Boolean functions. First,
we define standard circuits.

Definition 4.3 A standard circuit is a monotone circuit with
negated inputs permitted. o

If f(z1,...,,) is monotone, for each variable z,, some monotone
Boolean function pe; replaces %; of standard circuits computing f.
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Definition 4.4 Let f € M,. A Boolean function pe(21, ..., 2,) € M,
is a pseudo-complement for z; with respect to f(zy,...,z,) if a circuit
obtained by replacing the input %7 by pei(zi,...,z,) of any standard
circuit computing f still computes f. o

For f € M,, consider a size optimal By-circuit computing f. The
size of the circuit is C(f). From Proposition 4.1, for this circuit, a
circuit S on the basis {V, A, =} computing f can be constructed whose
size is O(C(f)). A standard circuit computing f can be constructed by
applying De Morgan’s Laws to this circuit S. The size of this standard
circuit is at most twice larger than that of the circuit S, and it is
O(C(f)). Since the size of size optimal standard circuits computing
f €M, is O(C(f)), the following proposition follows.

Proposition 4.4 For f € M,, let pe; € M, be a pseudo-complement
for z; with respect to f. Then,

C(f) < Cu(f) < O(C(f)) + Culper, )
Cu(pey,...,0¢,) = Cu(pc), where pe is an n-input n-output mono-
tone Boolean function such that pe(z1, ..., 2a) = (41, .- ,¥a) and 3
pei(z1, .., a) for every i such that 1 < i < n. o

For some monotone Boolean functions, their monotone circuit com-
plexity is much larger than their circuit complexity. For a bipartite
perfect matching Boolean function, its circuit size complexity is polyno-
mialin the number of the input variables, while its monotone circuit size

is sup I, that is, no size monotone
urcmz computes the hlparme perfect matching Boolean function[Raz85).
In general, the lower bound on Cy(f) does not imply any lower bound
on C(f)

From Proposition 4.4, for any monotone Boolean function f, if f
has pseudo-complements easy to compute, then its monotone circuit
complexity is not much larger than its circuit complexity. In this case,
if W(Cn(pey, ..., pe,)) lower bound on Con(f) can be proved, it implies
the same lower bound on C(f).

Slice Boolean functions have pseudo-complements that are easy to
compute.
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4.3.2  Slice Boolean Functions
Definition 4.5 f € B, is a k-slice Boolean function if and only if
) [0 imteta <k
Fen ) = { b N ]
o
S& denotes the set of k-slice Boolean functions with n variables.
Tk is a k-threshold function with n variables such that T¥(z, ..., 2,
1if and only if k or more than k of z1,..., 2, are equal to 1.

Definition 4.6 Let f € B,. f* = f ATV T is the k-th slice of f.
o

From the above definition, for any f € By,

0 o 4o taa <k
JRCT F(@.enza) o+
1 if o+

f* is a k-slice Boolean function. For any k-slice Boolean function g €
B, there exists some f € B, such that f* = g. S% is equal to the set
of k-th slices of Boolean functions in B,.

The following proposition is on the pseudo-complements of k-slice
Boolean functions.

Proposition 4.5 [Weg87] Let f € Sk and 1 < k < n. A pseudo-
complement for ; of the k-th slice of f(z1,...,2a) is
Ths(@1y ) @imt, Tity o Z)-
=]

The following proposition is immediate from Proposition 4.4 and
Proposition 4.5.

Proposition 4.6 For every f € B, and every k such that 1 <k < n,
Culf*) S O(C() + Cal(TE,(Xa), . Ty (X)),

where X; = (21,...,%i_1,Zi41, ..., 2,) for every i such that 1 <i < n.

a
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Proposition 4.7 [Weg85, Val§6] For every k such that 1 <k < n,
Cn(Ti1(X0),.. Tay(Xa)) = O(nmin{k,n — k, (log n)’}).
=}

It is shown in Proposition 4.5 and 4.7 that slice Boolean func-
tions have pseudo-complements easy to compute. For any f € By, if
Can(f*) = w(n(logn)?), then C(f*) = O(Cum(f¥)). Thus, ifw(n(logn)?)
lower bound on Cp(f*) is proved, then it implies the same lower bound
on C(f*)

We show some relationships between i plexity of
a Boolean function and that of its slices. First, we show the upper
bounds on the complexity of threshold functions.

Proposition 4.8 Let 1 <k < n.
1. C(T¥) = O(n) for every k.

2. I k or n — k are constant, then C(T¥) = O(n), otherwise
Cu(T¥) = O(nlogn).

8 G(The: 1T
4. [AKS83] Co(T}),..., ') = O(nlogn).

Proposition 4.9 For cvery f € B,
L C(f) < C(f°,....f") + O(n),
2. C(f°,.... /") < C(f) + O(n),
3. if f is monotone, Co(f*) < Cu(f) + O(n - min{k,n — k,logn}),
4. C(fY < C(f)+0n).

o

From the part 1 and 2 of Proposition 4.9, if f € B, depends on all
of its n variables, then C(f) = O(C(°,..., 7). If f is difficult to
compute, then some of its slices are difficult, and vice versa.
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4.3.3 Homogeneous Boolean Functions

Definition 4.7 f € M, is a k-homogeneous Boolean function if and
only if all the prime implicants of f contain exactly k variables.

HY denotes the set of k-homogeneous Boolean functions with n vari-
ables. [HA| = 2% — 1 since the number of the products of k posi-
tive literals is ,C; and each k-homogeneous Boolean function is a non-
empty disjunction of such products. From Proposition 4.3, the following
proposition can be proved.

Proposition 4.10 For almost all Boolean functions f’s in HE,
C(f) = QAaCi/logaCe),
Ca(f) = Q:Ci/logaCy).

o

Proposition 4.11 Let H:, be a set of n- mput m-output Boolean
functions such that, for Saeh f=(h, HE,., fi € HE for
every i such that 1 < i < m. Let C,.(H m) max(C f)If eHE ).
Then,

[Sav76] Con(HY,) = O(n?/ log n),
Cun(H},) S n- Cu(HE),

3. Cu(HY) € Cu(HED) 4+ 20— 1,

4. [Wegs7] for k > 2, Cu(HE) = O(n*/logn).

o

From the above proposition, the lower bound in Proposition 4.10 is
optimal for constant k > 2.
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4.4 Circuit Complexity of Slices of
Homogeneous Boolean Functions
In this section, we compare the computational complexity of the k-th

slice with that of the u-th (u > ) slice of some f in HE. The following
two results have been obtained before.

Proposition 4.12 [Dun86) For every f € HX and every ¢ such that
1<c<n—k,
Culf*) < n CalfH) + 0(7).
o

Proposition 4.13 [Weg86] Let 2 < k < n. There exists some f € HY
such that

Culf =0 (,OS‘%) .
and, for every u such that k < u < n,
Cal(f*) = O(nlogn).
o

Proposition 4.12 shows that, for every f € HX, the monotone circuit
size complexity of f* is not much larger than that of f*~! for every u
such that k < u < n. Proposition 4.13 claims that there exists some
f € HE such that the monotone circuit size complexity of f* is much
smaller than that of f* for k < u < n.

Proposition 4.13 can be improved.

Theorem 4.1 For every k such that 2 < k < n, there exists some
€ B such that

and for every u such that k < u < n, Cu(f*) = O(nlog n). o
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The lower bound in Theorem 4.1 is optimal if k is constant from the
part 4 of Proposition 4.11 and Cu(f*) < Cu(f) + O(nlogn).

For every k-slice and k-homogeneous Boolean function f € H5N Sk,
Cuu(f*) = O(nlogn) since

fP=fATIVEH =T}

for every u such that k < u € n. And f = f* Wegener[Weg86]
tnst|=

2n-1Camt ‘Hﬁ 2+Cs is proved in this section.
We first prove two lemmas of the theorem.

Definition 4.8 Let N = {1,2,...,n}. For every k such that 1 < k <
n,

QY (i, i} {iny- ik} €N,
and, for every I such that 1< I<n—1and PCQ,

Aug(P) & {{n, gt} G ndim} EN,
and for some {ii, ..., it} € P,

[sesdima} = fin i =1}

e}

The next lemma shows an upper bound on the minimum number
of the elements in P C Qi such that Aug(P) = Qu41, that is, for every
clement Tin Qg1 there exists some element I' in P such that |I-I'| = 1.
We define I' conceals T if | - I'| = 1.

We divide N into two sets Ny and N, such that Ny NN, = ¢ and
NyUN, = N. For every element in Qi there exists some i such that the
clement has i elements in N and (k — i) elements i m N;. Any clement
I" € Quty such that [Ny =i+ 1and ['NNy| =
some element I € Qi such that [[NN;| =i and |lnN,1
any element I" € Qe such that | A N,| = i and [ NN,
is concealed by some such element in Q.
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Lemma 4.1 Let n and k be integers such that 2 < k < n. Then,
min{[P||P C Qi and Aug(P) = Qusr}

L(:Ci+ (=1)2%,Cpz)  ifn and k are even

$nCi+ np2Ci if n is even and k is odd
< { H(:Ch+ (<142 Chpp)  if mis odd and k is even

3 (sCe + (=)W Clapy)

+u/2/Cr if n and k are odd.

(Proof) Let Ny = {1,...., |n/2]}, and Ny = {[n/2]+1,...,n}. Suppose
that 2 < k < [n/2). Let P be constructed in the following way;
1. when k is even, P = Po U - U Py/s, where
Py = ({inee it} € N iy ie} AN = 25
for every j such that 0 < j < k/2,
2. when k is odd, P = PgU

UPpijz), where
Pi = {{in,. i} SN[ {in,. ik} ON| = 25}
for every j such that 0 < j < [k/2], and
Pryn = {{in, ok} SN [{in,ooin} ANy = k).
We show that Aug(P) = Qus1. Form =0,1,...,k+1, let
T = {{in,-- ik} ENI i ik} NNy = m).
Obviously, Qi1 = ToU -+ U Tiss. Aug(P;) = Ty; U Tyj for every
Jj such that 0 < j < [k/2), and Tayy C Aug(Ppijz)) when k is odd.
Thus,

Aug(P) = Aug(Po)U--U Aug(Ppipz)
ToU-+UTkn
Qusr-
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Next, we evaluate the number of the elements in P. When k is

even, |P| = (u/2)Ca; - fa/21Ch-z; for every j such that 0 < j < k/2 and
PNP; = if i #j. Thus,

w2
1P| = 3 (n/21Caj * tn/ Ci-2je
=

When k is odd, |P;
< Lk/2) and [Ppia|

1n/21Caj * [n/21Ci—a; for every j such that 0 <
1w/21Ch PiNP; = $if i # j. Thus,

1)
[Pl = 3 (a/21Ca * (/21Cho2j + /2 C-
=

For the calculation of [P|, see Appendix.
For k > [n/2], it is clear that we obtain the same results from the
construction of P.

The following lemma shows an upper bound on the minimum num-

ber of prime implicants of k-slice and k-homogeneous Boolean func-
tions. For every f € By, PI(f) denotes the number of prime implicants
of f.

Lemma 4.2 For every k such that 2 < k < n, there exists some f € HY
such that
FATE o i
1.1
IPIAL & (3 +95) Gt olaCa):

(Proof) From Lemma 4.1, there exists P C Q4 such that

Aug(P) = Qi,

For such P, consider the following f € H:.
f@Ennz)= g,

Litvia}€P
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Then, it is clear that |PI(f)| = [P|. And since Aug(P) = Quy, for any
product &, -+ z;,;,,,, there exists some prime implicant z;;
f such that =, ---z,,, < 2, +++%;,, which implies

[ICTORE V.3 ool T ) P e N )

Now, we prove Theorem 4.1

Proof of Theorem 4.1: From Lemma 4.2, there exists some h € H such
that

RATH! = T,

Pl < (345

3 2k) W+ 0(uCi).

Let G, = {f|f € HE and h < f}. Then, since k > 2,

G| > 2373CH00C0) 3 haCumotnC)

Thus, from Proposition 4.3, for almost all f € G,

s 2Cr
s = (g
For every f € G, and k < u < n, since h < f,
fr=fATIVIY =T},

which implies

Cu(f*) = Cu(Ty}) = O(nlogn).
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4.5 Homogeneous Boolean Functions for
Which Negation Is Powerless

In this section, we present a set of homogeneous Boolean functions
whose monotone circuit complexity is almost equal to their circuit com-
plexity.

For every f € HE, there exists some J € M,4; such that

@1y za) = I(F5 2 ).

It implies Con(f) < Cun(f*)+C(J). Since C(f) < Ca(f) and Cu(f*) <
0(C(f)) + O(n(logn)?),

C(f) < Culf) < O(C(f)) + Cn(J) + O(n(logn)?).

Hence, if J is easy to compute by some monotone circuit, we can con-
clude that the circuit size complexity and the monotone circuit size
complexity of f are almost equal. All Boolean functions in R C H
defined in the following definition have J which is easy to be computed
by monotone circuits.

Definition 4.9 Let X; = (z1,...,2faa)), X2 = (Zfaja11, - - Za). Let
n>6,3< k< [n/2), and ¢ be a constant such that 1 < ¢ < /3.
£ € RE< if and only if £ € B and there exist 2 integers py, ..., pe and
q1,...,qc such that

v

Lp>2

2. g > 0 for every i such that 1 <i < e,

o

. pj+0;+3 < Py for every j such that 1<j e —1,

4 Pt <k

1,

forevery j such that j € {0,1,..., k+1} = {pi pitL,....pi+ai}
=t

Thn(X0) ATER (X2) < S, 2),
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6. for every i such that 1 < i < ¢ and for every  such that —1 <
1<a

PI(f) N PITEf (X0) AT (X)) =

Let T}, and Ty, denote T/ (X;) and 7[*,:/”()‘2), respectively.
The following theorem guarantees that RE<

Theorem 4.2 Rk # .

(Proof) Let
. .
Sz = V(TEATE™)V V (Th ATEY).
A et

It is shown that f € R&*.

For the above f, let p; = 3i — 1, g; = 0 for every i such that
i=1,..,c. Then,itis clear that py,...,p, and gy,...,q satisfy 1
through 4 in Definition 4.9.

For 5 in Definition 4.9, since j € {0,
following three cases can be considered;

L k+1} = {p1,...,pc}, the

C-1. j = 3i for every i such that i = 0,1,...,c =1,
C-2. j=3i+1for every i such thati =0,1,...,c— 1,
C3.3c<j<k+1
For C-1, For every i such that 0 < i € ¢—1, since f(z) VTR ATY,> =
(@),
f@) A (TE ATE)
= J@)A (T ATE) v (T ATES) A (T8 ATE)
= f@)A (T ATE) VTG ATES
= T AT
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This implies that T3 A T§"% < f(z). C-2 and C-3 can be proved in
the same way.

For 6 in Definition 4.9, since

PI(f) = L]PJ(T}: yn ’“)u U PI(Ty, ATY”
i =3

for every i such that 1< i < ¢,
PI(f)n PI(T; /\T;x ) = g,
PIHNPI(TEIATOY) = o

Hence f € RE<. o

Monotone circuits computing f € RE¢ can be constructed from
monotone circuits computing f* and additional O(nlogn) gates com-
puting Boolean functions in M,. The monotone circuit size complexity
of f € RE* is larger than that of its k-th slice at most by the additive
term of O(nlogn).

For the proof of the following theorem, we received a hint from
[Duns9).

Theorem 4.3 For every f € RY<, C(f) < Cn(f*) + O(nlogn).
(Proof) Let D = {0,1,...,k+1} — L](y., <Pt @}
P
@) = f@)ATHz)V TE¥(2)
= f@)VT* (@)

ki
S@V V T5 AT

2V VTx ATEV V VTpﬂA T,

From the fifth condition in Definition 4.9, since f(z) = 1 if T, A
T4 = 1 for every v € D,

@) = )V VT3 ATE0)
2k
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Thus,
fk(r) A (T;vl*mﬂ v T;:l*rv)
F) A (T8 T

B ")

V v TEH ATEH) A (Tgrety T4 n).

For the nght-l\a.nd side of the above equation, the next three equa-
tions hold.

L f@) A (T VTET) = f(2).
2. For every pm # o1,
("\7 T A T;:n—mm) A (T v o)
o
VTt AT omei) (et v T

i
=V mgt AT,
=0

@
3 V T ATEIED A (T3 y TEo)
=\ et Aoy V Tyt ATh
i=o

First, the equation 1 is proved. For every i such that 1 <i < c and
for every r such that —1 < 7 < gi,

PI(f)N PITEH AT, ®*) = 9.
Thus, for each prime implicant t of f, there exists some s such that s €
{01,k =Ulpi -1,
-

where

bt andt =y u2a 0 Toen,

{21, s 2mb
[CTA TR S )

{10001 710}
[ECTRRNE
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0<s <p—2, then

ESTRENERYY sand TSR YA
Thus,
EA(TEF Y THI) = A TRV e

I p+a+1<s <k, since
zya o TR =200,

EA(TEIM VTR M) =tV EATH =

The equation 1 has been proved.
The equation 2 holds because if pm < pi, then pm + gm < p1 and

TEH i) A Tk m _ pkF=Gomti)
and if p > pi, then p > pr+ ¢ +1 and
Tgt AT = T,

For the equation 3, it is apparent that it holds.
From 1, 2 and 3,

F@ A (T v ThR)
= f(a)V ) T A TS0y ) 7 AT
i=0 =0
vy Q\7T§T” ATEme)
#l =0
= VvV '\7 Tt ATEI0m )
=0

because, for every j such that 0 < j < gi,

TR ATEI0) ¢ Tttt A TG0 ¢ )

T AT TR ATEOY € f(0).
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Hence,
F@)A /\ (Tgrmet v 7o)

=1

A=) A (T;V‘NMI v T)’E:z'”)

FOVY VT A Ti.*”(""')

#tiz0

- f@VA (V VT T)’:H”*")

izt Laido
= fl=)v
v ({/ prdy T}I;:l-{;w-\) Y 13 A
1euboce \iko )

= flz)v V T AT,
1wt
Since
T AT TR AT Y < f(a),
A ([T VT = f().

Thus,

Calf) < Cal )+ Can (/\ (zgre+ty TE*"')) +1.
=i
Because Cyu(T5,7*") = O(nlogn), Cu(T5*™) = O(nlogn) and c is
a constant,

Cu(f) < Cul(f*) + O(nlogn)
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The subsequent two corollaties follow from Theorem 4.3. Corol-
lary 4.1 shows that, for every f € RE< whose monotone circuit size
complexity is w(n logn), it is different from the circuit size complexity
of f* at most by a multiplicative constant. If w(nlogn) lower bound
on the monotone circuit size complexity of f (f*) is proved, it implies
the same lower bound on that of f* (f).

Corollary 4.1 For every f € RE, if C(f*) = w(nlogn) or Cu(f) =
w(nlogn), then C(f) = O(C(*))

(Proof) This corollary is immediate from Theorem 4.3 and the fact that
Cnlf*) < Calf) + Olnlogn). o

Corollary 4.2 For every f € R:, if Cu(f) = w(n(logn)?), then
C(f) = O(Cal))-
(Proof) For every f € RE€, from Theorem 4.3, Cu(f) < C(f*)
O(nlogn). Since Cu(f*) < O(C(f*)) + O(n(logn)?) and C(f*)
C(f) +0(n),

C(f) < Cu(f) < O(C()) + O(n(log n)?*)
Hence, if Co(f) = w(n(logn)?), then C(f) = O(Cwm(f)). o

+
<

The above corollary claims that, for every Boolean function in R
whose monotone circuit size complexity is w(n(logn)?), it is larger than
the circuit size complexity of f at most by a constant factor. If C(f)
is proved to be w(n(logn)?), then we obtain the same lower bound on

C(f),

4.6 Conclusion

The circuit size complexity of slice Boolean functions and homogencous
Boolean functions has been discussed.

In Section 4.4, the circuit size complexity of homogeneous Boolean
functions and their slices has been discussed. It is known that there ex-
ist k-homogeneous Boolean functions whose k-th slices are much harder
to compute than their other slices. We have improved the lower bound
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on the complexity of the k-th slices of such homogeneous Boolean func-
tions. The improved lower bound is optimal for constant

In Section 4.5, homogeneous Boolean functions whose circuit size
complexity and monotone circuit size complexity is almost equal have
been presented. For any of these homogeneous Boolean functions with
n variables, if its monotone circuit size complexity is w(n(log n)?), then
it differs from the circuit size complexity of the Boolean function at
most by a multiplicative constant.

For slice Boolean functions with n variables and homogeneous Boolean
functions with n variables presented in Section 4.5, a lower bound of
w(n(logn)?) on their monotone circuit size complexity implies the same
lower bound on their circuit size complexity. This approach gives us
chances to prove a nonlinear lower bound on the circuit size complexity
of some explicitly defined Boolean functions.

Appendix

Supplement of the Proof of Lemma 4.1
(1) When n is even,

&
> u/2CinjaCrci = uCi
&

and
2 /2
_1y (=1)*2,2Cipa if k is even
.;( DrpGianCi { if £ is odd.

If k is even,

w
Pl = zv‘/'tczlu/zcl-h

]

'
(Zn,zc. a/2Chmi + Z(-l)’.,;c. 2/2Ck

2
1 k/2
3 (:Cot (=1)"%Cip) .
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If k is odd,

2
[Pl = 3 1a/21C2; fr/1Cizj + 2C
=

o .

3 (st 0G0
1

- EuCz + n/2C

(2) When n is odd,

#Ci

:
3 1w/ Ci fayn G
=

and

. .
’ (=12, Cupy if ks even
(1) tn/21Ci a1 Cimi if & i

l( Y tar21Ci taf1 Ci {(_UINUK"“JCV(,H if k is odd.

If k is even,

i
1Pl = 3 10/21Caj fa/m Cimsj
=

‘ ‘
(Z./zC. w2Chei + 3 (=1Yu2Ci wfoCie )

% (xCat (=)M20aCipa) -

i
2

]

If k is odd,
)
IP| = Zaln/ljc’b /21 Co=2; + /21 Ci

=
W .

= (ann/ilcl /21 Ciei + 3 (1) /2y i !u/ﬂckfu) +

5 =

1n/2)Cx
1

= 5 (Cot (D Cla) + o Ci



Chapter 5

Conclusion

In this thesis, Boolean functions related to cryptography, that is, non-
linear Boolean functions, homogeneous Boolean functions and slice
Boolean functions have been discussed.

In Chapter 2, properties of nonlinear Boolean functions and re-
lationships among nonlinearity criteria were discussed. The PC, the
SAC and the nonlinearity were mainly investigated. Exact character-
izations of Boolean functions satisfying the PC of degree n — 1 an
n — 2 were presented. In particular, Boolean functions with n vari-
ables satisfying the PC of degree n — 2 are perfectly nonlinear for even
n > 4. A necessary and sufficient condition was presented for a Boolean
function to satisfy the PC with respect to all but linearly independent
elements. The methods of construction were shown for Boolean func-
tions satisfying the PC with respect to all but one or three elements
in {0,1)" = {(0,...,0)}. The methods can generate all such functions
from perfectly nonlinear Boolean functions. Relationships between the
degree of the PC and the order of the SAC were also discussed. These
results are expected to be a foundation of the design of private key
cryptosystems.

It is an open question whether there exist balanced Boolean func-
tions satisfying the PC of degree n — 3 for even n. Future work is to
investigate properties of Boolean functions satisfying other nonlinearity
criteria.

In Chapter 3, complexity of Boolean functions satisfying the PC
was discussed. First, it was shown that every Boolean function satisfy-
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ing the PC of degree 1 is unate in at most two of its variables and that
every Boolean function satisfying the PC of degree 2 is not unate in any
one of its variables. Second, the optimal lower bound of [logn] — 1 was
obtained for the inversion complexity of perfectly nonlinear Boolean
functions constructed by the method of Maiorana. Third, the nearly
optimal lower bound of n?/4 — 1 was presented for the formula size of
every Boolean function which satisfies the PC of degree 1. Fourth, a
lower bound of Q(n?) was obtained for the AT? VLSI complexity of
perfectly nonlinear Boolean functions with multiple outputs. Finally,
an exponential lower bound was obtained for the OBDD size of per-
fectly nonlinear Boolean functions with multiple outputs. Some of the
above results were obtained with the use of novel techniques previously
proposed.

Open questions are the lower bounds on the inversion complexity,
the AT? VLSI complexity and the OBDD size of every perfectly non-
linear Boolean function.

In Chapter 4, the maximal complexity gap was obtained for the
monotone circuit size complexity of the slices of homogeneous Boolean
functions. There exist a k-homogeneous Boolean function with the
property that the monotone circuit size complexity of its k-th slice
is Q(,Ci/log,Ci) and that of its u(> k)-th slice is O(nlogn). A
set of homogeneous Boolean functions with circuit size complexity and
monotone circuit size complexity almost equal were presented. For
every Boolean function in this set, a lower bound of w(n(log n)2) on the
monotone circuit size complexity implies the same lower bound on the
circuit size complexity.

It is left as a future work to get a super-linear lower bound on the
circuit complexity of some explicitly defined Boolean function.
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