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Abstract

Manlove and O’Malley [8] proposed the Student-Project Allocation Prob-
lem with Preferences over Projects (SPA-P). They proved that the problem
of finding a maximum stable matching in SPA-P is APX-hard and gave a
polynomial-time 2-approximation algorithm. In this paper, we give an im-
proved upper bound of 1.5 and a lower bound of 21/19 (> 1.1052).

Keywords: The student project allocation problem, Stable matching,
NP-hardness, Approximation algorithm, Approximation ratio

1. Introduction

Assignment problems based on the preferences of participants, which orig-
inated from the famous Hospitals/Residents problem (HR) [3], are important
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almost everywhere, such as in education systems where students must be al-
located to elementary schools or university students to projects. In the uni-
versity case, each student may have preferences over certain research projects
supervised by professors and usually there is an upper bound on the number
of students each project can accept. Our basic goal is to find a “stable”
allocation where no students (or projects or professors if they also have pref-
erences over students) can complain of unfairness. This notion of stability
was first introduced by Gale and Shapley in the context of the famous Stable
Marriage problem in 1962 [2].

The Student-Project Allocation problem (SPA) is a typical formulation of
this kind of problem originally described by Abraham, Irving, and Manlove
[1]. The participants here are students, projects, and lecturers. Each project
is offered by a single lecturer, though one lecturer may offer multiple projects.
Each project and each lecturer has a capacity. Students have preferences over
projects, and lecturers have preferences over students. Our goal is to find a
stable matching between students and projects satisfying all of the capacity
constraints for projects and lecturers. They proved that all stable matchings
for a single instance have the same size, and proposed linear-time algorithms
to find one [1].

Manlove and O’Malley [8] proposed a variant of SPA, called SPA with
Preferences over Projects (SPA-P), where lecturers have preferences over
projects they offer rather than preferences over students. In contrast to
SPA, they pointed out that the sizes of stable matchings may differ, and
proved that the problem of finding a maximum stable matching in SPA-P,
denoted MAX-SPA-P, is APX-hard. They also presented a polynomial-time
2-approximation algorithm. Specifically, they provided a polynomial-time al-
gorithm that finds a stable matching, and proved that any two stable match-
ings differ in size by at most a factor of two.

Our Contributions. In this paper, we improve both the upper and lower
bounds on the approximation ratio for MAX-SPA-P. We give an upper bound
of 1.5 and a lower bound of 21/19 (> 1.1052) (under the condition that P
�= NP). For the upper bound, we modify Manlove and O’Malley’s algorithm
spa-p-approx [8] using Király’s idea [7] for the approximation algorithm to
find a maximum stable matching in a variant of the stable marriage prob-
lem (MAX-SMTI). We also show that our analysis is tight. For the lower
bound, we give a gap-preserving reduction from (a variant of) MAX-SMTI.
Our reduction also gives a lower bound of 1.25 under the Unique Games
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Conjecture.

2. Preliminaries

Here we give a formal definition of SPA-P and MAX-SPA-P, derived di-
rectly from the literature [8]. An instance I of SPA-P consists of a set S of
students, a set P of projects, and a set L of lecturers. Each lecturer �k ∈ L
offers a subset Pk of projects. Each project is offered by exactly one lecturer,
i.e., Pk1 ∩ Pk2 = ∅ if k1 �= k2. Each student si ∈ S has an acceptable set of
projects, denoted Ai, and has a strict order on Ai according to preferences.
Each lecturer �k also has a strict order on Pk according to preferences. Also,
each project pj and each lecturer �k has a positive integer, called a capacity,
denoted cj and dk, respectively.

An assignment M is a subset of S×P where (si, pj) ∈ M implies pj ∈ Ai.
Let (si, pj) ∈ M and �k be the lecturer who offers pj . Then we say that si

is assigned to pj in M , and pj is assigned si in M . We also say that si is
assigned to �k in M and �k is assigned si in M .

For s ∈ S, let M(s) be the set of projects to which s is assigned in M . For
r ∈ P ∪L, let M(r) be the set of students assigned to r in M . If M(si) = ∅,
we say that the student si is unassigned in M , otherwise si is assigned in
M . We say that the project pj is under-subscribed, full, or over-subscribed
with respect to M according to whether |M(pj)| < cj, |M(pj)| = cj, or
|M(pj)| > cj , respectively, under M . If |M(pj)| > 0, we say that pj is
non-empty, otherwise, it is empty. Corresponding definitions apply to each
lecturer �.

A matching M is an assignment such that |M(si)| ≤ 1 for each si,
|M(pj)| ≤ cj for each pj, and |M(�k)| ≤ dk for each �k. For a matching
M , if |M(si)| = 1, we may use M(si) to denote the unique project to which
si is assigned. The size of a matching M , denoted |M |, is the number of
students assigned in M .

Given a matching M , a (student, project) pair (si, pj) blocks M , or is a
blocking pair for M , if the following three conditions are met:

1. pj ∈ Ai.
2. Either si is unassigned or si prefers pj to M(si).
3. pj is under-subscribed and either

(a) si ∈ M(�k) and �k prefers pj to M(si), or
(b) si �∈ M(�k) and �k is under-subscribed, or
(c) si �∈ M(�k), �k is full, and �k prefers pj to �k’s worst non-empty
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project,
where �k is the lecturer who offers pj .

Given a matching M , a coalition is a set of students {si0, si1 , . . . , sir−1} for
some r ≥ 2 such that each sij is assigned in M and prefers M(sij+1

) to M(sij ),
where j + 1 is taken modulo r. A matching that has no blocking pair nor
coalition is stable. Refer to [8] for the validity of this definition of stability.
SPA-P is the problem of finding a stable matching, and MAX-SPA-P is the
problem of finding a maximum stable matching.

We say that A is an r-approximation algorithm if it satisfies OPT (I)/A(I) ≤
r for all instances I, where OPT (I) and A(I) are the sizes of the optimal
and the algorithm’s solutions for I, respectively.

3. Approximability

3.1. Algorithm SPA-P-APPROX-PROMOTION

Manlove and O’Malley’s algorithm spa-p-approx [8] proceeds as follows.
First, all students are unassigned. Any student (s) who has non-empty pref-
erence list applies to the top project (p) on the current list of s. If the lecturer
(�) who offers p has no incentive to accept s for p, then s is rejected. When
rejected, s deletes p from the list. Otherwise, (s, p) is added to the current
matching. If, as a result, � becomes over-subscribed, � rejects a student from
�’s worst non-empty project to satisfy the capacity constraint. This contin-
ues until there is no unassigned student whose preference list is non-empty.
Manlove and O’Malley proved that the obtained matching is stable.

We extend spa-p-approx using Király’s idea [7]. During the execution
of our algorithm spa-p-approx-promotion, each student has one of two
states, “unpromoted” or “promoted”. At the beginning, all of the students
are unpromoted. The application sequence is unchanged. When a student (s)
becomes unassigned with her preference list exhausted, s is promoted. When
promoted, s returns to her original preference list (i.e., all of the previous
deletions are canceled) and starts a second sequence of applications from
the top of her list. For the decision rule for acceptance or rejection by the
lecturers, they will prefer promoted students to unpromoted students within
the same project. The formal description of spa-p-approx-promotion is
given as Algorithm 1.

When a student si applies to a project pj but is instantly rejected, we say
that pj rejects si and si is rejected by pj. Similarly, when a student si being
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assigned to pj is rejected (due to another student’s application), we say that
pj rejects si and si is rejected by pj.

3.2. Correctness

It is straightforward to show that spa-p-approx-promotion outputs a
matching in polynomial time. We will now show that the output matching
M is stable. We first prove two useful lemmas:

Lemma 3.1. Suppose that, during the execution of spa-p-approx-promotion,
a project pa rejected a promoted student. Then (i) after that point, no student
can be accepted to pa, and (ii) no unpromoted student can be assigned to pa

in M .

Proof. Suppose that a promoted student s is rejected by pa. Let �k be
the lecturer who offers pa. It is easy to see that just after this rejection, no
unpromoted student can be assigned to pa. We show that after that point,
if a student s′ applies to pa when there is no unpromoted student assigned
to pa, then s′ must be rejected. It is easy to see that the lemma follows by
using this fact inductively.

Note that just after this rejection, either (1) pa is full or (2) pa is under-
subscribed and �k is full. We consider Case (2) first. Since pa is under-
subscribed but s was rejected by pa, just before this rejection pa must be �k’s
worst non-empty project or even worse than �k’s worst non-empty project.
Then after this rejection, pa remains �k’s worst non-empty project or worse
than that. Note that now �k remains full until the end of the execution. Then
after this point, when any student applies to pa, only Cases A (line 10) or B
(line 16) of the algorithm can apply. Since there is no unpromoted student
in M(pa), s′ must be rejected.

In Case (1), if pa is still full when s′ applies to pa, Case A of the algorithm
applies and hence s′ must be rejected since M(pa) contains no unpromoted
student. If pa is under-subscribed when s′ applies to pa, then some student
was already rejected by pa. At that time, �k must have been full and pa was
�k’s worst non-empty project. Therefore, �k is still full and pa is �k’s worst
non-empty project or worse than �k’s worst non-empty project. Then we can
apply the same argument as in Case (2). �

Lemma 3.2. Suppose that, during the execution of spa-p-approx-promotion,
a project pa has rejected a student. Then after that point, no unpromoted stu-
dent can be accepted to pa.
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Proof. The proof is basically similar to that of the previous lemma, and
hence we give only a brief sketch. Let �k be the lecturer who offers pa. After
the rejection point, �k or pa is full. If �k is full but pa is under-subscribed,
then pa must be �k’s worst non-empty project or worse than that. Then,
afterwards, �k has no incentive to accept an unpromoted student to pa. Next,
suppose that pa is full after the rejection point. As long as pa remains full,
pa rejects an unpromoted student. If pa becomes under-subscribed, then �k

must be full and pa is �k’s worst non-empty project or worse than that. Hence
we can apply the same argument as the former case. �

To prove the stability, we need to prove that there is no coalition or
blocking pair.

Lemma 3.3. The output matching M is coalition-free.

Proof. Suppose that there is a coalition {si0, si1 , . . . , sir−1} for some r ≥ 2.
Let pij = M(sij ) for each j (0 ≤ j ≤ r−1). Thus sij prefers pij+1

to pij (where
j +1 is taken modulo r). Therefore, at some point of the execution, pij+1

was
deleted from sij ’s list. Note that during the execution of the algorithm, one
project may be deleted from a student’s list twice (because of a promotion).
Hereafter, a “deletion” means the final deletion unless otherwise stated.

Now suppose without loss of generality that among such deletions, the
first occurrence was the deletion of pi1 from si0 ’s list. First, suppose that
si0 is eventually unpromoted. Note that si1 applied to and was accepted
by pi1 after si0 was rejected by pi1 . Therefore si1 is eventually promoted by
Lemma 3.2. Then si1 was rejected by pi2 when si1 was promoted. This means
that si2 is eventually promoted by Lemma 3.1(ii). Repeating this argument,
we can conclude that sir−1 is eventually promoted. Then this contradicts
Lemma 3.1(ii) since pi0 rejected the promoted student sir−1 but is assigned
an unpromoted student si0 in M .

Next suppose that si0 is eventually promoted. Then since pi1 rejected
a promoted student si0, after that pi1 accepts no student by Lemma 3.1(i).
This contradicts the fact that si1 was accepted to pi1 later. �

Lemma 3.4. The output matching M has no blocking pair.

Proof. Assume that there exists a blocking pair (sr, pt) for M . Then it is
clear that sr was rejected by pt during the execution (recall that this rejection
is the second one if sr was eventually promoted). Let �k be the lecturer who
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offers pt. Rejections occur at lines 12, 14, 17, 23, and 25. If this rejection
occurred at line 17, 23, or 25, then pt was already �k’s worst non-empty
project or worse than that, and this is also the case in M . We know that
�k was full at this rejection point, and remains full in M . Therefore, (sr, pt)
cannot block M . If this rejection occurred at line 12 or 14 as a result of �k

being full and pt being �k’s worst non-empty project, then the same argument
holds. Therefore suppose that this rejection occurred at line 12 or 14 as a
result of pt being full. Since (sr, pt) blocks M , pt is under-subscribed in M .
Then pt changed from being full to being under-subscribed at some point.
This can happen only when �k is full and pt is �k’s worst non-empty project.
Again, we can use the same argument to show that (sr, pt) cannot block M ,
a contradiction. �

The following lemma follows immediately from Lemmas 3.3 and 3.4.

Lemma 3.5. spa-p-approx-promotion returns a stable matching.

3.3. Analysis of the Approximation Ratio

For a given instance I, let M be a matching output from spa-p-approx-
promotion, and let Mopt be a largest stable matching for I.

Lemma 3.6. |Mopt| ≤ 3
2
|M |.

Proof. Based on M and Mopt, we define a bipartite graph GM,Mopt =
(U, V, E) as follows: Each vertex in U corresponds to a student in I, and each
vertex in V corresponds to a position of a project in I. Precisely speaking,
for each project pj whose capacity is cj , we create cj “positions” of pj , each
of which can accept at most one student, and each vertex in V corresponds
to each such position. We use si to denote the vertex in U corresponding to
a student si and pj,1, pj,2, . . . , pj,cj

to denote the vertices in V corresponding
to a project pj.

If a student si is assigned to a project pj in M (Mopt, respectively), we
include an edge (si, pj,t) for some t (1 ≤ t ≤ cj), called an M-edge (Mopt-edge,
respectively), in E. If si is assigned to the same project pj both in M and
Mopt, then M- and Mopt-edges corresponding to this assignment include the
same position of pj , which means we give parallel edges (si, pj,t) for some t.
We also ensure that there are no two vertices pj,t1 and pj,t2 such that pj,t1 is
matched in M but not in Mopt, and pj,t2 is matched in Mopt but not in M . In
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such a case, there will be M-edge (si1, pj,t1) and Mopt-edge (si2, pj,t2). Then
we can remove (si1, pj,t1) and add (si1 , pj,t2) instead.

Note that each vertex of GM,Mopt has degree at most two. Therefore its
connected components (other than isolated vertices) are alternating paths or
alternating cycles. Now we will modify GM,Mopt while retaining this property
and keeping the numbers of M-edges and Mopt-edges unchanged. Note that
the resulting graph may not correspond to a feasible solution for I. We use
this modification only for the purpose of comparing the sizes of M and Mopt.

A connected component consisting of only one Mopt-edge is called a Type-I
component. A connected component which is a length-three alternating path
consisting of two Mopt-edges and one M-edge in the middle is called a Type-II
component. We show that there are no Type-I or Type-II components in the
resulting bipartite graph. If this is true, the connected component having the
largest ratio of the number of Mopt-edges to that of M-edges is a length-five
alternating path with three Mopt-edges and two M-edges, which has the ratio
of 1.5. This proves the lemma.

Consider a Type-I component (si, pj,t). Let �k be the lecturer who offers
pj. Since pj,t is not matched in M , pj is under-subscribed in M . Then �k

must be full in M since otherwise (si, pj) blocks M . Because pj,t is matched
in Mopt but not in M , we can find a vertex pa,x in V which is matched in M
but not in Mopt, where pa is offered by �k. We can remove (si, pj,t) and add
(si, pa,x) to remove this Type-I component.

Consider a Type-II component si −pa,x − sj −pb,y. Note that pa �= pb due
to the construction of GM,Mopt. Since si is unassigned in M , si is promoted.
Then si applied to pa when promoted, but was rejected. Therefore sj must
be promoted by Lemma 3.1(ii). This means that sj applied to pb at least
once, but was rejected. Let �k be the lecturer who offers pb. As mentioned
several times before, this rejection can happen only when (1) pb is full or (2)
�k is full and pb is �k’s worst non-empty project or worse than that, and either
(1) or (2) also holds for the output matching M . However pb,y is unmatched
in M , so (2) must hold for M and hence �k is full in M . Since �k is full in
M but pb,y is matched only in Mopt, there must be a vertex pc,z in V which
is matched in M with some vertex, say sd, but not matched in Mopt, where
pc is offered by �k. If we remove the edge (sj, pb,y) and add (sj , pc,z), then we
will have an alternating path si − pa,x − sj − pc,z − sd · · · of length at least
four. Hence this Type-II component is removed.

Note that in both of these cases, we used the property that �k is full in
M . This implies that for each Type-I or Type-II component, we can find
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a distinct vertex in V which is matched only in M to perform the above
mentioned replacement. We do this replacement for all Type-I and Type-II
components in GM,Mopt. This operation does not change any M-edges, so the
number of students assigned to each lecturer or project in M is unchanged.
In particular, a lecturer or a project full in M is still full in the modified
graph.

As a result of these operations, we may still have a Type-II component.
This can happen only when we removed a Type-I component, such as (si, pj,t),
using a length-two path, such as pa,x − sr − pb,y, where (sr, pa,x) is an M-
edge and (sr, pb,y) is an Mopt-edge. In this example, we removed (si, pj,t) and
added (si, pa,x), and as a result we now have a Type-II component si−pa,x −
sr − pb,y. Note that pa and pj must be offered by the same lecturer, such as
�k, because of the definition of the operation for Type-I components. Also,
by the construction of GM,Mopt, pa and pj must be different projects because
pj,t is matched only in Mopt and pa,x is matched only in M .

If pb is also offered by �k, then corresponding to the Mopt-edge (sr, pb,y),
we can find a vertex pc,z in V which is matched in M but not in Mopt, where
pc is offered by �k, since �k is full in M . Then we can remove this Type-
II component by replacing (sr, pb,y) with (sr, pc,z). Otherwise, let �k′( �= �k)
be the lecturer who offers pb. Suppose that sr prefers pb to pa. Since pb is
under-subscribed in M , �k′ must be full in M , since otherwise (sr, pb) blocks
M . Then we can use the same argument as before to show the existence of
a vertex pc,z which is matched in M but not in Mopt, where pc is offered by
�k′, and we can replace (sr, pb,y) with (sr, pc,z). Suppose that sr prefers pa to
pb. If �k prefers pa to pj , then (sr, pa) blocks Mopt, a contradiction (note that
pa,x is not matched in Mopt and hence pa is under-subscribed in Mopt). If �k

prefers pj to pa, then (si, pj) blocks M , a contradiction. We have exhausted
all of the cases, and have shown that all Type-I and Type-II components can
be removed. This completes the proof. �

The following theorem follows immediately from Lemmas 3.5 and 3.6.

Theorem 3.7. spa-p-approx-promotion is a 1.5-approximation algorithm
for MAX-SPA-P.

3.4. Tightness of the Analysis

We give an instance to show that our analysis of the approximation ratio is
tight. There are three students s1, s2, and s3 and one lecturer �1 with d1 = 3.
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Lecturer �1 offers three projects p1, p2, and p3, where c1 = c2 = c3 = 1. The
preferences of the students and the lecturer are as follows:

s1: p1 �1: p3 p2 p1

s2: p1 p2

s3: p2 p3

Note that the matching {(s1, p1), (s2, p2), (s3, p3)} of size three is stable,
but the following execution of spa-p-approx-promotion yields a stable
matching of size two {(s2, p1), (s3, p2)}:

1. s1 applies to p1 and is accepted.
2. s3 applies to p2 and is accepted.
3. s2 applies to p1 and is rejected.
4. s2 applies to p2 and is rejected.
5. s2 is promoted.
6. s2 applies to p1 and is accepted; s1 is rejected.
7. s1 is promoted.
8. s1 applies to p1 and is rejected.

3.5. Promoting Many Times

In the course of spa-p-approx-promotion, each student is promoted at
most once. One of the natural extensions is then to let a student be promoted
more than once, where a student with more promotions is more preferred
(within the same project). Unfortunately, however, we have a simple example
to show that this extension does not improve the approximation ratio. There
are three students s1, s2, s3, three lecturers �1, �2, �3, and four projects, p1

and p2 offered by �1, p3 offered by �2, and p4 offered by �3. All of the capacities
of lecturers and projects are one. Preference lists are defined as follows:

s1: p2 �1: p1 p2

s2: p3 p1 �2: p3

s3: p3 p4 �3: p4

First note that {(s1, p2), (s2, p3), (s3, p4)} of size three is a maximum stable
matching. Now, consider the following execution of the extended algorithm:

1. s3 applies to p3 and is accepted.
2. s2 applies to p3 and is rejected.
3. s2 applies to p1 and is accepted.
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Then, afterwards, no matter how many times s1 is promoted, s1 will be
rejected by p2. Hence the extended algorithm produces a stable matching of
size two. Note that this is also another tight example for Section 3.4.

4. Inapproximability

We first define the following optimization variant of the stable marriage
problem, which we call MAX-SMTI-1T (abbreviation of “Maximum stable
marriage problem with ties and incomplete lists with one-sided ties”). In an
input, we have sets of men and women. Each man has an acceptable set
of women, whom he is willing to be matched with, and has a preference list
that orders his acceptable women in a strict order. Similarly, each woman has
an acceptable set of men, and has a preference list for them. The women’s
preference lists may contain ties, meaning that two or more men in the same
tie are considered to be of equal preference for her. A matching is a set
of disjoint (man, woman)-pairs (m, w) such that m and w are acceptable
to each other. If (m, w) is a pair in a matching M , we write M(m) = w
and M(w) = m. For a matching M , a (man, woman)-pair (m, w) �∈ M is
a blocking pair if (i) m and w are acceptable to each other, (ii) either m is
unmatched or prefers w to M(m), and (iii) either w is unmatched or prefers
m to M(w). A matching that has no blocking pair is stable. MAX-SMTI-1T
is the problem of finding a stable matching of maximum size. For an instance
I of MAX-SMTI-1T, let OPT (I) be the size of a maximum stable matching
for I. The following proposition is obtained by letting p = 1/3 in Theorem
3.2 of [4].

Proposition 4.1. [4] For any ε > 0, if there is a polynomial-time algorithm
that, given a MAX-SMTI-1T instance I with N men and N women, distin-
guishes between the following two cases, then P=NP.

(1) OPT (I) ≥ 7/3−ε
3

N .

(2) OPT (I) < 19/9+ε
3

N .

We prove a similar hardness for MAX-SPA-P by a reduction from MAX-
SMTI-1T. For an instance I ′ of MAX-SPA-P, let OPT (I ′) be the size of a
maximum stable matching for I ′.

Theorem 4.2. For any ε > 0, if there is a polynomial-time algorithm that,
given a MAX-SPA-P instance I ′ with N ′ students, distinguishes between the
following two cases, then P=NP.
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(1) OPT (I ′) ≥ 7/3−ε
3

N ′.
(2) OPT (I ′) < 19/9+ε

3
N ′.

Proof. Let I be a MAX-SMTI-1T instance with N men and N women.
Without loss of generality, we assume that acceptability is symmetric, i.e., a
man m includes a woman w in his list if and only if w includes m in her list.
We construct a MAX-SPA-P instance I ′ with N ′ students. Our reduction
satisfies conditions (i) N ′ = N and (ii) OPT (I ′) = OPT (I). Then it is not
hard to see that Proposition 4.1 implies Theorem 4.2.

For each man mi of I, we create a student si of I ′, and for each woman wj

of I, we create a lecturer �j of I ′. For each woman wj , let Tj,1, Tj,2, . . . , Tj,t be
the ties in wj ’s preference list in the order of preference, where a man not in a
tie is considered as a tie of size one. Then, we create projects pj,1, pj,2, . . . , pj,t

that are offered by �j , where �j ’s preference list includes these projects in this
order. Suppose that in I, a man mi includes a woman wj at the dth position
in his list, and mi is in a tie Tj,k of woman wj’s list. Then, in I ′, student si

includes the project pj,k at the dth position of the list. The capacity of each
lecturer and each project is one. This completes the reduction. It is not hard
to see that the reduction can be done in polynomial time. To illustrate the
reduction, we give an example of MAX-SMTI-1T instance I in Fig. 1 and
corresponding MAX-SPA-P instance I ′ in Fig. 2. In a woman’s list in Fig. 1,
men in the same tie are included in parenthesis.

m1: w1 w3 w2 w1: (m1 m2) (m3 m4)
m2: w3 w1 w2 w2: m2 m1 m4

m3: w4 w1 w3: m1 (m2 m4)
m4: w3 w2 w1 w4 w4: m3 m4

Figure 1: A MAX-SMTI-1T instance I

s1: p1,1 p3,1 p2,2 �1: p1,1 p1,2

s2: p3,2 p1,1 p2,1 �2: p2,1 p2,2 p2,3

s3: p4,1 p1,2 �3: p3,1 p3,2

s4: p3,2 p2,3 p1,2 p4,2 �4: p4,1 p4,2

Figure 2: The MAX-SPA-P instance I ′ corresponding to I
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Clearly condition (i) holds. In the rest of the proof, we show that condi-
tion (ii) holds. To see this, we show that (A) if there is a stable matching
M of I, then there is a stable matching M ′ of I ′ such that |M ′| = |M |, and
(B) if there is a stable matching M ′ of I ′, then there is a stable matching M
of I such that |M | = |M ′|. The statement (A) implies OPT (I ′) ≥ OPT (I)
and (B) implies OPT (I) ≥ OPT (I ′), which together implies condition (ii).

We show (A) first. Given a stable matching M of I, we create a matching
M ′ of I ′ as follows: Suppose that a man mi is matched with a woman wj

in M . Then, by construction, si’s list includes a project pj,k offered by the
lecturer �j, and such k is unique. In M ′, we assign a student si to pj,k. If mi is
unmatched in M , then si is unassigned in M ′. It is straightforward to check
that M ′ satisfies all of the capacity constraints and that |M ′| = |M |. Suppose
that M ′ admits a blocking pair (si, pj,k). Then, si is unassigned or prefers
pj,k to M ′(si). Also, �j is unassigned, or assigned a student si′ to a project
pj,k′ and �j prefers pj,k to pj,k′. Then, in M , mi is unmatched or prefers wj

to M(mi), and wj is unmatched or prefers mi to M(wj)(= mi′), i.e., (mi, wj)
is a blocking pair for M , contradicting the stability of M . Hence, we can
conclude that M ′ admits no blocking pair.

Now suppose that M ′ admits a coalition {si0 , si1, . . . , sir−1}, that is, sij

prefers M ′(sij+1
) to M ′(sij) for each j. Then, remove this coalition from M ′,

that is, reassign sij to M ′(sij+1
) for each j. Note that an application of this

operation does not change the matching size. Also, note that no new blocking
pair is created because no one becomes worse off. We apply this operation
as long as there is a coalition. This sequence of operations must terminate
in finite number of steps because at least two students become better off by
one application. Hence at the termination, we have a stable matching of size
|M ′|.

Next we show (B). Let M ′ be a stable matching for I ′. We construct a
matching M of I as follows: If a student si is assigned to a project pj,k in
M ′, then a man mi is matched with a woman wj in M (note that wj is in
mi’s list by construction). If si is unassigned in M ′, then mi is unmatched
in M . Again, it is easy to see that M is a stable matching and |M | = |M ′|.
This completes the proof. �

Corollary 4.3. Assume that P�=NP. Then for any constant δ > 0, there is
no polynomial-time (21/19 − δ)-approximation algorithm for MAX-SPA-P.

Proof. By Theorem 4.2, we see that the existence of a polynomial-time

13



algorithm that distinguishes between the following two cases implies P=NP
for an arbitrary small positive constant ε:

(1) OPT (I ′) ≥ 7/3−ε
3

N ′.
(2) OPT (I ′) < 19/9+ε

3
N ′.

Suppose that there is a polynomial-time approximation algorithm T for
MAX-SPA-P whose approximation ratio is at most 21/19 − δ for some δ.
Then consider these conditions with fixed constant ε such that ε < 361δ

360−171δ
.

If an instance of Case (1) is given to T , it outputs a solution whose size

is at least 7/3−ε
3

N ′ 1
21/19−δ

. If an instance of Case (2) is given to T , it outputs

a solution whose size is less than 19/9+ε
3

N ′. Since 7/3−ε
3

N ′ 1
21/19−δ

> 19/9+ε
3

N ′

from the definition of ε, T can distinguish between Cases (1) and (2), which
implies P=NP. This completes the proof. �

As mentioned in Remark 3.6 of [4], MAX-SMTI-1T is hard to approximate
within 1.25−δ for any positive constant δ if Minimum Vertex Cover problem
is hard to approximate within 2 − ε for any positive constant ε (note that
the “if-part” is true if the Unique Games Conjecture is true [6]). Using the
reduction in the proof of Theorem 4.2, we can prove the same hardness for
MAX-SPA-P:

Theorem 4.4. Assume that, for any positive constant ε, there is no polynomial-
time (2 − ε)-approximation algorithm for Minimum Vertex Cover problem.
Then, for any positive constant δ, there is no polynomial-time (1.25 − δ)-
approximation algorithm for MAX-SPA-P.

Proof. Suppose that, for some δ′, there is a polynomial-time (1.25 − δ′)-
approximation algorithm A for MAX-SPA-P. Then, the following algorithm
B is a polynomial-time (1.25− δ′)-approximation algorithm for MAX-SMTI-
1T: Given an instance I of MAX-SMTI-1T, B first translates it to an instance
I ′ of MAX-SPA-P using the reduction in the proof of Theorem 4.2. It then
solves I ′ using A and obtains a solution M ′, and transforms it to a solution
M of I in the same manner as given in the proof of Theorem 4.2. Then, by
Remark 3.6 of [4], there is a polynomial-time (2 − ε′)-approximation algo-
rithm for Minimum Vertex Cover problem for some ε′, which contradicts our
assumption. �
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5. Conclusions

In this paper, we improved the upper and lower bounds on the approxi-
mation ratio for MAX-SPA-P. One research direction is to further improve
the upper bound. For example, a state of the art approximation algorithm
for MAX-SMTI-1T [5] generalizes Király’s idea [7] using a Linear Program-
ming approach. Its approximation ratio of 25/17(	 1.4706) is slightly better
than 1.5. One possible next step is to verify whether this idea can be applied
to spa-p-approx-promotion.

Acknowledgments. The authors would like to thank the anonymous re-
viewer for the valuable comments.
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Algorithm 1 spa-p-approx-promotion

1: M := ∅.
2: Let all students be unpromoted.
3: while (there exists an unassigned student si such that si’s list is non-

empty or si is unpromoted) do
4: if (si’s list is empty and si is unpromoted) then
5: Promote si.
6: end if
7: pj := first project on si’s list.
8: �k := lecturer who offers pj .
9: /* si applies to pj */

10: if (A. (pj is full) or (�k is full and pj is �k’s worst non-empty project))
then

11: if ((si is unpromoted) or (there is no unpromoted student in M(pj)))
then

12: Reject si.
13: else
14: Reject an arbitrary unpromoted student in M(pj) and add (si, pj)

to M .
15: end if
16: else if (B. �k is full and prefers �k’s worst non-empty project to pj)

then
17: Reject si.
18: else if (C. Otherwise) then
19: Add (si, pj) to M .
20: if (�k is over-subscribed) then
21: pz := �k’s worst non-empty project. /* note that �k prefers pj to

pz. */
22: if (M(pz) contains an unpromoted student) then
23: Reject an arbitrary unpromoted student in M(pz).
24: else
25: Reject an arbitrary student in M(pz).
26: end if
27: end if
28: end if
29: end while
30: Return M .
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