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are well-explained by two independent modes, which we call ‘splay-bend’ and ‘undulation’ modes.  14 
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After invention of the polymer stabilized blue phase in 2002, development of the next-generation 1 

displays utilizing fast response of Kerr effect in the blue phase has been extensively performed [1-3].  2 

However, its dynamic response against the electric field is not so sufficiently understood because of 3 

complexity caused by the existence of the three-dimensional lattice composed of double twist 4 

cylinders, in which cholesteric helical axes are locally extended radially in the plane normal to the 5 

cylinder rod.  In fact, the hydrodynamic modes of the orientation fluctuations are not described 6 

completely even in the conventional cholesteric phase.  Pseudo layer structure exists along the helix 7 

in the cholesteric phase, and can be responded elastically against the uniaxial dilation or compression 8 

of the helix.  Thus, eigen modes for the distortion of director in the nematic phase are forbidden or 9 

coupled with other modes as similar to the smectic phase.  In order to understand the relation 10 

between dynamics and response of the director in the blue phase, it is important to understand the 11 

description of complete set of the hydrodynamic modes in the cholesteric phase first.  12 

In the nematic phase, hydrodynamic modes of the orientation fluctuation have been completely 13 

described by the individual three modes called splay, twist and bend modes [4].  On the other hand, 14 

in the cholesteric phase, the hydrodynamic modes depend on whether wave vector is along parallel 15 

or perpendicular to its helical axis.  The mode parallel to the helical axis has already been analyzed 16 

theoretically, and it has turned out that the dispersion relations are described by two modes, which 17 

are called ‘twist’ and ‘viscous-splay’ (‘umbrella’) modes [4-6].  They have also been verified 18 

experimentally, using dynamic light scattering (DLS) [7, 8].  Later, fluctuations of tensor 19 

order-parameter modes parallel to the helical axis are also calculated [9].  In contrast, for the mode 20 

perpendicular to the helical axis, there are few investigations, which have only been done for the case 21 

in which the wave number of scattering vector q, which is defined as the difference between the wave 22 

number vectors of the incident and the scattered light is much less than that of the helical pitch q0, 23 

which is defined by q0=2π/P, where P is helical pitch length ( 0qq  ) [6, 10].  By the way, 24 

order-parameter fluctuations in the isotropic phase above the cholesteric phase are also investigated 25 
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as the pretransitional behavior [11, 12]. 1 

In this paper, we focus on the hydrodynamic modes perpendicular to the helical axis in the 2 

cholesteric phase.  Without assuming 0qq  , we analytically calculated the dispersion relations of 3 

the fluctuations in case that the scattering vector is perpendicular to the helical axis, and verified 4 

validity of the analysis experimentally using DLS. 5 

From the macroscopic point of view, it can be considered that the cholesteric liquid crystal has 6 

pseudo-layer structure derived from its helix, and we assumed that it deforms without breaking and 7 

compressing the pseudo-layer structure.  According to the layer deformation in the smectic A phase, 8 

small deformation of the pseudo-layer structure is written by the displacement u from the equilibrium 9 

configuration as shown in Fig. 1(b), and the increase of the elastic free energy is written using u as 10 

similar to the smectic phase.  On the other hand, the elastic free energy density per unit volume of 11 

the cholesteric liquid crystal is usually written using the director n [4].  Small deformation of the 12 

director from the equilibrium configuration δn has two components δnϕ and δnz along perpendicular 13 

and parallel to the helical axis, where we assumed that z axis is parallel to the helical axis in the 14 

non-deformed state.  Using them, we can write the director with small deformation as follows,   15 

),cossin,sin(cos 0000 znzqnzqzqnzq   n  .   (1) 16 

Although δnϕ is independent of u, there is a relationship between δnz and u, 17 
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where we adopted cylindrical coordinate system ),,( zr  .  Hence, we calculated total elastic free 19 

energy F derived from the small fluctuations, using δnϕ, and u instead of δnz.  We expand F in a 20 

Fourier series, 21 
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where K1, K2 and K3 are elastic constants corresponding to splay, twist, and bend deformations of 23 
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local nematic director respectively, and V is volume of a sample.  kr and kz are wavenumbers nomal 1 

and parallel to the helical axis, respectively.   2 

Using the total free energy expressed in eq. (3), we calculated hydrodynamic equations for δnϕ and 3 

u respectively.  Here, we assume that the flow field is zero.  From the balance of molecular field 4 

and rotational viscosity, the hydrodynamic equation for δnϕ is written as 5 

dt
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where 1  is a rotational viscosity.  Time evolution of δnϕ indicates the exponential decay function, 7 

and its relaxation frequency 1/τϕ is written as 8 
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We call this relaxation ‘splay-bend mode’, which shows splay and bend deformations of the 10 

director in the plane perpendicular to the helical axis as shown in Fig. 1(a).  From eq. (5), it is found 11 

that this mode has both components parallel and perpendicular to the helical axis.  This expression 12 

is the same as the ‘phase mode’ which is one of the director fluctuation modes observed in the chiral 13 

smectic C* phase with a helical structure[13,14].  14 

On the other hand, from the analogy with lyotropic lamellar phase, the hydrodynamic equation for 15 

u is written as [15] 16 
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,   (6) 17 

where  is a viscosity constant for the undulation deformation.  Time evolution of u also indicates 18 

the exponential decay function, and its relaxation frequency 1/τu is written as 19 
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We call this relaxation ‘undulation mode’, which shows the undulation deformation of the 21 

pseudo-layer structure as shown in Fig. 1(b).  Eq. (7) indicates that this mode has only the 22 
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component normal to the helical axis. 1 

We measured experimentally the relaxation frequencies of the two modes in two scattering 2 

geometries as shown in Figs. 2(a) and (b), which are suitable for measuring the splay-bend and 3 

undulation modes, respectively.  In Fig. 2(a), the helical axis is parallel to the incident light, while it 4 

is perpendicular to scattering plane in Fig. 2(b).  Here, we measured them with the scattering angle 5 

θ being relatively small (18~45 degrees), so that the scattering vector q is almost perpendicular to the 6 

helical axis in both of the two geometries, and the director fluctuation modes having kr are observed 7 

in the two geometries.  The scattering vector q is defined by q=ki-kf, where ki and kf are wave 8 

number vectors of incident and scattered lights respectively, and wave number of scattering vector is 9 

written as q=|q|=4πn/λ assuming quasi-elastic scattering, where n is the mean refractive index of 10 

cholesteric liquid crystals and λ wave length of incident light.  It is noted that both splay-bend and 11 

undulation modes do not include the scattering geometry where the scattering vector is near parallel to the 12 

helical axis, as a consequence of the incompressible condition of the layer of the helix. 13 

The scattered field derived from director fluctuations is proportional to ),( )iε(qf t , where )ε(q t,  14 

is the Fourier transformation of the relative dielectric tensor )ε(r t, , and i and f are polarizations of 15 

incident and scattered lights respectively [4].  The )ε(r t,  of the cholesteric liquid crystals is 16 

written as   nna  , where   is the dielectric constant for the ordinary light, and a  17 

is the dielectric anisotropy.  Furthermore, we assumed that the polarizations of the incident and the 18 

scattered light are not modulated even in the cholesteric samples.  Although this assumption is quite 19 

different from real system, it is much more difficult and complex to consider the polarization of 20 

incident and scattered light strictly in the cholesteric liquid crystals.  In the previous studies as 21 

shown in references [5, 7, 8], the autocorrelation functions were theoretically analyzed without 22 

discussing the modulations of the polarizations in the cholesteric samples, and experimental results 23 

were well-explained using the analysis, so that we adopted the above assumption.  Using them, we 24 

calculated time autocorrelation functions of scattering intensity, which is proportional to 25 

2),()0,(   )i(qεf)iε(qf t  in the two scattering geometries.  As a result, it is found that the 26 

undulation modes are observed with wave numbers k = q+q0 and q−q0 in Figs. 2(a) and (b), while 27 

the splay-bend mode is only observed with wave numbers k = q+2q0 and q−2q0 in Fig. 2(a), where 28 
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q0 is defined by q0=(0, 0, q0).  Hence we call Fig. 2(a) ‘splay-bend geometry’ and Fig. 2(b) 1 

‘undulation geometry’.  Substituting these conditions into eqs. (5) and (7), the relaxation 2 

frequencies of the two modes are given by 3 
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The experiment was performed in the cholesteric phase of the mixture of 7CB, MLC6427 and 6 

MLC6248, which is optical isomer of MLC6247 (Merck).  We fixed weight ratio of the 7CB and 7 

the chiral dopant mixture of MLC6247 and MLC6248 to be 7:3.   Furthermore, adjusting weight 8 

ratio of MLC6247 and MLC6248, we prepared the samples whose physical pitch lengths are between 9 

300 and 820nm.  Not depending on the mixing ratio, the mixtures showed almost the same phase 10 

sequence, which is isotropic− 2 C−cholesteric.  In this experiment   e  i ed t e temperature at    C. 11 

For the DLS measurement, we prepared 10m thick sandwich cells made of two glass substrates.  12 

Since the incident light is almost perpendicular to the substrates in our measurement system, we need 13 

to align the helical axis perpendicular to the substrates for the splay-bend geometry (Fig. 2(a)), 14 

parallel to them for the undulation geometry (Fig. 2(b)).  Hence, for the splay-bend geometry, we 15 

used commercial homogeneous planar cells, while for the undulation geometry, we adopted the 16 

method as shown in reference [16] to achieve the alignments in which the helical axis is parallel to 17 

the substrates. 18 

Figure 3 shows the normalized autocorrelation functions of scattering intensity 1)(2 tg  actually 19 

observed in the splay-bend (symbol ○) and undulation (symbol □) geometries respectively.  In the 20 

splay-bend geometry, two relaxations are observed around ~0.04ms and ~0.8ms, while in the 21 

undulation geometry, single relaxation is observed around ~0.8ms, which is close to the slower mode 22 

observed in the splay-bend geometry.  Hence, it is confirmed that the faster mode in the splay-bend 23 

geometry corresponds to the splay-bend mode, and the slower mode in the splay-bend and the single 24 
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mode in the undulation geometry correspond to the undulation mode, as described in the above 1 

section.   2 

Figure 4(a) shows the dispersion relations of the relaxation frequencies of the splay-bend mode 3 

with respect to the wave numbers.  The relaxation frequencies are proportional to the square of the 4 

wave numbers, and its slope is independent of the helical pitch, while they show finite values 5 

depending on the pitch in the limit q→0, which are proportional to the square of the wave numbers 6 

of helical pitches as shown in Fig. 5.  These behaviors are well-explained by eq. (8a).  Figure 4(b) 7 

shows the dispersion relations of the undulation mode measured in the undulation geometry. The 8 

relaxation frequencies are proportional to the square of the wave numbers, and they become zero in 9 

the limit q→0, not depending on the helical pitches. These behaviors are also well-explained by eq. 10 

(8b). 11 

To summarize, we theoretically analyzed dispersion relations of director fluctuations along the 12 

direction perpendicular to the helical axis in the cholesteric liquid crystal without assumption of 13 

0qq  , and verified validity of the analysis using DLS measurement.  In the analysis, assuming 14 

that the cholesteric liquid crystals fluctuate without breaking its incompressible pseudo-layer 15 

structures, we designed the ‘splay-bend’ and the ‘undulation’ modes as the director fluctuation modes, 16 

which are expressed by eq. (8a) and (8b).  Furthermore, it is found that the experimental results well 17 

satisfies with our proposed dispersion relation of the two modes, and the assumption mentioned 18 

above is also adequate.   19 
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Figure caption 20 

Figure 1: (a) Director deformation in the splay-bend mode.  Left-side figure shows three 21 

dimensional image of director configuration.  Ellipsoids of right-side figure exhibit the director 22 

configuration at certain planes perpendicular to helical axis, and splay (top and bottom planes) and 23 

bend (middle plane) deformation are observed.  (b) Director deformation in the undulation mode.  24 

Ellipsoids show director configuration, and solid lines indicate the deformation of pseudo-layer 25 
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structures from the equilibrium configuration shown in broken lines. 1 

 2 

Figure 2: (a) Splay-bend and (b) undulation mode scattering geometries.  q is the scattering vector 3 

and q0 is the wave number vector of the cholesteric helical pitch.   4 

 5 

Figure 3: Autocorrelation functions measured in the two scattering geometries.  Open circle and 6 

square show the data measured in the splay-bend and undulation geometries respectively, and well 7 

fitted by double and single exponential curves respectively.  The scattering angle is 24
○
  t e 8 

temperature    C, and the physical pitch length of the sample 430nm.   9 

 10 

Figure 4: Dispersion relations of the two modes, (a) splay-bend and (b) undulation modes in various 11 

mixtures.  Fitted straight lines calculated by eq. (8a) and (8b) respectively are also shown, and it is 12 

found that the slope of the fitted lines is independent of the helical pitch.  Fitting parameters are (K1 13 

+ K3) / 21 = (1.1 ± 0.2) × 10
-10

 m
2
/s and 3K3 / 8= (1.8 ± 0.2) × 10

-11
 m

2
/s.   14 

 15 

Figure 5: Extrapolation values of relaxation frequency of the splay-bend mode in the limit q→0 as a 16 

function of square of wave number of the helical pitch.  Broken line is fitted using eq. (8a), in 17 

which 4K2 / 1 is 7.2 × 10
-11

 m
2
/s.   18 
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