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Abstract. The one-dimensional mass transfer in turbulent flows is considered.

The closure problem related to the mean product between concentration and

velocity fluctuations is treated by using random square waves. This

approximation allows us to represent the statistical variables of turbulent mass

transfer as depending on a finite set of basic parameters. The number of

equations needed is then limited by the number of basic parameters used. The

analysis is applied, in this study, to the interfacial mass transfer at air-water

interfaces, generating a closed set of three equations involving three unknown

functions. The resulting differential equations are nonlinear. A simplified

example is solved.

Key Words: Statistical turbulence, one-dimensional mass transfer, random

square waves

1. Introduction

Situations in which physical parameters oscillate randomly are usually

difficult to quantify. Turbulence in fluids is an example, in which parameters like

velocity and mass concentration oscillate continuously. Statistical equations are

often generated for turbulent movement and transport (see, for example, Pope,

2000). It is known that the statistical description of turbulence generates more

variables than equations to solve them, a situation known as the “closure problem”

of turbulence (Hinze 1959, and Monin and Yaglom 1979, 1981).

Theoretical approximations for statistical profiles of concentration fluctuations

below the water surface were presented by Schulz and Schulz (1991), who used

random square waves to represent the concentration oscillations. Such waves were

also used by Schulz et al. (1991) to quantify the time constant of the “intensity of

segregation” (as defined by Corrsin 1957, 1964), relating it to the gas transfer

across the water surface. The theme was revisited by Janzen (2006), who
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compared LIF measurements with theoretical predictions, and studied the role of

diffusive and turbulent transport in concentration boundary layers. Schulz and

Janzen (2009) showed that the profiles of the rms concentration fluctuations and

the mean concentration are related to each other, which follows from the fact that

the random square wave approximation needs only a finite number of basic

parameters to express the statistical variables of the turbulence transport equations.

As a result, it is possible to “close” the turbulence equations, limiting their number

by the number of basic parameters used. This paper presents (1) basic definitions

used in the random square wave approximation, (2) the derivation of statistical

variables of the mass transfer equations using the random square wave

approximation and the basic parameters, and (3) an example application for the

one-dimensional interfacial mass transport.

2. Turbulence transport equations and closure problem

The one-dimensional turbulent mass transfer, without sources/sinks, is usually

expressed as:

�C

�t
=

�

�z D
�C

�z
−ωc (1)

C and c are the mean concentration and the concentration fluctuation,

respectively. ω is the vertical velocity fluctuation, t is the time, z is the vertical

coordinate and D is the diffusion coefficient. Eq. (1) has two dependent variables:

C (a mean profile) and ωc (a covariance). To obtain a solution, a second equation

involving the same variables is needed, but any new equation adds new unknown

statistical variables, such that the obtained system is never closed (closure

problem). Considering the central moments of the concentration fluctuations,

c=[C−C]

, θ=1, 2, 3, …, their one-dimensional equations may be presented as:

1

θ

�c

�t
+c1 �C

�t
+c1ω

�C

�z
+

1

θ

�ωc

�z
=Dc1 �

2C

�z2 +c1�
2c

�z2  (2)

θ=1 reproduces Eq. (1). As can be seen, the set of Eqs. (2) involve C and ωc ,

but also other new unknowns. The random square waves are used here to obtain a

closed set of equations.

3. Basic Definitions

Assume that the concentration C(z, t) of Figure 1 oscillates between Cp(t) and

Cn (t) in a region z1 < z < z2. Turbulence is stationary. The mean profile C (z, t)
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for any z in z1 < z < z2 is defined as

C(z, t)=
1

Δt∫
t2

t1

C(z, t)dt (3)

where Δt=t2, t1. Any statistical variables, like the central moments c=[C−C]

,

are defined similarly. The same procedure is extended to the velocity field in this

region. To simplify notation, both coordinates (z, t) are dropped off in the rest of

the text.

3.1 Partition functions

Figure 2a is a sketch of the record of C at the position z of Figure 1. The mean

value C(z) for t1 < t < t2 is also shown. The evolution of C in Figure 2a depends

on turbulent transport and diffusion. Without diffusion, C would ideally alternate

between Cp and Cn, as shown in Figure 2b. Diffusion transfers mass between

regions with different concentrations, which, for small patches of fluid, will

decrease the amplitude of the oscillations. This is shown in Figure 2c using (Cp-P)

and (Cn+N), where P and N depend on z. C(z) remains unchanged.

Defining n as the fraction of the time for which the system is at the Cp-P value, we

have

n=
t at(Cp−P)

Δt of the observation
and 1−n=

t at(Cn+N)
Δt of the observation

(4)

Taking mass conservation into account leads to

N=
Pn

(1−n)
(5)

Section 2: Numerical Studies on Interfacial Turbulence and Scalar Transfer210

Cp(t)

Cn(t)

C

z1

z2

z

t1

t2

t

Δt

z

Figure 1 Sketch of a region in which C oscillates

between Cp and Cn. Turbulence is stationary.



n is named shortly “partition function”, and is a function of the distance to the

surface (z).

Eqs. (4) and (5) furnish the mean concentration profile, C, as:

C=nCp+1−nCn (6)

It follows that n is given by

n=
C−Cn

Cp−Cn

(7)

Thus, the function n defined by Eq. (4) is also the normalized C profile given

by Eq. (7). Following Eq. (6) for a general variable Q related to the concentration

record (for example, a power of the concentration fluctuations cθ), the mean value

is given by

Q=nQp+(1−n)Qn (8)

That is, the profile of Q is directly related to the profile n. Any new variable

has its own partition function. In the present study two partition functions are used:

n for the concentration (C) and m for the velocity (V).

3.2 Reduction coefficient functions

Figure 2c shows that P < Cp −C. Thus, a reduction coefficient αc is defined

for the amplitude as

P=αc[CpC] 0≤αc≤1 (9)

αc is a function of z. Values of αc close to 1 or 0 indicate stronger or weaker

influence of diffusion, respectively. Experimental profiles of αc were reported by

Schulz and Janzen (2009) for air-water mass transfer. Using Eqs. (6), (7) and (9),

N and P are expressed as:
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Figure 2 a) C record of figure 1 at z, b) Simplified record alternating C between Cp and Cn, c)

Simplified record with amplitude damping. Upper and lower points do not superpose at the

discontinuities (the C segments are open at the left and closed at the right).



N=αc n(Cp−Cn)

P=αc (1−n)(Cp−Cn) 0≤αc≤1 (10)

3.3 Superposition coefficient functions

Considering the division C=C+c and V=V+ω (V and V are the

instantaneous and mean velocities, respectively), the correlation coefficient

function r for the fluctuations c and ω is given by

r=
1

Δt∫
t2

t1

ωc

 v2
 c2

dt=
ωc

 v2
 c2

(11)

The records of ω and c can be at least partially superposed (concentration

fluctuations are carried by velocity fluctuations). As done for C, a partition

function m (depending on z) is defined for the upwards and downwards velocity

fluctuations ω. A perfect superposition between c and ω implies n=m, though this

is not usually the case. A superposition coefficient β is then defined so that β=1.0

implies m=n (perfect superposition), and β=0.0 implies m=1-n (inverse

superposition). Thus, m can be expressed as:

m=1−(β+n−2βn) (12)

where β is a function of z. Any new variable implies in new superposition

functions. In the present study only one superposition coefficient function is used.

3.4 Fluctuations c

The random square waves used here generate two fluctuations around the

mean value for each variable. From Eqs. (6), (9), and (10), the two concentration

fluctuations are given by

c1=(Cp−P−C)=(1−n)(Cp−Cn)(1−αc) (positive) (13)

c2=(Cn+N−C)=−n(Cp−Cn)(1−αc) (negative) (14)

3.5 Fluctuations ω and velocity scale  ω2

For the one-dimensional case, without mean motion, all the turbulent effects

depend on the fluctuations ω. Figure 3 shows the definition of the velocity scale U

by considering “downwards” (ωd) and “upwards” (ωu) fluctuations, which

amplitudes are functions of z.

Using the partition function for the velocity, m, U is defined as the integration

of the upper or the lower parts of the graph, as

U=ωd m and −U=−ωu(1−m) (15)
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The mean velocity is given by ωd m−ωu(1−m)=0 (or U−U=0). U is a

function of z (U = 0 at z = 0, where ωd=ωu= 0, and U≠0 for z  ∞). The rms

velocity  ω2 is calculated as:

ω2=mω2
d+(1−m)(−ωu)

2
and  ω2= mω2

d+(1−m)(−ωu)
2

(16)

From Eqs. (12), (15), and (16) it follows that

U= ω2
 [1−(β+n−2βn)](β+n−2βn) (17)

The velocity fluctuations are obtained from Eqs. (15) and (17):

ωd= ω
2


β+n−2βn

1−(β+n−2βn)
and ωu=− ω2


1−(β+n−2βn)

β+n−2βn
(18)

 ω2 depends on z, being zero at the water surface and constant (≠0) in the

bulk liquid. The functions n, αc, β, and  ω2 were used to obtain a closed set of

equations for the one-dimensional transport.

4. Central Moments

Eq. (2) involves central moments, defined as

c=[C−C]


θ=1, 2, 3, … (19)

The first order moment (θ = 1) is zero. Using Eqs. (13) and (14) and the

partition function n, the general central moments (θ = 1, 2, 3, …) are given by

c=c
1n+c

2(1−n)=n(1−n)[(1−n)
1

+(−1)

(n)

1
](Cp−Cn)


(1−αc)



(20)

or, normalizing the θ th root (c’θ)
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Figure 3 Upwards and downwards velocities for a fixed position z.

The areas above and under the horizontal line are equal, so that the

mean velocity is zero.



c'=
 c

(Cp−Cn)
= n(1−n)[(1−n)

1
+(−1)


(n)

1
] (1−α) (21)

For θ=2 we have

c2=c2
1n+c2

2(1−n)=n(1−n)(1−α)
2
(Cp−Cn)

2

c'2=
 c2

(Cp−Cn)
= n(1−n) (1−αc) and αc=1−

 c2

(Cp−Cn) n(1−n)  (22)

Eqs. (22) were used by Schulz and Janzen (2009) to obtain αc from

experimental data. It was shown that the equation for c'2 defines a peak amplitude

lower than 0.5. Experimental data allowed to visualize how the different profiles

are related, as shown by Figure 4. The gray regions represent data of Janzen (2006)

on the absorption of oxygen by water, as measured in a tank with oscillating grids.

c' and n are approximately linearly related for 0.4<n<1.0.

Eqs. (20) through (22) show that, given n and αc, it is possible to calculate all

the c profiles for the one dimensional transport equations.

5. Products between velocity and concentration fluctuations

5.1 Turbulent mass flux

The turbulent mass flux is defined by the mean product ωc. Thus Eq. (1)

involves the turbulent mass flux along z. Janzen (2006) and Herlina and Jirka

(2008) measured turbulent fluxes showing large oscillations, which points to the

convenience of having ωc expressed as function of more stable statistical profiles.

Eq. (11) defines r as the correlation between ω and c, being 0< r <1. But r is

also the normalized mass flux, and the random square waves were used here to

relate r to other statistical profiles for mass transfer.
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Figure 4 (a) Gray region: c' as a function of n, showing a linear dependence for 0.4<n<1.0.

(b) Gray region: 1-αc as a function of n (- - -αc obtained with the linear trend of figure 4a).



5.2 Correlation coefficient functions

For products between powers of c and ω, the superposition coefficient β (Eq.

12) must be used to account for “imperfect” superpositions. The turbulent mass

flux ωc is given by

ωc=ωd[c1nβ+c2(1−n)(1−β)]+ωu[c1n(1−β)+c2(1−n)β] (24)

Eqs. (11), (13), (14), (18) and (24) lead to

ωc=
n(1−n)(1−αc) ω

2 (Cp−Cn)


n(1−n)+

β(1−β)

(2β−1)
2

and

r c=
ωc

 ω2
 c2

=



n(1−n)

n(1−n)+
β(1−β)

(2β−1)
2

(25)

Following the same procedure, for general θ we obtain

r c=
ωc

 c2
 ω2

=



n(1−n)

n(1−n)+
β(1−β)

(2β−1)
2

 [(1−n)

−(−n)


]

 [(1−n)
21

+(−1)
2
(n)

21
]  (26)

Eq. (26) shows that the normalized fluxes of cθ depend only on n and β, while

the products ωc depend on n, β, αc and  ω2 (using Eq. 22). For β = 1 (perfect

superposition), ωc= ω2
 c2 , and an “ideal” turbulent flux is obtained from the

product between the rms concentration and velocity profiles. Figure 5 was

obtained with data of Janzen (2006), where W is the maximum measured vertical

rms velocity. The mass flux vanishes at the bottom of the tank, accumulating

oxygen in the bulk liquid, so that ωc also approaches zero in the bulk liquid.
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Figure 5 “Ideal” turbulent fluxes obtained from
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to the envelope of the data of Janzen (2006)



6. Derivatives

Eqs. (1) and (2) also involve derivatives of mean variables. For interfacial

mass transfer, Cp is the saturation concentration of the gas and Cn is the

homogeneous bulk liquid gas concentration. The pth-order derivative
�
pC

�zp
, is

obtained from Eq. (6), as

�
pC

�zp
=(Cp−Cn)

�
pn

�zp
(27)

For water bodies with the surface exposed to the atmosphere, the time

evolution of the mass concentration in the bulk liquid is usually given by (see, for

example, Wilhelms and Gullliver, 1991; Jähne and Monahan, 1995; Donelan et al.

2002)

dCn

dt
=K(Cp−Cn) (28)

where K is the mass transfer coefficient. The dependence of K on turbulent

parameters is discussed, for example, by Janzen et al. (2006, 2010). n depends on

the agitation conditions of the liquid phase, maintained constant along the time

(stationary turbulence). Thus, n does not depend on time, and the time derivative

�C

�t
, obtained from Eqs. (6) and (28), is given by

�C

�t
=

�[nCp+(1−n)Cn]
�t

or
�C

�t
=K(1−n)(Cp−Cn) (29)

Using Eq. (28), the time derivatives of the central moments c are given by:

�c

�t
=−θKn(1−n)[(1−n)

1
+(−1)


(n)

1
](Cp−Cn)


(1−αc)


(30)

6.1 Products of fluctuations and derivatives

From Eqs. (13) and (14), it follows that the mean value of c�
2c

�z2 is given by

c�
2c

�z2=(1−n)
1�

2[(1−n)(1−αc)]

�z2 +(−n)
1�

2[−n(1−αc)]

�z2 
n(1−n)(1−αc)


(Cp−Cn)

1
(31)
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As can be seen, the mean products between powers of c and its derivatives are

expressed as functions of n and αc only.

7. Applying the random square wave to mass conservation equations

All the statistical quantities existing in the one-dimensional Eqs. (1) and (2)

may be expressed as dependent on the basic parameters n, β, αc and  ω . The

relationships between the statistical quantities and the basic parameters are

nonlinear, so that the obtained differential equations are also nonlinear.

7.1 Equations for one-dimensional transport

Eqs. (1), (25), (27), and (29), lead to the transformed equation (substituting

Eq. 1)

K(1−n)=D
d2n

dz2 −
d

dz n(1−n)
(1−αc) ω

2


n(1−n)+

β(1−β)

(2β−1)
2  (32a)

The general transformed Eq. (2), using the results of the previous sections, is

given by

−Kn(1−n)[(1−n)
1

+(−1)

(n)

1
](1−αc)


+

+Kn(1−n)
2
[(1−n)

2
+(−1)

1
(n)

2
](1−αc)

1
+

+



[n(1−n)]
3

n(1−n)+
β(1−β)

(2β−1)
2

[(1−n)
1

−(−n)

][n(1−n)]

12
 ω2 (1−αc)

1�n

�z
+

+
1

θ

�

�z 
[n(1−n)]

2

n(1−n)+
β(1−β)

(2β−1)
2

[(1−n)

−(−n)

1
][n(1−n)(1−αc)

2
]
2
 ω2

=
=Dn(1−n)[(1−n)

2
+(−1)

1
(n)

2
](1−αc)

1�
2n

�z2 +

+D(1−n)
2�

2[(1−n)(1−αc)]

�z2 +(−n)
2�

2[−n(1−αc)]

�z2 n(1−n)(1−αc)
1

(32b)

The notationt may be simplified because β and  ω appear always together in

Eqs. (32 a and b) as a combined function B

B=
 ω2


n(1−n)+

β(1−β)

(2β−1)
2

(33)
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As a consequence, only three functions remain as unknown: n, B, and αc. To

obtain a solution, a closed set of three equations is needed, given by 1) Eq. (32a),

2) Eq. (32b) for θ=2, and 3) Eq. (32b) for θ=3.

7.2 Example using constant αc

The three coupled nonlinear equations may have no simple solution. Although

the objective of this study was to obtain the equations, an example was also

solved, in which a constant αc=αc was used. In this case, the set of Eqs. (32a) and

(32b) for θ=2 was used, which was reduced, through simple substitution, to the

single equation for n

(1−A)
dn

dy 
2


d2n

dy2−κ(1−n)=A
d3n

dy3 −2An(1−n)−
(1−2n)

2 
dn

dy
+

+
d2n

dy2 [−2A(1−2n)+1]
dn

dy 
2

+2An(1−n)+
(1−2n)

2 
d2n

dy2−

−
(1−2n)

2
(1−n)κ−κnA(1−n)+κA(1−2n)

dn

dy 
2

−κ(1−n)
dn

dy 
2

 (34)

In this equation κ=KE2/D, A=1− αc and y=z/E are nondimensional

parameters, with E being the distance E=z2−z1 of Figure 1. Eq. (34) admits

analytical solutions for the extreme case A  0 (or αc  1), for which it reduces to

d2n

dy2 =κ(1−n). But this effect of diffusion for all 0<y<1 is considered

overestimated. So, Eq. (34) was solved using the fourth order Runge-Kutta

method, imposing convenient values to κ. Because it is a third order differential

equation, the following system of three first order equations was generated:


dn

dy
=j,

dj

dy
=w,

dw

dy
=

(1−A)j2[w−K(1−n)]−Awf1+f2

j−2An(1−n)−
(1−2n)

2 A
where

f1=(−2A(1−2n)+1)j2+A2An(1−n)+
(1−2n)

2 w−

−A
(1−2n)

2
(1−n)K−KnA2(1−n)

and f2=j2KA[(1−n)−A(1−2n)] (35)

Two boundary conditions were set as n (0)=1 and n (1)=0 (adequate for

interfacial mass transfer). But as three boundary conditions are needed to solve the

system of Eq. (35), a value for the second derivative of n at the surface, n”(0), was

adjusted, allowing us to calculate j (0) and w (0). The Runge-Kutta method is

explicit, but iterative procedures were needed to evaluate the mentioned functions
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at y=0. The quasi-Newton method was applied using the solver tool of the Excel®

table. The curve of Figure 6 was obtained for 0.001≤κ≤0.005. This range was

based on the k values calculated from experimental data on oxygen absorption by

water obtained by Janzen (2006), which furnished ~0.003<κ<~0.004. Measured

boundary layer thicknesses were used for E. For the second derivative, the best

value oscillated around n”(0)=1.0, so that this value was used (which coincides

with the second derivative of n=exp(-y), a profile used for example by Herlina

and Jirka, 2008). As inferred from Figure 4b, A varies in the range 0≤A≤1. The

mean value A=0. 5 was then adopted. Even using this strong simplification

(constant A), Figure 6 shows a predicted n-profile that follows the general form of

the measured data. More accurate predictions must evidently consider the

dependence of αc on z, and the solution of the three coupled equations.

8. Conclusions

It was shown that the equations for one-dimensional mass transfer in turbulent

flows may be reduced to a set of three equations involving three unknown

functions, that is, a set of closed equations. The methodology followed to derive

these equations used random square waves to represent the turbulent records of

velocity and mass concentration. Basic definitions were introduced: the partition

functions, the reduction coefficients and the superposition coefficients. The

obtained transformed equations for one-dimensional mass transfer are nonlinear.

To illustrate the use of the transformed equations, a solution for the partition

function n was presented for interfacial mass-transfer using a mean αc=αc. In this
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case, the system of equations reduces to only two coupled equations, generating a

single third order differential equation for n. Although this is a simplification

(constant αc), the predicted n profile followed the general form of measured data,

pointing to the convenience of this methodology. It was also shown that for more

accurate predictions, the dependence of αc with z must be considered in the set of

three equations.
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