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Abstract This paper proposes an efficient exact algorithm
for the general single-machine scheduling problem where
machine idle time is permitted. The algorithm is an exten-
sion of the authors’ previous algorithm for the problem with-
out machine idle time, which is based on the SSDP (Succes-
sive Sublimation Dynamic Programming) method. We first
extend our previous algorithm to the problem with machine
idle time and next propose several improvements. Then, the
proposed algorithm is applied to four types of single-machine
scheduling problems: the total weighted earliness-tardiness
problem with equal (zero) release dates, that with distinct
release dates, the total weighted completion time problem
with distinct release dates, and the total weighted tardiness
problem with distinct release dates. Computational experi-
ments demonstrate that our algorithm outperforms existing
exact algorithms and can solve instances of the first three
problems with up to 200 jobs and those of the last problem
with up to 80 jobs.

Keywords Single-machine scheduling · Machine idle
time · Exact algorithm · Lagrangian relaxation · Dynamic
programming

1 Introduction

In this study we consider the general single-machine schedul-
ing problem to minimize total job completion cost where
machine idle time is permitted. Assume that n jobs (job 1,
job 2, . . ., job n) are to be processed on a single machine
that can process at most one job at a time. Each job i ∈
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N = {1,2, . . . ,n} is given an integer processing time pi >

0 and an integer release date ri ≥ 0. A cost function fi(t)
(t ≥ ri + pi) is also given for each job i and the cost f (t) is
incurred when job i is completed at t. We assume that the
completion time Ci of job i is integral and that fi(t) is an
integer-valued function for integer t. No preemption is al-
lowed and all the jobs should be started and completed in the
interval [TS,TE], where TS = mini∈N ri. The machine can be
idle even when there remain unprocessed jobs. The objective
is to minimize the total job completion cost ∑i∈N fi(Ci).

For a special class of this problem, the single-machine
scheduling problem without machine idle time (and with
equal release dates), the authors (Tanaka et al. 2009) al-
ready proposed an efficient exact algorithm. This algorithm
is an improvement of the algorithm proposed by Ibaraki and
Nakamura (1994) that is based on the SSDP (Successive
Sublimation Dynamic Programming) method (Ibaraki 1987).
In this algorithm a lower bound is computed by solving a
Lagrangian relaxation of the original problem via dynamic
programming. Then, it is improved by successively adding
constraints (cuts) to the relaxation until the gap between the
lower and upper bounds disappears. One of the important
features of the algorithm is that unnecessary dynamic pro-
gramming states are eliminated in the course of the algo-
rithm to suppress the increase of states caused by the addi-
tion of the constraints. This state elimination is also effec-
tive for reduction of computational efforts. In our previous
study (Tanaka et al. 2009), it is shown that the algorithm
can handle 300 jobs instances when it is applied to the to-
tal weighted tardiness problem (1||∑wiTi, according to the
standard classification of scheduling problems in Graham et
al. (1979)) and the total weighted earliness-tardiness prob-
lem (1||∑(αiEi + βiTi)) without machine idle time. In this
study we will extend this algorithm to a more general single-
machine problem where machine idle time is permitted. We
will also propose several improvements:
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– the conjugate subgradient algorithm for adjustment of
Lagrangian multipliers instead of the ordinary subgradi-
ent algorithm,

– state elimination (network reduction) by the constraint
propagation technique,

– network reduction by node compression,
– strict check of dominance of successive jobs,
– introduction of a tentative upper bound.

It should be noted that a similar lower bounding scheme
as in our previous algorithm and in the proposed algorithm
is used in the branch-and-bound algorithm for the single-
machine total weighted earliness-tardiness problem
(1||∑(αiEi +βiTi) and 1|ri|∑(αiEi +βiTi)) by Sourd (2009).
Furthermore, he has already proposed to utilize the con-
straint propagation technique in their algorithm, which we
will also introduce in this paper. As pointed out in Tanaka
et al. (2009), one of the primary differences is that our al-
gorithm is based fully on dynamic programming, while his
one is a branch-and-bound algorithm. This difference makes
our algorithm much faster than the Sourd’s algorithm, which
will be shown by numerical results for benchmark instances
of 1||∑(αiEi + βiTi) and 1|ri|∑(αiEi + βiTi). We will also
show that our algorithm outperforms the current best al-
gorithm by Pan and Shi (2008) for the single-machine to-
tal weighted completion time problem with distinct release
dates (1|ri|∑wiCi), and that by Jouglet et al. (2004) for the
single-machine total weighted tardiness time problem with
distinct release dates (1|ri|∑wiTi).

This paper is organized as follows. First, in Section 2,
our problem is converted to a constrained shortest path prob-
lem. Some notation and definitions are also introduced there.
Next, in Section 3, the Lagrangian relaxation technique is
applied to compute lower bounds by dynamic programming.
Then, Section 4 describes several methods for the elimina-
tion of unnecessary dynamic programming states in terms
of the reduction of the network. An outline of the proposed
algorithm is shown in Section 5, and the upper bound com-
putation scheme used therein is given in Section 6. The algo-
rithm is further improved in Section 7, and the final version
of the algorithm is summarized in Section 8. In Section 9,
the algorithm is applied to the benchmark instances and its
effectiveness is confirmed. Finally, in Section 10, our con-
tributions and future research directions are stated.

2 Network Representation

In the proposed algorithm, as in our previous algorithm, the
Lagrangian relaxation technique is applied to obtain a tight
lower bound. In Tanaka et al. (2009), it was explained in
terms of the time-indexed formulation (Pritsker et al. 1969,
Dyer and Wolsey 1990, Sousa and Wolsey 1992, van den
Akker et al. 1999) of the problem, but here we start from

a network representation to make the description as concise
as possible. The method to compute lower bounds will be
explained in the next section.

Unlike the problem in Tanaka et al. (2009), machine idle
time should be considered in our problem. Fortunately, the
extension is not difficult: Our problem can be converted into
a problem without machine idle time by introducing zero
cost dummy jobs with a unit processing time that correspond
to unit idle times. However, this direct extension is not effi-
cient because the total number of jobs to be considered in-
creases from n to n+nd, where nd = TE−TS−∑i∈N pi is the
number of such dummy jobs. To get around this, only one
dummy job is introduced instead of distinct nd dummy jobs
and it is assumed to be processed nd times. Hereafter, the
dummy job is referred to as “idle job” and is denoted by job
0. The processing time, release date and cost function of job
0 are defined by p0 = 1, r0 = TS, f0(t) = 0 (TS +1 ≤ t ≤ TE),
respectively. In addition, the set of all jobs including the idle
job is defined by N0 = N ∪{0}.

By noting the assumption that job completion times are
integral, we allocate one node to every possible completion
of jobs (including the idle job), and construct an acyclic
weighted directed graph G = (V,A). Thus, the node set V
is defined by

V = {vn+1,TS}∪VO ∪{vn+1,TE+1}, (1)

VO = {vit | i ∈ N0, ri + pi ≤ t ≤ TE}. (2)

Here, another dummy job n+1 with pn+1 = 1, rn+1 = TS−1
and fn+1(t) = 0 is introduced. It is always completed at TS
and TE +1, and vn+1,TS and vn+1,TE+1 denote the source and
sink nodes, respectively. The arc set A is defined accordingly
by

A = {(v j,t−pi ,vit) |v j,t−pi ,vit ∈V}. (3)

Each arc has its length (weight): The length of an arc
(v j,t−pi ,vit) ∈ A is given by fi(t). Then, our problem, which
is referred to as (P), becomes equivalent to the shortest path
problem from vn+1,TS to vn+1,TE+1 on G under the constraints
that vit (ri + pi ≤ t ≤ TE) should be visited exactly once for
any i ∈ N . More specifically, the optimal objective value,
i.e., the minimum of the total job completion cost is identi-
cal to the shortest path length, and vit visited on the shortest
path corresponds to the completion of job i at t in an optimal
solution.

Here, we introduce some notation and definitions. Let us
define by P a set of nodes visited on a path from vn+1,TS to
vn+1,TE+1 on G. The path corresponding to P is referred to
as “path P” if there is no ambiguity. Let L(P) be the length
of a path P defined by

L(P) = ∑
vit∈P
i∈N0

fi(t) = ∑
vit∈P
i∈N

fi(t). (4)
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The constraints in our problem that vit (ri + pi ≤ t ≤ TE)
should be visited exactly once for any i ∈ N on a path P
are written by

Vi(P) = |{vit |vit ∈ P}| = 1, ∀i ∈ N , (5)

where Vi(P) denotes the number of occurrences of vit (ri +
pi ≤ t ≤ TE) in P . Accordingly, define a set of all the feasi-
ble paths by

Q = {P |Vi(P) = 1 (∀i ∈ N )}. (6)

Then, the problem (P) can be described by

(P) : min
P

L(P) s.t. P ∈ Q. (7)

Please note that the constraint that the idle job should be
processed nd times is not imposed on the problem. It is be-
cause it is automatically satisfied when the constraints (5)
are satisfied.

3 Lower bound computation

To obtain a tight lower bound of the constrained shortest
path problem (P), the Lagrangian relaxation technique is ap-
plied. This relaxation is also referred to as state-space relax-
ation, which was originally proposed by Christofides et al.
(1981) for routing problems. Then it was applied to single-
machine scheduling by Abdul-Razaq and Potts (1988). Fol-
lowing their results, Ibaraki and Nakamura (1994) proposed
an exact algorithm based on the SSDP (Successive Subli-
mation Dynamic Programming) method (Ibaraki 1987), and
it was improved in our previous study (Tanaka et al. 2009).
This type of relaxation also appears in the context of col-
umn generation for the time-indexed formulation (van den
Akker et al. 2000), or in the context of branch-and-bound
algorithms for single-machine scheduling problems (Péridy
et al. 2003, Sourd 2009). Especially in Sourd (Sourd 2009),
a similar improvement to that in Tanaka et al. (2009) was
proposed. It will be explained in 3.2.

Let us penalize the violation of the constraints (5) by
Lagrangian multipliers µi (i∈N ). Then, the objective func-
tion of (P) becomes

L(P)+ ∑
i∈N

µi(1−Vi(P))

= ∑
vit∈P
i∈N

fi(t)+ ∑
i∈N

µi − ∑
i∈N

µi |{vit |vit ∈ P}|

= ∑
vit∈P
i∈N

( fi(t)−µi)+ ∑
i∈N

µi

= LR(P; µµµ)+ ∑
i∈N

µi, (8)

where LR(P; µµµ) is defined by

LR(P; µµµ) = ∑
vit∈P
i∈N

( fi(t)−µi). (9)

Equations (8) and (9) imply that the relaxation for a fixed set
of multipliers is equivalent to the problem to find a shortest
unconstrained path from vn+1,TS to vn+1,TE+1 on G where the
length of an arc (v j,t−pi ,vit) ∈ A is given not by fi(t) but by
fi(t)− µi (we assume that µ0 = µn+1 = 0). This relaxation
is denoted by (LR0), i.e.,

(LR0) : min
P

LR(P; µµµ)+ ∑
i∈N

µi. (10)

It is easy to see that (LR0) is solvable in O(n(TE −TS)) time
by dynamic programming as shown by Abdul-Razaq and
Potts (1988).

To improve the lower bound more, the following three
types of constraints are imposed on this relaxation. The first
and the third were proposed by Christofides et al. (1981) and
were applied in Abdul-Razaq and Potts (1988) and Ibaraki
and Nakamura (1994). The second constraints were proposed
by Sourd (2009) and Tanaka et al. (2009), and were applied
in our previous algorithm together with the other two.

3.1 Constraints on successive jobs

The first constraints are to forbid job duplication in succes-
sive jobs of a solution. In the network representation, these
are interpreted as constraints on successively visited nodes
on a path. More specifically, they are described as follows.

For any i ∈ N , nodes corresponding to job i, i.e.,
vit (ri + pi ≤ t ≤ TE) should not be visited more than
once in any λ +1 > 0 successive nodes on a path.

Note that these constraints are not imposed on the idle job.
It corresponds to the fact that the constraints (5) are not im-
posed on the idle job. A subset of paths satisfying these con-
straints on successive nodes is denoted by Qλ (Q ⊆ ·· · ⊆
Q2 ⊆Q1), and the relaxation with the constraints is denoted
by

(LRλ ) : min
P

LR(P; µµµ)+ ∑
i∈N

µi s.t. P ∈ Qλ . (11)

In our algorithm, the cases when λ = 1,2 are considered.
For λ = 1, (LR1) becomes more tractable if we introduce a
weighted directed graph GS = (V,AS), where AS is defined
by

AS = A\{(vi,t−pi ,vit) | i ∈ N , vi,t−pi ,vit ∈VO}. (12)

Indeed, (LR1) is equivalent to the unconstrained shortest
path problem on GS. On the other hand, (LR2) is equiva-
lent to the shortest path problem on GS under the constraints
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on three successive nodes. These relaxations can be solved
by dynamic programming and their time complexities are
O(n(TE−TS)) and O(n2(TE−TS)), respectively (Abdul-Razaq
and Potts 1988, Péridy et al. 2003).

3.2 Constraints on adjacent pairs of jobs

The second constraints are derived from the dominance the-
orem of dynamic programming (Potts and Van Wassenhove
1985) for adjacent pairs of jobs. For example, consider that
two jobs i and j (i, j ∈N0, i 6= j) are successively processed
and completed at t (max{ri,r j}+ pi + p j ≤ t ≤ TE). The to-
tal completion cost of the two jobs is fi(t− p j)+ f j(t) when
they are sequenced as i → j, and f j(t − pi)+ fi(t) when se-
quenced as j → i. It follows that i → j never occurs at t in an
optimal solution if fi(t − p j)+ f j(t) > f j(t − pi)+ fi(t) be-
cause interchanging these jobs decreases the objective value
without affecting the other jobs. On the other hand, j → i
never occurs at t if fi(t − p j) + f j(t) < f j(t − pi) + fi(t).
Therefore, the processing order of jobs i and j at t can be re-
stricted by checking the total cost of the two. This also holds
even if fi(t − p j)+ f j(t) = f j(t − pi)+ fi(t), and either (but
not arbitrary) processing order can be forbidden without loss
of optimality (Tanaka et al. 2009). To summarize, the pro-
cessing order of adjacent pairs of jobs can be restricted and it
is imposed on the relaxation as constraints. Since we should
take the idle job into account in this study, the processing
order of an ordinary job (job i ∈ N ) and the idle job (job 0)
is also restricted.

In the network representation, these adjacency constraints
eliminate from GS, those arcs corresponding to the forbid-
den processing orders. Thus, we define ĜS = (V, ÂS), where

ÂS = AS\{(v j,t−pi ,vit) | j → i is forbidden at t}. (13)

(LR1) and (LR2) with the adjacency constraints are equiva-
lent to the unconstrained and constrained shortest path prob-
lems on ĜS, respectively. Since the time complexities of
(LR1) and (LR2) with the adjacency constraints are both
O(n2(TE−TS)) (Sourd 2009, Tanaka et al. 2009), only (LR2)
with the adjacency constraints, which is denoted by (L̂R2),
is used as in our previous algorithm. Let Q̂2 denote a subset
of Q2 composed of paths on ĜS that satisfy the constraints
on three successive nodes.

3.3 Constraints on state-space modifiers

The last constraints are described in terms of state-space
modifiers: Each job i (i ∈ N ) is given a value qi ≥ 0 called
state-space modifier and we impose the constraint that the
total modifier in a solution should be ∑i∈N qi. In Tanaka et
al. (2009), modifiers are chosen so that qi = 1 for some i and

q j = 0 for j ∈ N \{i}. In this case the constraint simply re-
quires that job i should be processed exactly once and thus
is equivalent to Vi(P) = 1, i.e. the constraint (5) for job i. It
follows that all the constraints (5) are once relaxed, but one
of them is recovered to improve the lower bound.

In our algorithm, as in Tanaka et al. (2009), not the con-
straint (5) for a single job i but those for a set of jobs M ⊆
N are recovered to (L̂R2). Hereafter, (L̂R2) with the con-
straints

Vi(P) = 1, ∀i ∈ M (14)

is denoted by (L̂R
m
2 ), where m = |M |. Clearly, an optimal

solution of (L̂R
m
2 ) is also optimal for the original problem (P)

if M = N . It is also clear from (5) that it is not necessary
to impose these constraints on the idle job.

The network representation of (L̂R
m
2 ) is a little compli-

cated. Let us define an m-dimensional vector qqqm
i of state-

space modifiers for job i by qqqm
i = (qi1, . . . ,qim), where

qi j =

{
1, if the jth element of M is i,
0, otherwise.

(15)

Let us also define m-dimensional vectors qqqm
0 and qqqm

n+1 by
qqqm

0 = qqqm
n+1 = (0, . . . ,0). Next, we introduce a weighted di-

rected graph Ĝm
S = (V m, Âm

S ). The node set V m is defined by

V m = {v000m
n+1,TS

}∪V m
O ∪{v111m

n+1,TE+1}, (16)

V m
O = {vbbb

it |vit ∈VO, qqqm
i ≤ bbb ≤ 111m}, (17)

where 000m and 111m denote m-dimensional vectors whose ele-
ments are all zero and all one, respectively. The arc set Âm

S
is defined by

Âm
S = {(vbbb−qqqm

i
j,t−pi

,vbbb
it) |(v j,t−pi ,vit) ∈ ÂS, qqqm

i +qqqm
j ≤ bbb ≤ 111m},

(18)

and the length of an arc (vbbb−qqqm
i

j,t−pi
,vbbb

it) is given by fi(t)− µi.

Then, (L̂R
m
2 ) is equivalent to the shortest path problem from

v000m
n+1,TS

to v111m
n+1,TE+1 on Ĝm

S under the constraints on three

successive nodes. Hereafter, a set of paths from v000m
n+1,TS

to

v111m
n+1,TE+1 on Ĝm

S that satisfy the constraints on three succes-

sive nodes is denoted by Q̂m
2 . (L̂R

m
2 ) is solvable by dynamic

programming in O(n22m(TE −TS)) time.

4 Network reduction

As explained in the preceding section, (LR1), (L̂R2) and
(L̂R

m
2 ) are solvable by dynamic programming. To reduce

memory usage and improve its efficiency, unnecessary dy-
namic programming states are eliminated, which is a key
technique of the SSDP method. It is interpreted in the net-
work representation as the network reduction via the elimi-
nation of unnecessary nodes and arcs. In Tanaka et al. (2009),
the following two types of reductions were applied.
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4.1 Network reduction by upper bound

The first network reduction that was proposed by Ibaraki and
Nakamura (1994) utilizes an upper bound and is applied to
all the relaxations (LR1), (L̂R2) and (L̂R

m
2 ). Here, only an

explanation for (L̂R2) is given here because it does not differ
much from those for (LR1) and (L̂R

m
2 ).

Let us define h2((vk,t−p j ,v jt); µµµ) and H2(vk,t−p j ,v jt ; µµµ)
((vk,t−p j ,v jt) ∈ ÂS) by

h2((vk,t−p j ,v jt); µµµ) = min
P∈Q̂2

vk,t−p j ,v jt∈P

LR({vis |vis ∈ P, s ≤ t}),

(19)

H2((vk,t−p j ,v jt); µµµ) = min
P∈Q̂2

vk,t−p j ,v jt∈P

LR({vis |vis ∈ P, s ≥ t}).

(20)

More specifically, h2((vk,t−p j ,v jt); µµµ) denotes the shortest
path length from vn+1,TS to v jt that passes through (vk,t−p j ,v jt)
and that satisfies the constraints on three successive nodes.
Similarly, H2((vk,t−p j ,v jt); µµµ) denotes the shortest path length
from vk,t−p j to vn+1,TE+1 that passes through (vk,t−p j ,v jt)
and that satisfies the constraints.

The summation of (19) and (20) yields

h2((vk,t−p j ,v jt); µµµ)+H2((vk,t−p j ,v jt); µµµ)

= min
P∈Q̂2

vk,t−p j ,v jt∈P

LR(P; µµµ)+( f j(t)−µ j). (21)

Since the first term of the righthand side of (21) gives the
shortest path length over Q̂2 under the constraint that
(vk,t−p j ,v jt) should be passed through, it can be said from

(8) that the shortest path over Q̂2 never passes through
(vk,t−p j ,v jt) if an upper bound UB of L(P) satisfies

UB < h2((vk,t−p j ,v jt); µµµ)+H2((vk,t−p j ,v jt); µµµ)

− ( f j(t)−µ j)+ ∑
i∈N

µi. (22)

In this case, the arc (vk,t−p j ,v jt) can be eliminated from ĜS.
h2((vk,t−p j ,v jt); µµµ) and H2((vk,t−p j ,v jt); µµµ) for every

arc are recursively computed in the dynamic programming
for (L̂R2): h2((vk,t−p j ,v jt); µµµ) in the forward dynamic pro-
gramming and H2((vk,t−p j ,v jt); µµµ) in the backward dynamic
programming. Therefore, this reduction can be performed
by applying the dynamic programming in both the direc-
tions. If arcs are eliminated, the graph size reduces and, as a
result, both memory usage and computational efforts for the
dynamic programming reduce.

In practice, (UB− 1) instead of UB is used in the left-
hand side of (22) to eliminate the arc (vk,t−p j ,v jt). It is be-
cause the cost function is assumed to be integer-valued.

4.2 Network reduction by dominance of four successive
jobs

To reduce memory usage more, network reduction by domi-
nance of four successive jobs (Tanaka et al. 2009) is applied
to (L̂R

m
2 ). Let us define a set of paths Qm by

Qm = {P |P ∈ Q̂m
2 , Vi(P) = 1 (∀i ∈ N )}. (23)

More specifically, Qm is a set of paths on Ĝm
S that corre-

spond to the paths belonging to Q on G or, equivalently,
feasible solutions of (P). Let us also define a path Pm

opt cor-
responding to an optimal solution of (P) by

Pm
opt = arg min

P∈Qm
L(P). (24)

If, for every P ∈ Qm passing through the arc (vbbb−qqqm
i

j,t−pi
,vbbb

it),
there exists a dominating path P ′ ∈ Qm such that

L(P ′) < L(P), (25)

Pm
opt cannot pass through the arc and hence it can be elimi-

nated. To check this, only four nodes v
bbb−qqqm

i −qqqm
j −qqqm

k
l,t−pi−p j−pk

, v
bbb−qqqm

i −qqqm
j

k,t−pi−p j
,

vbbb−qqqm
i

j,t−pi
and vbbb

it in P are considered in the forward dynamic
programming. That is, 4!− 1 paths are checked for one P
as a candidate for a dominating path P ′, where the visit-
ing orders of the four nodes are interchanged. Similarly, in
the backward dynamic programming vbbb−qqqm

i
j,t−pi

, vbbb
it , v

bbb+qqqm
k

k,t+pk
and

v
bbb+qqqm

k +qqqm
l

l,t+pk+pl
are considered to eliminate (vbbb−qqqm

i
j,t−pi

,vbbb
it).

5 Outline of the proposed algorithm

Our previous algorithm in Tanaka et al. (2009) has three
stages. When it is directly extended to our problem, the algo-
rithm becomes as follows. In the first stage the subgradient
algorithm is applied to the Lagrangian dual corresponding to
(LR1), and next in the second stage to the dual correspond-
ing to (L̂R2), to adjust Lagrangian multipliers. Then, in the
third stage (L̂R

m
2 ) is successively solved by adding jobs from

N \M to M , until the gap between lower and upper bounds
becomes less than one. The upper bound is computed and
updated in the course of the algorithm by a combination of
Lagrangian heuristics and a local search, and it is utilized
in the network reduction in 4.1. The reduction in 4.2 is also
performed.

It follows that now only the extension of upper bound
computation is not finished yet, but in this study we propose
several improvements together with the extensions. The ex-
tensions and improvements are summarized as:

Extensions:
– lower bound computation (Section 3),
– network reduction (Section 4),
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– upper bound computation (Section 6).
Improvements:

– the conjugate subgradient algorithm instead of the
ordinary subgradient algorithm,

– network reduction by the constraint propagation tech-
nique,

– network reduction by node compression,
– strict check of dominance of successive jobs in 4.2,
– introduction of a tentative upper bound.

The extension of the upper bound computation method
will be described in the next section, and the improvements
will be given in Section 7.

6 Upper bound computation

An upper bound is computed from a solution of (L̂R2) or
(L̂R

m
2 ). As in Tanaka et al. (2009), the computation consists

of two parts: The solution is first converted to a feasible so-
lution of (P) by some Lagrangian heuristics, and then it is
improved by a neighborhood search. Here, the Lagrangian
heuristics are first presented and then the neighborhood search
is explained.

6.1 Lagrangian heuristics

In Tanaka et al. (2009), two types of heuristics are switched.
The one is a slightly modified version of the heuristic pro-
posed by Ibaraki and Nakamura (1994) and the other is a
simple heuristic to “detour” a path on the network so that job
duplication does not occur. On the other hand, in our algo-
rithm we employ only an extension of the former heuristic,
but optimal and greedy versions of it are switched.

The heuristic by Ibaraki and Nakamura (1994) is:

(1) A partial job sequence is generated from a solution of a
relaxation by removing duplicated jobs. The number of
jobs in the partial sequence is denoted by n1.

(2) The other n2(= n− n1) jobs are inserted optimally into
the partial sequence without changing the precedence
relations of the n1 jobs. An optimal sequence can be
obtained by dynamic programming in O(n2(n1 +1)2n2)
time.

In our algorithm it is extended to the problem with machine
idle time as follows:

(1’) A partial job sequence is generated from a solution of a
relaxation by removing duplicated jobs and the idle job.
The number of jobs in the partial sequence is denoted by
n1.

(2’) The other n2(= n − n1) ordinary jobs are inserted op-
timally into the partial sequence without changing the
precedence relations of the n1 jobs, where idle times are

taken into account. In other words, when finding opti-
mal job positions, the objective value is evaluated after
idle times are optimally inserted. An optimal sequence
can be obtained by dynamic programming in O(n2(n1 +
1)2n2(TE −TS)) time.

The dynamic programming in (2’) of this heuristic is time-
(and space-) consuming because its time complexity is mul-
tiplied by the length of the scheduling horizon (TE − TS).
Therefore, we adopt the method in Sourd (2005), which was
originally proposed to improve the efficiency of dynamic
programming for optimal idle time insertion. In this method,
the objective function is assumed to be piecewise linear and
it is evaluated only at the endpoints of linear segments. If the
cost function fi(t) is piecewise linear with few segments, it
is much helpful to reduce computational efforts.

Nevertheless, it is hard to apply this heuristic when the
number of jobs to be inserted, n2 is large because the time
complexity also depends on n2 exponentially. Hence, we ap-
ply a greedy version of the heuristic when n2 ≥ 9. In this
case, unscheduled n2 jobs are inserted one by one according
to the SPT (shortest processing time) order into their optimal
positions. That is, the following procedure is used in place
of (2’) in the optimal version of the heuristic:

(2”) The other n2 ordinary jobs are inserted one by one ac-
cording to the SPT order into their optimal positions of
the partial sequence. Here, the precedence relations of
the n1 jobs are kept unchanged and idle times are taken
into account.

6.2 Improvement by neighborhood search

To improve a solution obtained by the heuristics in the pre-
ceding subsection, the dynasearch is applied. It is a power-
ful neighborhood search proposed by Congram et al. (2002)
for the single-machine scheduling problem without machine
idle time. Grosso et al. (2004) proposed the enhanced dy-
nasearch that improves the search ability of the dynasearch
by enlarging the neighborhood, which was employed in Tanaka
et al. (2009). Another extension of the (enhanced) dynasearch
was done by Sourd (2006) based on the results in Sourd
(2005), and it enables us to apply the dynasearch to the
problem with machine idle time. In our proposed algorithm,
both the extended enhanced dynasearch and the extended
dynasearch are applied, but the latter is mainly employed
because the former is a little time-consuming.

6.3 Initial upper bound

To obtain the initial upper bound, we first construct solutions
by the greedy version of the heuristic stated in 6.1. In this
case, all the jobs are assumed to be unscheduled (n1 = 0),
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and not only the SPT order but also the LPT (longest pro-
cessing time), EDD (earliest duedate) and LDD (latest due-
date) orders are used (EDD and LDD are only for those
problems with duedates). Then, the extended dynasearch is
applied to the best of the four solutions.

7 Further Improvements

7.1 Conjugate subgradient algorithm

In the first two stages of our previous algorithm, the subgra-
dient algorithm is employed to adjust Lagrangian multipli-
ers. More specifically, the vector of Lagrangian multipliers
µµµ(k) at the kth iteration is updated by the following equation.

µµµ(k+1) = µµµ(k) + γ(k) UB−LB(k)

‖ggg(k)‖2
ggg(k). (26)

Here, UB denotes the current upper bound and LB(k) the
optimal objective value of (LR1) or (L̂R2) for µµµ(k). That is,

LB(k) = min
P

LR(P; µµµ(k))+ ∑
i∈N

µ(k)
i . (27)

The subgradient vector ggg(k) is chosen as

g(k)
i = 1−Vi(P(k)), (28)

where

P(k) = argmin
P

LR(P; µµµ(k)). (29)

To cope with the poor convergence of the subgradient algo-
rithm, our previous algorithm controlled the step size param-
eter γ(k) in a more sophisticated way than in the ordinary ver-
sion of the algorithm (Fisher 1985). Nonetheless, a consid-
erable part of the total computational time was consumed by
the subgradient algorithm especially when the problem size
is large. Therefore, the proposed algorithm employs the con-
jugate subgradient algorithm in Sherali and Ulular (1989),
Sherali and Lim (2007) instead to improve the convergence,
and Lagrangian multipliers are updated by

ddd(k) = ggg(k) +ξ (k)ddd(k−1), (30)

µµµ(k+1) = µµµ(k) + γ(k) UB−LB(k)

‖ddd(k)‖2
ddd(k). (31)

Following Sherali and Ulular (1989), Sherali and Lim (2007),
we choose the parameter ξ (k) as ξ (k) = ‖ggg(k)‖/‖ddd(k−1)‖.
The step size parameter γ(k) is controlled in a similar way
to our previous algorithm. More specifically,

– It is initialized by γ(0) = γ ini.
– It is decreased by γ(k) = κSγ(k−1) if the best lower bound

is not updated for δS successive iterations.

– It is increased by γ(k) = κEγ(k−1) if the best lower bound
is updated, i.e., LB(k) > maxi≤k−1 LB(i).

The algorithm is terminated if the best lower bound does not
increase by 100ε/(1− ε)% and the gap between the best
lower and upper bounds does not decrease by 100ε% in δT
successive iterations.

7.2 Network reduction by constraint propagation

To reduce the network more, the constraint propagation tech-
nique is utilized as in Sourd (2009) for (L̂R2) and (L̂R

m
2 ).

Constraint propagation for scheduling problems has been
well studied (e.g. Baptiste et al. (2001)) especially in the
context of shop scheduling problem from the pioneering works
by Carlier and Pinson (1989, 1990). This technique enables
us to restrict job time windows within which jobs can be
processed by checking their consistency, and it has been uti-
lized for the reduction of the search space. In our algorithm,
the time window [ri,di] of each job i is computed by

ri = min
vit∈V

t − pi, di = max
vit∈V

t (32)

for (L̂R2) (for (L̂R
m
2 ), V is replaced by V m in the above equa-

tion). Then, the constraint propagation technique is applied,
and if the time window reduces to [r′i,d

′
i], the nodes outside

that, i.e.

{vit |ri + pi ≤ t < r′i + pi}∪{vit |d
′
i < t ≤ di} (33)

are eliminated from V .
Among several consistency tests proposed so far, three

types are utilized in our algorithm; immediate selection (Carlier
and Pinson 1989, Brucker et al. 1994), edge-finding (Carlier
and Pinson 1990, Carlier and Pinson 1994, Baptiste et al.
2001), and not-first/not-last (Carlier and Pinson 1989, Bap-
tiste et al. 2001). In addition to these, we apply the following
simple test that directly eliminates nodes.

Direct elimination

It is clear that the completion time Ci of job i satisfies
Ci ≤ d j − p j if job i precedes job j, and Ci ≥ r j + pi + p j
if job i is preceded by job j. Therefore, job i cannot be
completed in the interval [d j − p j + 1,r j + pi + p j − 1]
if d j − p j +1 ≤ r j + pi + p j −1. In this case, the corre-
sponding nodes are eliminated.

7.3 Network reduction by node compression

To reduce memory usage for storing the network structure,
successive idle jobs are compressed into one long idle job.
Moreover, successive nodes are compressed into one super-
node. These compressions are performed for the nodes of
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ij

k1

k2

k3

source

shortest

second shortest

Fig. 1 Shortest and second shortest constrained paths stored in dy-
namic programming (nodes are denoted by their corresponding jobs)

Ĝm
S whose in-degrees are one. Up to maxi∈N pi unit idle

jobs are compressed int one long idle job and up to three
successive nodes are compressed into one super-node.

These compressions also contribute to forbidding job du-
plication. For example, job 1 → job 2 → job 3 → job 4 →
job 5 → job 1 is feasible in the original expression of the
network, while it becomes infeasible when (job 1, job 2, job
3) and (job 4, job 5, job 1) are compressed into two super-
nodes, respectively, because we can remove the arc connect-
ing these super-nodes by checking whether they have the
same job (in this case, job 1).

Since job duplication in three successive (ordinary) nodes
is forbidden in (L̂R

m
2 ), it is natural to expect that it can also

be done for super-nodes. Unfortunately, this is not true be-
cause of the dynamic programming algorithm for (L̂R

m
2 ).

The forward (backward) dynamic programming for (L̂R
m
2 )

recursively computes the shortest path from v000m
n+1,TS

to vbbb
it

(from v
bbb−qqqm

j
k,t−p j

to v111m
n+1,TE+1) through (v

bbb−qqqm
j

k,t−p j
,vbbb

jt) that satis-
fies the constraints on three successive nodes. To achieve
this, the shortest and the second shortest constrained paths to
(from) each node are stored (Abdul-Razaq and Potts 1988,
Péridy et al. 2003, Tanaka et al. 2009). For example, let us
consider that the forward dynamic programming is applied
to Ĝm

S in Fig. 1, where nodes are denoted by the correspond-
ing jobs to simplify the notation. Let us also assume that the
shortest and the second shortest constrained paths from the
source node are already obtained for j in the figure. Then,
the shortest constrained path from the source node to i∈N )
through ( j, i) is given by

– (the shortest constrained path to j) + ( j, i) if k1 6= i,
– (the second shortest constrained path to j) + ( j, i) if k1 =

i.

Therefore, the shortest constrained path from the source node
to i through ( j, i) can be computed in O(1) time. Since at
most n nodes are connected to i, time complexity of the
shortest and the second shortest constrained paths from the
source node to i is O(n). The overall time complexity
O(n22m(TE − TS)) is obtainable by multiplying it by
O(n2m(TE −TS)), the number of nodes.

2

2 1 63 5
AB

C

D

E

8 4
X

Y
4 1 7

Z

Fig. 2 An example of the network when nodes are compressed

Next, let us assume that nodes are compressed as in Fig. 2,
where A, B, C and D denote super-nodes. If path X is the
shortest constrained path, we can safely adopt it to construct
the shortest constrained path to super-node A through super-
node B, because super-nodes C and A have no common job.
A problem arises when paths Y and Z are the shortest and
the second shortest, respectively. Since the super-nodes D
and A have job 1, path Y, which passes through super-node
D, cannot be adopted and path Z should be adopted instead.
However, it passes through node E although super-node A
has job 2. Therefore, the method explained for Fig. 1 is not
applicable and we should check all the paths from the source
node to super-node B if we try to forbid job duplication in
three successive super-nodes. This, of course, leads to the in-
crease of computational efforts required for solving (L̂R

m
2 ).

To avoid this difficulty, we ignore job duplication in the
second shortest constrained path. If paths Y and Z are the
shortest and the second shortest in Fig. 2, respectively, we
adopt path Z to construct the shortest constrained path to
super-node A through super-node B by ignoring the job du-
plication in node E and super-node A. It follows that (L̂R

m
2 )

is solved only heuristically and job duplication may occur
even in three successive ordinary nodes. However, an op-
timal solution of (P) is obtained even if we solve (L̂R

n
2)

(M = N ) in this manner because the constraints (14) are
not ignored and hence are always satisfied. Therefore, the
framework of the proposed exact algorithm remains valid.

7.4 Strict check of dominance of successive jobs

As already described in 4.2, our previous algorithm utilizes
dominance of four successive jobs for network reduction.
In this reduction, an arc is eliminated if a strictly dominat-
ing path is found for every possible path passing through
that arc. To make it work more effective, the proposed algo-
rithm eliminate an arc even when only a path yielding the
equal cost is found for some path passing through that arc,
if the former dominates the latter under an appropriate tie-
breaking rule. This tie-breaking rule should be such that
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– a path corresponding to an optimal solution of (P) dom-
inates any other paths,

– it is consistent with the tie-breaking rule used in the ad-
jacency constraints explained in 3.2.

It is shown in Tanaka et al. (2009) that a path corresponding
to an optimal solution of (P) is not forbidden by the adja-
cency constraints under a mild assumption that ties are bro-
ken independently of t. To ensure the consistency between
the tie-breaking rule in the adjacency constraints and that in
the network reduction here, we should put a slightly stronger
assumption on them, but it is still mild in practice.

Let us assign a number πi to every job i (i ∈ N0), where
πi ∈ N (i ∈ N ), πi 6= π j (i 6= j) and π0 = n + 1. Next, a
total order on a set of job sequences with the same length
is introduced by the lexicographical order of corresponding
sequences of πi, and ties are broken according to this or-
der. When, for example, (π1,π2,π3,π4) = (2,4,1,3), the job
sequence 1 → 2 dominates 2 → 1 and 3 → 1 → 4 → 2 domi-
nates 1→ 2→ 3→ 4 under this tie-breaking rule, if their ob-
jective values are identical. Clearly, this rule does not elimi-
nate the optimal solution that dominates all the other optimal
solutions in the order. How to determine πi will be explained
in Section 9.

Instead of considering permutations of four successive
nodes as in 4.2, the variable number of nodes is consid-
ered in the proposed algorithm to eliminate an arc in the
above manner. More specifically, three successive (super-
)nodes are considered if the target arc connects two ordinary
nodes. Otherwise, only the two (super-)nodes connected by
the target arc is considered. It follows that permutations of
at least three and up to six jobs are to be considered depend-
ing on the situation. For example, to eliminate the arc (1,2)
in Fig. 3(a) existence of dominating permutations is checked
for 3→ 5→ 1→ 2 and 4→ 1→ 2 (2→ 4→ 6→ 1→ 2 is ig-
nored because job 2 is duplicated and hence it is infeasible).
On the other hand, to eliminate the arc ({2 → 5 → 3},{1 →
4}) in Fig. 3(b), a dominating permutation is checked only
for 2 → 5 → 3 → 1 → 4.

7.5 Introduction of a tentative upper bound

Due to the existence of machine idle time, it is not easy to
obtain a tight upper bound for our problem compared to the
problem without machine idle time even by the algorithm
stated in Section 6. Because the efficiency of the network
reduction in 4.1 depends much on the tightness of an upper
bound, not only dynamic programming requires consider-
able computational efforts, but also memory space is some-
times exhausted when solving (L̂R

m
2 ) in the third stage, if a

tight upper bound is unavailable. To reduce the dependence
on the tightness of an upper bound, a tentative upper bound
UBtent instead of the current upper bound UB is utilized for

1

3 5

2 4 6

24

(a) elimination of the arc (1,2)

1 4

2 5 3

(b) elimination of the arc ({2 → 5 → 3},{1 → 4})

Fig. 3 Network reduction by dominance of successive jobs in the for-
ward dynamic programming

the network reduction in 4.1 for (L̂R
m
2 ), where UBtent is cho-

sen as UBtent ≤ UB. If UBtent is greater than the optimal ob-
jective value OPT, it is ensured that the algorithm can find
an optimal solution because UBtent is a valid upper bound.
In this case UBtent = UB = OPT holds when the algorithm
is terminated because UB and UBtent are updated if a better
upper bound is found in the course of the algorithm. On the
other hand, if UBtent is less than or equal to OPT, the opti-
mality of the solution yielding UB is not ensured even if the
algorithm is terminated. However, we can at least say that
OPT is not less than UBtent. Therefore, the solution yielding
UB is optimal also in this case if UBtent = UB holds when
the algorithm is terminated. Only when UBtent < UB, we
should increase UBtent and solve (L̂R

m
2 ) again from the start

(m = |M | = 0).
Here, UBtent is chosen as follows.

– If more than 1/64 of the total memory is occupied at
the beginning of the third stage, calculate ∆ by ∆ =
(UB−LB)/4, where LB denotes the current best lower
bound. Then, UBtent is increased from (UB+LB)/2 by
∆ at one iteration. Hence, the maximal number of itera-
tions is three. UBtent is rounded to the nearest integer, if
necessary.

– Otherwise, let UBtent = UB.

8 Proposed Algorithm

This section summarizes the proposed exact algorithm.

8.1 Stage 1

The initial upper bound UB is computed by the algorithm
in 6.3. Then, the conjugate subgradient algorithm in 7.1 is
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applied to the following Lagrangian dual corresponding to
(LR1):

max
µµµ

(
min

P∈Q1
LR(P; µµµ)+ ∑

i∈N

µi

)
, (34)

where the multipliers are initialized by µµµ = 000n. After the
conjugate subgradient algorithm is terminated, (LR1) for the
obtained best multipliers µµµstage1 is solved in both forward
and backward directions and the network reduction in 4.1 is
performed. The algorithm is terminated without entering the
next stage if the gap between the best lower bound and UB
becomes less than one.

8.2 Stage 2

The conjugate subgradient algorithm in 7.1 is applied to the
Lagrangian dual corresponding to (L̂R2), where the multipli-
ers are initialized by µµµ = µµµstage1. An upper bound is com-
puted by a combination of the Lagrangian heuristics in 6.1
and the extended dynasearch every 50 iterations, and UB is
updated if necessary. The backward dynamic programming
and the network reductions in 4.1 and 7.2 are applied ev-
ery time when the best lower bound or UB is updated. The
multipliers obtained in this stage are denoted by µµµstage2. The
algorithm is terminated without entering the next stage if
the gap between the best lower bound and UB becomes less
than one. Otherwise, the current best solution yielding UB
is further improved by the extended enhanced dynasearch.

8.3 Stage 3

Solve (L̂R2) for µµµstage2 with the network reduction in 7.4
applied. Let the current best lower bound LB be

LB = min
P∈Q̂2

LR(P; µµµstage2)+ ∑
i∈N

µstage2
i . (35)

Then, the subprocedure is repeated by increasing the tenta-
tive upper bound UBtent as explained in 7.5. It is terminated
if UBtent = UB at the end of the subprocedure.

Subprocedure
Let LBsub = LB and m = |M | = 0. With starting from
Ĝ0

S = ĜS, the relaxation (L̂R
m
2 ) for µµµstage2 is solved with

M increased. To solve (L̂R
m
2 ), the forward or backward

dynamic programming is applied in turns, where the net-
work reductions in 7.2, 7.3 and 7.4 are performed. The
network reduction in 4.1 is also performed by UBtent in-
stead of UB. Update LBsub by

LBsub = min
P∈Q̂m

2

LR(P; µµµstage2)+ ∑
i∈N

µstage2
i . (36)

An upper bound is computed by a combination of the
Lagrangian heuristics in 6.1 and the extended dynasearch
if LBsub is improved from its previous value. UBtent and
UB are updated if necessary. This subprocedure is ter-
minated if the gap between LBsub and UBtent becomes
less than one.

The choice of M in the subprocedure of Stage 3 follows
Tanaka et al. (2009). Although two methods are switched
in our previous algorithm, we apply only one of them for
simplicity. The job whose corresponding nodes appear less
frequently in Ĝm

S is chosen first from N \M , and up to three
are added to M at one iteration in the subprocedure, depend-
ing on the current memory usage.

9 Numerical results

The proposed algorithm is applied to benchmark instances
of the single-machine total weighted earliness-tardiness prob-
lem (1||∑(αiEi + βiTi) and 1|ri|∑(αiEi + βiTi)), the single-
machine total weighted completion time problem with dis-
tinct release dates (1|ri|∑wiCi), and the single-machine to-
tal weighted tardiness problem with distinct release dates
(1|ri|∑wiTi). The algorithm is coded in C (gcc) and we run
it on a 3.4GHz Pentium4 desktop computer with 1GB RAM.
The maximum memory size for storing the network struc-
ture (dynamic programming states) is restricted to 384MB.
As the parameters (γ ini,δT,δS,ε,κS,κE) in the conjugate sub-
gradient algorithm, we choose (1.2,n,2,0.02,0.95,1.1) in
stage 1 and (1.0,n,2,0.002,0.95,1.18) in stage 2 by pre-
liminary experiments. As the job sequence πi for the tie-
breaking in 7.4 the EDD sequence is used for 1||∑(αiEi +
βiTi), 1|ri|∑(αiEi +βiTi) and 1|ri|∑wiTi as in Tanaka et al.
(2009). For 1|ri|∑wiCi, the problem without duedates, the
solution yielding the initial upper bound is used.

9.1 Total weighted earliness-tardiness problem
(1||∑(αiEi +βiTi) and 1|ri|∑(αiEi +βiTi))

In this problem each job i is given a release date ri, a duedate
di, an earliness weight αi and a tardiness weight βi. All these
values are assumed to be integral and the cost function fi(t)
is expressed by

fi(t) = max{αi(di − t),βi(t −di)}. (37)

The end of the scheduling horizon TE is chosen simply as

TE = max
{

max
i∈N

ri, max
i∈N

di

}
+ ∑

i∈N

pi. (38)

The proposed algorithm is applied to two sets of bench-
mark instances: the instance set with equal (zero) release
dates (1||∑(αiEi +βiTi)) in Sourd and Kedad-Sidhoum (2008)
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Table 1 Computational results for the Sourd’s benchmark set of
1||∑(αiEi +βiTi)

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

20 190 998 86 1274 0.07 0.19
30 46 1078 150 1274 0.29 0.86
40 31 1036 207 1274 0.78 2.51
50 12 913 349 1274 1.71 4.65
60 0 30 15 45 3.66 8.39
90 0 18 27 45 17.46 45.99

Table 2 Computational results for the Bülbül’s benchmark set of
1|ri|∑(αiEi +βiTi)

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

20 42 232 26 300 0.02 0.07
40 1 224 75 300 0.25 0.85
60 0 125 175 300 1.23 3.92
80 0 79 221 300 3.68 10.84

100 0 25 275 300 19.57 43.03
130 0 11 289 300 53.59 141.60
170 0 2 298 300 164.43 443.99
200 0 4 296 300 318.43 679.88

and Sourd (2009), and that with distinct release dates
(1|ri|∑(αiEi + βiTi)) in Bülbül et al. (2007). We refer to
these as the Sourd’s benchmark set and the Bülbül’s bench-
mark set, respectively. Their generation schemes are sum-
marized in A.1 and A.2, respectively.

The results are shown in Tables 1 and 2. We can see that
all the instances are optimally solved. For 1||∑(αiEi +βiTi)
and 1|ri|∑(αiEi +βiTi), various exact algorithms have been
proposed so far by several researchers (Yano and Kim 1991,
Davis and Kanet 1993, Kim and Yano 1994, Fry et al. 1996,
Hoogeveen and van de Velde 1996, Chang 1999, Sourd and
Kedad-Sidhoum 2003, Sourd and Kedad-Sidhoum 2008, Yau
et al. 2008, Sourd 2009, Detienne et al. 2010). To the best of
our knowledge, the most efficient algorithm for the problem
with general earliness and tardiness weights is the branch-
and-bound algorithm proposed by Sourd (2009). He reported
that his algorithm succeeded in solving all the 50 jobs in-
stances in the Sourd’s benchmark set within 1,000 seconds,
and all the 60 jobs instances in the Bülbül’s benchmark set
within 500 seconds on a 3.2GHz Pentium4 desktop com-
puter. On the other hand, our algorithm only takes at most
5 and 4 seconds for these instances, respectively. It is much
faster even if the difference of the processors is taken into
account.

9.2 Total weighted completion time problem with distinct
release dates (1|ri|∑wiCi)

In this problem each job i is given an integer release date ri
and an integer weight wi. The cost function fi(t) is expressed

Table 3 Computational results for the Pan’s benchmark set of
1|ri|∑wiCi

(a) Results with 384MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

20 29 68 3 100 0.04 0.12
30 14 71 15 100 0.21 0.43
40 9 81 10 100 0.53 1.38
50 6 75 19 100 1.15 2.42
60 3 67 30 100 2.45 10.71
70 1 60 39 100 4.55 16.37
80 4 49 47 100 7.49 23.35
90 2 47 51 100 12.18 40.22

100 1 48 51 100 17.89 49.96
110 0 46 54 100 25.19 77.98
120 0 46 54 100 34.89 102.94
130 0 41 59 100 50.26 371.45
140 0 44 56 100 60.48 424.35
150 0 46 54 100 86.99 743.05
160 0 39 61 100 109.92 504.30
170 0 41 59 100 134.32 529.98
180 0 40 60 100 152.52 802.49
190 0 38 61 99 196.67 1119.87
200 0 39 60 99 251.12 1376.49

(b) Result with 768MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

190 0 0 1 1 1976.11 1976.11
200 0 0 1 1 2883.25 2883.25

by

fi(t) = wiCi, (39)

and TE is chosen as

TE = max
i∈N

ri + ∑
i∈N

pi. (40)

This problem can be treated as a special class of 1|ri|∑(αiEi +
βiTi) where di = 0, αi = 0, βi = wi (i ∈ N ).

The proposed algorithm is applied to the set of bench-
mark instances in Pan and Shi (2008), which is referred to
as the Pan’s benchmark set. The generation scheme is given
in A.3. The results are summarized in Table 3. The algo-
rithm failed to solve one instance with 190 jobs and one in-
stance with 200 jobs due to memory shortage. Therefore, the
average and maximum CPU times in Table 3(a) are shown
over optimally solved instances. The unsolved instances can
be solved optimally when we increase the limit of memory
space from 384MB to 768MB. These results are shown in
Table 3(b).

Several types of exact algorithms for this type of prob-
lem have been proposed so far (Bianco and Ricciardelli 1982,
Hariri and Potts 1983, Belouadah et al. 1992, Gélinas and
Soumis 1997, Jouglet et al. 2004, Pan and Shi 2005, Pan
and Shi 2008). To be more precise, the problem treated in
Gélinas and Soumis (1997) and Pan and Shi (2005) is the
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total weighted completion time problem with distinct re-
lease dates and deadlines, but the algorithms can be applied
to 1|ri|∑wiCi by choosing the job deadlines as TE. Among
these exact algorithms, the most efficient for 1|ri|∑wiCi seems
the hybrid dynamic programming/branch-and-bound algo-
rithm proposed by Pan and Shi (2008). Indeed, they claim
that their algorithm could solve all the instances in the Pan’s
benchmark set. However, we found that their optimal objec-
tive values or lower bounds (they offer only lower bounds
for some instances) are incorrect for 22 instances. Anyway,
our algorithm is much faster than their algorithm for larger
instances because their algorithm took nearly four days for
the hardest instance on a 2.8GHz Pentium4 computer, while
our algorithm can solve all the instances within 1 hour on a
3.4GHz Pentium4 computer.

9.3 Total weighted tardiness problem with distinct release
dates (1|ri|∑wiTi)

In this problem each job i is given an integer release date ri,
an integer duedate di and an integer tardiness weight wi. The
cost function fi(t) is expressed by

fi(t) = wi max{t −di,0}, (41)

and TE is chosen as (38). This problem can be treated as a
special class of 1|ri|∑(αiEi + βiTi) where αi = 0, βi = wi
(i ∈ N ).

The generation scheme of the benchmark set is summa-
rized in A.4. It is almost the same with those in the previous
researches on exact algorithms for this problem (Akturk and
Ozdemir 2000, Jouglet et al. 2004) except that the maximum
processing time is not 10 but 100. The results are summa-
rized in Table 4. The algorithm failed to solve two instances
with 90 jobs even with 768MB memory space. Neverthe-
less, it outperforms the best exact algorithm by Jouglet et al.
(2004) that can solve instances with up to 30 jobs. It is worth
noting that our algorithm is less efficient for 1|ri|∑wiTi than
for 1||∑(αiEi + βiTi), 1|ri|∑(αiEi + βiTi) and 1|ri|∑wiCi.
The reason will be that completion cost of an on-time job
is zero. Because of this, there exist many optimal and near-
optimal solutions in 1|ri|∑wiTi. As seen in 3.3, the num-
ber of dynamic programming states increases exponentially
as the relaxed constraints are recovered. To suppress it, the
state elimination techniques should work effectively. How-
ever, they do not when there exist many (near-)optimal solu-
tions. This makes our algorithm terminate due to shortage of
memory space. Introduction of problem specific dominance
properties might be some help, but it is beyond this study
because our primary objective here is to construct an exact
algorithm for the general single-machine scheduling prob-
lem.

It should be also noted that our framework can solve in-
stances with 300 jobs of the single-machine total weighted

Table 4 Computational results for 1|ri|∑wiTi

(a) Results with 384MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

10 67 53 0 120 0.00 0.01
20 41 76 3 120 0.04 0.11
30 32 84 4 120 0.18 0.59
40 29 80 11 120 0.52 3.17
50 26 75 19 120 1.20 8.15
60 31 71 18 120 2.20 12.68
70 30 60 30 120 4.29 34.07
80 27 67 24 118 6.95 134.20
90 29 60 28 117 10.10 104.08

100 30 56 29 115 15.26 187.32

(b) Results with 768MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

80 0 0 2 2 266.51 273.11
90 0 0 1 1 316.63 316.63

100 0 0 2 2 424.57 489.73

tardiness problem (1||∑wiTi). This fact implies that whether
release dates are equal (zero) or distinct affects the problem
solvability much at least for our algorithm. It would be nec-
essary to investigate the impact of distinct release dates on
the problem structure.

9.4 Comparison with the direct extension

To examine the effectiveness of the improvements in Sec-
tion 7, the algorithm without the improvements is applied to
the Bülbül’s benchmark set and Pan’s benchmark set. The
results are shown in Tables 5 and 6. Although the algorithm
without the improvements is still faster than the existing al-
gorithms, the improvements make the algorithm about twice
faster for larger instances. The number of instances that the
algorithm fails to solve optimally decreases much owing to
the reduction of memory usage. Moreover, the algorithm
without the improvements failed to solve some instances in
the Pan’s benchmark set optimally even with 768MB mem-
ory space.

Detailed comparison between the algorithms with and
without the improvements for the Bülbül’s benchmark set
are shown in Table 7. From this table, we can verify that
the proposed improvements reduce computational time in all
stages. In Stages 1 and 2, it is achieved by applying the con-
jugate subgradient algorithm in 7.1 instead of the ordinary
subgradient algorithm. On the other hand, in Stage 3, the
constraint propagation in 7.2 and the tentative upper bound
in 7.5 reduce computational time. Node compression in 7.3
and strict check of dominance in 7.4 do not affect the com-
putational time in Stage 3 much, but they are effective for
the reduction of memory usage.
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Table 5 Computational results for the Bülbül’s benchmark set of
1|ri|∑(αiEi +βiTi) (without the improvements)

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

20 37 221 42 300 0.03 0.09
40 1 153 146 300 0.32 1.09
60 0 64 236 300 1.89 6.88
80 0 38 262 300 6.53 18.73

100 0 10 290 300 36.58 92.34
130 0 2 298 300 104.76 307.48
170 0 1 299 300 305.86 1085.64
200 0 0 300 300 608.74 1618.53

Table 6 Computational results for the Pan’s benchmark set of
1|ri|∑wiCi (without the improvements)

(a) Results with 384MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

20 28 64 8 100 0.06 0.15
30 14 68 18 100 0.26 0.62
40 9 61 30 100 0.69 1.83
50 7 59 34 100 1.53 3.60
60 2 56 42 100 3.71 12.01
70 1 48 51 100 7.23 25.03
80 4 41 55 100 12.47 44.07
90 2 39 59 100 21.70 107.54

100 1 38 61 100 31.32 95.48
110 0 36 64 100 46.10 166.27
120 0 39 61 100 66.28 243.77
130 0 36 62 98 83.97 381.91
140 0 35 64 99 109.25 507.35
150 0 37 62 99 162.99 1011.72
160 0 34 66 100 225.57 1272.50
170 0 33 65 98 255.63 1164.78
180 0 31 67 98 296.74 1265.00
190 0 29 65 94 343.88 1980.38
200 0 28 64 92 396.85 1790.85

(b) Results with 768MB memory space

n optimally solved instances CPU time (s)
Stage1 Stage2 Stage3 total ave. max.

130 0 0 1 1 539.86 539.86
140 0 0 1 1 643.69 643.69
150 0 0 1 1 1340.49 1340.49
170 0 0 1 1 1396.38 1396.38
180 0 0 2 2 1484.83 1601.97
190 0 0 3 3 2340.35 3028.77
200 0 0 6 6 2873.47 4370.77

10 Conclusion

In this study we proposed a dynamic-programming-based
exact algorithm for general single-machine scheduling with
machine idle time by extending and improving our previ-
ous algorithm for the problem without machine idle time.
Computational experiments showed that our algorithm can
optimally solve 200 jobs instances of the single-machine
total weighted earliness-tardiness problem and the single-
machine total weighted completion time problem with dis-
tinct release dates, and 80 jobs instances of the single-machine

Table 7 Detailed comparison between the algorithms with and with-
out the improvements for the Bülbül’s benchmark set of 1|ri|∑(αiEi +
βiTi)

(a) without the improvements
Stage 1 Stage 2 Stage 3

n CPU time (s) CPU time (s) CPU time (s)
ave max ave max ave max

20 0.02 0.06 0.01 0.05 0.00 0.02
40 0.16 0.49 0.15 0.86 0.03 0.10
60 0.64 1.90 1.15 5.29 0.13 0.73
80 1.92 5.11 4.19 13.95 0.48 2.63

100 11.70 29.02 22.48 73.21 2.48 13.18
130 28.83 59.47 65.55 208.86 10.45 66.94
170 67.29 127.92 188.95 644.77 49.79 483.81
200 109.39 227.84 359.38 1082.12 139.97 778.45

(b) with the improvements
Stage 1 Stage 2 Stage 3

n CPU time (s) CPU time (s) CPU time (s)
ave max ave max ave max

20 0.01 0.04 0.00 0.03 0.00 0.01
40 0.16 0.37 0.08 0.52 0.02 0.07
60 0.56 1.41 0.59 2.58 0.13 0.67
80 1.44 3.49 1.91 7.43 0.45 1.88

100 7.12 14.62 10.79 29.91 1.82 7.82
130 15.90 36.06 30.75 84.36 7.21 49.85
170 34.36 70.28 95.06 350.07 35.24 139.53
200 54.29 133.66 179.26 468.58 86.03 333.40

total weighted tardiness problem with distinct release dates.
It is much faster than the current best algorithms for these
problems, but our algorithm could be further improved by
introducing better constraints (cuts), dominance properties,
better choices of parameters, and so on. These are left for fu-
ture research. Another direction of research will be to extend
our algorithm so that it is applicable to a wider class of prob-
lems such as the problem with precedence constraints and/or
setup times, the parallel-machine problem, and so on.
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A Details on Benchmark Sets

A.1 Sourd’s benchmark set

1. Processing times pi (1 ≤ i ≤ n) are generated from the uniform
distribution U [10,100). Let P = ∑n

i=1 pi.



15

2. Duedates di are generated from U [dmin,dmax], where

dmin = max(pi,bP(τ −ρ/2)c), dmax = dmin + bρPc. (42)

3. Both tardiness weights αi and earliness weights βi are generated
from U [1,5].

4. For each combination of (n, τ , ρ), 26 instances are generated.
5. n ∈ {20,30,40,50}, τ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8}, and ρ ∈

{0.2,0.3,0.4,0.5,0.6,0.7,0.8}.
6. For n ∈ {60,90}, only 5 instances are generated for each combi-

nation of (n, τ , ρ), where τ ∈ {0.2,0.5,0.8} and ρ ∈ {0.2,0.5,
0.8}.

7. Available from http://www-poleia.lip6.fr/˜sourd/project/et.

A.2 Bülbül’s benchmark set

1. Processing times pi (1 ≤ i ≤ n) are generated from U [1, pmax]. Let
P = ∑n

i=1 pi.
2. Release dates are generated from U [0,P].
3. Duedates di are generated from U [dmin,dmax], where

dmin = max(0,d(1− τ −ρ/2)Pe), dmax = d(1− τ +ρ/2)Pe.
(43)

4. Both earliness weights αi and tardiness weights βi are generated
from U [0,100].

5. For each combination of (n, pmax, τ , ρ), 5 instances are generated.
6. τ ∈{0.2,0.4,0.5,0.6,0.8} and ρ ∈{0.4,0.7,1.0,1.3}. For n∈{20,

40,60,80}, pmax ∈ {10,30,50} and for n ∈ {100,130,170,200},
pmax ∈ {50,75,100}.

7. Available from http://www-poleia.lip6.fr/˜sourd/project/et.

A.3 Pan’s benchmark set

1. Processing times pi (1 ≤ i ≤ n) are generated from U [1,100].
2. Release dates ri are generated from U [0,b50.5nτc].
3. Weights wi are generated from U [1,10].
4. For each combination of (n, τ), 10 instances are generated.
5. n∈{20,30, . . . ,200} and τ ∈{0.2,0.4,0.6,0.8,1.0,1.25,1.5,1.75,

2.0,3.0}.
6. Available from http://pages.cs.wisc.edu/˜yunpeng/test/sm/dwct/

instances.htm.

A.4 Total weighted tardiness benchmark set

1. Processing times pi (1 ≤ i ≤ n) are generated from U [1,100]. Let
P = ∑n

i=1 pi.
2. Release dates ri are generated from U [0,τP].
3. Duedates di are generated from U [ri + pi,ri + pi +ρP].
4. Weights wi are generated from U [1,10].
5. For each combination of (n, τ , ρ), 10 instances are generated.
6. n ∈ {10,20, . . . ,100}, τ ∈ {0.0,0.5,1.0,1.5} and ρ ∈ {0.05,0.25,

0.5}.


