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Abstract 

Associative abilities of the neural networks concerning the information coding in the 

real neural systems are studied. Two models which we adopted are the sparsely coded 

neural network and the oscillator neural network. We theoretically analyze such models 

with the replica theory and the theory of the statistical neurodynamics. These theories 

enable us to describe the states of the systems which consist of a number of units with a 

few macroscopic order parameters. 

It is well known that a sparsely coded network in which the activity level is extremely 

low has intriguing equilibrium properties. Hence, first, we study the dynamical properties 

of a neural network designed to store sparsely coded sequential patterns rather than 

static ones. Applying the theory of statistical neurodynamics, we derive the dynamical 

equations governing the retrieval process which are described by some macroscopic order 

parameters such as the overlap. It is found that our theory provides good predictions for 

the storage capacity and the basin of attraction obtained through numerical simulations. 

The results indicate that the nature of the basin of attraction depends on the methods 

of activity control employed. Furthermore, it is found that robustness against random 

synaptic dilution slightly deteriorates with the degree of sparseness. 

Second, we study the static and dynamical associative abilities of an oscillator neural 

network in which information is encoded by the relative timing of neuronal firing. In 

order to analyze such abilities, we apply the replica theory and the theory of statistical 

neurodynamics to the oscillator model. Using the theoretical results from these anal­

yses, we can present the phase diagram showing both the basin of attraction and the 

equilibrium overlap in the retrieval state. Our results are supported by numerical sim­

ulation. Consequently, it is found that both the attractor and the basin are preserved 

even though dilution is promoted. Moreover, as compared with the basin of attraction 
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in the traditional binary model, it is suggested that the oscillator model is more robust 

against the synaptic dilution. Taking it into account the fact that oscillator networks 

contain more detailed information than binary networks, the obtained results constitute 

significant support for the plausibility of temporal coding. 
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Chapter 1 

Introduction 

1.1 Background of the thesis 

There is no doubt that the study of the information processing in the brain is one of the 

most important theme not only in recent years but in the future. It is expected that 

understanding of the mechanism of the information processing in the brain contributes 

to the advance in the various fields of study, for example, the medical technology of the 

brain, the construction of the computer based on the new architecture. However, it is 

true that it is hard to grasp such a mechanism only with the anatomical method which 

is effective for the other parts of the body. This is because, since it is considered that the 

function of the brain lies in the collective behavior of a number of nerve cells, we must 

comprehend this collective behavior as well as the behavior of a single nerve cell. 

At this point, we mention the anatomical knowledge of the nerve system in brief. It is 

said that the brain is composed of about 1011 nerve cells, neurons [1]. A neuron consists 

of main four parts, a soma, dendrites, axons, and synapses. The schematic picture of a 

neuron is indicated in Figure 1.1. Dendrites are the parts to receive the signals from the 

other neurons and to transmit those signals to the cell body, soma. At a soma, the signals 

received at the dendrites converge, and the action potential is generated if the converged 

inputs exceed a threshold potential. Since an action potential exhibits sharp changes, it 

1 



axon 

Figure 1.1: Schematic picture of a neuron 

is also called a spike, or a pulse. Once an action potential is generated, such a potential 

is transmitted to the other neurons through axons as a output. An axon of a neuron 

contacts with a dendrite (or, sometimes, a soma) of another neuron through a synapse. 

The evoked action potential is transmitted through the synapse from the pre-synaptic 

neuron (the neuron sending the signal) to a post-synaptic neuron (the neuron receiving 

the signal). The synapse determine the efficiency of transmission of the signal from the 

pre-synaptic neuron to the post-synaptic neuron. Since changes of the synaptic efficiency 

depend on the context, it is said that such changes correspond to learning. 

The study of the functions of the neural systems originated from the study by Mc­

Culloch and Pitts, in which a formal model of the real neuron mentioned above was 

proposed [2]. According to the simple formalization a neuron takes two states; one is the 

inactive state and the other is the active state. The former and the latter correspond to 

the state with few action potentials emitted and the state with action potentials emitted 

frequently, respectively. In the model, the inactive state and the active state are expressed 

as the value 0 and 1, respectively. Which states a neuron takes depends on the input to 

the neuron. The input to the ith neuron is determined by the summation of the outputs 

of the other neurons amplified by the synaptic efficacy between the other neurons and the 
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Figure 1.2: McCulloch-Pitts neuron 

ith neuron. If the input exceed the threshold, the output of the neuron i takes the value 

1, otherwise, 0 (see Figure 1.2). Namely, the state of the ith neuron , Xi , is determined by 

the equation 

Xi= 8 ( ~ JijXj- ()) , (1.1) 

where Jij and e are the synaptic efficacy between the j th neuron and the ith neuron and 

the threshold, respectively. The function 8( u) is a step function; 8( u) = 0 ( u < 0) and 

1 (u > 0). 

This formalization enabled us to make mathematical approaches to the study of the 

neural systems. And many kinds of mathematical models, neural networks, have been 

proposed and analyzed in order to understand how the functions are realized in the 

neural systems. Among these proposed models, the associative memory model, which is 

independently proposed by Nakano, Kohonen and Anderson, is one of the most successful 

[ 6 7] T he model possessing the following function is referred as the associative ones 5, , . 

memory model: if a certain key as a input is given to the network, the network can 

retrieve the memory which is the most related to the input of the ones stored in the 

network. In particular, a lot of progress in the study of such a type of the models has 

been made since it was refined by Hop field [8]. He discussed the analogy between his 

version of the associative memory model, H opfield model, and the spin glass in the field of 
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Figure 1.3: Typical behavior of Hodgkin-Huxley model 

statistical physics, and proved the existence of the Lyapnov function (the energy function) 

of his model. In addition, the performance of the model such as the storage capacity was 

investigated. With this trend, using the replica theory which is a method of statistical 

physics, it was obtained by Amit et al that the storage capacity of the Hopfield model is 

0.138 [10]. The equilibrium properties such as the critical overlap and spurious memory 

states were also obtained with the same method. In recent years, the studies for the 

retrieval process have been reported by several authors. Although attempts to analyze 

with path integral method were made, it is seemed that to solve this problem strictly is 

hard in the present circumstances [16, 17, 18]. However, the theory proposed by Amari 

and Maginu and developed by Okada is effective to obtain approximate solutions [20, 21] . 

Thus, the properties of the Hopfield type of the associative memory model are considerably 

understood. 

On the other hand, the dynamics of a single neuron have been investigated by the 
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physiological studies . With experimental method, Hodgkin and Huxley derived the fol­

lowing equations describing the dynamics of the membrane potential V and the other 

parameters [3] 

cdv 
dt 

dm 

dt 

dh 
dt 

am(V)(1- m)- f3m(V)m 

dn 
dt = an(V)(1-n)-,Bn(V)n 

(1.2) 

Here, C, gL, 9Na, gK, EL, ENa and EK are constants depending on the membrane prop-

erties. I is the external inputs. m , h and n are the variables representing dynamically 

changing conductances. As these equations indicating, even the dynamics of a single neu­

ron is complicated. While the state of the MuCulloh-Pits neuron (1.1) is determined by 

only the external inputs in the passive way, the Hodgkin-Huxley equations (1.2) show the 

state of a neuron is determined by the internal dynamics as well as the external inputs. 

Taking account of physiological knowledge such as neuronal activities mentioned above, we 

cannot help but conclude that the picture of the information processing obtained through 

the study of the models on the traditional simple formulation is not necessarily plausible 

from biological points of view. In addition, it is expected that the model adopting the 

features observed in real biological systems can perform much more flexible information 

processing. Therefore, the studies on such models must be the next step. 

1.2 Associative memory neural networks 

In the studies of neural networks, the association is described in the following way. Let us 

consider that a network consists of N neurons and information is coded by the configura-

tions of the network. When the state of the ith neuron at time t is denoted by the variable, 
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Si(t), the configuration is represented with the vector, S(t) = (S1(t), S2 (t), · · ·, SN(t)) . 

This N-dimensional vector is often called pattern, especially when the Si(t) s are binary 

variables taking 01 or ±1. If the network is set to an initial input pattern S(O) = X, the 

network finally takes an output pattern S( oo) = Y after autonomously developing. The 

associative memory problem is to design the network capable of storing P input-output 

relations (X\ Y 1
), (X2

, Y 2
), • • ·, (XP, YP) in such a way that when the input pattern 

Xk is presented to the network, the network produces the corresponding output pattern 

yk. For this problem , two types of associative memory can be considered. One is the 

auto-associative memory in which the input pattern is the same as the output pattern, 

Xk = yk. The other is the hetero-associative memory, Xk # yk. The important char­

acteristic of the associative memory is that even if the input pattern is not Xk but X_k 

which closely resembles Xk, the network can retrieve the output yk. Thus, the memory 

which is insensitive to small errors in the input patterns is referred to content-addressable 

memory. 

Let us introduce the representative auto-associative memory model, the Hopfield 

model. The state of the ith neuron is determined by 

where 

S·- sgn ("""' J· ·S·- B·) l - L....J tJ J l ' 

j 

sgn(x) = { -11 (x 2: 0) 
(x < 0) 

(1.3) 

(1.4) 

Here ()i is the threshold, which is set to 0 in this model. There are at least two ways in 

which we might carry out the updating specified by (1.3). We could do it synchronously, 

updating all units simultaneously at each time step. Or we could do it asynchronously, 

updating them one at at time. While the dynamical properties extensively depend on 

which rules is adopted, there is few differences the in respect with equilibrium properties. 

The asynchronous updating is adopted in the Hopfield model. 
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The pattern to be memorized, ~JJ- = ( ~i, ~~, · · · , efv), is embedded in the synaptic 

connections Jij s. Although the form of Jij is not unique, it is modified according to the 

Hebb rule, which is based on Hebb's postulate proposed from biological points of view [4], 

(1.5) 

in the Hopfield model. This indicates that if the state of the ith neuron is the same as 

that of the jth neuron, the coupling between them is strengthened, otherwise, weakened. 

In the case that the network stores P patterns, Jij s turn to be 

(1.6) 

In the case that P is small, even naive SN analysis enables us to proved that such a way 

to determine Jij s is appropriate [1]. However, it is impossible using such an analysis in 

general. 

Because the system consists of a number of units, it is useful to pursue the behavior 

of macroscopic order parameters rather than that of each neurons. As such an order 

parameter, the overlap between the configuration of the network S(t) and the target 

pattern ~JJ- can be defined: 
1 N 

m(t) = N L ~j Sj(t). 
J 

(1. 7) 

It is easy to find that m(t) is the direction cosine of S(t) and ~JJ- and if S(t) ~ ~JJ-, 

m(t) ~ 1. 

The properties of the network are described mainly by the behavior of the overlap 

m(t). The important properties of the network are as follow. 

• storage capacity 

When the number of memorized patterns P increases, the value for which the net-

work comes to fails to retrieve all memorized patterns exists. This is caused by the 

fact that the memorized patterns are embedded into the synaptic connections in the 
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distributed way. Such a critical value of P is called the storage capacity Pc. Or 

ac = Pc/N, which is normalized by the number of neurons N, is often used. 

• critical overlap 

m( oo) is the overlap when the network relax to the equilibrium state of the network 

and represents the accuracy of the retrieval. Since the non-target patterns play roles 

of noise in the retrieval processes, the increase in the number of memorized patterns 

stands for the increase in the variance of such a noise. Therefore, as P increases, 

m( oo) is gradually decreases. m( oo) at Pc, which is the accuracy in the worst case, 

is referred to the critical overlap. In the case of P > Pc, it is expected that m( 00) 

becomes 0. 

• basin of attraction 

The associative memory neural networks are capable of the error correction. If an 

initial overlap m(O) is larger than a certain value, the network succeeds in retrieval. 

Otherwise, the network fails to retrieve. The sets of the initial states which induce 

to succeed in retrieval is called the basin of attraction. It is easy to find that, as p 

increases, the basin of attraction is reduced. 

The first and second properties of the Hopfield model have been solved by Amit et 

al [10]. Since Hopfield found the energy function of the system 

1 
H[S· C] = --~ J· ·S·S · '~ 2 ~ 1.] t Jl 

i-::fj 
(1.8) 

they could apply the replica theory which is used for the study of spin glass. Introducing 

the system to thermal noise, we can grasp the equilibrium states through the free energy 

1 
F[~] = - -g log Z[~], (1.9) 

where Z[~] = l::s exp( -,BH[S; ~]) is the partition function. The replica theory is the 

method to average of the free energy F[~] over the memorized patterns ~· From such 
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an analysis, the averaged free energy is obtained with the coupled equations of the order 

parameters such as the overlap. As a result, it is found that the critical value of P for 

which non-zero solution of m(oo) exists is 0.138N. In addition, the other properties of 

the equilibrium states also have been studied using the order parameters equations. 

In order to investigate the third property, basin of attraction, it is necessary to analyze 

the dynamics in the retrieval process. In general, it is possible that such properties depend 

upon the update rule, synchronous update or asynchronous update. For the synchronous 

update model, the statistical neurodynamics theory proposed by Amari et al is the most 

practical one [20]. It is easy to find that the input to a neuron can be separated into the 

signal term which induces recollection and the crosstalk noise term caused by the non-

target memorized patterns. Then, the essence of the theory is to assume such a crosstalk 

noise term as the Gaussian noise with the mean 0 and the temporally developing variance. 

However, the theory could describe the behavior of the system only qualitatively. Okada 

developed the theory taking into account of the temporal correlation of the crosstalk noise 

in different time steps [21]. Such analyses are in good agreement with the behavior of the 

system. On the other hand, the analysis with the dynamical replica theory by Coolen et 

al succeeds the behavior of the asynchronous update model. 

1.3 Outline of the thesis 

With the trend mentioned above, we studied two models taking account of the phenomena 

which are observed experimentally. These two model concern encoding of information in 

biological neural systems, one concerning sparse coding and the other concerning temporal 

coding. 

In chapter 2, we investigate the properties of the neural network model processing 

the sparsely coded patterns. In real nerve systems, it is observed that the number of the 

active neurons is extremely small. According to a certain estimation, it was reported that 
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a fraction of active neurons is about 4 - 5 %. Based on this physiological knowledge, 

the model designed to process the patterns expressed with a small fraction of active bits 

was proposed by Willshaw et al [9]. These patterns, in which the active bits are sparsely 

distributed in a spatial sense, are called the sparsely coded patterns. From the viewpoint 

of information theory, the sparsely coded patterns is realistic rather than so-called random 

patterns. This is because, in general cases, the active bits and inactive bits corresponds 

to the foreground and the background, respectively, and the fraction of the background 

bits is larger that of the foreground bits. 

By several authors, it has been reported that a sparsely coded· network has intriguing 

equilibrium properties, for example, the storage capacity increases as the fraction of active 

neurons decreases [10, 11, 12, 13, 14]. We study the dynamical properties of a model 

designed to process sparsely coded sequential patterns rather than static ones. Applying 

the theory of statistical neurodynamics, we derive the dynamical equations governing the 

retrieval process which described by some macroscopic order parameters. The obtained 

theoretical results using the derived equations are compared with the result of numerical 

simulations. 

Since the states of memorized patterns exhibit low activities, the activity level of the 

network is desirable to be kept low. This indicates that the mechanisms to stabilize 

the activity level significantly affect the retrieval abilities of the network. We compare 

the performances of the models with the three different types of the activity control 

mechanisms. 

In the case of the sparsely coded network to process the static memories, as the activity 

level of memorized patterns a decreases, the storage capacity of memories diverge as the 

asymptotic form 1/ajln aj [11, 13]. This result is obtained expanding the equilibrium 

equations of the order parameters in term of a in the sparse coding limit a ---7 0. We 

apply the same procedure to the present model for the sequential memories and discuss 
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the asymptotic property of the storage capacity. 

Furthermore, the robustness against defects in some parts of the system is supposed 

to be an advantage which the distributed processing systems such as neural networks 

possess. The robustness against the random synaptic dilution is studied using both the 

theory and numerical simulations. 

Chapter 3 is devoted to discuss the static and dynamical properties of oscillator neural 

networks. The collective oscillatory behavior of neuronal group has been observed in many 

biological neural systems - the primary visual cortex, olfactory bulb, hippocampus and so 

on. The experimental observation by Gray et al suggests that the temporal coherence of 

neuronal activity may contribute to information processing in real biological systems [30]. 

In addition, this observation makes the opportunity to reconsider traditional hypothesis 

that information in neural systems is encoded by firing rate, i.e. rate coding. From 

theoretical point of view, temporal coding is considered to be more suitable to dynamical 

information processing as real neural systems are. For instance, the utilization of temporal 

features of the neuronal activities enables us to solve so-called binding problem more 

neatly [31]. In anticipation of these points, as one of the models capable of describe the 

temporal aspects of real neuronal activities, the oscillator neural networks are worthy of 

being studied. 

Many theoretical works concerning the associative memory type of oscillator neural 

networks have been reported by a number of authors [32, 33, 34, 35, 36, 37, 38, 39, 40, 

41]. Among them, there are several theoretical works directly related to our model. In 

particular, Cook showed that the storage capacity of the oscillator model is 0.038, provided 

that the Hebbian rule with random phase patterns is used [40]. Hence, we discuss how 

the storage capacity is affected when the synapses are randomly diluted [27, 42, 43, 44]. If 

the diluted synapses are symmetric, we can apply the method used in statistical physics, 

the replica theory, to the model. Using such a theory, we derive the coupled equations 
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describing the equilibrium states. In addition, we compare the robustness against random 

synaptic dilution of the oscillator model with that of the traditional Hopfield model. It is 

interesting that how robust the oscillator model is, which is encoded by the more detailed 

information of the timings of spikes. 

Next, we study the retrieval dynamics of oscillator neural networks. The ability of 

error correction which is one of the important abilities of associative memory models 

belongs to the dynamical properties. However, there is no dynamical theory with an 

extensive number of stored patterns in fully connected oscillator networks. Therefore, we 

apply the method of statistical neurodynamics to the oscillator model. The dynamical 

equations obtained with the theory enable us to predict initial permissible errors for 

successful recollection. We also investigate the ability of error correction in the case of 

random synaptic dilution. 

Furthermore, we mention the relation between the replica theory and the statistical 

neurodynamics theory to show that the same result for equilibrium properties is obtained 

from both theories. 

In the final chapter, we summarize main results and give some comments. 
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Chapter 2 

Associative abilities of neural 
network for sparsely coded 
sequential patterns 

2.1 Introduction 

For the purpose of constructing more realistic mathematical neural network models (e.g, 

the Hopfield model [8]), so-called "random" patterns, which have been used for simple 

theoretical treatments, have been reconsidered. In a network capable of processing these 

random patterns, it is frequently supposed that statistically half of the neurons are allowed 

to be active . However, such a situation is not realistic for two reasons. First, according 

to the results of physiological studies, the activity level of real neural systems is thought 

to be low. Second, in a meaningful pattern, information is generally encoded by a small 

fraction of bits in a background which occupies most of the total area. 

With these points in mind, neural networks loading sparsely coded patterns have been 

studied by many authors [9, 10, 11, 12, 13, 14]. These authors have reported that the 

maximal number of patterns stored in the network increases as the fraction of active 

neurons a decreases. Furthermore, the storage capacity in such a situation diverges as 

-1/ a ln a which is the optimal asymptotic form obtained by Gardner [15]. However, 

considering the fact that the information content in a single pattern is reduced with the 
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degree of sparseness, we cannot immediately conclude that sparse coding enhances the 

associative ability. Rather, what we should note is that the optimal bound is obtained 

even for models with a relatively simple Hebbian learning rule. 

While, owing to these studies, progress in the understanding of the equilibrium prop­

erties of sparsely coded networks has been made, many unsolved problems remain in 

regard to dynamical aspects. In particular for associative memory models, consider­

ing the associative ability for a noisy initial pattern to be dynamically corrected, it is 

necessary to consider the basin of attraction in order to grasp a network's characteris­

tics properly. In recent years, several theories treating retrieval process have been pro­

posed [16, 17, 18, 19, 20, 21]. Among these, we note that the method of statistical 

neurodynamics is practically useful, because it enables us to describe long-term behavior 

when a network succeeds in retrieval [20, 21]. However, for sparse coding, there is quanti­

tative discrepancy between the results obtained from this theory and numerical simulation 

in the case of auto-association, which implies a difficulty in treating the strong feedback 

mechanism with this model [22]. On the other hand, sparse coding for sequential associa­

tive memory has not yet been studied in detail [24, 25]. In the present paper, we study 

this point by applying the method of statistical neurodynamics to a model for sequential 

associative memory. 

2.2 Associative memory models for sparsely coded 
patterns 

Let us consider the situation in which a neural network which consists of N McCulloch-

Pitts neurons is designed to store sequential patterns rather than static ones. Each neuron 

obeys discrete synchronous dynamics described by 

(2.1) 
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N 

hi(t) = L JijSj(t)- B, 
j=l 

(2.2) 

where Si(t) and hi(t) are the state and the internal potential of the ith neuron at time 

t, respectively. Although we have written the transfer function in the general form F(u), 

we consider the case F(u) = G(u); i.e. F(u) is a step function. In this case, the state 

Si(t) takes only two values, 1 (firing state) and 0 (resting state). The quantities Band Jii 

represent the uniform threshold and the strength of the synaptic connection between the 

ith and jth neuron, respectively. 

We assume that the stored patterns are generated with the probability 

P(~f) = a5(~f- 1) + (1 - a)5(~f), (2.3) 

where ~f is the state of the ith neuron in the J..Lth pattern. Then, the activity for this 

network, -}J Li ~f, assumes an average value of a. In particular, the case a~ 0 is referred 

to as "sparse coding". In order to make the network possess associative memory dealing 

with these patterns, the JijS must be designed appropriately. In the present paper, to 

construct a network capable of recalling a sequence of P = o.N patterns in Figure 2.1, 

defined by such as ~ 1 ~ ~2 ~ • · · ~ ~P ~ ~1 ~ · · ·, we adopt covariance learning 

1 aN 

J;j = a(l- a)N ~(~f+l- a)(~f- a), (2.4) 

which is usually adopted in the context of learning the sparsely coded patterns. 

For such a network, the macroscopic state is found to be described by the following 

order parameters: 

1 N 
( )N L(~j- a)Sj(t) al-a . 

J 

(2.5) 

1 N 
x(t) = aN~ Sj(t). 

J 

(2.6) 

Here, mJ.L(t) is the overlap with the target pattern ~J.L. As the configuration of the network 

becomes close to the target pattern, this value approaches unity. The function x(t) 
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represents the activity of the network. On studying the retrieval processes, we mainly 

discuss the time evolution of these parameters. 

2.3 Analysis with statistical neurodynamics theory 

2.3.1 Derivation of equations describing retrieval dynamics 

We consider the "condensed" situation in which only one overlap is sizable: 

mP(t) rv 0(1), (2.7) 

Here, ~P is the pattern to be retrieved at time t. Then, the internal potential hi ( t) in Eq. 

(2.2) can be separated as 

o:N 

hi(t) = (f+ 1mP(t)- B + :L ~f+ 1 mJ1.(t), 
JJ.i=P 

(2.8) 

where we have written ~f as ~f-a. In this process, the first and the second terms in Eq. 

(2.8) are together regarded as the signal to induce recollection of the target pattern ~f+ 1 

at the subsequent time step, t + 1, while the remaining term is regarded as noise. For 

convenience, we define the noise term zi(t) as 

o:N 

zi(t) = :L ~f+ 1 mJ1.(t). (2.9) 
JJ.-:f=p 

The quantity zi(t) is the crosstalk noise from the non-target patterns. The essence of the 

theory is to treat the crosstalk noise zi ( t) as Gaussian noise with mean 0 and variance 

O"(t? [25]. It has been confirmed numerically that this assumption is valid as long as the 

network succeeds in retrieval '26]. 

· Now we derive the dynamical equations for the overlap m(t) and the activity x(t). 

The definition of the overlap leads to the equation 

(2.10) 
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where ((. · · )) ~ denotes the average over the stored patterns. In the same way, we can write 

the equation for the activity x ( t), 

(2.11) 

Next, we examine the time development of the variance O"(t) 2
. Expressing zi(t + 1) as 

1 N o:N 
- +1-

zi(t + 1) = (
1 

_ )N 2:: 2:: ~r ~r F[hj(t)], (2.12) 
a a j-:f=i JJ.i=P+l 

we must consider the dependence of hj(t) on ~j when summing over J.l· In the internal 

potential hj(t), the term (jmJJ.- 1(t) is estimated to be 0(1/ffi). Therefore, we expand 

the function F[hj(t)] in terms of (jmJJ.- 1 (t): 

F[hj(t) + (jmJJ.- 1(t)] 

F[hj(t)] + F'[hj(t)](jmJJ.- 1(t) 

S1(t + 1) + ~JF'[h1 (t)J A~ L~r-lsk(t). 
k 

(2.13) 

Here A= a(1- a) and hj(t) = hj(t) + (jmJJ.- 1(t). We now assume that Sj(t + 1) in Eq. 

(2.13) is independent of ~j. As a result, we obtain the following equation for zi(t + 1): 

Zi(t + 1) = A~ L L ~;+l~jSj(t + 1) + U(t) A~ L L ~i+l~k-l Sk(t). 
J J1. k v 

(2.14) 

Squaring Eq.(2 .14), we obtain 

zi ( t + 1) 2 = a ax ( t + 1) + U ( t) 2 zi ( t) 2 

+U(t) (-
1
-)

2 

:L:L(f+1(r+1(fsj(t + 1)~~-lsk(t) (2.15) 
AN j,k Jl.,V 

Here the first term and the second term in Eq. (2.15) come from the square of the first 

term and the second term in Eq. (2.14), respectively. The last term in Eq. (2.15) arise 

from the product of the first term and the second term in Eq. (2.14). Applying the 

relation Eq. (2.13) to the term Sk(t) in Eq. (2.15), (2.15) becomes 

zi(t + 1) 2 = aax(t + 1) + U(t?zi(t) 2 + C(t + 1, t) 

+U(t)u(t- 1) (-
1
-)

2 

2: 'L(f+l~r+l~rsj(t + 1)~r-2 sl(t- 1)~2.16) 
AN j,l Jl.,V 
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where we define 

C(t + 1, t) 

(2.17) 

In the same way, substituting the relation Eq. (2.13) iteratively, we can take into account 

temporal correlations up to the initial time. Following this procedure, we obtain 

t+1 

a(t + 1)2 
= aax(t + 1) + U(t?a(t) 2 + L C(t + 1, t + 1- n) (2.18) 

n=1 

with 

C(t+ 1, t+ 1- n) = fr U(t + 1- r) ~ L Sj(t + 1)Sj(t+ 1- n) [A;N 2:;(~f+1) 2~f~r"] . 
T=1 J J.L 

(2.19) 

In the case of auto-association, we cannot neglect temporal correlations of crosstalk noise 

C ( t + 1, t + 1 - n), because this correlation plays a significant role in the retrieval pro­

cess [21]. As for the present model, since ~J.L and ~J.L-n are independent of each other, except 

when n = aN, 2aN, 3aN, · · ·, the last summation in Eq. (2.19) vanishes. Although the 

correlations for n = aN, 2aN, 3aN, · · · remain, their effect can be regarded as negligible 

in the limit N -t oo. 

Consequently, the behavior of the network is described by the equations 

m(t + 1) 
1 

1 - 2 [erfc( c/>1) + erfc( ¢ 0)] (2.20) 

x(t + 1) 1 [ 1 -a ] 1- 2 erfc(¢1)- -a-erfc(¢0 ) (2.21) 

a(t + 1)2 aax(t + 1) + U(t) 2a(t) 2
, (2.22) 

with 

¢1 
(1- a)m(t) - e 

(2.23) 
v'2a(t) 
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U(t) 

am(t) + e 
v'2a(t) 

1 [ae-<1>~ + (1 - a)e-<~>6] 
/21fa(t) 

2 /00 2 erfc(t) = r;:;; e-u du, 
v 7r -t 

(2.24) 

(2.25) 

(2.26) 

where we have set F ( u) = 8 ( u) and replaced the site average ~ L,f · · · with the average 

over the Gaussian noise (- · ·) z(t) in the limit N -t oo. For initial values, we can set 

a(O) = jaax(O) and choose arbitrary values for m(O) and x(O). 

2.3.2 For several activity control mechanisms 

Global inhibitory interaction 

In a sparsely coded network, activity control is an important factor for good retrieval 

quality. Introducing the global inhibitory interaction such as 

J inh J g 
ij = ij- aN' (2.27) 

the activity can be dynamically controlled [10, 14]. The second term contributes as a 

global inhibitory interaction, and g represents its strength. In this case, the internal 

potential hi(t) is expressed as follows: 

N 

hi(t) = :L JfjhS1(t)- e 
j=1 

N 

L JijSj(t)- gx(t)- e 
j=1 

(2.28) 

If the activity level of the network at timet, x(t), greatly increases, each neuron receives 

a stronger inhibitory signal -gx(t), so that x(t + 1) decreases. We can undertake a 

treatment of the retrieval process in this case in a manner similar to that undertaken 

above. We then find that equations (2.23) and (2.24) are modified as 

¢1 
(1 - a)m(t) - gx(t) - e 

(2.29) 
v'2a(t) 

c/>o 
am(t) + gx(t) + e 

(2.30) 
v'2a(t) 
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Self-control threshold 

Another model possessing an activity control mechanism is that with a time-dependent 

threshold which is calculated at each time step so that the activity of the network can be 

kept the same as that of the retrieved pattern [22]. Recently, as an improved model, a 

"self-control" model has been proposed [23]. In this model, the time-dependent threshold 

O(t) adapts itself according to the activity a and the variance of crosstalk noise a(t). If a 

is sufficiently small, it takes the form 

O(t) = a(t)v' -2ln a. (2.31) 

However, from the biological point of view, it is not plausible that the network monitors 

the statistical quantity of the crosstalk noise. Hence, in the present paper, in place of 

a(t), we choose the leading term of a(t), Jaax(t). Then, we simply use 

O(t) = J -2x(t)aa ln a (2.32) 

in place of the expression in Eq. (2.31). 

2.4 The results 

We carry out numerical simulation of the present model, and obtain Fig. 2.2 and 2.3 

showing typical example in the case of successful association and in the case of failure 

association, respectively. In these figures, the top and the bottom corresponding to evo­

lution of crosstalk noise and distribution of internal fields, respectively. Although the 

average of crosstalk noise (z( t)) become almost zero in both cases, temporal correlation 

(z(t)z(t-1)) takes finite value when the network fail to retrieve sequential patterns. From 

there results, the assumption of mean 0 of crosstalk noise is found to be valid, and it is 

numerically confirmed that temporal correlation of crosstalk noise vanish in the case of 

successful association. Furthermore, while the internal potentials are clearly separated 
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into two lumps, that is, one consists of active sites (h > 0) and the other of inactive sites 

(h < 0) in Fig. 2.2, the internal fields obey the single Gaussian like distribution with 

broad variance in Fig. 2.3. 

We now compare our theoretical results with numerical simulations. Figures 2.4-2.6 

display the results of the model using only a uniform threshold (), a uniform threshold 0 

and the inhibitory interaction g, and a self-control threshold O(t), respectively. In the first 

two cases, 0 and g are optimized so as to maximize the storage capacity. The three curves 

displayed in the figures represent, from the top, the equilibrium activity, the equilibrium 

overlap, and the basin of attraction, respectively. The point where these three curves 

vanish indicates the storage capacity. From the results, it is found that the theoretical 

curves provide a good prediction of the retrieval properties in the network. Although 

with respect to storage capacity, these three cases differ very little, the differences among 

the activity control methods are reflected in the shapes of basin of attraction. While the 

basin becomes gradually narrow as a increases in the first case, the basin for a > 0 is 

wider than that for a= 0 in the second case. Furthermore, in the last case, the minimum 

initial overlap for which the network succeeds in retrieval becomes zero when a= 0. 

2.5 Storage capacity in the sparse coding limit 

In the case of auto-associative memory model, it have been reported that the storage 

capacity diverges as the asymptotic form -1/ a ln a in the sparse coding limit a ---+ 0. For 

the purpose of investigating the storage capacity of the present model in such a limit, we 

must describe the stationary state. Using the dynamical equations, we can describe the 

macroscopic order parameters in the stationary state as follows: 

m 
1 

1 - 2 [ erfc ( </>1) + erfc ( ¢0 )] 

X 
1 [ 1-a ] 1- 2 erfc(¢1)- -a-erfc(¢0 ) 
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(2.33) 

(2.34) 



a {1!f; 
(1 - a)m-B 

v'2a 
am+B 

v'2a 

(2.35) 

(2.36) 

(2.37) 

In the limit a --t 0, we can approximate U to 0. Furthermore, to satisfy x 1'..1 1 which 

means that the network keeps the same activity as the target pattern, the order of error 

bits of misfiring erfc(¢1) must be the same as that of erfc(¢0)/a. Namely, the relation 

erfc(¢0 ) 1'..1 aerfc(¢1) << erfc(¢1) (2.38) 

is obtained. Therefore, the following approximations for the stationary state of order 

parameters in such a limit are obtained, 

m 1'..1 

X 1'..1 

a 1'..1 

¢1 1'..1 

1>o 1'..1 

1 
1 - 2erfc( ¢1), 

1, 

y!OO, 

m-B 
}200' 

B 
}200" 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The error bits erfc(¢0)/a must be less than 1, that is, erfc(¢0)/a < 1. Because of ¢ 0 --too 

when a--t 0, we can carry out the asymptotic expansion of erfc(¢0 ), obtaining 

(2.44) 

Here, if e- 4>6 1'..1 an is assumed, ¢0 is found to be 

1>o 1'..1 Jnlln a!, (2.45) 

where n ~ 1 satisfies the inequality Eq. (2.44). From Eq. (2.43) and (2.45), the maximum 

storage capacity with n = 1 is described as follow: 

82 
Q'l'..l---

2ajln a!· 
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(2.46) 

Using this result , it is found that ¢1 1'..1 (1 - B)~. Under the condition 

1 
1 - B>> ~' 

y llna l 

the critical overlap is approximated to 

m 1'..1 1 - _1_ . _B_ . 1 . a - (1/0- 1)2. 
2fi 1-B ~ 

(2.47) 

(2.48) 

This result is in agreement with the form obtained by Tsodyks et al [11] . In the limit 

a --t 0, keeping the condition (2.47), we can maximize B to unity. Finally, we find the 

storage capacity of the present model in the sparse coding limit , 

1 
(X1'..1 ---

2alln ai· (2.49) 

To verify the crude calculation mentioned above, we numerically calculate the dynam­

ical equations. The dependence of the storage capacity on the activity level a is shown in 

Fig. 2.7. The solid line for the reference expresses aa 1'..1 -1/lna, namely a 1'..1 -1/alna. 

The data series obtained through numerical calculation approach the line as a decreases. 

In the present case, we have confirmed that the storage capacity diverges as - 1/ a ln a in 

the limit a--t 0, and it seems to approach such an asymptotic form quite slowly [17]. 

2.6 Random synaptic dilution 

Next, we investigate robustness against random synaptic dilution. In this case, a randomly 

diluted synapse is represented by the random variable Cij: 

(2.50) 

The variable Cij takes the value 1 with probability c, and is 0 otherwise. In other words, 

c represents the ratio of connected synapses. It is known that random synaptic dilution 

can be statistically regarded as static noise in a synapse [27] , 

(2.51) 
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The synaptic noise 'TJii is a Gaussian noise with mean 0 and variance ry2 j N. The relation 

between the dilution ratio c and the variance parameter ry2 is found to be 

1- c 
'TJ2 =-- a . 

c (2.52) 

In the model with random diluted synapses, noise component consists of two terms as 

follow: 

zf ( t) + zi ( t) 
1 N o:N N 

"" "" -J..L+1 -J..L AN~~ ~i ~j Sj(t) + L 'TJijSj(t) 
j#i J..L#P j#i 

(2.53) 

In the above equation, the first term is the traditional crosstalk noise, and the second 

term arise from the random synaptic dilution. We can treat the crosstalk noise term in 

the same way as the discussion mentioned above. When we take the statistics of synaptic 

noise, we must take into account correlations between 'TJii and 'TJii in Sj(t). Expanding 

sj ( t) in terms of 'TJji yields 

N N 

zf(t) = L'TJijSj(t) + Si(t) L'TJij'TJjiF'(hj(t -1). (2 .54) 
j#i j#i 

where Sj(t) is assumed to be independent of 'TJji· In Eq. (2.54), the second term vanishes 

since 'TJij and 'TJii are independent. As a result, we obtain 

(2.55) 

Since zf(t) is assumed to be independent of zf(t), the resultant equation for the noise is 

modified as 

In addition, ¢1 and ¢0 become 

1-c 
a-(t + 1)2 + aa--x(t + 1). 

c 

¢
1 

= (1 - a)m(t) - gx(t) - (} 

V2a(t) 
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(2.56) 

(2.57) 

and 
~ _ am(t) + gx(t) + (} 
\f'O - v'2a(t) (2.58) 

Clearly, when c = 1, we have a= a- . 

Figure 2.8-2.10 indicate results of theoretical analyses and numerical simulation for 

the three type of activity control mechanisms in the case of c = 0.7. All parameters 

except the ratio of connected synapses are the same as Fig. 2.4-2.6. In every cases, our 

theoretical analyses are in good agreement with the results of numerical simulations. 

In Fig. 2.11-2.13, we display the dependence on the ratio of connected synapses c. 

From these results, it is seemed that the associative abilities are proportionate to the 

parameter c for all cases. 

In order to examine the deterioration experienced with the decrease in the ratio of con-

nection cat each activity a, we define the normalized storage capacity a~(c) = ac(c)/ac(1), 

where ac(c) is the storage capacity when the ratio of connection is c. Fig. (2.14) displays 

the normalized storage capacity a~ (c) as a function of c. As indicated by these results, 

the effect of dilution on the storage capacity is not significant. However, if the activity 

level a becomes small, the network gradually becomes sensitive as c decreases; the storage 

capacity decreases almost linearly decreases with the increase in the degree of dilution, 

1- c. 

As for this point, we can make the similar discussion to that in the previous section. 

In this case, the variance of the crosstalk noise in the stationary states is found to be 

expressed as 

(2.59) 

If c >>a (c rv 0(1)), the storage capacity is approximated to 

(2.60) 
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Therefore, the normalized storage capacity a~ (c) is obtained as follow: 

Q~ (c) rv c (2.61) 

With regard to the basin of attraction, the model with the optimized uniform threshold 

(), which has the most narrow basin, is the most robust of the three. 

2. 7 Conclusion 

Let us now summarize the results of the present study of retrieval dynamics in the neural 

network with sparsely coded sequential patterns. 

• We derived dynamical equations for retrieval processes using the methods of statis­

tical neurodynamics. Our theoretical results were found to be in good agreement 

with numerical simulations. This is due to the fact that temporal correlations of 

the crosstalk noise, which contribute significantly in the auto-associative memory 

model, vanish. 

• Three types of the activity control mechanisms, the optimized uniform threshold, 

the global inhibitory interaction, and the self-control threshold, were investigated. 

Such mechanisms mainly affect the basins of attraction. Among the three models, 

in general the self-control model has the widest basin, and in addition, in this case 

there is no need to tune parameters by hand. 

• For the present model, we confirmed that the storage capacity in the sparse coding 

limit a -+ 0 diverges as the asymptotic form -/a In a using both theoretical and 

numerical analyses. 

• We applied the present theory to the model with random synaptic dilution. From the 

results, it is seemed that the associative abilities become reduced proportionately to 

the decrease of the ratio of connected synapses c. Furthermore, as the activity level 
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becomes low, the robustness against random synaptic dilution deteriorates slightly. 

For low activity, the storage capacity decreases almost linearly with the ratio of 

connected synapses c. 

Finally, let us comment on numerical simulations. When carrying out simulations, 

we can choose the two ways to generate patterns with a given activity a. One way is to 

draw from the distribution Eq. (2.3), and the other is to set N a neurons to unity and the 

remaining N(l- a) neurons to zero. While the activities of the patterns produced in the 

former case are distributed about an average value of a, those produced in the latter case 

are exactly a. As reported by Nadal [29], we observed that there is a finite quantitative 

discrepancy between these two cases, and the present theory is applicable only to the 

former case. 
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Figure 2.1: The sequential patterns treated by the present network model. 
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Figure 2.2: Top : Typical time evolution of statistics of crosstalk noise z(t) for a = 0.3, 
a = 0.15, e = 0, g = 0.33, and the initial overlap m(O) = 0.6. Bottom : Snap shot of 
distribution of local field h( t). 
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Figure 2.3: A plot similar to that in figure 2.2. The initial overlap m(O) = 0.2. The other 
parameters are the same as in figure 2.2. 
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Figure 2.4: From the top, the equilibrium activity (dashed curve), equilibrium overlap 
(dotted curve), and basin of attraction (full curve) for a= 0.1 and B = Bopt(= 0.47). The 
ordinate is the overlap m or the activity x, and the abscissa is the loading rate a. The 
data points indicate simulation results with N = 2000 for 20 trials. We take the initial 
activity as x(O) = 1.0. The inset shows the dependence of the storage capacity ac on the 
uniform threshold B. The value at the peak of the curve corresponds to Bopt· 
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Figure 2.5: A plot similar to that in figure 2.4 for the case () = 0 and g = gopt ( = 0.56). 
The other parameters are the same as in figure 2.4. The inset shows the dependence of 
the storage capacity ac on the inhibitory interaction g when f)= 0. The value at the peak 
of the curve corresponds gopt. 
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Figure 2.6: A plot similar to that in figure 2.4 for the self-control model. The other 
parameters are the same as in figure 2.4. 
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Figure 2.8: A plot similar to that in figure 2.4 for the case c = 0.7. The other parameters 
are the same as in figure 2.4. 
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Figure 2.9: A plot similar to that in figure 2.4 for the case c = 0. 7. The other parameters 
are the same as in figure 2.5. 
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Figure 2.10: A plot similar to that in figure 2.4 for the case c = 0.7. The other parameters 
are the same as in figure 2.6. 
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Figure 2.11: Dependence of the theoretical curve on the ratio of connected synapses c 
The other parameters are the same as in figure 2.4. 
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Figure 2.12: A plot similar to that in figure 2.11 The other parameters are the same as 
in figure 2.5. 
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Figure 2.13: A plot similar to that in figure 2.11 The other parameters are the same as 
in figure 2.6. 
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Chapter 3 

Associative abilities of oscillator 
neural networks 

3.1 Introduction 

In recent years, many attempts have been made to treat neural network models more 

realistic than traditional ones such as the Hopfield model [8]. Progress in the physiological 

understanding of real neural systems, for example, neuronal activity and morphology of 

synaptic connectivities, has led theoretical interests to those various models with biological 

validity. With this trend, many models whose purpose is to grasp the essence of more 

detail dynamics in a neuron have been proposed and analyzed. From the theoretical point 

of view, models capable of describing the continuous behavior of neuronal activities are 

expected to be superior in information processing. In particular, oscillator neural networks 

have come to be one of the most intriguing models in this context, since it was reported 

that collective oscillatory behavior may contribute to information processing in biological 

systems [30]. This is because such models are simple enough to allow for theoretical 

analysis, while they also contain the essence of the temporal features of neuronal activity. 

The results obtained through the analysis of such a simple model are sure to further our 

understanding not only of more complex models but of real neural systems. 

Many interesting analyses concerning oscillator neural networks have been reported (32, 
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33, 34, 35, 36, 37, 38, 39]. As the representative study, in the case of auto-association 

of random phase patterns with Hebbian learning, the storage capacity ac = 0.038 is es­

timated using the replica theory (40]. However, despite these works, oscillator models 

remain poorly understood. 

For the purpose of estimation of performance with regard to associative memory, it is 

necessary to consider two important aspects of association, one concerning the attractor 

and the other concerning the basin. However, most previous studies are restricted to 

properties of the attractor, such as equilibrium overlap and storage capacity. However, 

considering the associative ability for a noisy pattern to be dynamically corrected, in order 

to obtain a proper measure of a model's performance, it is necessary to study the basin 

of attraction also. In order to discuss the basin, we must treat the dynamics of recalling. 

For traditional models, several theoretical analyses on dynamics of retrieval processes 

have been reported. Using the method of generating functionals and path integrals, a 

general theory can be formulated [16]. Although this method yields an exact description, 

a suitable approximation is required in order to obtain practical results [17]. In the case 

of parallel dynamics, the result turns out to be simple so that the exact prediction of the 

retrieval dynamics for the initial few steps is possible [18]. As for arbitrary finite time scale, 

the dynamical replica theory has been proposed recently [19]. On the other hand, as an 

approximation method, the statistical neurodynamics theory has been proposed (20, 21]. 

Although the approximation used in this approach is crude in a sense, it it practically 

useful to predict long term behavior when a network succeeds in retrieval [26]. Finally, 

we should note that, under suitable conditions, the theoretical result from the statistical 

neurodynamics can be obtained also by the path integral method. 

Furthermore, one we cannot avoid is the problem of theoretically estimating robustness 

against damage of the synaptic structure. In the case of Hopfield model, this has already 

been studied by several authors [27, 42, 43, 44]. Oscillator neural networks can retrieve 
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more detailed information than can the Hopfield model, because the memorized patterns 

are described by continuous rather than binary variables. For this reason, one might guess 

that the retrieval ability of the oscillator neural network decreases faster with the ratio of 

the disconnected synapses than that of the Hopfield model. To clarify the above point, in 

this paper we wish to address the problem of how the oscillator neural network is affected 

by random synaptic dilution. 

In the present paper, from the point of view mentioned above, we theoretically an-

alyze and estimate the associative ability of the oscillator neural network. In the next 

section we introduce an oscillator neural network model treated here. Section 3 contain ' 
a theoretical analysis of the equilibrium property in this network using the replica theory. 

It is investigated how the equilibrium states are affected by random synaptic dilution. 

In order to discuss the retrieval dynamics in the oscillator neural network, the statistical 

neurodynamics theory is applied to the model in Section 4. Using the derived dynamical 

equations describing the time development of some macroscopic parameters such as that 

representing overlap, we examine the shape of the basin of attraction. In Section 5, we 

show the relation between the replica theory and the statistical neurodynamics theory. In 

Section 6, we give a brief summary and conclusion. 

3.2 Oscillator neural network model 

Let us first consider the situation in which N periodic firing neuronal systems are coupled 

to each other. In general, such a system can be described by evolution equations involving 

a set of state variables, for instance, a membrane potential and several ionic leak currents. 

Under suitable conditions, it is well known that such a coupled system can be reduced 

to a system of simple coupled oscillators. Therefore, the state of the i-th system can be 

characterized by a single variable cPi· This quantity cPi is usually referred to as the phase, 

which represents the timing of the neuronal spikes. The reduced phase equations take the 
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general form [45] 

(3.1) 

where Wi is the frequency of the i-th neuron and rij represents the effect of the interaction 

between the i-th and j-th neurons. We should remark that the system (3.1) is invariant 

under uniform phase translation, ¢i --+ ¢i + ¢0 , where ¢0 is an arbitrary real constant. It 

can be also shown that rii(¢) is a 21r-periodic function of¢. To be specific, we assume 

that all frequencies are equal to n and that rij ( ¢) is approximated by the lowest mode 

of the Fourier components. Eliminating n by applying the transformation ¢i --+ ¢i + Ot, 

the model equations (3.1) become 

d</Ji N . 
dt = ~ Kii s1n(¢i- ¢i + f3ij), 

J=l 
(3.2) 

where Jij and f3ii are parameters representing the effect of the interaction. 

Using the complex representation Si = exp(i¢i), we obtain the alternative form [41] 

dt = 2N(hi- hiSi) 

{ 

dSi 1 - 2 

(3.3) 
hi - 2: Jijsj 

j=l 

where Jij = Kij exp(if3ij) and hi denotes the complex conjugate of hi. We now consider 

the case that the system is in a stable stationary state. Putting dSi/ dt = 0, it is found 

that such states satisfy the conditions 

(3.4) 

Let us denote a set of patterns to be memorized as complex variables ~f = exp(iBf) 

(J..L = 1, · · ·, P), where P is the total number of patterns. For simplicity, we assume that 

the parameters Of are chosen at random from a uniform distribution between 0 and 21r. 

As usual, the load parameter a is defined by a= P/N. The overlap MJ.L(t) between the 

state of the system and the pattern J.L at time t is given by 
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(3.5) 

In practice, the correlation of the system with the J..L-th pattern at time t is measured by the 

amplitude component mJ.L(t) = IMJ.L(t)J. To realize the function of the auto-associative 

memory, we must define the synaptic efficacies appropriately. As a natural choice, we 

assume that the synaptic efficacies are given by the generalized Hebbian rule 

(3.6) 

Note that rotational symmetry is not broken by the above rule. Owing to this symmetry, 

all patterns generated by the uniform phase translation ~f exp( i¢0 ) represent the same 

pattern as ~f. This nature stems from the fact that information is encoded not by the 

absolute time but by the relative timing of spikes. Using the above learning rule, it is 

expected that an initial noisy phase pattern can be corrected dynamically, as illustrated 

in Figure 3.1. 

To discuss robustness against damage of synaptic connections, we define 

(3.7) 

as the formulation for randomly diluted synapses. Here, the Cij are independent random 

variables, which assume the values 1 and 0 with probabilities c and 1-c, respectively. Note 

that the dilution parameter c represents the ratio of connections. In the limit N --+ oo, 

the expression in Eq. (3. 7) becomes equivalent to that of synaptic connections with static 

noise[27], 

(3.8) 

The synaptic noise 'TJij is a complex Gaussian noise with mean 0 and variance 'T}
2 

/ N. It 

is easy to determine the relation between the dilution ratio c and the variance parameter 
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1-c 
r?= --a. 

c (3.9) 

For the sake of simplicity in later theoretical analysis, we adopt the expression of Eq.(3.8). 

In this model, the outputs of all neurons are continuously and simultaneously changing 

according to the equations (3.3). On the other hand, the various dynamical theories in 

the case of traditional neural networks have been greatly advanced in the last decade. 

However, when we apply such theories to oscillator neural networks and attempt an 

analytical treatment of the dynamics, we encounter difficulties owing to the updating 

rule. Therefore, to make the dynamics (3.3) more mathematically tractable, we discretize 

time and assume the synchronous updating rule. Furthermore, considering the fact that 

all neurons relax toward the state in which the relation (3.4) is satisfied, it is natural to 

adopt the following dynamics: 

hi(t) 

I hi( t) I 
N 

L JijSj(t) 
(3.10) 

j=l 

Here, the quantity X(t) represents the value of the X at time t. Throughout this paper, 

we treat the above model analytically. Since these dynamics are not equivalent to those of 

(3.2), the behavior they describe in general different. In fact, it is found that, for certain 

realizations of (3.2), the structure of phase space suffers a qualitative change under the 

simplification to (3.10). Fortunately, however, we have found that the solutions of (3.10) 

corresponding to such cases do not appear in the simulation of this equation under the 

conditions we presently consider. This point will be discussed again in the last section. 

We should also remark that if we use asynchronous updating the equilibrium states of 

(3.10) are equivalent to those of the original phase model. This can be easily shown by 

considering the noiseless limit in a statistical mechanics treatment. In this sense, (3.10) 

can be thought of as a synchronous update version of the oscillator neural network with 
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discrete time. In traditional neural networks, the analytical approach for synchronous 

updating has contributed to the understanding of retrieval dynamics in the more general 

cases. Therefore, we believe that this model serves as a convenient starting point for the 

theoretical study of retrieval dynamics in general oscillatory systems. In fact, we will find 

that the basins of attraction in the two models are qualitatively very similar. 

In the next section, the equilibrium states for the oscillator neural network model (3.2), 

(3.8) are investigated. The storage capacity and the critical overlap is the properties of the 

equilibrium states. In the following section, we theoretically analyze the retrieval process 

of the present model. To analyze such a process, because of the reason mentioned above, 

we treat the model (3.10), (3.8) in practice and mainly discuss the time development of 

the overlap (3.5) along with certain other macroscopic parameters. 

3.3 Theoretical analysis for equilibrium states 

3.3.1 Replica theory 

If the synaptic noise introduced in Eq. (3.8) is Hermitian, that is, 'TJij = ijji, then the 

synaptic matrix Jij is also found to be Hermitian. In this case, the Hamiltonian, the 

energy function, can be defined for the present network model. Introducing an additional 

noise term to the present model in order to apply statistical mechanics for the analysis of 

the equilibrium states, 

f d1t; = 

l H = 

(3.11) 

where the last term ri(t) is Gaussian white noise characterized by (ri(t)) = 0 and 

(ri(t)ri(t')) = 2T6ii6(t- t'). The temperature T (= /3- 1
) gives a measure of the level 

of the stochastic noise in the dynamics. The introduction of this noise enables us to 

perform the standard mean-field analysis in terms of statistical mechanics. Therefore, 

the asymptotic behavior of the network at finite T is governed by the free-energy, and 
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the equilibrium probability density is given by the Gibbs distribution, e-H/T. Using the 

synaptic matrix (3.8), the Hamiltonian H takes the form 

H = - 2~ ~ [(~cos(¢; -onr +(~sin(¢; -onrJ 
+ P - 2:: TJte cos(t/>j- t/>i) + 2:: TJ[jm sin(t/>j- t/>i), 

2 i<j i<j 

(3.12) 

where TJ{t and TJ{jm are the real and the imaginary part of TJii, respectively. 

Let us consider the situation in which the network retrieved the pattern ~1 , namely, 

m1 = m"' 0(1), (3.13) 

The·overlap mJ.L is defined as Eq. (3.5). Then, let us defin'"e the parameter a by a= P/N. 

To proceed, we must first perform the quenched averaging of the free energy over the 

randomness. Using the replica method, the averaged free energy per neuron is computed 

from 

f 
. 1 = hm --((lnZ)) 

N-too N J) 

= lim lim-N~ ln((zn)), 
N-toon-tO fJn 

(3.14) 

where (( · · · )) indicates a quenched average over the patterns ~f as well as over the synaptic 

noise "lij· The partition function Z is defined by Z = Tqcpi}e-t1H({<Pi}) . 

In the replica symmetry approximation, we find that the averaged free energy per 

neuron is given by 

!= ~m2 + :: + _J)a_r (1 - q) 
2 2 8 

Q { 1 JJTJ2 t!.q } +- ln(l- -JJ(l- q))- -(1- q) 2 - --==2 __ 
J) 2 8 1 - ~(1 - q) 

_ ~ ((/ J dz~:z2 exp(- z?; z~) In l" d¢exp fJ [A cos¢+ B sin¢])) 
9

, 

(3.15) 

with 
A= Jar+ 2ry2

q () 
2 

z1 + mcos 

B = Jar + 2'T]2q . () 
2 

z2 + ms1n . 
(3.16) 
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The double angular brackets((-· ·))8 denote an average over() with the same distribution as 

Bf. The network is then characterized by order parameters m, r and q. The parameter m 

represents the overlap with the retrieved pattern ~l· The parameters q and r correspond 

to the Edwards-Anderson order parameter and the mean-square random overlap for the 

unretrieved patterns, respectively. The saddle-point equations for these order parameters 

are 

m= 

JJ(l - q) = 

r= 

(3.17) 

where Ik(z) is the k-th order modified Bessel function, defined by 

1 lo27r lk(z) = - dlj>ezcos¢ COS k¢ 
21f 0 

(3.18) 

We are now ready to discuss the storage capacity ac in the case of the random diluted 

synapses. In the limit of zero noise, jJ-1 --7 0, q tends to 1, and Eqs.(3.17) reduce to the 

equations 

(3.19) 

(3.20) 

Note that the relationship between the dilution parameter c and the mean square deviation 

of the synaptic noise 17 is given by Eq.(3.9). These equations always have a trivial solution 

m = 0, which corresponds to a spin glass state (q =/= 0). For a < ac, there also exists 
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a solution, for which m =/= 0 corresponding to a retrieval state. This retrieval solution 

disappears discontinuously at ac, where the overlap m jumps from the finite value me to 

zero, except for the case c = 0. 

3.3.2 The results 

In Figure 3.2, the storage capacity obtained from numerical solutions of Eqs. (3.19) 1s 

plotted as a function of the ratio of the disconnected synapses. 

In the case of the fully connected network, that is, c = 1(77 = 0), we obtained that 

ac = 0.038 and me= 0.90. This result is essentially identical to those of the Q-state clock 

model in the limit Q --+ oo estimated by Cook. 

In general, it is expected that ae falls monotonically from 0.038 to zero as 77 increases. 

In fact, analytical results show that the retrieval solution exists only in the case that 

77 < 77e, 77c = Vii /2 ~ 0.886, and ac is a monotonically decreasing function of 77· 

On the other hand, in case of the Hopfield model, Sompolinsky has estimated that 

17c = ~ ~ 0.797. Using Eq.(3.9), we finally obtained a theoretical curve, as shown 

in Figure 3.2. We also carried out numerical simulations in which each value of ae was 

averaged over 20 trials with N = 1500. As is clear from Figure 3.2, the simulation results 

are in reasonable agreement with analytical results. 

Figure 3.3 shows the overlap of the retrieval state at ae, where the solid and the dashed 

curves correspond to the oscillator model and the Hopfield model, respectively. In either 

case, the critical overlap is affected little by the synaptic dilution as long as 1-cis smaller 

than 0.8. Particularly in the oscillator neural network, the critical overlap me remains 

almost constant in the range 0 to 0.8. 

As mentioned above, 77c is slightly larger in the present model than in the Hopfield 

model. This implies that our system is more robust against synaptic dilution than is 

the Hopfield model. Let us attempt to clarify this point quantitatively. Although ac in 
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the oscillator network is generally smaller than in the Hopfield model[10], the oscillator 

network is able to retrieve phase patterns represented by continuous variables, not simple 

binary ones. Thus taking account of the information content in the retrieved patterns, it 

makes no sense to compare the storage capacities ac of the two models. However, it is 

meaningful to estimate and compare how the random dilution of synapses in each model 

reduces its performance from the level without dilution (c = 1). For this purpose, we 

define the normalized maximum storage capacity as a~(c) = ac(c)/ac(1), where ac(1) is 

the maximum storage capacity at c = 1. Thus, a~ = 0.038 in the oscillator model, and 

a~ = 0.138 in the Hopfield model. The dependence of the normalized storage capacities 

a~(c) on 1 - c is shown in Figure 3.4. It is obvious from this figure that the normalized 

capacity a~ (c) of the oscillator network is always larger than that of the Hopfield network. 

Nevertheless, for c < 0.8, the qualities of the retrieval patterns obtained in either model 

are largely independent of c, as seen in Figure 3.3. Therefore, we can conclude that the 

oscillator network is totally more robust against dilution than the Hopfield model. 

3.4 Theoretical analysis for retrieval process 

3.4.1 Statistical neurodynamics theory 

Let us consider the situation in which the network is recalling the pattern ~l, namely, 

(3.21) 

The internal potential hi(t) in Eq.(3.10) can be separated as 

(3.22) 

where ~i = ~l and M(t) = M 1(t). From this point, for simplicity, we drop the index J.L in 

the case of pattern 1. In this process, the first term on the r.h.s. of Eq. (3.22) is regarded 

as the signal to induce recollection of the target pattern ~I, while the remaining terms are 
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regarded as noise. For convenience, we define the noise terms zi(t) as 

Zi(t) zf ( t) + zt ( t) 

(3.23) 
1 N P _ N 

N L: 2:: ~re; sj(t) + 2:: 'TJijsj(t). 
j:;i:i~=2 j:;i=i 

In zi(t), zi(t) is the crosstalk noise from unretrieved patterns (J-L-=/= 1), and zf(t) is caused 

by noise in the synapses. The essence of the theory is to treat the crosstalk noise zf(t) 

as complex Gaussian noise with mean 0 and variance ac(t) 2
. It has been confirmed 

numerically that this assumption is valid as long as the network succeeds in retrieval [26]. 

In addition, the synaptic noise zf(t) is also assumed to be complex Gaussian with mean 

0 and variance a5 (t) 2 [27]. Therefore, zi(t) displays a complex Gaussian distribution with 

mean 0 and variance 2a(t) 2 = ac(t) 2 + a5 (t) 2
. Here, we also assume zf(t) and zf(t) to 

be independent. We note that zi(t) can be expressed with two independent Gaussian 

variables xi(t) and Yi(t) satisfying 

Xi(t), Yi(t) rv N(O, a(t?), (3.24) 

Now we derive a dynamical equation for the overlap with the recalled pattern. The 

definition of overlap (3.5) leads to the equation, 

m(t + 1)eicp(t+l) = I_ "f, ~· ~im(t)eicp(t) + zi(t) 
N i 1 l~im(t)eicp(t) + zi(t)l. 

(3.25) 

The variable Zj(t) represents Gaussian noise. Then, because of the symmetry of its dis-

tribution, we assume Zj(t) produces no effect to change <p(t). This assumption has been 

confirmed numerically. Using this assumption, i.e. setting cp(t) = cp0 , we obtain 

m(t + 1) = 
1 N m(t) + z1(t)ei(cpo+0i) 
N .t; lm(t) + zi(t)ei(<Po+9;)1 

1 N m(t) + Zj(t) 
N .t; lm(t) + zi(t)!" 

(3.26) 

Here, we use the fact that the distribution of Zj ( t)ei(cpo+Oi) can be obtained by simply 

rotating that of zi(t). 
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Next, we examine the time development of the variance (lzi(t)j 2
) = 2a(t) 2

. First , we 

consider the synaptic noise zf ( t + 1) = L::f,ei 'TJii Si ( t + 1). When we take the statistics of 

zf ( t + 1), we must take into account correlations between 'TJii and 'TJii in Si ( t + 1) . Here, 

expanding Si(t + 1) = hi(t)/!hi(t)! in terms of 'TJii yields 

s( ) _ ~ h~(t) S ( ) ~ 'TJij'TJji 
zi t + 1 - {# 'TJij !h~(t)l + it {# 2jh~(t)l' (3.27) 

where h~ (t) is assumed to be independent of 'T}ji· If the dilution is asymmetric, 'T}ji -=/= i1ii 

(or Cij -=/= Cji), the second term vanishes. Even if it were symmetric, the assumption that 

the mean of the noise is 0 would lead us to neglect the second term proportional to Si ( t), 

since it is related to the mean of zf(t + 1). As a result, we obtain 

(3.28) 

Second, consider the crosstalk noise zf(t + 1). We express zi(t + 1) as 

c( ) _ 1 ~ ~ Jl. -Jl. hj(t) 
zi t + 1 - N ~ ~ ~i ~i I h. (t) ,. 

Ji=tJ1.=2 J 

(3.29) 

When summing over J-L, as in the case of (3.27), we must consider the dependence of hi(t) 

on ~j. In the local field hi ( t), the term 

N
1 "f, ~jt~sk(t) ~ ~f M~'(t), 

k:;i=j 

(3.30) 

which is caused by the non-target pattern J-L, is estimated to be 0(1/vfN). Using this 

estimation, we expand the complex function hi(t)/lhi(t)j, obtaining 

1 N p - hJl:(t) 1 N 1 1 N p -

zf(t + 1) = N ~ L ~f~jlh~(t)l + N ~ 2jhJ1:(t)l. N ~ L ~f~tsk(t) 
Ji:'l. ~=2 J Ji=l J k:;i=t ~=2 

+0 ( ~) ' (3.31) 

where hj(t) = f,iM(t) + ~ L::f,ej L~fl,Jl. ~j~kSk(t) + zs(t) is assumed to be independent of 

~j. Accordingly, we find 

1 N P -
zf(t + 1) = N L L ~f~j Si(t + 1) + U(t)zf(t), 

j:;i:i~=2 

(3.32) 
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and 

U(t) = 2_ t 1 . 
N j=1 2l~jM(t) + Zj(t)l (3.33) 

where we have used the fact h'j(t) ---+ hi(t) in the limit N ---+ oo in Eq.(3.32). Squaring 

Eq.(3.32) and averaging in order to obtain ac(t + 1), we obtain 

(3.34) 

where a= pjN. 

We can calculate the last term in Eq.(3.34) by means of substituting Eq.(3.32) into 

Eq.(3.34) iteratively. Then, we need the following quantities: 

X(t+l,t+l-r) = Re[~~Si(t+l)Si(t+l-r)] (3.35) 

Re [_!__ L ~iM(t) + zi(t) . ~q(t- T) + zi(t- 7 ) ] 

N j l~jM(t) + Zj(t)l l~jM(t- T) + Zj(t- T)l . 

To carry out the average in the above equation, we must generally take account of the cor-

relation 2C(t, t-T) = (z(t)z(t- T)). The estimation so obtained up to the n-th preceding 

time step is called the n-th order approximation [21]. In the n-th order approximation, 

we assume that the noise at each time, z(t- 1), · · ·, z(t- n + 1), is correlated to z(t), 

while z(t- n) is independent of z(t). Using Eq.(3.32) as eq.(3.34) was used above, we can 

obtain equations for C(t, t- T). 

Finally, the macro-dynamical equations for the n-th order approximation are given as 

follow: 

m(t + 1) 

U(t) 

2a(t + 1)2 

I m(t) + z(t) ) 
\lm(t)+z(t)j z(t) 

\ 2lm(t) 

1

+ z(t)l) z(t) 

a+ U(t) 2ac(t) 2 

n T 

+ 2a L X ( t + 1, t + 1 - T) II U ( t + 1 - k) 
T=1 k=1 

ac(t + 1)2 + '1]
2 
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(3.36) 

(3.37) 

(3.38) 

(3.39) 

where 

X ( t + 1, t + 1 _ 
7

) = Re I m ( t) + z ( t) . m ( t - T) + z ( t - T) ) , 
\ jm(t) + z(t)l jm(t- T) + z(t- T)j z(t),z(t - T) 

(3.40) 

and 

aX(t, t- T) + 2U(t- 1)U(t- T- 1)C(t- 1, t- T- 1) 
n-1 k 

+a L X(t, t- k) II U(t- ~) 
k=T+1 ~=T+1 
n-1 k 2C(t, t-T) = 

+a L X(t- k, t- T) II U(t- ~) + '1]2 X(t, t- T) (1 ::; T::; n- 2) 
k=l ~=1 

aX(t, t- T) + 2U(t- 1)C(t- 1, t- T) + TJ2X(t, t- T) (T = n- 1) 
0 (T = n) 

(3.41) 

We have assumed here that the site average -k Lj · · · does not depend on the memorized 

pattern and, for a given m(t), a(t), does not depend on the initial pattern. In this case, this 

average is identical to (- · ·) z(t)' where z(t) represents an arbitrary zi(t). Here, we should 

note that U(t) is given by m(t), a(t) and X(t+ 1, t+ 1-T) by m(t), m(t-T), a(t), a(t- T). 

When calculating these coupled equations (3.36), (3.37), (3.38), (3.39), (3.40) and (3.41), 

it is necessary to give initial conditions m(O), a(0) 2 = a/c and X(t, 0). We use X(t, 0) = 

m(t)m(O) as an approximation. 

3.4.2 The results 

First, we compare the time evolution of the overlap predicted by our theory with numerical 

simulations for some choices of the initial overlap in Fig. 3.5. Figure 3.5 indicates that the 

predictions from the higher order approximation agree better with numerical results. We 

generally find two phases of the system behavior, depending on the storage level a and 

the initial overlap m(O). One is a retrieval phase, in which m(t)---+ m(oo) f'.J 1 for large t. 

The other is a non-retrieval phase, in which m(t) ---+ 0. When for a given a the retrieval 

phase exists, the network goes to the statem( oo) f'.J 1 provided that the initial overlap is 

larger than a certain critical value. The width of the basin to retrieve the pattern can be 

measured by this critical value. 
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Fig.3.6 indicates results of theoretical analysis and numerical simulation in the case of 

77 = 0 (or c = 1.0). The upper part and the lower part of the theoretical curves represent 

the equilibrium overlap m 00 (a) and the basin of attraction mo (a), respectively. Both of 

these are obtained as functions of a. The vertical parts of the curves represent the storage 

capacity ac. Of the four curves, the fourth order approximation is in best agreement with 

the numerical simulations. From this result, it is found that we must take account of 

higher order temporal correlations of noise z(t) to predict the behavior of the present 

model. 

For various values of the dilution parameter c, numerical simulation and theoretical 

analysis were carried out. These results are given in Fig.3.7. Here, the simulations were 

done in the case of symmetric dilution ( Cij = Cji) and asymmetric dilution ( cii i= Cji). 

We confirm that there is no discrepancy between in the two cases as long as we consider 

statistical properties. Moreover, it is observed that theoretical results are consistent with 

the simulations in this case as well. 

In Fig.3.8, we display the dependence on the ratio of connected synapses c. If c ~ 0.3, 

although the vertical lines move to left, the upper and lower curves are affected only 

slightly. The two curves do not approach each other until c reaches to 0.1. In a previous 

section, we found that, for the case of symmetric dilution, equilibrium overlap remains 

comparatively large even if c is quite small. In the present study, this has been confirmed 

in the case of asymmetric dilution as well. Furthermore, we have found that the basin 

remains sufficiently wide even for small values of c. 

We compare the width of basin of the present model with that of the traditional model 

in Fig.3.9. Since the network retrieves the target pattern when m(O) > mo(a), we adopt 

1- m 0 (a) as the width of the basin. This figure contains a plot of 1- mo(0.8a~th) for each 

model. Here, a~th is the storage capacity obtained with the fourth order approximation. 

Making such a comparison, we see that the oscillator model has wider basin and is more 
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robust against synaptic dilution. 

3.5 Relation between replica theory and statistical 
neurodynamics theory 

In this section, we show, assuming that the system is in the equilibrium state, the result 

obtained by the replica method can be derived from the statistical neurodynamics theory. 

According to replica theory, using the replica symmetric ansatz, the equilibrium state in 

the oscillator neural network is characterized by two order parameters, m and r, corre­

sponding to the overlap with the retrieval pattern and the mean-square random overlap 

for the unretrieved patterns, respectively. Using an another expression of Eqs. (3.20), we 

can write these order parameters in the equilibrium state satisfy the equations, 

/_
oo /_oo X + J a

2
r:2772 

DxDy-r============= 
-co -oo . j (X + 2m ) 2 + y2 

y .Jar+2772 

2 { 1 - Jar~ 2f/2Grp (Jar: 2f/2)} -

2 

m= 

(3.42) 

r= 

where DxDy denotes 2~exp(-x
2

~Y
2

)dxdy and Grp(a) is defined by 

/_
oo /_oo x 2 + y2 + 2ax Grp(a) = DxDy . 

-oo -oo .j(x + 2a)2 + y2 
(3.43) 

Introducing the variable arp = [¥-, the above equations can be rewritten as 

x+ 2m 

/_
oo /_oo D D J2a';p+2772 

-oo -oo X y (x + 2m )2 + y2 
J2a';p+2772 

a { 
1

- J2a';P
1 
+ 2f/2 Grp ( J2a';~+ 27/2)} -

2 
(3.44) 

m= 

We easily find that the equation here for m is equivalent to equation (3.36), provided that 

arp coincides with the variance of the crosstalk noise zc in equation (3.38), a c. Therefore, 

we need to prove that the variance of the crosstalk noise zc in the equilibrium state 
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satisfies the condition represented by equation(3.44). The equilibrium state implies that 

zf(t + 1) = zf(t) = zf in Eq. (3.32) . Then, zf is given by 

1 1 p N - h~ 

zf = 1- u N L ~~r~;,h~,. 
v¥:1 J=l J 

(3.45) 

Squaring and Averaging, we obtain 

(3.46) 

From the definition of U in equation (3.33), we find 

U= /_oo /_oo DxDy---,===1=== 
-oo -oo 2j(o-x + m)2 + (o-y)2 

_1 /_oo /_oo DxDy 1 
2o- -oo -oo j(x + ~ )2 + y2 

(3.47) 

Therefore, substituting the relation o-2 = u;;772
, the equation (3.46) becomes 

{ ( ) }

-2 

2 1 m 
a-c = a 1 - G sn ' J 2o-~ + 2rP J 2o-~ + 2rP 

(3.48) 

with 

/_00 /_00 1 
Gsn(a) = DxDy . 

-oo -oo j(x + 2a)2 + y2 
(3.49) 
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Now we can prove that Gsn(a) = Grp(a), because 

/_oo /_oo x2 + y2 + 2ax 
DxDy-r====== -oo -oo j(x + 2a)2 + y2 

- /_oo /_oo DxDy 1 
-oo -oo j(x + 2a)2 + y2 

fo2n d<p fooo dRR(R- 2a cos cp) exp (- R2- 4aR~os 'P + 4a2) 

lo
2

7r looo ( R2 
- 4aR cos <.p + 4a

2
) - dc.p dR exp ---------

o 0 2 

ln d<p { [ _ Rexp ( _ R
2

- 4aR~os <p + 4a
2
)] =~ 

+ fooo dRexp ( _ R
2

- 4aR~os <p + 4a
2
)} 

- dc.p dR exp ---------lo
2

7r looo ( R
2 

- 4aR cos <.p + 4a
2

) 

o 0 2 

ln dcp [ -Rexp ( _ R
2

- 4aR~oscp + 4a
2

) J::~ 
0. 

(3.50) 

Hence, as for the equilibrium state, the result of the present theory coincides with that 

of the replica theory. 

We should remark that this derivation is essentially equivalent to SCSNA, which has 

been proposed by Shiino and Fukai [46], Okuda [39] first applied this method to the 

analysis of the equilibrium state in oscillator neural networks. It is worth noting that 

equation (3.48) can be derived directly from equation (3.38) in the limit n -+ oo. Using 

the fact that, owing to zi(t + 1) = zi(t) = zi, X(t, t') = 1 in the equilibrium state, it can 

be shown that equation (3.38) reduces to the same form as equation (3.48). 

3.6 Conclusion 

From the theoretical analyses through the replica theory and the statistical neurodynamics 

theory, A good understanding of the properties of the oscillator neural network. We found 

the numerical simulations support our theoretical results. The main results obtained in 
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this study are as follows. 

• Using the replica symmetric solution, we have estimated the influence of random 

synaptic dilution on the storage capacity and the critical overlap. Although the 

storage capacity of the oscillator neural network is less than that of the Hopfield 

model, the difference between the performance of the fully connected network and 

that for a diluted network is smaller in the case of the oscillator model than in the 

case of the Hopfield model. 

• The statistical neurodynamics theory enable us to describe the retrieval process of 

the oscillator neural networks. Then, we must take into account the higher order 

temporal correlations of noise. The present study shows that it is necessary to 

consider at least the fourth order approximation. 

• For all values of c, theoretical results are in good agreement with numerical simula­

tion. These theoretical curves indicate equilibrium overlaps and basins change little 

even if c decreases to about 0.3. FUrthermore, the basins remain sufficiently wide 

near saturation. 

• The widths of basins in the oscillator model are wider than that in the binary model. 

Moreover, the oscillator model is found to be more robust against decrease of c. 

In conclusion, we have found that the oscillator neural network exhibits good perfor­

mance while processing detailed information such as the timing of neuronal firings. Our 

results support the plausibility of temporal coding. 

Because our analysis has been simplified by discretizing time and assuming syn­

chronous updating, in general, this simplification may results in behavior which differs 

from that of the original model possessing continuous time. In fact, it is found that, in 

some cases, the dynamics of (3.10) with synchronous updating possess period 2 solutions 
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which do not correspond to any solution of the original phase model (3.2) . In this case, 

an attractor existing in the original model becomes an invariant torus constituted by such 

periodic solutions in our model, (3.10). 

For example, this phenomenon is observed in certain situations in which the coupled 

phase oscillators have an in-phase synchronization attractor. However, under the condi­

tions that the memorized phase patterns are uniformly random and the system size is 

large, we find that such irrelevant solutions are not observed in numerical simulations. 

Although we believe that the irrelevant solutions are not realized due to their high sym­

metry, at the present time we cannot confirm this belief theoretically. We think that this 

is an important problem to be considered further. 

The question now arises whether the theoretical results given in this paper apply in the 

case of the original model or not. To clarify this point in the case of the auto-associative 

model, we compared the basins of attraction in the two models numerically, as shown 

in Figure 3.10. Although a slight difference between these models can be found, we can 

safely say that the basins of attraction are qualitatively very similar. 

Finally, let us make a comment leading to future problems. When we carried out 

numerical simulation of the oscillator neural networks, it was observed that a network is 

rarely trapped in spurious states. This may be one of factor responsible for the ability of 

the oscillator network to recall from considerably noisy patterns. Though this point has 

not yet been investigated in the general case, the case of a = 0 (that in which the number 

of patterns P remains finite in the limit N -t oo) has been investigated, and it has been 

reported that the symmetric mixture states are all unstable [39]. Investigation of the case 

for finite a should provide a deeper understanding of characteristics of oscillator neural 

networks. 

63 



. neuron z I I I I 
I 

'I 
I 
I 

'I 
I 

e ' I 

I I I. 
Time 

J ~·:~~~~------~--~~ 

k 
initial state final state 

Figure 3.1: Retrieval process of a phase pattern in the oscillator neural network. In an 
initial noisy pattern, the relative timing of the spikes is disturbed from the memorized 
positions (dashed lines). These relative phases are corrected dynamically in the final state. 
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respectively. 
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Figure 3.5: Typical time evolution of overlaps for a = 0.03, and the initial overlaps 
m = 0.05, 0.1, 0.3, 0.5 and 0.7. (a) Numerical simulation with N = 1000 (b)Theoretical 
curves at first order approximation, (c) second order, and (d) third order. 
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Figure 3.6: The equilibrium overlap and basin of attraction. The four curves represent 
the theoretical results for various order approximations. The ordinate is the overlap 
m and the abscissa is the storage ratio a. The data points indicate simulation results 
with N = 1000 for 20 trials. The upper part, the lower part, and the vertical part of 
the theoretical curves represent the equilibrium overlap, the basin of attraction, and the 
storage capacity, respectively. 
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Figure 3.7: Comparison between the effects of symmetric and asymmetric dilution. The 
solid curves represent the theoretical results at fourth order. The ratios of connected 
synapses are (a)c = 0.1, (b)c = 0.3, (c)c = 0.5 and (d)c = 0.7. For reference, the result 
for the case c = 1.0 (i.e. the fully connected case) is indicated by the dashed curves. 
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simulations in the original phase model, where the dynamics are govern by a set of ordinary 
differential equations. For reference, the theoretical curve (the solid line) obtained using 
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73 



Chapter 4 

Conclusion 

In the preceding chapters, we discussed the associative memory neural networks concern­

ing biological information encoding. Here, we summarize our results. 

• The properties of the neural networks for sparsely coded sequential patterns were 

studied. In order to analyze the retrieval processes of the model, we applied the 

method of statistical neurodynamics and obtained the coupled equations describing 

the dynamics of the order parameters such as the overlap and the activity. It is 

found that our theory provides good predictions for the storage capacity and the 

basin of attraction obtained through numerical simulations. The results indicates 

that the nature of the basin of attraction depends on the methods of activity control 

employed. In the case that the synapses are randomly diluted, the associative abil­

ities deteriorate proportionately to the decrease of the ratio of connected synapses. 

Furthermore, it is found that robustness against random synaptic dilution slightly 

deteriorates with the degree of sparseness. Finally, it is confirmed that the storage 

capacity of our model also diverge as the same asymptotic form as the model for 

the sparsely coded static patterns. 

• The properties of the oscillator neural networks were studied. At first, the equi­

librium properties such as the storage capacity was investigated using the replica 
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theory. From the resultant saddle point equations for the equilibrium order pa­

rameters, it was showed that the oscillator model is more robust against random 

synaptic dilution than is the Hopfield model. Next, we applied the method of sta-

tis tical neurodynamics to the oscillator model. Using the derived equations, we 

present the phase diagram showing both the basin of attraction and the equilibrium 

overlap in the retrieval state. From the results, we found that it is essential to take 

into account of the higher order temporal correlations of noise in order to predict 

the behr vi or of the retrieval processes of the oscillator model. In addition, it is 

turned out that both the attractor and the basin are preserved even though random 

synaptic dilution is promoted and that the oscillator model is more robust than 

the Hopfield model in respect with the basin of attraction. Taking into account 

of the fact that oscillator networks contain more detailed information than binary 

networks, the obtained results constitute significant support for the plausibility of 

temporal coding. 

In conclusion, it is turned out that the models with biological information encoding exhibit 

different properties and performance from the Hopfield model. 

Although the present study is restricted to the framework of the associative memory, 

it is important to consider such information encodings in various architectures of neu-

ral networks. On the other hand, it is true that the mathematically tractable models 

including our models are still long way from biological neural systems. However, the un­

derstandings of the basic models are expected to be useful on studying more realistic and 

more complicated models. At such opportunities, we hope that the present study serves 

as the valuable knowledge. 
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