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Preface 

There are numerous combinatorial optimization problems, for which computing exact optimal 

solutions is computationally intractable, e.g., those problems known as NP-hard. However, in 

practice, we are often asked to deal with large scale instances of such difficult problems. One 

possibility to overcome this difficulty is that, in most practical cases, we do not need exact 

optimal solutions and are satisfied with sufficiently good solutions. In this sense, approximate 

(or heuristic) algorithms, which provide reasonably good solutions in practically meaningful 

time, are very important and have been well studied recently. 

There are several useful tools used to design approximate algorithms, such as greedy 

method and local search. The so-called metaheuristics combine these tools into more so

phisticated algorithms. Among the well-known metaheuristics are multi-start local search, 

simulated annealing, tabu search, genetic algorithm and so on. Many variants of these, such 

as GRASP, threshold accepting, iterated local search and others, have also been proposed and 

extensively studied. 

One of the attractive features of these metaheuristics is in its flexibility. They can be 

hybridized with other heuristic or exact algorithms to create more powerful tools. As an 

example of such hybrid algorithms, we propose to use dynamic programming (DP) to improve 

candidate solutions within the framework of genetic algorithm, which is called the genetic 

DP algorithm. Good prospects of the proposed algorithm are observed by the computational 

experiments to three representative NP-hard problems: single machine scheduling problem, 

optimal linear arrangement problem and traveling salesman problem. 

During the experience of developing the genetic DP, we realized that crossover is one of 

the most important operators in genetic algorithms, on which the overall performance of the 

algorithms critically depends. To pursue this direction, we review a variety of crossover oper

ators proposed for sequencing problems, and analyze the relationship between characteristics 

of the operator and performance of the algorithm. Based on this analysis, we propose simple 

criteria for measuring the quality of crossover operators. Some computational analysis on 

single machine scheduling problem is then added to validate the effectiveness of the proposed 

criteria. 

Another attractive feature of metaheuristics IS m its robustness and simplicity. They 



can be developed even if deep mathematical properties of the problem domain are not at 

hand, and still can provide reasonably good solutions, much better than those obtainable 

by simple heuristics. To investigate this direction, we compare representative metaheuristic 

algorithrns using rather simple inner operators to observe general tendency of their perfor

mance. From these results, we propose a recommendation about the use of metaheuristics as 

simple optimization tools. 

We then consider a problem arising from the implementation issue of a crossover operator. 

Three types of fast algorithms are proposed, and analyses of these algorithms and of the 

problem structure are given. 

The main aim of this thesis is to establish a guideline to construct good metaheuristic 

algorithrns. The author hopes that the research in this dissertation will help advance the 

understanding of this significant field. 
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Chapter 1 

Introduction 

1.1 Historical Background 

The optimization problems we consider in this thesis are generally defined as follows: 

m1mm1ze cost((]') 

subject to (]' E F. 
(1.1.1) 

F is the set of solutions (]' that satisfy all the constraints. F is called the feasible region and 

each (]' E F is called a feasible solution. A feasible solution (]'* E F is optimal if cost((]'*) ~ 

cost((]') holds for all(]' E F, and cost((]'*) is called the optimal value. When F is combinatorial 

in some sense, we call problem (1.1.1) a combinatorial optimization problem. 

Combinatorial optimization problems frequently appear in the real-world such as machine 

scheduling, vehicle routing, and their importance has widely been recognized in recent years. 

Many of such combinatorial optimization problems are computationally intractable, e.g. , 

those problems known to be NP-hard [38]. However, in practice, we are often asked to 

deal with large scale instances of such difficult problems. One possibility to overcome this 

seemingly impossible difficulty is that, in most practical cases, we do not need exact optimal 

solutions and are satisfied with sufficiently good solutions. In this sense, approximate (or 

heuristic) algorithms, which provide reasonably good solutions in practically meaningful time, 

are very important and have been intensively studied recently. 

There are several useful tools used to design approximate algorithms. The most common 

one is perhaps the greedy method [75, 95], which directly constructs approximate solutions 

by successively determining the values of variables on the basis of some local information. 

Another important tool is the local search [3, 95], which starts from an initial feasible solution 

(]' and repeats replacing it with a better solution in its neighborhood N( (]') until no better 

solution is found in N((J'), where N((J') is a set of solutions obtainable from a by a slight 

perturbation. 

1 



2 CHAPTER 1 INTRODUCTION 

The so-called metaheuristics [3 , 92 , 103, 104] combine these tools into more sophisticated 

algorithms. Among the well-known metaheuristics are multi-start local search [68, 78], sim

ulated annealing [1, 16, 69], tabu search [41 , 44], genetic algorithm [22 , 47, 58] and so on. 

Multi-start local search applies the local search to a number of initial solutions and outputs 

the best solution found during the entire search. Simulated annealing and tabu search try to 

enhance the local Sf'arch by allowing the replacement of the current solution a with a worse so

lution in N(a) thereby avoiding to be trapped into bad local optimals. The genetic algorithm 

is a probabilistic algorithm that simulates the evolution process, by repeating the operations 

such as crossover, mutation and selection. An important feature of this algorithm is that 

it keep P (2: 1) candidate solutions and improve them in the process of evolution. Many 

variants, such as GRASP (greedy randomized adaptive search procedure) [31, 32], threshold 

accepting [28], iterated local search [63, 82], genetic local search [71, 89, 126] and so on, have 

also been proposed and extensively studied. These algorithms are summerized in Chapter 2. 

1.2 Research Objectives and Outline of the Thesis 

One of the attractive features of these metaheuristics is in its flexibility. They can be hy

bridized with other heuristic or exact algorithms to make them more powerful. As an example 

of such hybrid algorithms, we propose to use dynamic programming in the process of obtain

ing new generation solutions in the genetic algorithm, and call it a genetic DP algorithm. 

To evaluate the effectiveness of this approach, we choose three representative combinatorial 

optimization problems, the single machine scheduling problem (SMP), the optimal linear ar

rangernent problem (OLAP) and the traveling salesman problem (TSP), all of which ask to 

comput optirrmm permutations of n objects and are known to be NP-hard. Computational 

experiment of genetic DP algorithms are conducted to compare them with exact algorithms, 

the conventional genetic algorithms and multi-start local search algorithms. Algorithms of 

genetic DP could obtain optimal solutions to 4 7 out of 50 SMP instances with up to n = 35 

jobs, and 23 out of 24 OLAP instances with up to n = 20 components, in a very short time 

compared to the exact algorithrns. They also exhibit superiority to other meta-heuristics 

such as multi-start local earch algorithms and genetic local search algorithms. However, in 

the cas of TSP, the Lin-Kernighan heuri tic [78] exhibits much better performance than all 

oth rs including genetic DP algorithm. 

During the xperience of developing the g netic DP, we realized that crossover is one 

of the mo t important operator · in genetic algorithms, on which the overall performance of 

the algorithms criti ·ally depend ·. To pur. ue this direction, we review a number of eros over 

operators proposed ~ far for ·cqucncing problems. We then consider a general framework 

of rossov r operator and anal~ ze the relation hip between characteristics of the operator 

and performance of th algorithn1. Based on this analy i , we propose simple criteria for 

1.2 Research Objectives and Outline of the Thesis 3 

measuring the quality of crossover operators. Computational experirnents for the single 

machine scheduling problem (SMP) using a simple framework of GA i, conducted , and it 

is observed that the following two criteria are important for crossover operator : (1) inherit 

as many elements as possible from the parents, and (2) keep the diversity of children obtained 

from the parents. 

Another attractive feature of metaheuristics consists in its robustness and simplicity. 

They can be developed even if deep mathematical properties of the problem domain are not 

at hand, and still can provide reasonably good solutions, 1nuch better than those obtain

able by simple heuristics. We pursue this direction more carefully, by implementing various 

metaheuristics and comparing their performance. The objective is not to propose the most 

powerful algorithm but to compare general tendencies of variou algorithm . The emphasis 

is placed not to make each ingredient of such metaheuristics too sophisticated, and to avoid 

detailed tuning of the program parameters involved therein, so that practitioners can easily 

test the proposed framework to solve their problems of applications. As a concrete problem 

to test, we choose the single machine scheduling problem (SMP). The results indicate that: 

(1) MLS is usually good enough for practical purposes , considering its sirnplicity, (2) a variant 

of MLS, called GRASP, is effective; however, its performance is sensitive to greedy methods 

used to generate initial solutions, (3) a variant of MLS, called iterated local search, is quite ef

fective, ( 4) GA combined with local search is also competitive if longer computational time is 

allowed, and its performance is not sensitive to crossovers, (5) SA (and its variants called the 

threshold accepting and the great deluge algorithm) is another competitive method assuming 

that longer computational time is allowed, and its performance is not much dependent on 

inside parameter values, (6) there are cases in which TS is more effective than MLS; however, 

its performance depends on how to define the tabu list and parameter values, and (7) the 

definition of neighborhood is critical for all of the tested algorithms except GA. Th se results 

lead to a simple description of the guideline for designing metaheuristic algorithms. 

We then consider a problem arising from the implementation issue of a crossover opera

tor. One of the crossover operators proposed for sequencing problems includes the following 

problem: Given two permutations of n elements, enumerate all pairs of intervals consisting of 

the same set of elements. vVe call this problem as the common interval enumeration problem, 

and propose three types of fast algorithms: i) a simple O(n2
) time algorithm (LHP), whose 

expected running time becomes O(n) for two randomly generated permutations ofn clements, 

ii) a practically fast O(n2 ) time algorithm (MNG) using the reverse Monge property, and iii) 

an 0( n+ K) time algorithm (RC) , where K (:::; G)) is the number of common intervals. It will 

be also shown that the expected number of common intervals for two random permutations 

is 0(1). This result gives a reason for the phenomenon that the expected time complexity 

O(n) of the algorithm LHP is independent of K. Among th proposed algorithms, RC is 

most desirable from the theoretical point of view; however , it is quite complicated compared 



4 CHAPTER 1 INTROD UCTION 

to LHP and MNG. Therefore, it is possible that RC is slower than the other two algorithms 
in some cases. For this reason, computational experiments for various types of problems with 
up to n = 106 are conducted. The results indicate that i) LHP and MNG are much faster 
than RC for two randomly generated permutations, and ii) MNG is rather slower than LHP 
for random inputs; however, there are cases that LHP requires n(n2) time, but MNG runs 
in o(n2) time and is faster than both LHP and RC. We also consider the enumeration of all 
common subtrees, i.e., given two trees with labels on their leaves find the pairs of subtrees 
having the same set of leaf labels. This problem has an application in constructing evolu
tionary trees. By using the algorithm RC, we can derive a fast randomized algorithm wit h 
O(n log2 n) expected running time if we arc given two binary trees of depth log2 n, where n is 
the number of leaves. The expected running time becomes O(n) if the same two b inary t rees 
of depth log2 n are given as the input. The latter special case is a trivial instance; however , 
this ca e is intuitively considered to be tough for this algorithm, and hence, it is expected 
that the proposed algorithm runs in 0( n) expected time for most of the practical instances, 
although the worst case running time is O(n2). 

The thesis is organized as follows. In Chapter 2, we review various metaheuristic a lgo
rithms. In Chapter 3, the genetic DP, in which the genetic algori thms a nd t he dynamic 
programming are combined , is proposed and computational results are shown. In Chapter 
4, various crossover operators are compared and simple criteria for measuring the quality of 
crossover operators are proposed. In Chapter 5, various metaheuristic algorithms are com
pared and a guideline for the use of metaheuristic algorithms is discussed. In Chapter 6, three 
algorithms for the common interval enumeration problem are proposed. Finally, in Chapter 
7, we summarize our study in this thesis and list the contribution of our study. T he impor
tance of metaheuristic algorithms i evident, as t he sizes of the real-world p roblem instances 
arc always increasing. The author hopes that the work in this t hesis will be helpful to make 
metaheuristic algorithms more effective. 

Chapter 2 

Metaheuristic Algorithms: 
An Overview 

2.1 Metaheuristics 

In this chapter, we describe frameworks of various metaheuristic algorithms. For simplicity, 
we restrict our attention to the problems whose feasib le solutions are easily obtained. The 
basic frameworks of metaheuristics are the same for those problems whose feasible solutions 
are not easily obtained, but we need some slight modifications. For example, we often allow 
the search into the infeasible region and add a penalty term to the cost (1.1.1) to evaluate 
the degree of infeasibility. Some other approaches are possible, but we omit them here. 

Among basic strategies of approximate algorithms are 

• greedy method, 

• local search (LS) . 

The greedy method is a one-path algorithm that constructs a feasible solution step by step, 
on the basis of the effectiveness computed by a local evaluator. The idea of the greedy method 
may be best explained by examples. Some examples of the greedy methods for sequencing 
problems , SMP, OLAP and TSP, are explained in Sections 3.3.2, 3.4.1 and 3.5.1, respectively. 

The LS starts from an initial solution a and repeats replacing a with a better solution 
in its neighborhood N(a) until no better solution is found in N(a), where N(a) is a set of 
solut ions obtainable by slight perturbations. The local search from an initial solution ao, in 
which the neighborhood N is used, is formally described as follows. 

5 



6 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW 

Algorithm LS(N, a 0 ) 

Step 0 Set a:= ao. 

Step 1 If there is a feasible solution a' E N( a) such that cost( a') < cost( a), set a := a' and 

return to Step 1. Otherwise go to Step 2. 

Step 2 (cost(a') 2: cost(a) holds for all a' E N(a).) Output a and stop. 

A solution a is called locally optimal, if no better solution exists in N(a). We call the 

computation of obtaining a locally optimal solution from an initial a0 as a trial of LS, and call 

the r placement of the current solution a by a better solution as a move. One of the following 

two move strategies are commonly used: First admissible move strategy (abbreviated as FA) 

and best admissible move strategy (abbreviated as BA). FA scans the neighborhood N(a) 

according to a prespecified random order and moves to the first improved solution. BA scans 

the entire neighborhood and move to the best solution in N(a). 

In general, if only one trial of LS is applied, many solutions of better quality may remain 

unvisited. Therefore, LS may be enhanced by: 

• trying many initial solutions, 

• using a sophisticated neighborhood or a larger neighborhood, 

• using a sophisticated search strategy, sometimes allowing moves to worse solutions in 

N(a). 

Metaheuristics such as 

• multi-start local search (MLS), 

• genetic algorithm (GA), 

• simulated annealing (SA), 

• tabu search (TS) 

can be viewed as such variants of LS. In the following sections, we briefly summarize these 

mctahcuristic algorithms along with their variants. More details are found in survey papers 

and books such as [3, 91 , 92, 98 , 99, 103, 104], and hybrid approaches (e.g., hybrids of two 

metahPuristics, hybrids of exact algorithms and metaheuristics, etc.) are summarized in [59] . 

Comparisons of metahPuristic algorithms are found in, e.g., [2, 20, 63, 117, 126]. 

2.2 Multi-Start Local Search 

In the multi-start local search ( ~ILS) LS i repPated from a number of initial solutions and 

the best solution found during the entire search is output. This is one of the most commonly 

2.2 Multi-Start Local Search 7 

used techniques for combinatorial optimization problems [68, 78, 95]. The initial solution 

may be generated randomly or by using greedy methods. The MLS, in which initial solutions 

are generated randomly, is formally described as follows. 

Algorithm MLS 

Step 1 (initialize) Set best:= oo. 

Step 2 (generate an initial solution) Generate a solution a randomly. 

Step 3 (improve by LS) Improve a by LS, i.e., set a:= LS(N, a) . 

Step 4 (update the best cost) If cost( a)< best, set best:= cost(a) and a* :=a. 

Step 5 (halt or random restart) If some stopping criterion is satisfied, output a* and stop; 

otherwise return to Step 2. 

In Step 5, various stopping criteria are possible. Among common ones are: 

• stop if a prespecified computational time is reached, 

• stop if a prespecified computational time is spent without improving best. 

Some other measures, such as 

• the number of repetitions of Steps 2 to 4, 

• the number of moves, 

• the number of cost evaluations, 

are also commonly used instead of the computational time. These stopping criteria arc also 

used in other metaheuristic algorithms. 

The greedy randomized adaptive search procedure (GRASP) is a variant of MLS, in which 

the initial solutions are generated by randomized greedy methods. In the greedy method, a 

feasible solution is usually constructed step by step by choosing the element with the best 

evaluation. Although better initial solutions than random ones are usually obtained, the vari

ety of solutions constructed by this method is quite limited, which is not preferable for MLS. 

To overcome this, in GRASP, a feasible solution is constructed by, in each step, randomly 

choosing an element from the candidate list C A composed of those elements with good local 

evaluations. The size ICAI of the candidate list is a prespecified parameter. If ICAI = 1, the 

algorithm is equivalent to the ordinary greedy method. Some examples of GRASP for SMP 

will be examined in Chapter 5. In GRASP, it is expected that LS can start from good initial 

solutions while keeping the diversity of the search. The framework of GRASP is described as 

follows. 
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Algorithm GRASP 

(Steps 1, 3, 4 and 5 are the same with MLS.) 

Step 2 (generate an initial solution) Generate a solution u by using randomized greedy 

method. 

GRASP was proposed by Feo et al., e.g., [34], and applied to various combinatorial opti

mization problems by themselves and others, e.g., (30, 32, 33, 73, 76, 106]. The basic idea of 

GRASP has appeared in early papers such as (31 , 55]. 

Another variant of MLS called the iterated local search (ILS) [53, 63] is also possible, 

where the initial solutions are generated by slightly perturbing a solution CTseed, which is a 

good (not necessarily the best) solution found during the search. 

Algorithm ILS 

Step 1 (initialize) Set best:= oo and generate a solution CTseed randomly. 

Step 2 (generate an initial solution) Generate a solution u by slightly perturbing CTseed· 

Step 3 (improve by LS) Improve u by LS, i.e., set u := LS(N, u). 

Step 4 (update the best and seed solutions) If cost( u) < best, set best := cost( u) and 

u* := u. If some accepting criterion is satisfied, set u seed := u. 

Step 5 (halt or random restart) If some stopping criterion is satisfied, output u* and stop; 

otherwise return to Step 2. 

In Step 2, the new solution u is usually generated by randomly choosing a solution in 

the neighborhood N'(u). For N', we can use the same neighborhood as LS (i .e., N' = N); 

however, the search may return to CTseed by LS and cycling may occur, since the neighborhood 

is usually symmetric (i.e., CTa E N(ub) <=> CTb E N(ua)). To avoid this, a larger neighborhood 

(i.e., IN'I > JNI) or a different neighborhood is often used as N'. There is a variant of this 
' 

in which the neighborhood N' is gradually enlarged if the search fails to improve u*, and N' 

is reset to the original size (usually small) if u* is updated. Such variants are called variable 

neighborhood search algorithms [14 , 15, 86]. Another variant is to generate u in Step 2 by 

applying LS to u seed, in which a randomized cost function is used to evaluate solutions instead 

of the original cost. Such algorithms are called noising method or perturbation [17, 18, 121]. 

In Step 4, one of the simplest rules of accepting a new CTs eed is: Set CTseed := u if cost(u) < 
best (i.e. , u seed = u*). In [81 , 82], a variant , called chained local optimization, is proposed. 

In this method , CTseed is chosen randomly according to the following rule, whose idea is taken 

from the sirnulated annealing: If cost(u) < cost(useed) , set CTseed :=a-; otherwise set CTseed := u 

with probability e- 6. / t , where ~ = cost( u) - cost( u seed) and t is a prespecified parameter ( t 

can be adaptively changed during the earch). 
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2.3 Genetic Algorithm 

The genetic algorithm (GA) is a probabilistic algorithm, whose idea comes from evolution. 

GA repeatedly applies the operations such as crossover, mutation and selection to the set 

of candidate solutions P. This algorithm can be viewed as a generalization of LS, in which 

the neighborhood N(P) is defined to be the set of solutions obtainable from P by crossover 

and mutation operators. A crossover operator generates one or more solutions ( children) by 

combining two or more candidate solutions (parents), and a mutation operator generates a 

solution by slightly perturbing a candidate solution. The GA starts from an initial candidate 

solutions P and repeat replacing P with P' ~ P U N(P) according to the selection rule. 

Algorithm G A 

(Positive integers P and Q are program parameters to be specified beforehand.) 

Step 1 (initialize) Construct the set P of P initial candidate solutions. Let u* be the best 

solution among P. 

Step 2 (crossover and improve): Repeat the following steps (a) and/or (b) until the set Q 

of Q candidate solutions are obtained. 

a (crossover) Crossover two or more candidate solutions to generate a new solution. 

b (mutate) Mutate a candidate solution to generate a new solution. 

Step 3 (update the best solution) If a solution u with cost( u) < cost( u*) is found in Step 

2, set u* := u. 

Step 4 (select) Select P solutions P' from the resulting P U Q, and set P := P'. 

Step 5 (iterate) If some stopping criterion is satisfied, output u* and stop; otherwise return 

to Step 2. 

GA was originally introduced by Holland [58]. For details, see [22, 47]. There is a recent 

survey by Reeves [105], in which various ideas and applications are discussed from the view 

point of "GA as a tool for operations researchers." 

A variant of GA in which solutions generated by the crossover and mutation operators 

are improved by LS is called the genetic local search (GLS) [71, 89, 126]. GLS is different 

from MLS in that GLS generates the initial solutions from the current P by crossover and/or 

mutation, while MLS generates them randomly from scratch. 
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Algorithm G LS 

(Steps 1, 3, 4 and 5 are the same as GA.) 

Step 2 (crossover and improve): Repeat the following steps (a) and/or (b), and (c) until 
the set Q of Q candidate solutions are obtained. 

a (crossover) Crossover two or more candidate solutions to generate a new solution. 

b (mutate) Mutate a candidate solution to generate a new solution. 

c (local search) Apply local search to the solution of (a) and/or (b) to obtain a 
locally optimal solution. 

Early references such as [13, 22, 47, 61, 62, 84, 87, 89, 123, 126] have already mentioned the 
idea of GLS. Some other successful applications are found in [37, 71]. 

2.4 Simulated Annealing 

This is a variant of LS, in which test solutions are randomly chosen from N( O") and accepted 
with probability that is 1 if the test solution is better than a-, and positive even if the test 
solution is worse than u. By giving a positive probability to a move to a worse solution, the 
search is able to escape from poor locally optimal solutions. The acceptance probability is 
judiciously controlled by a parameter called temperature, whose idea stems from the physical 
annealing process. 

Algorithm SA 

Step 1 (initialize) Generate a solution O", set O"* := O" and specify an initial temperature t. 

Step 2 (check a neighborhood solution) Generate a solution a-1 E N( O") randomly, and set 
~ := cost(O"') - cost(O"). If ~ < 0 (i.e., a better solution is found), set O" := u'; 
otherwise set O" := u' with probability e-t::..jt. 

Step 3 (update the best cost) If cost(O") < cost(O"*), set O"* := O". 

Step 4 (halt or further search) If some stopping criterion is satisfied, output O"* and stop; 
otherwi e update t according to some rule and return to Step 2. 

SA was proposed in [16, 69]. For details of SA, see [1]. Extensive computational results are 
found in the series of paper , [64]. 

The threshold accepting (TA), originally introduced in [28], is a variant of SA. In TA, Step 
2 of SA i replaced by 

Step 2' (check a n ighborhood solution) Generate a solution 0"
1 E N( O") randomly, and set 

~ := cost(O"')- cost(O"). If~ < T, et O" := 0"
1

• 
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The parameter T, called threshold, is controlled instead of the temperature t. Comparisons 

with other metaheuristics are found in [2, 77, 126]. 

There is another variant of SA, called great deluge algorithm (GDA), which was proposed 

in [27]. In GDA, Step 2 of SA is replaced by 

Step 2" (check a neighborhood solution) Generate a solution a-' E N( a-) randomly. If 

cost( a-') < W, set a- := a-1
• 

The parameter W, called water level, is controlled instead of the temperature t. Comparisons 

with other metaheuristics are found in [117]. 

Similar (but much simpler) approach is applied to the satisfiability problem, which is 
called the WALKSAT algorithm [115]. In this method, the algorithm either moves to the 
best solution, or to a solution randomly chosen, in the (randomly restricted) neighborhood. 

2.5 Tabu Search 

The tabu search tries to enhance LS by using the memory of the previous search. Basically 
the best solution in N(u) \ ( { O"} UT) is chosen as the next solution, where the set T, called tabu 
list (or short term memory), is a set of solutions which includes those solutions most recently 
visited. Within this restricted neighborhood, a move to a new solution is always executed 
even if the current solution is already locally optimal, but cycling of a short period can be 
avoided as a result of introducing T. Another type of memory, called long term memory, is 
often employed in the framework of TS, which memorizes the past search information such 
as the frequency that each decision variable has been changed, the frequency that a solution 
has been visited and so on. This memory is used to direct the search to the unvisited region 

(i.e ., diversification). 

Algorithm TS 

Step 1 (initialize) Generate a solution O", set O"* := O" and T := 0. 

Step 2 (decide a move) Find the best solution 0"
1 in N(O")\({O"} UT), and set O" := u'. 

Step 3 (update the best cost) If cost(O") < cost(O"*), set O"* := O". 

Step 4 (halt or further search) If some stopping criterion is satisfied, output O"* and stop; 

otherwise update T according to some rule and return to Step 2. 

TS was proposed in [41]. For details, see books and tutorials such as [42, 43, 44, 45]. 
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2.6 Other Metaheuristic Algorithms 

In this section, we briefly review some other metaheuristic algorithms: (1) variable depth 

search, (2) ant system and (3) guided local search. 

The variable depth search, originally proposed in [68, 78] and introduced with this name 

in [95], is a generalization of local search, in which the neighborhood is defined to be the set 

of solutions obtainable by a sequence of simple neighborhood moves. This idea is slightly 

extended and studied with the name ejection chain in combination with the tabu search 

[26, 67, 74, 97]. Recently, we successfully applied the variable depth search to the generalized 

assignment problem [137, 138], which is one of the representative combinatorial optimization 

problems that is known to be NP-hard. 

The ant system algorithm, originally introduced in [19, 24], is a randomized algorithm 

inspired by the behavior of ants. Ants are able to find good solutions to shortest path 

problems between a food source and their home colony by communicating via pheromones. 

If many ants choose a certain path and lay down pheromones, the intensity of the trails 

increases and thus this trail attracts more and more ants. This mechanism is imitated to 

store the information of good solutions found in the previous search, and to bias the later 

search to the e promising directions. For details, see [25]. Combination with local search is 

also possible, and good prospects of such approaches are reported in [80, 122, 124]. Boese [12] 

proposed a similar (but much simpler) multi-start local search approach based on a different 

motivation. 

The guided local search [102, 125, 128] is a variant of local search, in which solutions are 

evaluated with the modified cost based on the previous search information. In this method, 

the element (e.g., tour edge for the TSP) with the largest cost included in the locally optimal 

solution in the last trial is penalized in the next search so that different solutions are visited. 

This algorithm can be considered as a special case of TS, in which only the long term memory 

is used. Although the motivation is rather different and the algorithm is specific to a certain 

problem, similar idea is applied to the satisfiability problem [114], which is called the weighting 

strategy. (The objective of the satisfiability problem is to find a solution by which all the 

given clauses are satisfied.) In this method, the weights of unsatisfied clauses in the locally 

optimal solution of the previous trial are modified so that they get more chance to be satisfied 

in the next iteration. 

2. 7 Theoretical Results 

Although not much is known about the theoretical aspects of metaheuristics, we briefly 

mention here orne of such results. 

From the view point of computational complexity, it is even not clear whether finding a 
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locally optimal solution is possible in polynomial time or not. To investigate this direction, 

Johnson et al. [65] proposed a complexity class called PLS (polynomial-time local search). 

Other related topics are found in [72, 94, 111], and a recent survey is in [141]. This research 

direction is quite important; however, not much attention is payed by practitioners, since the 

computational time of LS to find a locally optimal solution is usually small. 

It is well-known that the search of SA converges to a global optimum under certain 

conditions, if the temperature is decreased very slowly, e.g., [79]. Similar result is also known 

for TA [7]. On the other hand, it is shown in [110] that exponential time is needed for such 

convergence of SA for the matching problem, for which efficient polynomial time algorithms 

exist. Therefore, these results do not give a support to the success of metaheuristic algorithms 

within limited amount of computational time, although they are quite interesting from the 

theoretical point of view. 

It is shown in [6, 23] that, under certain conditions, a global optimum is found in polyno

mial time with high probability by a multi-point search called "go with the winners", which 

is a simplified search model proposed for the analysis and is similar to GA to some extent. 

The drawback of these results is that the conditions needed for the theorem to hold are rather 

unnatural. However, the algorithm itself is quite simple and its algorithmic (not theoretical) 

idea is applicable to many problems. 

2.8 Conclusion 

In this chapter, we briefly reviewed representative metaheuristic algorithms, such as multi

start local search (MLS), greedy randomized adaptive search procedure (GRASP), iterated 

local search (ILS), simulated annealing (SA) and tabu search (TS). We also mentioned some 

variants of them. There are many other approaches we did not mention in this chapter, e.g., 

multispace search [52, 54], incomplete construction/improvement [109], etc. However, it is 

very hard to cover all of known algorithms in this rapidly growing field. 

We also did not explain details of each metaheuristic algorithm or hybrid approaches of 

them, which are often important to achieve fruitful results. The readers who would like to 

know more about metaheuristics, see, e.g., [3, 91, 92, 98, 99, 103, 104]. 
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Chapter 3 

The Use of Dynamic Programming 

in Genetic Algorithms 

3.1 Introduction 

An important feature of the genetic algorithm is that it keeps P 2: 1 candidate solutions and 

improve them in the process of evolution. Among various modifications [22, 118, 139, 142], 

it is reported in [61, 89, 126] that introducing local search technique in the evolution process, 

i.e., GLS explained in Section 2.3, is quite effective. This may suggest that combining some 

of other techniques with genetic algorithms is also worth trying. 

In this chapter, we propose a variant of the genetic algorithm called genetic DP [129, 130, 

134]. It uses dynamic programming (abbreviated as DP) to improve the candidate solutions. 

To evaluate the effectiveness of this approach, we choose three representative combinatorial 

optimization problems: the single machine scheduling problem (abbreviated as SMP) [60], the 

optimal linear arrangement problem (abbreviated as OLAP) [10] and the traveling sale.sman 

problem (abbreviated as TSP) [75], all of which are known to be NP-hard. The SMP asks 

to determine an optimal sequence of n jobs that minimizes a cost function defined for jobs, 

e.g., total weighted sum of earliness and tardiness. The OLAP asks to determine an optimal 

arrangement of n components in a straight line, which minimizes the total wire length needed 

for connecting all components in a prespecified manner. The TSP asks to find the shortest 

tour (i.e., a closed path that visits every city exactly once). These problems all ask to find 

an optimal permutation of n elements. The genetic DP can be applied to these optimization 

problems to find an optimal permutation of n elements. 

Computational experiments of genetic DP algorithms are conducted to compare them with 

exact algorithms, the conventional genetic algorithms and multi-start local search algorithms. 

Algorithms of genetic DP could obtain optimal solutions to 4 7 out of 50 SMP instances with 

up to n = 35 jobs, and 23 out of 24 OLAP instances with up to n = 20 components, 

15 
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m a very short time compared to the exact algorithms. They also exhibit superiority to 

other meta-heuristics such as multi-start local search algorithms and genetic local search 

algorithms. However, in the case of TSP, the Lin-Kernighan heuristic [78) exhibits much 

better performance than all others including genetic DP algorithm. 

From these results, we can conclude that genetic DP is one of the most powerful meta

heuristics useful for general combinatorial optimization problems, though it does not exclude 

the possibility that some heuristics specialized to the given problem, such as Lin-Kernighan 

algorithm, may turn out to be the winner. 

3.2 Genetic DP Algorithm 

In place of crossover and local search in Step 2 of GLS, genetic DP applies dynamic pro

gramming (DP) in order to generate a new solution from given two candidate solutions. It 

is prirnarily considered for the problem of finding optimum permutations (though it can be 

generalized to other types of optimization problems). The general framework of genetic DP 

is first described, and then each step is explained more in details. 

Algorithm GENETIC DP 

(Positive integers P and Q are program pararneters to be specified beforehand) 

Step 1 (Initialize): Construct P initial candidate solutions. 

Step 2 (Crossover by DP and Improve): Get Q candidate solutions by repeating the fol

lowing steps, where step (Mutate) is optional. 

(Crossover): Pick up two candidate solutions and compute the partial order D 

common to both solutions. 

(1viutate): Perturb the obtained D randomly. 

(DP): Apply dynamic programming (DP) to the resulting D to obtain the best 

solution that does not violateD. Add the obtained solution to the set of candidate 

solutions unless it is already in the set. 

Step 3 (Select): Select P solutions from the resulting P + Q solutions. 

Step 4 (Iterate): Repeat Steps 2 to 3 until some stopping criterion is satisfied. 

Step 2 (Crossover by DP) 

Let a solution be a perrnutation a= (a(1) ... , a(n)), i.e ., an ordered sequence of n different 

elements, cho en from set {1,2, ... ,n}, where a(i) denotes the i-th element in the sequence 
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and a- 1 (j) denotes the location of element j. Denote the two candidate solutions picked up 

in Step 2 by a 1 and a2. The partial order common to a1 and a2 is defined by 

(3.2.1) 

The idea of crossover by DP is based on the fact that good solutions tend to have a lot 

of common structure. For example, it is reported in Lin and Kernighan [78) that about 85% 
pairs of cities on the average are commonly adjacent in two tours obtained by using their 

algorithm, and 60 rv 80% pairs are commonly adjacent in 7 or 8 such tours. They succeeded 

in speeding up their algorithm by fixing such pairs common in k tours (k is a given positive 

integer) without greatly losing the solution quality. In our formulation, the common partial 

order D of given two candidate solutions is a description of the common structure. By using 

DP (details of its computation will be described later in Sections 3.3.2, 3.4.1 and 3.5.1 as it 

depends on the particular problem being solved), it is possible to compute the best solution 

consistent with D. 

Here we give an example of a partial order D. For two solutions a1 = (1, 2, 3, 4, 5, 6) and 

a2 = (2, 3, 1, 5, 4, 6), D is given by 

D = {(1,1),(1,4),(1,5),(1,6), 

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), 

(3, 3), (3, 4), (3, 5), (3, 6), 

(4,4),(4,6), 

(5, 5), (5, 6), 

(6,6)}. 

(3.2.2) 

A partial order can be represented by a directed graph, where a vertex represents an element 

and an arc represents an order. In such a graph, arcs for 

{(i ,i) ED} U {(i,k) ED I :Jj such that (i,j) ED and (j,k) ED} 

are omitted. The graph representing the above D is given in Figure 3.1. 

Step 2 (Mutate) 

In our computational experiment, we realized the mutation by randomly perturbing the 

common partial order D before applying DP computation. After trying several, we employed 

the following method of perturbation: randomly choose a pair i, j E V such that a 11 
( i) < 

a1 1 (j), and relax D by one of the following two operations: 

D := D- {(i, k) I a1 1(i) < a1 1(k):::; a1 1(j))}, 

D : = D - { ( k, j) I a 1 1 
( i) :::; a 1 1 ( k) < a 1 1 (j))}. 

(3.2.3) 
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~ 
3 

Figure 3.1: The graph representing the partial order D for two solutions o-1 = (1, 2, 3, 4, 5, 6) 

and o-2 = (2, 3, 1, 5, 4, 6). 

This operation is repeated s times, where s is a prespecified positive integer. 

The mutation relaxes the constraint D, and enlarges the search space of DP computation; 

hence, the solution quality may improve at the cost of spending more computation time. 

Step 3 (Select) 

Denote the cost of solution o- by cost( o-). We suppose without loss of generality that 

cost(o-t) ~ cost(a2). (3 .2.4) 

To 1naintain P candidate solutions, we tested the following two methods. 

Method (i): Select the best P solutions after the Q candidate solutions are formed in 

Step 2. 

Method (ii): The selection is conducted immediately after the new solution is generated 

in Step 2. More precisely, at each execution of crossover by DP in Step 2, let anew be 

the solution obtained by DP from a 1 and a2. Replace a2 with the new solution anew if 

cost( anew) <cost( at), otherwise anew is discarded. 

It was observed in [130] that method (ii) usually perform better than method (i). However, 

since anew and a1 tend to become very close, repeating (ii) many times may lose the diversity 

of P candidate solutions. In order to prevent this, method (ii) is modified as follows. 

Method (iii): Replace a2 with anew with probability p(t::qj ~2); otherwise replace a1 with 

anew, where 

~i = cost(ai) -cost( anew), i E {1, 2}, 

p(x) = min Ux , 1}. 
(3 .2.5) 

(3.2.6) 

Note that ~2 ~ ~ 1 ~ 0 by the definition , and hence 0 ~ x ~ 1 (we consider x = 1 if 

~2 = ~ 1 = 0). The above p(x) is illustrated in figure 3.2. The positive constant a is a 

program parameter. If a = 0 then O"new always replaces o-2, and if a = oo then O"new always 

replace a1. 
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p(x) 

0 a X 

Figure 3.2: The probability function p(-). 

Step 4 (Iterate) 

The algorithm terminates after r (a given positive integer) successive iterations of Steps 2 

and 3 without improvement of the best solution in the P candidates. 

3.3 Single Machine Scheduling Problem 

The single machine scheduling problem (SMP) asks to determine an optimal sequence of 

n jobs in V = {1, ... , n }, which are processed on a single machine without idle time. A 

sequence a: {1 , ... , n} ---+ V is a one-to-one mapping such that a(i) = j (or a - 1(j) = i) 

means that job j is the i-th job processed on the machine. Each job i becomes available 

at time 0, requires integer processing time Pi and incurs cost gi( ci) if completed at time ci, 

where ci = I:j~~(i) PO"(j)· All jobs are processed in time interval [0, LiEV Pi]· A sequence a is 

optimal if it minimizes 

cost( a) = L 9i( ci)· 
iEV 

(3.3.7) 

The single machine scheduling problem is known to be NP-hard for most of the interesting 

forms of gi ( ·). We consider in particular 

(3.3.8) 

where di E Z+ (set of nonnegative integers) is the due date of job i, and hi, Wi E Z+ are 

respectively the weights given to earliness and tardiness of job i. 



20 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS 

3.3.1 Exact Algorithms 

The basic dynamic programming recursion due to [56] can solve SMP exactly. Let S ~ V be 

an arbitrary subset of jobs, and let j* ( S) denote the minimum of cost function (3.3. 7) over 

S when the jobs in S are sequenced in the first lSI positions of the whole sequence. Then 

j* (V) defines the cost of an optimal sequence of all jobs, and is obtained by solving 

j*(¢) = 0, (3.3.9) 

j*(S) = min{f* (S- { i}) + gi(L Pj )}, S ~ V. 
tES . S 

JE 

The computational time required to obtain f* (V) is 0( n2n ), since all 2n subsets S of V need 

to be generated and the computation of each j*(S) by (3.3.9) requires O(n) time. This DP 

reduces the size of the solution space from n! to 2n. However, the time complexity is still 

exponential, and this approach is limited to small problem instances, e.g., n ~ 20. 

A number of exact algorithms, which are based on branch-and-bound, have been studied 

so far [101]. Another type of algorithm SSDP (successive sublimation dynamic programming) 

was proposed in [60]. The essence of SSDP is to execute a series of DP recursions, such that 

the underlying state-space is progressively refined at each iteration, until an exact optimal 

sequence of jobs is computed. The number of generated states can be kept within manageable 

level at each iteration by el~minating those states that are concluded from the information of 

previous iterations not to lead to optimal sequences. The computational experiment shows 

that problem instances of up to n = 35 can be practically solved. 

3.3.2 Genetic DP Algorithm 

In this section, we specialize the genetic DP of Section 3.2 to the SMP, and describe the 

details of Steps 1 and 2. 

Step 1 (Initialize) 

It is important to generate different types of good solutions as initial candidates. Here we 

adopt greedy heuristics for this purpose. At each step, let 

AI = { i E V I i is not scheduled yet}. (3.3.10) 

Then a job i E NI is chosen as the next job according to some evaluation criterion (e.g., 

the i with the smallest di)· There are two types of algorithms, corresponding to whether a 

schedule is constructed forward or backward. A forward schedule starts with the job to be 

processed at time 0, and continues adding th next job to be processed until M becomes 

empty. A backward schedule is symmetrically defined from the last job to the first job. We 
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will describe below the forward schedule only. 

GREEDY 

1. Set M := V and t := 0. 

2. Choose i E M that maximizes the local gain e(i, t) as the next job. Let M := M - { i} 

and t := t +Pi· 

3. Repeat Step 2 until M = ¢. 0 

Here the local gain function e( i, t) represents the heuristic used. We employed the follow

ing six functions (and hence 12 solutions corresponding to forward and backward construc

tions). 

The first evaluation function e1 is given by 

where p is the average processing time 

P = LPdn, 
iEV 

and 8i(t) indicates whether the due date di is urgent or not, i.e., 

and 

bi ( t) = { 1, t + p + Pi 2: di, 
0, otherwise. 

The second and third evaluation functions are 

w · h · 
e3(i, t) = _::_8i(t) - _:(1- 8i(t)). 

Pi Pi 

(3.3.11) 

(3.3.12) 

(3.3.13) 

(3.3.14) 

(3.3.15) 

If there are jobs with urgent due dates, the above functions put priority on the job among 

them, whose cost will increase most rapidly if it becomes tardy. If there is no urgent job, 

then a job whose cost will decrease most slowly or a job whose current cost is smallest is 

selected. 

Other evaluation functions e4 , e5 , e6 are also used. Suppose k = IMI- 1, i is the job to be 

evaluated and jobs j E M- { i} are sorted in nondecreasing order of dj, i.e., d]l ~ ... ~ djk. 

Then 

k 

e4(i, t) = -gi(t +Pi) - L gj1 (cjJ , (3.3.16) 
l = l 
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where Cj1 = t +Pi+ 2:~= 1 Pj h. This gives the sum of g j ( Cj) of all jobs in M when i is scheduled 

next, and the rest is scheduled after i in nondecreasing order of dj. The functions e5 and e6 

are variants of e4 in that e5 ( e6) uses nonincreasing order of Wi (respectively, nondecreasing 

order of hi) instead of nondecreasing order of di. 

In these six evaluation functions, e3 often produces the best approximate solutions whose 

error from the optimals are within 10%, and e4 usually produces solutions of reasonable 

quality. Although other schemes are usually not as good as e3 or e4 , we adopted all six in 

order to maintain the diversity of initial candidate solutions. 

If more than 12 initial solutions are necessary (e.g., P = 100 solutions are generated in 

the experiment of Section 3.6.2), we introduce randomness into the above greedy algorithms. 

That is, in Step 2 of GREEDY, choose a candidate set C ~ Nf of k jobs (k is a prespecified 

positive integer) in the decreasing order of the local gain (instead of a single job i), and then 

randomly choose i from set C. This idea of randomized greedy methods is extensively studied 

in [34], in the framework of multi-start local search. 

Step 2 (Crossover by DP) 

We first compute the common partial order D of a-1 and a-2 , and introduce the constraint 

that job i must be processed before j if ( i, j) E D. Then the best solution with cost f* (V), 

among those which are consistent with D, can be obtained by solving the following dynamic 
. . 

programmrng recurswn. 

!*(¢) = 0, (3 .3.17) 

j*(S) = _min {f*(S- {i}) + gi(LPj)}, S E V*(D), 
tE/(5) . S 

JE 

where 

V * (D) = { S ~ V I j E S and ( i, j) E D :::} i E S} , (3.3.18) 

and 

I(S) = {i E SIno j E S satisfies j #- i and (i,j) ED}. (3.3.19) 

Here we give an example of V*(D) and J(S). For the partial order D of (3.2 .2), all the sets 

S E V*(D) and J(S) for each S are shown in Table 3.1. Sets S = {1, 2, 3} and J(S) = {1, 3} 

are al o shown in the graph representing D in Figure 3.3. 

While the DP recursion by (3.3.9) generates all 2n subsets S of V, the recursion by (3.3.17) 
generates only those ubsets in V*(D), i.e., those consistent with D. This implies that the 

cornputational time and space can be substantially reduced. 

It is, however, possible that the number of subsets in V*(D) is still too large to handle. In 

·u h a cas , we randomly augrnent D until the estimated number of states IV*(D)I becomes 

less than bn (b is a prespecified po itive constant): Randomly choose k E {2, .. . , n} and let 
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Table 3.1: All the sets S E V*(D) and J(S) for the partial order D of (3.2.2). 

s I(S) 

{1} {1} 

{2} {2} 

{1,2} {1,2} 

{2,3} {3} 

{1,2,3} {1,3} 

{1,2,3,4} {4} 

{1,2,3,5} {5} 

{1,2,3,4,5} {4,5} 

{1,2,3,4,5,6} {6} 

Figure 3.3: Sets S = {1, 2, 3} and J(S) = {1, 3} are shown on the graph of Figure 3.1. 
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(3.3.20) 

The value JV*(D)J is important in estimating computation time, since it gives the number 

of states in dynamic programming recursion (3.3.17). The V*(D) is known as the set of ideals 

of partial order D, and much effort has been devoted to the study of estimating JV*(D)J [120]. 

It is known [112] that a rather accurate estimation of JV*(D)J can be obtained in O(n2) time. 

This estimation is exact when D has dimension two [119], which holds true in our case if 

neither mutation (Section 3.2) nor augmentation (3.3.20) is applied. 

Note that the sequence cr1 is always consistent with D, whether it is mutated or aug

rnented, and hence the optimum cost of (3.3.17) will never be greater than that of cr1 (recall 

assumption (3.2.4)). 

3.4 Optimal Linear Arrangement Problem 

In th<' optimal linear arrangement problem (OLAP), we are given a weighted hypergraph 

H = (V, S, W), where V = {1, ... , n} is a set of vertices, S = { S1 , ... , Sm} is a collection 

of subsets of V, and W = { w1, ... , wm} is a set of weights given to subsets in S. A linear 

arrangement is a permutation cr : { 1, ... , n} ----+ V, meaning that vertex cr( i) is placed in the 

i-th position in a straight line. The cost of a permutation cr is 

(3.4.21) 

and it is asked to find a permutation cr with the minimum cost. The applications of OLAP 

are abundant in VLSI design and other areas [4, 10, 66, 113]. A special case of OLAP in 

which the hypergraph H is a graph (each Si contains exactly two vertices) is referred to as 

the Graph Optimal Linear Arrangement problem (abbreviated as GOLAP). It is known that 

GOLAP with edge weights equal to 1 is already NP-hard [39]. GOLAP on rooted trees (the 

root is always placed at the left most position) is solvable in O(nlogn) (where n = JVJ) time 

[4], and GOLAP on undirected trees with edge weights equal to 1 is solvable in O(n2·2 ) time 

[116]. 

3.4.1 Genetic DP Algorithm 

In this section, we explain the detail of Steps 1 and 2 of genetic DP for OLAP. 

Step 1 (Initialize) 

To generate different type of initial candidate solutions, we use two heuristics, Kang's greedy 

method [66] and the clustering method [10, 113]. 
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Although Kang's method was stated in [66] for the casE' of unit weights (wi = 1), it is easily 

extended to arbitrary weights. It begins with a vertex i E V that minimizes netcut( { i}, V

{ i} ), where netcut(L, R) denotes the sum of net weights between L and R, i.e., 

m 

netcut(L, R) = L Wibi(L, R), 
i=1 

{ 
1, if Si has vertices in both L and R, 

bi(L, R) = 
0, otherwise, 

(3.4.22) 

and place it at the leftmost position. It then builds a linear arrangernent from left to right 

by adding one vertex i EM that maximizes netcut(V- M,{i})- netcut({i},M- {i}) at 

each iteration, where 

M = { i E V J i has not been placed yet}. (3.4.23) 

The clustering method has two phases. A cluster CLi C V is a set of vertices. The first 

phase is executed as follows. 

1. Let CLi := { i} (i = 1, ... , n), k := n, and S := V (S stores the indices of all clusters). 

2. Let k := k+l. Find i,j E S that maximizes netcut(CLi,CLj), let CLk := CLiUCLj, 

and S := S U {k}- {i,j}. 

3. Repeat Step 2 until JSJ = 1 holds. 0 

The process of combining two clusters CLi and CLj into one cluster CLk (Step 2) can be 

represented as a binary tree, called a cluster tree, in which each cluster C Lz is represented 

as vertex l, and vertices i and j are the two sons of vertex k. It is decided arbitrarily which 

of i and j becomes the left son. The resulting left to right order of all leaf vertices of the 

whole cluster tree is a linear arrangement and is output as a heuristic solution obtained in 

the first phase. In the second phase, the above solution is improved by applying the local 

search whose neighborhood N( cr) is the set of solutions obtained by exchanging left and right 

sons of any inner vertex of the cluster tree. 

Step 2 (Crossover by DP) 

Here we consider the following two methods. 

(A) Compute the common partial order D of (3.2.1) for two candidate solutions cr1 and 

cr2. Note that ( i, j) E D in this case denotes that vertex i is placed to the left of j in both 

cr 1 and cr2 . Call L C V a left segment if the vertices in L are arranged to the left of the rest 

of vertices R = V - L. Then we can find the best arrangement among those consistent with 

D, by solving 
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where 

j*(L) = 0, ILl~ 1, 

j*(L) = min {f*(L- {j}) + netcut(L- {j}, R u {j} )}, L E V*(D), 
jEI(L) 

V* (D) = { L ~ V I I L I > 1, (j E L and ( i, j) E D =? i E L)}, 

(3.4.24) 

(3.4.25) 

I(·) is defined in (3.3.19), and j*(L) denotes the minimum cost (3.4.21) when the vertices in 

L are arranged in the left ILl positions. Obviously j* (V) denotes the minimum cost of all 

vertices, which we want to compute. 

(B) In order to reduce the computation time of (3.4.24), we add the chain constraints to 

method (A) in the following manner. Call that vertices i and j are adjacent in O" if 

I - 1(·) - 1(")1 1 (]" ~ -(J J = ' (3.4.26) 

and denote 

AD( O") = { ( i, j) I vertices i and j are adjacent}. (3.4.27) 

We impose the constraint that every pair of vertices adjacent in both a 1 and 0"2 are forced 

to be adjacent in the new solution Clnew, i.e., AD(O"l) n AD(0"2) C AD(O"new)· Note that 

each connected component in graph G(0"1 , a2) = (V, AD(a1 ) n AD(0"2)) is a chain. The DP 

computation of (3.4.24) can be carried out more efficiently by applying it after contracting 

each chain into a single vertex, though the values of netcut(·, ·) must be calculated for the 

original set of vertices. 

In both methods (A) and (B), when the estimated number of states IV*(D)I exceeds bn, 

the operation of (3.3.20) is also applied. 

A computational comparison of these two methods for various b is shown in figure 3.4, 

in which 11 test instances of up to n = 40 are solved. It shows how the total cost (3.4.21) 

changes against the amount of time required (which is determined by parameter b). Program 

parameters are set to P = 20, r = 300, a = 0.5, s = 0 (see Sections 3.2 and 3.3.2 for the 

details of these parameters) and b is varied from 0 to up to 100. Figure 3.4 shows superiority 

of (B) to (A). In the computational experiment in Section 3.6, where genetic DP is compared 

with other approximate methods, we therefore adopt (B). 

3.5 Traveling Salesman Problem 

The traveling salesrnan problem is one of the most well-known combinatorial optimization 

problems. It a k to find the shorte t tour (i.e., Hamiltonian circuit, that is , a path that visits 

every vertex exactly once' and returns to the first vertex) in a given graph G = (V, E), where 

3.5 Traveling Salesman Problem 
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Figure 3.4: The effect of chain constraints. 
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V = {1, ... ,n} and each edge (i,j) E E has length dij· The symmetric traveling salesman 

problem we consider assumes dij = dji for all pairs of i and j. Let O": { 1, ... , n} ----+ V be a 

tour, where O"(i) denotes the i-th vertex in a tour a. A tour is optimal if it minimizes 

n-1 

L da(i)a(i+l) + da(n)a(l)· 
i=l 

(3.5.28) 

Numerous exact and approximate algorithms have been proposed for this problem [75], 

and it is reported that exact optimal solutions have been obtained for problem instances of 

up to n = 7397 [8, 51, 93] (500,000 in the case of asymmetric version [85]). 

3.5.1 Genetic DP Algorithm 

In this section, we explain the details of Steps 1 and 2 of genetic DP for TSP. 

Step 1 (Initialize) 

We use the arbitrary insertion method [75, 108] for generating initial candidate solutions. 

It is a greedy method and can create reasonably good solutions in short time. A path that 

visits every vertex in a subset S of V exactly once, and returns to the first vertex in S is 

called a subtour. The arbitrary insertion procedure begins with a randomly chosen subtour 

consisting of only two vertices, and iterates the insertion of the vertex k between randomly 
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chosen adjacent vertices i and j in the current subtour, where k minimizes dik + dkj - dij, 

until a tour is formed. There are a number of variations of insertion heuristics [75], such as 

the farthest insertion and convex hull insertion procedures. We have chosen the arbitrary 

insertion for our computational experiment because it is simple and can produce a variety of 

solutions. 

Step 2 (Crossover by DP) 

Suppose that a tour always starts from vertex 1 (i.e., a-1 (1) = a-2 (1) = 1) without loss of 

generality. The definition of the partial order D common to a-1 and a-2 is the same as (3.2 .1 ). 

The best tour, which is consistent with D, and its cost j*(V) , can be obtained by solving 

where 

j*( {1}, 1) = 0, 

j*(S,i) =. min . {f*(S - {i},j) + dji}, S E V*(D), 
J El(S) - {t} 

j* (V) = min {j* (V, i) + dil}, 
i EI(V) 

V*(D) = {S ~VI j E Sand (i , j) ED:::? i E S}, 

(3.5.29) 

(3.5.30) 

and I(-) is the same as (3.3.19). j*(S, i) denotes the length of the shortest path that starts 

from vertex 1, visits all the vertices inS, ends with vertex i, and is consistent with D. In the 

computational experiment of Section 3.6, we also added the chain condition of method (B) 

of OLAP, to speed up the DP computation. The modification required is similar to the case 

of OLAP. 

3.6 Computational Results for Three Problems 

3.6.1 Generation of Problem Instances 

Computational experiments were performed on SUN SPARC station IPX using C language 

for SNIP and OLAP, and using FORTRAN 77 for TSP. The tested problem instances are 

generated as follows. 

SMP: For each n , coefficients Pi , hi , Wi for i E V ( = { 1, ... , n}) are generated by 

randomly selecting integers from interval [1, 10). It has been observed in the literature (e.g., 

[100]) that problem hardness is related to two parameters RDD and LF, called the relative 

range of due dates and the average lateness factor , respectively. In our experiment, 

RDD 
LF 

0.2, 0.4, 0.6 , 0. '1.0, 

0.2 , 0.4, 
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are used. Corresponding to each of these 5 x 2 = 10 cases, one problem instance is generated 

by selecting integer due dates di, i E V, from interval 

[(1- LF- RDD/2)T, (1- LF + RDD/2)T]. 

OLAP: For each n, 23 = 8 types of instances depending on (1) whether H is a 

hypergraph or a graph, (2) whether weighted or unweighted, and (3) whether m = 2n or 

m = 4n when n > 20 (m = 6n when n :::; 20), are generated. For each i = 1, 2, ... , m , an 

integer ISil is randomly chosen from interval [2, 5) in the case of a hypergraph (ISi l = 2 in 

the case of a graph) and then ISil vertices are randomly chosen from V as the elements in 

si. si are generated so that si # Sj holds for i # j. The weight Wi (integer) of si is chosen 

randomly from interval [1, 5) ( Wi = 1 in the unweighted case). 

TSP: We considered only the Euclidean case (i.e., all vertices are located in the 

plane and edge lengths are given by the Euclidean distances between their end vertices). A 

coordinate pair (xi, Yi) of each vertex is first generated by randomly selecting two integers 

from interval [0, 1000), and the length between vertices i and j is set to 

3.6.2 The Effect of Program Parameters 

Implementation of genetic DP contains the following parameters: 

r: number of iterations without improvement before termination (see Section 3.2), 

a: parameter in (3.2.6), which decides the frequency of replacing O"J in Step 3 

(select), 

P: number of candidate solutions (population), 

b: bn is the upper bound on the number of states generated in DP recursion (see 

Section 3.3.2), 

s: number of mutations (see Section 3.2). 

To know appropriate values of these parameters, 10 SMP instances of n = 50, 11 OLAP 

instances of up to n = 40, and 5 TSP instances of n = 100 were generated and tested. We 

examined how the performance changes according to the arnount of time invested (which 

is determined by program parameters). Every parameter has a tendency that the larger it 

becomes, the more computational time is needed. In the figures explained below, "cost" 

denotes the total cost (3.3.7) , (3.4.21) or (3.5.28) of the solutions obtained and "time" is the 

total time in seconds required to solve all test instances of each problem. Parameters are set 

as given in table 3.2 unless otherwise stated. Only the parameter examined is changed. 
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Table 3.2: Parameter values used for the parameter tuning. 

SMP OLAP TSF 

1" 200 300 1000 

a 0.5* 0.5* 0.5* 

p 20 20 20 

b 1000 20 30 

s 0 0 0 
* a = 2 when r is examined. 

First we examined the effect of r. Figure 3.5 shows that, for SMP, great improvement is 

achieved only in the early stage of increasing r. Similar results are also observed for OLAF 

and TSF [129]. 
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Figure 3.5: The effect of the number of iterations r (SMF). 

Second we examined the effect of a. The results for Sl\tiP are shown in figure 3.6. Al

though the behavior seems to be quite erratic, it may indicate that the quality improves (by 

consuming more computational tin1e) when the parameter a i increased from 0 to up to 

0. 75. However etting a beyond 0. 75 seemed to con ume more time without gaining much 

improven1ent. The re ults for OLAF and TSP are similar [129]. 
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Figure 3.6: The effect of parameter a in the probability function p( ·) (SMP). 

Next we examined P, b and s. The results are exhibited in figures 3.7, 3.8 and 3.9 for 

SMP, OLAP and TSP, respectively. For SMP, parameter b has the largest effect and P is less 

effective. The introduction of mutation (i.e., larger s) improves the solution quality to some 

extent, but considering the amount of time consumed, a small s appears to be preferable. 

For OLAP, the effect of parameters P and b were almost the same. The introduction of 

mutation improved the solution quality, but the magnitude of improvements and the amount 

of time consumed were insensitive to s. This is because the state bound b = 20 was a bit 

too strict and the mutations could not enlarge the search space of DF (because of the bound 

imposed by b). For this reason, we adopted a small s. For TSP, the parameter P was the 

most effective and b was less effective. In this case, the effect of mutation was not clear and 

sometimes worse solutions were produced while spending greater amount of time. 

From these results, we concluded to set the parameters as in table 3.3. 

3.6.3 Performance of Genetic DP 

After fixing the parameters of genetic DP as discussed above, we solved SMP instances 

of n = 15, 20, 25, 30, 35, 50, 75, 100 (10 instances for each n), and OLAP instances of n = 

15, 20, 40, 60, 80 (8 instances for each n, except that 12 instances for n :S 20) , and TSP 

instances of n = 100, 200 , 300 ( 5 instances for each n). 

The solutions with proved optimality could be obtained by exact algorithm SSDP only for 
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Table 3.3: Parameter values adopted after the parameter tuning. 

SMP OLAP TSP 

r 200 300 1000 

a 0.5 0. 5 0. 5 

p 20 20 30 

b 100 20 10 

s 1 1 0 

33 
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small instances of up to n = 35. Genetic DF succeeded in obtaining exact optimal solutions 

for 4 7 out of 50 instances with n ::; 35. The maximum error from the optimum values of 

the 3 instances, which genetic DF failed to find, was less than 0.45%. Genetic DF could get 

exact optimal solutions for all the 50 instances when different parameter values were used. 

The average time of genetic DF, and the two exact algorithms DF and SSDF are shown in 

figure 3.10 in seconds. 
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Figure 3.10: The computational time (in seconds) to solve SMF by algorithms DP, SSDF 

and genetic DP. 

In the case of OLAF, exact optimal solutions can be obtained by using DF only for small 

instances of up to n = 20. Genetic DF succeeded in obtaining optimal solutions for 23 out of 

24 OLAP instances of these sizes. The error from the optimum value of the only one instance, 

which genetic DF failed to solve exactly, is about 1.51 %. Genetic DF could get an optimal 

solution to this instance by using different parameter values. The average time of genetic DF 

and the exact algorithm DP arc shown in table 3.4 in seconds. 

For TSP, the comparison with the exact algorithms was not attempted, because the 

performance of genetic DP is rather poor even against the heuristic algorithm of Lin and 

Kernighan [78], as will be reported in the next subsection. 

3.6.4 Comparison with Other Heuristic Algorithms 

The performance of genetic DF i , compared with that of other heuristic algorithms. 
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Table 3.4: The computational time (in seconds) to solve OLAF by algorithms DF and genetic 

DP. 
n DF Genetic DF 

15 115 54 

20 6554 120 

Details of Other Heuristic Algorithms 

The first heuristic algorithms tested are the following two, already explained in Section 3.1: 

(1) Multi-start local search algorithm (MLS), 

(2) Genetic local search algorithm (GLS). 

In MLS and GLS, the neighborhood N(u) is defined to be the set of solutions which can 

be obtained by moving a single element u( i) to the location between u(j - 1) and u(j), for 

all pairs of i and j (i =f. j) (see figure 3.11). The crossover operation for GLS is performed 

Q o' 1 4 2 3 5 

Figure 3.11: A solution in neighborhood N(u), corresponding to i = 4 and j = 2. 

as follows (see figure 3.12). For two solutions a-1 and a-2, choose randomly an integer l from 

interval [n/4, n/2] and an integer k from interval [1, n- l + 1]. Then the new solution Unew 

is constructed by Unew(i) := a-1(i) (i E [k, k + l- 1]), and setting Unew(i) (i tf_ [k, k + l - 1]) 

according to the order of a-2 (i.e., i < j ::::} u;;e1
w ( a-2 ( i)) < u;;e1

w ( a-2 (j)) for all i , j (/. [ k, k + l - 1]) · 
This is a variation of the crossover operation mentioned in [89] for TSP. Step 3 (select) and 

Step 4 (iterate) for GLS are the same as genetic DF. 

This GLS is a bit different from the genetic local search algorithm proposed in other 

literature, such as [89, 126], in which all initial candidate solutions are improved by local 

search, before applying crossover operation. This original type of genetic local search algo

rithm (GLS#) is also tested. Further, we examined the performance of the traditional genetic 

algorithms (simple GA), which do not include the improvement by local search. 

(3) Approximate DP. This applies DF recursions of (3.3.17), (3.4.24) or (3.5.29) to all 

pairs in P initial candidates, and then halts. Initial solutions are the same as those used in 
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2 4 5 3 

• • 
new solution 0 

2 5 3 4 

Figure 3.12: An example of crossover operation for GLS, where l = 2, k = 3. 

genetic DP. This algorithm is tested to see the effect of only the DP part of genetic DP. 

(4) Or-opt procedure [75] and Lin-Kernighan algorithm (abbreviated as LK) [78]. These 

arc examined only in the case of TSP. In LK, random tours uniformly chosen from the set of 

all possible permutations are used for the initial solutions. 

Results and Discussions 

Figures from 3.13 to 3.17 show how the average error (%) from the best cost found during 

our experiment decreases with time, where the average time used for the largest instances 

(n = 100 for the SMP, n = 80 for the OLAP and n = 300 for the TSP) is used. 

Figure 3.13 shows a comparison of simple GA and GLS for SMP. Similar results are 

obtained for OLAP and TSP [129]. These results indicate a rather discouraging feature of 

simple GA, which is also observed in other references such as [126]. Figure 3.14 exhibits a 

comparison of approximate DP and genetic DP. Similar results were obtained for OLAP and 

TSP. From these, we can see clear dominance of genetic DP over simple GA and approximate 

DP. 

Figures 3.15, 3.16 and 3.17 compare genetic DP with other heuristic algorithms. In 

the case of SMP, genetic DP triumphed over MLS and GLS. Genetic DP obtained better 

solutions in shorter time. In the case of OLAP, genetic DP obtained better solutions than 

MLS in most cases; but when longer computational time was allowed, GLS obtained slightly 

better solutions. In the ca e of TSP, genetic DP could get better solutions than MLS, GLS 

and Or-opt when sufficient computational time was allowed. But LK could obtain much 

better olution in shorter ti1ne. 

Finally, Figure 3.18 show how the computational time for SMP increases as the size of 
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problem instance n grows, when all the algorithms are terminated with 500 iterations, where 

the time for n = 15 is normalized to 1. It is observed that the computational time for MLS 

and GLS increase slightly more rapidly than genetic DP. Similar results were obtained for 

OLAP and TSP [129]. This is because the number of states necessary for the DP recursion 

of genetic DP was bounded by bn by operation (3.3.20) and the computational time for each 

DP recursion (3.3.17) was O(bn2 ). 

From the above results, we may conclude that genetic DP is one of the most powerful 

meta-heuristics for general purposes. However, it is also noted that very efficient heuristic 

algorithms, such as LK, may exist if the algorithms are tailored to the given problems. 

3. 7 Conclusion 

We proposed a framework of approximate algorithms , called genetic DP, and evaluated its 

effectiveness by conducting computational experiments for three problems SMP, OLAP and 

TSP, all of which ask to obtain optimal permutations of n elements. Genetic DP tends to 

attain better solution quality than traditional multi-start local search and genetic local search 

algorithms when sufficiently long time is allowed, though performance of these algorithms 

depends on problem characteristics. However, if some efficient heuristics specially designed to 

the given problem, such as Lin-Kernighan method, are available, we recommend to use them. 
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algorithn1s (SMP). 

Combination of such special purpose heuristics with genetic algorithms may be an important 

subject of future st udy. It is emphasized, however, that an advantage of general meta

heuristics, including genetic DP, is that they can be easily adapted to many problems, while 

problem specific algorithms, such as Lin-Kernighan, are hardly adapted to other problems. 

Recently, similar hybrid approach of cornbining exact methods and metaheuristic methods 

are tried in [5, 83]. 

Chapter 4 

On Genetic Crossover Operators 

for Sequencing Problems 

4.1 Introduction 

Crossover is one of the basic operators of genetic algorithm (GA), and has a great influence 

on the performance of the algorithm [90, 118]. New solutions, called children, are generated 

from more than one candidate solution, called parents, by crossover operators. Many crossover 

operators have been proposed, e.g., 1-point, 2-point, multi-point and uniform crossover oper

ators for binary strings, and those crossover operators applicable to more general objects such 

as figures and graphs [22]. Most of combinatorial optimization problems have constraints on 

the solution space, and the feasibility of the generated children should be taken into accoun

t when crossover operators are designed. For example, many crossover operators have been 

proposed for the traveling salesman problem (TSP) whose feasible solutions are permutations 

of the given n cities. A reason for this is that keeping the feasibility of the children is not 

trivial for this problem [46, 50, 142]. We will illustrate some of them in the next section. 

In this chapter, we first review various crossover operators proposed for the combinato

rial optimization problems whose feasible solutions are given by permutations. We call such 

a crossover operator as permutation crossover. We then consider a general framework of 

crossover operators and analyze the relationship between characteristics of the operator and 

performance of the algorithm. Based on this analysis , we propose simple criteria for mea

suring the quality of crossover operators. Computational experiments for the single machine 

scheduling problem (SMP) using a simple framework of GA is conducted, and it is observed 

that the following two criteria are important for crossover operators: (1) inherit as many 

elements as possible from the parents, and (2) keep the diversity of the children obtainable 

from the parents. 
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4.2 Crossover Operators for Sequencing Problems 

In this section, we review various crossover operators proposed in the literature for sequencing 

problems, where we restrict our attention to those without solution improvement mechanisms 

such as heuristics and local search. Niost of the crossover operators introduced in this section 

are originally proposed for TSP. However, we sometimes slightly modify them so that they 

also fit to SMP. Here we assume that one child C is generated from two parents A and B. 

Let V = {1 , ... ,n} be a set of n elements, and u(i) = j (equivalently u- 1(j) = i) denote 

that the i-th element of the permutation a- is j. The permutations of the parents A, B and 

the child C are denoted a-A, UB and uc, respectively. 

PMX (partially mapped crossover): Randomly generate an n bit 0-1 mask msk, where 

msk(i) E {0, 1}. For each i with msk(i) = 0, set uc(i) := a-A(i) and a-B(j) := a-B(i) for j 

with a-B(j) = a-A(i). Then for each i with msk(i) = 1, set uc(i) := a-B(i) (see Figure 4.1). 

The crossover operators in which the elements are inherited according to randomly gener

ated masks are called uniform crossover. If the masks are restricted to those in which 0 and 

1 are adjacent in at most k positions, then they are called k-point crossover. For example, 

masks 11000 and 10011 correspond to 1-point and 2-point crossover operators, respectively. 

Here we consider 1-point, 2-point and uniform crossover operators for PMX, and denote them 

as PMX(1), PMX(2) and PMX(U), respectively. 

PMX was originally proposed as the 2-point crossover operator in (46]. It is also introduced 

in other literature such as [47, 90, 118]. 

parent A 

parent B 

mask 

child C 

2 

1 

2 

2 3 4 5 

3~ I ~4 
l 0 0 1 

5 3 4 1 

Figure 4.1: An example of PMX(2). 

CX (cycle crossover): In this method, the child uc is constructed so that 

(4.2.1) 

hold for all i. First, cycle nmnber cycle(i) is computed for each position i by the following 

algorithrn (see Figure 4.2), where cycle( i) = 0 means that position i has not numbered yet. 

1. Set k := 1 and cycle( i) := 0 for all i. 

2. Set io := min {i I cycle( i) = 0} and i := io. 
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3. Set cycle(i) := k and i := a-A: 1 (a-B(i)). 

4. Return to Step 3 unless i = io holds. 

5. If cycle(i) > 0 hold for all i, then halt; otherwise set k := k + 1 and return to Step 2. 

The n elements are partitioned into cycles CY ck = { i I cycle( i) = k} by their cycle 

numbers. Therefore, condition (4.2.1) can be satisfied by inheriting the clements in a cycle 

from the same parent (see Figure 4.2). Here we consider the following three methods to 

choose the parent for each cycle: (1) the parent is randomly chosen for each cycle, denoted 

CX(U), (2) one cycle is randomly chosen from parent A and others are taken from B, denoted 

CX(1), and (3) cycles with odd indices are taken from parent A and others are taken from 

B, i.e., cycles are alternately chosen, denoted CX(A). 

CX was originally proposed as CX(U) in (90]. It is also introduced in other literature 

such as [47, 118]. 

parent A 

parent B 

cycle number 

child C 

4 5 2 

2 1 2 

4 3 2 5 

Figure 4.2: An example of CX(U). 

FLX (free list crossover): In this method, a permutation is represented by using the list 

of n elements (e.g., (n, n- 1, ... , 1)). A permutation is coded by determining the position of 

each element in the list from left to right , where the used elements are removed from the list. 

Here we use the ordered list (1, 2, ... , n). Then the code a- of a permutation a- is formally 

defined as 

o-(i) = u(i) -J{j I (J"(j) < u(i) and j < i}J (4.2.2) 

(see Figure 4.3). The original a- can be obtained from Ct by the following decoding algorithm. 

Algorithm Decode_FLX 

Line 1: for i = 1, 2, ... , n do 

Line 2: list( i) := i; 

Line 3: end for; 

Line 4: for i = 1, 2, ... , n do 

Line 5: u(i) := list(o-(i)); 

Line 6: for j = o-(i) , o-(i) + 1, ... ,n- i do 
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Line 7: 

Line 8: 

list(j ) := lis t(j + 1) 

end for 

Line 9: end for. 

If a-( i) ~ n - i holds for all i, algorithm Decode_FLX outputs a permutation a-, that is, every 

element appears exactly once in the resulting a-, since, at the i-th iteration, the elements 

o-(1), o-(2), ... , o-(i - 1) have already been removed from list. This is the one to one mapping 

between a- and a-. Then an n bit 0-1 mask msk E {0, 1}n is randomly generated, and a 

coded child ac is produced by setting ac( i) := a-A ( i) for i with msk( i) = 0, and setting 

ac(i) := a-B(i) fori with msk(i) = 1. The resulting ac is then decoded to make the child 

a-c . As in PMX, we consider 1-point, 2-point and uniform crossover operators, and denote 

them FLX(1) , FLX(2) and FLX(U), respectively. FLX was originally proposed as FLX(1) in 

[50]. 

0 0 

parent A 2 3 5 4 code parent A 2 2 2 

parent B 3 5 4 2 parent B 3 3 2 1 

mask 0 0 0 
decode 

child C 3 2 5 4 child C 3 2 

Figure 4.3: An example of FLX(1) with list (1, 2, 3, 4, 5). 

POPX (partial order preserving crossover): In this method, the child is a linear extension 

of the partial order defined by the two parents (i.e., the child does not conflict with the 

precedence relation common to both parents). Let D A be 

(4.2.3) 

Sets DB and De are similarly defined. Then the partial order of the two parents A and B is 

defined by D = DAn Da. (This is the same D as in (3.2.1) defined on a-A and a-8 .) Then a 

child C is generated o that D ~ D e holds. 

We consider two methods to generate a child. The first method POPX1 is described as 

follows. For a subset S ~ V , let AJo(S) be 

Afo(S) = {i E S I (j , i) rf_ D for all j E S - {i}}. 

Then the child O"C is generated as follows. 

1. Set S := V and i := 1. 
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2. Randomly choose j E Mn(S) , and set o-c(i) := j. 

3. If i = n holds, then halt; otherwise set i := i + 1, S := S - {j} and return to Step 2. 

This method is motivated by [134]. Similar idea is also introduced in [35]. 

In the second method POPX2, the element j is chosen from the set {O"A(i~),0"8 (i~)} in 

Step 2 instead of Mo(S) , where i~ is defined by i~ = min{i I o-A(i) E S} and i~ is similarly 

defined. See Figure 4.4, where the partial order D is represented by directed arcs of the 

graph in the same manner as Figure 3.1. In the example, initially M 0 ({1 , 2,3,4,5}) = {1 , 2} 

holds and 2 is chosen as o-c(1). In the second iteration, Mn( {1, 3, 4, 5}) = {1} holds and 1 

is chosen as O"c(2). Then, in the third iteration, Mo( {3, 4, 5}) = {3, 5} holds and 3 is chosen 

as o-c(3). Similar steps are repeated until O"C is completed. 

parent A 1 2 3 4 5 

parent B 2 5 3 4 

child C 2 3 5 4 

Figure 4.4: An example of POPXl. 

OX (order crossover): First randomly generate ann bit 0-1 mask msk E {0, 1}n, and 

set O"c(i) := O"A(i) fori with msk('i) = 0. Let Smsk be Smsk = {O"A(i) I msk(i) = 0}, then 

D~ =DB- {(i,j) I i E Smsk or j E Smsk} gives a total order of V - Smsk· The child o-c is 

completed by assigning elements to positions i with msk(i) = 1 according to the order of D~ 
(see Figure 4.5). As in PMX, we consider 1-point, 2-point and uniform crossover operators, 

and call them OX(1), OX(2) and OX(U), respectively. 

OX was originally proposed in [21] as OX(1) and in [89] as OX(2) independently. It is 

also introduced in other literature such as [47, 90] as OX(2). In [22] (p. 342rv ), OX(U) is 

introduced as two different crossover operators; however, they are the same in our framework. 

parent A 

parent B 

mask 

child C 

2 

2 

2 3 4 5 

5 

3 4 5 

Figure 4.5: An example of OX(1). 
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AEX (alternating edge crossover): In this method, a solution is represented by a pointer 

next, where next(i) = j means that element j is ordered next to i. For convenience, we include 

a dummy element 0 in both ends of the sequence. Then a permutation CJ is represented by 

next as 

next(O) 

next( CJ( i)) 

next( CJ( n)) 

CJ(1), 

CJ(i+1), i=1, ... ,n-1 

0. 

( 4.2.4) 

Let nextA, nextB and nextc be the pointer representations of parents A, B and child C, 

respectively. Then AEX is described as follows, where S is the set of elements not appeared 

in nextc yet (see Figure 4.6). 

1. Set i : = 0 and S : = V. 

2. Randomly choose j from the set{nextA(i),nextB(i)} n S if it is not empty; otherwise 

randornly choose j E S. Then set nextc ( i) : = j. 

3. Set i := j and S := S- {j}. If S = 0 holds, set nextc(i) := 0 and stop; otherwise 

return to Step 2. 

AEX was originally proposed in [50], which is slightly different from the above definition. 

In [50], the pointer nextc(i) is chosen from nextA(i) or nextB(i) alternately (from which the 

name 'alternating' comes) if possible; otherwise randomly chosen from S. Modified versions 

of this is also proposed in [50, 61]. 

0 ~ 

parent A '-----1-2-3-4-5 ) 

0 ~ 
parent B '-----2-3-I-5-4) 

0 ~ 
child C '-----2-3-4-5-1) 

Figure 4.6: An example of AEX. 

ERX (edge recornbination crossover): In this method, Step 2 of AEX is modified as fol

lows. If ne ~rtA(i), nexta(i) E S holds, instead of choosing the next element j randomly, the 

parent ~V (lV is A or B) with smaller nonzero value of I{ nextA(nextw(i)), nextB(nextw(i)) }n 

Sl is chosen. By using this rule, the element for which fewer pointers are left in S is pre

ferred; hence it is expected that the number of random pointers in nextc is reduced. ERX 

was originally proposed for TSP in [142], in which the adjacent two elements for each parent 

(in tead of only one next element a,' above) are considered and is slightly different from the 

one we explained. It is also introduced in [22] and a modified version is proposed in [118]. 
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Other crossover operators: There are some other permutation crossover operators 

proposed for TSP, such as subtour exchange crossover [127, 136, 140], sorted rnatch [89] and 

a similar one [13]. We also tested these operators after modifying them to fit SMP; however, 

we do not include the results as they are discouraging. Here we note that the original versions 

of these are reported to be quite effective for TSP and some other sequ<>ncing problems. This 

may be because of the difference in the problem structures. There are also some other 

permutation crossover operators such as [11, 48, 88]; however, we did not test them, since 

they are similar to one of the tested crossover operators or combinations of them. 

4.3 A General Framework of Crossover 

The crossover operators in the previous section are captured by the following general frame

work. 

1. Represent the two parents A and B by the sets of components ITA and ITB with which 

they are defined. Set the component set ITc of the child to be empty. 

2. Choose a new component e to include in ITc, i.e., ITc := ITc U { e }. Here e is chosen 

either (i) from ITA U ITB, or (ii) from those components consistent with the current 

ITc. Then, the components conflicting with the resulting ITc are then removed from 

ITA U IT 8 . (The rules of how to choose e and which of (i) and (ii) is used depends on 

the crossover operator.) 

3. Repeat Step 2 until the child C is uniquely determined by ITc. 

We call the components in ITc - (ITA U ITB) as non-inherited components, which are the 

components in the child C but not in the parents A and B. The crossover operators in the 

previous section are all described in the above framework by choosing appropriate components 

from the following definitions: 

i) PsR: ITA= {(i,CJA(i)) I i = 1, ... ,n}, 

ii) FLR: ITA= {(i,o-A(i)) I i = 1, ... ,n}, 

iii) OR: ITA = D A, 

iv) PtR: ITA= {(i, nextA(i)) I i = 0, ... , n}, 

where the set II 8 is similarly defined, and a-, D A and next were defined in ( 4.2.2), ( 4.2.3) and 

(4.2.4). For example, the component (i,CJA(i)) in i) means that the i-th element of parent 

A is CJ A ( i). We call the above four as i) position-based representation (denoted PsR), ii) 

free-list- based representation (denoted FLR), iii) order- based representation (denoted OR) 

and iv) pointer-based representation (denoted PtR). 

For example, PMX can be explained by the above framework by representing the two 

parents with PsR, that is, ITA= {(i,CJA(i)) I i E V} (ITB is similarly defined). First, set 
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Ilc := {(i,a(i)) E ITA I msk(i) = 0}, which corresponds to setting ac(i) := aA(i) for 

i with msk(i) = 0. Then ITs is modified by setting ITs := ITB - {(j, as(j)) I as(j) = 

aA(i) for some i with msk(i) = 0}. Set fie:= IlcU{(i, as(i)) E IIB I msk(i) = 1}. The child 

Cis completed by adding the non-inherited components by Ilc := Ilcu{(i, as(aA"1(as(i)))) I 
( i, j) r:f_ Ilc for all j E V}. CX is also explained by representing the parents by PsR. In this 

case, the rules are designed so that fie ~ ITA U lis holds. OX is explained by representing 

the parent A by PsR and representing the parent B by OR. Other crossover operators in the 

previous section are similarly explained within the above framework. 

As a natural implementation of a given framework, we can randomly choose the com

ponent e in Step 2. Crossover operators different from those in the previous section are 

sometimes defined by this rule. For PsR, for example, the following crossover operator is 

made, where {W1, W2} ={A, B} and lie is initially set empty. 

1. Randomly choose a component (i, aw1 (i)) E liA U ITB and add it to Tic. Set I1w
1 

:= 

Ilw1 - {(i,aw1 (i))} and Ilw2 := Ilw2 -({(i,aw2 (i))}u{(j,aw2 (j)) I aw2 (j) = aw
1
(i)}). 

2. Repeat Step 1 until ITA U liB becomes empty. 

3. Complete the child C by randomly adding into fie those components which do not 

conflict with the current Ilc. 

We call this crossover operator as the position-based random crossover, which is denoted 

as PsRND. For OR and PtR, the order-based random crossover (denoted ORND) and the 

pointer- based random crossover (denoted PtRND) are similarly defined by the above rule. 

For FLR, the previous FLX(U) corresponds to this random rule. For PtR, as the pointer 

next is a permutation of { 0, 1, ... , n}, we can design a crossover similar to CX, although care 

must be taken to avoid creating subcycles. We call this as the pointer-based cycle crossover, 

which is denoted as PtCX. 

The crossover operators explained in this chapter are categorized into five groups as shown 

in Table 4.1. From the above consideration, we can conclude that the crossover operators 

are defined by (i) the representation of the components and (ii) the rule of choosing the 

components added to the child. 

4.4 The Role of Crossover in GA 

In this section, we investigate the role of crossover operators in genetic algorithms. Let 

C(x; A, B) ~ F (F is the set of all feasible solutions) denote the set of solutions obtainable 

from the parents A and B by the crossover operator X (e.g., xis PMX(2), ERX, etc.). Then, 

an execution of a crossover can be viewed as the operation of randomly choosing a solution a 
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Table 4.1: Classification of crossover operators. 

representation 

PsR 

FLR 

OR 

PtR 

PsR+OR 

crossover operators 

PMX, CX, PsRND 

FLX 

POPX,ORND 

AEX, ERX, PtCX, PtRND 

ox 

from C(x; A, B). (Note that the probability of choosing a solution is not necessarily uniformly 

distributed.) 

One of the important roles of C(x; A, B) is to restrict the search to a promising region. 

On the other hand, it is not meaningful to restrict C(x; A, B) without reason; that is, the 

set C(x; A, B) should include as variety of solutions as possible if they are considered to be 

promising. We call the achievement of these roles as Objectives 1 and 2, which are summarized 

as: 

Objective 1: Restrict the search to a promising region, 

Objective 2: Include as variety of solutions as possible if they are considered to be 

promising. 

The tradeoff between these two objectives is considered to be a key to the success of GA. 

To achieve Objective 1, it would be meaningful to inherit as many components as possible 

from the parents. Therefore, one of the criteria is to include in C(x; A, B) those children 

containing non-inherited components as few as possible (Criterion 1). In GA, as the parents A 

and B are usually good solutions, it is expected that good solutions are included in C(x; A, B) 

by achieving Criterion 1, if the components used to define the solution reflect the problem 

characteristics well. 

To achieve Objective 2, one of the conceivable criteria is to make the size jC(x; A, B) I as 

large as possible (Criterion 2). 

Criteria 1 and 2 usually conflict with each other. That is, if we keep the number of 

non-inherited components small, the size jC(x; A, B) I also becomes small, and if we make 

jC(x; A, B)jlarge, the number of non-inherited components also becomes large. To evaluate 
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the achievement of the two objectives, we use the following two criteria: 

Criterion 1': (the smaller the better) the average cost of solutions in C(x; A, B), 

Criterion 2': (the larger the better) the standard deviation of the costs in C(x; A, B). 

Criteria 1 and 2 can be estimated before we implement the crossover operators, while Criteria 

1' and 2' are not available beforehand. 

Criterion 1 can be achieved to some extent by using the general framework of crossover 

operations in Section 4.3 and putting higher priority to the rule of choosing component e 

from ITA U ITB. Actually, it is theoretically shown that the expected number of non-inherited 

components liTe- (ITA U I1n)l is clllcl for some constant c with 0 ::; c::; 1 for most of the 

crossover operators explained in this chapter (e.g., c:::: 1/4 for PMX(U)). This tendency is 

also confirmed by the computational experiment in Section 4.5. 

To see the achievement of Criterion 2, here we evaluate the size IC(x; A, B) I. Let IC(x)l 

denote the expectation of IC(x; A, B) I if the parents A and B are generated randomly. For 

PMX, as the number of possible children is determined by the number of possible masks, 

IC(PMX(1))1 = O(n), IC(PMX(2))1 = O(n2) and IC(PMX(U))I = 0(2n) hold. (Precisely 

speaking, the same children may be generated from different masks; however, we consider such 

cases are rare and neglect the effect of them. Actually, even if we take this into account, we can 

show, for example, that IC(PMX(1))1 = n-O(logn) = O(n).) For ex, we can show that the 

expected number of cycles is O(logn), and hence, IC(CX(A))I = 0(1), IC(CX(1))1 = O(logn) 

and IC(CX(U))I = O(n) (the size of CX(U) is based on the experimental data) hold. For 

PsRND, IC(PsRND)I is considered to be about k!2n-k, where k is the number of non-inherited 

components. The expected number of non-inherited components k is shown to be k ::; n/5 

analytically, and is observed to be about n/7 experimentally. 

Therefore, the crossover operators of PsR sorted by non-decreasing order of IC(x)l are: 

CX(A), CX(1), CX(U), PrviX(1), P 1X(2), PMX(U), PsRND. 

For FLX, by the similar discussion with PMX, IC(FLX(1))1 = O(n), IC(FLX(2))1 = O(n2
) 

and IC(FLX(U))I = 0(2n) hold. Therefore, the operators of FLR are sorted as: 

FLX(1), FLX(2), FLX(U). 

For the operators of OR, we could only show that IC(POPX2)1 = 2n - O(logn) and IC(ORND)I = 
2°(n

2
) hold. By the relation C(POPX2; A, B) ~ C(POPX1; A, B) ~ C(ORND; A, B), the or

der is: 

POPX2, POPX1, ORND. 

For operators of PtR, IC(PtCX)I:::: IC(CX(U))i and jC(PtRND)I:::: jC(PsRND)I hold, and 

sizes IC(AEX)I and IC(ERX)I are considered to be close to IC(PtRND)j. By the relation 
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C(PtCX; A, B) c C(ERX; A, B) c C(AEX; A, B) c C(PtRND; A, B), the order of these 

operators is: 

PtCX, ERX, AEX, PtRND. 

For OX, by the similar discussion with PMX, jC(OX(1))1 = O(n), IC(OX(2))1 = O(n2
) and 

IC(OX(U)) I = 0(2n) hold. Therefore, the order is: 

OX(1), OX(2), OX(U). 

4.5 Computational Results 

As the objective of this experiment is to evaluate the crossover operators, the following simple 

framework of GA is used so that we can avoid interference from other operations and observe 

the performance of crossover operators as clearly as possible. The population P is set to 100, 

and all the initial solutions are generated randomly. It is not allowed to include the same 

solution in the candidate solutions. Selection is executed whenever a crossover is executed, 

and the worst solution in the candidate solutions is replaced if the child is not already included 

in the current candidate solutions. Mutation and local search are not incorporated. 

The algorithms were coded in C language and run on a workstation Sun SPARC station 

IPX. The problem instances of SMP were generated according to Subsection 3.6.1. vVe tested 

10 instances for each of n = 35 and 100, where the optimal values are known for the instances 

of n = 35 by the exact algorithm SSDP [60]. 

Table 4.2 shows the following data: 

i) The average error in % from the best (optimal for n = 35) solution found during the 

experiments if the algorithms are terminated after 10000 (30000 for PtR) crossover 

operations for n = 35, and 30000 (90000 for PtR) crossover operations for n = 100. 

ii) Ratio of non-inherited components in the child C. 

iii) Analytical order of the expected size IC(x)l of the set of children. 

iv) The normalized average quality (cost(a) - J.lAB)/ (~ lcost(aA)- cost(aB)I) of a E 

C(x; A, B) for fixed A and B, where J.lAB is the average cost of the parents defined 

by J.lAB = (cost(aA) + cost(aB)) /2. 

v) The standard deviation of the above normalized solution quality for a E C(x; A, B). 

The crossover operators are ordered in nondecreasing order of the size IC(x) I for each rep

resentation (see Table 4.1). We also include the results by the random search (denoted as 

RND), in which solutions are generated randomly, to give a basis to observe the effectiveness 
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of crossover operators. Data ii) is the results for 10000 independent samples. For data iv) 

and v), the best one in the initial candidate solutions is chosen as A, and 10-th best solution 

is chosen as B. Then, the average for 10 problem instances are shown, where 1000 samples 

were taken for each instance. 

Table 4.2: A comparison of various crossover operators. 

c rosso v e r i ) a vera ge e rror ii ) n o n - inherited iv) average quality v) standard deviation 

r e presenta tion o p e r a tor fro m th e bes t (%) compon ents (%) iii ) IC (x )l in C( x ; A , B ) in C( x; A , B) 

X n = 3 5 n = 100 n = 35 n = 100 n = 35 n = 100 n = 35 n = 100 

C X ( A ) 46.5 9 7.7 0 .0 0.0 0(1) 0.062 - 0.001 1.5 1.4 

C X ( 1) 47 .9 97.0 0.0 0 .0 O(logn) 0.007 0.018 1.2 1.1 

C X ( U ) 6 1. 9 100 .0 0.0 0.0 O(n) 0.028 - 0.004 1.2 1.2 

P s R PMX(1 ) 54 .4 136.3 14 .9 15.9 O(n) 0.171 0 . 187 1.1 1.2 

PMX ( 2 ) 16. 3 47.2 16 . 1 16.5 O(n 2 ) 0.713 0 .798 1.5 1.4 

PMX ( U) 8. 0 27 .7 22 .8 24.2 20(n) 0.806 0.807 1.7 1.4 

P s RND 9.4 25.9 12 . 7 13 .2 20(n ) 0.467 0.426 1.6 1.4 

FLX ( 1) 110 .2 181 .2 0.0 0.0 O(n) 0.733 0.649 1.4 1.4 

FLR FLX ( 2 ) 82 .3 152.6 0.0 0.0 O(n 2 ) 1.048 0.882 1 .6 1.4 

FLX ( U) 56 .5 100 .8 0.0 0.0 20(n) 2 .069 1.880 1.9 1.6 

POPX2 105. 9 205. 8 0 .0 0.0 20(n) 0 .023 - 0.020 0.5 0.3 

OR POPX1 67 .6 160 .9 0 .0 0 .0 2 0(n) -0.155 - 0.356 0.8 0.5 

ORND 8 .3 12 .3 6 .5 7 .8 20(n) 0.549 0.561 1.6 1.3 

PtC X 116 .4 206 .9 0 .0 0 .0 O(n) 0.608 0.442 1.4 1 .3 

Ptft ERX 76 .1:! 122 .6 17 . 2 17 .2 20(n ) 2.842 2.937 2.0 1. 1:! 

AEX 79.4 135. 2 19 .5 19.5 20(n) 2 .905 3.089 2.1 1.8 

PtRND 16. 2 56. 9 14 .0 13 . 7 20(n ) 2.429 3.120 2.1 1.7 

Ps H. OX ( 1 ) 110.1 190 .9 0 .0 0 .0 O ( n ) -0.077 - 0.117 0.9 1.0 

+ OX ( 2 ) 10. 7 36.0 0 .0 0.0 O(n 2 ) 0.379 0 .474 1.3 1.2 

OR OX ( U) 1.4 3 .8 0.0 0.0 20(n) 0.135 0.032 1.5 1 .2 

RND 182 .0 224. 5 100.0 100.0 O(n!) 3.440 3.170 2.1 1. 7 

From the table, it is observed that the ratio of the non-inherited components are small 

constants for all the crossover operators (except RND). This tendency is also analytically 

shown, as mentioned in Section 4.4. It is evident that , for crossover operators within the same 

rPprcscntation, the quality of solutions becomes better as the order of IC(x) I becomes larger. 

Note that , for most of crossover operators x with IC(x) I = 2°(n), the coefficient of 0( n) is 

close to one (i.e., IC(x)l ~ 0(2n)) and not much differences exist between them. However, 

for tlH' three operators of OR, the sizes are IC(POPX2)1 ~ 0(2n), IC(POPXl)l ~ 0(2 2n) and 

IC(ORND)I ~ 0(2411
) , which arc quite different. This would be a reason for a big performance 

change anwng the thrf'c op<'rators in OR. 

The av<'rage solution quality in C( x:; A, B) are about the same for all the crossover opera

tors within the same rcpr<'scntation. The quality of crossover operators of FLR and PtR are 

rather poor compared to oth<'r representations. Within the same representation, the solution 

quality becomes worse as t hf' ratio of non-inherited components becomes large, although the 

differ<'nces of the quality are much smaller than those between different representations. The 

standard deviation of the quality arc very small for POPX1 and POPX2, and are rather large 
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for ERX, AEX and PtRND, but are about the same for the rest of the crossover operators. 

These results support the discussions in the previous section. That is, as the number 

of non-inherited components are small (Criterion 1) for all the crossover operators except 

RND, the quality of the solution obtained by GA are better for larger IC(x) I (Criterion 2) 

within the same representation. For SMP, the size of order I C(x) I ~ 2°(n) seems necessary. 

Although IC(x)l is large, the solution quality of RND is not good, . since the number of non

inherited components are quite large (Criterion 1). Rather poor results are observed for 

crossover operators within FLR and PtR, for which the solution quality in C(x; A , B) is also 

poor (Criterion 1'). The results of POPX1 and POPX2 are not good , for which the standard 

deviations of the quality of solutions in C(x; A, B) are quite small (Criterion 2'). 

Here we compared the performance of each criterion only on the basis of the initial 

candidate solutions. To draw more reliable conclusion, it would also be necessary to observe 

how the performance changes as the search of GA proceeds. However, it is usually quite hard 

to evaluate such changes (analytically or numerically) beforehand. Moreover, the objective 

of this research is to give simple criteria to design good crossover operators. Therefore, we 

did not consider further details; but it is one of the important future research directions. 

Figures from 4. 7 to 4.11 show the behavior of average error in % from the best solu

tions found during the experiments. The results are shown against the number of crossover 

operations. We chose the number of crossover operations as the horizontal axis instead of 

computational time, since computational time is affected by the programming skills , which 

is not essential in this experiment. The crossover operators in each figure (except RND) 

are arranged from the top in non-decreasing order of the size IC(x)l. From the figures, it is 

confirmed that the solution quality becomes better as IC(x)l becomes larger within the same 

representation (Criterion 2). It is also observed that the convergence of crossover operators 

of OR are fast , but those of PtR arc slow. This indicate that the convergence would be faster 

if the standard deviation of the quality of solutions within C(x; A, B) is smaller. Note that 

good solution is not necessarily obtained by a fast convergence. 

As a whole, good performances are observed for OX(U) and crossover operators in which 

the rule of choosing components are random (e.g., PsRND, ORND, etc.). The definition of 

these crossover operators are quite natural, and they achieve the proposed two criteria to 

some extent. On the other hand , as in the case of 1-point and 2-point crossover operators, it 

is meaningless to restrict the size IC(x) I by the rules which are not essential. 

We conclude that achieving the proposed two criteria is important to design good crossover 

operators. However, in general, as the size IC(x)l and the standard deviation of the quality 

of solutions in C(x; A, B) become larger , the number of non-inherited components also be

comes larger and the average solution quality in C(x; A, B) becomes worse. Therefore, it is 

important to evaluate the tradeoff between the two criteria. From these considerations, we 

propose the following guideline for the design of crossover operators: 
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Figure 4.10: A comparison of crossovers (PtR). 
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Figure 4.11: A comparison of crossovers (PsR+OR). 

1. Make the size IC(x)llarger than 2°(n) while keeping the number of non-inherited com

ponents as small as possible. 

2. Choose good solution representation which capture the problem characteristics well so 

that the average solution quality in C(x; A, B) becomes better. 

It would also be worth trying to combine more than one representation as In the case of 

OX. Between the above two rules, 1 can be evaluated before designing crossover operators; 

however, 2 is difficult to predict and can only be evaluated after crossover operators are 

implemented. Therefore, the above guideline may be useful to compare crossover operators 

within the same representation; however, deep insight into the problem structure is needed 

to choose good solution representation. 

4.6 Conclusion 

In this chapter, we compared various crossover operators proposed for sequencing problems 

from the view point of general framework. It is confirmed that the performance of the 

crossover operators can be evaluated by some simple criteria related to characteristics of the 

set C(x; A, B) of children obtainable frorn the parents A and B. These criteria are expected 

to give a useful guideline in designing good crossover operators for genetic algorithms. 

4.6 Conclusion 57 

The results in Section 4.5 indicate that crossover operators with larger I C(x) I are prefer

able. This result is partially due to the framework of GA used in our experiments. We did not 

incorporate mutations and used the selection strategy with high selection pressure. There

fore, to keep the divergence in the candidate solutions, it was important to have variety of 

solutions in the set C(x, A, B) of children. There are other strategies to increase the variety 

of candidate solutions, such as incorporating mutations, using lar.ger population, employing 

the selections with lower pressure, and so on. Comparing the effectiveness of such strategies 

is one of the important future research directions. Incorporating other strategies, such as 

local search (i.e., genetic local search [126]) and exact algorithms [134], is essential to make 

GA competitive with other optimization tools. Examining such hybrid approaches is also 

important. 

The framework of GA is quite flexible and there are various ways to improve its perfor

mance. This robustness is one of the attractive features of GA; however, from the view point 

of users, the algorithms should be as simple as possible. In this sense, it is important to 

simplify the framework and analyze the effect of each basic operation to the performance of 

GA. The research of this chapter may contribute in this research direction. 
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Chapter 5 

Metaheuristics as Robust and 

Simple Optimization Tools 

5.1 Introduction 

One of the attractive features of metaheuristics is in its simplicity and robustness. They can 

be developed even if deep mathematical properties of the problem domain are not at hand, 

and still can exhibit reasonably good performance, much better than those obtainable by 

simple heuristics. In this chapter, we pursue this direction more carefully, by implementing 

various metaheuristics and comparing their performance. The objective is not to propose 

the most powerful algorithm but to compare general tendencies of various algorithms. The 

emphasis is placed .not to make each ingredient of such metaheuristics too sophisticated, and 

to avoid detailed tuning of the program parameters involved therein, so that practitioners 

can easily test the proposed framework to solve their problems of applications. As a concrete 

problem to test, we solve in this chapter the single machine scheduling problem (SMP). 

We test various metaheuristics, such as random multi-start local search (MLS), genetic 

algorithm (GA), simulated annealing (SA) and tabu search (TS), using rather simple inside 

operators. The results indicate that: (1) simple implementation of MLS is usually competitive 

with (or even better than) GA, (2) GA combined with local search is quite effective if longer 

computational time is allowed, and its performance is not sensitive to crossovers, (3) SA is 

also quite effective if longer computational time is allowed, and its performance is not much 

dependent on parameter values, ( 4) there are cases in which TS is more effective than MLS; 

however, its performance depends on how to define the tabu list and parameter values, and 

(5) the definition of neighborhood is very important for all of MLS, SA and TS. 

59 
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5.2 Design of Metaheuristic Algorithms 

Some details of the tested algorithms and the computational results are discussed in this 

section. All thf' tested algorithms were coded in C language and run on a Sun SPARC 

station IPX. The quality of the obtained solutions is evaluated by the average error from 

the best cost values, which were found in the entire experiment. The efficiency of algorithms 

is measured on the basis of the number of the solution samples evaluated, rather than the 

computational time, since the computational time depends on the computers used and other 

factors such as programming skill. Ten problem instances for each of n = 35 and 100 are 

generated as described in Subsection 3.6.1. 

Initial solutions are generated randomly except for GRASP, and the neighborhood N( a-) 

is always scanned according to a prespecified random order. 

5.2.1 Random Multi-Start Local Search 

The performance of LS and MLS critically depends on: (1) the definition of N( a-) and (2) 

the search strategy (i.e., how to search the solutions in N(a-)). In our experiment, only the 

following strategies are exarnined from the view point of simplicity. 

(1) Neighborhoods: Nins(a-) = {a-k+-l I k i- l} and Nswap(a-) = {ak<--4l I k i- l}. Here O"k+-l 

is the sequence obtained from a- by moving the l-th job to the location before the k-th job, 

while a-k.-.l is obtained by interchanging the k-th job and l-th job of a. 

(2) Search strategies: FA scans N( a-) and selects the first improved solution a-' satisfying 

cost(a-') < cost(a-), and BA selects the solution a' having the best cost in the entire area of 

N(a-). 

The average error(%) of the best solutions obtained by these four combinations are shown 

in Table 5.1, where 3 x 105 and 3 x 106 samples were generated for each test run with n = 35 

and 100, respectively. Table 5.1 also shows the average number of trials (i.e., the number of 

initial solutions) in parentheses. 

Table 5.1: Average error in% of the best solutions (average number of initial solutions) with 

MLS. 

n = 35; 3 x 105 samples n = 100; 3 x 106 samples 

Nins Nswap Nins Nswap 
FA 0.000 (97.6) 0.000 (131.0) 0.669 (103.6) 0.182 (126.5) 

BA 0.289 (8.6) 0.047 (13.9) 4.696 (3.2) 0.624 (5.0) 

These results indicate that: (1) Search strategy FA obtains good solutions earlier than 
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search strategy BA. (Based on this, the search strategy is fixed to FA in the rema1mng 

experiments.) (2) The quality of solutions obtained by neighborhood Nswap is better than 

that obtained by Nins· 

5.2.2 Greedy Randomized Adaptive Search Procedure 

This procedure is called GRASP and was explained in Section 2.2. The initial solutions are 

generated as follows. At each step, let M = { i E V I i is not scheduled yet}. A candidate 

set CA ~ M of a fixed number of jobs (ICAI is a prespecified positive integer) is chosen 

according to a criterion based on a local gain function that represents greedy heuristics, and 

then a job i E C A is randomly chosen as the next job. 

A total of 12 local gain functions ei(f) and ei(b) defined in [132] (see also Subsection 

3.3.2) and parameter values ICAI = 1, 2, 4, 7, 10,20 are tested to generate initial solutions 

of GRASP, where ICAI = 1 means the conventional greedy methods. In this subsection, 

only the results with the neighborhood Nswap are shown; however, similar tendencies were 

observed for Nins· Table 5.2 shows the average error (%) of the best solutions obtained by 

Table 5.2: Average error in %of the best solutions with GRASP using Nswap· 

I CAl 1 2 4 7 10 20 init 

e1(f) 0.183 0.156 0.228 0.170 0.169 0.151 50.5 

e1 (b) 0.205 0.309 0.193 0.223 0.230 0.154 53.8 

e2(f) 1.524 1.292 1.034 0.653 0.446 0.214 28.6 

e2(b) 1.339 1.117 0.650 0.423 0.270 0.150 33.6 

e3(f) 0.383 0.335 0.202 0.136 0.077 0.163 8.8 

e3(b) 0.568 0.398 0.193 0.220 0.137 0.183 16.0 

e4 (f) 0.170 0.099 0.121 0.097 0.153 0.189 18.2 

e4 (b) 0.466 0.392 0.214 0.308 0.205 0.241 72.7 

e5 (f) 0.120 0.171 0.117 0.147 0.069 0.145 73.2 

e5(b) 0.138 0.109 0.122 0.119 0.095 0.131 90.6 

e6(f) 0.172 0.135 0.053 0.106 0.109 0.107 116.0 

e6(b) 0.158 0.123 0.129 0.135 0.088 0.138 64.3 

MLS 0.182 314.6 

various GRASP algorithms within 3 x 106 samples. For comparison purpose, the last row, 

MLS, indicates the average error when initial solutions are generated randornly. The last 

column, init, indicates the average error of the initial solutions generated by greedy methods, 

i.e., with ICAI = 1, and the bottom is the average error of the initial solutions generated 
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randomly. 

The results indicate that: (1) Performance of GRASP critically depends on the local 

gain functions used for generating initial solutions. (2) If the local gain function is properly 

chosen, GRASP improves the performance of NILS to some extent. However the performance 

is hardly affected by the parameter jCAj. (3) A local gain function which produces better 

initial solutions does not always lead to better performance of GRASP. In other words, 

GRASP is simple and can be powerful than MLS, but not robust with the local gain functions 

used. 

5.2.3 Iterated Local Search 

Here we employed the framework of chained local optimization (see Section 2.2). In Step 

2 of ILS, a solution a is randomly chosen from N'(aseed), where either Nins of Nswap is 

used for N' and is denoted as INS or SWAP, respectively. In Step 4, a seed is chosen ran

domly according to the following rule: If cost(a) < cost(aseed), set aseed := a; otherwise 

set aseed := a with probability e- 6./t, where ~ = cost(a) - cost(aseed) and t is a pre

specified parameter. In our experiment, parameter t is fixed and the adaptive control of t 

such as used in simulated annealing is not incorporated. Here we tested parameter values 

t = 0, 1, 2, 4, 8, 16, 32, 64, 128,256,512, 1024, oo. Table 5.3 shows the average error (%) of the 

best solutions, where 3 x 106 samples were generated for n = 100. For n = 35, optimal 

solutions were found for most cases, and the result is omitted here. 

The results indicate that: (1) ILS is effective compared to MLS, (2) ILS is more effective 

for Nswap than for Nins, (3) the performance of ILS is not sensitive to the perturbation rule in 

Step 2, i.e., both INS and SWAP gives good results, and ( 4) smaller t gives better results and 

sufficient quality is usually obtained with t = 0. In conclusion, ILS is simple (even simpler 

than GRASP) and can be more powerful than MLS. 

5.2.4 Genetic Algorithm 

The frarncwork of GA (see Section 2.3) we examined is as follows: at each generation, generate 

a set of solutions Q ~ N(P) and select a set P' of P solutions from P U Q, and set P := 

P'. Recall that N(P) is the set of solutions obtainable from P by crossover and mutation 

operators. Among various types of crossover, mutation and selection operators, we considered 

the following representative operators. 

Crossover: The order crossover OX [21, 89] (see also Section 4.2) is employed here. We 

as ume that on<' child ac is produced from two parents a A and a a. Generate randomly 

ann-bit mask msk E {0,1}n. Set ac(k) := aA(k) for all k satisfying msk(k) = 0. Define 

D'a = Da- {('i,j) I 'i E Smsk or j E Smsk}, where Da = {(i,j) I aj;/(i) :::; a£/(j)} and 

Smsk = {aA(k) I msk(k) = 0}. Then D~ i the total order of as restricted to V- Smsk· 
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Table 5.3: Average error in % of the best solutions with ILS for n = 100 after 3 x 106 samples. 

Nins Nswap 

t INS SWAP INS SWAP 

0 0.312 0.360 0.008 0.001 

1 0.424 0.401 0.015 0.024 

2 0.362 0.570 0.012 0.023 

4 0.523 0.334 0.025 0.001 

8 0.422 0.205 0.012 0.005 

16 0.668 0.272 0.009 0.027 

32 0.726 0.660 0.023 0.009 

64 0.830 0.527 0.054 0.011 

128 0.892 0.689 0.046 0.060 

256 1.136 0.661 0.075 0.032 

512 0.936 1.064 0.125 0.056 

1024 0.926 1.158 0.138 0.064 

00 1.211 1.249 0.105 0.061 

MLS 0.669 0.182 

Cornplete ac by assigning jobs to all the positions k satisfying msk( k) = 1 according to 

D'a. Crossover operators based on arbitrary masks are called uniform, and those based on 

restricted masks having at most k adjacent 0-1 pairs are called k-point; e.g., masks 11000 and 

10011 are 1-point and 2-point respectively. We call 1-point, 2-point and uniform crossover 

operators of this type as OX(1), OX(2) and OX(U) respectively. 

Other types of crossover operators, such as partially mapped crossover [46] and cycle 

crossover [90, 132] (see Section 4.2), were also examined; however, the results arc omitted 

here, since the results for OX are better and the tendency is similar with other operators. 

Mutation: Mutation employed in this experiment perturbs a candidate solution a by a 

random selection a' E N (a) and a : = a'. Two types of neighbor hood Nins (a) and Nswap (a) 

are used as N(a); the resulting mutations are denoted as INS and SWAP respectively. 

Selection: In our experiment, the set of generated candidate solutions Q ~ N(P) is 

determined as follows. We use Q = 1 and the child ac E Q is obtained by randomly selecting 

two parents a A, as E P, mutating either a A or as, and then applying crossover of a A and 

as. Then with a solution aworst satisfying cost(aworst) ~ cost(a) for all a E P U Q, let 

P' := P U {ac}- {aworsd· Note that the selection is executed only if the child acE Q is 

not in P. 
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Various GA defined by the above crossover, mutation and selection operators are com

pared, in which P is always set to 100. Note that exactly one sample (i.e., cost evaluation) 

occurs during one generation, since Q = 1 is used. Table 5.4 shows the average error (%) of 

the best solutions obtained by the tested algorithms, where 3 x 104 (resp., 3 x 105
) samples 

were allowed for n = 35 (resp., 100). Here, 'MUT only' means that crossover is not used 

and 'no MUT' means that mutation is not used. The results of MLS are also included for 

comparison, where the same neighborhood as mutation is used. 

Table 5.4: Average error(%) of the best solutions with various versions of GA with P = 100. 

n = 35; 3 x 104 samples n = 100; 3 x 105 samples 

no MUT INS SWAP no MUT INS SWAP 

OX(1) 110.1 5.1 3.5 190.9 3.1 2.1 

OX(2) 10.5 0.2 0.8 35.9 2.6 0.7 

OX(U) 1.4 0.3 1.1 3.8 0.8 0.8 

MUT only 2.3 4.0 1.4 1.5 

IviLS 0.1 0.06 1.0 0.5 

These results indicate that: (1) Using mutations is essential to get good solutions within 

the framework of GA. (2) Performance of G A is not sensitive against the types of crossover 

operators if combined with mutation, though it critically depends on the types of crossover 

operators if mutation is not used . (3) Crossover is also effective to improve GA, since GA 

with MUT only needs slightly more samples than GA with crossover to obtain solutions of 

similar quality. ( 4) MLS performs better than GA of this sort. 

GA using different population sizes P are also tested. Table 5.5 shows the average error 

in % of the best solutions after 3 x 106 samples were generated, where n = 100 and crossover 

type is OX(U). For comparison purpose, the results of MLS are also included in Table 5.5, 

where the same neighborhood as the mutation is used. 

Table 5.5: Average error in % of the best solutions with GA after 3 x 106 samples. 

P 101 102 103 104 MLS 

INS 4.876 

SWAP 0.804 

0.641 

0.802 

0.595 

0.538 

0.524 0.669 

0.327 0.182 

The results indicate that: (1) Better solutions are obtained on average asP increases, at 

the cost of t<>sting more number of samples. (2) The quality of solutions obtained by MLS is 
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still slightly better than those results of GA. 

Note that much more computational time is needed to sample a solution with GA com

pared to other algorithms, such as MLS. We may conclude that the effectiveness of simple 

GA is in question. 

5.2.5 Genetic Local Search 

Genetic local search (GLS) is a variation of GA, in which the new candidate solutions in Q 

are improved by LS. Other operators are the same as GA. Various GLS were compared, in 

which Pis set to 20. The results for n = 35 are omitted, since almost all the tested algorithms 

could obtain exact optimal solutions for all the instances. Table 5.6 shows the average error 

(%) of the best solutions for n = 100, where 3 x 106 samples were generated. The results of 

MLS are also included for comparison purposes. 

Table 5.6: Average error (%) of the best solutions with GLS in which P = 20. 

neighbor Nins Nswap 

mutation noMUT INS SWAP noMUT INS SWAP 

OX(1) 0.281 0.361 0.303 0.090 0.065 0.069 

OX(2) 0.220 0.327 0.272 0.038 0.052 0.047 

OX(U) 0.203 0.164 0.266 0.015 0.069 0.038 

MUT only 0.598 0.510 0.103 0.057 

MLS 0.669 0.182 

We can summarize these results as follows. (1) GLS can obtain solutions of higher quality 

than GA and MLS, particularly when long computational time is allowed. (2) GLS is rather 

insensitive to the types of crossover and mutation. Between crossover and mutation, crossover 

appears slightly more effective. On the other hand, GLS only with mutations is much easier 

to implement, since mutation can be realized by using the neighborhood of LS, and hence 

the additional efforts required is very little. (3) The solution quality critically depends on 

the type of neighborhood. 

ILS can be viewed as a special case of GLS in which P = 1 and crossover is not incorpo

rated. By comparing Tables 5.3 (R = 0) and 5.6 (column 'MUT only'), we can conclude that 

the performances of GLS and ILS are similar. More computational results for MLS, GA and 

GLS are found in [132]. 
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5.2.6 Simulated Annealing 

The SA used in this experiment is similar to the one in [64] (see also Section 2.4). Our 

algorithm includes parameters I P, T R, SF and T F. The initial temperature tis determined 

so that 

( L e-{cost(a') - cost(a)}/t) /IUP(a)l ~ IP 
a'EU P(a) 

for randomly chosen initial solutions a, where UP(a) = {a' E N(a) I cost(a') > cost(a)}. 

Then the following loop is executed, where k is initially set to 0. 

While k < T R · INI do the following. 

(a) Perform the following loop SF· INI times. 

1. Pick a random neighbor a' E N(a). 

11. Let~= cost(a')- cost(a). 

111. If~ ~ 0, set a = a'. 

1v. If~ > 0, set a = a' with probability e-!:::../t. 

v. If~ < 0, set k = 0; otherwise set k = k + 1. 

(b) Set t = T F · t. 

Upon termination, the search is restarted from a randomly chosen initial solution unless 

sufficient number of solution samples has been tested. 

The parameter T R is set to 1 for Nins and 2 for Nswap according to a preliminary exper

iment. The parameter T F is fixed to 0.95 as suggested in [64]. 

First the effect of I P is examined, and it is observed that: (1) the quality of the obtained 

solutions becomes better as I P increases up to 0.1; however, it does not change much if 

I P 2: 0.1, and (2) the number of samples needed for one trial of the algorithm becomes larger 

as I P increases. 

Next the effect of SF is examined with I P = 0.3. It is observed that: (1) the quality of 

the solutions becomes better as SF increases up to 1; however, it does not change much if 

SF 2: 1, and (2) the number of samples needed for one trial of the algorithm becomes larger 

as SF increases. 

From these results, we examined four combinations of IP and SF: IP = 0.1, 0.3 and 

SF= 1, 2. Table 5.7 shows the average error (%) of the best solutions, where 3 x 105 (resp ., 

3 x 106 ) samples were allowed for n = 35 (resp., n = 100). The results of MLS are also 

included for comparison. 

We ran summarize these results as follows. (1) SA can obtain solutions of higher quality 

than MLS, provided that rather long computational time is allowed. (2) The quality of the 
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Table 5. 7: Average error (%) of the best solutions with SA. 

n = 35; 3 x 105 samples n = 100; 3 x 106 samples 

IP SF Nins Nswap Nins Nswap 

0.1 1 0.144 0.000 0.184 0.034 

0.1 2 0.124 0.003 0.217 0.032 

0.3 1 0.035 0.000 0.153 0.029 

0.3 2 0.033 0.000 0.227 0.014 

MLS 0.000 0.000 0.669 0.182 

solutions obtained by SA is rather insensitive to the parameter values, though the number of 

samples needed for one trial critically depends on them. (3) The solution quality critically 

depends on the type of neighborhood. 

5.2.7 Threshold Accepting and Great Deluge Algorithm 

In the threshold accepting (TA) (see Section 2.4), we use four parameters I P, T R, SF, T F, 

as in the case of simulated annealing. The initial threshold T is determined so that 

{a' E UP(a) I cost(a')- cost(O") ~ T}/IUP(a)l ~ IP 

holds for randomly chosen initial solution a. Then a similar loop with SA is repeated, where 

Step (a)-iii is replaced with 

iii'. If~ < T, set a:= a'. 

and parameter t is replaced with T. 

As in the case of SA, the parameter T F is set to 0.95, and the parameter T R is set to 

1 for Nins and 2 for Nswap according to a preliminary experiment. Then the effect of the 

parameters I P and SF are examined; however, the tendency is not very clear. 

Based on these observations, we examined ten combinations of I P and SF: I P = 0.1, 0.3 

and SF= 0.25, 0.5, 1, 2, 4. Table 5.8 shows the average error(%) of the best solutions, where 

3 x 105 (resp., 3 x 106 ) samples were allowed for n = 35 (resp., n = 100). The results of MLS 

are also included for comparison. We can observe that the performance of TA is competitive 

with SA. 

The framework of the great deluge algorithm (GDA) (see Section 2.4), employed in this 

experiment is as follows. Two parameters RS (called rain speed) and T R are included. The 

first water level is set to W := cost( a) for a randomly chosen initial solution a. Then the 

following loop is executed, where k is initially set to 0. 
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Table 5.8: Average error (%) of the best solutions with TA. 

n = 35; 3 x 105 samples n = 100; 3 x 106 samples 

IP SF Nins Nswap Nins Nswap 

0.1 0.25 0.003 0.000 0.093 0.031 

0.1 0.5 0.000 0.000 0.155 0.037 

0.1 1 0.243 0.003 0.196 0.006 

0.1 2 0.376 0.000 0.326 0.041 

0.1 4 0.364 0.132 0.385 0.019 

0.3 0.25 0.000 0.000 0.130 0.031 

0.3 0.5 0.101 0.018 0.165 0.031 

0.3 1 0.082 0.023 0.200 0.039 

0.3 2 0.146 0.023 0.401 0.029 

0.3 4 0.246 0.023 0.336 0.040 

MLS 0.000 0.000 0.669 0.182 

While k < T R · INI holds, do the following. 

(a) Randomly choose a solution a' from N(a). 

(b) If cost(a') < W holds, set a:= a' and W := W- RS(W- cost(a')). 

(c) If cost( a') - cost( a) < 0 holds, set k := 0; otherwise set k := k + 1. 

The parameter T R is set to 1 for Nins and 2 for Nswap according to a preliminary experi
ment. Then the effect of the parameter RS is examined within the range of RS = 0.00125 rv 

0.64, and it is observed that (1) the solution quality becomes better as RS becomes smaller, 
(2) the number of samples needed for one iteration becomes larger as the RS becomes smaller. 

Based on these, we examined the parameter values RS = 0.005, 0.01. Table 5.9 shows the 
average error (%) of the best solutions, where 3 x 105 (resp., 3 x 106

) samples were allowed 
for n = 35 (resp., n = 100). The results of ILS are also included for comparison. We can 
observe that the performance of GDA is also competitive with SA. 

It i well-known that the search of SA converges to a global optimum under certain 
conditions (e.g. , [79]), and this result is sometimes considered to give support for the success of 
SA. How('v r, similar (but rather weaker) result is al o known for TA [7]. In such convergence 
results, the asymptotic behavior of algorithrns when the number of iterations tends to infinity 
arc discussed, and such analyse do not necessarily explain the performance within limited 
computational tim . In addition, TA and GDA gave competitive results with SA in our 

experinwnts. 
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Table 5.9: Average error (%) of the best solutions with GDA. 

n = 35; 3 x 105 samples n = 100; 3 x 106 samples 

RS Nins Nswap Nins Nswap 
0.005 0.069 0.228 0.239 0.048 
0.01 0.000 0.015 0.227 0.027 

MLS 0.000 0.000 0.669 0.182 

5.2.8 Tabu Search 

In the tabu search (see Section 2.5), we scan N(a) and select the first solution a' satisfying 
cost(u') < cost(u) and a' rf_ T U {a}, or satisfying cost( a') < best (i.e., aspiration criterion), 
where best is the cost of the best solution found cluing the past search. If none of the solutions 
in N(a) is selected by the above rule (i.e., a is locally optimal), the next solution is selected 
as follows. A counter M C and a parameter R are used to control the process of generating 
the next initial solution when one trial of tabu search ends. If MC < R holds, then the best 
solution in N(a)\( {a} U T) is chosen as the next initial solution, and MC is incremented by 
one; otherwise the solution u' E N(a)\({a} U T) that minimizes cost(a') +a· penalty(a') 
is chosen as the next solution and MC is reset to zero, where a is a prespecified program 
parameter and penalty( a') is a cost of the long term memory. Finally, if a solution better 
than the past best solution is found (aspiration criterion), MC is reset to zero. 

Two types of tabu lists Tjob and Tpos are considered, where Tjob(a) = {u' E N(u) I the 
move from a to a' changes the position of a job whose position has been changed in the last TT 
moves} and Tpos (a) = {a' E N (a) I the move from a to a' assigns a job to the position where 
it has been assigned in the last TT moves}. The parameter TT is a prespecified nonnegative 
integer called tabu tenure. We examined two types of penalties of long term memory, which 
are called penaltymove and penaltyperiod· Let LTmove(i, k) be the number of moves of job 
i from position k which have been made during the past search, and LTperiod(i, k) be the 
period that job i has been scheduled at position k so far. Then we define penaltymove(u') = 

~jECH(O"') LTmove(j, a - 1(j)) and penaltyperiod(a') = ~k= l LTperiod(u'(k), k), where CH(a') 
is the set of jobs whose positions are changed by the move from a to a'. 

First a is set to 0 in order to examine the effect of tabu lists (short term memory). Two 
types of tabu list Tjob and Tpos, and various TT values are tested. It is observed that: (1) TS 
can obtain solutions of higher quality than MLS if Nswap and Tpos are used and TT = 1 rv 5, 
and (2) the performance of TS is worse than MLS with other combinations. From these, we 
consider only Tpos in the remaining experiments. 
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Second the effect of the long term memory is examined. Two types of penalties penaltymove 

and penaltyperiod, and various a values are tested. It is observed that: (1) TS can obtain 

solutions of better quality than MLS if Nswap and penaltyperiod are used with a 2: 104
, and 

(2) the performance of TS is worse than MLS with other combinations. From these, we 

consider only penaltyperiod in the remaining experiments. 

Finally the short and long term memories are combined together. Here the parameter a 

is set to 103 (resp., 104 ) for n = 35 (resp., 100). Parameter values TT = 1, 3, 5, 7, 10, 20 are 

examined and R is set to TT. Table 5.10 shows the average error (%) of the best solutions 

obtained by TS, where 3 x 10,.5 (resp., 3 x 106 ) samples were generated for n = 35 (resp., 100). 

Table 5.10: Average error (%) from the best solutions with TS. 

n = 35; 3 x 105 samples n = 100; 3 x 106 samples 

TT Nins Nswap Nins Nswap 

1 0.000 0.000 1.449 0.086 

3 0.037 0.000 0.965 0.150 

5 0.084 0.000 1.647 0.093 

7 0.358 0.000 1.689 0.167 

10 0.360 0.000 1.684 0.148 

20 0.542 0.000 1.899 0.204 

MLS 0.000 0.000 0.669 0.182 

We can summarize these results as follows. (1) TS can obtain solutions of higher quality 

than MLS if Nswap is used, and its performance is not sensitive to parameter TT. (2) TS does 

not improve the performance of MLS if Nins is used. (3) The performance of TS critically 

depends on the type of memories (the tabu list and the long term memory). 

5.3 Comparison of Metaheuristics 

We conclude this chapter by comparing four metaheuristic algorithms tested so far. Figures 

5.1 and 5.2 show how the average error (%) of the best solutions improves as the number 

of sa1nplc increa es for problem in tances with n = 100. Both neighborhoods Nins (Fig. 

5.1) and Nswap (Fig. 5.2) are examined, where in the case of GA, mutation operators INS 

and S\i\'AP ar used corre ponding to Nins and Nswap, respectively. For GRASP with neigh

borhood Nins (resp., Nswap) local gain function e5 (b) (r p., e5 (f)) is used and parameter 

ICAI is set to 7 (resp., 4). For ILS with neighborhood Nins (resp., Nswap), parameter t is 
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set to 8 (resp., 0). Crossover operator OX(U) is used for GA and GLS. The parameter P is 

set to 1000 for GA and 20 for GLS, and mutation is not incorporated for GLS. For SA with 

neighborhood Nins (resp., Nswap), parameters are set to I P = 0.3 , T R = 1, SF = 1 and 

T F = 0.95 (resp., I P = 0.3, T R = 2, SF = 2 and T F = 0.95). For TA with neighborhood 

Nins (resp., Nswap), parameters are set to I P = 0.1, T R = 1, SF = 0.25 and T F = 0.95 

(resp., IP = 0.1, TR = 2, SF = 1 and TF = 0.95). For GDA with neighborhood Nins 

(resp., Nswap), parameters are set to TR = 1 and RS = 0.01 (resp., TR = 2 and RS = 0.01). 

For TS with neighborhood Nins (resp., Nswap), tabu list Tpos and penalty penaltyperiod are 

used and the parameters are set to R = 3, TT = 3 and a= 104 (resp., R = 5, TT = 5 and 

a= 104). 

From these results, we can conclude that: (1) Performance of GA is robust about mu

tation; however, its performance is rather poor. (2) GRASP, ILS, GLS and SA improve 

the performance of MLS further, among which ILS, SA and GLS appear more powerful if 

the same neighborhood is used. (3) Performance of MLS, GRASP, ILS, GLS, SA and TS 

critically depends on the type of neighborhood used. 

In view of these, we can summarize our recommendation about the use of metaheuristic 

algorithms as 'simple optimization tools' as follows. 

1. If the simplicity is our first concern, use MLS. In this case, the component to be defined 

is only the neighborhood. 

2. If obtaining solutions of higher quality is important, first try ILS, since ILS is simpler 

than other metaheuristics. 

3. If the performance of ILS is not sufficient, use SA or GLS. 

5.4 Conclusion 

In this chapter, various metaheuristic algorithms were compared from the view point of ro

bustness and simplicity. As a concrete problem to test, we chose the single machine scheduling 

problem (SMP) and metaheuristics such as the multi-start local search (MLS), the genetical

gorithm (GA), the simulated annealing (SA), the tabu search (TS), and some of their variants 

were examined. A guideline to design metaheuristic algorithms was proposed in the previous 

section, based on the computational results. These results were limited to a single problem, 

and it is important to conduct similar comparisons on basis of various types of problems so 

that we can understand the general tendencies of the rnetaheuri!::ltic algorithms. 
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Figure 5.1: Average error(%) from the best solution (Nins). 
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Figure 5.2: Average error(%) from the best solution (Nswap). 

Chapter 6 

Enumerating All Common 

Intervals of Two Permutations 

6.1 Introduction 

Two permutations o-A and o-a of set V = {1, ... ,n} are given as the input, where o-A(i) = j 

(or o-A 1 (j) = i) denotes that j is the i- th element of o-A ( o-B is similarly defined). Let 

[x,y] denote the index set {x,x + 1, ... ,y}. We call a pair of intervals ([xA,YA],[xa,ya]) 

(1 ::; XA < YA ::; n, 1 ::; XB < YB ::; n) a common interval if it satisfies 

(6.1.1) 

The length of a common interval ([xA, YA], [xB, YB]) is defined to be YA - XA + 1. 

Some genetic algorithms based on common intervals have been proposed for sequencing 

problems (e.g., traveling salesman problem, job shop scheduling problem, etc.) and have 

exhibited good prospects [13, 70, 89, 140]. 

In this chapter, we consider enumeration of all common intervals of length 2 to n. Three 

algorithms are proposed, which are improved versions of a simple O(n2) time algorithm 

proposed in [136]: 

1. A simple O(n2) time algorithm (called LHP), whose expected running time becomes 

0( n) for two randomly generated permutations. 

2. A practically fast O(n2) time algorithm (called MNG) using the reverse Monge property. 

3. An 0( n + K) time algorithm (called RC), where K (::; G)) is the number of outputs. 

It will be also shown that the expected number of common intervals of length 2 to n - 2 for 

two random permutations is 2 + 0( n - 1 ). This implies that the expected number of common 

intervals of length 2 to n is 0( 1), since the number of common intervals of length n- 1 or n is 

73 
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at most 3. This result gives a reason for the phenomenon that the expected time complexity 

O(n) of the algorithm LHP is independent of the output length K. We also give an example 

for which both LHP and MNG requires S1(n2 ) time, although K = O(n). 

Among the three algorithms proposed in this chapter, RC is most desirable from the 

theoretical point of view; however, it is quite complicated compared to LHP and MNG. 

Therefore, it is possible that RC is slower than the other two algorithms in some cases. For 

this reason, computational experiments for various types of problems with up to n = 106 are 

conducted. The results indicate that 

1. LHP and MNG are much faster than RC for two randomly generated permutations 

(e.g., LHP is about 13 times faster than RC). 

2. MNG is rather slower than LHP for random inputs; however, there are cases that LHP 

requires !1(n2 ) time, but MNG runs in o(n2 ) time and is faster than both LHP and RC. 

A recommendation about the use of the three algorithms is discussed in Section 6.8, based 

on the computational results. 

These results are also applicable to similar problems defined on two cyclic permutations 

[136, 131 J. 

6.2 Basic Algorithm 

Here, we describe the basic O(n2) time algorithm [136], which is the starting point of all the 

algorithms proposed in this chapter. For convenience, we denote the function a]/ · a A by 

7rAU (i.e., 7rAB(i) = a.B 1(aA(i)) holds for all i, and 7rAB(i) = j means that the i-th element 

of a A is located in the j-th position of a B) throughout this chapter, which can be calculated 

frorn a A and a B in 0( n) time. We also define the following functions for an interval [x, y] of 

a A: 

l(x,y) min 7rAB(i) 
i E [x,y] 

(6.2.2) 

u(x,y) max 7r;tB(i) 
iE[x,y] 

(6.2.3) 

J(;r,y) u(x,y) -l(x,y)- (y- x). (6.2.4) 

Since j(J.·,y) is the number of elements in {aa(i) I i E [l(x,y),u(x,y)]}\{aA(i) I i E [x,y]}, a 

pair ([.r , y] [l(x, y), u(x, y)]) is a common interval if and only if f(x, y) = 0. Then all common 

intervals can be enumerated by calculating f ( x, y) for all ( x, y) pairs satisfying 1 ::; x < y ::; n. 

This gives rise to the following algorithm. 

Algorithm BSC 

Line 1: for x = 1, ... , n- 1 do 

6.3 Simple Improvements of the Basic Algorithm 

Line 2: 

Line 3: 

Line 4: 

Line 5: 

Line 6: 

Line 7: 

Line 8: 

l:=u:=nAB(x); 

for y = x + 1, ... , n do 

l:=min{l, 7rAB(Y)}; 

u:=max{ u, 1r AB(Y)}; 

if u- l - (y- x) = 0 then 

output ([x, y], [l, u]) 

end for 

Line 9: end for. 
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The variables u and l in BSC correspond to the function values u(x, y) and l(x, y) defined 

above. The time complexity of this algorithm is O(n2 ), since Lines 4, 5, 6 and 7 can be 

executed in 0(1) time. 

6.3 Simple Improvements of the Basic Algorithm 

In this section, we propose two improved versions of BSC, called LHP and MNG, both of 

which detect some redundant inner loop iterations from Line 3 to 8 of BSC by simple tests, 

and remove them from execution. They still require 0( n 2 ) time in the worst case; however, 

it is observed that they are practically much faster than BSC for many types of problems. 

6.3.1 The Algorithm LHP 

Here we describe the algorithm LHP. It is shown in Section 6.5 that the expected running 

time of this algorithm for two randomly generated permutations is O(n). For convenience, 

only the common intervals of length 2 to n- 2 are considered in this subsection, and Line 3 

of BSC is modified as 

"Line 3': for y = x + 1, ... , min { n, x + n - 3} do". 

Modification of the algorithm to the original problem (where common intervals of length 2 to 

n are considered) is easy and the results of this chapter are not affected by this assumption 

by the following reasons. The pair of intervals of length n (i.e., ([1, n], [1, n])) is always a 

common interval. There are four pairs of intervals, ([1, n- 1], [1, n- 1]), ([1, n- 1], [2, n]), 

([2, n], [1, n- 1]) and ([2, n], [2, n]), which are the candidates for common intervals of length 

n-1. The pair of intervals ([1, n-1], [1, n-1}) is a common interval if and only if 7rAs(n) = n. 

The other cases are similar. Therefore, we can enumerate all common intervals of length n- 1 

in constant time by checking if 7rAB(1) = 1, 7rAB(1) = n, 7rAB(n) = 1 or 7rAB(n) = n holds. 

We improve the basic algorithm BSC in the following two respects. 

The first is that, if 

u- l >min{ n- x, n- 3} ( 6.3.5) 



76 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS 

is satisfied just before entering Line 6 of BSC in the x-th iteration, then the rest of current 

inner loop can be omitted, and we move into the (x + 1)st iteration immediately. Note that 

u -l is monotonically nondecreasing during the x-th iteration. Condition (6.3.5) implies that 

the length of interval [l, u] of a B exceeds the maximum length of interval [x, y] of a A when y 

is increased up to min{ n, x + n- 3 }. We call this condition length condition. 

Let H P be the set 

HP V\{nAB(w) I w=x,x+1, ... ,min{n,x+n-3}} 

{ 1r AB ( w) I w E [ 1, x - 1] or w = x - 2 (mod n) or w = x - 1 (mod n)}. 

The second is that, if an h E H P satisfies 

l<h<u (6.3.6) 

just before entering Line 6 of BSC, then the rest of the current inner loop can be omitted. 

H P is the set of indices of the elements which will not be included in any interval [x, y] 
(y = x + 1, ... , min{ n, x + n- 3}) of a A· We call each element of H P a hole point, and 

call condition (6.3.6) HP condition. It is not advantageous to check the HP condition for all 

h E H P, since the whole running time increases to O(n3 ). Hence, we check the HP condition 

for only a sufficiently small portion of H P, which we call H P', so that the original worst case 

time complexity O(n2) is preserved. For this, IH P'l should be kept constant. After trying 

several in preliminary computational experiments, we choose H P' as follows: 

HP' = {nAB(w) I w = x- 2 (mod n) or w = x- 1 (mod n)}. 

As other nat ural candidates, one may consider 

{nAB(w) I wE [1,n] and w = x- 1 (mod n)} or 

{an element randomly chosen from H P}. 

(6.3.7) 

( 6.3.8) 

Howev<:>r, it is observed that O(n log n) average time is needed for two randomly generated 

permutations if we use H P1, and it is also observed that the algorithm becomes slower if 

we use H P2 (one of the conceivable reasons for this phenomenon is that generating random 

values frequently is too expensive). More discussion is in [131]. 

6.3.2 The Algorithm MNG 

Here we describe the second algorithm tviNG. It use the fact that the function f defined by 

( 6.2.4) satisfies the reverse Monge property, that is, 

j(J..t, y) + j(x, y') ~ j(x', y') + J(x, y) (6.3.9) 
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holds for all x', x, y, y' satisfying x' < x < y < y' (see Appendix A for the proof). From 

(6.3.9), we have 

f(x, y') > f(x, y)- {f(x', y)- f(x', y')} 

> f(x,y)- {f(x',y)- min f(x',z)}. 
zE[y+1,n] 

Since the above inequalities hold for every x' ( < x), 

f(x,y') ~ f(x,y)- min {f(w,y)- min j(w,z)} 
wE[1,x-1] zE[y+1,n] 

(6.3.10) 

(6.3.11) 

holds. The value of minwE[1,x-1J{f(w, y)- minzE[y+1,n] f(w, z)} gives an upper bound for the 

decrease of f(x , y) when y is increased upton. Hence, if x ~ 2 and 

f ( x, y) - min { J ( w, y) - min f ( w, z)} > 0 
wE[1,x-1] zE[y+1,n] 

(6.3.12) 

holds just before entering Line 8 of BSC in the x-th iteration, then the rest of the current 

inner loop can be omitted, and we can move to the (x + 1 )st iteration immediately. 

Now let Ylast be defined as the value of y at Line 9 when we exit the inner loop. If 

Ylast :::; n - 1, then we will not complete computing minzE[YLast+1,n] f(x, z ). Hence, we may 

fail to check condition (6.3.12) for larger x. Thus we define a function 

LD(x , y) = 

oo, (x = 1, y = 2, 3, ... , n- 1) 

min{LD(x -1,y),j(x -1,y)- min J(x -1,z)}, 
zE[y+l,n] 

(x ~ 2,y = x,. · · ,Ylast -1,Ytast = n) 
min{LD(x- 1, y), j(x- 1, y)- min{ min f(x- 1, z), 

zE[y+1,Ylastl 

J(x- 1, Ylast)- LD(x- 1, Ylast)} }, 

(x ~ 2,y = x, ... ,Ytast,Ylast:::; n -1) 

(6.3.13) 

LD(x- 1, y), (x ~ 2,y = Ylast + 1, · · · ,n -1,Ytast:::; n -1). 

The function LD(x, y) can be calculated even if Ylast :::; n- 1, and satisfies 

LD(x,y) ~ min {f(w,y)- min f(w,z)}. 
wE[l,x-1] zE[y+l,n] 

(6.3.14) 

An inner loop can be terminated if condition 

f(x, y)- LD(x, y) > 0 (6.3.15) 

holds. The correctness of the algorithm is retained even after this modification, since condi

tion (6.3.15) implies condition (6.3.12). We call condition (6.3.15) Monge condition. 

We defined LD as a function of both x and y for convenience; however, the value of 

LD(x, y) can be overwritten on the memory space of LD(x- 1, y) in the actual execution. 

Such an update of LD is executed every time we exit the inner loop, which is possible in 
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O(Ylast- x) time. Hence, the worst case running time 0( n 2) of the algorithm BSC is preserved 

for MNG. 

We further set a parameter R E (0, 1], and do not exit the inner loop for y > R( n- x) + x 

even if Monge condition is sat isfied. (R = 1 means the case we do not use this modification.) 

Once y > R( n - x) + x holds, Ylast is forced to be n and we can update LD by using the 

second formula of (6.3.13); hence, LD value may improve by this modification. The total 

time spent to inner loops increases at most 1/ R times compared to the case with R = 1. We 

set R to 0.5 in the computational experiments, since remarkable improvement was observed 

in some problem instances compared to R = 1. 

6.3.3 Remarks about the Two Algorithms 

Two algorithms LHP and MNG can be combined; however, slight modifications are needed 

in updating LD. It would be worth trying to terminate the inner loop by length condition, 

HP condition or l\tionge condition only if y < R(n- x) + x for a parameter R E (0, 1]. Since 

the computational time gains at most 1/ R times of the algorithm LHP, expected running 

time of this combined algorithm remains 0( n) for two randomly generated permutations. It 

is also noted that some LD values may become larger than those realized by MNG alone, 

and this combined algorithm will not necessarily improve the performance of MNG. 

Although it is observed that algorithms of this type are much faster than the algorithm 

BSC for many types of problems, they always require O(n2) time for some problem instances. 

For example, consider the problem given by setting CT A ( i) = i ( i = 1, ... , n) and 

{ 
2 · 1 ,; _< 1n/2l 

( 
') 't- ' " I 

0"8 ~ = 
2( n - i + 1), i 2:: I n/2l + 1. 

The function f then takes 

f(x,y) > 0, x=1, ... ,n-1, y=x+1, ... ,n-1 

f(x,n) 0, x = 1, ... , n- 1 

and the number of outputs is K = O(n). Any algorithm improved from BSC by "omitting 

redundant loops" requires 0( n 2 ) time for this example, since the inner loop must be repeated 

until y becomes n for all x. It shows a limitation of the algorithms of this type. 

6.4 An Algorithm with O(n + K) Worst Case Running Time 

In this section, we propose an algorithm called the reduce candidate algorithm (abbreviated 

as RC) which runs in O(n + J() tin1e in the wor t case. Since the algorithm runs in time 

proportional to the number of inputs and outputs, it is optimal in the sense of the worst case 
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time complexity. On the other hand, those algorithms proposed in the previous section may 

take much time, e.g., D(n2
) time even if the number of outputs K is O(n), though they are 

very simple and fast for most of the tested problem instances. 

For a fixed x, we call a y unnecessary if it satisfies f(x', y) > 0 for all x' :s; x. By definition, 

if y is unnecessary for x, y is also unnecessary for x" for all x" :S x. The main idea of the 

algorithm RC is to save the time to check whether f(x, y) = 0 or not for some y which can be 

concluded as unnecessary from the past search information. The framework of the algorithm 

is described as follows. 

Algorithm RC 

Line 1: Y := {n}. 

Line 2: for x = n - 1, · · · , 1 do 

Line 3: Output ally (> x) in Y satisfying f(x, y) = 0. 

Line 4: Set Y := (Yu {x})\W 

where W ~ { y E N J y 2:: x and f ( x', y) > 0 for all x' < x}. 

Line 5: end for. 

The key to this algorithm is how to find unnecessary y's. The following lemmas help us 

to identify them. Note that u(x, y) :S u(x', y') and l(x, y) 2:: l(x', y') hold for [x, y] ~ [x', y']. 

Lemma 4.1 Suppose that we are given x > 1 andy> x. lfu(x,y) < u(x , y') and u(x-

1,y) = u(x -1,y') hold for some y' > y, y satisfies f(x',y) > 0 for all x' < x. 

Proof. From u(x, y) < u(x, y'), there exists a y11 E [y + 1, y'] satisfying TIAs(y") E [u(x, y) + 
1, u(x, y')]. By u(x -1, y) = u(x -1, y'), we have [u(x, y) + 1, u(x, y')] ~ [l(x', y), u(x', y)] and 

7rAB(Y 11
) E [l(x', y), u(x', y)]. As y" is not included in [x', y], f(x', y) is greater than 0. D 

Lemma 4.2 Suppose that we are given x > 1 andy> x. If f(x, y) > f(x, y') hold for some 

y' > y, y satisfies f(x', y) > 0 for all x' :S x. 

Proof. From f(x, y) > f(x, y'), there exists a y" E [y + 1, y'] which satisfies 7rAs(y") E 

[l(x,y),u(x,y)]. Since y" is not included in [x',y], f(x',y) is greater than 0. D 

We can find a part of unnecessary y from these properties. We will show an algorithm 

that removes all y that satisfy the conditions of Lemma 4.1 or 4.2 from the set Y at Line 4 

of algorithm RC. 

To maintain Y, the algorithm uses a doubly linked list, ylist, composed of the cells y1 , ... , Yr 

corresponding to the elements y E Y. The cells are sorted in increasing order of their values. 

Initially, the ylist is composed of only one element n. Then Line 4 of algorithm RC is realized 

by adding an element x at the head of ylist and executing algorithm TRIMMING_ YLIST(x, y) 
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explained below. For simplicity, we consider only the case with 1TAs(x-1) > 7rAB(x) through

out this section. The opposite case can be treated similarly. The algorithm for trimming the 

wastful y from ylist is as follows. 

Algorithm TRIMMING_YLIST(x, y) 
( x and y are set to the values in Line 4 of algorithm RC.) 

Step 1: Find y* EN which is maximum among those y satisfying u(x,y) < u(x -1,y). 

Step 2: If the cell y on the head of ylist satisfies u(x, y) < u(x, y*), then remove it from 

ylist (from Lemma 4.1) and go to Step 2; otherwise go to Step 3. 

Step 3: Let Yi and Yi+l be adjacent in ylist and satisfy Yi ::; y* < Yi+l· If f(x- 1, Yi) 
> f(x - 1, Yi+I) then remove Yi from ylist (from Lemma 4.2) and go to Step 3. 

Algorithm TRIMMING _Y LIST(x, y) correctly remove all the elements concluded as unnec

essary by Lemmas 4.1 and 4.2 by the following reasons. In Step 2, if there exists a y' ::; y* 
satisfying u(x,y') < u(x,y*), then the heady of ylist also satisfies u(x,y) < u(x,y*), since 

u(x, y) is monotonically nondecreasing withy. Therefore, ally satisfying u(x,y) < u(x, y*) 
arc removed from ylist during the iteration of Step 2, i.e., all the elements concluded as 

unnecessary by Lemma 4.1 are removed. 

For Lemma 4.2, we claim that f(x- 1, Yi) ::; f(x- 1, Yi+I) hold for all Yi (2: x) which 

remain in the ylist at the end of the algorithm TRIMMING_YLIST. This is proved by induction 

on x . Suppose that f(x , Yi) ::; f(x, Yi+d holds for all i just before x is added at the head 

of ylist in Line 4 of algorithm RC. This hypothesis is true for x = n - 1, since the ylist is 

initially composed of only one element n. As f(x,x) = 0 and f(x,y) 2:0 (Vx::; y) hold, 

f(x, Yi) ::; f(x, Yi+l) still holds for all i after xis added at the head of ylist. For every Yi > y*, 
f(x- 1, yi) - f(x, Yi) = -1 holds, since u(x, Yi) and l(x, Yi) are unchanged for such i. For 

every Yi ::; y* which i not removed in Step 2 of TRIMMING_YLIST, f(x- 1, Yi)- f(x, yi) = c 

(cis a constant satisfying c 2: 0) holds (i.e., cis the same for all Yi::; y*), since u(x,yi) are 

the same for all such i and l(x , Yi) are unchanged. Thus the claim was proved. 

Given x and y, we have to spend O(y - x) time to calculate u(x, y) if no particular 

data structure is used. To achieve linear time, we have to obtain them in shorter time . 

In our algorithm, we represent the functions u and l by li ts called ulist and llist. For a 

fixed x, u(x,y) (resp., l(x,y)) is monotonically nondecreasing (resp., nonincreasing) in y . 
(Sec Figure 6.1.) We now describe the construction of the linked list only for u, since the 

construction of llist is similar. The interval [x + 1, n] is decomposed into intervals [yb = 
x + 1, y~- 1], [y~, y~- 1] ... , [y;, _1, y~. = n] where u(x, y") = u(x, y"') holds if and only if both 

y" and y"' arc included in [YLY~+l - 1]. From this decomposition, we represent u by ulist 
composed of the CC'lls vvhich correspond to these intervals. Each cell keeps the corresponding 

interval and the value u(.1:, y) for y which the interval includes. A pair of cells are doubly 
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linked by pointers if they correspond to adjacent intervals. We say that y is included in the 

cell of ulist if the corresponding interval includes y. 

z 

7 

6 

5 

4 

3 

2 

1 z = l(2,y) 

1 2 3 4 5 6 7 y 

Figure 6.1: Functions u(2,y), u(3,y), l(2,y) and l(3,y) corresponding to permutations OA = 
(1,2,3,4,5,6,7) and a-s= (5,3,1,4,2,7,6). 

To get the value of u(x, y), we have to find the cell in ulist which includes y. To realize 

this operation in short time, we prepare a pointer from each cell Yi of ylist to the cell of ulist 
which includes Yi· We also prepare a pointer from each cell of ulist to the cell Yi of ylist, 
where Yi is the maximum among those included in the same cell of ulist. (See Figure 6.2.) 

The update of ulist and llist when x changes to x- 1 is executed as follows. We update 

llist by adding a cell corresponding to interval [x- 1, x- 1] on its head. (Recall that we treat 

only the case 7rAB(x- 1) > 7rAB(x) .) We delete all the cells of ulist which include a y such 

that u(x,y) < u(x,y*). For the cell including y*, we change its interval to [x - 1,y*] and its 

value from u(x, y*) to u(x- 1, y*). (See Figure 6.3.) Note that we do not remove the cell 

representing u(x, y*), but use it to represent u(x- 1, y*). By doing this, pointers from ally 

included in the cell corresponding to u(x, y*) to ulist need not to be changed. This is a key 

point in speeding up of the algorithm. 

In Step 2 of TRIMMING_YLIST, if the pointer from a cell y of ylist indicates a deleted 

cell of ulist, we remove it from ylist, since this implies u(x, y) < u(x, y*). Thus it is not 

necessary to update the pointers between ylist and ulist. 
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7; [6, 7] 

1; [5, 7] 

Figure 6.2: Examples of ulist and llist corresponding to u(3, y) and l(3, y) of Figure 6.1. 

Now we consider the time complexity of algorithm RC. For this purpose, let us consider 

the time to update ylist, ulist and llist and the time to scan ylist to output common intervals 

in the entire algorithm of RC. Since those update operations of ulist are done by tracing ulist 

frorn its head to the cell including y*, Step 1 and 2 of the algorithm TRIMMING_YLIST take 

0( d + 1) time, where d is the number of deleted cells in Step 2. The total number of deleted 

cells during the execution of the algorithm RC can not exceed the number of created cells, 

which is 0( n), and thus the total time of those operations in the algorithm RC is 0( n). 

In Step 3 of the algorithm TRIMMING_YLIST, we can find Yi and Yi+l in 0(1) time by 

tracing a pointer from the cell of ulist including y* to the cell of ylist. (See Figure 6.3.) Step 

3 is repeated while the current cell is deleted. This is done in time proportional to the number 

of the deleted cells. Thus the total time spent in Step 3 of the algorithm TRIMMING_ YLIST 

in all iterations of algorithm RC is proportional to the total number of the deleted cells. It 

can not exceed the number of created cells, and the total time is O(n). 

In Line 3 of algorithm RC the cells Yl,···,Yr ofylist satisfy f(x,yi):::; f(x,Yi+l) (i = 
1, ... ,r -1). Therefore we can enumerate ally satisfying f(x,y) = 0 by tracing ylist from 

its head without scanning y with f(x, y) > 0 in the middle. When we encounter a y with 

f(x, y) > 0, we stop the tracing since f(x, y') > 0 holds for all y' > y. It takes time 

proportional to the number of outputs, which i O(n + K). 

As a result, the following thPoren1 holds. 
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( The same memory cell 

+ with 1•1 4; [4,5] 1•1•1 

1; [5, 7] 

83 

7; [6, 7] 

Figure 6.3: The process of updating ulist, llist and ylist. The cells represented by dotted 

lines are deleted when ulist is updated. 

Theorem 4.1 Algorithm RC with TRIMMING_YLIST outputs all common intervals in O(n+ 

K) time. 

6.4.1 Enumerating Common Intervals within a Specified Length 

Given bt :::; bu :::; n, we consider the problem of enumerating all the common intervals of two 

permutations whose length are not smaller than bt and not greater than bu. This problem 

is motivated by the following reason. If the given two permutations are similar, the number 

of common intervals of length 2 to n will be very large (e.g., O(n2
)). Even in such cases, 

the number of common intervals of length bt to bu may be much smaller if bu - bt is small 

(e.g., the number of outputs is O(n) if bu- bt = 0(1)). Of course we can enumerate common 

intervals of length bt to bu by first enumerating all common intervals of length 2 to n and then 

outputting those with the specified lengths, but this algorithm requires O(K) time, where 

K is the number of common intervals of length 2 to n. However, we can do better by using 

algorithm RC with slight modifications. 

In each iteration, we keep the minimum cell y of ylist among those satisfying y- x + 1 2: bt. 

At the end of Line 4 of algorithm RC, we find the minimum cell f/ satisfying f/ - x + 2 2: bt 

and set y := f/. Since y' is either adjacent to y in the ylist or y' = y, this update can be 
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done in 0(1) tirne. The enumeration of y satisfying f(x, y) = 0 and bt ~ y- x + 1 ~ bu can 

be done in 0( n + J(') time by tracing ylist from y, where K' is the number of outputs for 

this problem. 

6.4.2 Finding the Common Interval of Maximum Length within a Specified 
Length 

In this subsection, we consider the problem finding a common interval of the maximum length 

whose length is less than or equal to a given number bu ( < n ). The motivation of considering 

this problem is similar to that explained in Subsection 6.4.1. 

The basic idea is similar to the above algorithm. We keep the maximum cell '[} satisfying 

'[} - x + 1 > b* and ylist is scanned from '[} in Line 3 of algorithm RC, where b* ~ bu is the 

maximum length of the common intervals which the algorithm found so far. 

At the end of each iteration of algorithm RC, we update b* if the common interval whose 

length is not more than bu and is larger than b* is found. In such a case, we update '[} to it 

by tracing ylist from b* while the cell satisfies f(x, y) = 0. Otherwise we find the minimum 

'[}
1 satisfying '[} 1 

- x > b* and set '[} := '[} 1
, which is done in 0(1) time. Since the number of 

forward scans of ylist can not exceed bu ( < n) and the number of backward scans can not 

exceed n, the algorithm is executed in O(n) time. 

6.5 Random Inputs 

In this section we consider the case in which two permutations are generated uniformly at 

random (i.e., every permutation appears with probability 1/n!) , and show the following two 

properties. 

i) Expected number of common intervals is 0(1). 

ii) ExpedPd running time of algorithm LHP is O(n). 

For convenience, only the common intervals of length 2 ton- 2 are considered in this section. 

This assun1ption cloPs not chang<' the above results as discussed in Subsection 6.3.1. 

6.5.1 Expected Number of Common Intervals 

We define two types of random variables as follows. A variable Xkx (x = 1, ... , n - k + 1, 

k = 2 ... 'n- 2) takes value 1 if f(x, X+ k- 1) = 0, and 0 otherwise. We also define xk = 
I:~;: ~ +l .. \k:r and .Y = I:~:~ .\k. These variables repre ent the number of common intervals 

of length k and th number of comnwn intervals of length from 2 to n - 2, respectively. 
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Theorem 5.2 For n 2: 5, E(X) = 2 + O(n- 1 
). To be more precise, E(X2) = 2- ~' and 

E(i:~:~ Xk) = O(n- 1 
). 

Proof. For fixed XA and xs, 

(n-k)!k! 
Pr({O"A(i) I i E [xA,xA+k-1]} = {O"s(i) I i E [xs,xs+k-1]}) = 1 .(6.5.16) 

n. 

Since possible values of xs is from 1 to n- k + 1, we have 

(n-k)!k! 
E(XkxA)= x(n-k+1). 

n! 

By the linearity of expectation, this implies 

n-k+l 

E(Xk) = L E(Xkx), 
x=l 

n-2 
E(X) = L E(Xk)· 

k=2 

To analyze the behavior of E(Xk), we consider the solution of 

From 

k(n-k+1) 
------:-2 < 1' 
(n-k+2) 

we obtain 

2k2 - (3n + 5)k + (n2 + 4n + 4) > 0, 

and get the solution k < a_(n),a+(n) < k for (6.5.20), where n 2:4 and 

a_(n) 
3n + 5- Jn2 - 2n- 7 

4 

3n+5+)n2 -2n-7 

4 

It is easy to check that 0 < a_ ( n) ~ n holds. By the fact 

(6.5.17) 

( 6.5.18) 

( 6.5.19) 

(6.5.20) 

( 6.5.21) 

( 6.5.22) 

( 6.5.23) 

(6.5.24) 

(6.5.25) 

for n 2: 4, we have a+(n) > n. Therefore, E(Xk) is monotonically nonincreasing in k when 

2 ~ k ~ a_ ( n) holds, and is monotonically nondecreasing in k when a _ ( n) ~ k ~ n holds. 

By using E(X4 ) < ~ and E(Xn-2) ~ ~ ( n 2: 4), we have 

24 
E(Xk) ~ 2 , (k = 4,5, . . . ,n- 2,n 2: 4) , 

n 
(6.5.26) 
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and from (6.5.18), 

2 
2--

' n 
6(n- 2) 
n(n- 1)' 

Hence, we can conclude for n ~ 5 that 

24 
< E(X3) + (n- 5) · -n2 

O(n- 1), 

n-2 
E(X) E(X2) + E(L Xk) 

k=3 
2+0(n- 1). 0 

( 6.5.27) 

(6.5.28) 

(6.5.29) 

(6.5.30) 

( 6.5.31) 

( 6.5.32) 

By estimating the variance of X 2 and using Chebyshev bound and Markov inequality, the 

following theorem is also shown [136]. 

Theorem 5.3 If n 2: 5, Pr(X 2: J2t + 3) :S fr + O(n- 1 ) holds for arbitrary t > 0. 

6.5.2 Expected Running Time of the Algorithm LHP 

For each x (x = 1, ... , n - 1), let Tx be the random variable representing the number of 

iterations in the inner loop of LHP for x. We also define T = 'L~:Oi Tx, which represents the 

total number of inner loop iterations. 

Theorem 5.4 FoT n 2: 4, E(T) ::; 3n holds. 

Theorem 5.4 holds even if we do not incorporate the length condition (6.3.5) into LHP. 

Before proving this theorem, we consider the following problem. Suppose that we have 

k white balls and m- k black balls (0 ::; k ::; m- 1, m ~ 1) in an urn. The probability of 

taking out a ball is the same for all balls. Take out one ball. If it is white, we do not replace 

the ball into the urn and continue the same trial; otherwise (i.e., once a black ball is taken) 

we terminate the trial. Let Eurn ( m, k) denotes the expected number of trials until a black 

ball is taken. Then 

m+ 1 
Eurn(rn,k) = k 

m- ·+1 
( 6.5.33) 

holds (sec Appendix B). We define Eurn(rn, m) = m for convenience. Now let E~rn(m, k,j) 

denotes the expected nurnber of trials until a black ball is taken or the number of trials 

becomes j. Then 

E~rn(m, k,j) :S Eurn(nt, k) (6.5.34) 
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holds for j ~ 1, 0 :S k :S m and m ~ 1 (see also Appendix B). These facts are used in the 

proof. 

Proof. By linearity of expectation, we have 

n -1 

E(T) = L E(Tx)· (6.5.35) 
x=1 

For a fixed x, let r(x) be min{n- x,n- 3}, which is the maximum number of inner loop 

iterations for x. Since the two permutations are generated uniformly at random, H P' = { i, j} 

holds with probability G) -1 for any i and j (i,j E [1, n], i < j). For such i and j, probability 

that 1 :S 1r AB ( x) :S i - 1 holds is ~-=-1, and in this case, the expected number of inner loop 

iterations is E~rn(n- 3, i- 2, r(x)). Secondly, the probability that i + 1 :S 1fAB(x) :S j- 1 

holds is j~~~ 1 , and in this case, the expectation is E~rn(n- 3,j - i- 2, r(x)). Thirdly, 

the probability that j + 1 :S 1r AB (x) :S n holds is ~=~, and in this case, the expectation is 

E~rn(n- 3, n- j- 1, r(x)). Therefore, 

6.6 

n -1 (n) - 1 n-1 n { i _ 1 
E(T) = ~ 2 ~j~l n- 2 E~rn(n-3,i-2,r(x)) 

< 

j-i-1 n - j } + E~rn(n- 3,j- i- 2, r(x)) + --E~rn(n- 3, n- j- 1, r(x)) 
n-2 n-2 

n - 1 n-l n { i - 1 
-n- L L --Eurn(n- 3, i- 2) 

(2) i=l j=i+1 n- 2 

+ Eurn(n- 3,j- i- 2) + --Eurn(n- 3,n- j - 1) 
j-i-1 n-j } 
n-2 n-2 

n- 1 n-1 i- 1 
-n- · 3 · l:(n- i) · --Eurn(n- 3,i- 2) 

(2) i=1 n- 2 

~ {~(n- i) · i-
1 · n- ~ + (n- 3)} 

n L....t n-2 n-'l 
t=1 

3n- 9 ::; 3n. 0 

Computational Results 

In this section, we compare algorithms BSC, LHP, MNG and RC by applying thern to six 

types of problem instances of sizes up to n = 106
. 

6.6.1 Generation of Problem Instances 

The following six types of problem instances are examined. 

RAND: Two permutations O" A and O" B are randomly generated (i.e., any permutation is 

chosen with probability 1/n!). 
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SWAP: Initially two permutations O"A and O"B are set as O"A(i) = O"B(i) = i fori= 

1, ... , n. Then we repeat s times a swap of two elements O"B(i) and O"B(j) for two integers i 

and j (i =I= j) randomly chosen from [1, n]. We set s = n in the experiment. 

NBRAND: The permutation O" A is set as O" A ( i) = i for i = 1, ... , n. For an integer k, 

let p and q be the integers satisfying n = kp + q and 0 :S q < k. For each i (i = 0, 1, ... , k), 

a permutation O"i: Vi~ Vi is randomly generated, where Vi= {ip + 1,ip + 2, ... , min{(i + 
1 )p, n}}, and O" 8 is set as O" B = O"QO"l · · · O"k. We use k = l yin+ 0.5 J in the experiment. 

NBSWAP: Initially two permutations O"A and O"B are set as O"A(i) = O"B(i) = i for 

i = 1, ... , n. Then a swap of two elements O" B ( i + j) and O" B (j) for an integer i randomly 

chosen frorn [1, k] and an integer j randomly chosen from [1, n- i] is repeated s times, where 

k is a parameter to restrict the swap distance. We set k = l yin + 0.5 J and s = n in the 

experiment. 

SLIDE: For an integer k, let p and q be the integers satisfying n = kp + q and 0 :S q < k. 

Two permutations are set as O" A ( i) = i and 

{ 
i- 2k- 1 

O"B(i) = . 
~, 

(mod kp) + 1, i = 0 (mod k) 

otherwise, 

fori = 1, ... , n. An example with n = 20 and k = 3 is exhibited in Figure 6.4. We set k = 4 

in the experiment. 

Figure 6.4: An example of type SLIDE instance with n = 20 and k = 3. 

NET: Two permutations are set as O" A ( i) = i and 

O"B(i) = { (i + 1)/2, 
ln/2l + i/2, 

i: odd 

~= even, 

fori = 1, 2, ... , n. An example with n = 10 is shown in Figure 6.5. 

A: 1 2 3 4 5 6 7 8 9 10 
I~I 

B: 1 6 2 7 3 8 4 9 5 10 

Figure 6.5: An example of type NET instance with n = 10. 
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For type RAND instances, the expected number of common intervals is 2 + O(n- 1) as 

shown in Section 6.5. By the similar discussion, we can show that the expected number of 

common intervals for type NBRAND instances is at most k2 /2 + o(k2) if k = o( n). Recall 

that we choose k = 0( yin) in the experiment, and hence, the expected number of outputs is 

O(n). 

For type SWAP and NBSWAP instances, it is observed that the number of common 

intervals is O(n) as shown in Table 6.1, where each entry is the average of five instances 

examined in the next subsection. 

Table 6.1: Average number of common intervals divided by n for type SWAP and NBSWAP 

instances. 

K/n 
n SWAP NBSWAP 

1000 0.022 0.084 

10000 0.021 0.050 

100000 0.021 0.032 

1000000 0.021 0.026 

For type SLIDE instances, the number of common intervals is at most 

p(k-
1

) + (q) +k(q+l) < ~kn+~k2 . 
2 2 - 2 2 

Recall that we choose k = 4, hence, the number of outputs is O(n). For type NET instances, 

the number of common intervals is at most one. 

6.6.2 Computational Results 

All the tested algorithms were coded in C language and run on a workstation Sun SPARC 

classic. A simple multiplicative congruential method was used to generate random sequences. 

For each type of problem (except for type SLIDE and NET problems), we generate five 

instances for each n = 103 
f'.J 106 , and exhibit the average computational time (etc.) of 

each tested algorithm. Although type SLIDE and NET problems include no randomness, 

we exhibit the average data of three runs for each tested algorithms, since the CPU time 

returned by the computer includes errors. 

Table 6.2 shows the average number of inner loop iterations of BSC, LHP and MNG 

divided by n, where n = 104 is used. (This implies the average number of iterations for an 

inner loop.) The mark'*' is put if this value does not increase more than 5% when n = 106
, 
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and for others, we mark '6' if the instances with n = 106 was solved in one minute. Table 

6.3 shows the average of the total number of scans on ulist, llist and ylist of the algorithm RC 

divided by n, where n = 106 is used. Figures 6.6 rv 6.11 show the average computational time 

(in J.L sees.) divided by n. (Note that the data are identical to the average computational 

time in seconds when n = 106 .) 

Table 6.2: Average number of inner loop iterations of BSC, LHP and MNG divided by n 

(n = 104
). 

BSC 

LHP 

MNG 

RAND 

4999.50 

*1.99 

*3.40 

SWAP 

4999.50 

*2.33 

*3.66 

NBRAND 

4999.50 

99.62 

53.50 

NBSWAP 

4999.50 

*11.13 

64.39 

SLIDE 

4999.50 

2498.50 

*6.25 

NET 

4999.50 

1876.00 

68.68 

Table 6.3: Average of the total number of scans on ulist, llist and ylist of RC divided by n 

(n = 106 ). 

RAND SWAP NBRAND NBSWAP SLIDE NET 

RC 27.45 27.44 28.94 27.60 29.75 28.00 

Frorn these, we can observe the following: 

• In Table 6.2, the marks '*' and '6' imply the effectiveness of the speed up techniques 

proposed in Section 6.3. Especially for those with '*' marks, it may be concluded that 

the problem instances were solved in 0( n) time on the average. For each of those with 

'6' marks, the value increases about 13% (resp., 38%) for NBSWAP (resp., NET) when 

n = 106 . For NBSWAP, this is because the variance of the data of MNG is rather large. 

Thr same tendency was ob erved for LHP. Indeed , the value decreases about 23% for 

LHP with NBSWAP when n = 106 . It is known that MNG needs O(nlogn) time for 

type NET instances, as evidenced by the increase of about 38%. 

• The performanc('s of BSC and RC are hardly affected by the type of instances: BSC 

always requires O(n2 ) time, while RC always run in O(n) time (recall that K = O(n) 

for all tested problem instancE's). Note that the values in Table 6.3 are almost the same 

for other tested sizes. 

6.6 Computational Results 

Q) 

8 ....... 
~ 

1000 

100 

10 

1 
1000 

BSC -+

LHP --s-

MNG --*

RC --4------

10000 100000 1e+06 
number of elements 

Figure 6.6: Computational time against n (type RAND). 
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Figure 6. 7: Computational time against n (type SWAP). 
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Figure 6.8: Computational time against n (type NBRAND). 
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Figure 6. 9: Computational time against n (type NBSWAP). 

6.6 Computational Results 

0 s 
·~ 
~ 

~ 

----,--. 
(/) 

u 
0 
r:/j 

:::s 
'--"' 
0 s 
·~ 
~ 

0 
·~ 
~ ro 
M 

1000 

1 
1000 10000 

BSC ~ 
LHP ---s

MNG~ 
RC -A-

100000 1e+06 
number of elements 

Figure 6.10: Computational time against n (type SLIDE). 

1000 BSC ~ 
LHP ---a-

MNG ~ 
RC -A--

100 

10 

1 
1000 10000 100000 le+06 

number of elements 

Figure 6.11: Computational time against n (type NET). 

93 



94 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS 

• The algorithrn LHP is quite effective for type RAND and SWAP instances. It is also 

effective for type NBSvVAP instances, though about three times slower than the cases 

( 3/2) . . of RAND and SWAP instances. On the contrary, we can show that 0 n t1me 1s 

needed for type NBRAND instances and O(n2) time is needed for type SLIDE and 

NET instances. 

• The algorithm MNG is quite effective for almost all types of problems except for 

NBRAND, for which we can show that it requires 0( n 312
) time. It is noted, how

ever, that the running time of MNG is about three times larger than that of LHP for 

RAND and SWAP instances, and we can show that MNG requires O(n log n) time for 

type NET instances. It is also noted that problem types SLIDE and NET are quite 

artificial, and these results do not necessarily imply that MNG is more robust than 

LHP. 

6. 7 Common Subtrees 

In this section, we consider an application of the algorithms for the common interval enumer

ation problem proposed in the previous sections to the following problem: given two trees 

with labels on their leaves, enumerate all common subtrees, i.e., pairs of subtrees having the 

sarnf' set of leaf labels. By using algorithm RC, we can derive a fast randomized algorithm 

with O( n log2 n) expected running time if we are given two binary trees of depth log2 n, where 

n is the nurnber of leaves. The expected running time becomes 0( n) if the same two binary 

trees of depth log2 n are given as the input. The latter special case is a trivial instance; 

howevf'r, this case is intuitively considered to be tough for this algorithm, and hence, it is 

expected that the proposed algorithm runs in O(n) expected time for most of the practical 

instances, although the worst case running time is O(n2). 

Thf' problem is formally defined as follows. Two rooted trees Y A and 1 B are given as 

the input, each of which has n leaves labeled with 1, 2, ... , n. A subtree 1 A(u) is defined to 

be the subgraph of Y A induced by u and all descendants of u. Let LA(u) be the set of labels 

of the leaves in 1 11 (u). 1 8 (u) and L 8 (u) are similarly defined. We call a pair of subtrees 

(1 A ( u), 1 8 ( v)) a common subtree if it satisfies 

where 'U and v arc neither a root nor a leaf. vVe assume that every inner vertex of Y A or Y B 

has at least two children, so that the number of inner vertices is 0( n). 

Genetic algorithms based on common subtrees are proposed for VLSI design. Common 

subtree also has an application in evolutionary trees for species sets, which are used in biology. 

There are many propo ·als for constructing evolutionary trees, which are then compared to 
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form consensus. The number of common subtrees is one of the basic measures for consensus 

[57, 96, 107], among others [29, 40). 

The proposed algorithm is based on the following observation. Let a 1 A be the permutation 

of leaf labels of Y A defined by the order where they are scanned by depth-first search, in 

which the left to right order of choosing the children of each inner vertex is determined 

arbitrarily. Let lA(u) (resp., rA(u)) be the label of the left (resp., right) most leafofYA(u). 

ay 8 , lB(u) and rB(u) are similarly defined. Then (1A(u), 1a(v)) is a common subtree if 

and only if ( [a y ~ (l A ( u)), a y ~ ( r A ( u))], [a y ~ (l B ( v)), a y ~ ( r B ( v))]) is a common interval of two 

permutations ay A and ay 8 • Note that there may be common intervals of ay A and ay 
8 

that 

do not correspond to any subtrees. 

The basic framework of the algorithm is as follows. 

1. Apply depth-first search to Y A and Y B, choosing randomly the order of the children 

at each inner vertex. Denote the two permutations of the leaf labels of 1 A and Y B by 

ay A and ay 8 , respectively. 

2. Enumerate all common intervals of ay A and ay 8 one by one, and if the two intervals 

corresponding to each common interval define subtrees of 1 A and Y B, respectively, 

then output the corresponding pair of subtrees. 

Step 1 can be executed in O(n) time. We can check in Step 2 if an interval of ay A (resp., 

ay 8 ) defines a subtree of Y A (resp., 1 B) in 0(1) worst case time by using the data structure 

called perfect hash [36], which can be constructed in O(n) expected time and in O(n2) worst 

case time. 

Let K ( ay A, ay 8 ) be the number of common intervals of two permutations ay A and ay 8 • 

K ( a 1 A, ay 8 ) may be the dominating factor of the running time of our algorithrn. Note that 

K(ay A, ay 8 ) = G) in the worst case, although the number of common subtrees is O(n). It 

is also noted that the result about the expected number of common intervals for two random 

permutations stated in Section 6.5 is not applicable in this case, since the probability space is 

different. We can show that the expected value of K ( ay A, ay 8 ) is 0( n log2 n) if the given two 

trees are binary and the depth of them is log2 n. We can also show that the expected value 

of K( ay A, ay 8 ) is 0( n) if the same two binary trees of depth log2 n are given as the input. 

The latter special case is a trivial instance as the common subtree enurneration problem. 

However, in this case, K( ay A, ay 8 ) = (~) if we do not randomize the children order of each 

inner vertex, which is the largest possible value of K(ay A, ay 8 ). Hence, this is considered 

to be a tough instance for our algorithrn. Therefore, we believe that the expected value of 

K(ayA,ay
8

) is small (e.g., O(n)) for most of the practical instances, although theoretical 

results are limited to the above special cases. 

Actually, it is observed by computational experiments on some types of randomly gen

erated trees with upton= 106 that the average value of K(ayA,ay 8 ) is O(n) for all the 
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tested instances, in which trees of depth fl(n) are included. 

If we use algorithm RC to enumerate common intervals in Step 2, the expected running 

time of the above algorithm is 0( n + K( (Jy A, (Jy 8 )), which is 0( n log2 n) if the given two trees 

are binary and the depth of them is log2 n, and O(n) if the same two binary trees of depth 

log2 n are given as the input. The worst case running time is O(n2), since K((JyA,(Jy 8 ) is 

0 ( n 2 ) in general. 

Similar algorithms are applicable to the subtree problems defined on two unrooted trees, 

in which two connected components defined by deleting an edge are considered as subtrees . 

6.8 Conclusion 

For the common interval enumeration problem, we proposed the following three algorithms: 

i) a simple O(n2 ) time algorithm (LHP), whose expected running time becomes O(n) for two 

randomly generated permutations, ii) a practically fast O(n2) time algorithm (MNG) using 

the reverse Monge property, and iii) an O(n + J() time algorithm (RC). It was observed in 

the computational experiment that: 1) LHP is very fast for randomly generated problem 

instances, 2) MNG is rather slower than LHP for random instances; however, there are cases 

that MNG can run in o(n2) time while LHP needs fl(n2 ) time, and 3) the performance ofRC 

is quite' robust against the types of problem instances, though it is rather slower than MNG 

for many of the tested problem instances. It is noted that LHP and MNG are very simple 

and easy to program (LHP is much simpler than MNG), while RC is rather complicated. On 

the other hand, it is also noted that there are cases that both LHP and MNG require 0( n 2) 

time as mentioned in the end of Section 6.3. From these, we recommend RC if one wants to 

solve large instances (e.g., n ~ 105 ), and LHP if one wants to solve the instances which seem 

to include randomnes . MNG is recommended if LHP fails to solve efficiently some problem 

instances one wants to solve. 

Appendix A 

Here we prove the reverse Monge property off(·,·), that is , 

f(x', y) + f(x, y') ~ f(x, y) + f(x', y') 

holds for all :r;', ,r;, y, y' satisfying x' < x ::; y < y'. Subtracting right-hand side from left-hand 

side, we get 

u ( x', y) + u ( .r, y') - { u ( x, y) + u ( x', y')} + l ( x, y) + l ( x', y') - { l ( x' , y) + l ( x, y')}. 

It is sufficient to show that 'u(-, ·) and l(-, ·) satisfy 

6.8 Conclusion 

u(x', y) + u(x, y') 

l(x', y) + l(x, y') 

> u(x , y)+u(x',y') 

< l ( x, y) + l ( x', y') 
(reverse Monge property) 

(Monge property). 
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We prove this only for u(·, ·),since the latter case is symmetrically proven. Either 'u(x' , y') = 

u(x, y') or u(x', y') = u(x', y) holds, since 

max 7rAB(z) < u(x, y') ::::? u(x', y') = u(x, y') 
zE[x',x - 1] 

max 7rAB(z) ~ u(x,y') ::::? u(x',y') = u(x',y). 
zE[x',x - 1] 

This fact, combined with u(x,y') ~ u(x,y) and u(x',y) ~ u(x,y), implies that u(·, ·)satisfies 

reverse Monge property, and hence, reverse Monge property of f ( ·, ·) is proven. 

Appendix B 

Here, we prove that 

m+l 
Eurn(m, k) = k 

m- +1 
(6.8.36) 

for 0 ::; k ::; m - 1 and m ~ 1, and 

E~rn(m, k,j) :S Eurn(m, k) (6.8.37) 

for 1 ::; j, 0 ::; k ::; m and m 2: 1, where Burn ( ·, ·) and E~rn ( ·, ·, ·) are defined in Section 

6.5. Let us define a random variable Z representing the number of trials until a black ball is 

taken out. The probability that a black ball is taken out after i trials or more is equal to the 

probability that white balls are taken in the first i - 1 trials, so 

Pr(Z;?:i)= [k]i-l' i=l, ... ,k+l 
[m]i- 1 

holds, where 

{ 
1 i = 0, 

[m]i= rr:(m-l)···(m-i+l), i>O. 

By using this fact, we can conclude 

k+l 

Eurn(m, k) = L iPr(Z = i) 
i=1 
k+1 

L Pr(Z ~ i) 
i=1 

t~ 
i=O [m]i 

t c;:~n 
i=O ( k) 

m+l 
m- k + 1 

( 6.8.38) 

(6.8.39) 

( 6.8.40) 
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See for example [49] for the last sigma calculation. When k ::; m - 1, if 1 ::; j ::; k, then 

j - 1 

E~rn(m, k,j) L iPr(Z = i) + jPr(Z 2: j) 
i = l 

j 

L Pr(Z 2: i) 
i = l 

< Eurn(m, k), ( 6.8.41) 

and if j 2: k + 1, then E~rn(m, k,j) = Eurn(m, k). When k = m, E~rn(m, m,j) = j ::; m = 
Eurn(m, k). (Recall that we defined Eurn(m, m) = m for convenience.) 

Chapter 7 

Conclusion 

Throughout this thesis, we have considered various metaheuristic algorithms for the combi

natorial optimization problems. The contribution of this thesis is summerized as follows. 

First, we proposed a framework of approximate algorithms, called genetic DP, in which 

dynamic programming is incorporated into the genetic algorithm. Its effectiveness was e

valuated by computational experiments for three problems: the single machine scheduling 

problem (SMP), the optimal linear arrangement problem (OLAP) and the traveling salesman 

problem (TSP), all of which are known to be NP-hard. Genetic DP tends to attain better so

lution quality than traditional multi-start local search (MLS) and genetic local search ( GLS) 

algorithms when sufficiently long time is allowed, though performance of these algorithms 

depends on problem characteristics. Recently, similar hybrid approach of combining exact 

methods and metaheuristic methods are tried in [5, 83]. 

Second, we compared various crossover operators proposed for sequencing problems using 

a general framework of crossover operators. It was confirmed that the performance of the 

crossover operators can be evaluated by some simple criteria related to characteristics of 

the set of children obtainable from the parents. These criteria are expected to give useful 

guidelines to design good crossover operators for genetic algorithms. The flexibility is one of 

the attractive features of metaheuristics; however, from the view point of users, the algorithms 

should be as simple as possible. In this sense, it is important to simplify the framework and 

analyze the effect of each basic operation to the performance of the algorithm. This second 

result may be useful from the view point of this research direction. 

Next, various metaheuristic algorithms were compared from the view point of robustness 

and simplicity. As a concrete problem to test, we chose the single machine scheduling problem 

(SMP) and metaheuristics such as the multi-start local search (MLS), the genetic algorithm 

(GA), the simulated annealing (SA), the tabu search (TS), and some of their variants were 

examined. A guideline to design metaheuristic algorithms was proposed in Section 5.3, based 

on the obtained computational results. These results were limited to a single problem, and 
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it is important to conduct similar comparisons on the basis of various types of problems so 

that we can understand the general tendencies of the metaheuristic algorithms. 

Finally, we considered the common interval enumeration problem, which stems from a 

basic operation of genetic algorithms for sequencing problems. For this problem, we proposed 

the following three algorithms: i) a simple O(n2 ) time algorithm (LHP), whose expected 

running time becomes 0( n) for two randomly generated permutations, ii) a practically fast 

O(n2) time algorithm (MNG) using the reverse Monge property, and iii) an O(n + K) time 

algorithm (RC). Application of these algorithms to the common subtree enumeration problem 

was also discussed. Designing efficient implementations for basic operations of metaheuristic 

algorithrns is practically very important; however, not much research has been done in this 

direction. In this sense, the above results may be useful from the view point of this research 

direction. As another example, we recently proposed efficient neighborhood implementations 

for the maximum satisfiability problem [135), in which the worst-case and average-case time 

complexities are analyzed. Such analyses of basic operations of metaheuristics are considered 

to be one of the important future research directions. 

Recently, the border lines between metaheuristic algorithms become subtle, since many 

variants and hybrid approaches of more than one metaheuristic algorithm have been proposed 

and arc given different names. Therefore, as a whole, metaheuristic algorithms become quite 

complicated. However, it is important to understand the roles of basic components of these 

approaches and provide a guideline to design effective metaheuristic algorithms which can 

exploit the structures of given problems. Moreover, not much research has been done on the 

theoretical aspects of metaheuristics. The author hopes that this dissertation will provide 

some assistance to the community of metaheuristic algorithms. 
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