
STUDIES
ON

METAHEURISTIC ALGORITHMS
FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Mutsunori YAGIURA

Submitted in partial fulfillment of

the requirement for the degree of

DOCTOR OF ENGINEERING

(Applied Mathematics and Physics)

KYOTO UNIVERSITY

KYOTO, JAPAN

JANUARY, 1999

Preface

There are numerous combinatorial optimization problems, for which computing exact optimal

solutions is computationally intractable, e.g., those problems known as NP-hard. However, in

practice, we are often asked to deal with large scale instances of such difficult problems. One

possibility to overcome this difficulty is that, in most practical cases, we do not need exact

optimal solutions and are satisfied with sufficiently good solutions. In this sense, approximate

(or heuristic) algorithms, which provide reasonably good solutions in practically meaningful

time, are very important and have been well studied recently.

There are several useful tools used to design approximate algorithms, such as greedy

method and local search. The so-called metaheuristics combine these tools into more so­

phisticated algorithms. Among the well-known metaheuristics are multi-start local search,

simulated annealing, tabu search, genetic algorithm and so on. Many variants of these, such

as GRASP, threshold accepting, iterated local search and others, have also been proposed and

extensively studied.

One of the attractive features of these metaheuristics is in its flexibility. They can be

hybridized with other heuristic or exact algorithms to create more powerful tools. As an

example of such hybrid algorithms, we propose to use dynamic programming (DP) to improve

candidate solutions within the framework of genetic algorithm, which is called the genetic

DP algorithm. Good prospects of the proposed algorithm are observed by the computational

experiments to three representative NP-hard problems: single machine scheduling problem,

optimal linear arrangement problem and traveling salesman problem.

During the experience of developing the genetic DP, we realized that crossover is one of

the most important operators in genetic algorithms, on which the overall performance of the

algorithms critically depends. To pursue this direction, we review a variety of crossover oper­

ators proposed for sequencing problems, and analyze the relationship between characteristics

of the operator and performance of the algorithm. Based on this analysis, we propose simple

criteria for measuring the quality of crossover operators. Some computational analysis on

single machine scheduling problem is then added to validate the effectiveness of the proposed

criteria.

Another attractive feature of metaheuristics IS m its robustness and simplicity. They

can be developed even if deep mathematical properties of the problem domain are not at

hand, and still can provide reasonably good solutions, much better than those obtainable

by simple heuristics. To investigate this direction, we compare representative metaheuristic

algorithrns using rather simple inner operators to observe general tendency of their perfor­

mance. From these results, we propose a recommendation about the use of metaheuristics as

simple optimization tools.

We then consider a problem arising from the implementation issue of a crossover operator.

Three types of fast algorithms are proposed, and analyses of these algorithms and of the

problem structure are given.

The main aim of this thesis is to establish a guideline to construct good metaheuristic

algorithrns. The author hopes that the research in this dissertation will help advance the

understanding of this significant field.

11

January, 1999

Nlutsunori Yagiura

Acknowledgement

This thesis would not have been possible without the help of many others. First of all, I

am heartily grateful to Professor Toshihide Ibaraki of Kyoto University for his enthusiastic

guidance, discussion and persistent encouragement. He commented in detail on the whole

work in the manuscript, which significantly improved the accuracy of the arguments and

quality of the exposition. Without his considerable help, none of this work could have been

completed.

A great deal of gratitude goes to Professor Tatsuya Akutsu of University of Tokyo, Hajime

Ase of NKK Corporation, Professor Fred Glover of University of Colorado, Nobuyuki Kawai

of NKK Corporation, and Professor Takeaki Uno of Tokyo Institute of Technology, with

whom I wrote joint papers. Their great collaboration was very important in forming the idea

of this thesis.

I am also indebted to Professor Masao Fukushima of Kyoto University, Professor Masamit­

su Ohnishi of Osaka University, and Professor Hiroshi Nagamochi of Kyoto University for a

number of helpful suggestions . I also wish to express my gratitude to Professor Yushi Uno

of University of Osaka Prefecture, Professor Satoru Ibaraki of Nagoya City University, Pro­

fessor Kouichi Taji of Osaka University, Professor Yoshiyuki Karuno of Kyoto Institute of

Technology, Professor Dao-Zhi Zeng of Kagawa University, Professor Kazuhisa Makino of

Osaka University, and all members in Professor Ibaraki's laboratory for many enlightening

discussions on the area of this work. I especially mention two members with whom I wrote

joint papers, namely Shinji Katoh and Takashi Yamaguchi.

My deepest gratitude is to my parents for their heartfelt cooperation and encouragement.

Finally, I must acknowledge my wife, Mariko. Her cooperation and steady encouragement

were essential especially in the period when I studied at Kyoto University.

lll

Contents

1 Introduction

Historical Background 1.1

1.2 Research Objectives and Outline of the Thesis

2 Metaheuristic Algorithms: An Overview

2.1 Metaheuristics

2.2 Multi-Start Local Search .

2.3 Genetic Algorithm .

2.4 Simulated Annealing

2.5 Tabu Search

2.6 Other Metaheuristic Algorithms .

2. 7 Theoretical Results .

2.8 Conclusion

3 The Use of Dynamic Programming in Genetic Algorithms

3.1 Introduction

3.2 Genetic DP Algorithm

3.3 Single Machine Scheduling Problem

3.3.1 Exact Algorithms

3.3.2 Genetic DP Algorithm

3.4 Optimal Linear Arrangement Problem

3.4.1 Genetic DP Algorithm

3.5 Traveling Salesman Problem .

3.5.1 Genetic DP Algorithm

3.6 Computational Results for Three Problems

3.6.1 Generation of Problem Instances .

3.6.2 The Effect of Program Parameters

3.6.3 Performance of Genetic DP

3.6.4 Comparison with Other Heuristic Algorithms

v

1

1

2

5

5

6

9

10

11

12

12

13

15

15

16

19

20

20

24

24

26

27

28

28

29

31

34

VI TABLE OF CONTENTS

3.7 Conclusion

4 On Genetic Crossover Operators for Sequencing Problems

4.1 Introduction

4.2 Crossover Operators for Sequencing Problems

4.3 A General Framework of Crossover

4.4 The Role of Crossover in G A

4.5 Computational Results .

4.6 Conclusion

5 Metaheuristics as Robust and Simple Optimization Tools

5.1 Introduction

5.2 Design of Metaheuristic Algorithms .

5.2.1 Random Multi-Start Local Search

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.2.8

Grerdy Randomized Adaptive Search Procedure

Iterated Local Search

Genetic Algorithm . .

Grnetic Local Search .

Simulated Annealing .

Threshold Accepting and Great Deluge Algorithm

Tabu Search

5.3 Comparison of Metaheuristics

5.4 Conclusion

6 Enumerating All Common Intervals of Two Permutations

6.1 Introduction ...

6.2 Basic Algorithm

6.3 Sirnple Improvements of the Basic Algorithm

6.3.1 The Algorithm LHP

6.3.2 The Algorithm tviNG

6.3.3 Remarks about the Two Algorithms

6.4 An Algorithm with O(n + J() vVorst Case Running Time

6.4.1 Enumerating Common Intervals within a Specified Length .

6.4.2 Finding thr Common Interval of Maximum Length within a Specified

39

41

41

42

47

48

51

56

59

59

60

60

61

62

62

65

66

67

69

70

71

73

73

74

75

75

76

78

78

83

Length 84

6.5 Random Inputs 84

6.5.1 Expectrd :\umber of Common IntervaL

6.5.2 Expected Running Time of the Algorithrn LHP

6.6 Computational Results

84

86

87

TABLE OF CONTENTS

6.6.1 Generation of Problem Instances

6.6.2 Computational Results .

6. 7 Common Subtrees

6.8 Conclusion

7 Conclusion

Vll

87

89

94

96

99

Vlll TABLE OF CONTENTS

List of Figures

3.1 The graph representing the partial order D for two solutions 0"1 = (1, 2, 3, 4, 5, 6)

and 0"2 = (2, 3, 1, 5, 4, 6). 18

3.2 The probability function p(·). 19

3.3 Sets S = {1, 2, 3} and I(S) = {1, 3} are shown on the graph of Figure 3.1. 23

3.4 The effect of chain constraints. 27

3.5 The effect of the number of iterations r (SMP). 30

3.6 The effect of parameter a in the probability function p(·) (SMP). 31

3. 7 The effect of parameters P, b, s (SMP). . 32

3.8 The effect of parameters P, b, s (OLAP). 32

3.9 The effect of parameters P, b, s (TSP). 33

3.10 The computational time (in seconds) to solve SMP by algorithms DP, SSDP

and genetic DP. 34

3.11 A solution in neighborhood N (O"), corresponding to i = 4 and j = 2. 35

3.12 An example of crossover operation for GLS, where l = 2, k = 3. 36

3.13 Comparison of simple GA and GLS (SMP). 37

3.14 Comparison of approximate DP and genetic DP (SMP). 37

3.15 A comparison of the four algorithms (SMP). . 38

3.16 A comparison of the four algorithms (OLAP). 38

3.17 A comparison of the six algorithms (TSP). 39

3.18 Time ratio with respect to n (time for n = 15 is regarded as 1) of the three

algorithms (SMP). 40

4.1 An example of PMX(2).

4.2 An example of CX(U) ..

4.3 An example of FLX(1) with list (1, 2, 3 , 4, 5).

4.4 An example of POPXl.

4.5 An example of OX(1). .

4.6 An example of AEX. . .

4.7 A comparison of crossovers (PsR).

IX

42

43

44

45

45

46

54

X LIST OF FIGURES

4.8 A comparison of crossovers (FLR).

4.9 A comparison of crossovers (OR) ..

4.10 A comparison of crossovers (PtR).

4.11 A comparison of crossovers (PsR+OR).

5.1 Average error (%) from thr best solution (Nins) .
5.2 Average error (%) from the best solution (Nswap).

6.1

6.2

6.3

6.4

6.5

G.G

6.7

6.8

6.9

6.10

6.11

Functions u(2, y), u(3, y), l(2, y) and l(3, y) corresponding to permutations
a A = (1, 2, 3, 4, 5, 6, 7) and a B = (5, 3, 1, 4, 2, 7, 6)
Examples of ulist and llist corresponding to u(3, y) and 1(3, y) of Figure 6.1. .
The process of updating ulist, llist and ylist . The cells represented by dotted
lines are deleted when ulist is updated.
An example of type SLIDE instance with n = 20 and k = 3.
An exan1ple of type NET instance with n = 10.

Computational time against n (type RAND). . .

Cornputational time against n (type SWAP) . . .

Computational time against n (type NBRAND).

Computational time against n (type NBS\tVAP) .

Computational time against n (type SLIDE) .

Computational time against n (type NET)

54

55

55

56

72

72

81

82

83

88

88

91

91

92

92

93

93

List of Tables

3.1

3.2

3.3

3.4

4.1

4 .2

5.1

5.2

5.3

All the sets S E V*(D) and J(S) for the partial order D of (3.2.2).
Parameter values used for the parameter tuning.
Parameter values adopted after the parameter tuning.
The computational time (in seconds) to solve OLAP by algorithms DP and

genetic DP.

Classification of crossover operators.

A comparison of various crossover operators.

Average error in% of the best solutions (average number of initial solutions)
with MLS
Average error in % of the best solutions with GRASP using Nswap·
Average error in % of the best solutions with ILS for n = 100 after 3 x 10

6

23

30

33

35

49

52

60

G1

samples . 63

5.4

5.5

5.6

Average error(%) of the best solutions with various versions of GA with P = 100. 64
Average error in% of the best solutions with GA after 3 x 106 samples. 64
Average error (%) of the best solutions with GLS in which P = 20. 65

5. 7 Average error (%) of the best solutions with SA. .

5.8 Average error(%) of the best solutions with TA ..
5.9 Average error (%) of the best solutions with GDA.

5.10 Average error (%) from the best solutions with TS.

6.1 Average number of common intervals divided by n for type SWAP and NB-

SWAP instances
6.2 Average number of inner loop iterations of BSC, LHP and MNG divided by n

G7

68

69

70

89

(n = 104). 90
6.3 Average of the total number of scans on ulist, lli.st and ylist of RC divided by

n (n = 106). 90

Xl

Xll LIST OF TABLES

Chapter 1

Introduction

1.1 Historical Background

The optimization problems we consider in this thesis are generally defined as follows:

m1mm1ze cost((]')

subject to (]' E F.
(1.1.1)

F is the set of solutions (]' that satisfy all the constraints. F is called the feasible region and

each (]' E F is called a feasible solution. A feasible solution (]'* E F is optimal if cost((]'*) ~

cost((]') holds for all(]' E F, and cost((]'*) is called the optimal value. When F is combinatorial

in some sense, we call problem (1.1.1) a combinatorial optimization problem.

Combinatorial optimization problems frequently appear in the real-world such as machine

scheduling, vehicle routing, and their importance has widely been recognized in recent years.

Many of such combinatorial optimization problems are computationally intractable, e.g. ,

those problems known to be NP-hard [38]. However, in practice, we are often asked to

deal with large scale instances of such difficult problems. One possibility to overcome this

seemingly impossible difficulty is that, in most practical cases, we do not need exact optimal

solutions and are satisfied with sufficiently good solutions. In this sense, approximate (or

heuristic) algorithms, which provide reasonably good solutions in practically meaningful time,

are very important and have been intensively studied recently.

There are several useful tools used to design approximate algorithms. The most common

one is perhaps the greedy method [75, 95], which directly constructs approximate solutions

by successively determining the values of variables on the basis of some local information.

Another important tool is the local search [3, 95], which starts from an initial feasible solution

(]' and repeats replacing it with a better solution in its neighborhood N((]') until no better

solution is found in N((J'), where N((J') is a set of solutions obtainable from a by a slight

perturbation.

1

2 CHAPTER 1 INTRODUCTION

The so-called metaheuristics [3 , 92 , 103, 104] combine these tools into more sophisticated

algorithms. Among the well-known metaheuristics are multi-start local search [68, 78], sim­

ulated annealing [1, 16, 69], tabu search [41 , 44], genetic algorithm [22 , 47, 58] and so on.

Multi-start local search applies the local search to a number of initial solutions and outputs

the best solution found during the entire search. Simulated annealing and tabu search try to

enhance the local Sf'arch by allowing the replacement of the current solution a with a worse so­

lution in N(a) thereby avoiding to be trapped into bad local optimals. The genetic algorithm

is a probabilistic algorithm that simulates the evolution process, by repeating the operations

such as crossover, mutation and selection. An important feature of this algorithm is that

it keep P (2: 1) candidate solutions and improve them in the process of evolution. Many

variants, such as GRASP (greedy randomized adaptive search procedure) [31, 32], threshold

accepting [28], iterated local search [63, 82], genetic local search [71, 89, 126] and so on, have

also been proposed and extensively studied. These algorithms are summerized in Chapter 2.

1.2 Research Objectives and Outline of the Thesis

One of the attractive features of these metaheuristics is in its flexibility. They can be hy­

bridized with other heuristic or exact algorithms to make them more powerful. As an example

of such hybrid algorithms, we propose to use dynamic programming in the process of obtain­

ing new generation solutions in the genetic algorithm, and call it a genetic DP algorithm.

To evaluate the effectiveness of this approach, we choose three representative combinatorial

optimization problems, the single machine scheduling problem (SMP), the optimal linear ar­

rangernent problem (OLAP) and the traveling salesman problem (TSP), all of which ask to

comput optirrmm permutations of n objects and are known to be NP-hard. Computational

experiment of genetic DP algorithms are conducted to compare them with exact algorithms,

the conventional genetic algorithms and multi-start local search algorithms. Algorithms of

genetic DP could obtain optimal solutions to 4 7 out of 50 SMP instances with up to n = 35

jobs, and 23 out of 24 OLAP instances with up to n = 20 components, in a very short time

compared to the exact algorithrns. They also exhibit superiority to other meta-heuristics

such as multi-start local earch algorithms and genetic local search algorithms. However, in

the cas of TSP, the Lin-Kernighan heuri tic [78] exhibits much better performance than all

oth rs including genetic DP algorithm.

During the xperience of developing the g netic DP, we realized that crossover is one

of the mo t important operator · in genetic algorithms, on which the overall performance of

the algorithms criti ·ally depend ·. To pur. ue this direction, we review a number of eros over

operators proposed ~ far for ·cqucncing problems. We then consider a general framework

of rossov r operator and anal~ ze the relation hip between characteristics of the operator

and performance of th algorithn1. Based on this analy i , we propose simple criteria for

1.2 Research Objectives and Outline of the Thesis 3

measuring the quality of crossover operators. Computational experirnents for the single

machine scheduling problem (SMP) using a simple framework of GA i, conducted , and it

is observed that the following two criteria are important for crossover operator : (1) inherit

as many elements as possible from the parents, and (2) keep the diversity of children obtained

from the parents.

Another attractive feature of metaheuristics consists in its robustness and simplicity.

They can be developed even if deep mathematical properties of the problem domain are not

at hand, and still can provide reasonably good solutions, 1nuch better than those obtain­

able by simple heuristics. We pursue this direction more carefully, by implementing various

metaheuristics and comparing their performance. The objective is not to propose the most

powerful algorithm but to compare general tendencies of variou algorithm . The emphasis

is placed not to make each ingredient of such metaheuristics too sophisticated, and to avoid

detailed tuning of the program parameters involved therein, so that practitioners can easily

test the proposed framework to solve their problems of applications. As a concrete problem

to test, we choose the single machine scheduling problem (SMP). The results indicate that:

(1) MLS is usually good enough for practical purposes , considering its sirnplicity, (2) a variant

of MLS, called GRASP, is effective; however, its performance is sensitive to greedy methods

used to generate initial solutions, (3) a variant of MLS, called iterated local search, is quite ef­

fective, (4) GA combined with local search is also competitive if longer computational time is

allowed, and its performance is not sensitive to crossovers, (5) SA (and its variants called the

threshold accepting and the great deluge algorithm) is another competitive method assuming

that longer computational time is allowed, and its performance is not much dependent on

inside parameter values, (6) there are cases in which TS is more effective than MLS; however,

its performance depends on how to define the tabu list and parameter values, and (7) the

definition of neighborhood is critical for all of the tested algorithms except GA. Th se results

lead to a simple description of the guideline for designing metaheuristic algorithms.

We then consider a problem arising from the implementation issue of a crossover opera­

tor. One of the crossover operators proposed for sequencing problems includes the following

problem: Given two permutations of n elements, enumerate all pairs of intervals consisting of

the same set of elements. vVe call this problem as the common interval enumeration problem,

and propose three types of fast algorithms: i) a simple O(n2
) time algorithm (LHP), whose

expected running time becomes O(n) for two randomly generated permutations ofn clements,

ii) a practically fast O(n2) time algorithm (MNG) using the reverse Monge property, and iii)

an 0(n+ K) time algorithm (RC) , where K (:::; G)) is the number of common intervals. It will

be also shown that the expected number of common intervals for two random permutations

is 0(1). This result gives a reason for the phenomenon that the expected time complexity

O(n) of the algorithm LHP is independent of K. Among th proposed algorithms, RC is

most desirable from the theoretical point of view; however , it is quite complicated compared

4 CHAPTER 1 INTROD UCTION

to LHP and MNG. Therefore, it is possible that RC is slower than the other two algorithms
in some cases. For this reason, computational experiments for various types of problems with
up to n = 106 are conducted. The results indicate that i) LHP and MNG are much faster
than RC for two randomly generated permutations, and ii) MNG is rather slower than LHP
for random inputs; however, there are cases that LHP requires n(n2) time, but MNG runs
in o(n2) time and is faster than both LHP and RC. We also consider the enumeration of all
common subtrees, i.e., given two trees with labels on their leaves find the pairs of subtrees
having the same set of leaf labels. This problem has an application in constructing evolu­
tionary trees. By using the algorithm RC, we can derive a fast randomized algorithm wit h
O(n log2 n) expected running time if we arc given two binary trees of depth log2 n, where n is
the number of leaves. The expected running time becomes O(n) if the same two b inary t rees
of depth log2 n are given as the input. The latter special case is a trivial instance; however ,
this ca e is intuitively considered to be tough for this algorithm, and hence, it is expected
that the proposed algorithm runs in 0(n) expected time for most of the practical instances,
although the worst case running time is O(n2).

The thesis is organized as follows. In Chapter 2, we review various metaheuristic a lgo­
rithms. In Chapter 3, the genetic DP, in which the genetic algori thms a nd t he dynamic
programming are combined , is proposed and computational results are shown. In Chapter
4, various crossover operators are compared and simple criteria for measuring the quality of
crossover operators are proposed. In Chapter 5, various metaheuristic algorithms are com­
pared and a guideline for the use of metaheuristic algorithms is discussed. In Chapter 6, three
algorithms for the common interval enumeration problem are proposed. Finally, in Chapter
7, we summarize our study in this thesis and list the contribution of our study. T he impor­
tance of metaheuristic algorithms i evident, as t he sizes of the real-world p roblem instances
arc always increasing. The author hopes that the work in this t hesis will be helpful to make
metaheuristic algorithms more effective.

Chapter 2

Metaheuristic Algorithms:
An Overview

2.1 Metaheuristics

In this chapter, we describe frameworks of various metaheuristic algorithms. For simplicity,
we restrict our attention to the problems whose feasib le solutions are easily obtained. The
basic frameworks of metaheuristics are the same for those problems whose feasible solutions
are not easily obtained, but we need some slight modifications. For example, we often allow
the search into the infeasible region and add a penalty term to the cost (1.1.1) to evaluate
the degree of infeasibility. Some other approaches are possible, but we omit them here.

Among basic strategies of approximate algorithms are

• greedy method,

• local search (LS) .

The greedy method is a one-path algorithm that constructs a feasible solution step by step,
on the basis of the effectiveness computed by a local evaluator. The idea of the greedy method
may be best explained by examples. Some examples of the greedy methods for sequencing
problems , SMP, OLAP and TSP, are explained in Sections 3.3.2, 3.4.1 and 3.5.1, respectively.

The LS starts from an initial solution a and repeats replacing a with a better solution
in its neighborhood N(a) until no better solution is found in N(a), where N(a) is a set of
solut ions obtainable by slight perturbations. The local search from an initial solution ao, in
which the neighborhood N is used, is formally described as follows.

5

6 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW

Algorithm LS(N, a 0)

Step 0 Set a:= ao.

Step 1 If there is a feasible solution a' E N(a) such that cost(a') < cost(a), set a := a' and

return to Step 1. Otherwise go to Step 2.

Step 2 (cost(a') 2: cost(a) holds for all a' E N(a).) Output a and stop.

A solution a is called locally optimal, if no better solution exists in N(a). We call the

computation of obtaining a locally optimal solution from an initial a0 as a trial of LS, and call

the r placement of the current solution a by a better solution as a move. One of the following

two move strategies are commonly used: First admissible move strategy (abbreviated as FA)

and best admissible move strategy (abbreviated as BA). FA scans the neighborhood N(a)

according to a prespecified random order and moves to the first improved solution. BA scans

the entire neighborhood and move to the best solution in N(a).

In general, if only one trial of LS is applied, many solutions of better quality may remain

unvisited. Therefore, LS may be enhanced by:

• trying many initial solutions,

• using a sophisticated neighborhood or a larger neighborhood,

• using a sophisticated search strategy, sometimes allowing moves to worse solutions in

N(a).

Metaheuristics such as

• multi-start local search (MLS),

• genetic algorithm (GA),

• simulated annealing (SA),

• tabu search (TS)

can be viewed as such variants of LS. In the following sections, we briefly summarize these

mctahcuristic algorithms along with their variants. More details are found in survey papers

and books such as [3, 91 , 92, 98 , 99, 103, 104], and hybrid approaches (e.g., hybrids of two

metahPuristics, hybrids of exact algorithms and metaheuristics, etc.) are summarized in [59] .

Comparisons of metahPuristic algorithms are found in, e.g., [2, 20, 63, 117, 126].

2.2 Multi-Start Local Search

In the multi-start local search (~ILS) LS i repPated from a number of initial solutions and

the best solution found during the entire search is output. This is one of the most commonly

2.2 Multi-Start Local Search 7

used techniques for combinatorial optimization problems [68, 78, 95]. The initial solution

may be generated randomly or by using greedy methods. The MLS, in which initial solutions

are generated randomly, is formally described as follows.

Algorithm MLS

Step 1 (initialize) Set best:= oo.

Step 2 (generate an initial solution) Generate a solution a randomly.

Step 3 (improve by LS) Improve a by LS, i.e., set a:= LS(N, a) .

Step 4 (update the best cost) If cost(a)< best, set best:= cost(a) and a* :=a.

Step 5 (halt or random restart) If some stopping criterion is satisfied, output a* and stop;

otherwise return to Step 2.

In Step 5, various stopping criteria are possible. Among common ones are:

• stop if a prespecified computational time is reached,

• stop if a prespecified computational time is spent without improving best.

Some other measures, such as

• the number of repetitions of Steps 2 to 4,

• the number of moves,

• the number of cost evaluations,

are also commonly used instead of the computational time. These stopping criteria arc also

used in other metaheuristic algorithms.

The greedy randomized adaptive search procedure (GRASP) is a variant of MLS, in which

the initial solutions are generated by randomized greedy methods. In the greedy method, a

feasible solution is usually constructed step by step by choosing the element with the best

evaluation. Although better initial solutions than random ones are usually obtained, the vari­

ety of solutions constructed by this method is quite limited, which is not preferable for MLS.

To overcome this, in GRASP, a feasible solution is constructed by, in each step, randomly

choosing an element from the candidate list C A composed of those elements with good local

evaluations. The size ICAI of the candidate list is a prespecified parameter. If ICAI = 1, the

algorithm is equivalent to the ordinary greedy method. Some examples of GRASP for SMP

will be examined in Chapter 5. In GRASP, it is expected that LS can start from good initial

solutions while keeping the diversity of the search. The framework of GRASP is described as

follows.

8 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW

Algorithm GRASP

(Steps 1, 3, 4 and 5 are the same with MLS.)

Step 2 (generate an initial solution) Generate a solution u by using randomized greedy

method.

GRASP was proposed by Feo et al., e.g., [34], and applied to various combinatorial opti­

mization problems by themselves and others, e.g., (30, 32, 33, 73, 76, 106]. The basic idea of

GRASP has appeared in early papers such as (31 , 55].

Another variant of MLS called the iterated local search (ILS) [53, 63] is also possible,

where the initial solutions are generated by slightly perturbing a solution CTseed, which is a

good (not necessarily the best) solution found during the search.

Algorithm ILS

Step 1 (initialize) Set best:= oo and generate a solution CTseed randomly.

Step 2 (generate an initial solution) Generate a solution u by slightly perturbing CTseed·

Step 3 (improve by LS) Improve u by LS, i.e., set u := LS(N, u).

Step 4 (update the best and seed solutions) If cost(u) < best, set best := cost(u) and

u* := u. If some accepting criterion is satisfied, set u seed := u.

Step 5 (halt or random restart) If some stopping criterion is satisfied, output u* and stop;

otherwise return to Step 2.

In Step 2, the new solution u is usually generated by randomly choosing a solution in

the neighborhood N'(u). For N', we can use the same neighborhood as LS (i .e., N' = N);

however, the search may return to CTseed by LS and cycling may occur, since the neighborhood

is usually symmetric (i.e., CTa E N(ub) <=> CTb E N(ua)). To avoid this, a larger neighborhood

(i.e., IN'I > JNI) or a different neighborhood is often used as N'. There is a variant of this
'

in which the neighborhood N' is gradually enlarged if the search fails to improve u*, and N'

is reset to the original size (usually small) if u* is updated. Such variants are called variable

neighborhood search algorithms [14 , 15, 86]. Another variant is to generate u in Step 2 by

applying LS to u seed, in which a randomized cost function is used to evaluate solutions instead

of the original cost. Such algorithms are called noising method or perturbation [17, 18, 121].

In Step 4, one of the simplest rules of accepting a new CTs eed is: Set CTseed := u if cost(u) <
best (i.e. , u seed = u*). In [81 , 82], a variant , called chained local optimization, is proposed.

In this method , CTseed is chosen randomly according to the following rule, whose idea is taken

from the sirnulated annealing: If cost(u) < cost(useed) , set CTseed :=a-; otherwise set CTseed := u

with probability e- 6. / t , where ~ = cost(u) - cost(u seed) and t is a prespecified parameter (t

can be adaptively changed during the earch).

2.3 Genetic Algorithm 9

2.3 Genetic Algorithm

The genetic algorithm (GA) is a probabilistic algorithm, whose idea comes from evolution.

GA repeatedly applies the operations such as crossover, mutation and selection to the set

of candidate solutions P. This algorithm can be viewed as a generalization of LS, in which

the neighborhood N(P) is defined to be the set of solutions obtainable from P by crossover

and mutation operators. A crossover operator generates one or more solutions (children) by

combining two or more candidate solutions (parents), and a mutation operator generates a

solution by slightly perturbing a candidate solution. The GA starts from an initial candidate

solutions P and repeat replacing P with P' ~ P U N(P) according to the selection rule.

Algorithm G A

(Positive integers P and Q are program parameters to be specified beforehand.)

Step 1 (initialize) Construct the set P of P initial candidate solutions. Let u* be the best

solution among P.

Step 2 (crossover and improve): Repeat the following steps (a) and/or (b) until the set Q

of Q candidate solutions are obtained.

a (crossover) Crossover two or more candidate solutions to generate a new solution.

b (mutate) Mutate a candidate solution to generate a new solution.

Step 3 (update the best solution) If a solution u with cost(u) < cost(u*) is found in Step

2, set u* := u.

Step 4 (select) Select P solutions P' from the resulting P U Q, and set P := P'.

Step 5 (iterate) If some stopping criterion is satisfied, output u* and stop; otherwise return

to Step 2.

GA was originally introduced by Holland [58]. For details, see [22, 47]. There is a recent

survey by Reeves [105], in which various ideas and applications are discussed from the view

point of "GA as a tool for operations researchers."

A variant of GA in which solutions generated by the crossover and mutation operators

are improved by LS is called the genetic local search (GLS) [71, 89, 126]. GLS is different

from MLS in that GLS generates the initial solutions from the current P by crossover and/or

mutation, while MLS generates them randomly from scratch.

10 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW

Algorithm G LS

(Steps 1, 3, 4 and 5 are the same as GA.)

Step 2 (crossover and improve): Repeat the following steps (a) and/or (b), and (c) until
the set Q of Q candidate solutions are obtained.

a (crossover) Crossover two or more candidate solutions to generate a new solution.

b (mutate) Mutate a candidate solution to generate a new solution.

c (local search) Apply local search to the solution of (a) and/or (b) to obtain a
locally optimal solution.

Early references such as [13, 22, 47, 61, 62, 84, 87, 89, 123, 126] have already mentioned the
idea of GLS. Some other successful applications are found in [37, 71].

2.4 Simulated Annealing

This is a variant of LS, in which test solutions are randomly chosen from N(O") and accepted
with probability that is 1 if the test solution is better than a-, and positive even if the test
solution is worse than u. By giving a positive probability to a move to a worse solution, the
search is able to escape from poor locally optimal solutions. The acceptance probability is
judiciously controlled by a parameter called temperature, whose idea stems from the physical
annealing process.

Algorithm SA

Step 1 (initialize) Generate a solution O", set O"* := O" and specify an initial temperature t.

Step 2 (check a neighborhood solution) Generate a solution a-1 E N(O") randomly, and set
~ := cost(O"') - cost(O"). If ~ < 0 (i.e., a better solution is found), set O" := u';
otherwise set O" := u' with probability e-t::..jt.

Step 3 (update the best cost) If cost(O") < cost(O"*), set O"* := O".

Step 4 (halt or further search) If some stopping criterion is satisfied, output O"* and stop;
otherwi e update t according to some rule and return to Step 2.

SA was proposed in [16, 69]. For details of SA, see [1]. Extensive computational results are
found in the series of paper , [64].

The threshold accepting (TA), originally introduced in [28], is a variant of SA. In TA, Step
2 of SA i replaced by

Step 2' (check a n ighborhood solution) Generate a solution 0"
1 E N(O") randomly, and set

~ := cost(O"')- cost(O"). If~ < T, et O" := 0"
1

•

2.5 Tabu Search 11

The parameter T, called threshold, is controlled instead of the temperature t. Comparisons

with other metaheuristics are found in [2, 77, 126].

There is another variant of SA, called great deluge algorithm (GDA), which was proposed

in [27]. In GDA, Step 2 of SA is replaced by

Step 2" (check a neighborhood solution) Generate a solution a-' E N(a-) randomly. If

cost(a-') < W, set a- := a-1
•

The parameter W, called water level, is controlled instead of the temperature t. Comparisons

with other metaheuristics are found in [117].

Similar (but much simpler) approach is applied to the satisfiability problem, which is
called the WALKSAT algorithm [115]. In this method, the algorithm either moves to the
best solution, or to a solution randomly chosen, in the (randomly restricted) neighborhood.

2.5 Tabu Search

The tabu search tries to enhance LS by using the memory of the previous search. Basically
the best solution in N(u) \ ({ O"} UT) is chosen as the next solution, where the set T, called tabu
list (or short term memory), is a set of solutions which includes those solutions most recently
visited. Within this restricted neighborhood, a move to a new solution is always executed
even if the current solution is already locally optimal, but cycling of a short period can be
avoided as a result of introducing T. Another type of memory, called long term memory, is
often employed in the framework of TS, which memorizes the past search information such
as the frequency that each decision variable has been changed, the frequency that a solution
has been visited and so on. This memory is used to direct the search to the unvisited region

(i.e ., diversification).

Algorithm TS

Step 1 (initialize) Generate a solution O", set O"* := O" and T := 0.

Step 2 (decide a move) Find the best solution 0"
1 in N(O")\({O"} UT), and set O" := u'.

Step 3 (update the best cost) If cost(O") < cost(O"*), set O"* := O".

Step 4 (halt or further search) If some stopping criterion is satisfied, output O"* and stop;

otherwise update T according to some rule and return to Step 2.

TS was proposed in [41]. For details, see books and tutorials such as [42, 43, 44, 45].

12 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW

2.6 Other Metaheuristic Algorithms

In this section, we briefly review some other metaheuristic algorithms: (1) variable depth

search, (2) ant system and (3) guided local search.

The variable depth search, originally proposed in [68, 78] and introduced with this name

in [95], is a generalization of local search, in which the neighborhood is defined to be the set

of solutions obtainable by a sequence of simple neighborhood moves. This idea is slightly

extended and studied with the name ejection chain in combination with the tabu search

[26, 67, 74, 97]. Recently, we successfully applied the variable depth search to the generalized

assignment problem [137, 138], which is one of the representative combinatorial optimization

problems that is known to be NP-hard.

The ant system algorithm, originally introduced in [19, 24], is a randomized algorithm

inspired by the behavior of ants. Ants are able to find good solutions to shortest path

problems between a food source and their home colony by communicating via pheromones.

If many ants choose a certain path and lay down pheromones, the intensity of the trails

increases and thus this trail attracts more and more ants. This mechanism is imitated to

store the information of good solutions found in the previous search, and to bias the later

search to the e promising directions. For details, see [25]. Combination with local search is

also possible, and good prospects of such approaches are reported in [80, 122, 124]. Boese [12]

proposed a similar (but much simpler) multi-start local search approach based on a different

motivation.

The guided local search [102, 125, 128] is a variant of local search, in which solutions are

evaluated with the modified cost based on the previous search information. In this method,

the element (e.g., tour edge for the TSP) with the largest cost included in the locally optimal

solution in the last trial is penalized in the next search so that different solutions are visited.

This algorithm can be considered as a special case of TS, in which only the long term memory

is used. Although the motivation is rather different and the algorithm is specific to a certain

problem, similar idea is applied to the satisfiability problem [114], which is called the weighting

strategy. (The objective of the satisfiability problem is to find a solution by which all the

given clauses are satisfied.) In this method, the weights of unsatisfied clauses in the locally

optimal solution of the previous trial are modified so that they get more chance to be satisfied

in the next iteration.

2. 7 Theoretical Results

Although not much is known about the theoretical aspects of metaheuristics, we briefly

mention here orne of such results.

From the view point of computational complexity, it is even not clear whether finding a

2.8 Conclusion 13

locally optimal solution is possible in polynomial time or not. To investigate this direction,

Johnson et al. [65] proposed a complexity class called PLS (polynomial-time local search).

Other related topics are found in [72, 94, 111], and a recent survey is in [141]. This research

direction is quite important; however, not much attention is payed by practitioners, since the

computational time of LS to find a locally optimal solution is usually small.

It is well-known that the search of SA converges to a global optimum under certain

conditions, if the temperature is decreased very slowly, e.g., [79]. Similar result is also known

for TA [7]. On the other hand, it is shown in [110] that exponential time is needed for such

convergence of SA for the matching problem, for which efficient polynomial time algorithms

exist. Therefore, these results do not give a support to the success of metaheuristic algorithms

within limited amount of computational time, although they are quite interesting from the

theoretical point of view.

It is shown in [6, 23] that, under certain conditions, a global optimum is found in polyno­

mial time with high probability by a multi-point search called "go with the winners", which

is a simplified search model proposed for the analysis and is similar to GA to some extent.

The drawback of these results is that the conditions needed for the theorem to hold are rather

unnatural. However, the algorithm itself is quite simple and its algorithmic (not theoretical)

idea is applicable to many problems.

2.8 Conclusion

In this chapter, we briefly reviewed representative metaheuristic algorithms, such as multi­

start local search (MLS), greedy randomized adaptive search procedure (GRASP), iterated

local search (ILS), simulated annealing (SA) and tabu search (TS). We also mentioned some

variants of them. There are many other approaches we did not mention in this chapter, e.g.,

multispace search [52, 54], incomplete construction/improvement [109], etc. However, it is

very hard to cover all of known algorithms in this rapidly growing field.

We also did not explain details of each metaheuristic algorithm or hybrid approaches of

them, which are often important to achieve fruitful results. The readers who would like to

know more about metaheuristics, see, e.g., [3, 91, 92, 98, 99, 103, 104].

14 CHAPTER 2 METAHEURISTIC ALGORITHMS: AN OVERVIEW

Chapter 3

The Use of Dynamic Programming

in Genetic Algorithms

3.1 Introduction

An important feature of the genetic algorithm is that it keeps P 2: 1 candidate solutions and

improve them in the process of evolution. Among various modifications [22, 118, 139, 142],

it is reported in [61, 89, 126] that introducing local search technique in the evolution process,

i.e., GLS explained in Section 2.3, is quite effective. This may suggest that combining some

of other techniques with genetic algorithms is also worth trying.

In this chapter, we propose a variant of the genetic algorithm called genetic DP [129, 130,

134]. It uses dynamic programming (abbreviated as DP) to improve the candidate solutions.

To evaluate the effectiveness of this approach, we choose three representative combinatorial

optimization problems: the single machine scheduling problem (abbreviated as SMP) [60], the

optimal linear arrangement problem (abbreviated as OLAP) [10] and the traveling sale.sman

problem (abbreviated as TSP) [75], all of which are known to be NP-hard. The SMP asks

to determine an optimal sequence of n jobs that minimizes a cost function defined for jobs,

e.g., total weighted sum of earliness and tardiness. The OLAP asks to determine an optimal

arrangement of n components in a straight line, which minimizes the total wire length needed

for connecting all components in a prespecified manner. The TSP asks to find the shortest

tour (i.e., a closed path that visits every city exactly once). These problems all ask to find

an optimal permutation of n elements. The genetic DP can be applied to these optimization

problems to find an optimal permutation of n elements.

Computational experiments of genetic DP algorithms are conducted to compare them with

exact algorithms, the conventional genetic algorithms and multi-start local search algorithms.

Algorithms of genetic DP could obtain optimal solutions to 4 7 out of 50 SMP instances with

up to n = 35 jobs, and 23 out of 24 OLAP instances with up to n = 20 components,

15

16 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

m a very short time compared to the exact algorithms. They also exhibit superiority to

other meta-heuristics such as multi-start local search algorithms and genetic local search

algorithms. However, in the case of TSP, the Lin-Kernighan heuristic [78) exhibits much

better performance than all others including genetic DP algorithm.

From these results, we can conclude that genetic DP is one of the most powerful meta­

heuristics useful for general combinatorial optimization problems, though it does not exclude

the possibility that some heuristics specialized to the given problem, such as Lin-Kernighan

algorithm, may turn out to be the winner.

3.2 Genetic DP Algorithm

In place of crossover and local search in Step 2 of GLS, genetic DP applies dynamic pro­

gramming (DP) in order to generate a new solution from given two candidate solutions. It

is prirnarily considered for the problem of finding optimum permutations (though it can be

generalized to other types of optimization problems). The general framework of genetic DP

is first described, and then each step is explained more in details.

Algorithm GENETIC DP

(Positive integers P and Q are program pararneters to be specified beforehand)

Step 1 (Initialize): Construct P initial candidate solutions.

Step 2 (Crossover by DP and Improve): Get Q candidate solutions by repeating the fol­

lowing steps, where step (Mutate) is optional.

(Crossover): Pick up two candidate solutions and compute the partial order D

common to both solutions.

(1viutate): Perturb the obtained D randomly.

(DP): Apply dynamic programming (DP) to the resulting D to obtain the best

solution that does not violateD. Add the obtained solution to the set of candidate

solutions unless it is already in the set.

Step 3 (Select): Select P solutions from the resulting P + Q solutions.

Step 4 (Iterate): Repeat Steps 2 to 3 until some stopping criterion is satisfied.

Step 2 (Crossover by DP)

Let a solution be a perrnutation a= (a(1) ... , a(n)), i.e ., an ordered sequence of n different

elements, cho en from set {1,2, ... ,n}, where a(i) denotes the i-th element in the sequence

3.2 Genetic DP Algorithm 17

and a- 1 (j) denotes the location of element j. Denote the two candidate solutions picked up

in Step 2 by a 1 and a2. The partial order common to a1 and a2 is defined by

(3.2.1)

The idea of crossover by DP is based on the fact that good solutions tend to have a lot

of common structure. For example, it is reported in Lin and Kernighan [78) that about 85%
pairs of cities on the average are commonly adjacent in two tours obtained by using their

algorithm, and 60 rv 80% pairs are commonly adjacent in 7 or 8 such tours. They succeeded

in speeding up their algorithm by fixing such pairs common in k tours (k is a given positive

integer) without greatly losing the solution quality. In our formulation, the common partial

order D of given two candidate solutions is a description of the common structure. By using

DP (details of its computation will be described later in Sections 3.3.2, 3.4.1 and 3.5.1 as it

depends on the particular problem being solved), it is possible to compute the best solution

consistent with D.

Here we give an example of a partial order D. For two solutions a1 = (1, 2, 3, 4, 5, 6) and

a2 = (2, 3, 1, 5, 4, 6), D is given by

D = {(1,1),(1,4),(1,5),(1,6),

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 3), (3, 4), (3, 5), (3, 6),

(4,4),(4,6),

(5, 5), (5, 6),

(6,6)}.

(3.2.2)

A partial order can be represented by a directed graph, where a vertex represents an element

and an arc represents an order. In such a graph, arcs for

{(i ,i) ED} U {(i,k) ED I :Jj such that (i,j) ED and (j,k) ED}

are omitted. The graph representing the above D is given in Figure 3.1.

Step 2 (Mutate)

In our computational experiment, we realized the mutation by randomly perturbing the

common partial order D before applying DP computation. After trying several, we employed

the following method of perturbation: randomly choose a pair i, j E V such that a 11
(i) <

a1 1 (j), and relax D by one of the following two operations:

D := D- {(i, k) I a1 1(i) < a1 1(k):::; a1 1(j))},

D : = D - { (k, j) I a 1 1
(i) :::; a 1 1 (k) < a 1 1 (j))}.

(3.2.3)

18 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

~
3

Figure 3.1: The graph representing the partial order D for two solutions o-1 = (1, 2, 3, 4, 5, 6)

and o-2 = (2, 3, 1, 5, 4, 6).

This operation is repeated s times, where s is a prespecified positive integer.

The mutation relaxes the constraint D, and enlarges the search space of DP computation;

hence, the solution quality may improve at the cost of spending more computation time.

Step 3 (Select)

Denote the cost of solution o- by cost(o-). We suppose without loss of generality that

cost(o-t) ~ cost(a2). (3 .2.4)

To 1naintain P candidate solutions, we tested the following two methods.

Method (i): Select the best P solutions after the Q candidate solutions are formed in

Step 2.

Method (ii): The selection is conducted immediately after the new solution is generated

in Step 2. More precisely, at each execution of crossover by DP in Step 2, let anew be

the solution obtained by DP from a 1 and a2. Replace a2 with the new solution anew if

cost(anew) <cost(at), otherwise anew is discarded.

It was observed in [130] that method (ii) usually perform better than method (i). However,

since anew and a1 tend to become very close, repeating (ii) many times may lose the diversity

of P candidate solutions. In order to prevent this, method (ii) is modified as follows.

Method (iii): Replace a2 with anew with probability p(t::qj ~2); otherwise replace a1 with

anew, where

~i = cost(ai) -cost(anew), i E {1, 2},

p(x) = min Ux , 1}.
(3 .2.5)

(3.2.6)

Note that ~2 ~ ~ 1 ~ 0 by the definition , and hence 0 ~ x ~ 1 (we consider x = 1 if

~2 = ~ 1 = 0). The above p(x) is illustrated in figure 3.2. The positive constant a is a

program parameter. If a = 0 then O"new always replaces o-2, and if a = oo then O"new always

replace a1.

3.3 Single Machine Scheduling Problem 19

p(x)

0 a X

Figure 3.2: The probability function p(-).

Step 4 (Iterate)

The algorithm terminates after r (a given positive integer) successive iterations of Steps 2

and 3 without improvement of the best solution in the P candidates.

3.3 Single Machine Scheduling Problem

The single machine scheduling problem (SMP) asks to determine an optimal sequence of

n jobs in V = {1, ... , n }, which are processed on a single machine without idle time. A

sequence a: {1 , ... , n} ---+ V is a one-to-one mapping such that a(i) = j (or a - 1(j) = i)

means that job j is the i-th job processed on the machine. Each job i becomes available

at time 0, requires integer processing time Pi and incurs cost gi(ci) if completed at time ci,

where ci = I:j~~(i) PO"(j)· All jobs are processed in time interval [0, LiEV Pi]· A sequence a is

optimal if it minimizes

cost(a) = L 9i(ci)·
iEV

(3.3.7)

The single machine scheduling problem is known to be NP-hard for most of the interesting

forms of gi (·). We consider in particular

(3.3.8)

where di E Z+ (set of nonnegative integers) is the due date of job i, and hi, Wi E Z+ are

respectively the weights given to earliness and tardiness of job i.

20 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

3.3.1 Exact Algorithms

The basic dynamic programming recursion due to [56] can solve SMP exactly. Let S ~ V be

an arbitrary subset of jobs, and let j* (S) denote the minimum of cost function (3.3. 7) over

S when the jobs in S are sequenced in the first lSI positions of the whole sequence. Then

j* (V) defines the cost of an optimal sequence of all jobs, and is obtained by solving

j*(¢) = 0, (3.3.9)

j*(S) = min{f* (S- { i}) + gi(L Pj)}, S ~ V.
tES . S

JE

The computational time required to obtain f* (V) is 0(n2n), since all 2n subsets S of V need

to be generated and the computation of each j*(S) by (3.3.9) requires O(n) time. This DP

reduces the size of the solution space from n! to 2n. However, the time complexity is still

exponential, and this approach is limited to small problem instances, e.g., n ~ 20.

A number of exact algorithms, which are based on branch-and-bound, have been studied

so far [101]. Another type of algorithm SSDP (successive sublimation dynamic programming)

was proposed in [60]. The essence of SSDP is to execute a series of DP recursions, such that

the underlying state-space is progressively refined at each iteration, until an exact optimal

sequence of jobs is computed. The number of generated states can be kept within manageable

level at each iteration by el~minating those states that are concluded from the information of

previous iterations not to lead to optimal sequences. The computational experiment shows

that problem instances of up to n = 35 can be practically solved.

3.3.2 Genetic DP Algorithm

In this section, we specialize the genetic DP of Section 3.2 to the SMP, and describe the

details of Steps 1 and 2.

Step 1 (Initialize)

It is important to generate different types of good solutions as initial candidates. Here we

adopt greedy heuristics for this purpose. At each step, let

AI = { i E V I i is not scheduled yet}. (3.3.10)

Then a job i E NI is chosen as the next job according to some evaluation criterion (e.g.,

the i with the smallest di)· There are two types of algorithms, corresponding to whether a

schedule is constructed forward or backward. A forward schedule starts with the job to be

processed at time 0, and continues adding th next job to be processed until M becomes

empty. A backward schedule is symmetrically defined from the last job to the first job. We

3.3 Single Machine Scheduling Problem 21

will describe below the forward schedule only.

GREEDY

1. Set M := V and t := 0.

2. Choose i E M that maximizes the local gain e(i, t) as the next job. Let M := M - { i}

and t := t +Pi·

3. Repeat Step 2 until M = ¢. 0

Here the local gain function e(i, t) represents the heuristic used. We employed the follow­

ing six functions (and hence 12 solutions corresponding to forward and backward construc­

tions).

The first evaluation function e1 is given by

where p is the average processing time

P = LPdn,
iEV

and 8i(t) indicates whether the due date di is urgent or not, i.e.,

and

bi (t) = { 1, t + p + Pi 2: di,
0, otherwise.

The second and third evaluation functions are

w · h ·
e3(i, t) = _::_8i(t) - _:(1- 8i(t)).

Pi Pi

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

If there are jobs with urgent due dates, the above functions put priority on the job among

them, whose cost will increase most rapidly if it becomes tardy. If there is no urgent job,

then a job whose cost will decrease most slowly or a job whose current cost is smallest is

selected.

Other evaluation functions e4 , e5 , e6 are also used. Suppose k = IMI- 1, i is the job to be

evaluated and jobs j E M- { i} are sorted in nondecreasing order of dj, i.e., d]l ~ ... ~ djk.

Then

k

e4(i, t) = -gi(t +Pi) - L gj1 (cjJ , (3.3.16)
l = l

22 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

where Cj1 = t +Pi+ 2:~= 1 Pj h. This gives the sum of g j (Cj) of all jobs in M when i is scheduled

next, and the rest is scheduled after i in nondecreasing order of dj. The functions e5 and e6

are variants of e4 in that e5 (e6) uses nonincreasing order of Wi (respectively, nondecreasing

order of hi) instead of nondecreasing order of di.

In these six evaluation functions, e3 often produces the best approximate solutions whose

error from the optimals are within 10%, and e4 usually produces solutions of reasonable

quality. Although other schemes are usually not as good as e3 or e4 , we adopted all six in

order to maintain the diversity of initial candidate solutions.

If more than 12 initial solutions are necessary (e.g., P = 100 solutions are generated in

the experiment of Section 3.6.2), we introduce randomness into the above greedy algorithms.

That is, in Step 2 of GREEDY, choose a candidate set C ~ Nf of k jobs (k is a prespecified

positive integer) in the decreasing order of the local gain (instead of a single job i), and then

randomly choose i from set C. This idea of randomized greedy methods is extensively studied

in [34], in the framework of multi-start local search.

Step 2 (Crossover by DP)

We first compute the common partial order D of a-1 and a-2 , and introduce the constraint

that job i must be processed before j if (i, j) E D. Then the best solution with cost f* (V),

among those which are consistent with D, can be obtained by solving the following dynamic
. .

programmrng recurswn.

!*(¢) = 0, (3 .3.17)

j*(S) = _min {f*(S- {i}) + gi(LPj)}, S E V*(D),
tE/(5) . S

JE

where

V * (D) = { S ~ V I j E S and (i, j) E D :::} i E S} , (3.3.18)

and

I(S) = {i E SIno j E S satisfies j #- i and (i,j) ED}. (3.3.19)

Here we give an example of V*(D) and J(S). For the partial order D of (3.2 .2), all the sets

S E V*(D) and J(S) for each S are shown in Table 3.1. Sets S = {1, 2, 3} and J(S) = {1, 3}

are al o shown in the graph representing D in Figure 3.3.

While the DP recursion by (3.3.9) generates all 2n subsets S of V, the recursion by (3.3.17)
generates only those ubsets in V*(D), i.e., those consistent with D. This implies that the

cornputational time and space can be substantially reduced.

It is, however, possible that the number of subsets in V*(D) is still too large to handle. In

·u h a cas , we randomly augrnent D until the estimated number of states IV*(D)I becomes

less than bn (b is a prespecified po itive constant): Randomly choose k E {2, .. . , n} and let

3.3 Single Machine Scheduling Problem 23

Table 3.1: All the sets S E V*(D) and J(S) for the partial order D of (3.2.2).

s I(S)

{1} {1}

{2} {2}

{1,2} {1,2}

{2,3} {3}

{1,2,3} {1,3}

{1,2,3,4} {4}

{1,2,3,5} {5}

{1,2,3,4,5} {4,5}

{1,2,3,4,5,6} {6}

Figure 3.3: Sets S = {1, 2, 3} and J(S) = {1, 3} are shown on the graph of Figure 3.1.

24 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

(3.3.20)

The value JV*(D)J is important in estimating computation time, since it gives the number

of states in dynamic programming recursion (3.3.17). The V*(D) is known as the set of ideals

of partial order D, and much effort has been devoted to the study of estimating JV*(D)J [120].

It is known [112] that a rather accurate estimation of JV*(D)J can be obtained in O(n2) time.

This estimation is exact when D has dimension two [119], which holds true in our case if

neither mutation (Section 3.2) nor augmentation (3.3.20) is applied.

Note that the sequence cr1 is always consistent with D, whether it is mutated or aug­

rnented, and hence the optimum cost of (3.3.17) will never be greater than that of cr1 (recall

assumption (3.2.4)).

3.4 Optimal Linear Arrangement Problem

In th<' optimal linear arrangement problem (OLAP), we are given a weighted hypergraph

H = (V, S, W), where V = {1, ... , n} is a set of vertices, S = { S1 , ... , Sm} is a collection

of subsets of V, and W = { w1, ... , wm} is a set of weights given to subsets in S. A linear

arrangement is a permutation cr : { 1, ... , n} ----+ V, meaning that vertex cr(i) is placed in the

i-th position in a straight line. The cost of a permutation cr is

(3.4.21)

and it is asked to find a permutation cr with the minimum cost. The applications of OLAP

are abundant in VLSI design and other areas [4, 10, 66, 113]. A special case of OLAP in

which the hypergraph H is a graph (each Si contains exactly two vertices) is referred to as

the Graph Optimal Linear Arrangement problem (abbreviated as GOLAP). It is known that

GOLAP with edge weights equal to 1 is already NP-hard [39]. GOLAP on rooted trees (the

root is always placed at the left most position) is solvable in O(nlogn) (where n = JVJ) time

[4], and GOLAP on undirected trees with edge weights equal to 1 is solvable in O(n2·2) time

[116].

3.4.1 Genetic DP Algorithm

In this section, we explain the detail of Steps 1 and 2 of genetic DP for OLAP.

Step 1 (Initialize)

To generate different type of initial candidate solutions, we use two heuristics, Kang's greedy

method [66] and the clustering method [10, 113].

3.4 Optimal Linear Arrangement Problem 25

Although Kang's method was stated in [66] for the casE' of unit weights (wi = 1), it is easily

extended to arbitrary weights. It begins with a vertex i E V that minimizes netcut({ i}, V­

{ i}), where netcut(L, R) denotes the sum of net weights between L and R, i.e.,

m

netcut(L, R) = L Wibi(L, R),
i=1

{
1, if Si has vertices in both L and R,

bi(L, R) =
0, otherwise,

(3.4.22)

and place it at the leftmost position. It then builds a linear arrangernent from left to right

by adding one vertex i EM that maximizes netcut(V- M,{i})- netcut({i},M- {i}) at

each iteration, where

M = { i E V J i has not been placed yet}. (3.4.23)

The clustering method has two phases. A cluster CLi C V is a set of vertices. The first

phase is executed as follows.

1. Let CLi := { i} (i = 1, ... , n), k := n, and S := V (S stores the indices of all clusters).

2. Let k := k+l. Find i,j E S that maximizes netcut(CLi,CLj), let CLk := CLiUCLj,

and S := S U {k}- {i,j}.

3. Repeat Step 2 until JSJ = 1 holds. 0

The process of combining two clusters CLi and CLj into one cluster CLk (Step 2) can be

represented as a binary tree, called a cluster tree, in which each cluster C Lz is represented

as vertex l, and vertices i and j are the two sons of vertex k. It is decided arbitrarily which

of i and j becomes the left son. The resulting left to right order of all leaf vertices of the

whole cluster tree is a linear arrangement and is output as a heuristic solution obtained in

the first phase. In the second phase, the above solution is improved by applying the local

search whose neighborhood N(cr) is the set of solutions obtained by exchanging left and right

sons of any inner vertex of the cluster tree.

Step 2 (Crossover by DP)

Here we consider the following two methods.

(A) Compute the common partial order D of (3.2.1) for two candidate solutions cr1 and

cr2. Note that (i, j) E D in this case denotes that vertex i is placed to the left of j in both

cr 1 and cr2 . Call L C V a left segment if the vertices in L are arranged to the left of the rest

of vertices R = V - L. Then we can find the best arrangement among those consistent with

D, by solving

26 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

where

j*(L) = 0, ILl~ 1,

j*(L) = min {f*(L- {j}) + netcut(L- {j}, R u {j})}, L E V*(D),
jEI(L)

V* (D) = { L ~ V I I L I > 1, (j E L and (i, j) E D =? i E L)},

(3.4.24)

(3.4.25)

I(·) is defined in (3.3.19), and j*(L) denotes the minimum cost (3.4.21) when the vertices in

L are arranged in the left ILl positions. Obviously j* (V) denotes the minimum cost of all

vertices, which we want to compute.

(B) In order to reduce the computation time of (3.4.24), we add the chain constraints to

method (A) in the following manner. Call that vertices i and j are adjacent in O" if

I - 1(·) - 1(")1 1 (]" ~ -(J J = ' (3.4.26)

and denote

AD(O") = { (i, j) I vertices i and j are adjacent}. (3.4.27)

We impose the constraint that every pair of vertices adjacent in both a 1 and 0"2 are forced

to be adjacent in the new solution Clnew, i.e., AD(O"l) n AD(0"2) C AD(O"new)· Note that

each connected component in graph G(0"1 , a2) = (V, AD(a1) n AD(0"2)) is a chain. The DP

computation of (3.4.24) can be carried out more efficiently by applying it after contracting

each chain into a single vertex, though the values of netcut(·, ·) must be calculated for the

original set of vertices.

In both methods (A) and (B), when the estimated number of states IV*(D)I exceeds bn,

the operation of (3.3.20) is also applied.

A computational comparison of these two methods for various b is shown in figure 3.4,

in which 11 test instances of up to n = 40 are solved. It shows how the total cost (3.4.21)

changes against the amount of time required (which is determined by parameter b). Program

parameters are set to P = 20, r = 300, a = 0.5, s = 0 (see Sections 3.2 and 3.3.2 for the

details of these parameters) and b is varied from 0 to up to 100. Figure 3.4 shows superiority

of (B) to (A). In the computational experiment in Section 3.6, where genetic DP is compared

with other approximate methods, we therefore adopt (B).

3.5 Traveling Salesman Problem

The traveling salesrnan problem is one of the most well-known combinatorial optimization

problems. It a k to find the shorte t tour (i.e., Hamiltonian circuit, that is , a path that visits

every vertex exactly once' and returns to the first vertex) in a given graph G = (V, E), where

3.5 Traveling Salesman Problem

......
r/J
0
u

12580

12560

12540

12520

12500

12480

12460

12440

12420

12400

12380

12360
0

method A
methodE~

1 000 2000 3000 4000 5000 6000 7000 8000 9000
time (sec.)

Figure 3.4: The effect of chain constraints.

27

V = {1, ... ,n} and each edge (i,j) E E has length dij· The symmetric traveling salesman

problem we consider assumes dij = dji for all pairs of i and j. Let O": { 1, ... , n} ----+ V be a

tour, where O"(i) denotes the i-th vertex in a tour a. A tour is optimal if it minimizes

n-1

L da(i)a(i+l) + da(n)a(l)·
i=l

(3.5.28)

Numerous exact and approximate algorithms have been proposed for this problem [75],

and it is reported that exact optimal solutions have been obtained for problem instances of

up to n = 7397 [8, 51, 93] (500,000 in the case of asymmetric version [85]).

3.5.1 Genetic DP Algorithm

In this section, we explain the details of Steps 1 and 2 of genetic DP for TSP.

Step 1 (Initialize)

We use the arbitrary insertion method [75, 108] for generating initial candidate solutions.

It is a greedy method and can create reasonably good solutions in short time. A path that

visits every vertex in a subset S of V exactly once, and returns to the first vertex in S is

called a subtour. The arbitrary insertion procedure begins with a randomly chosen subtour

consisting of only two vertices, and iterates the insertion of the vertex k between randomly

28 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

chosen adjacent vertices i and j in the current subtour, where k minimizes dik + dkj - dij,

until a tour is formed. There are a number of variations of insertion heuristics [75], such as

the farthest insertion and convex hull insertion procedures. We have chosen the arbitrary

insertion for our computational experiment because it is simple and can produce a variety of

solutions.

Step 2 (Crossover by DP)

Suppose that a tour always starts from vertex 1 (i.e., a-1 (1) = a-2 (1) = 1) without loss of

generality. The definition of the partial order D common to a-1 and a-2 is the same as (3.2 .1).

The best tour, which is consistent with D, and its cost j*(V) , can be obtained by solving

where

j*({1}, 1) = 0,

j*(S,i) =. min . {f*(S - {i},j) + dji}, S E V*(D),
J El(S) - {t}

j* (V) = min {j* (V, i) + dil},
i EI(V)

V*(D) = {S ~VI j E Sand (i , j) ED:::? i E S},

(3.5.29)

(3.5.30)

and I(-) is the same as (3.3.19). j*(S, i) denotes the length of the shortest path that starts

from vertex 1, visits all the vertices inS, ends with vertex i, and is consistent with D. In the

computational experiment of Section 3.6, we also added the chain condition of method (B)

of OLAP, to speed up the DP computation. The modification required is similar to the case

of OLAP.

3.6 Computational Results for Three Problems

3.6.1 Generation of Problem Instances

Computational experiments were performed on SUN SPARC station IPX using C language

for SNIP and OLAP, and using FORTRAN 77 for TSP. The tested problem instances are

generated as follows.

SMP: For each n , coefficients Pi , hi , Wi for i E V (= { 1, ... , n}) are generated by

randomly selecting integers from interval [1, 10). It has been observed in the literature (e.g.,

[100]) that problem hardness is related to two parameters RDD and LF, called the relative

range of due dates and the average lateness factor , respectively. In our experiment,

RDD
LF

0.2, 0.4, 0.6 , 0. '1.0,

0.2 , 0.4,

3.6 Computational Results for Three Problems 29

are used. Corresponding to each of these 5 x 2 = 10 cases, one problem instance is generated

by selecting integer due dates di, i E V, from interval

[(1- LF- RDD/2)T, (1- LF + RDD/2)T].

OLAP: For each n, 23 = 8 types of instances depending on (1) whether H is a

hypergraph or a graph, (2) whether weighted or unweighted, and (3) whether m = 2n or

m = 4n when n > 20 (m = 6n when n :::; 20), are generated. For each i = 1, 2, ... , m , an

integer ISil is randomly chosen from interval [2, 5) in the case of a hypergraph (ISi l = 2 in

the case of a graph) and then ISil vertices are randomly chosen from V as the elements in

si. si are generated so that si # Sj holds for i # j. The weight Wi (integer) of si is chosen

randomly from interval [1, 5) (Wi = 1 in the unweighted case).

TSP: We considered only the Euclidean case (i.e., all vertices are located in the

plane and edge lengths are given by the Euclidean distances between their end vertices). A

coordinate pair (xi, Yi) of each vertex is first generated by randomly selecting two integers

from interval [0, 1000), and the length between vertices i and j is set to

3.6.2 The Effect of Program Parameters

Implementation of genetic DP contains the following parameters:

r: number of iterations without improvement before termination (see Section 3.2),

a: parameter in (3.2.6), which decides the frequency of replacing O"J in Step 3

(select),

P: number of candidate solutions (population),

b: bn is the upper bound on the number of states generated in DP recursion (see

Section 3.3.2),

s: number of mutations (see Section 3.2).

To know appropriate values of these parameters, 10 SMP instances of n = 50, 11 OLAP

instances of up to n = 40, and 5 TSP instances of n = 100 were generated and tested. We

examined how the performance changes according to the arnount of time invested (which

is determined by program parameters). Every parameter has a tendency that the larger it

becomes, the more computational time is needed. In the figures explained below, "cost"

denotes the total cost (3.3.7) , (3.4.21) or (3.5.28) of the solutions obtained and "time" is the

total time in seconds required to solve all test instances of each problem. Parameters are set

as given in table 3.2 unless otherwise stated. Only the parameter examined is changed.

30 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

Table 3.2: Parameter values used for the parameter tuning.

SMP OLAP TSF

1" 200 300 1000

a 0.5* 0.5* 0.5*

p 20 20 20

b 1000 20 30

s 0 0 0
* a = 2 when r is examined.

First we examined the effect of r. Figure 3.5 shows that, for SMP, great improvement is

achieved only in the early stage of increasing r. Similar results are also observed for OLAF

and TSF [129].

.....
VJ
0
(.)

41500

41000

40500

40000

39500

39000

38500

38000

37500

37000

36500

36000
0

r=200 r=1000

100 200 300 400 500 600 700 800 900 1000
time (sec.)

Figure 3.5: The effect of the number of iterations r (SMF).

Second we examined the effect of a. The results for Sl\tiP are shown in figure 3.6. Al­

though the behavior seems to be quite erratic, it may indicate that the quality improves (by

consuming more computational tin1e) when the parameter a i increased from 0 to up to

0. 75. However etting a beyond 0. 75 seemed to con ume more time without gaining much

improven1ent. The re ults for OLAF and TSP are similar [129].

3.6 Computational Results for Three Problems 31

36440

36420
<>I

<>a=O

36400
<>4

.....
VJ

36380 0 o2 (.)

<> 1.5

36360
<>0.5

<>0.25
36340

0 0.75
<> a=inf

36320
0 100 200 300 400 500 600

time (sec.)

Figure 3.6: The effect of parameter a in the probability function p(·) (SMP).

Next we examined P, b and s. The results are exhibited in figures 3.7, 3.8 and 3.9 for

SMP, OLAP and TSP, respectively. For SMP, parameter b has the largest effect and P is less

effective. The introduction of mutation (i.e., larger s) improves the solution quality to some

extent, but considering the amount of time consumed, a small s appears to be preferable.

For OLAP, the effect of parameters P and b were almost the same. The introduction of

mutation improved the solution quality, but the magnitude of improvements and the amount

of time consumed were insensitive to s. This is because the state bound b = 20 was a bit

too strict and the mutations could not enlarge the search space of DF (because of the bound

imposed by b). For this reason, we adopted a small s. For TSP, the parameter P was the

most effective and b was less effective. In this case, the effect of mutation was not clear and

sometimes worse solutions were produced while spending greater amount of time.

From these results, we concluded to set the parameters as in table 3.3.

3.6.3 Performance of Genetic DP

After fixing the parameters of genetic DP as discussed above, we solved SMP instances

of n = 15, 20, 25, 30, 35, 50, 75, 100 (10 instances for each n), and OLAP instances of n =

15, 20, 40, 60, 80 (8 instances for each n, except that 12 instances for n :S 20) , and TSP

instances of n = 100, 200 , 300 (5 instances for each n).

The solutions with proved optimality could be obtained by exact algorithm SSDP only for

32 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

......
Vl
0
u

......
CJl
0
u

37000

36900

36800

36700

36600

36500

36400

36300

36200
0

b=8

population (P) --><--­

state bound (b)
mutation (s) -o ---

s=10
-------EJ

200 400 600 800 1000 1200
time (sec.)

Figure 3.7: The effect of parameters P, b, s (SMP).

12560

12540

12520

12500

12480

12460

12440

12420

12400

12380

12360

12340
0

population (P) -->< ---­

state bound (b)
mutation (s) - o ---

b=IOO

1000 2000 3000 4000 5000 6000 7000
time (sec.)

Figure 3.8: The effect of parameters P, b, s (OLAP).

3.6 Computational Results for Three Problems

......
CJl
0
u

39300

39200

39100

39000

38900

38800

38700 b=2
38600

38500

38400

38300

38200
0 1000

~ P=5

x.. ____ _

T

population (P) ><­

state bound (b) --­
mutation (s) o -

b=50

/ - --- -i-- "':~-------~-
P=20, b=30, s=O s=lO ----~=IOO

2000 3000 4000 5000 6000
time (sec.)

Figure 3.9: The effect of parameters P, b, s (TSP).

Table 3.3: Parameter values adopted after the parameter tuning.

SMP OLAP TSP

r 200 300 1000

a 0.5 0. 5 0. 5

p 20 20 30

b 100 20 10

s 1 1 0

33

34 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

small instances of up to n = 35. Genetic DF succeeded in obtaining exact optimal solutions

for 4 7 out of 50 instances with n ::; 35. The maximum error from the optimum values of

the 3 instances, which genetic DF failed to find, was less than 0.45%. Genetic DF could get

exact optimal solutions for all the 50 instances when different parameter values were used.

The average time of genetic DF, and the two exact algorithms DF and SSDF are shown in

figure 3.10 in seconds.

50

45

40

35
,.-.... 30 u
~

~ 25
~

.§ 20

15

10

5

0
A '

--~-----

15

.•)(----------------------.<'

20 25
n

DP - "'
SSDP --><--;:--

Genetac/:,p,7~

,/,'//// , /

--A---------,.

30 35

Figure 3.10: The computational time (in seconds) to solve SMF by algorithms DP, SSDF

and genetic DP.

In the case of OLAF, exact optimal solutions can be obtained by using DF only for small

instances of up to n = 20. Genetic DF succeeded in obtaining optimal solutions for 23 out of

24 OLAP instances of these sizes. The error from the optimum value of the only one instance,

which genetic DF failed to solve exactly, is about 1.51 %. Genetic DF could get an optimal

solution to this instance by using different parameter values. The average time of genetic DF

and the exact algorithm DP arc shown in table 3.4 in seconds.

For TSP, the comparison with the exact algorithms was not attempted, because the

performance of genetic DP is rather poor even against the heuristic algorithm of Lin and

Kernighan [78], as will be reported in the next subsection.

3.6.4 Comparison with Other Heuristic Algorithms

The performance of genetic DF i , compared with that of other heuristic algorithms.

3.6 Computational Results for Three Problems 35

Table 3.4: The computational time (in seconds) to solve OLAF by algorithms DF and genetic

DP.
n DF Genetic DF

15 115 54

20 6554 120

Details of Other Heuristic Algorithms

The first heuristic algorithms tested are the following two, already explained in Section 3.1:

(1) Multi-start local search algorithm (MLS),

(2) Genetic local search algorithm (GLS).

In MLS and GLS, the neighborhood N(u) is defined to be the set of solutions which can

be obtained by moving a single element u(i) to the location between u(j - 1) and u(j), for

all pairs of i and j (i =f. j) (see figure 3.11). The crossover operation for GLS is performed

Q o' 1 4 2 3 5

Figure 3.11: A solution in neighborhood N(u), corresponding to i = 4 and j = 2.

as follows (see figure 3.12). For two solutions a-1 and a-2, choose randomly an integer l from

interval [n/4, n/2] and an integer k from interval [1, n- l + 1]. Then the new solution Unew

is constructed by Unew(i) := a-1(i) (i E [k, k + l- 1]), and setting Unew(i) (i tf_ [k, k + l - 1])

according to the order of a-2 (i.e., i < j ::::} u;;e1
w (a-2 (i)) < u;;e1

w (a-2 (j)) for all i , j (/. [k, k + l - 1]) ·
This is a variation of the crossover operation mentioned in [89] for TSP. Step 3 (select) and

Step 4 (iterate) for GLS are the same as genetic DF.

This GLS is a bit different from the genetic local search algorithm proposed in other

literature, such as [89, 126], in which all initial candidate solutions are improved by local

search, before applying crossover operation. This original type of genetic local search algo­

rithm (GLS#) is also tested. Further, we examined the performance of the traditional genetic

algorithms (simple GA), which do not include the improvement by local search.

(3) Approximate DP. This applies DF recursions of (3.3.17), (3.4.24) or (3.5.29) to all

pairs in P initial candidates, and then halts. Initial solutions are the same as those used in

36 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

2 4 5 3

• •
new solution 0

2 5 3 4

Figure 3.12: An example of crossover operation for GLS, where l = 2, k = 3.

genetic DP. This algorithm is tested to see the effect of only the DP part of genetic DP.

(4) Or-opt procedure [75] and Lin-Kernighan algorithm (abbreviated as LK) [78]. These

arc examined only in the case of TSP. In LK, random tours uniformly chosen from the set of

all possible permutations are used for the initial solutions.

Results and Discussions

Figures from 3.13 to 3.17 show how the average error (%) from the best cost found during

our experiment decreases with time, where the average time used for the largest instances

(n = 100 for the SMP, n = 80 for the OLAP and n = 300 for the TSP) is used.

Figure 3.13 shows a comparison of simple GA and GLS for SMP. Similar results are

obtained for OLAP and TSP [129]. These results indicate a rather discouraging feature of

simple GA, which is also observed in other references such as [126]. Figure 3.14 exhibits a

comparison of approximate DP and genetic DP. Similar results were obtained for OLAP and

TSP. From these, we can see clear dominance of genetic DP over simple GA and approximate

DP.

Figures 3.15, 3.16 and 3.17 compare genetic DP with other heuristic algorithms. In

the case of SMP, genetic DP triumphed over MLS and GLS. Genetic DP obtained better

solutions in shorter time. In the case of OLAP, genetic DP obtained better solutions than

MLS in most cases; but when longer computational time was allowed, GLS obtained slightly

better solutions. In the ca e of TSP, genetic DP could get better solutions than MLS, GLS

and Or-opt when sufficient computational time was allowed. But LK could obtain much

better olution in shorter ti1ne.

Finally, Figure 3.18 show how the computational time for SMP increases as the size of

3.6 Computational Results for Three Problems

~
1-o
0
1-o
1-o
~

~
01)
C':j
1-o
~
>
C':j

20

18

16

14

12

10

8

6

4

2

0
0

Figure 3.13:

5

4

3

2

simple GA
GLS

100 200 300 400
average time (sec.)

Comparison of simple GA and GLS (SMP).

Approximate DP
Genetic DP --e-

500

0 L_ ________ L_ ________ L---------L-------~

0 50 100 150 200
average time (sec.)

Figure 3.14: Comparison of approximate DP and genetic DP (SMP).

37

38 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

2
MLS
GLS ~

GLS# --)(---

Genetic DP -e--
1.5

~
1-o
0
t::
Q)

Q)
01)
~
1-o
~
>
~

0.5

---)(-- - -

0
0 500 1000 1500 2000

average time (sec.)

Figure 3.15: A comparison of the four algorithms (SMP).

4

MLS
GLS# --)(----

GLS
Genetic DP -e--

3

~
1-o
0
t::
~ 2
~
0.0
~
1-o
Q)

>
~

0
0 2000 4000 6000 8000 10000

average time (sec.)

Figure 3.16: A comparison of the four algorithms (OLAP).

3. 7 Conclusion

~
1-o
0
t::
~

~
01)
~
1-o
~
>
~

6

5

4

3

2

GLS *
GLS# - >< ----

MLS ­
Or-opt --+--­

Genetic DP
LK

--><*--)(--- -- --)(--- ---------- --)(--- -----------* -- ---------------- ------------ -)(-------

0 ~~==~=±=-~----~--------L-------~
0 500 1000 1500 2000

average time (sec.)

Figure 3.17: A comparison of the six algorithms (TSP).

39

problem instance n grows, when all the algorithms are terminated with 500 iterations, where

the time for n = 15 is normalized to 1. It is observed that the computational time for MLS

and GLS increase slightly more rapidly than genetic DP. Similar results were obtained for

OLAP and TSP [129]. This is because the number of states necessary for the DP recursion

of genetic DP was bounded by bn by operation (3.3.20) and the computational time for each

DP recursion (3.3.17) was O(bn2).

From the above results, we may conclude that genetic DP is one of the most powerful

meta-heuristics for general purposes. However, it is also noted that very efficient heuristic

algorithms, such as LK, may exist if the algorithms are tailored to the given problems.

3. 7 Conclusion

We proposed a framework of approximate algorithms , called genetic DP, and evaluated its

effectiveness by conducting computational experiments for three problems SMP, OLAP and

TSP, all of which ask to obtain optimal permutations of n elements. Genetic DP tends to

attain better solution quality than traditional multi-start local search and genetic local search

algorithms when sufficiently long time is allowed, though performance of these algorithms

depends on problem characteristics. However, if some efficient heuristics specially designed to

the given problem, such as Lin-Kernighan method, are available, we recommend to use them.

40 CHAPTER 3 DYNAMIC PROGRAMMING IN GENETIC ALGORITHMS

600

500

400

.2
~
1-o 300 C1)

.§

200

100

20 30 40 50 60
n

70

GLS ·)f

MLS
Genetic DP

80 90 100

Figure 3.18: Time ratio with respect to n (time for n=15 1s regarded as 1) of the three

algorithn1s (SMP).

Combination of such special purpose heuristics with genetic algorithms may be an important

subject of future st udy. It is emphasized, however, that an advantage of general meta­

heuristics, including genetic DP, is that they can be easily adapted to many problems, while

problem specific algorithms, such as Lin-Kernighan, are hardly adapted to other problems.

Recently, similar hybrid approach of cornbining exact methods and metaheuristic methods

are tried in [5, 83].

Chapter 4

On Genetic Crossover Operators

for Sequencing Problems

4.1 Introduction

Crossover is one of the basic operators of genetic algorithm (GA), and has a great influence

on the performance of the algorithm [90, 118]. New solutions, called children, are generated

from more than one candidate solution, called parents, by crossover operators. Many crossover

operators have been proposed, e.g., 1-point, 2-point, multi-point and uniform crossover oper­

ators for binary strings, and those crossover operators applicable to more general objects such

as figures and graphs [22]. Most of combinatorial optimization problems have constraints on

the solution space, and the feasibility of the generated children should be taken into accoun­

t when crossover operators are designed. For example, many crossover operators have been

proposed for the traveling salesman problem (TSP) whose feasible solutions are permutations

of the given n cities. A reason for this is that keeping the feasibility of the children is not

trivial for this problem [46, 50, 142]. We will illustrate some of them in the next section.

In this chapter, we first review various crossover operators proposed for the combinato­

rial optimization problems whose feasible solutions are given by permutations. We call such

a crossover operator as permutation crossover. We then consider a general framework of

crossover operators and analyze the relationship between characteristics of the operator and

performance of the algorithm. Based on this analysis , we propose simple criteria for mea­

suring the quality of crossover operators. Computational experiments for the single machine

scheduling problem (SMP) using a simple framework of GA is conducted, and it is observed

that the following two criteria are important for crossover operators: (1) inherit as many

elements as possible from the parents, and (2) keep the diversity of the children obtainable

from the parents.

41

42 CHAPTER 4 GENETIC CROSSOVER OPERATORS

4.2 Crossover Operators for Sequencing Problems

In this section, we review various crossover operators proposed in the literature for sequencing

problems, where we restrict our attention to those without solution improvement mechanisms

such as heuristics and local search. Niost of the crossover operators introduced in this section

are originally proposed for TSP. However, we sometimes slightly modify them so that they

also fit to SMP. Here we assume that one child C is generated from two parents A and B.

Let V = {1 , ... ,n} be a set of n elements, and u(i) = j (equivalently u- 1(j) = i) denote

that the i-th element of the permutation a- is j. The permutations of the parents A, B and

the child C are denoted a-A, UB and uc, respectively.

PMX (partially mapped crossover): Randomly generate an n bit 0-1 mask msk, where

msk(i) E {0, 1}. For each i with msk(i) = 0, set uc(i) := a-A(i) and a-B(j) := a-B(i) for j

with a-B(j) = a-A(i). Then for each i with msk(i) = 1, set uc(i) := a-B(i) (see Figure 4.1).

The crossover operators in which the elements are inherited according to randomly gener­

ated masks are called uniform crossover. If the masks are restricted to those in which 0 and

1 are adjacent in at most k positions, then they are called k-point crossover. For example,

masks 11000 and 10011 correspond to 1-point and 2-point crossover operators, respectively.

Here we consider 1-point, 2-point and uniform crossover operators for PMX, and denote them

as PMX(1), PMX(2) and PMX(U), respectively.

PMX was originally proposed as the 2-point crossover operator in (46]. It is also introduced

in other literature such as [47, 90, 118].

parent A

parent B

mask

child C

2

1

2

2 3 4 5

3~ I ~4
l 0 0 1

5 3 4 1

Figure 4.1: An example of PMX(2).

CX (cycle crossover): In this method, the child uc is constructed so that

(4.2.1)

hold for all i. First, cycle nmnber cycle(i) is computed for each position i by the following

algorithrn (see Figure 4.2), where cycle(i) = 0 means that position i has not numbered yet.

1. Set k := 1 and cycle(i) := 0 for all i.

2. Set io := min {i I cycle(i) = 0} and i := io.

4.2 Crossover Operators for Sequencing Problems 43

3. Set cycle(i) := k and i := a-A: 1 (a-B(i)).

4. Return to Step 3 unless i = io holds.

5. If cycle(i) > 0 hold for all i, then halt; otherwise set k := k + 1 and return to Step 2.

The n elements are partitioned into cycles CY ck = { i I cycle(i) = k} by their cycle

numbers. Therefore, condition (4.2.1) can be satisfied by inheriting the clements in a cycle

from the same parent (see Figure 4.2). Here we consider the following three methods to

choose the parent for each cycle: (1) the parent is randomly chosen for each cycle, denoted

CX(U), (2) one cycle is randomly chosen from parent A and others are taken from B, denoted

CX(1), and (3) cycles with odd indices are taken from parent A and others are taken from

B, i.e., cycles are alternately chosen, denoted CX(A).

CX was originally proposed as CX(U) in (90]. It is also introduced in other literature

such as [47, 118].

parent A

parent B

cycle number

child C

4 5 2

2 1 2

4 3 2 5

Figure 4.2: An example of CX(U).

FLX (free list crossover): In this method, a permutation is represented by using the list

of n elements (e.g., (n, n- 1, ... , 1)). A permutation is coded by determining the position of

each element in the list from left to right , where the used elements are removed from the list.

Here we use the ordered list (1, 2, ... , n). Then the code a- of a permutation a- is formally

defined as

o-(i) = u(i) -J{j I (J"(j) < u(i) and j < i}J (4.2.2)

(see Figure 4.3). The original a- can be obtained from Ct by the following decoding algorithm.

Algorithm Decode_FLX

Line 1: for i = 1, 2, ... , n do

Line 2: list(i) := i;

Line 3: end for;

Line 4: for i = 1, 2, ... , n do

Line 5: u(i) := list(o-(i));

Line 6: for j = o-(i) , o-(i) + 1, ... ,n- i do

44 CHAPTER 4 GENETIC CROSSOVER OPERATORS

Line 7:

Line 8:

list(j) := lis t(j + 1)

end for

Line 9: end for.

If a-(i) ~ n - i holds for all i, algorithm Decode_FLX outputs a permutation a-, that is, every

element appears exactly once in the resulting a-, since, at the i-th iteration, the elements

o-(1), o-(2), ... , o-(i - 1) have already been removed from list. This is the one to one mapping

between a- and a-. Then an n bit 0-1 mask msk E {0, 1}n is randomly generated, and a

coded child ac is produced by setting ac(i) := a-A (i) for i with msk(i) = 0, and setting

ac(i) := a-B(i) fori with msk(i) = 1. The resulting ac is then decoded to make the child

a-c . As in PMX, we consider 1-point, 2-point and uniform crossover operators, and denote

them FLX(1) , FLX(2) and FLX(U), respectively. FLX was originally proposed as FLX(1) in

[50].

0 0

parent A 2 3 5 4 code parent A 2 2 2

parent B 3 5 4 2 parent B 3 3 2 1

mask 0 0 0
decode

child C 3 2 5 4 child C 3 2

Figure 4.3: An example of FLX(1) with list (1, 2, 3, 4, 5).

POPX (partial order preserving crossover): In this method, the child is a linear extension

of the partial order defined by the two parents (i.e., the child does not conflict with the

precedence relation common to both parents). Let D A be

(4.2.3)

Sets DB and De are similarly defined. Then the partial order of the two parents A and B is

defined by D = DAn Da. (This is the same D as in (3.2.1) defined on a-A and a-8 .) Then a

child C is generated o that D ~ D e holds.

We consider two methods to generate a child. The first method POPX1 is described as

follows. For a subset S ~ V , let AJo(S) be

Afo(S) = {i E S I (j , i) rf_ D for all j E S - {i}}.

Then the child O"C is generated as follows.

1. Set S := V and i := 1.

4.2 Crossover Operators for Sequencing Problems 45

2. Randomly choose j E Mn(S) , and set o-c(i) := j.

3. If i = n holds, then halt; otherwise set i := i + 1, S := S - {j} and return to Step 2.

This method is motivated by [134]. Similar idea is also introduced in [35].

In the second method POPX2, the element j is chosen from the set {O"A(i~),0"8 (i~)} in

Step 2 instead of Mo(S) , where i~ is defined by i~ = min{i I o-A(i) E S} and i~ is similarly

defined. See Figure 4.4, where the partial order D is represented by directed arcs of the

graph in the same manner as Figure 3.1. In the example, initially M 0 ({1 , 2,3,4,5}) = {1 , 2}

holds and 2 is chosen as o-c(1). In the second iteration, Mn({1, 3, 4, 5}) = {1} holds and 1

is chosen as O"c(2). Then, in the third iteration, Mo({3, 4, 5}) = {3, 5} holds and 3 is chosen

as o-c(3). Similar steps are repeated until O"C is completed.

parent A 1 2 3 4 5

parent B 2 5 3 4

child C 2 3 5 4

Figure 4.4: An example of POPXl.

OX (order crossover): First randomly generate ann bit 0-1 mask msk E {0, 1}n, and

set O"c(i) := O"A(i) fori with msk('i) = 0. Let Smsk be Smsk = {O"A(i) I msk(i) = 0}, then

D~ =DB- {(i,j) I i E Smsk or j E Smsk} gives a total order of V - Smsk· The child o-c is

completed by assigning elements to positions i with msk(i) = 1 according to the order of D~
(see Figure 4.5). As in PMX, we consider 1-point, 2-point and uniform crossover operators,

and call them OX(1), OX(2) and OX(U), respectively.

OX was originally proposed in [21] as OX(1) and in [89] as OX(2) independently. It is

also introduced in other literature such as [47, 90] as OX(2). In [22] (p. 342rv), OX(U) is

introduced as two different crossover operators; however, they are the same in our framework.

parent A

parent B

mask

child C

2

2

2 3 4 5

5

3 4 5

Figure 4.5: An example of OX(1).

46 CHAPTER 4 GENETIC CROSSOVER OPERATORS

AEX (alternating edge crossover): In this method, a solution is represented by a pointer

next, where next(i) = j means that element j is ordered next to i. For convenience, we include

a dummy element 0 in both ends of the sequence. Then a permutation CJ is represented by

next as

next(O)

next(CJ(i))

next(CJ(n))

CJ(1),

CJ(i+1), i=1, ... ,n-1

0.

(4.2.4)

Let nextA, nextB and nextc be the pointer representations of parents A, B and child C,

respectively. Then AEX is described as follows, where S is the set of elements not appeared

in nextc yet (see Figure 4.6).

1. Set i : = 0 and S : = V.

2. Randomly choose j from the set{nextA(i),nextB(i)} n S if it is not empty; otherwise

randornly choose j E S. Then set nextc (i) : = j.

3. Set i := j and S := S- {j}. If S = 0 holds, set nextc(i) := 0 and stop; otherwise

return to Step 2.

AEX was originally proposed in [50], which is slightly different from the above definition.

In [50], the pointer nextc(i) is chosen from nextA(i) or nextB(i) alternately (from which the

name 'alternating' comes) if possible; otherwise randomly chosen from S. Modified versions

of this is also proposed in [50, 61].

0 ~

parent A '-----1-2-3-4-5)

0 ~
parent B '-----2-3-I-5-4)

0 ~
child C '-----2-3-4-5-1)

Figure 4.6: An example of AEX.

ERX (edge recornbination crossover): In this method, Step 2 of AEX is modified as fol­

lows. If ne ~rtA(i), nexta(i) E S holds, instead of choosing the next element j randomly, the

parent ~V (lV is A or B) with smaller nonzero value of I{ nextA(nextw(i)), nextB(nextw(i)) }n

Sl is chosen. By using this rule, the element for which fewer pointers are left in S is pre­

ferred; hence it is expected that the number of random pointers in nextc is reduced. ERX

was originally proposed for TSP in [142], in which the adjacent two elements for each parent

(in tead of only one next element a,' above) are considered and is slightly different from the

one we explained. It is also introduced in [22] and a modified version is proposed in [118].

4.3 A General Framework of Crossover 47

Other crossover operators: There are some other permutation crossover operators

proposed for TSP, such as subtour exchange crossover [127, 136, 140], sorted rnatch [89] and

a similar one [13]. We also tested these operators after modifying them to fit SMP; however,

we do not include the results as they are discouraging. Here we note that the original versions

of these are reported to be quite effective for TSP and some other sequ<>ncing problems. This

may be because of the difference in the problem structures. There are also some other

permutation crossover operators such as [11, 48, 88]; however, we did not test them, since

they are similar to one of the tested crossover operators or combinations of them.

4.3 A General Framework of Crossover

The crossover operators in the previous section are captured by the following general frame­

work.

1. Represent the two parents A and B by the sets of components ITA and ITB with which

they are defined. Set the component set ITc of the child to be empty.

2. Choose a new component e to include in ITc, i.e., ITc := ITc U { e }. Here e is chosen

either (i) from ITA U ITB, or (ii) from those components consistent with the current

ITc. Then, the components conflicting with the resulting ITc are then removed from

ITA U IT 8 . (The rules of how to choose e and which of (i) and (ii) is used depends on

the crossover operator.)

3. Repeat Step 2 until the child C is uniquely determined by ITc.

We call the components in ITc - (ITA U ITB) as non-inherited components, which are the

components in the child C but not in the parents A and B. The crossover operators in the

previous section are all described in the above framework by choosing appropriate components

from the following definitions:

i) PsR: ITA= {(i,CJA(i)) I i = 1, ... ,n},

ii) FLR: ITA= {(i,o-A(i)) I i = 1, ... ,n},

iii) OR: ITA = D A,

iv) PtR: ITA= {(i, nextA(i)) I i = 0, ... , n},

where the set II 8 is similarly defined, and a-, D A and next were defined in (4.2.2), (4.2.3) and

(4.2.4). For example, the component (i,CJA(i)) in i) means that the i-th element of parent

A is CJ A (i). We call the above four as i) position-based representation (denoted PsR), ii)

free-list- based representation (denoted FLR), iii) order- based representation (denoted OR)

and iv) pointer-based representation (denoted PtR).

For example, PMX can be explained by the above framework by representing the two

parents with PsR, that is, ITA= {(i,CJA(i)) I i E V} (ITB is similarly defined). First, set

48 CHAPTER 4 GENETIC CROSSOVER OPERATORS

Ilc := {(i,a(i)) E ITA I msk(i) = 0}, which corresponds to setting ac(i) := aA(i) for

i with msk(i) = 0. Then ITs is modified by setting ITs := ITB - {(j, as(j)) I as(j) =

aA(i) for some i with msk(i) = 0}. Set fie:= IlcU{(i, as(i)) E IIB I msk(i) = 1}. The child

Cis completed by adding the non-inherited components by Ilc := Ilcu{(i, as(aA"1(as(i)))) I
(i, j) r:f_ Ilc for all j E V}. CX is also explained by representing the parents by PsR. In this

case, the rules are designed so that fie ~ ITA U lis holds. OX is explained by representing

the parent A by PsR and representing the parent B by OR. Other crossover operators in the

previous section are similarly explained within the above framework.

As a natural implementation of a given framework, we can randomly choose the com­

ponent e in Step 2. Crossover operators different from those in the previous section are

sometimes defined by this rule. For PsR, for example, the following crossover operator is

made, where {W1, W2} ={A, B} and lie is initially set empty.

1. Randomly choose a component (i, aw1 (i)) E liA U ITB and add it to Tic. Set I1w
1

:=

Ilw1 - {(i,aw1 (i))} and Ilw2 := Ilw2 -({(i,aw2 (i))}u{(j,aw2 (j)) I aw2 (j) = aw
1
(i)}).

2. Repeat Step 1 until ITA U liB becomes empty.

3. Complete the child C by randomly adding into fie those components which do not

conflict with the current Ilc.

We call this crossover operator as the position-based random crossover, which is denoted

as PsRND. For OR and PtR, the order-based random crossover (denoted ORND) and the

pointer- based random crossover (denoted PtRND) are similarly defined by the above rule.

For FLR, the previous FLX(U) corresponds to this random rule. For PtR, as the pointer

next is a permutation of { 0, 1, ... , n}, we can design a crossover similar to CX, although care

must be taken to avoid creating subcycles. We call this as the pointer-based cycle crossover,

which is denoted as PtCX.

The crossover operators explained in this chapter are categorized into five groups as shown

in Table 4.1. From the above consideration, we can conclude that the crossover operators

are defined by (i) the representation of the components and (ii) the rule of choosing the

components added to the child.

4.4 The Role of Crossover in GA

In this section, we investigate the role of crossover operators in genetic algorithms. Let

C(x; A, B) ~ F (F is the set of all feasible solutions) denote the set of solutions obtainable

from the parents A and B by the crossover operator X (e.g., xis PMX(2), ERX, etc.). Then,

an execution of a crossover can be viewed as the operation of randomly choosing a solution a

4.4 The Role of Crossover in G A 49

Table 4.1: Classification of crossover operators.

representation

PsR

FLR

OR

PtR

PsR+OR

crossover operators

PMX, CX, PsRND

FLX

POPX,ORND

AEX, ERX, PtCX, PtRND

ox

from C(x; A, B). (Note that the probability of choosing a solution is not necessarily uniformly

distributed.)

One of the important roles of C(x; A, B) is to restrict the search to a promising region.

On the other hand, it is not meaningful to restrict C(x; A, B) without reason; that is, the

set C(x; A, B) should include as variety of solutions as possible if they are considered to be

promising. We call the achievement of these roles as Objectives 1 and 2, which are summarized

as:

Objective 1: Restrict the search to a promising region,

Objective 2: Include as variety of solutions as possible if they are considered to be

promising.

The tradeoff between these two objectives is considered to be a key to the success of GA.

To achieve Objective 1, it would be meaningful to inherit as many components as possible

from the parents. Therefore, one of the criteria is to include in C(x; A, B) those children

containing non-inherited components as few as possible (Criterion 1). In GA, as the parents A

and B are usually good solutions, it is expected that good solutions are included in C(x; A, B)

by achieving Criterion 1, if the components used to define the solution reflect the problem

characteristics well.

To achieve Objective 2, one of the conceivable criteria is to make the size jC(x; A, B) I as

large as possible (Criterion 2).

Criteria 1 and 2 usually conflict with each other. That is, if we keep the number of

non-inherited components small, the size jC(x; A, B) I also becomes small, and if we make

jC(x; A, B)jlarge, the number of non-inherited components also becomes large. To evaluate

50 CHAPTER 4 GENETIC CROSSOVER OPERATORS

the achievement of the two objectives, we use the following two criteria:

Criterion 1': (the smaller the better) the average cost of solutions in C(x; A, B),

Criterion 2': (the larger the better) the standard deviation of the costs in C(x; A, B).

Criteria 1 and 2 can be estimated before we implement the crossover operators, while Criteria

1' and 2' are not available beforehand.

Criterion 1 can be achieved to some extent by using the general framework of crossover

operations in Section 4.3 and putting higher priority to the rule of choosing component e

from ITA U ITB. Actually, it is theoretically shown that the expected number of non-inherited

components liTe- (ITA U I1n)l is clllcl for some constant c with 0 ::; c::; 1 for most of the

crossover operators explained in this chapter (e.g., c:::: 1/4 for PMX(U)). This tendency is

also confirmed by the computational experiment in Section 4.5.

To see the achievement of Criterion 2, here we evaluate the size IC(x; A, B) I. Let IC(x)l

denote the expectation of IC(x; A, B) I if the parents A and B are generated randomly. For

PMX, as the number of possible children is determined by the number of possible masks,

IC(PMX(1))1 = O(n), IC(PMX(2))1 = O(n2) and IC(PMX(U))I = 0(2n) hold. (Precisely

speaking, the same children may be generated from different masks; however, we consider such

cases are rare and neglect the effect of them. Actually, even if we take this into account, we can

show, for example, that IC(PMX(1))1 = n-O(logn) = O(n).) For ex, we can show that the

expected number of cycles is O(logn), and hence, IC(CX(A))I = 0(1), IC(CX(1))1 = O(logn)

and IC(CX(U))I = O(n) (the size of CX(U) is based on the experimental data) hold. For

PsRND, IC(PsRND)I is considered to be about k!2n-k, where k is the number of non-inherited

components. The expected number of non-inherited components k is shown to be k ::; n/5

analytically, and is observed to be about n/7 experimentally.

Therefore, the crossover operators of PsR sorted by non-decreasing order of IC(x)l are:

CX(A), CX(1), CX(U), PrviX(1), P 1X(2), PMX(U), PsRND.

For FLX, by the similar discussion with PMX, IC(FLX(1))1 = O(n), IC(FLX(2))1 = O(n2
)

and IC(FLX(U))I = 0(2n) hold. Therefore, the operators of FLR are sorted as:

FLX(1), FLX(2), FLX(U).

For the operators of OR, we could only show that IC(POPX2)1 = 2n - O(logn) and IC(ORND)I =
2°(n

2
) hold. By the relation C(POPX2; A, B) ~ C(POPX1; A, B) ~ C(ORND; A, B), the or­

der is:

POPX2, POPX1, ORND.

For operators of PtR, IC(PtCX)I:::: IC(CX(U))i and jC(PtRND)I:::: jC(PsRND)I hold, and

sizes IC(AEX)I and IC(ERX)I are considered to be close to IC(PtRND)j. By the relation

4.5 Computational Results 51

C(PtCX; A, B) c C(ERX; A, B) c C(AEX; A, B) c C(PtRND; A, B), the order of these

operators is:

PtCX, ERX, AEX, PtRND.

For OX, by the similar discussion with PMX, jC(OX(1))1 = O(n), IC(OX(2))1 = O(n2
) and

IC(OX(U)) I = 0(2n) hold. Therefore, the order is:

OX(1), OX(2), OX(U).

4.5 Computational Results

As the objective of this experiment is to evaluate the crossover operators, the following simple

framework of GA is used so that we can avoid interference from other operations and observe

the performance of crossover operators as clearly as possible. The population P is set to 100,

and all the initial solutions are generated randomly. It is not allowed to include the same

solution in the candidate solutions. Selection is executed whenever a crossover is executed,

and the worst solution in the candidate solutions is replaced if the child is not already included

in the current candidate solutions. Mutation and local search are not incorporated.

The algorithms were coded in C language and run on a workstation Sun SPARC station

IPX. The problem instances of SMP were generated according to Subsection 3.6.1. vVe tested

10 instances for each of n = 35 and 100, where the optimal values are known for the instances

of n = 35 by the exact algorithm SSDP [60].

Table 4.2 shows the following data:

i) The average error in % from the best (optimal for n = 35) solution found during the

experiments if the algorithms are terminated after 10000 (30000 for PtR) crossover

operations for n = 35, and 30000 (90000 for PtR) crossover operations for n = 100.

ii) Ratio of non-inherited components in the child C.

iii) Analytical order of the expected size IC(x)l of the set of children.

iv) The normalized average quality (cost(a) - J.lAB)/ (~ lcost(aA)- cost(aB)I) of a E

C(x; A, B) for fixed A and B, where J.lAB is the average cost of the parents defined

by J.lAB = (cost(aA) + cost(aB)) /2.

v) The standard deviation of the above normalized solution quality for a E C(x; A, B).

The crossover operators are ordered in nondecreasing order of the size IC(x) I for each rep­

resentation (see Table 4.1). We also include the results by the random search (denoted as

RND), in which solutions are generated randomly, to give a basis to observe the effectiveness

52 CHAPTER 4 GENETIC CROSSOVER OPERATORS

of crossover operators. Data ii) is the results for 10000 independent samples. For data iv)

and v), the best one in the initial candidate solutions is chosen as A, and 10-th best solution

is chosen as B. Then, the average for 10 problem instances are shown, where 1000 samples

were taken for each instance.

Table 4.2: A comparison of various crossover operators.

c rosso v e r i) a vera ge e rror ii) n o n - inherited iv) average quality v) standard deviation

r e presenta tion o p e r a tor fro m th e bes t (%) compon ents (%) iii) IC (x)l in C(x ; A , B) in C(x; A , B)

X n = 3 5 n = 100 n = 35 n = 100 n = 35 n = 100 n = 35 n = 100

C X (A) 46.5 9 7.7 0 .0 0.0 0(1) 0.062 - 0.001 1.5 1.4

C X (1) 47 .9 97.0 0.0 0 .0 O(logn) 0.007 0.018 1.2 1.1

C X (U) 6 1. 9 100 .0 0.0 0.0 O(n) 0.028 - 0.004 1.2 1.2

P s R PMX(1) 54 .4 136.3 14 .9 15.9 O(n) 0.171 0 . 187 1.1 1.2

PMX (2) 16. 3 47.2 16 . 1 16.5 O(n 2) 0.713 0 .798 1.5 1.4

PMX (U) 8. 0 27 .7 22 .8 24.2 20(n) 0.806 0.807 1.7 1.4

P s RND 9.4 25.9 12 . 7 13 .2 20(n) 0.467 0.426 1.6 1.4

FLX (1) 110 .2 181 .2 0.0 0.0 O(n) 0.733 0.649 1.4 1.4

FLR FLX (2) 82 .3 152.6 0.0 0.0 O(n 2) 1.048 0.882 1 .6 1.4

FLX (U) 56 .5 100 .8 0.0 0.0 20(n) 2 .069 1.880 1.9 1.6

POPX2 105. 9 205. 8 0 .0 0.0 20(n) 0 .023 - 0.020 0.5 0.3

OR POPX1 67 .6 160 .9 0 .0 0 .0 2 0(n) -0.155 - 0.356 0.8 0.5

ORND 8 .3 12 .3 6 .5 7 .8 20(n) 0.549 0.561 1.6 1.3

PtC X 116 .4 206 .9 0 .0 0 .0 O(n) 0.608 0.442 1.4 1 .3

Ptft ERX 76 .1:! 122 .6 17 . 2 17 .2 20(n) 2.842 2.937 2.0 1. 1:!

AEX 79.4 135. 2 19 .5 19.5 20(n) 2 .905 3.089 2.1 1.8

PtRND 16. 2 56. 9 14 .0 13 . 7 20(n) 2.429 3.120 2.1 1.7

Ps H. OX (1) 110.1 190 .9 0 .0 0 .0 O (n) -0.077 - 0.117 0.9 1.0

+ OX (2) 10. 7 36.0 0 .0 0.0 O(n 2) 0.379 0 .474 1.3 1.2

OR OX (U) 1.4 3 .8 0.0 0.0 20(n) 0.135 0.032 1.5 1 .2

RND 182 .0 224. 5 100.0 100.0 O(n!) 3.440 3.170 2.1 1. 7

From the table, it is observed that the ratio of the non-inherited components are small

constants for all the crossover operators (except RND). This tendency is also analytically

shown, as mentioned in Section 4.4. It is evident that , for crossover operators within the same

rPprcscntation, the quality of solutions becomes better as the order of IC(x) I becomes larger.

Note that , for most of crossover operators x with IC(x) I = 2°(n), the coefficient of 0(n) is

close to one (i.e., IC(x)l ~ 0(2n)) and not much differences exist between them. However,

for tlH' three operators of OR, the sizes are IC(POPX2)1 ~ 0(2n), IC(POPXl)l ~ 0(2 2n) and

IC(ORND)I ~ 0(2411
) , which arc quite different. This would be a reason for a big performance

change anwng the thrf'c op<'rators in OR.

The av<'rage solution quality in C(x:; A, B) are about the same for all the crossover opera­

tors within the same rcpr<'scntation. The quality of crossover operators of FLR and PtR are

rather poor compared to oth<'r representations. Within the same representation, the solution

quality becomes worse as t hf' ratio of non-inherited components becomes large, although the

differ<'nces of the quality are much smaller than those between different representations. The

standard deviation of the quality arc very small for POPX1 and POPX2, and are rather large

4.5 Computational Results 53

for ERX, AEX and PtRND, but are about the same for the rest of the crossover operators.

These results support the discussions in the previous section. That is, as the number

of non-inherited components are small (Criterion 1) for all the crossover operators except

RND, the quality of the solution obtained by GA are better for larger IC(x) I (Criterion 2)

within the same representation. For SMP, the size of order I C(x) I ~ 2°(n) seems necessary.

Although IC(x)l is large, the solution quality of RND is not good, . since the number of non­

inherited components are quite large (Criterion 1). Rather poor results are observed for

crossover operators within FLR and PtR, for which the solution quality in C(x; A , B) is also

poor (Criterion 1'). The results of POPX1 and POPX2 are not good , for which the standard

deviations of the quality of solutions in C(x; A, B) are quite small (Criterion 2').

Here we compared the performance of each criterion only on the basis of the initial

candidate solutions. To draw more reliable conclusion, it would also be necessary to observe

how the performance changes as the search of GA proceeds. However, it is usually quite hard

to evaluate such changes (analytically or numerically) beforehand. Moreover, the objective

of this research is to give simple criteria to design good crossover operators. Therefore, we

did not consider further details; but it is one of the important future research directions.

Figures from 4. 7 to 4.11 show the behavior of average error in % from the best solu­

tions found during the experiments. The results are shown against the number of crossover

operations. We chose the number of crossover operations as the horizontal axis instead of

computational time, since computational time is affected by the programming skills , which

is not essential in this experiment. The crossover operators in each figure (except RND)

are arranged from the top in non-decreasing order of the size IC(x)l. From the figures, it is

confirmed that the solution quality becomes better as IC(x)l becomes larger within the same

representation (Criterion 2). It is also observed that the convergence of crossover operators

of OR are fast , but those of PtR arc slow. This indicate that the convergence would be faster

if the standard deviation of the quality of solutions within C(x; A, B) is smaller. Note that

good solution is not necessarily obtained by a fast convergence.

As a whole, good performances are observed for OX(U) and crossover operators in which

the rule of choosing components are random (e.g., PsRND, ORND, etc.). The definition of

these crossover operators are quite natural, and they achieve the proposed two criteria to

some extent. On the other hand , as in the case of 1-point and 2-point crossover operators, it

is meaningless to restrict the size IC(x) I by the rules which are not essential.

We conclude that achieving the proposed two criteria is important to design good crossover

operators. However, in general, as the size IC(x)l and the standard deviation of the quality

of solutions in C(x; A, B) become larger , the number of non-inherited components also be­

comes larger and the average solution quality in C(x; A, B) becomes worse. Therefore, it is

important to evaluate the tradeoff between the two criteria. From these considerations, we

propose the following guideline for the design of crossover operators:

54 CHAPTER 4. GENETIC CROSSOVER OPERATORS

300
RND -+--

250
CX(A) -- <> ----

ex 1
CX(U) - -~ ----

~ 200
~

PMX(I) --PMX(2)
0
t:

150 ~

PMX(U) --PsRND --e---
~
on
ro
~
~

100 > ro

50

0
0 5000 10000 15000 20000 25000 30000

number of generations

Figure 4.7: A comparison of crossovers (PsR).

300
RND

250
FLX(l) --FLX2
FLX(U) --

~ 200
~

0
t:
~ 150
~ on
ro
~
~

100 > ro

50

0
0 5000 10000 15000 20000 25000 30000

number of generations

Figure 4.8: A comparison of crossovers (FLR).

4.5 Computational Results

~
~

0
t:
~

~
on
ro
~
~
> ro

~
~

0
t:
~

~ on
~
~
~
> ro

300

250

200

150

100

50

0
0

RND t­

POPX2 --
~------~----~---~~POtXI

ORND

5000 10000 15000 20000 25000 30000
number of generations

Figure 4.9: A comparison of crossovers (OR).

300

RND -+--

250 PtCX --R --E
200 PtRND --e---

150

100

50

0
0 15000 30000 45000 60000 75000 90000

number of generations

Figure 4.10: A comparison of crossovers (PtR).

55

56

300

250

~ 200
.....
0
t::

150 Q)

Q)
OJ)
Clj
.....
Q)

100 >
Clj

50

0
0

CHAPTER 4 GENETIC CROSSOVER OPERATORS

5000 10000 15000 20000
number of generations

RND -t-­

OX(l) -­
OX 2
OX(U) ----

25000 30000

Figure 4.11: A comparison of crossovers (PsR+OR).

1. Make the size IC(x)llarger than 2°(n) while keeping the number of non-inherited com­

ponents as small as possible.

2. Choose good solution representation which capture the problem characteristics well so

that the average solution quality in C(x; A, B) becomes better.

It would also be worth trying to combine more than one representation as In the case of

OX. Between the above two rules, 1 can be evaluated before designing crossover operators;

however, 2 is difficult to predict and can only be evaluated after crossover operators are

implemented. Therefore, the above guideline may be useful to compare crossover operators

within the same representation; however, deep insight into the problem structure is needed

to choose good solution representation.

4.6 Conclusion

In this chapter, we compared various crossover operators proposed for sequencing problems

from the view point of general framework. It is confirmed that the performance of the

crossover operators can be evaluated by some simple criteria related to characteristics of the

set C(x; A, B) of children obtainable frorn the parents A and B. These criteria are expected

to give a useful guideline in designing good crossover operators for genetic algorithms.

4.6 Conclusion 57

The results in Section 4.5 indicate that crossover operators with larger I C(x) I are prefer­

able. This result is partially due to the framework of GA used in our experiments. We did not

incorporate mutations and used the selection strategy with high selection pressure. There­

fore, to keep the divergence in the candidate solutions, it was important to have variety of

solutions in the set C(x, A, B) of children. There are other strategies to increase the variety

of candidate solutions, such as incorporating mutations, using lar.ger population, employing

the selections with lower pressure, and so on. Comparing the effectiveness of such strategies

is one of the important future research directions. Incorporating other strategies, such as

local search (i.e., genetic local search [126]) and exact algorithms [134], is essential to make

GA competitive with other optimization tools. Examining such hybrid approaches is also

important.

The framework of GA is quite flexible and there are various ways to improve its perfor­

mance. This robustness is one of the attractive features of GA; however, from the view point

of users, the algorithms should be as simple as possible. In this sense, it is important to

simplify the framework and analyze the effect of each basic operation to the performance of

GA. The research of this chapter may contribute in this research direction.

58 CHAPTER 4 GENETIC CROSSOVER OPERATORS

Chapter 5

Metaheuristics as Robust and

Simple Optimization Tools

5.1 Introduction

One of the attractive features of metaheuristics is in its simplicity and robustness. They can

be developed even if deep mathematical properties of the problem domain are not at hand,

and still can exhibit reasonably good performance, much better than those obtainable by

simple heuristics. In this chapter, we pursue this direction more carefully, by implementing

various metaheuristics and comparing their performance. The objective is not to propose

the most powerful algorithm but to compare general tendencies of various algorithms. The

emphasis is placed .not to make each ingredient of such metaheuristics too sophisticated, and

to avoid detailed tuning of the program parameters involved therein, so that practitioners

can easily test the proposed framework to solve their problems of applications. As a concrete

problem to test, we solve in this chapter the single machine scheduling problem (SMP).

We test various metaheuristics, such as random multi-start local search (MLS), genetic

algorithm (GA), simulated annealing (SA) and tabu search (TS), using rather simple inside

operators. The results indicate that: (1) simple implementation of MLS is usually competitive

with (or even better than) GA, (2) GA combined with local search is quite effective if longer

computational time is allowed, and its performance is not sensitive to crossovers, (3) SA is

also quite effective if longer computational time is allowed, and its performance is not much

dependent on parameter values, (4) there are cases in which TS is more effective than MLS;

however, its performance depends on how to define the tabu list and parameter values, and

(5) the definition of neighborhood is very important for all of MLS, SA and TS.

59

60 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

5.2 Design of Metaheuristic Algorithms

Some details of the tested algorithms and the computational results are discussed in this

section. All thf' tested algorithms were coded in C language and run on a Sun SPARC

station IPX. The quality of the obtained solutions is evaluated by the average error from

the best cost values, which were found in the entire experiment. The efficiency of algorithms

is measured on the basis of the number of the solution samples evaluated, rather than the

computational time, since the computational time depends on the computers used and other

factors such as programming skill. Ten problem instances for each of n = 35 and 100 are

generated as described in Subsection 3.6.1.

Initial solutions are generated randomly except for GRASP, and the neighborhood N(a-)

is always scanned according to a prespecified random order.

5.2.1 Random Multi-Start Local Search

The performance of LS and MLS critically depends on: (1) the definition of N(a-) and (2)

the search strategy (i.e., how to search the solutions in N(a-)). In our experiment, only the

following strategies are exarnined from the view point of simplicity.

(1) Neighborhoods: Nins(a-) = {a-k+-l I k i- l} and Nswap(a-) = {ak<--4l I k i- l}. Here O"k+-l

is the sequence obtained from a- by moving the l-th job to the location before the k-th job,

while a-k.-.l is obtained by interchanging the k-th job and l-th job of a.

(2) Search strategies: FA scans N(a-) and selects the first improved solution a-' satisfying

cost(a-') < cost(a-), and BA selects the solution a' having the best cost in the entire area of

N(a-).

The average error(%) of the best solutions obtained by these four combinations are shown

in Table 5.1, where 3 x 105 and 3 x 106 samples were generated for each test run with n = 35

and 100, respectively. Table 5.1 also shows the average number of trials (i.e., the number of

initial solutions) in parentheses.

Table 5.1: Average error in% of the best solutions (average number of initial solutions) with

MLS.

n = 35; 3 x 105 samples n = 100; 3 x 106 samples

Nins Nswap Nins Nswap
FA 0.000 (97.6) 0.000 (131.0) 0.669 (103.6) 0.182 (126.5)

BA 0.289 (8.6) 0.047 (13.9) 4.696 (3.2) 0.624 (5.0)

These results indicate that: (1) Search strategy FA obtains good solutions earlier than

5.2 Design of Metaheuristic Algorithms 61

search strategy BA. (Based on this, the search strategy is fixed to FA in the rema1mng

experiments.) (2) The quality of solutions obtained by neighborhood Nswap is better than

that obtained by Nins·

5.2.2 Greedy Randomized Adaptive Search Procedure

This procedure is called GRASP and was explained in Section 2.2. The initial solutions are

generated as follows. At each step, let M = { i E V I i is not scheduled yet}. A candidate

set CA ~ M of a fixed number of jobs (ICAI is a prespecified positive integer) is chosen

according to a criterion based on a local gain function that represents greedy heuristics, and

then a job i E C A is randomly chosen as the next job.

A total of 12 local gain functions ei(f) and ei(b) defined in [132] (see also Subsection

3.3.2) and parameter values ICAI = 1, 2, 4, 7, 10,20 are tested to generate initial solutions

of GRASP, where ICAI = 1 means the conventional greedy methods. In this subsection,

only the results with the neighborhood Nswap are shown; however, similar tendencies were

observed for Nins· Table 5.2 shows the average error (%) of the best solutions obtained by

Table 5.2: Average error in %of the best solutions with GRASP using Nswap·

I CAl 1 2 4 7 10 20 init

e1(f) 0.183 0.156 0.228 0.170 0.169 0.151 50.5

e1 (b) 0.205 0.309 0.193 0.223 0.230 0.154 53.8

e2(f) 1.524 1.292 1.034 0.653 0.446 0.214 28.6

e2(b) 1.339 1.117 0.650 0.423 0.270 0.150 33.6

e3(f) 0.383 0.335 0.202 0.136 0.077 0.163 8.8

e3(b) 0.568 0.398 0.193 0.220 0.137 0.183 16.0

e4 (f) 0.170 0.099 0.121 0.097 0.153 0.189 18.2

e4 (b) 0.466 0.392 0.214 0.308 0.205 0.241 72.7

e5 (f) 0.120 0.171 0.117 0.147 0.069 0.145 73.2

e5(b) 0.138 0.109 0.122 0.119 0.095 0.131 90.6

e6(f) 0.172 0.135 0.053 0.106 0.109 0.107 116.0

e6(b) 0.158 0.123 0.129 0.135 0.088 0.138 64.3

MLS 0.182 314.6

various GRASP algorithms within 3 x 106 samples. For comparison purpose, the last row,

MLS, indicates the average error when initial solutions are generated randornly. The last

column, init, indicates the average error of the initial solutions generated by greedy methods,

i.e., with ICAI = 1, and the bottom is the average error of the initial solutions generated

62 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

randomly.

The results indicate that: (1) Performance of GRASP critically depends on the local

gain functions used for generating initial solutions. (2) If the local gain function is properly

chosen, GRASP improves the performance of NILS to some extent. However the performance

is hardly affected by the parameter jCAj. (3) A local gain function which produces better

initial solutions does not always lead to better performance of GRASP. In other words,

GRASP is simple and can be powerful than MLS, but not robust with the local gain functions

used.

5.2.3 Iterated Local Search

Here we employed the framework of chained local optimization (see Section 2.2). In Step

2 of ILS, a solution a is randomly chosen from N'(aseed), where either Nins of Nswap is

used for N' and is denoted as INS or SWAP, respectively. In Step 4, a seed is chosen ran­

domly according to the following rule: If cost(a) < cost(aseed), set aseed := a; otherwise

set aseed := a with probability e- 6./t, where ~ = cost(a) - cost(aseed) and t is a pre­

specified parameter. In our experiment, parameter t is fixed and the adaptive control of t

such as used in simulated annealing is not incorporated. Here we tested parameter values

t = 0, 1, 2, 4, 8, 16, 32, 64, 128,256,512, 1024, oo. Table 5.3 shows the average error (%) of the

best solutions, where 3 x 106 samples were generated for n = 100. For n = 35, optimal

solutions were found for most cases, and the result is omitted here.

The results indicate that: (1) ILS is effective compared to MLS, (2) ILS is more effective

for Nswap than for Nins, (3) the performance of ILS is not sensitive to the perturbation rule in

Step 2, i.e., both INS and SWAP gives good results, and (4) smaller t gives better results and

sufficient quality is usually obtained with t = 0. In conclusion, ILS is simple (even simpler

than GRASP) and can be more powerful than MLS.

5.2.4 Genetic Algorithm

The frarncwork of GA (see Section 2.3) we examined is as follows: at each generation, generate

a set of solutions Q ~ N(P) and select a set P' of P solutions from P U Q, and set P :=

P'. Recall that N(P) is the set of solutions obtainable from P by crossover and mutation

operators. Among various types of crossover, mutation and selection operators, we considered

the following representative operators.

Crossover: The order crossover OX [21, 89] (see also Section 4.2) is employed here. We

as ume that on<' child ac is produced from two parents a A and a a. Generate randomly

ann-bit mask msk E {0,1}n. Set ac(k) := aA(k) for all k satisfying msk(k) = 0. Define

D'a = Da- {('i,j) I 'i E Smsk or j E Smsk}, where Da = {(i,j) I aj;/(i) :::; a£/(j)} and

Smsk = {aA(k) I msk(k) = 0}. Then D~ i the total order of as restricted to V- Smsk·

5.2 Design of Metaheuristic Algorithms 63

Table 5.3: Average error in % of the best solutions with ILS for n = 100 after 3 x 106 samples.

Nins Nswap

t INS SWAP INS SWAP

0 0.312 0.360 0.008 0.001

1 0.424 0.401 0.015 0.024

2 0.362 0.570 0.012 0.023

4 0.523 0.334 0.025 0.001

8 0.422 0.205 0.012 0.005

16 0.668 0.272 0.009 0.027

32 0.726 0.660 0.023 0.009

64 0.830 0.527 0.054 0.011

128 0.892 0.689 0.046 0.060

256 1.136 0.661 0.075 0.032

512 0.936 1.064 0.125 0.056

1024 0.926 1.158 0.138 0.064

00 1.211 1.249 0.105 0.061

MLS 0.669 0.182

Cornplete ac by assigning jobs to all the positions k satisfying msk(k) = 1 according to

D'a. Crossover operators based on arbitrary masks are called uniform, and those based on

restricted masks having at most k adjacent 0-1 pairs are called k-point; e.g., masks 11000 and

10011 are 1-point and 2-point respectively. We call 1-point, 2-point and uniform crossover

operators of this type as OX(1), OX(2) and OX(U) respectively.

Other types of crossover operators, such as partially mapped crossover [46] and cycle

crossover [90, 132] (see Section 4.2), were also examined; however, the results arc omitted

here, since the results for OX are better and the tendency is similar with other operators.

Mutation: Mutation employed in this experiment perturbs a candidate solution a by a

random selection a' E N (a) and a : = a'. Two types of neighbor hood Nins (a) and Nswap (a)

are used as N(a); the resulting mutations are denoted as INS and SWAP respectively.

Selection: In our experiment, the set of generated candidate solutions Q ~ N(P) is

determined as follows. We use Q = 1 and the child ac E Q is obtained by randomly selecting

two parents a A, as E P, mutating either a A or as, and then applying crossover of a A and

as. Then with a solution aworst satisfying cost(aworst) ~ cost(a) for all a E P U Q, let

P' := P U {ac}- {aworsd· Note that the selection is executed only if the child acE Q is

not in P.

64 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

Various GA defined by the above crossover, mutation and selection operators are com­

pared, in which P is always set to 100. Note that exactly one sample (i.e., cost evaluation)

occurs during one generation, since Q = 1 is used. Table 5.4 shows the average error (%) of

the best solutions obtained by the tested algorithms, where 3 x 104 (resp., 3 x 105
) samples

were allowed for n = 35 (resp., 100). Here, 'MUT only' means that crossover is not used

and 'no MUT' means that mutation is not used. The results of MLS are also included for

comparison, where the same neighborhood as mutation is used.

Table 5.4: Average error(%) of the best solutions with various versions of GA with P = 100.

n = 35; 3 x 104 samples n = 100; 3 x 105 samples

no MUT INS SWAP no MUT INS SWAP

OX(1) 110.1 5.1 3.5 190.9 3.1 2.1

OX(2) 10.5 0.2 0.8 35.9 2.6 0.7

OX(U) 1.4 0.3 1.1 3.8 0.8 0.8

MUT only 2.3 4.0 1.4 1.5

IviLS 0.1 0.06 1.0 0.5

These results indicate that: (1) Using mutations is essential to get good solutions within

the framework of GA. (2) Performance of G A is not sensitive against the types of crossover

operators if combined with mutation, though it critically depends on the types of crossover

operators if mutation is not used . (3) Crossover is also effective to improve GA, since GA

with MUT only needs slightly more samples than GA with crossover to obtain solutions of

similar quality. (4) MLS performs better than GA of this sort.

GA using different population sizes P are also tested. Table 5.5 shows the average error

in % of the best solutions after 3 x 106 samples were generated, where n = 100 and crossover

type is OX(U). For comparison purpose, the results of MLS are also included in Table 5.5,

where the same neighborhood as the mutation is used.

Table 5.5: Average error in % of the best solutions with GA after 3 x 106 samples.

P 101 102 103 104 MLS

INS 4.876

SWAP 0.804

0.641

0.802

0.595

0.538

0.524 0.669

0.327 0.182

The results indicate that: (1) Better solutions are obtained on average asP increases, at

the cost of t<>sting more number of samples. (2) The quality of solutions obtained by MLS is

5.2 Design of Metaheuristic Algorithms 65

still slightly better than those results of GA.

Note that much more computational time is needed to sample a solution with GA com­

pared to other algorithms, such as MLS. We may conclude that the effectiveness of simple

GA is in question.

5.2.5 Genetic Local Search

Genetic local search (GLS) is a variation of GA, in which the new candidate solutions in Q

are improved by LS. Other operators are the same as GA. Various GLS were compared, in

which Pis set to 20. The results for n = 35 are omitted, since almost all the tested algorithms

could obtain exact optimal solutions for all the instances. Table 5.6 shows the average error

(%) of the best solutions for n = 100, where 3 x 106 samples were generated. The results of

MLS are also included for comparison purposes.

Table 5.6: Average error (%) of the best solutions with GLS in which P = 20.

neighbor Nins Nswap

mutation noMUT INS SWAP noMUT INS SWAP

OX(1) 0.281 0.361 0.303 0.090 0.065 0.069

OX(2) 0.220 0.327 0.272 0.038 0.052 0.047

OX(U) 0.203 0.164 0.266 0.015 0.069 0.038

MUT only 0.598 0.510 0.103 0.057

MLS 0.669 0.182

We can summarize these results as follows. (1) GLS can obtain solutions of higher quality

than GA and MLS, particularly when long computational time is allowed. (2) GLS is rather

insensitive to the types of crossover and mutation. Between crossover and mutation, crossover

appears slightly more effective. On the other hand, GLS only with mutations is much easier

to implement, since mutation can be realized by using the neighborhood of LS, and hence

the additional efforts required is very little. (3) The solution quality critically depends on

the type of neighborhood.

ILS can be viewed as a special case of GLS in which P = 1 and crossover is not incorpo­

rated. By comparing Tables 5.3 (R = 0) and 5.6 (column 'MUT only'), we can conclude that

the performances of GLS and ILS are similar. More computational results for MLS, GA and

GLS are found in [132].

66 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

5.2.6 Simulated Annealing

The SA used in this experiment is similar to the one in [64] (see also Section 2.4). Our

algorithm includes parameters I P, T R, SF and T F. The initial temperature tis determined

so that

(L e-{cost(a') - cost(a)}/t) /IUP(a)l ~ IP
a'EU P(a)

for randomly chosen initial solutions a, where UP(a) = {a' E N(a) I cost(a') > cost(a)}.

Then the following loop is executed, where k is initially set to 0.

While k < T R · INI do the following.

(a) Perform the following loop SF· INI times.

1. Pick a random neighbor a' E N(a).

11. Let~= cost(a')- cost(a).

111. If~ ~ 0, set a = a'.

1v. If~ > 0, set a = a' with probability e-!:::../t.

v. If~ < 0, set k = 0; otherwise set k = k + 1.

(b) Set t = T F · t.

Upon termination, the search is restarted from a randomly chosen initial solution unless

sufficient number of solution samples has been tested.

The parameter T R is set to 1 for Nins and 2 for Nswap according to a preliminary exper­

iment. The parameter T F is fixed to 0.95 as suggested in [64].

First the effect of I P is examined, and it is observed that: (1) the quality of the obtained

solutions becomes better as I P increases up to 0.1; however, it does not change much if

I P 2: 0.1, and (2) the number of samples needed for one trial of the algorithm becomes larger

as I P increases.

Next the effect of SF is examined with I P = 0.3. It is observed that: (1) the quality of

the solutions becomes better as SF increases up to 1; however, it does not change much if

SF 2: 1, and (2) the number of samples needed for one trial of the algorithm becomes larger

as SF increases.

From these results, we examined four combinations of IP and SF: IP = 0.1, 0.3 and

SF= 1, 2. Table 5.7 shows the average error (%) of the best solutions, where 3 x 105 (resp .,

3 x 106) samples were allowed for n = 35 (resp., n = 100). The results of MLS are also

included for comparison.

We ran summarize these results as follows. (1) SA can obtain solutions of higher quality

than MLS, provided that rather long computational time is allowed. (2) The quality of the

5.2 Design of Metaheuristic Algorithms 67

Table 5. 7: Average error (%) of the best solutions with SA.

n = 35; 3 x 105 samples n = 100; 3 x 106 samples

IP SF Nins Nswap Nins Nswap

0.1 1 0.144 0.000 0.184 0.034

0.1 2 0.124 0.003 0.217 0.032

0.3 1 0.035 0.000 0.153 0.029

0.3 2 0.033 0.000 0.227 0.014

MLS 0.000 0.000 0.669 0.182

solutions obtained by SA is rather insensitive to the parameter values, though the number of

samples needed for one trial critically depends on them. (3) The solution quality critically

depends on the type of neighborhood.

5.2.7 Threshold Accepting and Great Deluge Algorithm

In the threshold accepting (TA) (see Section 2.4), we use four parameters I P, T R, SF, T F,

as in the case of simulated annealing. The initial threshold T is determined so that

{a' E UP(a) I cost(a')- cost(O") ~ T}/IUP(a)l ~ IP

holds for randomly chosen initial solution a. Then a similar loop with SA is repeated, where

Step (a)-iii is replaced with

iii'. If~ < T, set a:= a'.

and parameter t is replaced with T.

As in the case of SA, the parameter T F is set to 0.95, and the parameter T R is set to

1 for Nins and 2 for Nswap according to a preliminary experiment. Then the effect of the

parameters I P and SF are examined; however, the tendency is not very clear.

Based on these observations, we examined ten combinations of I P and SF: I P = 0.1, 0.3

and SF= 0.25, 0.5, 1, 2, 4. Table 5.8 shows the average error(%) of the best solutions, where

3 x 105 (resp., 3 x 106) samples were allowed for n = 35 (resp., n = 100). The results of MLS

are also included for comparison. We can observe that the performance of TA is competitive

with SA.

The framework of the great deluge algorithm (GDA) (see Section 2.4), employed in this

experiment is as follows. Two parameters RS (called rain speed) and T R are included. The

first water level is set to W := cost(a) for a randomly chosen initial solution a. Then the

following loop is executed, where k is initially set to 0.

68 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

Table 5.8: Average error (%) of the best solutions with TA.

n = 35; 3 x 105 samples n = 100; 3 x 106 samples

IP SF Nins Nswap Nins Nswap

0.1 0.25 0.003 0.000 0.093 0.031

0.1 0.5 0.000 0.000 0.155 0.037

0.1 1 0.243 0.003 0.196 0.006

0.1 2 0.376 0.000 0.326 0.041

0.1 4 0.364 0.132 0.385 0.019

0.3 0.25 0.000 0.000 0.130 0.031

0.3 0.5 0.101 0.018 0.165 0.031

0.3 1 0.082 0.023 0.200 0.039

0.3 2 0.146 0.023 0.401 0.029

0.3 4 0.246 0.023 0.336 0.040

MLS 0.000 0.000 0.669 0.182

While k < T R · INI holds, do the following.

(a) Randomly choose a solution a' from N(a).

(b) If cost(a') < W holds, set a:= a' and W := W- RS(W- cost(a')).

(c) If cost(a') - cost(a) < 0 holds, set k := 0; otherwise set k := k + 1.

The parameter T R is set to 1 for Nins and 2 for Nswap according to a preliminary experi­
ment. Then the effect of the parameter RS is examined within the range of RS = 0.00125 rv

0.64, and it is observed that (1) the solution quality becomes better as RS becomes smaller,
(2) the number of samples needed for one iteration becomes larger as the RS becomes smaller.

Based on these, we examined the parameter values RS = 0.005, 0.01. Table 5.9 shows the
average error (%) of the best solutions, where 3 x 105 (resp., 3 x 106

) samples were allowed
for n = 35 (resp., n = 100). The results of ILS are also included for comparison. We can
observe that the performance of GDA is also competitive with SA.

It i well-known that the search of SA converges to a global optimum under certain
conditions (e.g. , [79]), and this result is sometimes considered to give support for the success of
SA. How('v r, similar (but rather weaker) result is al o known for TA [7]. In such convergence
results, the asymptotic behavior of algorithrns when the number of iterations tends to infinity
arc discussed, and such analyse do not necessarily explain the performance within limited
computational tim . In addition, TA and GDA gave competitive results with SA in our

experinwnts.

5.2 Design of Metaheuristic Algorithms 69

Table 5.9: Average error (%) of the best solutions with GDA.

n = 35; 3 x 105 samples n = 100; 3 x 106 samples

RS Nins Nswap Nins Nswap
0.005 0.069 0.228 0.239 0.048
0.01 0.000 0.015 0.227 0.027

MLS 0.000 0.000 0.669 0.182

5.2.8 Tabu Search

In the tabu search (see Section 2.5), we scan N(a) and select the first solution a' satisfying
cost(u') < cost(u) and a' rf_ T U {a}, or satisfying cost(a') < best (i.e., aspiration criterion),
where best is the cost of the best solution found cluing the past search. If none of the solutions
in N(a) is selected by the above rule (i.e., a is locally optimal), the next solution is selected
as follows. A counter M C and a parameter R are used to control the process of generating
the next initial solution when one trial of tabu search ends. If MC < R holds, then the best
solution in N(a)\({a} U T) is chosen as the next initial solution, and MC is incremented by
one; otherwise the solution u' E N(a)\({a} U T) that minimizes cost(a') +a· penalty(a')
is chosen as the next solution and MC is reset to zero, where a is a prespecified program
parameter and penalty(a') is a cost of the long term memory. Finally, if a solution better
than the past best solution is found (aspiration criterion), MC is reset to zero.

Two types of tabu lists Tjob and Tpos are considered, where Tjob(a) = {u' E N(u) I the
move from a to a' changes the position of a job whose position has been changed in the last TT
moves} and Tpos (a) = {a' E N (a) I the move from a to a' assigns a job to the position where
it has been assigned in the last TT moves}. The parameter TT is a prespecified nonnegative
integer called tabu tenure. We examined two types of penalties of long term memory, which
are called penaltymove and penaltyperiod· Let LTmove(i, k) be the number of moves of job
i from position k which have been made during the past search, and LTperiod(i, k) be the
period that job i has been scheduled at position k so far. Then we define penaltymove(u') =

~jECH(O"') LTmove(j, a - 1(j)) and penaltyperiod(a') = ~k= l LTperiod(u'(k), k), where CH(a')
is the set of jobs whose positions are changed by the move from a to a'.

First a is set to 0 in order to examine the effect of tabu lists (short term memory). Two
types of tabu list Tjob and Tpos, and various TT values are tested. It is observed that: (1) TS
can obtain solutions of higher quality than MLS if Nswap and Tpos are used and TT = 1 rv 5,
and (2) the performance of TS is worse than MLS with other combinations. From these, we
consider only Tpos in the remaining experiments.

70 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

Second the effect of the long term memory is examined. Two types of penalties penaltymove

and penaltyperiod, and various a values are tested. It is observed that: (1) TS can obtain

solutions of better quality than MLS if Nswap and penaltyperiod are used with a 2: 104
, and

(2) the performance of TS is worse than MLS with other combinations. From these, we

consider only penaltyperiod in the remaining experiments.

Finally the short and long term memories are combined together. Here the parameter a

is set to 103 (resp., 104) for n = 35 (resp., 100). Parameter values TT = 1, 3, 5, 7, 10, 20 are

examined and R is set to TT. Table 5.10 shows the average error (%) of the best solutions

obtained by TS, where 3 x 10,.5 (resp., 3 x 106) samples were generated for n = 35 (resp., 100).

Table 5.10: Average error (%) from the best solutions with TS.

n = 35; 3 x 105 samples n = 100; 3 x 106 samples

TT Nins Nswap Nins Nswap

1 0.000 0.000 1.449 0.086

3 0.037 0.000 0.965 0.150

5 0.084 0.000 1.647 0.093

7 0.358 0.000 1.689 0.167

10 0.360 0.000 1.684 0.148

20 0.542 0.000 1.899 0.204

MLS 0.000 0.000 0.669 0.182

We can summarize these results as follows. (1) TS can obtain solutions of higher quality

than MLS if Nswap is used, and its performance is not sensitive to parameter TT. (2) TS does

not improve the performance of MLS if Nins is used. (3) The performance of TS critically

depends on the type of memories (the tabu list and the long term memory).

5.3 Comparison of Metaheuristics

We conclude this chapter by comparing four metaheuristic algorithms tested so far. Figures

5.1 and 5.2 show how the average error (%) of the best solutions improves as the number

of sa1nplc increa es for problem in tances with n = 100. Both neighborhoods Nins (Fig.

5.1) and Nswap (Fig. 5.2) are examined, where in the case of GA, mutation operators INS

and S\i\'AP ar used corre ponding to Nins and Nswap, respectively. For GRASP with neigh­

borhood Nins (resp., Nswap) local gain function e5 (b) (r p., e5 (f)) is used and parameter

ICAI is set to 7 (resp., 4). For ILS with neighborhood Nins (resp., Nswap), parameter t is

5.4 Conclusion 71

set to 8 (resp., 0). Crossover operator OX(U) is used for GA and GLS. The parameter P is

set to 1000 for GA and 20 for GLS, and mutation is not incorporated for GLS. For SA with

neighborhood Nins (resp., Nswap), parameters are set to I P = 0.3 , T R = 1, SF = 1 and

T F = 0.95 (resp., I P = 0.3, T R = 2, SF = 2 and T F = 0.95). For TA with neighborhood

Nins (resp., Nswap), parameters are set to I P = 0.1, T R = 1, SF = 0.25 and T F = 0.95

(resp., IP = 0.1, TR = 2, SF = 1 and TF = 0.95). For GDA with neighborhood Nins

(resp., Nswap), parameters are set to TR = 1 and RS = 0.01 (resp., TR = 2 and RS = 0.01).

For TS with neighborhood Nins (resp., Nswap), tabu list Tpos and penalty penaltyperiod are

used and the parameters are set to R = 3, TT = 3 and a= 104 (resp., R = 5, TT = 5 and

a= 104).

From these results, we can conclude that: (1) Performance of GA is robust about mu­

tation; however, its performance is rather poor. (2) GRASP, ILS, GLS and SA improve

the performance of MLS further, among which ILS, SA and GLS appear more powerful if

the same neighborhood is used. (3) Performance of MLS, GRASP, ILS, GLS, SA and TS

critically depends on the type of neighborhood used.

In view of these, we can summarize our recommendation about the use of metaheuristic

algorithms as 'simple optimization tools' as follows.

1. If the simplicity is our first concern, use MLS. In this case, the component to be defined

is only the neighborhood.

2. If obtaining solutions of higher quality is important, first try ILS, since ILS is simpler

than other metaheuristics.

3. If the performance of ILS is not sufficient, use SA or GLS.

5.4 Conclusion

In this chapter, various metaheuristic algorithms were compared from the view point of ro­

bustness and simplicity. As a concrete problem to test, we chose the single machine scheduling

problem (SMP) and metaheuristics such as the multi-start local search (MLS), the genetical­

gorithm (GA), the simulated annealing (SA), the tabu search (TS), and some of their variants

were examined. A guideline to design metaheuristic algorithms was proposed in the previous

section, based on the computational results. These results were limited to a single problem,

and it is important to conduct similar comparisons on basis of various types of problems so

that we can understand the general tendencies of the rnetaheuri!::ltic algorithms.

72 CHAPTER 5 METAHEURISTICS AS ROBUST AND SIMPLE TOOLS

~
1-o
0
t::
<I)

<I)
OJ:)
~
1-o
<I)

>
~

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

~\.
$. ,~',

\-~
' -o._'G

TS
MLS -+----

GA
SP ~

G A --o- ---

I ---GLS
SA
TA

--~ - ~ - ~-'$_ _ 0 - . ~ - ~ - ..----...----"'"'-
~-~

--$- ,$-_'0- - -$-,--G -~-~-~-~- E>- - E>- - E>- - E>- - ~-~-~-
0 ~----~----~------~----~------~----~

0 500000 1 e+06 1.5e+06 2e+06 2.5e+06 3e+06
number of samples

Figure 5.1: Average error(%) from the best solution (Nins).

0.6

0.5

0.4

0.3

0.2

0.1

-········· ·· .. GA
MLS ~ --

TS
GRASP~

GDA o ··

GLS -a­

SA
TA -~----

ILS

0 ~----~----~------~=-~=-~~~~~~~
0 500000 1 e+06 1.5e+06 2e+06 2.5e+06 3e+06

number of samples

Figure 5.2: Average error(%) from the best solution (Nswap).

Chapter 6

Enumerating All Common

Intervals of Two Permutations

6.1 Introduction

Two permutations o-A and o-a of set V = {1, ... ,n} are given as the input, where o-A(i) = j

(or o-A 1 (j) = i) denotes that j is the i- th element of o-A (o-B is similarly defined). Let

[x,y] denote the index set {x,x + 1, ... ,y}. We call a pair of intervals ([xA,YA],[xa,ya])

(1 ::; XA < YA ::; n, 1 ::; XB < YB ::; n) a common interval if it satisfies

(6.1.1)

The length of a common interval ([xA, YA], [xB, YB]) is defined to be YA - XA + 1.

Some genetic algorithms based on common intervals have been proposed for sequencing

problems (e.g., traveling salesman problem, job shop scheduling problem, etc.) and have

exhibited good prospects [13, 70, 89, 140].

In this chapter, we consider enumeration of all common intervals of length 2 to n. Three

algorithms are proposed, which are improved versions of a simple O(n2) time algorithm

proposed in [136]:

1. A simple O(n2) time algorithm (called LHP), whose expected running time becomes

0(n) for two randomly generated permutations.

2. A practically fast O(n2) time algorithm (called MNG) using the reverse Monge property.

3. An 0(n + K) time algorithm (called RC), where K (::; G)) is the number of outputs.

It will be also shown that the expected number of common intervals of length 2 to n - 2 for

two random permutations is 2 + 0(n - 1). This implies that the expected number of common

intervals of length 2 to n is 0(1), since the number of common intervals of length n- 1 or n is

73

74 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

at most 3. This result gives a reason for the phenomenon that the expected time complexity

O(n) of the algorithm LHP is independent of the output length K. We also give an example

for which both LHP and MNG requires S1(n2) time, although K = O(n).

Among the three algorithms proposed in this chapter, RC is most desirable from the

theoretical point of view; however, it is quite complicated compared to LHP and MNG.

Therefore, it is possible that RC is slower than the other two algorithms in some cases. For

this reason, computational experiments for various types of problems with up to n = 106 are

conducted. The results indicate that

1. LHP and MNG are much faster than RC for two randomly generated permutations

(e.g., LHP is about 13 times faster than RC).

2. MNG is rather slower than LHP for random inputs; however, there are cases that LHP

requires !1(n2) time, but MNG runs in o(n2) time and is faster than both LHP and RC.

A recommendation about the use of the three algorithms is discussed in Section 6.8, based

on the computational results.

These results are also applicable to similar problems defined on two cyclic permutations

[136, 131 J.

6.2 Basic Algorithm

Here, we describe the basic O(n2) time algorithm [136], which is the starting point of all the

algorithms proposed in this chapter. For convenience, we denote the function a]/ · a A by

7rAU (i.e., 7rAB(i) = a.B 1(aA(i)) holds for all i, and 7rAB(i) = j means that the i-th element

of a A is located in the j-th position of a B) throughout this chapter, which can be calculated

frorn a A and a B in 0(n) time. We also define the following functions for an interval [x, y] of

a A:

l(x,y) min 7rAB(i)
i E [x,y]

(6.2.2)

u(x,y) max 7r;tB(i)
iE[x,y]

(6.2.3)

J(;r,y) u(x,y) -l(x,y)- (y- x). (6.2.4)

Since j(J.·,y) is the number of elements in {aa(i) I i E [l(x,y),u(x,y)]}\{aA(i) I i E [x,y]}, a

pair ([.r , y] [l(x, y), u(x, y)]) is a common interval if and only if f(x, y) = 0. Then all common

intervals can be enumerated by calculating f (x, y) for all (x, y) pairs satisfying 1 ::; x < y ::; n.

This gives rise to the following algorithm.

Algorithm BSC

Line 1: for x = 1, ... , n- 1 do

6.3 Simple Improvements of the Basic Algorithm

Line 2:

Line 3:

Line 4:

Line 5:

Line 6:

Line 7:

Line 8:

l:=u:=nAB(x);

for y = x + 1, ... , n do

l:=min{l, 7rAB(Y)};

u:=max{ u, 1r AB(Y)};

if u- l - (y- x) = 0 then

output ([x, y], [l, u])

end for

Line 9: end for.

75

The variables u and l in BSC correspond to the function values u(x, y) and l(x, y) defined

above. The time complexity of this algorithm is O(n2), since Lines 4, 5, 6 and 7 can be

executed in 0(1) time.

6.3 Simple Improvements of the Basic Algorithm

In this section, we propose two improved versions of BSC, called LHP and MNG, both of

which detect some redundant inner loop iterations from Line 3 to 8 of BSC by simple tests,

and remove them from execution. They still require 0(n 2) time in the worst case; however,

it is observed that they are practically much faster than BSC for many types of problems.

6.3.1 The Algorithm LHP

Here we describe the algorithm LHP. It is shown in Section 6.5 that the expected running

time of this algorithm for two randomly generated permutations is O(n). For convenience,

only the common intervals of length 2 to n- 2 are considered in this subsection, and Line 3

of BSC is modified as

"Line 3': for y = x + 1, ... , min { n, x + n - 3} do".

Modification of the algorithm to the original problem (where common intervals of length 2 to

n are considered) is easy and the results of this chapter are not affected by this assumption

by the following reasons. The pair of intervals of length n (i.e., ([1, n], [1, n])) is always a

common interval. There are four pairs of intervals, ([1, n- 1], [1, n- 1]), ([1, n- 1], [2, n]),

([2, n], [1, n- 1]) and ([2, n], [2, n]), which are the candidates for common intervals of length

n-1. The pair of intervals ([1, n-1], [1, n-1}) is a common interval if and only if 7rAs(n) = n.

The other cases are similar. Therefore, we can enumerate all common intervals of length n- 1

in constant time by checking if 7rAB(1) = 1, 7rAB(1) = n, 7rAB(n) = 1 or 7rAB(n) = n holds.

We improve the basic algorithm BSC in the following two respects.

The first is that, if

u- l >min{ n- x, n- 3} (6.3.5)

76 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

is satisfied just before entering Line 6 of BSC in the x-th iteration, then the rest of current

inner loop can be omitted, and we move into the (x + 1)st iteration immediately. Note that

u -l is monotonically nondecreasing during the x-th iteration. Condition (6.3.5) implies that

the length of interval [l, u] of a B exceeds the maximum length of interval [x, y] of a A when y

is increased up to min{ n, x + n- 3 }. We call this condition length condition.

Let H P be the set

HP V\{nAB(w) I w=x,x+1, ... ,min{n,x+n-3}}

{ 1r AB (w) I w E [1, x - 1] or w = x - 2 (mod n) or w = x - 1 (mod n)}.

The second is that, if an h E H P satisfies

l<h<u (6.3.6)

just before entering Line 6 of BSC, then the rest of the current inner loop can be omitted.

H P is the set of indices of the elements which will not be included in any interval [x, y]
(y = x + 1, ... , min{ n, x + n- 3}) of a A· We call each element of H P a hole point, and

call condition (6.3.6) HP condition. It is not advantageous to check the HP condition for all

h E H P, since the whole running time increases to O(n3). Hence, we check the HP condition

for only a sufficiently small portion of H P, which we call H P', so that the original worst case

time complexity O(n2) is preserved. For this, IH P'l should be kept constant. After trying

several in preliminary computational experiments, we choose H P' as follows:

HP' = {nAB(w) I w = x- 2 (mod n) or w = x- 1 (mod n)}.

As other nat ural candidates, one may consider

{nAB(w) I wE [1,n] and w = x- 1 (mod n)} or

{an element randomly chosen from H P}.

(6.3.7)

(6.3.8)

Howev<:>r, it is observed that O(n log n) average time is needed for two randomly generated

permutations if we use H P1, and it is also observed that the algorithm becomes slower if

we use H P2 (one of the conceivable reasons for this phenomenon is that generating random

values frequently is too expensive). More discussion is in [131].

6.3.2 The Algorithm MNG

Here we describe the second algorithm tviNG. It use the fact that the function f defined by

(6.2.4) satisfies the reverse Monge property, that is,

j(J..t, y) + j(x, y') ~ j(x', y') + J(x, y) (6.3.9)

6.3 Simple Improvements of the Basic Algorithm 77

holds for all x', x, y, y' satisfying x' < x < y < y' (see Appendix A for the proof). From

(6.3.9), we have

f(x, y') > f(x, y)- {f(x', y)- f(x', y')}

> f(x,y)- {f(x',y)- min f(x',z)}.
zE[y+1,n]

Since the above inequalities hold for every x' (< x),

f(x,y') ~ f(x,y)- min {f(w,y)- min j(w,z)}
wE[1,x-1] zE[y+1,n]

(6.3.10)

(6.3.11)

holds. The value of minwE[1,x-1J{f(w, y)- minzE[y+1,n] f(w, z)} gives an upper bound for the

decrease of f(x , y) when y is increased upton. Hence, if x ~ 2 and

f (x, y) - min { J (w, y) - min f (w, z)} > 0
wE[1,x-1] zE[y+1,n]

(6.3.12)

holds just before entering Line 8 of BSC in the x-th iteration, then the rest of the current

inner loop can be omitted, and we can move to the (x + 1)st iteration immediately.

Now let Ylast be defined as the value of y at Line 9 when we exit the inner loop. If

Ylast :::; n - 1, then we will not complete computing minzE[YLast+1,n] f(x, z). Hence, we may

fail to check condition (6.3.12) for larger x. Thus we define a function

LD(x , y) =

oo, (x = 1, y = 2, 3, ... , n- 1)

min{LD(x -1,y),j(x -1,y)- min J(x -1,z)},
zE[y+l,n]

(x ~ 2,y = x,. · · ,Ylast -1,Ytast = n)
min{LD(x- 1, y), j(x- 1, y)- min{ min f(x- 1, z),

zE[y+1,Ylastl

J(x- 1, Ylast)- LD(x- 1, Ylast)} },

(x ~ 2,y = x, ... ,Ytast,Ylast:::; n -1)

(6.3.13)

LD(x- 1, y), (x ~ 2,y = Ylast + 1, · · · ,n -1,Ytast:::; n -1).

The function LD(x, y) can be calculated even if Ylast :::; n- 1, and satisfies

LD(x,y) ~ min {f(w,y)- min f(w,z)}.
wE[l,x-1] zE[y+l,n]

(6.3.14)

An inner loop can be terminated if condition

f(x, y)- LD(x, y) > 0 (6.3.15)

holds. The correctness of the algorithm is retained even after this modification, since condi­

tion (6.3.15) implies condition (6.3.12). We call condition (6.3.15) Monge condition.

We defined LD as a function of both x and y for convenience; however, the value of

LD(x, y) can be overwritten on the memory space of LD(x- 1, y) in the actual execution.

Such an update of LD is executed every time we exit the inner loop, which is possible in

78 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

O(Ylast- x) time. Hence, the worst case running time 0(n 2) of the algorithm BSC is preserved

for MNG.

We further set a parameter R E (0, 1], and do not exit the inner loop for y > R(n- x) + x

even if Monge condition is sat isfied. (R = 1 means the case we do not use this modification.)

Once y > R(n - x) + x holds, Ylast is forced to be n and we can update LD by using the

second formula of (6.3.13); hence, LD value may improve by this modification. The total

time spent to inner loops increases at most 1/ R times compared to the case with R = 1. We

set R to 0.5 in the computational experiments, since remarkable improvement was observed

in some problem instances compared to R = 1.

6.3.3 Remarks about the Two Algorithms

Two algorithms LHP and MNG can be combined; however, slight modifications are needed

in updating LD. It would be worth trying to terminate the inner loop by length condition,

HP condition or l\tionge condition only if y < R(n- x) + x for a parameter R E (0, 1]. Since

the computational time gains at most 1/ R times of the algorithm LHP, expected running

time of this combined algorithm remains 0(n) for two randomly generated permutations. It

is also noted that some LD values may become larger than those realized by MNG alone,

and this combined algorithm will not necessarily improve the performance of MNG.

Although it is observed that algorithms of this type are much faster than the algorithm

BSC for many types of problems, they always require O(n2) time for some problem instances.

For example, consider the problem given by setting CT A (i) = i (i = 1, ... , n) and

{
2 · 1 ,; _< 1n/2l

(
') 't- ' " I

0"8 ~ =
2(n - i + 1), i 2:: I n/2l + 1.

The function f then takes

f(x,y) > 0, x=1, ... ,n-1, y=x+1, ... ,n-1

f(x,n) 0, x = 1, ... , n- 1

and the number of outputs is K = O(n). Any algorithm improved from BSC by "omitting

redundant loops" requires 0(n 2) time for this example, since the inner loop must be repeated

until y becomes n for all x. It shows a limitation of the algorithms of this type.

6.4 An Algorithm with O(n + K) Worst Case Running Time

In this section, we propose an algorithm called the reduce candidate algorithm (abbreviated

as RC) which runs in O(n + J() tin1e in the wor t case. Since the algorithm runs in time

proportional to the number of inputs and outputs, it is optimal in the sense of the worst case

6.4 An Algorithm with 0(n + K) Worst Case Running Time 79

time complexity. On the other hand, those algorithms proposed in the previous section may

take much time, e.g., D(n2
) time even if the number of outputs K is O(n), though they are

very simple and fast for most of the tested problem instances.

For a fixed x, we call a y unnecessary if it satisfies f(x', y) > 0 for all x' :s; x. By definition,

if y is unnecessary for x, y is also unnecessary for x" for all x" :S x. The main idea of the

algorithm RC is to save the time to check whether f(x, y) = 0 or not for some y which can be

concluded as unnecessary from the past search information. The framework of the algorithm

is described as follows.

Algorithm RC

Line 1: Y := {n}.

Line 2: for x = n - 1, · · · , 1 do

Line 3: Output ally (> x) in Y satisfying f(x, y) = 0.

Line 4: Set Y := (Yu {x})\W

where W ~ { y E N J y 2:: x and f (x', y) > 0 for all x' < x}.

Line 5: end for.

The key to this algorithm is how to find unnecessary y's. The following lemmas help us

to identify them. Note that u(x, y) :S u(x', y') and l(x, y) 2:: l(x', y') hold for [x, y] ~ [x', y'].

Lemma 4.1 Suppose that we are given x > 1 andy> x. lfu(x,y) < u(x , y') and u(x-

1,y) = u(x -1,y') hold for some y' > y, y satisfies f(x',y) > 0 for all x' < x.

Proof. From u(x, y) < u(x, y'), there exists a y11 E [y + 1, y'] satisfying TIAs(y") E [u(x, y) +
1, u(x, y')]. By u(x -1, y) = u(x -1, y'), we have [u(x, y) + 1, u(x, y')] ~ [l(x', y), u(x', y)] and

7rAB(Y 11
) E [l(x', y), u(x', y)]. As y" is not included in [x', y], f(x', y) is greater than 0. D

Lemma 4.2 Suppose that we are given x > 1 andy> x. If f(x, y) > f(x, y') hold for some

y' > y, y satisfies f(x', y) > 0 for all x' :S x.

Proof. From f(x, y) > f(x, y'), there exists a y" E [y + 1, y'] which satisfies 7rAs(y") E

[l(x,y),u(x,y)]. Since y" is not included in [x',y], f(x',y) is greater than 0. D

We can find a part of unnecessary y from these properties. We will show an algorithm

that removes all y that satisfy the conditions of Lemma 4.1 or 4.2 from the set Y at Line 4

of algorithm RC.

To maintain Y, the algorithm uses a doubly linked list, ylist, composed of the cells y1 , ... , Yr

corresponding to the elements y E Y. The cells are sorted in increasing order of their values.

Initially, the ylist is composed of only one element n. Then Line 4 of algorithm RC is realized

by adding an element x at the head of ylist and executing algorithm TRIMMING_ YLIST(x, y)

80 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

explained below. For simplicity, we consider only the case with 1TAs(x-1) > 7rAB(x) through­

out this section. The opposite case can be treated similarly. The algorithm for trimming the

wastful y from ylist is as follows.

Algorithm TRIMMING_YLIST(x, y)
(x and y are set to the values in Line 4 of algorithm RC.)

Step 1: Find y* EN which is maximum among those y satisfying u(x,y) < u(x -1,y).

Step 2: If the cell y on the head of ylist satisfies u(x, y) < u(x, y*), then remove it from

ylist (from Lemma 4.1) and go to Step 2; otherwise go to Step 3.

Step 3: Let Yi and Yi+l be adjacent in ylist and satisfy Yi ::; y* < Yi+l· If f(x- 1, Yi)
> f(x - 1, Yi+I) then remove Yi from ylist (from Lemma 4.2) and go to Step 3.

Algorithm TRIMMING _Y LIST(x, y) correctly remove all the elements concluded as unnec­

essary by Lemmas 4.1 and 4.2 by the following reasons. In Step 2, if there exists a y' ::; y*
satisfying u(x,y') < u(x,y*), then the heady of ylist also satisfies u(x,y) < u(x,y*), since

u(x, y) is monotonically nondecreasing withy. Therefore, ally satisfying u(x,y) < u(x, y*)
arc removed from ylist during the iteration of Step 2, i.e., all the elements concluded as

unnecessary by Lemma 4.1 are removed.

For Lemma 4.2, we claim that f(x- 1, Yi) ::; f(x- 1, Yi+I) hold for all Yi (2: x) which

remain in the ylist at the end of the algorithm TRIMMING_YLIST. This is proved by induction

on x . Suppose that f(x , Yi) ::; f(x, Yi+d holds for all i just before x is added at the head

of ylist in Line 4 of algorithm RC. This hypothesis is true for x = n - 1, since the ylist is

initially composed of only one element n. As f(x,x) = 0 and f(x,y) 2:0 (Vx::; y) hold,

f(x, Yi) ::; f(x, Yi+l) still holds for all i after xis added at the head of ylist. For every Yi > y*,
f(x- 1, yi) - f(x, Yi) = -1 holds, since u(x, Yi) and l(x, Yi) are unchanged for such i. For

every Yi ::; y* which i not removed in Step 2 of TRIMMING_YLIST, f(x- 1, Yi)- f(x, yi) = c

(cis a constant satisfying c 2: 0) holds (i.e., cis the same for all Yi::; y*), since u(x,yi) are

the same for all such i and l(x , Yi) are unchanged. Thus the claim was proved.

Given x and y, we have to spend O(y - x) time to calculate u(x, y) if no particular

data structure is used. To achieve linear time, we have to obtain them in shorter time .

In our algorithm, we represent the functions u and l by li ts called ulist and llist. For a

fixed x, u(x,y) (resp., l(x,y)) is monotonically nondecreasing (resp., nonincreasing) in y .
(Sec Figure 6.1.) We now describe the construction of the linked list only for u, since the

construction of llist is similar. The interval [x + 1, n] is decomposed into intervals [yb =
x + 1, y~- 1], [y~, y~- 1] ... , [y;, _1, y~. = n] where u(x, y") = u(x, y"') holds if and only if both

y" and y"' arc included in [YLY~+l - 1]. From this decomposition, we represent u by ulist
composed of the CC'lls vvhich correspond to these intervals. Each cell keeps the corresponding

interval and the value u(.1:, y) for y which the interval includes. A pair of cells are doubly

6.4 An Algorithm with 0(n + K) Worst Case Running Time 81

linked by pointers if they correspond to adjacent intervals. We say that y is included in the

cell of ulist if the corresponding interval includes y.

z

7

6

5

4

3

2

1 z = l(2,y)

1 2 3 4 5 6 7 y

Figure 6.1: Functions u(2,y), u(3,y), l(2,y) and l(3,y) corresponding to permutations OA =
(1,2,3,4,5,6,7) and a-s= (5,3,1,4,2,7,6).

To get the value of u(x, y), we have to find the cell in ulist which includes y. To realize

this operation in short time, we prepare a pointer from each cell Yi of ylist to the cell of ulist
which includes Yi· We also prepare a pointer from each cell of ulist to the cell Yi of ylist,
where Yi is the maximum among those included in the same cell of ulist. (See Figure 6.2.)

The update of ulist and llist when x changes to x- 1 is executed as follows. We update

llist by adding a cell corresponding to interval [x- 1, x- 1] on its head. (Recall that we treat

only the case 7rAB(x- 1) > 7rAB(x) .) We delete all the cells of ulist which include a y such

that u(x,y) < u(x,y*). For the cell including y*, we change its interval to [x - 1,y*] and its

value from u(x, y*) to u(x- 1, y*). (See Figure 6.3.) Note that we do not remove the cell

representing u(x, y*), but use it to represent u(x- 1, y*). By doing this, pointers from ally

included in the cell corresponding to u(x, y*) to ulist need not to be changed. This is a key

point in speeding up of the algorithm.

In Step 2 of TRIMMING_YLIST, if the pointer from a cell y of ylist indicates a deleted

cell of ulist, we remove it from ylist, since this implies u(x, y) < u(x, y*). Thus it is not

necessary to update the pointers between ylist and ulist.

82 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

7; [6, 7]

1; [5, 7]

Figure 6.2: Examples of ulist and llist corresponding to u(3, y) and l(3, y) of Figure 6.1.

Now we consider the time complexity of algorithm RC. For this purpose, let us consider

the time to update ylist, ulist and llist and the time to scan ylist to output common intervals

in the entire algorithm of RC. Since those update operations of ulist are done by tracing ulist

frorn its head to the cell including y*, Step 1 and 2 of the algorithm TRIMMING_YLIST take

0(d + 1) time, where d is the number of deleted cells in Step 2. The total number of deleted

cells during the execution of the algorithm RC can not exceed the number of created cells,

which is 0(n), and thus the total time of those operations in the algorithm RC is 0(n).

In Step 3 of the algorithm TRIMMING_YLIST, we can find Yi and Yi+l in 0(1) time by

tracing a pointer from the cell of ulist including y* to the cell of ylist. (See Figure 6.3.) Step

3 is repeated while the current cell is deleted. This is done in time proportional to the number

of the deleted cells. Thus the total time spent in Step 3 of the algorithm TRIMMING_ YLIST

in all iterations of algorithm RC is proportional to the total number of the deleted cells. It

can not exceed the number of created cells, and the total time is O(n).

In Line 3 of algorithm RC the cells Yl,···,Yr ofylist satisfy f(x,yi):::; f(x,Yi+l) (i =
1, ... ,r -1). Therefore we can enumerate ally satisfying f(x,y) = 0 by tracing ylist from

its head without scanning y with f(x, y) > 0 in the middle. When we encounter a y with

f(x, y) > 0, we stop the tracing since f(x, y') > 0 holds for all y' > y. It takes time

proportional to the number of outputs, which i O(n + K).

As a result, the following thPoren1 holds.

6.4 An Algorithm with 0(n + J() Worst Case Running Time

(The same memory cell

+ with 1•1 4; [4,5] 1•1•1

1; [5, 7]

83

7; [6, 7]

Figure 6.3: The process of updating ulist, llist and ylist. The cells represented by dotted

lines are deleted when ulist is updated.

Theorem 4.1 Algorithm RC with TRIMMING_YLIST outputs all common intervals in O(n+

K) time.

6.4.1 Enumerating Common Intervals within a Specified Length

Given bt :::; bu :::; n, we consider the problem of enumerating all the common intervals of two

permutations whose length are not smaller than bt and not greater than bu. This problem

is motivated by the following reason. If the given two permutations are similar, the number

of common intervals of length 2 to n will be very large (e.g., O(n2
)). Even in such cases,

the number of common intervals of length bt to bu may be much smaller if bu - bt is small

(e.g., the number of outputs is O(n) if bu- bt = 0(1)). Of course we can enumerate common

intervals of length bt to bu by first enumerating all common intervals of length 2 to n and then

outputting those with the specified lengths, but this algorithm requires O(K) time, where

K is the number of common intervals of length 2 to n. However, we can do better by using

algorithm RC with slight modifications.

In each iteration, we keep the minimum cell y of ylist among those satisfying y- x + 1 2: bt.

At the end of Line 4 of algorithm RC, we find the minimum cell f/ satisfying f/ - x + 2 2: bt

and set y := f/. Since y' is either adjacent to y in the ylist or y' = y, this update can be

84 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

done in 0(1) tirne. The enumeration of y satisfying f(x, y) = 0 and bt ~ y- x + 1 ~ bu can

be done in 0(n + J(') time by tracing ylist from y, where K' is the number of outputs for

this problem.

6.4.2 Finding the Common Interval of Maximum Length within a Specified
Length

In this subsection, we consider the problem finding a common interval of the maximum length

whose length is less than or equal to a given number bu (< n). The motivation of considering

this problem is similar to that explained in Subsection 6.4.1.

The basic idea is similar to the above algorithm. We keep the maximum cell '[} satisfying

'[} - x + 1 > b* and ylist is scanned from '[} in Line 3 of algorithm RC, where b* ~ bu is the

maximum length of the common intervals which the algorithm found so far.

At the end of each iteration of algorithm RC, we update b* if the common interval whose

length is not more than bu and is larger than b* is found. In such a case, we update '[} to it

by tracing ylist from b* while the cell satisfies f(x, y) = 0. Otherwise we find the minimum

'[}
1 satisfying '[} 1

- x > b* and set '[} := '[} 1
, which is done in 0(1) time. Since the number of

forward scans of ylist can not exceed bu (< n) and the number of backward scans can not

exceed n, the algorithm is executed in O(n) time.

6.5 Random Inputs

In this section we consider the case in which two permutations are generated uniformly at

random (i.e., every permutation appears with probability 1/n!) , and show the following two

properties.

i) Expected number of common intervals is 0(1).

ii) ExpedPd running time of algorithm LHP is O(n).

For convenience, only the common intervals of length 2 ton- 2 are considered in this section.

This assun1ption cloPs not chang<' the above results as discussed in Subsection 6.3.1.

6.5.1 Expected Number of Common Intervals

We define two types of random variables as follows. A variable Xkx (x = 1, ... , n - k + 1,

k = 2 ... 'n- 2) takes value 1 if f(x, X+ k- 1) = 0, and 0 otherwise. We also define xk =
I:~;: ~ +l .. \k:r and .Y = I:~:~ .\k. These variables repre ent the number of common intervals

of length k and th number of comnwn intervals of length from 2 to n - 2, respectively.

6.5 Random Inputs 85

Theorem 5.2 For n 2: 5, E(X) = 2 + O(n- 1
). To be more precise, E(X2) = 2- ~' and

E(i:~:~ Xk) = O(n- 1
).

Proof. For fixed XA and xs,

(n-k)!k!
Pr({O"A(i) I i E [xA,xA+k-1]} = {O"s(i) I i E [xs,xs+k-1]}) = 1 .(6.5.16)

n.

Since possible values of xs is from 1 to n- k + 1, we have

(n-k)!k!
E(XkxA)= x(n-k+1).

n!

By the linearity of expectation, this implies

n-k+l

E(Xk) = L E(Xkx),
x=l

n-2
E(X) = L E(Xk)·

k=2

To analyze the behavior of E(Xk), we consider the solution of

From

k(n-k+1)
------:-2 < 1'
(n-k+2)

we obtain

2k2 - (3n + 5)k + (n2 + 4n + 4) > 0,

and get the solution k < a_(n),a+(n) < k for (6.5.20), where n 2:4 and

a_(n)
3n + 5- Jn2 - 2n- 7

4

3n+5+)n2 -2n-7

4

It is easy to check that 0 < a_ (n) ~ n holds. By the fact

(6.5.17)

(6.5.18)

(6.5.19)

(6.5.20)

(6.5.21)

(6.5.22)

(6.5.23)

(6.5.24)

(6.5.25)

for n 2: 4, we have a+(n) > n. Therefore, E(Xk) is monotonically nonincreasing in k when

2 ~ k ~ a_ (n) holds, and is monotonically nondecreasing in k when a _ (n) ~ k ~ n holds.

By using E(X4) < ~ and E(Xn-2) ~ ~ (n 2: 4), we have

24
E(Xk) ~ 2 , (k = 4,5, . . . ,n- 2,n 2: 4) ,

n
(6.5.26)

86 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

and from (6.5.18),

2
2--

' n
6(n- 2)
n(n- 1)'

Hence, we can conclude for n ~ 5 that

24
< E(X3) + (n- 5) · -n2

O(n- 1),

n-2
E(X) E(X2) + E(L Xk)

k=3
2+0(n- 1). 0

(6.5.27)

(6.5.28)

(6.5.29)

(6.5.30)

(6.5.31)

(6.5.32)

By estimating the variance of X 2 and using Chebyshev bound and Markov inequality, the

following theorem is also shown [136].

Theorem 5.3 If n 2: 5, Pr(X 2: J2t + 3) :S fr + O(n- 1) holds for arbitrary t > 0.

6.5.2 Expected Running Time of the Algorithm LHP

For each x (x = 1, ... , n - 1), let Tx be the random variable representing the number of

iterations in the inner loop of LHP for x. We also define T = 'L~:Oi Tx, which represents the

total number of inner loop iterations.

Theorem 5.4 FoT n 2: 4, E(T) ::; 3n holds.

Theorem 5.4 holds even if we do not incorporate the length condition (6.3.5) into LHP.

Before proving this theorem, we consider the following problem. Suppose that we have

k white balls and m- k black balls (0 ::; k ::; m- 1, m ~ 1) in an urn. The probability of

taking out a ball is the same for all balls. Take out one ball. If it is white, we do not replace

the ball into the urn and continue the same trial; otherwise (i.e., once a black ball is taken)

we terminate the trial. Let Eurn (m, k) denotes the expected number of trials until a black

ball is taken. Then

m+ 1
Eurn(rn,k) = k

m- ·+1
(6.5.33)

holds (sec Appendix B). We define Eurn(rn, m) = m for convenience. Now let E~rn(m, k,j)

denotes the expected nurnber of trials until a black ball is taken or the number of trials

becomes j. Then

E~rn(m, k,j) :S Eurn(nt, k) (6.5.34)

6.6 Computational Results 87

holds for j ~ 1, 0 :S k :S m and m ~ 1 (see also Appendix B). These facts are used in the

proof.

Proof. By linearity of expectation, we have

n -1

E(T) = L E(Tx)· (6.5.35)
x=1

For a fixed x, let r(x) be min{n- x,n- 3}, which is the maximum number of inner loop

iterations for x. Since the two permutations are generated uniformly at random, H P' = { i, j}

holds with probability G) -1 for any i and j (i,j E [1, n], i < j). For such i and j, probability

that 1 :S 1r AB (x) :S i - 1 holds is ~-=-1, and in this case, the expected number of inner loop

iterations is E~rn(n- 3, i- 2, r(x)). Secondly, the probability that i + 1 :S 1fAB(x) :S j- 1

holds is j~~~ 1 , and in this case, the expectation is E~rn(n- 3,j - i- 2, r(x)). Thirdly,

the probability that j + 1 :S 1r AB (x) :S n holds is ~=~, and in this case, the expectation is

E~rn(n- 3, n- j- 1, r(x)). Therefore,

6.6

n -1 (n) - 1 n-1 n { i _ 1
E(T) = ~ 2 ~j~l n- 2 E~rn(n-3,i-2,r(x))

<

j-i-1 n - j } + E~rn(n- 3,j- i- 2, r(x)) + --E~rn(n- 3, n- j- 1, r(x))
n-2 n-2

n - 1 n-l n { i - 1
-n- L L --Eurn(n- 3, i- 2)

(2) i=l j=i+1 n- 2

+ Eurn(n- 3,j- i- 2) + --Eurn(n- 3,n- j - 1)
j-i-1 n-j }
n-2 n-2

n- 1 n-1 i- 1
-n- · 3 · l:(n- i) · --Eurn(n- 3,i- 2)

(2) i=1 n- 2

~ {~(n- i) · i-
1 · n- ~ + (n- 3)}

n L....t n-2 n-'l
t=1

3n- 9 ::; 3n. 0

Computational Results

In this section, we compare algorithms BSC, LHP, MNG and RC by applying thern to six

types of problem instances of sizes up to n = 106
.

6.6.1 Generation of Problem Instances

The following six types of problem instances are examined.

RAND: Two permutations O" A and O" B are randomly generated (i.e., any permutation is

chosen with probability 1/n!).

88 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

SWAP: Initially two permutations O"A and O"B are set as O"A(i) = O"B(i) = i fori=

1, ... , n. Then we repeat s times a swap of two elements O"B(i) and O"B(j) for two integers i

and j (i =I= j) randomly chosen from [1, n]. We set s = n in the experiment.

NBRAND: The permutation O" A is set as O" A (i) = i for i = 1, ... , n. For an integer k,

let p and q be the integers satisfying n = kp + q and 0 :S q < k. For each i (i = 0, 1, ... , k),

a permutation O"i: Vi~ Vi is randomly generated, where Vi= {ip + 1,ip + 2, ... , min{(i +
1)p, n}}, and O" 8 is set as O" B = O"QO"l · · · O"k. We use k = l yin+ 0.5 J in the experiment.

NBSWAP: Initially two permutations O"A and O"B are set as O"A(i) = O"B(i) = i for

i = 1, ... , n. Then a swap of two elements O" B (i + j) and O" B (j) for an integer i randomly

chosen frorn [1, k] and an integer j randomly chosen from [1, n- i] is repeated s times, where

k is a parameter to restrict the swap distance. We set k = l yin + 0.5 J and s = n in the

experiment.

SLIDE: For an integer k, let p and q be the integers satisfying n = kp + q and 0 :S q < k.

Two permutations are set as O" A (i) = i and

{
i- 2k- 1

O"B(i) = .
~,

(mod kp) + 1, i = 0 (mod k)

otherwise,

fori = 1, ... , n. An example with n = 20 and k = 3 is exhibited in Figure 6.4. We set k = 4

in the experiment.

Figure 6.4: An example of type SLIDE instance with n = 20 and k = 3.

NET: Two permutations are set as O" A (i) = i and

O"B(i) = { (i + 1)/2,
ln/2l + i/2,

i: odd

~= even,

fori = 1, 2, ... , n. An example with n = 10 is shown in Figure 6.5.

A: 1 2 3 4 5 6 7 8 9 10
I~I

B: 1 6 2 7 3 8 4 9 5 10

Figure 6.5: An example of type NET instance with n = 10.

6.6 Computational Results 89

For type RAND instances, the expected number of common intervals is 2 + O(n- 1) as

shown in Section 6.5. By the similar discussion, we can show that the expected number of

common intervals for type NBRAND instances is at most k2 /2 + o(k2) if k = o(n). Recall

that we choose k = 0(yin) in the experiment, and hence, the expected number of outputs is

O(n).

For type SWAP and NBSWAP instances, it is observed that the number of common

intervals is O(n) as shown in Table 6.1, where each entry is the average of five instances

examined in the next subsection.

Table 6.1: Average number of common intervals divided by n for type SWAP and NBSWAP

instances.

K/n
n SWAP NBSWAP

1000 0.022 0.084

10000 0.021 0.050

100000 0.021 0.032

1000000 0.021 0.026

For type SLIDE instances, the number of common intervals is at most

p(k-
1

) + (q) +k(q+l) < ~kn+~k2 .
2 2 - 2 2

Recall that we choose k = 4, hence, the number of outputs is O(n). For type NET instances,

the number of common intervals is at most one.

6.6.2 Computational Results

All the tested algorithms were coded in C language and run on a workstation Sun SPARC

classic. A simple multiplicative congruential method was used to generate random sequences.

For each type of problem (except for type SLIDE and NET problems), we generate five

instances for each n = 103
f'.J 106 , and exhibit the average computational time (etc.) of

each tested algorithm. Although type SLIDE and NET problems include no randomness,

we exhibit the average data of three runs for each tested algorithms, since the CPU time

returned by the computer includes errors.

Table 6.2 shows the average number of inner loop iterations of BSC, LHP and MNG

divided by n, where n = 104 is used. (This implies the average number of iterations for an

inner loop.) The mark'*' is put if this value does not increase more than 5% when n = 106
,

90 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

and for others, we mark '6' if the instances with n = 106 was solved in one minute. Table

6.3 shows the average of the total number of scans on ulist, llist and ylist of the algorithm RC

divided by n, where n = 106 is used. Figures 6.6 rv 6.11 show the average computational time

(in J.L sees.) divided by n. (Note that the data are identical to the average computational

time in seconds when n = 106 .)

Table 6.2: Average number of inner loop iterations of BSC, LHP and MNG divided by n

(n = 104
).

BSC

LHP

MNG

RAND

4999.50

*1.99

*3.40

SWAP

4999.50

*2.33

*3.66

NBRAND

4999.50

99.62

53.50

NBSWAP

4999.50

*11.13

64.39

SLIDE

4999.50

2498.50

*6.25

NET

4999.50

1876.00

68.68

Table 6.3: Average of the total number of scans on ulist, llist and ylist of RC divided by n

(n = 106).

RAND SWAP NBRAND NBSWAP SLIDE NET

RC 27.45 27.44 28.94 27.60 29.75 28.00

Frorn these, we can observe the following:

• In Table 6.2, the marks '*' and '6' imply the effectiveness of the speed up techniques

proposed in Section 6.3. Especially for those with '*' marks, it may be concluded that

the problem instances were solved in 0(n) time on the average. For each of those with

'6' marks, the value increases about 13% (resp., 38%) for NBSWAP (resp., NET) when

n = 106 . For NBSWAP, this is because the variance of the data of MNG is rather large.

Thr same tendency was ob erved for LHP. Indeed , the value decreases about 23% for

LHP with NBSWAP when n = 106 . It is known that MNG needs O(nlogn) time for

type NET instances, as evidenced by the increase of about 38%.

• The performanc('s of BSC and RC are hardly affected by the type of instances: BSC

always requires O(n2) time, while RC always run in O(n) time (recall that K = O(n)

for all tested problem instancE's). Note that the values in Table 6.3 are almost the same

for other tested sizes.

6.6 Computational Results

Q)

8
~

1000

100

10

1
1000

BSC -+­

LHP --s-­

MNG --*­

RC --4------

10000 100000 1e+06
number of elements

Figure 6.6: Computational time against n (type RAND).

1000

100

10

1
1000 10000

BSC -+­

LHP -a-­

MNG~
RC --4------

100000 1e+06
number of elements

Figure 6. 7: Computational time against n (type SWAP).

91

92 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

1000

100

10

1
1000 10000

BSC
LHP
NG
RC

100000
number of elements

1e+06

Figure 6.8: Computational time against n (type NBRAND).

1000 BSC ~
~ LHP ---a-

----,--. MNG ~
(/)

RC u -A-

0 100 (/)

:::s
'--"'
0 s
·~
~

0
10

·~
~

ro
M

1
1000 10000 100000 1e+06

number of elements

Figure 6. 9: Computational time against n (type NBSWAP).

6.6 Computational Results

0 s
·~
~

~

----,--.
(/)

u
0
r:/j

:::s
'--"'
0 s
·~
~

0
·~
~ ro
M

1000

1
1000 10000

BSC ~
LHP ---s­

MNG~
RC -A-

100000 1e+06
number of elements

Figure 6.10: Computational time against n (type SLIDE).

1000 BSC ~
LHP ---a-

MNG ~
RC -A--

100

10

1
1000 10000 100000 le+06

number of elements

Figure 6.11: Computational time against n (type NET).

93

94 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

• The algorithrn LHP is quite effective for type RAND and SWAP instances. It is also

effective for type NBSvVAP instances, though about three times slower than the cases

(3/2) . . of RAND and SWAP instances. On the contrary, we can show that 0 n t1me 1s

needed for type NBRAND instances and O(n2) time is needed for type SLIDE and

NET instances.

• The algorithm MNG is quite effective for almost all types of problems except for

NBRAND, for which we can show that it requires 0(n 312
) time. It is noted, how­

ever, that the running time of MNG is about three times larger than that of LHP for

RAND and SWAP instances, and we can show that MNG requires O(n log n) time for

type NET instances. It is also noted that problem types SLIDE and NET are quite

artificial, and these results do not necessarily imply that MNG is more robust than

LHP.

6. 7 Common Subtrees

In this section, we consider an application of the algorithms for the common interval enumer­

ation problem proposed in the previous sections to the following problem: given two trees

with labels on their leaves, enumerate all common subtrees, i.e., pairs of subtrees having the

sarnf' set of leaf labels. By using algorithm RC, we can derive a fast randomized algorithm

with O(n log2 n) expected running time if we are given two binary trees of depth log2 n, where

n is the nurnber of leaves. The expected running time becomes 0(n) if the same two binary

trees of depth log2 n are given as the input. The latter special case is a trivial instance;

howevf'r, this case is intuitively considered to be tough for this algorithm, and hence, it is

expected that the proposed algorithm runs in O(n) expected time for most of the practical

instances, although the worst case running time is O(n2).

Thf' problem is formally defined as follows. Two rooted trees Y A and 1 B are given as

the input, each of which has n leaves labeled with 1, 2, ... , n. A subtree 1 A(u) is defined to

be the subgraph of Y A induced by u and all descendants of u. Let LA(u) be the set of labels

of the leaves in 1 11 (u). 1 8 (u) and L 8 (u) are similarly defined. We call a pair of subtrees

(1 A (u), 1 8 (v)) a common subtree if it satisfies

where 'U and v arc neither a root nor a leaf. vVe assume that every inner vertex of Y A or Y B

has at least two children, so that the number of inner vertices is 0(n).

Genetic algorithms based on common subtrees are proposed for VLSI design. Common

subtree also has an application in evolutionary trees for species sets, which are used in biology.

There are many propo ·als for constructing evolutionary trees, which are then compared to

6. 7 Common Subtrees 95

form consensus. The number of common subtrees is one of the basic measures for consensus

[57, 96, 107], among others [29, 40).

The proposed algorithm is based on the following observation. Let a 1 A be the permutation

of leaf labels of Y A defined by the order where they are scanned by depth-first search, in

which the left to right order of choosing the children of each inner vertex is determined

arbitrarily. Let lA(u) (resp., rA(u)) be the label of the left (resp., right) most leafofYA(u).

ay 8 , lB(u) and rB(u) are similarly defined. Then (1A(u), 1a(v)) is a common subtree if

and only if ([a y ~ (l A (u)), a y ~ (r A (u))], [a y ~ (l B (v)), a y ~ (r B (v))]) is a common interval of two

permutations ay A and ay 8 • Note that there may be common intervals of ay A and ay
8

that

do not correspond to any subtrees.

The basic framework of the algorithm is as follows.

1. Apply depth-first search to Y A and Y B, choosing randomly the order of the children

at each inner vertex. Denote the two permutations of the leaf labels of 1 A and Y B by

ay A and ay 8 , respectively.

2. Enumerate all common intervals of ay A and ay 8 one by one, and if the two intervals

corresponding to each common interval define subtrees of 1 A and Y B, respectively,

then output the corresponding pair of subtrees.

Step 1 can be executed in O(n) time. We can check in Step 2 if an interval of ay A (resp.,

ay 8) defines a subtree of Y A (resp., 1 B) in 0(1) worst case time by using the data structure

called perfect hash [36], which can be constructed in O(n) expected time and in O(n2) worst

case time.

Let K (ay A, ay 8) be the number of common intervals of two permutations ay A and ay 8 •

K (a 1 A, ay 8) may be the dominating factor of the running time of our algorithrn. Note that

K(ay A, ay 8) = G) in the worst case, although the number of common subtrees is O(n). It

is also noted that the result about the expected number of common intervals for two random

permutations stated in Section 6.5 is not applicable in this case, since the probability space is

different. We can show that the expected value of K (ay A, ay 8) is 0(n log2 n) if the given two

trees are binary and the depth of them is log2 n. We can also show that the expected value

of K(ay A, ay 8) is 0(n) if the same two binary trees of depth log2 n are given as the input.

The latter special case is a trivial instance as the common subtree enurneration problem.

However, in this case, K(ay A, ay 8) = (~) if we do not randomize the children order of each

inner vertex, which is the largest possible value of K(ay A, ay 8). Hence, this is considered

to be a tough instance for our algorithrn. Therefore, we believe that the expected value of

K(ayA,ay
8

) is small (e.g., O(n)) for most of the practical instances, although theoretical

results are limited to the above special cases.

Actually, it is observed by computational experiments on some types of randomly gen­

erated trees with upton= 106 that the average value of K(ayA,ay 8) is O(n) for all the

96 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

tested instances, in which trees of depth fl(n) are included.

If we use algorithm RC to enumerate common intervals in Step 2, the expected running

time of the above algorithm is 0(n + K((Jy A, (Jy 8)), which is 0(n log2 n) if the given two trees

are binary and the depth of them is log2 n, and O(n) if the same two binary trees of depth

log2 n are given as the input. The worst case running time is O(n2), since K((JyA,(Jy 8) is

0 (n 2) in general.

Similar algorithms are applicable to the subtree problems defined on two unrooted trees,

in which two connected components defined by deleting an edge are considered as subtrees .

6.8 Conclusion

For the common interval enumeration problem, we proposed the following three algorithms:

i) a simple O(n2) time algorithm (LHP), whose expected running time becomes O(n) for two

randomly generated permutations, ii) a practically fast O(n2) time algorithm (MNG) using

the reverse Monge property, and iii) an O(n + J() time algorithm (RC). It was observed in

the computational experiment that: 1) LHP is very fast for randomly generated problem

instances, 2) MNG is rather slower than LHP for random instances; however, there are cases

that MNG can run in o(n2) time while LHP needs fl(n2) time, and 3) the performance ofRC

is quite' robust against the types of problem instances, though it is rather slower than MNG

for many of the tested problem instances. It is noted that LHP and MNG are very simple

and easy to program (LHP is much simpler than MNG), while RC is rather complicated. On

the other hand, it is also noted that there are cases that both LHP and MNG require 0(n 2)

time as mentioned in the end of Section 6.3. From these, we recommend RC if one wants to

solve large instances (e.g., n ~ 105), and LHP if one wants to solve the instances which seem

to include randomnes . MNG is recommended if LHP fails to solve efficiently some problem

instances one wants to solve.

Appendix A

Here we prove the reverse Monge property off(·,·), that is ,

f(x', y) + f(x, y') ~ f(x, y) + f(x', y')

holds for all :r;', ,r;, y, y' satisfying x' < x ::; y < y'. Subtracting right-hand side from left-hand

side, we get

u (x', y) + u (.r, y') - { u (x, y) + u (x', y')} + l (x, y) + l (x', y') - { l (x' , y) + l (x, y')}.

It is sufficient to show that 'u(-, ·) and l(-, ·) satisfy

6.8 Conclusion

u(x', y) + u(x, y')

l(x', y) + l(x, y')

> u(x , y)+u(x',y')

< l (x, y) + l (x', y')
(reverse Monge property)

(Monge property).

97

We prove this only for u(·, ·),since the latter case is symmetrically proven. Either 'u(x' , y') =

u(x, y') or u(x', y') = u(x', y) holds, since

max 7rAB(z) < u(x, y') ::::? u(x', y') = u(x, y')
zE[x',x - 1]

max 7rAB(z) ~ u(x,y') ::::? u(x',y') = u(x',y).
zE[x',x - 1]

This fact, combined with u(x,y') ~ u(x,y) and u(x',y) ~ u(x,y), implies that u(·, ·)satisfies

reverse Monge property, and hence, reverse Monge property of f (·, ·) is proven.

Appendix B

Here, we prove that

m+l
Eurn(m, k) = k

m- +1
(6.8.36)

for 0 ::; k ::; m - 1 and m ~ 1, and

E~rn(m, k,j) :S Eurn(m, k) (6.8.37)

for 1 ::; j, 0 ::; k ::; m and m 2: 1, where Burn (·, ·) and E~rn (·, ·, ·) are defined in Section

6.5. Let us define a random variable Z representing the number of trials until a black ball is

taken out. The probability that a black ball is taken out after i trials or more is equal to the

probability that white balls are taken in the first i - 1 trials, so

Pr(Z;?:i)= [k]i-l' i=l, ... ,k+l
[m]i- 1

holds, where

{
1 i = 0,

[m]i= rr:(m-l)···(m-i+l), i>O.

By using this fact, we can conclude

k+l

Eurn(m, k) = L iPr(Z = i)
i=1
k+1

L Pr(Z ~ i)
i=1

t~
i=O [m]i

t c;:~n
i=O (k)

m+l
m- k + 1

(6.8.38)

(6.8.39)

(6.8.40)

98 CHAPTER 6 COMMON INTERVALS OF TWO PERMUTATIONS

See for example [49] for the last sigma calculation. When k ::; m - 1, if 1 ::; j ::; k, then

j - 1

E~rn(m, k,j) L iPr(Z = i) + jPr(Z 2: j)
i = l

j

L Pr(Z 2: i)
i = l

< Eurn(m, k), (6.8.41)

and if j 2: k + 1, then E~rn(m, k,j) = Eurn(m, k). When k = m, E~rn(m, m,j) = j ::; m =
Eurn(m, k). (Recall that we defined Eurn(m, m) = m for convenience.)

Chapter 7

Conclusion

Throughout this thesis, we have considered various metaheuristic algorithms for the combi­

natorial optimization problems. The contribution of this thesis is summerized as follows.

First, we proposed a framework of approximate algorithms, called genetic DP, in which

dynamic programming is incorporated into the genetic algorithm. Its effectiveness was e­

valuated by computational experiments for three problems: the single machine scheduling

problem (SMP), the optimal linear arrangement problem (OLAP) and the traveling salesman

problem (TSP), all of which are known to be NP-hard. Genetic DP tends to attain better so­

lution quality than traditional multi-start local search (MLS) and genetic local search (GLS)

algorithms when sufficiently long time is allowed, though performance of these algorithms

depends on problem characteristics. Recently, similar hybrid approach of combining exact

methods and metaheuristic methods are tried in [5, 83].

Second, we compared various crossover operators proposed for sequencing problems using

a general framework of crossover operators. It was confirmed that the performance of the

crossover operators can be evaluated by some simple criteria related to characteristics of

the set of children obtainable from the parents. These criteria are expected to give useful

guidelines to design good crossover operators for genetic algorithms. The flexibility is one of

the attractive features of metaheuristics; however, from the view point of users, the algorithms

should be as simple as possible. In this sense, it is important to simplify the framework and

analyze the effect of each basic operation to the performance of the algorithm. This second

result may be useful from the view point of this research direction.

Next, various metaheuristic algorithms were compared from the view point of robustness

and simplicity. As a concrete problem to test, we chose the single machine scheduling problem

(SMP) and metaheuristics such as the multi-start local search (MLS), the genetic algorithm

(GA), the simulated annealing (SA), the tabu search (TS), and some of their variants were

examined. A guideline to design metaheuristic algorithms was proposed in Section 5.3, based

on the obtained computational results. These results were limited to a single problem, and

99

100 CHAPTER 7 CONCLUSION

it is important to conduct similar comparisons on the basis of various types of problems so

that we can understand the general tendencies of the metaheuristic algorithms.

Finally, we considered the common interval enumeration problem, which stems from a

basic operation of genetic algorithms for sequencing problems. For this problem, we proposed

the following three algorithms: i) a simple O(n2) time algorithm (LHP), whose expected

running time becomes 0(n) for two randomly generated permutations, ii) a practically fast

O(n2) time algorithm (MNG) using the reverse Monge property, and iii) an O(n + K) time

algorithm (RC). Application of these algorithms to the common subtree enumeration problem

was also discussed. Designing efficient implementations for basic operations of metaheuristic

algorithrns is practically very important; however, not much research has been done in this

direction. In this sense, the above results may be useful from the view point of this research

direction. As another example, we recently proposed efficient neighborhood implementations

for the maximum satisfiability problem [135), in which the worst-case and average-case time

complexities are analyzed. Such analyses of basic operations of metaheuristics are considered

to be one of the important future research directions.

Recently, the border lines between metaheuristic algorithms become subtle, since many

variants and hybrid approaches of more than one metaheuristic algorithm have been proposed

and arc given different names. Therefore, as a whole, metaheuristic algorithms become quite

complicated. However, it is important to understand the roles of basic components of these

approaches and provide a guideline to design effective metaheuristic algorithms which can

exploit the structures of given problems. Moreover, not much research has been done on the

theoretical aspects of metaheuristics. The author hopes that this dissertation will provide

some assistance to the community of metaheuristic algorithms.

BIBLIOGRAPHY 101

Bibliography

[1] E.H.L. Aarts and J.H.M. Korst, Simulated Annealing and Boltzmann Machinc.s, (John

Wiley & Sons, 1989).

[2) E.H.L. Aarts, P.J.M. Van Laarhoven, J.K. Lenstra and N.L.J.- Ulder, "A Computational

Study of Local Search Algorithms for Job Shop Scheduling," ORSA Journal on Com­

puting, 6 (1994) 118- 125.

[3) E.H.L. Aarts and J .K. Lenstra (eds.), Local Search in Combinatorial Optimization, (John

Wiley & Sons, 1997).

[4) D. Adolphson and T.C. Hu, "Optimal Linear Ordering," SIAM Journal on Applied

Mathematics, 25 (1973) 403- 423.

[5) C.C . Aggarwal, J.B. Orlin and R.P. Tai, "Optimized Crossover for the Independent Set

Problem," Operations Research, 45 (1997) 226- 234.

[6) D. Aldous and U. Vazirani, '"'Go With the Winners" Algorithms," Proceeding.s of the

35th Annual Symposium on Foundations of Computer Science (1994) 492 501.

[7) I. Altho fer and K.-U. Kosch nick, "On the Convergence of "Threshold Accepting"," Ap­

plied Mathematics and Optimization, 24 (1991) 183- 195.

[8] D. Applegate, R. Bixby, V. Chvatal and W. Cook, "Finding Cuts in the TSP (A Prelim­

inary Report)," manuscript taken from http: I /achille. research. att. com/net lib/

att/math/applegate/TSP/.

[9] K .R. Baker and G.D. Scudder, "Sequencing with Earliness and Tardiness Penalties: A

Review," Operations Research, 38 (1990) 22- 36.

[10] J. Bhasker and S. Sahni, "Optimal Linear Arrangement of Circuit Components," Pro­

ceedings of the 20th Annual Hawaii International Conference on System Sciences (1987)

99- 111.

[11] J.N. Bhuyan, V.V. Raghavan and V.K. Elayavalli, "Genetic Algorithm for Clustering

with an Ordered Representation," Proceedings of the 4th International Conference on

Genetic Algorithms (1991) 408- 415.

[12] K.D. Boese, A.B. Kahng and S. Muddu, "A New Adaptive Multi-Start Technique for

Combinatorial Global Optimizations," Operations Re.search Letters, 16 (1994) 101- 113.

[13] R.M. Brady, "Optimization Strategies Gleaned from Biological Evolution," Nature, 317

(1985) 804- 806.

[14] J. Brimberg, P. Hansen, N. Mladenovic and E.D. Taillard, "Improvements and Com­

parison of Heuristics for Solving the M ultisource Weber Problem," Technical Report

IDSIA-33-97, IDSIA, Corso Elvezia 36, CH-6900 Lugano, Switzerland, 1997 (available

as http://www.idsia.ch/-eric/articles.dir/IDSIA-33-97.ps.~.

[15] J. Brimberg and N. Mladenovic, "A Variable Neighborhood Algorithm for Solving the

102 BIBLIOGRAPHY

Continuous Location-Allocation Problem," Studies in Locational Analysis, 10 (1996) 1-

12.

[16] V. Cerny, "A Thermodynamical Approach to the Traveling Salesman Problem: An

Efficient Simulation Algorithm," Journal of Optimization Theory and Applications, 45

(1985) 41 51.

[17] I. Charon and 0. Hudry, "The Noising Method: a New Method for Combinatorial

Optimization," Operations Research Letters, 14 (1993) 133- 137.

[18] B. Codenotti, G. 1vianzini, L. Margara and G. Resta, "Perturbation: An Efficient Tech­

nique for the Solution of Very Large Instances of the Euclidean TSP," INFORMS Journal

on Computing, 8 (1996) 125- 133.

[19] A. Colorni, M. Dorigo and V. Maniezzo, "Distributed Optimization by Ant Colonies,"

Proceedings of European Conference on Artificial Life (1991) 134- 142.

[20] H.A.J. Crauwels, C.N. Potts and L.N. Van Wassenhove, "Local Search Heuristics for

Single-Machine Scheduling with Batching to Minimize the Number of Late Jobs," Eu­

ropean Journal of Operational Research, 90 (1996) 200- 213.

[21] L. Davis, "Applying Adaptive Algorithms to Epistatic Domains," Proceedings of the 9th

International Joint Conference on Artificial Intelligence (1985) 162- 164.

[22] L. Davis (ed.), Handbook of Genetic Algorithms, (Van Nostrand Reinhold, 1991).

[23] T. Dimitriou and R. Impagliazzo, "Towards an Analysis of Local Optimization Algo­

rithms," Proceedings of the 28th Annual ACM Symposium on the Theory of Computing

(1996) 304 -313.

[24] M. Dorigo, Optimization, Learning, and Natural Algorithms, PhD Thesis, Politecnico di

Milano, 1992.

[25] M. Dorigo, V. Maniezzo and A. Colorni, "The Ant System: Optimization by a Colony

of Cooperating Agents," IEEE Transactions on System, Man, and Cybernetics - Part

B, 26-1 (1996) 29 41.

[26] U. Dorndorf and E. Pesch, "Fast Clustering Algorithms," ORSA Journal on Computing,

6 (1994) 141 153.

[27] G. Dueck, "New Optimization Heuristics: the Great Deluge Algorithm and the Record­

to-Record Travel," Heidelberg Scientific Center Research Report TR89.06.011, IBM,

Gerrnany (1989).

[28] G. Dueck and T. Scheuer, "Threshold Accepting: A General Purpose Optimization Algo­

rithm Appearing Superior to Simulated Annealing," Journal of Computational Physics,

90 (1990) 161 175.

[29] M. Farach and ~1. Thorup, "Sparse Dynamic Programming for Evolutionary-Tree Com­

parison," SIAM Journal on Computing, 26 (1997) 210- 230.

[30) T.A. Feo and J .L. Gonzalez-Velarde, "The Intermodal Trailer Assignment Problem,"

Transportation Science 29 (1995) 330 341.

BIBLIOGRAPHY 103

[31] T.A. Feo and M.G.C. Resende, "A Probabilistic Heuristic for a Computationally Difficult

Set Covering Problem," Operations Research Letters, 8 (1989) 67 71.

[32] T.A. Feo and M.G.C. Resende, "Greedy Randomized Adaptive Search Procedures,"

Journal of Global Optimization, 6 (1995) 109- 133.

[33] T.A. Feo, M.G.C. Resende and S.H. Smith, "A Greedy Randomized Adaptive Search

Procedure for Maximum Independent Set," Operations Research, 42 (1994) 860 878.

[34] T.A. Feo, K. Venkatraman and J.F. Bard, "A GRASP for a Difficult Single Machine

Scheduling Problem," Computers and Operations Research, 18 (1991) 635 643.

[35) B.R. Fox and M.B. McMahon, "Genetic Operators for Sequencing Problems," in: Foun­

dations of Genetic Algorithms {FOGA), (Morgan Kaufmann, 1991) p. 284 300.

[36) M.L. Fredman, J. Koml6s and E. Szemeredi, Storing a Sparse Table with 0(1) Worst

Case Access Time, Journal of the Association for Computing Machinery, 31 (1984) 538

544.

[37] B. Freisleben and P. Merz, "A Genetic Local Search Algorithm for Solving Symmetric

and Asymmetric Traveling Salesman Problems," in: Proceedings of IEEE International

Conference on Evolutionary Computation (1996) 616- 621.

(38] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, (Freeman, 1979).

[39] M.R. Garey, D.S. Johnson and L. Stockmeyer, "Some Simplified NP-Complctc Graph

Problems," Theoretical Computer Science, 1 (1976) 237- 267.

[40] L. Gq,sieniec, J. Jansson, A. Lingas and A. Ostlin, "On the Complexity of Computing

Evolutionary Trees," Proceedings of the 3rd Annual International Conference on Com­

puting and Combinatorics (1997) 134 145.

[41] F. Glover, "Tabu Search - Part I," ORSA Journal on Computing, 1 (1989) 190 206;

Part II, ditto, 2 (1990) 4- 32.

[42] F. Glover, "Tabu Search and Adaptive Memory Programming - Advances, Applications

and Challenges," in: Interfaces in Computer Science and Operations Research, (Kluwcr

Academic Publishers, 1996).

[43] F. Glover and M. Laguna, "Tabu Search," a chapter in: Modern Heuristic Techniques for

Combinatorial Problems, (Blackwell Scientific Publications, 1993; re-issued by McGraw­

Hill, 1995).

[44] F. Glover and M. Laguna, Tabu Search, (Kluwer Academic Publishers, 1997).

[45] F. Glover, E. Taillard and D. de Werra, "A User's Guide to Tabu Search," Annals of

Operations Research, 41 (1993) 3 28.

[46] D.E. Goldberg and R. Lingle, "Alleles, Loci, and the Traveling Salesman Problem,"

Proceedings of the 1st International Conference on Genetic Algorithms (1985) 154 159.

[47] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

(Addison-Wesley, 1989).

104 BIBLIOGRAPHY

[48] M. Gorges-Schleuter, "ASPARAGOS An Asynchronous Parallel Genetic Optimization

Strategy," Proceedings of the Srd International Conference on Genetic Algorithms (1989)

422 427.

[49] R.L. Graham, D.E. Knuth and 0. Patashnik, Concrete Mathematics - A Foundation

for Computer Science, (Addison-Wesley, 1989).

[50] J. Grefenstette, R. Gopal, B. Rosmaita and D. Van Gucht, "Genetic Algorithms for

the Traveling Salesman Problem," Proceedings of the 1st International Conference on

Genetic Algorithms (1985) 160 168.

[51] M. Grotschel and 0. Holland, "Solution of Large-Scale Symmetric Traveling Salesman

Problems," Mathematical Programming, 51 (1991) 141- 202.

[52] J. Gu, "Optimization by Multispace Search," Technical Report UCECE-TR-90-001, De­

partment of Electrical and Computer Engineering, University of Calgary, 1990.

[53] J. Gu, "Efficient Local Search for Very Large-Scale Satisfiability Problems," SIGART

Bulletin, 3 (1992) 8 -12.

[54] .J. Gu and X. Huang, "Efficient Local Search with Search Space Smoothing: A Case

Study of the Traveling Salesman Problem (TSP)," IEEE Transactions on Systems, Man,

and Cybernetics, 24 (1994) 728 735.

[55] J. Hart and A. Shogan, "Semi-Greedy Heuristics: An Empirical Study," Operations

Research Letters, 6 (1987) 107- 114.

[56) :NI. Held and R.M. Karp, "A Dynamic Programming Approach to Sequencing Problems,"

SIAM Journal on Applied Mathematics, 10 (1962) 196- 210.

(57] M.D. Hendy, C.H.C. Little and D. Penny, "Comparing Trees with Pendant Vertices

Labeled ," SIAM Journal on Applied Mathematics, 44 (1984) 1054- 1065.

[58] J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence, (The University of

Michigan Press, 1975, and MIT Press, 1992).

[59] T. Ibaraki, "Combination with Other Optimization Methods," a chapter in: Handbook

of Evolutionary Computation, (IOP Publishing Ltd and Oxford University Press, 1996).

[60] T. Ibaraki and Y. Nakamura, "A Dynamic Programming Method for Single Machine

Scheduling," European Journal of Operational Research, 76 (1994) 72 82.

[61] P. Jog, J.Y. Suh and D. Van Gucht , "The Effects of Population Size, Heuristic Crossover

and Local In1provement on a Genetic Algorithrn for the Traveling Salesman Problem,"

Proceedings of thP Srd International Conference on Genetic Algorithms (1989) 110- 115.

[62] P. Jog, J .Y. Suh and D. Van Gucht , "Parallel Genetic Algorithms Applied to the Trav­

eling Salesman Proble1n," SIAM Journal on Optimization, 1 (1991) 515- 529.

[63] D.S. Johnson, '~Local Optimization and the Traveling Salesman Problem," Proceedings

of th e 17th Colloquium on A 'utomata, Languages and Programming (1990) 446- 461.

[64] D.S. Johnson, C.R. Aragon, L.A. 1cGeoch and C. Schevon, "Optimization by Simu-

BIBLIOGRAPHY 105

lated Annealing: An Experimental Evaluation; Part I , Graph Partitioning," Operations

Research, 37 (1989) 865 892; "Part II, Graph Coloring and Number Partitioning," ditto,

39 (1991) 378- 406.

[65] D.S. Johnson, C.H. Papadimitriou and M. Yannakakis , "How Easy Is Local Search?,"

Journal of Computer and System Sciences, 37 (1988) 79 100.

[66] S. Kang, "Linear Ordering and Application to Placement," Proceedings of the 20th D e­

sign Automation Conference (1983) 457- 464.

[67] J.P. Kelly, M. Laguna and F. Glover, "A Study of Diversification Strategies for the

Quadratic Assignment Problem," Computers and Operations Research, 21 (1994) 885

893.

[68] B.W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs,"

Bell System Technical Journal, 49 (1970) 291- 307.

[69] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, "Optimization by Simulated Annealing,"

Science, 220 (1983) 671- 680.

[70] S. Kobayashi, I. Ono and M. Yamamura, "An Efficient Genetic Algorithm for Job Shop

Scheduling Problems," Proceedings of the 6th International Conference on Genetic Al­

gorithms (1995) 506- 511.

[71] A. Kolen and E. Pesch, "Genetic Local Search in Combinatorial Optimization," Discrete

Applied Mathematics, 48 (1994) 273- 284.

[72] M.W. Krentel, "On Finding and Verifying Locally Optimal Solutions," SIAM Journal

on Computing, 19 (1990) 742- 749.

[73] M. Laguna, T .A. Feo and H.C. Elrod, "A Greedy Randomized Adaptive Search Proce­

dure for the Two-Partition Problern," Operations Research, 42 (1994) 677- 687.

[74] M. Laguna, J.P. Kelly, J.L. Gonzalez-Velarde and F. Glover, "Tabu Search for the Mul­

tilevel Generalized Assignment Problem," European Journal of Operational Research, 82

(1995) 176- 189.

[75] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.), The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, (John Wiley & Sons,

1985).

[76] Y. Li, P.M. Pardalos and M.G.C. Resende, "A Greedy Randomized Adaptive Search

Procedure for the Quadratic Assignment Problem," DIMACS Series on Discrete Math­

ematics and Theoretical Computer Science, 16 (1994) 237- 261.

[77] C.K.Y. Lin, K.B. Haley and C. Sparks, "A Comparative Study of both Standard and

Adaptive Versions of Threshold Accepting and Simulated Annealing Algorithms in Three

Scheduling Problems," European Journal of Operational Research, 83 (1995) 330 346.

[78] S. Lin and B.W. Kernighan, "An Effective Heuristic Algorithm for the Traveling Sales­

man Problem," Operations Research, 21 (1973) 498 516.

[79] M. Lundy and A. Mees, "Convergence of an Annealing Algorithm", Mathematical Pro-

106 BIBLIOGRAPHY

gramming, 34 (1986) 111 124.

[80] V. Maniezzo, M. Dorigo and A. Colorni, "The Ant System Applied to the Quadratic

Assignment Problem," Technical Report IRIDIA/94-28, Universit Libre de Bruxelles,

Belgium, 1994.

[81] O.C. Martin and S.W. Otto, "Combining Simulated Annealing with Local Search Heuris­

tic," Annals of Operations Research, 63 (1996) 57- 75.

[82] O.C. Martin, S.W. Otto and E.W. Felten, "Large-Step Markov Chains for the TSP

Incorporating Local Search Heuristic," Operations Research Letters, 11 (1992) 219- 224.

[83] T. Mautor and P. Michelon, "MIMAUSA.: A New Hybrid Method Combining Exact

Solution and Local Search," Proceedings of the 2nd International Conference on Meta­

heuristics (1997) 15- 16.

[84] Z. Michalewicz, Genetic Algorithms +Data Structures =Evolution Programs, (Springer­

Verlag, 1992).

[85] D.L. Miller and J.F. Pekny, "Exact Solution of Large Asymmetric Traveling Salesman

Problem," Science, 251 (1991) 754 761.

[86] N. Mladenovic and P. Hansen, "Variable Neighborhood Search," Les Cahiers du GER­

AD, G-96-49, 1996 (to appear in Computers and Operations Research).

(87] H. M iihlenbein, "Parallel Genetic Algorithms, Population Genetics and Combinatorial

Optimization," Proceedings of the 3rd International Conference on Genetic Algorithms

(1989) 416 421.

(88] H. M iihlenbein, "Parallel Genetic Algorithms in Combinatorial Optimization," in: Com­

puter Science and Operations Research, (Pergamon Press, 1992) p. 441- 453.

[89] H. Miihlenbein, M. Gorges-Schleuter and 0. Kramer, "Evolution Algorithms in Combi­

natorial Optimization," Parallel Computing, 7 (1988) 65- 85.

[90] I.M. Oliver, D.J. Smith and J.R.C. Holland, "A Study of Permutation Crossover Opera­

tors on the Traveling Salesman Problem," Proceedings of the 2nd International Confer­

ence on Genetic Algorithms (1987) 224 230.

[91) I.H. Os1nan and .J.P. Kelly, "Meta-Heuristics: An Overview," in: Meta-Heuristics: The­

ory and Applications, (Kluwer Academic Publishers, 1996) p. 1 21.

(92) I.H. Os1nan and J.P. Kelly (eds.), Meta-Heuristics: Theory and Applications, (Kluwer

Academic Publishers, 1996).

[93) M. Pad berg and G. Rinaldi, "A Branch-and-Cut Algorithm for the Resolution of Large­

Scale Syrnmc>tric Traveling Salesman Problems," SIAM Review, 33 (1991) 60- 100.

[94] C.H. Papadimitriou, "The Complexity of the Lin-Kernighan Heuristic for the Traveling

Salesman Probk1n," SIAM Journal on Computing, 21 (1992) 450- 465.

(95] C.H. Papadi1nitriou and K. Steiglitz Combinatorial Optimization: Algorithms and Com­

plexity, (Prentice-Hall, 19 2).

[96] D. Penny and 1\LD. Hendy, 'The "Cse of Tree Comparison Metrics," Systematic Zoology,

BIBLIOGRAPHY 107

34 (1985) 75- 82.

[97) E. Pesch and F. Glover, "TSP Ejection Chains," Discrete Applied Mathematics, 76 (1997)

165-181.

[98) M. Pirlot, "General Local Search Heuristics in Combinatorial Optimization: A Tutorial,"

Belgian Journal of Operations Research, Statistics and Computer Science, 32 (1992) 7-

67.

[99) M. Pirlot, "General Local Search Methods," European Journal of Operational Research,

92 (1996) 493- 511.

[100] C.N. Potts and L.N. Van Wassenhove, "A Decomposition Algorithm for thc> Single

Machine Total Tardiness Problem," Operations Research Letters, 1 (1982) 177 181.

[101) C.N. Potts and L.N. Van Wassenhove, "A Branch and Bound Algorithm for the Total

Weighted Tardiness Problem," Operations Research, 33 (1985) 363 377.

[102) P. Prosser and P. Shaw, "Guided Local Search for the Vehicle Routing Problem,"

Proceedings of the 2nd International Conference on Metaheuristics (1997) 89 90.

[103] V.J. Rayward-Smith, I.H. Osman, C.R. Reeves and G.D. Smith (eds.), Modern Heuris­

tic Search Methods, (John Wiley & Sons, 1996).

[104) C.R. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems, (Black­

well Scientific Publications, 1993; re-issued by McGraw-Hill, 1995).

[105) C.R. Reeves, "Genetic Algorithms for the Operations Researcher," INFORMS Journal

on Computing, 9 (1997) 231 -250.

[106) M.G.C. Resende and T.A. Feo, "A GRASP for Satisfiability," DIMACS Serie.c; on Di.s­

crete Mathematics and Theoretical Computer Science, (to appear).

[107) F .J. Rohlf, "Consensus Indices for Comparing Classifications," Mathematical Biosciences,

59 (1982) 131- 144.

[108] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis II, "An Analysis of Several Heuristics

for the Traveling Salesman Problem," SIAM Journal on Computing, 6 (197~) 563 581.

[109] R.A. Russell, "Hybrid Heuristics for the Vehicle Routing Problem with Time Windows,"

Transportation Science, (to appear).

[110] G.H. Sasaki and B. Hajek, "The Time Complexity of Maximum Matching by Simulated

Annealing," Journal of the Association for Computing Machinery, 35 (1988) 387 403.

[111] A.A. Schaffer and M. Yannakakis, "Simple Local Search Problems That Are Hard to

Solve," SIAM Journal on Computing, 20 (1991) 56 87.

[112] M. Schrage and K.R. Baker, "Dynamic Programming Solution of Sequencing Problems

with Precedence Constraints," Operations Research, 26 (1978) 444 449.

[113] D.M. Schuler and E.G. Ulrich, "Clustering and Linear Placement," Proceedings of the

9th Design Automation Conference, (1972) 50 56.

[114] B. Selman and H.A. Kautz, "Domain-Independent Extensions to GSAT: Solving Large

Structured Satisfiability Problems," Proceeding.s of of the 13th International Joint Con-

108 BIBLIOGRAPHY

ference on Artificial Intelligence (1993) 290- 295.

[115] B. Selman, H.A. Kautz and B. Cohen, "Noise Strategies for Improving Local Search,"

Proceedings of the 12th National Conference on Artificial Intelligence (1994) 337- 343.

[116] Y. Shiloach, "A Minimum Linear Arrangement Algorithm for Undirected Trees," SIAM

Journal on Computing, 8 (1979) 15- 32.

[117] M. Sinclair, "Comparison of the Performance of Modern Heuristics for Combinatorial

Optimization on Real Data," Computers and Operations Research, 20 (1993) 687- 695.

[118] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C. Whitley, "A Comparison

of Genetic Sequencing Operators," Proceedings of the 4th International Conference on

Genetic Algorithms (1991) 69 -76.

[119] G. Steiner, "Single Machine Scheduling with Precedence Constraints of Dimension 2,"

Mathematics of Operations Research, 9 (1984) 248- 259.

[120] G. Steiner, "On Estimating the Number of Order Ideals in Partial Orders, with Some

Applications," Journal of Statistical Planning and Inference 34 (1993) 281-290.

[121] R.H. Storer, S.D. Wu and R. Vaccari, "New Search Spaces for Sequencing Problems

with Application to Job Shop Scheduling," Management Science, 38 (1992) 1495- 1509.

[122] T. Sti.itzle and H. Hoos, "MAX-MIN Ant System and Local Search for the Traveling

Salesman Problem," Proceedings of 1997 IEEE International Conference on Evolution­

ary Computation (1997).

[123] J.Y. Suh and D. Van Gucht, "Incorporating Heuristic Information into Genetic Search,"

Proceedings 2nd International Conference on Genetic Algorithms (1987) 100- 107.

[124] E.D. Taillard and L.M. Gambardella, "An Ant Approach for Structured Quadratic As­

signment Problems," Proceedings of the 2nd International Conference on Metaheuristics

(1997) 217- 222.

[125] E. Tsang and C. Voudouris, "Fast Local Search and Guided Local Search and Their

Application to British Telecom's Workforce Scheduling Problem," Operations Research

Letters, 20 (1997) 119-127.

[126] N.L.J. Ulder, E.H.L. Aarts, H.-J. Bandelt, P.J.M. Van Laarhouven and E. Pesch, "Ge­

netic Local Search Algorithms for the Traveling Salesman Problem," Proceedings of the

1st International Workshop on Parallel Problem Solving from Nature (1990) 109- 116.

[127] T. Uno and M. Yagiura, "Fast Algorithms to Enurnerate All Common Intervals of

Two Permutations," Technical Report #96015, Department of Applied Mathematics

and Physics, Graduate School of Engineering, Kyoto University, 1996.

[128] C. Voudouris, and E. Tsang, "Guided Local Search," Technical Report CSM-247, De­

partrncnt of Computer Science, University of Essex, 1995

[129] M. Yagiura, ''Grnct ic Algorithms for Solving Some Combinatorial Optimization Prob­

lems," Master thesis, Departn1ent of Applied Mathematics and Physics, Faculty of En­

gineering, Kyoto nivcrsity, 1993.

BIBLIOGRAPHY 109

[130] M. Yagiura and T. Ibaraki, "A Genetic Algorithm for Solving the Single Machine

Scheduling Problem (in Japanese)," IEICE Technical Report, COMP91 17 (1991) 43

52.

[131] M. Yagiura and T. Ibaraki, "Fast Algorithms to Enumerate All Common Intervals of

Two Permutations (in Japanese) ," Technical Report of IEICE (COMP94-83), 94 (1995)

65- 74.

[132] M. Yagiura and T. Ibaraki, "Genetic and Local Search Algorithms as Robust and Simple

Optimization Tools," in: Meta-Heuristics: Theory and Applications, (Kluwer Academic

Publishers, 1996) p. 63- 82.

[133] M. Yagiura and T. Ibaraki, "Metaheuristics as Robust and Simple Optimization Tools,"

Proceedings of IEEE International Conference on Evolutionary Computation (1996) 541 -

546.

[134] M. Yagiura and T. Ibaraki, "The Use of Dynamic Programming in Genetic Algorithms

for Permutation Problems," European Journal of Operational Research, 92 (1996) 387

401.

[135] M. Yagiura and T. Ibaraki, "Efficient 2 and 3-Flip Neighborhood Search Algorithms

for the MAX SAT," Proceedings of the 4th Annual International Computing and Com­

binatorics Conference (1998) 105 116.

[136) M. Yagiura, H. Nagamochi and T. Ibaraki, "Two Comments on the Subtour Exchange

Crossover Operator (in Japanese)," Journal of Japanese Society for Artificial Intelli­

gence, 10 (1995) 464 -467.

[137] M. Yagiura, T. Yamaguchi and T. Ibaraki, "A Variable Depth Search Algorithm for the

Generalized Assignment Problem," in: Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization, (Kluwer Academic Publishers, 1999) p. 459- 471.

[138] M. Yagiura, T. Yamaguchi and T. Ibaraki , "A Variable Depth Search Algorithm with

Branching Search for the Generalized Assignment Problem," Optimization Methods and

Software (to appear).

[139] T. Yamada and R. Nakano, "A Genetic Algorithm Applicable to Large-Scale Job-Shop

Problems," Proceedings of the 2nd International Workshop on Parallel Problem Solving

from Nature (1992) 281- 290.

[140] M. Yamamura, T. Ono and S. Kobayashi, "Character-Preserving Genetic Algorithms

for Traveling Salesman Problem (in Japanese)," Journal of Japanese Society for Artificial

Intelligence, 7 (1992), 117 127.

[141] M. Yannakakis, "Computational Complexity," in: Local Search in Combinatorial Opti­

mization, (John Wiley & Sons, 1997).

[142] D. vVhitley, T. Starkweather and D. Fuquay, "Scheduling Problems and Traveling Sales­

men: The Genetic Edge Recombination Operator," Proceedings of the 8rd International

Conference on Genetic Algorithms (1989) 133 140.

110 BIBLIOGRAPHY

A List of Author's Work

Journals and Books

1. M. Yagiura and T. Ibaraki, "On Genetic Crossover Operators for Sequencing Problems

(in Japanese)," T. lEE Japan, 114-C (1994) 713 720.

2. M. Yagiura, H. Nagamochi and T. Ibaraki, "Two Comments on the Subtour Exchange

Crossover Operator (in Japanese)," Journal of Japanese Society for Artificial Intelli­

gence, 10 (1995) 464 467.

3. M. Yagiura and T. Ibaraki , "The Use of Dynamic Programming in Genetic Algorithms

for Permutation Problems," European Journal of Operational Research, 92 (1996) 387

401.

4. M. Yagiura and T. Ibaraki, "Genetic and Local Search Algorithms as Robust and Simple

Optimization Tools," in: Meta-Heuristics: Theory and Applications, (Kluwer Academic

Publishers, 1996) p. 63- 82.

5. N. Kawai, H. Ase, T. Ibaraki and M. Yagiura, "Scheduling of Shift Operations in a

Container Terminal (in Japanese)," Transactions of the Institute of Systems, Control

and Information Engineers 10 (1997) 182 190.

6. M. Yagiura, T. Yamaguchi and T. Ibaraki, "A Variable Depth Search Algorithm for the

Generalized Assignment Problem," in: Meta-Heuristics: Advances and Trends in Local

Search Paradigms for Optimization, (Kluwer Academic Publishers, 1999) p. 459 471.

7. T. Uno and M. Yagiura, "Fast Algorithms to Enumerate All Common Intervals of Two

Permutations," Algorithmica (to appear).

8. M. Yagiura and T. Ibaraki, "Analyses on the 2 and 3-Flip Neighborhoods for the MAX

SAT," Journal of Combinatorial Optimization (to appear).

9. M. Yagiura, T. Yamaguchi and T. Ibaraki, "A Variable Depth Search Algorithm with

Branching Search for the Generalized Assignment Problem," Optimization Methods and

111

112 A LIST OF AUTHOR'S WORK

Software (to appear).

International Conferences

1. S. Katoh, lVI. Yagiura and T. Ibaraki, "Application of Genetic Algorithms to the Single

Machine Scheduling Problem under Changing Environment," Proceedings of Interna­

tional Conference on Advances in Production Management Systems (1996) 543- 546.

2. l\11. Yagiura and T. Ibaraki, "Metaheuristics as Robust and Simple Optimization Tools,"

Proceedings of 1996 IEEE International Conference on Evolutionary Computation (1996)

541 546.

3. T. Akutsu and lVI. Yagiura, "Linear Programming Based Approach for Learning Score

Functions in Molecular Biology," JAPAN-KOREA Joint Workshop on Algorithms and

Computation (1997) 144- 151.

4. T. Akutsu and l\11. Yagiura, "On the Complexity of Deriving Score Functions from

Examples for Problems in Molecular Biology," Proceedings of the 25th International

Colloquium on Automata, Languages, and Programming (1998) 832- 843.

5. l\11. Yagiura and T. Ibaraki, "Efficient 2 and 3-Flip Neighborhood Search Algorithms

for the lYIAX SAT," Proceedings of the 4th Annual International Computing and Com­

binatorics Conference (1998) 105- 116.

Tutorials

1. l\11. Yagiura and T. Ibaraki, "Metaheuristics as Robust and Simple Optimization Tools

(in Japanese)," Proceedings of the Eighth RAMP Symposium (1996) 109- 124.

Unpublished Manuscripts

1. H. Ase, T. Ibaraki and M. Yagiura, "Removal Scheduling of a Multi-Story Mechanical

Parking Facility (in Japanese)," submitted for publication.

2. F. Glover, T. Ibaraki and l\I. Yagiura, "An Ejection Chain Approach for the Generalized

As, ignment Problem," prepared for publication.

3. :\1. Yagiura and T. Ibaraki, "Efficient 2 and 3-Flip Neighborhood Search Algorithms

for the :\IAX SAT: Experimental Evaluation," submitted for publication.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068

