


Preface

There are numerous combinatorial optimization problems, for which computing exact optimal
solutions is computationally intractable, e.g., those problems known as NP-hard. However, in
practice, we a  often asked to deal with large scale instances of such difficult problems. One
possibility to overcome this difficulty is that, in most practical cases, we do not need exact
optimal solutions and are satisfied with sufficiently good solutions. In this sense, approzimate
(or heuristic) algorithms, which provide reasonably good solutions in practically meaningful
time, are very important and have been well studied recently.

There are several useful tools used to design approximate algorithms, such as greedy
method and local search. The so-called metaheuristics con  ine these tools into more so-
phisticated algorithms. Among the well-known metaheuristics are multi-start local search,
stmulated annealing, tabu search, genetic algorithm and so on. Many variants of these, such
as GRASP, threshold accepting, iterated local search and others, have also been proposed and
extensively studied.

One of the attractive features of these metaheuristics is in its flexibility. They can be
hybridized with other heuristic or exact algorithms to create more powerful tools. As an
example of such hybrid algorithms, we propose to use dynamic programming (DP) to improve
candidate solutions within the framework of genetic algorithim, which is called the genctic
DP algorithm. Good prospects of the proposed algorithm are observed by the computational
experiments to three representative NP-hard problems: single machine scheduling problem,
optimal linear arrangement problemn and traveling salesman problem.

During the experience of developing the genetic DI, we realized that crossover is one of
the most important operators in genetic algorithms, on which the overall performance of the
algorithms critically depends. To pursue this direction, we review a variety of crossover oper-
ators proposed for sequencing problems, and analyze the relationship between characteristies
of the operator and performance of the algorithm. Based on this analysis, we propose simple
criteria for measuring the quality of crossover operators. Some computational analysis on
single machine scheduling problem is then added to validate the effectiveness of the proposed
criteria.

Another attractive feature of metaheuristics is in its robustness and siimplicity.  They



can be developed even if deep mathematical properties of the problem domain are not at
hand. and still can provide reasonably good solutions, much better than those obtainable
by simple heuristics. To investigate this direction. we compare representative metaheuristic
algoritlinns using rather simple inner operators to observe general tendency of their perfor-
mance. From these results, we propose a recommendation about the use of metaheuristics as
simple optimization tools.

We then consider a problemn arising from the implementation issue of a crossover operator.
Three types of fast algorithms are proposed. and analyses of these algorithms and of the
problem structure are given.

The main aim of this thesis is to establish a guideline to construct good metaheuristic
algorithms.  The author hopes that the research in this dissertation will help advance the

understanding of this significant field.

January, 1999
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Chapte~ 1

Int-H>duction

1.1 His’ rical Backgrc nd
The optimization problems we consider in this thesis are generally defined as follows:

minimize  cost(o)

, (1.1.1)
subject to o € F.

F is the set of solutions o that sati: - all the constraints. F' is called the feastble regron and
each o € F is called a feasible solution. A feasible solution o* € F is optimnal if cost(c*) <
cost(o) holds for all ¢ € F| and cost(c*) is called the optimal value. When F' is combinatorial
in some sense, we call problem (1.1.1) a combinatorial optimization problen.

Combinatorial optimization problems frequently appear in the real-world such as machine
st eduling, vehicle routing, and their importance has widely been recognized in recent years.
Many of such combinatorial optimization problems are computationally intractable, e.g.,
those problems known to be NP-hard [38]. However, in practice, we are often asked to
deal with large scale instances of such difficult problems. One possibility to overcome this
seemingly impossible difficulty is that, in most practical cases, we do not need exact optimal
solutions and are satisfied with sufficiently good solutions. In this sense, approzimate (or
heuristic) algorithms, which provide reasonably good solutions in practically meaningful time,
are very important and have been intensively studied recently.

There are several useful tools used to design approximate algorithms. The most common
one is perhaps the greedy method [75, 95], which directly constructs approximate solutions
by successively determining the values of variables on the basis of some local information.
Another important tool is the local search [3, 95}, which starts from an initial feasible solution
o and repeats replacing it with a better solution in its neighborhood N (o) until no better
solution is found in N(o). where N(a) is a set of solutions obtainable from o by a slight

perturbation.
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The so-called metaheuristics [3. 92, 103. 104] combine these tools into more sophisticated
algorithms. Among the well-known metaheuristics are multi-start local search [68, 78], sim-
ulated anncaling [1, 16, 69], tabu scarch [41. 44], genetic algorithm [22, 47, 58] and so on.
Multi-start local search applies the local search to a number of initial solutions and outputs
the best solution found during the entire search. Simulated annealing and tabu search try to
enhance the local search by allowing the replacement of the current solution o with a worse so-
lution in N(o) thereby avoiding to be trapped into bad local optimals. The genetic algorithmn
15 a probabilistic algorithm that simulates the evolution process, by repeating the operations
such as crossover, mutation and selection. An important feature of this : orithm is that
it keeps I” (> 1) candidate solutions and improve them in the process of evolution. Many
variants, such as GRASP (greedy randomized adaptive search procedure) [31, 32], threshold
accepting [28], wterated local scarch [63, 82, genetic local search [71, 89, 126] and so on, have

also been proposed and extensively studied. These algorithms are summerized in Chapter 2.

1.2 Research Objectives and ( 1t ne of the Thesis

One of the attractive features of these metaheuristics is in its flexibility. They can be hy-
bridized with other heuristic or exact algorithms to make them more powerful. As an exam;
of such hybri algorithims, we propose to use dynamic programming in the process of obtain-
ing new generation solutions in the genetic algorithm, and call it a genetic DP algorithm.
To evaluate the effectiveness of this approach, we choose three representative combinatorial
optimization problems, the single machine scheduling problem (SMP), the optimal linear ar-
rangement problem (OLAP) and the traveling salesman problem (TSP), all of which ask to
compute optimum permutations of n objects and are known to be  P-hard. Computational
experiments of genetic DP algorithms are conducted to compare them with exact algorithms,
the conventional genetic algorithms and multi-start local search algorithms. Algorithms of
ge tic DP could obtain optimal solutions to 47 out of 50 SMP instances with up to n = 35
Jobs and 23 out of 24 OLA  instances with up to n = 20 components, in a very short time
compared to the exact algorithms. They also exhibit superiority to other meta-heuristics
such as multi-start local search algorithins and genetic local search algorithms. However, in
the case of TSP, the Lin-Kernighan heuristic [78] exhibits much better performance than all
others including genetic DI algorithm.

During the experience of developing the genetic DP, we realized that crossover is one
of the most mportant operators in genetic algorithms, on which the overall performance of
the algorithms critically depends. To pursue this direction. we review a number of crossover
operators proposed so far for sequencing problems. We then consider a general framework
of crossover operators and analvze the relationship between characteristics of the operator

and performance of the algorithm. Based on this analysis, we propose simple criteria for

1.2 Research Objectives and Outline of the Thesis

| e

measuring the quality of crossover operators. Computational experiments for the single
machine scheduling problem (SMP) using a simple framework of GA is conducted, and it
is observed that the following two criteria are important for crossover operators: (1) inherit
as many elements as possible from the parents, and (2) keep the diversity of children obtained
from the parents.

Another attractive feature of metaheuristics consists in its robustness and simplicity.
They can be developed even if deep mathematical properties of the problemn domain are not
at hand, and still can provide reasonably good solutions, much better than those obtain-
able by simple heuristics. We pursue this direction more carefully, by implementing various
metaheuristics and comparing their performance. The objective is not to propose the most
powerful algorithm but to compare general tendencies of various algorithms. The emphasis
is placed not to make cach ingredient of such metaheuristics too sophisticated, and to avoid
detailed tuning of the program parameters involved therein, so that practitioners can casily
test the proposed framework to solve their problems of applications. As a concrete problem
to test, we choose the single machine scheduling problem (SMP). The results indicate that:
(1) MLS is usually good enough for practical purposes, considering its simplicity, (2) a variant
of MLS, called GRASP, is effective; however, its performance is sensitive to greedy methods
used to generate initial solutions, (3) a variant of MLS, called iterated local search, is quite ef-
fective, (4) GA combined with local search is also competitive if longer computational time is
allowed, and its performance is not sensitive to crossovers, (5) SA (and its variants called the
threshold accepting and the great deluge algorithin) is another competitive method assuming
that longer computational time is allowed, and its performance is not much dependent on
inside parameter values, (6) there are cases in which TS is more effective than MLS; however,
its performance depends on how to define the tabu list and parameter values, and (7) the
definition of neig borhood is critical for all of the tested algorithins except GA. These results
lead to a simple description of the guideline for designing metaheuristic algorithms.

We then consider a problem arising from the implementation issne of a crossover opera-
tor. One of the crossover operators proposed for sequencing problems includes the following
problem: Given two permutations of n elements, enumerate all pairs of intervals consisting of
the same set of elements. We call this problem as the common interval enumeration problem,
and propose three types of fast algorithms: 1) a simple O(n?) time algorithm (LHP), whose
expected running time becomes O(n) for two randomly generated permutations of n clements,
i) a practically fast O(n?) time algorithm (MNG) using the reverse Monge property, and iii)
an O(n+K) time algorithm (RC). where K (< (3)) is the number of common intervals. It will
be also shown that the expected number of common intervals for two random permutations
is O(1). This result gives a reason for the phenomenon that the expected time complexity
O(n) of the algorithm LHP is independent of A. Among the proposed algorithms, RC is

most desirable from the theoretical point of view: however. it is quite complicated compared
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to LHP and MNG. Therefore, it is possible that RC is slower than the other two algorithins
In some cases. For this reason. computational experiments for various types of problems with
up to n = 10% are conducted. The results indicate that i) LHP and MNG are much faster
than RC for two randomly generated permutations, and i) MNG is rather slower than LHP
for random inputs; however, there are cases that LHP requires Q(n?) time, but MNG runs
in o(n?) time and is faster than both LHP and RC. We also consider the enumeration of all
common subtrees, i.c., given two trees with labels on their leaves find the pairs of subtrees
having the same set of leaf labels. This problem has an application in constructing evolu-
tlonary trees. By using the algorithm RC, we can derive a fast randomized algorithm with
O(nlog?n) expected running time if we are given two binary trees of depth log, n, where n is
the number of leaves. The expected running time becomes O(n) if the si 1e two binary trees
of depth log, n are given as the input. The latter special case is a trivial instance; however,
this case is intuitively cousidered to be tough for this algorithm, and hence, it is expected
that the proposed algorithm runs in O(n) expected time for 10st of the practical instances,
although the worst case running time is O(n?).

The thesis is organized as follows. In Chapter 2, we review various metaheuristic algo-
rithms.  In Chapter 3, the genetic DP. in which the genetic algorithms and the dynamic
programiming are combined, is proposed and computational res ts are shown. In Chapter
4, various crossover operators are compared an  simy - criteria for measuring the qu.  r of
crossover operators are proposed. In Chapter 5, varions metaheuristic algorithms are com-
pared and a guideline for the use of metaheuristic algorithms is discussed. In Chapter 6, three
algorithms for the common interval enumeration problem are proposed. Finally, in Chapter
7, we summarize our study in this thesis and list the contribution of our study. The impor-
tance of metaheuristic algorithms is evident, as the sizes of the re:  world problem instances
are always increasing. The author hopes that the work in this thesis will be helpful to make

metaheuristic algorithms more effective.

Chapter 2

Metaheuristic Algorithms:

Ar Overview

2.1 Metaheuristics

In this chapter, we describe frameworks of various metaheuristic algorithins. For simplicity,
we restrict our attention to the problems whose feasible solutions are easily obtained. The
basic framewo s of metaheuristics are the same for those problems whose feasible solutions
are not easily obtained, but we need some slight modifications. For example, we often allow
the search into the infeasible region and add a penalty term to the cost (1.1.1) to evaluate
the degree of infeasibility. Some other approaches are possible, but we omit them here.

Among basic strategies of approximate algorithms are
e greedy method,

e local search (LS).

The greedy method is a one-path algorithm that constructs a feasible solution step by step,
on the basis of the effectiveness computed by a local evaluator. The idea of the greedy method
may be best explained by examples. Some examples of the greedy methods for sequencing
problems, SMP, OLAP and TSP, are explained in Sections 3.3.2, 3.4.1 and 3.5.1, respectively.

The LS starts from an initial solution o and repeats replacing ¢ with a better solution
in its neighborhood N (o) until no better solution is found in N(o), where N(o) is a set of
solutions obtainable by slight perturbations. The local search from an initial solution ¢, in

which the neighborhood V is used. is formally described as follows.
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Algorithm LS(N,oq)
Step 0 Set g := oy.

Step 1 If there is a feasible solution o' € N(o) such that cost(o’) < cost(o), set 0 := o’ and
return to Step 1. Otherwise go to Step 2.
Step 2 (cost(a’) > cost(a) holds for all ¢’ € N(o).) Output o and stop.

A solution o is called locally optimal, if no better solution exists in N(o). We call the
computation of obtaining a locally optimal solution from an initial g as a trial of LS, and ca
the replacement of the current solution o by a better solution as a move. One of the following
two move strategies are commonly used: First admissible move strategy (abbreviated as FA)
and best admassible move strategy (abbreviated as BA). FA scans the neighborhood N (o)
according to a prespecified random order and moves to the first improved solution. BA scans
the entire neighborhood and move to the best solution in N(a).

In general, if only one trial of LS is applied, many so tions of better quality may remain

unvisited. Therefore; LS may be enhanced by:
e trying many initial solutions,
e using a sophisticated neighborhood or a larger neighborhood,

e using a sophisticated search strategy, sometimes allowing moves to worse sc 1tions in

N(a).
Metaheuristics such as
e multi-start local search (MLS),
e genetic algorithm (GA),
e simulated annecaling (SA),
e tabu secarch (TS)

can be viewed as such variants of LS. In the following sections, we briefly summarize these
metaheuristic algorithms, along with their variants. More details are found in survey papers
and books such as [3. 91, 92, 98, 99, 103, 104], and hybrid approaches (e.g., hybrids of two
metaheuristics, hybrids of exact algorithins and metaheuristics, etc.) are summarized in [59].

Comparisons of metaheuristic algorithims are found in, e.g., [2, 20, 63, 117, 126}.

2.2 Multi-Start Local Search

In the multi-start local search (MLS), LS is repeated from a number of initial solutions and

the best solution found during the entire search is output. This is one of the most commonly

2.2 Multi-Start Local Search 7

used techniques for combinatorial optimization problems [68, 78, 95]. The initial solution
may be generated randomly or by using greedy methods. The MLS, in which initial solutions

are generated randomly, is formally described as follows.

Algorithm MLS
Step 1 (initialize) Set best := oco.
Step 2 (generate an initial solution) Generate a solution o randomly.
Step 3 (improve by LS) Improve o by LS, i.e., set 0 := LS(V,0).
Step 4 (update the best cost) If cost(a) < best, set best := cost(o) and % := 0.
Step 5 (halt or random restart) If some stopping criterion is satisfied, output o* and stop;
otherwise return to Step 2.

In Step 5, various stopping criteria are possible. Among common ones are:

e stop if a prespecified computational time is reached,

e stop if a prespecified computational time is spent without improving best.
Some other measures, such as

the number of repetitions of Steps 2 to 4,
e the number of moves,
e the number of cost evaluations,

are also commonly used instead of the computational time. These stopping criteria are also
used in other m  heuristic algorithms.

The greedy randomized adaptive search procedure (GRASP) is a variant of MLS, in which
the initial solutions are generated by randomized greedy methods. In the greedy method, a
feasible solution is usually constructed step by step by choosing the element with the best
evaluation. Although better initial solutions than random ones are usually obtained, the vari-
ety of solutions constructed by this method is quite limited, which is not preferable for MLS.
To overcome this, in GRASP, a feasible solution is constructed by, in each step, randomly
choosing an element from the candidate list C'A composed of those elements with good local
=1, the

evaluations. The size |C'A| of the candidate list is a prespecified parameter. If [C'A
algorithm is equivalent to the ordinary greedy method. Some examples of GRASP for SMP
will be examined in Chapter 5. In GRASP, it is expected that LS can start from good initial
solutions while keeping the diversity of the search. The framework of GRASP is described as

follows.
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Algorithm GRASP
(Steps 1, 3, 4 and 5 are the same with MLS.)

Step 2 (generate an initial solution) Generate a solution o by using randomized greedy
method.
GRASP was proposed by Feo et al., e.g., [34], and applied to various combinatorial opti-
mization problems by themselves and others, e.g., [30, 32, 33, 73, 76, 106]. The basic idea of
GRASP has appeared in early papers such as [31, 55].
Another variant of MLS called the iterated local search (ILS) [53, 63] is also possible,
where the initial solutions are generated by slightly perturbing a solution oeeq, which is a

good (not necessarily the best) solution found during the search.

Algorithm ILS

Step 1 (initialize) Set best := oo and generate a solution ogeeq randormly.

Step 2 (generate an initial solution) Generate a solution o by slightly perturbing ogeeq.
Step 3 (improve by LS) Tmprove o by LS, i.e., set 0 := LS(N, o).

Step 4 (update the best and seed solutions) If cost(o) < best, set best := cost(o) and
o* = o. If some accepting criterion is satisfied, set Oypeq := 0.
Ste 5 (halt or random restart) If some stopping criterion is satisfied, output o* and stop;

otherwise return to Step 2.

[n Step 2. the new solution o is usually generated by randomly choosing a solution in
the neighborhood N'(o). For N’ we can use the same neighborhood as LS (i.e., N' = N);
however, the search may return to o4..q by LS and cycling may occ | since the neighborhood
is us dly symmetric (ie., o, € N(0,) < 0, € N(04)). To avoid this, a larger neighborhood
(i.e.y [N > [N]) or a different neighborhood is often used as N’. There is a variant of this,
in which the neighborhood V' is gradually enlarged if the search fails to improve o*, and N’
Is reset to the original size (usually small) if o* is updated. Such variants are called variable
newghborhood scarch algorithms [14, 15, 86]. Another variant is to generate ¢ in Step 2 by

applying LS to 04.eq. in which a randomized cost function is used to evaluate solutions instead
of the original cost. Such algoriths are called nosing method or perturbation [17, 18, 121].

In Step 4, one of the simplest rules of accepting a new o .04 is: Set Oseed = 0 if cost(o) <
best (i.e., Tgpeq = o). In [81. 82|, a variaut, called chained local optunization, is proposed.
In this method, 0.4 is chosen randomly according to the following rule, whose idea is taken
from the simulated annealing: If cost() < cost(Tgpeq). s€t Typeq := 0 otherwise set Oseed = O
N7

with probability e cwhere A = cost(a) = cost(04q) and t is a prespecified parameter (t

can be adaptively changed during the search).
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2.3 Genetic Algorithm

The genetic algorithm (GA) is a probabilistic algorithm. whose idea comes from evolution.
GA repeatedly applies the operations such as crossover, mutation and selection to the set
of candidate solutions P. This algorithm can be viewed as a generalization of LS, in which
the neighborhood N(P) is defined to be the set of solutions obtainable from P by crossover
and mutation operators. A crossover operator generates one or more solutions (children) by
combining two or more candidate solutions (parents), and a mutation operator generates a
solution by slightly perturbing a candidate solution. The GA starts from an initial candidate

solutions P and repeat replacing P with P’ C P U N(P) according to the selection rule.

Algorithm GA
(Positive integers P and @ are program parameters to be specified beforehand.)

Step 1 (initialize) Construct the set P of P initial candidate solutions. Let o* be the best
solution among P.
Step 2 (crossover and improve): Repeat the following steps (a) and/or (b) until the set Q

of @) candidate solutions are obtained.
a (crossover) Crossover two or more candidate solutions to generate a new solution.

b (mutate) Mutate a candidate solution to generate a new solution.
Step 3 (update the best solution) If a solution o with cost(o) < cost(o™) is found in Step
2, set 0" 1= 0.

Step 4 (select) Select P solutions P’ from the resulting P U Q, and set P := P’

Step 5 (iterate) If some stopping criterion is satisfied, output ¢* and stop; otherwise return
to Step 2.

GA was originally introduced by Holland [58]. For details, see [22, 47]. There is a recent
survey by Reeves [105], in which various ideas and applications are discussed from the view
point of “GA as a tool for operations researchers.”

A variant of GA in which solutions generated by the crossover and mutation operators
are improved by LS is called the genetic local scarch (GLS) [71, 89, 126]. GLS is different
from MLS in that GLS generates the initial solutions from the current P by crossover and/or

mutation, while MLS generates them randomly from scratch.
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Algorithm GLS
(Steps 1, 3, 4 and 5 are the same as GA.)

Step 2 (crossover and improve): Repeat the following steps (a) and/or (b), and (¢) until

the set Q of @ candidate solutions are obtained.
a (crossover) Crossover two or more candidate solutions to generate a new solution.
b (mutate) Mutate a candidate solution to generate a new solution.

¢ (local search) Apply local search to the solution of (a) and/or (b) to obtain a

locally optimal solution.

BEarly references such as [13, 22, 47, 61, 62, 84, 87, 89, 123, 126] have already mentioned the

idea of GLS. Some other successful applications are found in [37, 71].

2.4 Simulated Annealing

This is a variant of LS. in which test solutions are randomly chosen from N (o) and accepted
with probability that is 1 if the test solution is better than o, and positive even if the test
solution is worse than o. By giving a positive probab ty to a move to a worse sc 1tion, the
search is able to escape from poor locally optimal solutions. The acceptance probability is
Judiciously controlled by a parameter called temperature, whose idea stems from the physical

anncaling process.

Algorithm SA

Step 1 (initialize) Generate a solution ¢, set ¢* := ¢ and specify an initial temperature .

Step 2 (check a neighborhood solution) Generate a solution ¢ € N(¢) randomly, and set
A = cost(0') — cost(o). If A < 0 (i.e., a better solution is found), set o := ¢’;
otherwise set o := ¢/ with probability ¢~ =/1.

Step 3 (update the best cost) If cost(a) < cost(a*), set 0* := 0.

Step 4 (halt or further search) If some stopping criterion is satisfied, output o* and stop;
otherwise update t according to some rule and return to Step 2.
SA was proposed in [16, 69]. For details of SA,| see [1]. Extensive computational results are
found in the series of papers [64].
The threshold accepting (TA), originally introduced in [28], is a variant of SA. In TA, Step
2 of SA is replaced by

Step 2’ (check a neighborhood solution) Generate a solution o’ € N (o) randomly, and set

(cl
A= cost(a’) — cost(a). If A < 7. set 0 := 0.
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The parameter 7, called threshold, is controlled instead of the temperature t. Comparisons
with other metaheuristics are found in [2, 77, 126].
There is another variant of SA, called great deluge algorithm (GDA), which was proposed

in [27]. In GDA, Step 2 of SA is replaced by

Step 2" (check a neighborhood solution) Generate a solution ¢’ € N(o) randomly. If
cost(a’) < W, set o :=¢'.
The parameter W, called water level, is controlled instead of the temperature t. Comparisons
with other metaheuristics are found in [117].
Similar (but much simpler) approach is applied to the satisfiability problem, which is
called the WALKSAT algorithm [115]. In this method, the algorithmn either moves to the

best solution, or to a solution randomly chosen, in the (randomly restricted) neighborhood.

2.5 Tabu Searc |

The tabu search tries to enhance LS by using the memory of the previous search. Basically
the best solution in N(o)\({¢}UT) is chosen as the next solution, where the set T, called tabu
list (or short term memory), is a set of solutions which includes those solutions most recently
visited. Within this restricted neighborhood, a move to a new solution is always executed
even if the current solution is already locally optimal, but cycling of a short period can be
avoided as a result of introducing T. Another type of memory, called long term memory, is
often emp ved in the framework of TS, which memorizes the past search information such
as the frequency that each decision variable has been changed, the frequency that a solution
has been visited and so on. This memory is used to direct the search to the unvisited region

l.e., diversification).
3

Algorithm TS

Step 1 (initialize) Generate a solution o, sct ¢* := o and T":= (.

Step 2 (decide a move) Find the best solution o' in N(o)\({o} UT), and set ¢ := o’
Step 3 (update the best cost) If cost(a) < cost(a*), set 0 := 0.

Step 4 (halt or further search) If some stopping criterion is satisfied, output ¢* and stop;

otherwise update T according to some rule and return to Step 2.

TS was proposed in [41]. For details, see books and tutorials such as [42, 43, 44, 45].
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2.6 Other Metaheuristic Algorithms

In this section, we briefly review some other metaheuristic algorithms: (1) variable depth
search, (2) ant system and (3) guided local search.

The variable depth search, originally proposed in [68, 78] and introduced with this name
in [95], is a generalization of local search, in which the neighborhood is defined to be the set
of solutions obtainable by a sequence of simple neighborhood moves. This idea is slightly
extended and studied with the name ejection chain in combination with the tabu search
(26, 67, 74, 97]. Recently, we successfully applied the variable depth search to the generalized
assignment problem [137, 138], which is one of the representative combinatorial optimization
problems that is known to be NP-hard.

The ant system algorithin, originally introduced in [19, 24], is a randomized algorithm
mspired by the behavior of ants. Ants are able to find good solutions to shortest path
problems between a food source and their home colony by communicating via pheromones.
If many ants choose a certain path and lay down pheromones, the intensity of the trails
increases and thus this trail attracts more and more ants. This mechanism is imitated to
store the information of good solutions found in the previous search, and to bias the later
scarch to these promising directions. For details, see [25]. Combination with local search is
also possible, and good prospects of such approaches are reported in [80, 122, 124]. Boese 2]
proposed a similar (but much simpler) multi-start local search approach based on a different
m ivation.

he guided local search [102, 125, 128] is a variant of local search, in which solutions are
evaluated with the modified cost based on the previous search information. In this method,
the element (e.g., tour edge for the TSP) with the largest cost included in the locally optimal
solution in the last trial is penalized in the next search so that different solutions are visited.
This algorithm can be considered as a special case of TS, in which only the long term memory
15 used. Although the motivation is rather different and the algorithm is specific to a ¢ ain
problem, similar idea is applied to the satisfiability problem [114], which is called the weighting
strategy. (The objective of the satisfiability problem is to find a solution by which all the
given clauses are satisfied.) In this method, the weights of unsatisfied clauses in the locally
optimal solution of the previous trial are modified so that they get more chance to be satisfied

in the next iteration.

2.7  heoretical Results

Although not much is known about the theoretical aspects of metaheuristics, we briefly
mention here some of such results.

From the view point of computational complexity, it is even not clear whether finding a
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locally optimal solution is possible in polynomial time or not. To investigate this direction,
Johnson et al. [65] proposed a complexity class called PLS (polynomial-time local search).
Other related topies are found in [72. 94, 111]. and a recent survey is in [141]. This research
direction is quite important; however, not much attention is payed by practitioners, since the
computational time of LS to find a locally optimal solution is usually small.

It is well-known that the search of SA converges to a global optimum under certain
conditions, if the temperature is decreased very slowly, e.g., [79]. Similar result is also known
for TA [7]. On the other hand, it is shown in [110] that exponential time is needed for such
convergence of SA for the matching problem, for which efficient polynomial time algorithims
exist. Therefore, these results do not give a support to the success of mmetaheuristic algorithms
within limited amount of computational time, although they are quite interesting from the
theoretical point of view.

It is shown in [6, 23] that, under certain conditions, a global optimum is found in polyno-
mial time with high probability by a multi-point search called “go with the winners”, which
is a simplified search model proposed for the analysis and is similar to GA to some extent.
The drawback of these results is that the conditions needed for the theorem to hold are rather
unnatural. However, the algorithm itself is quite simple and its algorithmic (not theoretical)

idea is applicable to many problems.

2.8 Concl sion

In this chapter, we briefly reviewed representative metaheuristic algorithms, such as multi-
start local search (MLS), greedy randomized adaptive search procedure (GRASP), iterated
local search (ILS), simulated annealing (SA) and tabu search (TS). We also mentioned some
variants of them. There are many other approaches we did not mention in this chapter, e.g.,
multispace search [52, 54], incomplete construction/improvement [109], ete. However, it is
very hard to cover all of known algorithms in this rapidly growing field.

We also did not explain details of cach metaheuristic algorithm or hybrid approaches of
them, which are often important to achieve fruitful results. The readers who would like to

know more about metaheuristics, see, e.g.. [3, 91, 92, 98, 99, 103, 104].
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CHAPTER 2

METAHEURISTIC ALGORITHMS: AN OVERVIEW

Chaptr 3

The Use of Dynamic Programming

in Genetic Algorithms

3. Introduction

An important feature of the genetic algorithm is that it keeps I > 1 candidate solutions and
improve them in the process of evolution. Among various modifications [22, 118, 139, 142],
it is reported in [61, 89, 126] that introducing local search technique in the evolution process,
i.c., GLS explained in Section 2.3, is quite effective. This may suggest that combining some
of other techniques with genetic algorithms is also worth trying.

In this ch: ter, we propose a variant of the genetic algorithm called genetic DP [129, 130,
134]. It uses dynamic programming (abbreviated as DP) to improve the candidate solutions.
To evaluate the effectiveness of this approach, we choose three representative combinatorial
optimization roblems: the single machine scheduling problem (abbreviated as SMP) [60], the
optimal linear arrangement problem (abbreviated as OLAP) [10] and the traveling salesman
problem (abbreviated as TSP) [75], all of which are known to be NP-hard. The SMP asks
to determine an optimal sequence of n jobs that minimizes a cost function defined for jobs,
e.g., total weighted sum of earliness and tardiness. The OLAP asks to determine an optimal
arrangement of n components in a straight line, which minimizes the total wire length needed
for connecting all components in a prespecified manner. The TSP asks to find the shortest
tour (i.e., a closed path that visits every city exactly once). These problems all ask to find
an optimal permutation of n elements. The genetic DP can be applied to these optimization
problems to find an optimal permutation of n elements.

Computational experiments of genetic DP algorithms are conducted to compare them with
exact algorithms, the conventional genetic algorithms and multi-start local search algorithms.
Algorithms of genetic DP could obtain optimal solutions to 47 out of 50 SMP instances with

up to n = 35 jobs, and 23 out of 24 OLAP instances with up to n = 20 components,
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in a very short time compared to the exact algorithms. They also exhibit superiority to
other meta-heuristics such as multi-start local search algorithis and genetic local search
algorithms. However, in the case of TSP, the Lin-Kernighan heuristic [78] exhibits much
better performance than all others including genetic DP algorithm.

From these results, we can conclude that genetic DP is one of the most powerful meta-
heuristics useful for general combinatorial optimization problems, though it does not exclude
the possibility that some heuristics specialized to the given problem, such as Lin-Ker ghan

algorithm, may turn out to be the winner.

3.2 Genetic DP Algorithm

[n place of crossover and local search in Step 2 of GLS, genetic DP applies dynamic pro-
graming (DP) in order to generate a new solution from given two candidate solutions. It
is primarily considered for the problem of finding optimum permutations (though  can be
generalized to other types of optimization problems). The general framework of genetic DP

is first described, and then each step is explained more in  tails.

Algorii m GENETIC DP
(Positive integers I and @ are program parameters to be specified beforehand)
Step 1 (Iuitialize): Construct P initial candi ite so tions.
Step 2 (Crossover by DP and Linprove): Get @ candidate solutions by repeat g the fol-
lowing steps, where step (Mutate) is optional.
(Crossover): Pick up two candidate solutions and compute the partial order D
cominon to both solutions.

(Mutate): Perturb the obtained D randomly.

(DP): Apply dynamic programming (DP) to the resulting D to obtain the best
solution that does not violate D. Add the obtained solution to the set of candidate

solutions unless it is already in the set.

Step 3 (Select): Select P solutions from the resulting P + @ solutions.

Step 4 (Iterate): Repeat Steps 2 to 3 until some stopping criterion is satisfied.

Step 2 (Crossover by DP)

Let a solution be a permutation o = (a(1)..... a(n)). Le., an ordered sequence of n different

elements, chosen from set {1.2,..., n}, where a(i) denotes the i-th element in the sequence
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and o7 1(j) denotes the location of element j. Denote the two candidate solutions picked up

in Step 2 by o and oy. The partial order common to o} and oy is defined by
D ={(i,5) | oy '(i) <oy '(j) and oy (1) <oy ()} (3.2.1)

The idea of crossover by DP is based on the fact that good solutions tend to have a lot
of common structure. For example, it is reported in Lin and Kernighan [78] that about 85%
pairs of cities on the average are commonly adjacent in two tours obtained by using their
algorithm, and 60 ~ 80% pairs are commonly adjacent in 7 or 8 such tours. They succeeded
in speeding up their algorithin by fixing such pairs common in & tours (k is a given positive
integer) without greatly losing the solution quality. In our formulation, the common partial
order D of given two candidate solutions is a description of the common structure. By using
DP (details of its computation will be described later in Sections 3.3.2, 3.4.1 and 3.5.1 as it
depends on the particular problem being solved), it is possible to compute the best solution
consistent with D.

Here we give an example of a partial order D. For two solutions oy = (1,2,3,4,5,6) and
oy = (2,3,1,5.4,6), D is given by

(3.2.2)

A partial order can be represented by a directed graph, where a vertex represents an element

and an arc represents an order. In such a graph, arcs for
{(i,4) € D} U{(i,k) € D | 35 such that (i,7) € D and (j,k) € D}

are omitted. The graph representing the above D is given in Figure 3.1.

Step 2 (Mutate)

In our computational experiment, we realized the mutation by randomly perturbing the

common partial order D before applying DP computation. After trying several, we employed
. . . . . - -1 .

the following method of perturbation: randomly choose a pair 7,5 € V' such that o) "(¢) <

o'fl (7). and relax D by one of the following two operations:
D:=D—{(i.k)| o i) <o (k) <o, ')} (3.2.3)

D:=D— {(k.j) | o' (i) <o (k) <o, G}
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©

Figure 3.1: The graph representing the partial order D for two solutions ¢y = (1,2,3,4,5,6)
and oy = (2,3,1,5,4,6).

This operation is repeated s times, where s is a prespecified positive integer.
The mutation relaxes the constraint D, and enlarges the search space of DP computation;

hence, the solution quality may improve at the cost of spending more computation time.

Step 3 (Select)
Denote the cost of solution ¢ by cost(o). We suppose without loss of generality that
cost{ay) < cost(ay). (3.2.4)

To maintain I’ candidate solutions, we tested the Hllowing two methods.

Method (i): Select the best P solutions after the @ candidate solutions are formed in
Step 2.

Method (i1): The selection is conducted immediately after the new solution is generated
in Step 2. More precisely, at each execution of crossover by DP in Step 2, let g6, be
the solution obtained by DP from o and oy. Replace ¢, with the new solution ey if
cost( T ) <cost(a), otherwise a0 1s discarded.

was observed in [130] that method (ii) usually perform better than method (i). However,
sinee gpep and gy tend to become very close, repeating (i1) many times may lose the diversity
of P candidate solutions. In order to prevent this, method (ii) is modified as follows.

Method (iii): Replace oy with 0,0 with probability p(A;/Ay): otherwise replace o with

Tnew, Where
A = cost(a;) — cost(open), 1 € {1.2}, (3.2.5)

p(r) = min Lll 1} . (3.2.6)

{a
Note that Ay > A} > 0 by the definition, and hence 0 < & < 1 (we consider « = 1 if
Ay = A\ = 0). The above p(r) is illustrated in figure 3.2. The positive constant a is a
program parameter. If « = 0 then a,,,. always replaces gy, and if @ = oo then g, alwavs

replaces .
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px) 4

Figure 3.2: The probability function p(-).

Step 4 (Iterate)

The algorithm terminates after 7 (a given positive integer) successive iterations of Steps 2

and 3 without improvement of the best solution in the P candidates.

3. Si zle Machine Schedu._ing Problem

The single machine scheduling problen (SMP) asks to determine an optimal sequence of

n jobs in V = {1,...,n}, which are processed on a single machine without idle time. A
. . - . . 7] . o
sequence o: {1,...,n} — V is a one-to-one mapping such that o(z) = j (or o (j) =)

means that job j is the i-th job processed on the machine. Each job ¢ becomes available

at time 0, requires integer processing time p; and incurs cost gi(e;) if completed at time ¢,
071
j=1
optimal if it minimizes

cost(o) = Z gileq). (3.3.7)

eV’

where ¢; = Y (l)p,,(]-). All jobs are processed in time interval [0, 0y pi]. A sequence o is

The single machine scheduling problem is known to be NP-hard for most of the interesting

forms of g;(+). We consider in particular
gi(c;) = hymax{d; — ¢;. 0} + wymax{0.¢; — d;}, (3.3.8)

where d; € + (set of nonnegative integers) is the due date of job i, and h;,w; € Z; are

respectively the weights given to earliness and tardiness of job 7.
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3.3.1 Exact Algorithms

The basic dynamic programming recursion due to [56] can solve SMP exactly. Let S C V' be
an arbitrary subset of jobs, and let f*(S) denote the minimum of cost function (3.3.7) over
S when the jobs in S are sequenced in the first |S| positions of the whole sequence. Then

£r(V') defines the cost of an optimal sequence of all jobs, and is obtained by solving
[ () =0, (3.3.9)

FH(S) = min{ (S - {i}) + (D _pj)}, SCV.

€S e
The computational time required to obtain f*(V7) is O(n2"), since all 2" subsets S of V need
to be generated and the computation of each f*(S) by (3.3.9) requires O(n) time. This DP
reduces the size of the solution space from n! to 2". However, the time complexity is still
exponential, and this approach is limited to small problem instances, e.g., n < 20.

A number of exact algorithms, which are based on branch-and-bound, have been studied
so far [101]. Another type of algorithin SSDP (successive sublimation dynamic ogramming)
was proposed in [60]. The essence of SSDP is to execute a series of DP recursions, such that
the underlying state-space is progressively refined at each iteration, until an exact « timal
sequence of jobs is computed. The number of generated states can e kept within manageable
level at cach iteration by eliminating those states that are concluded from the information of
previous iterations not to lead to optim: sequences. The computational experiment shows

that problem instances of up to n = 35 can be practically solved.

3.3.2 Genetic DP Algorithm

In this section, we specialize the genetic DP of Section 3.2 to the SMP, and describe the
details of Steps 1 and 2.

Step 1 (Initialize)

It is important to generate different types of good solutions as initial candidates. Here we

adopt greedy heuristics for this purpose. At cach step, let
M = {i €V |iisnot scheduled yet}. (3.3.10)

Then a job 7 € M is chosen as the next job according to some evaluation criterion (e.g.,
the ¢ with the smallest d;). There are two types of algorithms, corresponding to whether a
schedule is constructed forward or backward. A forward schedule starts with the job to be
processed at time 0, and continues adding the next job to be processed until M becomes

empty. A backward schedule is symmetrically defined from the last job to the first job. We
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will describe below the forward schedule only.

GREEDY
1. Set Al : =V and t := 0.

2. Choose i € M that maximizes the local gain e(/,t) as the next job. Let Al := A — {i}

and t :=t + p;.
3. Repeat Step 2 until M = ¢. O

Here the local gain function e(i,t) represents the heuristic used. We employed the follow-
ing six functions (and hence 12 solutions corresponding to forward and backward construe-
tions).

The first evaluation function e is given by
e1(it) = gi(t +pi +p)oi(t) — gilt + p)(1 = 6:i(1)), (3.3.11)

where p is the average processing time

p=> pi/n, (3.3.12)

eV

and 6;(t) in cates whether the due date d; is urgent or not, i.e.,

1, t+p+p; > d;, 0o
6i(t) = ppe=t (3.3.13)
0, otherwise.

The second and third evaluation functions are

ea(i t) = w;b;(t) — hy(1 — &(t)), (3.3.14)
and
ealist) = —L6,(t) — E(1 — 6i(t)). (3.3.15)
Pq Pi

If there are jobs with urgent due dates, the above functions put priority on the job among
them, whose cost will increase most rapidly if it becomes tardy. If there is no urgent job,
then a job whose cost will decrease most slowly or a job whose current cost is smallest is

selected.

Other evaluation functions e4, ¢5. ¢ are also used. Suppose k = |M|— 1.7 1s the job to be
evaluated and jobs j € M — {i} arc sorted in nondecreasing order of d;, i.e., d; < ... < dj,.
Then

k
ey(ict) = —g,(t + pi) — Zg][(('ﬂ).‘ (3.3.16)
(=1
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where ¢, = t+p, +Z£),.:1 pj,- This gives the sum of g;(¢;) of all jobs in M when i is scheduled
next, and the rest is scheduled after ¢ in nondecreasing order of d;. The functions es and eg
are variants of ey in that ¢5 (¢g) uses nonincreasing order of w; (respectively, nondecreasing
order of h;) instead of nondecreasing order of d;.

In these six evaluation functions, e3 often produces the best approximate solutions whose
error from the optimals are within 10%, and e; usually produces solutions of reasonable
quality. Although other schemes are usually not as good as e3 or e4, we adopted all six in
order to maintain the diversity of initial candidate solutions.

If more than 12 initial solutions are necessary (e.g., P = 100 solutions are generated in
the experiment of Section 3.6.2), we introduce randomnuess into the above greedy algorithy
That is, in Step 2 of GREEDY, choose a candidate set ¢ C M of k jobs (k is a prespecified
positive integer) in the decreasing order of the local gain (instead of a single job ¢), and then
randomly choose 7 from set C'. This idea of randomized greedy methods is extensiv 7 studied

in [34], in the framework of multi-start local search.

Step 2 (Crossover by DP)

We first compute the common partial order D of o and o9, and introduce the constraint
that job ¢ must be processed before j if (4, ) € D. Then the best solution with cost f*(V/),
among those which are consistent with D, can be obtaine by solving the following dynamic

programming recursion.

f*(¢) =0, (3.3.17)
F1S) = min {£4(S — {) + gD p)}, Se VD),
iel(S) e
where
VD) ={SCV |jeSand (i,j) € D= ic S}, (3.3.18)
and
I(S)={i€ S |noj e Ssatisfies j # i and (1,5) € D}. (3.3.19)

Here we give an example of V*(D) and 1(S). For the partial order D of (3.2.2), all the sets
S e V(D) and I(S) for cach S are shown in Table 3.1. Sets S = {1,2,3} and 1(S) = {1,3}
are also shown in the graph representing D in Figure 3.3.

While the DP recursion by (3.3.9) generates all 2" subsets S of V', the recursion by (3.3.17)
generates only those subsets in V(D). i.e.. those consistent with D. This implies that the
computational time and space can be substantially reduced.

It is. however. possible that the number of subsets in V*(D) is still too large to handle. In
such a case. we randomly augment D until the estimated number of states |17*(D)| becomes

less than bn (b is a prespecified positive constant): Randomly choose k € {2,....n} and let

3.3 Single Machine Scheduling Problem
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Table 3.1: All the sets S € V*(D) and I(S) for the partial order D of (3.2.2).

S 1(8)

{1} {1}

{2} {2}
(1,2} (1,2}
{2,3} {3}
{1,2,3} (1,3}
{1.2,3,4} {4}
{1,2,3,5) {5}
{1,2,3,4,5} {4,5}
{1,2,3,4,5.6} {6}

Figure 3.3: Sets S = {1,2,3} and I(S) = {1,3} are shown on the graph of Figure 3.1.
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D:=DuUl{(i,j)]o;'(i)<kand k <o (j)} (3.3.20)

The value [V*(D)] is important in estimating computation time, since it gives the number
of states in dynamic programming recursion (3.3.17). The V*(D) is known as the set of ideals
of partial order D, and much effort has been devoted to the study of estimating [V*(D)| [120].
It is known [112] that a rather accurate estimation of [V*(D)| can be obtained in O(n?) time.
This estimation is exact when D has dimension two [119], which holds true in our case if
neither mutation (Section 3.2) nor augmentation (3.3.20) is applied.

Note that the sequence oy is always consistent with D, whether it is mutated or aug-
mented, and hence the optimum cost of (3.3.17) will never be greater than that of o) (recall

assumption (3.2.1)).

3. Optimal Linear Arrangement Problem

In the optimal lincar arrangement problem (OLAP), we are given a weighted hypergraph
H = (V,S, W), where V" = {1,...,n} is a set of vertices, S = {S,,...,S;,} is a collection
of subsets of V', and W = {w,,...,w,,} is a set of weights given to subsets in S. A linear
arrangement is a permutation o : {1,...,n} — V', meaning that vertex o(z) is placed in the
i-th position in a straight line. The cost of a permutation o is

m

'Z:] w, Aullg;\lﬂn k) — o ()]}, ( 4.21)
and it is asked to find a permutation ¢ with the minimum cost. The applications of OLAP
are abundant in VLSI design and other areas [4, 10, 66, 113]. A special case of OLAP in
which the hypergraph H is a graph (each S; contains exactly two vertices) is referred to as
the Graph Optimal Linear Arrangement problem (abbreviated as GOLAP). It is known that
GOLAP with edge weights equal to 1 is already NP-hard [39]. GOLAP on rooted trees (the
root is always placed at the left most position) is solvable in O(nlogn) (where n = |V|) time
[4]. and GOLAP on undirected trees with edge weights equal to 1 is solvable in O(n??) time
116).

3.4.1 Genetic DP Algorithm

[1n this section, we explain the details of Steps 1 and 2 of genetic DP for OLAP.

Step 1 (Initialize)

)y generate different types of initial candidate solutions, we use two heuristics, Kang's greedy

method [66] and the clustering method {10, 113].
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Although Kang's method was stated in [66] for the case of unit weights (w; = 1), it is casily
extended to arbitrary weights. It begins with a vertex 7 € 17 that minimizes netcut({z}, V" —
{i}). where netcut(L, R) denotes the sum of net weights between L and R, i.e.,

netcut(L, R) = Zwibi(L, R). (3.4.22)

=1

1, if S; has vertices in both L and R,

(L, R) = {

0, otherwise,

and place it at the leftmost position. . then builds a linear arrangement from left to right

by adding one vertex i € M that maximizes netcut(V — M, {i}) — netcut({i}, M — {i}) at

each iteration, where
M = {i € V | i has not been placed yet}. (3.4.23)

The clustering method has two phases. A cluster CL; C V is a set of vertices. The first

phase is executed as follows.
1. Let CL;:= {1} (i =1,...,n), k:=n, and S :=V (S stores the indices of all clusters).

2. Let k:= k+1. Find 7,5 € S that maximizes netcut(C'L;, C'Lj), let C'Ly := CL;UCLy,
and S:= SuU{k} —{i,j}.

3. Repeat St. 2 until |S| = 1 holds. ]

he process of combining two clusters C'L; and C'L; into one cluster C'Ly (Step 2) can be
represented as a binary tree, called a cluster tree, in which each cluster C’L; is represented
as vertex [, and vertices ¢ and j are the two sons of vertex k. It is decided arbitrarily which
of i and j becomes the left son. The resulting left to right order of all leaf vertices of the
whole cluster tree is a linear arrangement and is output as a heuristic solution obtained in
the first phase. 1 the second phase, the above solution is immproved by applying the local
search whose neighborhood N(o) is the set of solutions obtained by exchanging left and right

sonus of any inner vertex of the cluster tree.

Step 2 (Crossover by DP)

Here we consider the following two methods.

(A) Compute the common partial order D of (3.2.1) for two candidate solutions o) and
oy. Note that (i,j) € D in this case denotes that vertex ¢ is placed to the left of j in both
oy and oy, Call L C V" a left segment if the vertices in L are arranged to the left of the rest
of vertices R =V — L. Then we can find the best arrangement among those consistent with

D. by solving
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fr(L)=0,1|L] <1, (3.4.24)
F@:=gﬁﬁf —{j}) +neteut(L - {j}, RU{j})}, L € V¥D),

where
VHD)={LCV ||L>1.(j€Land (i,j) € D=ic L)}, (3.4.25)

I(-) is defined in (3.3.19), and f*(L) denotes the minimum cost (3.4.21) when the vertices in
L are arranged in the left |L] positions. Obviously f*(V') denotes the minimum cost of all
vertices, which we want to compute.

(B) In order to reduce the computation time of (3.4.24), we add the chain constraints to

method (A) in the following manner. Call that vertices ¢ and j are adjacent 1 o if

lo '6) o) =1, (3.4.26)
and denote

AD(o) = {(1,j) | vertices i and j are adjacent}. (3.4.27)

We impose the constraint that every pair of vertices adjacent in both o1 and oy are forced
to be adjacent in the new solution g6y, 1.¢., AD(0y) N AD(02) C  D(0pew)- >te that
cach connected component in graph G(oy,00) = (V.4 o)) N AD(03)) is a chain. The °
computation of (3.4.24) can be carried out more efficiently by applying it after contracting
each chain into a single vertex, though the values of netcut(-,-) must be calculated for the
original set of vertices.
In both methods (A) and (B), when the estimated number of states [V*(D)| exceeds bn,
the operation of (3.3.20) is also applied.
A computational comparison of these two methods for various b is shown in figure 3.4,
in which 11 test instances of up to n = 40 are solved. It shows how the total cost (3.4.21)
changes against the amount of time required (which is determined by parameter b). Program
parameters are set to P = 20, r = 300, « = 0.5. s = 0 (see Sections 3.2 and 3.3.2 for the
details of these parameters) and b is varied from 0 to up to 100. Figure 3.4 shows superiority
of (B) to (A). In the computational experiment in Section 3.6, where genetic DI is compared

with other approximate methods, we therefore adopt (B).

3.5 Traveling Salesman Proble 1

The traveling salesman problem is one of the most well-known combinatorial optimization
problems. It asks to find the shortest tour (i.e.. Hamiltonian circuit. that is, a path that visits

every vertex exactly once and returns to the first vertex) in a given graph G = (1, E'), where
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Figure 3.4: The effect of chain constraints.

V' = {1,....n} and each edge (i,j) € E has length d;;. The symmetric traveling salesman
problem we consider assumes d;; = dj; for all pairs of 7 and j. Let o: {1,...,n} = V be a
tour, where (i) denotes the i-th vertex in a tour . A tour is optimal if it minimizes

n—1

> do(iyo(itn) + do(myo(1)- (3.5.28)
=1

N nerous exact and approximate algorithms have been proposed for this problem [75],
and it is reported that exact optimal solutions have been obtained for problem instances of

up to n = 7397 8, 51, 93] (500,000 in the case of asymmetric version [85]).

3.5.1 Genetic DP Algorithm

In this section, we explain the details of Steps 1 and 2 of genetic DP for TSP.

Step 1 (Initialize)

We use the arbitrary insertion method [75. 108] for generating initial candidate solutions.
It is a greedy method and can create reasonably good solutions in short time. A path that
visits every vertex in a subset S of ¥ exactly once, and returns to the first vertex in S is
called a subtour. The arbitrary insertion procedure begins with a randomly chosen subtour

consisting of only two vertices, and iterates the insertion of the vertex & between randomly
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chosen adjacent vertices 7 and j in the current subtour. where & minimizes dy + dy; — d;j,
until a tour is formed. There are a number of variations of insertion heuristies [75], such as
the farthest insertion and convex hull insertion procedures. We have chosen the arbitrary
insertion for our computational experiment because it is simple and can produce a variety of

solutions.

Step 2 (Crossover by DP)

Suppose that a tour always starts from vertex 1 (i.e., 01(1) = o2(1) = 1) without loss of
generality. The definition of the partial order D common to o and oy is the same as (3.2.1).

The best tour, which is consistent with D, and its cost f*(V'), can be obtained by solving

fr{1} 1) =0,

"(Si) = I S - {i},)) +dji}, SeVv” ar
[isg = min {fS = {ih ) +did, S € VD), (3.5.2
) = i e ,
[TV Lél}(l{;){f (Vi) +di},

where
V¥ (D)={SCV ]jeSand (i.j) € D=1i€ S}, (3.5.30)

and I(-) 1s the same as (3.3.19). f*(S,/) denotes the length of the shortest path  at starts
from vertex 1, visits all the vertices in S. ends with vertex ¢, and is consistent with D. In the
computational experiment of Section 3.6. we also added the chain condition of method (B)

of OLAP, to speed up the DP computation. The modification required  sii lar to the case

of OLADP.

3.6 Compu ational Results for Three Problems

3.6.1 Generation of Problem Instances

Computational experiments were perforined on SUN SPARC station IPX using C language
for SMIP and OLAP. and using FORTRAN 77 for TSP. The tested problem instances are
generate  as follows.

SMP: For cach n. coefticients p,, h,ow, for i € V(= {1,...,n}) are generated by
randomly selecting integers from interval [1, 10]. It has been observed in the literature (e.g.,
[100]) that problem hardness is related to two parameters RDD and LE. called the relative

range of due dates and the average lateness factor. respectively. In our experiment,

RDD = 0.2,0.4.0.6.0.8,1.0.
LE = 0.2.0.4
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are used. Corresponding to each of these 5 x 2 = 10 cases, one problem instance is generated

by selecting integer due dates d;, i € V', from interval
(1-LF—-RDD/2)T, (1 -LF+ RDD/2)T].

OLAP: For each n, 2% = 8 types of instances depeuding on (1) whether H is a
hypergraph or a graph, (2) whether weighted or unweighted, and (3) whether m = 2n or
m = 4n when n > 20 (m = 6n when n < 20), are generated. For cach i = 1,2....,m, an
integer |S;| is randomly chosen from interval [2, 5] in the case of a hypergraph (|S;] = 2 in
the case of a graph) and then |S;| vertices are randomly chosen from 1" as the elements in
S;. S; are generated so that S; # S; holds for i # j. The weight w; (integer) of S; is chosen
randomly from interval [1, 5] (w; = 1 in the unweighted case).

TSP: We considered only the Euclidean case (i.c., all vertices are located in the
plane and edge lengths are given by the Euclidean distances between their end vertices). A
coordinate pair (z;,y;) of cach vertex is first generated by randomly selecting two integers

from interval [0, 1000], and the length between vertices ¢ and j is set to

dij = H\/E‘L, - :L‘J)Q + (yi - ,yj)Z + (].S}J.

3.6.2 he ffect ¢ Program Parameters

Implementation of genetic DP contains the following parameters:

r: number of iterations without improvement before termination (see Section 3.2),

a: parameter in (3.2.6), which decides the frequency of replacing o) in Step 3

(select),
P: number of candidate solutions (population),

b: bn is the upper bound on the number of states generated in DP recursion (see

Section 3.3.2),

$: number of mutations (see Section 3.2).

To know appropriate values of these parameters, 10 SMP instances of n = 50. 11 OLAP
instances of up to n = 40, and 5 TSP instances of n. = 100 were generated and tested. We
examined how the performance changes according to the amount of time invested (which
is determined by program parameters). Every parameter has a tendency that the larger it
becomes, the more computational time is needed. In the figures explained below, “cost”
denotes the total cost (3.3.7). (3.4.21) or (3.5.28) of the solutions obtained and “time™ is the
total time in seconds required to solve all test instances of each problem. Parameters are set

as given in table 3.2 unless otherwise stated. Only the parameter examined is changed.
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O(Yrast — ) time. Hence, the worst case running time O(n?) of the algorithm BSC is preserved
for MNG.

We further set a parameter R € (0.1], and do not exit the inner loop for y > R(n—x) 4+«
even if Monge condition is satisfied. (R = 1 means the case we do not use this modification.)
Once y > R(n — ) + o holds, yas is forced to be n and we can update LD by using the
second formla of (6.3.13); hence, LD value may improve by this modification. The total
time spent to inner loops increases at most 1/R times compared to the case with R = 1. We
set R to 0.5 in the computational experiments, since remarkable improvement was observed

in sowme problem instauces compared to 2 = 1.

6.3.3 Remarks about the Two Algorithms

Two algorithms LHP and MNG can be combined; however, slight modifications are needed
in updating LD. It would be worth trying to terminate the inuer loop by length condition,
HP condition or Monge condition only if y < R(n — &) + « for a parameter R € (0,1]. Since
the computational time gains at most 1/R times of the algorithm LHP, expected running
time of this combined algorithm remains O(n) for two randomly generated permutations. It
is also noted that some LD values may become larger than those realized by MNG alone,
and this combined algorithm will not necessarily improve the performance of NING.
Although it 1s observed that algorithms of this type are much faster than the algorithm
BSC for many types of problems, they always require 2(n?) time for some problem instances.

For example, consider the problem given by setting o 4(i) = ¢ (i = 1,...,n) and
, 20 -1, 1 <
opli) = , ,
20n—i+ 1), >
The function f then takes

flevy) > 0, e=1.....n—1, y=a+1,...,n—1
flen) = 0, 0=1,....n—-1
and the number of outputs is K = O(n). Any algorithm improved from BSC by “omitting

. ‘) . g . . .
redundant loops™ requires Q(n*) time for this example, since the inner loop must be repeated

until y becomes n for all @ It shows a hmitation of the algorithms of this type.

6.4 An Algorithm with O(n + K') Worst Case Running Time

In this section, we propose an algorithm called the reduce candidate algorithm (abbreviated
as RCY which runs in O(n + K) time in the worst case. Since the algorithm runs in time

roportional to the number of inputs and outputs, it is optimal in the sense of the worst case
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time complexity. On the other hand, those algorithms proposed in the previous section may
take much time. e.g., 2(n?) time even if the number of outputs A is O(n), though they are
very simple and fast for most of the tested problem instances.

For a fixed ., we call a y unnecessary if it satisties f(',y) > 0 for all +/ < r. By definition.
if y is unnecessary for , y is also unnecessary for &” for all ” < r. The main idea of the
algorithm RC is to save the time to check whether f(r,y) = 0 or not for some y which can be
concluded as unnecessary from the past search information. The framework of the algorithm

is described as follows.

Algorithm RC
Line 1: Y := {n}.
Line 2: for t =n—1.---,1 do
Line 3:  Output all y (> @) in Y satisfying f(x,y) = 0.
Line 4:  Set Y := (Y U {a})\W
where W C {y € N | y > r and f(2',y) > 0 for all 2’ < x}.

Line 5: end for.

The key to this algorithm is how to find unnccessary y’s. The following lemmas help us

to identify them. Note that u(w,y) < wu(z',y') and [(x,y) > (', y") hold for [o,y] T [/, y'].

Lemma 4.1 Suppose that we are given x > 1 and y > . If u(x,y) < u(r,y") and u(r —
1,y) = u(x = 1,4") hold for some y' >y, y satisfies f(x',y) > 0 for all 2" < .

Proof. From u(x,y) < u(z,y'), there exists a y” € [y + 1,y'] satisfying 7a5(y") € [u(r,y) +
Lu(e,y)]. By w(zx—1,y) = u(x —1,y'), we have [u(z,y)+ 1, u(x,y")] C [l{«', y), u(+', y)] and
map(y") € Iz’ y).u(x’,y)]. As y” is not included in [/, y], f(2',y) is greater than 0. O

Ler ma 4.2 Suppose that we are given x > 1 and y > x. If f(x,y) > f(x,y") hold for some
y' >y, y satisfies f(',y) > 0 for all 2’ < .

Proof. From f(x,y) > f(z,9'), there exists a v" € [y + 1,y'] which satisfies m (") €

l(x,y),u(z,y)]. Since y" is not included in [z, y], f(2',y) is greater than 0. O

We can find a part of unnecessary y from these properties. We will show an algorithm
that removes all y that satisfy the conditions of Lemma 4.1 or 4.2 from the set Y at Line 4
of algorithm RC.

To maintain ¥, the algorithm uses a doubly linked hist, ylist, composed of the cells yy...., y,
corresponding to the elements y € Y. The cells are sorted in increasing order of their values.
Initially, the ylist is composed of only one element rn. Then Line 4 of algorithm RC is realized

by adding an element & at the head of ylist and exccuting algorithm TRIMMING_YLIST (. y)
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explained below. For simplicity, we consider only the case with m,4p5(c—1) > m4p(x) through-
out this section. The opposite case can be treated similarly. The algorithm for trimming the

wastful y from ylist is as follows.

Algorithm TRIMMING YLIST(z,y)
(r and y are set to the values in Line 4 of algorithm RC.)
Step 1: Find y* € N which is maximum among those y satisfying u(z,y) < u(z — 1,y).
Step 2: If the cell y on the head of ylist satisfies u(x, y) < u(x,y*), then remove it from
ylist (from Lemma 4.1) and go to Step 2: otherwise go to Step 3.
Step 3: Let y; and g4 be adjacent in ylist and satisfy y; <y* <yqq. If f(z = 1,9;)
> f(we —1,y;41) then remove y; from ylist (from Lemma 4.2) and go to Step 3.

Algorithin TRIMMING _YLIST(z, y) correctly remove all the elements concluded as unnec-
essary by Lemmas 4.1 and 4.2 by the following reasons. In Step 2, if there exists a ' < y*
satisfving u(w, y') < (e, y*), then the head y of ylist also satisfies u(x,y) < u(z,y*), since
w(r, y) is monotonically nondecreasing with y. Therefore, all y satisfying u(z,y) < u(z,y*)
are removed from ylist during the iteration of Step 2, i.e., all the elements concluded as
unneccessary by Lemma 4.1 are removed.

For Lemma 4.2, we claim that f(x — 1,y;) < f(r =  y;41) old for all y; (> z) which
remain in the ylist at the end of the algo  hm TRIMMING _YLIST. This is proved by induction
on r. Suppose that f(z,y;) < f(@,y;41) he 1s for all 7 just before z is added at the head
of ylist in Line 4 of algorithm RC. This hypothesis is true for z = n — 1, since the ylist is
initially composed of only one element n. As f(r,x) = 0 and f(z,y) > 0 (Vx < y) hold,
fle,yi) < f(e,yiqr) still holds for all i after x is added at the head of ylist. For every y; > y*,
flr— 1 y:) = f(roy:) = —1 holds, since u(x,y;) and I(x,y;) are unchanged for such 7. For
every y, < y* which is not removed in Step 2 of TRIMMING_YLIST, f(z —1,y;) — f(x,y:) = ¢
(¢ is a constant satisfying ¢ > 0) holds (i.e., ¢ is the same for all y; < y*), since u(x,y;) are
the same for all such 7 and [(@, y;) are unchanged. Thus the claim was proved.

Given o and y, we have to spend O(y — r) time to calculate u(x,y) if no particular
data structure is used. To achieve linear time, we have to obtain them in shorter time.
In our algorithm. we represent the functions « and [ by lists called ulist and llist. For a
fixed &, u(r,y) (resp., {(r.y)) is monotonically nondecreasing (resp., nonincreasing) in y.
(See Figure 6.1.) We now describe the construction of the linked list only for u, since the
construction of {list is similar. The interval [x + 1. n] is decomposed into intervals [y, =
N N N 17/ N [y oyl = n] where u(r y”) = u(r,y") holds if and only if both
y" and y"" are included in [y). y!, | — 1]. From this decomposition, we represent u by ulist
composed of the cells which correspond to these intervals. Each cell keeps the corresponding

interval and the value u(r,y) for y which the interval includes. A pair of cells are doubly
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linked by pointers if they correspond to adjacent intervals. We sav that y is included in the

cell of wulist if the corresponding interval includes y.

= N W A U1 &N

1 2 3 45 6 7 Y

Figure 6.1: Functions u(2,y), u(3,y), {(2,y) and I(3,y) corresponding to permutations o, =
(1,2,3,4,5,6,7) and og = (5,3,1,4,2,7,6).

To get the value of u(x,y), we have to find the cell in ulist which includes y. To realize
this operation in short time, we prepare a pointer from each cell y; of ylist to the cell of ulist
which includes ;. We also prepare a pointer from each cell of ulist to the cell y; of ylist,
where y; is the maximum among those included in the same cell of ulist. (See Figure 6.2.)

The update of ulist and llist when z changes to x — 1 is executed as follows. We update
llist by adding a cell corresponding to interval [z — 1,z — 1] on its head. (Recall that we treat
only the case map(zx — 1) > map(r).) We delete all the cells of ulist which include a 4 such
that w(x,y) < u(x,y*). For the cell including y*, we change its interval to [z — 1,%*] and its
value from u(z,y*) to w(x — 1,9*). (See Figure 6.3.) Note that we do not remove the cell
representing u(z, y*), but use it to represent u(x — 1,y*). By doing this, pointers from all y
included in the cell corresponding to u(xz,y*) to ulist need not to be changed. This is a key
point in speeding up of the algorithm.

In Step 2 of TRIMMING_Y LIST. if the pointer from a cell y of ylist indicates a deleted
cell of ulist. we remove it from ylist, since this implies u(r,y) < uw(r.y*). Thus it is not

necessary to npdate the pointers between ylist and ulist.
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7;[6,7] ®| nil

®l 4;(4,5] ?
ulist |init |® 2:13,3] |9]®
ol
ylist [init [*T=—le| 3 |[*I=—le| 4 |® 51(® 6|' —le| 7 ,ail
® ® Le |

list [init |*T=—le| 2; [3, 4]

\;

Figure 6.2: Examples of ulist and llist corresponding to u(3,y) and I(3,y) of Figure 6.1.

]

1; (S, 7] @/ nil

Now we consider the time complexity of algorithm RC. For this purpose, let us consider
the time to update ylist, ulist and [list and the time to scan ylist to output common intervals
in the entire algorithm of RC. Since those update operations of ulist are done by tracing ulist
from its head to the cell including y*. Step 1 and 2 of the algorithm TRIMMING_YLIST take
O(d + 1) time, where d is the number of deleted cells in Step 2. The total number of deleted
cells during the execution of the algorithm RC can not exceed the number of created cells,
which is O(n). and thus the total time of those operations in the algorithm RC is O(n).

[u Step 3 of the algorithm TRIMMING_YLIST. we can find y; and y;4; in O(1) time by
tracing a pointer from the cell of ulist including y* to the cell of ylist. (See Figure 6.3.) Step
3 is repeated while the current cell is deleted. This is done in time proportional to the number
of the deleted cells. Thus the total time spent in Step 3 of the algorithm TRIMMING_YLIST
in all iterations of algorithm RC is proportional to the total number of the deleted cells. It
can not exceed the number of created cells, and the total time is O(n).

In Line 3 of algorithm RC. the cells yy. -, y, of ylist satisfv f(a,y:) < fx,yiv1) (0 =
1.....r — 1). Therefore we can enumerate all y satisfyving f(x.y) = 0 by tracing ylist from
its head without scanning y with f(r.y) > 0 in the middle. When we encounter a y with
flr.y) > 0. we stop the tracing since f(r,y') > 0 holds for all y > y. It takes time
proportional to the number of outputs, which is O(n + K).

As a result, the following theorem holds.
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s ! e same memory cell 7: 16, 7] nil
Y M with [e] 4;[4,5] [e]e] /
o 5512, 5] hd
b

ulist |init |®]7

(¢ ] [ [
ylist [init ® e 5 [*—le| 6 [*—" "7 [nil
[ J 9
ist |init |
2;[3,4] o .\\
\ 1; 5,7 il

Figure 6.3: The process of updating ulist, llust and ylist. The cells represented by dotted

lines are deleted when ulist is updated.

Theorem 4.1 Algorithm RC with TRIMMING_YLIST outputs all common intervals in O(n+

K) time.

6.4 numerating ~ommon Intervals within a Specified Length

Given by < b, < n, we consider the problem of enumerating all the common intervals of two
permutations whose length are not smaller than b and not greater than b,. This problew
is motivated by the following reason. If the given two permutations are similar, the number
of common intervals of length 2 to n will be very large (e.g., O(n?)). Even in such cases,
the number of conumon intervals of length b, to b, may be much smaller if b, — by is small
(e.g.. the number of outputs is O(n) if b, — b = O(1)). Of course we can enumerate comion
intervals of length b; to b, by first enumerating all common intervals of length 2 to n and then
outputting those with the specified lengths, but this algorithm requires O(K') time, where
K is the number of common intervals of length 2 to n. However. we can do better by using
algorithm RC with slight modifications.

In each iteration. we keep the minimum cell g of ylist among those satisfving y—r+1 > by.
At the end of Line 4 of algorithm RC. we find the minimum cell y' satisfving ' —x +2 > b

and set y := ¢'. Since 7 is either adjacent to j in the ylist or 4" = 9. this update can be
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and from (6.5.18),

E(Xy) = 2 % (6.5.27)
: ~ 6(n=2) :

Hence. we can conclude for n > 5 that

E(”ZZX;C) < E(X;;)+(n,75)~i% (6.5.29)
- = O(n Y, (6.5.30)
E(X) = E(J\’2)+E(lf‘\'k} (6.5.31)

- 2+()(n*1).k53 (6.5.32)

By estimating the variance of Xy and using Chebyshev bound and Markov inequality, the

following theorem is also shown [136].

Theorem 5.3 [f n>5, Pr(X > V2t +3) < Flz + O(n~') holds for arbitrary t > 0.

6.5.2 Expected Running Time of the Algor m LHP

For cach & (r = 1,...,n — 1), let T, be the random varial  representing the number of
iterations in the inner loop of LHP for «. We also define T' = Z;’;ll T,, which represents the

total number of inner loop iterations.
Theorem 5.4 For n >4, E(T) < 3n holds.

Theorem 5.4 holds even if we ) not incorporate the length condition (6.3.5) into LHP.

Before proving this theorem, we consider the following problem. Suppose that we have
k white balls and m — & black balls (0 < k < m — 1, > 1) in an urn. The probability of
taking out a ball is the same for all balls. Take out one ball. If it is white, we do not replace
the ball into the urn and continue the same trial: otherwise (i.e.. once a black ball is taken)
we terminate the trial. Let Eyrp(m, k) denotes the expected number of trials until a black
ball is taken. Then

m+ 1

—_— 6.5.33
m—k+1 (6.5.33)

Eurn(m, k) =

holds (see Appendix B). We define Eypy(m.m) = m for convenience. Now let Efj.,(m. k. j)
denotes the expected number of trials until a black ball is taken or the number of trials

becomes . Then

Efpn(niko ) < Eurnlm. k) (6.5.34)
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holds for j > 1, 0 < k < m and m > 1 (see also Appendix B). These facts are used in the

proof.
Proof. By linearity of expectation, we have
n—1
E(T)=>_ E(T.). (6.5.35)
=1

For a fixed z, let 7(r) be min{n — x,n — 3}, which is the maximum number of inner loop
iterations for x. Since the two permutations are generated uniformly at random, HP' = {i, j}
holds with probability (;)_1 for any 7 and j (4,7 € [1,n}, ¢ < j). For such 7 and j, probability
that 1 < map(z) <7 —1 holds is %, and in this case, the expected number of inner loop
iterations is Efjrp(n — 3,7 — 2,7(x)). Secondly, the probability that i + 1 < map(2) <j — 1
holds is 2251, and in this case, the expectation is Ejpy(n ~ 3,5 — 4 — 2,r(x)). Thirdly,
the probability that j + 1 < m4p(z) < n holds is =—f, and in this case, the expectation is

1—2
Efn(n —3,n—73—1,r(zx)). Therefore,

n—1 —ln-1 n .
n 1—1 oo
E(T) = Z <2> Z Z {mEurn(” =3, —2,7r(x))
=1 i1 jmir1 VT
J—i—1_, Yo n—J : :
+anEurn(” =3, —1—2,7(x)) + mEurn(” = 3n-y -1 "(-"))}
n—1 kO . -
n—1 - 1—1 )
< BB Z 7 {jEurn(” —3,1-2)
2) o i1 VT
j—i—1 N n-—j . ‘
+=————FEurn(n - 3,j —i — 2) + ! Eurn(n —3,n — 5 — 1)}
n—2 n—2
n—1 ! 1—1
= (3) 3. ;(n —1)- ; 2Eurn(n, - 3,i—2)
6 ni( ) t—1 n— o 3)
= - n-—1- —
no o n—2 n—1 "

= 3n—-9<3n. 0O

6.6 Computational Results

In this section, we compare algorithms BSC, LHP, MNG and RC by applying them to six

types of problem instances of sizes up to n = 10°.

6.6.1 Generation of Problem Instances

The following six types of problem instances are examined.

RAND: Two permutations ¢4 and op are randomly generated (i.e., any permutation is

chosen with probability 1/n!).
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SWAP: Initially two permutations o4 and op are set as 0,4(1) = op(i) = ¢ for i =
I....,n. Then we repeat s times a swap of two elements op(i) and og(j) for two integers i
and J (7 # j) randomly chosen from [L,n]. We set s = n in the experiment.

NBRAND: The permutation o, is set as 04(¢/) = ¢ for 2 = 1,...,n. For an integer &,
let p and ¢ be the integers satisfving n = kp + ¢ and 0 < ¢ < k. For each i (1 = 0,1,...,k),
a permutation o; : Vi — 1} is randomly generated, where V; = {ip + 1,7p + 2,..., min{(¢ +
Dp,n}}, and op is set as oy = 0poy - ox. We use k = |/n+ 0.5] in the experiment.

NBSWAP: Initially two permutations 0,4 and op are set as 04(i) = opg(1) = ¢ for
i = 1,...,n. Then a swap of two clements og(i + j) and opg(jy) for an integer ¢ randomly
chosen from [1, k] and an integer j randomly chosen from [1,n — 1] is repeated s times, where
k is a parameter to restrict the swap distance. We set k = [\/n + 0.5] and s = n in the
experiment.

SLIDE: For an integer k, let p and ¢ be the integers satisfying n = kp+q and 0 < ¢ < k.

Two permutations are set as o4(¢) = ¢ and

, I =2k =1 (modkp)+1, i=0 (mod k)
(71;(1 = )

i otherwise,

for i = 1....,n. An example with n = 20 and k = 3 is exhibited in Figure 6.4. We set k = 4

i the experiment.

A: 2 4 567 89 1011121 .1516 7181920
_ T
B:1 2154 5187 8 3 101. 613 49 5 7 19 )

Figure 6.4: An example of type SLIDE instance with n = 20 and k£ = 3.

NET: Two permutations are set as g4(1) = i and

() (i14+1)/2, 7 odd
op(l) =
i [n/2] +i/2, i even,

for:=1.2,..., n. An example with n = 10 is shown in Figure 6.5.

A:11234567891IO
S ESee
B:1 6 27 3849 510

Figure 6.5: An example of type NET instance with n = 10.
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For type RAND instances. the expected number of common intervals is 2 + O(n ™) as
shown in Section 6.5. By the similar discussion, we can show that the expected number of
common intervals for type NBRAND instances is at most &2/2 + o(k?) if k& = o(n). Recall
that we choose £ = O(y/n) in the experiment, and hence, the expected number of outputs is
O(n).

For type SWAP and NBSWAP instances, it is observed that the number of common
intervals is O(n) as shown in Table 6.1, where each entry is the average of five instances

examined in the next subsection.

Table 6.1: Average number of common intervals divided by n for type SWAP and NBSWAP

istances.

K/n
n  SWAP NBSWAP
1000 0.022 0.084

10000  0.021 0.050
100000  0.021 0.032
100t 00  0.021 0.026

For type SLIDE instances, the number of common intervals is at most

"k —1 1 3
p T () b k(g ) < skt SRR
\ 2 2 2 2

Recall that we choose k = 4, hence, the number of outputs is O(n). For type NET instances,

the number of common intervals is at most one.

6.6.2 ( mputa Hnal Results

All the tested algorithms were coded in C language and run on a workstation Sun SPARC
classic. A simple multiplicative congruential method was used to generate random seqguences.
For each type of problem (except for type SLIDE and NET problems), we generate five
instances for each n = 103 ~ 108, and exhibit the average computational time (etc.) of
each tested algorithm. Although type SLIDE and NET problems include no randomness,
we exhibit the average data of three runs for each tested algorithms, since the CPU time
returned by the computer includes errors.

Table 6.2 shows the average number of inner loop iterations of BSC, LHP and MNG
divided by n. where n = 10% is used. (This implies the average nunber of iterations for an

inner loop.) The mark **" is put if this value does not increase more than 5% when n = 109,
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and for others, we mark *A’ if the instances with n = 10% was solved in one minute. Table
6.3 shows the average of the total mumber of scans on ulist, llist and ylist of the algorithm RC
divided by n, where n = 10°% is used. Figures 6.6 ~ 6.11 show the average computational time
(in j¢ sees.) divided by n. (Note that the data are identical to the average computational

time in seconds when n = 10%))

Table 6.2: Average number of inner loop iterations of BSC, LHP and MNG divided by n
(n = 10%).

RAND SWAP NBRAND NBSWAP SLIDE NET

BSC  4999.50 199950 1999.50 4999.50  4999.50  4999.50
LHP *1.99 *2.33 99.62 *11.13  2498.50 1876.00
MNG *3.40 *3.66 53.50 A4.39 *6.25 A8.68

Table 6.3: Average of the total number of scans on wlist, llist and ylist of RC divided by n

(n = 10%).

RAND SWAP NBRAND NBSWAP SLIDE NET
RC 27.45 27.44 28.94 27.60 29.75  28.00

From these, we can observe the following:

e In Table 6.2, the marks *" and A" imply the effectiveness of the speed up techniques
proposed in Section 6.3. Especially for those with *+" marks, it may be concluded that
the problem instances were solved in O(n) time on the average. For each of those with
‘A" marks, the value increases about 13% (resp.. 38%) for NBSWAP (resp., NET) when
n = 109 For NBSWAP. this is because the variance of the data of MNG is rather large.
The same tendeney was observed for LHP. Indeed. the value decreases about 23% for
LHP with NBSWAP when n = 10%. It is known that MNG needs O(nlogn) time for

tvpe NET instances, as evidenced by the increase of about 38%.

e The performances of BSC and RC are hardly affected by the type of instances: BSC
alwavs requires O(n?) time, while RC always r