2-オキサゾリン類の重合を基盤 とする高分子合成

(.

· 嶋 野 安 雄 1998 目 次

第1章	約4 ■ 二 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の 1 の	
$1 \cdot 1$	はじめに	1
1.2	本論文の目的と概要	8
1.3	文献	1 1
第2章	2 - オキサゾリン類のリビング重合を利用するマクロモノマーの合成	
2.1	要旨	19
2.2	緒言	19
2.3	実験	2 0
2.4	結果と考察	28
2.4	4.1 アクリルおよびメタクリル型マクロモノマーの合成	28
2.4	4.2 ビニルベンジル型マクロモノマーの合成	34
2.5	結論	38
2.6	文献	39
第3章	2-オキサゾリン類のリビング重合を利用するテレケリックスの合成	
3.1	要旨	42
3.2	緒言	42
3.3	実験	43
3.4	結果と考察	51
3.4	4.1 テレケリックグリコールの合成	52
3.4	4.2 テレケリックジアミンの合成	54
3.4	4.3 テレケリックジチオールの合成	56
3.4	4.4 テレケリックジカルボン酸の合成	58
3.4	4.5 2-オキサゾリニウムイオンの反応性	61
3.5	結論	62
3.6	文献	62

第4章 ポリ(2-オキサゾリン)マクロモノマ-のラジカル単独重合反	応性	6
4.1 要旨	6 5	6.
4.2 緒言	6 5	6.5
4.3 実験	6 7	6.6
4.4 結果と考察	69	第7章
4.4.1 マクロモノマー	69	
4.4.2 時間-反応率曲線と重合速度	7 1	7.1
4.4.3 重合速度の濃度依存性	8 2	7.2
4.4.4 ポリマクロモノマーの分子量	8 7	7.3
4.5 結論	89	7.4
4.6 文献	9 0	7.
第5章 ポリ(2-オキサゾリン)マクロモノマーのラジカル共重合反応	性	7.
5.1 要旨	93	7.
5.2 緒言	93	7.5
5.3 実験	96	7.6
5.4 結果と考察	98	第8章
5.4.1 マクロモノマー	98	
5.4.2 共重合の方法とモノマーの反応性比の求め方	98	8.1
5.4.3 共重合反応性	99	8.2
5.5 結論	113	8.3
5.6 文献	114	8.4
第6章 ポリ(2-オキサゾリン)マクロモノマーの官能基移動重合		8.
6.1 要旨	1 1 6	
6.2 緒言	1 1 6	8.
6.3 実験	1 1 7	8.
6.4 結果と考察	1 2 2	
6.4.1 マクロモノマー	1 2 2	8.

6	.4.2 官能基移動重合	123
6 5 6	.4.3 リビングポリマクロモノマーの停止反応	128
6 5 6 . 5	結論	1 3 1
6 7 6 . 6	文献	132
69 第7章	ポリ(2-オキサゾリン)鎖を有するセグメント化ポリウレタンの合	
6 9	成と性質	
7 1 7 . 1	要旨	133
8 2 7 . 2	緒言	134
8 7 7.3	実験	135
8 9 7.4	結果と考察	139
9 0 7	.4.1 ポリオキサゾリングリコール	139
7	.4.2 セグメント化ポリウレタンの合成	140
93 7	.4.3 生成ポリマーの性質	149
93 7.5	結論	160
96 7.6	5 文献	160
98 第8章	ポリ[エチレン-co-(酢酸ビニル)-g-(2-アルキル-2-	
98	オキサゾリン)]の合成と抗血栓性	
98 8.1	要旨	164
99 8.2	2 緒言	164
113 8.3	3 実験	165
114 8.4	結果と考察	169
8	.4.1 ポリ[エチレン- <i>co-</i> (酢酸ビニル)- <i>g</i> -(2-アルキル-	
1 6	2-オキサゾリ ン)]の合成法	169
8 1 6	.4.2 ポリ[エチレン- <i>co-</i> (酢酸ビニル)]の部分ケン化	173
8 1 1 7	.4.3 ケン化ポリマーのトシル化またはブロモアセチル化によるマクロ	
122	開始剤の合成	173
1 2 2 8	.4.4 マクロ開始剤への 2-オキサゾリン類のグラフト	173

8.4.5 グラフト共重合体の抗血栓性	178
8.5 結論	180
8.6 文献	180

-

第1章 緒 論

1.1 はじめに

1.1.1 ポリ(2-オキサゾリン)と機能性高分子

2-オキサゾリン(2-oxazoline, OZO)類は五員環イミノエーテル類の中で、重合化学¹) および有機化学²)的研究が最も数多くしかも詳細に展開されている化合物である。2-アルキ ル-2-オキサゾリン(ROZO)は適当な求電子化合物の作用により開環異性化重合して、 ポリ(2-オキサゾリン)即ちポリ(N-アシルエチレンイミン)(PAEI)の構造を有す るポリマーを与える。重合は通常カチオン活性種を媒体とするリビング重合になる場合が多 い¹)。重合開始剤としては特に、スルホン酸誘導体のメチルトシラート、メチルトリフラート 等、およびハロゲン化アルキルのヨウ化メチル、ハロゲン化ベンジル、ハロゲン化アリル等が 用いられている¹)。

ポリ(2-アルキル-2-オキサゾリン)(PROZO)は、ジメチルホルムアミドあるい はジメチルアセトアミド等の非プロトン性アミド溶媒の高分子同族体であって、ROZOユ ニット内のアルキル基がメチルおよびエチル基の場合は親水性、ブチル基程度以上の炭素数の 場合には疎水性になる¹⁾。また、アルキル鎖長が長くなると規則的な分岐構造となる。このよ うに、PROZOはアルキル基の種類を変化させることにより、多様な機能を発現することが 出来る。

このような特性を利用して、多様な機能性高分子が合成されている。非イオン系高分子界面

活性剤としては、親水性ROZOと疎水性ROZOから成るプロック共重合体³、末端に長鎖 アルキル基を有する親水性PROZO⁴、テトラヒドロフランと親水性ROZOとのプロック 共重合体⁵)等が水中で優れた表面張力低下能を示す。親水性ROZO(B)とスチレン (A)とのBAB型トリプロック共重合体は、B鎖が結晶部としてミクロドメインを形成する ミクロ相分離構造より成ることが認められた⁶。ポリ(2-エチル-2-オキサゾリン)が、 スチレン等の分散重合によるポリマー微粒子生成の安定剤として有効であった⁷の、スチリル末 端PROZOマクロモノマー(R = Me, Et, etc.)は、エタノールー水中における スチレンとの共重合の安定剤として挙動し、単分散ポリマー微粒子が得られた⁸)。親水ー疎水 ROZOの共重合体が塩化ビニルの懸濁重合の安定剤として有効である⁹ほか、ポリウレタン フィルムの表面にコーティングすると、フィプリノーゲンの吸着と血小板の粘着が低減され る¹⁰。

ポリ(2-メチル-2-オキサゾリン)(PMeOZO)は、ポリ塩化ビニル¹¹)、ポリ フッ化ビニリデン¹¹)等の極性ポリマーとの相溶性に優れている。PMeOZO鎖をグラフト したセルロースジアセタートは、セルロースジアセタートとポリ塩化ビニルとの相溶化剤¹²) 、ポリ(2-メチル-2-オキサゾリン-*block*-ε-カプロラクトン)はナイロン-6とポリ プロピレンとの相溶化剤¹³)として挙動する。PROZO鎖を親水部とするハイドロゲルが合 成された¹⁴)。また、PMeOZO鎖は帯電防止剤として有効である¹⁵)。

1.1.2 テレケリックスとマクロモノマー

末端に官能基を有するポリマーをテレケリックポリマーまたはテレケリックスと言うが、官 能基の数により、モノテレケリックス、ジテレケリックス、トリテレケリックス、およびポリ テレケリックスと分類されている¹⁶)。官能基がビニル基、ヘテロ環等の重合性基の場合には マクロモノマーと称する^{16,17})。ここで用いられるポリマーは比較的低分子量の場合が多く、 これらの大部分は反応性オリゴマーの範疇に入る¹⁸)。

テレケリックスを基にしてブロック共重合体およびセグメント化ポリウレタンが合成され、 熱可塑性エラストマー、分離膜、生体適合性材料、接着剤、コーティング材等に用いられる 他、三次元高分子、グラフト共重合体等、種々の高分子材料が合成されている^{16,18)}。テレケ リックスは、ラジカル重合、アニオン重合、カチオン重合、官能基移動重合、開環重合、段 階的生長重合等多様な高分子合成法を利用して合成されるが、リビング重合を適用出来る場合 には、明確な構造の単分散テレケリックスが高い官能基導入率で得られやすい^{16,18})。リビン グ重合を利用する場合には、適当な官能基を含む開始剤により重合を行う方法、およびリビン グポリマーの活性末端の停止反応を利用して、官能基を導入する方法等がある。ROZOのリ ビング重合を利用して、フェノール性水酸基とアルコール性水酸基を同時に両末端に有するジ テレケリックス¹⁹)、およびモノテレケリックスのシランカップリング剤²⁰)が合成されてい る。

マクロモノマーを合成する方法は、テレケリックスの合成法と原理的に類似しているが、リ ビング重合を直接利用する方法、ポリマー末端の官能基を変換する方法、段階的生長重合によ る方法等がある。

リビング重合においては、重合基を含む開始剤による重合(開始剤法)、および生長末端に 重合基を含む停止剤を作用させること(停止剤法)により、多数のマクロモノマーが合成され ている。アニオン重合においては、スチレン、メタクリル酸メチル等の重合によるもの^{16a}、 開環重合においては、エチレンオキシド²¹)、テトラヒドロフラン²²)、2-オキサゾリン類 (ROZO)、ヘキサメチルトリシロキサン(D₃)²³)等の重合によるものが知られている。 ポリ(2-オキサゾリン)(PROZO)鎖を有するマクロモノマーに関しては、停止剤法に よるものとしては、生長末端をメタクリルアミド基を持つアミン²⁴)またはスチリル基を有す るアミン²⁵)で停止させた例、開始剤法によるものとしては、ビニルベンジルハライド^{24,26}) 等で重合を行った例が報告されている。*p*-ジビニルベンゼンと*N*,*N*、-ジエチル-1,2-エチレンジアミンの重付加反応により、スチリル基を有するポリエチレンイミンマクロモノ マーが合成された²⁷)。

マクロモノマーが初めに注目されたのは、低分子モノマーとの共重合により構造の明確なグ ラフト共重合体が容易に得られる点であって、ICIが石油中の分散重合の安定剤としてのグ ラフト共重合体を合成したのがマクロモノマー法の始まりであり²⁸)、Milkovich らはポリスチ レン、ポリイソプレン等の末端にスチリル基、メタクリラート基、グリシジル基等を結合させ たものを合成してMACROMERと名付け、接着剤、熱可塑性エラストマー等の製造に用い た²⁹⁾。グラフト共重合体においては、親水性-疎水性、結晶性-非晶性、極性-無極性等対 立する性質を組み合わせることが出来るが、マクロモノマー法による共重合体は、分散安定 剤、表面改質剤、相溶化剤、接着剤、抗血栓性材料、選択分離膜等として今後の可能性が大き い³⁰⁾。

PROZOマクロモノマーの共重合に関しては、今までにPROZO鎖の乳化剤または分散 安定剤としての機能を利用したポリマー微粒子の合成⁸⁾、両親媒性高分子の合成³¹⁾等に関す る研究が知られている。

1.1.3 マクロモノマーの重合反応性

マクロモノマーの単独重合により星型様または櫛型様の多分岐高分子が得られる。共重合と は異なり、単独重合の実用面の展開は現在のところ少ないが、高いセグメント密度を利用して 架橋体やブロックおよびグラフト共重合体の形で、ハイドロゲル、相分離材料等に高い可能性 を持つと思われる。このようなマクロモノマーからの高分子合成を行うには、低分子モノマー と比較したマクロモノマーの反応性の特徴を知ることが重要である。マクロモノマーの重合反 応性の研究は、単独重合および共重合の何れにおいても大多数はラジカル重合について行われ ており、アニオン重合³²⁾、カチオン重合³³⁾、および官能基移動重合³⁴⁾等の例は極めて少な い。

マクロモノマーの重合反応性を支配する因子は、第一に重合性官能基の化学反応性であ る^{24,35)}。マクロモノマーになっても、重合性官能基の種類による反応性の違いの傾向は変わ らない。例えば、メタクリル酸メチルとスチレンとの関係と同様、メタクリラート末端マクロ モノマーは、相当するビニルベンジル末端マクロモノマーよりも反応性は高い³⁶⁾。しかしマ クロモノマーの重合系はマクロモノマー自体が高分子であることに起因して、低分子モノマー には見られないつぎのような特徴を有する。

(1) 停止反応だけでなく生長反応も高分子間の反応である

(2) 重合性官能基の濃度が低い 37)

(3) 重合系の粘性が重合初期より高い 35a)

(4) 生長末端周辺のセグメント密度が高い 37)

また、通常の低分子モノマーからのポリマーラジカルは直鎖構造であるが、ポリマクロモノ マーラジカルは分岐構造であって、コイルのサイズが大きい。従って高粘性下の重合系におい てはポリマクロモノマーラジカルとマクロモノマー双方の並進拡散が抑制されることは言うま でもないが、生長反応における生長末端と重合性基の相互侵入および停止反応における生長末 端同士の相互侵入(いずれもセグメント拡散)が阻害される。マクロモノマーのラジカル重合 では、特に停止反応がこれらの拡散律速の影響を強く受けて反応性が低下し^{35b,36)}、その結果 マクロモノマーの重合速度は低分子モノマーに比べて増大することが知られている^{35b,38)}。

マクロモノマーの重合では連鎖移動および一次ラジカル停止が起こりやすく、開始剤効率の 低いことが知られているが ³⁶)、重合進行と共にモノマー濃度が減少するので開始剤効率は更 に減少し、粘性増加による生長反応の拡散律速増大と相まって、重合速度は時間と共に減少し ていく現象が一般に認められる ^{35b})。モノマー初濃度を10⁻² mol/L 程度で行った場合、重 合速度のモノマー濃度依存性は低分子モノマーの場合よりも大きく、モノマー濃度の次数は 1.5~3 程度になる場合が多い ^{35a,b), 39})。これは、モノマー濃度が増すほど系の粘性が上昇 して停止反応の拡散律速の度合いが大きくなり、 $k_p/k_t^{0.5}$ の値が増すためと説明されてい る ³⁶)。開始剤濃度の次数は一般にほぼ0.5であるが、単に二分子停止のみとは限らず、一次

ラジカル停止と一分子停止も存在するとする考え方も多い³⁶)。ポリエチレンオキシドマクロ モノマーの水中における重合では、重合速度は有機溶媒中に比べて著しく速くなることが認め られ、これは重合がミセル中で行われているためと説明された^{35b})。

マクロモノマーの共重合においても重要なことは、マクロモノマーの反応性が相当する低分 子モノマーに比べて変化するかしないかと言うことであるが、現実には変化しないか⁴⁰) また は低下する⁴¹)例が多い。マクロモノマー(M₁)と低分子モノマー(M₂)の反応性比として は、実験上の便宜性等からM₂のモル分率を著しく高くしてr₂のみを求めて議論している場 合が大部分である。しかしこの方式では、マクロモノマーユニット末端ラジカルに対する反応 性の実体は全く把握出来ないのが欠点である。マクロモノマーの反応性に影響を与える因子と しては、マクロモノマー自身が高分子であることに基づいて、1)生長末端とマクロモノマー

4

との間の非相溶性による反発、2)同じ組み合わせの立体的効果(速度論的排除体積効果 等)、3)重合系の粘性、4)局所的濃縮効果、等が挙げられる^{42,43}。コモノマー大過剰系 においては 1)の因子はかなり重要である^{41b,44})。2)の中では、分岐ポリマーラジカルの活 性末端と重合性基間の相互侵入に対する立体障害も重要である⁴⁵)。4)に関して Percec ら は、生長鎖中のグラフト鎖が周囲にマクロモノマーを引きつけて濃縮する効果を見出してい る⁴⁶)。マクロモノマーが高反応性になる数少ない例として、マクロモノマーのミセル形成によ る場合も報告されている⁴⁷)。

1.1.4 官能基移動重合

1983年 Webster らによって見出されたメタクリル酸エステルおよびアクリル酸エステル 等の官能基移動重合(GTP)⁴⁸)においては、開始剤としてはシリルケテンアセタール等、触 媒としては含フッ素アニオン、シアニドイオン、アジドイオン、およびオキシアニオン⁴⁹)等 の求核性アニオンおよびルイス酸が用いられる。GTPはアニオン的なリビング重合であって 分子量制御等が可能であるが、通常のアニオン重合と異なり、室温で行える、エステル⁵⁰)やア ミドあるいはスチリル基⁵¹)等が安定に存在できる点が特色である。開始反応を速くするため に開始剤は生長末端と類似の構造にするのが原則であるが、誘導期間の観測されることもある ⁵²)。GTPの名称は開始剤または生長末端のシリル基が、新しい生長末端に移動する点に由来 しているが、生長種が遊離のエステルエノラートアニオンになるという考え方も提案されてい る ⁵²4)。GTPの生長末端と第2のモノマーとの共重合により、AB ⁵³)およびABA ⁵⁴)プ ロック共重合体が合成され、求核試薬による停止により、ベンジル基 ^{48b})、スチリル基 ⁵⁵)、 臭素原子 ⁵⁰)等が導入された。

1.1.5 ポリウレタン

ポリウレタンは1937年に開発されて以来、熱硬化性および熱可塑性エラストマー、プラ スチックス、繊維、塗料、接着剤等として多様な分野に応用されているが、その中で、セグメ ントが規則的に配列するポリウレタンをセグメント化ポリウレタンと言う⁵⁷⁾。セグメント化ポ リウレタンにおいては、異なるセグメント同士が相分離して多相系を形成し多様な特性を発揮 するが、通常各セグメントが交互に配列したマルチブロック共重合体がプレポリマー法により 合成される⁵⁸⁾。最も多用されるソフトーハード型においては、ソフトセグメントはポリエー テルグリコールまたはポリエステルグリコール等のポリマーグリコールユニット、ハードセグ メントは低分子ジアミンまたはジオール等の鎖延長剤の両端に芳香族ジイソシアナートが結合 した部分であることが多い⁵⁷⁾。

親水-疎水の両セグメントよりなる両親媒性セグメント化ポリウレタンが各種の分野で発展 しつつある。親水部としてはポリエーテル類 ⁵⁹)の外、ホスファチジルコリン ⁶⁰)、第四級アン モニウム塩 ⁶¹)等、疎水部としては、通常のアルキレン鎖の外、高級脂肪酸のモノグリセリ ド ⁶²)、ジエタノールアミンに結合した側鎖の長鎖アルキル基⁶³)等が利用されている。生体適 合性材料としては、血液適合性材料 ⁶⁰)、抗血栓性ポリウレタンとして著名なバイオマー ⁶⁴)に ブレンドして血管内皮細胞の付着と増殖を促進する添加剤 ⁶⁵)、血管狭窄治療用ステントの コーティング剤 ^{59,66}、医薬徐放剤 ⁶⁷)、等が知られている外、ポリエーテルウレタンの表面改 質剤⁶²)、皮革の表面処理剤⁶⁸)、乳化剤 ^{67b})、分離膜 ^{67b})等がある。

1.1.6 グラフト共重合体

グラフト共重合は、二つの異なるボリマー成分を組み合わせて新規の性質を持つボリマーを 得る方法として重要であるが、合成法としては、1)幹ボリマーへの連鎖移動を利用する方 法、2)高分子開始剤法、3)セグメント結合法、および4)マクロモノマー法等がある。 1)~3)は既存の幹ボリマーにグラフト鎖を導入するものであるが、4)を別にすれば、 ROZOのグラフトに関係するのは2)と3)である。ボリスチレンに導入したクロロメチル 基によりMeOZOを重合してグラフト共重合体が合成され、N-アセチルエチレンイミンユ ニットを加水分解して生成するポリ(スチレン-g-エチレンイミン)は良好なキレート形成 能を示した⁶⁹)。また、ポリスチレン中のアミノ基にリビングPROZOを作用させて結合する ことにより、グラフト共重合体が合成された⁷⁰)。1-クロロ-1,3-ブタジエンとプタジエ ンとの共重合体のアリル位塩素⁷¹)、およびポリ塩化ビニル中に存在する微量のアリル位塩 素⁷²)を利用してMeOZOのグラフト共重合が行われた。アセチルセルロースにPMeOZO 鎖を導入すると、抗血栓性が改善される⁷³)。ポリシロキサンのSi-H結合とPMeOZO鎖 末端に形成したアリル基とのカップリングにより、グラフト共重合体が合成された²⁰)。カーボ ンブラック表面のカルボキシル基を利用して、ROZOのグラフト共重合が行われた⁷⁴)。グラ フト共重合体は生体適合性材料としても有用であるが⁷⁵)、ポリ塩化ビニルに導入した光開始 基により、ポリエチレングリコールのマクロモノマーを重合させてグラフトし、抗血栓性に優 れた共重合体が得られた⁷⁶)。

1.2 本論文の目的と概要

本論文では、2-オキサゾリン類の重合を基盤として、PROZO鎖をビルディングブロッ クとして有する各種の高分子の合成に関連する研究を行った。即ち、PROZO鎖を含むテレ ケリックスおよびマクロモノマーの合成を行い、それらの重合反応を検討した。また、新規の 両親媒型グラフト共重合体の合成を行った。

第2章では、PROZO鎖を有するアクリル型、メタクリル型、およびビニルベンジル型マ クロモノマーを、リビングPROZOの停止反応を利用して合成した(Scheme 2)。アクリル 型およびメタクリル型マクロモノマーは、(メタ)アクリラートアニオンによるリビング PROZOの停止(エンドキャップ)、および活性末端(2-オキサゾリニウムイオン)に水 とNa₂CO₃を作用させて得られるアルコールの、(メタ)アクリロイルクロリドによるア シル化の両法によって合成した。ビニルベンジル型マクロモノマーは、ビニルベンジルオキシ ドおよびスルフィドアニオンによるリビング末端の停止により得た。

第3章では、PROZO鎖の両末端に活性種を有するリビングポリマーの、水(Na₂CO₃)、アンモニア、アミン、スルフィドイオン、マロン酸エステルアニオンによる 停止反応を利用して、両末端にそれぞれ水酸基、アミノ基、メルカプト基、およびカルボキシ ル基を有するテレケリックスを合成した(Scheme 2)。

第2章および第3章において、求核試薬が2-オキサゾリニウムイオンの5位を攻撃すれば 末端に官能基が導入されるが、水(Na₂CO₃)の場合には2位への攻撃も起こり、**3**のほ かに**4**も生成する。ただし、Na₂CO₃の存在下で加熱すれば**4**は**3**に異性化する。2単独重合反応性を検討した。その結果、一般にマクロモノマー鎖長とRの鎖長の長いほど重合 速度は速くなり、これは重合系の粘性と生長末端周辺のセグメント密度が増大し、二分子停止 が抑制されるためと説明出来る。重合基がMAの場合は、Rがn-オクチル基になるとn-ブ チル基のときより遅くなると共にマクロモノマー鎖長が長くなるほど重合速度は低下した。こ の理由を立体効果により説明した。水中での重合速度は有機溶媒中に比べて著しく速い。ま た、モノマー濃度の次数は有機溶媒中で1.55~1.71程度と特に高い値を示したが、これ は粘性の増大によるためと結論した。

第5章では、ビニルベンジル末端マクロモノマー(鎖長n=3~31)(M₁)とMMA、 2-ヒドロキシエチルメタクリラート、および N, N-ジメチルアクリルアミドの低分子コモ ノマー(M₂)とのラジカル共重合反応を行い、末端モデルに基づいてモノマーの反応性比 r₁, r₂を求めた。その結果マクロモノマーは、n=3では、相当する低分子モノマーのス チレンに比べて、r₁, r₂の何れに関しても高い反応性を示した。これはマクロモノマー が、生長ラジカル中のマクロモノマーユニットとの間のミセル形成により濃縮され、Harwood らのブートストラップ効果に類似の現象が起こっているものと推察した⁷⁸)。マクロモノマーの 反応性は鎖長の増大と共に低下するが、R=Meの場合のMMAに対する反応性は、n=31 の場合でもスチレンよりも高い値を示す。

第6章では、MA末端マクロモノマー(R=Me, Bu)の官能基移動重合の反応性を検討 したところ、24および50℃でリビング的に進行することが認められた。R=Buの場合 は、テトラヒドロフラン中でテトラ*n*-ブチルアンモニウムフルオリド、R=Meの場合は CD₃CN中でKHF₂を触媒として行うと、重合速度は24℃より50℃における方が速 く、マクロモノマー鎖長が増すと遅くなる。R=Buの場合の生成ポリマーに *in situ* でリビ ング・ポリ(2-*n*-ブチル-2-オキサゾリン)を作用させると、相互停止反応によりブ ロック共重合体が生成した。

第7章では、主としてPMeOZO鎖を有する、親水性グリコールを基に、ジイソシアナー トとして 4,4' -ジフェニルメタンジイソシアナートおよび 1,6-ヘキサンジイソシアナー ト、鎖延長剤としては疎水性の 1,10-デカンジオール、1,10-ジアミノデカン、およびドデ Scheme 2

オキサゾリニウムイオンに対してはメトキシドイオンも2位攻撃を行い、2 を生成することが 知られている²⁰)。アルコキシドイオンで更に検討を行った結果を含めて総括すると、求核試 薬内の攻撃原子が酸素の場合には2位攻撃の起こる可能性があり、求核試薬またはRが嵩高く なるほど2位への反応が抑制されることが分かった。攻撃原子が酸素以外の、窒素、イオウ、 および炭素の場合には、5位攻撃のみが認められる。PROZOマクロモノマーは、Rの種類 によって親水性または疎水性、あるいはアシル側鎖が長くなる等多様な特性を示すことから、 「機能性マクロモノマー」と称することが出来る。

第4章では、メタクリラート(MA)およびビニルベンジル末端マクロモノマーのラジカル

カン二酸ジヒドラジドを用いてプレポリマー法により、親水性-疎水性の両セグメントを持つ セグメント化ポリウレタンを合成した。IRおよび熱分析により、ジイソシアナートと鎖延長 剤ユニットから成るウレタンセグメント、およびPMeOZOセグメントの会合挙動等を検討 した。また、ガラス面に作製したフィルムの接触角の値より、疎水性の長鎖アルキレン鎖が、 親水性でガラス面に親和しやすいPMeOZO鎖と相分離して空気側に移動していることが認 められた。その度合いは延長剤の種類によって異なる。

第8章では、エチレン-酢酸ビニル共重合体にトシラートまたはプロモアセタート基を1.3 ~4.5 mol % 程度導入した高分子開始剤により、2-エチル-2-オキサゾリン

(E t O Z O) およびM e O Z O を 重合させ、疎水性の幹と親水性の枝から成るグラフト共重 合体を合成した。開始基 1 mol 当たり最高結合したR O Z O の数は、トシラート/E t O Z O で 6.19 mol、トシラート/M e O Z O で 5.60 mol、プロモアセタート/E t O Z O で 10.70 mol であり、プロモアセタートの方の反応性が高い。また、幹ポリマー上に遊離水 酸基の多い方が、高いグラフト効率(グラフトしたR O Z O / 使用したR O Z O) が得られ た。グラフト共重合体のフィルムを時計皿上に形成し、表面の抗血栓性を成犬の血液を用いて 測定したところ、グラフト前に比べて抗血栓性の向上することが認められた。表面が親水性に 改善されたためと思われる。

1.3 文献

 (a) S. Kobayashi and T. Saegusa, K. J. Ivin and T. Saegusa eds. *Ring-Opening Polymerization*, Chapter 11, Elsevier Applied Science Publishers, London and New York, 761-807 (1984). (b) S. Kobayashi and T. Saegusa, *Encyclopedia of Polymer Science and Engineering*, Vol.4, 2nd Edn, John Wiley and Sons, New York, 525-537 (1986). (C) S. Kobayashi, *Prog. Polym. Sci.*, **15**, 751-823 (1990). (d) Y. Chujo and T. Saegusa, *Ring-Opening Polymerization*, Hanser, Munich, 239 (1993). (e) K. Aoi and M. Okada, *Prog. Polym. Sci.*, **21**, 151-208 (1996). (f) D. A. Tomalia, H. R. Kricheldorf ed. *Handbook of*

Polymer Synthesis, Marcel Dekker, New York, 747-805 (1991). Publishers, London and New York, 761-807 (1984).

- 2) (a) R. H. Wiley and L. L. Bennett, Jr., Chem. Rev., 44, 44 (1949).
 (b) W. Seeliger, E. Aufderhaar, E. Diepers, W. Feinauer, R.
 Nehring, W. Thier, and H. Hellman, Angew. Chem. Int. Ed., 5, 875
 (1966). (c) J. A. Frump, Chem. Rev., 71, 483 (1971). (d) R. R.
 Schmidt, Synthesis, 333 (1972). (e) P. Deslongchamps, C. Lebreux, and R. J. Taillefer, Can. J. Chem., 51, 1665 (1973). (f) A. I.
 Meyers and E. D. Mihelich, Angew. Chem. Int. Ed., 15, 270 (1976).
- 3) S. Kobayashi, T. Igarashi, Y. Moriuchi, and T. Saegusa, Macromolecules, 19, 535 (1986).
- 4) (a) S. Kobayashi, S. Iijima, T. Igarashi, and T. Saegusa, Macromolecules, 20, 1729 (1987). (b) S. Kobayashi, H. Uyama, N. Higuchi, and T. Saegusa, Macromolecules, 23, 54 (1990).
- 5) S. Kobayashi, H. Uyama, E. Ihara, and T. Saegusa, *Macromolecules*, 23, 1586 (1990).
- 6) (a) K. Ishizu, T. Fukutomi, and T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 21 405 (1983). (b) K. Ishizu, S. Ishikawa, and T. Fukutomi, J. Polym. Sci., Polym. Chem. Ed., 23, 445 (1985). (c) S. Ishikawa, K. Ishizu, and T. Fukutomi, Polym. Bull., 16, 223 (1986).
- 7) (a) S. Kobayashi, H. Uyama, I. Yamamoto, and Y. Matsumoto, Polym.
 J., 22, 759 (1990). (b) S. Kobayashi, H. Uyama, Y. Matsumoto, and
 I. Yamamoto, Makromol. Chem., 193, 2355 (1992).
- 8) S. Kobayashi, H. Uyama, S. W. Lee, and Y. Matsumoto, J. Polym. Sci., Part A: Polym. Chem., **31**, 3133 (1993).
- 9) P. Sunder-Plassmann, Ger. Offn. DE 3,120,358 (1982).

- 10) M. Kaku, L. C. Grimminger, D. Y. Sogah, and S. L. Haynie, J. Polym. Sci., Part A: Polym. Chem., **32**, 2187 (1994).
- 11) S. Kobayashi, M. Kaku, and T. Saegusa, Macromolecules, 21, 33 (1988).
- 12) S. Kobayashi and T. Saegusa, Makromol. Chem. Suppl., 12, 11 (1985).
- 13) G. Sinai-Zingde, A. Verma, Q. Liu, A. Brink, J. M. Bronk, H. Marand, J. E. McGrath, and J. S. Riffle, Makromol. Chem., Macromol. Symp., 42/43, 329-343 (1991).
- 14) (a) Y. Chujo, Y. Yoshifuji, K. Sada, and T. Saegusa,
 Macromolecules, 22, 1074 (1989). (b) Y. Chujo, K. Sada, and T. Saegusa, Macromolecules, 23, 2693 (1990).
- 15) M. Miyamoto, Y. Sano, T. Saegusa, and S. Kobayashi, Eur. Polym. J., 19, 955 (1983).
- 16) (a) E. J. Goethals ed. Telechelic Polymers: Synthesis and Applications, CRC Press, Inc., 1989. (b) O. Nuyken, Encyclopedia of Polymer Science Engineering; 2nd ed., Wiley Interscience: New York, Vol.16, 494 (1985).
- 17) P. F. Rempp and E. Franta, Appl. Polym. Sci., 58, 1 (1984).
- 18) Y. Shimano and S. Kobayashi, Reactive Oligomers, in J. C. Salamone ed. Polymeric Materials Encyclopedia, CRC Press, Inc., 1996.
- 19) S. Kobayashi, T. Mizutani, and T. Saegusa, Makromol. Chem., 185, 441 (1984).
- 20) Y. Chujo, E. Ihara, H. Ihara, and T. Saegusa, Macromolecules, 22, 204 (1989).
- 21) P. Masson, G. Beinert, E. Franta, and P. F. Rempp, Polym. Bull., 7, 17 (1982).

- 22) J. Sierra-Vargas, J. G. Zillix, P. F. Rempp, and E. Franta, Polym. Bull., 3, 83 (1980).
- 23) Y. Kawakami, Y. Miki, T. Tsuda, R. A. N. Murthy, and Y. Yamashita, Polym. J., 14, 913 (1982).
- 24) R. C. Schulz and E. Schwarzenbach, Makromol. Chem., Macromol. Symp., 13/14, 495 (1988).
- 25) S. Kobayashi, M. Kaku, S. Sawada, and T. Saegusa, Polym. Bull., 13, 447 (1985).
- 26) 小林四郎、C. Merlesdorf、田辺隆喜、松尾康司、三枝武夫、 高分子学会予稿集、
 35, 248(1986).
- 27) Y. Nitadori and T. Tsuruta, Makromol. Chem., 180, 1877 (1979).
- 28) (a) P. F. Thompson, F. A. Waite, BP, 1,096,912(1967). (b) F. A. Waite, J. Oil. Col. Chem. Assoc., 54, 342 (1971).
- 29) (a)R. Milkovich and M. T. Chiang, USP, 3,786,116 (1974). (b) R Milkovich, ACS Polym. Prepr., 21, 40 (1980).
- 30) 山下雄也編 「マクロモノマーの化学と工業」、アイピーシー、東京、1989。
- 31) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci., Part A : Polym. Chem., 30, 1489 (1992).
- 32) P. Masson, E. Franta, and P. F. Rempp, Makromol. Chem., Rapid Commun., 3, 499 (1982).
- 33) 浅見柳三、助永伸彦、小川英俊、高木幹夫、高分子学会予稿集、31, 203, 1153
 (1982).
- 34) R. Asami, M. Takaki, and Y. Moriyama, Polym. Bull., 16, 125 (1986).
- 35) (a) Y. Tsukahara, K. Tsutsumi, y. Yamashita, and S. Shimada,
 Macromolecules, 23, 5201 (1990). (b) K. Ito, K. Tanaka, H. Tanaka,
 G. Imai, S. Kawaguchi, and S. Itsuno, Macromolecules, 24, 2348

- (1991). (c) J. Sierra, E. Franta, and P. F. Rempp, Makromol.
 Chem., 182, 2603 (1981). (d) M. Takaki, R. Asami, and T. Kuwabara,
 Polym. Bull., 7, 521 (1982).
- 36) I. Capek and M. Akashi, JMS-Rev. Macromol. Chem. Phys., C33, 369-436(1993).
- 37) P. F. Rempp and E. Franta, Adv. Polym. Sci., 58, 1 (1984).
- 38) I. Capek and M. Akashi, Makromol. Chem., 193,2843 (1992).
- 39) Y.Tsukahara, K. Mizuno, A. Segawa, and Y. Yamashita, Mcromolecules, 22, 1546 (1989).
- 40) (a) G. O. Schulz and R. J. Milkovich, J. Polym. Sci., Polym. Chem.
 Ed., 22, 1633 (1984). (b) J. P. Kennedy and C. Y. Lo, Polym.
 Bull., 13, 343 (1985). (c) R. Asami and M. Takaki, Makromol.
 Chem., Suppl., 12, 163 (1985).
- 41) (a) C. G. Cameron and M. S. Chisholm, *Polymer*, 26, 437 (1985). (b)
 K. Ito, H. Tsuchida, A. Hayashi, T. Kitano, E. Yamada, and T.
 Matsumoto, *Polym. J.*, 17, 827 (1985).
- 42) G. F. Meijs and E. Rizzardo, JMS-Rev. Macromol. Chem. Phys., C30, 305 (1990).
- 43) 西村浩和、葉玉豊一朗、伊藤浩一、田中博茂、橋村和男、高分子学会予稿集、43,1768 (1994).
- 44) (a) Y. Tsukahara, M. Tanaka, and Y. Yamashita, Polym. J., 19, 1121
 (1987). (b) Y. Tsukahara, H. Hayashi, X. L. Jiang, and Y.
 Yamashita, Polym. J., 21, 377 (1989).
- 45) (a) W. Radke and A. H. E. Müller, Makromol. Chem., Macromol.
 Symp., 54/55, 583 (1992). (b) M. F. Farona and J. P. Kennedy,
 Polym. Bull., 11, 359 (1984).
- 46) V. Percec and J. H. Wang, J. Polym. Sci., Polym. Chem. Ed., 28,

1059 (1990).

- 47) (a) 趙 東日、伊藤浩一、高分子学会予稿集、40, 2588 (1991). (b) M. Niwa and N. Higashi, Macromolecules, 21, 1193 (1988).
- 48) (a) O. W. Webster, W. R. Hertler, D. Y. Sogah, W. B. Farnham, and T. V. RajanBau, J. Am. Chem. Soc., 105, 5706 (1983). (b) D. Y. Sogah, W. R. Hertler, O. W. Webster, and G. M. Cohen, Macromolecules, 20, 1473 (1987).
- 49) I. B. Dicker, G. M. Cohen, W. B. Farnham, W. R. Hertler, E. D. Laganis, and D. Y. Sogah, *Macromolecules*, **23**, 4034 (1990).
- 50) (a) W. R. Hertler, T. V. RajanBau, D. W. Ovenall, G. S. Reddy, and
 D. Y. Sogah, J. Am. Chem. Soc., 110, 5841 (1988). (b) W. R.
 Hertler, T. V. RajanBau, and D. Y. Sogah, Polym. Prepr. Am. Chem.
 Soc., Div. Polym. Chem., 29, 71 (1988).
- 51) C. Pugh and V. Percec, Polym. Bull., 14, 109 (1985).
- 52) (a) A. H. E. Müller, Makromol. Chem., Macromol. Symp., 32, 87 (1990). (b) U. Schmalbrock, H. Sitz, and F. Bandermann, Makromol. Chem., 190, 2713 (1989).
- 53) D. Y. Sogah, W. R. Hertler, O. W. Webster, and G. M. Cohen, Macromolecules, 20, 1473 (1987).
- 54) H. Yu, W. Choi, K. Lim, and S. Choi, *Macromolecules*, **21**, 2893 (1988).
- 55) R. Asami, Y. Kondo, and M. Takaki, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 27, 186 (1986).
- 56) D. Y. Sogah and O. W. Webster, J. Polym. Sci., Polym. Lett. Ed., 21, 927 (1983).
- 57) J. H. Saunders and K. C. Frisch, Polyurethane Chemistry and Technology, Part I, Chemistry; Interscience Publishers: New York,

1962.

- 58) C. D. Eisenbach and H. Nefzger, in H. R. Kricheldorf ed. Handbook of Polymer Synthesis, Part A, Marcel Dekker, Inc., New York, 685 (1992).
- 59) I. K. De Scheerder, K. L. Wilczek, E. V. Verbeken, J. Vandorpe, P. N. Lan, E. Schacht, and J. Piessens, Atherosclerosis, 114, 105 (1995).
- 60) Y. J. Li, K. H. Mattews, M. Kodama, and T. Nakaya, Macromol. Chem., Phys., 196, 3143 (1995).
- 61) W. Marconi, A. Martinelli, and A. Piozzi, Eur. Polym. J., **31**, 131 (1995).
- 62) (a) M. Kober and B. Wesslen, J. Appl. Polym. Sci., 54, 793 (1994).
 (b) M. Kober and B. Wesslen, J. Polym. Sci., Part A: Polym. Chem.,
 30, 1061 (1992)
- 63) 佐藤守之、ポリマーダイジェスト、42,46(1990).
- 64) J. H. Lawson, J. Fukumasu, D. B. Olsen, R. K. Jarvik, T. R. Kessler, D. L. Coleman, and J. Thorac. Cardiovasc. Surg., 78, 150 (1979).
- 65) M. R. Brunstedt, N. P. Ziats, M. Schubert, S. Stack, V. Rose-Caprara, P. A. Hiltner, and J. M. Anderson, J. Biomed. Mater. Res., 27, 499 (1993).

66) N. V. D. S. B., BE 93-285 930324.

- 67) (a) Y. Shikinami and S. Sasatani, EP 87-106969 870514 (b) Y. Shikinami, EP 87-106968 870514
- 68) W. Ritter, R. Zauns-Huber, E. Ruscheinsky, S. D. Ortanderi, DE 92-4223110 920714.
- 69) T. Saegusa, S. Kobayashi, and A. Yamada, Macromolecules, 8, 390

(1975).

- 70) S. Kobayashi, M. Kaku, S. Sawada, and T. saegusa, Polym. Bull., 13, 447 (1985).
- 71) T. Saegusa, A. Yamada, and S. Kobayashi, Polym. J., 11, 53 (1979).
- 72) P. D. Trivedi and D. N. Schulz, Polym. Bull., 3, 37 (1980).
- 73) 賀来群雄、京都大学博士論文、p126(1986).
- 74) Y. Chujo, E. Ihara, H. Ihara, and T. Saegusa, Macromolecules, 22, 2040 (1989).
- 75) N. Tsubokawa, I. Asano, and Y. Sone, Polym. Bull., 18, 377 (1987).
- 76) A.S. Chawla, in E. Piskin ed., Polymeric Biomaterials, 1986.
- 77) 長岡昭二、JP 58-5320.
- 78) H. J. Harwood, Makromol. Chem., Macromol. Symp., 10/11, 331 (1987).

2.1 要旨

ポリ(2-アルキル-2-オキサゾリン)(PROZO)鎖を有するアクリル、メタクリ ル、およびビニルベンジル型マクロモノマーを、2-アルキル-2-オキサゾリン (ROZO)の親電子(カチオン的)開環重合のリビング末端の、求核試薬による停止反応を 利用して合成した。アクリルおよびメタクリル型マクロモノマーの合成は次の二法により行っ た:(1)リビングPROZOの生長種の加水分解により得られるPROZOアルコールと、 アクリロイルまたはメタクリロイルクロリドとの塩基性条件下での反応(二段法)および (2)生長種の、アクリルまたはメタクリル酸のカルボキシラートアニオン、またはトリメチ ルシリルメタクリラートによる停止反応(直接一段法)。ビニルベンジル型マクロモノマー は、ナトリウム *p*-ビニルベンジルオキシドおよびナトリウム *p*-ビニルベンジルスルフイ ドにより、リビングPROZOの生長末端を停止させて合成した。

2.2 緒 言

高分子未端の化学修飾は、生成する末端反応性高分子のマクロモノマーおよびテレケリック スが、多様な材料合成のためのプレポリマーとして利用可能なため、高分子合成の分野におい て益々重要性を増して来ている。親電子(カチオン)重合において¹)、高分子末端に官能基を 導入するための最も効果的な方法の一つは、リビング重合活性末端の求核試薬による停止であ る。2-アルキル-2-オキサゾリン(ROZO)²)のカチオン開環重合はオキサゾリニウム 活性種によって進行し、多様な求核試薬によって停止出来る。官能性ポリ(2-アルキル-2 -オキサゾリン)(PROZO)を、相当するリビングPROZOの停止反応によって合成し た例としては、例えば、スチリル基³)およびアクリルアミド基⁴)を有するポリ(2-フェニル -2-オキサゾリン)マクロモノマーの合成が挙げられる。また、開始剤を利用しても官能基 を導入できるが、ポリ(2-オキサゾリン)類のスチリル型マクロモノマーが、ビニルベンジ ルハライドを開始剤とする2-オキサゾリン類の重合により得られている^{4,5})。マクロモノ マーの応用面に関しては、ビニルベンジル末端基を有するPROZOマクロモノマーをスチレンまたはメタクリル酸メチルと共重合させ、単分散ポリマー微粒子 6,7)、および両親媒性共重合体⁸⁾が得られている。

PROZOを中心とする高分子合成を更に展開する目的で、本研究では、ROZOのカチオ ン開環重合により生成するリビング重合系に対して、カルボキシラートアニオン、水、アルコ キシドイオン、スルフィドイオンのような各種の求核試薬を停止剤として作用させることを検 討し、PROZOのアクリル、メタクリル、およびビニルベンジル型マクロモノマーを合成出 来ることを初めて見出した。本章においては、これらの合成について述べる。

2.3 実験

2.3.1 原料および試薬

溶媒のCH₃CN は P₂O₅ より、E t₂O および THF は金属ナトリウムより、 CH₂Cl₂、ジメチルホルムアミド (DMF)、およびジメチルアセトアミド (DMAc) はC aH₂より蒸留した。市販の2-メチル-2-オキサゾリン (MeOZO)、2-エチル -2-オキサゾリン (E tOZO)、およびE t₃NはKOHより蒸留した。アクリル酸およ びメタクリル酸はp-メトキシフェノールの存在下に蒸留した。p-トルエンスルホン酸メチ ル (MeOTs)は市販試薬を蒸留して用いた。NaH、O-エチルジチオ炭酸カリウム、 CHCl₃、およびクロロトリメチルシランは市販品をそのまま用いた。2-n-プロピル-2-オキサゾリン (PrOZO) 9 および2-n-ブチル-2-オキサゾリン (BuOZO)) 9 は文献により合成した。アクリロイルおよびメタクリロイルクロリド、ヘキサメチルジシ ラザン、および水酸化テトラメチルアンモニウムは市販品をそのまま用いた。アクリルおよび メタクリル酸のナトリウムおよびおよびカリウム塩は、相当する酸をNaOHおよびKOHで 処理して合成し、水から再結晶した。アクリルおよびメタクリル酸の銀塩は、相当するカリウ ム塩と硝酸銀との反応で得、テトラメチルアンモニウム塩は、水酸化テトラメチルアンモニウ ムのメタノール溶液をアクリルまたはメタクリル酸のメタノール溶液に加えて得た。トリメチ た10)。p-ビニルベンジルアルコールは、4-ビニルフェニルマグネシウムクロリドとホルムアルデヒドとの反応で得られるアルコラートの加水分解により合成した; b p, 90℃/0.5 mmHg (79℃/0.25mmHg)¹¹), m p, 24~25℃(23~24℃)¹²)。p-ビニルベンジルメルカプタンは、p-ビニルベンジルクロリドとO-エチルジチオ炭酸カリウムとの反応で生成するO-エチルジチオ炭酸 <math>p-ビニルベンジルエステルを30℃でエチレンジアミンにより分解して得た¹³); b p, 80℃/0.3 mmHg (95~98℃/3mmHg)¹⁴)。

2.3.2 PROZOアルコール(2)の合成

PROZOアルコール (2) の合成の典型的操作法をつぎに示す。MeOZO (6.85g, 80.5 mmol) とCH₃CN (8.0 mL) の溶液に、MeOTs (0.749g,4.02 mmol)) とCH₃CN (4.0 mL) の溶液をアルゴン下0℃で加え、80℃で20h加熱した。生成 ポリマー溶液を、Na₂CO₃ (4.46g,44 mmol) の存在下水 (2.0 mL) と共に18 h還流加熱した。溶媒 (水-CH₃CN) を減圧留去した後、残渣をCHCl₃ (40 mL) に より室温で12h抽出した。不溶分を濾別した後、濾液を減圧乾固してポリ (2-メチル-2 -オキサゾリン) (PMeOZO) アルコール (2) 7.51g (92%) を得た。¹H NMR (CDCl₃): δ = 3.4 (s, CH₂N), 3.0 (br, CH₃N), 2.1(s, CH₃C= O)。

ポリ (2 - エチル-2 - オキサゾリン) (PE t O Z O) およびポリ (2 - n - ブチル-2 - オキサゾリン) (PB u O Z O) アルコール (**2**) も同様に合成したが、水とCH₃ CNを 留去させる代わりに、反応混合液からCH₂Cl₂ (10 mL × 3) で抽出した。

PEtOZOF μ]- μ : ¹HNMR (CDCl₃) : δ = 3.5 (s, CH₂N), 3.0 (br, CH₃N), 2.1~2.7 (br, CH₂C=O), 1.1 (br, CH₃C), . IR:

1630 cm⁻¹ (s, $\nu_{c=0}$, $\mathcal{T} \equiv \mathcal{F}$).

PBuOZO \mathcal{F} \mathcal{W} \exists - \mathcal{W} : ¹HNMR (CDCl₃) : δ = 0.9 (br, CH₃C), 1.1 ~1.9 (br, CCH₂CH₂C), 2.0~2.6 (br, CH₂C=O), 3.0 (s, CH₃

N), 3.4 (s, CH_2N) \circ IR: 1630 cm⁻¹ (s, $\nu_{c=0}$, $\mathcal{T} \cong \mathcal{F}$) \circ

2.3.3 PROZOアルコール (2) のアシル化によるマクロモノマー (3) の合成 2 のアシル化により3 を合成する一般的方法をつぎに示す。PROZOアルコール (2) (2当量) とEt₃N (2.4当量) のCH₂Cl₂ (10mL) 溶液に、アクリロイルまたはメ タクリロイルクロリド (2当量) のCH₂Cl₂溶液を加え、未反応酸塩化物を4~8hの撹 拌により分解する。MeOZOマクロモノマーの合成の場合は、水相を分離して減圧乾固し、 残渣をCHCl₃と12h撹拌して抽出する。不溶分を濾別した後、濾液を減圧乾固してマク ロモノマーを得た。

PMeOZOのアクリル末端マクロモノマー (3) (R=Me, R'=H) : ¹H NMR (CDC1₃) : δ = 5.7~6.4 (br, CH₂=CHC=O) , 4.0~4.4 (br, CH₂OC= O) , 3.4 (s, CH₂N) , 3.0 (br, CH₃N) , 2.1 (s, CH₃C=O) 。 IR : 1720 (m, $\nu_{c=0}$, エステル) , 1630 cm⁻¹ (s, $\nu_{c=0}$, アミド) 。 PMeOZOのメタクリル末端マクロモノマー (3) (R = R' = Me) : ¹H NMR (CDC1₃) : δ = 6.1 (s, *cis* CH=CC=O) , 5.6 (s, *trans* CH=CC=O) , 4.0 ~4.4 (br, CH₂OC=O) , 3.4 (s, CH₂N) , 3.0 (br, CH₃N) , 2.1 (s, CH₃C=O) , 1.9 (s, CH₃C=C) 。 IR : 1710 (m, $\nu_{c=0}$, エステ ル) , 1630 cm⁻¹ (s, $\nu_{c=0}$, アミド) 。

PEtOZOおよびPBuOZOマクロモノマーの合成の場合は、水相よりCH₂Cl₂ (10mL×3)で生成物を抽出し、有機溶液をNa₂SO₄で乾燥した後濾過、濾液を減圧乾 固してマクロモノマーを得た。

PEtOZOのアクリル末端マクロモノマー (3) (R=Et, R'=H) : ¹H NMR (CDCl₃) : $\delta = 5.8 \sim 6.5$ (br, CH₂=CHC=O), 4.1~4.4 (br, CH₂OC= O), 3.4 (s, CH₂N), 3.0 (br, CH₃N), 2.0~2.6 (br, CH₂C=O), 1.1 (br, CH₃C) . IR: 1720 (m, $\nu_{c=0}$, IZ = JV), 1630 cm⁻¹ (s, $\nu_{c=0}$, Z = V).

PEtOZOのメタクリル末端マクロモノマー (3) (R = Et, R' = Me) : ¹H NMR (CDC1₃) : δ = 6.0 (s, *cis* CH=CC=O), 5.6 (s, *trans* CH=CC= O), 4.0~4.4 (br, CH₂OC=O), 3.4 (s, CH₂N), 3.0 (br, CH₃ N), 2.0~2.5 (br, CH₂C=O), 1.9 (s, CH₃C=C), 1.1 (br, CH₃ C)。IR:, 1720 (m, ν_{co} , IZFI), 1630 cm⁻¹ (s, ν_{co} , $T \in F$)。 PBuOZOのアクリル末端マクロモノマー (3) (R=Bu, R'=H) : ¹H NMR (CDC1₃) : δ = 5.7~6.4 (br, CH₂=CHC=O), 4.0~4.4 (br, CH₂ OC=O), 3.4 (s, CH₂N), 3.0 (br, CH₃N), 2.0~2.5 (br, CH₂C= O), 1.1~1.9 (br, CCH₂CH₂C) 。IR: 1720 (m, ν_{co} , IZFI), 1630 cm⁻¹ (s, ν_{co} , $T \in F$)。

PBuOZOのメタクリル末端マクロモノマー (3) (R = Bu, R' = Me) : ¹H NMR (CDC1₃) : δ = 6.0 (s, *cis* CH=CC=O), 5.6 (s, *trans* CH=CC= O), 4.0~4.4 (br, CH₂OC=O), 3.4 (s, CH₂N), 3.0 (br, CH₃ N), 2.0~2.6 (br, CH₂C=O), 1.9 (s, CH₃C=C), 1.1~1.8 (br, CCH₂CH₂C), 0.9 (br, CH₃C) 。 IR : 1710 cm⁻¹ (m, $\nu_{c=0}$, IZテ \mathcal{W}), 1630 (s, $\nu_{c=0}$, \mathcal{T} ミド)。

2.3.4 リビングPMeOZO(1)のメタクリル酸銀塩による停止

メタクリル酸銀塩(0.180g, 0.93mmol)、モレキュラーシーブ(3A, 3.00g)、CH₃CN(3.0mL)の混合物を、窒素下暗黒中室温で24h撹拌する。この混合物に 1(0.258g, 0.43mmol)(R=Me; M_n=600; n=4.9)の重合溶液を加え、 60℃で6h撹拌した。褐色不溶分を濾別した後、濾液を1mLまで減圧濃縮する。 CH₂Cl₂(10mL)を加えて生成する少量の不溶分を濾別する。濾液をEt₂Oに加えて

析出する沈殿を乾燥し、マクロモノマー**3**(R=R'=Me) 0.18g(79%)を得た。 GPCによる M_n は610、 M_W/M_n =1.19であった。生成物の¹HNMRとIRスペクトルは、二段法によるマクロモノマーと基本的に一致した。

元素分析 CH₃ (C₄H₇ON)_{6.0} (C₄H₅O₂)としての計算値:C, 57.03;H, 8.25;N, 13.76 (官能基導入率 F = 0.99)。分析値:C, 57.26;H, 8.08;N, 13.51。

アクリル酸銀塩を用いる停止反応も同様に行いマクロモノマー3(R=Me, R'=H)を 得た。

2.3.5 リビングPMeOZOのメタクリル酸テトラメチルアンモニウムによる停止

メタクリル酸テトラメチルアンモニウム (0.100g, 0.63mmol)、モレキュラー シーブ (4A, 3.00g)、DMF (4.0mL)の混合物を窒素下室温で24h撹拌する。こ の溶液にリビングPMeOZO (1) (R=Me; M_n =600; n=4.9)を0.186g (0.31mmol)含む重合溶液を加え、室温で96h撹拌した後、濾過する。濾液をEt₂Oに 加えて生成する沈殿を、CH₂C1₂/Et₂Oにより再沈殿精製してマクロモノマー 0.11 g (64%)を得た。

2.3.6 トリエチルアミン存在下、リビングPBuOZO(1)(R=Bu)のアクリル酸による停止

BuOZO (0.633g, 4.98mmol)、MeOTs (0.208g, 1.12mmol)、
CH₃CN (3.0mL)の混合物をアルゴン中80℃に24h加熱する。0℃に冷却した後、
アクリル酸 (0.119g, 9.65mmol)とEt₃N (0.167g, 1.65mmol)をこの
順序で重合溶液に加え、80℃で15h加熱する。混合物を室温に冷却し溶媒を減圧留去す

る。残渣をCHCl₃ (20mL) に溶解し、1N NaHCO₃水溶液で2回洗浄する。有機相 を無水Na₂SO₄で乾燥した後減圧乾固してマクロモノマー **3** (R = Bu; *M_n* = 700; 0.519g; 73%) を得た。

Et₃N存在下のリビングPEtOZO**1**(R=Et)のアクリル酸による停止も同様に行い、マクロモノマー**3**(R=Et; M_n =720)を収率84%で得た。

2.3.7 トリエチルアミン存在下、リビングPMeOZO(1)(R=Me)のア クリル酸による停止

MeOZO(0.560g, 6.58mmol)、MeOTs(0.186g, 1.00mmol)、 CH₃CN(3.0mL)の混合物をアルゴン中80℃に24h加熱する。0℃に冷却した後、 アクリル酸(0.103g, 1.43mmol)とEt₃N(0.200g, 1.65mmol)をこの 順序で重合溶液に加え、80℃で15h加熱する。混合物を室温に冷却し溶媒を減圧留去す る。残渣をCHC1₃(20mL)に溶解し、1NNaHCO₃水溶液で抽出する。水相を減圧 乾固し、残渣をCHC1₃中で6h撹拌して抽出する。濾過した後、濾液を減圧乾固してマク ロモノマー**3**(0.577g;定量的)を得た。

2.3.8 ピリジン存在下、リビングPBuOZO(1)(R=Bu)のアクリル酸 による停止

BuOZO (0.66g, 5.79mmol)、MeOTs (0.186g, 1.00mmol)、 CH₃CN (3.0mL)の混合物をアルゴン中80℃に24h加熱する。0℃に冷却した後、 アクリル酸 (0.151g, 2.10mmol) とピリジン (0.200g, 2.58mmol)をこの 順序で重合溶液に加え、80℃で20h加熱する。混合物を室温に冷却し溶媒を減圧留去す る。残渣をCHC1₃ (20mL) に溶解し、1NNaHCO₃水溶液で2回洗浄する。有機相 を無水Na₂SO₄で乾燥した後減圧乾固してマクロモノマー (**3**) (R = Bu; M_n = 950; 0.71g; 97%; F = 0.30)を得た。

2.3.9 リピングPMeOZO (1) (R = Me)のトリメチルシリルメタクリ

ラートによる停止

トリメチルシリルメタクリラート (0.194g, 1.23mmol) とCH₃CN (3mL)の 溶液に、リビングPMeOZO**1**を0.354g (0.59mmol)を含む重合溶液を加え、窒素 下60℃に96h加熱する。混合物を室温に冷却した後、Et₂0 (30mL)を加えて沈殿す るポリマーをCH₃CN/Et₂Oより再沈殿精製してマクロモノマー (**3**) (GPCによる $M_n = 560; M_w/M_n = 1.36$)の白色固形物0.24g (72%)を得た。¹H NMR (CD₃CN): $\delta = 7.4$, 7.6 (MeC₆H₄SO₃), 6.1 (s, *cis* CH=CC=O), 5.6 (s, *trans* CH=CC=O), 4.2 (br, CH₂OC=O), 2.9~3.9 (s, CH₂ N), 3.0 (s, CH₃N), 2.3 (s, CH₃Ar), 2.0 (s, CH₃C=O)。IR: 1640 (s, ν_{co} , \mathcal{T} ミド), 1720 cm⁻¹ (m, ν_{co} , \mathcal{I} ステル)。 δ 4.2および 2.0 のシグナルの積分比より、**3**の官能基導入率は42%で、トシラートアニオンの含有率 は、CH₃Nプロトンと芳香族プロトンの積分比より61%であった。

2.3.10 リビングPBuOZO (1)の、ナトリウム p-ビニルベンジルオキシ ド (10a)を用いる停止反応による p-ビニルベンジル型マクロモノマー (11a) (R = Bu)の合成

11a の合成の典型的例をつぎに述べる(Entry 31, Table III)。BuOZO(1.980g,
15.60 mmol)とMeOTs(0.630g, 3.40 mmol)を、窒素下 CH₃CN(9 mL)
中で 80 ℃、20 h加熱した。別途に、p-ビニルベンジルアルコール(0.820g,
6.10 mmol)を窒素下 THF(15 mL)中で NaH(0.138g, 5.75 mmol)により
処理して 10a の溶液を得た。この溶液に、リビングPBuOZOの溶液を加え、室温で90
h撹拌した後濾過した。濾液を減圧乾固下残渣をCHC1₃に溶解した溶液を大量のヘキサン
に投入して生成する沈殿を真空乾燥して、マクロモノマー11aの白色固形物 2.21g(89)

%) を得た。 $M_n = 780; M_w / M_n = 1.16$ (GPC) 。¹H NMR (CD₃CN) : $\delta = 7.51 \sim 7.21$ (m; C₆H₄), 6.99~6.53(m; -CH=), 5.89~5.13(m; = CH₂), 4.54(s; OCH₂Ar), 3.38(s; NCH₂), 2.97(d; CH₃N), 2.23(br; CH₂C=O), 1.40(br; CCH₂CH₂C), 0.90(t; CH₃C)。IR : 1640 cm⁻¹(s; C=O)。

元素分析 CH₃ (C₇H₁₃ON) 5.0 (C₉H₉O) としての計算値: C, 68.93; H,
9.90; N, 8.93。分析値: C, 69.18; H, 10.06; N, 8.68。
1H NMR スペクトルにおける δ 7.51~7.21 と 2.97 のシグナルの積分比より計
算すると、11a の官能基導入率は 0.99 であった。

2.3.11 リビングPMeOZO (1)の、ナトリウム p-ビニルベンジルスル
 フィド (10b)を用いる停止反応による p-ビニルベンジル型マクロモノマー(11b)
 (R=Me)の合成

11b の合成の典型的例をつぎに述べる (Entry 41, Table III)。 MeOZO(3.910g, 46.00 mmol)と MeOTs(0.542g, 2.91 mmol)を、窒素下 CH₃CN(21 mL) 中で 80 ℃、24 h 加熱した。別途に、p-ビニルペンジルメルカプタン(0.787 g, 5.24 mmol)を窒素下 THF (13 mL) 中で NaH(0.138g, 5.75 mmol)によ り処理した後、CH₃CN(10 mL)で希釈して **10b** の溶液を得た。この溶液に、リビング PMeOZOの溶液を加え、室温で24h 撹拌した後濾過した。濾液を減圧乾固した残渣を CH₃CNに溶解した溶液を大量のE t₂O に投入して生成する沈殿を真空乾燥して、マクロ モノマー **11b** の白色粉末 2.00g(93%)を得た。 $M_n = 1640, M_w/M_n = 1.17$ (GPC)。1H NMR (CD₃CN) : $\delta = 7.56 \sim 7.05$ (m, C₆H₄), 7.01~ 6.53(m, -CH=), 5.92~5.15(m, =CH₂), 3.81(s, SCH₂Ar), 3.38(s, NCH₂), 2.98(d, CH₃N), 2.41(br, N-C-CH₂S), 1.92(s, CH₃C=O)。

$I R : 1 6 4 0 \text{ cm}^{-1} (s, C=O)_{\circ}$

元素分析 CH₃ (C₄H₇ON) _{15.2} (C₉H₉S) としての計算値: C, 58.33; H, 8.19; N, 14.60; S, 2.20。分析値: C, 58.15; H, 8.26; N, 14.39; S, 2.01。

2.3.12 生成物の分析

1H NMR スペクトルは JEOL・JNM FX60Q型 FT NMR 分光計により、テト ラメチルシランを標準物質として24℃で測定した。IRスペクトルは島津IR-27G型 ま たはJASCO IR-810型 IR分光光度計により測定した。GPCに関しては、ポリスチ レンを標準物質として東洋ソーダ HLC-802UR型 液体クロマトグラフにより、 Tosoh TSKge1カラムを用いて、または島津 LC-3A型 液体クロマトグラフによ り Shodex A803 または JASCO FINE PACK GEL 101カラムを用 いて測定した。VPOによる分子量測定は、コロナ117型 蒸気圧浸透計を用いてCHC1₃ を溶媒として40℃で測定した。

2.4 結果と考察

2.4.1 アクリル型およびメタクリル型マクロモノマーの合成

アクリル型およびメタクリル型マクロモノマーを二つの方法により合成した。一つは、 PROZOのリビング重合の生長末端をNa₂CO₃の存在下に過剰の水で停止し、生成する PROZOアルコールをアクリロイルまたはメタクリロイルクロリドにより、塩基の存在下で アシル化する方法である(二段法)。第二の方法は、生長末端のオキサゾリニウム活性種を、 アクリル酸またはメタクリル酸の金属塩またはテトラアルキルアンモニウム塩により、または メタクリル酸のトリアルキルアンモニウム塩(酸と塩基の混合物)、シリルエステルにより停 止して、アクリルまたはメタクリル基をポリマー末端に導入する方法である(直接一段法)。 Scheme 1

2.4.1 a PROZOアルコールからのアクリルおよびメタクリル型マクロモノ マーの合成 (二段法)

ROZOマクロモノマー(R=Me, Et, Bu)をpートルエンスルホン酸メチル (MeOTs)開始剤により、CH₃CN中80℃、20hの加熱により重合させ、オキサ ゾリニウム活性種を有するリビングPROZO1を合成する。重合溶液に水とNa₂CO₃を 加えて、室温で30min 撹拌して1の活性種を加水分解し、PROZOアルコール2とし た。しかし、分離したポリマーのIRスペクトルによると、少量のエステルアミン型の生成物 5が共存していることが認められた。従って、5を2に変換する必要を生じたが、結局1の 反応混合物を水とNa₂CO₃の存在下に100℃で18h加熱することにより、加水分解と 5から2への変換を良好に行うことが出来た。完全に変換が進行していることは、IRにお ける5のエステルカルボニル基の消滅により確認された。生成ポリマーの構造は、全てアミ ドアルコール2であることが認められる。 Scheme 2

オキサゾリニウム塩6の加水分解において、加水分解中間体(7)の立体電子効果により主 としてエステルアミン8が速度論的生成物として生ずると共に、アミドアルコール9が熱力 学的生成物として生ずる15)。本研究のポリマー同族体の場合は、初めに生成した速度論的生成 物5は、反応混合物を100℃に(長時間)加熱することにより、熱力学的に安定な生成物 2 に完全に異性化した。生成物の1HNMRによると、エステルアミン(5)の存在は認めら れなかった。この反応では、5のエステルの加水分解も考えられるが、アセトニトリル中で水 の量を少量に制限することによって、アミノ基のエステルに対する求核攻撃が優先すると思わ れる。2の鎖長(n)は、重合の仕込み比[ROZO]0/[MeOTs]0により容易に調節出 来る。PROZOアルコールのアシル化は、CH2C12中室温で Et3Nの存在下にアクリ ロイルまたはメタクリロイルクロリドを作用させて行い、マクロモノマー(3)を得た(Table I)。¹H NMRにおけるアクリルまたはメタクリル基のビニルプロトンと、エステル酸素に 隣接するメチレンプロトンのシグナルの積分比より、官能基導入率(F)即ちマクロモノマー (3) 1分子当たりのアクリルまたはメタクリル末端基の数は、ほぼ1.0であることが認めら れた。従ってアルコール2のマクロモノマー3への転換率は定量的と言うことになる。分離 した収率の低くなっているのは、再沈殿操作に原因がある。GPC分析によれば、3の分子量 分布は狭い $(M_w/M_n = 1.14 \sim 1.41)$ 。R = Me および E t のマクロモノマーは、 CH₂Cl₂、CHCl₃、CH₃CN、DMFのような通常の有機溶媒に可溶のほか、水に溶 解する。R=Buの場合は水に不溶であるが、上記の有機溶媒の外Et₂Oに可溶となる。

Table I. Synthesis of Acryl- and Methacryl-Type Macromonomers 3 from PROZO Alcohols 2^{a}

				vieldo			$M_w^{\rm d}$
Entry	R	${\it M}_n{}^{ m b}$ of 2	R'	(%)	M_n^{d}	n d	Mn
1	Me	1860	Н	62	1900	21.3	1.14
2	Me	1860	Me	81	2010	22.4	1.40
3	Et	550	Н	90	580	5.0	1.29
4	Et	1960	Н	91	2110	20.4	1.37
5	Et	550	Me	92	590	4.9	1.15
6	Et	1960	Me	84	2180	21.1	1.32
7	Bu	3400	H	72	3530	27.1	1.35
8	Bu	3400	Me	82	3430	26.2	1.41

a) [chloride]₀/[Et₃N]₀/[2]₀ = 2.0/2.4/1.0; solvent, CH₂Cl₂; temp., room temp.; time, 24 h.

b) Determined by ¹H NMR.

c) Isolated yield.

d) Determined by GPC.

2.4.1.b 直接停止によるアクリルおよびメタクリル型マクロモノマーの合成(直接一段法)

アクリルおよびメタクリル型マクロモノマー3 を、PROZO1のリビング生長種に対す るカルボキシラートアニオンおよびメタクリル酸トリメチルシリル(4)の直接求核攻撃に よっても合成した。停止剤として酸の塩を用いた反応では、これを含む溶液に乾燥用のモレ キュラーシーブ(3A)を加えて24h撹拌する。この混合物にリビングPROZO1の溶 液を加え、Table II に示した条件で反応させる。CH₃CN中でナトリウム、カリウム、または 銀塩を用いた場合、反応混合物は見かけ上不均一状態となる。しかし、これらの塩類は少量 CH₃CN に溶解することが認められたので、停止反応は多分1 と溶解塩との間で行われ、 マクロモノマー3 を生成しているものと思われる。他方、テトラメチルアンモニウム塩の反 応は、DMFおよびDMAc中で均一状態で進行する。トリメチルシリルエステルの場合も、 反応系は終始均一である。以上の全ての重合反応では、3 の鎖長(n)は[ROZO]₀/ [MeOTs]₀比で調節出来る。

検討した停止反応のうちで、銀塩(Entry 13~16)は、反応条件次第で高いF値のマクロモノ マー3 を高収率で与えるため、停止剤として非常に効果的であった。アクリルまたはメタク リル酸とEt₃Nの混合系も良好な停止剤を与えた。停止剤の効率を、高いF値と収率を与え ると言う意味で規定すると、これらは酸との比によって変化した。例えば、アクリル酸/ Et₃Nの比を0.48、1.0、2.3と変化させると、1.0の場合に最も良好な結果を与えた (Entry 27~29)。これらの場合、多分アクリル酸トリエチルアンモニウムが求核種となってい るものであろう。PROZOのRの種類と酸の種類の組み合わせによって、F値は大きく左右 され、R = Me および Et とアクリル酸(Entry 25 および 26)、R = Buとメタクリル酸(Entry 30)の組み合わせが極めて良好な結果を与えた。銀塩の場合にはR = Meとメタクリル 酸の組み合わせが最も高いF値を与えるのに比べると対照的であるが、この原因は現在のとこ ろ明らかでない。アクリル酸/ピリジンの系においては、低いF値のマクロモノマー3が低 収率でしか得られなかった。ナトリウムおよびカリウム塩、トリメチルシリルエステルは比較 Table II. Synthesis of Acryl- and Methacryl-Type Macromonomers 3 by Direct Termination

	Polyme	erizationa			orminatio	- ph			Mac	romono	mer 3	
		[ROZO] ₀		1			Timo	Vield			Mwc	
Entry	R	[MeOTs] ₀	Μ	R'	Solvent	(°C)	(h)	(%)	Mnc	nc	Mn	F d
9	Me	5.2	Na	Н	CH ₃ CN	60	30	81	570	6.1	1.34	0.56
10	Me	5.2	Na	Me	CH ₃ CN	60	30	80	590	6.1	1.28	0.71
11	Me	5.2	K	H	CH3CN	60	30	78	580	6.1	1.39	0.60
12	Me	5.2	K	Me	CH ₃ CN	60	30	76	590	6.0	1.31	0.72
13	Me	5.2	Ag	H	CH3CN	60	20	68	590	6.0	1.23	0.89
14	Me	5.2	Ag	Me	CH ₃ CN	60	6	79	610	6.0	1.19	0.99
15	Me	24.3	Ag	Н	CH ₃ CN	60	20	70	2280	25.9	1.36	0.90
16	Me	24.3	Ag	Me	CH ₃ CN	60	10	75	2310	26.0	1.32	0.98
17	Et	6.5	Ag	Me	CH ₃ CN	60	48	67	780	7.6	1.26	0.66
18	n-Pr	6.6	Ag	Me	CH ₃ CN	60	48	72	940	7.7	1.41	0.58
19	Me	5.2	NMe_4	H	DMF	rt	72	60	550	6.0	1.37	0.36
20	Me	5.2	NMe_4	H	DMA	rt	72	57	530	5.8	1.45	0.36
21	Me	5.2	NMe_4	Н	CH ₃ CN	60	12	59	550	5.8	1.40	0.52
22	Me	5.2	NMe_4	Me	DMF	rt	96	64	580	6.0	1.36	0.61
23	Me	5.2	NMe_4	Me	DMA	rt	96	52	560	6.1	1.29	0.31
24	Me	5.2	NMe_4	Me	CH ₃ CN	60	б	61	600	6.0	1.25	0.86
25	Me	6.6	NHEt ₃ e	H	CH ₃ CN	80	15	100	740	7.6	1.20	0.96
26	Et	5.6	$NHEt_3^{f}$	Н	CH3CN	80	15	84	720	6.4	1.19	0.95
27	<i>n</i> –Bu	4.7	NHEt ₃ g	H	CH3CN	80	15	88	760	5.8	1.35	0.82
28	<i>n</i> -Bu	4.5	$\mathrm{NHEt}_3^{\mathrm{h}}$	H	CH ₃ CN	80	15	73	700	4.9	1.34	0.91
29	<i>n</i> -Bu	4.4	NHEt ₃ i	Н	CH3CN	80	15	78	760	5.3	1.44	0.88
30	<i>n</i> –Bu	4.7	NHEt ₃ j	Me	CH3CN	80	15	79	520	3.3	1.21	0.95
31	<i>n</i> -Bu	5.8	NHPyk	Н	CH ₃ CN	80	15	97	950	8.8	1.32	0.30
32	Me	5.2	SiMe ₃	Me	CH ₃ CN	60	96	72	560	6.0	1.36	0.42
33	Et	6.5	SiMe ₃	Me	CH ₃ CN	60	96	69	820	7.6	1.42	0.60
34	<i>n</i> -Pr	6.6	SiMe ₃	Me	CH ₃ CN	60	96	78	930	7.7	1.38	0.55

- a) MeOTs initiator in CH₃CN at 80°C for 20 h.
- b) $[4]_0/[1]_0 = 2.0$.
- C) Determined by GPC.
- d) Functionality: the number of acrylate or methacrylate group per molecule.
- e) [Acrylic acid]₀/[Et₃N]₀ = 0.73. f) [Acrylic acid]₀/[Et₃N]₀ = 0.60.
- g) [Acrylic acid]_0/[Et_3N]_0 = 0.48.
- h) [Acrylic acid] $_0$ /[Et₃N] $_0$ = 1.0.

j) [Methacrylic acid] $_0$ /[Et₃N] $_0$ = 2.4.

- i) [Acrylic acid] $_0$ /[Et₃N] $_0$ = 2.3.
- k) [Acrylic acid]₀/[Pyridine]₀ = 0.81.

的反応性が低い。トリメチルシリルエステルによる停止反応は多分、トシラートアニオンがト リメチルシリル基を攻撃してメタクリラートアニオンを生じ、これが 1 のオキサゾリニウム 種を攻撃することによって起こっていると推定される。

Fを支配する因子は単純ではないが、基本的にはカルボキシラートアニオンが生成しやすい 事、副生トシル酸塩が安定なこと、カルボン酸塩が溶けやすいこと、副生トシル酸塩が沈殿し やすいこと等が挙げられる。銀塩の結果が良いのは、主としてトシル酸塩がナトリウムおよび カリウム塩より安定なこと、およびカルボン酸塩が多少溶媒に溶けることによると思われる。 テトラメチルアンモニウム塩ではF値が低いのは、カルボキシラートアニオンは生成しやすい ものの、トシル酸塩が沈殿しないためではないかと考えられる。しかし、トリメチルアンモニ ウム塩の場合は、カルボン酸とRの種類によっても異なるとは言え、トシル酸塩が沈殿しない のにかなり F値の高い場合があり、これはテトラメチルアンモニウム塩とは仕込み方法が全く 異なるため、別途の因子も考慮する必要があろう。シリルエステルの反応性の低いのは、カル ポキシラートアニオンの分離のしにくさによると思われる。

マクロモノマーを大量に合成する観点より見た場合は、例えばメタクリル型マクロモノマー に関しては、R = Buについてはメタクリル酸混合系、R = Meについては二段法が、比較的 適用が容易である。銀塩法は、銀塩を得るために多少大きな費用と労力が必要となる。アクリ ル型マクロモノマーに関しては、R = Me および E t についてはアクリル酸混合系が適切で ある。

2.4.2 ビニルベンジル型マクロモノマー(11)の合成

リビングPROZO(1)の生長末端を、ナトリウム*p*-ビニルベンジルオキシド(10a) またはナトリウム*p*-ビニルベンジルスルフィド(10b)により停止して、*p*-ビニルベンジ ル型PROZOマクロモノマー(11)を合成した(Scheme 4)。停止剤法(エンドキャップ法) によるスチリル型PROZOマクロモノマー合成の以前の報告では、ビニルベンジル基を持つ

Scheme 4

Table III. Synthesis of Vinylbenzyl-Type Macromonomers 11

	Polyme	erizationa	Termination ^b Macromonomer 11					.on ^b Macromonomer 11		
		[ROZO] ₀		Time	Yield			Mwc		
Entry	R	[MeOTs] ₀	X in 10	(h)	(%)	Mnc	nc	M _D	<u>F</u> d	
35	Me	5.6	0	72	90	590	5.2	1.21	0.95	
36	Et	4.7	0	72	91	660	5.2	1.20	0.97	
37	Bu	4.6	0	90	89	780	5.0	1.16	0.99	
38	Bu	14.7	0	90	91	1960	14.2	1.14	0.98	
39	Bu	27.2	0	90	90	3560	26.8	1.17	1.00	
40	Mè	5.1	S	24	88	660	5.8	1.19	0.98	
41	Me	15.8	S	24	93	1460	15.2	1.17	0.99	
42	Et	5.3	S	24	92	710	5.5	1.22	1.00	
43	Bu	4.8	S	24	89	800	5.0	1.18	1.00	
44	Bu	16.2	S	24	93	2310	16.9	1.15	0.99	
45	Bu	32.4	S	24	91	3930	29.6	1.19	1.00	

a) MeOTs initiator in CH₃CN at 80°C for 24 h.

b) $[10]_0/[MeOTs]_0 = 1.7$; solvent, THF/CH₃CN; temp., room temp.

c) Measured by GPC using poly(2-methyl-2-oxazoline) as a standard.

d) Functionality determined by ¹H NMR.

第一アミン等が求核停止剤として使われており¹⁶⁾、生成するアンモニウム塩は遊離アミンに変換されていない。もし変換されたとしても、生成するN-H結合はラジカル重合で連鎖移動を 受けやすく、実用上の問題点がある。

ROZOモノマー(R=Me, Et, Bu)は、開始剤のp-トルエンスルホン酸メチル (MeOTs)と共に、CH₃CN中80℃で20h加熱して重合させ、リビング活性種(オ キサゾリニウム塩)を有するPROZO(1)を合成した。**10a**および**10b**は、相当するア ルコールおよびチオールをテトラヒドロフラン(THF)中で処理して得たが、生成溶液に CH₃CNを加えて希釈した。これは、PBuOZOに比べてTHFに対する溶解度の低い PMeOZOおよびPEtOZOの溶解性を高めるためである。この溶液にリビング PROZO(1)を加え、室温で撹拌することによりマクロモノマー(11)を得た。反応中に 徐々に、p-トルエンスルホン酸ナトリウムの沈殿を生ずる。

Table III に示したように、11 の鎖長(n)は[ROZO]₀/[MeOTs]₀の仕込み比に より容易に調節できるが、GPCにより分子量分布(MWD; M_w/M_n)も狭いことが認めら れた。官能基導入率(F)即ちマクロモノマー1分子当たりのビニルベンジル基の数は、1H NMRにおけるフェニレンプロトン(δ 7.1~7.6)とN-メチルプロトン(δ 3.0)の シグナルの積分比より求めたが、概して1.0に極めて近い値となった。10bによる停止は、 10aによる停止に比べると速やかに進行するが、これはオキシドイオンに比べてスルフィド イオンの求核性が高いことによると考えられる。

オキサゾリニウムカチオン(1)との反応において、前述のように水酸化物イオン15,17)は、 オキサゾリニウムの2位を優先的に攻撃するが、メトキシドイオンの反応においても、2位攻 撃が優先して環状生成物 12 を与えやすい。しかし、今回の 10a による1 の停止反応では2 位への求核攻撃は認められず、5位攻撃による開環生成物 13 のみが得られた。オキシドアニ オンが嵩高いビニルベンジル基を有するためであろう。

オキサゾリニウムイオンに対するアルコキシドおよびスルフィドイオンの反応性を、リビン グPROZO(1)を用いて更に検討した。その結果を Table IV に示す。1 の反応率100% における生成物の収率は定量的であった。生成物中における環状生成物 12 の割合は、1H NMRにおける5位のメチレンプロトンのシグナル(t, δ 4.57)と逆末端の N-メチル プロトンのシグナル(δ 2.94~2.96)との積分比より求めた。13 の末端アルコキシル 基に隣接するメチレンプロトンのシグナルは、 δ 3.8 付近に NCH₂のシグナルの肩として 出現するため、定量には利用しにくい。R = Meの場合、1 とMeON a との反応では生成 物中76%の 12 が認められ、これは文献の類似例の70% ¹⁸)とほぼ一致しているが、求核 試率がE t ON a および *tert* – BuOKになると 12 の割合はそれぞれ42および17%と大

Table IV. Termination of Living PROZO 1 with Alkoxide and Sulfide Ions^a

					Product	(12 + 13)
	1			_ 1 _ 1		12 °
Run	R	n	NuM	Time ^D (h)	Yield (%)	12 + 13
1	Me	5.7	MeONa	72	98	0.76
2	Me	5.7	EtONa	72	97	0.35
3	Me	5.7	tert-BuOK	144	95	0.04
4	Me	5.7	EtSNa	24	98	0
5	Bu	5.4	MeONa	80	95	0
6	Bu	5.4	EtONa	80	93	0
7	Bu	5.4	EtSNa	24	97	0

a) $[NuM]_0/[1]_0 = 1.7$; solvent, CH₃CN and THF mixture(3/5); temperature, room temperature.

b) Times required for 100 % conversion of 1.

c) Determined by ¹H NMR.

きく低下した。このような反応性の違いの原因に対しては、塩基性の差異の寄与はあまり大き いとは考えられず、アルコキシドイオンの嵩高さの効果の寄与が大きいと思われる。即ち、 MeO- <E t O- <tet-BuO-の順に嵩高さが大きくなると、オキサゾリニウムイオンの 2位のMe基との間の立体的反発が大きくなり、2位には結合しにくくなるものと思われる。 このような結果は、ビニルベンジルオキシドイオンの反応性についての上記の推定をよく支持 している。求核試薬が NaSE t の場合には **12** は全く認められなかった。Rが Buの場合

Scheme 5

には、求核試薬がスルフィドおよびアルコキシドの何れに対しても **12**の生成は全く認められなかった。これは、Bu基による強い立体障害が主な原因と思われる(Scheme 5)。

2.5 結 論

本研究ではポリ(2-アルキル-2-オキサゾリン)(PROZO)即ちポリ(N-アシル エチレンイミン)に官能基を導入し、PROZO鎖をもつアクリル型、メタクリル型、および ビニルベンジル型マクロモノマーを合成した。

これらのマクロモノマーは、 2-アルキル-2-オキサゾリン(ROZO)のリビングカチ オン重合により得られる、片末端活性のリビングポリマーに対するカルボキシラート、アルコ キシド、スルフィドの各アニオンおよびトリメチルシリルメタクリラートの求核反応により、 重合性基を導入して合成した(直接一段法)。ただし、アクリルおよびメタクリル型マクロモ ノマーは、リビングPROZOの活性末端の加水分解により生成するPROZOアルコールの エステル化によっても合成した(二段法)。

活性末端の2-オキサゾリニウムイオンに対する求核試薬の反応においては、求核原子が酸素の場合は2位への反応が優先しやすいが、イオウの場合には5位のみに作用し、2位への反応は認められない。求核原子が酸素の場合でも、試薬が嵩高くなれば2位を攻撃しにくくなる。

得られたマクロモノマーは、多様な応用面の可能性を有する。例えば、多様なビニルモノ マーとのラジカル共重合により、PROZOグラフト鎖を有する構造の明確な共重合体を合成 出来るが、これらは表面改質剤または界面活性剤³⁰⁾として利用可能である。更に本合成法は、 界面活性能をもつブロック型マクロモノマーのような高機能化PROZOの合成に展開可能で ある。

2.6 文 献

- カチオン重合に対する「親電子重合」の用語について: (a) S. Kobayashi, Ring-Opening Polymerization. ACS Symp. Ser. 1985, NO. 286, 293. (b) 小 林四郎、高分子, 35, 1022 (1986).
- 2) (a) S. Kobayashi, T. Mizutani, and T. Saegusa, Makromol. Chem., 185, 441 (1984). (b) S. Kobayashi, N. Shimidzu, and T. Saegusa, Polym. Bull., 11, 247 (1984).(c) S. Kobayashi, K. Morikawa, N. Shimidzu, and T. Saegusa, *ibid*, 11, 253 (1984).(d) S. Kobayashi and T. Saegusa, Makromol. Chem. Suppl., 12, 11 (1985).(e) S. Kobayashi and T. Saegusa, "Encyclopedia of Polymer Science and Engineering ", John Wiley and Sons, Inc., New York, Vol.4, 525 (1986).(f) S. Kobayashi, T. Igarashi, Y. Moriuchi, and T.Saegusa, Macromolecules, 19, 535 (1986).(g) T. Saegusa and S. Kobayashi,

Makromol. Chem. Macromol. Symp., 1, 23 (1986). (h) S. Kobayashi,
and T. Saegusa, Makromol. Chem. Macromol. Symp., 3, 179 (1986).
(i) M. H. Litt, T. T. Chen, and B. R. Hsieh, J. Polym. Sci., Part
A: Polym. Chem., 24, 3407 (1986). (j) M. H. Litt, B. R. Hsieh, I.
M. Krieger, T. T. Chen, and H. L. Lu, J. Colloid Interface Sci.,
115, 312 (1987). (k) B. L. Rivas and S. I. Ananias, Polym. Bull.,
18, 189 (1987). (l) C. I. Simionescu, G. David, and M. Grigoras,
Eur. Polym. J. 23, 689, (1987). (m) J. M. Rodriguez-Parada and V.
Percec, J. Polym. Sci., Part A: Polym. Chem., 25, 2269 (1987). (n)
P. A. Gunatillake, G. Odian, and D. A. Tomalia, Macromolecules,
20, 2356 (1987). (o) Idem., Ibid, 21, 1556 (1988). (p) S.
Kobayashi, T. Igarashi, S. Iijima, and T. Saegusa, Ibid, 21, 334
(1988). (r) S. Kobayashi, M. Kaku, and T. Saegusa, Ibid, 21, 1921
(1988).

- 3) S. Kobayashi, M. Kaku, S. Sawada, and T. Saegusa, Polym. Bull., 13, 447 (1985).
- 4) R. C. Schulz, and E. Schwarzenbach, Makromol. Chem. Macromol. Symp., 13/14, 495 (1988).
- 5) (a) 小林四郎、C. Merlesdorf、田辺隆喜、松尾康司、三枝武夫、 高分子学会予稿
 集、35,248(1986). (b) D. A. Tomalia and E. A. Zubrisky, U.
 S. Patent 4,011,376, 1977.
- 6) S, Kobayashi, H. Uyama, J. H. Choi, and Y. Matsumoto, Proc. Japan Acad., Ser B, 67, 140 (1991).
- 7) S, Kobayashi, H. Uyama, J. H. Choi, and Y. Matsumoto, Polym International, 30, 265 (1993).
- 8) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci.

Part A : Polym. Chem., 30, 1489 (1992).

- 9) H. Witte and W. Seeliger, Liebigs Ann. Chem., 1974, 996.
- 10) A. Chapman and A. D. Jenkins, J. Polym. Sci., Polym. Chem. Ed., 15, 3075 (1977).
- 11) J. G. Abramo, US Patent 3,055,947 (1962).
- 12) R. L. Letsinger, M. J. Kornet, V. Mahadevan, and D. M. Jerina, J. Am. Chem. Soc., 86, 5163 (1964).
- 13) K. Mori and Y. Nakamura, J. Org. Chem., 34, 4170 (1969).
- 14) 河合和三郎、堤 繁、工業化学雑誌、 62, 1048 (1959).
- (a) P. Deslongchamps, C. Lebreux, and R. J. Taillefer, Can, J.
 Chem., 51, 1665 (1973). (b) P. Deslongchamps, S. Dube, C. Lebreux,
 D. R. Patterson, and R. J. Taillefer, Ibid, 53, 2791 (1975).
- 16) S. Kobayashi, M. Kaku, S. Sawada, and T. Saegusa, Polym. Bull., 13, 447 (1985).
- 17) S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano, Macromolecules,
 22, 2878 (1989).
- 18) Y. Chujo, E. Ihara, H. Ihara, and T. Saegusa, Macromolecules, 22, 2040 (1989).

3.1 要旨

ポリ(2-アルキル-2-オキサゾリン)(PROZO)鎖をもつ、グリコール、ジアミン、ジチオール、およびジカルボン酸のテレケリックスを合成した。官能基の導入は、ビス(2-オキサゾリニウム塩)を開始剤とする2-アルキル-2-オキサゾリンのカチオン開環 重合で得られる、両末端活性のリビングPROZOの、求核試薬による停止反応を利用して行った。

グリコールおよびジアミンは、両活性末端を、水、アンモニア、またはアルキルアミンによ り停止させて合成した。ジチオールは、(1)両末端に活性種を持つリビングPROZOを NaSHで停止する方法、および(2)O-エチルジチオ炭酸カリウムで停止して生成するビ ス(ジチオ炭酸エステル)をアミノリシスする方法により合成した。ジカルボン酸は、両末端 活性のリビングPROZOをマロン酸ジ-tert-ブチルのナトリウム塩により停止して生成する PROZOテトラカルボン酸エステルを加水分解後、脱炭酸して得た。

3.2 緒 言

高分子鎖末端に官能基を有するテレケリックスは、官能基の数によって、モノテレケリック ス、ジテレケリックス、トリテレケリックス、およびポリテレケリックスに分類される」。テ レケリックスは多様な高分子材料のビルディングブロックとして用いられており、今後更に大 きな可能性を有する^{2,3})。テレケリックスは各種の高分子合成法により合成されるが、リビン グ重合を利用出来る場合には、単分散テレケリックスが高い官能基導入率で得られやす い^{2,3,4})。リビング重合によって官能基を導入する方法には、停止剤を利用する方法と開始剤 を利用する方法があるが、多様な停止剤を用意出来る点より、前者が多く用いられる。

2-アルキル-2-オキサゾリン(ROZO)のカチオン開環重合は、条件によってはリビング重合となり、末端活性種として2-オキサゾリニウムイオンを有するリビングのポリ(2-アルキル-2-オキサゾリン)(PROZO)を与える⁵。リビングPROZOに求核試薬

を作用させて停止反応を行うことにより、官能基が導入されている^{6,7})。PROZOはポリ (*N*-アシルエチレンイミン)の構造を有し、極性非プロトン溶媒の高分子同族体であると共 に、アルキル基がメチルおよびエチル基の場合は親水性、プチル基以上の炭素数では疎水性と なる。このようなPROZO鎖を有するテレケリックスを用いて重合反応を行うことにより、 多様な特性を有する高分子材料を合成出来るものと思われる。

本研究では、このような高分子合成を展望して、PROZO鎖の末端に水酸基、アミノ基、 メルカプト基、およびカルボキシル基をそれぞれ有するジテレケリックスを、両末端に活性種 (2-オキサゾリニウム塩)を有するリビングPROZOを、対応する求核試薬によって停止 する反応を利用して合成した。

3.3 実験

3.3.1 原料および試薬

溶媒のCH₃CN および PhCN は P₂O₅より、E t₂O および THF は金属ナトリ ウムより、CH₂Cl₂、ジメチルホルムアミド (DMF)、およびジメチルアセトアミド (DMAc) はC aH₂より蒸留した。市販の2-メチル-2-オキサゾリン (MeOZO)、2-エチル-2-オキサゾリン (E t OZO)、E t N₃、およびP r NH₂ は KOHより蒸留した。p-トルエンスルホン酸メチル (MeOTs)、およびP h N C O は市 販試薬を蒸留して用いた。エチレンジアミン (EDA)、N a H、O-エチルジチオ炭酸カリ ウム、およびCHCl₃は市販品をそのまま用いた。2-n-プロピル-2-オキサゾリン (PrOZO) 8、2-n-ブチル-2-オキサゾリン (BuOZO) 8、2,2'-テトラメチ レンビス (2-オキサゾリン) (1) 8、2,2'-オクタメチレンビス (2-オキサゾリン) (1) 8、マロン酸 ジ-*ten*-ブチル 9、ジフェニルジアゾメタン (Ph₂CN₂)¹⁰、および N a SH¹¹) は文献により合成した。アクリロイルおよびメタクリロイルクロリド、ヘキサメ チルジシラザン、および水酸化テトラメチルアンモニウムは市販品をそのまま用いた。NH₃ のアセトニトリル溶液は、無水硫酸ナトリウムの存在下にCH₃CNにNH₃ガスを通過して 生成する溶液を、0.1N HC1溶液により滴定した。PrNH2のアセトニトリル溶液は、 モレキュラーシーブ(3A)で乾燥した後、同様に滴定した。N, N' -ジメチル-2,2'-テ トラメチレンビス(オキサゾリニウムトシラート)および N, N' -ジメチル-2,2'-オク タメチレンビス(オキサゾリニウムトシラート)(2)は文献の方法により得た¹²)。生成物は CH₃CN / Et₂Oより再沈殿精製した。

3.3.2 リビングPMeOZO (3) の加水分解によるグリコール (4) の合成 開始剤 2 によるMeOZOの重合により得られた、リビングPMeOZO (3) (R=
Me; y=8) (2.77g, 1.45mmol)の重合溶液に、水 (0.6mL)と無水
Na₂CO₃ (1.34g, 13.2mmol)を加え、100℃で24h撹拌する。反応混合物を 減圧乾固した残渣をCHCl₃ (10mL) で2回抽出し、CHCl₃相を無水Na₂SO₄で
乾燥する。乾燥剤を除去後、CHCl₃溶液をEt₂Oに加えて生成する沈殿を乾燥して、
PMeOZOグリコール (4)の白色粉末2.20g (95%)を得た。M_n=1480
(VPO); p+q=13.7。¹H NMR (CDCl₃): δ = 2.7~3.9 (br, CH₂
N), 3.0 (br, CH₃N), 2.1~2.5 (br, NC(=0)CH₂), 2.1 (s, CH₃C=
O), 1.3 (br, NC(=O)C(CH₂)₆CC(=O)N)。

元素分析 C₁₆H₃₀O₂N₂ (C₄H₇ON)_{13.7} (OH)₂としての計算値: C, 57.37; H, 8.70; N, 14.83。分析値: C, 57.15; H, 8.82; N, 15.09。

3.3.3 ピス (ウレタン) (7) の合成

上で得たグリコール(4) (0.157g, 0.11mmol)をCH₃CN (2mL) に溶解し て、フェニルイソシアナート(0.027g, 0.23mmol)を窒素下0℃で加え、60℃で 3h 撹拌した後、1h 還流加熱した。CH₃CN/Et₂Oより再沈殿精製して、相当するビス (ウレタン)**7**の白色粉末0.171g(94%)を得た。¹H NMR (CD₃CN): δ = 8.9 (s, OC(=O)NHPh), $6.8 \sim 7.7$ (m, OC(=O)NC₆H₅), 4.2 (br, CH₂OC(=O)N), $2.7 \sim 3.9$ (br, CH₂N), 3.0 (br, CH₃N), $2.1 \sim 2.5$ (br, NC(=O)CH₂), 2.0 (s, CH₃C=O), 1.3 (br, NC(=O)C(CH₂)₆CC(= O)N) \circ IR: 3130 (w, ν_{NH} , $\neg \nu \nu \sigma \nu$), 1730 (m, $\nu_{c=0}$, $\neg \nu \nu \sigma \nu$), 1640 cm⁻¹ (s, $\nu_{c=0}$, $\gamma \equiv \beta$).

PMeOZO鎖両端へのフェニル基の導入率を、芳香族プロトンとCH3Nプロトンとの積 分比より求めると、定量的であった(F=2.0)。

元素分析 C₁₆H₃₀O₂N₂ (C₄H₇ON)_{13.7} (C₇H₆O₂N)₂ としての計算値: C, 59.20; H, 8.08; N, 14.41。分析値: C, 59.43; H, 8.23; N, 14.64。

3.3.4 リビングPMeOZO(3)のアンモノリシスによるジアミン(6a)の合成

リビングPMeOZO(**3**)(R=Me; y=8)(0.580g, 0.36mmol)とメタ ノール(15mL)の溶液に、NH₃(0.74mmol)のCH₃CN溶液を窒素下0℃で加え 30min 撹拌すると白濁液となる。この溶液にEt₂Oを加えて析出する油状物を乾燥して **5a** の粘ちょう油状物0.580g(98%)を得た。¹H NMR(CD₃CN): δ = 7.2, 7.6(O_3 SC₆H₄C), 5.1(br, CNH₃+), 2.7~4.1(br, CH₂N), 2.9 (br, CH₃N), 2.1~2.5(br, NC(=0)CH₂), 2.3(s, ArCH₃), 2.0 (s, CH₃C=O), 1.2(br, NC(=O)C(CH₂)₆CC(=O)N)。

生成した **5a** (R = Me) とCH₃CN (10mL)の溶液にK₂CO₃ (5.0g)を加え、 得られる懸濁液を室温で48h 撹拌する。不溶分を濾別した後、濾液をEt₂Oに加えて生成 する粉末を乾燥して **6a** (R = Me) (0.35g, 90%)を得た。 M_n =1210 (VPO); p+q=10.5。¹H NMR (CD₃CN): δ = 2.6~3.7 (br, CH₂

N), 3.0 (s, CH_3N), 2.1~2.5 (br, $NC(=O)CH_2$), 2.0 (s, $CH_3C=$ O), 1.3 (br, $NC(=O)C(CH_2)_6CC(=O)N$).

元素分析 C₁₆H₃₀O₂N₂ (C₄H₇ON)_{10.5} (NH₂)₂ としての計算値: C, 57.66; H, 8.97; N, 16.81。分析値: C, 57.43; H, 8.85; N, 17.08。

3.3.5 ピス(ウレア) (8) の合成

上で得たジアミン(**6a**) (R = Me) (0.182g, 0.15mmol) とCH₃CN (2.5 mL) の溶液にフェニルイソシアナート (0.038g, 0.32mmol) をに窒素下で加え、 0℃で2h、室温で2h撹拌する。反応混合液をEt₂Oに加えて生成する沈殿をCH₃CN / Et₂Oにより再沈殿生成してビス (ウレア) **8** (R=Me, R'=H) の白色粉末 0.25g (95%)を得た。¹H NMR (CD₃CN) : δ = 6.1 (s, PhNHC(=O)N), 2.7 ~4.0 (br, CH₂N), 3.0 (br, CH₃N), 2.1~2.5 (br, NC(=O)CH₂), 2.0 (s, CH₃C=O), 1.3 (br, NC(=O)C(CH₂)₆CC(=O)N) 。このポリマーの 官能基導入率は、¹H NMRにおけるフェニルプロトンとCH₃Nプロトンのシグナルの積分 比よりほとんど2.0であった。

元素分析 C₁₆H₃₀O₂N₂ (C₄H₇ON)_{10.5} (C₇H₇ON₂)₂ としての計算値: C, 59.79; H, 8.19; N, 15.98。分析値: C, 59.92; H, 8.30; N, 16.21。

3.3.6 リビングPMeOZO (3)のNaSHによる停止反応を利用する
 PMeOZO ジチオール (9)の合成

ジチオール 9 の合成の典型的例をつぎに述べる (Entry 21, Table III)。MeOZO(2.960g, 34.80 mmol)とテトラメチレンビス (オキサゾリニウムトシラート)(2)(m=4)(1.610g, 2.83 mmol)、CH₃CN(16 mL)の混合溶液を窒素下80℃ で 24h加熱した。無水 NaSH (0.476g, 8.49 mmol) と CH₃CN (5.0 mL)の懸濁 液にリビングポリマーの溶液を窒素下で加え、室温で6h撹拌した。生成混合物を濾過した 後、濾液を大量の Et₂Oに投入して生成する沈殿を CH₃CN / Et₂O により再沈殿精 製してPMeOZO-ジチオール (**9**) の淡黄色固形物 3.790g(95%) を得た。 M_n = 1270, p+q = 11.5, $M_w/M_n = 1.21$ (GPC) 。¹H NMR (CD₃CN) : δ = 3.38 (s, NCH₂), 2.95 (br, CH₃N), 2.67 (m, CH₂S), 1.98 (s, CH₃C=O), 1.33 (t, SH) 。 IR : 1640 cm⁻¹ (s, C=O) 。 元素分析 C₁₂H₂₂O₂N₂ (C₄H₇ON)_{11.5} (SH)₂ としての計算値 : C, 54.80;

H, 8.29; N, 14.88; S, 5.05。分析值: C, 55.03; H, 8.22; N, 15.14; S, 5.15。

3.3.7 PMeOZOジチオール (9) とフェニルイソシアナートの反応による PMeOZO ピス (チオールウレタン) (11)の合成。

上で合成したジチオール **9** (0.423g, 0.33 mmol)をCH₃CN(5.0 mL)に溶解した 溶液に、窒素下0℃ でフェニルイソシアナート (0.083g, 0.693 mmol)を加え、 40℃ にして3h 撹拌した。反応溶液を Et₂Oに加えて生成する沈殿を CH₃CN / Et₂O により再沈殿精製して、相当するビス (チオールウレタン) (**11**) の淡黄色粉末 0.49g(97%)を得た。¹H NMR (CD₃CN) : δ = 9.01(s, NH), 7.78~ 6.60(m, C₆H₅), 3.38(s, NCH₂), 2.98(br, CH₃N), 2.74(br, CH₂S), 1.96(s, CH₃C=O) 。IR : 1720(m, チオールウレタン C=O), 1640(s, アミド C=O), 1540 cm⁻¹(m, チオールウレタン NH)。 元素分析 C₁₂H₂₂O₂N₂ (C₄H₇ON)_{11.5} (C₇H₆ONS)₂ としての計算値 : C, 57.29; H, 7.65; N, 14.38; S, 4.25。分析値 : C, 57.53; H, 7.52; N, 14.15; S, 4.14。 ¹H NMR スペクトルにおけるフェニルプロトン と CH₃N プロトンとの積分比より、上 で得たジチオール (Entry 66, Table VII)の官能基導入率は 1.96 であった。

3.3.8 O-エチルジチオ炭酸カリウムを停止剤として用いるテレケリック・ポリ
 (2-n-プロピル-2-オキサゾリン) (PPrOZO) ジチオール (9) (R =
 Pr)の合成

典型的例をつぎに述べる (Entry 34, Table IV)。 PrOZO(2.733g, 24.15 mmol) とテトラメチレンビス (オキサゾリニウムトシラート) 2 (m = 4) (1.431g, 2.52 mmol), CH₃CN (1.2 mL) の混合溶液を窒素下 80℃で24h加熱した。生成したリ ビングポリマーの溶液を、O-エチルジチオ炭酸カリウム(0.964g, 6.04 mmol)と CH₃CN(50 mL)の溶液に室温窒素下で加え、6h撹拌した。生成する沈殿を濾過後、濾液 を減圧乾固した残渣の固形物を CH₂C1₂ に溶解し、生成溶液を濾過した濾液を減圧乾固し てPPrOZO-ビス(ジチオカーボナート)(**10**)の淡黄色固形物 3.72g(95%)を得た。 生成物の一部 (0.51g) を分析のために分離した。1H NMR (CD₃CN) : $\delta =$ 4.67(q, OCH₂), 3.38(s, NCH₂), 2.97(br, CH₃N), 2.71(br, CH₂S) , 2.27(br, CH₂C=O), 1.40(m, CH₂-C-C=O), 1.37(t, O-C-CH₃), 0.91 (t, CH₃-C-C-C=O)。IR: 1640(s, C=O), 1050 cm⁻¹(m, C=S)。 元素分析 C₁₂H₂₂O₂N₂(C₆H₁₁ON)_{10.9}(C₃H₅OS₂)₂ としての計算値: C, 58.85; H, 9.00; N, 10.62; S, 7.54。分析値: C, 58.58; H, 8.89; N, 10.78; S, 7.36。

生成物の残り (3.21g)を EDA (20 mL) に溶解し、30℃ で3h 撹拌した。反応溶液 を10% H₂SO₄ と氷の混合物に注入し生成物をCHC1₃で抽出した。Na₂SO₄で乾 燥後、溶液を減圧乾固してPPrOZOジチオール(**9**)の淡黄色固形物 2.62g(92%) を得た。 $M_n = 1530$, p+q = 10.9, $M_w/M_n = 1.20$ (GPC)。¹H NMR (CD_3CN) : $\delta = 3.38(s, NCH_2), 2.94(d, CH_3N), 2.62(m, CH_2S),$ 2.29 (br, CH₂C=O), 1.44(m, CH₂-C-C=O), 0.92 (t, CH₃-C-C-C=O), IR: 1640 cm⁻¹(s, C=O),

元素分析 C₁₂H₂₂O₂N₂(C₆H₁₁ON)_{10.9}(SH)₂ としての計算値: C, 60.92; H, 9.51; N, 11.84; S, 4.20。分析値: C, 60.84; H, 9.38; N, 11.99; S, 4.12。

ビス(チオールウレタン)の¹ H NMR スペクトルに基づいて求めた官能基導入率は、 1.94であった。

3.3.9 マロン酸ジーtert-ブチルナトリウム塩(12)を停止剤として利用する
 PMeOZOジカルボン酸(12)(R = Me)の合成

15 の合成の典型的一例をつぎに述べる (Entry 36, Table V)。MeOZO (2.376g,
27.92 mmol) と2 (m = 4) (1.783g, 3.14 mmol) を窒素下CH₃CN (
13 mL) 中で、80℃に24h加熱した。生成したリビングボリマーの溶液を、12 (
4.789g, 20.10 mmol) のTHF (30 mL) とCH₃CN (30 mL) の溶液に加え、室温で3日間撹拌した。不溶分を濾去した濾液を減圧乾固して、マロン酸ジーtertープチルエステル構造を両末端に有するテレケリックボリマー (13) 4.26g (96%) を得た。
M_n = 1470, p+q = 8.1, M_w/M_n = 1.21 (GPC) 。¹H NMR (CD₃CN) :
δ = 3.41(s, NCH₂), 2.96(br, CH₃N), 2.11 (s, CH₃C=O), 1.47 (s, (
CH₃)₃C)。IR: 1740 (m, エステル C=O), 1640 cm⁻¹ (s, アミド C=O)。
元素分析 C₁₂H₂₂O₂N₂ (C₄H₇ON)_{2.1} (C₁₁H₁₅O₄)₂ としての計算値: C,
54.11; H, 7.98; N, 9.60。分析値: C, 54.55; H, 8.31; N, 9.87。
13 (3.231g, 2.20 mmol) とCH₃CN (30 mL) の溶液に、クロロトリメチル
シラン (1.912g, 17.6 mmol) とNaI (2.243g, 14.96 mmol) を加え、

40℃で1h 加熱する。混合物を濾過した後、濾液をE t₂Oに投入して生成する沈殿を CH₃CN (30 mL) に溶解し、0.1N HC1 (5 mL) を加えて室温で25 min 加熱し た。反応溶液を減圧乾固した残渣をCH₃OH (50 mL) に溶解し、Amberlist A-26 (1.00 g, 3.5 meq)を加えて室温で5h 撹拌する。濾過後、濾液をE t₂Oに加えて生成する沈 酸を減圧乾固した。生成物をPhCN (10 mL) に溶解して130℃に3h 加熱した後、透 明溶液をE t₂Oに加えて生成する沈殿をCH₃CN/E t₂O により再沈殿精製して、 PM e O Z O ジカルボン酸 (**15**) 2.11 g (93%)を得た。1H NMR (CD₃CN) : δ = 3.37(s, NCH₂), 2.98(br, CH₃N), 2.47 (br, CH₂COO), 2.01 (s, CH₃C=O)。IR: 1705 (m, カルボキシル C=O), 1640 cm⁻¹(s, アミド C=O)。 元素分析 C₁₂H₂₂O₂N₂ (C₄H₇ON)_{2.5} (C₂H₃O₂)₂ としての計算値: C, 56.24; H, 8.26; N, 13.77。分析値: C, 56.03; H, 8.12; N,

15 とPh₂CN₂との反応による PMeOZO ピス (ペンズヒドリルエステル) (
 16)の合成

13.99。

15 (0.374g, 0.35 mmol) とCH₃CN (5 mL) の溶液に、Ph₂CN₂ (0.204g, 1.05 mmol) とCH₃CN (5 mL) の溶液を窒素下で加え、30 min 還流加 熱した。反応溶液をE t₂Oに加えて生成する沈殿を乾燥して、相当するビス(ベンズヒドリ ルエステル) (**16**) の白色粉末 0.47g (96%)を得た。 $M_n = 1400$, p+q = 8.5, $M_w/M_n = 1.23$ (GPC)。1H NMR (CD₃CN) : $\delta = 7.26$ (s, Ph), 3.36 (s, NCH₂), 2.96(br, CH₃N), 2.40(br, CH₂COO), 1.98(s, CH₃C=O) 。IR: 1740(m, エステル C=O), 1640 cm⁻¹(s, アミド C=O)。 元素分析 C₁₂H₂₂O₂N₂ (C₄H₇ON)_{2.5} (C₁₅H₁₃O₂)₂ としての計算値:C, 65.19; H, 7.74; N, 10.50。分析値:C, 65.38; H, 7.56; N, 10.74.

16 の ¹ H NMR における、 δ 7.26 および 2.96 のシグナルの積分比より求めた**15** の官能基導入率は、1.96であった。**16** の M_n (1400) より **15** の M_n は 1070 と 求められた。

15 (R = Me, Et) 中のカルポキシル基の滴定

PROZOジカルボン酸(15)(R=Me, Et)を水に溶解し、フェノールフタレイン 指示薬存在下に 0.1N NaOHで滴定した。

3.3.10 生成物の分析

1H NMR スペクトルは JEOL JNM FX60Q型 FT NMR 分光計により、テト ラメチルシランを標準物質として24℃で測定した。IRスペクトルは島津IR-27G型ま たはJASCO IR-810型 IR分光光度計により測定した。GPCに関しては、ポリスチ レンを標準物質として東洋ソーダ HLC-802UR型 液体クロマトグラフにより、 Tosoh TSKgelカラムを用いて、または島津 LC-3A型 液体クロマトグラフにより Shodex A803 または JASCO FINE PACK GEL 101カラムを用 いて測定した。VPOによる分子量測定は、コロナ117型 蒸気圧浸透計を用いてCHC1₃ を溶媒として40℃で測定した。

3.4 結果と考察

ビス(2-オキサゾリン)(1)をMeOTsと反応させるとビス(オキサゾリニウムトシ ラート)(2)を与える。2 を開始剤としてROZOを重合させると、両末端に生長活性種を 有するリビングPROZO(3)が生成する。3 の両活性末端の、求核試薬による停止反応を 利用して、PROZO鎖をもつグリコール、ジアミン、ジチオール、ジカルボン酸のテレケ リックスを合成した。ROZOの重合はCH₃CN中80℃で行った。

50

3.4.1 テレケリックグリコール(4)の合成

3 の活性末端を加水分解してPROZOグリコール 4 に転化する場合には、水と Na₂CO₃の存在下に100℃に24h加熱した(Table I)。生成したテレケリックス 4 の 一部をF値の定量のためにフェニルイソシアナートを作用させて相当するビス(ウレタン)(7)とした。7 の¹HNMRにおけるフェニルプロトンと N-メチルプロトンのシグナルの積 分比よりF値を求めたが、1分子当たりの水酸基の含有率は1.94以上であった。加水分解 前後の3 および 4 の分子量はVPOにより求めたが、互いの分子量の差は全ての実験を通し

Scheme 1

Table I. Synthesis of PROZO Glycols 4

			Polymerization	a	Hydrol	ysisb	PROZO glycol 4		
Entry	У	R	[ROZO] ₀ /[2] ₀	M _n c of 3	3 (mmol)	H ₂ O (mL)	Yield (%)	Mnc	p+q c
1	8	Me	14.3	1910	1.45	0.6	95	1480	13.7
2	8	Me	21.3	2480	2.02	1.1	94	2080	20.7
3	8	Me	34.4	3600	1.04	0.9	92	3150	33.3
4	8	Me	46.9	4660	1.12	1.3	97	4200	45.6
5	4	Me	13.9	1830	2.02	0.8	92	1400	13.4
б	4	Me	35.8	3690	0.84	0.8	96	3240	35.0
7	8	Et	12.0	1960	1.50	0.5	91	1570	12.6
8	8	Et	24.9	3280	0.73	0.5	96	2850	25.6
9	8	Pr	12.0	1980	2.24	0.7	90	1600	11.3
10	8	Pr	25.1	3520	0.82	0.6	95	3060	24.2

a) Bis(oxazolinium)(2) initiator in CH_3CN at 80°C for 25 h.

b) Temp., 100°C; time, 24h.

c) Determined by VPO.

て300~500であった。この差は、計算値の308 (2×TsO-2×OH) に近接して おり、3 と4 の構造を支持する一つの因子である。重合度のp+q値はROZOと2 の仕込 み比とよく一致しており、重合がリビング重合であって2 による開始反応が生長反応に比べ て速いことを示唆している。 Scheme 2

7

3.4.2 テレケリックジアミン(6)の合成

PROZOジアミン(6)は、アンモニアまたはn-プロピルアミンのアセトニトリル溶液 を、リビングPROZO3の重合溶液に0℃で作用させて合成した。生成物のPROZOビ ス(アンモニウム塩)(5)は、溶媒を蒸発させると油状物となるが、その構造は1HNMR により確認した。5のアセトニトリル溶液を無水K₂CO₃で処理して遊離ジアミン6を得 た。5よりp-トルエンスルホン酸(TsOH)が完全に除去されているのは、分離した6 の¹HNMRにおけるCNH₂+Rと-O₃SC₆H₄Cに関するプロトンが、全く認められな いことより確認した。これらテレケリックジアミン6は、相当するビス(ウレア)8に容易 に転化出来、8の¹HNMRよりポリマーの両末端は定量的にアミノ化されていることが認 められた。即ち、1分子当たりのアミノ基のF値は1.94以上であった。3から6に変化す ることによる分子量の変化は、全てを通して計算値とほぼ一致した(Entries 11~20)。6の p+q値はここでも[ROZO]₀/[2]₀の仕込み比とよく一致した。これらの結果より、6a と 6bの構造がよく支持される。 Table II. Synthesis of PROZO Diamines 6

			Polymorizationa		Amin	ation ^b	DD000 diamina 6			
Entry	У	R	[ROZO] ₀ /[2] ₀	M _n ° of 3	3 (mmol)	NH ₃ or PrNH ₂ (mmol)	Struc- ture	Yield (%)	Mnc	p+q c
11	8	Me	9.8	1610	0.36	0.75	6a	88	1210	10.5
12	8	Me	21.3	2480	0.24	0.52	6a	92	2160	21.7
13	8	Me	34.4	3600	0.42	0.85	6a	91	3230	34.3
14	4	Me	13.9	1830	0.30	0.62	6a	86	1340	12.7
15	8	Et	22.1	2970	0.62	1.29	6a	87	2580	22.9
16	8	Pr	20.4	3170	0.40	0.84	6a	88	2720	21.3
17	8	Me	11.3	1750	0.41	0.84	6b	89	1430	12.1
18	8	Me	21.3	2680	0.56	1.16	6b	84	2350	22.9
19	8	Me	34.4	3900	0.31	0.62	6b	94	3550	37.0
20	4	Me	13.9	1920	0.35	0.71	6b	93	1570	14.4

a) Bis(oxazolinium) 2 initiator in CH_3CN at 80°C for 25 h.

b) Temp., 0°C; time, 30 min.

c) Determined by VPO.

Scheme 3

3.4.3 テレケリックジチオール (9) の合成

両末端にメルカプト基をもつPROZOテレケリックス(PROZOジチオール、9)を、 3 の生長種をそれぞれ水硫化ナトリウム(NaSH)またはO-エチルジチオ炭酸カリウムで 停止させる反応を利用して合成した。ジチオール合成に用いた方法の一つは、リビング PROZO3を無水NaSHにより室温で停止させる方法である。NaSHとCH₃CNの懸 濁液に、リビングPROZO(3)の溶液を加えてかき混ぜた。3 は、6~24h後に定量的 に停止される。生成したテレケリックス3 は、フェニルイソシアナートで処理すると定量的

Scheme 4

にビス(チオールウレタン)(11)となるが、この1 H NMR により9の官能基導入率 (F)を求めた。即ち、フェニルプロトン(δ7付近)とN-メチルプロトン(δ2.97~ 2.98)の積分比により、11の官能基導入率を求めるとほぼ2.0となり、9のF値も良好 であることが認められた(Table III)。オキサゾリニウムイオン上のアルキル鎖長が長くなる と、3の完全転化に要する時間が長くなると共に、F値も多少低い値となった。これは、オキ サゾリニウムイオンの求電子性が、Rの鎖長の増加と共に減少するためと思われる。

Table III. Synthesis of Dithiols 9 by Termination of Living PROZO 3 with NaSHa

	Pol	ymeriz	ation ^b			Dithiol 9				
			[ROZO] ₀	Termination ^c				M_W d		
Entry	<i>m</i> in 2	R	[2] ₀	Time(h)	Yield (%)	M _n d	p+q d	M _n	Fe	
21	4	Me	12.3	б	95	1270	11.5	1.21	1.96	
22	4	Me	24.8	б	93	2310	23.7	1.15	1.92	
23	4	Me	36.8	б	92	3260	34.9	1.20	1.94	
24	8	Me	15.4	6	96	1650	14.8	1.16	1.98	
25	8	Me	25.0	6	91	2390	24.0	1.19	1.96	
26	4	Et	11.2	24	92	1470	11.9	1.17	1.90	
27	8	Et	13.1	24	93	1690	13.5	1.18	1.88	
28	4	Pr	11.4	72	90	1500	10.7	1.17	1.82	

a) See structures 9 and 11.

b) In CH₃CN at 80°C for 24 h.

c) $[NaSH]_0/[2]_0 = 3.0$; at room temperature.

d) Measured by GPC using poly(2-methyl-2-oxazoline) as a standard.

e) Obtained for the corresponding samples of 11 determined by ¹H NMR.

第二の方法は、リビングPROZO3 をO-エチルジチオ炭酸カリウムで停止してビス (ジチオカーボナート) (10) にすることを利用するものである(Table IV)。停止反応は室 温で撹拌するのみで完全に進行し、副生するカリウムトシラートはCH₃CN溶液より沈殿す るので、ろ過により完全に除去することが出来る。10 はエチレンジアミン(EDA)で処理 することにより、9 に転化出来る¹³⁾。この方法による9 のF値は、何れの場合(R=Me,

Et, Pr)も 2.0に極めて近い値であった。

以上のように、NaSHおよびO-エチルジチオ炭酸カリウムの双方から生ずるスルフィ ドイオンは、リビングPROZO3の求核停止において良好な反応性を示すと共に、オキサ ゾリニウムイオン上の2位攻撃による生成物の存在は認められなかった。

Table IV. Synthesis of Dithiols 9 via PROZO-bis(dithiocarbonate) 10^{a}

	Pol	ymeriz	ation ^b	Termination ^c	Dithiol 9 ^d					
			[ROZO] ₀	[EtOCSSK]0	wield			M _w e		
Entry	m in 2	R	[2] ₀	[2]0	(%)	Mne	p+q e	Mn	F ^f	
74	4	Me	10.7	2.4	90	1150	10.1	1.20	1.94	
75	4	Me	24.8	2.4	87	2310	23.7	1.16	1.96	
76	4	Me	36.8	2.4	89	3290	35.2	1.18	1.90	
77	8	Me	10.6	2.4	90	1230	10.4	1.21	1.92	
78	4	Et	11.9	2.4	86	1440	11.6	1.17	1.94	
79	4	Pr	9.6	2.4	87	1530	10.9	1.20	1.94	
80	4	Pr	26.2	2.4	91	3190	25.6	1.19	1.90	

a) See structures 9-10.

- b) In CH₃CN at 80°C for 24 h.
- c) At room temperature for 3 h.
- d) After treating PROZO-bis(dithiocarbonate) 10 with ethylenediamine at 30°C for 3 h.
- e) Measured by GPC using poly(2-methyl-2-oxazoline) as a standard.
- f) Determined by ¹H NMR of **11**.

3.4.4 テレケリックジカルボン酸(15)の合成

リビングPROZO (3) に、マロン酸のジーtert-ブチルエステルのナトリウム塩(12)

を室温で作用させると。停止反応が起こって両末端にマロン酸ジーten-ブチルエステル基を有 するPROZOのテトラカルボン酸エステル(13)を生成する。13を遊離のテトラカルボン 酸(14)とした後、脱炭酸させるとPROZOのジカルボン酸(13)が生成した(Scheme 6; Table V)。両末端にカルボキシル基を有するテレケリック・ポリテトラヒドロフラン (PTHF)が、リビングPTHFのマロン酸ジエチルのナトリウム塩による停止反応を利用 して合成されている¹⁴)。しかし、PROZO鎖のN-アシルエチレンイミンユニットのアミド 結合は、マロン酸のprim-アルキルエステルの加水分解に要する苛酷な条件により変化を受け やすい。従って本研究では、遊離カルボン酸への分解を行いやすくするために、ten-ブチルエ ステルを用いた。12による2の停止反応では、12からのカルバニオンはオキサゾリニウム

Scheme 6

12

13

イオンの5位のみを攻撃し、2位への攻撃は認められなかった。生成物 13 のエステル基は穏 和な条件で分解することが出来て¹⁵⁻¹⁷)、生成物の遊離テトラカルボン酸(14)には、IR お よび¹H NMRにより、それぞれエステルのカルボニル基および*tert*-プチル基の存在は認め られなかった。14 をベンゾニトリル中130℃に3h加熱するとPROZOジカルボン酸(15)が得られた。テレケリックポリマー15 は、Ph₂CN₂で処理すると、定量的に相当す

Table V. Synthesis of Dicarboxylic Acids 15 by Termination of Living PROZO 3 with 12^{a}

	Polymerization b			Termination c		Dicarboxylic Acid 15^{d}					
			[ROZO] ₀		Conversion	vield			M _w d	F	
Entry	m in 2	R	[2] ₀	(day)	(%)	(%)	M _n d	p+q d	Mn	Ae	Bţ
81	4	Me	8.9	3	100	89	1070	8.5	1.23	1.96	1.98
82	4	Me	23.5	3	100	87	2300	23.0	1.18	1.92	1.94
83	4	Me	31.2	3	100	92	2940	30.5	1.22	1.94	1.96
84	8	Me	9.8	3	100	89	1320	10.8	1.20	1.98	2.00
85	8	Me	20.3	3	100	90	2080	19.7	1.19	1.96	1.92
86	4	Et	10.9	7	98	89	1360	10.2	1.17	1.90	1.94
87	4	Et	28.3	7	97	90	3060	27.4	1.23	1.86	1.86
88	8	Et	12.5	7	98	93	1570	11.8	1.18	1.88	1.90
89	4	Pr	11.4	10	92	85	1580	10.9	1.17	1.82	-
90	4	Pr	22.6	10	94	81	2810	21.8	1.20	1.80	-

a) See structures 13-16.

b) Initiator of 2 in CH₃CN at 80°C for 24 h.

c) $[12]_0/[2]_0 = 6.4$; at room temperature.

d) Measured by GPC using poly(2-methyl-2-oxazoline) as a standard.

e) Functionality obtained for the corresponding samples of 16 determined by ¹H NMR.

f) Functionality determined by titration with NaOH.

るビス (ベンズヒドリルエステル) (16) となる (Scheme 7)。Table V 中の 15の分子量は、 16 のGPCによる分子量より導出した。15 のF 値は 16 の¹H NMRスペクトルにおけ る、δ 7.26 のフェニルプロトンとδ 2.96 の N-メチルプロトンとのシグナルの積分 比より求めた。15 が水溶性 (R=MeおよびE t) の場合には、F値は滴定法によっても求め た。両法によって求めた値はよく一致しており、15 のF値は、R=Prの場合にわずかに低い のを除いて、一般に高い値を示した。

3.4.5 2-オキサゾリニウムイオンの反応性

リビングPROZOに対する求核試薬の反応の結果を総括すると、少なくとも求核原子がS およびNの場合には、SH- やNH₃のように立体障害の少ない場合でも、OH- やアルコ キシドイオンと異なり、2-オキサゾリニウムイオンの2位に対する攻撃は認められない。ま た、2-オキサゾリン類の重合の生長反応においても、2位置換体の場合はもとより、2位に 置換基の無い場合でも2位への攻撃は起こらない¹⁸)。このような傾向を、基質および求核試薬 のそれぞれ酸・塩基としての硬・軟の考え方より説明出来るように思われる¹⁹)。

撃による生成物は認められなかった ⁷⁾。これはOH- やMeO- に比べると嵩高さの大きいことが主な原因であろう。

3.5 結 論

本研究ではポリ(2-アルキル-2-オキサゾリン)(PROZO)即ちポリ(*N*-アシル エチレンイミン)に官能基を導入し、PROZO鎖をもつグリコール、ジアミン、ジチオー ル、ジカルボン酸のテレケリックスを合成した。

これらのPROZOテレケリックスは、2-アルキル-2-オキサゾリン(ROZO)のリ ビングカチオン重合を利用して合成した。即ち両末端活性のリビングポリマーに水、アンモニ ア、アミン、スルフィドイオン、カルバニオンの各求核試薬を作用させて官能基を導入した。

活性末端の2-オキサゾリニウムイオンに対する求核試薬の反応においては、求核原子が酸素の場合は2位への反応が優先しやすいが、イオウおよび窒素の場合には5位のみに作用し、2位への反応は認められない。これは、5位は2位よりもソフトな酸であることによると考えられる。

これらのテレケリックスは、多様な応用面の可能性を有する。例えば、テレケリックグリ コール、ジアミン、ジチオール、およびジカルボン酸はポリウレタン、ポリチオールウレタ ン、ポリウレア、ポリアミド³¹⁾ 等縮重合系ポリマー合成のプレポリマーとなる。

3.6 文献

- 1) E. J. Goethals, Telechelic Polymers, CRC Press, Inc., 1989.
- O. Nuyken, Encyclopedia of Polymer Science and Engineering; 2nd ed., Wiley Interscience, New York, Vol.16, 494 (1985).
- 3) Y. Shimano and S. Kobayashi, Reactive Oligomers, in J. C. Salamone ed. Polymeric Materials Encyclopedia, CRC Press, Inc., 7381 (1996).
- 4) (a) S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano,
 Macromolecules, 22, 2878 (1989). (b) Y. Shimano, K. Sato, and S.
 Kobayashi, J. Polym. Sci., Part A: Polym. Chem., 33, 2715 (1995).

- 5) (a) S. Kobayashi and T. Saegusa, Encyclopedia of Polymer Science and Engineering, Vol.4, 2nd Edn, John Wiley and Sons, New York, 525 (1986). (b) S. Kobayashi, Prog. Polym. Sci., 15, 751 (1990).
 6) S. Kobayashi, T. Mizutani, and T. Saegusa, Makromol. Chem., 185,
- 441 (1984).
- 7) S. Kobayashi, M. Kaku, S. Sawada, and T. Saegusa, Polym. Bull., 13, 447 (1985).
- 8) H. Witte, W. Seeliger, Liebigs Ann. Chem., 1974, 996.
- 9) C. Raha, W. S. Johnson, and R. W. Kluiber, Org. Synth., Coll. Vol. IV, 263 (1967).
- 10) L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol.1, John Wiley & Sons, Inc., New York, 338 (1976).
- 11) R. E. Eibeck, Inorg. Synth., 2, 128 (1963).
- 12) S. Kobayashi, T. Igarashi, Y. Moriuchi, T.Saegusa, Macromolecules, 19,535 (1986).
- 13) K. Mori and Y. Nakamura, J. Org. Chem., 34, 4170 (1969).
- 14) S. Kobayashi, H. Sato, S. Nishihara, and S. shoda, Macromolecules, 23, 2861 (1990).
- 15) D. E. Bugner, Polymer Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 27, 57 (1986).
- 16) T. Morita, Y. Okamoto, and H. Sakurai, J. Chem. Soc., Chem. Commun., 874 (1978).
- 17) T. Ishizone, A. Hirao, and S. Nakahama, Macromolecules, 22, 2895 (1989).
- 18) T. Saegusa, H. Ikeda, and H. Fujii, Polym. J., 3, 35 (1972).
- 19) R. G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963).
- 20) R. G. Pearson and J. Songstad, J. Am. Chem. Soc., 89, 1827 (1967).

21) (a) R. G. Pearson, Chem. Eng. News, p.91, May 31 (1965). (b) U. Bellucco, L. Cattalini, F. Basolo, R. G. Pearson, and A. Turco, J. Am. Chem. Soc., 85, 3533 (1963). (c) R. G. Pearson, Science, 151, 172 (1966).

4.1 要旨

ビニルベンジル末端 ポリ(2-アルキル-2-オキサゾリン)マクロモノマー(VB-PROZO-n; n (重合度の概略値)=3~34)およびメタクリラート末端PROZO マクロモノマー (MA-PROZO-n; $n=4\sim34$) のラジカル単独重合反応性を、 CD₃CN、CDC1₃、および D₂O中で、AIBN(有機溶媒中)またはV-50(水中) を開始剤として、60℃ で検討した(R=Me、Bu、および *n*-オクチル(Oc) 基)。 CD₃CN中(R=Me, Bu)では、nが長いほど、またRがMeよりBuの場合の方が、 重合基はVBよりMAの方が重合速度は速く、MA-PBuOZO-14([M] $_0$ =44 mmol/L) では、初速度 $R_p = 7.47 \times 10^{-7} mol/L \cdot sec$ であった。CDC13 中VB末 端マクロモノマーの重合では、POcOZOマクロモノマーの R_pはPBuOZOマクロモノ マーの R_nより高く、nの増加と共に上昇するが、MA末端マクロモノマーの重合では、 POcOZOマクロモノマーの Rpは、少なくとも同程度のnのPBuOZOマクロモノマー の R_pより低く、nの増加と共に低下した。水中においてPMeOZOマクロモノマーは、 CD3CN中に比べて約 9~14 倍速度が速い。モノマー濃度の次数は、有機溶媒中で 1.55~1.71、水中で約1.0、開始剤濃度のCD3CN中での次数はほぼ0.5となっ た。

4.2 緒 言

2-アルキル-2-オキサゾリン(ROZO)のカチオン開環重合により、ポリ(N-アシ ルエチレンイミン)の構造を有するポリ(2-アルキル-2-オキサゾリン)(PROZO) が生成する。PROZOは、ジメチルアセトアミドのような極性非プロトン溶媒の高分子同族 体であって、アルキル基がメチル基およびエチル基の場合は親水性、n-プチル(Bu)基以
上の炭素数の場合は疎水性を示す¹)。ROZOのリビング重合を利用して開始剤法または停止 剤法によりPROZO鎖をもつ単分散マクロモノマーを合成出来るが、今までスチリル末端²) 、メタクリラート末端³およびビニルエステル末端⁴)等多様なマクロモノマーが合成されてい る。PROZO鎖を持つマクロモノマーは、親水性または疎水性の特性を有する外、RがBu 基程度以上では長いアシル基側鎖を有するマクロモノマーとなる。このように、Rの種類に よって多様な特性を備えることから、これらPROZOマクロモノマーを「機能性マクロモノ マー」と称することが出来る。

マクロモノマーは、機能性高分子材料の一つの出発物質として、極めて大きな重要性と発展 の可能性を有する。即ち、マクロモノマーと低分子モノマーとの共重合により構造の明確なグ ラフト共重合体が得られると共に、単独重合により星型様または櫛型様の多分岐高分子が得ら れる。このようなマクロモノマーからの高分子合成においては、低分子モノマーと比較したマ クロモノマーの反応性の特徴を知ることが必須事項である。マクロモノマーの重合反応性につ いての検討は、ほとんどはラジカル重合により行われているが、多様なマクロモノマーの共重 合 5) および単独重合2b, 5k, 6) に関して数多くの研究例が報告されている。マクロモノマーの重 合反応性を支配するのは、第一に重合性官能基の化学反応性であるが^{2b, 6a, b, 7)}、これがマクロ モノマー内のポリマー鎖の影響を直接受けている例は少ない。マクロモノマーの重合反応性の 特有の因子としては、マクロモノマー自体が高分子であることに起因して、(1)停止反応だ けでなく生長反応も高分子間の反応である、(2)重合性官能基の濃度が低い、(3)重合系 の粘性が重合初期から高い⁶⁰、(4) 生長末端周辺のセグメント密度が高い^{6b, 0}、等が挙げ られる。共重合においてはこれらに基づいて、反応性に及ぼすマクロモノマーと生長ラジカル との間の、速度論的排除体積効果等の立体効果 5f, g, h) および相溶性 5b, の影響が議論され ており、また単独重合においては、(1)~(4)の因子が素反応を介して、重合速度および ポリマクロモノマーの分子量等に大きな影響を及ぼすことが知られている^{5k,6a,b)。}

PROZOマクロモノマーのラジカル共重合に関しては今までに、PROZO鎖の乳化剤ま たは分散安定剤としての機能を利用したポリマー微粒子の合成⁸⁾、親水性マクロモノマーとス チレンまたはメタクリル酸メチル(MMA)との共重合による両親媒性高分子の合成⁹⁾等に関 する研究が知られているが、単独重合に関しての研究はラジカル重合およびイオン重合の何れ についても、全く報告されていない。

PROZOマクロモノマーは、前述のように単一基本構造で多様な特性を有するマクロモノ マーであるが、その重合反応性が先ずラジカル単独重合においてどのような特徴を示すか興味 が持たれる。即ち、非プロトン溶媒類似の構造により親水または疎水性を示すことから、例え ば溶媒効果の影響が重要と思われる。また、側鎖を持つマクロモノマーのラジカル重合に関す る系統的研究はほとんどみられないが、PROZOマクロモノマーはアルキル鎖を長くするこ とにより容易に側鎖を伸ばすことが出来る。この結果、マクロモノマーおよび生長ラジカルの セグメント密度が大きく増大するであろう。本研究では、このような見地からPROZOマク ロモノマーの重合反応性の研究の一環として、ビニルベンジルおよびメタクリラート末端 PROZOマクロモノマー(R=Me, Bu, および n-オクチル(Oc)基)のラジカル単 独重合の反応性を、マクロモノマーの構造(末端重合基、アルキル基)、鎖長、重合溶媒等各 種因子を変化させて検討した。

4.3 実験

4.3.1 原料および試薬

溶媒類のうち、CH₃CNはP₂O₅の存在下に、Et₂Oは金属ナトリウムの存在下に蒸留 精製した。2-メチル-2-オキサゾリン(MeOZO)はKOHの存在下に市販品を蒸留精 製した。2-n-プチル-2-オキサゾリン(BuOZO)¹⁰、2-n-オクチル-2-オキ サゾリン(OcOZO)¹²およびp-ビニルベンジルクロリド(VBC)¹¹)は文献により合 成した。メタクリロイルクロリドは市販品を減圧蒸留した。重合溶媒のCD₃CN、 CDC1₃、およびD₂Oは、市販品をそのまま用いた。開始剤の、2, 2'-アゾビス(2-ア ミジノプロパン)二塩酸塩(V-50)は市販品をそのまま用いたが、2, 2'-アゾビス(イソ ブチロニトリル)(AIBN)は市販品をエタノールから再結晶した。

4.3.2 マクロモノマー

p-ビニルベンジル(VB)末端PROZO(VB-PROZO)マクロモノマー(3)

は、つぎのようにして合成した。ROZOをCH₃CN中VBCとNaIを開始剤として 80℃で24h加熱すると、リビングPROZOの溶液が得られる²⁴)。これにH₂Oと Na₂CO₃を加えて80℃に20h加熱し、活性末端のオキサゾリニウム塩を加水分解して ω末端に水酸基を導入した。この加水分解の際、マクロモノマーの一部の重合を伴うが、重合 物はつぎのようにして除去しマクロモノマーを精製した。反応混合物を減圧乾固した後の残渣 をCHC1₃に溶解したが、R=Meの場合は重合物がCHC1₃に不溶なのでナトリウム化 合物と共に濾別した。R=Bu および Oc の場合はCHC1₃溶液が二層となるが、下層は 重合物溶液であって分液により除去出来る。CHC1₃溶液を減圧乾固後、マクロモノマーの 残渣を、R=Meの場合はCHC1₃/Et₂Oにより、R=Buおよび Oc の場合は CHC1₃/へキサンにより再沈殿して精製した。

メタクリラート (MA) 末端PROZO マクロモノマー (MA-PROZO) (5) は、メ チルトシラートを開始剤としてROZOを重合して生成するリビングPROZOを加水分解し て末端をアルコールとし、これをCH₃CN 中でモレキュラーシーブ (3A) により乾燥した 後、Et₃N存在下CH₃CN 中でメタクリロイルクロリドによりアシル化して得た。精製 は、VB-PROZO と同様にして行った。

4.3.3 重合

ラジカル重合は、有機溶媒または水中でアルゴン雰囲気下60℃で行った。有機溶媒中で は、溶媒としてCD₃CNおよびCDC1₃、開始剤としてAIBNを用い、水中では、溶媒 としてD₂O、開始剤としてV-50を用いた。マクロモノマーの反応率は、基本的には¹H NMR により求めた。即ち、反応容器としてはNMR試料管(5mmφ)を用いて、VB-PROZOの場合はビニル基のメチレンプロトン(δ 5.80, 5.25)とベンジル基のメチ レンプロトン(δ 4.28)の積分比の変化率より、MA-PROZOの場合はビニル基のメ チレンプロトン(δ 6.03~5.60)とメタクリロキシ基に隣接するPROZO鎖末端のメ チレンプロトン(δ 4.24)の積分比の変化率より求めた。またNMR法の妥当性の確認の ために、マクロモノマーの反応率をGPCによっても求めた。この場合、RI検出器における 単位サンプル量当たりのピーク面積はマクロモノマーとポリマクロモノマーで違いはないもの と仮定し、反応率pを(1)式により算出した。

$$p = \frac{A_p}{A_m + A_p}$$
(1)

p:反応率, Am:マクロモノマーピークの面積, Ap:ポリマクロモノマーピークの面積

4.3.4 分析

¹H NMRスペクトルは日本電子 JNM FX60Q型スペクトロメーターによりテトラメ チルシランを標準物質として測定した。GPCは、島津LC-10AD型 液体クロマトグラフ と島津RID-6A型示差屈折計により測定したが、GPCカラムとしては、Shodex A-803とJASCO FINE PACK GEL-101を連結(溶媒, CHC1₃; 温度, 室温; 流速, 0.8 mL/min)、または Tosoh TSKgel GMH_{HR-M}を2本連結 (溶媒, DMF; 温度, 58 °C; 流速, 0.8 mL/min)させて測定した。表面張力は、協和界 面科学CBVP-A3表面張力計(Wilhelmy 法)を用いて測定した。

4.4 結果と考察

4.4.1 マクロモノマー

2-オキサゾリン類のリビング重合を利用して、*p*-ビニルベンジル末端ポリオキサゾリン (VB-PROZO) マクロモノマー(**3**) およびメタクリラート末端ポリオキサゾリン (MA-PROZO) マクロモノマー(**5**) を合成した。それらの結果を Table I に示す。そ れぞれのマクロモノマーのコード名を、VB-PROZO-n および MA-PROZO-n とする。nは重合度の概略値である。

VB-PROZO-n (3) は、*p*-ビニルベンジルクロリドを開始剤とする開環重合により 生成するリビングPROZO (2)^{2a})の生長末端を80℃で加水分解して、ω 末端に水酸基を Scheme 1

もつアルコール型のものを合成した。加水分解の際3は一部重合するが、生成するポリマク ロモノマーは、R=Meの場合はCHC1₃に不溶であることを利用して除去出来る。Rが BuおよびOcの場合は、ポリマクロモノマーのCHC1₃溶液が、3のCHC1₃溶液と混 在させると相溶せずに下層に分離することを利用して、3とポリマクロモノマーを分離した。 MA-PROZO-n(5)は、メチルトシラートによりROZOを重合して生成するリビン グPROZOの生長末端を加水分解して得られるアルコールを、メタクリロイルクロリドによ りアシル化して合成した³)。

3 および 5 の M_w/M_n は、大部分 1.10 ~ 1.19 となり、リビング重合の特徴を反映して狭い値である。また、¹H NMRによって求めた重合性基導入率(F)は、3 の場合には

Table I. Macromonomers of Poly(2-alkyl-2-oxazoline)(PROZO)

	М	Mn		M _₩ b	
Macromonomer ^a	NMR	GPC	DP_n^{b}	Mn	FC
VB-PMeOZO-3	470	440	3.3	1.31	1.00
VB-PMeOZO-13	1230	1140	12.8	1.10	1.00
VB-PMeOZO-34	3030	2910	34.0	1.16	1.00
VB-PBuOZO-13	1810	1760	13.2	1.12	1.00
VB-PBuOZO-24	3120	3190	23.5	1.15	1.00
VB-POcOZO-3	730	680	3.0	1.34	1.00
VB-POcOZO-16	3100	3010	15.7	1.17	1.00
MA-PMeOZO-8	800	830	8.2	1.18	1.00
MA-PMeOZO-15	1340	1410	14.6	1.12	0.98
MA-PMeOZO-32	2820	2730	32.0	1.17	0.99
MA-PBuOZO-7	1010	960	7.2	1.15	1.00
MA-PBuOZO-14	1920	1840	14.3	1.13	1.00
MA-PBuOZO-34	4390	4020	33.7	1.19	0.99
MA-POcOZO-4	800	880	3.8	1.30	1.00
MA-POCOZO-8	1660	1740	8.5	1.16	1.00
MA-POcOZO-11	2140	2230	11.1	1.17	1.00

a) POcOZO : poly(2-n-octyl-2-oxazoline).

b) Determined by GPC.

全て1.00、5 の場合も 0.98~1.00 であり、極めて良好であった。

4.4.2 時間-反応率曲線と重合速度

重合溶媒としてはCD₃CN、CDC1₃、およびD₂Oを、それぞれのモノマーに対して Table II のように用いた。CD₃CNに対してはPOcOZOマクロモノマーは不溶、D₂Oに

c) F : functionality of polymerizable end group determined by $^{1}\mathrm{H}$ NMR.

Table II.	Polymerization Solvents
Solvent	Macromonomer $(3 \text{ and } 5)$
	(R)
CD ₃ CN	Me, Bu
CDCl ₃	Bu, Oca
D ₂ O	Me

a n-Octyl group.

対してはPBuOZO および POcOZO マクロモノマーが不溶である。 Figure 1 に、PMeOZOマクロモノマーのCD₃CN中におけるラジカル重合の時間-反 応率曲線を示した。MA-PMeOZO-13およびVB-PMeOZO-13の場合は、重合

Figure 1. Time versus conversion plots in the polymerization of MA-PMeOZO-15 (\bigcirc by NMR, \blacksquare by GPC), MA-PMeOZO-32 (\triangle by NMR), VB-PMeOZO-13 (\bullet by NMR, \checkmark by GPC), and VB-PMeOZO-34 (\blacktriangle by NMR) in CD₃CN at 60°C with [M]₀ = 44 mmol/L and [I]₀ = 2.20 mmol/L.

混合物のGPC分析による結果も示したが、¹HNMRによる結果はこれらとよく一致して おり、反応率の測定法として適切であることを示している。これらの曲線を比較すると、重合 性末端基がVBおよびMAの何れの場合も、マクロモノマーの鎖長(n)が長い方が重合は速 い速度で進行することがわかる。それぞれの曲線より求めた重合の初速度(R_p)の値を Table 皿に示したが、CD₃CN中におけるそれぞれのマクロモノマーの R_p 値は、同一重合条件で 求めた n=3のモデルモノマーの R_p 値に比べて高い値となり、検討したnの範囲ではnが 大きくなるほど R_p 値は高い値を示した。有機溶媒中での反応速度は、長時間になると大きく 低下する。Tobolskyの dead-end polymerization と同様の現象によるものであろう¹²)。 マクロモノマーの重合においては、マクロモノマー自体が高分子であることに起因して、重

Table III. Polymerization Rate of PMeOZO and PBuOZOMacromonomers in CD3CNa

Entry	Macromonomer	$R_{\rm p} \times 10^{7} { m b}$ (mol/L·sec)	Conversion at 100 h (%)
1	VB-PMeOZO-3	0.74	18.5
2	VB-PMeOZO-13	1.09	24.2
3	VB-PMe0ZO-34	2.22	38.8
4	VB-PBuOZO-13	4.45	46.4
5	VB-PBuOZO-24	5.85	54.8
6	MA-PMeOZO-8	1.00	32.7
7	MA-PMeOZO-15	3.34	48.2
8	MA-PMeOZO-32	5.64	54.1
9	MA-PBuOZO-7	1.64	38.5
10	MA-PBuOZO-14	7.47	56.8
11	MA-PBuOZO-34	9.41	65.5

a) $[M]_0 = 44 \text{ mmol/L}; [I]_0 = 2.2 \text{ mmol/L}; \text{ temperature,} 60 °C.$

b) Initial rate of polymerization.

合初期より重合系の粘性は高い。また、ボリ(マクロモノマー)ラジカルは、溶液中において 星型状態となり、生長末端はコイルの中心付近に存在するとみられるが¹³)、生長末端周辺の セグメント密度は、低分子モノマーの生長ラジカルに比べると著しく高い状態となる。即ち、 高い粘性とセグメント密度は、ボリ(マクロモノマー)ラジカルおよびマクロモノマーの並進 拡散を妨げると共に、反応サイト同士(ラジカル同士およびラジカルとマクロモノマー)の相 互侵入(セグメント拡散)を阻害するであろう。このような効果によると、生長反応は勿論抑 制されることになるが、特に停止反応の抑制効果が大きいと思われる。即ち、停止反応は加 律速であって並進拡散とセグメント拡散に依存することが知られているので¹⁴)、停止反応を二 分子停止と仮定した場合、高いセグメント密度をもつ生長ラジカル同士の反応である停止反応 が、特に大きな影響を受けよう。従って、マクロモノマーは低分子モノマーに比べて生長反応 性も低下するが、停止反応性の低下が著しく、重合速度が増大するものと考えられる。 Tsukahara らは、メタクリラート末端ボリスチレンマクロモノマー($M_n = 4400$)のラジ カル単独重合の k_p および k_1 (L/mol·sec)が、メタクリル酸メチル(MMA)のラジカル重合 の k_p および k_1 に比べて、それぞれ 1/20 および 1/3000 になることを報告してい る 6a)。

PROZO鎖のアルキル基がBu基になると分岐性マクロモノマーとなるが、PMeOZO マクロモノマーとの R_p 値の違いを、同程度の鎖長のマクロモノマー同士で比較すると、VB -PMeOZO-13 および VB-PBuOZO-13 の場合に 1.09×10-7 および 4.45×10-7 mol/L·sec、MA-PMeOZO-15およびMA-PBuOZO-13の場 合に 3.34×10-7 および 7.47×10-7 mol/L·sec となって、末端がVB、MA何れの場 合についてもPBuOZOマクロモノマーはPMeOZOマクロモノマーよりも重合速度が速 い(Table III)。鎖長が同程度であれば、当然PBuOZOマクロモノマーの方が PMeOZO-34を比べると R_p はそれぞれ 4.45×10-7 および 2.22×10-7 mol/ L·sec であって、前者は後者よりも分子量は低いが重合速度は速い。また、MA-PBuOZO-14 とMA-PMeOZO-32の間でも、 R_p はそれぞれ 7.47×10-7 および 5.64×10⁻⁷ mol/L·sec であって、前者は後者よりも分子量は低いが重合速度は速 い。このように、ペンタノイル基の側鎖が存在した場合に、アセチル側鎖の場合よりも、マク ロモノマー鎖長はある程度短くても重合反応性の高まることが認められた。これは、長い分岐 の存在によって生長末端周辺のセグメント密度が高まり、ポリマーラジカルの並進拡散が妨げ られると共に、生長末端同士の相互侵入が一層抑制され、特に停止反応の反応性が低下したこ とが大きな原因であろう (Figure 2)。

Figure 2. Models of propagating species and macromonomers.

重合性基の違いによる影響をみると、マクロモノマーのRが等しく鎖長が同程度の場合は、 VBよりもMAの結合したマクロモノマーの方が重合速度は速い。これは低分子モノマーのラ ジカル重合と同様の傾向であって、MMAはスチレンに比べて *k*p は大 *k*t は小であって、重合 速度の速いことが知られている¹⁵⁾。これは、MMAラジカルはスチレンラジカルに比べて共鳴 安定性が低いと同時に、停止の拡散律速効果が強いためと思われる。また特にマクロモノマー の生長ラジカルにおいて、VBラジカルは生長末端炭素とPROZO鎖との間がベンゼン核で 隔てられているのに対し、MAラジカルは生長末端炭素とPROZO鎖との間が全て単結合で あってPROZO鎖による立体障害を受けやすく、特に停止反応における拡散律速効果が強ま るのではないかと推察される。 PROZOマクロモノマーのアルキル基が更に鎖長の長い Oc 基の場合について、重合反応性を検討した。POcOZOマクロモノマーはCD₃CNに不溶なので、CDC1₃中で重合反応を行い、同じくCDC1₃中でも重合反応を行ったPBuOZOマクロモノマーの場合と比較した。その結果を Figure 3,4 および Table IV に示す。先ずPBuOZOマクロモノマーの場合の場合、CDC1₃中の重合反応性をCD₃CN中のものと比較すると、 R_p 値は、VB-

Figure 3. Time versus conversion plots in the polymerization of VB-PBuOZO-13 (\Box), VB-POCOZO-3 (\bigcirc), and VB-POCOZO-16 (\bullet) in CDCl₃ at 60°C with [M]₀ = 44 mmol/L and [I]₀ = 2.20 mmol/L. Conversion was determined by NMR.

PBuOZO-13では 0.84×10-7 (CDC1₃) および 4.45×10-7 (CD₃CN) mol/L·sec、MA-PBuOZO-14では 3.50×10-7 (CDC1₃) およ び 7.47×10-7 (CD₃CN) mol/L·secであって、CDC1₃中ではCD₃CN中より低 い値を示した。これは、マクロモノマーCDC1₃に対する溶解性がCD₃CNに対する溶解 性より高いために、生長ラジカルのコイルの広がりが大きくなり、生長末端同士の相互侵入が 容易になって、停止速度が増すためと推察される。なお、PMeOZOマクロモノマーの単独 重合体はCDC1₃には不溶なので、重合速度の測定は出来なかった。VB末端の場合、VB ーPBuOZO-13の重合速度に比較すると、これより鎖長が短く分子量も小さいVB-POcOZO-3でさえも重合速度 R_p は11.30×10-7 mol/L·sec と著しく高い値を 示し、VB-POcOZO-16になると19.73×10-7 mol/L·sec と更に高い値となっ た。

このように高いR_p値は、本研究の有機溶媒中でのR_p値の中では著しく顕著であって、 Table V に示したD₂O中でのVB-PMeOZOマクロモノマーの値に匹敵する。この原因 は、基本的には前述のPBuOZOマクロモノマーの高反応性の原因と同様であり、更にマク ロモノマーの分岐が長くなって生長末端周辺のセグメント密度が著しく増大し、セグメント拡 散と並進拡散が抑制されて、二分子停止が大きく阻害されるためであろう (Figure 2)。

Figure 4. Time versus conversion plots in the polymerization of MA-PBuOZO-14 (\Box), MA-POCOZO-4 (\bigcirc), and MA-POCOZO-11 (\bullet) in CDCl₃ at 60°C with [M]₀ = 44 mmol/L and [I]₀ = 2.20 mmol/L. Conversion was determined by NMR.

ー方MA末端の場合は全く対照的であって、MA-POcOZOマクロモノマーの中で最も 鎖長の短いMA-POcOZO-4の R_p は 2.11×10-7 mol/L·sec であって、MA-PBuOZO-14に比べて低くなるが、更に MA-POcOZO-nのnが長くなると共に R_p 値は低下している。MA末端マクロモノマーが VB またはスチリル末端マクロモノマーに比 べて高い重合反応性を示すことは、本研究の R=Me および Buの場合を含めて一般に見ら

Figure 5. Steric effect of alkyl group R on vinyl groups in macro-monomers and on radical sites in propagating species.

れる傾向であるが^{6 a,b}、このように R=Ocの場合に逆傾向になったことは、極めて興味深 い。このMA末端の場合に二分子停止が特に容易になるということは考えられず、反応性低下 の大きな原因は生長反応の特別の抑制にあるのではないかと思われる。即ちMA-PROZO マクロモノマーはVB-PROZOマクロモノマーと異なり、ビニル基からPROZO鎖に至 る全ての結合が自由回転可能であって、PROZO鎖の立体的影響がビニル基および生長末端 に及びやすく、特にRがOc基の場合には、マクロモノマーと生長末端との相互侵入を著しく 阻害するものと思われる(Figure 5)。更にnが大きくなるほどその度合いが大きくなるであ ろう。 このように PROZO マクロモノマーにおいて、アルキル鎖長を長くした場合の重

Table IV. Polymerization Rate of PBu0ZO and POc0ZOMacromonomers in CDCl3a

			Conversion
		$R_{ m p}$ $ imes$ 107 b	at 100 h
Entry	Macromonomer	(mol/L·sec)	(१)
10	VB-PBuOZO-13	0.84	42.2
11	VB-POcOZO-3	11.30	51.7
12	VB-POcOZO-16	19.73	74.7
13	MA-PBuOZO-14	3.50	39.9
14	MA-POcOZO-4	2.11	29.2
15	MA-POCOZO-8	0.95	22.2
16	MA-POcOZO-11	0.68	19.2

a) $[M]_0 = 44 \text{ mmol/L}; [I]_0 = 2.2 \text{ mmol/L}; \text{ temperature},$

60 °C.

b) Initial rate of polymerization.

合速度に及ぼす効果が明確に認められたが、マクロモノマーの重合反応性の研究において分岐の影響が系統的に検討された例はほとんど見あたらない。特にRがOc基の場合に、MA末端とVB末端との反応性の逆転が見出されたのは極めて興味深い。

PMeOZOマクロモノマーの水中におけるラジカル重合の反応性を検討したところ、重合

速度はCD₃CN中におけるよりも著しく増大することが認められた。その結果を Figure 6 お よび Table V に示す。 R_p 値をCD₃CN中の場合と比較すると、VB-PMeOZO-13 で 11.3倍、VB-PMeOZO-34で 9.27倍、MA-PMeOZO-15で 14.05倍、MA-PMeOZO-32で 9.75倍であって、MA型はVB型より倍率は 高く、nは13~14のものの方が32~34のものより倍率は高い。このような高反応性に なるのは、マクロモノマーの均一な溶解状態では考えられず、マクロモノマーが水中で重合性 基同士が接近した形でミセルを形成しているためではないかと考えられる。ビニルベンジル末

Figure 6. Time versus conversion plots in the polymerization of MA-PMeOZO-32 (\bullet), MA-PMeOZO-15 (\Box), VB-PMeOZO-34(\bigcirc), and VB-PMeOZO-13(\triangle) in D₂O at 60°C with [M]₀ = 44 mmol/L and [I]₀ = 0.44 mmol/L. Conversion was determined by NMR.

端(*m*, *p* 混合体) PMeOZOマクロモノマーは、水中におけるスチレンとのソープフリー 乳化共重合において安定剤としても挙動することが知られている^{15)。} PMeOZOマクロモノ マーの水中におけるミセル形成能を検討するために、VBおよびMA末端マクロモノマー (n:13~34)の水溶液の表面張力(γ)を測定した。VB-PMeOZO-13、VB -PMeOZO-34、MA-PMeOZO-15、およびMA-PMeOZO-32の 1.0 wt%水溶液のγ値はそれぞれ、50.5、54.8、51.6、および55.8 dynes/cm であ り、PMeOZOマクロモノマーが界面活性剤として機能出来ることが認められた。γ値は、 nが32~34の場合より、13~15の場合の方が低い。臨界ミセル濃度(cmc)は、 0.60~0.72 wt% であった(Figure 7)。これらの結果は、PMeOZOマクロモノマーが 重合水溶液中で凝集してミセルを形成することを示している。このような状態であれば、少な くとも生長ラジカルとマクロモノマーの重合性基は著しく作用しやすくなり、生長反応の反応 性は増加するであろう。n=13~14で水溶媒中の反応速度促進効果が大きくなるのは上述

Figure 7. Relationship of surface tension(γ) and solution concentration in macromonomers; MA-PMeOZO-32(\bigcirc), VB-PMeOZO-34(\triangle), MA-PMeOZO-15(\Box), and VB-PMeOZO-13(\bullet).

のγ値の傾向と一致しており、この鎖長がマクロモノマーのミセル形成に比較的適しているた めと思われる。Ito らは VB末端 PEOマクロモノマーの水中でのラジカル重合において、鎖 長nが17程度の場合に最も重合速度が速まることを見出すと共に、重合はミセル内で進行す ることを推測し^(b)、水中ではベンゼン中に比べて、特に *kp*値の増加の著しいことを報告して いる¹⁶⁾。また、本研究ではMA型はVB型に比べて水中においても重合速度が著しく速く、短 時間で反応率が100%近くまで進行した。

Table	e V. Polymerization		Rate	of	PMeOZO	Macromonomers	
		in D_2O^a					

Entry	Macromonomer	$R_{\rm p}$ $ imes$ 10 ^{7 b} (mol/L·sec)	Conversion at 4 h (%)
17	VB-PMeOZO-13	12.36	23.5
18	VB-PMeOZO-34	18.33	33.0
19	MA-PMeOZO-15	46.89	92.3
20	MA-PMeOZO-32	54.95	95.7

a) $[M]_0 = 44 \text{ mmol/L}; [I]_0 = 0.44 \text{ mmol/L}; \text{ temperature}, 60 °C.$

b) Initial rate of polymerization.

4.4.3 重合速度の濃度依存性

以上述べたように、PROZOマクロモノマーのラジカル単独重合では、重合速度はマクロ モノマー鎖長nに依存すると共に、アルキル鎖長の影響を受ける。このような重合系に対する モノマー濃度および開始剤濃度の影響を検討した。

先ず、CD₃CN中において重合速度 R_p のモノマー濃度依存性を調べた結果を Figure 8 に 示す。PMeOZOおよびPBuOZOマクロモノマーの R_p とモノマー初濃度 [M] $_0$ との両 対数プロットをとると、何れも直線となった。各マクロモノマーの重合速度の違いを示す直線 の上下関係は、何れも既に述べた大小関係と一致している。それぞれの直線の勾配よりモノ マー濃度の次数を求めたが、それらの数値を、その他の場合も含めて Table VI に示す。 CD₃CN中で、nが13以上について検討した結果、[M]の次数(a値)は1.55~ 1.63の値となった。通常の低分子モノマーのラジカル開始剤重合では重合速度は(2)式で 表され、[M]の次数は1.0となるが、これに比べて高い値である。この原因はつぎのよう

Figure 8. log-log plots of R_p versus [M] in the polymerization of MA-PBuOZO-14 (O), MA-PMeOZO-15 (\triangle), VB-PMeOZO-34 (\bullet), and VB-PMeOZO-13 (\Box) in CD₃CN at 60°C with [I]₀ = 2.20 mmol/L.

$$-\frac{d[M]}{dt} = k_p \frac{(2fk_d)^{0.5}}{k_t^{0.5}} [M][I]^{0.5}$$
(2)

に説明出来ると考えられる。即ち、マクロモノマーの重合速度には停止反応の反応性が大きな 影響を及ぼすが、[M]の増加によって重合系の粘性が増して生長ラジカルの並進拡散および セグメント拡散が阻害され、二分子停止がおこりにくくなって速度が増すものであろう。ま た、マクロモノマー内のアシル側鎖の鎖長が長くなった場合(R=Bu,Oc)に次数が増加 するが、これは生長ラジカルのセグメント密度の増大によって拡散運動の阻害が著しくなり、

Table VI. Kinetic Order of Macromonomer Concentrationa

Macromonomer	Polymerization Solvent	Kinetic Order ^b a
VB-PMeOZO-13	CD ₃ CN	1.55
VB-PMeOZO-34	CD3CN	1.59
VB-PBuOZO-13	CD3CN	1.61
MA-PMeOZO-15	CD ₃ CN	1.57
MA-PMeOZO-32	CD3CN	1.63
MA-PBuOZO-14	CD ₃ CN	1.62
VB-PBuOZO-13	CDCl ₃	1.65
VB-POcOZO-16	CDCl ₃	1.72
MA-PBuOZO-14	CDCl ₃	1.68
MA-POcOZO-11	CDC1 ₃	1.73
VB-PMeOZO-13	D ₂ O	1.04
MA-PMeOZO-15	D ₂ O	0.97

a) $[M]_0 = 44 \text{ mmol/L}; [I]_0 = 2.2 \text{ mmol/L}; \text{temperature}, 60 °C.$

b) Kinetic order of [M].

二分子停止が更に抑制されるためと説明出来よう。Table VI によると、マクロモノマーの鎖長の長い方が次数は高くなっているが、これも上のような考え方で説明可能である。CDC13 中においても、RはBuよりOcの場合の方が次数は高い。重合性基(MA・VB)による 違いは大きくはないが、MA型の方が多少高い値を示した。

VB-PMeOZO-13 および MA-PMeOZO-15 の水中でのラジカル重合の *R*_pと [M]の両対数プロットを Figure 9 に示した。検討した濃度範囲で何れも直線となる が、その上下関係から見て有機溶媒中の重合速度よりも著しく速く、この中でもMA型がVB 型より速いのは明らかである。これら直線の勾配より求めた [M]の次数 aは 1.0 前後で あって、有機溶媒中の場合と異なり、見かけ上低分子モノマーの場合と同様の値を示した。水

Figure 9. log-log plots of R_p versus [M] in the polymerization of MA-PMeOZO-15 (\bigcirc) and VB-PMeOZO-13 (\bullet) in D₂O at 60°C with [I]₀ = 0.44 mmol/L.

中で重合速度の速いのがミセル形成によるものとすれば、モノマー濃度の増加は系内のミセル 数には影響するがミセル内の反応性には直接は影響しないためと思われる。

重合速度 R_p の開始剤濃度 [I] に対する依存性を調べた結果を Figure 10 に示す。 R_p と [I]の両対数プロットは直線となり、その勾配より求めた [I]の次数 b は MA-PMeOZO-15 および VB-PMeOZO-13 に対してそれぞれ 0.51 および 0.54 であって、見かけ上(2)式における 1/2 乗則に一致する結果となった。実際に は、停止反応は主として二分子停止と思われるが、セグメント密度の高さに由来する一分子停

Figure 10. Log-log plots of R_p versus [I] in the polymerization of MA-PMeOZO-14 (\bigcirc) and VB-PMeOZO-13 (\bullet) in CD₃CN at 60°C with [M]₀ = 44 mmol/L.

止、および前述の dead-end polymerization の原因である一次ラジカル停止も存在する可能性が 考えられる。前者の場合はb値は1になり、後者では 0.5 以下になる筈である。

4.4.4 ポリマクロモノマーの分子量

重合反応後、NMR試料管中の生成ポリマーの分子量をGPCにより測定した。重合溶液を 真空乾固して得られる固形分を、GPC溶媒のDMFに溶解させた。測定結果をTable VII に示 す。マクロモノマーの種類が等しい場合は(重合基およびR)、仕込み濃度が高くなると分子 量は増大した。これは、重合系の粘性の増大により停止反応が抑制される効果が、特に寄与し た結果と思われる。Tsukahara らはポリスチレンマクロモノマーのラジカル重合において、ポ

Elution Volume (mL)

Figure 11. GPC curves of reaction mixtures in the polymerization of MA-PBuOZO-14 in CD_3CN at 60°C(Run 4 and 5). GPC: column, TOSOH TSKgel GMH_{HR-M} (×2); solvent, DMF(LiCl); temp., 58°C; flow rate, 0.8 mL/min.

- Run 4: [M]₀ = 44 mmol/L; [I]₀ = 2.2 mmol/L; reaction time, 130 h.
- Run 5: [M]₀ = 200 mmol/L;[I]₀ = 2.2 mmol/L; reaction time, 130 h.

リマクロモノマーの分子量がマクロモノマーの仕込み濃度の影響を強く受けることを報告して いる¹³⁾。MA - PBuOZO - 14において、仕込み濃度が 200 mmol/Lの場合には、 GPCにおけるポリマクロモノマーのピークが、 $M_n = 90350$ および 364000の 2ヶ

Table VII. Molecular Weight of Polymacromonomers

	Polymerization ^b						
Run	Macromonomer	Entry	Solvent	[M] ₀ (mmol/L)	Time (h)	M _n	DPn
1	MA-PBuOZO-7	8	CD3CN	44	140	54400	57
2	MA-PBuOZO-7	-	CD3CN	200	140	132000	137
3	MA-PBuOZO-14	-	CD ₃ CN	20	140	38200	21
4	MA-PBuOZO-14	9	CD3CN	44	140	63500	35
5	MA-PBuOZO-14	-	CD3CN	200	140	90400	49
						364000	198
6	MA-PBuOZO-34	-	CD3CN	100	140	116000	29
7	MA-PBuOZO-34	-	CD3CN	200	140	_c	-
8	VB-PBuOZO-13	4	CD3CN	44	140	32500	19
9	VB-PBuOZO-24	-	CD3CN	44	140	35400	11
10	MA-PBuOZO-14	23	CDC13	44	130	82700	45
11	MA-POcOZO-8	15	CDCl ₃	44	130	89450	51
12	MA-PMeOZO-15	б	CD3CN	44	140	33900	24
13	VB-PMeOZO-13	2	CD ₃ CN	44	140	28700	25
14	MA-PMeOZO-15	19	D ₂ O	44	6	48600	35
15	VB-PMeOZO-13	17	D ₂ 0	44	13	39700	35

 a) Determined by GPC: column, TOSOH TSKgel GMH_{HR-M}(×2); solvent, DMF (LiCl); temp., 58°C; flow rate, 0.8 mL/min.

- b) [I]₀ = 2.2 mmol/L(in organic solvents) and 0.44 mmol/L(in D₂O); temp.,60°C.
- c) No polymerization was observed.

所に出現した(Figure 11)。これは初めに生成した M_n =90350の比較的少量のポリマク ロモノマーによって重合系の粘性が大きくなり、その影響により以後生成するポリマーの分子 量が著しく増大したものと考えられる。これは、生成ポリマーの分子量に及ぼす粘性の影響の 大きさを顕著に示したものと言える。MA-PBuOZO-34の場合に200 mmol/Lの 仕込み濃度で試みた場合は、NMRにおいて重合の生起は認められなかった。著しい粘性の高 さにより、生長ラジカルとマクロモノマーの拡散が阻害されてしまうためであろう。VB-PMeOZO-34の場合には200 mmol/Lの仕込み濃度でも重合する。RがBuの場合 にはMeの場合に比べて、粘性の増大およびマクロモノマーのセグメント密度増大への寄与が 大きいためと思われる。一般にマクロモノマーのRがBuの場合には、Meの場合に比べてポ リマーの分子量が大きくなる傾向が認められる。

PBuOZOマクロモノマーの重合溶媒がCDC1₃の場合には、生成ポリマーの分子量は CD₃CN中の場合よりも増大した。コイルの広がりが大きいため活性末端とマクロモノマー の重合基との相互侵入が容易になり、生長反応が促進される効果が大きく働いているものと推 察される。

以上の分子量値より計算されるポリマクロモノマーの重合度 *DP*_nは、最高で198である が大部分は50程度以下であり、通常のラジカル重合に比べて著しく低い。

ポリマクロモノマーのうち、ポリ(PMeOZOマクロモノマー)は水溶性であるが CHC13に不溶なので、CHC13可溶のマクロモノマーと溶解性を利用して分離出来る。

4.5 結 論

VB-PROZOおよび MA-PROZO マクロモノマーのラジカル単独重合反応性を速 度論的に検討した。その結果、CD₃CN および CDC1₃中では、マクロモノマー鎖長nが 長く、アルキル基Rの鎖長の長い方が一般に速度は速くなった。これは重合系の粘性および生 長末端周辺のセグメント密度の増大によって、主として生長ラジカルの並進拡散およびセグメ ント拡散(相互侵入)が阻害され、二分子停止が抑制されるためであると考えられる。特に分 岐性マクロモノマーに関する系統的研究は本研究以外には見られないが、Rが Oc の場合に は、一般的低分子モノマーおよびマクロモノマーの場合と異なってVB型の方がMA型より速 度は大きく、VB型ではnが増すと速度は増すが、MA型ではnが増すと速度は減少する結果 となった。これはMA型の場合には生長末端またはビニル基が PROZO 鎖の立体的影響を 受けやすいからであると結論した。

水中において PMe O Z O マクロモノマーは、 C D 3 C N 中に比べて約9~14倍速度が速いが、 これはミセル形成によるものと思われる。

モノマー濃度の次数は、有機溶媒中で 1.55~1.73 水中で約 1.0となったが、有機溶 媒中では濃度の増加と共に粘性が増し停止反応が抑制されたものと思われる。開始剤濃度の次 数はほぼ 0.5 であり、主として二分子停止が起こっていると考えられる。

4.6 文 献

- 1) S. Kobayashi, Prog. Polym. Sci., 15, 751 (1990).
- 2) (a) 小林四郎、C. Merlesdorf、田辺隆喜、松尾康司、三枝武夫、 高分子学会予稿
 集、35, 248 (1986).
 (b) R. C. Schulz, and E. Schwarzenbach,
 Makromol. Chem., Macromol. Symp., 13/14, 495 (1988).
- S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano, Macromolecules,
 22, 2878 (1989).
- 4) H. Uyama and S. Kobayashi, Macromolecules, 24, 614 (1991).
- 5) (a) R. Asami and M. Takaki, Makromol. Chem., Suppl., 12, 163
 (1985). (b) K. Ito, H. Tsuchida, A. Hayashi, T. Kitano, E. Yamada, and T. Matsumoto, Polym. J., 17, 827 (1985). (c) M. Niwa and N. Hayashi, Macromolecules, 21, 1193 (1988). (d) M. Akashi, I. Kirihira, and N. Miyauchi, Angew. Makromol. Chem., 132, 81 (1985).
 (e) C. G. Cameron and M. S. Chisholm, Polymer, 26, 437 (1985). (f) K. Mühlbach, V. Percec, and J. H. Wang, J. Polym. Sci., Polym. Chem. Ed., 25, 2605 (1987). (g) Y. Nabeshima and T. Tsuruta,

Makromol. Chem., 190, 1635 (1989). (h) W. Radke and A. H. E.
Müller, Makromol. Chem., Macromol. Symp., 54/55, 583 (1992). (i)
J. P. Kennedy and C. Y. Lo, Polym. Bull., 13, 343 (1985). (j) P.
Rempp, P. Lutz, P. Masson, and E. Franta, Makromol. Chem., Suppl.,
13, 471 (1985). (k) E. Masuda, S. Kishiro, T. Kitayama, and K.
Hatada, Polym. J., 23, 847 (1991).

- 6) (a) Y. Tsukahara, K. Tsutsumi, y. Yamashita, and S. Shimada,
 Macromolecules, 23, 5201 (1990). (b) K. Ito, K. Tanaka, H. Tanaka,
 G. Imai, S. Kawaguchi, and S. Itsuno, Macromolecules, 24, 2348
 (1991). (c) I. Capek, M. Riga, and M. Akashi, Makromol. Chem.,
 193, 2843 (1992). (d) P. Rempp, P. Lutz, P. Masson, and E. Franta,
 Makromol. Chem., Suppl., 8, 3 (1984). (e) R. Asami and M. Takaki,
 Makromol. Chem., Suppl., 12, 163 (1985). (f) J. P. Kennedy and M.
 Hiza, J. Polym. Sci., Polym. Chem. Ed., 21, 1033 (1983).
- 7) (a) J. Sierra, E. Franta, and P. Rempp, Makromol. Chem., 182, 2603
 (1981). (b) M. Takaki, R. Asami, and T. Kuwabara, Polym. Bull., 7, 521 (1982).
- S. Kobayashi, H. Uyama, S. W. Lee, and Y. Matsumoto, J. Polym. Sci., Part A : Polym. Chem., 31, 3133 (1993).
- 9) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci., Part A : Polym. Chem., **30**, 1489 (1992).
- 10) H. Witte and W. Seeliger, Liebigs Ann. Chem., 996 (1974).
- 11) 三宅隆敏、谷本重夫, 有機合成化学協会誌, 31,1050(1973).
- 12) A. V. Tobolsky, J. Am. Chem. Soc., 80, 5927 (1958).
- (a) Y. Tsukahara, K. Mizuno, A. Segawa, Y. Yamashita,
 Macromolecules, 22, 1564 (1989). (b) Y. Tsukahara, K. Tsutsumi, Y.
 Yamashita, and S. Shimada, Macromolecules, 22, 2869 (1989).

- 14) G. Odian, Principles of Polymerization, 3rd ed., Wiley Interscience, New York, 1991.
- 15) 小林四郎、宇山 浩、山本育央、高分子学会予稿集、38、117(1989).
- 16) E. Nomura, K. Ito, A. Kajiwara, and M. Kamachi, Macromolecules, 30, 2811 (1997).

第5章 ポリ(2-オキサゾリン)マクロモノマーのラジカル共重合反応性

5.1 要旨

 $p - ビニルベンジル末端ボリ (2 - アルキル-2 - オキサゾリン) マクロモノマー (VB-PROZO-n) (R=Me, Bu; n (<math>DP_n$ の概略値) = 3~31) (M₁) と低分子コ モノマー (M₂) のメタクリル酸メチル (MMA)、2-ヒドロキシエチルメタクリラート (HEMA)、および N, N-ジメチルアクリルアミド (DMAA) とのラジカル共重合を、 2.2'-アゾビス (イソプチロニトリル)を開始剤として60℃で行い、末端モデルに基づいて モノマー反応性比 r_1 , r_2 を求めた。エタノール中、VB-PMeOZO-3と MMA、 HEMA、DMAA との反応性比はそれぞれ、 r_1 =1.86, r_2 =0.07; r_1 =1.44, r_2 =0.03; r_1 =5.80, r_2 =0.19となり、コモノマーおよびスチレンに比べて著し く高い反応性を示した。CD₃CN中VB-PMeOZO-3と MMAの重合では、 r_1 = 0.41, r_2 =0.66となり、マクロモノマーの高い反応性は認められない。マクロモノ マーは、鎖長の増大と共に反応性は低下した。マクロモノマーに対するコモノマーの反応性 は、プロトン供与性のHEMAが最も高い。VB-PBuOZO-15のMMAに対する反応 性は、VB-PMeOZO-15に比べてかなり低下することが認められた。

5.2 緒 言

2-アルキル-2-オキサゾリン(ROZO)の開環異性化重合により生成する、ポリ(N -アシルエチレンイミン)の構造を有するポリ(2-アルキル-2-オキサゾリン) (PROZO)は、N, N-ジメチルアセトアミドのような極性非プロトン溶媒の高分子同族 体であって、アルキル基がメチル(Me)基およびエチル(Et)基の場合は親水性、n-ブ チル(Bu)基以上の炭素数の場合は疎水性を示す¹)。 ROZOのリビング重合を利用して 開始剤法または停止剤法によりPROZO鎖をもつマクロモノマーを合成出来るが、今までス チリル末端²)、メタクリラート末端³)およびビニルエステル末端⁴)等多様なマクロモノマーが 合成されている。PROZO鎖を持つマクロモノマーは、以上の特性を有するほか、Rが Bu 基程度以上では規則的な分岐を有する分岐性マクロモノマーとなる。このように、Rの種類に よって多様な特性を備えることから、これらPROZOマクロモノマーを「機能性マクロモノ マー」と称することが出来る。

マクロモノマーの単独重合により櫛形高分子(または星型様高分子)、低分子コモノマーと の共重合によりグラフトコポリマーが得られるが、特にグラフトコポリマーの合成において は、マクロモノマー法は構造の明確なコポリマーを与える点で重要である。著者等はすでにメ タクリラートおよびビニルベンジル末端PROZOマクロモノマーのラジカル単独重合の反応 性を速度論的に検討し、特に本マクロモノマーの特徴として重合速度に及ぼす分岐の影響が大 きいこと、水中において重合速度が著しく増大すること等を見出した⁵)。

PROZOマクロモノマーのラジカル共重合に関しては今までに、PROZO鎖の乳化剤ま たは分散安定剤としての機能を利用したポリマー微粒子の合成 6、親水性マクロモノマーとス チレンまたはメタクリル酸メチル (MMA) との共重合による両親媒性高分子の合成の等に関 する研究が知られている。両親媒性高分子の合成はアセトニトリルまたは tert – プチルアル コールを溶媒として行われ、68~99%の収率でほぼ仕込み比どおりの組成のグラフト共重 合体が得られている。しかし、PROZOマクロモノマーの共重合反応性についての、詳細な 検討は未だ行われていない。

PROZOマクロモノマーの種々の特性より考えて、そのラジカル共重合の挙動に大きな興味が持たれるが、共重合反応性を詳細に検討した研究は未だ報告されていない。本報告では、 *p*-ビニルベンジル末端PROZOマクロモノマー(VB-PROZO-n)(R=Me, Bu;n(*DP_n*の概略値)=3~31)とMMA,2-ヒドロキシエチルメタクリラート (HEMA)、および*N*,*N*-ジメチルアクリルアミド(DMAA)とのラジカル共重合反応 性を検討する。MMAは疎水性モノマー、HEMAとDMAAは親水性モノマーであるが、 HEMAはプロトン供与性、DMAAは非プロトン性である。これらが、非プロトン性で親 水性または疎水性のPROZOマクロモノマーとどのような反応性の特徴を示すかを共重合反 応性比に基づいて検討する。

マクロモノマーの共重合反応性において基本的に重要なことは、マクロモノマーの反応性が 相当する低分子コモノマーに比して変化するか変化しないかと言うことである。今まで報告さ れている研究においては、モノマー濃度や反応率によっても異なるが、マクロモノマーの反応 性は相当する低分子コモノマーに比して変化しない⁸⁾か、あるいは低下する⁹⁾場合が多い。マ クロモノマーの共重合反応性を支配する因子は、第1に重合性官能基の化学反応性であるが、 これがマクロモノマー内のポリマー鎖の影響を直接受けている例は少ない。むしろ、反応性低 下の原因としてはマクロモノマー自体が高分子であることに基づいて、マクロモノマーと生長 ラジカルとの間の速度論的排除体積効果 ^{9d-f, 10)}等の立体効果¹¹⁾、幹ポリマーラジカル(コモ ノマー連鎖)とマクロモノマーとの間の熱力学的反発的相互作用(非相溶性)^{8b, 9a, o)、および 重合系の粘性 ^{11a)}影響等により議論されている。例は極めて少ないが、マクロモノマーが相当 する低分子モノマーに比して反応性が向上する場合も見出され、マクロモノマーのミセル形成 によるものと報告されている¹²⁾。}

マクロモノマー(M₁)と低分子コモノマー(M₂)の共重合反応性比としては、実験上の 便宜性等からM₂のモル分率を著しく高くして、 r_2 のみを求めて議論している場合が多い。 即ちマクロモノマーが高分子量のため、M₁のモル分率が増加していくと、M₁/M₂の重量 比が著しく大となり、重合操作および分析の両面にわたって正確を期しにくくなるためであ る。しかし r_2 のみでは幹ポリマーラジカルにたいする反応性しか議論できないことになり、

マクロモノマーユニット末端ラジカルに対する反応性の実体は全く把握できない。

PROZOマクロモノマーは前述のように特異性の強いマクロモノマーであって、鎖長の短い段階からの反応性の特徴を知る必要があると共に、マクロモノマーユニット末端ラジカルに対する反応性も議論することが必要である。本研究では主としてエタノール中での共重合を行い、反応性比としてr₁およびr₂を求めたが、共重合の結果生成するグラフト共重合体は未反応マクロモノマーと完全に分離することは困難であったため、反応性比は両モノマーの反応率より求めた。得られた反応性比の値に基づいて、本マクロモノマーの反応性の特徴を検討すると共に、反応性に及ぼす諸因子の影響について考察する。

5.3 実験

5.3.1 原料および試薬

溶媒類のうち、CH₃CN は P₂O₅の存在下に蒸留精製した。CD₃CNは市販品をその まま用いた。エタノールおよび 1 – ヘキサノールは、金属マグネシウムとの反応で生成するア ルコキシドの存在下に蒸留精製した。2 – n – ブチル–2 – オキサゾリン (BuOZO) ¹³) およびp – ビニルベンジルクロリド (VBC) ¹⁴) は文献により合成した。

2-メチル-2-オキサゾリン (MeOZO) はKOHの存在下に市販品を蒸留精製した。 メタクリル酸メチル (MMA)、2-ヒドロキシエチルメタクリラート (HEMA)、および N、N-ジメチルアクリルアミド (DMAA) は使用直前に蒸留した。2,2'-アゾビス (イソ プチロニトリル) (AIBN) は市販品をエタノールから再結晶した。Et₂Oおよび内部標 準物質のトルエン、*n*-ヘキシルベンゼン、および*n*-オクチルベンゼンは金属ナトリウムの 存在下に蒸留精製した。

5.3.2 マクロモノマー

∞末端に水酸基を有する p-ビニルベンジル末端 PROZO(VB-PROZO)マクロモノマー(R=Me, Bu)を、第4章と同様の方法で合成し精製した。

5.3.3 共重合

マクロモノマー、コモノマー、AIBN、および内部標準物質の溶液を予め重合溶媒(R= Meの場合はエタノールまたはCD₃CN、R=Buの場合は1-ヘキサノール)を用いて作 成する。

アルコール溶媒の場合には、所定量を秤量してAr置換したフラスコ中に加える。この場合 マクロモノマーとコモノマーの合計は 0.05g、溶媒量の合計は 2.0 mLの割合になるよう にする。作製した溶液の 2.0 mLを予めAr置換したアンプルに移し封管する。別のアンプ ルに全く同様にして溶液を加えて封管し加熱せずに開封して、反応率測定の補償物質とするた め、UV-2次微分スペクトルとGLC、またはGPC測定を行う。重合は60℃に加熱して 行う。加熱後アンプルを開封し、マクロモノマーの反応率はUV-2次微分スペクトルにおけ る 290.3 nm 付近の正ピークと293.6 nm 付近の負ピークの差の反応前後の変化率よ り、またはGPCにおけるマクロモノマーピークと内部標準物質ピークの面積比の減少率より 求めた。また、コモノマーの反応率は、GLCにおけるコモノマーピークと内部標準物質ピー クの面積比の減少率より求めた。内部標準物質としては、コモノマーがMMAで重合溶媒がエ タノールのときは n-ヘキシルベンゼン、重合溶媒が 1-ヘキサノールのときはトルエン、 コモノマーがHEMAの場合 はn-ヘキシルベンゼン、コモノマーがDMAAの場合は n-オクチルベンゼンを用いた。

重合溶媒がCD₃CNの場合には、マクロモノマーとコモノマーの合計0.01gとAIBN を、溶媒0.6mLに溶解した溶液をNMR試料管(5mmφ)に入れて封管し、60℃で所定時 間加熱した後、1HNMR(400MHz)を測定した。マクロモノマーの反応率は、7.30 ppmのベンゼン核プロトンのシグナルに対する、5.15ppmのスチリル基のビニルプロトン のシグナルの面積比の変化率より求め、MMAの反応率は、ベンゼン核プロトンのシグナルに 対する、6.00ppmのメタクリロイル基のビニルプロトンのシグナルの面積比の変化率より 求めた。

5.3.4 分析

¹H NMRスペクトルは、日本電子 JNM FX60Q型 または LA400型分光計によ り、テトラメチルシランを標準物質として、IRスペクトルは日本分光IR-810型分光計を 用いて測定した。UVスペクトルは 島津 UV-2200 型分光光度計を用いて測定した。 GPCは、島津 LC-10AD型液体クロマトグラフと島津RID-6A型示差屈折計により、 GPCカラムとしては Shodex A-803と JASCO FINE PACK GEL-101を連結させて測定した。GCは島津 GC-R1A型ガスクロマトグラフ (FID 検出器)により、固定相として、MMA分析の場合は西尾工業 Chromosorb-101 担持 Polyester-FFを用い、HEMAおよびDMAA分析の場合は島津 Shincarbon-A 担持 Thermon-3000を用いて測定した。

5.4 結果と考察

5.4.1 マクロモノマー

2-オキサゾリン類のリビング重合を利用して、第4章と同様の方法により分子量分布の狭 いVB-PROZOマクロモノマー(1)を合成した。その結果を Table I に示す。本マクロ モノマーのコード名をVB-PROZO-nとする。n は重合度の概略値である。

$$CH_2 = CH - CH_2 + CH_2 + NCH_2CH_2 \xrightarrow{n} OH$$

RC=0

1 VB-PROZO-n R = Me, Bu

Table	I.	Vinylbenzyl-Type	Mac	romonomers	of	Poly(2-	
		alkyl-2-oxazolin	kyl-2-oxazoline)s(PROZO)				

	M	ľ _n		Mwa
Macromonomer	NMR	GPC	DP_n^a	Mn
VB-PMeOZO-3	410	390	3.1	1.32
VB-PMeOZO-15	1380	1370	14.5	1.11
VB-PMeOZO-28	2500	2490	27.7	1.16
VB-PMeOZO-31	2830	2800	31.4	1.18
VB-PBuOZO-15	1990	1970	14.5	1.13

a) Determined by GPC.

5.4.2 共重合の方法とモノマーの反応性比の求め方

VB-PROZOマクロモノマーのラジカル共重合は、コモノマーとしては疎水性の MMA、親水性でプロトン供与性のHEMA、親水性で非プロトン性のDMAA、開始剤とし てはAIBNを用い、エタノール(R=Meの場合)、CD₃CN(R=Me, n=3の場 合)、または1-ヘキサノール中(R=Buの場合)60℃で行った。反応率は10%程度以 内とし、重合初期の反応性を検討するようにした。反応率の上昇により、反応系の粘性の増大 等によって共重合反応性が影響を受けることが知られている^{11a})。共重合反応性比は、末端モ デルを仮定する組成式(1式)に基づいて、積分法により求めた。

コポリマー組成は、生成コポリマーを未反応マクロモノマーから完全に分離出来る場合には これを分析して求められるが、不完全にしか分離出来ない場合には、むしろモノマーの反応率

$$\frac{d[M_1]}{d[M_2]} = \frac{r_1[M_1] + [M_2]}{[M_1] + r_2[M_2]} \frac{[M_1]}{[M_2]}$$
(1)

から求めた方が正確である¹⁵⁾。この場合、コモノマー大過剰系では、未反応マクロモノマーの 分析はGPCにより、未反応コモノマーの分析はGLCによって行われている場合が多い。本 研究では生成コポリマーを未反応マクロモノマーから完全に分離することは不可能であった。 また低反応率のもとでGPC上のマクロモノマーピークとグラフトコポリマーピークを分離す ることは不可能であった。従って、コポリマー組成は両モノマーの反応率から求めることと し、アルコール中の共重合では未反応マクロモノマーの定量は UV-2 次微分スペクトルに より、未反応コモノマーの定量はGLCにより行った。また、VB-PMeO2O-15マク ロモノマーの場合は、マクロモノマー低モル分率の場合にGPCによっても未反応マクロモノ マーを定量した。CD₃CN中の共重合では、マクロモノマーおよびMMAの反応率は、1H NMRにおけるペンゼン核プロトンのシグナルに対する各ビニルプロトンのシグナルの面積比 の変化率より求めた。

5.4.3 共重合反応性

共重合は、エタノール中ではVB-PMeOZO-3とMMA、HEMA、DMAA、VB -PMeOZO-15とMMA、HEMA、DMAA、VB-PMeOZO-31とMMA、

VB-PMeOZO-28とHEMA、DMAAの各組み合わせ、CD₃CN中ではVB-PMeOZO-3とMMA、1-ヘキサノール中ではVB-PBuOZO-15とMMAの組 み合わせについて検討した。

共重合結果の一部を Table II-VII に示す。VB-PMeOZO-15および28とHEMA およびDMAA、VB-PBuOZO-15とMMAの各組み合わせの Table は省略した。 VB-PMeOZO-15とMMAの重合結果の Table VI には、マクロモノマーモル分率の低 い場合に、マクロモノマーの反応率をGPCによって求めた結果も示したが、これらは、UV -2次微分スペクトルによって求めた結果とよく一致している。マクロモノマーモル分率が高 くなると、GPCにおけるコポリマーとの分離が不良になる。VB-PMeOZO-15と HEMAおよびDMAAの場合にも、同様にGPCでも求めたが、やはりUV-2次微分スペクト ルによって求めることの妥当性が確認された。

共重合の速度を概略的にみると、何れのモノマーの組み合わせにおいても、マクロモノマー モル分率が増すと速度は遅くなる。また、マクロモノマーに関しては、コモノマーが何れの場 合でも、マクロモノマー鎖長 n が増すと速度は遅くなる。このような傾向は他のマクロモノ マーの共重合でも一般に見られることであって、重合系の粘性と生長末端周辺のセグメント密 度の増大によってモノマー特にマクロモノマーの拡散が抑制されるからであるとされてい る¹¹a)。VB-PMeOZOマクロモノマーにおいてコモノマーの違いが共重合速度に及ぼす 影響をみると、先ずDMAAの関与する重合は、MMAおよびHEMAのそれに比べて速いこ とが明らかである。MMAとHEMAでは、n=3の場合はMMAの方が速いが、nが14以 上ではHEMAの方が速くなる傾向がみられる。コモノマーをMMAとするVB-PMeOZO-15とVB-PBuOZO-15を比較すると、著しく後者のほうが速い。

モノマーの仕込み組成と反応率の関係に基づいて、各マクロモノマーおよびコモノマーの組み合せ の共重合反応性比を求めた結果を Table VIII に示す。比較のために、スチレン(M₁)とMMA¹⁶、 HEMA¹⁷)、およびDMAA¹⁸)(各M₂)との共重合反応性比の文献値を示した。また、これらの反 Table II. Copolymerization of VB-PMeOZO-3(M_1) with MMA(M_2) in EtOHa

	Feed composition								
	[M ₁] ₀	[M ₂] ₀	M1	Time	Mon conve	omer	M ₁ in copolymer
Run	mg	mol/L (x10 ²)	mg	mol/L (x10 ²)	(mol%)	(h)	M1 ^b (%)	M₂ [⊂] (%)	(mol%)
1	20.66	2.60	29.43	14.70	15.0	10	8.9	1.9	44.7
2	27.10	3.45	23.01	11.50	23.1	16	6.3	1.3	58.8
3	31.38	4.00	18.51	9.25	30.2	22	9.6	2.2	65.2
4	38.06	4.85	11.78	5.90	45.1	32	7.3	2.2	72.9
5	42.90	5.45	7.25	3.60	60.2	36	12.8	5.8	76.9
6	45.08	5.70	5.02	2.50	69.5	36	8.1	5.2	77.9
7	46.01	5.85	3.84	1.90	75.5	44	10.4	8.6	78.7
8	48.65	6.17	1.31	0.65	90.5	48	7.7	10.6	86.7

a) Initiator, AIBN (1.0 mol% to total monomers); solvent, ethanol(2.0 mL); temperature, 60°C.

b) Determined by UV. c) Determined by GLC.

	Fee	Feed composition			Mono conve	omer rsion	M1 in
Run	[M ₁] ₀ mol/L (x10 ²)	[M ₂] ₀ mol/L (x10 ²)	M ₁ (mol%)	Time (h)	M ₁ b (%)	M ₂ c (१)	copolymer (mol%)
9	1.56	14.53	9.7	24	6.2	0.8	44.3
10	2.84	10.66	21.1	32	9.1	1.7	58.8
11	3.96	7.36	35.0	40	8.3	2.3	66.1
12	4.66	5.28	46.9	48	10.4	4.0	69.8
13	5.36	3.12	63.2	60	11.0	б.4	74.8
14	5.75	2.02	74.0	68	7.6	6.2	77.9
15	5.98	1.30	82.2	68	10.3	8.8	84.4

Table	III.	Copolymerization	of	VB-PMeOZO-3	(M_1)	with	HEMA	(M_2)
		in EtOH ^a						

a) Total monomers, 0.05 g; initiator, AIBN (1.0 mol% to total monomers); solvent, ethanol(2.0 mL); temperature, 60°C.
b) Determined by UV. c) Determined by GLC.

Table IV. Copolymerization of VB-PMeOZO-3(M1) with DMAA(M2) in EtOHa

	Fee	tion		Mone	omer	M1 in	
Run	[M ₁] ₀ mol/L (x10 ²)	[M ₂] ₀ mol/L (x10 ²)	M ₁ (mol%)	Time (h)	M1 ^b (%)	M ₂ с (१)	copolymer (mol%)
16	2.11	16.89	11.1	4	15.2	2.3	45.7
17	3.36	12.09	21.7	7	9.8	1.7	61.7
18	4.28	8.44	33.6	10	12.9	2.6	71.7
19	4.80	6.36	43.0	12	10.5	2.0	79.9
20	5.26	4.45	54.2	14	11.3	1.6	89.8
21	5.72	2.78	67.3	15	11.7	2.1	92.0
22	6.05	1.30	82.3	16	6.4	1.0	96.6
23	6.14	1.01	85.9	20	4.8	0.4	98.6

a) Total monomers, 0.05 g; initiator, AIBN (1.0 mol% to total monomers); solvent, ethanol(2.0 mL); temperature, 60°C.

b) Determined by UV. c) Determined by GLC.

Table V. Copolymerization of VB-PMeOZO-3 (M1) with MMA (M2) in CD_3CN^a

		Feed	compos	ition				_	
	[M ₁] ₀	[]	M ₂] ₀	M1	Mime	Monor	mer csion	M ₁ in copolymer
Run	mg	mol/L (x10 ²)	mg	mol/L (x10 ²)	(mol%)	(h)	M ₁ b (%)	M2 ^b (%)	(mol%)
24	2.50	1.48	7.62	15.46	9.59	1.5	4.8	4.2	10.0
25	4.48	2.67	5.58	11.34	19.0	4.5	7.1	6.3	21.0
26	5.57	3.33	4.24	8.64	27.8	4.5	6.6	5.0	33.5
27	6.71	3.88	2.98	5.90	39.7	4.5	6.4	5.1	45.1
28	7.77	4.27	2.20	4.12	50.9	1.0	1.7	2.0	46.3
29	8.51	4.99	1.91	3.83	56.6	1.5	2.5	3.1	51.6
30	8.83	5.94	1.34	3.09	65.8	4.5	3.2	4.7	56.0
31	9.58	5.59	0.58	1.16	82.8	4.0	2.2	4.9	68.2

a) Total monomers, 0.01 g; initiator, AIBN (1.0 mol% to total monomers); solvent, CD₃CN (0.6 ml); temperature, 60°C.

b) Determined by ¹H NMR.

Table VI. Copolymerization of VB-PMeOZO-15(M_1) with MMA(M_2) in EtOHa

	Fee	d composi	tion		M	Monomer conversion		M ₁	in
Run	[M ₁] ₀ mol/L	[M ₂] ₀ mol/L	M ₁ (mol%)	Time	М	1(%)	M ₂ b	copc (m	ol%)
	(x10 ²)	(x10 ²)	(()	UV	GPC	(•)	Ac	Bq
32	0.61	16.52	3.6	10	12.1	11.9	2.4	15.7	15.4
33	0.87	13.15	6.2	15	7.8	7.5	1.5	25.5	24.8
34	1.29	7.32	15.0	40	8.3	_	3.2	31.2	_
35	1.56	3.65	29.9	76	11.4	-	5.8	45.9	-
36	1.68	2.03	45.3	88	10.5	-	6.1	58.7	-
37	1.74	1.17	59.8	100	7.4	-	5.1	68.3	
38	1.78	0.59	75.1	126	5.2	-	5.8	72.8	-
39	1.81	0.27	87.0	136	9.6	-	13.0	83.2	-

a) Total monomers, 0.05 g; initiator, AIBN (1.0 mol% to total monomers); solvent, ethanol(2.0 mL); temperature, 60°C.

b) Determined by GLC.

- c) Calculated on the basis of both conversions of $\texttt{M}_1(\text{determined by UV})$ and $\texttt{M}_2.$
- d) Calculated on the basis of both conversions of M_1 (determined by GPC) and M_2 .

	Fee	d composi	tion		Mon conve	omer ersion	M ₁ in
Run	[M ₁] ₀ mol/L (x10 ²)	[M ₂] ₀ mol/L (x10 ²)	M ₁ (mol%)	Time (h)	M1 ^b (%)	M ₂ c (१)	copolymer (mol%)
40	0.68	6.03	10.1	25	6.7	2.6	22.0
41	0.74	4.20	15.0	34	9.2	5.0	24.5
42	0.82	1.95	29.6	57	12.1	8.4	37.8
43	0.85	1.08	44.0	89	7.2	4.9	53.7
44	0.87	0.56	60.8	127	4.3	3.9	62.9
45	0.88	0.29	75.2	218	10.8	12.6	72.3
46	0.89	0.20	81.7	269	6.5	10.0	73.7
47	0.89	0.10	89.9	292	8.3	16.2	82.2

Table	VII.	Copolymerization	of	VB-PMeOZO-31	(M_1)	with	MMA	(M_2)
		in EtOH ^a						

a) Total monomers, 0.05 g; initiator, AIBN (2.0 mol% to total monomers); solvent, ethanol(2.0 mL); temperature, 60°C.
 b) Determined by UV

b) Determined by UV. c) Determined by GLC.

Table	VIII.	Monomer Rea	activity	Ratio(MRR)	Determined	in	the	Copoly-
		merization	of VB-P	ROZO Macrom	onomers			

				Com	onomer(M ₂	2)		
Macromonomer	Peastion	М	MA	HE	MA	DM	OMAA	
(M1)	solvent	r_1	r ₂	r_1	r ₂	<i>r</i> ₁	<i>r</i> ₂	
VB-PMeOZO-3	EtOH	1.86	0.07	1.44	0.03	5.80	0.19	
VB-PMeOZO-3	CD3CN	0.41	0.66	-	_	-	-	
VB-PMeOZO-15	EtOH	0.70	0.16	0.26	0.20	4.56	0.28	
VB-PMeOZO-28	EtOH	-	-	0.21	0.86	0.84	0.32	
VB-PMeOZO-31	EtOH	0.55	0.36	-	-	_	-	
VB-PBuOZO-15	hexanol	0.39	0.53	-	-	-	-	
styrene	EtOH	0.40	0.45a	-	-	1.12	0.18°	
styrene	BuOH	-	-	0.53	0.59b	-	-	

a) H. Fujihara, et al.(at 60°C).16)

b) J. Lebduska, et al.(at 60°C).17)

c) H. Fujihara, et al.(at 60°C).18)

応性比の値より1式に基づいて、コポリマー中のマクロモノマー(M₁)のモル分率と仕込み モル分率との関係の計算曲線を求めたが、その結果を、VB-PMeOZO-nとMMAに ついては Figure 1,2 および4に、VB-PMeOZO-nとHEMAについては Figure 5 お よび6に、VB-PMeOZO-nとDMAAについては Figure 7 および8に、VB-PBuOZO-15とMMAについては Figure 9 に示す。モノマー仕込み組成とコポリマー組 成との関係をプロットすると、全般的に見て計算曲線とよく一致しているが、エタノール中で VB-PMeOZO-3 に対してそれぞれ MMA および HEMA を共重合させた場合には プロットは計算曲線とかなり外れているのが認められる。

先ず、エタノール中でのVB-PMeOZO-n (M₁) とMMA (M₂) との共重合結果より述べる (Figure 1 および 2) 。

Figure 1. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -3 macromonomer with MMA in EtOH: (a) calculated curve for the copolymerization (r_1 =1.86, r_2 = 0.07); (b) calculated curve for polymerization of styrene with MMA (r_1 = 0.40, r_2 = 0.45).

Figure 2. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -15 or VB-PMeOZO-31 macromonomer with MMA in EtOH: (\odot) plots for VB-PMeOZO-15 and MMA; (\triangle) plots for VB-PMeOZO-31 and MMA; (a) calculated curve for VB-PMeOZO-15 and MMA (r_1 = 0.70, r_2 = 0.16); (b) calculated curve for VB-PMeOZO-31 and MMA (r_1 = 0.55, r_2 = 0.36).

最も鎖長の短いVB-PMeOZO-3の場合、 $r_1 = 1.86$ 、 $r_2 = 0.07$ となったが、 この事から、マクロモノマーユニット末端ラジカル(M_1)とマクロモノマーとの反応性は MMAとの反応性よりも非常に高く、文献のスチレン末端ラジカルとスチレンとの反応性($r_1 = 0.40$)に比しても著しく高いことがわかる。また、MMA末端ラジカル(M_2)に対し ても、マクロモノマーの反応性はMMAに比べて極端に高く、 r_2 値から見るとMMA同士の 結合は極めて少ないことになる。

マクロモノマーの鎖長が長くなると、 r_1 は低下、 r_2 は増大して、 M_1 、 M_2 ・いずれの生長 ラジカルに対してもマクロモノマーの反応性が低下していくことが認められる(Figure 2)。 特に、 r_1 値におけるnの3と15の間の差が大きく、n=15では $r_1=0.70$ と大きく低 下している。しかし鎖長nが31となっても $r_1 = 0.55$ 、 $r_2 = 0.36$ であり、スチレンー MMAの共重合の場合と比べて r_1 は大、 r_2 は小であって、生長末端ユニットが M_1 、 M_2 の何れでも、MMAをコモノマーとした場合のVB-PMeOZOマクロモノマーの高反応性が認められる。

一般にマクロモノマー(M₁)と低分子コモノマー(M₂)とのラジカル共重合反応性は、コ モノマー大過剰系でコモノマー末端ラジカル(M₂)に対する反応性比r₂で議論されている例 が多いが、ほとんどの場合に、マクロモノマーの反応性は相当する低分子モノマーに比して同 程度か同程度以下であると報告されている。今回エタノール中の共重合において、特に短鎖長 のPMeOZOマクロモノマーがスチレンと比較して著しい高反応性を示すことが認められた が、ビニルベンジル基内のビニル基の化学反応性が、ビニルベンジル基内のメチレン基に PROZO鎖が結合することによって、大きく変化することは考えにくい。VB-PMeOZO系マクロモノマーのラジカル単独重合速度は、アセトニトリル中よりも水中にお ける方が著しく速く、これはマクロモノマーが疎水性の重合基を内側にしたミセルを形成して いるためと結論した⁵⁾。本共重合においてもエタノールは、水ほどではないにせよ非プロト ン性のPMeOZO鎖を溶媒和して分散させやすく、疎水性でかつ相互作用の強いベンゼン核 をもつビニルベンジル基およびその重合体同士は、互いに凝集しやすいであろう。一方MMA

Figure 3. Concentration of VB-PMeOZO macromonomers at around the propagating site.

は、エタノールとの親和性が強くほぼ均一に 分散すると思われる。

このような特性が原動力になって、Figure 3 に示したように生長鎖の周囲にマクロモノマ ーが濃縮され、一種のミセルを形成して見掛 けの反応性が高まるのではないかと考えられ る。生長鎖末端に M₁ユニットのある場合 (M₁.)には、当然そこにマクロモノマー が凝集しやすく、高反応性になるであろう。 MMA末端ラジカル(M₂.)に対しても、 周囲にミセル形成しているマクロモノマーの 作用する機会は、ミセル形成とは直接無関係 のMMAに比べれば著しく多くなると考えて よい。 比較のために、VB-PMeOZO - 3とMMAとの共重合をCD₃CN中で検

Mole fraction M₁ in feed

Figure 4. Monomer feed vs. copolymer composition plots and calculated curve for copolymerization of VB-PMeOZO-3 with MMA in CD₃CN ($r_1 = 0.41$, $r_2 = 0.66$).

討したところ、 $r_1 = 0.41$, $r_2 = 0.66$ となり、スチレンとMMAの場合よりもむしろ MMAの相対的反応性が高い結果となった(Table V, Figure 4)。CD₃CN中ではVB-PMeOZO系マクロモノマーは、単独重合の結果から見ても特にミセル形成していることは なく、MMAと共に均一に溶解していると考えられる¹⁹)。従ってこのような反応性比の値は当 然のことと言えるが、この事からも、エタノール中におけるVB-PMeOZO-3マクロモ ノマーの異常な高反応性は均一系では考えられないことであり、ミセル形成によるものである ことが支持される。

マクロモノマーの反応性が、相当する低分子モノマーより増大する例は極めて少ないが、例 えばポリオキシエチレン鎖を有する両親媒性マクロモノマーのCDC1₃中におけるスチレン との共重合²⁰⁾の場合にそのような例が見出され,マクロモノマーが何らかの凝集体を形成して いるためであろうと説明されている。また Percec らは、MMA (M₁) と ビニルベンジル末 端 ポリ (2,6-ジメチル-1,4-フェニレンオキシド) (M₂)のラジカル共重合 (トルエン 中)において、幹ポリマーラジカル (M₁)に対するマクロモノマーの反応性が、ミセル形成 を原因とする濃縮効果により増大する場合のあることを報告している²¹⁾。

PMeOZOマクロモノマーの見かけの反応性は、PMeOZO鎖長が長くなるに従って低 下しているが、この原因として、ビニルペンジル基の化学反応性の変化は考えられず、最も大 きな原因は、活性末端周辺のセグメント密度の増大による立体障害と、重合系の粘性の増大に よるものと思われる。セグメント密度の増大とマクロモノマーそのものの鎖長の増大により、 生長鎖の活性末端とマクロモノマーの重合基の相互侵入即ちセグメント拡散は、立体的により 大きく規制を受けることになる。また、生成グラフト共重合体のグラフト鎖長が増すことによ り重合系の粘性が増大すると、セグメント拡散と並進拡散は抑制される。ポリ(2-エチル-2-オキサゾリン)(PEtOZO)とポリ(メタクリル酸メチル)(PMMA)は非相溶で あり²²⁾、PMeOZOの場合も同様と思われる。従って、共重合においてMMA連鎖の鎖長が 長くなれば、MMA末端生長ラジカルとマクロモノマーとの非相溶性の影響が出てきて、マク ロモノマーの鎖長が長くなるほど反応性は低下するであろう。しかし本共重合は、一般に多く 行われるようなコモノマー大過剰系ではなく、MMA連鎖はそれほど長くはならないため、こ の効果は考えなくて良い。

PROZOマクロモノマーの共重合に関して、メタクリラートまたはアクリラート末端マク ロモノマー(R=Me, Bu)とStまたはMMAとの共重合を、コモノマー大過剰系で、コ ポリマー収率68~99%となるような高反応率まで行い、ほぼ仕込み比通りの組成のコポリ マーを得たという報告がある⁷。しかし本研究は、重合初期の反応性を検討したものであると 同時に重合基や反応条件も異なり、直ちに比較することは困難である。

つぎにVB-PMeOZOマクロモノマー(M₁)とHEMA(M₂)との、エタノール中 の共重合について述べる(Figure 5 および 6)。 r_1 値は n=3において1.44であり、 MMAとの共重合の場合の1.86よりも少し低い値であるが、n=15になった場合に 0.26となり、マクロモノマーの反応性の著しく大きな低下がみられた。 r_2 値は nと共に

Figure 5. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -3 macromonomer with HEMA in EtOH: (a) calculated curve for the copolymerization (r_1 =1.44, r_2 = 0.03); (b) calculated curve for polymerization of styrene with HEMA (r_1 = 0.53, r_2 = 0.59). Figure 6. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -15 or VB-PMeOZO-28 macromonomer with HEMA in EtOH: (\odot) plots for VB-PMeOZO-15 and HEMA; (a) calculated curve for VB-PMeOZO-28 and HEMA; (a) calculated curve for VB-PMeOZO-15 and HEMA(r_1 =0.26, r_2 = 0.20); (b) calculated curve for VB-PMeOZO-28 and HEMA (r_1 = 0.21, r_2 = 0.86).

増加し、n = 2.8の段階では 0.86となり、マクロモノマーの反応性が大きく低下する。 従って n = 2.8の場合は、 M_1 ・および M_2 ・いずれに対してもVB-PMeOZOマクロモノ マーの相対的反応性は、HEMAに対するスチレンの反応性と比べてもかなり低下しているこ とになる。

HEMAから見た場合は、n=3の場合の r_2 値を除いては、 M_1 および M_2 いずれに対す る反応性もMMAに比べて高い。このようにHEMAの相対的反応性が高まる原因は、水酸基 を有するためにMMAに比べて生長鎖上のグラフト鎖との親和性が強く、ある程度生長末端に 到達しやすくなるためと考えられる。 r_1 値がn=15の段階で大きく落ち込むのは、マクロ モノマー末端ラジカルに対してマクロモノマーが作用する際の、立体障害の影響が大きく出た

ものであろう。

Nabeshima らは、スチリル末端ポリアミンマクロモノマー (M_n =3050および 3750) (M_1) とHEMA (M_2) とのエタノール中での共重合において、 r_1 = 0.16、 r_2 =0.48の結果を得ている⁹⁰。このマクロモノマーは N-エチルエチレンイミ ンのユニットを有し、N-アセチルエチレンイミン (アミド構造) ユニットを有する PMeOZOとは対照的な特徴を備えている。今回の n=28の場合の反応性比は r_1 = 0.21、 r_2 =0.86であって、これらを比較すると r_1 値は同程度であり、立体障害の大き い M_1 へのPMeOZOマクロモノマーの作用のしやすさはポリアミンマクロモノマーとほと んど変わらない。HEMA末端の M_2 に対する相対的反応性は、ポリアミンマクロモノマーよ りもVB-PMeOZOマクロモノマーの方が低くなっているが、これは、コモノマーの HEMAが活性末端周辺のPMeOZOグラフト鎖との親和性が強く、反応サイト周辺に引き 寄せられやすい結果であろう。

つぎにVB-PMeOZOマクロモノマー (M₁) とDMAA (M₂) との共重合について 述べる。スチレン (M₁) とDMAA (M₂) とのエタノール中での共重合 (60℃) の反応 性比の文献値は、 $r_1 = 1.12$ 、 $r_2 = 0.18$ で¹⁸)、生長末端が M₁、M₂のいずれでもスチ レンの相対的反応性がかなり高い。DMAAは極性で非プロトン性のモノマーであり、その点 でPMeOZO鎖と類似している。このようなコモノマーが、PMeOZOマクロモノマーと の共重合でどのような挙動を示すか興味が持たれた。

先ず M_1 · に対する反応性をみると、マクロモノマーのnが3および 15 の場合の r_1 値は それぞれ5.80 および 4.56 で、スチレン (M_1) – DMAA (M_2)の共重合の r_1 値 (1.12)に比べて著しく大きく、マクロモノマーの鎖長がこの程度では、DMAAに対する 相対的反応性はスチレンよりもかなり高いと言える (Figure 7 および 8)。コモノマー側から 見た場合、 M_1 · に対するDMAAの相対的反応性はHEMAの場合よりは勿論MMAよりも低 下し、非プロトン性であってもDMAAはPMeOZO鎖に対して、特別大きな親和力は持た

Figure 7. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -3 macromonomer with DMAA in EtOH: (a) calculated curve for the copolymerization (r_1 =5.80, r_2 = 0.19); (b) calculated curve for polymerization of styrene with DMAA (r_1 = 1.12, r_2 = 0.18).

Figure 8. Monomer feed vs. copolymer composition plots for copolymerization of VB-PMeOZO -15 or VB-PMeOZO-28 macromonomer with DMAA in EtOH: (\odot) plots for VB-PMeOZO-15 and DMAA; (a) calculated curve for VB-PMeOZO-28 and DMAA (r_1 =4.56, r_2 = 0.28); (b) calculated curve for VB-PMeOZO-28 and DMAA (r_1 = 0.84, r_2 = 0.32).

ないように認められる。n=28 になるとr₁=0.84となり、マクロモノマーの反応性に 大きな低下がみられた。マクロモノマーの相互侵入に対する障害が大きくなって初めて、低分 子モノマーとしてのDMAAの特徴が出てきたと言える。

r2値によると、M2・に対するMMA, HEMAの相対的反応性は、スチレンとの共重合の 場合に比べて低下している場合が多かったが、DMAAの反応性はスチレンとの共重合の場合 に比べて、ある程度高くなっているのが特徴と言える。これは、M2・に対してDMAAが作用 しやすいからなのか、またはマクロモノマーが作用しにくいからなのか、詳細は明らかでな い。

以上のように、親水性のPMeOZOマクロモノマーが、特に短鎖長の場合にエタノール中 で特異的に高反応性を示し、これはマクロモノマーの濃縮効果によると説明した。Harwood

は、低分子モノマー同士の共重合において一方が極性モノマーの場合生長ラジカル中の極性モ ノマー由来のユニットと極性モノマーとの強い凝集力によって、生長ラジカルの周囲における 極性モノマーの濃度がその他の部分に比べて 増大し、その結果極性モノマーの反応性が見 かけ上高まる現象を見出し、「ブートストラ

ップ効果」と名づけた²³)。本研究のVB-PMeOZOマクロモノマーの共重合も、ミ セル形成によってマクロモノマーの反応性が 高まっていると思われることから、Harwood の場合と同様の現象が起こっているように考 えられる。特にHarwood の、メタクリル酸 ースチレンのCC1₄中における共重合のコ ポリマー組成-仕込み組成のプロットは、本 研究の VB-PMeOZO-3 マクロモノ マーとMMA および HEMA との共重合の ものと相当の類似性が認められる。従って、 これらについての反応性比から求めた末端モ デルによる計算曲線が、コポリマー組成-仕 込み組成のプロットと一致しないのは、生長

Figure 9. Monomer feed vs. copolymer composition plots and calculated curve for copolymerization of VB-PBuOZO-15 with MMA ($r_1 = 0.39$, $r_2 = 0.53$).

は異なるためであると説明出来る。VB-PMeOZOマクロモノマーの鎖長が長くなった場合は、生長末端に対するマクロモノマーの侵入を阻害する効果が働いてくるため、計算曲線が 見かけ上プロットと一致していると理解すべきであろう。

つぎに VB-PBuOZO-15 のマクロモノマーとMMAとの、1-ヘキサノール中で の共重合の結果について述べる。エタノールには、このマクロモノマーは難溶であった。得ら れた反応性比は r_1 =0.39、 r_2 =0.53 であって、マクロモノマーの反応性は生長末端 が M_1 、 M_2 のいづれに対しても、VB-PMeOZO-15よりは勿論 VB-

PMeOZO-31よりも低下している(Figure 9)。St-MMAの共重合における、 Stの反応性より低い。これは、疎水性であるPBuOZO鎖をもつこのマクロモノマーが、 1-ヘキサノール中で生長末端周辺に濃縮されるような特別な効果はないこと、および分岐性 マクロモノマーから生ずる高いセグメント密度の生長末端と、マクロモノマーとの相互侵入の 立体障害が大きくなることなどによると考えられる。

5.5 結 論

非プロトン性の特徴をもつVB-PROZOマクロモノマーの共重合反応性について検討した。先ずVB-PMeOZO-n(M₁)とMMA, HEMA、およびDMAA(M₂)との ラジカル共重合をエタノール中で行い、末端モデルにより反応性比r₁とr₂を求めた。その 結果、鎖長の特に短い(n=3)PMeOZOマクロモノマーは、末端が何れのラジカルに対 しても、コモノマーおよびスチレンに比べて高い反応性を示した。これは、マクロモノマーが 生長鎖中のマクロモノマーユニットとの間で、疎水基同士の凝集によるミセルを形成し、その 周辺に濃縮されるためと考えられる。

マクロモノマーは鎖長の増大と共に反応性が低下するが、これは、濃縮効果は存在していて も、マクロモノマーの侵入に対する立体障害と重合系の粘性が増すためであろう。

PMeOZOマクロモノマーは、疎水性のMMAに対してはnが31になってもスチレンよりも高い反応性を示すが、プロトン供与性のHEMAに対してはnの増加による反応性の低下が著しく、これはHEMAがグラフト鎖のPMeOZOとの親和性により、ラジカルサイトに 到達しやすくなるためと思われる。

非プロトン性のDMAAは、PMeOZOマクロモノマーに対する反応性は比較的低く、生 長ラジカル中のグラフト鎖との特に強い相互作用は認められなかった。

1-ヘキサノール中におけるVB-PBuOZO-15とMMAとの共重合においては、マ クロモノマーの反応性はVB-PMeOZO-15に比べてかなり低下し、特にマクロモノ マーの反応性が高まるような効果は見られなかった。

- 1) S. Kobayashi, Prog. Polym. Sci., 15, 751 (1990).
- 2) (a) 小林四郎、C. Merlesdorf、田辺隆喜、松尾康司、三枝武夫、 高分子学会予稿
 集, 35, 248(1986). (b) R. C. Schulz, and E. Schwarzenbach,
 Makromol. Chem., Macromol. Symp., 13/14, 495 (1988).
- 3) S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano, Mcromolecules, 22, 2878 (1989).
- 4) H. Uyama and S. Kobayashi, Macromolecules, 24, 614 (1991).
- 5) 嶋野 安雄、佐藤 久美子、小林 四郎、高分子学会予稿集,41,1947 (1992).
- 6) S. Kobayashi, H. Uyama, S. W. Lee, and Y. Matsumoto, J. Polym. Sci., Part A: Polym. Chem., 31, 3133 (1993).
- 7) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci., Part A: Polym. Chem., 30, 1489 (1992).
- 8) (a) G. O. Schulz and R. J. Milkovich, J. Polym. Sci., Polym. Chem. Ed., 22, 1633 (1984). (b) Y. Tsukahara, M. Tanaka, and Y. Yamashita, Polym. J., 19, 1121 (1987). (c) K. Ito, N. Usami, and Y. Yamashita, Macromolecules, 13, 216 (1980).(d) R. Asami and M. Takaki, Makromol. Chem., Suppl., 12, 163 (1985).
- 9) (a) K. Ito, H. Tsuchida, A. Hayashi, T. Kitano, E. Yamada, and T. Matsumoto, Polym. J., 17, 827 (1985). (b) M. Niwa, M. Akahori, and S. Nishigawa, J. Macromol. Sci. Chem., A24, 1423 (1987). (c) M. Akashi, I. Kirihira, and N. Miyauchi, Angew. Makromol. Chem., 132, 81 (1985). (d) C. G. Cameron and M. S. Chisholm, Polymer, 26, 437 (1985). (e) K. Mühlbach, V. Percec, and J. H. Wang, J. Polym. Sci., Polym. Chem. Ed., 25, 2605 (1987). (f) Y. Nabeshima and T. Tsuruta, Makromol. Chem., 190, 1635 (1989).
- 10) (a) J. R. Cho and H. Morawetz, Macromolecules, 6, 628 (1973). (b)

H. Morawetz, J. R. Cho, and P. J. Gans, Macromolecules, 6, 625 (1973).

- 11) (a) W. Radke and A. H. E. Müller, Makromol. Chem., Macromol. Symp., 4/55, 583 (1992). (b) M. F. Farona and J. P. Kennedy, Polym. Bull., 11, 359 (1984).
- 12) M. Niwa and N. Hayashi, Macromolecules, 21, 1193 (1988).
- 13) H. Witte and W. Seeliger, Justus Liebigs Ann. Chem., 1974, 996.
- 14) 三宅 隆、谷本重夫、有機合成化学協会誌、**31**, 1050(1973).
- 15) G. F. Meijs and E. Rizzardo, JMS-Rev. Macromol. Chem. Phys., C30, 305 (1990).
- 16) H. Fujihara, K. Yamazaki, Y. Matsubara, M. Yoshihara, and T. Maeshima, J. Macromol. Sci. Chem., A13, 1081 (1979).
- 17) J. Lebduska, J. Snuparek, and K. Kaspar, Chem. Prum., 36, 472 (1986).
- 18) H. Fujihara, M. Yoshihara, and T. Maeshima, J. Macromol. Sci. Chem., A14, 867 (1980).
- 19) Y. Shimano, K. Sato, and S. Kobayashi, J. Polym. Sci. 投稿中
- 20) M. Niwa and N. Higashi, Macromolecules, 21, 1193 (1988).
- 21) V. Percec and J. H. Wang, J. Polym. Sci., Part A: Polym. Chem., 28, 1059 (1990).
- 22) H. Keskkula and D. R. Paul, J. Appl. Polym. Sci., 31, 1189 (1986).
- 23) H. J. Harwood, Makromol. Chem., Macromol. Symp., 10/11, 331 (1987).

第6章 ポリ(2-オキサゾリン)マクロモノマーの官能基移動重合

6.1 要旨

メタクリラート基を末端に有するポリ(2-アルキル-2-オキサゾリン)マクロモノマー
 (MA-PROZO-n;n(オキサゾリンの重合度)=3,14,34;R=Me,Bu)
 の官能基移動重合(GTP)の反応性を検討した。

R = B u の場合、開始剤としてシリルケテンアセタール(SKA)、触媒は主としてテトラ ブチルアンモニウムフルオリドを用い、テトラヒドロフラン中、50℃、24℃、-27℃で 重合を検討したところ、24℃以上でポリマーが生成し、 M_n は最高 37600であった。 重合速度は、n の大きい場合の方が遅くなり、これはラジカル重合とは逆の傾向である。温度 は 50℃の方が速度が早い。触媒としてトリス(ジメチルアミノ)スルホニウム塩も検討した が、ほとんどポリマーは得られなかった。R=Meの場合、開始剤としてSKA、触媒として フッ化水素カリウム、溶媒は主としてCD₃CNを用いて 24℃ で行い、 M_n の最高値 14400のポリマーを得た。重合速度は 概して R=Meの 方がR=Bu の場合より速い。 $n>140場合のポリマクロモノマーの M_w/M_n は、1.08~1.12 程度であった。R$ = Buの場合の重合生成溶液に、<math>p-ビスプロモメチルベンゼンおよびリビングPBuOZOをそれぞれ作用させると、前者では鎖延長ポリマー、後者ではプロック共重合体が生成した。

6.2 緒 言

2-アルキル-2-オキサゾリン(ROZO)の開環異性化重合により生成するリビングの ボリ(2-アルキル-2-オキサゾリン)(PROZO)(1))にメタクリラートアニオン を作用させると、活性末端(2-オキサゾリニウム塩)が停止されると共にエステル結合が生 成し、メタクリラート基を末端に有する PROZO のマクロモノマー(2)が生成する²)。ま た、1の活性末端を加水分解して得られるアルコールをメタクリロイルクロリドでアシル化し ても2が得られる。2とメタクリル酸メチル(MMA)およびスチレン(St)との共重合 により両親媒性ポリマーが合成されているが³⁾、著者らは有機溶媒および水中における1の ラジカル単独重合の反応性を検討し、アルキル基の影響を強く受けること、反応速度は PROZO鎖が長くなるほど増大すると共に、水中においては著しく速くなることなどを見出 した⁴⁾。

Webster らは、メタクリル酸メチル等の低分子モノマーを、開始剤としてシリルケテンアセ タール(SKA)、触媒としてフッ素アニオン等を用いて重合させて、条件によってはリビン グ重合になることを見出し、この重合反応を Group Transfer Polymerization (GTP)と命名した 5)。マクロモノマーのGTPの例は極めて少ないが、Asami らはメタクリラート末端ポリスチ レンマクロモノマーにSKAとトリス(ジメチルアミノ)スルホニウムジフルオロトリメチル シリケート(TASF)を作用させ、リビング重合の起こることを見出したの。

PROZOは、N-アシルエチレンイミンユニットの連鎖より成るポリマーであるが、ジメ チルアセトアミドのような非プロトン溶媒の高分子同族体であって、アルキル基がメチル基お よびエチル基の場合には強い親水性、プチル基以上の炭素数の場合は疎水性となる。このよう なPROZO鎖を有するマクロモノマーのイオン的重合反応についてはほとんど検討されてい ないが、生成ポリマーはラジカル重合によるものとはかなり異なる特性と機能性を持つことが 予想される。例えば、もしリビング重合になるとすれば単分散櫛型ポリマーが生成し、その活 性末端を利用して新しい高分子材料を合成出来るであろう。

本研究では、メタクリラート末端PROZOマクロモノマー(MA-PROZO-n;nは 重合度;R=Me,Bu)のGTPを行い、重合のリビング性、および活性末端を利用した ブロック共重合体の合成、鎖延長等について検討する。

6.3 実験

6.3.1 原料および試薬

テトラヒドロフラン(THF)、Et₂Oは金属ナトリウムより蒸留して使用した。 CH₃CNはP₂O₅の存在下加熱還流後蒸留して使用、CHC1₃、石油エーテル、ベンゼ ン、ヘキサン、メタノールは市販品をモレキュラーシープで乾燥後蒸留して使用した。ジメチ ルホルムアミド (DMF) は CaH₂より蒸留した。2-メチル-2-オキサゾリン (MeOZO)、メチルトシラート (MeOTs)、メタクリロイルクロリド、Et₃N、 p-ビスプロモメチルベンゼン (BMB)、およびメタクリル酸は市販品を乾燥して蒸留し た。2-プチル-2-オキサゾリン (BuOZO) 7、ポリ (2-アルキル-2-オキサゾリ ン)マクロモノマー (MA-PROZO-n) 2、および 1-メトキシ-1- (トリメチルシ ロキシ) -2-メチル-1-プロペン (SKA) 8)は文献の方法により合成して用いた。n-プチルリチウムは市販の1.5 M ヘキサン溶液を用いた。1,1-ジフェニル-2-ピクリル ヒドラジルは石油エーテルから再結晶した。CDC1₃とCD₃CNは市販品をモレキュラー シープで乾燥して使用した。フッ化水素カリウム (KHF₂)は市販品を150℃で真空乾燥 した。テトラ n-プチルアンモニウムフルオリド (TBAF)は市販品をそのまま用いた。

6.3.2 MA-PROZOマクロモノマーのGTP

(a) MA - PBuOZOマクロモノマーのGTP

典型的例をつぎに示す。

(1)ポリマクロモノマーの合成と分離 (Entry 5)

THF 4 mL、SKA の 0.96% THF 溶液 (0.083g, 4.6×10⁻³ mmol)と TBAF の 6.55×10⁻³% THF 溶液 (0.022g, 4.4×10⁻⁶ mmol)の混合 物に、MA-PBuOZO-3 の 6.99% THF 溶液 (3.000g, 0.200 mmol)を 滴下して生成する溶液を 50℃ で175 h 加熱した。溶液を乾固して残渣をCHC1₃に溶 解し、溶液を大量のヘキサンに加えて生成する沈殿を乾燥して固形物 0.20gを得た。 GPC 測定によると、マクロモノマーの反応率は 78%、ポリマクロモノマーの M_n は 23000 ($DP_n = 46.5$)、 M_w / M_n は 1.25 であった。¹H NMR (CDC1₃): $\delta = 4.20$ (t, OCH₂-C-N), 3.58 (s, CH₃OC=O), 3.36 (br, NCH₂), 3.0 (br, NCH₃), 2.0~2.5 (br, CH₂C=O), 1.0~1.7 (br, CCH₂CH₂C), 0.93 (br, CH₃C)。 (2)マクロモノマーの反応率(Entry 1)

THF 6 mL、SKA の 0.96% THF 溶液 (0.802g, 4.42×10⁻² mmol) とTBAF の 6.55×10⁻³% THF 溶液 (0.169g, 4.22×10⁻⁵ mmol)の 混合物に、MA-PBuOZO-3 の 6.99% THF 溶液 (3.242g, 0.447 mmol)を滴下して生成する溶液を7等分する。それぞれ 24℃ で所定時間反応させた後、溶 液を乾固した残渣のGPCをCHC1₃中で測定する。GPCにおける、ポリマクロモノマー ピークの面積を s_p 、未反応マクロモノマーピークの面積を s_m とし、マクロモノマーの反応率 p を次式により算出した。

$$p = \frac{S_p}{S_p + S_m}$$

(b) MA-PMeOZOマクロモノマーのGTP
 典型的例をつぎに示す。

(1) ポリマクロモノマーの合成と分離(Entry 12) MA-PMeOZO-14(0.132g, 0.106 mmol)、SKAの0.74% CH₃CN溶液(0.225g, 9.7×10⁻³ mmol)、KHF₂(0.07mg, 9.2× 10⁻⁴ mmol)、CH₃CN(11.6 mL)を混合した溶液を50℃で235h加熱した。 重合溶液をエチルエーテルに加えて生成する沈殿をCH₃CNに溶解し、溶液を濾過した後 Et₂Oに加えて生成する沈殿を乾燥して固形物0.13gを得た。GPC 測定によると、マ クロモノマーの反応率は94%、ポリマクロモノマーの M_n は14400(DP_n = 11.4)、 M_w/M_n は1.12であった。¹HNMR(CD₃CN): δ =4.22(t, OCH₂-C-N), 3.57(s, CH₃OC=O), 3.38(br, NCH₂), 2.96(br, NCH₃), 2.0(br, CH₃C=O)。

(2) マクロモノマーの反応率 (Entry 11)

NMR試料管中で MA-PMeOZO-14 (25 mg, 2.01×10⁻² mmol)、 SKAの0.35% CD₃CN溶液(0.094g, 1.91×10⁻³ mmol)、KHF₂(14mg, 1.80×10⁻⁴ mmol)、CD₃CN(0.4 mL)を混合した溶液を、封管後 24℃で所定時放置した後、-78℃に冷却して反応を停止させ、¹H NMRにおける δ 5.04 および 5.59 (CH₂=C, メタクリル基)のシグナルと δ 4.24 (t, OCH₂)のシグナルの面積比の減少率よりマクロモノマーの反応率を求めた。

6.3.3 リビングポリ(マクロモノマー)の反応

(a) p-ビス(プロモメチル)ベンゼン (BMB) による停止反応

THF (6 mL)、SKA の 0.96 % THF 溶液 (0.878g, 4.85×10⁻² mmol)、TBAF の 6.55×10⁻³ % THF 溶液 (0.191g, 4.7×10⁻⁵ mmol)の混合物に、MA-PBuOZO-3 の 6.99 % THF 溶液 (3.892g, 0.54 mmol)を滴下し、50℃ で 48h 加熱した。生成溶液のうち 1.9 ml を採取して乾固しGPC 測定を行うと、MA-PBuOZO-3 の反応率は 76%、ポリマクロモノマーの M_n は2900 ($DP_n = 5.9$)であった。残りの溶液に-78℃ で TASF 14.2 mg (5.14×10⁻² mmol)と BMB 5.4 mg (2.05×10⁻² mmol)を加え、24h かきまぜた。溶液を乾固した残渣をCHC1₃に溶解し、溶液を大量のヘキサンに加えて生成する沈殿を乾燥して固形物 0.22gを得た。GPC測定によると、ポリマクロモノマーの反応率は 94%、生成物の M_n は 8800 であった。¹H NMR (CDC1₃) : $\delta = 7.1 \sim 7.3$ (m, C₆H₄), 4.50 (s, CH₂ ϕ), 4.17 (t, OCH₂-C-N), 3.60 (s, CH₃ OC=O), 3.40 (br, NCH₂), 3.0 (br, NCH₃), 2.0~2.5 (br, CH₂C=O), 1.0~1.7 (br, CCH₂CH₂C), 0.95 (br, CH₃C)。

(b) リビングポリ (マクロモノマー) とリビングPBuOZO (n=13) との反応

THF (3 m1)、SKA の 0.96% THF 溶液 (0.424g, 2.34×10⁻² mmol)、TBAF の 6.55×10⁻³% THF 溶液 (0.096g, 2.4×10⁻⁵ mmol) の混合物に、MA-PBuOZO-3の 6.99% THF 溶液 (2.969g, 0.41 mmol) を滴下し、50℃ で 48h 加熱した。生成溶液のうち 1.2 ml を採取して乾固し GPC 測定を行うと、MA-PBuOZO-3の反応率は 80%、ポリマクロモノマーの M_n は 9200 ($DP_n = 18.2$)であった。別に、MeOTs (3.8 mg, 2.04×10⁻² mmol)、BuOZO (34.1 mg, 0.27 mmol, [BuOZO]_0/[MeOTs]_0 = 13.1)、CH₃CN (0.3 ml) の混合物を 80℃ で 24h 加熱して リビングPBuOZO の 溶液 を得た。MA-PBuOZO-3 の重合溶液に、-78℃ で TASF (6.59 mg, 2.39×10⁻² mmol)とPBuOZO の重合溶液を加え 24h かきまぜた。生成溶液を乾固して得られる固形分をCHCl₃に溶解し、溶液を大量のヘキサンに加えて生成する沈殿 を乾燥して固形物 0.18gを得た。GPC 測定によると、ポリマクロモノマー および PBuOZO-13の反応率は共に 100%、生成物の M_n は12600であった。¹H NMR (CDCl₃): $\delta = 4.14$ (t, OCH₂-C-N), 3.61 (s, CH₃OC= 0), 3.37 (br, NCH₂), 3.0 (br, NCH₃)。

6.3.4 生成物の分析

1H NMR は JEOL FX 60Q 型分光計を用いて、IR は JASCO IR-810型 分光計を用いて測定した。GPC は、島津 LC-10AD型液体クロマトグラフにより検知 器としては示差屈折計を用い、R=Buの場合はカラムとしてShodex-803 と JASCO Fine Pack Gel-101を連結しCHC1₃を溶媒として室温で、R =Meの場合は Tosoh TSKgel GMH_{HR-M} カラム2本を連結してDMFを溶媒 として58 ℃で、流速は何れも0.8 mL/minで測定した。GPCの分子量標準物質として は、分子量既知のPMeOZOを用いた。

6.4 結果と考察

6.4.1 マクロモノマー

MA-PROZO-nの合成法を Scheme 1 に示す。 p-トルエンスルホン酸メチル (MeOTs)を開始剤としてROZOをカチオン開環重合させると、リビングPROZO(3)が生成する。RがMeの場合は、3の活性末端(2-オキサゾリニウム塩)を加水分解して 生成するアルコール(4)をメタクリロイルクロリドでアシル化してマクロモノマー(MA-PROZO-n;5)を得た。

Scheme 1

Table 1 に、合成して用いたマクロモノマーを示す。PROZOの重合度(n)はモノマーと 開始剤の仕込み比によく一致し、分子量分布は 1.1 2~1.2 1 でほぼ単分散である。官能基 導入率(F)は 0.9 9~1.0と良好である。

Table I. Vinylbenzyl-Type Macromonomers of Poly(2-alkyl-2-oxazoline)s (PROZO)

	М	'n		M_w b			
Macromonomer	NMR	GPC	DP _n a	M _n	F C		
MA-PMeOZO-14	1290	1250	14.0	1.12	1.00		
MA-PBuOZO- 3	510	490	3.2	1.36	1.00		
MA-PBuOZO-14	1920	1840	14.3	1.13	1.00		
MA-PBuOZO-34	4390	4020	33.7	1.19	0.99		

a) Determined by ¹H NMR.

b) Determined by GPC.

c) Functionality; determined by ¹H NMR.

6.4.2 官能基移動重合

マクロモノマーの GTP は、R=Buの場合は開始剤として1-メトキシ-1-(トリメ チルシロキシ) -2-メチル-1-プロペン(SKA), 触媒としてテトラ-*n*-プチルア ンモニウム(TBAF)を用い、テトラヒドロフラン(THF)中、50℃、24℃、 -27℃で検討した。マクロモノマー濃度は約40 mmol/Lおよび約8~9 mmol/L、

Scheme 2 $Me \xrightarrow{(NCH_2CH_2)_n} OC \xrightarrow{(II)_{II}} OC \xrightarrow{(II)_{II}$

m-1

OSiMe₃

マクロモノマーと開始剤の仕込み比([M]₀/[I]₀)は 10 程度および 43.5 で行った。反 応後溶液を乾固し、残渣をCHC1₃に溶解した溶液をヘキサンに加えて、生成ポリマーと未 反応マクロモノマーを沈殿させた。触媒として、トリス(ジメチルアミノ)スルホニウム ジフ ルオロトリメチルシリコナート(TASF)も検討したが、ポリマーの生成は認められなかっ た。生成ポリマーの分子量およびマクロモノマーの反応率は GPC(溶媒CHC1₃)によ り測定した。この場合、試料単位重量当たりのピーク面積は、マクロモノマーとポリ(マクロ モノマー)で差異はないと仮定した。

R=Me の場合は、開始剤として SKA、触媒としてKHF₂を用い、主としてNMR 試 料管中CD₃CNを溶媒として重合を行った。PMeOZO は THF に難溶なため、これを 反応溶媒として用いることは出来ない。温度は 24℃、マクロモノマー濃度は約 40 mmol/ L、[M]₀/[I]₀ は約 10 である。マクロモノマーの反応率は ¹H NMR により、 δ 5.04 および 5.59のメタクリル基のCH₂プロトンシグナルと、 δ 4.24の PMeOZO鎖末端のOCH₂プロトンシグナルの面積比の減少率より求めた。ポリ (マクロ モノマー) の分子量は GPC により測定した。また、MA-PMeOZOからのポリマーは CHC1₃に難溶なため、GPC 溶媒として DMF を用いた。

重合生成物の GPC の例を Figure 1 に示す。何れも R=Bu で反応温度 50℃の場合の 結果であるが、n=3 で [M]₀/[I]₀ が 10.1 および 43.5 の場合の 24h 後の結果を 比較すると、後者の方の分子量の大きいのは明らかであるが、マクロモノマーの反応率は前者 で 75.6 %後者で 55.4 % であって、[M]₀/[I]₀ が増すと重合速度が低下することを 示している。これは、後者の場合の方が生成ポリマーの分子量が増大して重合系の粘性が増す 度合いが大きく、生長ポリマーとマクロモノマーの並進拡散とセグメント拡散が抑制され、生 長反応性が低下するためと思われる。n=14 の場合 (重合時間 48 h)、n=3 の同程度の 仕込比の場合と比較すると、ポリマクロモノマーが相対的に高分子量であることが認められ る。

グループ移動重合における各種条件の影響を検討した結果を Table Ⅱ に示す。R=Bu の場

合、触媒として TBAF を用いて重 合反応を検討すると、-27℃では ポリマーの生成は認められなかった。 24および 50℃で生成したポリマ 一の重合度は全般的に仕込み比([M]₀/[I]₀)とほぼ近い値であっ て、重合度は制御されておりリビン グ重合であることを支持している。 重合温度が上昇すると重合速度が速 くなり、反応率も高くなるが、重合 度の制御はある程度弱くなり分子量 分布も広くなる。反応率は時間と共 に上昇するが、マクロモノマー濃度 が 40 mmol / L 程度の場合は最高 85%までしか達しない。マクロモ ノマー鎖長が長くなるほどこの値は 低下し、

濃度 40 mmol / L 程度で n が 3 4 の場合にはポリマーの生 成は認められなかった。使用したマ クロモノマーはかなり短鎖長である が、生長末端周辺のセグメント密度

= 39.2 %)

と重合系の粘性が反応率と共に増加し、前述したような拡散因子の影響が増して生長反応が阻 害されるためであって、マクロモノマー鎖長が長くなるほどその程度が大になるものと考えら れる。マクロモノマー濃度が 9 mmol/L 前後に低下するとそれぞれの反応率が増加するが、 これは粘性の低下によるものであろう。鎖長nが 1 4 および 3 4 の場合、生成ポリマーの分 子量分布は極めて低く、この事実もリビング重合を支持している。n=3 の場合に分子量分布

Table II. Group Transfer Polymerization of MA-PROZO Macromonomersa

		MA-P	ROZO-n	[M]0 b)	Conver-d Temp. Time sion				M_w d	
Entry	R	n	mmol/L	[I] ₀	Cat.c	(°C)	(h)	sion (%)	M_n^{d}	DP_n^d	Mn
1	Bu	3	40.82	10.1	TBAF	24	196	85	4730	9.3	1.41
2	Bu	3	40.82	10.1	TBAF	50	162	83	5860	11.6	1.88
3	Bu	3	8.75	10.7	TBAF	24	246	95	5760	11.4	1.28
4	Bu	3	40.82	10.1	TBAF	-27	154	0	_	-	_
5	Bu	3	40.82	43.5	TBAF	50	175	78	23000	46.5	1.25
б	Bu	3	8.75	40.1	TBAF	50	262	89	22100	44.7	1.23
7	Bu	14	41.50	9.8	TBAF	24	180	51	12300	5.8	1.09
8	Bu	14	41.50	9.8	TBAF	50	192	49	12100	6.3	1.11
9	Bu	14	8.51	10.2	TBAF	50	268	90	18200	9.8	1.10
10	Bu	34	9.34	9.8	TBAF	50	270	81	37600	9.3	1.08
11	Me	14	40.14	10.5	KHF ₂	24	162	57	7050	5.5	1.10
12	Me	14	8.95	10.9	KHF ₂	24	235	94	14400	11.4	1.12

a) Solvent: THF(R = Bu), $\text{CH}_3\text{CN}(R = Me$, Entry 12), and $\text{CD}_3\text{CN}(R = Me$, Entry 11).

b) M, macromonomer; I, initiator.

c) Cat.: catalyst; $[I]_0/[Cat]_0 = 1047$ (for TBAF) and 10.6 (for KHF₂).

d) Determined by GPC.

e) Determined by ¹H NMR.

の広いのは、マクロモノマーの分布の広さが影響しているものであろう。

R=Meの場合は重アセトニトリル中の反応であるが、触媒として TASF および
TBAF を用いるとポリマーは得られなかった。n=14の場合の結果を、MAPBuOZO-14の同程度の仕込み比の場合と比較するとある程度高い反応率を与えた。
マクロモノマーの反応率の経時変化を求めた結果を Figure 2 に示す。マクロモノマー濃度は
40 mmol/L程度であり、R=Bu では n は 3 と 14、温度は 24 および 50℃、R=
Me では n=14(24℃)について検討した。結果としては、アルキル基の種類、鎖長
n、および反応温度の違いが反応性に大きな影響を及ぼすことが認められた。

Figure 2. Time versus conversion plots in GTP of MA-PBu0ZO-3 at 24 °C (Entry 1)(\bigcirc), MA-PBu0ZO-3 at 50 °C (Entry 2)(\bullet), MA-PBu0ZO-14 at 24 °C (Entry 7)(\triangle), MA-PBu0ZO-14 at 50 °C (Entry 8)(\blacktriangle), and MA-PMe0ZO-14 at 24 °C (Entry 11)(\Box).

R=Buの場合、nの大きい方が速度は遅くなる。PROZOマクロモノマーのラジカル 単独重合では n が大きくなると共に速度も速くなり、これは生長末端周辺のセグメント密度 の増大によって2分子停止の反応性が低下するためと結論した 4)。今回の場合にそれと逆傾向 になるのは、生長末端周辺のセグメント密度とマクロモノマー鎖長の増大により生長反応が立 体的に阻害される効果が主に現れているためと思われる。これは、本重合反応がラジカル重合 ではないことを意味することになる。Entry 2 の場合に、1,1-ジフェニル-2-ピクリルヒド ラジル (DPPH) を存在させて重合を試みると、存在させない場合と全く同様に反応は進 行した。反応温度は 2 4 ℃ より 5 0 ℃ の場合の方がとくに初速度が速い。Asami らはメタク リラート末端ポリスチレンマクロモノマーの場合に、-7 8 ℃ で最も高い反応率を得ている が、MA-PROZOマクロモノマーの場合には温度の低下と共に反応性が低下し、-27では全く重合は認められなかった。MA-PBuOZO-14の場合には、24℃において は重合が全く起こらない誘導期間が見出された。これは開始反応においてもPBuOZO鎖 が強い立体障害を及ぼすためと考えられる。MA-PBuOZO-34の場合には、24℃で は全く重合は認められなかった。MA-PMeOZO-14の重合速度は、重合溶媒は異なる が24℃においても、MA-PBuOZO-14の50℃における速度よりも速い。アシ ル基による立体障害が低いためであろう。

6.4.3 リビングポリマクロモノマーの停止反応

前項で述べたように、MA-PBuOZO-nのGTPの生成ポリマーは、重合度がモノマーと開始剤の仕込み比にほぼ一致すると共に分子量分布が狭く重合がリビング重合であることを示唆している。この確認を兼ねて、MA-PBuOZO-3の重合生成物のp-ビス(プロモメチル)ベンゼン(BMB)による停止反応を利用した鎖延長(Scheme 3)、およびPROZOのリビングポリマーとの相互停止を利用したプロック共重合体の合成(Scheme 4)を検討した。その結果をTable III および IVに、反応生成物のGPC を Figure 3 に示す。

Scheme 3

Table III. Termination of Living Polymacromonomer with p-Bis(bromomethyl)benzene(BMB)

		GTP a			Termination	l d
Entry	[M] ₀ b [I] ₀	Conver- c sion of 2 (%)	M_n of c	[BMB] ₀	Conver- c sion of 3 (%)	M _n of c 4
13	11.1	76	2900	0.50	94	8800

a) Macromonomer, MA-PBuOZO-3; solvent, THF; catalyst, TBAF([I]₀/[C]₀ = 1028); temp., 50°C; time, 48 h.

b) M, macromonomer; I, initiator(SKA).

c) Determined by GPC.

d) [TASF]₀/[I]₀ = 1.27; temp., -78°C; time, 24 h.

BMB と反応させる場合は、マクロモノマーと SKA の仕込み比 11.1、 50℃、48 h の反応で GTPを行い、マクロモノマーの反応率 76% で M_n =2800 のポリマーを 得たが、重合溶液に - 78℃ で SKAに対して等モル以上のTASF と 1/2 モル量の BMB を加えて停止反応を試みた。生成物の GPC によると(Figure 3(a))、ポリマクロ モノマーのピークは高分子量側に移動しており、ピーク面積より計算するとポリマクロモノ マーの反応率は 94%である。従って、BMB の両端にリビングのポリマクロモノマーが反

Scheme 4

応し、鎖延長が行われたものと見ることが出来る。GPC による生成物の M_n は 8800 と

ポリマクロモノマーの M_n の2倍以上であるが、 p-キシリレン基が中央に導入されポリマ

ーの特性が変化したためと思われる。

リビング PROZO と反応させる 場合は、マクロモノマーと SKAの 仕込み比 17.5 で50℃、48 h GTP を行い、マクロモノマー反応 率 80%で Mn=9200 のポリマー を得た。リビングPROZOとしては 、PBuOZO(THF に可溶) (M_n=1820; n=13)を用いた。 PMeOZOはTHFに難溶である。 ポリマクロモノマーの重合溶液に、 -74℃でSKAに対して等モル以上 のTASFとほぼ等モルの PBuOZO の重合溶液を加え、相 互停止反応を試みた。GPCによると (Figure 3 (b))、ポリマクロモノマー と PBuOZO のピークが消滅しポ リマクロモノマーより高分子量側に新 ピークが出現した。その M_n は

12600であって、ポリマクロモノマーと PBuOZOの分子量を合計した値に極めて近 く、両ポリマーのカップリングにより AB型プロック共重合体が高反応率で生成したことを示 している。このような、ポリマクロモノマーと PROZOとのプロック共重合体についての報 告はまだ見あたらないが、新しいタイプのポリマーとして機能性等に興味が持たれる。 以上の結果より、MA-PBuOZO-nのGTP はリビング重合であると考えられる。

またR=Meの場合も、重合度および分子量分布の特徴等から同様のリビング重合であると

言えよう。

Table	IV.	Termination	of	Living	Polymacromonomer	with	Living	PBuOZO
-------	-----	-------------	----	--------	------------------	------	--------	--------

		GTPa		Polymerization ^d		Termination ^e		
Entry	[M]0 ^b	Conver- sion of 2 (%)	M _n of c 3	[BuOZO] ₀ [MeOTs] ₀ M _n	M _n c	[MeOTs] ₀	Conver- sion of 1 (%)	c M _n ofc 5
14	17.5	80	9200	13.1	1820	1.05	100	12600

a) Macromonomer, MA-PBuOZO-3; solvent, THF; catalyst, TBAF([I]₀/[C]₀ =

1028); temp., 50°C; time, 48 h.

b) M, macromonomer; I, initiator(SKA).

c) Determined by GPC.

d) Solvent, CH₃CN; temp., 80°C; time, 24 h.

e) [TASF]₀/[I]₀ = 1.23; temp., -78°C; time, 24 h.

6.5 結 論

メタクリラート末端PROZOマクロモノマーのシリルケテンアセタールによる官能基移動 重合を、R=Buの場合はテトラブチルアンモニウムフルオリド、R=Meの場合は KHF₂を触媒として行い、 M_n が最高37600のポリマクロモノマーを得た。n>14の マクロモノマーの重合では、 $M_w/M_n = 1.08 \sim 1.12$ 程度の単分散ポリマーが生成する。 重合速度はnが増すと遅くなり、ラジカル重合とは逆傾向となった。

R=Buの場合の重合生成溶液に、*p*-ビスプロモメチルベンゼンおよびリビング PBuOZOをそれぞれ作用させると、前者では鎖延長ポリマー、後者ではプロック共重合体 が生成した。上記の単分散ポリマー生成の事実とから、本重合反応はリビング重合であると言 える。このような特徴を利用して両親媒プロック共重合体等の機能性高分子を合成出来ると思 われる。

- (a) S. Kobayashi and T. Saegusa, in K. J. Ivin and T. Saegusa, eds. *Ring-Opening Polymerization*, Vol. 2, Elsevier Applied Science Publishers Ltd, London, 764 (1984). (b) S. Kobayashi, *Prog. Polym. Sci.*, 15, 751 (1990).
- S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano, Macromolecules,
 22, 2878 (1989).
- 3) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci., Part A : Polym. Chem., 30, 1489 (1992).
- 4) 嶋野安雄、佐藤久美子、小林四郎、高分子学会予稿集,41,1947 (1992).
- 5) D. Y. Sogah, W. R. Hertler, O. W. Webster, and G. M. Cohen, Macromolecules, 20, 1473 (1987).
- 6) R. Asami, M. Takaki, and Y. Moriyama, Polym. Bull., 16, 125 (1986).
- 7) H. Witte and W. Seeliger, Liebigs Ann. Chem., 996 (1974).
- 8) C. Ainsworth, F. Chen, and Y.-N. Kuo, J. Organomet. Chem., 46, 59 (1972).

第7章 ポリ(2-オキサゾリン)鎖を有するセグメント化ポリウレタンの合 成と性質

7.1 要旨

2, 2'-テトラメチレンビス(2-オキサゾリニウム)トシラートまたは1,4-ジブロモ-2 ープテンを開始剤として、2-オキサゾリン類(ROZO)を重合して生成するリビング・ポ リ(2-オキサゾリン)(PROZO)の両端の生長種を加水分解し、得られるグリコール (POG;DP=10.2~30.5;前者の開始剤からのものをA、後者の開始剤からのものを Bとする)と4,4'-ジフェニルメタンジイソシアナート(MDI)および1,6-ヘキサンジイ ソシアナート(HDI)より、プレポリマー法により、親水部(PMeOZO)と疎水部より 成る、セグメント化ポリウレタンを合成した。鎖延長剤としては、長鎖アルキレン鎖を有する 1,10-デカンジオール(DDO)、1,10-ジアミノデカン(DAD)、およびドデカン二酸ジ ヒドラジド(DDH)等を用いた。プレポリマーを分離後鎖延長する二段法と分離しないで重 合させる連続法を、N-メチル-2-ピロリドン中70℃で行った結果、最高M_n(MDI/ DDH系)が23640のポリウレタンが得られた。二段法の生成ポリマーのMnは低い。ポ リウレタンのIRスペクトルでは、ウレタン結合、アシルセミカルバジド結合、ウレア結合 が、それぞれ水素結合により会合していることが認められた。熱的性質としては、Tm, Tg,およびTd(分解温度)を測定した。POG(R=Me)のDPが30.5の場合、熱処 理(120℃)しないもののTmは120~160℃程度であるが、熱処理するとTmは消失 した。POG(R=Me)のDPが15.1の場合は、DDH使用の場合を除くと、未熱処理試 料でもTmを示さない。ガラス面に作製したフィルムの接触角の値は、DDOからのポリウレ タンでは39.5~54.1°、DDHからのポリウレタンでは71.2~73.0°、DADからのポ リウレタンでは85.1~87.2°で、延長剤の種類の影響が特に大きい。

7.2 緒 言

2-アルキル-2-オキサゾリン(ROZO)のカチオン開環重合によりポリ(2-アルキ ル-2-オキサゾリン)(PROZO)のリビングポリマーが生成する D)。PROZOは N-アシルエチレンイミン(AEI)の連鎖より成るポリマーであって、ジメチルアセトアミド (DMAc)のような非プロトン溶媒の高分子同族体であり、Rがメチル基の場合は親水性、 *n*-プチル基以上の炭素数の場合は疎水性となる。ROZOの重合開始剤としてビスオキサゾ リニウム塩²⁾および trans-1,4-ジプロモ-2-プテン(DBB)³)を用いると両末端に活 性種(2-オキサゾリウム塩)を有するリビングPROZOが生成するが、これらの活性末端 を加水分解して両末端に水酸基を有するPROZOのグリコール(POG)を合成出来る^{3,4)} 。POGはこのような強い特徴をもつPROZOのグリコールであり、多様な機能性高分子の 出発物質としての可能性が期待出来る。SimionescuらはPOGを基に、PROZO鎖をもつマ クロアゾ開始剤を合成している⁵)。

ポリウレタンはジイソシアナートおよびポリオール等に関して新しいモノマーが開発される 一方、熱硬化性ポリウレタン、熱可塑性エラストマー、弾性繊維、抗血栓性医用材料等におい ては、セグメント化ポリウレタンが重要な役割をなしている の。セグメント化ポリウレタンは 製造面において、反応の発熱量が少なく硬化剤や延長剤も自由に選択できる等の利点もある が、物性面に関しては、相反する性質のセグメントが相分離することにより、何らかの特性を 示すのが重要な特徴である。

PROZO鎖は上述のように、親水性および疎水性の両方の特性を発揮出来ると共に、 AEIユニットの極性に基づいて強い凝集力を有する。このようなPROZO鎖をビルディン グブロックとしたセグメント化ポリウレタンの報告はまだ見当たらないが、帯電防止剤、相溶 化剤、抗血栓性材料、等の分野において新しい有用な材料となることが期待出来る。本研究で は、このようなポリウレタンの合成に関して基礎的研究を行った。即ち、主として親水性の PMeOZO鎖を有するPOG 3,4)にジイソシアナートを作用させて、両末端にイソシアナー ト基をもつプレポリマーを生成させ、これを主としてメチレン基数が10の長鎖アルキレン鎖 をもつ鎖延長剤と重付加反応させて、ポリウレタンを合成した。このポリマーにおいては、 MDIと延長剤から成るセグメント(ウレタンセグメントとする)は、通常のハードセグメン トに比べて疎水性大で可撓性があり、PMeOZOセグメントは親水性であると共に会合性が 大きい。このようなポリウレタンの物性面において、相分離挙動、結晶性、表面特性等に関す る特異性に興味が持たれる。本研究では、得られた生成物について、熱的挙動、フィルム表面 の接触角、IRスペクトル等の測定を行い、その性質について若干の検討を加えた。

7.3 実験

7.3.1 原料および試薬

溶媒類のうち、Et2〇は金属ナトリウムより、CH3CNはP2O5より、CHC13お よびСН, С1, はモレキュラーシーブ(4A)より蒸留した。ジメチルホルムアミド (DMF) および N-メチル-2-ピロリドン (NMP) はCaH2より減圧蒸留した。2-メチルー2ーオキサゾリン (MeOZO)、2ーエチルー2ーオキサゾリン (EtOZO)、 EtaN、トリエチレンジアミン(TDA)、およびアリルアミンは市販品をKOHより蒸留 して乾燥した。メチルトシラート(MeOTs)、trans-1,4-ジブロモ-2-プテン (DBB)、4,4⁻-ジフェニルメタンジイソシアナート(MDI)、1,6-ヘキサンジイソシ アナート(HDI)、1,4-ブタンジオール(BDO)、1,10-デカンジオール(DDO)、 1,6-ジアミノヘキサン(DAH)、および1,10-ジアミノデカン(DAD)は市販品を真空 蒸留して使用した。アジピン酸ジヒドラジド(ADH)は市販品をエタノールより再結晶し た。ドデカン二酸ジヒドラジド(DDH)は、ドデカン二酸ジ-2-エチルヘキシルと抱水ヒ ドラジンをメタノール中で還流加熱して合成した。2-n-ブチル-2-オキサゾリン (BuOZO) は文献により合成した 7。ジ - n-ブチルスズジラウレート(DBTL) は、市販品をそのまま用いた。ポリ(2-オキサゾリン)グリコール(POG)は二法により 合成して用いたが、一つは、2,21-テトラメチレンビス(2-オキサゾリン)とMeOTsと の反応で得られる 2,2~-テトラメチレンビス(2-オキサゾリニウム)トシラートにより2 -オキサゾリン類(ROZO)を重合して得られる、リビングのポリ(2-オキサゾリン) (PROZO)の両生長末端を加水分解して合成した4)(A型)。もう一つは、DBBにより ROZOを重合してリビングのPROZOを合成し、同様に両末端の活性種を加水分解して得

た³⁾(B型)。A型のPOGをR-nA、B型のPOGをR-nBとする。

7.3.2 連続法によるセグメント化ポリウレタンの合成

典型的例として、MDI/Me-15B/DDH 系ポリウレタン(Entry 14)の合成について述べる。

MDI (0.072g, 0.29 mmol)、Et₃N (0.005g, 0.05 mmol)、および NMP (0.4 mL) の溶液に、窒素下70℃で撹拌しながら、Me – 15BのPOG (0.197g, 0.14 mmol) とNMP (0.9 ml) の溶液を20 min で滴下する。2h 撹拌 後、DDH (0.037g, 0.15 mmol) を加え7h 撹拌した。生成する透明溶液を大量の Et₂Oに加えて生成する沈殿を、NMPを溶媒、Et₂Oを非溶媒として再沈殿精製し、ボ リウレタンの白色固体 0.29g (93%) を得た。*M*_{*n*}=20300 (GPC)。1H NMR (DMSO-d₆): δ=9.53 (s, ¢NHCOO), 8.59 (s, ¢NHCON), 8.52 (s, ¢ NCO-NHN-CO), 7.88 (s, ¢NCO-NNH-CO), 7.32 (d), 7.06 (d, C₆H₄), 5.58 (br, CH₂C=CCH₂), 3.77 (s, ¢CH₂¢), 3.29 (m, NCH₂), 2.10 (t, CH₂CON), 2.00 (m, CH₃CO), 1.49 (m, CH₂CCON), 1.24 (m, NCO-C-C(CH₂)₆C-C-CON)。IR (薄膜法): 3475 (w, υ_{NH}; NHCOO), 3272 (m, υ_{NH}; NHCOO, NHCONHNHCO), 2929 (m), 2854 (w) (υ_{CH}), 1737, 1720, 1699 (w, υ_{CO}; NHCOO), 1681~1635 (s, υ_{CO}; NHCONHNHCO), 1477~1419 cm⁻¹ (m, δ_{CH}; NHC₂CH₂N)。

7.3.3 プレポリマーの合成

典型的例として、MDI/Me-12A 系プレポリマーの合成(Run 1) について述べる。

MDI (0.858g, 3.43 mmol)、CH₂Cl₂2 mLの溶液を窒素下で還流加熱し ながら、Me-12AのPOG (0.442g, 034 mmol)とCH₂Cl₂(2 mL)の溶 液を1h で滴下する。4h 還流加熱後反応溶液を減圧乾固し、固形残渣よりソックスレー抽 出器を用いてベンゼンを溶媒として未反応MDIを抽出除去した。抽出残渣の固体を CH₃CNを溶媒、Et₂Oを非溶媒として再沈殿精製し、プレポリマー**3a**の白色粉末 0.57g(93%)を得た。

¹H NMR (CD₃CN) : $\delta = 9.55$ (s, ϕ NHCOO), 7.43~7.13 (C₆H₄),

4.30 (t, CH₂O) , 3.83 (s, ϕ CH₂ ϕ) , 3.30 (m, NCH₂) , 2.96 (d, NCH₃) , 2.28 (t, CH₂CON) , 1.99 (m, CH₃CO) , 1.53 (m, CH₂CCON) 。 IR (薄膜 法) : 3472, 3276 (m, υ NH ; NHCOO) , 2915 (m) , 2842 (w) (υ CH, 2330~2250 (m, υ N=C=0) , 1735, 1703 (w, υ C=0; NHCOO) , 1650 (s, υ C=0; N(COMe)CH₂CH₂) , 1543, 1512 (m, δ NH; NHCOO) , 1481~1418 cm⁻¹ (m, δ CH; NCH₂CH₂N) 。

Run 6 のプレポリマー (0.124g, 0.07 mmol) とDMF (1.5 mL) の溶液にア リルアミン (0.012g, 0.21 mmol) およびE t₃N (0.003g, 0.03 mmol) と DMF (1.5 mL) の溶液を窒素下および室温で加え、50℃で3h 撹拌した。反応溶液を E t₂Oに投入して生成する沈殿を、CH₃CNを溶媒、E t₂Oを非溶媒として再沈殿精製 し、ビスウレア (6) の白色粉末0.13g (95%)を得た。¹H NMR (CD₃CN) : δ = 9.54 (s, ϕ NHCOO), 8.31 (s, ϕ NHCON), 7.71 (s, ϕ NCONH), 7.33 (m), 7.08 (m) (C₆H₄), 6.1~4.9 (m, CH₂=CH), 4.30 (t, CH₂O), 3.92 (m, C=CCH₂N), 3.79 (s, ϕ CH₂ ϕ),

3.28 (m, NCH₂), 2.96 (d, NCH₃), 2.27 (t, CH₂CON), 1.99 (m, CH₃CO), 1.47 (m, CH₂CCON) $_{\circ}$

7.3.4 プレポリマーの鎖延長によるセグメント化ポリウレタンの合成 典型的例としてMe-12Aよりのプレポリマー(Me-12AP)とDDOとの重付加反
応によるポリウレタン(Entry 36)の合成について述べる。

プレポリマー (0.242g, 0.14 mmol) とNMP (0.8 mL) の溶液に、窒素下で Et₃N (0.005g, 0.05 mmol) とDDO (0.024g, 0.14 mmol) を加え、 70℃で7h 撹拌した。透明重合溶液を大量のエチルエーテルに加えて生成する沈殿を、 NMPを溶媒、Et₂Oを非溶媒として再沈殿精製し、ポリウレタンの白色固体 0.25g (94%)を得た。 M_n =7230 (GPC)。1H NMR (DMSO-d₆): δ =9.55 (s, ϕ NHCOO), 7.35 (d), 7.09 (d) (C₆H₄, 4.29 (m, CH₂O), 3.81 (s, ϕ CH₂), 3.31 (m, NCH₂), 2.95 (d, NCH₃), 2.28 (t, CH₂CON), 1.98 (m, CH₃CO), 1.45 (m, CH₂CCON), 1.28 (m, O-C-(CH₂)₈-C-O)。IR (薄膜法): 3470, 3268 (m, υ_{NH} ; NHCOO), 2936 (m), 2856 (w) (υ_{CH} , 1728 (w, υ_{∞} ; NHCOO), 1648 (s, υ_{∞} ; NCOMe), 1541, 1511 (m, δ_{NH} ; NHCOO), 1476~1414 cm ⁻¹ (m, δ_{CH} ; NCH₂CH₂N)。

7.3.5 ワンショット法によるポリウレタンの合成

POGとしてMe-31Bを用いた場合について示す(Entry 31)。 Me-31B(0.338g, 0.13 mmol)、DDH(0.022g, 0.13 mmol)、 NMP(0.7 mL)の溶液に、MDI(0.063g, 0.26 mmol)とEt₃N(0.005 g, 0.05 mmol)を室温窒素下にて加え、70℃で7h 撹拌した。透明重合溶液を大量の Et₂Oに加えて生成する沈殿をNMPを溶媒、Et₂Oを非溶媒として再沈殿精製し、ポリ ウレタンの白色固体0.39g(94%)を得た。M_n=22000(GPC)。

7.3.6 生成物の分析と測定

¹H NMRスペクトルは日本電子JNM FX60Q型分光計および日本電子 LA400型 分光計により測定した。IRスペクトルは日本分光IR-810型赤外分光光度計により測定 した。FT-IRは日本電子JIR-6000型フーリエ変換赤外分光光度計により測定し た。ポリマーの分子量は島津LC-10AD型高速液体クロマトグラフを用いてGPCにより 測定したが、POGに関しては、PMeOZOおよびPBuOZOを標準物質として JASCOFINE PACK GEL-101とShodex A803カラムを連結(溶媒: CHC1₃)して、ポリウレタンに関してはポリスチレンを標準物質として Tosoh TSKgel GMH_{HR-M}カラム2本を連結(溶媒:DMF)して測定した。示差走査熱量分 析(DSC)、熱重量分析(TGA)、および示差熱分析(DTA)は、真空理工 TGD-9000型熱分析装置により、10℃/minの昇温速度で行った。顕微鏡観察による融点測定 は、三田村理研MP-P型-視野式微量融点測定装置で行った。

7.4 結果と考察

7.4.1 ポリオキサゾリングリコール (POG)

POGは、Scheme 1 の 1a と 1b の 2 種類のものを合成して用いた。2, 2'ーテトラメチレン ビス(2-オキサゾリン)にメチルトシラートを作用させて得られる 2, 2'ーテトラメチレン ビス(2-オキサゾリニウムトシラート)(TBOT)を開始剤としてROZOを開環重合さ せると、両末端に活性種を有するリビングのPROZOが生成するが ³の、これを著者らの方法 により水と炭酸ナトリウムの存在下に加熱して末端を加水分解すると、1a が得られる。ま た、DBBを開始剤としてROZOを開環重合させても両末端に活性種を有するリビングの PROZOが生成するが、これを 1a の場合と同様の方法により加水分解して 1b を得た³)。 合成して用いたPOGを Table I に示す。GPCによるPOGの分子量は、分子量既知の PMeOZOを標準物質として求めた。NMRによる分子量は、1a ではPROZO主鎖の NCH₂プロトンのシグナル(δ 3.30)とNCH₃プロトンのシグナル(δ 2.95)との面 積比より 1b ではNCH₂プロトンのシグナル(δ 3.30)とCH=CHプロトン(δ 5.58)のシグナルとの面積比よりそれぞれ計算したが、GPCによる分子量とよく一致し た。また、GPCによる分子量から求めた重合度はROZOと開始剤の仕込み比と何れの場合 も一致している。分散比は、リビング重合を反映して低い値であり、何れもほぼ単分散グリ コールと言える。

Table I. PROZO-Glycols (POG)

	Strug	М	n		
Code	ture	NMR	GPC	DP_n^a	M_W/M_n^a
Me-12A	1a	1280	1290	12.1	1.10
Me-23A	1 a	2240	2200	22.8	1.26
Et-13A	1a	1540	1550	13.0	1.11
Bu-10A	1 a	1580	1560	10.2	1.18
Me-12B	1b	1170	1140	12.3	1.27
Me-15B	1b	1390	1370	15.1	1.07
Me-31B	1b	2640	2680	30.5	1.20
Et-11B	1b	1210	1190	11.1	1.14

a) Determined by GPC.

7.4.2 セグメント化ポリウレタンの合成

ボリウレタンとしては、セグメント化ポリウレタンをプレポリマーの鎖延長により合成した が、比較のためにワンショット法によりランダムなポリウレタンも合成した。セグメント化ポ リウレタンの合成法を Scheme 1 に示した。反応経路は2段階であって、POGの両端にジイ ソシアナートを作用させて両端にイソシアナート基をもつプレポリマー(3)を合成し、これ を鎖延長してポリウレタン(5)を得た。ジイソシアナートとしては、4,4'-ジフェニルメタ ンジイソシアナート(MDI)およびヘキサメチレンジイソシアナート(HDI)を用いた。 鎖延長剤として主に用いたものは、長鎖アルキレン鎖を有する1,10-デカンジオール (DDO)、1,10-ジアミノデカン(DAD)、ドデカン二酸ジヒドラジド(DDH)である が、これらの他に1,4-ブタンジオール(BDO)、1,6-ジアミノヘキサン(DAH)、お よびアジピン酸ジヒドラジド(ADH)でも重合反応性を検討した。これらの延長剤を用いる と、生成ポリマーは単なるポリウレタンのみではなく、ジアミンを用いた場合はポリ(ウレタ ンーウレア)、ジヒドラジドを用いた場合はポリ(ウレタン-アシルセミカルバジド)とな Scheme 1

$$\begin{array}{rcl} HO \leftarrow CH_{2}CH_{2}N \xrightarrow{P} X \rightarrow (NCH_{2}CH_{2} \xrightarrow{P} OH \\ R \rightarrow C = O & R \rightarrow C = O \end{array} + 2 \quad O = C = N \rightarrow Y \rightarrow N = C = O \\ 1 \quad POG \quad (R = Me, Et, Bu) & 2 \end{array}$$

$$\begin{array}{rcl} Ia \quad X = CH_{2}CH_{2}N \rightarrow CO(CH_{2})_{4}CO \rightarrow NCH_{2}CH_{2} \\ CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} & Y = - \bigcirc - CH_{2} \rightarrow \bigcirc - \bigcirc - \bigcirc - \bigcirc \\ (CH_{2})_{6}, \text{ etc.} \end{array}$$

$$\begin{array}{rcl} O = C = N \rightarrow Y \rightarrow NHC \rightarrow O \leftarrow (CH_{2}CH_{2}N \xrightarrow{P} X \rightarrow (NCH_{2}CH_{2} \xrightarrow{P} O \rightarrow CNH \rightarrow Y \rightarrow N = C = O \\ R \rightarrow C = O & R \rightarrow C = O \end{array}$$

$$\begin{array}{rcl} 3a \quad X = CH_{2}CH_{2}N \rightarrow CO(CH_{2})_{4}CO \rightarrow NCH_{2}CH_{2} \\ CH_{3} & CH_{3} \end{array}$$

$$\begin{array}{rcl} 3b \quad X = \swarrow \\ 3b \quad X = \checkmark \\ \end{array}$$

$$\begin{array}{rcl} O = C = N \rightarrow Y \rightarrow NHC \rightarrow O \leftarrow (CH_{2}CH_{2}N \xrightarrow{P} X \rightarrow (NCH_{2}CH_{2} \xrightarrow{P} O \rightarrow CNH \rightarrow Y \rightarrow N = C = O \\ R \rightarrow C = O & R \rightarrow C = O \end{array}$$

$$\begin{array}{rcl} 3a \quad X = CH_{2}CH_{2}N \rightarrow CO(CH_{2})_{4}CO \rightarrow NCH_{2}CH_{2} \\ CH_{3} & CH_{3} \end{array}$$

$$\begin{array}{rcl} O = C = N \rightarrow Y \rightarrow NHC \rightarrow O \leftarrow (CH_{2}CH_{2}N \xrightarrow{P} X \rightarrow (NCH_{2}CH_{2} \xrightarrow{P} O \rightarrow CNH \rightarrow Y \rightarrow N = C = O \\ \end{array}$$

$$\begin{array}{rcl} 3b \quad X = \checkmark \\ 3b \quad X = \checkmark \\ \end{array}$$

$$\begin{array}{rcl} O = C = O & R \rightarrow C = O \end{array}$$

$$\begin{array}{rcl} O = C = O & R \rightarrow C = O \\ \end{array}$$

$$\begin{array}{rcl} F \rightarrow C = O & R \rightarrow C = O \\ \end{array}$$

$$\begin{array}{rcl} O = C = O & R \rightarrow C = O \\ \end{array}$$

$$\begin{array}{rcl} F \rightarrow C = O & R \rightarrow C = O \\ \end{array}$$

 $H_2NHNCO(CH_2)_{10}CONHNH_2$ (DDH),

る。しかし本研究では、これらを一括してポリウレタンと称する。このような2段階法 を更に、プレポリマー(3)を分離することなく in situ で延長剤を加えて反応させる方法(連 続法;ワンポット法)およびプレポリマー(3)をいったん単離した後鎖延長する方法(二段 法)の2法により検討した。

Methoda			
	lst stage ^b	2nd stage ^c	
Diiso-			Yield

Table II. Synthesis of Segmented Polyurethanes Using POG (1a) by One-Pot

		Diigo				V1014	
Entry	POG	cyanate	Catalyst	Extender	Catalyst	(%)	M _n
1	Me-12A	MDI	Et ₃ N	DDH	-	90	21500
2	Me-23A	MDI	Et ₃ N	DDH	-	92	22500
3	Me-23A	MDI	-	DDH	-	95	17300
4	Me-12A	MDI	Et_3N	DAD	-	91	17600
5	Me-23A	MDI	Et ₃ N	DAD	-	94	21300
6	Me-12A	MDI	Et_3N	DDO	DBTL	92	7400
7	Me-23A	MDI	Et ₃ N	DDO	DBTL	93	15900
8	Me-12A	MDI	Et ₃ N	BDO	DBTL	90	8800
9	Me-23A	MDI	Et ₃ N	BDO	DBTL	89	11300
10	Me-23A	MDI	Et ₃ N	DAH	-	93	19500
11	Et-13A	MDI	-	DDHd	_	-	-
12	Me-12A	TDI	Et_3N	DDH	-	90	15600
13	Me-23A	TDI	Et ₃ N	DDH	-	93	16500

a) Solvent, N-methyl-2-pyrrolidone (NMP).

b) $[diisocyanate]_0/[POG]_0 = 2.0; temp., 70°C; time, 2 h.$

c) [extender]₀/[POG]₀ = 1.0; temp., 70°C; time, 7 h; DBTL, dibutyltin dilaurate.

d) Gelated after addition of DDH.

(1) 連続法

Table II および III に、連続法により重合反応性に及ぼす各種因子の影響を検討した結果を 示す。Table II は 1a を用いた場合の結果である。ポリウレタン合成の溶媒としては通常 DMFやDMAcが多用されるが、今回鎖延長剤のジヒドラジドがこれらに不溶であった。他 の溶媒を検討したところ、NMPには全ての鎖延長剤が可溶であり、一般に最も良好な結果を 与えた。重合操作としては、溶媒中でジイソシアナートと 1a をモル比 2:1 で混合した溶液 を70℃に加熱してプレポリマーを生成させた後、鎖延長剤を加えて更に加熱した。重合進行 と共に溶液は粘性を増す。イソシアナートとア

ルコールからのウレタン生成反応においては、

一般に第三アミン類およびアルキルスズ化合物 等が触媒として有効であることが知られてい る。1aの反応の場合に、触媒としてEt₃N およびジプチルスズジラウレート(DBTL) を検討したところ、第1段階でEt3Nを加え ると概して最も有効であった。鎖延長剤がジオ ールの場合、第1段階でEt₃Nを用いた外に 第2段階でDBTLを追加すると、比較的高い Mnを与えた。鎖延長剤としては、ジヒドラジ ドが最も高いMnのポリウレタンを与え、次に 反応性の高かったのはジアミンであった。得ら れたポリマーのほとんどはMnが1万以上であ って、DMF、DMAc、およびNMPに可溶、 CH₃CNおよびMeOHに一部可溶、 CHC13、Et2Oには不溶であった。 POGがMe-12Aと Me-23Aの場合と

Elution Volume(mL)

Figure 1. GPC curves of polyurethanes and POG; 1, Entry 17(M_W/M_n =1.86); 2, Entry 19(M_W/M_n =1.84); 3, Entry 21(M_W/M_n =1.96); 4, Me-31B(M_W/M_n =1.20). を比較すると、Me-23Aの方が 高分子量ポリマーを与えた。これは、POGの分子量の 大きさを直接反映しているもの であろう。POGのRがEtの場合は、1a においても1bに おいても、延長剤がジヒドラジド、ジアミン、ジオールの何れであっても、第2段階で延長剤

Table	III.	Synthesis	of	Segmented	Polyurethanes	Using	POG $(1b)$	by	One-
		Pot Metho	da						

		Diiro	lst stage ^b	2nd s	staged		
Entry	POG	cyanate	Catalyst	Extender	Catalyst	(%)	Mn
14	Me-15B	MDI	Et ₃ N	DDH	_	93	20300
15	Me-15B	MDI	TDAC	-	-	-	_
16	Me-15B	MDI	-	DDH	TDA	92	18200
17	Me-31B	MDI	Et_3N	DDH	-	94	23600
18	Me-15B	MDI	Et_3N	DAD	-	90	18100
19	Me-31B	MDI	Et ₃ N	DAD	-	93	20600
20	Me-15B	MDI	Et ₃ N	DDO	DBTL	93.	11500
21	Me-31B	MDI	Et ₃ N	DDO	DBTL	95	16800
22	Me-15B	MDI	-	DDO	TDA	92	9900
23	Me-15B	MDI	Et ₃ N	ADH	_	90	15400
24	Me-31B	MDI	Et ₃ N	ADH	-	91	18900
25	Me-15B	HDI	Et ₃ N	DDH	-	94	16300
26	Me-31B	HDI	Et ₃ N	DDH	-	88	18600
27	Me-15B	HDI	Et ₃ N	DDO	DBTL	93	12500
28	Me-31B	HDI	Et ₃ N	DDO	DBTL	90	14700
29	Et-11B	MDI	-	DDOe	-	-	-

a) Solvent, N-methyl-2-pyrrolidone (NMP).

b) $[diisocyanate]_0/[POG]_0 = 2.0; temp., 70°C; time, 2 h.$

c) Gelated in a presence of triethylenediamine(TDA).

d) [extender]₀/[POG]₀ = 1.0; temp., 70°C; time, 7 h.

e) Gelated after addition of DDO.

を加えた場合にゲル化が起こった。MeやBuの場合と比べてなぜ異なる結果となるのか、原因の詳細は現在のところ明らかでない。

次にPOGとして **1b** を用い、連続法を検討した結果を Table III に示す。第1段階のプレポ リマー生成の触媒としてトリエチレンジアミン (TDA) を検討したところ、第1段階の反応 中にゲル化した (Entry 15)。イソシアナートへの付加の触媒作用が強すぎてアロファナート 結合等が生成しているものと思われる。第1段階は無触媒で第2段階でDDHまたはDDOを 加えた後にTDAを加えるとゲル化は起こらない (Entry 16 および 22) が、Et₃Nを用い た場合に比べて、 M_n の特別な向上は認められなかった。RがEtの場合は、**1a**の場合と同 様に第2段階で延長剤を加えた後ゲル化が起こった。生成物のGPCの例として Me - 31B から合成したポリウレタンおよび Me - 31Bのクロマトグラムを Figure 1に示した。クロ マトグラム 1, 2, 3 はそれぞれ延長剤としてDDH、DAD、およびDDOを用いたポリ マーのものであるが、DDHを用いた場合に特に M_n の大きいのは明らかである。分子量分布 (M_w/M_n) はMe - 31Bでは 1.20なのに対し、ポリウレタンになると2.0前後と なった。

結局、ポリウレタン合成における **1b** の反応性は **1a** の反応性と大きな違いは認められな かった。ジイソシアナートがHDIの場合もEt₃Nを触媒としてMDIの場合と同様の方法 でポリウレタンを合成できたが、*M_n* はMDIを用いた場合よりも少し低い。

Table IV. Synthesis of Polyurethanes by One-Shot Methoda

Entry	POG	Diiso- cyanate	Extender	Catalyst	Yield (%)	Mn
30	Me-15B	MDI	DDH	Et ₃ N	95	19300
31	Me-31B	MDI	DDH	Et_3N	94	22000

a) Solvent, N-methyl-2-pyrrolidone (NMP); [MDI]₀/[POG]₀ = 2.0; [DDH]₀/[POG]₀ = 1.0; temp., 70°C; time, 7 h.

7.4.2.b 二段法

(1) プレポリマーの生成と分離

連続法における第1段階では、ジイソシアナートとPOGとの仕込み比率は2:1であって ジイソシアナートが過剰でないために、中間に生成するプレポリマーは3のみではなく更に 鎖長の長いポリマーも多少は存在すると思われる。正確に3の構造のプレポリマーを合成す るために、第1段階においてPOGに対して大過剰のジイソシアナートを作用させた。ジイソ シアナートとしては、ここではMDIを用いた。二段法においては、生成したプレポリマーを 分離精製した後、鎖延長してセグメント化ポリウレタンとすることを試みた。このような単分 散プレポリマーの合成は、ポリエーテルグリコール等の系では既に種々の例が知られている が 6,8)、POGに関する報告は全くない。先ずプレポリマーの合成について検討した結果を Table V に示す。POGとしては 1a を用いた。一般にPOGに対して大過剰のMDIを用い

Table V. Synthesis of Prepolymer(3a)

							Prepolyme	er(3a)	
Run	POG	[MDI] ₀	Reaction solvent	Temp. (°C)	Time (h)	Yield ^a (१)	Solu- ^b bility in NMP	Γc	Code
1	Me-12A	10	CH ₂ Cl ₂	reflux	4.0	92	+	1.96	Me-12AP
2	Me-12A	2	NMP	60	2.0	-	-	-	-
3	Me-12A	10	CH ₃ NO ₂	60	2.0	-	-	-	-
4	Me-12A	10	CH ₃ CN	60	2.0	-	-	-	-
5	Me-23A	10	CH ₂ Cl ₂	reflux	4.0	91	+	1.98	Me-23AP
б	Bu-10A	10	CH ₂ Cl ₂	reflux	4.0	93	+	2.00	Bu-10AP
7	Bu-10A	10	bulk	80	0.5	-	-	_	_

a) Yield of characterized product.

c) Ratio of introduced MDI per PMeOZO.

て、溶媒中または無溶媒下で反応させた後反応溶液を乾固した。過剰のMDIはソックスレー 抽出器を用いて、R=Meの場合はベンゼンにより、R=Buの場合は石油エーテルにより抽出 した。反応溶媒としては、CH₂Cl₂、NMP、ニトロメタン、およびCH₃CNを検討し たが、CH₂Cl₂中の生成物を除いては反応後の処理の過程で有機溶媒に対する不溶化が起 こった。求核反応促進効果の強い条件下では、例えばアロファナートのような二次生成物も生 じて、三次元化の起こりやすい状態にまで反応が進んでいるのではないかと推察される。プレ ポリマーの合成反応は一般に無溶媒下で行われる場合が多いが6.8、Bu-10Aについてこ れを検討したところ、生成物は有機溶媒に対して不溶となった。RがMeおよびEtのPOG は、MDIと加熱しても液化しなかったため無溶媒下では検討できなかった。従って、単分散 プレポリマー(3)であることを確認出来たのはCH₂Cl₂中で得られた生成物のみであっ た。この物質は、RがMeの場合は淡黄色、Buの場合は白色の粉末であるが、3 であること は、1HNMR、IR、GPC、およびアリルアミンとの反応生成物の¹HNMRにより確 認した。

1H NMRではジフェニルメタン核のベンゼン核プロトン(δ 7.34~7.05)と PROZO鎖の開始剤由来の NCH₃プロトン(δ 2.95~2.97)の両シグナルの面積比よ りMD I とPM e OZOとの結合比率(L)を求めると、何れもほとんど2.0であった。 I R では、イソシアナートの $v_{N=c=0}$ が2330~2250、ウレタン結合の v_{NH} が3472~ 3270、 $v_{c=0}$ が1735~1700、 δ_{NH} が1545~1510、N-アシルエチレンイ ミンユニットの δ_{cH_2} が1481~1410、 $v_{c=0}$ が1650 cm⁻¹付近にみられる。プレボ リマーのGPCの一例として、Bu-10Aからのプレポリマー(Bu-10AP)のGPC を Figure 2に示した。Bu-10Aの曲線とプレポリマーの曲線の分離は明確であり、両者 の分子量の差に対する溶出量(mL)以上の開きがある。即ち、PBuOZOを標準物質とし て求めたこのプレポリマーの分子量は2280で、計算値の2061より大きい。これは PBuOZO鎖と本条件化のGPCカラムとの相互作用の強さに原因しているものと思われ る。

プレポリマー(**3a**)とアリルアミンとの反応をCH3CN中室温で行い、定量的にビスウレ

b) Solubility of isolated product: (+), soluble; (-), insoluble. Same results were obtained in general organic solvents, i.g., CH₃CN and CHCl₃.

ア(6)の黄色固形物を得た。生成物 Me-12AP、Me-23AP、および Bu-10 APの¹H NMRにおいては、 δ 6.1~4.9のアリル基の不飽和プロトンのシグナルと PROZO鎖の開始剤由来の δ 2.95~2.97の NCH₃プロトンの積分比より、アリル基 と NCH₃の存在比率はほぼ 1.0であった。また、不飽和プロトンのシグナルとMD Iユ ニットの芳香族プロトンの δ 7.33~7.08のシグナルの積分比より、アリル基とジフェニ ルメタン核との結合比率もほとんど 1.0であった。

(2) プレポリマーの鎖延長

プレポリマー(3a)の鎖延長によりポリウレタン(5)を合成した結果を Table V に示す。 延長剤としてはDDH、DAD、およびDDOを用いて検討したところ、連続法の場合と同

Table VI. Synthesis of Segmented Polyurethanes by Chain-Extension of Prepolymer (3a) Isolated^a

Entry	Prepolymer	Extender	Yield (%)	M _n b
32	Me-12AP	DDH	98	14300
33	Me-23AP	DDH	96	15300
34	Me-12AP	DAH	94	9820
35	Me-12AP	DAD	97	10900
36	Me-23Ap	DAD	98	12700
37	Me-12AP	DDO	95	6700
38	Me-23AP	DDO	97	10600
39	Bu-10AP	DDH	95	11900
40	Bu-10AP	DAD	97	9650
41	Bu-10AP	DDO	94	8620

a) $[3a]_0/[Extender]_0 = 1.0$; catalyst, Et₃N; solvent, NMP; temp., 70 °C; time, 7 h.

b) Determined by GPC.

様、溶媒はNMP、触媒は Et3N を用いた場合に最も分子量の高いポリウレタンを与え

た。触媒はこの他TDAおよびDBTLを検討したが、TDAを用いた場合はゲル化が起こった。分子量は、一般に相当する連続法のポリマーに比べて低い値となった。プレポリマーの精 製操作中にイソシアナート基が分解していることが考えられる。ポリマー5の1HNMRは 相当する連続法によるポリマーのものに比べてほとんど違いは認められなかった。

7.4.3 生成ポリマーの性質

生成ポリマーについて、¹ H NMRおよび I Rのスペクトル分析を行うと共に熱分析および フィルム表面の接触角の測定を行った。それらの結果を、Figure 2~8 および Table VII, VIII に示 した。

7.4.3.a IRスペクトル

KBr板上に形成したフィルムのIRを透過法により測定した。その結果を Figure 2 に示 す。ポリウレタンの会合状態を水素結合との関係より検討する研究は多数みられるが⁹、Lee らによると、MDI/PTMO/BDO 系ポリウレタンにおいては、 $v_{\rm NH}$ のうち水素結合 のないものは3450 cm -1、あるものは3295または3330 cm -1 に吸収ピークを有す る。室温付近の温度では水素結合をもつウレタン結合が圧倒的に多い¹⁰)。Entry 20 の MD I /Me - 15B/DDO系ポリウレタンの $v_{\rm NH}$ は3477と3264 cm -1 にみられる。前者 は Lee らによる水素結合を形成しないN-Hの吸収、後者は水素結合を形成したN-Hの吸収 位置とよく一致しており、この全ウレタン結合のポリマーにおいても水素結合の存在が認めら れる。Lee らは上記のポリマーで、ウレタン結合の $v_{\rm c=0}$ のうち、水素結合を形成していない ものは 1732 cm -1 に、形成しているものは1703 cm -1 に吸収を示すとしている。Entry 20 のウレタン結合の $v_{\rm c=0}$ は1726 cm -1 にみられるが、これは水素結合を形成していない ものの吸収と思われる。 水素結合を形成しているものに該当する吸収は明確には認められな いが、1645 cm -1 に最大値をもつPMeOZO鎖のアミドのブロードな $v_{\rm c=0}$ の吸収に埋 没していると考えられる。また、N-Hの水素結合の相手としてはこのPMeOZO鎖のアミ

Wave Number (cm-)

Figure 2. IR spectra of polyurethanes; Entry 14, MDI/Me-15B/DDH; Entry 20, MDI/Me-15B/DDO; Entry 18, MDI/Me-15B/DAD.

ドのC=Oもある。PMeOZO鎖のNCH₂CH₂Nの *б*сн の吸収は1479~1419 cm⁻¹にみられる。

Entry 18 の MD I / M e - 1 5 B / DAD 系ポリウレタンにおいて、3450 cm⁻¹ のプ ロードな吸収は、Entry 20 の3477 cm⁻¹ に比べて低波数であるが、ここに水素結合のない ウレタン結合とウレア結合のN-H吸収が存在し、3270 cm⁻¹ 付近の吸収は両者のN-H の水素結合を形成したN-Hによるものと思われる。ウレタン結合の v c=o に関しては、水素 結合のない1727 cm⁻¹の他に、1705 cm⁻¹の肩として水素結合をもつC=Oによると思われる吸収が認められる。この水素結合の相手のN-Hは、ウレタンとウレアの両結合が関与するするものと思われる。結局 Entry 20 と 18 では、水素結合による会合性に大きな差はなくて、両者ともそれほど強くは凝集していないものと思われる。これは、DSCにおいて明確なT_mの認められないのと対応している。

Entry 14 の MD/Me - 15 B/DDH 系ポリウレタンの v_{NH} による吸収は3475 cm⁻¹ と 3272 cm⁻¹に存在し、水素結合の無いと思われる前者より、あると思われる後者の方が 著しく強い。後者にはアシルセミカルバジド内の CONHNHCO 結合のN-Hも存在する と思われるが、この大きな差はウレタンの N-H がこのアシルセミカルバジドの C=O とか なり強い水素結合をもつためではないかと思われる。もちろん、アシルセミカルバジド結合同 士の会合もあろう。ウレタン結合の $v_{C=0}$ のうち、1720 cm⁻¹は水素結合のないもの、

以上を考慮すると、このDDHを延長剤とする Entry 14 は、三者のうちでは最も水素結合に よる会合の度合いが大きいとみられる。

7.4.3.b 熱的性質

熱的性質としては、DSC (N₂中) によりガラス転移点 (T_g) および融点 (T_m)、 TGAおよびDTA (空気中) により熱分解温度 (T_d) を求めた。

まずDSCの結果について述べる。昇温速度は10℃/min であるが、必要に応じて120℃ に2h保持した後5℃/min の速度で20℃まで温度を下げ、再昇温させて測定する方法も行っ た。Figure 3 に、Me - 31B/DDO 系の全てウレタン結合によるポリウレタンのDSC を示した。Entry 21 はMDI系、28 はHDI系であるが、熱処理しないものはそれぞれ 66.0℃および63.6℃に弱い吸熱ピーク、138℃および146℃に強い吸熱ピークを示 した。POG単独のDSCを測定すると(90℃で熱処理)、Me - 31Bでは63.0℃、 Me - 15Bでは57.5℃にTgが認められるので、Entry 21および 28 の66.0℃および 63.6℃の吸熱は、PMeOZOセグメントのガラス転移によるものであろう。MDI、ポリ テトラメチレンオキシド (PTMO)、およびBDOから成るセグメント化ポリウレタンは 140~170℃程度の範囲にT_mを有し、これはハードセグメントの結晶領域にソフトセグ メントが会合した混合相によるものである¹¹)。Entry 21 と 28 のポリウレタンにおいて PMeOZOセグメントは、このポリエーテルセグメントに比べて更にウレタン結合と水素結 合して会合しやすいと思われる。従って138℃と146℃の吸熱ピークは、MDIユニット とDDOユニットから成るセグメント (ウレタンセグメント; Figure 5) とPMeOZOセグ メントの混合会合相によるT_mと考えられる。顕微鏡による肉眼観察で測定したT_mは、それ ぞれ140~145℃および151~153℃であり、DSCによる値と良く一致した。Entry

Figure 3. DSC curves of polyurethanes synthesized using Me-31B and DDO; heating rate, 10°C/min; Entry 21, MDI/Me-31B/DDO; Entry 28, HDI/ Me-31B/DDO.

[1]: diisocyanate unit

[Ox]: PMeOZO unit

[U] : urethane bond

[A] : alkylene unit

[E] : extending bond ; urethane, acylsemicarbazide, or urea

Figure 5. Sequence of segmented polyurethane.

28 の方が 21 に比べてT_mの値が高く、吸熱ピークも大きいが、ジイソシアナート成分が HD I の方がMD I の場合よりもウレタンセグメントの規則性が良く、結晶化しやすいためで あろう。この二試料を熱処理して昇温したところ、T_mによる吸熱ピークが何れも消失した。 これは、熱処理によりウレタンセグメントとPMeOZOセグメントの会合が解離して相分離 し、その結果ウレタンセグメント同士の会合による結晶化がほとんど起こっていないことを意 味する。延長剤が長鎖のDDOのため、ウレタンセグメントの凝集エネルギーと規則性が低下 するためであろう。T_g は熱処理により、Entry 21 は7 2.5℃、Entry 28 は7 5.1℃にそれぞ れ上昇した。PMeOZO鎖同士の結晶化の起こっていることが考えられる。PMeOZO鎖 はポリエーテル等のソフトセグメントと異なり、アミド結合に起因して結晶性を有する¹²)。

Figure 4 に示したように、DDO系ポリウレタンにおいてPMeOZO成分がMe-15B になると、熱処理しない場合でもTmによる吸熱ピークはほとんど認められなくなった。 PMeOZO鎖が短いために、ウレタンセグメントとの混合相を形成しにくくなったためとみ られる。Entry 8 は、PMeOZO鎖がMe-12Aと更に短いのに160~180℃付近に Tmらしい吸熱が多少みられる。延長剤がBDOであって、ウレタンセグメントの結晶性が Entry 20 よりも良好なためであろう。

DDHを用いたセグメント化ポリウレタンのDSCについてつぎに述べる。Figure 6に MDI/Me-31B/DDH 系等のポリウレタンのDSCの結果を示した。Entry 17 のセ グメント化ポリウレタンでは、140℃に著しくシャープで深い吸熱ピークが認められるが、 顕微鏡観察による融点は 130~140℃ なので、この温度は Tm であろう。160~ 165℃ にも弱い吸熱があって何等かの結晶組織の融解による可能性があるが詳細は明らかで ない。185~227℃付近に弱い吸熱が認められるが、特に211~227℃は、Entry 14の ポリマーを熱処理後の分解温度(T_d)(213℃)と良く対応していると共に、Figure 8の DTAにおけるT_d(225℃)とも一致しているので、T_dと考えて良い。このポリマーを 熱処理した後昇温すると、Tmの吸熱ピークはほとんど消滅した。DDO系の場合と同様、相 分離によるものであろう。T 。も熱処理により、65.0℃から75.0℃に上昇した。Entry 31 のワンショット法ポリウレタンについて、未熱処理試料を測定したところ明確なTmは認めら れず、155~197℃に溶融から分解に至ると思われる、微小な吸熱が存在するのみとなっ た。セグメントの配列が不規則で会合組織を形成しにくいためであろう。PMeOZOセグメ ントのTgによる77.5℃の吸熱ピークのほか、113℃にも吸熱ピークが存在するが、これ はウレタンセグメントによるTgの可能性もある。

Figure 7 にMe-15B/DDH系ポリウレタンのDSCを示した。Me-15B/DDO 系ポリウレタンは、熱処理なしの場合でもTmの吸熱ピークはみられなかったが、DDOを DDHに置き換えるとMDI系 (Entry 14) では169℃に、HDI系 (Entry 25) では 175℃にTmの吸熱ピークが出現した。顕微鏡観察によるTmはそれぞれ、156~164℃ および166~173℃であった。DDH系において存在するアシルセミカルバジド結合は、 ウレタンセグメント同士でもPMeOZOセグメントとの間でも、水素結合による会合をおこ しやすいためと考えられる。従って、熱処理によって相分離した場合でも、ウレタンセグメン ト同士が会合して結晶組織を形成出来るものと思われる。 Me-31B系と異なる傾向となる のは、相分離した系ではポリマー鎖中のウレタンセグメントの割合の高いほど結晶化しやすい

Temperature (°C)

Figure 6. DSC curves of polyurethanes synthesized using MDI and Me-31B; heating rate, 10°C/min; Entry 19, MDI/Me-31B/DAD; Entry 17, MDI/Me-31B/DDH; Entry 31, MDI/Me-31B/DDH(one-shot).

120 160 200 240

ためと思われる。MDI/BDO/PTMO系ポリウレタンでは、MDIとBDOから成る ハードセグメントの割合の高いほど結晶性が向上する¹¹⁾。Entry 14のPMeOZOセグメント によるTgは、Me-31B系の場合と異なり熱処理により、78.2℃から77.0℃に低下 する。相分離したPMeOZO相の結晶性が、Me-31B系より低いためであろう。 Figure 6 に、MDI/Me-31B系で延長剤としてDADを用いた場合(Entry 19)の未熱 処理試料のDSCを示したが、121℃付近にブロードで大きな吸熱ピークが認められる。 顕微鏡観察では、105~130℃でポリマーが溶融するので、この吸熱はTmであろう。他の 延長剤によるポリウレタンに比べて著しく値は低いが、ウレタンセグメントの尿素結合の塩基 性が高いので、非プロトン性のPMeOZO鎖と反発して混合相における凝集状態が弱くなっ

ているためと考えられる。この場合、 90℃で2h熱処理するとTmは消滅し た。また、MDI/Me-15B/ DAD系 (Entry 18)の場合は、未熱処 理試料においてもTmは見られなかった (Table VII)。

生成ポリマーのT_dを熱重量分析 (TGA) および示差熱分析(DTA) により求めたが、Figure 8 にDDOおよ びDDH系ポリウレタンの空気中におけ るTGAおよびDTAの結果を示す。 Entry 20 において、DTAの212℃の 吸熱はTGAの変曲点と一致しており、 ウレタン結合の開裂に基づく熱分解によ るものであろう。全ウレタン結合のポリ ウレタンでは、熱分解は200℃付近の

Figure 8. DTA and TGA curves of polyurethanes in air; heating rate, 10°C/min; Entry 14, MDI/Me-15B/DDH; Entry 17, MDI/Me-31B/DDH; Entry 20, MDI/Me-15B/DDO.

ウレタン結合の開裂より始まることが知られている¹³)。DTAではT_mは観察されないが、こ れはDSCの結果と対応している。Entry 14 では216.2℃に熱分解の吸熱が認められるが、 この温度は全ウレタン結合のEntry 20 のものとほとんど同様であって、アシルセミカルバジド 結合が共存していてもウレタン結合の開裂から分解が始まることを示している。ウレア結合は 300℃で解重合をおこすが¹⁴)、この結合を含むEntry 10, 18, 19, 34 のポリマーも、190~ 200℃の分解はウレタン結合の解重合に起因すると思われる。アシルセミカルバジド結合 は、ジヒドラジドとジカルボン酸クロリドから得られるポリヒドラジドのヒドラジド結合と類 似しているが、相当するヒドラジド結合は250℃付近で熱脱水閉環がおこる¹⁵)。DDHによ る延長ポリマーもこの構造を含むので脱水閉環の可能性があるが、DTAおよびTGAからは

Table VII. Properties of Polyurethanes Synthesized using MDIa

POG	Extender	Entry	Tg ^b (°C)	Tm ^b (°C)	Td ^c (°C)	Contact angle (deg)
Me-15B	DDH	14	78.2	169	216	71.2
			77.0	153	212d	
Me-31B	DDH	17	65.0	140	225	73.0
			75.0	-	205d	
Me-15B	DDH	30	73.9	170	206	75.4
Me-31B	DDH	31	77.5	155	174-220	80.0
Me-15B	ADH	23	weak	135-167	181	25.6
Me-31B	ADH	24	77.2	117	212	34.5
Me-15B	DDO	20	75.4	-	212	39.5
Me-31B	DDO	21	66.0	138	192	54.1
			72.5	-	199d	
Me-12A	BDO	8	81.1	-	186	32.5
Me-15B	DAD	18	74.5	-	191	87.2
			77.9	-	197e	
Me-31B	DAD	19	66.4	112-121	194	85.1
			70.5	-	_ e	
Me-12A	DAH	10	71.2	-	192	45.6

a) Synthetic method: continuous method(one-pot method) except Entries 30 and 31(one-shot method).

b) Determined by differential scanning calorimetry(DSC).

c) Decomposition temperature determined by differential thermal analysis(DTA) and thermogravimetric analysis(TGA).

d) Annealed at 120°C for 2 h.

e) Annealed at 90°C for 2 h.

これは認められなかった。Entry 17 の場合、225 Cの熱分解による吸熱はかなり弱いが、これは Entry 14 に比べて P M e O Z O 鎖が長いためであろう。また153 Cを中心としたプロードな吸熱は D S C の T_m (140, 165 C) と一致している。

Table VIII. Properties of Polyurethanes Synthesized using HDIa

POG	Extender	Entry	Tg ^b (°⊂)	Tm ^b (°C)	Td ^c (°C)	Contact angle (deg)
Me-15B	DDO	27	70.6	_	188	44.1
Me-31B	DDO	28	63.6	146	196	58.3
			75.1	-	203d	
Me-15B	DDH	25	72.6	175	215	72.4
Me-31B	DDH	26	64.8	158	221	75.6

a) Synthetic method: continuous method.

b) Determined by differential scanning calorimetry(DSC).

c) Decomposition temperature determined by differential thermal analysis(DTA) and thermogravimetric analysis(TGA).

d) Annealed at 120°C for 2 h.

7.4.3.c 接触角

DMF溶液からガラス面上に50℃で形成したポリウレタンフィルムの、水に対する接触角 を測定した。生成したフィルムは強度が充分でなくガラス面からはく離出来なかったので、空 気側の接触角のみを測定した。PMeOZO鎖は極性が大きくガラス面との親和性の高いこと が知られている¹⁶)。本研究で合成したポリマーの延長剤ユニットが長鎖アルキレンを含む場合 には、PMeOZO鎖がガラス面上に存在しやすくアルキレン鎖がこれと相分離すれば、アル キレン鎖は空気側に移動しやすくなるであろう。ガラス面上に形成したPOG(Me-31 B)フィルムの空気側の接触角は22.0°であるが、ポリウレタンの接触角は何れもこれより 高い値となり、疎水部分が多かれ少なかれ空気側に移動していることが認められた。概して延 長剤ユニットが長鎖アルキレンを含む場合にはこの傾向が著しいが、更にその種類によって値 は大きく異なる。長鎖アルキレンを含むポリウレタンについて比較すると、DAD>DDH> DDOの順に接触角は大となった。延長剤ユニットの長鎖アルキレン鎖の炭素数は等しいの で、アルキレン鎖両端の結合の種類が重要な意味をもつと思われる。これらの結合が影響する 因子としては二つ考えられる。一つはガラス面上のPMeOZOとの親和性、もう一つはガラ ス面との親和性である。何れも、親和性の低い方がウレタンセグメント中の長鎖アルキレン鎖 が空気中に移動しやすくなる。PMeOZO鎖との親和性の低いものは未熱処理試料の融点も 低いと考えられるが、確かにDADを用いたものは、T_mが格段に低いと同時に空気側の接触 角は最も高い。しかしDDHとDDOを比較すると、ポリウレタンのT_mはほぼ同程度である のに接触角は後者によるものが著しく低い。3種類の結合のガラスとの親和性を比較したデー タは見られないが、ガラス表面は負に帯電しているので。結合の塩基性の強いものは親和性が 低いとすれば、両者の親和性の強さは、ウレタン結合>アシルセミカルバジド結合>ウレア結 合、と思われる。実際に空気側の接触角の大きさは逆の順になっているので、ガラス表面との 親和性も意味を持つと考えられる。

延長剤のアルキレン鎖が短鎖の場合(DAH, BDO, ADH)は、長鎖の場合に比べて接 触角は低下する。PMeOZ鎖の影響が増したためであろう。

POGユニットのMe-15BとMe-31Bを比較すると、延長剤がDADの場合を除い ては、接触角はMe-31Bを有する方が大きいという結果となった。親水性のPMeOZO の鎖長の長い方が接触角は低くなっても良いように思われるが、それと反する結果となるの は、ポリウレタン内のPMeOZO鎖は、Me-15BよりもMe-31Bの方がガラス面と の親和性が大きいためではないかと考えられる。

血液適合性材料において、親水性表面は血液タンパクの吸着を抑制するが 17)、他方疎水性 グラフト鎖はアルプミン吸着を促進して抗血栓性を高めることが知られており 18)、その場合 水への接触角が 80~110°程度が良好であるという報告がある 19)。従って本研究の延長剤 および PMeOZO鎖の種類による接触角の高低は、血液適合性材料としてみた場合でもそれ ぞれに意義があるのではないかと思われる。

ワンショット法ポリウレタン (Entry 30, 31) は、相当するセグメント化ポリウレタン (Entry 14, 17) に比べて少し接触角は大きくなる。延長剤のアルキレン鎖長が短くなると接触角は低 下し、PMeOZO鎖が空気側に出やすくなることを示しているが、特にADHの場合にそれ が著しくMe-31B自体の接触角にかなり接近している場合がある (Entry 23, 24)。 親水性のPOG、およびMDIとHDI、疎水性延長剤の組み合わせを基に、プレポリマーの分離を経由する二段法、および *in situ* で鎖延長する連続法によりセグメント化ポリウレタンを合成した。鎖延長剤としてはDDO、DAD、およびDDHを用いたが、 M_n は MDI/DDH系が最も高く、最高23640のポリマーが得られた。

物性は連続法からのポリマーについて測定した。IRスペクトルによると、ウレタン結合、 アシルセミカルバジド結合、ウレア結合が、それぞれ水素結合により会合していることが認め られた。熱的性質としては、T_m, T_g,およびT_d(分解温度)を測定した。Me-31B 系では、熱処理(120℃)しないもののT_mは120~160℃程度であるが、熱処理する とT_mは消失した。MDIと延長剤から成るウレタンセグメントは、PMeOZOセグメント と会合して結晶組織を形成するが、相分離するとウレタンセグメントのみでは結晶化しにくく なるものと推定した。Me-15B系では、DDH使用の場合を除くと、未熱処理試料でも T_mを示さない。

ガラス面に作製したフィルムの接触角の値は、延長剤の種類によって異なり、DAD> DDH>DDOの順となった。疎水性の長鎖アルキレン鎖が、親水性でガラス面に親和しやす いPMeOZO鎖と相分離して空気側に移動し、その度合いはこの接触角と同じ順であると推 察される。

7.6 文献

- (a) S. Kobayashi and T. Saegusa, in K. Ivin and T. Saegusa eds.
 "Ring-Opening Polymerization ", Elsevier Applied Science
 Publishers, Essex, England, 764 (1984). (b) S. Kobayashi, Prog.
 Polym. Sci., 15, 751 (1990).
- 2) S. Kobayashi, T. Igarashi, Y. Moriuchi, and T. Saegusa, Macromolecules, 19, 535 (1986).
- 3) S. Kobayashi, H. Uyama, Y. Narita, and J. Ishiyama,

Macromolecules, 25, 3232 (1992).

- 4) S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano, Macromolecules,
 22, 2878 (1989).
- 5) C. I. Simionescu, G. David, A. Ioanid, V. Paraschiv, G. Riess, and B. C. Simionescu, J. Polym. Sci., Part A: Polym. Chem., 32, 3123 (1994).
- 6) (a) Günter Oertel: Polyurethane Handbook, Macmillan Publishers.
 Co., New York (1985). (b) 岩田敬治編、ポリウレタン樹脂ハンドブック、日刊工業新聞社、東京(1987).
- 7) H. Witte and W. Seeliger, Liebigs Ann. Chem., 996 (1974).
- 8) C. D. Eisenbach and H. Nefzger, in H. R. Kricheldorf ed. Handbook of Polymer Synthesis, Part A, Marcel Dekker, Inc., New York, 685 (1992).
- 9) (a) M. M. Coleman, K. H. Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules, 19, 2149 (1986).(b) D. J. Skrovanek, S. E. Howe, P. C. Painter, and M. M. Coleman, Macromolecules, 18, 1676 (1985).(c) R. W. Seymour and S. L. Cooper, Macromolecules, 6, 48 (1973).(d) J. C. West and S. L. Cooper, J. Polym. Sci., Polym. Symp., No.60, 127 (1977).(e) W. J. MacKnight and M. Yang, J. Polym. Sci., Polym. Symp., No.42, 817 (1973).(f) C. P. Christenson, M. A. Harthcock, M. D. Meadows, H. L. Spell, W. L. Howard, M. W. Creswick, R. E. Guerra, and R. B. Turner, J. Polym. Sci., -Fhys., 24, 1401(1986).
- 10) H. S. Lee, Y. K. Wang, and S. L. Hsu, *Macromolecules*, **20**, 2089 (1987).
- 11) J. A. Miller, S. B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson, and S. L. Cooper, Macromolecules, 18, 32 (1985).

- 12) (a) K. Ishizu, T. Fukutomi, and T. Kakurai, J. Polym. Sci., Polym. Chem. Ed., 21 405 (1983). (b) K. Ishizu, S. Ishikawa, and T. Fukutomi, J. Polym. Sci., Polym. Chem. Ed., 23, 445 (1985). (c) S. Ishikawa, K. Ishizu, and T. Fukutomi, Polym. Bull., 16, 223 (1986).
- 13) S. Boufi, M. N. Belgacem, J. Quillerou, and A. Gandini, Macromolecules, 26, 6706 (1993).
- 14) J. M. Richards, W. H. McClennen, H. L. C. Meuzelaar, D. E. Gregonis, W. M. Reichert, and M. A. Helle, *Macromolecules*, 18, 496 (1985).
- 15) A. H. Frazer, W. Sweeny, and F. T. Wallenberger, J. Polym. Sci., Part A, 2, 1157 (1964).
- 16) S. Shoda, E. Masuda, M. Furukawa, and S. Kobayashi, J. Polym. Sci., Part A: Polym. Chem., 30, 1489 (1992).
- 17) (a) Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Int. Organs, 28, 459 (1982). (b) A. S. Chawla, in E. Piskin ed., Polymeric Biomaterials, 1986. (c) K. D. Park, T. Okano, C. Nojiri, and S. W. Kim, J. Biomed. Mater. Res., 22, 977 (1988). (d) K. Fujimoto, H. Tadokoro, M. Minato, and Y. Ikada, Polym. Mater. Sci. Eng., 62, 736 (1990).
- (a) M. S. Munro, A. J. Quattrone, S. R. Ellsworth, P. Kulkarni, and R. C. Eberhart, Trans. Am. Soc. Artif. Int. Organs, 27, 499 (1981). (b) M. S. Munro, R. C. Eberhart, N. J. Maki, B. E. Brink, and W. J. Fly, Am. Soc. Artif. Intern. Organs J., 6, 65 (1983).
 (c) T. G. Grasel, J. A. Pierce, and S. L. Cooper, J. Biomed. Mater. Res., 21, 815 (1987).

19) M. Kober and B. Wesslén, J. Polym. Sci., Part A: Polym. Chem., 30,

1061 (1992).

第8章 ポリ[エチレン-*co*-(酢酸ビニル)-*g*-(2-アルキル-2-オキサゾリン)]の合成と抗血栓性

8.1 要旨

ポリエチレン主鎖にポリ(*N*-アシルエチレンイミン)グラフト鎖を有するグラフト共重合体を得る目的で、ポリ[エチレン-*co*-(酢酸ビニル)-*g*-(2-アルキル-2-オキサ ゾリン)](4)を合成した。先ず、ポリ[エチレン-*co*-(酢酸ビニル)](1)を部分ケ ン化して、水酸基をもつポリマ-(2)とした。つぎに、2をトシル化またはプロモアセチル 化してマクロ開始剤(3a, 3b)を得た。マクロ開始剤により2-メチル-2-オキサゾリン または2-エチル-2-オキサゾリンのカチオン開環重合を行い、グラフト共重合体を合成し た。生成物は再沈殿により分離した。グラフト共重合の際、2-オキサゾリン類のホモポリ マーが生成した。これは連鎖移動によると思われるが、モノマーのグラフト効率は最高 50% であった。グラフト共重合体 4 の抗血栓性を kinetic 法により検討したところ、グラフト前 のポリマ-(2)に比べてこの性質が向上することが認められた。

8.2 緒 言

2-オキサゾリン類およびその他の環状イミノエーテルモノマーの重合化学は、この20年 間で大きく進展した。2-アルキル-2-オキサゾリン(ROZO)のカチオン開環重合によ りポリ(*N*-アシルエチレンイミン)が生成するが、それらを更に加水分解すると直鎖のポリ (*N*-アシルエチレンイミン)))が得られる。2-オキサゾリン類についての詳細な研究によ り、つぎのような特性が見出された²⁾。1)重合はスルホン酸アルキルまたはハロゲン化アル キルにより開始できる、2)生長反応は高度にリビング的である、3)生成するポリ(*N*-ア シルエチレンイミン)は、アシル基の特質に応じて親水、または疎水性となる。これらの特性 に基づいて、2-オキサゾリン類の多様なプロックおよびグラフト共重合体が合成されてい る^{1,2)}。たとえば 2-オキサゾリン類からのグラフト共重合体としては、ポリ[スチレン-*g* - (2-メチル-2-オキサゾリン)]^{3,4}、ポリ[ブタジエン-g-(2-メチル-2-オキ サゾリン)]⁵、ポリ[塩化ビニル-g-(2-メチル-2-オキサゾリン)]⁶、ポリ[(2-フェニル-2-オキサゾリン)-g-(エチレンオキシド)]⁷、セルロースジアセタート-g ーポリ(2-アルキル-2-オキサゾリン)⁸、およびポリ[メタクリル酸メチル-g-(2 -オキサゾリン)]⁹等が報告されている。著者等はまた、主鎖とグラフト鎖の両方にポリ (2-オキサゾリン)セグメントを有するグラフト共重合体を合成し、これらは表面張力値 (7)より、良好な界面活性材としての性質を示した¹⁰)。本章では、2-オキサゾリン類から のグラフト共重合体の応用研究の一環として^{3-5,7-10}、主鎖としてポリ[エチレン-co-(酢酸ビニル)](ポリ(E-co-VAc))、グラフト鎖としてポリ(2-アルキル-2 -オキサゾリン)(PROZO)鎖を有するグラフト共重合体を合成し、生成物の抗血栓性に ついて検討した結果について述べる。本研究の主たる目的は、ポリ(N-アシルエチレンイミ ン)のグラフト鎖を導入することにより、ポリエチレンの表面特性を改質しようとするもので ある。

8.3 実験

8.3.1 原料および試薬

2-メチル-2-オキサゾリン(MeOZO)(Aldrich Co.)および 2-エチル-2-オキ サゾリン(EtOZO)(Dow Chemical Co.より提供)は、窒素下モレキュラーシープで乾 燥した後蒸留した。プロモアセチルクロリドおよび溶媒類は市販品を乾燥後蒸留した。*p*-ト ルエンスルホニルクロリド(TsC1)は市販品を再結晶して使用した。

ポリ (E-*co*-VAc) **1** (M_n =15600) およびケン化ポリマー (**2**-**5**) は、日本合 成化学 (株) の提供を受けた。**1** の元素分析値: C, 69.30; H, 10.31。この値より計 算すると、E/VAc=71.7/28.3となる。**2-5** の元素分析値: C, 63.23; H, 10.59。この値より計算すると、E/VA (ビニルアルコール) /VAc=38.0/ 61.0/0.4となる。**1** の¹H NMRスペクトル (C₆D₆) では、E-VAcダイアドに よるアセチルシグナルが δ 1.80に、VAc-VAc ダイアドによるアセチルシグナルが δ 1.88に見られ¹¹)、これらのシグナル比は71.4/28.6であるが、元素分析値による値と よく一致している。

8.3.2 ポリ(E-co-VAc) (1) の部分ケン化

1 のケン化によるポリマー 2-3 の合成の典型的方法をつぎに示す。1 (44.40g)のメ タノール (260 mL) 溶液とN a O H (0.34g)のメタノール (30 mL) 溶液を混合し て、かき混ぜながら50min 還流加熱する。反応後、粘性の高いポリマー相がメタノール相か ら分離するが、これを冷却して固化したものをろ過し、メタノール、水、メタノールの順で洗 浄した後50℃で真空乾燥して固形のポリマー 2-3 (27.74g)を得る。元素分析値: C, 70.95; H,11.36。この値より、E/VA/VAc=38.0/61.0/0.4となる。 従って、アセタート基のケン化率は44.9%である。2-3 の1H NMRスペクトル (ピリジ ン)は、アセチル基のシグナルをδ2.03に、主鎖のメチレン基のシグナルをδ1.23に示 した。これら2シグナルの積分比より、E/VA/VAc=71.7/13.6/14.6とな り、元素分析値による値と一致した。

8.3.3 ケン化ポリマー(2)のトシル化

トシル化ポリマー **3a**-2 を合成する典型的方法をつぎに示す。TsCl(2.13g)を含む ビリジン(120 mL)にポリマー **2-3**(8.00g)を窒素下0~2℃で加え撹拌すると、8 h後には均一溶液となるが、合計で25h撹拌する。反応液を大量の水に加えて沈殿するポリ マーをCHCl₃に溶解し、NaHCO₃水溶液と水で洗浄した後、Na₂SO₄で乾燥する。 CHCl₃溶液をヘキサンに投入して生成する沈殿をCHCl₃(溶媒)/ヘキサン(非溶 媒)より再沈殿精製して真空乾燥し、白色固形の **3a**-2(6.42g)を得た。元素分析による S%2.96より、E/トシラートユニット/VA/VAc=71.7/4.2/8.5/15.6 となり、トシル化率は33.1%であった。**3a**-2の1HNMR(CDCl₃)における芳香族 プロトン(4H, δ7.28~7.89, A₂B₂型四重線)とメチレンプロトン(δ1.23) に基づいて組成を求めると、E/トシラートユニット/VA/VAc=71.7/3.8/8.9 /15.6であり、上の結果と良く一致している。

8.3.4 ケン化ポリマー(2)のプロモアセチル化

典型的例として 3b-2 の合成について示す。ジメチルアセトアミド(DMAc) (70mL)) とポリマー 2-2 (3.03g)の溶液にプロモアセチルクロリド(0.91g)を加え、 40℃で4 h 撹拌する。反応混合液を大量の水に加えて沈殿する白色ポリマーをCHC1₃に 溶解し、Na₂SO₄で乾燥する。CHC1₃溶液をヘキサンに投入して生成する沈殿を真空 乾燥した後、CHC1₃(溶媒)/ヘキサン(非溶媒)より再沈殿精製して真空乾燥し、白色 固形の 3b-2 (2.95g)を得た。元素分析によるBr%8.21より、E/プロモアセタート ユニット/VA/VAc=71.7/4.5/9.1/14.7となり、プロモアセチル化率は 33.1%であった。

1H NMR (CDC1₃) におけるブロモアセチルプロトンの二重線(δ 3.83、4.05) と主鎖のメチレンプロトン(δ 1.22)のシグナルに基づいて組成を求めると、E/プロモア セタートユニット/VA/VAc = 71.5/5.1/8.5/14.7であり、元素分析の結果と 良く一致している。

8.3.5 グラフト共重合

3a と3b を用いる共重合は同様の方法で行った。典型的例として、4a-10 の合成につい て示す。ガラス製アンプルに、ポリマー3a-3(0.59g)、PhCN(21.6 mL)、およ びE t O Z O(1.55g)を窒素下で入れ、封管して100℃に13h加熱する。反応混合 液を真空中で40℃で 5 mL まで濃縮したものにCHC1₃(6 mL)を加え、混合液を大量 のヘキサンに加えて析出する沈殿をろ過してヘキサンで洗浄し乾燥すると、グラフト共重合体 とE t O Z O のホモポリマーの混合物(2.10g)が得られる。この混合物をTHF(5 mL) 乾燥する。生成物を、THF(溶媒)/飽和食塩水(非溶媒)で再沈殿後乾燥して、グラフト 共重合体(4a-10)の粗生成物 0.53gを得る。これを更に、CHC1₃(溶媒)/ヘキサ ン(非溶媒)より再沈殿後真空乾燥してガム状固形物 0.42gを得た。以上の乾燥操作は全 て室温で行った。

再沈殿後の食塩水相を減圧濃縮してCHC1₃で抽出し、CHC1₃溶液をNa₂SO₄で乾燥して減圧乾固すると、主としてPEtOZOから成るポリマー固形物1.45gを得た。

8.3.6 抗血栓性試験

kinetic 法 ¹²) の一般的操作法について示す。ポリマー試料(0.3 g)を溶媒(グラフト共重 合体 4 に対してはCHC1₃、ケン化ポリマー 2 に対してはDMAc)(3 mL)に溶解す る。時計皿(直径 7.5 cm)の中央部にポリマー溶液を置き、溶媒を蒸発させて直径 2.5~ 3.0 cmのフィルムをガラス上に形成させる。この時計皿を37℃に保ち、雑種成犬(オス) の新鮮なACD血液(0.25 mL)をフィルム上に置く。この血液に、CaC1₂水溶液(0.1 mol/L)(0.025 mL)を加えて、所定時間後生成した血栓を採取し35% ホルマリ ンで処理した後水で洗浄する。血栓中の水を吸い取り紙で圧縮して除去し秤量する。フィルム の無いガラス表面に形成される血栓の最大量を基準として、血栓形成量を百分率で示す。試料 フィルム上に形成される相対血栓量(%)と時間との関係をプロットする(Figure 1~3)。

8.3.7 生成物の分析

 ¹H NMRスペクトルは日立R-20B型 NMR分光計(60MHz)により測定した。
 IRスペクトルは日立 EPIG31型分光光度計により測定した。ゲル透過クロマトグラフィ (GPC)分析は、JASCO TRIROTORにより、RI検出器を用いてつぎの条件に より測定した:カラム、Shodex A804;溶媒、CHC1₃;流速、1 mL/min。
 GPCによる分子量決定の標準物質としてはポリスチレンを用いた。 8.4 結果と考察
8.4.1 ポリ[エチレン-co-(酢酸ビニル)-g-(2-アルキル-2-オキ サゾリン)] (4)の合成法

著者等は初め、ポリエチレンの表面を改質するため、ポリ(N-Pシルエチレンイミン)の グラフト鎖を導入したいと考えたが、具体的合成法の面で障害があった。しかしポリ(E-co-VAc)であれば入手しやすいポリマーで、既にポリエチレン主鎖が存在しており、2 -オキサゾリンの重合開始のためにトシル基またはプロモアセチル基を容易に導入できる利点 がある。従ってこの共重合体を本研究の出発物質として用いることにした。 ポリ[エチレン - co-(酢酸ビニル) - g-(2-Pルキル-2-Jキサゾリン)](ポリ(E-co-VAc-g-ROZO)) (4)の合成法を Scheme 1 に示した。

	Saponif	ication	a			Product(2)				
Copolymer(1)		NaOH MeOH		[NaOH]0	Time	Time Sample		Cc	Hc	VA
g	(VAc, unit mol)	(g)	(mL)	[VAc]0	(min)	code	(웅)	(%)	(%)	(mol%)
20.56	(0.130)	1.59	150	0.30	240	2-1	12.53	73.35	12.04	26.5d
21.29	(0.135)	0.17	160	0.03	90	2-2	14.10	71.09	11.58	13.6d
44.40	(0.282)	0.34	290	0.03	50	2-3	27.74	70.95	11.36	12.7d
20.02	(0.127)	0.05	140	0.01	40	2-4	14.58	69.31	11.79	4.4e
-	-	-		_	-	2-5b	-	63.23	10.59	61.6f

Table I. Saponification of E/VAc Copolymer(1) to Polymer 2

170

a) Composition of 1: E/VAc = 71.7/28.3; solvent, methanol; temp., reflux temp. of methanol.

b) Supplied as hydrolyzed form; E/VA/VAc = 38.0/61.6/0.4.

c) Obtained by elemental analysis.

d) Calculated by C(%) in product polymer.

e) Determined by 1H NMR spectroscopy.

f) Calculated from C and H(%) in the product polymer.

Table II. Tosylation of Polymer 2 to Polymer 3a

		Tosylat			Produ	(3a)			
	Polyn	ner 2			[TsCl]0			_	Tosylated
Sample code	g	(VAc, unit mol)	TsCl (g)	Pyridine (mL)	[VA] ₀	Sample code	Yield (g)	Sb (%)	unit (mol%)
2-1	4.00	(0.032)	6.76	70	1.10	3a-1	6.58	8.62	17.8
2-3	8.00	(0.026)	2.13	120	0.43	3a-2	6.42	2.96	4.2
2-4	7.00	(0.007)	2.76	112	2.01	3a-3	4.76	1.46	2.1

a) Reaction at 0-2 °C for 25 h.

b) Obtained by elemental analysis.

c) Calculated from S(%) in the product polymer.

Polymer 2	Bromoacetyl unit mol) .071) .011)	ationa BAC (g) 12.40 0.91	рмА (лг.) 100 70	[BAC]0 [VA]0 1.11 0.53	Sample code 3b-1 3b-2	Prod Yield (9) 9.92 2.95	uct(3b) Brb (%) 42.62 8.21	Tosylated ^c unit (mol%) 57.3 4.5
0) 00	.004)	1.07	100	1.70	3b-3	3.40	2.29	1.3

3b

Polymer

t t 0

Polymer

Ч

Bromoacetylation

III

Table

for ς 40 at Reaction

ч.

4

analysis. elemental γd Obtained a) b)

Br(%) from Calculated ΰ

in the product polymer.

8.4.2 ポリ [エチレン-co-(酢酸ビニル)](1)の部分ケン化

用いたポリ[エチレン-co-(酢酸ビニル)](ポリ(E-co-VAc))(1)のユ ニット組成は、E/VAc=71.7/28.3 ($M_n=15600$ (VPO)) である。1 のケ ン化は、メタノール中でNaOHと共に還流加熱して行い、ビニルアルコール(VA)ユニッ トを有するポリマー2 を得た。ケン化の度合いは NaOH/VAc 比で概略的に調節した(Table I)。反応後の後処理により、ポリマー2が白色粉末(コード2-1)または白色固形物 (コード 2-2~2-4) として得られる。

8.4.3 ケン化ポリマー(2)のトシル化またはプロモアセチル化によるマクロ開始 剤(3)の合成

ケン化ポリマー2のトシル化は、ピリジン中 p-トルエンスルホニルクロリドと0~ 2℃、25h反応させて行った。生成物(**3a**)に導入されたトシル基は17.8~2.1ユニッ トモル%であった(Table II)。生成ポリマー(3a-1~3a-3)は全て、透明で柔軟性のある 物質で、CHCl3またはPhCNに可溶である。

2 のブロモアセチル化は、ジメチルアセトアミド(DMAc)中ブロモアセチルクロリドと 40℃で4h反応させて行い、プロモアセチル基の含有率が 57.3~1.3 ユニットモル%の ポリマー (**3b**) を得た (Table Ⅲ)。ポリマー **3b** も柔軟性物質で、CH₂C1₂、

CHC13、PhCN、およびDMAc等の有機溶媒に可溶である。

8.4.4 マクロ開始剤への 2-オキサゾリン類のグラフト

ポリマー3aまたは3bのトシラート基またはプロモアセタート基により、EtOZOまた はMeOZOのカチオン開環重合を行った。重合は全て均一状態で進行し、モノマーは完全に 消費された(Table IV および V)。

重合に際して、グラフト共重合体と共に EtOZO または MeOZO のホモポリマーが生 成したが、これは連鎖移動反応によるものと思われる。ホモポリマーの存在はGPCにより確

		Graf	t copol	ymerization					Graft d	copolyme	er(4a)		
Initi poly (3	ator mer a)	R	OZOb	[ROZO] ₀	Yield of polymer		Iso- lated	Elen anal	nental Lysis	Grai ROZO X,	fted D,mol/ mol	Graftg effi-	Resi- dual OTs,
Code	g	R	g	[X in 3a] ₀	mixture ^c (g)	Sample Code	yield (g)	N (%)	S (%)	Ae	Bť	ciency (१)	mol ^e / X, mol
3a-2	0.60	Et	0.46	8.4	1.00	4a-1	0.37	1.43	0.18	1.07	1.49	12.8	0.06
3a-2	0.60	Et	1.07	19.6	1.60	4a-2	0.35	3.13	0.16	2.70	3.01	13.8	0.06
3a-2	0.60	Et	1.46	26.6	2.02	4a-3	0.55	4.31	0	4.13	4.52	15.5	0
3a-2	0.60	Et	2.20	40.0	2.76	4a-4	0.39	5.09	0.13	5.35	5.79	13.4	0.06
3a-2	0.60	Me	0.75	15.9	1.30	4a-5	0.36d	_	_	_	_	_	-
3a-2	0.60	Me	1.22	52.0	1.75	4a-6	0.32d	-	-	-	-	-	
3a-3	0.60	Et	0.43	15.8	0.98	4a-7	0.45	0.66	0.24	1.02	_	6.5	0.16
3a-3	0.60	Et	0.65	23.9	1.19	4a-8	0.52	0.90	0.15	1.41	1.17	5.9	0.10
3a-3	0.59	Et	0.98	36.6	1.52	4a-9	0.53	1.69	0.20	2.81	2.43	7.7	0.15
3a-3	0.59	Et	1.55	57.7	2.10	4a-10	0.53	3.25	0.17	6.19	5.78	10.7	0.14
3a-3	0.59	Me	0.60	26.0	1.14	4a-11	0.50	1.90	0.21	3.32	2.91	12.8	0.16
3a-3	0.59	Me	0.88	38.5	1.44	4a-12	0.67	2.92	0	5.60	6.65	14.6	0

Table IV. Graft Copolymerization of 2-Alkyl-2-oxazoline(ROZO) onto Polymer 3aa

(Continued to next page)

(Table IV)

a) Solvent, $C_{6H_5}CN$ (22 mL, for 0.60 g of polymer 3a); temp., 100 °C; time, 13 h.

b) Conversion of ROZO was 100 % in all runs.

c) Combined amount of graft copolymer and homopolymer of ROZO.

d) Almost insoluble in organic solvents after isolation.

e) Calculated by N and S(%) in the graft copolymer from elemental analysis.

f) Determined by ¹H NMR spectroscopy.

g) [Grafted ROZO(A value)]/[charged ROZO] × 100.

	Gr	aft copo	lymerization					Graft	copolyn	ner(4b)		
Initia polym (3b)	tor er		[EtOZO]0	Yield of polymer		Iso- lated	Elem	ental Ysis	Graft ROZO, X,	ced mol/ mol	Graft ^f effi-	Resi- dual Br
Code	g	EtOZO ^b g	[X in 3b]0	mixture ^c (g)	Sample Code	yield (g)	N (%)	Br (%)	Ad	Be	ciency (%)	mol ^d / X, mol
3b- 2	0.50	0.62	12.3	1.08	4b-1	0.66	5.55	1.87	6.15	5.48	50.0	0.36
3b- 2	0.50	1.03	20.5	1.45	4b -2	0.43	6.41	1.43	7.87	6.77	38.4	0.31
3b- 2	0.40	1.22	30.2	1.59	4b- 3	0.32	6.71	1.25	8.56	7.58	28.3	0.28
3h_3	0 20	1 07	1 13	1 62	11	0	и С			, , ,	((
3b- 3	0.60	1.62	92.7	2.13	4b -5	0.62	3.38	0.89	10.70	11.14	13.5 11.5	1C.U
												1 1 2

Gra: > Table

all runs % in of EtOZO was 100 Conversion q

Etozo ч copolymer and homopolymer graft ч amount Combined ΰ

copolymer graft the ч Ч Br(%) and z βų Calculated q

spectroscopy NMR $^{1}\mathrm{H}$ þγ Determined e)

100 \times Etozo] value)]/[charged Etozo(A [Grafted Ĵ

量70000および2000~6000位置に2本のピークが存在する。初めのピークはグ ラフト共重合体、後のピークはEtOZOのホモポリマーのものである。ポリマー混合物よ り、グラフト共重合体(4a および4b)はつぎのように分離した。混合物はテトラヒドロフラ ン(THF)に可溶であるが、THFに溶解した溶液を大量の水に注いだ。沈殿するグラフト 共重合体(4a および4b)を分離後乾燥する。このようにして得たグラフト共重合体、例え ば 4a-3 および 4 は、GPCにおいて分子量70000付近の位置に単一ピークを示した。 従ってこの再沈殿法は、完全な分離法とは言えないが、検討した溶媒と非溶媒の組み合わせの うちでは最良の方法であった。グラフト効率は一般に高くはなく、例えば出発ポリマーが 3a の場合は最高15.5% (Table IV)、**3b**の場合は50.0%であった。この理由は主とし て、上記の沈殿操作の際にグラフト共重合体とMeOZOまたはEtOZOのホモポリマーの 分離が完全に行われないために、グラフト共重合体の損失があることによるものである。 ゲラフト共重合体 4a と 4b は、IRと1HNMRスペクトルによると基本的に構造は等し い。グラフト共重合体のIRスペクトルは、特性吸収を2920および2850 cm-1 (Uci,)、1735 cm^{-1} (Uco,エステル)、および1640 cm^{-1} (Uco,アミド) に示した。ま た例えば4a-3 の1H NMRスペクトル(CDC13)においては、主鎖のメチレンプロトン によるδ1.2 (br) のシグナルとエチル基のメチルプロトンによるδ1.1 (t) のシグナル とのオーバーラップ、アセタート基のメチルプロトンの δ 2.0 のシグナル、エチル基のメチ レンプロトンによるδ2.3 (br, q) のシグナル、N-メチレンプロトンのδ3.5 (br) の シグナル、エステルのカルボニル基とN原子との間のメチレンプロトンの 84.2 (br)のシ ゲナル、メチンプロトンによるδ4.8のシグナルが認められた。これらのスペクトルデータ は、グラフト共重合体 **4a-3** の構造を支持している。N-メチレンシグナル(δ3.5)とメ チレンプラスメチルシグナル(δ1.2および1.1)の積分比より、平均のグラフト鎖長(グ ラフトEtOZO mol/X mol)は4.52と求められ(Table IV のB値)、この値は元素分析 値による値(Table Ⅳ のA値 = 4.12)とよく一致している。

認したが、生成混合物(4a-3 および4)のGPCでは、ポリスチレンを標準物質とした分子

グラフト鎖の鎖長(AまたはB値)の分布は、3aまたは3bによる開始反応が生長反応よ

176

り速い場合には狭くなる。しかし実際には、3aの開始基は二級のアルキルトシラート型であ り、3bの開始基は臭化アルキル型のため¹⁾、3aおよび3bによるEtOZOまたは MeOZOの開始速度はかなり遅いと思われる。従って、特にトシラート(3a)の場合に は、比較的長いグラフト鎖も少量存在していると思われる。

3a または3b 上に遊離水酸基の多い方がグラフト効率の高くなる現象が認められた。3a-2 のグラフト効率は3a-3 に比べて、一般的に2倍程度であり、3b-2 のグラフト効率は3b-3 に比べて 2~4 倍程度となっている。この原因としては、水酸基とEtOZOの水素結合に より、EtOZO が幹ポリマーコイルの内部に侵入しやすくなることが考えられる。

8.4.5 グラフト共重合体(4)の抗血栓性

既に報告したように^{2e,2f)}、PEtOZOおよびPMeOZO鎖は高度に親水性であって、これらのグラフト鎖をポリエチレンに導入することにより、その表面特性を改質出来ることが期

Figure 1. Thrombus formation curves for graft copolymers 4a. 1(\bigcirc), 4a-2(\Box), 4a-3(\triangle), 4a-4(\blacktriangle), and the back bone polymer 2-3(\bigcirc).

Figure 2. Thrombus formation curves for graft copolymers $4a-7(\bigcirc)$, $4a-8(\Box)$, $4a-9(\triangle)$, $4a-10(\blacktriangle)$, and the back bone polymer $2-4(\bullet)$.

待される。この考え方を実験的に検討する ために、グラフト共重合体フイルムの抗血 栓性試験を kinetic 法 ¹²)により行った。 Figure 1 および 2 は、PEtOZO 鎖を保 つ共重合体についての結果を示したもので ある。一般にグラフト共重合体は、出発ポ リマー2-3 または2-4 に比べて良好な抗 血栓性を示し、グラフト鎖の導入はこの性 質を高めるということが言える。2-3 から の 4種のグラフト共重体は、幹ポリマーの 2-3に比して血栓形成速度は時間と共に減 少し、25 min 後でも最高50%程度の血 栓しか生じない(Figure 1)。2-4 からの 4種類のグラフト共重合体の血栓形成量は、 出発ポリマー2-4 とほぼ平行した関係を 示した (Figu-re 2) 。この挙動の違いは

Figure 3. Thrombus formation curves for graft copolymers $4a-11(\bigcirc)$ and $4a-12(\Box)$.

、トシラートユニットの割合が 3a-2 では 4.2%、3a-3 では 2.1%と差があること、VA ユニットの割合が 3a-2 では8.5%、3a-3 では2.3%と差があること、PEtOZOグラ フト鎖の含有率に違いがあること等によるものであろう。

Figure 3 は PMeOZOグラフト鎖をもつ共重合体(4a-11 および 4a-12) に対して同様の試験をした結果であるが、 PEtOZO鎖をもつ共重合体に比べて特に20 min 以上で血栓形成量と形成速度が低下している。

以上のように、検討した全てのグラフト共重合体の抗血栓性は、グラフト前に比べて改善されることが認められた。これはポリマー表面が親水性PROZOグラフト鎖と親油性ポリエチレン主鎖を有するためと思われる。これらの表面は「ミクロ相分離構造」を成していると考えられるが、このような表面は抗血栓性にとって有効であることが知られている¹³⁾。

8.5 結 論

ポリエチレン主鎖に、親水性のポリ(*N*-アシルエチレンイミン)グラフト鎖を有する形 の、ポリ[エチレン-*co*-(酢酸ビニル)-*g*-(2-アルキル-2-オキサゾリン)]を 合成した。

グラフト共重合体は、ポリ[エチレン-*co*-(酢酸ビニル)]を部分ケン化して生成する 水酸基をトシル化またはプロモアセチル化して、開始基としてトシラートまたはプロモアセ タート基を有するマクロ開始剤を合成した。

開始基を1.3~4.5%程度含むマクロ開始剤により、2-エチル-2-オキサゾリンまた は、2-メチル-2-オキサゾリンを開環重合させて、開始基1個当たりオキサゾリンが平均 して最高10.7個結合したグラフト共重合体を得た。

グラフト共重合体の抗血栓性を、成犬の血液を用いて kinetic 法により測定したところ、開 始基導入以前の部分ケン化ポリマーに比べて、抗血栓性の改善されることが認められた。ポリ マー表面が親水性を保持したためと考えられる。

8.6 文 獻

- (a) S. Kobayashi and T. Saegusa, in J. K. Ivin and T. Saegusa eds. "Ring-Opening Polymerization", Elsevier Applied Science Publishers, Essex, England, 761 (1984). (b) S. Kobayashi and T. Saegusa, "Encyclopedia of Polymer Science and Engineering ", John Wiley and Sons, Inc., New York, Vol.4, 525 (1986). (c) S. Kobayashi, Prog. Polym. Sci., 15, 751 (1990).
- 2) (a) S. Kobayashi, T. Tokuzawa and T. Saegusa, Macromolecules, 15, 707 (1982). (b) S. Kobayashi, N. Shimidzu and T. Saegusa, Polym. Bull., 11, 247 (1984). (c) S. Kobayashi, K. Morikawa, N. Shimidzu and T. Saegusa, *ibid*, 11, 253 (1984). (d) S. Kobayashi and T. Saegusa, Makromol. Chem. Suppl., 9, 25 (1985). (e) S. Kobayashi T. Igarashi, Y. Moriuchi and T. Saegusa, Macromolecules, 19, 535

(1986). (f) S. Kobayashi, T. Igarashi, S. Iijima and T. Saegusa, *ibid*, 20, 1729 (1987). (g) S. Kobayashi, H. Uyama, N. Higuchi and T. Saegusa, *ibid*, 23, 54 (1990). (h) S. Kobayashi, H. Uyama, and Y. Narita, *Polym. J.*, 22, 175 (1990). (i) S. Kobayashi, H. Uyama and Y. Narita, *Macromolecules*, 23, 353 (1990). (j) S. Kobayashi, H. Uyama and H. Shirasaka, *Makromol. Chem.*, *Rapid Commun.*, 11, 11 (1990). (k) S. Kobayashi, H. Uyama, E. Ihara and T. Saegusa, *Macromolecules*, 23, 1586 (1990). (l) M. Miyamoto, K. Hayashizaki, M. Tokumizu and T. Saegusa, *ibid*, 23, 4718 (1990).

- 3) T. Saegusa, S. Kobayashi and A. Yamada, Macromolecules, 8, 390 (1975).
- 4) (a) S. Kobayashi, M. Kaku, S. Sawada and T. Saegusa, Polym. Bull.,
 13, 447 (1985). (b) 小林四郎、加来群雄、澤田修司、三枝武夫、高分子学会予稿
 集, 34, 1353 (1985).
- 5) T. Saegusa, A. Yamada and S. Kobayashi, Polym. J., 11, 53 (1979).
- 6) P. D. Trivedi and D. N. Schulz, Polym. Bull., 3, 37 (1980).
- 7) S. Kobayashi, T. Mizutani and T. Saegusa, Makromol. Chem., 185, 441 (1984).
- S. Kobayashi, M. Kaku and Tsaegusa, Macromolecules, 21, 1921 (1988).
- 9) 小林四郎、古川 満、正田晋一郎、高分子学会予稿集, 37, 166(1988).
- 10) 小林四郎、加来群雄、教学正之、三枝武夫、高分子学会予稿集,33,1315
 (1984).
- 11) T. K. Wu, J. Polym. Sci. Polym. Phys. Ed., 14, 343 (1976).
- 12) Y. Imai and Y. Nose, J. Biomed. Mater. Res., 6, 165 (1972).
- 13) Y. Imai, A. Watanabe and E. Masuhara, Jpn. J. Artif. Organs, 2, 95 (1973).

論文リスト

- 第2章 "Synthesis of Acryl- and Methacryl-Type Macromonomers
- 第3章 and Telechelics by Utilizing Living Polymerization of 2-Oxazolines" S. Kobayashi, E. Masuda, S. Shoda, and Y. Shimano Macromolecules 22, 2878-2884 (1989)

"Synthesis of Novel Macromonomers and Telechelics of Poly(2-alkyl-2-oxazoline)s"
Y. Shimano, K. Sato, and S. Kobayashi
J. Polym. Sci., Part A: Polym. Chem. 33, 2715-2723 (1995).

- 第4章 "Reactivity of Radical Polymerization of Poly(2-oxazoline) Macromonomers" Y. Shimano, K. Sato, and S. Kobayashi Polym. J., submitted
- 第5章 "Reactivity of Radical Copolymerization of Poly(2-oxazoline) Macromonomers" Y. Shimano, K. Sato, and S. Kobayashi Polym. J., submitted
- 第6章 "Group Transfer Polymerization of Poly(2-oxazoline) Macromonomers" Y. Shimano, K. Sato, and S. Kobayashi Polym. J., in preparation for submission
- 第7章 "Synthesis of Polyurethanes Having Poly(N-acylethylenimine) Segments" Y. Shimano and S. Kobayashi Polym. J., in preparation for submission

第8章 "Synthesis of Poly [ethylene-co-(vinyl acetate)-g-(2-alkyl-2 -oxazoline)]s" S. Kobayashi, Y. Shimano, and T. Saegusa Polym. J. 23, 1307-1315 (1991)

本論文の内容に関連するその他の刊行物

- "Reactive Oligomers" (Overview)
 Y. Shimano and S. Kobayashi
 J. C. Salamone Ed., Polymeric Materials Encyclopedia, CRC Press, Inc., 7381-7392 (1996)
- 2. "Preparation of AB Polyacylthioureas and Related Copolyacylthioureas"
 Y. Shimano and S. Sasaki
 J. Polym. Sci., Polym. Chem. Ed. 21, 1331-1345 (1983)
- イソフタロイルジイソチオシアナートとジアミンとの重 付加によるポリアシルチオ尿素の合成 嶋野安雄、佐々木庄一 高分子論文集 36, 81-88 (1979)
- ジアシルイソチオシアナートとジヒドラジドからのポリ
 ジアシルチオセミカルバジドの合成とその熱脱水閉環反応
 嶋野安雄、佐々木庄一
 高分子論文集 37, 131-137 (1980)

新 辞

本研究は1983年から1998年にかけて、八戸工業高等専門学校お よび京都大学工学部合成化学科において行われた。

本研究の全期間を通じご指導ご鞭撻を賜わりました、京都大学大学院材 料化学専攻 小林四郎教授に心から感謝致します。また、本論文を作製す るにあたってご助言を戴いた、京都大学大学院高分子化学専攻 増田俊夫 教授、同じく中條善樹教授に深く感謝致します。

本研究遂行に関しては、京都大学 三枝武夫名誉教授、京都大学大学院材 料化学専攻 宇山浩博士、および著者の内地留学時の旧三枝研究室の方々 にご指導とご援助を戴きました。厚く御礼申し上げます。

本研究の開始にあたってご尽力を戴きました、八戸工業高等専門学校 佐々木庄一名誉教授に謝意を表します。

本研究は更に、八戸工業高等専門学校 佐藤久美子助手および同校で著者 と共に働いた卒業生諸兄姉の協力に負うところが大きい。ここに感謝致し ます。

1998年6月

嶋野 安雄