Study on Geomagnetic Transfer Function of Japan Islands

Satoshi FUJIWARA

Geographical Survey Institute, Tsukuba 305-0811, Japan

Contents

ABSTRACT1
1. INTRODUCTION
1.1. Conductive Anomaly and Transfer Functions2
1.2. Origin of the Variation of the External Field
1.3. EFFECT OF SEA WATER
1.4. HORIZONTAL TRANSFER FUNCTIONS10
1.5. TEMPORAL CHANGES OF THE TRANSFER FUNCTIONS10
2. DATA
2.1. First Order Geomagnetic Survey13
2.2. GEOMAGNETIC OBSERVATORY15
3. DATA ANALYSES
3.1. TRANSFER FUNCTIONS
3.2. METHOD OF ANALYSIS
3.3. EVALUATION OF THE ACCURACY OF THE TRANSFER FUNCTIONS
4. GEOGRAPHICAL DISTRIBUTIONS OF THE TRANSFER FUNCTIONS IN
JAPAN
4.1. Results at First Order Geomagnetic Stations
4.2. Thin-sheet Modeling27
4.3. DIFFERENCES BETWEEN THE OBSERVED TRANSFER FUNCTIONS AND THE THIN-
SHEET MODEL TRANSFER FUNCTIONS
5. INTERPRETAION OF THE DISTRIBUTION OF THE TRANFER
FUNCTIONS IN JAPAN
5.1. INDUCTION ARROWS AND ANOMALOUS HORIZONTAL FIELD
5.2. DISCUSSION WITH RESPECT TO THE THREE DISTRICTS

6. TEMPORAL CHANGES OF THE TRANSFER FUNCIONS

 $\frac{1}{2}$

-9-

ABSTRACT

Geomagnetic signals observed at the surface of the Earth have information on underground conductive structure of the Earth. As the geomagnetic transfer function is calculated from the geomagnetic signals and related to conductive structure of the Earth, it is one of the most useful and efficient methods for geomagnetic investigations. Repeated measurements of the Earth's time varying magnetic field have been made across Japan by the Geographical Survey Institute. Such measurements are known as the first order geomagnetic survey. There are 105 geomagnetic stations located uniformly across the whole area of Japan. Since 1987, triaxial fluxgate magnetometers have been used to obtain one-minute data at almost all stations. From the geomagnetic data, transfer functions were determined for each station. Traditional vertical field transfer functions of wide period range (from 4 min to 128 min) were obtained, making use of the interstation method which is robust against artificial magnetic and electric noises. Additionally, we calculated transfer functions for the horizontal field. The distribution of the transfer functions can be used to form a reference map of geomagnetic induction in Japan. Moreover, the distribution of the horizontal transfer functions in Japan has been examined for the first time. After eliminating the effect of the sea water using thin-sheet models, large regional anomalies are found to remain. These anomalies are diagnostic of the resistivity structure and show patterns of current channeling in Japan. We examined temporal changes of the transfer functions in order to detect conductivity changes associated with crustal activities such as occurrence of earthquakes and volcanic activities. Using the geomagnetic data observed at observatories and first order geomagnetic stations, changes of the transfer functions were obtained. Although we did not find changes of the transfer functions associated with crustal activities at the observatories, we detected temporal changes that possibly associated with occurrence of a large earthquake at the first order geomagnetic stations using the interstation transfer functions.

1. Introduction

1.1 Conductive Anomaly and Transfer Functions

Geomagnetic temporal variations (primary magnetic fields) cause induction currents in the Earth, which is regarded as a conductor. Secondary magnetic fields are generated by these induction currents and coupled geomagnetic variations of the primary and secondary variations are observed at the surface of the earth in general. The induction currents are affected by conductive (the reciprocal of resistive) structure of the Earth. For example, as conductivity becomes higher, the induction currents and the secondary geomagnetic variations become larger. The source of the geomagnetic variations is electric currents in the ionosphere and magnetosphere of the Earth. In general, geomagnetic variations originated in the Earth's ionosphere in mid latitude are almost composed of horizontal fields and there is little vertical field (Lilly, 1974). If conductive structure of the Earth is homogeneous, in other words, there is no conductive anomaly (CA) (Figure 1-1 (a)), the vertical component of the geomagnetic variation is not observed on the surface of the Earth. On the contrary, when a good conductor (low resistivity) exists in a rather homogeneous conductive structure (Figure 1-1 (b)), the vertical component of the geomagnetic variations appears. As an indicator of the conductive anomaly, we can often use $\Delta Z/\Delta H$, where ΔZ is the vertical component of geomagnetic variations, and ΔH is the horizontal component (the geomagnetic north component). In or to the south of a good conductor, $\Delta Z/\Delta H$ has a negative value, in or to the north of a good conductor, $\Delta Z/\Delta H$ has a positive value (Figure 1-1 (b)), and on the center of the good conductor, $\Delta Z/\Delta H$ has almost zero value. Therefore $\Delta Z/\Delta H$ shows horizontal contrasts of the conductive structure, and it can be used for geophysical investigation.

It has been known that ΔZ at Greenwich and Paris had the opposite sign during geomagnetic storms (van Bemmelen, 1908; Chapman and Bartels, 1940). Schmidt (1909) pointed out that changes of ΔZ at Potsdam and Seddin (they apart from each other only 13 km)

were quite different. Since 1950's it has been known that the vertical components of geomagnetic variations at periods shorter than several hours differ in amplitude and phase significantly from one place to another in Japan. Figure 1-2 shows a typical example of simultaneous observations by CA research group in Japan (Rikitake, 1971). In the figure, the horizontal component (H) and the declination (D) show small differences for all stations, but unusually large variations of the vertical component were observed along the Pacific coast in the central Japan and reversed variation was observed at the northern end of the Honshu. Such differences can be used to map conductive anomalies and have been studied by many researchers in Japan (e.g. Rikitake, 1966). Figure 1-3 shows the geographical distribution of $\Delta Z/\Delta H$. Rikitake (1969) accounted for large CA in central Japan and northeastern Japan by assuming an undulation of a mantle conducting layer (Figure 1-4), as it was thought that these CA had a close relation to the conductive structure of the upper mantle.

An empirical linear relation among the three components of geomagnetic short-period variations (e.g. 'Bay type' variations) can be derived and widely used:

$$\Delta Z = A \cdot \Delta X + B \cdot \Delta Y \tag{1-1}$$

where ΔX , ΔY and ΔZ are the geographic north, east and vertical components of geomagnetic variations, respectively. Mathematically complex Fourier components (ΔH instead of ΔX , and ΔD (declination) instead of ΔY are conventionally used in CA studies, but in this study we rotated the axis from the geomagnetic coordinate to the geographic coordinate using the results of precise declination observation [see section 2.1.]. The true geographical expression is much better for the interpretation of the CA structure.). This relation is interpreted as a linear system that has two inputs of ΔX and ΔY , and an output ΔZ . The coefficients A and B are constants that are specific to a given station although they

depend on frequencies. Since they have information on CA of the Earth, they are also called the CA transfer functions. The transfer functions represent anomalies of the vertical field. Rikitake and Yokoyama (1955) interpreted Eq. 1-1 as indicating a plane in which the vector of magnetic variation is confined and the plane is called the Rikitake and Yokoyama plane. This plane is also interpreted as magnetic lines, as shown in Figure 1-1. Parkinson (1959, 1962) introduced an arrow representation of the transfer functions, called the Parkinson vector, can be derived by projecting a vector which is normal to the Rikitake and Yokoyama plane onto the Earth's surface. In these days, a representation using an arrow called the induction arrow is often used to illustrate the transfer functions. The transfer functions are usually expressed as the induction arrows, A is southward direction and B is westward direction. The induction arrows are similar to the Parkinson vectors, only the length is slightly different. The induction arrows are commonly used as a method of estimating conductive structure. Using the transfer functions at a station, we can estimate conductive structure in the crust and upper mantle beneath and around the station.

In general, the transfer functions are frequency-depend complex functions. This is because geomagnetic variations of longer periods can penetrate into thicker parts of the Earth but on the other hand those of shorter period are attenuated due to induced eddy currents and can penetrate into only thinner parts of the Earth. This behavior is called the skin effect, and the skin depth is the typical depth at which amplitudes of the input geomagnetic variation becomes 1/e. The skin depth d (m) is given by:

$$d = 503\sqrt{\rho T} \tag{1-2}$$

where ρ denotes resistivity in ohm m and T denotes period in seconds. This frequency dependence is derived from vertical anomalies of conductive structure. There is a phase shift

of the geomagnetic response of the Earth, which means a complex function. Their real and imaginary parts are designated with suffixes u and v, respectively:

$$A(f) = Au(f) + iAv(f) \tag{1-3}$$

$$B(f) = Bu(f) + iBv(f) \tag{1-4}$$

where f is frequency (Hz). In general, the imaginary part is smaller than the real part.

Local features of the transfer functions have been extensively studied in Japan (observed induction arrows were compiled by Handa *et al.*, 1992, and Bapat *et al.*, 1993), but a nation-wide survey has not been previously attempted.

1.2. Origin of the Variation of the External Field

The geomagnetic transfer functions is researched using magnetvariation fields, and we should pay attention to the nature of the geomagnetic fields themselves, at least approximately. Although artificially controlled electromagnetic sources are sometimes used for geophysical soundings, they are basically free from assumption of the source field. As the artificial source power is, however, limited, there is limitation of the maximum depth and the area of soundings.

In mid- and low-latitudes, rather regular daily variations of the geomagnetic field are found and it is called the solar quiet daily variation (Sq). The Sq field is generated by electric dynamo in the ionosphere. A typical Sq variation is recognized on April 3, 1993 shown in Figure 1-5. In this study, we didn't use Sq variations because they have lower frequencies than we concerned.

A Large disturbance of the geomagnetic field is sometimes recognized, and it is called a geomagnetic storm. A typical geomagnetic storm observed at Mizusawa is also seen in Figure 1-5, and at the beginning of the geomagnetic storm the horizontal component suddenly increases as shown in the figure. The geomagnetic storm is caused by high-energy plasma, ejected at the time of explosions on the sun's surface, collides with the magnetosphere and compress it. The initial phase of the geomagnetic storm is considered to deformation of the magnetosphere due to plasma compression and the main and recovery phase of the storm are generated by equatorial ring current which initially develop and gradually decay at distances of 5 or 6 earth-radii (Rikitake and Honkura, 1985). A geomagnetic storm occurs generally about once per 29 days (depends on solar rotation) and the variations caused by a typical geomagnetic storm continues more than a few days.

Substorm variations (bay-type variations) of the geomagnetic field are frequently found in magnetograms (e.g. Figure 1-2). These variations are caused by a strong current in the auroral zone. Besides them, temporal geomagnetic variations with periods from 0.1 s to 1000 s

sometimes recognized and are called geomagnetic pulsations (micropulsations). Figure 1-6 shows the relationship between period and power spectrum for the geomagnetic pulsations. Geomagnetic pulsations have relational interactions between solar wind plasma and the Earth's magnetosphere. The periods of geomagnetic pulsations are related to the dimensions of the magnetosphere and its resonance cavity (Rikitake and Honkura, 1985). The geomagnetic pulsations give rise to significant induction currents only in those layers of the Earth's crust and these phenomena are used in the geomagnetic soundings.

In this study, the geomagnetic variations with periods from 4 min to 128 min are mainly analyzed. Though practical geomagnetic variations above mentioned can not be completely uniform on the Earth's surface, they are regarded as quasi-uniform over large areas, particularly in mid-latitudes (Lilley, 1974). We can consider that the scale length of sources concerned may be much greater than the scale length of anomalies of the local conductive structure of the Earth. A schematic diagram of the actual geophysical situation and the uniform-field model is shown in Figure 1-7 (after Lilley, 1974).

1.3. Effect of Sea Water

The electrical resistivity of sea water is about 0.3Ω m, which is one of the lowest resistors (the highest conductors) around shallow part of the Earth. Therefore short-period geomagnetic variations have high sensitivity to sea water, and the ocean distribution not a little affects the transfer functions. As Japan is surrounded with oceans, the sea water effect on the transfer function study cannot be neglected. The so-called coast, island, peninsula and channeling effects are typical examples of the effect of sea water.

(a) Coastal Effect

A coastline is a clear boundary separating a low resistive sea from a high resistive land. The induced electric currents tend to flow in sea water, and the currents make large anomalies in the vertical geomagnetic field. Since the induction arrows tend to point towards high conductor, the induction arrows are often perpendicular to the coast line and point towards sea.

(b) Island and Peninsula Effect

Island and peninsula effects are considered a kind of the coastal effects. In a small island and a tip of a peninsula, large anomalies of the transfer functions are often found. Figure 1-8 shows a typical example of the island effect observed on Oshima Island, a small volcanic island situated south of the central Japan (Sasai, 1967, 1968). For a bay-type variation, the Z variation at the southern part of the island is almost the same with the H variation, while that in the central island is very small and that at the northern part has opposite sign (Figure 1-8 (a)). Figure 1-8 (b) shows Parkinson vectors in the island, and they tend to point towards the ocean.

(c) Channeling Effect

The channeling effect is also one of the coast effect. In a narrow strait, concentration of induced electric currents often occurs. Therefore the phase of anomalous Z variation at one side of a strait often shows opposite to that to another.

1.4. Horizontal Transfer Functions

The study of the transfer functions has been usually focused on the anomalies of the vertical field component. However, anomalies of the horizontal field component were also observed at some stations. Nishida (1981) found that the amplitudes of horizontal fields at selected stations in Hokkaido were 1.8 times as large as those at a reference station. However, the study of horizontal anomalies has been less than that of the vertical because there are two difficulties; first in synchronizing clocks at two separate stations, and secondly in defining a reference 'normal field'.

Anomalies of the horizontal component correspond to shallow low resistivity structure, as they attenuate more rapidly than the vertical anomalies with increasing distance from the structure of interest (e.g. Rikitake and Honkura, 1985). In other words, the anomalous horizontal fields are more localized in comparison with the anomalous vertical fields, and therefore the study of the anomalous horizontal fields may provide additional information on the resistivity structure of the Earth. This study is the first attempt to determine the distribution of the horizontal anomalies over the whole of Japan.

1.5. Temporal Changes of the Transfer Functions

As mentioned above, the transfer functions of the geomagnetic fields are primarily used for investigations of the conductive structure of the Earth. If electric conductivity of rocks beneath an observations station changes, some temporal changes of the transfer functions are expected at the station. In a seismic active region, it is expected that the electric conductive structure in a certain region may change due to changes of tectonic stresses, temperature, chemical composition, or due to dilatancy phenomena (Scholz *et al.*, 1973), underground water flow (Mizutani and Ishido, 1976) and other phenomena. As for changes of resistivity of rocks, a large amount of changes in electrical resistivity are observed as a function of compressive stress in a variety of crystalline rocks (Brace and Orange, 1968). In the majority of rocks (see Figure 1-9), resistivity first increase in a small amount slightly up to about half of the fracture stress, while a reverse effect is noted for rocks that are partially saturated. Beyond half and particularly within about 20 % of the fracture stress, resistivity drops typically by an order of magnitude. This sharp decrease of resistivity corresponds closely to an increase in porosity, which takes place under compressive stress.

Yanagihara(1972) pointed out that the ratio of $\Delta Z/\Delta H$ ($\exists A$) underwent a temporal change at the Kakioka Magnetic Observatory (Figure 1-10) and that the minimum value of $\Delta Z/\Delta H$ took place in association with the great Kanto earthquake (1923, M= 7.9). Such evidence that temporal changes of the transfer functions occurred in association with occurrence of earthquakes has been reported (e.g., Miyakoshi, 1975; Yanagihara and Nagano, 1976; Rikitake, 1979; Fujiwara and Sumitomo, 1988; Fujiwara *et al.*, 1994). Therefore monitoring the temporal changes of the transfer functions are thought to be one of the possible means of prediction of earthquakes, and for this purpose the transfer functions are continuously monitored at several places in Japan (Honkura, 1979; Shiraki, 1980; Sano *et al.*, 1982; Fujita, 1989). Not only the traditional transfer functions, but also the horizontal transfer functions have been used to detect precursory changes associated with earthquakes. Honkura and Taira (1983) found that the amplitudes of the horizontal geomagnetic variations changed in association with crustal uplift in Izu Peninsula, Japan (Figure 1-11).

Rikitake (1976) pointed out that geomagnetic variations having a period of a few minutes might be useful for detecting conductivity changes corresponding to earthquake occurrences. Although Beamish (1982) detected change of the conductive anomaly preceding an earthquake using the horizontal transfer functions. There was no precursor, however, at longer periods

than 10 min (Figure 1-12). In this study, we examined the changes of the transfer functions at periods of wide range.

2. Data

2.1. First Order Geomagnetic Survey

The Geographical Survey Institute has carried out the geomagnetic surveys with almost regular intervals in Japan since 1949 in order to investigate the geographical distribution of the geomagnetic secular variation (Geographical Survey Institute, 1951, 1995). Such measurements are known as the first order geomagnetic survey. There are 105 geomagnetic stations that uniformly cover the whole of Japan (Figure 2-1 and Table 2-1). Observations are carried out every 2 or 5 years.

Since 1987, triaxial fluxgate magnetometers have been introduced to collect one-minute data at almost all the stations (Otaki and Tsukahara, 1990). The triaxial fluxgate magnetometer is a variometer that measures the changes of three-components of the geomagnetic field, consisting of the sensor, the control unit and the recorder. The measuring process of the fluxgate magnetometer is as follows; an alternative magnetic field of a fundamental frequency is applied to the sensor through the first coil and the distorted induced current is observed in the second coil. The amplitude of the bi-harmonic frequency in the second coil is in proportion to the magnetic field. In the actual measurement, the bias magnetic field is applied to compensate the geomagnetic field, and then very small residue between the geomagnetic field and the compensating bias field is measured. The sensor element of each component consists of a pair of cores made of high permeable materials such as permalloy with coils wounding around them, and each axis of three-element cores is perpendicular to each other.

This instrument has a temperature dependence of $0.2 \text{ nT/}^{\circ}\text{C}$ for the sensor and $0.1 \text{ nT/}^{\circ}\text{C}$ for the control unit, with a stability of 0.1 nT/day and resolution of 0.1 nT. The sensor is mounted on gimbals so that Z is aligned with the vertical direction by gravity, and the sensor case is buried to reduce the effects of ambient temperature changes (Photos 2-1, 2-2, and 2-3).

Timing accuracy is within 3 seconds, so we can get simultaneous data with the permanent geomagnetic observatories. Typical magnetograms observed at the first order geomagnetic stations are shown in Figure 2-2. At some stations, artificial noises of a few nT are found in Z component (cf. Figures 2-2 (b), (f), and (i)).

The observations and analyses in this study have the following features:

- (a) The first order geomagnetic stations are uniformly distributed over the whole of Japan.
- (b) Instruments of observations and the method of analyses are quite common for each of the first order geomagnetic station.
- (c) Since the absolute declinations are precisely measured at all station, induction arrows are referred to the true geographical coordinates.
- (d) As we regularly repeat at the first order geomagnetic survey at a station every 2 or 5 years, the time variations of the transfer functions at the station can be obtained.

2.2. Geomagnetic Observatory

We have also used data from a number of permanent geomagnetic observatories. The Geographical Survey Institute operates geomagnetic observatories at Mizusawa (MIZ or MZS), Kanozan (KNZ) and Tsukuba (TKB) (see Figure 2-1). Mizusawa Geodetic Observatory is situated in Mizusawa city, Iwate prefecture, the north-eastern part of Japan. Kanozan Geodetic Observatory is situated in Kimitsu city, in the Boso Peninsula, the central part of Japan. Absolute observations in the geomagnetic filed are performed in a absolute observation hut once per week at each observatory. The declination and the inclination are measured with GSI type magnetometers (using a rotating coil detector), or a DIM type magnetometer (a fluxgate magnetometer theodolite). The total intensity is continuously observed with the proton precession magnetometer at each observatory. Geomagnetic variation meters are also operated in magnetically quiet variation huts at each observatory, in which three components (H, D and Z) of the geomagnetic are measured digitally every minute, with a least count of 0.1 nT.

In addition, we used data from other observatories and permanent stations, namely Kakioka (KAK), Memanbetsu (MMB), Kanoya (KNY), Matsuzaki (MTZ) and Omaezaki (OMZ), which are operated by the Japan Meteorological Agency, and Yatsugatake (YAT), which is operated by the Earthquake Research Institute, the University of Tokyo.

3. Data Analyses

3.1. Transfer Functions

The usual transfer functions, A and B, can be derived simply from Eq. (1-1). In this study, however, we refine Eq. (1-1) by making use of data from different observation sites. This approach is known as the interstation method. Using the interstation method, we can also calculate horizontal transfer functions.

Geomagnetic variations observed at a field station can be separated into a normal part and anomalous one. The normal part is composed of both an external field and an internal field that arises from induced current flowing in a 'normal' Earth structure. On the other hand, the anomalous part is attributed only to an internal field that arises from induced current flowing in an 'anomalous' Earth structure (Beamish, 1982).

The interstation transfer functions are written using these normal and anomalous parts:

$$\begin{pmatrix} \Delta X_{s} \\ \Delta Y_{s} \\ \Delta Z_{s} \end{pmatrix} = \begin{pmatrix} \Delta X_{n} \\ \Delta Y_{n} \\ \Delta Z_{n} \end{pmatrix} + \begin{pmatrix} \Delta X_{a} \\ \Delta Y_{n} \\ \Delta Z_{n} \end{pmatrix} = \begin{pmatrix} \Delta X_{n} \\ \Delta Y_{n} \\ \Delta Z_{n} \end{pmatrix} + \begin{pmatrix} C & D & G \\ E & F & H \\ A & B & I \end{pmatrix} \cdot \begin{pmatrix} \Delta X_{n} \\ \Delta Y_{n} \\ \Delta Z_{n} \end{pmatrix} + \begin{pmatrix} \delta X \\ \delta Y \\ \delta Z \end{pmatrix}$$
(3-1)

where A, B, C, D, E, F, G, H and I are the interstation transfer functions and δX , δY and δZ are uncorrelated parts of the corresponding components (Schmucker, 1970), including observational errors. ΔXs , ΔYs and ΔZs are the three components of geomagnetic variations of an observation site; ΔXa , ΔYa and ΔZa are anomalous components, ΔXn , Δ Yn and ΔZn are normal components.

Now we assume that ΔZn , δX , δY and δZ are negligibly small and the normal field is observed at the reference station. Then we get:

$$\begin{pmatrix} \Delta X_{s} \\ \Delta Y_{s} \\ \Delta Z_{s} \end{pmatrix} = \begin{pmatrix} \Delta X_{r} \\ \Delta Y_{r} \\ 0 \end{pmatrix} + \begin{pmatrix} C & D \\ E & F \\ A & B \end{pmatrix} \cdot \begin{pmatrix} \Delta X_{r} \\ \Delta Y_{r} \end{pmatrix} = \begin{pmatrix} C+1 & D \\ E & F+1 \\ A & B \end{pmatrix} \cdot \begin{pmatrix} \Delta X_{r} \\ \Delta Y_{r} \end{pmatrix}$$
(3-2)

where ΔXr and ΔYr are the horizontal components of geomagnetic variations of the reference station.

To calculate the interstation transfer functions, synchronous observations at the field station and the reference station are needed. Time differences of sampling of the observations at each first order geomagnetic station is within 3 seconds, which is sufficiently accurate to calculate the interstation transfer functions of both the geomagnetic vertical and horizontal fields, since we calculated the transfer functions for the periods from 4 min to 128 min and the phase error is at most 5 degrees ($3 \sec / 4 \min$).

We selected Kakioka as the reference observatory because Kakioka is situated in the central part of Japan and we can always use reliable data for any duration of all the field observations.

When there are local noises in the data of a station, we can reduce the effect of the noise using data at other stations. This technique is called the remote reference method, which was developed in magnetotelluric studies (Gamble *et al.*, 1979). In this study, we have calculated the interstation transfer functions by a method similar to the remote reference method. The interstation method is effective if there are noises that are not coherent from one station to another. However, the method sometimes does not work well if either the noise is coherent or if the input external signal is incoherent. Since the smallest distance in this study between the observation sites and the reference station Kakioka is 18 km (TKB) and coherent artificial noise was not found, the effect of coherent noises is negligible. The maximum distance in this study almost one thousand kilometers. Since the wavelength of substorm events is several thousand kilometers at mid-latitude (Camfield and Gough, 1975), we can assume that Kakioka and the field stations are within the same external field. Table 3-1 shows squared coherency of the three components of the geomagnetic field between Kakioka and other observatories. Generally, the squared coherency of the horizontal field is greater than 0.8 except for that at Kanozan at shorter periods (probably attributing to artificial noises which are clearly seen in the data of Kanozan). The coherency is at least 0.85 between Kakioka and Memanbetsu in northern Japan. As the input signal of the reference horizontal field is coherent, and local anomalous fields and noises are generally small at both the reference station and the field stations, the interstation method can be utilized in this study to reduce the effect of noises. In section 5.1, the choice of Kakioka as the reference station will be further discussed.

3.2. Method of Analysis

ł

ŧ

ł

In this study, the transfer functions are obtained by making use of the power spectrum analysis method (Everett and Hyndman, 1967). We can get the transfer functions using the following formula:

$$A = \frac{P_{ZsXr} \cdot P_{YrYr} - P_{YrXr} \cdot P_{ZsYr}}{P_{XrXr} \cdot P_{YrYr} - P_{XrYr} \cdot P_{YrXr}}$$
(3-3)

$$B = \frac{P_{ZsYr} \cdot P_{XrXr} - P_{XrYr} \cdot P_{ZsXr}}{P_{XrXr} \cdot P_{YrYr} - P_{XrYr} \cdot P_{YrXr}}$$
(3-4)

$$C = \frac{P_{XsXr} \cdot P_{YrYr} - P_{YrXr} \cdot P_{XsYr}}{P_{XrXr} \cdot P_{YrYr} - P_{XrYr} \cdot P_{YrXr}} - 1$$
(3-5)

$$D = \frac{P_{XsYr} \cdot P_{XrXr} - P_{XrYr} \cdot P_{XsXr}}{P_{XrXr} \cdot P_{YrYr} - P_{XrYr} \cdot P_{YrXr}}$$
(3-6)

$$E = \frac{P_{Y_SX_r} \cdot P_{Y_rY_r} - P_{Y_rX_r} \cdot P_{Y_SY_r}}{P_{X_rX_r} \cdot P_{Y_rY_r} - P_{X_rY_r} \cdot P_{Y_rX_r}}$$
(3-7)

$$F = \frac{P_{YSYr} \cdot P_{XrXr} - P_{XrYr} \cdot P_{YsXr}}{P_{XrXr} \cdot P_{YrYr} - P_{XrYr} \cdot P_{YrXr}} - 1$$
(3-8)

where P_{XrXr} , P_{YrYr} denote the auto-power spectra and P_{XrYr} , P_{YrXr} , P_{XsXr} , P_{YsXr} , and P_{ZsYr} etc. the cross-power spectra.

Figure 3-1 shows a flow chart of the analysis in this study. Initially, the raw data of three components of the geomagnetic variations were individually checked by visual inspection of time series and we eliminated bad data. They were then rotated to the geographical

coordinate and partitioned into the 8-hour data segments. A digital high-pass filter (cut off period of 140 min) and the hanning window were applied to each partitioned data set. Autoand cross-power spectra for each data segment were then calculated using FFT, and were smoothed out in frequency. Transfer functions are generally obtained by averaging a subset of the transfer functions that are selected on the basis of the signal power and the coherency. However, in this study a simpler method was used in which we calculated the transfer functions using auto- and cross-power spectra for all stacked data. Confidence intervals (95 %) were estimated by the method described by Bendat and Piersol (1971).

ι.

3.3. Evaluation of the Accuracy of the Transfer Functions

As the transfer functions are possibly affected by external ΔZ , coherent temporal changes of the geomagnetic transfer functions are sometimes found at two stations which are distant from each other (Sano *et al.*, 1982). Geomagnetic activities change frequently with time and therefore it has been argued that transfer functions are unstable, particularly when the power of the external horizontal field is small or the coherency between ΔX and ΔY is large (Shiraki, 1980). In this section, we discuss the accuracy of the transfer functions at the first order geomagnetic stations.

Figure 3-2 shows the standard deviation of the transfer functions A and B at Kakioka with increasing numbers of stacked data. The one data is calculated from a data length of 8 hours. It is clear that the standard deviation becomes smaller as the stacking number becomes larger. As the duration of continuous observations is about 40 hours or more at each first order geomagnetic station, we checked the standard deviations of A and B at each observatory using power spectral estimates from 5 data segments (40 hours). In Figure 3-3, it can be seen that the accuracy of the transfer function is frequency dependent, and individually varies in the observatories. The accuracy (estimated by the standard deviations and seasonal variations in the observatories' transfer functions (Fujita, 1989) will tend to increase the standard deviations. The average confidence intervals of all first order geomagnetic stations are at most 0.04 of B at periods of 128 min and 4 min. The confidence estimates of the transfer functions at the first order geomagnetic stations are therefore smaller than that due to the secular and the seasonal variations. For all stations and observatories the accuracy is better than 0.1 which is sufficient to examine the nation wide distribution of transfer functions.

4. Geographical Distributions of the Transfer Functions in Japan4.1. Results at First Order Geomagnetic Stations

(a) Induction Arrows

We have two types of the transfer functions from the single-station and interstation methods. The single-station transfer functions As and Bs, which are defined in Eq. (1-1), are given by

$$\Delta Z_s = A_s \cdot \Delta X_s + B_s \cdot \Delta Y_s \tag{4-1}$$

Similarly, the interstation transfer functions Ai and Bi, which are defined in Eq. (3-2), are given by

$$\Delta Z_s = A_i \cdot \Delta X_r + B_i \cdot \Delta Y_r \tag{4-2}$$

In Eq. (1-1), ΔX and ΔY are considered as normal fields, and the anomalous horizontal fields are regarded to be negligibly small. However, we have found that large anomalies of horizontal fields that cannot be neglected exist in some places. From Eqs. (3-2) and (4-1) we have

$$A_{s} = A_{r} = \frac{A_{i} \cdot F - B_{i} \cdot E}{C \cdot F - D \cdot E}$$

$$(4-3)$$

$$B_s = B_r = \frac{B_i \cdot C - A_i \cdot D}{C \cdot F - D \cdot E}$$
(4-4)

In these equations, As and Bs are re-defined using only the interstation transfer functions. Hereafter we call induction arrows composed of As and Bs in Eqs.(4-3) and (4-4) the remote reference induction arrows (Ar and Br).

Figure 4-1 shows the single-station induction arrows As and Bs in Eq.(4-1) and Figure 4-2 shows the remote reference induction arrows Ar and Br in Eqs.(4-3) and (4-4) for a comparison. At a glance, the single-station induction arrows are quite similar to the remote reference induction arrows, because the input external fields have high coherency and are almost the same at Kakioka and the stations (Table 3-1).

There are temporal fluctuations of a few nT at periods of shorter than a few tens of minutes at some stations. They are mainly caused by leaked currents from DC electric railways. Artificial noises dominate the transfer functions at some stations and it is difficult to remove such effects automatically using single-station data only. However, using the interstation method, we can estimate the noise contamination. For example, in Figure 4-1, single-station induction arrows of a few stations (e.g. No. 5 Imazu and No. 45 Inuyama) have quite unusual values as compared with those of the neighboring stations due to artificial noise. By use of a remote reference, induction arrows become more consistent with neighboring stations or can be rejected because of large estimated errors (note that when the estimated standard deviations are greater than 0.2, transfer functions are not used). The remote reference induction arrows were therefore used in this study instead of the traditional single-station induction arrows.

Figure 4-3 shows frequency dependences of the transfer functions at observatories and averages frequency responses of the transfer functions at all stations and observatories. It is interesting that the averages Au becomes smaller as the period becomes smaller whereas Bu becomes larger.

(b) Horizontal Transfer Functions

Since the horizontal transfer functions *C*, *D*, *E* and *F* include information of anomalous fields in conductivity, they can be used to estimate electrical resistivity structures of the Earth. There are several methods of portraying these horizontal transfer functions on a map that displays anomalous magnetic fields or electrical resistivity structures. However, an optimum method has not yet been found (Lilley, 1974). In this paper we have used and refined a method, developed by Beamish (1982), of plotting the anomalous horizontal field rotation ellipses. The purpose of this graphical method is to summarize the response of ΔXs and Δ *Ys* compared with ΔXr and ΔYr . We assume a regional horizontal fields ΔXr and ΔYr at the reference station which results in anomalous horizontal fields ΔXa and ΔYa at field stations.

The horizontal field at a field station,

$$\mathbf{s} = (\Delta X_s, \Delta Y_s) \tag{4-5}$$

is divided into the reference (normal) field,

$$\mathbf{r} = (\Delta X_r, \Delta Y_r) \tag{4-6}$$

and the anomalous field,

$$\mathbf{a} = (\Delta X_a, \Delta Y_a). \tag{4-7}$$

Therefore,

$$\mathbf{s} = \mathbf{r} + \mathbf{a} = \mathbf{r} + \begin{pmatrix} C & D \\ E & F \end{pmatrix} \mathbf{r}$$
(4-8)

Now let us define vector \mathbf{r} which has unit amplitude and zero phase so that it is normalized according to an external reference field. Hence,

$$\mathbf{r} = (\sin\theta, \cos\theta), \tag{4-9}$$

so $|\mathbf{r}|=1, 0^{\circ} \leq \theta < 360^{\circ}$, and

$$\mathbf{s} = \begin{pmatrix} \sin\theta\\ \cos\theta \end{pmatrix} + \begin{pmatrix} C & D\\ E & F \end{pmatrix} \begin{pmatrix} \sin\theta\\ \cos\theta \end{pmatrix}, \tag{4-10}$$

$$\mathbf{a} = \begin{pmatrix} C & D \\ E & F \end{pmatrix} \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix}.$$
(4-11)

s and a are also regarded as vectors. Tops of these s and a can be plotted as a point in a plane (Figure 4-4 (a)). As the angle θ changes, each points will trace out the locus of an ellipse. The radii of the ellipses are proportional to the anomalous field, which is induced by anomalous currents in the Earth. Further we define the anomalous horizontal field rotation ellipses as locus of **a**. Figure 4-4 (b) shows an example of the anomalous ellipse of the horizontal transfer functions. In this expression, a bold line shows |s|>1 and a broken line shows |s|<1. The direction of the anomalous current flow, which tends to coincide with the strike direction of low resistivity anisotropy, is normal to the major or minor axis of the anomalous ellipses of the horizontal transfer functions.

The regional resistivity structure causes the directional anomaly of electric currents, e.g. through channeling effects. Although the geomagnetic variations induce currents normal to

the geomagnetic variations, the direction of electric current is actually deflected by local and regional resistivity structures. We have added a new expression of this directional anomaly of currents to the anomalous ellipses of the horizontal transfer functions. The anomalous fields **a** of $\theta = 180^{\circ}$ (west) and $\theta = 270^{\circ}$ (south) are written in terms of the anomalous ellipse as

$$\theta = 180^{\circ} \rightarrow \begin{pmatrix} \Delta X_r \\ \Delta Y_r \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \rightarrow \begin{pmatrix} \Delta X_a \\ \Delta Y_a \end{pmatrix} = \begin{pmatrix} -D \\ -F \end{pmatrix}$$
(4-12)

$$\theta = 270^{\circ} \rightarrow \begin{pmatrix} \Delta X_r \\ \Delta Y_r \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \Delta X_a \\ \Delta Y_a \end{pmatrix} = \begin{pmatrix} -C \\ -E \end{pmatrix}$$
(4-13)

Then

$$\mathbf{a}_{west} = (-D, -F) \tag{4-14}$$

$$\mathbf{a}_{south} = (-C, -E) \tag{4-15}$$

These variables can be used to interpret the anomalous current (Figure 4-4 (c)).

Figures 4-5 and 4-6 shows the observed anomalous ellipses of the horizontal transfer functions at all stations. Each element of the horizontal transfer functions C, D, E and F has a real (Figure 4-5) and imaginary part (Figure 4-6). Since the imaginary part is much smaller than the real part, we will mainly use the real part in the following discussion.

4.2. Thin-sheet Modeling

As sea water has low electrical resistivity, the ocean effect on the transfer functions can be large (see section 1.3.). To remove the ocean effect we applied numerical calculation using McKirdy *et al.*'s (1985) thin-sheet algorithm. In a similar study, Chamalaun and McKnight (1993) applied this method in New Zealand. The resistivity structure of the crust is too complex to model and so we estimated only the sea water effect in this study, as a first approximation.

McKirdy *et al.*'s (1985) method includes a thin layer (known as a thin-sheet) of laterally varying conductance overlying a layered resistivity structure, representing the crust and upper mantle. In this study, the layer just below the thin-sheet is 80 km thick and has a resistivity of 250 ohm·m, and the bottom layer is a half space with resistivity of 10 ohm·m. In this model, the upper layer represents the upper lithosphere and the lower layer represents the lower lithosphere and the asthenosphere (e.g. Filloux, 1980; Bapat *et al.*, 1993). The resistivity and the thickness of the layer just below the surface thin-sheet are very important parameters in the sense that,

- (1) the resistivity governs penetration of poloidal electric currents in the thin-sheet into the substratum, and
- (2) the thickness determines to what extent toroidal electric currents within the thin-sheet mutually couple with those within deep conductors.

Bapat *et al.* (1993) conducted thin-sheet model studies using a similar 1D structure (a 80 km thick lithosphere and an asthenospheric conductor of 10 ohm·m) beneath the thin-sheets though they used different thin-sheet algorithm based on Vasseur and Weidelt (1977) and a value of 1000 ohm·m as the resistivity of the layer just below the thin-sheet. We used 250 ohm·m for the sake of a finer grid spacing since all the lengths appeared in the thin-sheet calculations were normalized by the skin depth in the layer just below the thin-sheet. (It results in a coarse grid

spacing if we put a high resistivity layer beneath the thin-sheet.) Coarseness of the numerical grids tends to result in smaller vertical magnetic components and consequently smaller amplitudes of the calculated induction arrows (Agarwal and Weaver, 1989) since vertical magnetic component is closely related to horizontal spatial derivatives of horizontal electric components by Faraday's law of induction ;

$$\frac{\partial Ey}{\partial x} - \frac{\partial Ex}{\partial y} = -i\omega\mu Z. \tag{4-16}$$

It, however, was also examined by several direct comparisons that introduction of a higher resistivity layer did not yield any significant differences in the calculated induction arrows. It also turned out, in the course of such examination, that damping by the deep conductor through mutual coupling governed the amplitudes of the calculated induction arrows rather than the resistivity value itself. It is not necessarily bad approximation to assume the regional 1D structure around Japan by a 80 km thick lithosphere and an asthenospheric conductor of 10 ohm m beneath, though it is fairly difficult to give a proper 1D substratum beneath the Japanese islands where intense lateral conductivity contrasts are expected due mainly to subduction of the oceanic plates (the Pacific plate and the Philippine Sea plate).

The boundary condition on the outer boundaries of the grids are;

$$\partial \sigma / \partial x \to 0 \text{ as } |x| \to \infty$$
 (4-17)

and

$$\partial \sigma / \partial y \to 0 \text{ as } |y| \to \infty,$$
 (4-18)

in which σ is the thin-sheet conductance, and x and y are the horizontal coordinates. This condition allows 2D distribution of the surface conductances at lateral infinity, viz., the

condition can be regarded as 'Neumann-type' boundary condition rather than 'Dirichlet' in terms of boundary value problems.

We used a model comprising 51 by 51 grids that covers the Japanese island and the oceans surrounding the Japanese island. Each grid cell size is approximately 40 km \times 40 km and the conductance of each cell is calculated from the ocean depths, assuming the resistivity of sea water to be 0.3 ohm·m and the land to be 1000 ohm·m. The depth grouping used in this study is in Table 4-2 and the resultant conductance distribution is shown in Figure 4-7.

Model calculations were done only at periods of 128, 64 and 32 min because the thinsheet assumption breaks down at periods shorter than 32 min. At short periods, the external fields are significantly attenuated within the ocean, which implies that the ocean is too thick to be modeled by any thin-sheets. Figures 4-8, 9, and 10 show the calculated remote reference induction arrows and the anomalous ellipses of the horizontal transfer functions of the real and imaginary parts, respectively.

4.3. Differences between the Observed Transfer Functions and the Thinsheet Model Transfer Functions

In this study, we regarded the induction arrows and the horizontal transfer functions as 'vectors', which can be treated linearly. However, this treatment is not strictly correct (Weaver and Agarwal, 1991) because anomalous geomagnetic fields made by several conductors are coupled mutually and not separable. Bapat *et al.* (1993) and Chamalaun and McKnight (1993) treated the induction arrows as true vectors and removed the sea water effect from the induction arrows by subtracting the model calculated induction arrows assuming that the mutual coupling is weak compared with the self-induction by a primary source field. In a similar manner, we can expect that the difference between the observed transfer functions and the thin-sheet model transfer functions shows the effect of removing the sea water.

Histograms of transfer functions of observations and residuals (the observation minus the model) at the period of 128, 64, and 32 min are shown in Figure 4-11. Although the mean values of observed A, C and F at the period of the 32 min are more than 0.1, those of the residuals are less than 0.1. The standard deviations of both A and B of the residuals are smaller than those observed. If the resistivity anomalies are randomly distributed and the thin-sheet model is able to reproduce the effect of sea water, then the mean of residuals would become 0 and the standard deviations would become small. However, the standard deviations of the horizontal transfer functions were not improved. This suggests that the effect of sea water on the horizontal transfer functions is less than that on the vertical transfer functions.

The residual induction arrows and anomalous ellipses of real part and imaginary part, which are the difference between those of the observation and those of the thin-sheet model, are shown in Figures 4-12, 13, and 14, respectively. Residual induction arrows generally become smaller, except in some anomalous regions (e.g. southern Hokkaido District, Kanto District and southern Kyushu District), but the effect of the ocean on the anomalous ellipses is smaller.

5. Interpretation of the Distribution of the Transfer Functions in Japan

5.1. Induction Arrows and Anomalous Horizontal Field

(a) Interpretation of Induction Arrows and Anomalous Horizontal Field

Induction arrows are commonly used in Geomagnetic Depth Sounding (GDS) studies. The induction arrows indicate lateral variations in anomalous electric currents while the horizontal transfer functions represent anomalous currents beneath the station. The maximum of the anomalous horizontal field is located just above the induced current concentration. Although electric currents may be directly induced in low resistivity regions (good conductors), currents may also be channeled. Therefore we must pay attention to the current flow in addition to anomalous conductors themselves.

(b) Selection of the Reference Station

As discussed previously, the reference station should be a 'normal' station, in the sense that it should be situated above horizontally stratified resistivity structure, and sufficiently distant from any lateral discontinuities (Banks, 1973). From this definition, the coherence between any pair of the components ΔX , ΔY and ΔZ should be zero. Since ΔX and ΔZ of Kakioka have high coherency, we did not use ΔZ of Kakioka in the remote-reference calculation.

We considered Kakioka as a suitable reference station for the following reasons. As the horizontal transfer functions in inland parts of Tohoku District are small (Figures 4-5 and 6), we can assume that the horizontal fields measured at Kakioka are the same as that of the other stations in Tohoku District. In addition, we can not find systematic anomalies in northern and southern Japan where there are great distances from Kakioka. The high coherency of the

horizontal components between Kakioka and other observatories (Table 3-1) also supports the selection as a reference station.

(c) Effects of Sea Water and Sediments

A contribution to the anomalous magnetic field is provided by induced electric currents in sea water, known as the coast, island and peninsula effects. Such effects were estimated in this study using the thin-sheet algorithm, although the effects of complex and small scale coast lines could not be modeled accurately and we are restricted to periods longer than 32 min.

The coast effect arises due to concentration of induced currents in the ocean, which produces large anomalous vertical fields near the coast. Since coastlines often run parallel to tectonic structures, such as plate boundaries, we must pay attention to the interpretation of the coast effect.

The anomalous ellipses of the horizontal transfer functions in an island or a peninsula show frequency dependence that they become smaller at shorter periods. Especially at the island stations such as No. 85 Tanegashima and No. 87 Saigou, and peninsula stations such as No. 47 Tanabe and No. 72 Nakamura, the horizontal transfer functions show large attenuation at shorter periods. This effect is similar to that observed by ocean bottom magnetometer studies (e.g. Filloux, 1967). Magnetic field variations at shorter periods are attenuated at the seafloor because sea water has low resistivity. The mechanism of the island and peninsula effect on the horizontal transfer functions is different from that of the ocean bottom case. As electric currents tend to flow into sea water around an island or a peninsula and don't tend to flow just under the island or the peninsula, the horizontal magnetic field becomes smaller in the island or the peninsula, especially at shorter periods. A schematic explanation of electric current around an island is shown in Figure 5-1.

At No. 33 Ishinomaki, No. 34 Sakata, No. 42 Choushi and Kanozan, the anomalous ellipses of the horizontal transfer functions show large anisotropy at shorter periods associated with the Sendai plain, the Shonai plain and the Kanto plain, respectively. The shorter axes of the ellipses are parallel to the plains and perpendicular to the coast lines. Furthermore, at No. 34 Sakata the induction arrows at shorter periods than 32 min in Figure 4-2 point to the north and this can be explained by the low resistivity sediments of the Shonai plain. They also show frequency dependence. These phenomena are probably explained by concentration of currents in the sediments from the ocean.
5.2. Discussion with Respect to the Three Districts

Figure 5-2 shows topographic features in eastern Japan. Generally, regions below 100 m coincide with plains usually covered by low resistivity sedimentary layers.

(a) Hokkaido and Tohoku District

Hokkaido is situated at the junction of two island arcs, the Northeastern Japanese arc and the Kurile arc. Nishida (1976, 1977a, 1977b, 1981, 1982) studied the anomalies of geomagnetic variations in Hokkaido, and Kato (1968) found the northeastern Japan anomaly, which lies just south of Hokkaido. The northeastern Japan anomaly was interpreted in terms of a channeling of electric currents between the Pacific Ocean and the Japan Sea through the Tsugaru Strait (e.g. Rikitake and Honkura, 1985), although Avdeev *et al.* (1995) showed that induction arrows at 256 sec period could not be fully explained only by the channeling.

Figure 4-12 shows that there are the large residual induction arrows that point to the northeast at the sites along the eastern coast of southern Hokkaido, No. 27 Shimokita and No. 28 Hachinohe in northeastern Japan (Tohoku District). Figure 4-13 shows that there are strong anomalous horizontal transfer functions along the Ishikari plain. The current that flows into and out of the Ishikari plain can produce large induction arrows and the horizontal transfer functions (Nishida, 1976, 1981).

Nishida (1982) concluded that a low resistivity layer exists at a depth range of 30 to 70 km beneath the inner part of the Volcanic Front of the northeastern Japanese arc. He also concluded that the effect of the low resistivity layer, situated at the west of the Ishikari plain, cancels the ΔZ component which occurs from the surface sediment layer. Although this conclusion seems to coincide with the observed horizontal transfer functions (Figure 4-5), the residual horizontal transfer functions (Figure 4-13) at the periods of 64 and 128 min of No. 18, No. 23, No. 25, No. 26, and No. 80 in the southwestern Hokkaido are not so anomalous, except

for the anomalies associated with the Ishikari plain. The residual induction arrows at No. 25 and No. 80 (Figure 4-12) are small and the residual anomalous ellipses No. 26, No. 27, No. 80 and No. 81 (Figure 4-13) show that the current along the Tsugaru Strait is small at longer periods. In this region, the depth of the Moho discontinuity is about 35 km and the plate boundary is deeper than 100 km (Miyamachi *et al.*, 1993, Figure 5-3). In Tohoku and Chubu districts, low resistivity layers exist between the Conrad discontinuity and the Moho discontinuity beneath around the Volcanic Front (e.g. Utada, 1987). Residual transfer functions are small and the effect of the low resistivity layer is not dominant at longer periods. Therefore, there is a possibility that the low resistivity layer exists at a depth shallower than the Moho discontinuity in southern Hokkaido.

Figure 4-13 shows that there are large anomalies of the horizontal transfer functions in northern and eastern Hokkaido. Nishida (1981) pointed out that this region is characterized by large horizontal fields that may be explained by the sediments of the Cenozoic group.

By contrast, in northeastern Japan, anomalies of the horizontal transfer functions are smaller. The Ishikari plain and the Konsen plain in Hokkaido are both adjacent to ocean and current channeling may occur through the sediments. Anomalies of the horizontal transfer functions in the northeastern Japan are small, as less current channeling occurs.

(b) Kanto and Chubu District

In the early 1950's, a significant variation of the vertical component was observed at Kakioka in northern Kanto District. It was the first study of the so-called central Japan anomaly (Rikitake, 1966). Honkura (1985) showed that this central Japan anomaly is primarily accounted for by surface sediments and sea water, although no significant information on the crustal and mantle resistivity structure could be derived. Bapat *et al.* (1993) also showed that the central Japan anomaly can be explained primarily by the sea effect and local anomalies of the sedimentary layer using a thin-sheet model. However, the distribution of geomagnetic stations in their study does not cover all Kanto District, particularly in and around the Izu peninsula. Yanagihara and Yokouchi (1965) and Honkura (1985) showed that there are large currents in the thick sediment in the Kanto plain. In the northern Kanto District, the large residual induction arrows at No. 40 Utsunomiya and TKB are accounted for by these currents.

Most anomalies in the northern Kanto District can be explained by the sediment layer and sea water effect. However, in the southern Kanto District and the Izu peninsula, there are large residual induction arrows that point to the south, far off the Izu peninsula. Although all the sea water effects can not be entirely removed due to the complicated coast lines, the residual induction arrows are too large to be explained by the sediment and sea water effects alone. The Kanto District is divided into three tectonic plates (the Philippine Sea, Eurasian and Pacific plates) and two island arcs (the Izu-Ogasawara, which subducts beneath the other island arc, the Japan arc) (Ishida, 1992). At sea, the upper layer of the plates has low resistivity, which significantly affects the induction arrows (Utada, 1987). Figure 5-4 shows the plate boundary between the Philippine Sea plate and the Eurasian plate and depth of each plates (Ishida, 1992).

plate (Figure 4-12). It follows that the effect of the Philippine Sea plate on the induction arrows is probably large in southern Kanto District.

The observed and residual induction arrows at No. 39 Tookamachi and No. 97 Tochigi point to the southwest. Induced electric currents in the sediment layer in the Kanto plain tend to flow parallel to the NW-SE trend of thick sediments (Yanagihara and Yokouchi, 1965). Therefore, these currents probably flow from the northern edge of the Kanto plain to the Japan Sea. Similarly, Figure 4-5 shows that the regional general current flows in a NW-SE direction in Chubu inland District and is approximately uniform. This current flows between the Pacific Ocean and the Japan Sea through this region. From a 2D study of geomagnetic induction, Utada (1987) showed that there are low resistivity layers in the lower crust above the Moho discontinuity beneath and around the Volcanic Front, and the current flowing in the upper surface of the Philippine Sea plate probably flows into there. The NW-SE current in the Izu peninsula (Figure 4-13, just above the northern tip of the Philippine Sea plate) also supports this hypothesis. Figure 5-5 shows a schematic explanation of the electric currents in Kanto and Chubu District associated with the Philippine Sea plate.

On the other hand, the low resistivity layers of the Pacific plate east of the Kanto District can not be detected and their effect on the transfer functions should be small. This is because the Pacific plate subducts under the Philippine Sea plate, and the large electric current concentrates in the Philippine Sea plate is nearer than that of the Pacific plate.

In the southern Kii peninsula, the residual induction arrows shown in Figure 4-12 point to the south but they are small. However, Bapat *et al.* (1993) showed an opposite result that there are the large residual induction arrows in the southern Kii peninsula. Fujita (1994) concluded that low resistivity layer of 10 ohm m exists below the Pacific Ocean near the tip of the Kii peninsula, using MT and GDS methods. We cannot make a direct comparison with these conclusions because there are no first order geomagnetic stations at the tip of the Kii

peninsula. However, it seems reasonable to suppose that low resistivity layer does not exist just below the Kii peninsula. This hypothesis is supported by the fact that the horizontal transfer functions are small in the southern Kii peninsula.

(c) Chugoku and Kyushu District

In Chugoku, northern and central Kyushu, most induction arrows point to the west (Research Group for Crustal Resistivity Structure, Japan, 1989; Handa *et al.*, 1992) and the residual induction arrows (Figure 4-12) also support this tendency. Handa *et al.* (1992) suggested that there are low resistivity layers beneath the Yellow Sea (to the west of Kyushu) and that current channeling occurs, possibly in the Tsushima strait (to the north of Kyushu). It is interesting that the residual induction arrows in southern Kyushu point to the southwest and they are larger than those of northern and central Kyushu (Figure 4-12). Although the station No. 85 Tanegashima is situated in northeastern part of Tanegashima island, induction arrows do not show the island effect at longer periods and point to the south. Moreover, the anomalous ellipses of the horizontal transfer functions in Kyushu suggest that there are East-West currents. Therefore, such East-West currents in southern Kyushu and southern off Kyushu most probably produce the anomalies of the transfer functions in southern Kyushu.

6. Temporal Changes of the Transfer Functions

The purpose of this chapter is to clarify temporal changes of the transfer functions. We examined two kinds of the transfer functions, first long time changes at the observatories, second temporal changes observed at first order geomagnetic stations in association with a big earthquake.

As the transfer functions are possibly affected by the external ΔZ , similar changes of the geomagnetic transfer functions are sometimes found at two stations at a great distance (Sano *et al.*, 1982). Therefore it is important to monitor changes of the transfer functions at several stations simultaneously.

6.1. Temporal Changes of the Transfer Functions at Observatories

6.1.1. Results from 1989 to 1992

We obtained the temporal changes of the single-station transfer functions at Mizusawa, Kakioka, Tsukuba and Kanozan at periods of 128, 64, 32, 16, 8 and 4 min during the period from 1989 to 1992. At each observatory, the semimonthly transfer functions at each period are shown in Figure 6-2. Error bars show the 95% confidence intervals (Bendat and Piersol, 1971). Some error bars are relatively large because of low signal to noise ratio (S/N) mainly due to artificial noises.

From Figure 6-2 it is clear that there are some significant changes that are above the 95% confidence intervals. Common changes are significant at the all observatories at the periods of 128 min and 64 min. The transfer functions at the period of 32 min have the smallest error and the most stable, however, common seasonal changes are also clearly found.

Though the cause of the seasonal changes is not clear, Sano (1980) and Shiraki (1980) suggested influence of the common external field. At any rate, it is important to compare

temporal changes of the transfer functions at several stations in order to remove the effect of common seasonal change.

At Tsukuba and Kanozan, the changes of Au at the period 4 min show almost the same amplitude but the changes have negative correlation. Examining Figure 6-2 more carefully, it is found that the changes of Au at Kakioka and Tsukuba, and those of Bu at Kakioka, Tsukuba and Kanozan have positive correlation. Table 3-1 shows correlation coefficients of the temporal changes of the transfer functions Au and Bu between Tsukuba and other observatories.

6.1.2. Results in Southern Kanto District in 1989

Figure 6-3 shows temporal changes of the single-station transfer functions in southern Kanto district in 1989. At Tsukuba and Omaezaki, the changes of Au and Bu at the period 4 min have negative correlation. On the contrary, at Tsukuba and Yatsugatake, the changes of Au at a period 4 min have positive correlation and those of Bu have negative correlation. The imaginary parts, Av and Bv do not show large changes but those of Tsukuba and Omaezaki show large changes. The changes from July 1989 to August 1989 are quite large. Difference induction arrows of these changes of the transfer functions are shown in Figure 6-4. In this figure, the difference arrows point towards the same inner part of Kanto district. This fact can be explained by assuming that the conductivity in the inner part of Kanto district changed in summer 1989, however, they seem too large. In section 5.2., it is shown that there are large channeling currents in the Kanto plain and it is possible that the changes of direction or quantity of the channeling currents may cause the temporal changes of the transfer functions shown in Figure 6-3.

6.1.3 Comparison with Other Geophysical Data

In order to make clear origins of the temporal changes of the transfer functions shown in Figure 6-3, especially at periods of 4 and 8 min, the following comparison with other geophysical data was done.

(a) Underground Water Level, Rain Fall and Sea Level

Underground water flow has close relationship with the conductivity of the region (Mizutani and Ishido, 1976). Figure 6-5 shows the underground water level observed at Tsukuba (the distance between the geomagnetic observation hut in Tsukuba and the underground water level gauge is about 100 m). There is sedimentary layer having high conductivity as thick as several 100 m at Tsukuba. In addition, monthly precipitation in Kanto district is shown in Figure 6-6.

As the sea water has very high conductivity compared with the crust, it has much contribution on the transfer functions. The Japan Current (Kuroshio) flows northeast from the Philippines along the eastern coast of Japan. The Kuroshio varies in speed and tends to stray from its usual course. It is about 80 km wide and reaches speeds of about 3.5 knots. As the induced current flows in the sea water, changes of the speed and course of the Kuroshio can affect sea level and the transfer functions. Figure 6-7 shows the daily mean sea level at Aburatsubo at the Miura peninsula facing the western Pacific Ocean. The location of Abratsubo is shown in Figure 6-6 (b).

Judging from the Figures 6-5, 6, and 7, the underground water, the precipitation and the sea water level had no relation to the temporal change of the transfer functions in Kanto district in 1989.

(b) Relationships between the Changes of the Transfer Functions and those of the Seismicity

Changes of stress field in crust of the Earth can cause changes of the conductive structure of the Earth. Since the stress field has influence on the seismicity in the region, the transfer functions are possibly related to the seismicity.

The changes of the transfer functions in 1989 are remarkable. There was no large earthquake from 1989 to 1992 in Kanto district. We examined the relationship between the changes of the transfer functions and those of seismic activity in fairy broad regions. Figure 6-8 (a) shows the cumulative numbers of earthquakes in the shadowed region shown in Figure 6-8 (b). We assume that the cumulative number of earthquakes represents a rate of seismicity in the region. In July 1989, an earthquake swarm occurred at eastern off Ito city, in the Izu peninsula, and seismicity in Kanto district were changed and became active. The seismic activity in the shadowed region in Figure 6-8 (a) increases clearly in the middle of August, 1989. This change of seismicity coincides with the changes of the transfer functions. Therefore it looks that the seismicity has a relationship with the transfer functions of the observatories in Kanto district. Changes of the stress field that cause the changes of the seismicity directly or indirectly may cause changes of conductive structure.

(c) K-Index

To estimate effects of the external geomagnetic field on the transfer functions, K-indices at Kakioka are used. The K-index is one of indices that show the geomagnetic activity. Figure 6-9 (a) shows the monthly K-indices at Kakioka and the transfer functions at Kanozan and Figure 6-9 (b) shows correlation between the K-indices and the transfer functions at Kanozan. In this comparison, there is likely relationship between the changes of the K-indices and those of the transfer functions. Though K-index does not represent all features of the external geomagnetic field, it is clear that the external field affects the transfer functions in Kanto district. A possible mechanism that explains the changes of the transfer functions will be discussed in the section 6.1.5.

6.1.4. Interstation Transfer Functions at Kanozan

The temporal changes of interstation transfer functions at Kanozan with the reference station Kakioka are shown in Figure 6-10. At the longer periods of 128 min and 64 min, the temporal changes of the interstation transfer functions are almost the same as those of the single-station transfer functions. This simply means that the horizontal field at Kanozan is quite similar to that at Kakioka and the noise is very small. This feature is also found at the period of 32 min, however, large error bars at the period of 8 min show the estimation of the transfer functions is not accurate. In particular at the period of 4 min, there are much larger errors in the interstation transfer functions than in the single-station transfer functions. These large error bars suggest low coherency of the horizontal field between Kanozan and Kakioka at the shorter periods. This tendency is also found at other observatories, Mizusawa, Tsukuba and Omaezaki.

6.1.5. Possible Cause of the Change of the Transfer Functions in Kanto District

There are three possible causes by which temporal changes of the transfer functions occur. First, the transfer functions are changeable due to contamination of the external ΔZ that originates in the ionosphere or the magnetosphere of the Earth. Second, the transfer functions are responsible to some changes of conductive structure beneath and around a station. The last, some apparent changes are usually introduced in process of observations or analyses. The external ΔZ , if exists, likely makes common changes of the transfer functions at the every station concerned in Japan region, because the external signals have so long wave lengths that the stations are included under the same external field. Sano *et al.* (1982) reported that there are common changes at the longer periods should be occurred by the external field.

Next we discuss the cause of the temporal changes shown in Figure 6-3. Since Tsukuba is about 80 km away from Kanozan, common artificial noise can not be contained and common external geomagnetic field should be contained. Though the common changes at the periods of 128 min and 64 min that are almost the same at all observatories can be simply explained as the result of external field, those at the period of 4 min which amplitude and direction are different each other can not be explained as the direct influence of the common external field.

At shorter periods, the temporal changes are large in Kanto district. Fujita (1989) showed those of daily scattering at Kakioka are larger than those at Kanoya and Memanbetsu. Artificial noises such as leaked currents from electric railways can cause those fluctuations and we found such artificial noise in the data at Kanozan. Figure 6-11 shows average amplitude of the three geomagnetic components at each observatory. The amplitude of *X* component at the period of 4 min at Kanozan is much larger than those at other observatories, and it is caused by artificial noises. The noises at Kakioka are fairly small (less than 1 nT), however, the average amplitude of signal at the period of 4 min is only 2 nT and the S/N is not big. Figure 6-12

shows coherency squared of the horizontal geomagnetic components between Kakioka and other observatories. In spite of great distances from Kakioka to Memanbetsu and Kanoya, almost all the coherency squared is greater than 0.8 except for that of Kanozan at shorter periods. Since leaked currents from DC railways has major direction peculiar to each station (Fujiwara *et al.*, 1986), the geomagnetic noise caused by the leaked currents will make a bias in the transfer functions. The bias will become larger as the external signal becomes smaller. Therefore the K-index and the transfer functions have correlation. In the case of the interstation transfer functions, the transfer functions do not change very largely but error bars become large in July 1989. The large error bars suggest that the coherency between the input external horizontal field at Kakioka and the output vertical field at Kanozan is small, that is mainly caused by low power of the input external field, which is supported by the fact that the K-index at Kakioka in July is very small.

In conclusion, the temporal changes in Kanto district in 1989 at the shorter periods are probably caused by the mixed of the activity of the common external geomagnetic field and the artificial noises at each observatory.

Meanwhile, a rather long time decrease of Bu at the period of 4 min is found at Kakioka and Tsukuba in 1990, and it recovered suddenly at the beginning 1991 (Figure 6-2). This change coincides with the change of seismicity around Kakioka and Tsukuba (Figure 6-13) but no changes of the transfer functions are found at Kanozan. Since the noise level at Kakioka and Tsukuba is much smaller than that at Kanozan, these changes aren't probably caused by artificial noises. Further investigation is needed to clarify the cause of these changes.

6.2. Temporal Changes of the Transfer Functions Associated with the 1993 South-western off Hokkaido Earthquake

In this chapter, we use only the interstation transfer functions.

6.2.1. The 1993 Southwestern off Hokkaido Earthquake

A large earthquake occurred in southwestern off Hokkaido, Japan on July 12, 1993. It was registered a magnitude of 7.2 on the Richter scale. After the earthquake, the Geographical Survey Institute carried out the first order geomagnetic survey around southwestern part of Hokkaido to detect geomagnetic phenomena associated with the earthquake (Fujiwara *et al.*, 1994). Figure 6-14 shows the aftershock region (Research Group For Aftershocks Of the July 12, 1993, Hokkiado-nansei-oki Earthquake, 1993) and the geomagnetic stations concerned with this survey.

6.2.2. Changes of the Transfer Functions Associated with the Earthquake

We got transfer functions of the three first order geomagnetic stations that had two observations, before and after the earthquake. Although time of the observations after the earthquake was within one month after the occurrence, those of before it were, July 1990 at No. 18 Furubira, June 1992 at No. 25 Imakane and June 1993 at No. 80 Fukushima. As all the observations were done in summer, the effect of the seasonal changes are probably small. We calculated the interstation transfer functions, and Kakioka was the reference station.

Figure 6-14 (a) shows the induction arrows. The induction arrows represent geographical contrast of anomalous currents. Electric currents possibly exist to the direction the induction arrow points.

At the period of 64 min, the induction arrow at No. 25 Imakane became smaller after the earthquake and the change is beyond the 95 % confidence interval, however, no significant

change is found at the shorter period of 16 min. This implies that the conductivity of western part of No. 25 Imakane became smaller after the earthquake.

Honkura and Taira (1983) examined temporal changes of the amplitudes of the horizontal field and crustal movements. They found that there is good correlation between them. In this study, we also used the horizontal transfer functions that include the same kind of information. We express in Figure 6-14 (b) the horizontal transfer functions as an arrow, Cu is southward direction and Fu is westward direction. This arrow approximately means anomalous horizontal field and electric current flows just beneath the station perpendicular to the arrow and the strength of the current is proportional to the length of the arrow. From Figure 6-14 (b), we can find that the WNW-ESE current beneath No. 18 Furubira became larger after the earthquake, on the contrary, the current beneath No. 25 Imakane became smaller. The internal anomalous field is produced by electric currents induced in the Earth. Though the electric currents are directly induced in high conductive regions (good conductors), the currents usually flow to or from other good conductors. These phenomena are called 'channeling effect'. Therefore we must pay attention to the current flow in addition to anomalous conductors.

6.2.3. Model Simulation

We will discuss models of the change of conductive structure that can account for the temporal changes of the transfer functions in association with the 1993 southwestern off Hokkaido earthquake.

Two-dimensional model simulations using a computer program of Jones and Pascoe (1971) and Pascoe and Jones (1972) were carried out to estimate the region size and the quantity of conductivity change. Williamson *et al.* (1974) pointed out that the program of Jones and Pascoe (1971) had an error in the finite deference representation. However, Jones and Thomson (1974) has shown that its effect on calculated results is much decrease when a slowly changing grid is used. Since this model simulation was used for rough estimation and showing possible cause of the time change of the transfer functions, Jones and Pascoe's method had enough accuracy for this study.

First, it is supposed that the conductivity changed near the stations. If there are active faults near the stations, conductivity change possibly occurs in the active faults (Sumitomo and Noritomi, 1986). If conductivity changes in the region width 1 km and thickness 1 km, the conductivity change is required more than one hundred times to account for the changes of induction arrows. However, it appears difficult to be supposed that such large changes occurred near each station and active faults have not been found near the stations (Research Group for active Faults of Japan, 1991). Moreover, the frequency dependence at the periods of 64 and 16 min can not be explained.

Second, a more possible model is proposed that conductivity changed in the aftershocks region. If conductivity changes in the region width 20 km and thickness 10 km as shown in Figure 6-15 (b), the conductivity change is required 100 times to account for the changes of induction arrows. This model can explain the frequency dependence at the periods both 64 min and 16 min. Brace and Orange (1968) reported that the rock partially saturated with water

shows a remarkable increase in the conductivity when a mechanical stress is applied to the rock. If such a phenomenon occurs in the region, the induction arrows in southwestern Hokkaido region show the changes.

The changes in Figure 6-13 imply the possibility that the conductivity of the aftershock region became smaller. The increase of electric current beneath No. 18 Furubira and the decrease of it beneath No. 25 Imakane can be explained by that the current that had flowed in the aftershock region changed its pass caused by the decrease of the conductivity of the aftershock region. This model simulation only presents one possibility and we can not conclude any finite models.

7. Concluding Remarks

We have determined a nation wide distribution of geomagnetic transfer functions around Japan, for both the vertical field and the horizontal field, using the interstation method. We also estimated the effect of sea water using the thin-sheet method. As the coastlines of Japan are complex, the model calculation could be improved by using a finer mesh or by considering a smaller area. However, the residual transfer functions show large anomalies that can not be explained by the effect of the coastlines alone. Current channeling in sedimentary layers may account for some of the observed anomalies. The large anomaly in southern Kanto District is most likely related to the existence of the Philippine Sea plate.

Since we have not had large earthquakes and volcanic activities near the observatories within the period of the data used in this study, we could not find any changes associated with crustal activities at the observatories. The changes at the longer periods of 128, 64, and 32 min are often due to the external field and those at the shorter periods are occasionally due to the complex of the external field and the artificial noise. Since the transfer functions at shorter periods are often affected by artificial noises, the single-station transfer functions tend to show apparent changes. Therefore checking contamination of artificial noise is necessary and using the interstation transfer functions is useful for this purpose. We found that there were changes of the transfer functions associated with the 1993 southwestern off Hokkaido earthquake at the first order geomagnetic stations. This is possibly because the conductivity of the aftershocks region changed.

This thesis is based on following published papers;

- 1. Geomagnetic transfer functions in Japan obtained by first order geomagnetic survey, *Journal* of *Geomagnetism and Geoelectricity*, Vol. **48**, 1071-1101, 1996, S. Fujiwara and H. Toh.
- 2. Temporal changes of geomagnetic transfer functions using data obtained mainly by the Geographical Survey Institute, *Bulletin of the Geographical Survey Institute*, No. **42**, 1-25,1996, S. Fujiwara.

Acknowledgments

The author wishes to my sincere thanks to Professors N. Sumitomo and N. Oshiman of Kyoto University for critical discussions and supporting studies. The author also greatly thanks to Dr. H. Toh of Tokyo University for supporting the analyses of the thin sheet model and helpful suggestions. The author is grateful to Dr. G. S. Heinson for reading the manuscript and making a number of helpful suggestions. The author wishes to thank the members of Geomagnetic section and Mizusawa and Kanozan Observatories of the Geographical Survey Institute who made efforts to get geomagnetic data used in this study. The author thanks Kakioka Magnetic Observatory, the Japan Meteorological Agency, for providing Memanbetsu, Kakioka, Kanoya, Omaezaki and Matsuzaki data, Yatsugatake Magnetic Observatory, the Earthquake Research Institute, the University of Tokyo, for providing Yatsugatake data.

REFERENCES

- Agarwal, A. K., and J. T. Weaver, Regional electromagnetic induction around the Indian peninsula and Sri Lanka; a three-dimensional numerical model study using the thin sheet approximation, *Phys. Earth Planet. Inter.*, **54**, 320-331, 1989.
- Avdeev, D. B., Y. Ogawa, A. V. Kuvshinov, and O. V. Pankratov, An interpretation of magnetovariational data in the northern Tohoku District, Japan, using multi sheet modelling, J. Geomag. Geoelectr., 47, 405-410, 1995.
- Banks, R. J., Data processing and interpretation in geomagnetic deep sounding, *Phys. Earth Planet. Inter.*, 7, 339-348, 1973.
- Bapat, V. J., J. Segawa, Y. Honkura, and P. Tarits, Numerical estimation of the sea effect on the distribution of induction arrows in the Japanese island arc, *Phys. Earth Planet. Inter.*, 81, 215-229, 1993.
- Beamish, D., A geomagnetic precursor to the 1979 Carlisle earthquake, *Geophys. J. R. astr.* Soc., 68, 531-543, 1982.
- van Bemmelen, W., The starting impluse of magnetic disturbances, Koninkl. Ned. Akad. Wetenschap., Proc., Ser. B, 11, 773-782, 1908.
- Bendat, J. S., and A. G. Piersol, Random data: Analysis and measurements, 407pp., Wiley-Interscience, New York, 1971.
- Brace, W. F., and A. S. Orange, Further studies of the effect of pressure on electrical resistivity of rocks, *J. Geophys. Res.*, **73**, 5407-5420, 1968.
- Camfield, P. A., and D. I. Gough, Anomalies in daily variation magnetic fields and structure under north-western United States and south-western Canada, *Geophysics J. R. astr. Soc.*, 41, 193-218, 1975.

Chamalaun, F. H., and J. D. McKnight, A New Zealand wide magnetometer array study, J. Geomag. Geoelectr., 45, 741-759, 1993.

Chapman, S., and J. Barteles, Geomagnetism, Oxford Univ. Press, London, 1049pp, 1940.

- Everett, J. E., and R. D. Hyndman, Geomagnetic variations and electrical conductivity structure in south-western Australia, *Phys. Earth Planet. Inter.*, **1**, 24-34, 1967.
- Filloux, J. H., An ocean bottom, D-component magnetometer, Geophysics, 32, 978-987, 1967.
- Filloux, J. H., Magnetotelluric soundings over the northeast Pacific may reveal spatial dependence of depth and conductance of the asthenosphere, *Earth Planet. Sci. Lett.*, **46**, 244-252, 1980.
- Fujita, K., The study of the electrical resistivity structure beneath the Kii-peninsula using the electromagnetic method, Ph. D. thesis, 121pp., Kobe university, 1994.
- Fujita, S., Monitoring of time change of conductivity anomaly transfer functions at Japanese magnetic observatory network, *Mem. Kakioka Mag. Obs.*, 23, 2, 53-87, 1989.
- Fujiwara, S., N. Sumitomo, and I. Shiozaki, Some characteristics of artificial earth current leaked from electric railways and their application to electrical soundings (2) (in Japanese), 'Tsukumo Tigaku' Rep. Geoscience, Kyoto Univ., 21, 8-16, 1986.
- Fujiwara, S., and N. Sumitomo, Conductivity anomaly observation near the Yanagase fault (3) relation between the changes of transfer functions and the seismicity in southwest Japan (in Japanese), 1988 Proceedings of Conductivity Anomaly Symposium, 157-166, 1988.
 - Fujiwara, S., T. Minato, M. Tsuzuku, and Y. Nakahori, The geomagnetic change associated with the 1993 southwestern off Hokkaido earthquake (in Japanese), *Biannual Rep. Geograph. Surv. Inst.*, 81, 1-7, 1994.
 - Gamble, T. D., W. M. Goubau, and J. Clarke, Magnetotellurics with a remote magnetic reference, *Geophysics*, 44, 53-68, 1979.

- Geographical Survey Institute, Magnetic survey of Japan 1948-1951, , *Bull. Geograph. Surv. Inst.*, **2**, Parts 2-3, 121-166, 1951, and **3**, Parts 2-4, 119-148, 1951.
- Geographical Survey Institute, First order geomagnetic survey in Japan from 1949 to 1994, Technical Rep. Geograph. Surv. Inst., B4-12, 174 pp., 1995.
- Handa, S., Y. Tanaka, and A. Suzuki, The electrical high conductivity layer beneath the northern Okinawa trough, inferred from geomagnetic depth sounding in northern and central Kyushu, Japan, *J. Geomag. Geoelectr.*, **44**, 505-520, 1992.
- Honkura, Y., Observations of short-period geomagnetic variations at Nakaizu(2):changes in transfer functions associated with the Izu-Oshima-Kinkai earthquake of 1978, Bull. Earthq. Res. Inst., Univ. Tokyo, 54, 477-490, 1979.
- Honkura, Y., and S. Taira, Changes in the amplitudes of short-period geomagnetic variations as observed in association with crustal uplift in the Izu peninsula, Japan, *Earthq. Predic. Res.*, 2, 115-125, 1983.
- Honkura, Y., Perturbation of induced electric currents by surface conductivity inhomogeneity with special reference to anomalous behavior of short-period geomagnetic variations in the Kanto Plain, *J. Geomag. Geoelectr.*, **37**, 627-641, 1985.
- Ishida, M., Geometry and relative motion of the Philippine Sea plate and Pacific plate beneath the Kanto-Tokai district, Japan, J. Geophys. Research, 97, B1, 489-513, 1992.
- Ishikawa, Y., K. Matsumura, H. Yokoyama, and H. Matsumoto, SEIS-PC -its outline, *Geol. Data Processing* (in Japanese), **10**, 19-34, 1985.
- Jones, F. W., and L. J. Pascoe, A general computer program to determine the perturbation of alternating electric currents in a two-dimensional model of a region of uniform conductivity with an embedded inhomogeneity, *Geophys. J. R. astr. Soc.*, **24**, 3-30, 1971.

- Jones, F. W., and D. J. Thomson, A discussion of the finite difference method in computer modelling of electrical conductivity structures. A reply to the discussion by Williamson, Hewlett and Tammemagi, *Geophys. J. R. astro. Soc.*, **37**, 537-544, 1974.
- Kato, Y., Northeastern Japan anomaly of the upper mantle (in Japanese), Proc. Conductivity Anomaly Symposium, 19-31, 1968.
- Kaufman, A. A., and G. V. Keller, *The magnetotelluric sounding method*, 595 pp., Elsevier Sci.Pub. Co., Amsterdam, 1981.
- Lilley, F. E. M., Analysis of the geomagnetic induction tensor, *Phys. Earth Planet. Inter.*, **8**, 301-316, 1974.
- McKirdy, D. McA., J. T. Weaver, and T.W. Dawson, Induction in a thin sheet of variable conductance at the surface of a stratified earth; -II. Three-dimensional theory, *Geophys. J. R. astr. Soc.*, 80, 177-194, 1985.
- Miyakoshi, J., Secular variation of Parkinson vectors in a seismically active region of Middle Asia, J. Fac. Gen. Educ., Tottori Univ., 8, 209-218, 1975.
- Miyamachi, H., M. Kasahara, S. Suzuki, H. Okada, K. Tanaka, and A. Hasegawa, Threedimensional velocity structure beneath northern Japan (in Japanese), *Abstracts 1993 fall meeting of the seismological soc. Japan*, 335, 1993.
- Mizutani, H., and T. Ishido, A new interpretation of magnetic field variation associated with the Matsushiro earthquakes, J. Geomag. Geoelectr., 2, 179-188, 1976.
- Nishida, Y., Conductivity anomalies in the southern half of Hokkaido, Japan, J. Geomag. Geoelectr., 28, 375-394, 1976.
- Nishida, Y., Conductivity anomalies in and around the Ishikari Plain, Hokkaido (in Japanese with English abstract), *Geophys. Bull. Hokkaido Univ.*, **36**, 17-28, 1977a.

- Nishida, Y., Observations of geomagnetic and geoelectric variations along the north-south profile of Hokkaido (in Japanese with English abstract), *Geophys. Bull. Hokkaido Univ.*, 36, 29-40, 1977b.
- Nishida, Y., Anomalous behavior in the horizontal components of geomagnetic variations in Hokkaido, Japan, J. Geomag. Geoelectr., 33, 197-204, 1981.
- Nishida, Y., Conductivity structure in and around Hokkaido, Japan as revealed by the period dependence of the CA transfer functions, *J. Geomag. Geoelectr.*, **34**, 453-465, 1982.
- Otaki, M., and K. Tsukahara, Geomagnetic Survey with the Triaxial Fluxgate Magnetometer, Bull. Geograph. Surv. Inst., 35, 1-9, 1990.
- Parkinson, W. D., Directions of rapid geomagnetic fluctuations, *Geophys. J. R. astr. Soc.*, 2, 1-14, 1959.
- Parkinson, W. D., The influence of continents an oceans on geomagnetic variations, *Geophys. J. R. astr. Soc.*, 4, 441-449, 1962.
- Pascoe, L. J., and F. W. Jones, Boundary conditions and calculation of surface values for the general two-dimetional electromagnetic induction problem, *Geophys. J. R. astro. Soc.*, 27, 179-193, 1972.
- Research Group for active Faults of Japan, Active faults in Japan (revised edition) (in Japanese with English summary), 437pp, University of Tokyo Press, 1991.
- Research Group for Crustal Resistivity Structure, Japan, The crustal resistivity structure in the Chugoku District, Japan (preliminary report) (in Japanese), *Proc. Conductivity Anomaly Symposium*, 49-54, 1989.
- Research Group for aftershocks of the July 12, 1993, Hokkiado-nansei-oki Earthquake, Geometry of the aftershocks of the July 12, 1993, Hokkiado-nansei-oki Earthquake, *Abstracts of the 1993 Fall meeting of the Seismological Society of Japan*, 15, 1993.

Rikitake, T., Electromagnetism and the Earth's interior, 308 pp., Elsevier, Amsterdam, 1966.

- Rikitake, T., The undulation of an electrically conductive layer beneath the islands of Japan, *Tectonophysics*, 7, 257-264, 1969.
- Rikitake, T., Electric conductivity anomaly in the earth's crust and mantle, *Earth-Sci, Rev.*, 7, 35-65, 1971.
- Rikitake, T., Crustal dilatancy and geomagnetic variations of short period, J. Geomag. Geoelectr., 28, 145-156, 1976.
- Rikitake, T., Changes in direction of magnetic vector of short-period geomagnetic variations before the 1972 Sitka, Alaska, earthquake, J. Geomag. Geoelectr., **31**, 441-448, 1979.
- Rikitake, T., and Y. Honkura, Solid earth geomagnetism, 384 pp., Terra Scientific Publishing Company, Tokyo, Japan, 1985.
- Rikitake, T., and I. Yokoyama, The anomalous behavior of geomagnetic variations of short period in Japan and its relation to the subterranean structure, *Bull. Earthq. Res. Inst., Univ. Tokyo*, **33**, 297-331, 1955.
- Sano, Y., Time changes of transfer functions at Kakioka related to earthquake occurrences (I), *Geophys. Mag.*, **40**, 91-111, 1980.
- Sano, Y., K. Nakaya, T. Kurihara, and S. Nakajima, Simultaneous comparisons of CA transfer functions among Memanbetsu, Iwaki, Kakioka and Kanoya (in Japanese with English abstract), Mem. Kakioka Mag. Obs., 19, 53-68, 1982.
- Sasai, Y, Spatial dependence of short-period geomagnetic fluctuations on Oshima Island (1), Bull. Earthq. Res. Inst., Univ. Tokyo, 45, 137-157, 1967.
- Sasai, Y, Spatial dependence of short-period geomagnetic fluctuations on Oshima Island (2), Bull. Earthq. Res. Inst., Univ. Tokyo, 46, 907-926, 1968.
- Scholz, C.H., L. R. Sykes, and Y. P. Aggarwal, Earthquake prediction: A physical basis, Science, 181, 803-810, 1973.

- Schmidt, A, Die magnetische Storung am 25 September 1909 zu Potsdam und Seddin, Meteorol. Z., 26, 509-511, 1909.
- Schmucker, U., Anomalies of geomagnetic variations in the southwestern United States, *Bull.* Scripps Inst. Oceanogr., **13**, 165 pp., 1970.
- Shiraki, M., Monitoring of the time change in transfer functions in the central Japan conductivity anomaly, *J. Geomag. Geoelectr.*, **32**, 637-648, 1980.
- Sumitomo, N., and K. Noritomi, Synchronous precursors in the electrical earth resistivity and the geomagnetic field in relation to an earthquake near the Yamasaki fault, southwest Japan, J. Geomag. Geoelectr., 38, 971-989, 1986.
- Utada, H., A direct inversion method for two-dimensional modelling in the geomagnetic induction problem, Ph. D. thesis, 409 pp., University of Tokyo, 1987.
- Vasseur, G., and P. Weidelt, Bimodal electromagnetic induction in non-uniform thin sheets with an application to the northern Pyrenean induction anomaly, *Geophys. J. R. astr. Soc.*, 51, 669-690, 1977.
- Weaver, J. T., and A. K. Agarwal, Is addition of induction vectors meaningful?, *Phys. Earth Planet. Inter.*, **65**, 267-275, 1991.
- Williamson, K., C. Hewlett, and H. Y. Tammemagi, Computer modelling of electrical conductivity structures, *Geophys. J. R. astr. Soc.*, **37**, 533, 1974.
- Yanagihara, K., Secular variation of the electrical conductivity anomaly in the central part of Japan, *Mem. Kakioka Mag. Obs.*, **15**, 1-11, 1972.
- Yanagihara, K., and T. Nagano, Time change of transfer function in the Central Japan anomaly of conductivity with special reference to earthquake occurrences, J. Geomag. Geoelectr., 28, 157-163, 1976.
- Yanagihara, K., and T. Yokouchi, Local anomaly of earth-currents and earth-resistivity (in Japanese with English abstract), *Mem. Kakioka Mag. Obs.*, **12**, 105-113, 1965.

Magnetic lines of force

(b) CA exists

Figure 1-1 Schematic explanation of conductive anomaly. Arrows show changes of the geomagnetic field.

Figure 1-2 Geomagnetic bay on March 30, 1964 as observed simultaneously by a network of magnetic observatories, permanent and temporary, in Japan (after Rikitake, 1971).

Figure 1-3 The $\Delta Z/\Delta H$ value distribution for geomagnetic bays and similar changes (after Rikitake, 1969).

Figure 1-4 The depth in km of the mantle layer of high conductivity as deduced from the $\Delta Z/\Delta H$ value distribution in Japan (after Rikitake, 1969).

Figure 1-5 Geomagnetic Variations observed at Mizusawa

Figure 1-6 Spectrum of Pc geomagnetic pulsations (after Kaufman and Keller, 1981).

Figure 1-7 Schematic diagram of the approximation involved in modeling geomagnetic induction due to ionosphere currents by a uniform primary field and a semi-infinite half space (after Lilley, 1974).

Figure 1-8 (a) An example of simultaneous sudden storm commencement magnetograms at for stations on Oshima Island. Changes in the horizontal intensity (H) and declination (D) are almost the same throughout the stations (after Sasai, 1967).

Figure 1-8 (b) Parkinson vectors on Oshima Island (after Sasai, 1968). Bathymetric contours are given in meters.

6

Figure 1-9 Resistivity as a function of axial stress (after Brace and Orange, 1968). The numbers after the rock name are the confining and pore pressure, respectively, in kilobars.

Figure 1-10 Secular variations of A and B values at Kakioka Magnetic Observatory (after Yanagihara, 1972).

Figure 1-11 Amplitude ratios of short-period geomagnetic variations at Naka-izu relative to the Yatsugatake Magnetic Observatory for the *H* and *D* components, mean sea-level at Ito relative to Aburatsubo, leveling data at bench marks (after Honkura and Taira, 1983).

Figure 1-12 Estimates of inter-station horizontal field transfer function F during 1978 and 1979 for four period ranges: B3(4000-2000 s), B7(1000-600 s), B11(250-150 s) and B15(70-50 s). All error bars are +/- 1 SD. The occurrence of the Boxing Day earthquake (M=5) is shown as the broken line. (after Beamish, 1982)

Figure 2-1 Locations of the first order geomagnetic stations and the geomagnetic observatories

Table 2-1 Names and locations of the first order geomagnetic stations and the observatories

Num	Name	Japanese name	Lati deg	tude min	Long deg	itude min	Num	Name
$1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	KAGOSHIMA SEBURIYAMA KURAYOSHI KAWANOE IMAZU HAMAMATSU HIMI SHIBATA KATSUURA KUMANO MITAKA REBUNTOU NAKAGAWA TAKINOUE RUMOI ASAHIKAWA KITAMI FURUBIRA IWAMIZAWA OBIHIRO KUSHIRO MONBETSU DATE SAMANI IMAKANE KAYABE SHIMOKITA HACHINOHE OODATE MIYAKO MORIOKA YOKOTE ISHINOMAKI SAKATA YAMGATA WAKAMATSU TOOKAMACHI UTSUNOMIYA TOMIOKA CHOUSHI NISHIIZU SHIMIZU INUYAMA MIE TANABE GOJOU KOUGA RYOUZU KOUFU MATSUMOTO TAKAYAMA ITOIGAWA FUKUI MIYAZU HIMEJI TOTTORI OKAYAMA	鹿背倉川今浜氷新勝熊三礼中滝留旭北古岩帯釧門伊様今茅下八大宮盛横石酒山若出い十宇富銚西清犬三田五甲両甲松高糸福宮姫鳥岡児振 之 発 文 ノ 見 見高山吉江津松見田浦野鷹島川上萌川見平沢広路別達以金部北戸舘古岡手巻田形松崎き町宮岡子豆水山重辺条賀津府本山川井津路取山	$\begin{smallmatrix} 3 & 3 & 5 & 3 & 5 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4$	$\begin{array}{c} 23.7\\ 7.0666731\\ 1.52425\\ 2.5.1\\ 1.52425\\ 2.557\\ 1.5577\\ 1.5\\ 2.5577\\ 1.5\\ 2.5577\\ 1.5\\ 2.5577\\ 1.5\\ 2.5\\ 2.5\\ 2.5\\ 1.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2$	$\begin{array}{c}130\\133\\133\\135\\137\\136\\139\\140\\142\\143\\141\\142\\140\\141\\1440\\141\\1440\\141\\1440\\141\\140\\141\\140\\141\\140\\143\\138\\138\\136\\135\\135\\136\\135\\136\\135\\136\\136\\135\\136\\136\\136\\136\\136\\136\\136\\136\\136\\136$	$ \begin{array}{c} 10.8 \\ 5 \\ 5 \\ 39.3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 80 81 23 88 88 89 90 91 82 88 88 88 90 91 92 93 94 99 99 99 99 99 90 100 101 102 103 105 105 105 105 105 105 105 105 105 105	MATSUE HAMADA HIROSHIM YAMAGUCH NAGASAKI KUMAMOTOO HITOYOSH MIYAZAKI NAKATSU OOZU KOUCHI NAKAMURA OOSATO AWAJI HARANOMA IKUTORA HIROO SHIBETSU WAKKANAI FUKUSHIMA GOSHOGAW AKITA TSUSHIMA FUKUSHIMA GOSHOGAW AKITA TSUSHIMA FUKUSHIMA SAIGOU IIDA SASEBO TOUJOU NEMURO OONO CHIBA TATEYAMA KENZAKI TANZAWA TOCHIGI CHICHIJIN OKINAWA HACHIJOUJ MIYAKEJIM IZUOOSHIN OMAEZAKI MIKAWA ISHIGAKIJ ITOU Kanozan Mizusawa Tsukuba Kakioka Kanoya Memanbets Matsuzaki Omaezaki Yatsugata

Num	Name	Japanese name	Lat deg	itude min	Longi deg	itude min
$\begin{array}{c} 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 77\\ 78\\ 77\\ 78\\ 81\\ 82\\ 88\\ 88\\ 89\\ 91\\ 92\\ 93\\ 4\\ 95\\ 67\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 99\\ 9$	MATSUE HAMADA HIROSHIMA YAMAGUCHI NAGASAKI KUMAMOTO HITOYOSHI MIYAZAKI SAEKI NAKATSU OOZU KOUCHI NAKAMURA OOSATO AWAJI HARANOMACHI IKUTORA HIROO SHIBETSU WAKKANAI FUKUSHIMA GOSHOGAWARA AKITA TSUSHIMA FUKUSHIMA FUCHIJIMA OKINAWA HACHIJOUJIMA MIYAKEJIMA IZUOOSHIMA OMAEZAKI MIKAWA ISHIGAKIJIMA ITOU	松浜広山長熊人宮佐中大高中大淡原幾広標稚福五秋対福種出西飯佐東根大千館剣丹栃父沖八三伊御三石伊江田島口崎本吉崎伯津洲知村里島町寅尾津内島川田島江島水郷田保城室野葉山崎沢木島縄島島大崎河島東原	35444222211233332347322312333323444444433333233344355455676344444443323226533435545567634444444444444444444444444	$\begin{array}{c} 22. \ 9\\ 53. \ 6\\ 6\\ 4\\ 51. \ 3\\ 9\\ 151. \ 5\\ 55. \ 5\\ 16. \ 7\\ 55. \ 5\\ 16. \ 3\\ 24. \ 6\\ 7\\ 135. \ 9\\ 16. \ 3\\ 24. \ 6\\ 7\\ 11. \ 5\\ 20. \ 6\\ 12. \ 6\\ 11. \ 5\\ 20. \ 6\\ 12. \ $	$\begin{array}{c}133\\132\\132\\131\\129\\130\\131\\131\\131\\131\\131\\131\\132\\133\\132\\134\\140\\142\\143\\145\\141\\140\\140\\140\\140\\140\\140\\140\\140\\140\\140\\140\\140\\140\\140\\130\\$	$\begin{array}{c} 1. \ 4\\ 10. \ 1\\ 19. \ 4\\ 25. \ 3\\ 45. \ 1\\ 39. \ 6\\ 6\\ 6\\ 52. \ 5\\ 38. \ 2\\ 48. \ 8\\ 45. \ 6\\ 0\\ 40. \ 8\\ 57. \ 2\\ 40. \ 8\\ 57. \ 2\\ 40. \ 8\\ 57. \ 2\\ 40. \ 8\\ 57. \ 2\\ 40. \ 8\\ 57. \ 2\\ 40. \ 8\\ 6. \ 9\\ 14. \ 4\\ 9. \ 4\\ 16. \ 6\\ 59. \ 6\\ 9. \ 7\\ 13. \ 6\\ 53. \ 9\\ 13. \ 6\\ 7\\ 49. \ 1\\ 53. \ 9\\ 13. \ 6\\ 7\\ 49. \ 1\\ 53. \ 9\\ 13. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 14. \ 5\\ 29. \ 1\\ 11. \ 6. \ 8\\ 13. \ 5$
INZ KB AK MB ITZ MZ AT	Kanozan Mizusawa Tsukuba Kakioka Kanoya Memanbetsu Matsuzaki Omaezaki Yatsugatake	鹿水つ柿鹿女松御八野くろう、満前ケ山沢ば岡屋別崎崎岳	35393636314334343436	$\begin{array}{c} 1 \ 5. \ 2 \\ 6. \ 5 \\ 6. \ 1 \\ 1 \ 3. \ 8 \\ 2 \ 5. \ 2 \\ 5 \ 4. \ 5 \\ 4 \ 4. \ 0 \\ 3 \ 7. \ 0 \\ 4. \ 1 \end{array}$	$ \begin{array}{r} 1 39 \\ 1 41 \\ 1 40 \\ 1 40 \\ 1 30 \\ 1 44 \\ 1 38 \\ 1 38 \\ 1 38 \\ 1 38 \\ 1 38 \\ 1 38 \end{array} $	$57.5 \\ 12.4 \\ 5.5 \\ 11.4 \\ 52.9 \\ 11.6 \\ 48.0 \\ 11.0 \\ 26.6 \\ 11.0 \\ 26.6 \\ 11.0 \\ 26.6 \\ 11.0 \\ 20.0 \\ 1$

Photo 2-1 A sensor of a fluxgate magnetometer in a digged hole

Photo 2-2 The sensor covered with a plastic container

Photo 2-3 Control units in a tent

Figure 2-2 (a) Magnetograms observed at the first order geomagnetic stations

Figure 2-2 (b) Magnetograms observed at the first order geomagnetic stations

.

Figure 2-2 (c) Magnetograms observed at the first order geomagnetic stations

Figure 2-2 (e) Magnetograms observed at the first order geomagnetic stations

Figure 3-1 A flow chart of the analysis

	MMB		MIZ				KNZ			KNY			
	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	
128 min	. 91	. 87	. 10	. 95	. 95	. 16	. 99	. 98	. 95	. 94	. 82	. 63	
64 min	. 91	. 89	. 11	. 95	. 95	. 19	. 99	. 98	. 95	. 94	. 85	. 67	
32 min	. 85	. 94	. 14	. 98	. 98	. 05	. 98	. 97	. 92	. 94	. 88	. 65	
16 min	. 88	. 94	. 03	. 99	. 98	. 11	. 98	. 92	. 83	. 97	. 92	. 76	
8 min	. 86	. 96	. 09	. 98	. 98	. 31	. 94	. 79	. 48	. 95	. 94	. 73	
4 min	. 90	. 88	. 02	. 93	. 86	. 28	. 53	. 26	. 06	. 93	. 82	. 53	

Table 3-1Coherency squared of each component between KAK and each observatory
(June 1993)

Figure 3-2 Standard deviations of the transfer function A and B at Kakioka according to stacking number in 1989

Figure 3-3 Standard deviations of the transfer function A and B at each observatory. Each transfer function was calculated from 40 hour data (5 stacking).

Figure 4-1 (a) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-1 (b) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-1 (c) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-1 (d) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-1 (e) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-1 (f) Single-station induction arrows The thick line with a large arrowhead shows a real part (Au and Bu) and the thin line with a small arrowhead shows an imaginary part (Av and Bv).

Figure 4-2 (a) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-2 (b) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-2 (c) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-2 (d) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-2 (e) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-2 (f) Observed remote reference induction arrows. The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-3 (a)-(d) Frequency dependence of the transfer functions at observatories

-

Figure 4-3 (e)-(g) Frequency dependence of the transfer functions at observatories (h) Average frequency responce of the transfer function at all stations and observatories

Figure 4-4 (a) Expression of horizontal transfer functions
(b) Anomalous ellipse of the horizontal transfer function
Thick line of the ellipse shows |s|>1 and broken line shows |s|<1.
(c) Schematic explanation of normal and anomalous field and current

Figure 4-5 (a) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-5 (b) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-5 (c) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-5 (d) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-5 (e) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-5 (f) Observed anomalous ellipses of horizontal transfer functions (real part)

Figure 4-6 (a) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Figure 4-6 (b) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Figure 4-6 (c) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Figure 4-6 (d) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Figure 4-6 (e) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Figure 4-6 (f) Observed anomalous ellipses of horizontal transfer functions (imaginary part)

Table 4-1 Observed interstation geomagnetic transfer functions at the first order geomagnetic stations and geomagnetic observatories in Japan

140	
128	min

	Lat	, Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
1	31.237	130.108	. 979	. 054	104	083	. 053	. 053	. 033	056	. 976	015	. 171	. 021	. 560	197	- 133	086	063	021
2	33.250	130.185	1.124	. 086	039	015	. 089	. 092	. 037	. 083	1.011	. 093	. 104	. 108	. 091	. 013	. 085	037	065	067
3	35.246	133. 598	1.133	. 000	090	. 037	. 049	. 053	. 081	016	1.143	. 005	. 048	. 052	054	- 116	100	071	056	060
4	33.566	133. 393	1.122	. 003	050	. 001	. 018	. 015	. 126	017	1.050	. 028	. 093	. 017	. 218	- 015	- 085	- 020	017	017
5	35.247	135.594	1.047	. 014	. 001	002	. 119	. 107	025	097	. 913	. 090	. 174	157	229	- 058	143	011	200	1.81
6	34.593	137.565	1.105	. 004	. 104	. 035	. 022	. 027	006	. 040	1.076	. 038	. 072	. 032	465	- 017	- 171	070	. 200	033
7	36.521	136.552	1.131	. 092	. 001	. 031	. 057	. 045	. 108	. 015	1.144	. 047	. 049	. 038	. 117	076	025	066	0.002	068
8	38.013	139.289	1.044	. 000	. 013	. 007	. 041	. 050	. 002	034	. 994	. 016	. 035	. 042	092	- 111	- 029	102	075	. 008
12	45.254	141.027	1.256	. 143	125	224	. 185	. 215	079	. 087	1.220	. 008	. 145	. 168	345	- 082	327	221	. 010	115
13	44.420	142.023	1.301	061	157	. 059	. 086	. 091	167	007	1.244	. 091	. 184	. 088	- 289	- 060	244	290	058	082
15	43.504	141.355	1.306	003	061	051	. 239	. 236	. 165	. 371	1.046	. 131	. 338	. 333	. 060	- 154	451	252	219	216
18	43.162	140.347	1.240	. 055	097	002	. 080	. 081	138	088	1.095	. 027	. 118	. 061	526	- 229	453	262	070	072
19	43.046	141.510	1.346	. 056	058	111	. 070	. 091	. 421	. 182	1.423	. 042	. 134	. 107	. 273	149	467	267	055	087
20	42.592	143.201	1.086	. 056	077	. 026	. 094	. 135	058	020	1.210	. 487	. 170	. 129	. 223	. 045	070	300	086	103
22	42.318	142.139	1.085	019	. 061	044	. 085	. 103	. 471	. 296	1.456	. 155	. 157	. 122	. 414	. 165	231	237	055	077
23	42.309	140.558	. 628	. 091	. 219	027	. 208	. 304	103	. 051	. 885	. 276	. 128	. 187	. 027	040	416	025	149	218
25	42.242	140.007	1.185	. 093	. 053	. 125	. 052	. 057	058	. 025	1.104	. 031	. 070	. 040	185	. 026	438	358	049	045
26	41.574	140.556	1.232	. 185	113	015	. 044	. 040	038	. 147	1.080	. 002	. 117	. 030	- 794	- 424	- 222	038	066	0.97
27	41.199	141.223	1.005	030	. 210	. 110	. 129	. 186	. 039	038	. 881	. 027	. 102	148	- 766	- 206	- 538	222	126	1.81
28	40.237	141.376	1.008	034	026	. 193	. 070	. 053	126	075	. 907	032	. 058	. 028	- 478	- 338	- 553	011	073	047
29	40.184	140.223	1.149	. 049	. 121	015	. 044	. 050	147	006	. 935	. 012	. 122	. 035	337	- 236	- 100	057	049	034
30	39.345	141.575	1.002	031	. 019	. 011	. 056	. 049	078	. 073	. 996	057	. 048	. 042	094	- 173	- 641	- 053	120	105
32	39.072	140.386	. 728	. 055	051	. 099	. 209	. 184	183	. 025	. 906	. 056	. 111	. 098	- 148	- 047	009	067	221	195
																			· 441	. 150

Table 4-1 (continued.)

128 min

Lat Cv Lon Cu Du Dv ErrC ErrD Eu Fu Ev ErrE ErrF Fv Au Av Bu ErrA ErrB Bv 0 1 。, 33 38. 293 141. 111 1. 056 -. 007 . 062 . 055 . 034 . 166 -. 071 1. 095 . 030 . 049 . 124 . 030 . 279 . 074 -. 191 . 082 . 044 . 030 38. 508 139. 476 . 816 . 100 -. 080 . 042 . 101 . 104 -. 001 . 012 1. 050 . 080 . 058 . 044 -. 084 -. 099 -. 013 -. 006 . 084 34 . 083 38. 180 140. 131 1. 087 . 062 -. 074 . 069 . 137 . 162 . 014 . 045 1. 126 . 056 . 082 . 097 . 058 -. 031 -. 258 . 204 . 166 35 . 196 37. 226 139. 495 1. 034 . 029 . 025 . 024 . 012 . 016 . 016 -. 006 1. 063 . 021 . 041 . 013 . 235 -. 046 -. 112 . 088 . 026 36 . 011 37. 307 138. 398 . 898 . 096 . 080 . 165 . 149 . 068 . 078 -. 226 1. 084 . 056 . 105 . 047 . 063 -. 189 . 165 . 108 . 313 37 . 141 37. 052 138. 463 1. 045 -. 056 . 011 -. 191 39 . 120 . 140 . 055 . 069 1. 153 . 089 . 191 . 223 . 363 . 070 . 148 . 251 . 202 . 236 40 36. 503 140. 145 1. 004 -. 006 . 033 . 033 . 024 . 034 . 032 . 037 1. 026 . 017 . 019 . 026 . 666 . 184 - 080 . 066 . 096 . 135 36. 125 138. 552 1. 080 -. 007 . 087 . 033 . 110 . 162 . 187 . 056 . 942 . 122 . 106 . 157 -. 153 -. 025 . 486 . 173 . 184 41 . 273 35. 474 140. 352 1. 062 . 132 . 065 -. 022 . 049 . 080 -. 129 -. 087 1. 039 . 065 . 042 . 070 . 942 . 140 -. 397 . 095 42 . 119 . 196 35. 263 136. 588 1. 133 . 019 . 160 -. 087 . 106 . 094 -. 011 . 064 1. 203 . 041 . 094 . 084 . 198 -. 028 -. 111 . 173 . 128 45 . 114 33. 456 135. 283 1. 025 -. 029 -. 057 . 011 . 021 . 026 . 010 . 013 . 953 -. 060 . 027 . 033 . 615 . 177 -. 082 . 054 . 037 47 . 044 34. 223 135. 422 1. 007 -. 048 . 030 -. 074 . 084 . 069 . 010 . 085 . 911 . 007 . 067 . 055 . 321 -. 099 . 028 . 124 48 . 147 . 122 38.009 138.272 .864 .008 -.084 .110 .109 .075 .201 .034 1.024 -.078 .111 .077 -.110 -.007 .231 .242 50 . 106 . 073 35. 446 138. 377 1. 135 . 006 . 109 . 091 . 044 . 047 . 089 . 054 1. 142 . 128 . 046 . 049 . 314 . 037 - 060 . 123 51 . 115 . 123 35. 540 137. 192 1. 060 . 025 . 059 . 059 . 075 . 084 . 026 -. 083 1. 131 -. 031 . 084 . 094 . 254 . 046 -. 001 . 189 53 . 097 . 108 36. 117 136. 181 1. 152 -. 008 . 073 . 152 . 045 . 079 . 072 -. 043 1. 070 . 083 . 071 55 . 124 . 096 -. 163 . 004 . 227 . 065 . 114 34. 579 134. 497 1. 147 . 065 . 124 . 014 . 054 . 056 . 050 -. 018 1. 003 . 073 . 092 57 . 095 . 104 . 009 -. 088 . 060 . 093 . 096 35. 248 134. 187 1. 098 . 021 . 015 -. 013 . 027 . 035 . 017 -. 068 1. 037 -. 019 . 135 58 .045 .053 -.145 .097 .078 . 029 . 032 34. 467 133. 474 1. 095 . 017 -. 080 . 069 . 060 . 059 -. 003 -. 040 1. 026 . 029 . 074 59 . 073 . 090 -. 098 -. 001 . 050 . 059 . 059 34. 536 132. 101 1. 146 . 045 -. 127 -. 076 . 049 . 070 -. 031 -. 009 1. 087 . 070 . 065 61 . 092 . 071 -. 205 . 126 . 346 . 090 . 128 34. 296 132. 194 1. 157 -. 051 -. 041 -. 028 . 035 . 051 . 021 . 039 1. 097 . 135 . 042 . 062 . 051 -. 095 . 184 . 244 . 049 . 072 62 34. 174 131. 253 1. 113 . 002 -. 158 -. 009 . 026 . 027 . 036 . 026 1. 118 . 027 . 065 . 043 -. 086 -. 175 . 198 . 159 . 034 . 037 63 64 32.513 129.451 1.242 .085 -.182 -.004 .027 .029 .056 -.055 1.100 -.008 .090 .036 .237 .040 .168 .104 .021 .026

No. 610 1	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	à Au	Av	Bu	Bv	ErrA	ErrB
65	32.490	130.396	1.134	. 068	176	031	. 058	. 091	. 001	047	1.155	. 007	. 092	. 143	. 217	010	178	134	046	072
66	32.156	130.466	1.281	. 047	191	. 037	. 108	. 118	027	. 003	1.092	030	. 148	. 163	. 450	. 015	012	107	092	101
67	31.516	131.176	1.204	. 071	. 077	. 040	. 069	. 085	. 015	. 064	1.073	233	. 098	. 120	476	039	052	006	084	103
68	32.557	131.525	1.166	064	156	. 063	. 078	. 051	. 070	041	1.070	002	. 073	047	183	030	- 108	- 000	044	020
70	33.263	132.382	1.182	. 050	070	. 023	. 055	. 060	. 018	015	. 973	031	044	049	290	024	055	003	043	047
71	33. 385	133.488	1.043	014	058	021	. 060	. 067	. 059	. 090	1.210	. 019	052	059	314	004	- 018	194	055	0.61
72	32.484	132.456	1.122	028	175	011	. 088	. 143	. 130	. 063	. 883	- 115	099	160	463	158	- 008	006	0.000	126
73	33. 359	134.220	1.033	. 017	096	027	. 046	. 061	. 038	. 005	1. 023	. 006	. 044	059	367	033	- 174	- 067	046	. 130
74	34.172	134.408	1.120	038	045	008	. 064	. 068	. 042	. 045	1.057	- 017	074	079	292	- 045	- 020	035	070	074
76	43.098	142.364	1.149	. 065	. 000	. 010	. 271	. 161	. 005	039	1. 182	- 073	136	081	167	193	114	268	200	110
78	43.380	145.102	1.170	. 116	081	100	. 153	. 127	133	. 050	1.674	280	136	113	054	- 043	- 632	- 067	. 200	. 115
80	41.267	140.086	1.188	. 246	. 129	. 058	. 070	. 085	155	. 014	. 936	- 046	086	070	022	181	.032 971	201	072	076
81	40.418	140.069	1.113	. 105	035	023	. 137	. 205 -	002	014	1.041	043	114	170	- 666	- 419	187	205	120	170
85	30.440	131.040	. 921	. 001	151	024	. 048	. 075	. 054	016	849	015	075	118	. 000	019	- 141	. 200	. 120	. 1 (9
87	36.115	133.135	1.027	234	. 178	106	. 215	. 166 -	- 225	- 371	1 012	- 120	297	176	051	-0.47	. 141	. 025	120	102
88	35.351	138.039	1.176	160	062	. 146	. 111	. 062	. 174	056	940	028	. 221	055	224	116	- 083	. 019	125	. 102
89	33.199	129.386	1.247	. 147	255	060	. 080	. 056	. 018	- 095	1 274	094	097	068	116	- 134	. 000	126	. 100	. 010
90	34.564	133.122	1.101	. 002	051	088	. 061	. 091	103	004	1 028	078	054	0.000	025	- 1/2	. 222	. 120	. 019	. 000
91	43.122	145.045	. 791	. 382	. 238	. 650	261	. 2.4.4 -	- 261	- 012	565	376	214	200	064	. 145	- 109	. 007	. 040	. 012
92	35.570	136.290	1.131	. 012	. 079	. 004	. 035	045	027	- 046	1 140	056	053	067	033	- 110	- 002	. 004	. 201	. 230
94	34.553	139.539	1.241	. 053	. 069	. 027	054	101	162	- 152	935	146	062	118	1 006	. 110	002 990	. 000	. 091	. 110
96	35. 322	139.053	1.021	. 013	. 083	. 080	. 032	. 047	114	024	1 106	070	040	. 110	1.000	. 104 - 099	. 449 947	-, 000	. 004	. 120
97	36.286	139.299	1.046	. 093	014	. 034	. 083	093	027	007	995	- 025	051	057	, 440 269	. 040	. 447	. 124	. 000	120
												. 0 4 0	. 001	. 001	. 002	. 111	. 100	. 101	. 110	. 190

	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
101	34.070	139.307	1.242	. 065	055	035	. 014	. 018	130	052	. 990	. 042	014	019	405	- 069	- 269	033	024	032
103	34.417	138.097	1.140	. 128	009	015	. 044	.072	. 069	045	1.100	. 076	047	077	523	155	- 558	010	024	130
104	34.399	137.134	1.142	. 023	. 145	009	. 082	. 084	. 012	. 002	1.060	. 042	. 070	. 072	357	119	- 179	028	073	075
917	34.575	139.068	1.146	. 029	. 133	. 035	. 011	. 015	. 095	. 023	1. 084	. 038	026	014	814	157	- 400	-0.72	048	015
201	35.152	139.575	1.188	. 123	002	008	. 014	. 017	003	050	1.125	. 075	010	012	773	028	- 222	118	025	030
202	39.065	141.124	1.000	047	. 001	. 019	. 017	. 020	074	015	1.030	032	013	015	064	- 041	- 239	107	021	0.24
203	36.061	140.055	1.021	. 034	. 004	. 006	. 006	. 007	. 022	. 011	1.004	. 011	002	002	704	146	- 153	085	021	024
204	31.252	130.529	1.087	. 044	168	007	. 017	. 017	. 091	050	1.039	001	022	022	560	090	006	080.	015	015
205	43.545	144.116	1.373	. 087	042	135	. 024	. 024	252	035	1. 415	124	022	022	112	003	- 319	- 031	. 010	. 010
206	34.440	138.480	1.188	. 021	. 142	. 051	. 016	. 018	. 056	. 022	1. 069	. 014	017	018	912	179	- 261	030	022	027
208	34.370	138.110	1.213	. 109	. 006	021	. 016	. 019	012	029	1.092	. 058	018	021	645	147	- 385	- 044	0.007	0.21
209	36.041	138.266	1.137	. 030	. 087	. 060	. 009	. 011	. 077	. 030	1. 166	. 077	. 015	. 017	. 223	065	. 015	. 128	. 027	. 026

	Lat Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
1	31. 237 130. 108	1.075	. 002	034	029	. 039	. 034	003	053	. 996	. 012	. 148	. 025	. 619	143	- 110	060	043	027
2	33. 250 130. 185	1.101	. 078	067	022	. 087	. 101	. 060	. 048	1.056	. 108	. 104	. 121	. 078	015	. 110	042	075	088
3	35.246 133.598	1.129	011	069	. 048	. 045	. 050	. 052	022	1.150	027	. 049	. 054	056	- 172	109	103	044	050
4	33.566 133.393	1.104	003	069	. 010	. 016	. 014	. 102	024	1.054	. 041	. 073	. 017	. 205	031	- 091	- 017	017	017
5	35. 247 135. 594	1.006	. 062	. 075	. 047	. 100	. 086	. 044	. 010	1.078	. 063	. 161	. 138	. 227	068	. 111	059	175	150
6	34.593 137.565	1.104	006	. 111	. 028	. 017	. 020	. 055	. 001	1.085	. 036	. 054	. 031	. 420	006	215	038	041	033
7	36. 521 136. 552	1.152	. 080	. 005	. 019	. 045	. 034	. 081	. 024	1.135	. 009	. 040	. 030	. 064	. 007	032	040	075	056
8	38.013 139.289	1.040	002	. 023	. 003	. 034	. 041	. 019	015	. 986	. 008	. 035	. 042	. 054	123	. 019	101	068	080
12	45.254 141.027	1.331	. 021	048	236	. 150	. 190	009	. 074	1.266	. 042	. 121	. 153	373	081	. 372	236	075	095
13	44.420 142.023	1.424	. 020	320	. 034	. 082	. 097	218	. 007	1.233	. 136	. 180	. 098	291	108	. 271	403	049	079
15	43.504 141.355	1.336	. 062	142	. 018	. 212	. 193	. 193	. 275	1.015	. 052	. 229	. 208	031	096	. 360	. 336	153	139
18	43.162 140.347	1.246	. 067	059	034	. 082	. 071	189	015	1.163	. 016	. 137	. 053	545	235	. 459	. 276	. 070	061
19	43.046 141.510	1. 332	. 059	051	088	. 057	. 075	. 386	. 209	1.430	. 075	. 111	. 093	. 299	. 116	. 435	. 314	044	072
20	42.592 143.201	1.255	. 044	119	025	. 077	. 110	. 083	044	1.187	. 284	. 150	. 118	. 276	. 003	. 032	. 270	. 063	085
22	42.318 142.139	1.096	035	. 140	031	. 066	. 087	. 471	. 115	1.532	. 110	. 091	. 092	. 424	. 079	. 338	. 241	039	065
23	42.309 140.558	. 771	068	. 173	095	. 232	. 276	158	031	. 857	. 201	. 170	. 202	040	067	. 393	016	. 187	. 222
25	42.242 140.007	1.293	. 087	. 022	. 061	. 047	. 050	087	. 008	1.126	008	. 067	. 036	224	. 036	. 479	389	038	033
26	41. 574 140. 556	1. 238	. 180	052	025	. 042	. 044	021	002	1.080	. 011	. 123	. 031	924 -	480	285	. 065	. 063	027
27	41.199 141.223	1.070	. 000	. 075	013	. 121	. 181	027	009	. 859	. 041	. 101	. 151	783 -	273	- 476	186	119	178
28	40.237 141.376	. 997	033	042	. 104	. 077	. 055	133	081	. 924	034	. 053	. 026	636 -	358	582	. 011	063	045
29	40. 184 140. 223	1.192	. 050	. 086	. 048	. 042	. 046	144	055	. 976	. 025	. 154	. 036	354 -	219	086	097	041	036
30	39. 345 141. 575	1.005	060	. 040	. 020	. 046	. 044	077	. 037	. 989	039	. 043	. 042	. 045 -	190	617	- 105	102	097
32	39.072 140.386	. 875	. 095	. 019	. 007	. 176	. 153	122	. 024	. 914	. 039	. 126	. 109	105 -	120	024	. 037	. 169	. 147
19 20 22 23 25 26 27 28 29 30 32	43. 046141. 51042. 592143. 20142. 318142. 13942. 309140. 55842. 242140. 00741. 574140. 55641. 199141. 22340. 237141. 37640. 184140. 22339. 345141. 57539. 072140. 386	1. 332 1. 255 1. 096 . 771 1. 293 1. 238 1. 070 . 997 1. 192 1. 005 . 875	. 059 . 044 035 068 . 087 . 180 . 000 033 . 050 060 . 095	051 119 . 140 . 173 . 022 052 . 075 042 . 086 . 040 . 019	088 025 031 095 . 061 025 013 . 104 . 048 . 020 . 007	. 057 . 057 . 077 . 066 . 232 . 047 . 042 . 121 . 077 . 042 . 046 . 176	. 075 . 110 . 087 . 276 . 050 . 044 . 181 . 055 . 046 . 044 . 153	. 103 . 386 . 083 . 471 158 087 021 027 133 144 077 122	. 209 044 . 115 031 . 008 002 009 081 055 . 037 . 024	1. 103 1. 430 1. 187 1. 532 . 857 1. 126 1. 080 . 859 . 924 . 976 . 989 . 914	. 010 . 075 . 284 . 110 . 201 008 . 011 . 041 034 . 025 039 . 039	. 131 . 111 . 150 . 091 . 170 . 067 . 123 . 101 . 053 . 154 . 043 . 126	. 093 . 093 . 118 . 092 . 202 . 036 . 031 . 151 . 026 . 036 . 042 . 109	343 . 299 . 276 . 424 040 224 924 783 636 354 . 045 105	235 . 116 . 003 . 079 067 . 036 480 273 273 358 219 190 120	. 439 . 435 . 032 . 338 . 393 . 479 285 476 582 086 617 024	. 276 . 314 . 270 . 241 016 . 389 . 065 . 186 . 011 . 097 105 . 037	. 070 . 044 . 063 . 039 . 187 . 038 . 063 . 119 . 063 . 041 . 102 . 169	. 06 . 07 . 08 . 06 . 22 . 03 . 02 . 17 . 04 . 03 . 09 . 14

	Lat Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
33	38. 293 141. 111	1.085	. 027	. 042	. 040	. 028	. 033	. 131	. 021	1.077	. 041	. 136	. 031	296	057	- 220	114	038	027
34	38. 508 139. 476	. 688	. 099	. 035	. 089	. 113	. 124	019	. 030	1.044	.079	. 053	. 045	- 035	- 180	- 079	039	0.000	0.82
35	38. 180 140. 131	1.090	. 008	026	. 055	. 097	. 134	026	. 068	1.074	. 064	. 059	. 082	033	- 095	- 204	144	117	161
36	37. 226 139. 495	1.044	. 037	. 013	. 027	. 010	. 013	. 016	. 005	1.062	. 028	. 035	. 011	210	- 056	- 107	126	010	010
37	37. 307 138. 398	1.040	. 016	. 087	. 104	. 126	. 066	. 069	143	1.094	. 051	. 114	059	097	- 193	146	136	251	121
39	37.052 138.463	1.089	004	. 074	095	. 124	. 150	. 000	. 075	1. 192	. 035	. 172	209	254	047	161	205	149	179
40	36. 503 140. 145	. 999	. 001	. 007	. 014	. 019	. 027	. 035	. 041	1.033	. 009	. 016	022	634	171	- 133	101	. 142	190
42	35.474 140.352	1.101	. 158	. 034	032	. 040	. 047	156	127	1.058	. 088	048	057	889	109	- 430	107	115	126
45	35. 263 136. 588	1.060	. 015	. 102	027	. 088	. 069	043	. 093	1.127	. 033	085	067	222	- 086	- 030	155	102	. 130
47	33. 456 135. 283	1.024	043	057	006	. 024	. 025	. 018	. 003	. 940	068	026	027	630	163	- 064	. 100	032	. 000
48	34. 223 135. 422	1.029	074	. 088	005	. 071	. 071	. 017	. 067	967	015	065	066	340	- 123	- 059	. 004	197	190
50	38.009 138.272	1.025	008	064	. 055	. 083	. 074	. 060	. 016	1.018	- 027	075	067	- 032	- 062	106	100	. 127	. 120
51	35.446 138.377	1.121	. 005	. 116	. 103	. 039	. 041	. 119	. 045	1. 150	122	050	052	251	- 062	- 074	. 155	120	. 070
53	35. 540 137. 192	1.044	. 001	. 089	. 048	. 064	. 079	. 062	- 037	1 114	042	085	104	1/9	- 050	099	120	. 120	. 120
55	36. 117 136. 181	1.139	. 018	. 056	. 136	. 032	. 067	. 039	045	1. 083	084	062	129	- 003	- 185	. 022	107	. 000	. 100
57	34.579 134.497	1.121	. 011	. 089	. 032	. 053	. 060	. 046	~. 013	1 035	0.31	077	0.87	0.85	- 030	- 103	. 151	. 040	. 094
58	35. 248 134. 187	1.098	. 007	. 003	014	. 029	. 033	. 035	- 068	1 082	- 020	120	041	012	- 160	. 103	. 000	. 072	. 001
59	34.467 133.474	1.101	019	105	. 032	. 041	. 051	- 021	- 039	1.022	011	064	078	. 012	-191	. 004	. 072	. 031	. 030
61	34. 536 132. 101	1.112	. 043	076	049	. 067	071	- 073	- 008	1.022	- 002	089	073	. 000	- 265	201	. 001	. 039	. 048
62	34. 296 132. 194	1.129	057	074	019	. 038	055	034	042	1.000	126	041	. 015	035	-195	. 201	. 209	. 100	. 111
63	34. 174 131. 253	1.110	005	- 149	- 008	024	027	022	001	1.031	0.21	071	. 000	. 000	120	. 100	. 195	. 033	. 048
64	32. 513 129. 451	1.234	. 055	188	004	026	026	- 049	- 076	1 1 2 2	- 010	078	. 043	. UOD 914	100	. 191	. 10/	. 027	. 032
65	32. 490 130. 396	1.146	. 031	- 172	- 012	047	089	001	- 049	1.167	047	061	117	. 414	. 030	. 1 (1 197	. 102	. UI /	. 025
									. 010	1.101	. 071	. 001	. 11(. 419	016	. 137	. 134	. 029	. 055

	Lat Lon Cu	Cv	Du Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
66	32.156 130.466 1.195	. 062	180 . 071	. 086	. 098 -	008	012	1.127	023	. 132	150	436	- 026	019	101	077	0.87
67	31. 516 131. 176 1. 182	. 108	. 085 . 030	. 063	. 077	. 034	. 049	1.009	201	. 082	100	481	064	066	019	088	106
68	32. 557 131. 525 1. 104	049	138 . 066	. 071	. 053	. 069	071	1.025	001	081	060	151	- 022	- 107	- 009	040	030
70	33. 263 132. 382 1. 175	. 030	052 005	. 054	. 052	. 046	003	. 966	- 016	053	051	256	- 017	032	. 005	040	. 030
71	33. 385 133. 488 1. 049	016	054 049	. 051	. 053	. 048	. 060	1. 182	. 063	060	062	321	- 004	- 037	061	. 040	. 039
72	32. 484 132. 456 1. 062	024	187 015	. 075	. 108	. 109	. 059	889	- 095	084	121	453	129	- 044	- 000	. 005	. 001
73	33. 359 134. 220 1. 074	. 004	076 . 017	. 047	. 063	. 061	. 006	1.030	- 019	050	067	357	036	- 210	- 058	. 003	. 095
74	34. 172 134. 408 1. 102	052	031 . 011	. 054	. 054	. 067	. 048	1.065	- 011	077	076	287	- 052	- 051	. 000	. 040	. 001
76	43.098 142.364 1.137	. 043	089 128	. 208	. 174 -	001	034	1. 181	- 045	102	086	180	0.002	106	266	. 000	105
78	43. 380 145. 102 1. 242	. 066	074 057	. 127	. 105 -	093	. 038	1.666	358	123	102	0.21	- 075	- 586	- 044	. 120	. 105
80	41. 267 140. 086 1. 284	. 102	. 126 . 069	. 079	. 079 -	159	006	938	- 006	100	065	076	202	. 000 909	. 044	. 000	. 010
81	40. 418 140. 069 1. 193	. 077	. 020 . 031	. 081	. 136 -	022	003	988	035	084	141	-714	- 466	147	. 212 204	. 010	. 000
85	30. 440 131. 040 . 943	. 004	151 023	. 050	. 071	. 058	005	834	- 001	070	000	453	- 011	- 175	. 204	. 070	. 127
87	36. 115 133. 135 1. 130	016	. 048 157	. 156	. 127 -	- 080	- 179	1 027	- 138	177	145	- 001	- 070	204	. 007	101	. 013
88	35. 351 138. 039 1. 135	058	. 039 . 076	. 099	. 068	100	- 028	1 017	007		064	208	068	- 082	. 000	. 101	. 003
89	33. 199 129. 386 1. 261	. 127	231 068	. 070	. 065 -	- 001	- 084	1 248	123	0.87	081	101	- 191	. 002	. 024	. 114	. 019
90	34. 564 133. 122 1. 102	007	045 036	. 058	075	104	- 010	1.067	012	073	. 001	. 101	- 146	. 219	. 102	. 000	. 000
91	43.122 145.045 .875	. 148	. 186 . 496	242	291 -	- 067	092	612	347	187	. 000 995	072	. 140	. 117	. UOZ	. 039	. 001
92	35. 570 136. 290 1. 138	. 022	. 060 . 002	038	043	025	- 008	1 179	061	051	. 220	012	. 022	007	. 009	. 195	. 234
94	34. 553 139. 539 1. 241	. 107	. 046 - 025	. 000	078	091	- 135	975	. 001	078	190	1 040	200	. 003	. 120	. 005	. 074
96	35. 322 139. 053 1. 031	. 007	. 073 . 063	024	033	129	035	1 101	047	. 010	044	1.049	. 102	244	009	. 001	. 099
97	36. 286 139. 299 1. 062	. 047	. 016 . 020	083	082	027	046	1 003	001	068	067	. 440 297	020	233	. 100	. 070	. 095
101	34,070 139, 307 1,248	056	-0.72 - 0.24	015	018 -	- 146	- 056	1 003	030	. 000	. 007	. 044 977	195	. 112	. 140	. 150	. 147
		. 000	, ULT , ULT	. 010	, 010	. 140	. 000	1.000	. 000	. 010	. 010	. 311	135	274	. 074	. 026	. 030

Table 4-1 (continued.)

A	
6/1	233 1 23
10-1	

	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
103	34.417	138.097	1.178	. 122	. 057	007	. 037	. 044	. 002	035	1.063	. 064	. 046	. 055	. 604	134	- 414	- 026	077	092
104	34.399	137.134	1.130	021	. 112	. 057	. 075	. 086	. 028	. 018	1.053	. 027	. 064	. 072	. 393	. 067	235	011	063	072
917	34.575	139.068	1.151	. 027	. 134	. 041	. 012	. 014	. 098	. 013	1.086	. 040	. 025	. 011	. 856	. 144	446	- 097	043	013
201	35.152	139.575	1.202	. 130	003	019	. 012	. 014	009	067	1.137	. 095	. 010	. 011	. 785	042	230	. 131	. 021	025
202	39.065	141.124	1.003	061	. 009	. 018	. 015	. 017	076	017	1.029	043	. 011	. 013	. 047	052	242	. 115	. 017	020
203	36.061	140.055	1.023	. 036	. 003	. 002	. 004	. 005	. 024	. 012	1.005	. 014	. 002	. 002	. 723	. 137	159	. 099	. 019	. 022
204	31. 252	130.529	1.082	. 050	178	. 013	. 015	. 015	. 097	069	1.031	007	. 021	. 020	. 569	. 075	. 001	. 067	. 012	. 012
205	43. 545	144. 116	1.415	. 044	086	168	. 023	.022	272	033	1.464	. 145	. 021	. 021	. 106	008	332	060	. 011	. 011
206	34. 440	138.480	1.189	007	. 158	. 050	. 014	. 016	. 054	. 022	1.078	. 009	. 013	. 015	. 940	. 146	291	. 023	. 028	. 031
208	34. 370	138.110	1.226	. 110	. 017	039	. 014	. 016	019	036	1.106	. 071	. 016	. 019	. 667	. 127	427	065	. 023	. 027
Z09	36.041	138.266	1.142	. 027	. 097	. 056	. 008	. 009	. 082	. 034	1.184	. 090	. 013	. 016	. 214	102	. 002	. 130	. 019	. 022

Table 4-1 (continued.)

	Lat ,	Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
1	31.237	130.108 1	. 038	018	. 002	. 006	. 027	. 025	. 109	. 003	. 921	087	. 112	. 038	. 591	. 013	. 135	092	037	034
2	33.250	130.185 1	. 122	006	070	015	. 072	. 069	. 006	. 048	1.148	048	. 135	. 129	. 034	029	238	041	051	049
3	35.246	133.598 1	. 144	044	. 001	. 024	. 041	. 055	001	. 014	1.131	144	. 037	. 050	175	213	145	047	036	049
4	33.566	133.393 1	. 085	. 001	052	. 017	. 015	. 014	. 091	080	1.070	008	. 065	. 018	. 155	032	081	- 013	012	015
6	34.593	137.565 1	. 080	064	. 157	. 006	. 021	. 019	. 110	028	1.159	. 005	. 053	. 024	. 375	054	- 268	- 018	032	027
7	36.521	136.552 1	. 186	. 064	001	039	. 032	. 029	. 113	003	1.141	058	. 043	. 040	. 007	. 063	. 019	- 060	068	062
8	38.013	139.289 1	. 080	007	. 050	. 015	. 032	. 030	015	029	. 989	007	. 035	. 032	006	- 112	074	173	063	058
12	45.254	141.027 1	. 412	158	. 041	201	. 114	. 105	. 068	. 011	1.409	. 032	. 092	. 085	405	- 024	513	114	050	046
13	44.420	142.023 1	. 464	028	295	. 042	. 057	. 059	220	108	1.327	. 160	. 112	. 056	- 377	- 073	457	276	034	044
14	44.120	143.025 1	. 202	076	220	. 062	. 220	. 294	. 112	003	. 863	. 294	. 181	242	- 092	- 069	- 029	006	191	255
15	43.504	141.355 1	. 459	057	245	. 013	. 065	. 080	. 129	. 068	1.120	. 117	. 113	072	- 288	- 053	451	200	053	056
18	43.162	140.347 1	. 402	096	080	. 007	. 057	. 031	090	. 032	1. 194	070	. 087	. 023	- 825	- 087	634	131	047	031
19	43.046	141.510 1	. 464	074	018	. 001	. 048	. 061	. 404	052	1. 504	. 263	. 088	. 063	315	011	589	293	038	053
20	42.592	143.201 1	. 199	045	130	045	. 034	. 055	. 167	011	1. 372	. 145	072	060	264	- 005	176	191	030	044
22	42.318	142.139 1	. 110	020	059	. 038	. 057	. 099	. 409	067	1. 520	. 157	080	097	441	001	419	197	. 000	062
23	42.309	140.558 1	. 211	103	. 171	. 070	. 144	. 148 -	054	077	1.135	. 045	. 151	156	036	014	384	100	143	147
25	42.242	140.007 1	. 406	037	. 045	010	. 024	. 031 -	078	019	1.132	048	. 056	. 025	- 207	097	761	268	023	020
26	41.574	140.556 1.	. 358	066	. 023	014	. 032	. 037 -	094	091	1.077	015	. 057	022-	1 336	- 125	- 307	- 002	040	020
27	41.199	141.223 1.	. 204	038	. 022	018	. 085	. 110 -	124	. 021	1.030	018	071	092-	1 091	- 206	- 419	050	078	101
28	40.237	141.376 1.	. 005	057	058	. 040	. 052	. 041 -	150	034	. 921	015	041	022	- 892	- 330	- 479	030	046	034
29	40.184	140.223 1.	. 246	. 051	. 022	. 004	. 023	. 031 -	209	044	961	040	107	026	- 469	- 084	000	127	020	0.004
30	39.345	141.575	. 965	093	. 004	. 005	. 031	. 038 -	113	. 013	. 924	034	027	032	- 203	- 150	- 646	- 092	067	0.81
32	39.072	140.386 1.	089	008	. 005	. 040	. 069	. 089 -	057	020	. 996	. 040	. 058	. 075 -	174	057	087	. 118	. 079	. 102

Table 4-1 (continued.)

32 min

	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
33	38.293	141.111 1	. 140	. 099	. 044	. 014	. 025	. 024	. 194	. 213	1.092	. 038	. 138	018	392	126	- 198	116	0.2.1	017
34	38.508	139.476 1	. 000	. 275	042	113	. 086	. 083	. 075	. 099	1.058	. 009	. 040	030	- 278	- 424	- 040	161	076	077
35	38.180	140.131 1	. 053	009	. 014	006	. 049	. 059	. 003	. 059	1.042	042	036	044	- 091	- 107	- 158	067	051	061
36	37.226	139.495 1	. 035	. 037	. 022	. 019	. 009	. 011	. 029	007	1.059	022	024	010	134	- 091	- 097	115	014	010
37	37.307	138.398 1	. 110	. 116	. 081	002	. 112	. 095	. 085	033	1. 171	042	091	077	043	- 176	207	. 110 910	. 014 945	206
39	37.052	138.463 1	. 136	. 067	. 002	053	. 111	. 141	. 153	. 075	1. 268	059	118	149	145	- 029	243	148	158	200
40	36.503	140.145	. 990	. 012	. 008	. 021	. 016	. 019	. 054	. 026	1. 038	. 029	021	026	635	123	- 084	. 140	. 150	. 200
42	35.474	140.352 1	. 218	. 151	035	056	. 027	. 031 -	268	190	1. 110	088	035	040	735	- 101	- 334	120	. 050	. 003
45	35.263	136.588 1	. 085	023	. 117	. 021	. 075	. 088	. 086	. 052	1. 135	039	055	065	127	- 135	011	0.80	102	191
47	33.456	135.283	. 957	093	030	007	. 028	. 034	. 016	008	. 954	078	031	038	645	. 100	- 057	103	036	043
48	34. 223	135.422 1	. 015	025	. 026	029	. 114	. 106	. 028	. 000	1.079	014	078	074	249	033	- 120	- 031	208	105
50	38.009	138.272 1	. 078	052	010	. 027	. 076	. 054	. 001	013	. 994	064	055	039	004	- 047	126	034	. 200	. 190
51	35.446	138.377 1	. 089	025	. 176	. 063	. 021	. 032	. 130	. 008	1. 181	. 048	. 030	. 047	233	- 113	- 071	137	071	111
53	35.540	137.192 1	. 130	017	. 053	. 032	. 057	. 072	. 077	. 001	1.186	004	. 094	117	085	- 146	- 038	051	065	080
55	36.117	136.181 1	. 123	. 040	. 098	. 060	. 019	. 044	. 032	006	1.100	. 034	. 032	. 073	- 145	- 259	094	119	040	. 000
57	34.579	134.497 1	. 064	082	. 056	014	. 041	. 043	. 009	010	1.135	. 053	. 060	. 062	- 009	- 110	- 102	020	047	048
58	35.248	134.187 1.	. 111	043	. 022	. 024	. 020	. 021	. 047	009	1.127	086	. 049	. 028	- 164	- 200	064	054	023	0.97
59	34.467	133.474 1.	. 070	129	039	. 060	. 027	. 047	. 036	. 042	1.009	076	. 040	. 070	- 043	- 119	079	034	030	054
61	34.536	132.101 1.	. 091	066	025	. 032	. 051	. 047 -	041	. 010	1.123	- 117	. 077	070	- 258	- 234	344	143	067	061
62	34.296	132.194 1.	. 108	086	032	. 035	. 031	. 033 -	017	005	1.068	. 054	. 042	045	- 097	- 136	210	125	0.007	0.26
63	34.174	131.253 1.	. 090	064	007	. 035	. 023	. 026 -	010	085	1. 182	090	. 092	. 047	- 155	- 147	301	. 120	020	025
64	32.513	129.451 1.	. 228	. 003	174	. 044	. 022	. 027 -	159	005	1. 164	- 114	. 054	031	212	026	238	062	. 024	020
65	32.490	130.396 1.	201	. 024	166	066	. 059	. 069 -	126	088	1.083	034	. 100	. 117	. 192	032	. 212	032	025	021
																			. 040	. 040

1

	Lat Lon	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
66	32.156 130.466	1.252	. 042	005	004	. 065	. 044	020	056	1.126	. 006	. 098	066	257	- 107	119	046	066	044
67	31.516 131.176	1.122	. 072	. 012	046	. 066	. 087	087	. 017	1.131	048	076	100	528	- 076	141	- 050	064	085
68	32.557 131.525	1.065	063	050	. 077	. 040	. 037	. 132	. 032	. 998	065	052	048	075	- 105	- 090	- 037	0.004	. 000
70	33. 263 132. 382	1.128	018	025	. 016	. 045	. 056	. 060	. 039	1.011	094	056	070	164	- 045	0.000	0.001	021	. 015
71	33. 385 133. 488	1.046	015	029	. 009	. 040	. 049	012	034	1.109	025	042	051	318	- 035	. 020	066	031	. 030
72	32. 484 132. 456	1.019	146	050	. 098	. 054	. 054	. 029	. 056	. 849	- 123	052	052	504	- 008	- 011	072	053	. 050
73	33. 359 134. 220	1.056	006	028	. 025	. 044	. 044	. 016	. 031	. 977	075	041	042	337	- 033	- 191	- 025	. 000	. 000
74	34. 172 134. 408	1.057	038	. 054	. 013	. 046	. 040	. 027	. 042	1.063	020	051	045	241	-0.027	- 014	023	070	. 034
76	43.098 142.364	1.210	. 000	131	064	. 091	. 108 -	027	067	1. 113	. 102	118	140	084	- 054	254	. 023	. 070	. 002
78	43.380 145.102	1.260	. 066	098	022	. 078	. 074 -	251	069	1.826	358	148	141	054	0.004	- 511	- 006	. 005	. 099
80	41.267 140.086	1.381	. 016	. 083	070	. 052	. 053 -	232	072	1. 036	- 034	064	040	266	270		. 000	. 040	. 044
81	40.418 140.069	1.249	. 003	. 043	058	. 071	. 046 -	027	. 022	1. 032	- 075	050	032	- 963	- 354	146	. 002	. 040	. 040
85	30.440 131.040	1.039	041	073	. 032	. 050	. 046	. 022	013	821	- 081	049	045	. 505	- 224	- 134	. 234 - 039	. 000	. 000
87	36. 115 133. 135	1.181	. 001	050	. 040	. 072	. 071	. 065	025	1 053	- 131	104	103	- 152	048	114	. 052	. 049	. 040
88	35. 351 138. 039	1.142	012	. 156	. 032	. 054	. 052	146	066	1 155	050	079	076	122	- 117	- 910	. 030	. 001	. 000
89	33. 199 129. 386	1.277	015	080	. 022	. 076	. 081 -	- 156	- 034	1 297	000	108	114	- 040	- 191	210	. 070	. 005	. 001
90	34. 564 133. 122	1.056	053	. 030	. 048	052	051	029	030	1 008	- 084	070	060	- 129	. 141	107	. 110	. 041	. 044
91	43.122 145.045	. 879	097	161	. 047	. 090	. 131 -	- 135	- 027	1.106	034	. 010	140	200	- 047	. 197	. 043	. 047	. 040
92	35. 570 136. 290	1.116	. 009	. 095	015	023	028	040	015	1. 100	0.004	050	. 140	. 200	047	. 000	. 210	. 083	. 121
94	34. 553 139. 539	1.375	. 113	081	008	038	081	013	- 043	1.086	023	. 000	. 039	1 029	-, 222	. 020	. 039	. 042	. 050
96	35. 322 139. 053	1.046	011	084	048	036	055	153	099	1.199	044	. 031	. 079	502	200	210	. 100	. 074	. 157
97	36, 286 139, 299	1. 097	. 077	- 032	- 028	107	108	070	. 022	1.122	017	. 000 069	. 001	. 003	114	288	. 053	. 093	. 143
101	34.070 139.307	1. 267	044	- 087	017	017	019 -	- 156	- 030	1.002	. 017	. 002	. 002	. 403	IIU 965	. 039	. 104	. 079	. 079
					. 011	. 011	. 010	. 100	. 000	1. 010	. 004	. 014	. 010	. 208	200	225	. 133	. 027	. 031

32 min

	Lat ,	Lon _,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
103	34.417	138.097	1.202	. 064	. 052	087	. 033	. 035	. 038	085	1.092	. 044	. 053	. 055	. 642	. 111 -	- 436	- 040	073	077
104	34.399	137.134	1.114	020	. 203	. 053	. 102	. 099	. 039	001	1.064	. 011	. 063	. 061	. 448	- 009	- 281	- 020	092	090
917	34.575	139.068	1.171	034	. 159	. 050	. 025	. 025	. 112	018	1.112	. 014	. 023	. 023	. 924	. 008 -	452	- 007	094	092
201	35.152	139.575	1.283	. 127	020	026	. 012	. 014 -	053	099	1.208	. 109	. 012	. 013	. 678	287 -	165	. 174	017	020
202	39.065	141.124	. 988	104	. 012	. 007	. 009	. 011 -	084	008	1.020	070	. 008	. 009	010	006	188	. 148	009	011
203	36.061	140.055	1.038	. 047	. 003	002	. 003	. 003	. 030	. 014	1.009	. 022	. 002	. 002	. 755	. 066 -	118	. 113	012	014
204	31.252	130.529	1.115	. 004	137	. 069	. 016	. 016	. 052	010	1.012	095	. 019	. 018	. 572	054	. 071	. 059	. 009	009
205	43.545	144. 116	1.365	027	221	204	. 028	.028 -	275	028	1.535	. 196	. 023	. 022	. 079	027 -	371	115	. 010	010
206	34.440	138.480	1.187	105	. 223	. 025	. 010	. 011	. 072	010	1.124	049	. 010	. 011	. 964	031 -	314	. 067	027	029
208	34.370	138.110	1.284	. 088	. 022	080	. 010	. 012 -	031	077	1.179	. 060	. 014	. 016	. 674	. 035 -	530	017	. 018	. 021
209	36.041	138.266	1.154	. 004	. 142	. 041	. 007	. 008	. 117	. 017	1.263	. 073	. 010	. 011	. 109	174	. 028	. 113	. 012	. 015

1

16 min

-	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
1	31.237	130.108 1	. 034	102	. 031	. 065	. 033	. 027	. 060	. 052	. 866	170	. 101	. 038	. 574	021	197	067	034	031
2	33.250	130.185 1	. 069	127	064	. 002	. 126	. 131	052	. 058	1.062	145	. 097	. 101	. 023	009	. 248	041	050	052
3	35.246	133.598 1	. 087	061	. 032	. 053	. 046	. 060	. 001	. 003	1.071	053	. 050	. 064	322	179	. 105	027	055	071
4	33. 566	133.393 1	. 042	. 027	010	. 031	. 016	. 018	. 055	041	1.034	035	. 062	. 022	. 147	. 017	- 088	- 015	014	017
6	34.593	137.565 1	. 061	074	.172	041	. 022	. 029	. 046	025	1.158	. 022	. 070	. 031	. 305	077	- 341	012	035	026
7	36.521	136.552 1	. 213	. 130	017	036	. 039	. 041	. 070	. 013	1.078	057	. 040	. 042	. 163	257	- 040	- 025	107	119
8	38.013	139.289 1	. 059	. 027	. 066	. 002	. 031	. 036 -	032	045	. 967	006	. 024	029	- 050	- 039	178	135	069	0.81
12	45.254	141.027 1	. 270	130	129	087	. 115	. 148 -	-: 093	. 025	1.304	116	. 099	127	- 400	057	422	- 096	057	074
13	44.420	142.023 1	. 358	038	219	. 079	. 042	. 052 -	185	084	1.379	. 156	. 072	. 044 -	- 390	- 026	589	185	025	030
14	44.120	143.025 1	. 142	154	168	. 072	. 116	. 149 -	084	083	1.119	. 003	. 088	. 113 -	- 135	028	101	- 003	097	125
15	43.504	141.355 1	. 313	159	060	. 092	. 049	. 075	. 189	064	1.219	. 132	. 073	. 061 -	- 277	- 009	449	- 020	044	045
18	43.162	140.347 1	. 326	160	051	054	. 038	. 032 -	101	021	1.175	080	. 047	019 -	- 723	114	605	- 076	038	097
19	43.046	141.510 1	. 408	104	076	037	. 032	. 052	. 318	231	1.565	. 193	. 070	055	292	- 088	635	073	025	027
20	42.592	143.201 1	. 132	085	112	010	. 024	. 040	. 122	020	1.437	. 136	. 040	041	253	- 079	198	084	010	031
22	42.318	142.139 1	. 065	017	. 013	036	. 042	. 077	. 369	214	1.627	193	060	076	459	- 101	503	- 008	020	044
23	42.309	140.558 1	. 176	086	. 028	010	. 125	. 122 -	119	087	1. 111	. 063	134	131	033	192	251	- 129	1020	100
25	42.242	140.007 1	. 343	177	. 053	035	. 021	. 031 -	032	039	1.070	- 070	036	019 -	- 059	. 1 <i>5 E</i> 979	775	017	020	017
26	41.574	140.556 1.	. 339	107	. 028	037	. 022	. 033 -	180	- 060	1 064	022	026	021-1	262	166	- 398	034	020	. 017
27	41.199	141.223 1.	. 109	059	041	075	. 056	. 090 -	154	004	982	009	043	069-1	038	147	- 901	170	. 021	. 022
28	40.237	141.376	. 949	030	045	021	. 036	. 027 -	- 190	- 046	907 -	- 006	051	017 -	- 934	- 154	- 481	1/2	. 001	. 090
29	40.184	140.223 1.	274	. 059	. 035	060	. 019	. 023 -	- 239	- 098	988	052	0.82	. 011	- 468	060	. 401	196	. 003	. 047
30	39. 345	141.575 .	919	055	021	. 009	. 027	. 028 -	077	019	893 -	- 040	025	026 -	- 200	. 003	.002 - 682	. 120	056	. 017
					*						. 000	. 0.10	. 040	. 020	. 400	. 000	. 004	. 012	. 000	. 000

 \sim

	Lat Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Εv	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
32	39.072 140.386	1.055	. 034	005	. 038	. 078	. 095	085	. 002	1.048	. 076	. 063	. 077	171	. 033	- 115	065	087	106
33	38. 293 141. 111	1.197	. 131	. 098	. 025	. 023	. 026	. 329	. 199	1.117	. 067	. 092	. 017	478	216	- 149	189	016	015
34	38.508 139.476	1.159	. 300	002	063	. 055	. 056	. 117	. 141	1.076	. 031	024	023	- 488	- 446	- 040	122	060	060
35	38. 180 140. 131	1.019	. 044	. 014	010	. 036	. 057	. 016	. 009	1.104	. 069	. 027	. 043	- 120	- 061	- 138	064	043	067
36	37. 226 139. 495	1.059	. 061	. 031	. 004	. 008	. 012	. 030	019	1.091	. 035	032	013	099	- 111	- 061	077	012	011
39	37. 052 138. 463	1.028	. 073	036	056	. 144	. 161	. 156	. 024	1.367	. 124	186	208	305	- 085	435	078	183	205
40	36. 503 140. 145	. 992	. 023	. 020	. 000	. 011	. 017	. 077	. 042	1. 048	. 037	024	036	714	108	- 053	010	032	048
42	35. 474 140. 352	1.303	. 177	079	075	. 023	. 031	353	202	1. 151	. 112	026	035	647	- 282	- 241	183	010	067
45	35. 263 136. 588	1.004	. 026	. 106	079	. 162	. 153	. 049	. 060	1. 138	034	. 084	. 079	052	- 166	- 058	126	179	169
47	33. 456 135. 283	. 890	099	012	011	. 033	. 044	. 019	. 013	. 920	039	035	. 047	697	088	- 004	204	048	064
50	38.009 138.272	1.020	116	030	. 022	. 082	. 066	050	084	. 936	069	. 051	. 041	019	. 000	050	- 050	057	046
51	35.446 138.377	1.084	049	. 187	. 013	. 027	. 030	. 147	038	1.217	. 006	. 040	. 044	090	- 241	- 125	104	111	121
53	35. 540 137. 192	1.112	. 013	. 070	. 001	. 092	. 114	.073	074	1.180	. 003	. 145	179	- 030	- 127	- 043	- 005	082	101
55	36. 117 136. 181	1.109	. 107	. 084	. 010	. 022	. 035	. 050	. 008	1.105	. 018	029	047	- 306	- 226	170	170	046	074
57	34.579 134.497	1.014	087	. 085	. 020	. 051	. 074	. 012	. 031	1.063	010	073	105	- 089	- 066	- 014	- 022	082	118
58	35. 248 134. 187	1.070	059	. 048	. 002	. 018	. 021	. 026	007	1.038	054	. 084	036	- 291	- 148	074	- 002	0.002	030
59	34.467 133.474	. 962	086	060	. 004	. 037	. 060	. 000	014	. 960	141	052	084	- 080	- 065	100	0.002	058	0.00
61	34. 536 132. 101	. 986	112	. 043	. 023	. 027	. 037	067	. 019	1.087	064	041	056	- 388	- 165	380	075	042	057
62	34. 296 132. 194	1.047	111	. 014	. 006	. 024	. 048	040	. 050	1, 113	- 017	037	074	- 179	-0.27	264	013	095	050
63	34.174 131.253	1.027 ·	100	. 023	. 050	. 026	. 030	101	. 131	1 131	- 124	104	047	- 261	- 096	229	015	020	0.00
64	32. 513 129. 451	1.184 -	096	. 014	. 048	. 020	. 027	- 179	. 037	998	- 169	120	050	234	042	. 002 941	- 022	014	021
65	32. 490 130. 396	1.175	. 023	043	. 003	. 044	. 059	- 120	012	1 065	- 033	079	106	177	- 032	930	- 016	014	020
66	32.156 130.466	1.250	. 001	. 126	. 044	. 056	. 084	029	- 012	1 023	- 076	062	. 100	178	- 126	160	. 010	. 020	055
														0	. 140	. 100	. 043	. 000	. 000

	Lat Lon	, Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
67	31. 516 131. 17	76 1.238	. 008	. 069	. 051	. 061	. 116	030	. 054	. 957	202	. 051	. 097	466	- 100	033	- 089	051	097
68	32. 557 131. 52	25 1.013	004	019	. 122	. 050	. 065	. 015	. 047	. 874	130	. 070	. 092	. 046	- 094	- 110	- 083	027	036
70	33. 263 132. 38	32 1.116	. 049	. 102	. 035	. 051	. 064	. 031	. 002	. 985	080	. 050	. 062	. 159	024	032	009	039	049
71	33. 385 133. 48	88 1.033	004	. 021	. 032	. 038	. 056	. 000	054	1.069	024	. 044	. 066	. 292	036	. 041	0.92	031	045
72	32.484 132.45	6.952	070	. 071	. 059	. 060	. 072 -	003	. 028	. 869	103	. 053	. 065	. 506	014	. 060	073	050	061
73	33. 359 134. 22	0 1.015	019	. 024	003	. 048	. 074	. 057	. 009	. 968	037	. 044	. 069	. 323	043	229 -	- 043	041	064
74	34.172 134.40	8.987	026	. 106	. 082	. 039	. 048	. 030	. 027	1.061	. 002	. 045	. 056	. 248	. 041	029	134	076	094
76	43.098 142.36	4 1.165	027	096	059	. 096	. 087 -	111	071	1.249	. 041	. 104	. 094	. 001	116	. 325	. 054	. 098	. 089
78	43. 380 145. 10	2 1.250	. 090	093	062	. 090	. 089 -	283	. 027	1.907	. 359	. 134	. 133	. 039	001	522 -	021	034	034
80	41.267 140.08	6 1.404	119	. 051	050	. 037	. 041 -	263	071	1.000	004	. 055	. 031	. 484	. 332	. 402 -	119	. 040	032
81	40. 418 140. 06	9 1. 250	. 017	. 022	026	. 036	. 032 -	023	. 037	1.059	053	. 041	. 036-	1.131	247	. 260	. 228	. 066	. 058
85	30. 440 131. 04	0 1.101	040	048	. 096	. 058	. 057 -	013	. 023	. 792	112	. 053	. 052	. 269	383	178 -	081	. 067	065
87	36. 115 133. 13	5 1.144	023	041	. 027	. 077	. 072	. 132	. 059	. 832	151	. 115	. 107	056	. 230	. 075 -	110	. 076	. 071
88	35. 351 138. 03	9 1.093	045	. 218	. 030	. 114	. 075	. 127	029	1.193	. 013	. 131	. 087	. 075	141	203	. 040	152	101
89	33. 199 129. 38	6 1.152	038	034	. 079	. 086	. 080 -	163	. 035	1.336	172	. 091	. 085	075	076	. 437 -	008	. 042	039
90	34. 564 133. 12	2.983	106	. 009	. 065	. 053	. 044	. 038	004	1.057	079	. 065	. 054	172	123	. 184	. 040	. 066	. 055
91	43. 122 145. 04	5.878	053	189	018	. 093	. 090 -	191	047	1.267	. 076	. 076	. 074	. 174	150	020	. 233	. 088	. 085
92	35.570 136.29	0 1.130	028	. 122	. 015	. 026	. 029	. 068	010	1.103	. 018	. 063	. 071	206	171	. 046	. 024	. 046	. 052
94	34. 553 139. 53	9 1.359	. 020	. 063	012	. 045	. 077 -	039	062	1.100	. 002	. 044	. 074	. 719	556	126	. 176	. 068	115
96	35. 322 139. 05	3 1.009	035	. 141	. 012	. 054	. 070	. 166	014	1.137	. 024	. 050	. 064	. 299	142	191 -	096	. 127	163
97	36. 286 139. 29	9 1.149	. 114	080	. 031	. 151	. 189	. 074	105	1.018	. 014	. 083	. 104	. 359	139	. 083	. 117	. 125	. 156
101	34.070 139.30	7 1.193	125	067	. 048	. 018	. 021 -	154	. 007	1.025	038	. 016	. 019	. 014	264	130	. 154	. 038	. 043
103	34. 417 138. 09	7 1.202	. 064	. 046	137	. 049	. 052 -	010	085	1.137	019	. 143	. 149	. 618	. 035	466	. 048	. 105	. 109

16 min

	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
104	34. 399	137.134	1.017	062	. 130	. 072	. 145	. 200	. 014	. 012	1.074	036	. 082	. 113	. 349	009	- 289	078	130	179
917	34.575	139.068	1.128	063	. 170	. 009	. 040	. 063	. 087	050	1.130	023	. 025	. 040	. 816	083	720	006	136	217
201	35.152	139.575	1.368	. 108	035	019	. 016	. 019 -	131	108	1.265	. 103	. 016	. 019	. 404	458	041	. 192	. 020	025
202	39.065	141.124	. 951	168	. 012	005	. 008	. 010 -	092	. 007	1.020	145	. 006	. 008	. 026	. 070	105	. 195	. 007	009
203	36.061	140.055	1.054	. 070	. 000	. 000	. 003	. 004	. 039	. 013	1.009	. 043	. 003	. 004	. 762	. 004	065	. 120	. 010	. 013
204	31. 252	130.529	1.124	011	033	. 094	. 015	. 018	. 011	014	1.016	143	. 015	. 019	. 497	164	. 117	. 011	. 008	. 010
205	43.545	144.116	1.219	032	315	176	. 026	.032 -	212	. 012	1.532	. 198	. 019	. 023	. 035	057	436	132	. 009	. 011
206	34.440	138. 480	1.114	202	. 253	044	. 011	. 012	. 055	046	1.120	156	. 013	. 015	. 877	182	284	. 137	. 041	. 045
208	34.370	138.110	1.313	. 100	032	156	. 013	. 015 -	085	119	1.215	. 056	. 022	. 026	. 656	035	551	. 089	. 025	. 030
209	36.041	138.266	1.149	010	. 169	. 020	. 006	. 007	. 122	037	1. 318	. 030	. 010	. 012	. 003	221	. 077	. 097	. 014	. 017

1

	Lat Lon ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
1	31. 237 130. 108	. 976	058	. 049	. 016	. 035	. 029	. 066	087	. 913	079	. 136	. 040	. 558	- 101	197	085	047	041
2	33. 250 130. 185	1.060	083	. 065	. 061	. 140	. 141	179	. 075	. 917	175	. 136	. 137	023	- 007	190	- 082	060	061
3	35. 246 133. 598	1.052	047	. 010	. 022	. 060	. 106	. 024	. 025	1.006	063	. 056	. 099	344	- 105	100	- 062	065	115
4	33. 566 133. 393	1.050	. 141	015	021	. 022	. 023	016	074	1.062	. 030	. 060	. 026	166	063	- 133	- 054	019	017
6	34. 593 137. 565	. 965	064	. 093	071	. 046	. 048	. 031	048	1.155	. 049	. 098	. 045	. 247	- 047	- 313	035	057	050
7	36. 521 136. 552	1.225	. 107	035	046	. 060	. 073	. 032	028	1.049	045	. 070	. 085	119	309	- 006	- 123	174	200
8	38. 013 139. 289	1.067	. 037	. 017	036	. 041	. 046	056	071	1.023	. 007	. 044	. 050	- 030	- 007	232	194	125	1/1
12	45.254 141.027	1.061	207	104	. 012	. 075	. 098	048	064	1.201	095	. 073	. 095	- 306	036	279	- 162	066	086
13	44. 420 142. 023	1.336	033	071	. 012	. 048	. 062	252	057	1.467	. 218	. 109	077	- 349	060	617	159	041	050
14	44. 120 143. 025	1.157	014	280	133	. 225	. 241	064	093	1.147	084	. 142	. 151	- 176	006	- 075	- 107	149	160
15	43.504 141.355	1.275	124	064	. 046	. 086	. 086	. 066	079	1.339	. 063	. 134	. 072	- 238	- 057	446	- 093	059	056
18	43. 162 140. 347	1.151	150	108	097	. 042	. 035	111	056	1.139	105	. 077	. 029	593	137	500	- 149	039	034
19	43.046 141.510	1.306	120	117	097	. 031	. 062	. 148	264	1.637	. 152	. 062	. 067	. 174	122	593	- 016	022	043
20	42.592 143.201	1.090	031	064	. 018	. 041	. 056	. 068	070	1.542	. 161	. 103	. 064	. 171	- 123	220	021	032	044
22	42. 318 142. 139	1.083	. 010	. 000	. 069	. 057	. 081	. 187	256	1.660	. 253	. 074	. 083	. 359	- 184	467	- 030	026	048
23	42.309 140.558	. 969	099	. 107	. 084	. 161	. 132	090	. 030	1.191	012	. 181	. 148	. 153	057	169	- 161	159	130
25	42.242 140.007	1.221	157	009	052	. 025	. 029	022	020	1.041	041	. 037	. 020	. 146	. 311	628	- 111	025	023
26	41. 574 140. 556	1.268	179	034	071	. 038	. 046	217	035	1.114	046	. 056	. 040	988	. 355	- 440	023	050	046
27	41.199 141.223	1.128	088	035	064	. 072	. 063	185	. 016	1.082	. 019	. 066	. 059	977	374	- 225	196	102	090
28	40.237 141.376	. 943	046	013	023	. 026	. 037	204	023	. 932	. 029	. 025	. 021-	1. 021	- 007	- 362	285	034	022
29	40. 184 140. 223	1.260	. 079	. 012	131	. 031	. 034	232	141	1.005	. 078	. 178	. 029	381	153	120	146	023	026
30	39. 345 141. 575	. 904	020	006	033	. 028	. 036	091	002	. 895	005	. 024	. 031	- 135	117	- 680 -	- 010	020	1020
32	39.072 140.386	1.010	. 067	. 054	. 051	. 123	. 127	108	. 053	1.060	. 165	. 133	. 137	026	- 014	- 121	217	128	131
																		. 120	. 101

	Lat Lon C	u Cv	Du)v Err(ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
33	38. 293 141. 111 1. 31	3 . 221	. 072 . 0	15.027	. 031	. 513	. 210	1.137	. 075	. 155	. 026	636	258	- 027	185	022	022
34	38. 508 139. 476 1. 27	5.327	. 085 1	11.078	. 071	. 196	. 138	1.138	008	. 036	031	- 730	- 325	047	147	. 022	085
35	38. 180 140. 131 1. 06	3.078	. 006 0	. 048	. 051	. 038	. 027	1.152	. 121	048	051	- 117	- 060	- 092	106	054	057
36	37. 226 139. 495 1. 09	8.065	. 027 . 0	04 . 016	. 021	. 007	056	1.096	. 031	. 060	024	056	- 110	003	. 100	016	0.001
40	36.503 140.145 .98	2.036	. 030 . 0	6.035	. 037	. 041	. 062	1.026	054	063	067	802	062	- 005	087	075	020
42	35. 474 140. 352 1. 43	1.116	117 1	20.055	. 076	489	113	1. 275	194	065	. 001	435	- 979	- 078	. 007	079	. 000
47	33. 456 135. 283 . 80	8 049	047 0	31.075	. 080	. 054	003	895	- 052	073	078	. 100 800	018	151	040	1.072	107
50	38.009 138.272 .90	7.011	029 . 0)1 . 121	. 092	046	070	. 864	- 105	076	058	128	- 030	- 046	- 147	. 104	. 157
51	35.446 138.377 1.09	1 020	. 209 . 0	3.068	. 080	. 127	068	1.266	- 053	068	080	- 054	- 164	- 102	- 014	170	2007
53	35. 540 137. 192 1. 09	4 078	. 011 0	35.147	. 180	. 014	- 131	1 081	- 076	226	278	- 074	- 034	- 075	035	. 1 ()	. 209
55	36. 117 136. 181 1. 06	8.222	. 093 0	1.029	. 054	. 007	- 033	1.083	146	035	065	- 360	- 210	177	. 035	. 141	. 1 ()
57	34. 579 134. 497 . 93	9 003	. 084 0	34 . 075	. 081	003	- 004	1.072	031	106	. 000	- 101	- 021	. 147	. 100	. 044	. 082
58	35. 248 134. 187 1. 00	8 039	. 070 0	4 . 027	. 024	- 010	- 058	1.065	- 091	. 100	031	- 330	- 064	. 137	003	. 134	. 144
59	34.467 133.474 .93	1 031	018 . 0	2 . 060	093	- 010	- 030	1.046	020	078	199	- 003	- 019	. 000	000	. 031	. UZ (
61	34. 536 132. 101 . 93	7 087	. 010 . 0	5 034	041	- 004	036	002	- 1/9	058	070	. 055	- 100	000 976	040	. 108	. 108
62	34. 296 132. 194 1. 00	6 - 106	. 052 . 01	2 030	064	- 065	- 015	1 136	-0.94	037	. 010	- 901	100	. 310	009	. 030	. 000
63	34, 174, 131, 253, 94	8 - 065	038 0	1 023	033	028	0.84	1. 100	- 140	116	. 010	201 950	. 030	. 201	021	. 030	. 003
64	32, 513 129, 451 1 10	8 - 130	- 063 00	19 024	034	- 110	110	1.045	. 140	. 110	. 000	208	001	. 295	053	. 035	. 028
65	32 490 130 396 1 20	7 023	039 - 00	060	119.	. 110	. 110	1.012	100	. 121	. 004	. 240	. 037	. 195	052	. 015	. 024
66	32,156,130,466,1,23	0 - 0.35	0.000 - 0.000	1 074	. 112	- 010	. 000	1. 027	040	. 072	. 134	. 148	030	. 207	066	. 025	. 046
67	31 516 131 176 1 24	0.000 7.083	076 0	3 026	. 019	010 061	. 027	. 930	101	. 091	. 096	. 143	096	. 176	. 036	. 053	. 056
68	32 557 131 525 1 06	1 .003 3 - 027	111 0	3 000	. 002 -	UOI	UZ3	. 904	078	. 080	. 077	. 460	133	002	123	. 067	. 064
70	33 963 139 389 1 14	5 . UOT	0.00 0.0	0 .000	.010 -	082	007	. 885	149	. 121	. 109 -	016	083	202	105	. 064	. 058
10	00. 200 102. 002 1. 14	1 . 000	. 020 . 00	0 . Uõõ	. 074 -	040	UZ7	1.000	. 008	. 079	. 069	. 223 -	005	. 050 -	008	. 079	. 069

Table (continued.)

	Lat ,	Lon _,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
71	33. 385	133.488	. 989	. 022	. 024	009	. 054	. 045	. 069	048	1.149	050	. 089	. 074	. 268	039	. 061	. 093	. 053	. 044
72	32.484	132.456	. 883	. 010	. 068	. 023	. 082	. 094	030	. 037	. 803	062	. 076	. 088	. 475	057	. 001	020	. 072	. 083
73	33. 359	134.220	. 999	. 032	. 084	. 090	. 052	. 066	. 017	. 000	. 936	045	. 040	. 051	. 310	092	199	. 010	. 044	. 055
74	34.172	134.408	. 897	. 002	. 025	. 025	. 078	. 066	. 004	009	1.087	. 038	. 073	. 062	. 235	015	043	. 227	. 200	. 169
76	43.098	142.364	1.152	. 066	109	079	. 151	. 122	250	042	1.165	. 071	. 129	. 104	143	180	. 254	047	. 132	107
78	43. 380	145.102	1.202	. 110	124	052	. 067	. 089	134	036	2.112	. 214	. 114	. 151	. 010	. 054	559	. 025	. 033	. 044
80	41.267	140.086	1.357	114	. 042	041	. 054	. 051	281	020	1.006	045	. 064	. 037	. 740	. 274	. 319	133	. 064	. 055
81	40.418	140.069	1.249	. 022	018	120	. 057	. 059	. 056	. 045	. 962	. 049	. 037	. 038-	1. 034	073	. 401	. 304	. 078	. 081
85	30.440	131.040	. 864	050	. 000	. 062	. 081	. 093	026	. 018	. 729	067	. 086	. 099	. 034	308	223	064	. 104	. 120
87	36.115	133. 135	1.066	072	063	. 075	. 084	. 063	. 120	022	. 825	018	. 101	. 076	. 117	. 269	. 027	037	. 089	. 067
88	35. 351	138.039	. 957	064	. 138	098	. 189	. 102 -	063	114	1.172	017	. 280	. 152	. 099	. 063	199	. 087	. 268	. 146
89	33.199	129.386	1.048	061	097	. 020	. 062	. 089 ·	101	. 076	1.284	072	. 072	. 103	109	029	. 354	070	. 043	. 062
90	34. 564	133.122	. 945	069	. 069	. 045	. 054	. 053	. 041	059	1.074	003	. 082	. 081	211	003	. 140	. 006	. 089	. 087
91	43.122	145.045	. 876	. 020	125	042	. 126	.125 -	170	. 051	1.278	. 086	. 115	. 113	. 107	114	. 060	. 112	. 120	119
92	35.570	136.290	1.111	. 005	. 045	045	. 022	. 036	. 028	004	1.113	128	. 051	. 084	289	078	. 116	. 095	. 037	. 060
94	34. 553	139.539	1.237	. 001	. 111	. 051	. 087	. 141 -	156	066	1.060	. 125	. 097	. 158	. 319	408	059	. 111	. 154	. 250
101	34.070	139.307	1.101	104	046	. 033	. 021	. 028 -	162	. 012	1.018	056	. 020	. 028	123	180	046	. 145	044	061
103	34.417	138.097	1.206	. 077	111	267	. 115	. 104 -	052	035	. 975	. 179	. 236	. 214	. 625	. 046	512	. 009	289	262
201	35.152	139.575	1.437	. 051	051	037	. 032	. 038 -	214	068	1.320	. 079	. 037	. 044	. 087	436	034	154	039	046
202	39.065	141.124	. 912	298	. 001	017	. 011	. 014 -	096	. 044	1.007	304	. 010	. 012	. 125	. 071	. 027	206	010	012
203	36.061	140.055	1.059	. 113	003	. 000	. 007	. 008	. 041	. 013	1.005	. 082	. 007	. 009	. 721	040	- 015	110	015	018
204	31.252	130.529	1.088	010	036	. 079	. 016	. 022	. 000	042	. 959	146	. 016	. 022	. 380	- 198	. 066	- 006	010	014
205	43. 545	144. 116	1.233	. 000	320	107	. 023	. 031 -	220	. 037	1.604	. 203	. 019	. 026	. 010	053	511	112	. 010	. 014

8 mi	1																			
	Lat ,	Lon _,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
206 208 209	34. 440 34. 370 36. 041	138. 480 138. 110 138. 266	. 993 1. 342 1. 147	303 . 167 014	. 187 160 . 166	134 211 014	. 024 . 027 . 010	. 028 . 034 - . 013	. 003 148 . 073	074 154 099	1. 024 1. 218 1. 330	316 . 042 032	. 041 . 037 . 016	. 049 . 046 . 020	. 738 . 631 137	286 026 223	254 493 . 105	. 229 . 173 . 063	. 094 . 048 . 019	. 105 . 059 . 024

h

)

Lat Lon Du Cu Cv Dv ErrC ErrD Eu Εv Fu Fv ErrE ErrF Au Av Bu Bv ErrA ErrB , 0 o) 31. 237 130. 108 . 863 -. 002 -. 011 . 055 -. 020 . 054 . 925 -. 038 . 217 . 051 . 371 -. 046 . 004 . 062 . 233 . 103 . 060 . 051 33. 250 130. 185 . 969 -. 027 -. 052 -. 017 . 104 . 093 -. 081 -. 131 . 977 -. 160 . 129 . 115 -. 012 . 056 . 110 -. 147 . 152 . 136 2 3 35. 246 133. 598 1. 048 -. 020 -. 017 . 083 . 121 . 189 . 042 -. 002 . 983 . 130 . 098 . 152 -. 267 -. 073 . 034 -. 126 . 125 . 194 4 33.566 133.393 1.102 .199 -.183 -.037 . 045 . 053 . 014 -. 029 1. 078 -. 052 . 081 . 047 . 217 . 038 -. 196 -. 021 . 032 . 029 38. 013 139. 289 1. 079 . 001 -. 004 -. 046 . 078 . 085 -. 011 . 023 1. 035 . 031 . 080 . 088 -. 147 -. 170 . 385 . 191 8 . 232 . 255 45. 254 141. 027 1. 108 -. 158 -. 182 . 006 . 126 . 137 -. 122 . 017 1. 208 -. 136 . 111 . 121 -. 331 -. 002 . 281 -. 108 . 087 12 . 094 13 44.420 142.023 1.185 -.024 .075 .031 . 071 . 101 -. 392 . 148 1. 524 . 054 . 237 . 113 -. 296 . 167 . 569 . 031 . 052 . 065 44. 120 143. 025 . 792 -. 038 -. 249 -. 052 . 239 . 278 -. 148 -. 157 1. 007 -. 025 . 195 . 226 -. 149 . 109 -. 082 -. 088 . 137 14 . 160 .963 .009 .016 .096 .145 .128 .102 .079 1.274 .205 .213 .112 -.228 .087 .323 -.150 .097 15 43. 504 141. 355 . 104 43. 162 140. 347 . 975 -. 074 -. 113 -. 001 . 083 . 082 -. 052 . 004 1. 019 -. 135 . 148 . 058 -. 465 . 081 . 297 -. 169 . 065 18 . 053 43.046 141.510 1.221 -.122 .050 .081 .054 .114 -.057 -.334 1.694 .128 .102 .121 .085 -.080 .603 -.061 .036 19 . 064 42. 592 143. 201 1. 003 -. 021 -. 009 . 121 . 114 . 117 -. 015 -. 009 1. 538 . 190 . 197 . 105 . 105 -. 062 . 161 . 079 20 . 099 . 108 22 . 894 . 133 . 018 . 132 . 090 . 229 . 045 -. 189 1. 691 . 155 . 075 . 190 . 215 -. 213 . 310 -. 142 42. 318 142. 139 . 030 . 076 42. 309 140. 558 . 725 -. 041 . 162 . 041 . 237 . 230 -. 084 -. 230 . 947 . 020 . 255 . 248 . 204 . 017 . 042 . 031 23 . 232 . 225 42. 242 140. 007 1. 093 -. 035 -. 005 -. 003 . 047 . 056 . 048 . 012 . 996 -. 032 . 064 . 041 . 246 . 235 . 491 -. 060 25 . 043 . 051 41. 574 140. 556 1. 095 -. 151 -. 039 . 012 . 073 . 081 -. 171 . 050 1. 081 -. 037 . 094 . 070 -. 745 . 218 -. 403 . 008 26 . 093 . 091 41. 199 141. 223 1. 065 -. 042 . 068 -. 032 . 141 . 179 -. 168 . 064 1. 070 -. 014 . 126 . 160 -. 705 . 396 -. 348 . 065 27 . 170 . 216 40. 237 141. 376 . 882 . 041 . 058 -. 041 . 074 . 059 -. 229 . 019 . 962 . 008 . 063 . 033 -. 925 . 092 -. 223 . 133 28 . 082 . 052 40. 184 140. 223 1. 161 . 079 -. 122 -. 065 . 057 . 065 -. 273 -. 038 1. 008 . 058 . 268 . 057 -. 255 . 115 . 153 . 065 29 . 045 . 048 39. 345 141. 575 . 888 -. 017 -. 017 -. 016 . 039 . 055 -. 095 . 014 . 891 -. 002 . 031 . 044 -. 043 . 132 -. 603 -. 001 . 047 . 068 30 39. 072 140. 386 . 968 -. 018 . 029 . 098 . 283 . 274 -. 097 -. 079 1. 061 . 127 . 232 . 224 -. 050 -. 105 -. 140 . 086 32 . 207 . 200 38. 293 141. 111 1. 414 . 130 . 105 . 072 . 108 . 134 . 608 . 231 1. 165 . 132 . 119 . 109 . 829 . 181 - 014 . 161 33 . 068 . 085 34 38. 508 139. 476 1. 308 . 502 -. 094 . 021 . 096 . 097 . 186 . 217 1. 119 -. 018 . 084 . 053 -. 827 -. 362 . 368 . 045 . 093 . 086

-	Lat Lon	, Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Ev	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
35	38.180 140.13	1 1.074	. 130	038	019	. 127	. 159	. 021	. 100	1.215	. 148	. 124	. 156	- 142	- 045	- 138	045	102	198
36	37. 226 139. 498	5 1.091	. 022	. 015	006	. 039	. 049	. 071	. 127	1.075	. 059	. 159	. 055	010	- 097	- 020	- 002	035	0/3
40	36. 503 140. 143	5.933	002	. 018	. 009	. 108	. 111	. 050	. 027	1.025	. 029	. 155	. 159	635	- 052	027	079	143	147
50	38.009 138.272	2881	082	081	. 024	. 168	. 141 -	143	038	. 788	085	. 147	. 123	061	041	- 082	- 081	126	11/
55	36. 117 136. 181	1.036	. 333	. 128	059	. 096	. 131 -	005	112	1.011	. 403	. 102	. 139	371	- 219	173	378	168	230
58	35. 248 134. 187	7.959	. 017	. 044	019	. 056	. 066	. 062	092	1.085	060	. 138	. 065	- 303	- 060	116	007	056	059
61	34. 536 132. 101	. 928	042	022	. 042	. 055	. 047 -	031	. 024	1.002	148	. 068	. 058	- 455	- 036	401	- 002	096	083
62	34. 296 132. 194	. 964	037	035	. 020	. 047	. 077	. 021	032	1.159	001	. 048	. 078	046	. 122	218	- 067	061	. 000
63	34. 174 131. 253	. 912	122	. 039	. 023	. 074	. 075	. 022	. 161	1.064	121	. 115	. 116	- 142	- 023	137	- 010	180	189
64	32. 513 129. 451	1.028	103	101	052	. 031	. 040	. 076	. 282	. 901	092	. 080	. 047	248	045	120	- 066	026	035
65	32. 490 130. 396	1.199	034	115	046	. 125	. 170 -	014	. 073	1.039	026	. 069	094	130	- 031	182	- 066	048	065
66	32.156 130.466	1.024	. 053	. 048	047	. 149	. 207	. 050	103	. 879	174	113	157	101	- 014	. 102	042	. 040	129
67	31. 516 131. 176	1.130	023	. 117	191	. 149	. 141	. 010	151	. 820	- 069	100	095	325	- 175	- 108	042	. 055	100
68	32.557 131.525	1.044	. 041	016	. 005	. 092	.079 -	051	013	. 970	- 045	104	089	- 045	- 065	- 306	- 102	. 115	. 109
70	33. 263 132. 382	. 929	. 106	009	. 036	. 189	. 143 -	004	103	902	- 014	125	095	189	- 101	. 300	- 010	144	. 010
71	33. 385 133. 488	. 972	102	067	103	. 103	. 139	. 121	. 006	1 037	- 007	093	197	172	- 126	. 020	010	. 144	. 109
72	32.484 132.456	. 640	. 008	. 034	038	. 212	. 180 -	059	036	671	- 050	160	135	2/0	- 088	006	. 020	. 000	. 009
73	33. 359 134. 220	1.063	. 027	016	. 012	.077	. 093	. 015	- 064	999	- 114	071	0.8.6	100	-194	. 000	. 031	. 1 ()	. 147
76	43.098 142.364	. 891	. 027	. 056	074	. 233	. 230 -	- 012	- 042	1 001	080	250	247	- 004	- 150	191	002	. 000	. 079
78	43. 380 145. 102	1.407	. 144	172	044	. 103	. 128 -	- 146	- 012	2 291	121	128	160	. 034	144	. 121	. 010	. 180	. 184
80	41.267 140.086	1.241	070	105	. 016	. 146	. 159 -	- 218	- 016	967	095	109	110	740	102	010	. 000	. 003	. 000
81	40. 418 140. 069	1.194	. 033	165	076	. 097	. 107	075	- 059	1 103	030	082		- 005	. 103	. 294	. 004	. 149	. 102
85	30. 440 131. 040	. 656	. 123	083	. 053	. 161	212 -	- 086	022	536	- 068	134	177	. 303	165	. 0 (0	. 130	. 128	. 140
										. 000	. 000	. 104	. 1 ((. 040	105	110	. 015	. 150	. 198

Table 4-1 (continued.)

4	
4	min

	Lat ,	Lon _° ,	Cu	Cv	Du	Dv	ErrC	ErrD	Eu	Εv	Fu	Fv	ErrE	ErrF	Au	Av	Bu	Bv	ErrA	ErrB
87	36.115	133.135	. 744	. 103	. 123	. 067	. 225	. 279 -	002	057	. 530	011	208	257	304	154	- 012	- 025	120	160
89	33.199	129.386	1.067	. 063	078	. 001	. 154	. 171 -	028	. 005	1.268	- 033	178	198	- 051	- 078	337	- 020	199	125
90	34.564	133.122	. 912	. 036	008	028	. 113	. 127	. 045	. 059	1.005	012	129	144	- 130	071	179	. 034	147	, 100 164
91	43.122	145.045	. 852	. 005	. 089	. 044	. 227	. 247 -	275	. 000	1.057	048	196	213	054	- 200	061	070	. 147	. 104
92	35.570	136.290	1.116	. 000	. 029	071	. 060	. 096	. 016	018	1 021	- 050	061	096	- 202	. 203	179	. 070	. 210	. 204
101	34.070	139.307	1.057	041	047	. 055	046	. 057 -	- 146	008	926	- 047	030	0/0	- 003	. 020	. 110	. 034	. 003	. 132
201	35.152	139.575	1.345	032	137	- 011	145	166 -	- 290	008	1 251	- 013	192	140	. 033	099	000	. 000	. 000	. 083
202	39.065	141.124	. 766	506	- 004	011	030	035 -	- 063	. 000	954 .	- 525	. 140	. 140	010	234	. 080	. 138	. 122	. 138
203	36.061	140.055	1. 085	176	007	003	027	031	077	012	. 004	195	. 027	. 030	. 1 (8	051	. 130	. 114	. 020	. 022
204	31 252	130 529 1	1 065	- 025	- 040	012	021	. 0.01	. 011	. 015	. 994	. 130	. 023	. 026	. 576	014	035	. 091	. 040	. 046
205	12 545	144 116 1	1.000	. 020	. 045	. 012	. 024	. 032 -	040	044	. 835 -	099	. 021	. 027	. 277	177	. 035	. 004	. 017	. 022
200	40.040	144.110	1. 202	. 051	339	. 007	. 029	. 038 -	260	. 025	1.664	. 200	. 031	. 040	. 033	025	531	070	. 017	. 022
208	34. 370	138.110 1	1. 363	. 156	270	127	. 081	. 094 -	. 270	140	1.178	. 047	. 113	. 129	. 577	158	344	. 261	. 110	. 127
209	36.041	138.266 1	1. 088	018	. 126	047	. 029	. 034	. 027	071	1.261 -	079	. 044	. 051 -	159	156	. 094	. 056	. 052	. 060

Latitude, Longitude : 31.237 means 31 deg 23.7 min.

Station number < 200 : First order geomagnetic stations (GSI)

Xu means in-phase part and Xv means imaginary part.

ErrX means 95% confidence level.

Cu and Fu are added 1.0.

201 : Kanozan (GSI)
202 : Mizusawa (GSI)
203 : Tsukuba (GSI)
204 : Kanoya (JMA)
205 : Memanbetsu (JMA)
206 : Matsuzaki (JMA)
208 : Omaezaki (JMA)
209 : Yatsugatake (ERI)

Figure 4-7 Ocean depth used in this study at the period of 32 min

Depth of Sea	Mean value
Depth of Sea $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean value (1000 ohm.m) 50 m 150 m 300 m 550 m 850 m 1250 m 1750 m 2250 m 2750 m 3250 m
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4250 m 4750 m 5250 m 5750 m 6250 m 7250 m 7750 m

Table 4-2 Configuration of each conductance and depth of sea water

conductance = $(depth \times \sigma_{sw} + (10000 - depth) \times \sigma_L) / (skin depth \times \sigma_L) \sigma_{sw} = 3.38 / m$

Figure 4-8 (a) Induction arrows of the thin-sheet model calculation The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part

Figure 4-8 (b) Induction arrows of the thin-sheet model calculation The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part

Figure 4-8 (c) Induction arrows of the thin-sheet model calculation The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part

Figure 4-9 (a) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (real part)

Figure 4-9 (b) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (real part)

Figure 4-9 (c) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (real part)

Figure 4-10 (a) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (imaginary part)

Figure 4-10 (b) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (imaginary part)

Figure 4-10 (c) Anomalous ellipses of the horizontal transfer functions of the thin-sheet model calculation (imaginary part)

Figure 4-11 (a) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (b) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (c) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (d) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (e) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (f) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (g) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (h) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-11 (i) Histograms of the observed and the residual transfer functions. Each mean value and SD are shown. The real part is donated with suffix u.

Figure 4-12 (a) Residual remote reference induction arrows The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-12 (b) Residual remote reference induction arrows The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-12 (c) Residual remote reference induction arrows The thick line with a large arrowhead shows a real part and the thin line with a small arrowhead shows an imaginary part.

Figure 4-13 (a) Residual anomalous ellipses of the horizontal transfer functions (real part)

Figure 4-13 (b) Residual anomalous ellipses of the horizontal transfer functions (real part)

Figure 4-13 (c) Residual anomalous ellipses of the horizontal transfer functions (real part)

Figure 4-14 (a) Residual anomalous ellipses of the horizontal transfer functions (imaginary part)

Figure 4-14 (b) Residual anomalous ellipses of the horizontal transfer functions (imaginary part)

Figure 4-14 (c) Residual anomalous ellipses of the horizontal transfer functions (imaginary part)

Figure 5-1 Schematic explanation of electric current around an island

Figure 5-2 Topographic features in eastern Japan

Figure 5-3 Depth of the Moho discontinuity and the upper plate boundary (after Miyamachi et al., 1993)

Figure 5-4 Depth of the upper boundary of the Philippine Sea plate (PHS) and the Pacific ocean plate (PAC) (after Ishida, 1992)

Figure 5-5 Plate boundary of the Philippine Sea plate and the Eurasian plate (thick line), volcanic front (broken line) and schematic explanation of electric currents (arrows) in Kanto and Chubu Districts associated with the Philippine Sea plate.

Figure 6-1 Locations of the geomagnetic observatories

HANN N 1992 1992 ٥ .20/div 0.2 1991 1991 1990 1990 ٥ \subseteq 128mi 1989 1989 KNZ NH TKBN MZSHH KAKW **ZNX** MZSM TXB XUX с Ш _____ ____ HILLING IN PHI HIMMAN HHAV NHT HAY WA HANNAHAHAHA HANNAH HINA MANAHANA HHHMMHHMM /MAHHHMMMHHMMHMHM \subseteq 1992 1992 \bigcirc WHITHHAN WHITH _ ___ THE AND +-> \bigcirc C M 1991 1991 WHHHIN' \leq Φ WHAT HANNAN WANTER ----1990 1990 $\langle n \rangle$ \subseteq N LITER AND 5____ HHANHHI NAHANHHI 1989 1989 KNZ HHH U U ATTINK. TKBHUM TKB THE MZS+ X U X KNZ MZSH XHX ゴ エ >

	thur white	Hundret	HANANAN		92	HALANA	hand	HHHHHH	HHHHH	26
- -		ANALANA ANALANA	₹ ₹	A M	10	HHH HH	THE PARTY	E E	ANH MAN	
20/div		ANN HIM HIM ANN	WHHW HHMW	HAT WHAT HAVE A	1991	A THIN AN A THINK AN A	HHH WHHHHM	NH-AHHHAN AHH	The second secon	1991
		HH-H-HHHH/	HAY AND HITH HAY AND		1990			HAHHHHHHHHHHHHH		1990
0 4 m	ANTH WATCH	HANNA HANNA	HHY MANA HANNA		1989		HANNAN ANA ANA ANA ANA ANA ANA ANA ANA A			1989
	M Z S H	X IIX	T X D	N N N N		× S N N S N	N N N N N N	л М М М М	N N N	
L 0 1 + 1	Manager Hall		Hurd Haynonia	+++++++++++++++++++++++++++++++++++++++	1992	**********		HHAYAAHA HH	HAYAYAYAYAYAYA	1992
r Func		ALL			1991		HILLAN HILLAND HILLAND	HHYANA H		1991
anste	HAAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	HAAHAHAHAAAA			1990	APHAHHHH YHYAHH			HHHHHHHHHHHHH	1990
С.Н С.Н		HINAMANAN	HANNIN AND AND AND AND AND AND AND AND AND AN		1989	+++++,/++++++++++++++++++++++++++++++++	HHY HHIM HIM AH			1989
	- < · ·	X	m	N		> 0	X	m	N	

+--- \subset L __ 1 4 $\langle c \rangle$ \subseteq

 \subseteq -----Ξ \triangleleft (C

 $M \ge S$ T K B hereneted the transferred with the second states of the transferred $\mathbb{Z} > \mathbb{Z}$ 1992 1992 20/div 1991 1991 1990 1990 1989 1989 0.2 \subset HIN HIN HIN 1992 1992 Ŧ 1991 1991 1990 1990 1989 1989 \square \exists

Function Φ 0 \subseteq N ۲

32min

a

HHAVE HIN HIM HIM HIMAN $M \geq S \mid_{M}$ HHHHANHAH HANHHHANAN 1992 1992 Ł 20/div Т К В Інчинны Ичныцицыцыцыцы МиМИЧны инчы 0.2 1991 1991 $|H_{\rm A}|^{1}$ 1990 1990 1989 1989 > 0 HHHHHHH HH WATTERNA HAT AT \subseteq 992 1992 \bigcirc Ŧ 1991 ດ ດ ____ U 1990 066 0 \subseteq ര് 5____ 1989 989 TXB KNZ ХNХ >

_ ___ \rightarrow U D L

a \subseteq 1 6 m i

 $\mathbb{M} \geq \mathbb{S}$ MZS S hyperternet and the states of the stat NHHH 992 1992 H H 20/div MHHW HIT WHAN NHH HT 991 0.2 1991 T K B LUHHHHWHHHWHWHW 066 1990 MTHHINNHINNHINNHINNHINNHINI Z N X a \subseteq ---E 00 1989 N MAMM 1989 K N Z H T M > _____ A HANNER HANNER \subseteq 1992 1992 \bigcirc ATTAC IN A PARTY 1991 1991 \succ Ð 1990 A-HHA 1990 $\langle \rangle$ С М K N Z HHMHHMMHMMHMMH TKB HUJHHHUHHHYVHHHV 989 9 1989 KNZ HHHH Ц Ц S J T NN \leq

- ----> ---- Func

1992	1991	1990	1989		1992	1991	1990	1989	
	0.5			K N Z	HANNA HANNA HAN				KNZ
HI HIM				ТKВ	HAYAYAYA HAYA	HANNANA H		AND ALTHOUGH AND ALL AND A	μ Η Η
				X U X	Hardy Harder Harder	HANNALAHANAN			X U X
Annahathathanahath		וויאיאלאוויועאניא		MZS	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ythaythaythythyt	Hhybrithbyhinish	********	M Z S <
1992	1991	1990	1989		1992	1991	1990	1989	(
HANNA AHAINYA VAAA	ANNA HANA			T K B K N Z		MAN ANA ANA	HIN AN ANA		T K B K N Z
Anna Allanda and		http://www.		X II X	Marty Apt Attack	Harthand Marth	HIN AN ANA	tracher All Attenden	X U X
JHANNYA HAMANA	*****	******	hand har	MZS	, / · · · · · · · · · · · · · · · · · ·			++++++++++++++++++++++++++++++++++++++	M Z S
a >	·1p/05 •		4 m			r Fun	ranste		

L

 \vdash \subset (
\square \Box Z Z \bigcirc 0 20/div ഗ 1 Õ Œ Œ \geq \geq \subseteq Œ Œ 28m ; \geq \geq 4 LL_ <u>____</u> ΤKB ХNХ QMZ с Ш ΥAT TKB ХNХ ΔMZ < m \subseteq ΥΡ \square ЧЛС \square Z Z Ц___ \Box \Box 5____ ഗ ഗ \oplus Œ Œ 4-S \Box \neg \neg ∠ — \geq ≥ \square Œ Œ \geq \geq 6 8 6 8 LL. L \neg TKB ХNХ ΥAT QMZ TKB E QMZ ХNZ ΥAT > \Box

ഗ

 \square \Box Z Z \bigcirc \bigcirc 20/div ഗ ഗ 1 Œ Œ \bigcirc - \neg \neg \geq \geq a \subseteq Œ - --ш Ф \geq \geq L L \neg ΤKB ХNХ QMZ TKB с Ш ΥAT ХNZ QMZ > m ΥAT \subseteq \bigcirc - ----> \rightarrow Funct \square Z Z \bigcirc \Box ഗ ___ ഗ Φ Œ Œ -S С 0 __ \geq \geq \square Œ Œ \geq \geq 6 8 6 8 6 LL. L -TKB KNZ ΥАТ ZMO ЧXВ с Ш ХNХ QMZ > T <u>|</u>____ Ч Ц

 \square Z Z \bigcirc \Box 40/div ഗ ഗ 0.4Œ \neg \geq \geq a \subseteq 4 m [Œ \geq \geq L L____ ΤXΒ КNZ QMZ ΤXB с Ш ΥAT ХNZ QMZ > רו ΥAT \subseteq \bigcirc ----unct \Box \Box Z Z \Box 0 ഗ ____ ഗ \oplus Œ Œ 4 S \neg \subseteq N \neg 5 ---- \geq \geq \square Œ Œ \geq \geq 6 8 6 8 L L \neg -----l КNZ TKB TXB ΔMQ ΥАТ ХNЯ QMZ с Т ><u>|----</u> . U X

Figure 6-3 (d) Temporal changes of single-station transfer functions A and B in 1989. The real and imaginary parts are donated with suffixes u and v, respectively.

Table 6-1 Correlation coefficients between the temporal changes of Au and Bu at Tsukuba and those at each observatory.

Obsevatories	Period	Correlation Au	coefficients Bu
TKB-MZS	64 min	0.43	0.55
	4 min	-0.26	0.22
TKB-KAK	64 min	0.90	0.97
	4 min	0.90	0.60
TKB-KNZ	64 min	0.64	0.67
	4 min	-0.74	0.70

Figure 6-4 Difference induction arrows between July and August, 1989 (rel part).

Figure 6-5 Underground water level at Tsukuba in 1989 Each well has different depth.

(a)

Figure 6-6 (a) Monthly precipitaion in 1989 and (b) observation sites (after Japan Meteorological Agency, 1990)

Figure 6-7 Daily sea level at Aburatsubo Tide station operated by the GSI in 1989 A peak in August was caused by low atmospheric pressure of a typhoon.

Figure 6-8 (a) Cumulative number of earthquakes (M>3, 0< Depth <200 km) occurred in the shadowed area in (b) (after SEIS-PC [Ishikawa *et al.*, 1985]).

(a) Monthly transfer functions of Kanozan and K-index of Kakioka

(b) Correlation charts of (a)

Figure 6-9 Correlation between temporal changes of K-index at Kakioka and those of transfer functions of Kanozan

Figure 6-10 (a) Temporal changes of interstation transfer functions of Kanozan in 1989. The real and imaginary parts are donated with suffixes *u* and *v*, respectively. The reference station is Kakioka.

Figure 6-10 (b) Temporal changes of interstation transfer functions of Kanozan in 1989.The real and imaginary parts are donated with suffixes u and v, respectively.The reference station is Kakioka.

Figure 6-10 (c) Temporal changes of interstation transfer functions of Kanozan in 1989. The real and imaginary parts are donated with suffixes u and v, respectively. The reference station is Kakioka.

Figure 6-10 (d) Temporal changes of interstation transfer functions of Kanozan in 1989. The real and imaginary parts are donated with suffixes u and v, respectively. The reference station is Kakioka.

Figure 6-11 Average amplitude of the three geomagnetic components

(a) X component

(b)Y component

(c) Z component

Figure 6-12 Coherency squared of the horizontal components between Kakioka and each observatory

Figure 6-13 (a) Cumulative number of earthquakes (M>1.5, 0< Depth <200 km) occurred in the rectangle area in (b) (after SEIS-PC [Ishikawa *et al.*, 1985])

Figure 6-14 (a) Induction arrows of the vertical field, before and after the earthquake (real part). Ellipses shows the 95 % confidence intervals.

Figure 6-14 (b) Induction arrows of the the horizontal field, before and after the earthquake (real part). Ellipses shows the 95 % confidence intervals. The hatched area shows the after shock region of the earthquake.

(b) Conductivity model

Figure 6-15 Two dimensional model simulation (real part). This situation status is before the occurance of the earthquake.