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magnetoresistance in Section 4.3. Based upon the anomalous angle depen-
dence of quantum oscillations in k-(BEDT-TTF);Cuy(CN);, the existence
of a 3D FS is discussed in Section 4.4. In chapter 5, superconductivity of
Q2D superconductors under in-plane magnetic fields are studied. The results
of anomalous high H., in x-(BEDT-TTF),Hg, g9Brg (Section 5.1) d the
search for superconductivity recurrence in Sr,RuQy4 (Section 5.2) are shown.
The implication of experimental results are discussed. Finally, a summary is

given in Chapter 6.

.5 Materials and their F - 1i st ‘aces stud-
ied in this thesis

The 1 terials studied in this this are briefly ¢ cribed here. They are cat-
egorized into two groups : (1) LuOT-TTF ba | organic superconductors
and (2) the oxide superconductor Sr;RuQy, both of which are of a laye |

structure possessing two-dimen »nal character.

1.5.1 BEDT-TTF based organic conductors

(=i

Figure 1.1: BEDT-TTF molecule

BEDT-TTF (bisethylenedithia-tetrathiafulvalene, C ~ 3g) (f ;. 1.1 is
an organic molecule giving the hig st T, among organic supercond  rs
[9, 10]. BEDT-TTF molecules form a family of charge transfer complexes
(BEDT-TTF),, X, with an anion X. Typical chemical formula is (BF 'T-

TTF),X, in which the valence of BEDT-TTF molecule is formally +0.5, that
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Figure 1.2: (a) BEDT-TTF layer and (b) Cuy(CN); layer of x-"~ 3<DT-
TTF);Cuy(CN);3 viewed along the a*-axis [12].

I jure 1.3: (a) BEDT-TTF layer and (b) Cu(NCS), _rer of x-(BEL
TTF);Cu(NCS), viewed along the a*-axis [15].
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Figure 1.4: Crystal structure of k<-(BEDT-TTF),Hg 59Brs viewed along the
b-axis 16]. The BEDT-TTF layers alternate with the a1 »n layers (e—Hg,
o—Br).
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Figure 1.5: Band structure and Ferr  surf: of (a) k-(E_DT-
)2Cu(.. ¢ . [19] based v n

TTF),Cuy(CN); [18] and (b) s-(BEDT-T”
the extended Hiickel tight binding method.
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ature, respectively. p,, 1s metallic in the whole temperature region while
pc shows a resistance hump around 130 K. Below 20 K, both resistivities
shows T2-dependence with a constant ratio of p./pa;~1000-4000, indicating
anisotropic Fermi liquid nature of Sr,RuQOy4 below 20 K [35].

Concerning the superconductivity of Sr,RuQy, its intrin ¢ T, is 5 K,
rather low compared to high-T, cuprates. Triplet superconducting symmetry
of the Cooper pair is being confirmed by a number of experimental results
such as nuclear magnetic resonance (NMR) measurements [36], impurity ef-
fects on superconductivity [37, 38], and a muon  n rotation (uSR) study

9]. This indicates that in Sr;RuQy4, Cooper .irs are forme so that ._e to-
tal spin moment of a Cooper pair becon  S=1, in contr:  to singlet pairia

(S=0).
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from Fig. 4.1.
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Figure 4.5: The kl(t}nax) values obtained by AMRO olid circles), Fermi surfa

(max)

contour derived from ky " (solid line), and the c: ilat  FS of SryRu0,
(dotted line) withi the 2D recip -al space.
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Figure 10: Angle-dependent magne ‘esistance oscil ions observed in the
1 er-plane resistivity of Sr;RuO4 at 1+ K under a magnetic field of 15 T.
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Figure 4.12: Temperature depende e of the oscillation arr itude (A) di-
vided by temperature (7') { all the frequencies. Solid lines are curves fitted
with the Lifshitz-Kosevich formul =~ The broken line curve is that obtaine
assuming an effective mass of mg- . The slope in the higher tempe ure
region is proportion to the effective mass.
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in which clear SdH oscillations are visible. In the FFT spectrum shown in
Fig. 4.13(b), in addition to the fundamental frequencies of F,=659 T and

3=3940 T, sum and difference frequencies are clearly recognized. Such
combination frequencies have been reported in the dHvA effect [68, 69] and
the SdH effect (70, 71, 72] in k-(BEDT-TTF),Cu(NCS); and the dHvA effect
(73] in o-(BEDT-TTF),KHg(SCN)4. Note that Fsy, is allowed but Fj_, is
prohibited in the MB process. Therefore, it looks that Fz_, can be related
to the CPO effect in a similar way as Sr;Ru! . However, the interpretation
of Fj_, in organic conductors is not so straightforward: the effective mass of
F3_q is quite different between the dHvA effect and the SdH effect, indicating
the differc t origin of Fj_,.

For the FS of x-(BEDT-TTF),Cu(NCS), forming a MB network, the
Stark quantum interference (SQI) effect [42, 74] giving Fj_, al: becomes
possible in transport measurements such as the SAH effect. The SQI effect
occurs when there exists a possibility for the ¢ ries to  ¢e more than one
path through the MB network to re h the same destination. 1 _e effective
mass of Fg_, in the presence of the SQI effect is approximately g m as
mp_o ~ mp — mY%. This value is rather consistent with the effective masses
of m;=2.Tmy, mj=4.Tmg, and mj__,=2.9m,, evaluated in the present study
shown in Fig. 4.14 and 10se by others 71, 72]. Therefore, Harrison et al.
[7¢ attempted to attribute the principal rigin of Fjs_, in the SdH « ‘ect
of k-(BEDT-TTF),Cu(NCS); to the SQI effect rather than t : CPO effect
based on their numerical calculation. On the ¢ 1er hand, the effective mass of
Fp_q, derived by dHvA oscillations [69], is between mj a1 mj 4+ m}, , being
consistent with the calculation assuming N is constant .J, 76]. Therefore,
Fs_o in the dHVA effect seems to be due to the CPO effect. This view is
also supported by the full-quantum-mechanical calculation with a realistic

tight-binding model based on the band calculation [77, 78].
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P 4.14:  (a)the Shubnikov-de Haas oscillations in &-(BED
TT ,_.Cu(NCS), at different temperature. (b) Temperature dependence of

e ci on amplitude (A) divided by temperature (7). Solid lines are
curves fitted according to the Lifshitz-Kosevich formula. The slope in the
higher temperature region is proportional to the effective mass.
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Figure 4.15: Polar-angle 6 depen 'nce of the resistar  for x-(BEDT-
TTF)2Cuy(CN)3 under 7.0 kbar for various ¢ values.
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Figure 4.16: Angle ‘pendence c. the mag tc sistance  SrRuO4  the
vicinity of 6=90° for various ¢ values. The 6 « an  of the resistivity
for different ¢ is presented in arbitrary nits by s  ng with each other in
the vertical ¢ ‘ection.
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Figure 4.18: Field dependence of p,  SryRuQ,4 at 50 n ~ " for n  rnetic fields
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by 5° (0=85°, $=45°) shown in the midc : TI iet s1  vs the polar-angle
dependence of p. near the parallel field orient | for $=45° at 33 T d
50 mK. It is noted that the difference in the resistivity - 's between upper
two curves nearly corresponds to the peak | ght.
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Figure 5.1: Temperature dependence of H,, parallel to the co luctit plane
in k-(BEDT-TTF)4Hg,. Brs reported by Lyubovskii et al. [97].
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Figure 5.2: The temperature dependence of the in-plane resistance of -

(BEDT-T1  )4Hgy89Brs. The sample w: coated with grease so as to sup-
press resistance jumps.
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the superconducting state was somewhat varied depending on samples.

The two-dimensionality is demonstrated by the angle dependence of the
in-plane resistance under a magnetic field as shown in Fig. 5.3. The super-
conductivity was suppressed for the magnetic field of 15 T applied perpen-
dicularly to the superconducting plane but it revived in a wide angle region
centered at §=90°.

Figure 5.4 shows the temperature dependence of the in-plane resistance
in the transition region under magnetic fields applied parallel to the con-
ducting plane with an accuracy of £0.1°. The results were obtained for the
field direction along the b (short-diagonal) axis within the conducting plane
and for the direction deflected by 45° from the b axis. In the absence of
a magnetic fic 1, the transition curve was rather broad and the nsit 1
width reached 2 K centered at 5.0 K. Presumably this is due to a 1percon-
ducting fluctuation effect characteristic for low-dimensional superconductors
and/or inhomogeniety of the samples. It is notable that the transition be-
havior shifted to the low temperature side almost parallel w  increasing
the mag etic field up to 15 T. We confirmed that a similar mag tic field
dependence was observedi t :field orientation alc ; the a (long-diagonal)
axis.

When a magnetic field was applied perpendicularly to the superconduct-
ing plane, the transition behavior becan t¢ dull to determine the charac-
teristic temperature as shown in Fig. 5.5, as has been widely fou 1in higt s
2D systems due to the thermal fluctuation effect. herefore it is misleading
to determine the characteristic transition temperature for 1is field orienta-
tion. However, it should be noted that superconductivity was completely
suppressed under the magnetic field of 15 T.

It is ¢ e interesting to find up to how high field the superconductivity

survives. For this purpose we carried out resistance measurements at 0.5 K
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Figure 5.3: The angle dependence of the in-plane resistance under the mag-
netic field of 15 T measured at 1.5 K for sa ple #1. § = 0° corresponds to
the direction perpendicular to the layer plane w le § = 90° correspo s to
the direction parallel to the plane along the b axis.

100






1 I 1 I [} I i I

1.5+ Sample #1 ,./" i

10

en HJerature (K)

Figure 5.5: The temperature ender : of the i plane resistance in the
>erconducting transition region for sample #1. 7 e magnetic field up to
15 T was applied perpendict r to the co lucting plar
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with use of a 27-T magnet at the High Magnetic Field Laboratory, Institute
for Material Research at Tohuku University. Figure 5.6 shows one of the
results exhibiting the angle dependence of the resistance in the magnetic
field of 20 T and 24 T at 0.5 K. It showed a broad resistance dip centered at
6=90° even at 24 T, which was ascribable to superconductivity. The result
demonstrates that the resistance drop at #=90° under 20 T and 24 T was
almost 50% and 10% of the value at =0°, respectively.

The temperature dependence of H., under in-plane magnetic fields is
summarized in Fig. 5.7. The H., values v e evalua 1 in two ways: one
is the value at the midpoint of the resistive transition and the other is the
ve 1e at 90 % of the resistivity in the normal state. The results for the fii 1
par: 1 to the a axis are presented together with those for the field along the
b axis. The H.; evaluated at 0.5 K indicates a tendency of sat ition rather

an negative curvature.

5.1.3 Discussion

First, we compare the H.; behavior with that of other organic supercon-
ductors. It is remarkable that the H,, of k-(BEDT-TTF),Hg, g9Brg grew
rapidly with :creasing temperature, but was strongly suppressed :low 3
K, as shown in Fig 5.8. The itic slope —d(poH)/dT .1, of ~10 T/K
is three times larger than that for the cor ) nds with a similar 7.. This
result indicates strong suppression of the orbit: depairing effect in this com-
pound. It is also interesting to note t : correlation between 7. and the initial
slope in these organic superconc ctors, irrespective of the type of the crystal
structure: organic superconductors with higher T, have a tendency to ex-
hibit a larger value of the initial slope near T,. The characteristics of the H_,
behavior are summarized in Table 5.2.

As demonstrated in Section 1.4, the « ect of orbit motion is substan-
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Figure 5.6: The angle :pendence of the resistance under the magr ic fiel
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Figure 5.10: Dip in pgp of Sr: uO4 at 50 mK 1 :r 1.5 T d : to supercon-
ductivity by inclination of the field direction near the conducting plane. T e
fic 1 orientation is defined by the polar angle # a1 the :imuthala sle ¢ as
shown in the inset.
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The measured p,(H || 110) indicates that the superconductivity recur-
rence is absent at least up to 33 T at 50 mK. Note that the quality of the
sample was high, as evidenced by a T, of 1.41 K and the residual resistance
ratio pagox /p1.s5k reaching ~ 10°. These results imply that the critical field
for the recurrence, if it exists, should be higher than 33 T.

For further attempts in the future, higher magnetic fields such  a -
T resistive magnet which is now under construction and will be useful in
the near future at NHMFL are desired. Measurements with use of a pulse
magnet is also worthwhile. Concerning measuring methods, resistiv - mea-
surements are not enough since a certain change in the rc stivity cannot be
directly connected to superconducting ‘gnals, and t} efore, m« iurements
of thermodynamic properties are needed together. For example, r  1etiza-
tion measurements with a torquemeter, whose signal-to-noise ratio is wch
better 1an the resistivity measurements, are useful: the angle-c sendent
torque, the recurrence occurs, will exhibit a ink due to superconductiv-
ity in the direction parallel to the conducti plane. Besides, an inductive
method used for usual magnetization meas ementsis 3o nsidered to be

useful.
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any trace of the superconductivity recurrence as far as the measurements
were carried out in the magnetic field reaching 33 T and at 50 mK. Since the
superconductivity recurrence depends on band parameters such as ¢, the
required field for the observation can be higher than 33 T. It is worthwhile
to carry out experiments in higher magnetic fields using a pulsed magnet. It
should be also noted that the in-plane resistivity exhibited huge longitudinal
magnetoresistance reaching Apgy/papo ~70 at 33 T, even though the filed was
applied almost parallel to the current. The origin should be clarified in the

future.
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