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.~3. However, the normalized d should not be a fixed value since the magnetic field line
is not constant along the latitude. In the higher latitudes (L > 3), d smaller than 0.01
should be assigned. In _ _g. 3.10, the dependence of the ground magnetic perturbation
on the Hall conductivity for various vi 1es of d is shown. It is clearly shown that, when
d becomes smaller (say, the case of the higher latitude), the effect of the inductive effect
becomes weaker. 7 us the ground magnetic perturbation becomes larger. In fact, Eqs.
(3.2)-(3.4) indicate that smaller d re 1ces the inductive electric field. Therefore, we can
conclude that the magnetic s el ng effect due to the ionospheric Hall current tends to
appear in the more enhanced Ha conductivity. From Eqs. (3.2)-(3.4), we also find that
smaller d enhances the grou 1 magnetic rturbation. In evaluating latitudinal variations
in the cor 1gate asymmetry of the ground magnetic perturbations in the latter part of

tl :section, d is adjusted to the fii  line :ngth at the relevant latitude.
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the curvature is taken into account, decrease in the magnetic flux toward the ionosphere
may concentrate the electromagnetic field perturbation associated with the Alfvén wave
propagating toward the ionosphere. We neced to employ the dipole magnetosphere model
in the next study.

Or - the stationary standing Alfvén oscillation is considered in the present thesis.
Note that this is also q te calized model of the actual phenomena. In the actual
phenomena, we need to take into account another physical mechanisms (for example,
the phase mixing effect) when we try to compare the observed data and the present
numerical results. Howeve | it seems interesting to comparc the numerical results with
observe ones y eve iting the magnetospheric magnetic perturbation from the ground
magnetic c¢r rbatic . The gro 1d observation is now continuously carried out in a  et-
work base. Coml hation of tI grou Il-based observation and the quantitative numerical

mo lshot 1open a new stage of the research.
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where 0E7 is electric amplitude of the fast mode wave. From Eqs.(A.1) and (A.2), the

magnetic fields of the Alfvén wave and fast mode wave are given by

1 ik 1 ik (s

0B, = rﬁEﬁf’W”d’—ﬁ‘SE;e i lerd), (A.3)
kp T

0B, = e thred, (A4)

Next, the e ctric fields of the waves in the neutral atmosphere are given by

o d ipz u —ipz A
5El',atm - 6Em,atme +6Er,atm€ ) (A‘))
_ d P2 U —ipz
6Ey,a,f,m - 5Ey,a.tm€ +5Ey,atm€’ : (AG)

As the frequency is so low, the wave n nber of waves in the atmosphere is

= (%)2 s (A7)

Moreover, since the ¢ »ctric{ |d tangen 1 to the ground is zero in the ground, we have

6Emsatm - (SE;f,atm(C_kmz - C}C;EZ)) (AS)
5Ey‘atm, — 5E;]i’mnl(€_k'yrz - €k1‘z), (Ag)
id - rmay etic o s are
[ )
(SBm,(le - 5E5 atm (_> (C_ATZ + 6kl:z)7 (A ))
’ W
5By,atm = 0. (A] )

Here Eq.( 11) is derived from j, = 0 [c.f. Nishida, 1978].
he ionospheric boundary conditions are given by Eqs.(1.8)~(1.10). From Eq.(1.8),

we have

% = 0Fmam, (A1
(7= 6Eyam, (A.13)
thus
0EL +6E, = 6B (e =), (A.14)
0B, = OB, (e —e 1), (A.15)
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From Eqgs.(1.9) and (1.10),
/I’OgljéEa:,at.m - /LOE]](SEy,atm - 6By o 5Bg‘(1tma

NOEP‘ Latm + [ I(SEm,atm — -5B1 + 5Ba',utm-

Thus

Janps p(SE wd _ d) - /IQEH(SE

Y, afm( o e C_kl'd)

T, atm(

1 1
=0E — — 6ET —

G A

NOEP5E

Y, ulm(

ked ztl) + /IOEH(SE 2»d 71@'1(1)

z, ntm( —¢

—5E’ — — §FE¢

y,atm

— k,
= (ekmd . e—-k,d).

Here, e de 1e Sp= JoVaXp and EH = Mo‘/xzu

SE: + 6E! = QOEfaLm sinh (k,d),
6E;, = ’E;iatmsmh(/czd),
SEL —0El = péEL ., sinh(k.d) — 25 50EL ,, sinh(k.d),

— Slkp — 210E] 4nke cosh(kgd)
= Qkﬁ‘ipéEgmm sinh(k,d) ZkAEH SE? atm Sinh(kzd).
From these ec a 5 i, we derive §E, ;/0E" as
0E.;s  OEL+0E]
§EL SE
2
1+ Zp kYD
¢ d 0By am/0DBy s as
(SBaz,grd _ ka(sEngl,aim/?"w
0By is (OF; —0E7)/Va

7k1 i)u
D Slllh(ka:d) iP + A’HAZ%I/D’

where

D = kp + ik, coth(k.d) + ki Sp.

(A.16)
(A.17)

(A.18)

(A.19)

(A.20)
(A.21)

(A.22)
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(A.24)
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Table 4.

L Freq.(m Reference

6 6.0 Samson and Rostoker [1972]
4 10.7 Samson and Rostoker [1972]
2 27.5 Ziesolleck et al. [1993]

renfre

mncies of

e standing Alfvén oscillation in each L-shells.
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! Station pair | sin/ | season (north) Sy ZSg/Sp Vi
wsysvo | [0l 17
(I e

Table 4.9:  atios of  : parameters (the ionospheric conductivity and the Alfvén speed)

etween Syowa-Icela  stations in solstice seasons.
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Figure 3: » locations of AMPTE CCE satellite at the onset of Pi 2 events. Pi 2
pulsation in the m : ‘tosphere is mainly observed in the nightside. [Takahashi et al.,

1992)






FIGURES 63

Joule loss

00 = e l A

0.01 0.1 1 10 100
2p

Fig e 1.6: The 1 :loss of the standing Alfvén oscillation shown in Eq. (1.7) versus
t » Pe srsen conductiv. . X4 = 1.
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Figure 2.1: he sch' 1atic figure of the model used in the present study. The inner and
outer boundaries are located at z = 0 and 3. The ionospheres at o = 0 are located at z
= 41 (& refer to the ionosphere in the northern and southern hemispheres, respectively)
a 1that at 2 = 2 is 2 = £(1 + 29z0). he distance between the ionosphere and the
Earth is d.  he z coordinate of the magnetic equator is z = 0.
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The electric field in the ionosphere
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Figure 2. La wudin: (z- rection) intensity profiles of e electric field perturbations in
ionosphere (top), those of the magnetic field perturbations just above the iono: here
dc ) and those on the ground (bottom). The parameters are same as that used in Fig.

2.3. T 2 and y components are represented with the solid and dotted lines respectively.
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Figure 3.2: 6. ;q/0B,s of the st three harmonics of the standing Alfvén oscillation
are plotted a  1nctions of Yy where Xpg = 10. The solid, dashed and dotted lines
represent the fundamental, second, and third harmonic modes respectively.
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Figure 3.4: 7, (de 1ed in Eq.(3.5)) and 7, (Eq.(3.6)) as functions of £po. The solid and
wshed i s are r, and 7y, respectively.
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Figure 3.6: (a) 0B;4(N/S) as a function of ipo(_N). Spo(S) = Spo(N,S) = 10. (b)
6B, 4ra(N/S) as a function of Ygo(N). Lpo(N,S) = Ep0(S) = 10. In both panels, z, = 0
and 174 ;5 = 10 in both hemispheres.
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Fig re 3.7 B4 4a(N/S) of © e first three harmonics of the standing Alfvén oscillation.
The condi tivities are as same as those used for Fig.3.6(b).
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Figure 3.8: 0B, 44(N/S) as a function of 20(N). 20(S) = 0 and Yro(N,S) = 10. £40(N,S)
is 10 (solid line) and 100 (dashed li1 .
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Figure 3.9: § B, 4ra(N/S) as a function of Vi ;s(N). Vi is(S) = 10, 2(N,S) = 0 and Ypo(N,S)
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Figure 3.10: 0B, g4/ By,is as a function of Hall conductivity for various values of d (0.001,
0.003, 0.01, 0.03, 0.1).
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Figure 4.3: The north-south ratio of the Syowa-Iceland conjugate pairs calculated with
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This thesis is based on the following paper.

Ground magnetic perturbations associated with the standing toroidal mode
oscillations in the magnetosphere-ionosphere system,

submitted to Earth, Planets and Space,

by H. Nakata, S. Fujita, A. Yoshikawa, M. Itonaga and K. Yumoto
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