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Abstract 

Behaviors of the standing Alfven oscillation (toroidal mode oscillation) in the magnetosphere­

ionosphere coupled system is investigated by using a trapezoid-shape magnetosphere 

model. In this model , the ionosphere is anisotropic thin conductor and inclined to the 

1nain magnetic field. The Alfven speed is spatially non-uniform and variable. It is ob­

tained that the magnetic perturbation is transn1itted across the ionosphere differently in 

the tv:.ro cases where the ionospheric electric field perturbation is static (the Pedersen con­

ductivity > the Hall conductivity) and where it is inductive (the Pedersen conductivity 

< the Hall conductivity) . It is notable that the ionospheric Hall current in the inductive 

condition shields the magnetic field perturbation. This shield effect becomes reduced only 

in the static condition -vvhen the magnetic inclination to the ionosphere becomes smaller 

because the Pedersen conductivity becomes effectively smaller. When the Alfven speed 

in the ionosphere is larger, this shield effect also become reduced only in the inductive 

condition . The north-south asymmetry of the conjugate ground magnetic perturbations 

is calculated by using the present model with the ionospheric and 1nagnetospheric pa­

rameters based on the IGRF and IRI. It is revealed that the ionospheric electric field 

is almost static for the fundamental mode oscillation, whereas inductive for the higher 

harmonic ones . It is also found that the north-south asymmetry of the ground magnetic 

perturbations depends on not only the 1-value but also the magnetic longitude; this is 

because the ionosphere and 1nagnetic field conditions are not unifonn along the longitude. 

The present calculations qualitatively explain the observational results of 210° r-.1agnetic 

1eridian chain and Symva-Iceland conjugate stations. 
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Chapter 1 

Introduction 

1.1 Geomagnetic pulsations an d MHD waves 

Geomagnetic pulsations are the ultra-low-frequency (ULF) perturbations of the ground 

magnetic field vvith periods ranging from seconds to minutes. The geomagnetic pulsations 

are categorized into two groups . One of them is called as the Pc pulsation that shows 

the continuously sinusoidal variations . Thus the Pc pulsation has a sharp spectral peak 

and its frequency is almost constant. The other is the Pi pulsation that exhibits rather 

irregular variation. The P i pulsation has broad spectral peaks compared with those of the 

Pc pulsation . The Pc and P i pulsations vvere first categorized into five and two groups, 

respectively, according to their frequencies [Jacob et al., 1964]. At the present time, 

including new groups, the Pc and Pi pulsations are classified into six and three groups as 

shown in Figure 1.1 [Saito, 1978]. 

Several generation mechanisms of the pulsations have been presented . For example, it 

is widely accepted that the Pi 2 pulsation is closely related to the onset of the substorm. 

Yun1oto [1990] suggested that the Pi 2 pulsation is excited by the cavity mode oscillation 

[Kivelson et al., 1984; Allan et al., 1986] due to the magnetic field dipolarization or the 

current disruption suggested by l\1cPherron et al. [1973] [c .f. Figure 1.2] The current 

disruption is equivalent to the eastward current \vhich cancel the cross-tail current. Col-

1 



CHAPTER 1. INTRODUCTION 2 

lapse of the cross-tail current triggers the field aligned current (FAC) flowing into and 

out of the ionosphere and the ionospheric current connecting the pair of FAC. This cur­

rent system is called the substorm current wedge [Clauer and McPherron , 1974; San1son , 

1982). The fast magnetosonic 1node wave emitted at the current disruption event induces 

the cavity 1node oscillation. This scenario is believed to be the generation mechanism of 

the Pi 2 pulsation. Thus, the Pi 2 pulsation is n1ainly observed in the night-side in the 

magnetosphere as shown in Figure 1.3 [Takahashi et al., 1992). 

The Pc pulsations are mainly observed in the day-side. The compressional Pc 3 

pulsation is closely related to the upstream wave in the magnetosheath [Scarf et al., 1970), 

which penetrates the magnetosphere [Zhang et al., 1993). Furthermore, the interplanetary 

shock also induces the toroidal mode Pc 3-4 pulsations [Yumoto et al., 1994]. The Pc 3 

pulsation is observed on the ground as the daytime Pc pulsation with long duration. The 

long duration of the pulsation suggests the oscillation standing along a magnetic field 

line between the ionospheres in the northern and southern hemispheres . The standing 

oscillation along the field line is the Alfven mode oscillation as explained later. The 

toroidal Pc 5 pulsation occurs with or without the shorter-period Pc 3-4 pulsation. Nose 

et al. [1995) shows that the Pc 5 pulsation is mainly observed in the high latitude [c.f. 

Figure 1.4). The Pc 5 pulsation in high latitudes may be the fundamental 1node of the 

standing Alfven oscillation and that the Pc 3-4 pulsations are higher hannonics of the 

standing Alfven oscillation. The Kelvin-Hehnholtz instability in the magnetopause [Fujita 

et al., 1996) is also regarded to excite the standing Alfven oscillations via the field-line 

resonance [Tamao, 1965; Southwood, 1974; Chen and Hasegawa, 1974) as explained later. 

Therefore, the standing Alfven oscillation is regarded to be observed as the Pc pulsation. 

In the present thesis, Vi'e deal with the standing Alfven oscillation. 

As these pulsations transport inforn1ations of the magnetosphere, it is very important 

to knov.,r their propagation 1nechanisms in the standpoint of the magnetospheric physics. 

In order to study the geomagnetic pulsations, we should kno\v the magnetohydrodynamics 

(IVIHD). Since 1HD integrates the fluid dynamics and the electro-magnetics, the MHD 
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waves include the characteristics of the sound wave and the electromagnetic \vave. There 

are compressional and transverse waves in the cold plasma ("cold" means j3 << 1 where j3 

is defined by the ratio of the plasrna pressure to the magnetic pressure). The transverse 

\vave is called the shear Alfven wave (simply the Alfven wave or Alfven mode wave) and 

transports energy only along the n1agnetic field line with Alfven speed (11A). VA is defined 

as 

(1.1) 

where B 0 is the magnitude of the main magnetic field, p,0 is magnetic penneability in 

vacuum and pis plasrna density. The compressional wave, on the contrary, propagates to 

any direction . If the v.rave propagates in a warm plasma with finite j3, the velocity of the 

compressional wave is larger than the Alfven speed. Thus, the compressional waves are 

also referred to as the fast magnetosonic mode wave (simply the fast mode wave). 

Since the Alfven wave propagates only along the field line, this wave forms a standing 

oscillation. The geomagnetic pulsation with long duration is the standing MHD oscillation 

of the magnetic field line . This is due to the Alfven waves (refer to as a standing Alfven 

oscillation) . The observational fact that the frequency of the pulsation becomes smaller 

in the lmver latitude reveals existence of the standing oscillation. 

As explained above, the Pc pulsation is generated out of the magnetosphere. Therefore, 

the perturbation has to propagate across the field line to be observed as the geomagnetic 

pulsations at middle and low latitudes . This fact indicates that the wave first generated is 

the fast mode \vave. Then, how the standing Alfven wave is induced? The answer is the 

field-line resonance (FLR) theory. FLR is firstly studied by Tamao [1965] and developed 

by Southwood [1974] and Chen and Hasegawa [1974] . The scenario of this theory is 

as follows: the fast n1ode wave excited out of the magnetosphere, due to the Kelvin­

Helmholtz instability or the interplanetary shocks, propagates into the rnagnetosphere 

across the field line. When the rnagnetosphere is nonunifonn and the fast mode \vave is 

azimuthally asyrnrnetric, the fast mode v,rave and the Alfven mode wave always couple. 

The fast mode wa\ e resonate vvith the Alfven wave on the field line \vhere the frequency of 
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the fast 1node wave beco1nes the same as the eigenfrequency of the field line (the frequency 

of the standing Alfven oscillation). Finally, the standing Alfven oscillation is excited to 

be observed as the ground magnetic perturbations. 

Before reviewing the interaction between the ionosphere and the MHD waves, we 

describe physical properties of the MHD waves. Since the MHD approxi1nation requires 

no electric field parallel to the main magnetic field, general expressions of the electric field 

of MHD ,~.raves can be given as follov.rs . 

8Aj_ 
oEj_ = - Vj_~ - -­ot ' (1.2) 

and A = \7 x ('lie) where ~ and 'l1 are scalar functions and e is unit vector along the 

main magnetic field. As the shear Alfven wave is irrotational (\7 x oE = 0) and the fast 

mode wave is source free (\7 · o E = 0), the electric field of the Alfven wave is given by 

(1.3) 

and that of the fast 1node wave is 

(1.4) 

These equations show that the Alfven wave has the static (or divergent) electric field and 

the fast mode wave has the inductive (or rotational) one . Bearing in mind that the l'v1HD 

v.raves carry the polarization current (ex: (wj11A) 2oEj_ where w is the angular frequency of 

the wave), the Alfven wave has divergent current and the fast mode wave has rotational 

current. 



CHAPTER 1. INTRODUCTION 5 

1.2 Interaction of the MHD waves with the iono-

sphere 

1.2.1 The MHD wave and the ionospheric Pedersen conductiv­

ity 

There is the ionosphere between the magnetosphere and the ground. Therefore, the lVIHD 

waves in the magnetosphere are modified by the ionosphere and transmitted toward the 

ground . In order to study the ground rnagnetic perturbation, we need to consider the 

ionospheric rnodification . amely, the standing Alfven oscillation should be studied in 

the rnagnetosphere-ionosphere coupled systern . 

First, let us overview incidence of the Alfven wave on the ionosphere . Many authors 

have investigated ionospheric modification of the rv1HD waves. When the Alfven wave 

impinges on the ionosphere, the reflection wave is emitted by the Pedersen current [c.f. 

Scholar, 1970; Maltsev et al., 1977; Mallinckrodt and Carlson, 1978]. Scholer[1970] inves­

tigated propagation of the Alfven wave excited by the sudden disturbance in the magnetic 

equator. He derived the reflection coefficient of the incident Alfven wave as follows 

R = _~_A_-_~_P_ 
~A+ ~p' 

(1.5) 

'Where ~P is the height-integrated Pedersen conductivity and ~A is the Alfven conductance 

defined as 1/p,oVA [IVIaltsev et al., 1977; Mallinckrodt and Carlson, 1978]. Using this 

equation, we calculate the total electric field in the ionosphere in the case of the Alfven 

wave incidence; 

Etotal = Ein + Eref = Ein(1 + R) . (1.6) 

Here Etotal is the total electric field in the ionosphere, Ein is the incident electric field and 

Er ef is the reflected electric field. When ~P is much larger than ~A (this is a daytime 

condition), R ~ -1 and thus the ionospheric electric field nearly bec01ne zero . \iVhen 

we consider the Alfven '"ave that fonns a standing oscillation , the electric field has a 
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node in the ionosphere and the magnetic field line is anchored on the ionosphere. \Vhile 

the 1nagnetic field perturbation of the standing Alfven oscillation has an anti-node in the 

ionosphere. When 'Ep is much s1naller than EA (a night-side condition), on the other 

hand, R ~ 1 and the total ionospheric electric field is twice the input electric field. The 

electric and magnetic fields of the standing Alfven oscillation have an anti-node and a 

node in the ionosphere, respectively. 

The ionospheric reflection of the Alfven wave explained above tells us behavior of 

the standing Alfven oscillation . Newton et al. [1978] noticed that the harmonic number 

increases by one when the Pedersen conductivity changes continuously from zero to infinity 

[c.f. Figure 1.5]. The second harmonic mode for zero Pedersen conductivity with the 

anti-node of the electric field in the ionosphere becomes the third harmonic mode of 

the standing Alfven oscillation with the node in the ionosphere for infinite Pedersen 

conductivity. 

The dam ping of the standing Alfven oscillation is also dependent on the Pedersen 

conductivity. Newton et al. [1978] numerically showed that the damping of the standing 

Alfven oscillation is maxi1nized for a certain value of 'Ep. Allan and Knox [1979a] studied 

the toroidal mode oscillation (the standing Alfven oscillation) and derived its damping 

coefficient . Then Allan and Knox [1979b] shows that the damping coefficient is propor­

tional to 'Ep for smaller 'Ep and inversely proportional to 'Ep for larger 'Ep. The damping 

of the standing Alfven oscillation is caused by the Joule loss in tl}.e ionosphere. Here, 

\Ve explain the damping. \Vhen the Pedersen conductivity is quite large, the ionospheric 

electric field beco1nes aln1ost zero as shown in Eq.(1.6). Thus the Joule loss(oJ · oE) 

caused by the conductivity is vanished . No Pedersen conductivity invokes no ionospheric 

current and no Joule loss . \Vhen the Pedersen conductivity is a finite value, the Joule 
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loss is derived as follo\vs: 

oJ. oE ~pOEtotal · oEtotal 

~p(1 + R) 2oEtn 

( 
2~A ) 

2 
2 

~P 2:A + 2:p oEin 

4~p~~ 2 

(~A + ~P )2 oEin (1. 7) 

From this relation, the Joule loss is maximurn when ~A ~P [c.f. Figure 1.6]. We 

understand that the Alfven conductance is an important factor for the damping. 

1.2.2 Ground magnetic perturbations and the ionospheric cur-

rent 

As the ionosphere is an anisotropic conductor, the ionospheric current flows toward not 

only the direction of the applied electric field (Pedersen current) but also perpendicular 

to the applied electric field and the main magnetic field (Hall current). 

As thickness of the ionosphere is much smaller than the ionospheric skin depth of the 

f\!IHD waves \vith ULF-range frequencies, we regard the ionosphere as a thin sheet. Thus 

the equations of the ionospheric boundary condition are [Tamao, 1984]; 

N X (oEj_,mag- oEatm) 0, (1.8) 

N X (oBmag- oBatm) J-LoOJ, (1.9) 

N x (~poE x f.l) + (sn)~HoE x N oJ. (1.10) 

~H is the height-integrated conductivity and the suffix "mag" means "rnagnetospheric 

side of the ionosphere" and "atrn" means "atmospheric side of the ionosphere". oJ is the 

ionospheric current associated with the MHD oscillation. N is a unit vector vertical to 

the ionosphere directing toward the magnetosphere, and sn is 1 in the north ionosphere 

and -1 in the south ionosphere. 

\~Then the Alfven wave with the static electric field irnpinges on the ionosphere , the 

Pedersen current is also associated with the static electric field as sho\vn in Eq. (1.10). 
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\,Yhen the 1nagnetic field is vertical to the ionosphere , this Pedersen current closes FAC 

[Tamao, 1965], and it did not affect the ground magnetic perturbation [Fukushima, 1969] 

[c.f. Figure 1.7(a)]. However, the Hall current is associated with the inductive electric 

field. This current produces ground magnetic perturbation [e.g. Nishida, 1964, 1978; 

Inoue and Horowitz, 1966a,b; Hughes and Southwood, 1976a,b; Poulter and Allan, 1985; 

IVIcHenry and Clauer, 1987; Allan, 1995] because only the source-free current associated 

with the inductive electric field in the ionosphere becomes the source of the poloidal 

ground magnetic perturbation [Figure 1. 7(b)]. Full vvave solutions of the ground magnetic 

perturbations shows that the polarization of the Alfven wave rotates 90° [Nishida, 1 964; 

Hughes and Southwood, 1976a,b]. 

1.2.3 The MHD wave and the anisotropic conducting ionosphere 

When the Alfven wave is injected to the ionosphere, the reflected Alfven wave is generated 

through the ionospheric Pedersen current . Both waves have the static electric field. The 

Hall current induces the reflected fast 1node wave with the inductive electric field. This 

situation is expressed with mathematical formula derived from Eqs(l.8)1"J(l.10) as follows: 

\7 · 6J j_ - ~P \7 · 6E j_ 

e\7 X !JJ j_ - ~pe\7 X !JE j_ 

-~He\7 X bE j_, 

~H\1 · 6E j_ . 

(1.11) 

(1.12) 

We assume the unifonn ionosphere and the magnetic field vertical to the ionosphere 

in the north he1nisphere, N = -e. Eq. (1.11) indicates that "the space charge" and 

FAC associated with the incident and reflected Alfven waves (l.h.s) has to correspond to 

rotation of the inductive electric field (r.h.s.). At the same time, rotation of the inductive 

electric field (proportional to the compressional 1nagnetic field perturbation) and the 

associated eddy current (l.h.s. of Eq. (1.12)) of the reflected fast mode wave correspond 

to divergence of the static electric field (r.h.s.). In the case of the Alfven wave incidence, 

nonzero ~H induces nonzero r.h .s. ofEq. (1.12). Therefore, Eq. (1.12) demonstrates that 

the static electric field is always acco1npanied 'vith the inductive one when the ionosphere 
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has the Hall conductivity. This means that r.h.s. of Eq. (1.11) remains nonzero. N an1ely, 

Eq. (1.11) indicates that the inductive electric field n1odifies the reflection of the incident 

Alfven wave. Finally, we conclude that the ionospheric modification of the Alfven wave 

should be treated by considering both ionospheric static and inductive electric fields. 

The above discussion indicates that both Pedersen and Hall conductivities 1nodify the 

ionospheric electric field perturbation and consequently control the ground magnetic field 

perturbation. In spite of this, the past studies did not treat self-consistently the effect 

of the inductive electric field to the ground magnetic field perturbation. For example, 

Poulter and Allan [1985] and Allan [1995] investigated the ground magnetic perturbation 

associated with the standing Alfven oscillation. They calculated the ground magnetic 

perturbations with the following procedure; first, the electric field of the Alfven wave at 

the ionosphere with only ~P is obtained; next, the Hall current is derived as the product 

of the ionospheric electric field thus obtained and the Hall conductivity. Then this Hall 

current produces the ground magnetic perturbation. This procedure is not self-consistent 

because only ~P is taken into account in the first step. The reason why they neglected 

the inductive electric field is that the inductive field seems not to affect the static field 

associated \vith incident Alfven \vave. Of course, difficulty in self-consistent treatment of 

the ionospheric boundary condition forced the1n to use such simplified way. 

By now, there are few works that treat self-consistently the ionospheric boundary con­

dition for the standing Alfven oscillation. Previous works devoted the1nselves to study 

interaction between the anisotropically conducting ionosphere and the Alfven wave in­

cident to it. For example, Tamao [1984] calculated the ground n1agnetic perturbation 

associated with the Alfven wave incident to the ionosphere [Figure 1.8] . He showed that 

the two-step procedure is not valid with the Hall conductivity is large. Namely, the 

ground magnetic perturbation is not proportional to the Hall conductivity when the Hall 

conductivity is large. This fact is not reproduced by the two-step procedure adopted by 

Allan [1995]. Fujita [1985] also showed that the ground 1nagnetic perturbation decreases 

with the Hall conductivity v.,rhen the Hall conductivity is large [Figure 1.9]. Recently, 
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Yoshikawa and Itonaga [1996] exa1nined self-consistently the effect of the inductive elec­

tric field in the case of the Alfven wave incidence. They obtained the reflection coefficient 

of the Alfven wave as follows: 

(l:A- l:p)(l:p- l:p + l:atmCOth(kj_d)) + l:J-! 
R= ~----~~------------------------~ 

(l:A + l:p) (l:p - l:p + l:atm coth(kj_d)) - 2:1 (1.13) 

where 

l:atm v (~r- ki, (1.14) 

1 ( r l:p w "2 (1.15) = VA - kj_, 
fLoW 

w is the angular frequency, kj_ is the wave number perpendicular to the main 1nagnetic 

field , and d is the height of the ionosphere. From this reflection coefficient, they revealed 

that the inductive electric field is effective to the reflection of the Alfven wave in the cases 

of larger Hall conductivity or the higher frequ ency or the smaller horizontal wave number. 

Buchert and Budnik [1997] investigated interaction between the incident Alfven wave 

and the ionosphere with the self-consistent procedure. They reported that the ionospheric 

Hall current strongly modifies the behavior of the Alfven wave when the wave frequency 

becomes higher or ~H jl:p is larger. They also explained the amplification of the elec­

tric field by the Lenz 's law. The ionospheric electric field associated with the incident 

Alfven wave acco1npanies the Hall current. When the current is temporally increasing, 

the inductive electric field opposite to the Hall current is induced through the Lenz 's law. 

This inductive field also excited the Hall current, which an1plify the incident electric field. 

Namely, when the inductive electric field is significant, the smaller electric field can close 

the FAC and the electric field in the ionosphere beco1ne small. 

Here , let us explain the interaction between the Alfven -vvave and the ionosphere with 

Figure 1. 7. When the electric field associated with the Alfven wave is applied on the iono­

sphere, FAC is closed via the Pedersen current. The magnetic perturbation of Alfven \Vave 

is enclosed by FAC and the ionospheric Pedersen current [Figure 1. 7]. Thus, the ground 
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magnetic perturbation is not produced by the Pedersen current. Besides, the Hall cur­

rent produces the n1agnetic perturbations above and below the ionosphere [Figure 1. 7(b)]. 

Poulter and Allan [1985] and Allan [1985] assumed that the ionospheric electric field is 

produced by the first process and that the ground magnetic perturbation is produced by 

the second process. The Lenz 's law tells that the rotational electric field is induced when 

the magnetic perturbation is temporally varied [Figure 1. 7( c)] . Note that the electric field 

perturbation is clockwise when the primary electric field in temporally increasing and the 

n1ain magnetic field is downward . This secondary electric field again induces the Peder­

sen current and Hall current. The Pedersen current produces the magnetic perturbations 

above and below the ionosphere. At last, the Hall current caused by the induced current 

is linked with FAC [Figure 1.7(d)]. This means that balance of the current system of FAC 

and the ionospheric current should be varied . \iVhen the secondary electric field is not 

effective, reflection of the Alfven wave by the ionosphere is decided by the relation of the 

Alfven conductance and the Pedersen conductivity. When the secondary electric field is 

large enough, reflection of the Alfven wave is strongly controlled by the Hall conductivity. 

Buchert and Budnik [1997] derived the reflection coefficient of the Alfven wave including 

the effect of the Hall conductivity in case of the induction dominated limit and showed 

as follows: 

(1.16) 

Off course, this equation is consistent with Eq. (1.13) for inductive limited case (w --+ oo). 

1.3 The compendium of this thesis 

In the present thesis, to evaluate the ground 1nagnetic perturbation under the anisotrop­

ically conducting ionosphere, vve calculate self-consistently electro1nagnetic perturbations 

associated with the standing Alfven oscillation in the 1nagnetosphere - ionosphere cou­

pled system. l!oreover, the ionosphere and the 1nagnetosphere are usually regarded to be 

asymmetric along a 1nagnetic field line with respect to the equator. Then , it is likely that 
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this asy1n1netry of the 1nagnetosphere-ionosphere system yields the asymmetry between 

the conjugate ground 1nagnetic perturbations. It is interesting to predict theoretically the 

asym1netry. Such calculation is also quite infonnative to the conjugate ground magnetic 

observation. Note that this theoretical calculation has not been done yet. Therefore, it is 

another target of the present thesis to evaluate the north-south asymmetry of the ground 

magnetic perturbations based on a 1nodel calculation. 

The structure of the present thesis is as folloviTs. In Chapter 2, we explain the model 

magnetosphere including the ionosphere and the basic equations used in the present thesis. 

In Chapter 3, by using the numerical results, we show how the behavior of the standing 

Alfven oscillation is controlled by the three parameters, i.e. the ionospheric conductivity, 

the inclination of the 1nain magnetic field, and the n1agnetospheric field-aligned Alfven 

speed profile. Ionospheric transmission of the Alfven wave is controlled by ~P and ~H 

as explained above . Essentially, the ionospheric electric field is "static" or "inductive" in 

the two parameter regimes of ~P > ~H or ~P < ~H, respectively. \Ne mainly discuss the 

ionospheric transmission controlled by the inclination angle and the Alfven speed profile 

in the two regimes . In the second part of this chapter, the north-south asymmetry of the 

ground magnetic perturbations invoked by the asym1netric profile in the Inagnetosphere­

ionosphere system is investigated. IVIoreover, the effects of the other parameters, the 

height of the ionosphere and the latitudinal wave number, are also discussed . In Chapter 

4, in order to estimate the conjugate asym1netry of the ground 1nagnetic perturbations in 

the realistic 1nagnetosphere-ionosphere system, it is calculated by using a trapezoid model 

·vvith the ionospheric and magnetospheric parameters obtained frmn IRI and IGRF. Then 

the co1nparison betv.reen the nu1nerical result and the conjugate observations done by 

Saito et al. [1989] and Yumoto [private communication] is shown. In the last section, the 

results in the present thesis are sun1marized. 



Chapter 2 

Model and Basic Equations 

2.1 Model 

The model used in the present thesis is schematically shown in Fig. 2.1 . Latitudinal width 

of the standing Alfven oscillation must be considered for numerical analysis of the oscil­

lation in the magnetosphere-ionosphere coupled system (Physically, the ionospheric Hall 

current makes the Alfven mode electrmnagnetic perturbation spread in the horizontal di­

rection in the ionosphere. Further, the pure standing Alfven oscillation without latitudinal 

spread [e .g., Poulter and Allan, 1985] does not have the ground magnetic perturbation). 

Therefore , V\ e need at least a 2D model. In the present thesis, a trapezoid-shape mag­

netosphere model is used . The 1nodel includes the magnetosphere and the infinitely thin 

ionosphere, which has the height-integrated Pedersen conductivity (L:p) and Hall conduc­

tivity (L:H ). While the main n1agnetic field is assumed to be straight like those in the box 

model, it is inclined to the ionosphere in the trapezoid 1nodel. A free parameter z0 assigns 

the magnetic inclination to the ionosphere . Thus, it is possible to investigate the effect 

of the magnetic inclination on the standing Alfven oscillation. In addition, the Alfven 

speed (VA) is spatially non-unifonn in this model. The spatial profile of VA is given by 

13 
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the following equation: 

VA(X, z) = {VA,is- VA,eq(x)} Lis~X) r + VA,eq(x), (2.1) 

where VA,is and VA,eq(x) are the Alfven speed in the ionosphere and that in the equator. 

z coordinates of the ionosphere is denoted by Zis · VA,is is supposed to be constant in each 

ionospheres . VA,eq monotonically varies with x like 

Tj ( ) = vout ____!:____ + \fin (X out - X) 
1 A,eq X A,eq X A,eq X · 

out out 
(2.2) 

Here V4~tq and Vl~eq are the Alfven speed in the equator of the outer boundary (x = Xout) 

and that in the equator of the inner boundary (x = Xin = 0) (Fig. 2.2). In the present 

thesis, Vl~eq/VJ~tq = 4, Xout = 0.25, VA,is = 10, and the height of the ionosphere (d) = 0.01 

are chosen unless vve specify these values. The numbers of the grid points are 12 in the x 

direction and 31 in the z direction. VA is normalized to VA,eq(x 0 ), where x 0 = 6xaut/ll. 

We analyze the standing Alfven oscillation on the field line at x = x 0 . 

2.2 Basic equation and ionospheric boundary condi-

tions 

Assuming that the magnetospheric plasrna is cold and that the time dependence of the 

wave field is exp( -iwt), the electric field perturbation perpendicular to the main magnetic 

field ( 6E _.1_) is governed by the following equation: 

(2.3) 

In order to solve this equation as an eigenrnode analysis, we adopt the finite differ­

ence method. This method requires an orthogonal grid systern. Besides, since we use 

a trapezoid-type n1agnetosphere model, a mathematical technique should be employed in 

order to transfonn the trapezoidal grid systern into an orthogonal one. The orthogonal 

grid system is obtained through the boundary-fitted coordinate technique; the original co­

ordinates, (x, z), is transformed to the boundary-fitted coordinates, (~, r;), using following 
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relations: 

X 

z 

(2.4) 

(2.5) 

In the ( ~, r;) system, the trapezoid model becomes a square shape defined by I~ I :=; 1 and 

lr;l ::; 1. 

The boundary-fitted coordinate technique may be applied to the Jv'IHD wave analysis 

in the dipole n1odel. However, as long as the dipole coordinate system (p, = sin 8/ r 2
, v = 

cos2 8 jr) is employed, a mesh distribution according to the boundary-fitted coordinates 

is concentrated around the equator. When the coordinate is transformed in order to be 

distributed equally along the field line, matrix elements used for the eigenmode analysis 

happen to have extremely large difference in the 1nagnitude (up to 107
). Resultantly, 

nu1nerical calculations do not issue correct eigenvectors. Therefore, this technique does not 

see1n to treat successfully the Jv'IHD wave analysis in the dipole magnetosphere-ionosphere­

coupled system. This is the reason why we use a simplified trapezoid 1nodel. 

After Tamao [1984,1986], as the equations of the ionospheric boundary condition, 

Eqs.(1.8)rv(l.10) are used . However, we need alternate expressions of Eqs.(1.8)rv(l.10) 

for further numerical analysis . Using the mathematical manipulation similar to that 

employed by Itonaga et al. [1995], we obtain 

iwp,o~P \l5Et + iwp,o~H N(\7 x 5Et) 

-(Ni)(i\7)(\i'OEj_)- ( ~r (iohOEj_), 

iwp,0 ~pN(\l x 5Et) - iwp,o~H \l5Et 

(2.6) 

A A A A N(\7 X 5El_) 
-N(\7 X 5El_)(\l N)- N(N\7)(\l X 5El_) + d ' (2.7) 

';vhere z is the unit vector along z axis or the n1ain 1nagnetic field. Here 5Et is the wave 
A A 

electric field tangential to the ionosphere and N 1_ is the tangential component of N to 

the main 1nagnetic field . The ratio of the second term in the r.h .s. of Eq. (2.6) against 

the first term is estimated as (w/11A) 2 (N.l5E.l)/(Nz)(z\l)(\l5Ej_) rv (lj_/l 11 ) cot! where 
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z11 and lj_ are the field-aligned and latitudinal scales of the standing Alfven oscillation and 

I is the inclination angle . Bearing in mind that lj_ << l1 1, this ratio is much smaller than 

1 unless I ::: 0 (equator) . Therefore, the second term is neglected in the present thesis. 

In addition, the first term in r.h.s. of Eq. (2. 7) is vanished in the present model where N 

is uniform. We adopt these equations as the boundary condition for Eq. (2.3). 

The magnetic field just below the ionosphere corresponds to that on the ground in 

the present approximation in which latitudinal width of the wave > d. Therefore, the 

ground magnetic field is derived from Eqs.(1.9) and (1.10) by using 6Et obtained from 

the numerical calculation. We consider the case where the azimuthal wave number (m 

number) is 0, which 1neans that there is no coupling of the standing Alfven oscillation 

and the fast-1node oscillation in the magnetosphere. 



Chapter 3 

Fundamental Character of the 

standing Alfven oscillation in the 

magnetosphere-ionosphere coupled 

system 

Behaviors of the standing Alfven oscillation in the trapezoid rnodel is controlled by the 

three magnetosphere/ionosphere pararneters, i.e. the ionospheric conductivity, the mag­

netic inclination and the field-aligned profile of the Alfven speed. The ionospheric con­

ductivity directly controls the intensity of the ionospheric electric field associated with 

the standing Alfven oscillation . In addition, the ground rnagnetic perturbation is gener­

ated by the Hall current that is the product of the ionospheric electric field and the Hall 

conductivity. The inclination may change the effective ionospheric conductivity. The 

field-aligned Alfven speed profile affects the field-aligned profile of the electric field as 

"ell as the eigenfrequency of the standing Alfven oscillation. Note that the trapezoid 

rnodel has the straight field line unlike the curved one in the dipole field. The dipole rnag­

netic field has the convergence of the magnetic flux toward the ionosphere. This invokes 

increase in the electrornagnetic field intensity toward the ionosphere. This effect is not 

17 
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included in the present trapezoid model. 

In the former part of this chapter, the ground 1nagnetic perturbation is investigated 

by using the 1nodel in which the 1nagnetosphere and the ionosphere are symmetric with 

respect to the equator. In the latter part of this chapter, the asy1nmetric 1nodel is ein­

ployed in order to study the north-south asymmetry of the ground 1nagnetic perturbations 

invoked by the north-south asy1nmetry of the magnetosphere-ionosphere system. 

At first, we show spatial structures of electric field perturbations associated with the 

second harmonic standing Alfven oscillation (oEx) and that of the fast mode wave (oEy) 

generated through the ionospheric Hall current (Fig.2.3). The parameters are z0 = 0, 'Ep 

= EH = 100EAo in the both ionosphere, where 'EAo = 1/ f-Lo VA,eq(xo). Here we normalize 

'Ep and EH as 

- 'Ep 
'Epo = ~' 

LlAO 

- EH 
'EHo = ~· 

LlAO 
(3.1) 

Note that the Alfven conductance of the second harmonic Alfven oscillation normalized 

to EAo is about 0.23. Since 'Ep and EH are larger than EAo in Fig.-2.3, the standing Alfven 

oscillation has a node in the ionosphere. Fig.2.4 shows latitudinal profiles of oEx and 5Ey 

in the ionosphere (top), the magnetic field perturbations (5Bx and 5By) just above the 

ionosphere (middle) and those on the ground (bottom). The parameters in Fig.2.4 are 

as sa1ne as those of Fig.2.3. The solid and dotted lines represent x and y components 

respectively in each panels. From Figs .2.3 and 2.4, it is obvious that the Alfven 1node 

electric field (oEx) shows the standing-wave behavior. \iVhile 5Ey that belongs to the 

fast mode wave exhibits an evanescent behavior . Note that 5By on the ground is zero. 

This is consistent vvith the theoretical analysis that 5By on the ground vanishes when m 

(azi1nuthal wave nu1nber) = 0 [e.g. Nishida, 1978]. Disappearance of 5By on the ground 

shown in Fig.2.4 indicates that our numerical calculations have sufficient precision. 

VVe 1nainly investigate the second hannonic mode of the standing Alfven oscillation in 

the present thesis because the 1nagnetic perturbation has an anti-node in the equator. 
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3.1 North-south symmetric case 

In this subsection, we investigate transmission of the magnetic perturbation associated 

·with the standing Alfven oscillation through the ionosphere in the symmetric model. 

Hereafter, we use the following notations; 6Ex,is is 6Ex in the ionosphere, 6Ex,max is the 

maxin1u1n value of 5Ex along the field line, 6Bx ,gTd is the ground 1nagnetic perturbation, 

6By,is is 6By just above the ionosphere and 6By,eq is that in the equator (Note that 6By,eq 

of the second harmonic Alfven oscillation is the maximum 6By). 

3 .1.1 Ionospheric conductivity 

Yoshika,va et al. [1995] already investigated the ionospheric control of the ionospheric 

electric field associated with the standing Alfven oscillation. They discussed the in1por­

tance of BH that yields the inductive electric field from the static one belonging to the 

Alfven mode wave. Here, we re-examine their work by addressing the importance of the 

ionospheric inductive electric field to the ground magnetic perturbations. To do so, con­

ductivity dependences of 6Ex,is/6Ex,max should be investigated at first. Next, the ground 

magnetic perturbation ( 6Bx,gTd) coin pared with the 1nagnetic perturbation just above the 

ionosphere associated with the standing Alfven oscillation ( 6By,is) is presented. 

In Fig.3 .1, we shovv the ionospheric conductivity control of the electro1nagnetic field 

perturbations associated with the standing Alfven oscillation (6Ex and bEy) · In this 

figure, two ratios of 6Ex,is/6Ex,max (Fig.3 .1(a)) and 6Bx,grd/6By,is (Fig.3.1(b)) are shown 

as functions of ~HO· For each panels, ~Po varies frmn 1 to 1000. Note that the main 

magnetic field is assumed to be vertical to the ionosphere (z0 = 0) here . 

At first, we explain the relation between 6Ex,is/6Ex,max and ~HO · Fig.3.1(a) reveals 

that the ionospheric electric field is controlled by not only ~Po but also ~Ho. Yoshikawa 

and Itonaga [1996] already explained this feature; the ionospheric inductive electric field 

produced by the Hall current reduces the resultant static field . 

Next, '''e investigate the relation bet,;veen the ground magnetic perturbation and the 
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wave 1nagnetic field above the ionosphere ( 6 Bx,grd/ 6 By,is). Fig.3.1 (b) indicates that the 

enhanced ~H results in the ionospheric shield effect of the magnetic field perturbation as 

\vell as reduction in the ionospheric electric field. Here, let us consider the shield effect 

of the magnetic field perturbation due to the ionospheric conductivity with a simplified 

Alfven wave incident model in a unifonn 1nagnetosphere-ionosphere model (VA, ~p, and 

~H are uniforn1) . Assuming that the Alfven wave i1npinges on the ionosphere , we derive 

the following equation [c.f Appendix] : 

6Bx,grd _ ikx f_H 

6By,is D sinh(kxd) f_P + k~'t~/ D ' 
(3.2) 

where ~P = f-lo VA~P, 'tH = f-lo VA~H, k~ = w/VA, D = kp + ikx coth(kxd) + k~'tp, 

kp = J (w /VA)2 - k'fc and kx is the wave number in the x direction. It is obvious from 

Eq. (3 .2) that the ground magnetic perturbation relative to the n1agnetic perturbation 

of the incident Alfven wave becomes reduced when 'tH is much enhanced. This effect 

found by Tamao [1984] and Fujita [1985] can be called as the magnetic shielding effect 

due to the ionospheric Hall current. In such enhanced ~H condition, the ionospheric 

inductive electric field beco1nes eff'ective and the resultant electric field becomes reduced 

[Yoshikawa et al., 1995] . Therefore, the enhancement in the inductive electric field in 

the ionosphere is associated with the magnetic shield eff'ect due to the ionospheric Hall 

current . Bearing in mind that the two-step procedure of deriving the ground magnetic 

perturbation employed by Poulter and Allan [1985] and Allan [1995] did not consider ~H 

in the ionospheric boundary condition and thus the magnetic shielding effect due to the 

ionospheric Hall current does not appear. 

For further discussion, we consider here the case where ~H is much smaller than 

tp . After Yoshikawa and Itonaga [1996], the inductive electric field in the ionosphere is 

neglected. \iVhen the inductive electric field in the ionosphere ( 6E~,atm) is neglected in the 

fonnulations carried out in Appendix , we have 

6Bx ,grd r--.~ ikx f_H 

6By,is - D' sinh(kxd) tP' 
(3 .3) 
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where D' = kp + ikx coth(kxd) (This equation is also giYen by neglecting k~ 't~ / D in 

the denominator of Eq. (3.2) and k~'tP in D). Thus, Eq. (3.3) indicates that, when 

the ionospheric electric field is static, there is no shielding effect on the ground magnetic 

perturbation (The condition where the ionospheric electric field is static is referred to as 

the static condition). 

Then vve need to specify the upper lirnit of ~H for the static condition. Fig. 3.1 (b) 

shows that 5Bx,grd/ 5By,is is proportional to tHo in the case where tHo is srnaller. This 

is the behavior of the standing Alfven oscillation in the static condition . Whereas, it 

exceed a certain value (the critical tHo), the n1agnetic shielding effect appears. Detailed 

investigation of Fig.3.1 (b) reveal that the critical ~Ho is less than or equal to ~Po. 

If tHo exceeds the limit of the static condition, on the contrary, Eq. (3.3) is not valid 

any longer . When 'tH becomes larger ('tH > J D'tpjk~), Eq.(3.2) becomes 

5Bx,grd r-v ikx 1 

5By,is - k~ sinh(kxd) 'tH. 
(3.4) 

From this equation, 5Bx,grd/ 5By ,is is inversely proportional to 'tH . This is the magnetic 

shielding effect due to the Hall current . When ~H becomes larger, the inductive electric 

field in the ionosphere is enhanced . Thus, we call this condition where Eq. (3 .4) is 

utilized as the inductive condition from now on. It is characteristic that 5Bx,grd/5By,is is 

independent of tP in the inductive condition . Actually, in Fig.3.1 (b), 6Bx,grd/ 6By,is does 

not depend on ~Po when ~Ho becomes larger. 

Here, we have to note that the critical ~Ho (at \iVhich the transition between the 

static and inductive conditions is occurred) depends on the harmonic number of the 

standing Alfven oscillation. From Eq. (3.2), it is expected that the critical 'tH for the 

static condition becornes srnaller. This is because an increase in the frequency of the 

higher harn1onic oscillation invokes enhancement of the term of k 1f't~/D in Eq.(3.2) (k~ 

= w j\IA). Here, \Ve shov:.r 5Bx,grd/ 5By,is of the fundamental, second and third harmonic 

1node for tpo= 10 in Fig.3.2. In fact , '~'e can see that the peak of 5Bx,grd/ 5By,is for the 

higher harn1onics tends to appear at smaller ~ Ho. 
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3.1.2 Magnetic inclination 

Ionospheric trans1nission of the magnetic perturbation associated with the standing 

Alfven oscillation in the static condition exhibits the feature different from that in the in-

ductive condition. Here , v.re investigate how the behavior of the standing Alfven oscillation 

is affected by the Inagnetic inclination. The ratios of 5Ex,isl 6Ex,max and 5Bx,grdl 6By,is are 

plotted as functions of z0 in Fig.3 .3. The parameters used are ~po= 10 and ~Hol~po= 

0.1 , 1, 10 and 100. In Fig.3.3(a), '"'e can see that 5Ex,isi6Ex,max increase with z0 in the 

case of ~Ho~ ~Po (~Ho= 1 and 10). 

To investigate the effect of the 1nagnetic inclination in detail, Fig.3.4 illustrates the 

~Ho-dependence of r e, which is defined as 

_ 6Ex,is I I 6Ex,is I 
r e - 5Ex,max zo=l.O 5Ex,max zo=O.O . 

(3.5) 

N a1nely, r e denotes control of the ionospheric electric field by the magnetic inclination. It 

is clear from Fig.3.4 that the ionospheric electric field relative to the maximum electric field 

becomes larger along with the increase in z0 for ~Hol~po= 0.1 and 1 (the static condition), 

·whereas it is almost constant for ~Hol~po= 10 and 100 (the inductive condition). This 

feature is also seen in 5Bx,g1·dl 6By,is sho·wn in Fig.3.3(b). Fig.3.4 presents rb defined below: 

_ 6Bx,grd I I 6Bx,grd I 
rb- 6B · 6B · . 

y,ts zo=l.O y,'Ls zo= O.O 

(3.6) 

The variation of Tb is essentially the same as that of r e . 

Let us consider further the physical i1nplication of the numerical results. In the case 

that the ionospheric electric field is static, Allan and Knox [1979b] derived the boundary 

condition included the effect of the inclination \vhen L,H is neglected. They showed that 

'tp has the factor of sin I in Eq. (1.10) in the case of 'tH= 0. Applying this boundary 

condition to the Eq. (3.3), the following relation equation of 6Bx,grdl 5By,is is derived: 

6Bx,grd r-v ikx L,H 

6By,is - D' sinh(kxd) 'tp sin I. 
(3.7) 

Frmn Eq.(3.7), rb is equal to J2. In fact , rb is close to J2, for 'tHol'tpo= 0.1 and 1 

respectively. On the other hand, it is difficult to 1nanipulate the effect of the inclination 
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to ~H in an analytical -vvay. Therefore, we try to inYestigate the effect of the magnetic 

inclination to the behavior of the standing Alfven oscillation in the inductive condition 

by using the numerical results. In the range of 'BHo/'BPo for the inductive condition, 

5Bx,grd/5By,is in the case of zo = 0 is led to Eq.(3.4), which shows that 5Bx,grd/5By,is is 

inversely proportional to tH. If tH varies with the same rate of the variation of tp, rb 

must be equal to -)2. However, rb for 'BHo/'tpo= 10 and 100 are about 1.13, which shows 

that the variation of the effect of tHo is smaller than that of tp0 . This fact implies that 

the effect of the inclination is not effective in the inductive condition. Consequently, the 

inclination effectively controls the behavior of the standing Alfven oscillation only in the 

static condition. 

3.1.3 Equator-ionosphere VA ratio 

We investigate how the behavior of the standing Alfven oscillation changes according to 

variation in VA,is/11A,eq (11A,is and VA ,eq are the Alfven speed at the ionosphere and that at 

the equator on the field line concerned). As noted before, since the trapezoid model has 

straight rnagnetic field lines, the flux tube convergence that appears in the magnetosphere 

is not considered here. Therefore , we consider only the effect of the partial reflection of 

the Alfven wave due to increase in VA along the field line. 

Here, Fig. 3.5 shows fJEx,isl fJEx,max (Fig.3.5( a))' fJBx ,grd/ oBy,is (Fig.3.5(b)) and oBy,is I oBy,eq 

(Fig.3.5(c)) as functions of VA,is· We use tpo= 10 and 'BHo/'tpo= 0.1, 1, 10 and 100. 

The 1nain magnetic field is vertical to the ionosphere. Since 'tpo( =10) is larger than the 

Alfven conductance ( = 1 for VA ,is = 1 and 0.42 for 11A,is = 10), 5Ex has a node and bEy 

has an anti-node in the ionosphere. 

It is evident fr01n Fig.3.5(a) and (c) that the electric and magnetic field perturbations 

nonnalized to the 1naxi1num ones decrease with increase in VA,is· This feature can be 

explained by the partial reflection of the Alfven wave in the 1nagnetosphere '''here VA 

increase toward the ionosphere along the field line. Note that the flux tube convergence 

effect counteracts the partial reflection efFect in a general1nagnetosphere condition. ~Then 
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the field-aligned profile of VA is controlled by the main magnetic field intensity, the result 

is n1odified significantly because of the rnagnetic flux convergence effect. Whereas, the 

plasma density profile determines VA, the present result is invoked. 

It is characteristic that VA,is-dependence of 6By,is/6By,eq is independent of tHo (Fig.3.5(c)). 

This is because the magnetic field perturbation has an anti-node in the ionosphere . If 

tp0 < 1, 6By,is/6By,eq must be dependent on tHo· On the other hand, the ionospheric 

electric field decreases along with increase in tHo (Fig.3.5(a)). This feature can be ex­

plained by the magnetic shield effect due to the ionospheric Hall current discussed before. 

Note that this result is independent of the magnetic flux convergence. 

Next, VA,is-dependence of 6Bx,grd/ 6By,is shown in Fig.3.5 (b) indicates that 6Bx,grd/ 6By,is 

is aln1ost independent of \IA,is for tHo/tp0'5:_ 1 (the static condition) and that it decreases 

against the increase in \IA,is for tHo/tPo> 10 (the inductive condition). In the static and 

inductive conditions, 6Bx,grd/6By,is is essentially expressed with Eq. (3.3) and Eq. (3.4), 

respectively. In addition, increase in VA,is invokes increase in VA averaged along the field 

line; this fact yields that larger VA ,is leads to smaller Alfven conductance. Bearing in 

mind that the ionospheric conductivities appearing in Eqs. (3.3) and (3.4) are normalized 

to the Alfven conductance, reduction in the Alfven conductance associated with increase 

in VA,is leads to increase in the effective ionospheric conductivity. When \IA,is varies from 

1 to 10, the mean value of 1/VA along the field line also varies from 1 to 0.42, which is 

consistent to the variation of 6 B x,grd/ 6 By ,is . As for the static condition, 6Bx,grd/ 5 By ,is is 

proportional to 'tH j'tp, which indicates that increase in the Alfven conductance is not 

effective. Therefore, 6Bx,grd/ 6By ,is is constant against VA,is· On the other hand, in the in­

ductive condition, 6Bx,grd / 6By,is is proportional to 1/'tH. This feature invokes decrease in 

6Bx,grd/ 6By ,is associated with increase in VA ,is · This result is independent of the magnetic 

flux convergence in a qualitative manner. 
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3.2 North-south asymmetric case 

In the actual 1nagnetosphere-ionosphere coupled system, the ionosphere and magneto­

sphere are usually asymmetric with respect to the equator. Here, we investigate the 

north-south asymmetry of the ground magnetic perturbations associated with the stand­

ing Alfven oscillation invoked by the asym1netry of the magnetosphere-ionosphere system. 

To begin with, -vve summarize here the characteristic behavior of the ground 1nagnetic 

perturbation associated with the standing Alfven oscillation in the symmetric model. 

1. In the static condition (~p>~H ), the intensity of the ground magnetic perturbation 

relative to the magnetic field perturbation just above the ionosphere is proportional 

to ~H j~p. In the inductive condition (~p<~H ), it is inversely proportional to 

~H. The demarcation between the static and inductive conditions is occurred at 

~Hr:::::.~p. In addition, when ~P is constant, the relative ground n1agnetic perturba­

tion intensity reaches its 1naximum at ~H~~p. 

2. When the main magnetic field has the magnetic inclination (I), the Alfven wave 

effectively feels ~P reduced by the factor of sin I. Whereas, the effective ~H dose 

not change so 1nuch. Thus, the ground magnetic perturbation relative to magnetic 

perturbation just above the ionosphere is controlled by the inclination angle mainly 

in the static condition. 

3. In the inductive condition, the magnetic field perturbation on the ground divided 

by that just above the ionosphere decreases along with the increase in the Alfven 

speed at the ionosphere level relative to the equatorial one. Vlhereas, in the static 

condition, it does not depend on the Alfven speed at the ionosphere. Further , as long 

as the trapezoid 1nodel is used, the increase in the ionospheric Alfven speed reduces 

the wave magnetic field perturbation just above the ionosphere divided by that at 

the equator due to the partial reflection of the Alfven wave in the non-uniform 

profile of the VA . 
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4. The higher harmonic standing Alfven oscillation has the higher eigenfrequency. 

Therefore, in the inductive condition, the magnetic shielding effect due to "E.H is 

enhanced for the higher harmonics. Whereas, in the static condition, the magnetic 

perturbation on the ground relative to that just above the ionosphere is almost 

independent of the harrnonics. 

From now on, we investigate the north-south asymmetry of the ground magnetic per­

turbations. The symbols "(N)" and "(S)" ernployed fron1 now n1ean respectively "in the 

northern hernisphere (or ionosphere)" and "in the southern hemisphere (or ionosphere)". 

For example, "E.p (N) expresses "E.p in the north ionosphere. IV1oreover, the symbol of 

"(N /S)" means the value in the northern hemisphere divided by that in the southern one. 

For example, c5Bx,grd(N /S) expresses c5Bx,grd(N) divided by c5Bx,grd(S). 

3.2.1 Ionospheric conductivity 

Here, the north-south asymmetry of the electrornagnetic field perturbations in the iono­

sphere and below it due to asyn1metry of the ionospheric conductivity is dealt with. In 

Fig.3.6, c5Bx,grd(N/S) is shown as functions of tp0 (N) and tHo(N), respectively. In Fig. 

3.6( a) and (b), tPo (N) and tHo (N) are variables, respectively. Other values of the iono­

spheric conductivities are 10. Both ionospheres are vertical to the main magnetic field. 

It is evident that, from Fig.3.6( a), the ground magnetic perturbation is larger in the 

hemisphere v,rith smaller tp0. This feature can be explained in terms of enhancement 

of the magnetic shielding effect due to "E.p in the static condition. In the hemisphere 

with larger tp0, the ionospheric electric field is reduced. Since the ground magnetic 

perturbation is proportional to the product of the ionospheric electric field and ~ H, the 

srnaller ionospheric electric field makes the ground magnetic perturbation smaller. 

It is characteristic in Fig.3.6(b) that the ground magnetic perturbation in the herni­

sphere with smaller tHo exceed that in the opposite hemisphere. \~1hile, \vhen tHo grows 

larger than that in the opposite hen1isphere, the ground rnagnetic perturbation in this 

hemisphere becornes again srnaller than that in the opposite hen1isphere. In the regirne 
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where ~Ho>~Po (the inductive condition) , the ionospheric electric field is reduced in 

the hemisphere with larger ~HO· This effect 1nakes the ground 1nagnetic perturbation 

in the hemisphere with larger ~Ho reduced. On the other hand, in the static condition 

(~Ho(N) < ~Po(N) = 10), ~Po vlhich is common in both hemispheres mainly controls 

the ionospheric electric field. Therefore, the ionospheric electric field intensity is com1non 

in the both hemisphere . Since the ground magnetic perturbation in the static condition is 
- -

proportional to 'BHo, the he1nisphere with smaller 'BHo has the smaller ground 1nagnetic 

perturbation. 

Next, let us consider the north-south asyn1metry of the ground magnetic perturba­

tions associated with the fundamental, second, and third harmonic standing oscillations. 

Fig. 3.7 presents oBx,gTd(N/S) as a function of ~Ho(N) in the range of 10::; ~Ho(N) ::; 

100. It is interesting that, in this range of ~no, the ground magnetic perturbation in the 

northern hemisphere is larger than that in the southern one for the funda1nental oscilla­

tion, \Vhereas this relation is reversed for the second and third harmonics. Let us explain 

this feature. In this range of ~Ho, the ionospheric condition for the Alfven oscillation is 

the transition between the static and inductive conditions. As for the higher harmonics , 

the eigenfrequency becomes larger; this fact implies that the ionospheric electric field as­

sociated with the standing Alfven oscillation tends to be 1nore inductive for the higher 

han11onics. Bearing in 1nind that the ionosphere n1akes the ground magnetic perturbation 

smaller in the inductive condition, we can understand that the ground magnetic pertur­

bation is 1nuch reduced in the higher harmonics . The present result implies that, in the 

conjugate observation, north-south intensity relation of a longer-period pulsation (e.g. 

Pc5 pulsation) is reversed to that of a shorter-period one (e.g. Pc3) . As shown later , in 

the dayti1ne condition, BH is usually larger than 'Bp . In addition, the Alfven conductance 

(BA) is usually 10 tin1es smaller than the ionospheric conductivity. Therefore, north-south 

intensity ratio of the pulsations based on the conjugate ground magnetic observation is 

likely dependent of the frequency. 
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3.2.2 Magnetic inclination 

The rnagnetic inclination angle in the ionosphere is sornetimes different between the 

opposite hemispheres. Here, we consider asymn1etry of the ground magnetic perturbations 

when the inclination angles in the both ionospheres are different. 

In Fig.3.8, 5Bx,grd(NIS) in the cases of ~Ho =~Po= 10 (almost the static condition) 

and ~Ho = 100 = 10~po (the inductive condition) are shown with z0 (S) = 0.5. In the case 

of the static condition, 5Bx,gTd(N IS) is nearly proportional to sin J. Since the magnetic 

inclination (J) reduces ~P by sin!, the effective ~P (= sinJ~p) is larger (sn1aller) in 

the northern hemisphere for z0 (N) < z0 (S) = 0.5 (z0 (N) > z0 (S)). As explained above, 

larger L:p reduces the ground magnetic perturbation in the static condition. This is the 

reason why 5Bx,grd(NIS) is s1naller (larger) than 1 for zo(N) < zo(S) (zo(N) > zo(S)). 

On the other hand, in the.inductive condition (~Ho = 100 = 10~po), the inclination does 

not affect the transmission of the magnetic perturbation across the ionosphere . Namely, 

the previous calculations on the influence of the inclination on the transrnission indicated 

that the effective L:;H is not so dependent on the inclination angle. Thus, 5Bx,grd(N IS) is 

ahnost constant against z0 (N) in the inductive condition. 

3.2.3 Equator-ionosphere VA ratio 

It is usual that the field-aligned profile of VA is asymmetric with respect to the equator. 

Here, let us investigate how the north-south asy1nmetry of the field-aligned variation in VA 

affects the asymmetry of the ground magnetic perturbations. The present model assurnes 

the field-aligned profile of VA defined with Eq. (2.1). Thus, the larger VA,is indicates that 

·the field-aligned profile of \IA,is becomes rapidly larger toward the ionosphere. The rnain 

1nagnetic field is vertical to the ionosphere. 

Fig.3.9 shows 5Bx,grd(N IS) as a function of the ionospheric VA in the northern hemi­

sphere (denoted with VA,is(N)) in the case \vhere \IA,is(S) = 10 as \vell as 'tpo = 'tHo 

= 10 in both ionospheres . This figure indicates that the ground magnetic perturbation 

becomes larger in the hemisphere where VA,is is sn1aller. (Note that 5Bx,gTd(N IS) = 1 at 
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VA,is(N) = 10 = 11A,is(S).) This feature is interpreted as follo\:vs; at first , partial refl ection 

of the Alfven wave due to spatial increase in VA along the field line reduces the electric 

field perturbation of the Alfven wave toward the ionosphere. Then the larger VA, is invokes 

the sn1aller ionospheric electric field perturbation associated with the Alfven \Vave. Thus, 

the ground n1agnetic perturbation, which is the product of the ionospheric electric field 

and L,H, becomes smaller in the hemisphere with larger VA ,is· 

Note that asymmetry of 1/ A in the actual magnetosphere is produced both by the 

asy1n1netry of the main magnetic field intensity and by that of the plasma density. The 

former associates with convergence of the magnetic flux in the magnetosphere. This 

convergei1ce may yield intensification of the electrmnagnetic field perturbation in the 

hemisphere with larger main 1nagnetic field intensity. VA is larger in this hemisphere as 

long as the plasma density is not so different in both hemispheres. On the other hand, the 

partial reflection effect yields smaller electromagnetic field perturbation in the hemisphere 

-vvith larger 1/A· Therefore, the both effects counteract each other. The present thesis does 

not consider the magnetic flux convergence effect. This effect yields the north-south 

magnetic field intensity ratio independent of season. On the other hand , when the VA 

profile is assumed to be derived from the plasma density, it shows the seasonal variation 

because of seasonal variation of the plas1na density in the lower 1nagnetosphere. Then, the 

north-south asymmetry due to the partial reflection effect exhibits the seasonal variation 

with a bias (The partial reflection effect can have the bias part in the asym1netry when 

the north-south asymmetry of VA ,is has a bias). Therefore, in the actual 1nagnetosphere, 

the north-south asy1nn1etry controlled by the equator-ionosphere VA ratio will have the 

two features; one is the bias that derived frmn the flux tube convergence effect and the 

partial reflection effect, and another is the seasonal variation from the partial reflection 

effect. \\Then the partial reflection effect may overcome the flux tube convergence one, 

the bias part in the north-south asymmetry is qualitatively consistent with the present 

nu1nerical results. This depends on the field-aligned profile of VA. 
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3.3 The latitudinal wave number and the height of 

the ionosphere 

By now, we investigate how the ground magnetic perturbation is affected by the iono­

spheric conductivity, the inclination, and Equator-Ionosphere VA ratio. However, Eq. 

(3.2) indicates that other parameters also affect the ground magnetic perturbation; these 

are the latitudinal vvave number (kx) and the height of the ionosphere (d). Although these 

are not quantities varying according to the natural condition, we check here the effects due 

to these quantities. Here, let us consider how variations of kx and d affect the ionospheric 

electric field (say, static or inductive) because this classification is essentially important 

for assessing the north-south asymmetry of the conjugate ground magnetic perturbations. 

At first, we briefly consider the latitudinal width of the toroidal oscillation. Strictly 

speaking, the pure standing Alfven oscillation does not have the latitudinal width. How­

ever, such oscillation has no magnetic effect on the ground because of severe spatial 

attenuation in the neutral atmosphere [Hughes and Southwood, 1976a]. Only the Alfven 

wave coupled with the fast magnetosonic 1node \vave has its latitudinal width [Southwood, 

1974]. However, it is still quite difficult to treat self-consistently the interaction between 

the coupled oscillation and the anisotropic conducting ionosphere . Bearing in mind that 

the behavior of the oscillation at the resonant field line is ahnost Alfvenic, we considered 

the ionosphere-Alfven \vave interaction as a working model for ground-based observations. 

Therefore , the latitudinal width is assigned here as a parameter. As similar to the case 

of d, it is possible to investigate the effect of the latitudinal width ( ~ 1/ kx) based on 

Eqs . (3.2)-(3.4). As for the disturbances with the latitudinal extent larger than d, \Ve can 

see that kx almost disappears for kxd << 1. This fact indicates that the variation of kx 

( ~1/latitudinal width) has no significant influence on the ionospheric electric fi eld. 

In the present thesis, we use d (the height of the ionosphere normalized to the half­

length of the field line) = 0.01. When the actual height of the ionosphere is assumed to 

be about 100km, the length of the 1nagnetic field line is 20,000km \vhich corresponds to 
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L'"'-'3. However, the normalized d should not be a fixed value since the magnetic field line 

is not constant along the latitude. In the higher latitudes ( L > 3), d smaller than 0.01 

should be assigned. In Fig. 3.10, the dependence of the ground magnetic perturbation 

on the Hall conductivity for various values of d is shown. It is clearly shown that, when 

d becomes smaller (say, the case of the higher latitude), the effect of the inductive effect 

beco1nes weaker. Thus the ground magnetic perturbation beco1nes larger. In fact, Eqs. 

(3.2)-(3.4) indicate that s1naller d reduces the inductive electric field. Therefore, we can 

conclude that the magnetic shielding effect due to the ionospheric Hall current tends to 

appear in the more enhanced Hall conductivity. From Eqs. (3 .2)-(3.4), we also find that 

smaller d enhances the ground magnetic perturbation. In evaluating latitudinal variations 

in the conjugate asymmetry of the ground magnetic perturbations in the latter part of 

this section, d is adjusted to the field line length at the relevant latitude. 



Chapter 4 

North-south asymmetry of the 

ground magnetic perturbations in 

the realistic model 

In previous chapters, parameter-dependence of the ground magnetic perturbation asso­

ciated with the standing Alfven oscillation has been considered. Physical explanation of 

the numerical results was the main target in the previous chapter. Implication of the 

present thesis in the actual phenornena is now considered. Therefore , by using the realis­

tic quantities of the ionospheric conductivity, the magnetic inclination, the fie ld-aligned 

profile of VA and the height of the ionosphere (d), we intend to evaluate asymmetry of the 

ground rnagnetic perturbations at the conjugate points. Note that the present model em­

ploys the straight magnetic field, which is different from the actual dipole magnetic field. 

Consequently, the results are not always corresponding to the observed one. However, we 

can find some important features of the north-south asymmetry of the ground magnetic 

perturbations by using the present model calculation. Ignorance of the magnetic field 

curvature is briefly discussed in the last part of this section. 

\Ne calculate the asymmetries at 12 points for three values of L ( = 2, 4 and 6) and 4 

magnetic longitudes ( <:P = oo, goo, 180° and 270°). 

32 
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4.1 Assignment of the realistic physical values 

We explain how to derive the realistic values of the parameters. As concerns the Alfven 

speed at the ionospheric altitudes (VA ,is), the north-south asymmetry of the plasma den­

sity and that of the magnetic field intensity should be taken into consideration. For the 

plasma density, we use IRI90. Bearing in rnind that the MHD oscillation ·with long wave­

length feels VA averaged along the field line , only the plasma density at altitudes around 

lOOkm does not contribute to VA,is that is felt by the MHD oscillation. Therefore, the 

ion density averaged in the region from 100 to 2000km is assumed to contribute to \IA,is· 

IGRF95 is used for the magnetic field intensity. Then, \IA,is(N) and VA,is(S) are given by 

2B0 (N) JP(I'J) + JP(S) 
VA,is(N) = VA,eqLJl + 3cose£ Ba(N) + Ba(S) 

2
JP(I'J) , (4.1) 

1 
. _ 

1 
. 1 2B0 (S) JP(I'J) + JP(S) 

1 A,25 (S)- 1 A,eqLy 1 + 3cos8L Bo(N) + Bo(S) 2JP(S) , (4.2) 

\vhere BL, B 0 , p are respectively the colatitude of the foot point of an 1-shell, the total 

magnetic intensity at the ionosphere derived from IGRF95, and the plasma density derived 

from IRI90. The values of VA ,is is shown in Table 4.1 . The variation of \!A along the field 

line is proportional to z2 as shown in Eq. (2.1). 

The inclinations are also derived frorn IGRF95 . The values of z0 (z0 = 1/ tan I) are 

listed in Table 4.2. 

IRI90 and CIRA 72 are used for calculation of the height-integrated ionospheric con­

ductivity. The integration range is from 80 to 180km. This range includes the peak in 

the height profile of the ionospheric conductivity. The values of Pedersen and Hall con­

ductivities in the upper boundary becmne smaller than one third of each peak values. 

Vve also employ 100 of the sunspot number because this value is roughly the averaged 

sunspot nurnber (0 rv 200). Note that variation in the height-integrated conductivity 

against sunspot number change frorn 50 - 150 is srnaller than 20%. The local tirne is as­

signed as 12LT because Pc pulsations are mainly observed in the daytirne . To investigate 

the seasonal dependence, the conductivities in the equinox and solstice seasons ( !larch, 
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June, September, and Dece1nber) are calculated. 

To obtain the norn1alized ionospheric conductivity that is necessary in the present 

calculation, Vi'e need values of the Alfven speed in the equator (VA,eq) of each L-shells. 

These values are derived fro1n comparisons between the observational eigenfrequencies 

as listed in Table 2 and calculated ones. Bearing in mind that the eigenfrequency of 

the standing Alfven oscillation depends on the ionospheric conductivity and the Alfven 

conductance, \Ve need to specify these two conductivities in the observations. Samson et al. 

[1972] analyzed Pc 4 and Pc 5 events in Canadian chain (L ~ 4) during northern summers 

of two years. The conductivity of the southern conjugate ionosphere is probably smaller 

than the Alfven conductance of the field line at L = 6 because the ionosphere is located 

in the dark hen1isphere (Actually, the present procedure yields 0.16S of the ionospheric 

conductivity and 0.35S of the Alfven conductance). In the northern ionosphere , the 

conductivity becomes larger than the Alfven conductance. Thus, the standing Alfven 

oscillation can be regarded to have an anti-node of the electric field perturbation in the 

southern ionosphere and a node in the northern ionosphere. Thus, the fundamental 

standing Alfven oscillation in L = 6 may become the quarter-wave mode [Allan and 

Knox, 1979a]. In order to obtain \IA,eq of L = 6, \Ve calculate the eigenfrequency by using 

the ionospheric conductivities larger than the Alfven conductance (e .g., ~Po = ~Ho = 

1000) in the north ionosphere and the conductivities smaller than it (e .g., ~Po = ~Ho 

=0) in the south ionosphere . At 1-shells of L = 2 and 4, the standing Alfven oscillations 

seem to have nodes of the electric field perturbations in the both ionospheres. Thus, the 

eigenfrequency calculated with large ionospheric conductivities in the both ionospheres 

is compared with the observed frequency. Note that \IA ,eq thus evaluated are 1,090km/s, 

990lnn/s and 1,250km/s for L = 2, 4 and 6, respectively. Those values seem realistic. 

The nonnalized ionospheric cond ucti vi ty is listed in Table 3. 

The height of the ionosphere (d) is nonnalized to the length of the field line. Since this 

height is lOOlon, the value of dis 0.0176, 0.0065 and 0.004 for L=2 , 4 and 6, respectively. 
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4.2 Characteristic features of asymmetry of the con­

jugate ground magnetic perturbations 

Fig.4.1 shows seasonal variations of c5Bx ,grd(N /S) associated with the three harmonics at 

12 points. The following features are evident from this figure; 

1. c5Bx,grd(N /S) for the second and third harmonics becmne sn1aller in the summer 

hen1isphere than in the winter hemisphere. c5Bx,grd(N /S) for the fundamental mode 

is ahnost constant except c]) = oo and c]) = 180° at L = 6. 

2. At L = 4 and 6, the seasonal variations of c5Bx,grd(N /S) at c]) = goo are similar 

to that at 270°, while that at c]) = oo is different frmn that at 180°. Especially in 

solstice seasons, c5Bx,gr-d(N /S) at ci> = oo is the smallest, and that at c]) = 180° is 

the largest. Those at ci> = goo and 270° are in between. On the other hand, the 

longitudinal variation at L = 2 shows the behavior different from that at L = 4 and 

6. Namely, at L = 2, c5Bx,grd(N /S) is largest at ci> = goo and smallest at ci>=270o. 

The first feature gives a hint for specifying the condition of interaction between the 

ionosphere and the 1HD oscillation, na1nely, the static condition or the inductive one. 

In the inductive condition, c5Bx,grd/ c5By,is is proportional to 1/~H. In order to investigate 

c5Bx,grd(N/S), we need to check c5By ,is(N/S). Since ~Pis larger than the Alfven conduc­

tance at 12LT, c5By,is has an anti-node in the ionosphere. This indicates that c5By,is (N /S) 

does not change so significantly associated \vith variation of the ionospheric conductivity. 

Therefore under the inductive condition, c5Bx,gTd is regarded to be proportional to 1/~H 

at the ionosphere in the relevant he1nisphere. As ~H in the summer is larger than that in 

the winter, ~H(N/S) reaches maximum in June and 1ninimum in December. This varia­

tion of ~H yields seasonal variation of c5Bx,g7,d(N / S); it is larger in winter and s1naller in 

sum1ner. This variation is consistent to that of c5Bx,grd of the second and third hannonics 

shown in Fig.4.1. In the static condition, on the other hand, c5Bx,grd is proportional to 

~H/~P· As ~H/~P is ahnost constant during a )ear, c5Bx,grd does not \ary so n1uch. 
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Consequently, only the ionospheric electric field associated with the fundamental rnode is 

static, whereas, those of the higher hannonics are inductive (Note that the explanation 

is valid vvhen the ionospheric conductivity is larger than the Alfven conductance). 

The results described above indicate that the two-step procedure of evaluating the 

ground magnetic perturbation [Allan, 1995] is valid for the fundamental mode oscillation 

because the ionospheric electric field is almost static. As for the higher harmonics, we 

need to treat the interaction between the l'v1HD 'Nave and the anisotropic conducting 

ionosphere with the self-consistent manner. 

The seasonal variation of the asymmetry for the fundamental mode exhibits anomalous 

behaviors at <I> = oo and 180° at L = 6. The exceptionally enhanced asymmetry for the 

fundamental mode at L = 6 is explained by the difference of the ionospheric conductivi­

ties at conjugate ionospheres. This difference of the conductivities is associated with the 

difference between the geornagnetic and geographic coordinates. For exarnple, in June, 

the ionosphere is almost daytirne condition in the Northern Hemisphere and nighttime 

condition in the Southern Hemisphere at <I> = oo . Therefore, the asymmetry of the iono­

spheric conductivities betv.reen the conjugate points at <I> = oo is quite intensified. Note 

that the conductivity in the south ionosphere falls in less than the Alfven conductance. 

VVhereas, that in the north ionosphere is larger than the Alfven conductance. Then, the 

electric field associated with the standing Alfven oscillation has an anti-node in the south 

0 ionosphere and a node in the north ionosphere (the quarter wave). Therefore, oBx,grd(S) 

becomes much srnaller than oBx,grd(N). Thus oBx,grd(N /S) of the fundamental mode be­

con1es larger in June at <I> = oo. The anornalous seasonal variation of the asymn1etry does 

not appear at L = 4 because the ionospheric conductivity is not small to make the mode 

in the ionosphere an anti-node . 

Let us investigate the longitudinal change in seasonal variation of oBx,grd( T /S) (the 

second feature). It seen1s curious that seasonal variation of oBx,grd(N/S) depends on 

longitude. Thus, '~'e consider the reason. This is again attributed to the difference between 

the geographic and geornagnetic coordinates. Narnely, the conjugate points at <I> = 90° 
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and at 270o lie in the ahnost same distance from the geographic equator. At <I> = oo 

and at 180°, on the other hand, the conjugate points shift south,vard and northward, 

respectively. The effect of this shift is notable in solstice seasons at L = 4 and 6. In June, 

L:H (N /S) increases at <I> = oo and decrease at ci? = 180°. As 6Bx,grd of the second and 

third modes are proportional to 1 /I: H, 6 Bx ,grd at <I> = oo is smaller and that at <I> = 180° 

is larger. On the other hand, the longitudinal variation of L = 2 is different from those 

at L = 4 and 6. This may be attributed to the fact that the regional anomaly in the 

ionospheric conductivity in the Brazilian anon1aly invokes a peculiar seasonal variation of 

the conjugate ground 1nagnetic perturbations at L = 2. 

4.3 Comparison with observations 

There are several works that analyzed the conjugate asymmetry of the ground magnetic 

perturbations done by Saito et al. [1989] and Yumoto [private communication]. In this 

section, we co1npare these observations and the numerical results. 

4.3.1 Comparison with the observation of 210° magnetic 1nerid-

ian chain 

First, we compare the present study with the results which carried out ground-based 

1nagnetic observation campaign (the 210° l\!Il\11 observation [Yu1noto et al., 1992]). In this 

campaign, H-components of Pc pulsations at conjugate pairs are analyzed in order to 

investigate the north-south asy1nmetries of the Pc3-5 powers in higher (Lrv5.4) and lower 

(Lrv 1.6) latitudes [Yu1noto, private c01nmunication] . These data are obtained in north 

summer season (1993/6-8) and north winter season (1993/12-1994/2) for each stations [c.f. 

Table 4.5]. After Yu1noto's analysis, Pc3 pmi\rer at lower latitude and Pc4-5 power at higher 

latitude are larger in the he1nisphere with sn1aller main n1agnetic intensity (KOT> I'v1CQ, 

l\1SR> BRV) [Table 4.6] . He also revealed that Pc3 power at higher latitude is larger in 

the ·winter herr1isphere t han in the summer hemisphere. 
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Let us compare the observed results with the present numerical ones. \Ve sec first 

the higher-latitude observation (KOT-MCQ pair). The magnetic inclination at KOT is 

almost the same as that at 1\!lCQ. Thus, the asymmetry of 6Bx,grd is caused by those of 

the conductivity and the Alfven speed. In these latitudes, the longer-period pulsations 

(Pc4-5) may be regarded as the fundarnental oscillation. This oscillation has the static 

electric field in the ionosphere. In static condition, as describe before, 6Bx,grd is propor­

tional to ~H /~P when ~P > ~A· Frorn our estimation, ~P in KOT and l\!lCQ are larger 

than ~A in both seasons . Thus ~H j~p(KOT /MCQ) is proportional to the asymrnetry of 

6Bx,grd(KOT /MCQ) due to the ionospheric conductivity. As 6By,is decreases with VA,is, 

n1oreover, 1/A,is(KOT jl\!lCQ) tells the asymmetry of 6Bx,grd due to the Alfven speed. By 

evaluating ionospheric parameters with the procedure same as that ernployed for the nu­

merical calculation, we have 0.98 ( < 1) of ~H j~p(KOT /MCQ) in north summer and 1.07 

( > 1) in north winter. Besides, VA,is (KOT /M CQ) is smaller than 1 in both season. These 

evaluations suggest 6Bx,grd(KOT /MCQ) > 1 in north winter case as long as the trapezoid 

rnodel is employed . In north summer, ~H/~P(KOT/MCQ) < 1 and VA,is(KOT/MCQ) 

< 1 but VA,is(KOT/MCQ) is much sn1aller than ~H/~P(KOT/MCQ). Thus, the result 

based on the trapezoid n1odel indicates 6Bx,grd(KOT jl\!lCQ) > 1. Therefore, this evalua­

tion is consistent with the observation . For the higher hannonics (Pc3) vvith the inductive 

ionospheric electric field , Bx,grct may be larger in the winter hemisphere because smaller 

~H in the winter hemisphere at KOT and l\!lCQ reduces the shielding effect due to the 

ionospheric Hall conductivity. Thus, in both cases of longer- and shorter-period oscilla­

tions, our study is consistent to the results observed in higher latitude obtained in the 

210° l\!ll\1 observation . This fact may indicate that the convergence of the flux tube does 

not so effective in this event. 

In the last, let us consider the asymmetry observed in the lmver latitude in the 210° NINI 

observation carnpaign . Pc3 corresponds to the fundamental n1ode. ~H /~p(l\!lSR/BRV) 

and VA,is(MSR/BRV) are 1.00 and 0.93 in the north summer and 0.91 and 1.04 in the 

north \Vinter, respectively. Note that the inclinations of both stations are also ahnost 
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same. From these values, the present calculation suggests that 6Bx,grd(l\tiSR/BRV) of 

the fundan1ental n1ode is larger than 1 in north summer and smaller than 1 in north 

winter. This result is consistent to the observational study in north summer, '''hereas not 

consistent in north winter. This discrepancy does not disappear when \ve use the dipole 

magnetosphere model because the flux tube convergence tends to yield larger magnetic 

intensity in the he1nisphere with larger main magnetic field intensity. We need to enhance 

the effect of the partial reflection of the Alfven wave by the field-aligned increase in VA 

in order to obtain the result consistent with the observation. Vve need more realistic 

model of VA along a field line in addition to employment of the dipole model. Further, 

validity of the thin-ionosphere assumption should be re-considered when the lower-latitude 

pheno1nena are treated . 

4.3.2 Comparison with the observation of Syowa-Iceland conju­

gate stations 

Saito et al. [1989] investigated the seasonal variation of the H component power of Pc 3-5 

pulsations at the Syowa-Iceland conjugate stations [c.f Figure 4.2]. They revealed that, in 

the solstice seasons, the Pc 3-5 pulsation power is stronger in the winter he1nisphere than 

in the summer he1nisphere in the whole range of the frequency. This does not coincide 

with the Pc 4-5 pulsation power ratio obtained from the 210° MM higher-latitude pair 

(KOT-1\tiCQ). They also reported that the power ratio is less than 0.6 dB in Syowa-Iceland 

pair . (Note that the 210° Ml\1 observations do not issue the quantitative power ratio.) 

In order to check that our 1nodel can explain this observational result, we calculate the 

asyn1metry of the ground magnetic perturbation [Figure 4.3] by using the parameters on 

IGRF95 and IRI90 [Table 4.9]. The parameters at the 1200UT condition are used. 

The nu1nerical results shmvn in Figure 4.3 indicate that the ground magnetic pertur­

bations are larger in the winter he1nisphere. Since the 2nd and 3rd harmonic oscillations 

ar likel) to have the inducti' e ionospheric electric field , the ground magnetic perturba­

tion tends to be inversely proportional to ~H· Referring to Table 4.9, we notice ~H much 
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srnaller in the winter hemisphere. Therefore, the ionospheric shielding effect due to the 

Hall current becornes a dorninating n1echanisrn in determining the conjugate asymrnetry in 

the ground magnetic field perturbation. Finally, the ground magnetic perturbation should 

become larger in the winter hemisphere as obtained in our model calculation [Figure 4.3]. 

Bearing in mind that the fundamentalrnode oscillation is likely to have the static iono­

spheric electric field, ~H /~P should be checked for investigating the asyrnmetry. Com­

pared to the case of ~H, the conjugate asymmetry in ~H /~P is not so enhanced. Thus, 

we need to consider the effect from the asymmetry in VA,is as well . The highly enhanced 

asymmetry in ~H may invoke non-negligible effect on the ground magnetic perturbation 

associated with the Pc 4-5 pulsations . Existence of these competitive mechanisms requires 

a numerical calculation. The numerical result shown in Figure 4.3 reveals that the ground 

rnagnetic perturbation of the fundarnental mode oscillation is again larger in the winter 

hemisphere . This numerical result is qualitatively consistent to the result frmn Syowa­

Iceland conjugate observations . Therefore, the discrepancy in the seasonal variation in 

the conjugate rnagnetic perturbation intensity between the two observations may come 

from difference in the ionospheric and magnetospheric physical conditions. 

In spite of the qualitative agreernent between the observation and the model, there is 

quantitative disagreement because the Syowa-Iceland observation (0 .6 dB = 1.07 of the 

asyn1n1etry) reported the asyrnrnetry much srnaller than the present nurnerical calculation 

does [Figure 4.3]. As the reason of the disagreement, over-simplification of the model mag­

netosphere can be pointed out . To resolve this disagreement, we have to study with more 

realistic rnodel. However, as long as the standing Alfven oscillation model is employed, 

the extremely enhanced asymmetry in the ionospheric conductivity like Syowa-Iceland 

conjugate pair seems to invoke considerably large asymrnetry in the ground magnetic 

field. There rnay be still nev\' physics on the mechanism detern1ining the ground rnagnetic 

perturbation associated with the stai1ding Alfven oscillation. In addition to re-assessment 

of the theory, vle believe that the observational results should be again carefully checked. 

vVe hope the 210° lVHv1 observation \vill give us quantitative results on the asymmetry. 



Chapter 5 

Conclusion and Summary 

\i\ e investigate the standing Alfven oscillation of the magnetic field line by using a model 

magnetosphere with the anisotropically conducting ionosphere. In this model, the main 

1nagnetic field line is straight and has an arbitrary inclination angle to the ionosphere. 

At first, the general features of the ground magnetic perturbation associated with the 

standing Alfven oscillation are considered in the static condition of the ionosphere con­

ductivity (~P > ~H) and in the inductive one (~P < ~H). Here, effects of the ionospheric 

conductivity, inclination angle and the Equator-ionosphere VA ratio are investigated. The 

1nain results are summarized as follows . 

1. In the static condition, the intensity of the ground 1nagnetic perturbation normalized 

to the magnetic perturbation just above the ionosphere is proportional to ~H j~p. 

In the inductive condition, it is proportional to 1/~H· 

2. The 1nagnetic inclination controls the ground magnetic perturbation nonnalized to 

the 1nagnetic perturbation just above the ionosphere 1nainly in the static condition. 

3. The intensity of the ground 1nagnetic perturbation normalized to the magnetic per­

turbation just above the ionosphere decreases '~' ith the Alfven speed in the iono­

sphere mainly in the inductive condition. 
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4. For the higher altitude of the ionosphere, the ionospheric electric field becomes 

inductive and the ground 1nagnetic perturbation becomes smaller. 

Next, we study the asymmetry of the ground magnetic perturbations at geomagneti­

cally conjugate points invoked by north-south asy1nmetries of the above three para1neters. 

The features of the ground n1agnetic perturbations are also considered in static and in­

ductive conditions. The main results are as follows. 

1. When ~H in the both ionospheres have the Saine value, the ground 1nagnetic per­

turbation is larger in the hemisphere with smaller ~P. When the both hemispheres 

have the same value of ~p, it is larger in the hemisphere with larger ~H in the static 

condition and s1naller in the hemisphere with smaller ~H in the inductive condition. 

2. In the static condition, the ground magnetic perturbation is larger in the he1nisphere 

with smaller inclination. In the inductive condition, on the other hand, the ground 

magnetic perturbations in the both hemispheres are same even if the inclination 

angles are different . 

3. The ground magnetic perturbation is larger in the hemisphere with the smaller 

Alfven speed in the ionosphere due to the partial reflection of the Alfven wave 

within the trapezoid 1nodel that does not have a curved magnetic field. This partial 

reflection effect is counteracted by the magnetic flux convergence associated with 

the dipole magnetic field, although this effect is excluded in the present model. 

It should be noted on the third result described above. Namely, the north-south asymn1e­

try of the ground magnetic perturbations derived fr01n the partial reflection mechanisn1 

may invoke seasonal variation because VA is affected not only by the main magnetic field 

intensity but also by the plas1na density that exhibits seasonal variation. On the other 

hand, the 1nagnetic flux tube convergence effect invokes a DC bias in the asymmetry 

independent of season. 
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The height of the ionosphere and the latitudinal wave nu1nber also affect the ground 

magnetic perturbations. As the latitudinal \Vave number is assigned parameter, the depen­

dence of the ground magnetic perturbation on the height of the ionosphere is investigated. 

Its effect is listed as follow. 

1. When the height of the ionosphere is larger, the ionospheric electric field becomes 

inductive. This implies that the inductive effect is larger in the lower latitude. 

In the last part of the present thesis, we evaluate asymmetry of the conjugate ground 

magnetic perturbations by using the ionospheric conductivity based on the IRI model as 

well as the field-aligned VA profile and magnetic inclination based on the IGRF model. 

The 1nagnetic flux convergence effect that is excluded in the present trapezoid rnodel is 

qualitatively discussed . The results are as follows. 

1. The calculation based on realistic ionospheric parameters reveals that the funda­

mental mode has the static electric field in the ionosphere. Therefore, the two-step 

procedure of obtaining the ground magnetic perturbation from the standing Alfven 

oscillation [Allan, 1995] is valid for the fundamental mode. On the other hand, 

the higher harmonic 1nodes have the inductive one. The Hall conductivity plays an 

essential role in the ionospheric reflection and transmission of the standing Alfven 

oscillation. 

2. The north-south asymmetry of the ground n1agnetic perturbations depends on not 

only the 1-value but also the magnetic longitude; this is because the ionosphere and 

magnetic field conditions are not unifonn along the longitude . 

3. Our n1odel and parameter estimation can explain the north-south asymmetries ob­

served by the 210° IVIrv1 chain and Syo"\1\a-Iceland conjugate stations . Quantitatively 

speaking, however, numerical esti1nation of the asy1n1netry in SyoVi a-Iceland stations 

is not in complete agree1nent with the observation. 

The 1nodel used here is still quite artificial. The present trapezoid 1nodel ignores 

the cun ature of the main 1nagnetic field that is at least a dipole 1nagnetic field. \i\Then 
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the curvature is taken into account, decrease in the rnagnetic flux toward the ionosphere 

may concentrate the electromagnetic field perturbation associated with the Alfven wave 

propagating toward the ionosphere. Vle need to employ the dipole magnetosphere model 

in the next study. 

Only the stationary standing Alfven oscillation is considered in the present thesis. 

Note that this is also quite idealized model of the actual phenomena. In the actual 

phenomena, we need to take into account another physical mechanisms (for example, 

the phase mixing effect) when we try to compare the observed data and the present 

nurnerical results. However, it seems interesting to compare the numerical results with 

observed ones by evaluating the rnagnetospheric magnetic perturbation from the ground 

magnetic perturbation. The ground observation is no\v continuously carried out in a net­

work base. Combination of the ground-based observation and the quantitative numerical 

model should open a new stage of the research. 



Appendix A 

Transmission of the Alfven Wave 

through the Ionosphere 

The z axis is parallel to the main 1nagnetic field and vertical to the ionosphere ( z = -d) 

and the ground (z = 0). The Alfven velocity is spatially uniform and azimuthal wave 

number (m) is 0. Supposing that the time dependence of the wave field is exp( -iwt), the 

parallel wave number of Alfven wave( k~) · is w /VA. Then the electric field of Alfven wave 

in the 1nagnetosphere is given by 

(A .l) 

where the first and second terms of r.h .s. represent the incident (with the suffix i) and 

reflected (with the suffix r) waves . The fast n1ode wave is produced in the ionosphere due 

to the Hall current. The wave number of fast 1node wave is kp = Jk~2 - ki . Then the 

electric field of the fast mode wave is given by 

(A.2) 
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'~'here 5E~ is electric amplitude of the fast mode wave. Fron1 Eqs.(A.l) and (A.2), the 

magnetic fields of the Alfven wave and fast rnode wave are given by 

_!_5Ei ik~(z+d) _ _!_bET -ik~(z+d) 
VA xe VA xe ' 

kp 5E~e-ikF( z+d) . 
w 

Next, the electric fie lds of the waves in the neutral atmosphere are given by 

5Ex,atm I<Ed ipz + I<Eu -ipz 
u x,atm e u x,atm e ' 

5Ey,atm I<Ed ipz + J<Eu -ipz 
u y,atm e u y,atm e . 

As the frequency is so low, the wave number of waves in the atmosphere is 

p2 = ( ~ r _ k; ~ _ k; 

(A.3) 

(A.4) 

(A .5) 

(A .6) 

(A.7) 

IVIoreover, since the electric fie ld tangential to the ground is zero in the ground, we have 

5Ex,atm 

5Ey,atm 

and the magnetic fie lds are 

5 B x,atm bEd ( kx ) ( e-kxz + ekxz) 
y,atm iw ' 

5 B y,atm 0. 

Here Eq.(A .ll) is derived from Jz = 0 [c .f. Nishida, 1978] . 

(A.8) 

(A.9) 

(A. l O) 

(A .ll) 

The ionospheric boundary condit ions are given by Eqs. (1.8)rv(l.10) . Frorn Eq. (1.8), 

-vve have 

5Ex bEx,atm, (A .l2) 

5Ey bEy,atm, (A.l3) 

thus 

5E~ + 5E~ bEd ( ekxd _ e-kxd) 
x,atm ' (A .14) 

5Er y 
bEd ( ekxd _ e-kxd) 

y,atm · (A.l5) 
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Fro1n Eqs.(1.9) and (1.10), 

Thus 

6E~ + 6E~ = 26E~,atm sinh(kxd), 

6E~ = 26E~,atm sinh(kxd), 

6E~- 6E~ = 2Ep6E~,atm sinh(kxd) - 2EH6E~,atm sinh(kxd), 

-6E~kF- 2i6E~,atmkx cosh(kxd) 
AA d . AA d . = 2kll ~p6Ey,atm Slnh(kxd) + 2kll ~H6Ex,atm Slnh(kxd) . 

From these equations, we derive 6Ex,is/ 6E~ as 

and 6Bx,atm/ 6By,is as 

\vhere 

6Ex,is 6E~ + 6E~ 
6Ei 6Ei 

X X 

6Bx,grd 
6By,is 

2 

2kx6E~,atm/iw 
(6E~- 6E~)/VA 

ikx ~H 

Dsinh(kxd) tp + kut~jD' 
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(A.l6) 

(A.l7) 

(A.l8) 

(A.l9) 

(A.20) 

(A.21) 

(A.22) 

(A .23) 

(A.24) 

(A.25) 
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Tables 
March June 

L <1>=00 <1>=90° <1>=180° <1>=270° <1>=00 <1>=90° <1> = 180° <1>=270° 
6.0 (S) 11.58 9.99 11.51 12.62 15.12 10.30 11.18 12.10 

(N) 11.94 13.53 12.01 10.90 8.40 13.21 12.34 11.42 
(N/S) 1.03 1.35 1.04 0.86 0.56 1.28 1.10 0.94 

4.0 (S) 7.46 6.24 7.65 8.66 8.85 6.43 7.12 7.64 
(N) 8.07 9.29 7.88 6.87 6.68 9.10 8.41 7.89 

(N/S) 1.08 1.49 1.03 0.79 0.76 1.41 1.18 1.03 
2.0 (S) 3.33 2.84 3.63 4.49 3.25 3.00 3.43 3.84 

(N) 4.25 4.74 3.95 3.09 4.33 4.58 4.15 3.74 
(N/S) 1.27 1.67 1.09 0.69 1.33 1.53 1.21 0.97 

September December 
L <1>=00 <1>=90° <1>=180° <1>=270° <1>=00 <1>=90° <1>=180° <1>=270° 

6.0 (S) 10.52 9.01 11.09 12.01 12.61 10.76 9.79 12.89 
(N) 12.99 14.50 12.43 11.51 10.90 12.76 13.73 10.63 

(N/S) 1.23 1.61 1.12 0.96 0.86 1.19 1.40 0.83 
4.0 (S) 6.55 5.60 7.14 8.12 8.06 6.90 6.88 8.76 

(N) 8.98 9.93 8.39 7.41 7.47 8.63 8.65 6.77 

(N/S) 1.37 1.77 1.18 0.91 0.93 1.25 1.26 0.77 
2.0 (S) 3.08 2.59 3.29 4.25 3.18 2.95 3.67 4.24 

(N) 4.50 4.98 4.29 3.32 4.40 4.63 3.91 3.33 
(N/S) 1.46 1.92 1.30 0.78 1.38 1.57 1.06 0.79 

Table 4.1: The Alfven speed in the ionosphere (VA ,is). 

L <1>=00 <1>=90° <1>=180° <P=270° 
6.0 (S) 0.44 0.51 0.15 0.16 

(N) 0.21 0.27 0.06 0.21 
(N/S) 0.47 0.52 0.38 1.34 

4.0 (S) 0.53 0.55 0.19 0.23 
(N) 0.28 0.33 0.10 0.30 

(N/S) 0.53 0.60 0.54 1.32 
2.0 (S) 0.80 0.53 0.37 0.44 

(N) 0.50 0.57 0.28 0.56 
(N/S) 0.63 1.08 0.76 1.25 

Table 4.2: The values of z0 derived frmn the magnetic inclination (z0 = 1/tan J). 



n 

TABLES 

L Freq.(mHz) 
6 6.0 
4 10.7 
2 27.5 

Reference 
Sa1nson and Rostoker [1972] 
Samson and Rostoker [1972) 

Ziesolleck et al. [1993) 

Table 4.3: The eigenfrequencies of the standing Alfven oscillation in each 1-shells. 
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TABLES 57 

Station 
Geographic Geomagnetic 

L 
Lat. Lon. Lat. Lon. 

Kotzebue (KOT) 66 .88 197.40 64.63 249.25 5.45 

IVIacquarie Isl. (M CQ) -54.50 158.95 -64.77 247.60 5.50 

Iv1oshiri (l\I!SR) 44.37 142.27 37.76 212.96 1.60 

Birdsville (BRV) -25 .54 139.21 -37.30 212.86 1.57 

Table 4.5: Geographic and corrected geomagnetic coordinates of stations in 210° Ml\1! 

chain [Yumoto et al., 1992] . Gemnagnetic coordinates and L-values are calculated \vith 

IGRF85 model for 100km altitude of each station on January 1, 1991. 

High Latitude Low Latitude 

(KOT and l\I!CQ) (l\I!SR and BRV) 

Pc 3 winter > summer MSR > BRV 

Pc 4-5 KOT > MCQ -

Table 4.6: North-south power ratios of Pc pulsations observed in the 210° l\I!M chain after 

Yumoto [private communication]. 

Station pair sin I season (north) ~H ~H~~p VA 

KOT/ JlCQ 
surnmer 1.97 0.98 0.87 

0.991 winter 0.33 1.07 0.99 

NISR/BRV 
sun1mer 1.24 1.00 0.93 

1.01 winter 0.70 0.91 1.04 

Table 4.7: Seasonal variations of ratios of the parameters (the inclination, the ionospheric 

conductivity and the Alfven speed) in 210°stations. 

Station 
Geographic Geornagnetic 

L 
Lat. Lon . Lat . Lon. 

Syov.ra station (SYO) -69 .00 39.58 -66 .22 71 .44 6.15 

Husafell (HUS) 64.67 -21.03 65 .87 69 .36 5.99 

Tjornes (TJO) 66 .20 -17.12 66 .80 73 .76 6.45 

Table 4.8: Geographic and corrected geomagnetic coordinates of Syov.ra and Iceland con­

jugate tations [Saito et al., 1989]. 



TABLES 58 

Station pair sin I season (north) ~H ~H~~p VA 

HUS/SYO 
Summer 11.701 0.688 0.759 

1.08 Winter 0.244 0.996 1.479 

TJO/SYO 
Summer 11.552 0.693 0.754 

1.08 Winter 0.217 1.027 1.515 

Table 4.9: Ratios of the parameters (the ionospheric conductivity and the Alfven speed) 
between Syowa-Iceland stations in solstice seasons . 
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Figure 1.1: Classification and the features of t he geomagnetic pulsations. [Saito, 1978] 
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Figure 1.2: (Left) A schematic figure of the current disruption. The cross tail current is disrupted 
in the collapse and the field aligned currents flow into and out of the ionosphere. (Right) The 
current wedge viewed from north. FAC and ionospheric current and the tail current compose a 
closed circuit. [McPherron et al., 1973) 
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Figure 1.3: The locations of AMPTE CCE satellite at the onset of Pi 2 events. Pi 2 

pulsation in the magnetosphere is mainly observed in the nightside. [Takahashi et al., 

1992] 
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Figure 1.4: The contour plot _of occurence of Pc 5 pulsations [Nose et al., 1995] 
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Figure 1.5: A sche1natic illustration of the n1odal structure of the standing Alfven oscil­
lation. (Left) V\Then the Pedersen conductivity is zero , the electric field of the standing 
Alfven oscillation has an anti-node and the 1nagnetic field has a node in the ionosphere. 
(Right) \Nhen the Pedersen conductivity beco1nes larger, the relation is reverse. 
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Figure 1.6: The Joule loss of the standing Alfven oscillation shown in Eq. (1.7) versus 

the Pedersen conductivity. ~A = 1. 
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(a) 

(c) 

Figure 1. 7: Sche1natic illustrations for electrmnagnetic field and current associated with 
the Alfven wave incidence. (a) When the Alfven wave impinges on the ionosphere , the 
Pedersen current closes FAC associated with Alfven wave. (b) The primary electric field 
induces the Hall current and the magnetic disturbance. (c) The secondary electric field is 
induced by the Hall current. (d) This electric field again induces the Pedersen and Hall 
current. 
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Figure 1.8: The ratio of the ground magnetic perturbation to the magnetic perturbation 
above the ionosphere as a function of w / k1_ \lA when the Alfven wave impinges on the 
ionosphere . The case of ~H /~P = 0.2, 1 and 5 are plotted [Tamao, 1984] 
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Figure 1. 9: The intensity of the ground 1nagnetic perturbation (solid line), that of the con­
verted fast wave (dashed line) and that of reflected Alfven wave (dotted line) nonnalized 
by the incident Alfven wave intensity as a function of ~H. [Fujita, 1985] 
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Figure 2.1: The schen1atic figure of the model used in the present study. The inner and 
outer boundaries are located at x = 0 and x0 . The ionospheres at x = 0 are located at z 
= ±1 (± refer to the ionosphere in the northern and southern hemispheres, respectively) 
and that at x = x0 is z = ±(1 + z0x0 ) . The distance between the ionosphere and the 
Earth is d. The z coordinate of the magnetic equator is z = 0. 
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North Ionosphere 

Figure 2.2: The profile and contour plot of the Alfven speed used in the present study. 
VA,is is constant in each ionosphere regardless of the x coordinate. 



FIGURES 

X 

~ ,,1 
Ill ,,1 ,,I ,,I 

Jl I 
J\ I 
Jl I 
I I I 

' ' ' J I I 
J I I 
J I I 
I I I 
J I I 
J I I 
J I I 
I I I 
J I I 
J I I 
J I I 
J I I 
J I I 
J I I 

f I \ 

6.25_;~-l.O 

68 

1.0 

1.0 

z 

Figure 2.3: The 2D profiles of the electric field intensity associated with the standing 

Alfven oscillation (I6Exl) and that of the fast 1node wave induced through the ionospheric 

Hall current (lc5Eyl). Para1neters are ~po= ~Ho= 100, zo = 0 and 11A,is = 10. Note that 

the 1nain magnetic field is vertical to the ionosphere ( z0 = 0). 
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Figure 2.4: Latitudinal (x-direction) intensity profiles of the electric field perturbations in 

the ionosphere (top) , those of the 1nagnetic fi eld perturbations just above the ionosphere 

( n1iddle) and those on the ground (bottom) . The parameters are same as that used in Fig. 

2.3. The x and y components are represented with the solid and dotted lines respectively. 
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Figure 3.1: (a) oEx,is/OEx,max and (b) 5Bx,grd/5By,is of the second n1ode standing Alfven 

oscillation as functions of ~HO · The ratios in 4 cases of ~Po (1 , 10 , 100 and 1000) are 

shO\Vn . 



FIGURES 71 

1 

0.1 

0.01 

0.001 
1 10 100 1000 

Figure 3.2: oBx,grd/ oBy,is of the first three harmonics of the standing Alfven oscillation 
are plotted as functions of ~Ho where ~Po = 10. The solid, dashed and dotted lines 
represent · the fundamental, second, and third harmonic modes respectively. 
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Figure 3.3: (a) oEx,is /OEx,max and (b) oBx,grd/OB y,is as functions of Zo. The ratios in 4 

cases of tHo/tPo (0.1 , 1, 10 and 100) are shown (tPo = 10) . 
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Figure 3.5: (a) 5Ex,is /5Ex,max, (b) 5B x,grd/5By ,is, and (c) 5By,is /5B y,eq as functions of 

V A,is · The values of the conductivities are as same as those of Fig.3 .3. 
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Figure 3.6: (a) 5Bx,grd(N/S) as a function of f:Po(N). f:po(S) = f:Ho(N,S) = 10. (b) 
5Bx,grd(N/S) as a function of f:Ho(N) . f:po(N,S) = f:Ho(S) = 10. In both panels, z0 = 0 
and VA ,is = 10 in both hemispheres. 
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Figure 3.7: 6Bx,grd(N/S) of the first three harmonics of the standing Alfven oscillation. 
The conductivities are as same as those used for Fig.3.6(b). 
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Figure 3.8: 6B x,grd(N/S) as a function of zo(N) . zo(S) = 0 and tPo( T,S) = 10. tHo(N,S) 
is 10 (solid line) and 100 (dashed line) . 
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Figure 3.9: oBx,grd(N/S) as a function ofVA,is(N). VA,is(S) = 10, zo (N,S) = 0 and ~Po(N,S) 
= ~Ho(N , S) = 10. 
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Figure 3.10: oB x,grd/ By,is as a function of Hall conductivity for various values of d (0 .001 , 
0.003, 0.01, 0.03, 0.1). 
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Figure 4.1 : 6Bx,grd(N /S) calculated with realistic parameters. The top, Iniddle and bot­
ton1 panel are 1=6, 4 and 2. Each column shmvs Magnetic Longitude =0°, 90°, 180° and 
270° fro1n left to right . The solid, dashed and dotted lines show the fundamental , second 
and third harmonics respectively. 
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Figure 4.2: North-South asymmetries of Pc 3-5 pulsations in Syowa-Iceland conjugate 

pairs. [Saito et al., 1989] (Top) The power ratio of the pulsations in Syowa-Husafell 
conjugate pair. (Bottom) That of Syowa-Tjornes pair. 
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Figure 4.3: The north-south ratio of the Syowa-Iceland conjugate pairs calculated with 
the parameter esti1nated from IGRF95 and IRI90. 
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