主論文

Study on Precise Tidal Data Processing

潮汐の精密解析に関する研究

田村良明

Index

Abstract	1
1. Introduction	2
2. Tide-generating Potential	4
2.1. Ephemeris Tide and Harmonic Tide	
2.2. Astronomical Arguments in the Harmonic Developments	
2.3. Comments on Tamura (1987) Development	
2.4. Additional Terms	
2.5. Examination of Accuracy	
2.6. Remarks	
3. Tidal Analysis Procedure	16
3.1. Harmonic and Non-Harmonic Methods	
3.2. Drift Models	
3.3. Associated Data	
3.4. Grouping of Tidal Constituents	
3.5. Observation Model in BAYTAP-G	
3.6. ABIC	
3.7. Implementation	
3.8. Usage and Examinations	
3.9. Remarks	
4. Applications to Practical Tidal Data	28
1) strain data	
2) gravity tide	
3) core undertones	
4) long period tides	
5) others	
5. Concluding Remarks	33
5.1. Supplemental Comments	
5.2. Contributions and Prospect	
Acknowledgment	38
References	39
Tables	42
Figures and Figure Captions	48
Appendix	105
List of the Additional Harmonic Terms	

h

Abstract

The purpose of the earth tide studies is to investigate the response of the earth to the external tidal forces derived from the moon and the sun. The earth's tidal response is studied from global scale to regional or local scale problems in a frequency band of much longer than seismic one. In order to examine the response of the earth to the tidal force, it is required to know the theoretical tidal force with adequate precision at first. It is also required to develop tidal analysis procedure to extract information on earth's behaviors from observation data. The procedure should resolve the tidal signals from observed data which is usually contaminated by environmental changes around observation sites and instrumental noises.

The tide generating force was developed by Tamura (1987, 1995) by employing numerical expansion method in which numerical ephemerides of the moon and the sun given by JPL were used. The developed harmonic tables contain direct and indirect terms derived from planets Venus and Jupiter. Since the development of the 4th degree potential from the moon was not completed in Tamura (1995), it is revised in this thesis. The aimed harmonic expansion threshold level (i.e. the aimed accuracy in frequency domain) of Tamura (1987) is 1 nano Gal (10⁻¹¹ms⁻²). The aimed harmonic expansion threshold levels of Tamura (1995) and the present revision are 0.2 and 0.1 nano Gal, respectively. The accuracy of the harmonic tables is examined in several ways in this thesis. The mean error of Tamura (1987) is less than 10 nano Gal in time domain, but the maximum error reaches 30 nano Gal in worst case. Meanwhile, if we adopt the harmonic tables of Tamura (1995) and present revision, the maximum error can be prevented within 0.2 nano Gal in frequency domain, the mean error will be less than 1 nano Gal in time domain, and the maximum error can be prevented within 5 nano Gal. This accuracy is well high for the precise analysis of tidal data which is obtained with such as a superconducting gravimeter.

A computer algorithm for tidal analysis is developed by Tamura *et al.* (1991), which is based on a Bayesian method proposed by Ishiguro (1981). This procedure has a characteristic in modeling of the drift. The basic assumption of the model is the smoothness of the drift. The smoothness of the drift is controlled by a hyperparameter, whose best value is selected by ABIC (Akaike's Bayesian Information Criterion, Akaike 1980). The tidal parameters are determined by harmonic method, while meteorological influences are modeled by non-harmonic method. The tidal analysis program is named BAYTAP-G, which can treat tidal data such as gravity, tilts, strains, ocean tides and so on.

The necessity of the high precision harmonic tables and the applicability of the tidal analysis program are demonstrated using real strain and gravity tidal data, and synthetic ones. The procedure is widely applicable even for studies to search for core undertones, earth rotation, and other geophysical signals.

1

1. Introduction

The observations and analyses of earth tides are intended to investigate the earth's behaviors against the external force of the tidal-generating forces derived from the moon and the sun. The phenomena of earth tides are global ones, but the objects of earth tide studies are not only to resolve global problems but also to resolve regional and local problems. As for global problems, the fluid core resonance phenomenon (FCR: Sasao et al., 1980; Wahr, 1981) is studied through analysis of earth tidal data. Also, improvement of an earth model in the tidal frequency bands is carried out. The nonlinear response of the solid earth (mantle) becomes larger if the period of external force becomes longer. The dissipation (or the quality factor Q) in the mantle is discussed using the seismic data, but the object period is limited in shorter than the earth's free oscillation period of one hour for this case. The periods of tidal phenomena are quite longer compared with that of seismic wave or earth's free oscillation. It is considered that the nonlinear effect of the mantle will appear in the period longer or equal to tidal band. As for regional and local problems, locality of the tidal parameters, which are reflected by the difference of the elastic constants of the crust or the upper mantle, are investigated. Furthermore, in places such as volcanic or tectonic active regions, estimation of the time variations of the internal physical properties is intended by analyzing the time variations of the tidal parameters. In the analyses of ocean tides, not only the exploration of the oceanic physical phenomena themselves but also satisfying the daily requirements such as ocean tide forecasts at harbors or tidal current forecasts in channels and gulfs are the major purposes. In the analyses of crustal strain or tilt changes with the purpose of monitoring crustal movements, the interpretation of the drift components obtained by removing tidal changes from the observation data is sometimes more essential than the precise determination of tidal factors and phases.

In order to advance the earth tide studies mentioned above, the author developed fundamental facilities for earth tidal analysis. They are the precise developments of the tide-generating force, and the development of a tidal analysis method. The harmonic tables of tide-generating potential are developed by Tamura (1987, 1995). Furthermore, the tidal analysis procedure named BAYTAP-G is developed by Tamura *et al.* (1991). In this thesis, the developments of tide-generating potential is discussed at first. Next the development of the tidal analysis procedure BAYTAP-G is explained, and its analysis model is investigated. Next the harmonic tables and the analysis program are applied to several kinds of real earth tide data and the synthesized ones. Their usefulness is discussed with the gravity, strain and other tide data. At last, the contributions of those studies to the field of earth tides are summarized, and the future prospect on tidal studies is mentioned.

In the section of tide-generating potential, the differences of ephemeris tide and

harmonic tide, astronomical arguments used in the harmonic developments, comments on Tamura (1987) development, additional terms in Tamura (1995) and present revision, and the accuracy of the harmonic developments are investigated. In order to study the response of the earth to the tidal force, it is necessary to estimate the theoretical tidal force with adequate precision in the beginning. Doodson (1921, 1954) developed tidal potential and obtained detailed harmonic tables in early years. Later, Cartwright and Tayler (1971) and Cartwright and Edden (1973) developed more detailed harmonic tables which contains 505 tidal waves in total. Their harmonic tables are used as standard harmonic ones for a long time in the study of earth tides. However, the precision of their tables becomes insufficient for the present high precision tidal observations such gravity tide observations with a superconducting gravimeter. Tamura (1987) developed new harmonic tables using numerical ephemerides by Jet Propulsion Laboratory (JPL). The harmonic tables were revised later with considering more minor terms and the planetary direct terms (Tamura, 1995). The latter results were not perfect in some parts still, then the harmonic development is refined again and the results are investigated in this thesis.

The recent computer technology has allowed important progress in the tidal data processing. The application of sophisticated analysis models on huge data set became available today. In the section of tidal analysis procedure, the analysis program named BAYTAP-G (Tamura *et al.*, 1991) is interpreted and the analysis model adopted in it is investigated. The program BAYTAP-G is based on a Bayesian method proposed by Ishiguro (1981). In the BAYTAP-G, the best analysis model is selected automatically from the variation of them by using an information criterion ABIC (Akaike's Bayesian Information Criterion, Akaike 1980). In the section, harmonic and non-harmonic analysis methods developed until now, drift models in tidal analysis, the treatments associated observation data such as atmospheric pressure data, grouping of the tidal constituents, observation model adopted in BAYTAP-G, how to calculate ABIC, and the implementation techniques are explained and examined.

In the section of application to practical tidal data, the harmonic tables and the analysis program are applied to the actual strain and gravity tide data. The usage for other geophysical data analysis is also mentioned in this section. The tidal observation data such as strain data often has a strong correlation with the atmospheric pressure changes. To make the matters worse, there often appear large drift, steps and interruptions of the record due to instrumental instability, earthquakes, and so on in the actual record. The program BAYTAP-G can be applied to the tidal data which includes such irregularities in drift, occasional steps and disturbances caused by meteorological influences. The applicability of the program to such data is discussed in the section.

3

2. Tide-Generating Potential

2.1. Ephemeris Tide and Harmonic Tide

There are two kinds of method to calculate tide-generating potential. One is to calculate tide-generating potential directly from the position of the moon and the sun. The other is to develop the tidal potential in the frequency domain and calculate the potential by summing up sinusoid constituents. The former method is called direct method or ephemeris tide (hereafter we use the terminology "ephemeris tide"). The latter method is called harmonic method or harmonic tide.

The ephemeris tide can be calculated by using suitable ephemerides of the moon and the sun. (Most ephemerides give the motion of the sun based on geocentric coordinates traditionally, though the earth is revolving around the sun.) The motion of the sun can be expressed by ellipsoidal orbit (Kepler's motion) with the accuracy of 1'. Only a few perturbation terms are required for the sun's ephemeris to obtain the accuracy of 0.'1, which accuracy is enough to calculate the solar tidal potential. Meanwhile, several tens perturbation terms are required for the moon's ephemeris to obtain the same accuracy of 0.'1. The algorithm of ehpemeris tide is rather simple compared with that of harmonic one, and the computation time is usually shorter than There are several programs for ephemeris tide. For example, Tamura (1982) it. released a FORTRAN program by using the ephemerides by Kubo(1980). Tamura (1982) considered the degree 3 potential by the sun and the degree 4 potential by the moon using analytical ephemerides. By using numerical high precision ephmerides (for example, Standish and Williams, 1981, 1982), we can easily obtain high precision theoretical data which can be used as a standard reference data set. We can give tidal factors and phase differences for each degree potential and each tidal specie in the computation of ephemeris tide, but can not give fine frequency structure within a tidal specie. This is the most weak point of ephemeris tide.

One purpose of tidal study is to investigate frequency response of the earth to external forces. Moreover, ocean tide factors and phases usually show strong frequency dependency against tidal potential. Thus the theoretical tidal developments in the frequency domain is required in the both cases for the analysis and prediction. Doodson (1921, 1954) developed tidal potential and obtained detailed harmonic tables in early years. His development dedicated ocean tide analysis and its prediction at that time. Later, Cartwright and Tayler (1971) and Cartwright and Edden (1973) developed more detailed harmonic tables which contain 505 tidal waves including Doodson's prior development (we call them CTE tables hereafter). The CTE tables developed by a numerical method considering degree 3 potential for the moon and degree 2 potential for the sun. Each constituent is treated as a sinusoid wave. The constituents whose amplitudes are relatively large are considered the secular changes of their amplitudes. Their amplitude changes are mainly caused by the secular change of the obliquity of the ecliptic. The CTE tables were used as standard harmonic developments for the studies in both earth tides and ocean tide for a several years.

Recent earth tide observations, such as gravity tide ones with a superconductivity gravimeter or a null method LaCoste Romberg gravimeter have high quality (i.e. high resolution, precision and stability). These observations give us variable information of earth's interior. In order to obtain much more knowledge of the earth, not only precise and intense observations but precise analysis methods are required. It is needless to say that the accurate theoretical tide calculations are required in tidal analysis and prediction. If the theoretical tide computations in analysis have some systematic errors or large errors compared with observation accuracy, the analysis results shall be distorted artificially. To avoid such situation, the theoretical tide calculations (the precision of harmonic tables) must have enough precision compared with the precision of recent earth tide observations. A few times or ten times margin in the accuracy is desirable in the theoretical tide calculations.

The CTE tables are used as a standard in 1970s and early in 1980s, but their precision is not enough for recent requirements. The CTE developments are not so perfect nowadays and the harmonic coefficients are given only five digits validity. Moreover, after the development of CTE tables, the astronomical constants were If we use CTE tables at present, there will be a slight inconsistency. revised. Several authors have developed the tide-generating potential till now to improve its accuracy (Büllesfeld, 1985; Xi, 1987; Tamura, 1987, 1995; Hartmann and Wenzel, 1994, 1995; Roosbeek, 1996). Büllesfeld (1985), Tamura (1987, 1995), and Hartmann and Wenzel (1994, 1995) developed the potential by using numerical methods, while Xi (1987) and Roosbeek (1996) used analytical methods. All authors developed the potential at least up to degree 4 potential for the moon and degree 3 for the sun. Tamura (1995), Hartmann and Wenzel (1994), and Roosbeek (1996) were taking account of the tidal potential derived form planets. The direct effect from Venus or other outer planets comes up to a few nano Gal level in the gravity tide, and it is not so small to be neglected at present. Hartmann and Wenzel (1995), and Roosbeek (1996) developed degree 5 or 6 potential for the moon. Their amplitudes are in the order of 0.1 nano Gal or less, thus the degree 5 and the higher degree potentials may be neglected.

The author (Tamura 1987, 1995) developed the harmonic tables of the tidegenerating potential numerically by using the MERIT (a programme of international collaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis) standards (1983) and the JPL numerical ephemerides (Standish and Williams, 1981, 1982). In this thesis, the author revised the previous developments and examined the accuracy of the current development results. In the following sections, details of the developments and investigation results are explained.

5

2.2. Astronomical Arguments in the Harmonic Developments

Doodson and several authors who developed tidal potential used below traditional six astronomical arguments to express phase and angular velocity for each constituent.

1	τ	:	time angle in lunar days
2	S	•	moon's mean longitude
3	h	•	sun's mean longitude
4	р	:	longitude of moon's mean perigee
5	N'	:	negative longitude of moon's mean node
6	p_1	:	longitude of sun's mean perigee

The orbits of the moon and the sun are illustrated in Figure 1. The term "mean" means the motion in circular orbit (not ellipsoidal one) of the moon or the sun, only taking account of precession and long period perturbations. In above arguments, τ can be expressed with s and h ignoring the aberration and the difference between the dynamical time (TD) and the universal time (UT) like as

$$\tau = 15^{\circ} \times t + h - s + \lambda \tag{1}$$

where t is the universal time in hour, and λ is the east longitude of a site. Those variables are related to the fundamental arguments of nutation series used in the MERIT standards by

\boldsymbol{S}	=	F	+	Ω,)		
h	=	F	+	Ω		<i>D</i> ,				
р	=	F	+	Ω		<i>I</i> ,		}		(2)
N'	=		-	-Ω,						
p_1	=	F	+	Ω	_	D	 I^{*})		

where

F	:	moon's mean elongation from node,
D	:	moon's mean elongation from sun,
Ω	:	longitude of moon's node,
1	:	moon's mean anomaly,
I^{*}	:	sun's mean anomaly.

The moon's node Ω is illustrated in Figure 1. In Tamura (1987), Ω was explained as the perigee in mistake. Ω is the longitude of moon's node in correct. *F*, *l* and *l*' are

described by the "mean" motions of the moon and the sun like as $F = l_2$, $I = l_1 + l_2$, and I' = sun's longitude – P shown in Figure 1. D is the difference of ecliptic longitude between the moon and the sun in other words.

In order to develop the tidal potential up to 10×10^{-6} amplitude constituents for the second degree, following eight arguments are necessary. They are defined by the author as

$$\begin{aligned} f_1 &= 15^{\circ} \times t + \alpha_m - s + \lambda, \\ f_2 &= s + \Delta s, \\ f_3 &= h + \Delta h, \\ f_4 &= p, \\ f_5 &= N', \\ f_6 &= p_1, \\ f_7 &: \text{ period of Jupiter's opposition,} \\ f_8 &: \text{ period of Venus's conjunction} \end{aligned}$$

$$(3)$$

where $\alpha_{\rm m}$ is the right ascension of a supposed object to define the universal time. Δs and Δh denote the long period perturbations in the longitude of the moon and the sun, respectively. These corrections of Δs and Δh are added to reduce the phase shift for the principal constituents such as O₁, K₁, M₂, S₂ and K₂. The existence of the arguments f_7 and f_8 does not mean the direct tidal effect by Jupiter and Venus, but the indirect effect of Sun generating potential by perturbing the earth's orbit.

Concerning to the argument f_1 , we should use α_m instead of h. There are differences between α_m and h in two points. For the first one, the time argument for α_m is UT, but h is TD. For the second one, there is a permanent difference of the aberration (about 20."5) between their constant terms. If we uses h in place of α_m like as Doodson's definition, tidal potential becomes to be calculated based on "apparent" places of the moon and the sun. On the other hand, if we uses α_m , tidal potential is calculated based on "true" places. In other words, when we compute the angle hour of an object whose right ascension is α , we calculate $h - \alpha$ in former case, and $\alpha_m - \alpha$ in latter case. Though this difference between apparent and true places is only 20."5, this gives systematic phase shift for all constituents. For example, all components of semidiurnal species are caused 0.°01 phase shift by this difference.

Since the gravitation operates as an "action at a distance" (note that the gravity field is not energy propagation nor particle movement!), true place should be used in dynamics computations. (In addition, the aberration is a phenomenon proportional to v/c, where v is the velocity of the earth's revolution, and c is the light velocity. Some forces proportional to $(v/c)^2$ exist if we consider the theory of relativity.)

The eight arguments used in the harmonic developments (equation (3)) are actually defined as follows (Aoki *et al.*, 1982), (Kubo, 1980).

α m	=	$280.^{\circ}4606184 + 36000.^{\circ}7700536 t_{u} + 0.^{\circ}00038793 t_{u}^{2}$)
		- 0.°000000258 t u ³ ,	
S	=	218.°316656 + 481267.°881342 $t_{\rm d}$ - 0.°001330 $t_{\rm d}$ ² ,	
h	=	$280.^{\circ}466449 + 36000.^{\circ}769822 t_{\rm d} + 0.^{\circ}0003036 t_{\rm d}^2,$	
Δs	=	$0.^{\circ}0040\cos(29^{\circ} + 133^{\circ}t_{\rm d})$,	
Δh	=	$0.^{\circ}0018\cos(159^{\circ} + 19^{\circ}t_{\rm d})$,	(4)
f_4	-	83.°353243 + 4069.°013711 $t_{\rm d}$ - 0.°010324 $t_{\rm d}$ ² ,	
f_5	=	$234.^{\circ}955444$ + $1934.^{\circ}136185 t_{\rm d}$ - $0.^{\circ}002076 t_{\rm d}^2$,	
f_6	=	$282.^{\circ}937348 + 1.^{\circ}719533 t_{d} + 0.^{\circ}0004597 t_{d}^{2}$	
f_7	=	$248.^{\circ}1 + 32964.^{\circ}47 t_{\rm d}$,	
f_8	=	281.°5 + 22518.°44 t d	

where t_u is the universal time measured from 2000 Jan. 1 12^h UT1 (JD 2451545.0) in 36525 days unit, and t_d is the dynamical time measured from 2000 Jan. 1 12^h TD in 36525 days unit. The arguments *s*, *h*, *p*, *N*' and *p*₁ are slightly differ from those of the MERIT standards. However those differences are small enough to calculate the tidal potential.

2.3. Comments on Tamura (1987) Development

The harmonic development of Tamura (1987) is numerically made based on the MERIT standards and the JPL ephemerides. The expansion is made up to the 4th degree potential for the moon and the 3rd degree for the sun, and the secular variation of harmonic amplitude was taken into account. All tidal constituents, whose amplitudes are larger than 10×10^{-6} for the 2nd degree potential, 7×10^{-6} for the 3rd one and 5×10^{-6} for the 4th one in Doodson's scale, are picked up. These amplitude thresholds are correspond to 0.8 nano Gal for each constituent.

Traditional astronomical arguments are adopted in the developments. In order to express indirect planetary terms (i.e. to express perturbations by Venus and Jupiter to the revolution orbit of the earth), two arguments (f_7 and f_8 explained in section 2.2) are used in the developments. There are 2 indirect planetary terms in long period tide, 2 indirect terms in diurnal tide and 4 terms in semidiurnal tides.

The harmonic developments are adjusted for the period between 1950 and 2030. The secular changes of the amplitudes for major constituents are estimated from the amplitudes of four different epochs.

The motion of the sun's perigee is very slow compared with the above period of 80 years. Its period is about 21000 years. It is impossible to resolve two tidal waves whose periods are differs only 1/21000 years by numerical development. We named

such waves "paired terms". There are several paired terms whose angular velocities differs only by $2f_6$ in actual. For example, ϕ_1 wave is formed with two terms of whose angular velocities are defined by $f_1 + f_2 + 2f_3 - 2f_6$ and $f_1 + f_2 + 2f_3$. The numerical development can determine the amplitudes of such paired terms if the angular velocities of them are given, but the exact coefficients for f_6 term cannot be determined by numerical method. Therefore, the angular velocities are given a priori for the known paired terms such as ϕ_1 wave in the numerical developments. If the one of a pair's amplitude is smaller than 12×10^{-6} , those terms can be represented by one term, whose angular velocity is the same as that of the bigger one, and whose amplitude is defined by "bigger one"—"smaller one". This simplification is possible because the phase difference of $2f_6$ is 205° which is close to 180° . This simplification cannot be applied to ϕ_1 wave, because it has rather large amplitudes of 104×10^{-6} and 7545×10^{-6} in pair. A systematic phase bias will be yielded if the terms are united into one term forcibly.

The constants used in the development is listed in Table 1. The MERIT standards slightly differs from present constants. For example, the earth's equatorial radius of 6378137m is adopted in MERIT standards, while it is 6378136m in IAG1980 system. There is no inconsistency if the same value of 6378137m is used in the calculation of theoretical tides. Because the earth's equatorial radius is used only as a normalization factor in the developments, its value is not necessarily equal to real earth's radius.

The aimed accuracy of the development is 1 nano Gal in frequency domain. The accuracy of time domain becomes worse than that of frequency domain, because there are 1200 components in total and all of them must be added to obtain the theoretical value for each epoch. There are also minor constituents which are neglected in the harmonic tide calculation. For those reasons, the maximum error in time domain reaches $30 \sim 40$ nano Gal in worst case, though the mean error is less than 10 nano Gal.

In the second degree potential, there are a few terms whose amplitudes are slightly larger than the expansion threshold level of 10×10^{-6} , and whose frequencies and phases cannot be denoted by the combination of the eight arguments. They have angular velocities of about 0.4671°/h , 12.8496°/h, 13.3918°/h and 27.8910°/h. This result shows that more precise harmonic development is difficult if we use only the traditional arguments which are defined by Doodson or by the author.

2.4. Additional Terms

In order to improve the accuracy of the theoretical tide calculation, Tamura (1995) revised by the harmonic tables by applying numerical expansion method. The error level in the theoretical tide calculation for solid earth can be reduced to about half by applying extra 500 harmonic terms to the Tamura (1987) tables. By taking additional 860 terms (in total 2060 terms), it can be reduced to about one third level compared with Tamura (1987). The direct planetary terms by Venus and Jupiter were also developed in Tamura (1995). In Tamura (1987), eight indirect planetary terms whose amplitudes were larger than 1 nano Gal were taken into account. The direct term by Venus reaches about 4 nano Gal in time domain at the inferior conjunction, though the amplitude of each component is smaller than 0.4 nano Gal. The direct term by Jupiter is smaller than 1 nano Gal in time domain even at the opposition.

In Tamura (1995), the degree 2 and 3 potentials of the moon and the sun were revised, but the 4th degree potential was not revised at that time. In this thesis, complete development is carried out up to the degree 4 potential. For the results, the mean error and the maximum error can be reduced to about one fifth level by applying additional 1800 terms to the Tamura (1987) tables.

a) for the moon and the sun

Tamura (1995) revised by the harmonic tables for degree 2 and 3 potentials by applying numerical expansion method. The expansion threshold level is 0.2 nano Gal for each constituent in that development. That of Tamura (1987) was 0.8 nano Gal. A least squares fitting method is applied for the year from 1940 to 2040 in that development. For the reference of ephemeris tide, the numerical ephemerides DE200/LE200 (Standish and Williams, 1982) are used.

In the development of additional terms for the moon and the sun, traditional astronomical arguments (equation 4) are not used. Instead of them, the angular velocity and the initial phase for each constituent at the epoch J2000 (12^h UT, January 1, 2000) are given. This is because the periods of some harmonic terms cannot be expressed by the traditional arguments of mean longitudes of the moon and the sun, mean perigees of them and mean node of the moon. Moreover, we can get higher precision with fewer terms by applying best fitting for the restricted fitting period for the year from 1940 to 2040.

The numerical least squares fitting process was applied in the development. It is explained simply as follows. At first, time series of ephemeris tide for the period from 1940 to 2040 was generated respectively for each potential degree and for tidal species. Second, the known harmonic tide (Tamura, 1987) was subtracted from the time series. Next, a rough frequency of an additional term was searched by applying first Fourier transform to the time series of 100 years data. Next, fine frequency of that term was searched around the frequency of spectrum peak. Last, the amplitude of its constituent was determined by the procedure which made residuals minimum. In Tamura (1995), the search for fine angular velocity (search for fine frequency) was done with a finite step of about 0.00002°/h.

b) planetary direct terms

The direct terms by Venus and Jupiter must be considered in the developments to obtain 1 nano Gal accuracy. Those direct planetary terms were developed in Tamura (1995) by numerical method. For the Venus terms, they converge extremely slowly because of large range ratio between inferior and superior conjunction, though their total effect is only a few nano Gal level. Contrary, the Jupiter terms converge rather faster. Only a few terms are necessary for consideration. The required accuracy of planetary ephemerides is not so high, thus the more convenient ephemerides by Kubo (1980) and Fukushima (1981) instead of DE200/LE200 are used in the developments.

The results of development for Venus are listed in Table 1 of Tamura (1995). The amplitude of each component is shown in Doodson's scale. The amplitude of 12×10^{-6} is equivalent to 1 nano Gal for degree two potential. The argument V used in Tamura (1995) is defined as the difference between mean heliocentric longitude of Venus and that of the earth (i.e. negative longitude of the sun). It is expressed as $V = 81.^{\circ}5 + 22518.^{\circ}44 t$ d, where t d is the dynamical time same as used in equation (4). All terms should be multiplied by the latitude functions which are same as for the moon and the sun in the theoretical tide calculation. The amplitude of each component developed here is smaller than 0.4 nano Gal. Nevertheless, the Venus direct terms will have same phases at the inferior conjunction (i.e. when V = 0) and the each term cannot be resolved. At that time, the total effect from Venus becomes about 4 nano Gal.

The results of development for Jupiter are listed in Table 2 of Tamura (1995). The definition of amplitude and arguments are similar to those of the Venus terms. The argument J is the difference between mean heliocentric longitude of the earth and Jupiter. It is expressed as $J = 248.^{\circ}1 + 32964.^{\circ}47 t_{\rm d}$. The maximum amplitude for Jupiter each term is less than 0.3 nano Gal, and the total amplitude is smaller than 1 nano Gal even at the opposition.

The direct terms derived from other planets are negligible small considering the mass of planets and their distance from the earth. Mars gives the largest effect among remaining planes, but its effect is less than 0.1 nano Gal even at the opposition. c) present revision

In this thesis, the 4th degree potential of the moon is revised to complete the additional harmonic terms. The adopted expansion threshold level is 0.1 nano Gal. The harmonic tables for degree 2 and 3 are revised again adopting same expansion threshold level is 0.1 nano Gal. For the results, the mean error and the maximum error are reduced to about one fifth compared with Tamura (1987) tables.

The numerical expansion method with least squares fitting is almost same as that of Tamura (1995). The numerical ephemerides DE200/LE200 (Standish and Williams, 1982) are also used in this revision. The period for numerical fitting is from the year 1951 to 2048 in this time. The central epoch is adjusted to J2000. In Tamura (1995), the angular velocity of each constituent was searched with a finite step of about 0.00002°/h. In this revision, the angular velocities of additional terms are determined more rigorous way. Therefore, the angular velocity of each constituent revised in this time may differ about 0.00002°/h from that in Tamura (1995).

The numbers of constituents for each development are listed in Table 2. The columns of degree 4 for Tamura (1995) are shown with parenthesis. In the Tamura (1995), the degree 4 potential was not expanded, but the table is filled for the convenience of comparison. The numbers are given by assuming the expansion threshold level of 0.2 nano Gal which is compatible with Tamura (1995).

In appendix, total additional harmonic terms of the moon and the sun are listed.

2.5. Examination of Accuracy

a) frequency domain

In the harmonic development by Tamura (1987), the expansion threshold level of 1 nano Gal is adopted. Also 0.2 nano Gal threshold level is adopted in Tamura (1995). Much low threshold level is adopted in the current revision. To check the accuracy of the harmonic tables, the harmonic tides are compared with the ephemeris tides for each species. The ephemeris tides are based on the numerical ephemerides of DE200/LE200, they are considered as reference standards. The comparisons are carried out at the latitudes in which the maximum tidal amplitude can be obtained for each species.

In Figure 2-20, the black line shows the spectrum of theoretical gravity tide (ephemeris tide) of degree 2, long period, and at latitude 90°. Eighteen years data is used in the spectrum calculation. The blue line in Figure 2-20 shows the spectrum of "ephemeris tide — harmonic tide by Tamura (1987) (with 211 waves)" of degree 2, long period tide. This result shows that the maximum error of the harmonic tide is less than 1 nano Gal in frequency domain and the intended accuracy is obtained. The red line in Figure 2-20 shows the spectrum of "ephemeris tide — harmonic tide with the additional terms (in total 493 waves)" of degree 2, long period. This result shows that the maximum error of the harmonic tide with additional terms is less than 0.1 nano Gal, and the intended accuracy is obtained.

In Figure 2-21, the black line shows the spectrum of theoretical gravity tide (ephemeris tide) of degree 2, diurnal and at latitude 45°. Two years data is used in the spectrum calculation. The blue line in Figure 2-21 shows the spectrum of "ephemeris tide — harmonic tide by Tamura 1987 (with 345 waves)" of degree 2, diurnal. The red line in Figure 2-21 shows the spectrum of "ephemeris tide harmonic tide with the additional terms (in total 757 waves)" of degree 2, diurnal. This result shows that the maximum error of the harmonic tide with additional terms is less than 0.2 nano Gal in frequency domain. It is somewhat higher than the intended accuracy of 0.1 nano Gal in the development. It may be caused by the insufficient frequency resolution in the spectrum calculation.

Figure 2-22 shows the case of degree 2, semidiurnal tide at latitude 0°. The black

line is the spectrum of theoretical gravity tide. The blue line in Figure 2-22 is the residual spectrum when 281 terms are taken into account in the harmonic tide calculation which is based on Tamura (1987). The red line in Figure 2-22 is the residual spectrum when 633 terms are taken into account in the harmonic tide calculation. The maximum error in frequency domain is estimated about 0.2 nano Gal. It is somewhat higher than the intended accuracy of 0.1 nano Gal like as diurnal band. The cause may be similar to that of diurnal band.

Figure 2-33 shows the case of degree 3, terdiurnal tide at latitude 0°. The black line is the spectrum of theoretical gravity tide. The blue line in Figure 2-33 is the residual spectrum when 68 terms of Tamura (1987) are taken into account The red line in Figure 2-33 is the residual spectrum when 194 terms are taken into account in the harmonic tide calculation. In both cases, intended accuracy of 1.0 and 0.2 nano Gal is obtained.

Figure 2-44 shows the case of degree 4, 1/4 day period tide at latitude 0°. The black line is the spectrum of theoretical gravity tide. The blue line in Figure 2-44 is the residual spectrum when 10 terms of Tamura (1987) are taken into account. The red line in Figure 2-44 is the residual spectrum when 39 terms are taken into account in the harmonic tide calculation. In both cases, intended accuracy of 1.0 and 0.15 nano Gal is obtained.

2) time domain

Figure 3 group shows the variations of time domain maximum and mean errors of harmonic gravity tide given by changing the maximum number of adopted harmonic terms. The reference theoretical gravity tides are calculated directly from the lunar and solar ephemerides. The error of each degree and species is estimated at the latitude which gives maximum tidal amplitude. For degree 2, geographical coefficients at latitude 90°, 45° and 0° give maximum amplitude for long period, diurnal and semidiurnal tide, respectively. For degree 3, geographical coefficients at latitude 90°, 58.9°, 35.3° and 0° give maximum amplitude for long period, diurnal, semidiurnal and terdiurnal tide, respectively. For degree 4, geographical coefficients at latitude 90°, 66.1°, 49.1°, 30° and 0° give maximum amplitude for long period, diurnal, semidiurnal, terdiurnal and 1/4 day period tide, respectively.

Those Figures show that the maximum error of Tamura (1987) development is about $20 \sim 30$ nano Gal in time domain while the mean error is a few nano Gal level. To obtain 10 nano Gal accuracy in time domain, almost all harmonics (about 3000 terms) developed by current revision must be used in theoretical tide calculations. 3) planetary direct term

Figure 4a shows long period gravity tide generated by Venus. Figures 4b and 4c show that of diurnal and semidiurnal tides, respectively. The amplitudes by Venus direct terms reach about 4 nano Gal at the inferior conjunctions, while they will be negligible small at the superior ones. The distance of Venus from Earth is 1.7 a.u. at

13

the superior conjunction, while it is 0.3 a.u. at the inferior conjunction. The ratio of tide-generating potential by Venus at the superior and inferior conjunction is about 1/180 (= $(0.3/1.7)^3$), thus the amplitude at superior conjunction becomes negligible small. The maximum amplitudes of long period tide and diurnal tide at the inferior conjunction depend strongly on the declination of Venus at that time.

Figures 5a, 5b and 5c show the long period gravity tide, diurnal one and semidiurnal one generated by Jupiter, respectively. The direct term by Jupiter was smaller than 1 nano Gal in time domain even at the opposition. For semidiurnal the maximum amplitude is about 0.5 nano Gal at the Jupiter's opposition. The distance of Jupiter from Earth is 4.2 a.u. at the opposition, while it is 6.2 a.u. at the superior conjunction. The ratio of tide generating potential by Jupiter at the superior conjunction and opposition is about 0.3 ($= (4.2/6.2)^3$). Therefor, there is no drastic amplitude change like as Venus.

4) gravity tide residuals

The harmonic tables by Tamura (1987) and CTE (Cartwright and Tayler, 1971; Cartwright and Edden, 1973) are compared in the analysis of actual gravity tide records. The gravity tide data obtained by a superconducting gravimeter at Esashi Earth Tides Station (39.°1 N, 141.°3 E) is used in the comparison. The data length is 6 months. Mean residuals of 0.0687 μ Gal is obtained in tidal analysis by using the former tables. While that of 0.0697 μ Gal is obtained by using the latter tables. (The tidal analysis method will be discussed in the section 3.) The improvement might be not so clear at a glance, but it becomes clear if we compare the residuals in frequency domain. The Figure 6a is a spectrum of residuals around terdiurnal band which residuals are obtained by applying Tamura (1987) tables. Figure 6b is that obtained by applying CTE tables. In Figure 6b, several tidal components whose periods are 8.1772, 8.3863 and 8.4940 hours are remaining. Those tidal components derived from degree 4 potential which is not taken into account in CTE tables. On the other hand, those residual spectrum peaks disappear in Figure 6a. This comparison result shows that the CTE harmonic table has not enough precision for the precise tidal analysis at present. Moreover, we can say that a superconducting gravimeter has a potential sensitivity to detect a few nano Gal gravity changes if the signals are coherent and continues for a few months or longer.

2.6. Remarks

The degree 3 tidal potential of long period tide is developed up to the 4×10^{-6} amplitude terms in Tamura (1987), though the expansion threshold of other species of third degree is adopted to 7×10^{-6} . This is because Doodson (1921) made a mistake in geographical normalization factor 2 for $2/\sqrt{5}$. The same normalization factor which was adapted by Doodson is used in Tamura (1987, 1995) and current revision for the convenience in comparison with his results.

The constants used in the harmonic developments series are listed in Table 1. The sine parallax of the moon is not included in the MERIT standards, but it is used conveniently. There is no trouble with its precision in the theoretical tide calculations, as long as we use the same value of the moon's sine parallax used in the harmonic development. This constant is used only a normalization factor in harmonic developments and harmonic tide calculations. This situation is same as the constant of earth's equatorial radius.

The numerical developments can obtain same accuracy of analytical developments with smaller number of harmonic terms. For example, Xi (1987) developed harmonic tables which contain about 3000 terms by analytical method. The same precision as Xi (1987) can be obtained by using about 1500 terms developed by numerical methods. The numerical expansion method can achieve this precision since the amplitude and phase of each tidal constituent is determined to fit for only the limited epoch period. For example, Tamura (1987) developed for the period between 1950 to 2030. Also, the additional terms were adjusted to the period between 1951 to 2048. Within the applied period, harmonic tables developed by numerical methods usually give higher precision with smaller number of terms. However, if we try to calculate harmonic tide at the epoch of the outside of the applied expansion period, the precision may become worse rapidly. The applicable period must be checked in the use of any developments.

3. Tidal Analysis Procedure

3.1. Harmonic and Non-Harmonic Methods

There are currently two different approaches to the tidal analysis: harmonic analysis and non-harmonic one. The harmonic analysis, which attempts to express the tide record as the sum of harmonic functions of time, has been used for a long time both in the ocean tide and earth tide studies. The harmonic methods are available for tidal data analyses, because we know beforehand the theoretical amplitudes, phases and periods of particular tidal constituents from knowledge of the orbital motions of the moon and the sun, which are discussed in the section 2. Various harmonic methods have been developed by several authors (Venedikov, 1966; Melchor and Venedikov, 1968; Tamura *et al.*, 1991; Wenzel, 1998). The latter two methods adopt hybrid models. They used harmonic models for the determination of tidal parameters, while non-harmonic models were used for the environmental data such as atmospheric pressure data.

On the other hand, as a non-harmonic method for analysis and prediction of the oceanic tide, Munk and Cartwright (1966) developed the "response method" which takes the form of a multiple linear regression analysis. This method has the advantage over the harmonic method that we can separate the admittances of different tidal species of spherical harmonics and can represent effects of regional or local disturbances caused by meteorological variations. Lambert (1974) applied this method to earth tide data and discussed the confidence limits of the response weights and admittances considering the effect of extraneous noise.

The response method, however, has two shortcomings compared with the harmonic analysis method. The first is that the frequency resolution is not so high, and the second is that the drift and step changes are not allowed for in the record. Later, Ooe and Sato (1983) developed the "extended response method" to remove these shortcomings. They extended the response method to include drift and steps by adding an autoregressive (AR) process in a form which keeps high resolution. This method was applied to actual strain tide data (Sato *et al.*, 1980).

A new method for tidal analysis was proposed by Ishiguro (1981) which is based on the concept of the Bayesian statistical modeling (ABIC: Akaike's Bayesian Information criterion, Akaike 1980). This method is one particular example of Bayesian modeling for linear problems. In all the methods mentioned above, the drift is assumed to be represented by a low order polynomial, but this assumption may be too simple and not flexible for actual earth tide records. In contrast with the previous methods, only the smoothness of the drift is assumed in this procedure. This tidal analysis procedure is realized by Ishiguro and Tamura (1985) and Tamura *et al.* (1991). The computer program developed by them is named "BAYTAP-G" (BAYesian Tidal Analysis Program, Grouping model). The analysis model used for the present version of BAYTAP-G is a hybrid model including in both harmonic and non-harmonic terms. In following sections, the analysis model used in the BAYTAP-G is examined and the directions for the practical use are explained.

3.2. Drift Models

In the construction of a tidal analysis mode, one of the most difficult problem is how to treat the drift contained in observational data. In the cases of crustal movement analyses, the estimation of drift component itself is often very important rather than the estimation of tidal parameters. In the case of ocean tide data analysis, the drift components are relatively small compared with the amplitudes of tidal changes. In other words, the mean sea level change is usually not so large and it can be expressed in a polynomial of the time t or a constant for a certain period. It is a very rare case that the drift of earth tide records can be expressed as such a way.

In order to express the drift components, we may use methods to obtain continuos drift by dividing the analysis interval successively every few days and applying simple polynomials or spline functions or Chebyshev polynomials to the individual intervals. The drift also can be estimated by digital filtering methods. General low pass filters or special designed low pass filters to diminish tidal components are also used to determine the drift of the observation data. Actually, the tidal analysis has been made conventionally in such manners mentioned above. However in applying such polynomials for successive period or such filters, it is difficult to separate the necessary information from the drift component perfectly.

In the proposed method (Ishiguro and Tamura, 1985; Tamura *et al.*, 1991), it is assumed that the drift only changes smoothly in time without assuming a specific function on the pattern of the drift. We assumed here that the drift component is represented by the integrated random walk model,

$$d_{i} = 2 d_{i-1} - d_{i-2} + u_{i}, \qquad (5)$$

where d_i is a drift term at each observation epoch and u_i denotes the white noise sequence with zero mean and variance σ^2 . The tidal parameters and the drift part of the each observation epoch d_i are estimated by assuming the conditions of

$$d_{i} - 2 d_{i-1} + d_{i-2} = 0.$$
(6)

This binding conditions are added to the observation equations in the least squares methods. In case of the tidal parameter estimation, it is an important problem that how strong (or how weak) binding conditions must be given in the parameter estimations by least squares method. The estimation problem of this drift d_i is equivalent to the smoothing problem of the one-dimensional series data. By

introducing a suitable type of prior distribution under the expectation that $d_{\rm I} - 2 d_{\rm el} + d_{\rm i-2}$ distributes around zero. The problem can be solved by applying the Bayes statistical model proposed by Akaike (1974, 1980).

3.3. Associated Data

In order to remove the influence of atmospheric pressure change or temperature change affecting on the tidal observations, the response model is applied in the analysis model. We call such observational environmental data an associated data. Denoting the associated data such as atmospheric pressure data x_i , the perturbation R_i is expressed as

$$R_{i} = \sum_{k=0}^{K} b_{k} \quad x_{i\cdot k} .$$

$$(7)$$

The coefficient b_k is a response coefficient (response weight) and K is the maximum number of the lag. Only a simple proportional relation is assumed when the maximum lag of K=0 is given. Equation (7) represents convolution integral in finite element. There is a well know relation between convolutional integral and Fourier transformation. If we apply Fourier transformation to the both side of equation (7), we get the result of

$$\mathbf{F}(R_{i}) = \mathbf{F}(b_{k}) \quad \mathbf{F}(x_{i}) . \tag{8}$$

Where F(A) represents Fourier transform of A. Equation (7) expresses the relation of R_i , b_k and x_i in time domain, while equation (8) expresses their relation in frequency domain. Therefore, considering the time lag in the response is equivalent to considering the frequency structure in the response.

If we have plural number of associated data sets, we can apply the response model for each data respectively. In that case, we should pay attention to the interpretation of the obtained response coefficients if a strong correlation exists between two kinds of associated data sets. For example, there is a correlation between atmospheric pressure change and the rain fall. There is a clear relation that it rains much when the pressure is low, and it is fine when the pressure is high. For more example, in the observation of crustal strains in a tunnel, adiabatic expansion and compression are caused by the change of the atmospheric pressure. For the result, a considerable strong correlation is often seen between pressure change an the temperature change. There is a tendency that the correlation is higher in the short period variation, and less correlation in the long period (experimentally longer than several hours) change. Thought the interpretation of response mechanism becomes complicated when the correlated associated data sets are used in the analysis, such date sets may be used in the analysis in order to remove disturbances from both noise sources. In this case, the total amount R_i obtained by summing up both response parts has a meaning.

3.4. Grouping of Tidal Constituents

There are a lot of minor tidal constituents around major constituents. Those minor constituents cannot be resolved from major ones within a restricted observation period. Around M₂ tide, for example, there are 55 minor constituents which cannot be resolved from one month observations (Tamura 1987). There are still 18 minor constituents which cannot be resolved from M₂ tide even if the observation period is longer than one year. We call such minor constituents side band of M₂ tide, or M₂ tidal group including principal M₂ tide. The situation around other principal tides is similar to that of M₂ tide. The tidal constituents form tidal groups around principal tides. This situation can be seen in a spectrum of theoretical tide (for example, see Figure 2-21). The minor constituents in a tidal group cannot be resolved from each other, and it is considered that the earth's frequency response to the tide-generating potential does not differ so much within a tidal group in which the angular velocities of each constituent is close to that of principal tide. When we call M₂ tide hereafter, there are two cases in the meanings. One is a pure single cosine wave of M₂ tide and the other is the M_2 group.

Assuming that the amplitude factor and phase difference are constant within a group, we obtain a model for observed tide T_{i} ,

$$T_{i} = \sum_{m=1}^{M} a_{m} \sum_{j=1}^{J_{m}} cos (\omega^{*}_{mj} i + \phi^{*}_{mj} + \phi_{m}), \qquad (9)$$

where *i* is the time index, *m* denotes the tidal group, *M* is the number of total groups, *j* is the tidal constituent index in the group, and J_m is the total number of tidal constituents in the group *j*. ω^*_{mj} is the angular velocity, a^*_{mj} and ϕ^*_{mj} are the amplitude and the initial phase of the *j*th constituent in the *m*th group which are given from tidal harmonic tables, respectively. a_m and ϕ_m are the observed amplitude factor and phase lead of the *m*th group, respectively. With the concept of the tidal groups, we can represent the tidal model with a few tens of parameters. We need not estimate thousands of parameters for each tidal constituent.

3.5. Observation Model in BAYTAP-G

The observation model adopted in BAYTAP-G is expressed by

$$y_{i} = \sum_{m=1}^{M} (\alpha_{m} C_{mn} + \beta_{m} S_{mn}) + \sum_{k=0}^{K} b_{k} x_{i\cdot k} + d_{i} + \varepsilon_{i},$$
(10)

in consideration of the response to associated data x_i and drift d_i of observation data, where y_i is the observed time series, m represents the number of the tidal component group, M is the total number of the group, $\alpha_{m,\beta} \beta_{m}$ are unknown tidal parameters to be estimated, C_{mn} , S_{mn} are the theoretical values of the tidal group number m. They express the theoretical value of in-phase and 90° out-phase components, respectively. The tidal parameters C_{mn} , S_{mn} and response weight b_k are estimated by minimizing following equation J(d) by applying least squares methods.

$$J(d) = \sum_{n=1}^{N} \left\{ \begin{array}{ccc} M \\ y_{i} & -\sum_{m=1}^{M} (\alpha_{m} C_{mn} + \beta_{m} S_{mn}) - \sum_{k=0}^{K} b_{k} x_{i\cdot k} - d_{i} \end{array} \right\} 2 \\ + v^{2} \sum_{n=1}^{N} \left\{ \begin{array}{ccc} d_{i} & -2 d_{i\cdot 1} + d_{i\cdot 2} \end{array} \right\} 2.$$
(11)

where v^2 is a coefficient to control the smoothness of the drift. It must be noted that the all d_i at the each observation epoch are treated as unknowns in the analysis model. This is a most typical characteristic adopted in BAYTAP-G. The treatment of missing data which is occasionally occurred in observation is easily handled. It can be carried out by only removing one observation equation which corresponds to the epoch of missing observation from the observation equations. Even in this case, the drift d_i at that epoch is estimated by BAYTAP-G. The offset (step) estimation in drift is also easy if the position of offset is specified manually. It is estimated by a response coefficient of a step function which value is zero until the occurrence time of the step and one after that time. Equation (11) can be expressed schematically like as,

$$J(d) = \sum_{n=1}^{N} \{ \text{ irregular part (residual)} \} {}^{2} + v {}^{2} \sum_{n=1}^{N} \{ \text{ second difference of drift} \} {}^{2}$$

$$n=1$$
(12)

The first half of the equation is same as the scheme of general least squares method, which allows the square sum of the errors to be minimize. The second half part express binding condition imposed on the drift model. This term can be said "penalty term" in the construction on observation equations.

To determine tidal parameters α_{m} , β_{m} by minimizing J(d), the value of v^{-2} must

be given before applying least squares method. If the value is taken as exceedingly large, the freedom of the drift becomes smaller, then the close straight line drift will be estimated. Contrary, if the smaller value of v^2 is taken in the analysis, the freedom of the drift become lager, then the winding drift will be obtained. The parameter v^2 is named *hyperparameter* which determines the prior distribution of the parameters (the value d_i at each epoch) and controls the feature of the drift.

3.6. ABIC

The hyperparamter v^2 must be selected suitably to determine tidal parameters and drift by least squares method. The value of v^2 can be chosen by introducing an adequate Bayes model. The use of Bayesian information criterion proposed by Akaike (ABIC, <u>Akaike's Bayesian Information Criterion</u>, Akaike, 1974, 1980) is to select such hyperparameters.

BAYTAP-G selects suitable v^2 automatically by searching various v^2 which gives minimum ABIC. The ABIC* can be calculated actually by following equation. ABIC is slightly modified by the number of parameters (by the number of freedom).

$$ABIC = N \log 2 \pi + N \log \sigma^{2} + N + \log \det(I + v^{2}D^{\dagger}D) - N \log v^{2}$$
$$ABIC^{*} = ABIC + 2 \text{ (number of parameters)}$$
(13)

Where $\sigma^2 = J(d) / N$, I is a unit matrix and D is the N×N matrix defined as

$$D = \begin{pmatrix} 1 & 0 \\ -2 & 1 & \\ 1 & -2 & 1 & \\ & \ddots & \ddots & \\ 0 & 1 & -2 & 1 \end{pmatrix}$$
(14)

In the calculation of ABIC, initial values d_0 and d_1 of the drift is required. In BAYTAP-G, they are estimated by considering as unknowns. If the initial values are known in case such the analysis period is shifted successively, the drift determined in the previous analysis period will be used.

3.7. Implementation

In the programming of the procedure, we first take general precautions to keep a precision in numerical processing. Our model has many unknowns because we are going to evaluate the drift d_i at each observation epoch. The number of unknowns N often comes up to the order of 10^4 when we analyze a tidal data of several years duration. Therefore we must select the numerical implementation of least squares

analysis carefully to avoid numerical errors.

In the first step, the observation equations are build up including a "penalty term" of drift terms (the second term on the right hand side of equation (11)). We do not solve the normal equations to obtain the unknown parameters but adopt the QR decomposition of Givens' method. The use of normal equations is not appropriate for solving a large scale least squares problem from the viewpoint of numerical errors and stability.

In the calculation of σ^2 , it is not necessary to use equation (12) directly. If we use QR decomposition of observation equations in the computation of least squares method, σ^2 is automatically obtained at the last process of QR decomposition. On the other hand, if we use normal equations in the least squares method, σ^2 must be calculated from equation (12). The det($I + v^2 D^{\dagger}D$) is also calculated in the process of QR decomposition. The determinant is obtained by the multiple of diagonal elements in the process of QR decomposition. The det($I + v^2 D^{\dagger}D$) becomes quite a large number which can not be expressed by the digital computer's floating decimals. In the actual case, log det($I + v^2 D^{\dagger}D$) is not calculated directly but the summation of log(diagonal element) is calculated.

In search for the minimum ABIC, it is done in a finite step in v. The step of $\sqrt{2}$ or $1/\sqrt{2}$ in v is considered moderate step experimentally. The search range of lower limit can be given by the user of the program. The upper limit is fixed in 1024 in the program. There is no case to obtain such a large value for the parameter v, if illegal data are suitably removed in the analysis. Usually we get the minimum ABIC in the range of from 0.5 to 8.0 for actual tidal data.

The matrix of observation equations has the special feature of structural sparseness. The matrix is very sparse because of the use of 2nd order difference in the drift model. This simple structure of the matrix helps us to reduce memory size and also to reduce computation time when we are solving a large scale $(10^3 \sim 10^4 \text{ order})$ least squares problems.

In the theoretical tide calculation, a lot of calculations of cos and sin functions are required. A simple minded least squares method often wastes computation time in the calculation of cos and sin. Fortunately, observation epoch of tidal data is usually equal interval (for example, one hour interval). In that case, the calculation of cos and sin can be optimized by applying a recurrence formula (Tamura, 1982). The adopted recurrence formula is a stable one, and helps to reduce computation time.

The features of the program are summarized as:

- The grouping model is adopted for the tidal component.
- The responses to the associated phenomena can be estimated.
- The drift at each data point is estimated.
- Occasional steps and missing observations are allowable if their positions are specified.

22

• Resolution in the frequency domain is dependent on the data length used for analysis. The default number of the principal tidal waves are listed in Table 3.

For given data set, the ABIC is used to select the optimal value of the combination of adjustable parameters in the model. The adjustable parameters are the number of groups of tidal components, the degree of smoothness of the variation in tidal factors, the maximum lag number of the response terms.

The minimum required memory size for BAYTAP-G is about 2MB. About 20 MB memory is required to estimate the drift of a few yeas data. If we need only the tidal parameters and need not to obtain drift part, we need only a few MB memory size. In many cases, the required memory size is not so large in the present computer of a workstation or a PC.

3.8. Usage and Examinations

a) Tidal analysis and residuals

The tidal analysis procedure BAYTAP-G is applied to the real gravity tide data which is obtained with a superconducting gravimeter at Esashi Earth Tides Station. Figure 7a shows the spectrum of gravity tide record of a suitable one year period. The response part by the atmospheric pressure change is subtracted before the spectrum calculation. The response coefficient of pressure change against gravity change is about -0.34 μ Gal/hPa. There are few time delay in the atmospheric response experimentally, thus a maximum lag K is taken to be 0 in the analysis.

Figure 7b shows the spectrum of residual time series data of one year. The original gravity data is same as Figure 7a. The tidal components and atmospheric pressure change effect are subtracted from original data in the analysis. This residual spectrum is a rather good sample experimentally though several peaks remains in the tidal bands.

Figure 7c shows the spectrum of gravity tide residuals around semidiurnal band. The data is same as that of Figure 7c. In Figures 7b and 7c, 15 tidal components are assumed in the analysis for one year records. This is a default number of tidal component adopted in BAYTAP-G. Figure 7d shows the spectrum of gravity tide residuals around semidiurnal band which is obtained by assuming 31 tidal components for one year records. Several peaks $(2N_2, \mu_2, T_2)$ which are seen in Figure 7c diminish in Figure 7d. The amplitudes and phases of minor tidal components (ex. $2N_2, \mu_2, \nu_2, T_2$) are usually assumed that they are same as those of major components whose angular velocities are close to them. This assumption works well when the frequency response structure of tidal signal is rather flat and usually this assumption is acceptable. The sample shown here suggests that it may be better to assume a fine frequency structure for precise tidal data processing.

In Figures 7a, 7b, 7c and 7d, spectrums for rather good quality data are referred. Figure 8a shows a gravity tide residual spectrum for the different observation period in which rather large spectrum peaks remain in tidal bans contrary. Though 31 tidal components are assumed for one year records like as Figure 7d, large spectrum peaks remain. Figure 8b shows the residual spectrum for the same data used in Figure 8a. In this case, the tidal factors and phases are determined at every one month assuming 12 components successively for the same data used in Figure 8a. The spectrum peaks in semidiurnal band become lower and those of diurnal and terdiurnal disappear which are seen in Figure 8a. This result suggests that there may be a sensitivity change in gravity records or the existence of poor data period in the one year records. Figure 8c shows the residual spectrum for the same data set used in Figures 8a and 8b. The tidal factors and phases are determined at every 24 days assuming 12 components successively in this case. Each analysis period of 24 days is shorter than the recommended period of one month which is necessary to resolve principal tidal components. As a result of "over resolution" of tidal components, the power density around tidal bands shrinks abnormally.

Figure 9 shows the relative sensitivity change of a superconducting gravimeter at Esashi Earth Tides Station for the period including that of used in Figures 8a, 8b and 8c. There is unusual low sensitivity period in March 1997 (around 50580 modified Julian date). The quality of tidal data around this period is considered not good. (The reason of bad observation condition is not certain.) In Figure 8a, one year gravity data which contains this poor observation period is used to demonstrate large residual peaks in tidal bands.

b) minimum ABIC search

The significant feature of BAYTAP-G is that the drift d_i at the all observation epoch are treated as unknowns, and the form of the drift is conditioned by the hyperparameter which is selected by the search for the minimum ABIC (or ABIC*). Therefore, we must investigate in what conditions the ABIC works well or not.

First of all, the minimum ABIC search for the synthesized drift data is tested (Figure 10). Hereafter, the notation of D is used instead of v for the hyperparameter. (In the BAYTAP-G user's manual, same notation D is used for the hyperparameter. Hereafter, D is not the matrix defined in equation (14)). The minimum ABIC is obtained at D=4.0 in this simulation. The estimated drift becomes more straight and the residuals become larger if a larger hyperparameter D is given. In opposite, the estimated drift becomes winding and the residuals becomes smaller if a smaller hyperparameter D is given in the drift estimation.

Next, the test for minimum ABIC search is carried out for the maximum lag number selection for associated data. Figure 11 shows the result of minimum ABIC search for varying maximum lag number for associated data set. The gravity tide record is used as a tidal data set and the atmospheric pressure records is used as a associated data set in this test. The upper part of Figure 11 shows the variation of ABIC against the maximum lag number of response model in atmospheric pressure data. Lower Figure shows the decrease of mean residual against maximum lag number. The minimum ABIC is obtained at the 0 lag in this case. This result means that the assuming simple minded a linear coefficient without time delay (i.e. proportional) model is the best model for atmospheric pressure effect. There is a local minimum ABIC at the 4 lags. This means that there is a very weak frequency response structure in atmospheric response, but the decrease of mean residual is not so clear even considering the frequency response structure.

Next, a peculiar case of minimum ABIC search is investigated. A synthesized tidal data set is prepared which contains systematic errors. Figure 12 shows the result of minimum ABIC search for varying hyperparameter D. The global minimum ABIC is obtained at D=16.0 and a local minimum ABIC is obtained at D=1.0 in this test. Normally, local minimums never come if the analysis model is suitable and there is no outlying data in the input data set. The sample used here is obtained by giving systematic sinusoid residuals in the synthesized tidal data. Figure 13 shows the determined drift for the different D. The synthesized input data has systematic error of sinusoid wave of about 7 hour period. The mark×shows the given synthetic drift data. The black line is a drift model determined with a hyperparameter D=1.0 (in the case of global minimum ABIC). More smooth drift model is obtained in the latter case.

At last, the relations among ABIC, parameter estimation errors and mean residual are investigated. In Table 4, the variations of amplitude factor estimation errors of major tidal components, ABIC and mean residuals (S.D.) are listed by changing the hyperparameter D. The sampling interval of tidal data is one hour. Gravity tide data set is used in this test. It is noted that the minimum ABIC is obtained at D=1.414, but minimum estimation errors of the tidal factors are obtained at different D. The minimum estimation errors of the diurnal components are obtained in the case of larger D is given compared with semidiurnal ones. The resolution between drift and tidal components becomes relatively worse if the periods of tidal components become longer (i.e. the estimation errors of diurnal components become larger compared with semidiurnal ones). In Table 5, the similar results are listed when the tidal data is resampled in two hour interval. The same gravity tide data set for Table 4 is used in this test. The minimum ABIC is obtained at D=2.828. The minimum estimation errors of the tidal factors of semidiurnal band are obtained at D=2.0 \sim 2.828, while the minimum estimation errors of diurnal components are obtained at D=8.0.

From those results, we might say that the interval of drift model might be allowed to set two hours or longer when the drift change of observation data is quite low like observations with a superconductiong gravimeter. In the present version of BAYTAP-G, the sampling interval of input observation data and that of drift model are handled in same time interval. There is no necessity to treat the sampling intervals to be the same. The same sampling interval of the observation and the drift model is adopted for the convenience of the procedure implementation.

c) long period tide

The BAYTAP-G estimates the tidal parameters for diurnal, semidiurnal and terdiurnal bands ignoring the existence of long period tides. The components of long period tides will be remained in the estimated drift. In middle latitude (around 35°), the amplitudes of long period tides become small, because the observation site is close to the node of zonal tide. On the other hand, tidal observations at high latitude, such as at Syowa Station, Antarctica (69°S) or at Ny-Alesund, Norway (79°N) where gravity tide is observed with a superconducting gravimeter, the amplitudes of long period tides become larger than 10 μ Gal.

To estimate the influence of the existence of long period component in the estimation of diurnal, semidiurnal and terdiurnal components, analyses of synthesized gravity tide data at latitude 80°N is carried out. In this test, five different data sets are prepared to check the systematic biases which might be derived from long period tides in the estimation of diurnal, semidiurnal and terdiurnal tidal parameters. The five data sets are contain long period tides with the a priori factor of 0.0, 1.0, 2.0, 5.0 and 10.0, respectively. The artificial drifts are given to the data by random walk model and about 0.1 micro Gal random noise are given to the synthesized data sets. The results are shown in Table 6. No significant biases are derived from long period tides in the estimation of tidal parameters. However, if we want to study the long term drift change (for example, annual change of gravity, pole tide, secular change, etc.) the long period tide must be remove from estimated drift. It can be removed by the long period version of BAYTAP-G, or by theoretical tide calculation with a priori tidal parameters.

It is difficult to determine the tidal parameters of long period tides and short period ones at the same time. The binding condition for the drift adopted in BAYTAP-G becomes relatively weaker as the period becomes longer. The drift might become too flexible to determine long period tidal factors though the drift modeling works well for diurnal and semidiurnal tides. The sampling interval of 24 hours is recommended for the analysis of long period tides. At that time, short period tides must be removed before the analysis of long period tides.

3.9. Remarks

BAYTAP-G does not treat the leap second rigorously though the difference of dynamical time TD and universal time UT are taking into account. There is uncertainty of time system within 0.5 seconds in the present version. The time difference of 1 second derives systematic phase shift of 0.°008 for semidiurnal tide. If we want to discuss tidal phase in the order of 0.°001, we must treat the time system rigorously at the three steps in the observations, in data preprocessing of digital filtering, and in tidal analysis.

The statistical criterion ABIC is introduced to determine the goodness or poorness of the analysis model. It is used to determine which variation of an analysis model is the best one. The selection of a model must be done for the same data sets. It can not be used to judge the data quality. The ABIC varies with the data length N, or the existence of missing data. The ABIC has a meaning of the relative difference between two analysis models. The ratio of two cases nor the sign of ABIC value has no meanings.

There are special uses of BAYTAP-G. It can be used for the smoothing of the input data set employing a Bayes model without estimating tidal parameters. It can be used as a response analysis program without estimating tidal parameters. Three kinds of response sources can be treated in this case. The maximum number of data sets can be changed by modifying the PARAMETER statements in the program.

4. Applications to Practical Tidal Data

The tidal analysis procedure BAYTAP-G can be applied to several kinds of tidal data. It can analyze gravity tide, tilt tide, strain tide, ocean tide and so on. The long period version of BAYTAP-G can analyze UT1 or LOD (length of day) of earth rotation data beside them. Here we show several applications of tidal data processing with BAYTAP-G and the harmonic tables of Tamura (1987).

1) strain data

Figure 14 gives an example of tidal analysis of the crustal strain data with BAYTAP-G. The sample strain data is north-south component of strain data of one month period in June 1998. It is obtained at the Esashi Earth Tides Station (39.°1 N, 141.°3 E, 393mH), National Astronomical Observatory. BAYTAP-G resolves input data into four parts, tidal part, response part, drift part and irregular part. The left side in the upper part is the raw observation data including missing observation period. The observation unit is 10⁻⁹ strain and expansion of the ground is taken to be positive. In the left side of the middle, the estimated tidal part is shown. In the left side of the bottom, the response part of atmospheric pressure is shown. In the right side of the upper row, the drift part is shown. Even in the period of missing observations, the drift part is continuously estimated under the binding condition of equation (6). Since the tidal components of the diurnal and the shorter bands are removed, and the response components to the atmospheric pressure are removed from original data, it becomes clear how the drift is in detail to the extent of the of 10-9 strain. In the right side of the middle, the irregular part (residuals) is shown. There are slightly large residual parts to show hereby as an example. In the case of analysis whose purpose is the precise determination of tidal parameters, re-analysis should be carried out after removing such outliers, if exist. In the right side of the bottom, the drift part in the case of not considering the atmospheric pressure is shown.

It is obvious that almost all of the irregular drift fluctuation comes from the change of the atmospheric pressure in the last case. It is exceedingly difficult to express such drift pattern seen in right side bottom of Figure 14 in a polynomial of the time tor sinusoidal waves. In the study of earthquake prediction by watching the detailed precursory phenomena, it might be understood that it is very effective to estimate the drift at every observation epoch by removing tidal variation and disturbances such as atmospheric pressure change. It is quite difficult to estimate strain accumulation or a precursory phenomenon directly from such raw observation data shown in the left side top.

2) gravity tide

The gravity tide data at Syowa Station, Antarctica was analyzed by BAYTAP-G. Detail of the observations and analysis results are discussed in Sato *et al.* (1995) and Tamura *et al.* (1997). Here we introduce the outline of the observations and analyses

results. Also the effect of free core resonance (FCR: Sasao *et al.*, 1980; Wahr, 1981) will be mentioned.

The gravity tide observations with a superconducting gravimeter at Syowa Station, Antarctica (39.°6 E, 69.°0 S 24m H) started in January 1993. The first three-year data was analyzed by Tamura *et al.* (1997). The observations is still continued at present (1999). The original data is sampled at every 2 second (at present, 1 second interval). A digital low-pass filter was applied to the original data at first step in the analysis, then one hour sampling data set was prepared for the tidal analysis. Next pre-processing of the data was carried out with BAYTAP-G in the purposes to reject abnormal data from the data set and to point out the existence of steps by dividing the whole observation period into a few months period. After removing outliers, the three-year data was processed at once.

The tidal factors and phases can be obtained rather business like way by BAYTAP-G, if a data set of one hour sampling with a suitable format is prepared. To extract geophysical meanings from obtained tidal factors and phases, several corrections are necessary for the results.

The required corrections are, (1) the characteristic of the analogue low-pass filter which is build in the electronic circuit of the SG, (2) inertial change, and (3) ocean tide loading effects. The tidal gravity signal from the gravimeter is low-pass filtered with a cutoff period of about 50s, and the associated linear phase delay of 0.1558 degree/cpd must be corrected for. The gain of the filter can be accepted as flat in the tidal frequency bands. The inertia correction is to be corrected. It is a correction for the additional gravity acceleration change caused by the dynamic vertical motion of the observation site due to the sinusoidal tidal displacement. The magnitude of this correction is roughly $-0.^{\circ}001$ and $-0.^{\circ}004$ for diurnal and semidiurnal factors, respectively.

The ocean tide loading effects have just the same frequencies as those of the solid earth tides. Consequently, these effects cannot be distinguished in tidal observations or statistical methods. To estimate these effects, the global convolutional integral method is required using both global ocean tide models and loading Green function models. For our analysis, recent global ocean tide models of Matsumoto *et al.* (1995) were used. The convolutional integration method GOTIC developed by Sato and Hanada (1984) was applied to estimate ocean tide loading effects. The effects for diurnal tides reach almost 10% of solid tides, while those of semidiurnal tides attain 20% of solid tides. The ocean tide models by Schwiderski (1980, 1983) are also available by optionally in GOTIC.

Those three corrections are not necessary in the prediction of tidal variation. The predicted (or synthetic) tidal data are used to extract tidal change from the observed gravity records to discuss non-tidal gravity changes.

Figure 15 shows the results of gravity tide analysis at the Syowa Station,

29

Antarctica. The marks \blacksquare show tidal factors on diurnal band of raw analysis result. The marks \blacklozenge show the result of after three corrections including ocean tide effects. At that time, only four principal components in diurnal band (Q₁, O₁, P₁ and K₁) were available as the global ocean model, thus the corrected results of only four components are illustrated in Figure 15. The solid line gives theoretical admittance curve considering fluid core resonance effect (Wahr, 1981). Without ocean tide correction, the obtained tidal factors differ in large way from the theoretical values based on solid earth model. After correcting the ocean tide effects, it becomes clear that the factor of K₁ is smaller than that of Q₁, O₁ and P₁, which is one of the evidence of the fluid core resonance effect.

3) core undertones

Core undertones are oscillation of fluid outer core whose restoring forces are gravity and the Coriolis force. They are internal gravity waves of fluid core in other words. Their existence and their oscillation frequencies are especially sensitive to the stability profile of the outer core. If the core undertones are detected and the frequencies are identified, they give the restrictions for the density profile, turbulence aspect, viscosity of the fluid core. Those parameters are not constrained enough from seismic data. Those oscillations are considered very small signal even if they exist. There periods are considered in the order of a day and it becomes complicated to determine the theoretical periods by the existence of strong coupling of Coriolis force. There are other core modes oscillation named Slichter mode (Slichter, 1961; Slichter et al., 1979). They are translational oscillation of earth's solid inner core. Attempts to search for core undertones are made by several groups by using gravity acceleration There are some reports of the detection of core undertones or the Slihiter mode, data. but it can be said that there are no obvious evidences and the detection is not confirmed yet (Melchior and Ducarme, 1986, Zürn et al. 1987, Cummins et al, 1991, Smylie, 1999).

The negative result of core undertone search was reported by Cummins *et al.* (1991). They used gravity data of global IDA network. In the gravity acceleration data, the tidal variation has the most large spectrum power and it must be removed from the original records. The expected signals of core undertones may have the amplitude of only a few nano Gal level, while the tidal signals have the amplitude about 100 μ Gal. Moreover, the periods of core undertones are close to the tidal bands and the leakage from this band will seriously give biases to the gravity spectrum in the frequency of interest. Thus the tidal signals must be reduced carefully from the observed gravity data. They subtracted tidal signals from the data at each station by estimating tidal components by BAYTAP-G. After removing tidal parts, typical 100 μ Gal amplitude in tidal peaks are reduced to roughly 0.05 μ Gal. The noise level is rather higher compared with the bad case of a superconducting gravimeter shown in Figure 8a. They used the IDA network data whose gravity

sensors are spring type gravimeters of LaCoste and Romberg. The noise level of a superconducting gravimeter is lower than such gravimeters in the period of tidal band or longer.

4) long period tides

The tidal deformation of the solid earth follows the periodical change of moment of inertia around earth's rotational axis. The zonal change of tidal deformation caused by long period tide yields the periodical change of earth's moment of inertia. The deformation of tesseral function pattern by diurnal tide and the sectorial function pattern by semidiurnal tide do not yield the periodical changes of moment of inertia around earth's rotational axis. The total angular momentum of the earth should be conserved even if the earth deforms. For the result, the earth's axial rotation speed must vary according to the long period tidal deformation. Therefore, the harmonic table of long period tide can be converted to the tables of Δ UT1 or Δ LOD series by some roles (Yoder et al., 1981; Tamura, 1993). The fortnightly change (Mf) of UT1 has a amplitude of about 0.9 milli second, and that of monthly change (Mm) is about 0.8 milli second. Their amplitudes are related to the global mass distribution change by the tidal deformation, the Love's number k_2 can be discussed from the analysis of Δ UT1 or Δ LOD. The real earth has a fluid core inside, and it can rotate differentially form the solid part (mantle) of the earth. Considering several effects including existence of fluid core, Merriam (1980) introduced a coefficient κ which represents earth's zonal response. The earth's nonlinear response to outer force is expected in the phenomena whose periods are longer than diurnal tidal band. A larger κ is expected for Mm tide compared with that of Mf tide if the solid earth (mantle) has somewhat nonlinearity in those frequencies.

Chao *et al.* (1995) analyzed the LOD data which were obtained by the IERS (International Earth Rotation Service). They analyzed 13 years of LOD data (1980-1992) and revealed strong signals for 9 long period tides ranging from 5 to 35 days period. Major tides of 27 components were analyzed and obtained the coefficients κ for 11 components with the sufficient signal to noise ratio. The obtained κ is close to the theoretical value of 0.315, but somewhat small than it. The theoretical value is based on the model for an elastic mantle completely decoupled from the fluid core and equilibrium long period ocean tides. A small amount of dispersion was also detected, where longer period tides tend to have larger κ magnitude and shorter phase lag, with correction of recent non-equilibrium ocean tide models. However, an equilibrium long period ocean tide model and a pure elastic mantle model is not disallowed from the analysis of LOD data.

5) others

The BAYTAP-G is applicable to other kind of tidal data such as tilt tide and ocean one. There are several tidal phenomena which are hard to develop theoretical model in quantity. For examples, ground water level or pressure, chemical changes in deep wells, ground electric potential or current, and so on often show tidal variations but they don't have theoretical values. Such kind of data can be analyzed by referring the local phase of tidal potential. The theoretical time series of non-dimensional "potential / gravity / earth's radius" can be used as a reference theoretical tide in the analyses of such kind of data. This reference value can be also applicable in the analysis of a strain data, an areal or a volumetric strain data if we don't want to use Love's number h and Shida's number l in the concept that the h and l are the unknowns and to be estimated from the tidal observations and analyses.

5. Concluding Remarks

5.1. Supplemental Comments

a) Necessary harmonic terms

The harmonic tables are developed aiming to process high precision tidal data such as that obtained from a superconducting gravimeter. In case of that we don't require so high accuracy in the theoretical tide calculation, of course we need not uses current additional tables listed in Appendix. If we want to obtain only 0.1 μ Gal precision in the gravity tide calculation, Tamura (1987) tables are enough. Moreover, only a half of terms in the tables may be enough to obtain 0.1 μ Gal precision as shown in Figure 3. However, the author recommend to use all terms (1200 terms) in any case to avoid unexpected troubles. Recent computers even PCs are powerful enough to compute theoretical tides. It may not necessary to reduce only a slight computation time except in the case of some kind of real time control system.

The treatment of permanent tide M_0S_0 is recommended to use the tidal factor of 1.0 (not 1.16 or 0.0) in the correction of gravity survey. The difference of the factor 1.16 and 1.0 might be small if the gravity observation is carried out in the middle latitude like in Japan. It must be carefully corrected in the observation in high latitude or around the equator where the amplitudes of long period tides become larger. If we use a tidal correction program based on "ephemeris tide", it will be complicated to give the factor 1.0 only to M_0S_0 and give 1.16 (or other) to other time varying components. The computation with harmonic tables can simply give different tidal factor and phases to individual tidal component.

b) Atmospheric pressure response

BAYTAP-G models the effect of atmospheric pressure change by a response method. In the gravity tide data analysis, about 80% or 90% of that effect can be removed using the atmospheric pressure data on site. Nevertheless, somewhat atmospheric pressure effect still remains in estimated drift part. The one point atmospheric pressure data has a limit to represent the spatial structure of the atmosphere. The atmosphere has two different spatial structures, one is a regional pressure distribution following weather changes, the other is the global phenomenon of atmospheric tide. The response coefficients for two kinds of phenomena are different from each other considering the difference of atmospheric mass distributions of two phenomena. The BAYTAP-G models the atmospheric pressure effect by a statistical model, not considers the physical processes. Therefore, both effects cannot be removed at the same time by the analysis program. Usually, atmospheric tide of S₁, S_2 , S_3 , S_4 and S_5 signals remain in the drift parts in the case of gravity data analysis. c) ABIC

We introduced a statistical criterion ABIC in BAYTAP-G, and the essential part of the parameter estimation algorithm is same as that of least squares method. Thus the ABIC is not an almighty criterion which can be applied in *any* case. It works well under the conditions that the least squares method requires. The conditions are,

• There is no modeling error itself.

• The observations are carried out impartially.

• The observation error distributes in normal distribution.

The actual data often contain illegal data in it, and the assumption of error distribution can not be realized. Thus the illegal data should be removed in the final result by using a suitable pre-processing method. Usually, tidal analysis is repeated several times to the same data set to remove such illegal data iterative. This preprocessing can be performed by BAYTAP-G itself. Considering the existence of outlying data in the input data set, BAYTAP-G assumes the upper and lower limits for the hyperparameter D in search for the minimum ABIC.

The use of ABIC must be paid attention to. ABIC is a criterion to compare the goodness of the different analysis models for the same data set. The use of ABIC is utterly nonsense for the judgment as to which quality of the observation data is better in January or February. For such comparison, how large the hyperparameter D, which determines the straightness of the drift, can be used a quality index. d) Sampling interval

The sampling interval of tidal data to be analyzed is expected one hour interval. The main tidal bands are diurnal and semidiurnal, thus the one hour sampling data is considered adequate to represent the variation of tidal frequency. If we can use dense data in time space, a low-pass filter should be applied to construct one hour sampling data. In BAYTAP-G, assumption that the second difference of the drift becomes close to zero is adopted as the restriction condition in the drift form. For the sake of giving effective constraints to the drift model, an adequate sampling interval is required for the phenomenon to be analyzed. For example, one hour sampling is not proper to analyze long period tide. In that case, 24 hour sampling data should be compiled after removing diurnal and shorter period tides. When the response of rather slowly changing atmospheric pressure variation with several-day cycle is to be determined, it is occasionally advisable for the sampling interval to be taken 2 or 3 hour interval instead regular one hour sampling.

e) Program and sample data sets

The tidal analysis program BAYTAP-G was distributed in a part of time series analyses program package TIMSAC-84 from the Institute of Statistical Mathematics at first. The program BAYTAP-G was revise several times after that, and now it is distributed with suitable sample analysis data set from the author. It is written by the standard FORTRAN77 language regulation carefully, and thus it has very high portability. It is available in several kinds of workstations or personal computers.
5.2. Contributions and Prospect

The development of various tidal harmonic tables and that of tidal analysis method are carried out for the purpose of high precision tidal data processing. The harmonic tables developed by Tamura (1987) are integrated into the analysis program BAYTAP-G. The CTE tables are optionally available in BAYTAP-G for the comparison of both developments. The tables given by Tamura (1995) and the revised ones discussed in this thesis are not integrated into the program yet. For most cases, the accuracy of the harmonic tables which are integrated into the present version of the program is enough to analyze tidal data. It is considered that more high accuracy in the theoretical tide calculation will be required in the analysis of extremely high quality tidal data. If the noise level of gravity tide observations with a superconducting gravimeter is improved to half level in some way compared with present status, the accuracy of the harmonic tables by Tamura (1987) will be insufficient. At that time, we will need to integrate the harmonic tables by Tamura (1995) and the revised ones into the tidal analysis model.

The Working Group on "High Precision Tidal Data Processing", under the Commission \vee (Earth Tide Commission) of International Association of Geodesy (IAG), reported in 1990 that "For high precision data we recommend the use of potentials which include the 4th order term. We realize that at present it is not possible to decide which of the new potentials (Tamura, 1987; Xi, 1987) is better. According to the comparison to high precision data they look equivalent, although they apply different constants and different approaches of the problem." Although the precision of both developments are almost equivalent, the former development looks like to be used widely not only in Japan but in the world. It is because that the author (Tamura) distributed not only the harmonic tables of own development but sample program to use the harmonic tables, actively. In the early time, they were distributed with suitable magnetic media. At present, they are distributed by computer networks freely.

The tidal analysis program BAYTAP-G is also distributed widely. The number of domestic users that the author grasps is more than 70. The program is also distributed to more than 20 overseas institutes and universities. The number of overseas users is not grasped correctly since the program is allowed to re-distribute to the third party, and it can be copied freely from the Internet home page of the Earth Tide Commission at present. The tidal analysis program BAYTAP is developed aiming to handle tidal data whose drift is fluctuating irregularly, and aiming to obtain high precision tidal parameters from observations. The author developed the program and maintains it for having interest in the determination of tidal parameters, but not all of BAYTA-G users don't have interest in tidal signals themselves. A part of users have interest in the determination of tidal variations. They use the program as a handy tool to remove tidal variation or to remove

35

environmental disturbances from some kind of observation data. In the analyses of crustal strains and tilt changes for the purpose of monitoring crustal movements, the interpretation of the drift components is sometimes more essential than the determination of tidal parameters. The program BAYTAP-G is now used widely for the analyses of various geophysical data by many users.

In the early stage of the development of BAYTAP-G, it was not considered to analysis data sets whose drift rates are quite low such as obtained by superconducting gravimeters. It was designed to be used for multipurpose at that time. In practice, it is used for the analyses of strain, tilt, gravity, ocean, underground water level, ground electric potential data, etc., and their quality or noise levels differ in wide range. As mentioned in section 3.8, the drift model adopted in BAYTAP-G might be too flexible to treat tidal data of a superconducting gravimeter. It is desired to construct a special designed analysis model to handle the data whose drift is quite low and quality is very fine. The recent computer, even for a personal one, has enough ability to construct a new sophisticated analysis model on huge data set.

The long period tides and pole tide are notable to study non-elastic response of the earth. It is estimated that the non-elasticity of the mantle will appear in the period longer than fortnightly Mf or monthly Mm tides. The long period tides are observed by gravity change in high latitudes or close at the equator. It is also observed in the periodical UT1 variations. It is consider that the difference of the earth model and the actual one becomes larger when the period of subjected phenomenon becomes longer. We have much scopes in the study of long period phenomena since the observations analyses of long period tides and pole tide are not so much done still at present. This thesis is based on following three papers.

- A harmonic development of the tide generating force, Marées Terrestres Bulitin d'Informations, 99, 6813-6855, 1987, Tamura, Y.
- A procedure for tidal Analysis with a Bayesian information criterion, Geophys. J. Int., 104, 507-516, 1991, Tamura, Y., Sato, T., Ooe, M., and Ishiguro, M.
- Additional terms to the tidal harmonic tables, Proc. 12th Int. Sympos. Earth Tides, ed. H.-T. Hsu., Beijing, China, 345-350, 1995, Tamura, Y.

Acknowledgments

The author is indebted to the following collegues for providing necessary data used in this study: T. Tsubokawa and S. Tsuruta of National Astronomical Observatory, Mizusawa (NAOM) for strain tide data at the Esashi Earth Tides Station; T. Sato and K. Asari of NAOM for gravity tide data by the superconducting gravimeter at Esashi; K. Nawa of Geological Survey Institute, Y. Aoyama of the Graduate University for Advanced Studies, the members of the 34th Japanese Antarctic Research Expedition (JARE-34), JARE-35, JARE-36 for the gravity tide data at Syowa Station, Antarctica; R. S. Gross of Jet Propulsion Laboratory for earth rotation data Space92; S. Manabe for the numerical ephemerides by JPL. The author would like to thank M. Ooe of NAOM and M. Ishiguro of the Institute of Statistical Mathematics for discussing on the statistical models. The author also would like to thank S. Takemoto of Kyoto University for his kind advice on tidal studies.

Early phases of this study were partially supported by a Grant in Aid for Scientific Research of the Ministry of Education, Science and Culture (58740178, 0474022), a grant of the Institute of Statistical Mathematics Cooperative Research Program (88-ISM.CRP-61), a grant for Joint Research of the National Institute of Polar Research (form 1994 to 1996) and a grant for Joint Research Program of the Graduate University for Advanced Studies (from 1995 to 1999).

References

- Akaike, H., 1974, A new look at the statistical model information, *IEEE Trans.* Automat. Control, AC-9, 716-723.
- Akaike, H., 1980, Likelihood and Bayes procedure, *Bayesian Statistics*, Valencia, eds. J. M. Bernado, M. H. De Groot, D. U. Lindley and A. F. M. Smith, University Press, 143-166.
- Aoki, S., Guinot, B., Kaplan, G. H., Kinoshita, H, McCarthy, D. D., and Seidelman,P. K., 1982, The new definition of universal time, *Astron. Astrophys.*, 105, 359-361.
- Büllesfeld, F.-J., 1985, Ein Beitrag zur harmonischen Darstellung des gezeitenrzeugenden Potentials, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 314, Munchen.
- Cartwright, D. E., and Tayler, R. J., 1971, New computation of the tide-generating potential, *Geophys. J. Roy. Astron. Soc.*, 23, 45-74.
- Cartwright, D. E., and Edden, A. C., 1973, Corrected table of tidal harmonics, *Geophys. J. Roy. Astron. Soc.*, 33, 253-264.
- Chao, B. F., Merriam, J. B., and Tamura, Y., 1995, Geophysical analysis of zonal tidal signals in length of day, *Geophys. J. Int.*, **122**, 765-775.
- Cummins, P., Wahr, J. M., Agnew, D. C., and Tamura, Y., 1991, Constraining core undertones using stacked IDA gravity records, *Geophy. J. Int.*, **106**, 189-198.
- Doodson, A. T., 1921, The harmonic development of the tide-generating potential, *Proc. Roy. Soc. London*, A, 100, 305-329.
- Doodson, A. T., 1954, Re-print of above with minor corrections, same title, Int. Hydrog. Rev., **31**, 11-35.
- Fukushima, T., 1981, Trigonometric series for the coordinates of the objects in the solar system II the outer planets, *Rept. Hydrog. Res.*, 16, 149-166.
- Hartmann, T., and Wenzel, H.-G., 1994, The harmonic development of the earth tide generating potential due to the direct effect of the planets, *Geophys. Res. Lett.*, 21, 1991-1993.
- Hartmann, T., and Wenzel, H.-G., 1995, The HW95 tidal potential catalogue, Geophys. Res. Lett., 22, 3553-3556.
- Ishiguro, M., 1981, A Bayesian approach to the analysis of the data of crustal movements, J. Geodetic Soc. Japan, 27, 256-262.
- Ishiguro, M., and Tamura, Y., 1985, BAYTAP-G in TIMSAC-84, Computer Science Monographs, 22, 56-117.
- Kubo, Y., 1980, Trigonometric series for the coordinates of the objects in the solar system, *Rept. Hydrog. Res.*, 15, 171-184.
- Lambert, A., 1974, Earth tide analysis and prediction by the response method, J. Geophys. Res., 79, 4952-4960.
- Matsumoto, K, Ooe, M., Sato, T., and Segawa, J., 1995, Ocean tide model obtained

from TOPEX/POSEIDON altimeter data. J. Geophys. Res., 100, 25319-25330.

- Melchior, P., and Ducarme. M., 1986, "Detection of inertia gravity oscillations in the earth's core with a superconducting gravimeter at Brussels", *Phys. Earth Planet. Inter.*, 36, 1-16.
- Melchior, P., and Venedikov, A. P., 1968, Derivation of the wave M_3 (8.^h279) from the periodic tidal deformation of the earth, *Phys. Earth Planet. Inter.*, 1, 363-372.
- MERIT Standards, 1983, United States Naval Observatory Circular No.167.
- Merriam, J. B., 1980, Zonal tides and changes in the length of day, *Geopyhs J. Roy.* Astron. Soc., 62, 551-561.
- Munk, W. H., and Cartwright, D. E., 1966, Tidal spectroscopy and prediction, *Phil. Trans. Roy. Soc. London*, A259, 531-581.
- Ooe, M., and Sato, T., 1983, An extended response method for analysis of disturbed earth tides data, *Proc. 9th Int. Sympos. Earth Tides*, ed. J.T. Kuo, New York, E. Schweizerbart'sche Verlangsbuchhandlung, Stuttgart, 299-310.
- Roosbeek, F., 1996, RATGP95: a harmonic development of the tide-generating potential using an analytical method, *Geophys. J. Int.*, **126**, 197-204.
- Sasao, T., Okubo, S., Saito, M., 1980, A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth, *Proc. IAU Sympos. 78, "Nutation and the Earth's Rotation"*, eds. E. P. Fedrov, M. L. Smith and P. L. Bender, 165-183.
- Sato, T., Ooe, M., and Sato, N., 1980, Observations of the tidal strain at the Esashi Earth Tides Station, J. Geod. Soc. Japan, 26, 35-49. (in Japanese with English abstract)
- Sato, T., and Hanada, H., 1984, Computer program 'GOTIC' for the computations of oceanic tidal loading effects, *Publ. Int. Latit. Obs. Mizusawa*, 18, 29-47.
- Sato, T., Shibuya, K., Tamura, Y., Kanao, M., Ooe, M., Fukuda, Y., Seama, N., Nawa, K., Kaminuma, K., Ida, Y., Kumazawa, M., and Yukutake, T., 1995, One year observations with a superconducting gravimeter at Syowa Station, Antarctica, J. Geod. Soc. Japan, 41, 75-89.
- Schwiderski, E. W., 1980, On charting global ocean tides, *Rev. Geophys. Space Phys.*, 18, 243-268.
- Schwiderski, E. W., 1983, NSWC ocean tide data tape, GOTD 1983, U.S. Naval Surface Weapons Center, Virginia.
- Slichter, L. B., 1961, The fundamental free oscillation of the earth's inner core, *Proc., Nat., Acad. Sci. U.S.A.*, **47**, 186-190.
- Slichter, L. B., Zürn, W., Syrstad, E., Knopoff, L., Smythe, W. D., and Uffelman, H., 1979, Long-period gravity tides at the South Pole, J. Geophys. Res., 84, 6207-6212.

Smylie, D. E., 1999, Viscosity near earth's solid inner core, Science, 284, 461-463.

Standish, E. M. Jr. and Williams, J. G., 1981, The lunar and planetary ephemerides, DE118/LE62.

- Standish, E. M. Jr. and Williams, J. G., 1982, The lunar and planetary ephemerides, DE200/LE200.
- Tamura, Y., 1982, A computer program for calculating the tide-generating force, Publ. Int. Latit. Obs. Mizusawa, 16, 1-20.
- Tamura, Y., 1987, A harmonic development of the tide generating force, Marées Terrestres Bulitin d'Informations, 99, 6813-6855.
- Tamura, Y., Sato, T., Ooe, M., and Ishiguro, M., 1991, A procedure for tidal Analysis with a Bayesian information criterion, *Geophys. J. Int.*, 104, 507-516.
- Tamura, Y., 1993, Periodic series of Δ UT1, *IAG Sympos. 112, Geodesy and Physics of the Earth*, Springer Verlag, 435-438.
- Tamura, Y., 1995, Additional terms to the tidal harmonic tables, Proc. 12th Int. Sympos. Earth Tides, ed. H.-T. Hsu, Beijing, China, 345-350.
- Tamura, Y., Aoyama, Y., and Nawa, K.: 1997, Gravimetric tidal factors at Syowa Station obtained from three-year observations with a superconducting Gravimeter, *Proc. NIPR Symp. Antarct. Geosci.*, 10, 1-10.
- Tamura, Y., 1999, Analysis of earth tides data, *The Practice of Time Series Analysis*, eds. H. Akaike and G. Kitagawa, Springer, 327-339.
- Venedikov, A. P., 1966, Une méthode pour l'analyse des marées terrestres à partir d'enregistrements de longueur arbitraire, *Communications de l'Observatoire Royal de Belgique*, No.250, Serie Geophysique, No.71.
- Wahr, J. M., 1981, Body tides of an elliptical, rotating, elastic and oceanless earth, Geophys. J. Roy. Astron. Soc., 64, 677-703.
- Wenzel, H.-G., 1998, Earth tide data processing package ETERNA 3.30: the nanogal software, *Proc. 13th Int. Sympos. Earth Tides*, Brussels, 487-494.
- Xi, Q.-W., 1987, A new complete development of the tide-generating potential for the epoch J2000.0, *Marées Terrestres Bulitin d'Informations*, **99**, 6766-6812.
- Yoder, C. F., Williams, J. G., and Parke, M. E., 1981, Tidal variation of earth rotation, J. Geohys. Res., 86, 881-889.
- Zürn, W., Richter, B., Rydelek., P. A., and Neuberg, J., 1987, Comments on "Detection of inertia gravity oscillations in the earth's core with a superconducting gravimeter at Brussels", *Phys. Earth Planet. Inter.*, 49, 176-178.

Tables

Table 1.Constants used in the harmonic developments by Tamura (1987)and the later ones by the author.

Geocentric Constant of Gravitation	$GE = 3.98600448 \times 10^{14} \text{ m}3\text{s}^{\cdot 2}$
Heliocentric Constant of Gravitation	$GS = 1.3271244 \times 10^{20} \text{ m}^3 \text{s}^{-2}$
Earth-Moon Mass Ratio	$\mu = 0.012300034$
Equatorial Radius of the Earth	Re = 6378137 m
Astronomical Unit	$1au = 1.4959787066 \times 10^{11} \text{ m}$
Moon's Sine Parallax	$\sin \Pi = 3422."448$

Table 2.Number of harmonic terms for each potential degree and species.Theadditional terms for degree 4 potential are developed at this time.

Potential	Tamura (1987)	Tamura(1995)	Present Revision (1999)
			(2000)
20	211	180	282
21	345	256	412
22	281	207	352
30	60	67	132
31	91	118	189
32	84	94	145
33	68	67	126
40	10	(10)	96
40	10	(19)	20
41	14	(26)	40
42	12	(23)	41
43	14	(18)	29
44	10	(16)	29
Total	1200	1091	1803
	1		

Observation data period (days)	Number of tidal components assumed in BAYTAP-G automatically
$P < 8$ $8 \leq P < 16$ $16 \leq P < 180$ $180 \leq P < 364$ $364 \leq P < 2000$ $2000 \leq P$	3 5 12 14 15 20
optionally	22 or 31

Table 3.Number of tidal components assumed in tidal analysis programBAYTAP-G according to the observation data period.

Table 4.

Relations among hyperparameter D and amplitude factor estimation errors of major tidal components, ABIC and mean residuals (S.D.). The sampling interval of tidal data is one hour. Gravity tide data set is used in this test. It is noted that the minimum ABIC is obtained at D=1.4142, but minimum estimation errors of the tidal factors are obtained at different D. Minimum estimation errors of the diurnal components are obtained in the case of larger D is given compared with semidiurnal ones. Resolution between drift and tidal components becomes relatively worse if the periods of tidal components become longer (i.e. the estimation error of diurnal components becomes larger compared with semidiurnal ones).

	Amplitude Factor Estimation Error							
D	$O_1 K_1 M_2$		\mathbf{S}_2	M_3	ABIC	S.D.		
0.1250	0.00162	0.00091	0.00020	0.00042	0.00579	-17790.02	0.0139	
0.1768	0.00153	0.00086	0.00019	0.00040	0.00547	-17955.81	0.0185	
0.2500	0.00140	0.00078	0.00018	0.00036	0.00501	-18196.46	0.0238	
0.3536	0.00123	0.00069	0.00015	0.00032	0.00443	-18495.47	0.0295	
0.5000	0.00104	0.00058	0.00013	0.00027	0.00381	-18800.87	0.0352	
0.7071	0.00085	0.00048	0.00011	0.00023	0.00324	-19050.56	0.0409	
1.0000	0.00069	0.00038	0.00009	0.00018	0.00277	-19203.20	0.0465	
1.4142	0.00055	0.00031	0.00007	0.00015	0.00245	-19251.97	0.0522	
2.0000	0.00043	0.00024	0.00006	0.00013	0.00225	-19216.99	0.0579	
2.8284	0.00034	0.00019	0.00005	0.00011	0.00218	-19126.62	0.0636	
4.0000	0.00026	0.00015	0.00005	0.00010	0.00218	-19005.79	0.0690	
5.6569	0.00021	0.00012	0.00004	0.00009	0.00224	-18870.03	0.0743	
8.0000	0.00016	0.00009	0.00004	<u>0.00009</u>	0.00234	-18715.32	0.0793	
11.3137	0.00013	0.00008	0.00004	0.00009	0.00246	-18520.35	0.0845	
16.0000	0.00012	0.00007	0.00004	0.00010	0.00260	-18265.11	0.0900	
22.6274	0.00011	0.00007	0.00005	0.00010	0.00277	-17940.88	0.0962	
32.0000	0.00010	0.00007	0.00005	0.00011	0.00297	-17543.26	0.1033	
45.2548	0.00011	0.00007	0.00005	0.00012	0.00321	-17065.27	0.1116	
64.0000	0.00011	0.00007	0.00006	0.00013	0.00349	-16498.41	0.1213	
90.5097	0.00012	0.00008	0.00006	0.00014	0.00382	-15836.19	0.1331	
128.000	0.00013	0.00008	0.00007	0.00015	0.00423	-15074.38	0.1475	
1								

underline indicates minimum values

Table 5.

Relations among hyperparameter D and amplitude factor estimation errors of major tidal components, ABIC and mean residuals (S.D.). The sampling interval of tidal data is *two* hour. Gravity tide data set is used in this test. The minimum ABIC is obtained at D=2.8284. The minimum estimation errors of the tidal factors of semidiurnal bans are obtained at $D=2.0\sim2.8284$, while the minimum estimation errors of diurnal components are obtained at D=8.0.

	l I	Amplitude Factor Estimation Error						
<i>D</i>	O1	K_1	M_2	S_2	M_3	ABIC	S.D.	
0.5000	0.00052	0.00029	0.00008	0.00016	0.00289	-7790.85	0.0487	
0.7071	0.00043	0.00024	0.00007	0.00014	0.00288	-7919.61	0.0564	
1.0000	0.00035	0.00020	0.00006	0.00013	0.00293	-8034.96	0.0636	
1.4142	0.00028	0.00016	0.00006	0.00013	0.00305	-8130.96	0.0701	
2.0000	0.00022	0.00013	<u>0.00006</u>	0.00013	0.00321	-8199.64	0.0761	
2.8284	0.00019	0.00011	0.00006	0.00013	0.00340	-8229.12	0.0821	
4.0000	0.00016	0.00010	0.00006	0.00013	0.00363	-8210.72	0.0883	
5.6569	0.00015	0.00009	0.00006	0.00014	0.00389	-8142.60	0.0951	
8.0000	<u>0.00015</u>	0.00009	0.00007	0.00015	0.00418	-8025.21	0.1026	
11.3137	0.00015	0.00009	0.00007	0.00016	0.00453	-7857.17	0.1111	
16.0000	0.00016	0.00010	0.00008	0.00018	0.00493	-7635.67	0.1212	
22.6274	0.00017	0.00011	0.00009	0.00019	0.00542	-7358.27	0.1332	
32.0000	0.00019	0.00012	0.00010	0.00022	0.00601	-7023.46	0.1477	

underline indicates minimum values

Table 6.

Analyses of synthesized gravity tide data at latitude 80N. Five different data sets are prepared to check the systematic biases which might be derived from long period tides in the estimation of diurnal, semidiurnal and terdiurnal tidal parameters. The five data sets are contains long period tides with the a priori factor of 0.0, 1.0, 2.0, 5.0 and 10.0, respectively. Artificial drifts are given to the data by random walk model and about 0.1 micro Gal random noise are given to the synthesized data sets. The results shows that no significant biases except L_2 wave are derived from long period tides in the estimation of tidal parameters.

	Given	Estimated factor					
Wave	factor	0.0	1.0	2.0	5.0	10.0	
Q_1	1.15820	1.15586	1.15586	1.15585	1.15584	1.15580	
O1	1.15800	1.15788	1.15789	1.15789	1.15790	1.15791	
M_1	1.15740	1.16256	1.16232	1.16228	1.16182	1.16111	
P_1	1.15290	1.15329	1.15328	1.15328	1.15326	1.15323	
K_1	1.13860	1.13856	1.13856	1.13855	1.13855	1.13855	
J_1	1.15990	1.15866	1.15863	1.15864	1.15857	1.15840	
OO_1	1.15920	1.15886	1.15891	1.15900	1.15914	1.15936	
$2N_2$	1.16000	1.15584	1.15616	1.15614	1.15630	1.15652	
N_2	1.16000	1.15860	1.15863	1.15861	1.15864	1.15871	
M_2	1.16000	1.16071	1.16072	1.16072	1.16072	1.16072	
L_2	1.16000	1.19505	1.18957	1.18963	1.18268	1.17561	
S_2	1.16000	1.16033	1.16034	1.16034	1.16036	1.16039	
K_2	1.16000	1.16823	1.16827	1.16826	1.16823	1.16805	
M_3	1.07000	1.33212	1.33138	1.33153	1.32954	1.32647	
Hyperparam. D		4.000	2.828	2.828	2.000	1.414	
for mi	n. ABIC						

Comparison of Factors

Table 6. (continued.)

	Given	Estimated phase					
Wave	phase	0.0	1.0	2.0	5.0	10.0	
Q_1	0.000	-0.063	-0.060	-0.059	-0.052	-0.042	
$O_1 0.00$	0 -0.05	-0.050	-0.049	-0.049	-0.047	,	
M_1	0.000	0.260	0.253	0.253	0.240	0.219	
P_1	0.000	-0.032	-0.031	-0.031	-0.029	-0.027	
\mathbf{K}_{1}	0.060	0.063	0.064	0.064	0.064	0.065	
J_1	0.000	0.016	0.016	0.018	0.023	0.030	
OO_1	0.000	-0.272	-0.269	-0.270	-0.264	-0.244	
$2N_2$	0.000	-1.681	-1.643	-1.646	-1.568	-1.430	
N_2	0.000	0.229	0.226	0.226	0.219	0.209	
M_2	0.000	-0.150	-0.150	-0.151	-0.151	-0.152	
L_2	0.000	5.697	4.927	4.929	3.870	2.708	
S_2	0.000	0.092	0.091	0.091	0.089	0.087	
K_2	0.000	0.477	0.484	0.485	0.491	0.499	
M_3	0.000	-11.639	-11.599	-11.574	-11.441	-11.262	
Hyperp	Hyperparam. D		2.828	2.828	2.000	1.414	
for min. ABIC							

Comparison of Phases

Figures and Figure Captions

Figure 1.

Orbit of the sun (upper) and the moon (lower). The motion of the sun is conventionally expressed by geocentric system. Eccentricity of the sun's orbit is exaggerated to show the perigee in upper Figure. Ecliptic longitudes of the sun and the moon (L in lower Figure) are measured from vernal equinox γ . Ecliptic latitude of the sun is less than 1" since the ecliptic plane is defined by the mean orbital plane of the sun. Ecliptic latitude of the moon is shown as β . The inclination of the moon's orbit against ecliptic plane is about 5.°1, thus the maximum value of β becomes 5.°1. The obliquity of the ecliptic (the angle between ecliptic and equatorial planes) is about 23.°4. The node of the moon's orbit against earth's equator varies in the range of 23.°4 $\pm 5.°1$ with period of 18.6 years.

Fig.1

celestial sphere

Figures 2-nm.

Accuracy of harmonic tides is investigated in frequency domain. The accuracy is checked for each potential degree and tidal species for gravity tide. The Figure subnumber n denotes potential degree $(2\sim4)$ and sub-number m denotes tidal species (0: long period; 1: diurnal; 2: semidiurnal; 3: terdiurnal; 4: 1/4 day period). In each figure, black line shows the spectrum of the theoretical gravity tide calculated from ephemerides, blue one shows residual spectrum for harmonic tide by Tamura (1987), and red one shows residual spectrum for present revised development. For the degree 3 and 4 potentials, the results of terdiurnal and 1/4 day period tides are described for the samples, respectively.

Figure 2-20.

The case for gravity tide of degree 2, long period and at latitude 90°.

Black line shows the spectrum of theoretical tide (ephemeris tide).

Blue line shows the spectrum of "ephemeris tide – harmonic tide by Tamura (1987) (with 211 waves)". This shows that the maximum error of harmonic tide by Tamura (1987) is less than 1 nano Gal (10⁻¹¹ms⁻²) in frequency domain.

Red line shows the spectrum of "ephemeris tide – harmonic tide with the additional terms (in total 493 waves)". This shows that the maximum error of the harmonic tide with additional terms is less than 0.1 nano Gal in frequency domain.

Fig.2-

Figure 2-21.

The case for gravity tide of degree 2, diurnal tide at latitude 45°.

Black line shows the spectrum of theoretical gravity tide (ephemeris tide). Leakage of the spectrum whose relative power is less than -120dB is visible around the period from 16 to 18 hours. It is a false and there is no power at that period in the real tide.

Blue line shows the spectrum of "ephemeris tide – harmonic tide by Tamura (1987) (with 345 waves)". This shows that the maximum error of harmonic tide by Tamura (1987) is almost less than 1 nano Gal (10⁻¹¹ms⁻²) in frequency domain.

Red line shows the spectrum of "ephemeris tide – harmonic tide with the additional terms (in total 757 waves)". This shows that the maximum error of the harmonic tide with additional terms is less than 0.2 nano Gal in frequency domain.

Fig. 2-

Figure 2-22.

The case for gravity tide of degree 2, semidiurnal tide and at latitude 0°.

Black line shows the spectrum of theoretical gravity tide (ephemeris tide). Leakage of the spectrum whose relative power is less than -120dB is visible around the period from 10 to 10.8 hours. It is a false and there is no power at that period in the real tide.

Blue line shows the spectrum of "ephemeris tide – harmonic tide by Tamura (1987) (with 281 waves)". This shows that the maximum error of harmonic tide by Tamura (1987) is almost less than 1 nano Gal (10⁻¹¹ms⁻²) in frequency domain.

Red line shows the spectrum of "ephemeris tide – harmonic tide with the additional terms (in total 633 waves)". This shows that the maximum error of the harmonic tide with additional terms is less than 0.2 nano Gal in frequency domain.

Fig.2-2

Figure 2-33.

The case for gravity tide of degree 3, terdiurnal tide and at latitude 0°.

Black line shows the spectrum of theoretical gravity tide (ephemeris tide).

Blue line shows the spectrum of "ephemeris tide – harmonic tide by Tamura (1987) (with 68 waves)". This shows that the maximum error of harmonic tide by Tamura (1987) is less than 1 nano Gal (10⁻¹¹ms⁻²) in frequency domain.

Red line shows the spectrum of "ephemeris tide – harmonic tide with the additional terms (in total 194 waves)". This shows that the maximum error of the harmonic tide with additional terms is less than 0.2 nano Gal in frequency domain.

Fig.2-3

Figure 2-44.

The case for gravity tide of degree 4, 1/4 day period tide and at latitude 0°.

Black line shows the spectrum of theoretical gravity tide (ephemeris tide).

Blue line shows the spectrum of "ephemeris tide – harmonic tide by Tamura (1987) (with 10 waves)". This Figure shows that the maximum error of harmonic tide by Tamura (1987) is less than 1 nano Gal (10⁻¹¹ms⁻²) in frequency domain.

Red line shows the spectrum of "ephemeris tide – harmonic tide with the additional terms (in total 39 waves)". This Figure shows that the maximum error of the harmonic tide with additional terms is less than 0.15 nano Gal in frequency domain.

Figures 3-nm.

The variations of time domain maximum and mean errors of harmonic gravity tide are examined by changing the maximum number of adopted harmonic terms. The reference theoretical gravity tides are calculated directly from the lunar and solar ephemerides. The error of each degree and species is estimated at the latitude which gives maximum tidal amplitude.

Figure sub-number n and m denote the potential degree $(2\sim 4)$ and tidal species, respectively. They are,

Figure 3-20 : degree 2, long period gravity tide, at latitude 90°, Figure 3-21 : degree 2, diurnal gravity tide, at latitude 45°, Figure 3-22 : degree 2, semidiurnal gravity tide, at latitude 0°, Figure 3-30 : degree 3, long period gravity tide, at latitude 90°, Figure 3-31 : degree 3, diurnal gravity tide, at latitude 58.9°, Figure 3-32 : degree 3, semidiurnal gravity tide, at latitude 35.3°, Figure 3-33 : degree 3, terdiurnal gravity tide, at latitude 0°, Figure 3-40 : degree 4, long period gravity tide, at latitude 90°, Figure 3-41 : degree 4, diurnal gravity tide, at latitude 66.1°, Figure 3-42 : degree 4, semidiurnal gravity tide, at latitude 49.1°, Figure 3-43 : degree 4, terdiurnal gravity tide, at latitude 30°,

300 250 maximum r.m.s. 200 Degree 3, Terdiurnal Number of Terms 150 ←Tam. (1995) 100 Tamura (1987) 09 $10^{-11} \mathrm{ms}^{-2}$ 10000 = \bigcirc 1000 -100-יין 10 0.1+

Fig. 3-33

Difference (nano Gal)

Fig. 3-43

Fig. 3-44

Figure 4a.

Long period gravity tide generated by Venus. The amplitude becomes large at the Venus' inferior conjunctions. The distance of Venus from Earth is 1.7 a.u. at the superior conjunction, while it is 0.3 a.u. at the inferior conjunction. The ratio of tide generating potential by Venus at the superior and inferior conjunction is about 1/180 (= $(0.3/1.7)^3$), thus the amplitude at superior conjunctions become negligible small. The maximum amplitude at the inferior conjunction depends on the declination of Venus at that time.

Figure 4b.

Diurnal gravity tide generated by Venus. The amplitude becomes large at the Venus' inferior conjunctions and negligible small at the superior conjunctions. This situation is same as for long period tide. The maximum amplitude at the inferior conjunction depends on the declination of Venus at that time.

Figure 4c.

Semidiurnal gravity tide generated by Venus. The amplitude varies in large range, and this reason is same as for long period and semidiurnal tides.

74

Fig. 4a

Fig. 4b

Fig. 4c

Figure 5a.

Long period gravity tide generated by Jupiter.

Figure 5b.

Diurnal gravity tide generated by Jupiter.

Figure 5c.

Semidiurnal gravity tide generated by Jupiter. The maximum amplitude is about 0.5 nano Gal at the Jupiter's opposition. The distance of Jupiter from Earth is 4.2 a.u. at the opposition, while it is 6.2 a.u. at the superior conjunction. The ratio of tide generating potential by Jupiter at the superior conjunction and opposition is about 0.3 $(= (4.2/6.2)^3)$.

Fig. 5a

Figures 6a, 6b.

Comparison of harmonic tables between Tamura (1987) and CTE (Cartwright and Tayler, 1971; Cartwright and Edden, 1973) in the analysis of actual gravity tide records. Figure 6a is a spectrum of residual time series around terdiurnal band which residuals are obtained by applying Tamura (1987) tables. Figure 6b is that obtained by applying CTE tables. The gravity tide data used hear is obtained by using a superconducting gravimeter at Esashi Earth Tides Station. In Figure 6b, several tidal components whose periods are 8.1772, 8.3863 and 8.4940 hours remain in the spectrum. Those tidal components derived from degree 4 potential which is not taken into account in CTE tables. While those residual spectrum peaks disappear in Figure 6a. This comparison result shows that the CTE harmonic table has not enough precision for the precise tidal analysis at present and a superconducting gravimeter has a potential sensitivity to detect a few nano Gal gravity changes if the signals are coherent and continues for a few months.

Fig. 6a

2.7 Esashi (residuals by CTE potential) 0.8 2771.8 -Period (Hour) 8.3863 0⊅6⊅.8 → 8.5 9.0 3 9.5 $imes 10^{-8} \mathrm{ms}^{-2}$ 0.01 1E-4 -1E-3. 0.1 Amplitude (micro Gal)

83

Fig. 6b

Figure 7a.

Spectrum of gravity tide record of one year which is obtained with a superconducting gravimeter at Esashi Earth Tides Station. The effect of atmospheric pressure change in gravity change is corrected in the analysis.

Figure 7b.

Spectrum of residual time series data of one year. The original gravity data is same as used in Figure 7a. The tidal components and atmospheric pressure change effect are subtracted from original data in the analysis. This residual spectrum is a rather good sample experimentally though several peaks remain in tidal bands.

Figure 7c.

Spectrum of gravity tide residuals around semidiurnal band. In this case, 15 tidal components are assumed in the analysis for one year records.

Figure 7d.

Spectrum of gravity tide residuals around semidiurnal band. In this case, 31 tidal components are assumed in the analysis for one year records. Several peaks $(2N_2, \mu_2, T_2)$ which are seen in Figure 7c diminish in Figure 7d. The amplitudes and phases of minor tidal components (ex. $2N_2$, μ_2 , ν_2 , T_2) are usually assumed that they are same as those of major components whose angular velocities are close to them. This assumption works well when the frequency response structure of tidal signal is rather flat and usually this assumption is acceptable. The sample shown here suggests that it may be better to assume fine tidal admittance structure for precise tidal data processing.

Fig. 7a

Fig. 7b

87

Fig. 7c

Figure 8a.

A sample of gravity tide residual spectrum in which rather large spectrum peaks remain in tidal bands. In this analysis, 31 tidal components are assumed for one year records and the tidal factors and phases are assumed in constant for the whole period.

Figure 8b.

Spectrum of gravity tide residuals. The tidal factors and phases are determined at every one month assuming 12 components successively for the same data used in Figure 8a. The spectrum peaks in semidiurnal band become lower and those of diurnal and terdiurnal disappear compared with Figure 8a. This result suggests that there may be a sensitivity change in gravity records or the existence of poor data period in one year records.

Figure 8c.

Spectrum of gravity tide residuals. The tidal factors and phases are determined at every 24 days assuming 12 components successively. Each analysis period of 24 days is shorter than the recommended period of one month which is necessary to resolve major tidal components. As a result of "over resolution" of tidal components, the power density around tidal bands shrinks abnormally.

Fig. 8a

Fig. 8b

Fig. 8c

Figure 9.

Relative sensitivity change of a superconducting gravimeter at Esashi Earth Tides Station. There is unusual low sensitivity period in March 1997 (around 50580 modified Julian date). The quality of tidal data around this period is considered not good. (The reason of bad observation condition is not certain.) In Figure 8a, one year gravity data which contains this poor observation period is used to demonstrate large residual peaks in tidal bands.

Fig. 9

Figure 10.

The test of minimum ABIC search for the synthesized drift data. The minimum ABIC is obtained at D=4.0 in this case. The estimated drift becomes more straight and the residuals become larger if a larger hyperparameter D is given. In opposite, the estimated drift becomes winding and the residuals becomes smaller if a smaller hyperparameter D is given.

Minimum ABIC Search by Hyperparameter D

Fig.

Figure 11.

Minimum ABIC search for varying maximum lag number for associated data set. The gravity tide record is used as a tidal data set and the atmospheric pressure records is used as a associated data set in the analysis. Upper Figure shows the variation of ABIC against the maximum lag number of response model in atmospheric pressure data. Lower Figure shows the decrease of mean residual against maximum lag number. Minimum ABIC is obtained at the 0 lags. This means that the assuming simple minded a linear coefficient without time delay (i.e. proportional) model is the best model for atmospheric pressure effect. There is a local minimum ABIC at the 4 lags. This means that there is a very weak frequency response structure in atmospheric response, but the decrease of mean residual is not so clear even considering the frequency response structure.

Figure 12.

Minimum ABIC search for varying hyperparameter D which characterizes the drift component. Synthesized tidal data set is used in this test. The global minimum ABIC is obtained at D=16.0 and a local minimum ABIC is obtained at D=1.0. Usually, local minimums never come if the analysis model is suitable and there is no outlying data in the input data set. The sample used here is generated by giving a systematic sinusoid residuals in the synthesized tidal data.

Figure 13.

Determined drift models of two cases for the synthesized tidal data set. The synthesized input data has systematic error of sinusoid wave of about 7 hour period. The mark×shows the given drift data of one hour interval. The black line is a drift model determined with a hyperparameter D=1.0 (in the case of local minimum ABIC). The red line is a drift model determined with D=16.0 (in the case of global minimum ABIC). More smooth drift model is obtained in the latter case.

Minimum ABIC Search by Hyperparameter D

Fig. 12

Determination of Drift

Fig. 13

Figure 14.

Example of the tidal analysis of the crustal strain data using BAYTAP-G. The sample strain data is NS component of strain data observed at the Esashi Earth Tides Station. BAYTAP-G resolves input data into four parts of tidal part, response part, drift part and irregular part.

Left side in the upper part: Observed values including missing data periods,

Left side in the middle: Tidal part,

Left side in the bottom: Response part of atmospheric pressure,

Right side in the upper part: Drift part,

Right side in the middle: Irregular part (residuals),

Right side in the bottom: Drift part not in consideration of the response of the atmospheric pressure. The large fluctuation in the drift is strongly caused by the changes of atmospheric pressure.

Tidal Analysis of Strain Data

Figure 15.

Result of gravity tide analysis at the Syowa Station, Antarctica. The marks \blacksquare show tidal admittances on diurnal band of raw analysis result. The marks \blacklozenge show the result of after correcting ocean tide effects. The solid line gives theoretical admittance curve considering the fluid core resonance effect.

Tidal Factors at Syowa Station

Fig. 15

104

Appendix

List of the Additional Harmonic Terms

11.187 ($\cos($). 4671	2915	Td	+	358.2	:39)
9.354 d	$\cos(-2$	2.0772	4348	Td	+	37.8	72)
8.855 0	$\cos(1)$	0958	4225	Td	+	199.C	67)
8.604 0	cos(2	2.5898	6261	Td	+	162.5	89)
8.583 0	cos(2	2.7015	7967	Td	+	139.5	22)
8.484 0	cos(2	2.0775	8153	Td	+	302.7	11)
8.414 0	cos(2	. 7722	2067	Td	+	300.1	53)
8.409 0	$\cos(1)$. 5328	8460	ЪТ	+	284 9	73	Ś
8.339	1000	6493	0639	ЪТ	+	260 2	85	Ś
7 850 0	ros(1)	5170	0545	ЪТ		130 1	18	~
7 788 6		5104	1874	LT.	T	109.1 220 A	22	~
7 740 6	103(1)	1. JIU4 1701	10/4	T J	t	230.0	00	~
7.500	20S(-1)	. 4/01	4133		+	14.0	25)
7.392 0	COS(3	. 2070	9695	Id	+	333.4	28)
7.428 C	cos(1	. 2141	5876	Id	+	163.3	38)
7.423 c	cos(1	. 5991	3552	Td	+	314.6	56)
7.391 c	$\cos(0)$. 4189	6697	Td	+	240.5	99)
7.265 c	cos(3	. 0569	6642	Td	+	155.0	26)
7.084 c	cos(1	.6741	7903	Td	+	216.9	82)
7.032 c	cos(2	. 6947	2775	Td	+	107.8	06)
7.014 c	cos(1	. 6788	3113	Td	+	49.3	44)
7.000 c	cos(2	. 5033	1655	Td	+	204.4	98)
6.989 c	$\cos(1)$. 6878	8737	Td	+	141 5	32	Ś
6.961 c	os(0	5328	8512	ЪТ	+	273 2	12	í
6 814 0	$\cos(0)$	0385	1101	ЪТ	+	55 8	57	Ś
6 786 c	$\cos(1)$	1366	6236	Td	т 1	1/0 9	15	~
6 582 0		. 1300	0430	Tu Tu	+	149.0	10	~
0.JOJ C	$\log(1)$. 0454	0130		+	318.9	90	~
0.490 C	$\cos(1)$. 6057	2570	Id	+	309.8	96)
0.423 C	:05(3	. 1638	2109	ld	+	99.4	02)
0.387 C	:0S(3	. 0909	6412	ld	+	65.5	94)
6.355 C	:os(()	. 3849	6301	Td	+	327.1	50)
6.296 c	los(1)	. 0022	0053	Td	+	139.4	92)
6.190 c	$\cos(3)$. 60134	4121	Td	+	289.6	92)
6.150 c	os(1	. 1435	1415	Td	+	9.6	92)
6.145 c	os(1	. 08434	4133	Td	+	160.4	71)
6.062 c	os(4	. 2185′	7061	Td	+	98.94	48)
5.931 c	os(2	. 19140	6956	Td	+	161.20	65)
5.916 c	os(2.	. 53510	0013	Td	+	246.9	58)
5.912 c	os(0)	. 2053:	3785	Td	+	191.08	85	Ś
5.904 c	05(3)	12054	1359	Td	1	16 3	27	Ś
5 705 c	os(1)	04548	2068	Тd	1	216 29	27 27	1
5.677 c	oe(2)	1276	2007	Td	T	50 40	34	1
5 636 0	OS(2)	2610	4004	LU TJ	+	25 20	50	/
5.000 0	OS(2)	. 20104	1004	TU	+	10.10	10	2
5.550 C	OS(1)	40503	2940	10	+	354.20)2	2
5.487 C	os(0)	. 4258.	1579	Id	+	280.30)3)
5.426 C	os(I.	18016	571	Id	+	253.24	11)
5.393 c	os(2.	00221	1681	Td	+	155.99	95)
5.344 c	os(2.	04548	3836	Td	+	28.04	14)
5.141 c	os(1.	09801	1070	Td	+	155.08	33)
5.115 c	os(1.	61034	1533	Td	+	289.67	79)
5.001 c	os(2.	67199	9524	Td	+	184.92	29)
4.985 c	os(2.	27332	2649	Td	+	118.98	31)
4.949 co	os(0.	46223	3616	Td	+	247.17	71)
4.896 cc	os(].	16160)125	Td	+	123.87	74)
4.893 cc	os(2	07970)621	Td	+	169 18	34)
4.834 0	os(1)	13202	2689	ЬТ	+	145 00	6)
4 813 0	ns(1)	06166	5466	Td	1	60 29	21)
4 742 00	ne(1)	52385	5046	LT LT	T	351 66	1)
1 665 0	200(-1)	62100	1512	LT LT	+	86 00	1)
1 641 C	$S \left(2 \right)$	2/274	201	DI TJ	+	40.90	10)
4.041 C(JS(3.	24374	1000	Id	+	40.39	12)
4.627 CC	$\operatorname{os}(3)$	13423	820	Id	+	298.15	1)

4.583	cos(2.62651783	Td	+	230.193	
4.577	cos(0.43510345	Td	+	86.309	
4.567	cos(2.57838212	Td	+	311.766	
4.559	cos(0.58078773	Td	+	328 232	
4.536	cos(0.07526878	Td		157 100	Ś
4 534	cos (1 08852004	LT.	T	229 160	
4.004	COS(1.90002004		+	238.100)
4.504	COS(3.63312966	ld	÷	326.184)
4.450	cos(3.81990245	Td	+	32.321)
4.435	cos(1.66051447	Td	+	57.737)
4.259	cos(1.57617558	Td	+	342.568)
4.251	cos(0.67199002	ЪТ	+	263 276	Ś
4 216	cos (2 64681159	ЪТ	,	44 772	Ś
1.210	cos (1 64905135	TJ	+	44.772	
4.209	COS	1.04895130	10	+	2.059)
4.194	COS (1.41456517	Id	+	302.351)
4.190	COS (1.48742341	Td	+	244.049)
4.168	cos(0.11976455	Td	+	88.147)
4.114	cos(1.47592943	Td	+	115.223)
4.085	cos(0.15725528	Td	+	308.958)
4.058	COS	1 04985390	Td	+	309 771	Ń
4 024	cos (0 55367302	БТ		204 020	Ś
4.004	005(0.0001092	TU	+	204.920	~
4.004	cos (0.51005846	Id	+	341.386)
3.925	cos(0.64020051	Τd	+	252.976)
3.875	cos(0.63313572	Td	+	320.117)
3.857	cos(1.71967637	Td	+	177.077)
3.823	cos(1.05448580	Td	+	289.884)
3.783	cost	2 12053444	Td	т. Т	114 201	Ś
3 771	cos (2 74485014	Td		210 000	Ś
3 721	cos (1 05017400	Ta	Ť	40 610	~
2.670	COST	1.03917409	10	+	40.010)
3.079	cos (1.12761498	ld	+	35.623)
3.630	cos(2.69230372	Td	+	359.082)
3.618	cos(0.02568122	Td	+	80.939)
3.607	cos(0.13350942	Td	$^+$	184.621)
3.546	cos(1.56488505	Td	+	170.091)
3,493	cos(1.10019931	Тd	+	329 527	Ś
3 452	cos (1 00300444	та	1	8 762	1
2 252	003(1.05505444	TU TJ	+	0.102	~
3.303	COS (1.70032078		+	64.375)
3.343	COS (2.72187421	ld	+	314.815)
3.310	cos(1.65171700	Td	+	358.996)
3.266	cos(2.51259296	Td	+	19.973)
3.254	cos(1.52847997	Td	+	88.410)
3.207	cos(1.60608133	ЪТ	+	206 280)
3 204	cos (2 77442870	ЪТ		174 465	ì
2 100	003(0 50446249	TJ	Τ.	174.400	~
0.100	COST	0.09440240	TU	+	230.980	2
3.183	cos(4.29142399	Id	+	133.177)
3.122	cos(1.40528495	Td	+	340.838)
3.075	cos(1.44855660	Td	+	37.227)
3.036	cos(0.03416968	Td	+	153.929)
3.007	cos(0.41675667	Td	+	6.212)
2 983	cos	3 05917669	Td	_	29 674	Ś
2 982	COS (3 17080317	Td	1	5 574)
2.054	005(2 10119670	Tu	+	0.074	/
2.954	COS	2.19112679	DI	+	205.216)
2.933	cos(2.69693253	ld	+	339.873)
2.933	cos(0.07493002	Td	+	253.685)
2.895	cos(1.44414602	Td	+	104.131)
2.807	cos(0.53066877	Td	+	37,936)
2.804	cos(0.11613842	Td	+	73.704)
2 804	COS (2 19336372	ЪТ	4	127 684	1
2 752	cos (2 17070224	Td	T	224 016	1
2.700	000(4 145710324	TU	+	234.010)
2.738	cos (4.145/1651	ld	+	64.709)
2.728	COS(1.22564491	ſd	+	206.070)
2.709	cos(0.45562123	Td	+	309.259)	
-------	-------	-------------	----------	--------	-----------	
2.706	cos(0.00468568	Td	+	173.657)	
2 705	cosí	2 03300311	Тd	1	258 8/0)	
0.000	003(0 55110610	70	т	200.045 /	
2.003	COS (0.55118610	ld	+	328.754)	
2.633	cos(3.19339785	Td	+	54.707)	
2.627	cos(0.89048764	Τd	+	343.101)	
2 614	cos(0 12324463	ЪТ		201 362	
0.014	03(0.12024400	TU	Ŧ	234.302)	
2.600	COS (0.00927442	ld	+	160.472)	
2.598	cos(1.05021046	Td	+	205.536)	
2.589	cos(1.01591075	Td	+	140.338)	
2 559	cosí	0 93596675	Td	+	295 357)	
2.000	003(2 60265151	TJ	T	104.072	
2.000	COS	3.00300101	10	+	164.073)	
2.523	cos(0.07710207	Td	+	90.797)	
2.513	cos(0.54854670	Td	+	165.995)	
2.483	cos(4.22077983	Τd	+	333, 229)	
2 482	cos (1 61070011	Td	1	199 639)	
2.404	COS	1.01070011		+	100.030)	
2.479	cos (3.04768995	ld	+	332.672)	
2.470	cos(0.03599151	Td	+	215.091)	
2.454	cos(0.51477600	Td	+	263.008)	
2 437	cosí	0 34611415	ЪТ	1	207 078)	
2,407	003(0.04011410	TJ	т.	100 601	
2.400	COSI	2.07710147	10	+	129.021)	
2.427	COS (0.16647388	Td	+	252.085)	
2.424	cos(2.08212704	Td	+	92.936)	
2.401	cos(2.14572051	Τd	+	260.867)	
2 389	cosí	2 62406162	ЪТ		304 882)	
0.000	0031	2.02400102	TU TU	т	100 700)	
2.313	COS (2.62155269	1 d	+	192.738)	
2.361	cos(3.70598507	Td	+	0.237)	
2.325	cos(2.60795471	Td	+	282.176)	
2.320	cos(1 64022375	ЪТ	+	335 288)	
2 211	coc (2 12082068	LT.		202 070)	
2.311	COS	2.12903000	10	+	203,970)	
2.297	cos(0.51260738	Id	+	24.960)	
2.272	cos(0.10782900	Td	$^{+}$	283.697)	
2.265	cos(1.68104848	Td	+	284.763)	
2 250	cos	1 06620628	ЪТ	+	32 076)	
2 207	coo (0.62650655	тa	÷.	220.177)	
0 100	CUS (1.72454066	TU	+	229.117)	
2.188	cos (1.72454066	Id	+	28.117)	
2.185	cos(2.50110724	Td	+	335.925)	
2.180	cos(0.59913034	Td	+	225.249)	
2177	cos(0.70863851	Td	+	152,753)	
2 169	0000	1 5558/1/2	Td	r t	76 058)	
0 101	(03)	1.00004142	m	т	10.330)	
2.101	cos(1.03//3903	10	+	208.176)	
2.152	cos(1.52167882	Td	+	135.902)	
2.148	cos(2.15940604	Td	+	238.943)	
2.114	cos(1.02059205	ЪТ	+	51.085)	
2 110	cos (2 10370703	ЪТ	÷	27524)	
2.110	COSI	2.19370793	Tu	Ŧ	115 500	
2.104	cos(1.94966194	ld	+	115.530)	
2.103	cos(0.03662725	Td	$^{+}$	58.129)	
2.098	cos(0.48302408	Td	+	322.237)	
2.089	COS	0.01590828	Тd	+	151 370)	
2 086	cos(2 07283306	TA		212 586	
2.000	CUS	2.07203390	IU TU	+	212.300)	
2.084	cos (1.05485354	Id	+	191.274)	
2.072	cos(1.56028897	Td	+	285.200)	
2.072	cos(1.10050676	Td	+	236.485)	
2.063	cos(1.18898982	Td	+	316 950)	
2 030	coc(1 00204502	TA		175 021)	
2.039	CUSI	1. 39294302	Tu	+	100 705)	
2.033	cos(0.59481891	Id	+	129.795)	
2.029	cos(2.67420430	Td	+	58.529)	
2.004	cos(2.57617179	Td	+	146.756)	
2.002	cos(2.27553795	Td	+	352,905)	
1.951	COS (2 80400728	Td	+	336 315)	
			~ CL			

Additional Terms Pnm = 20 (cnt)

1.946	cos(3.11833545	Td	+	145.993	
1 0/5	000(0 64241800	тa		120 142	
1. 940	CUSI	0.04241600	10	+	140.144	
1.941	COS(0.08230555	Td	+	130.396	
1.939	cos(0.04793725	Td	+	239 622	``
1 000	coc (1 11202000	Ta	Ľ.	220 421	
1.900	COS	1.11595980	1 d	+	229.481	,
1.849	cos(3.27995425	Td	+	9.166)
1.847	cos(0 51700719	Тd	+	53 325	,
1 0 2 0	(0.00105071	TI	,	00.020	
1.828	COS(0.08195871	l d	+	230.743	
1.825	cos(0.98634301	Td	+	97.332)
1 824	000	3 63533913	ЪТ	1	200 540	Ś
1.001	003(0.00000010	m	т	200.049	
1.823	COS (3.82211276	ld	+	266.839)
1.812	cos(2.65122594	Td	+	336.449	
1 810	cosl	0 08/30067	ЪТ	1	57 016	Ì
1 000	000(0.00400000	TI	Г	07.010	
1.803	COS (0.54331128	1 d	+	207.189)
1.796	cos(3.24595181	Td	+	274.888)
1 795	cosí	2 62872299	Тd	-L-	105 410	ĥ
1 700	000(0.40000745	T 1	T	100.410	
1.709	COS (0.42360745	Id	+	220.918)
1.769	cos(0.50109005	Td	+	336.073)
1 758	cosl	2 06584654	ЪТ		221 533	
1 740	(0 5070000	TI	1	221.000	
1.743	COS	0.58763806	Id	+	286.022)
1.731	cos(0.12067424	Td	+	246.751)
1.699	cos(2.23226158	Td	+	275 253)
1 602	000(1 12002100	тJ		227 407	
1.092	COS	1.12902100	10	+	337.407	2
1.682	cos(0.98412679	Td	+	275.628)
1.669	cos(1.06131498	ЪТ	+	160 558)
1 642	000(1 40062200	TJ	÷	110.000	
1.042	COSI	1.40902300	10	+	112.135	2
1.638	COS(0.09244535	Td	+	351.740)
1.630	cos(0.89976691	Τd	+	149.574)
1 592	0001	1 65387261	ЪТ		222 165	Ń
1.004	CUS	1.00007201	TU	T	223.105	(
1.589	COS (1.09348148	ld	+	249.602)
1.577	cos(2.07065224	Td	+	52.354)
1 571	cosí	0 46674385	Тд	Ŧ	99 911)
1 567		1 64455000	TJ		140 400	~
1.307	COS (1.04455038	1 d	+	140.493)
1.560	cos(2.15009631	Td	+	82.608)
1.550	cos(1.18237493	Td	+	127.866)
1 544	2000(0 61042052	TJ		210 210	1
1.044	COS	0.01942952	10	+	219.219	1
1.543	cos(2.06138512	Td	+	275.235)
1.537	cos(1.64235356	Td	+	289.132)
1 533	000	1 52132260	ЪТ	-	235 308	Ś
1.000	03(1.02102200	TU TU	Ŧ	200.000	~
1.515	COS (0.89269890	DI	+	244.448)
1.514	cos(0.11171330	Td	+	336.206)
1 511	cos	2 74705859	ЪТ	+	93 279)
1 500	000(1 10040150	тJ		100 240	1
1.509	COS	1.10242100	Ta	+	102.340	2
1.502	cos(1.61503054	Td	+	104.588)
1.483	cos(1.91787263	Td	+	78.870)
1 170	coc (0 306/3055	Та	,	6 030	Ś
1.419	COS	0.39043933	Tu	+	0.030	(
1.466	cos(2.15471735	Id	+	68.708)
1.463	cos(0.97040026	Td	+	123.473)
1 416	cosí	0 90417611	Td	+	259 891)
1.410	COS(0.0041/011	TU	T	200.001	<
1.411	COS (2.46224935	ld	+	211.907)
1.402	cos(1.52629614	Td	+	282.202)
1.402	cos(0.00428839	ЪТ	+	279 249)
1 201	2000(0 20150004	TJ		150 500	1
1.381	cos (0.39158084	Id	+	159.588)
1.371	cos(3.16627651	Td	+	216.105)
1.363	cos(0.54911237	Td	+	2.394)
1 3/0	cos(0 18080370	ЪТ		88 100	1
1.049	CUSI	0.40000370	TU	+	00.100)
1.347	cos(2.51480514	Id	+	253.976)
1.340	cos(0.50577302	Td	+	264.800)
1 330	C05(2 22321564	ЬT	+	183 969)
1.000	0001	2.10020052	TU	T	100.309	1
1.328	COS	2.10022953	ld	+	213.407)

/

Additional Terms Pnm = 20 (cnt)

1.312	cos (3.23447072 Td +	258 ()86 ()
1 310	cos(0 93840569 Td +	216 935
1.306	cos	4 29363343 Td +	7 519
1 305	COS (1 75853268 Td +	298 234)
1 301	cos (1 48300897 Td 4	200.204
1 288	cos (0 58548530 Td +	58 614)
1 275	cos (2 06823731 Td 4	131 868)
1 272	cos (0 08170304 TA -	281 526 \
1 272	cos (2 53280882 TH	12 270)
1 258	cos (0 60036515 Td +	0.624)
1.200	cost	2 21627120 T4	210 522 \
1.240	cost	2 67961440 TJ	74 202)
1.244	cos(3.0/001449 IQ +	(4.383)
1.200	COS (2.11009104 10 +	118.005)
1.231	cos (3.04548225 Id +	111.548)
1.222	COS (0.80090888 Id +	205.825)
1.210	COS	2.14351101 1d +	87.617)
1.210	cos(2.50552122 Id +	282.246)
1.191	cos(2.66296989 ld +	250.610)
1.1//	cos(1.95673124 Id +	201.455)
1.1/1	cos(3.17310211 Id +	240.369)
1.171	cos(1.69253186 Td +	325.187)
1.162	cos(1.54877851 Td +	147.955)
1.154	cos(3.01589988 Td +	157.129)
1.126	cos(1.64705049 Td +	229.069)
1.120	cos(0.00212255 Td +	327.976)
1.115	cos(3.56027674 Td +	292.173)
1.111	cos(4.14792607 Td +	298.821)
1.107	cos(0.07865609 Td +	209.470)
1.100	cos(0.07752716 Td +	187.598)
1.100	cos(0.07175201 Td +	133.112)
1.066	cos(0.35760575 Td +	69.191)
1.063	cos(0.05645166 Td +	305.024)
1.047	cos(1.22785367 Td +	80.725)
1.043	cos(2.13644525 Td +	181.816)
1.043	cos(3.75147277 Td +	109.425)
1.035	cos(2.02738051 Td +	3.537)
1.028	cos(0.50542694 Td +	8.249)
1.026	cos(1.64955394 Td +	135.454)
1.011	cos(1.12518162 Td +	107.163)
0.992	cos(0.07959956 Td +	72.932)
0.977	cos(0.03888996 Td +	107.465)
0.959	cos(0.08559617 Td +	34.946)

13.459	cos(12.84959881	Td	+	208.222)
12.943	cos(13.39183950	Td	+	133.425)
9.805	cos(17.08434848	Td	+	344.378)
9.160	cos(16.13419416	Td	+	21.113)
8 953	cost	14 53065404	Тď		138 608)
8 200	cos (13 38030466	LT.	T	10,000	~
0.200	CUS (16.00051400	TU	+	19.000	~
0.290	cos(16.02051482	Id	+	45.212)
8.129	cos(13.82690914	Id	+	207.540)
8.126	cos(15.46003280	Td	+	251.909)
8.092	cos(16.09570586	Td	+	344.126)
8.092	cos(17.18679084	Td	+	174.333)
8.088	cos(14.65167709	Td	+	86.646)
8.054	cos (13 28474026	Td	+	306 655	Ś
8 011	cos(14 13909035	Td	1	347 062	Ń
8 000	cos (15 04204210	Ta		25 105	~
7 017	COSI	10.54304219	Tu	+	35.165	
7.917	cos (12.52847040	Id	+	351.033)
7.894	cos(18.17309755	Id	÷	253.971)
7.820	cos(14.06159970	Td	+	331.794)
7.792	cos(13.86577463	Td	+	150.719)
7.775	cos(16.21637282	Td	+	231.494)
7.657	cos(16.69937632	Td	+	13.950)
7.639	cos	10.74964257	Τd	+	237 844)
7 634	cos (15 11171236	ЪТ	Ļ	169 /18	Ś
7 5 2 7	003(15.07740455	LT.	т	109.410	<
7 512	cost	15.07745455	TI	+	200.100	~
7.513	cos(15.57395655	ld	+	282.332	2
7.469	cos(12.97748886	ld	+	41.000)
7.438	cos(17.10464566	Td	+	338.725)
7.407	cos(13.90439521	Td	+	221.004)
7.395	cos(14.45341127	Td	+	168.335)
7.393	cos(15.46931295	Td	+	242.027)
7.391	cos(12.84994993	Td	+	106.641)
7.267	cos(17.19605878	Тd	+	319,412)
7 152	cos(11 87017331	ЪТ	1	4 678	Ś
7 137	cos (16 22564570	TA		30 540	1
7 126	0000	10.22304373 10.52775560	Tu Tu	Ť	33.340	~
7 126	COS	12.03770002	Tu	+	522.177	~
7.130	cos(17.07065423	ld	+	66.938)
7.095	cos(11.87724501	ld	+	272.113)
7.007	cos (11.95010083	Td	+	305.557)
6.988	cos(14.88376880	Td	$^+$	51.546)
6.943	cos(14.60840060	Td	+	29.927)
6.921	cos(15.58103226	Td	+	217.264)
6.826	cos(15.55586686	Td	+	348.082)
6.708	cos(16.65164395	ЪТ	+	176 891)
6 668	cos (13 94302902	ЪТ	+	199 636	Ś
6 640	cos (15 08654732	Td	1	120 276	1
6 600	0000	16 50607655	TJ	Ţ	201 711	<
0.009	cos(10.52627655	10	+	291.711	~
6.571	cos(13.81542001	Id	+	165.097)
6.567	cos(14.65388877	Td	+	339.052)
6.566	cos(10.89534997	Td	+	306.303)
6.474	cos(14.52626891	Td	+	195.544)
6.416	cos(14.91345155	Td	+	62.009)
6.399	cos(15.16868191	Td	+	318.996)
6.327	COS (15.00468505	Td	+	189 134)
6 268	cost	17 77663084	ЪТ	4	62 822)
6 227	cost	12 26607670	T-J	T	214 542)
6 100	COSI	14 40100000	TI	+	01 000)
0.192	COS (14.49198899	1d	+	81.006)
6.148	cos(12.77922761	Id	+	294.905)
5.969	cos(13.99558461	Td	+	152.546)
5.939	cos(16.06844946	Td	+	289.339)
5.852	cos(16.75853510	Td	+	131,591)

э. 849	cos(13	. 03885333	Td	+	214.654	
5.795	cos(15	. 70864184	Td	+	345.799	
5.794	cos(17	. 66051168	Td	+	154.950	
5.719	cos(13	. 50804061	Td	+	231.257	
5 593	cos(17	26891053	Td	+	356 245	
5 592	cos (11	33508043	Td		10 210	
5.002	005(10	40574420	TU TJ	Ť	10.210	
0.082	COS	13	. 40574429	Id	+	90.668	
5.548	cos (16	. 09096684	Id	+	340.281	
5.506	cos(12	. 95892981	Td	+	274.848	
5.466	cos(14	. 93324117	Td	+	87.569	
5.385	cos(12	. 30553673	Td	+	329.099	
5.370	cos(17	. 14350741	Td	+	101.357	
5 345	cost	15	62430499	Td	+	86 479	
5 220	coc (13	08212019	LT.	,	104 065	
5.200	003(11	22242010	Tu Tu	T	010 007	
5.434	COSI	14	. 33242837	Id	+	218.897	
5.187	cos (13	. 31652714	Id	+	343.444	
5.133	cos(13.	. 48521286	Td	+	290.023	
5.096	cos(13.	. 48079102	Td	+	94.974	
5.024	cos(13.	. 39391379	Td	+	345.544	
5.002	cos(13.	05255129	Td	+	131.784	
5.001	cos	15	59229510	ЪТ	+	2 544	
4 977	cos (14	99778324	ЪТ		107 171	
4 072	203(10	06126246	T.J	+	100 600	
4.914	COS	12.	. 90130340		+	199.000	
4.929	cos(13.	.00706644	Id	+	168.708	
4.925	cos(14.	. 64239702	Td	+	124.760	
4.908	cos(15.	03178258	Td	+	202.565	
4.888	cos(15.	43973577	Td	+	257.247)
4.842	cos(12.	46490277	Td	+	208.178)
4.813	cos(18.	31659434	Td	+	88.506)
4.754	cos(14.	01147465	Td	+	218.063)
4.712	cos (16	07066063	Τd	+	162 519	Ś
4 666	cos(12	23705988	ЪТ	1	34 640	1
1.660	cos (16	61724180	TJ	т,	261 762	
4.000	CUS(10.	01724109	TU	+	331.703	~
4.020	cos(13.	39429237	Id	+	240.318	
4.5/4	cos(14.	49423606	ld	+	125.878	j
4.570	cos(12.	39425792	Td	+	324.779)
4.569	cos(13.	97482014	Td	+	328.907)
4.562	cos(15.	07867440	Td	÷	79.246)
4.503	cos(13.	40084917	Td	+	36.412)
4.458	cos	16.	01368682	ЪТ	+	188 749)
4 368	cos (15	00340424	ЪТ	, 	300 927	Ś
1 328	cos (17	16161002	LU LU	T	127 720	1
4.020	000(11	02052709	TJ	+	127.730)
4.010	COS(11.	92052708		+	100.000)
4.293	cos(15.	67419835	ld	+	331.300)
4.286	cos(16.	51699516	Id	+	123.140)
4.250	cos(15.	54684771	Td	+	267.252)
4.195	cos(17.	19143368	Td	+	165.534)
4.187	cos(16.	10025285	Td	+	50.518)
4.165	cos(11.	99338055	Td	+	183.792)
4.149	cos(17.	19827475	Td	+	194.852)
4.143	cos(15	71085083	Td	+	219 935)
4 087	cos (16	17307604	Td	4	152 626)
1 060	005(17	10000402	T	+	E0 020)
4.009	cos (11.	10900403	DI	+	50.228)
4.057	cos(16.	22785684	ľd	+	273.533)
4.054	cos(12.	34876415	Td	+	11.171)
4.031	cos(13.	91344899	Td	+	335.870)
4.005	cos(14.	10951642	Td	+	210.701)
3.989	cos(13.	99097544	Td	+	179.032)
3.989	cos (14	98967287	Td	+	205,847)
3.948	000	15	09244239	ЪТ	+	172 759)
	000(±0,	00011203	1 U	г	10.103)

3.905 cos	(17.11831972	Td +	248.539)
3.901 cos	(13.91124836	Td +	6.142)
3.780 cos	(14.48078836	Td +	263.431)
3.773 cos	(11.87482519	Td +	166.431)
3.755 COS	(17.23448299	Td +	165.832)
3.000 COS	(12.90384402 (14.40238756	10 + Td -	331 504)
3.644 cos	(13.44900160)	Td +	143 616)
3.644 cos	(14.53557903	Td +	8.880)
3.613 cos	(16.63313732	Td +	238.255)
3.574 cos	(15.54217366	Td +	305.003)
3.514 cos	(12.26663900)	Td +	196.343)
3.500 COS	(14.92043508 (17.00000696	Td +	129.032	
3.454 cos	(16.51920449)	Td +	201.327)
3.434 cos	(12.84746171	Td +	353.478)
3.395 cos	(14.56026970	Td +	281.656)
3.316 cos	18.71526159	Td +	155.080)
3.290 cos	(14.07064747	Td +	241.110)
3.289 COS	(14.48979872)	ld +	2/1 8/2)
3 248 cos	16 65390459	Td +	61 382	
3.245 cos	12.94083330	Td +	154.878)
3.242 cos	13.59692383	Td +	266.469)
3.219 cos	17.27112297	Td +	230.502)
3.212 cos	13.55806414	Td +	142.961)
3.210 cost	12.34413124	Id +	31.374)
3 182 cost	12 81786446	Td +	45.951	
3.159 cos	16.57396179	Td +	118.763)
3.159 cos	16.67199192	Td +	181.208)
3.102 cos	16.63775844	Td +	219.618)
3.098 cos	16.04768595	Td +	84.062)
3.066 COS	13.44437098	+ DI	103.004)
$3.057 \cos($	16.60572978	Td +	125 156)
3.043 cos	17.63092716	Td +	353.981)
3.035 cos	18.31880500	Td +	322.519)
3.033 cos(17.22077269	Td +	245.826)
3.019 cos(14.53099601	Td +	33.811)
$3.012 \cos($	14.58545386	Id +	61.164)
$2.992 \cos($	16 13454026	Td +	280 259	
2.966 cos(11.82470008	Td +	51.563)
2.957 cos(14.34170189	Td +	0.267)
2.947 cos(12.45121193	Td +	28.705)
2.942 cos(11.80659375	Td +	110.879)
$2.932 \cos($	15.98189504	Id +	334.525)
$2.913 \cos(2)$	17 54438155	Td +	40 897)
2.895 cos(15.63114463	Td +	330.817)
2.889 cos(14.45562974	Td +	332.517)
2.847 cos(16.71525566	Td +	51.629)
2.832 cos(15.97702962	Td +	304.466)
2.814 cos(13.56292667	ld +	173.745)
2.001 COS(2.797 cos(11 43751625	Td +	206 750)
2.785 cos(15.00431712	Td +	286.944)
2.750 cos(12.02516488	Td +	213.744)
2.743 cos(13.34854251	Td +	44.830)

2 741	L COS (18 7881158	2 T.d		. 189 278		
2 730		17 6104302	5 IU 1 TJ	. т	207 570)	
2.100		14 0059160	1 10 7 TJ	. +	- 307.372)	
2.730	COS	14.09581600		. +	- 292.969)	
2.728	s cos(17.58544288	3 Id	. +	- 246.780)	
2.722	cos(12.92246942	2 Td	+	245.876)	
2.714	cos(10.82028874	1 Td	+	37.189)	
2.711	. cos(15.38718159) Td	+	217.210)	
2.677	cos(18,24815950) Td	+	163 628)	
2.670	$) \cos($	14 99557648	A TA		240 769	í	
2 655		11 4807006	LT I	. 1	79 626	~	
2.000		11. 4007 5004	t IU D TI	+	10.030	~	4
2.004	: COS(11.72447200		+	290.050)	
2.001	. cos(14.98462284	1 I d	+	69.224)	
2.634	COS(16.77001709) Id	+	174.750)	
2.634	cos(15.08434559) Td	+	338.985)	
2.626	cos(14.87459772	? Td	+	117.261)	
2.580	cos(15.15719221	. Td	+	97.999)	
2.580	cos(12.50596958	3 Td	+	295.183)	
2.565	cos(12.91123491	Td	+	87.084)	1
2.547	cos(14.94862988	bT 8	+	14 749)	1
2 526	cos(13 01369034	Td	, 	9 511)	-
2 519	(13 51038388	ET 2		241 271	1	1
2 514	003(12 26002200		Ť	241.271	~	
2.014	COS	10.1755007		+	85.584)	1
2.493	COS (10.17552078	d	+	105.321)	1
2.476	cos(12.41699404	Td	+	66.147)	1
2.476	cos(17.24154397	' Td	+	275.531)]
2.458	cos(16.72895446	Td	+	330.223)]
2.429	cos(13.47615011	Td	+	164.943)]
2.428	cos(14.99313234	Td	+	135.613)	1
2.423	cos(14.95549591	Td	+	326.492)	1
2.401	cos(12.53996217	ЪТ	+	33 850)	1
2 392	COS	11 83400614	ЪТ		225 830	Ś	1
2 345	cos (14 03665560	Td	- -	176 548		1
2.010	cos (14 46019262	LT.	Ŧ	201 120	~	1
2.040	005(19.27007650		+	201.138)	1
2.002	COS	12.37607036	10	+	104.970	~	1
2.334	cos (13.39219506	Id	+	202.190)	1
2.325	cos(17.74043133	Id	+	95.263)	1
2.318	cos(18.16160944	Td	+	210.579)	1
2.294	cos(11.80196855	Td	+	130.611)	1
2.276	cos(10.27812113	Td	$^+$	137.120)	1
2.269	cos(11.32580144	Td	+	229.401)	1
2.268	cos(15.05697060	Td	+	161.454)	1
2.263	cos(14.03887271	Td	+	51.840)	1
2.252	cos(16.04326583	Td	+	329 481)	1
2.248	cos (14 92480178	Τď	+	21 024	í	1
2 246	cos(14 55805657	ЬT	+	18 305	1	1
2.210 2.241	cos (14.05666907	TJ	T .	40.030)	1
2.241 2.226	005(12 42526100	TU	+	292.031)	1
2.200	cos (13.43536182	Id	+	234.230)	1
2.234	cos(16.64678153	Id	+	139.376)	1
2.234	cos(12.84502360	Td	+	246.033)	1
2.223	cos(13.39867282	Td	+	65.045)	1
2.220	cos(12.36686141	Td	+	311.339)	1
2.214	cos(12.76553097	Td	+	18.220)	1
2.192	cos(14.65609717	Td	+	222.103)	1
2.178	cos(14.92283854	Td	+	310, 161)	1
2.176	cos(12,93423515	ЪТ	+	355 122)	1
2.167	cos(14.39864776	ЪТ	+	243 621)	1
2.164	C09(15 47608860	ЪТ	1	250 386)	1
2 155	000(10.86356102	LT T	+	260 607)	1
2.100	cost	15 54640417	TI	+	209.007)	1
2.152	COS (15.54649417	Id	+	10.465)	1
2.150	COS	11.5/010/26	Id	+	78.882)	1

Additional Terms Pnm = 21 (cnt)

2.134	cos(15	. 080	01808	8 Td	+	328.591)
2.122	cos(11	. 922	27350	7 Td	+	223.879)
2.095	cos(13	. 271	04305	5 Td	+	29.592)
2.092	cos(18	. 717	74720′	7 Td	+	29.030)
2.078	cos(13	. 927	13605	5 Td	. +	140.878)
2.074	cos(16	. 688	315551	7 Td	. +	218.739)
2.034	cos(13	. 396	52222	2 Td	+	182 657)
2.026	cos(14	578	81493	7 Td	+	36 391	Ś
2.026	cos	13	947	70913	R T A		190 669	Ś
2.017	cos	12	305	19050	DT C	. ,	70 844	Ń
1 996	cos(11	405	72910	DI C	. т т	170.044)
1 996	cost	11	218	05716	LT C	Ť	102 400	
1 994	cost	11	705	11103	א נע אדא	+	06 516	
1 002	cost	16	252	01675	DI C 7 Ta	+	30.010	~
1.073	cost	10.	062	127701) Ta	+	100 069	
1.070	cost	14.	074	07102) TJ	+	199.900	
1.300	cost	15.	914	62402	: 1a . Tu	+	347.435)
1.944	COS (10.	404	0//14	E IO.	+	230.185	~
1.910	COS (12.	412	34786) Id	+	265.919)
1.917	COS(17.	086	55532		+	218.637)
1.890	COS(12.	995	57918	s Id	+	163.138)
1.894	COS(15.	430	45786) Id	+	211.102)
1.891	cos(16.	184	57523	3 Td	+	196.930)
1.888	cos(14.	952	31735	7d	+	8.276)
1.884	cos(13.	551	45036	Td	+	228.375)
1.883	cos(12.	849	41291	Td	+	313.848)
1.882	cos(13.	897	54312	7d	+	315.014)
1.881	cos(13.	353	20280	Td	+	61.834)
1.875	cos(17.	692	29268	Td	+	345.276)
1.848	cos(15.	426	08035	Td	+	171.693)
1.842	cos(16.	564	89653	Td	+	181.169)
1.835	cos(11.	252	95007	Td	+	195.344)
1.825	cos(15.	118	34614	Td	+	165.228)
1.824	cos(15.	660	50250	Td	+	236.041)
1.821	cos(10.	350	97510	Td	+	171.358)
1.816	cos(17.	615	02714	Td	+	202.088)
1.812	cos(17.	034	00254	Td	+	177.348)
1.811	cos(13.	430	71135	Td	+	255.192)
1.808	cos(12.	970	41093	Td	+	314.544)
1.799	cos(12.	223	36424	Td	+	117.630)
1.799	cos(15.	633	36676	Td	+	203.213)
1.798	cos(14.	969;	25111	Td	+	126.084)
1.794	cos(13.	8794	46619	Td	+	66.682)
1.793	cos(14.	542	17016	Td	+	348,419)
1.781	cos(14.	9965	57968	Td	+	239, 195)
1.769	cos(15.	590	14405	Td	+	154.590)
1.757	cos(16.	2026	67240	ЪТ	+	314 598)
1.755	cos (13.	387	16550	Τď	+	137 957	í
1.745	cos	14	1412	29740	ЪТ	+	221 830	ì
1 738	cos(13	0046	3511 <i>4</i>	ЪТ	1	73 821)
1 735	cos(12	9796	38122	Td	т 1	06 130)
1 733	cos (18	7001	32606	ът	+	62 266)
1 728	cos(14	9200	34777	Td	+	22 210	1
1 725	205(18	2020	57700	ЪТ	+	55 410)
1 717	202(14	0611	28215	Ta	+	274 140	1
1 702	205(14.	1620	24550	DI T-I	+	274.149)
1.703 (10.	4022	24000	T 1	+	309.148)
1.702 (14.	5140	70967	Id	+	106.045)
1.700 (COS(13.	005	9867	Id	+	89.762)
1.099 (COSC	14.	9055	18540	Id	+	335.147)
1.070 0	cos(17.	5876	00002	ld	+	121.163)
1.670 0	COS (12.	294(0735	Td	+	277.340)

1 668	0001	15 62186607	Td		160 607	1	
1.000	CUSI	15.02100007	Ιü	+	100.097)	
1.667	COS(18.12981986	Td	+	22.114)	
1 667	000(14 05475025	TJ		272 000	1	
1.007	COSI	14.03473033	10	+	212.000)	
1.662	cos(13.85869996	Td	+	245.650)	
1 651	0001	15 11622514	Td	4	212 126)	
1.001	CUSI	15.11052514	IU	+	343.420)	
1.643	cos(13.98847506	Td	+	51.218)	
1 642	2021	15 57615506	Ta		227 004	Ń	
1.045	COSI	15.57015500	IU	+	557.904)	
1.635	cos(18.17530481	Td	$^{+}$	128.493)	
1 622	000(16 005/1011	та		265 607	1	
1.022	COSI	10.09541911	10	+	200.007	2	
1.602	cos(12.46268877	Td	+	36.515)	
1 600	cosl	13 78805757	ЪТ	L	83 811		
1.000	CUSI	13.10003131	Iu	+	03.011	2	
1.588	COS (16.77223060	Td	+	48.911)	
1 588	cosl	16 70157768	Тd	1	249 161)	
1.000	003(10.70107700	TU.	T	445.101	~	
1.585	COS (13.38055582	Id	+	130.122)	
1.575	cos(15 59474638	ЪТ	+	32 810)	
1 570	000(15.00101000	T 1		02.010	~	
1.5/3	COS (15.94525261	ld	+	269.185)	
1.573	cos(17.24375270	Τd	+	148 874)	
1 566	(12 06246000	TI		000 007	~	
1.000	COS(12.90340990	Id	+	230.887)	
1.566	cos(12.37843007	Td	+	3.516)	
1 565	cocl	11 00684044	Ta		255 610	Ń	
1.505	COSI	11.90004044	Iu	+	200.010	/	
1.563	COS(15.58976336	Td	+	267.665)	
1 560	cosí	13 39618152	Тd	1	283 653)	
1.000	CUSI	10.00010102	TU.	Ŧ	200.000	(
1.555	COS(16.64014814	Td	+	130.866)	
1 553	cost	17 30069883	ЪТ	+	32 514)	
1.000	000(15.400000000	201		171 600	~	
1.551	COS (15.43266151	Id	+	171.683)	
1.546	cos(13.39462105	ЪТ	+	140 828)	
1 544	(16 14702070	TI	Ľ.	200 120		
1. 544	COS (10.14/93972	10	+	309.130)	
1.538	cos(14.36907992	Td	+	287.156)	
1 526	cosí	15 71305834	Td		04 374)	
1. 520	CUSI	13.71303034	Iu	+	94.574	2	
1.524	cos(15.63582275	Td	+	333.023)	
1 520	cosí	13 91733886	ЬT	L	26 582)	
1.510	000(14. 40461000	TU	T	20.002	<	
1.516	COS (14.49461002	ld	+	45.449)	
1.515	cos (13.51721754	ЪТ	+	199.592)	
1 515		16 45502015	TI	ľ.	100.000	<	
1.010	COS(10.40003310	Id	+	133.008)	
1.513	cos(13.39974006	Td	+	87.576)	
1 506	0000	13 62650051	ТЛ		218 885	Ì	
1.000	COS	13.02030031	TU.	T	240.000	(
1.506	COS (16.02275742	DI	+	284.852)	
1 504	COS	15 04102113	Τd	+	103 222)	
1 400	(14 05000010	TI		254 240	<	
1.493	COS(14.95866819	ld	+	354.342)	
1.484	cos(12.52626687	Td	+	117.203)	
1 450	200(15 50221205	тa		15 042	Ś	
1.400	COSI	15.50551205	10	+	15.045	2	
1.445	cos(17.04107389	Td	$^{+}$	111.389)	
1 437	1200	13 28253409	ЪТ	1	72 246)	
1. 101	003(10.20200400	nu m	т	12.240	(
1.432	COS(13.96872661	ld	+	13.736)	
1.431	cos(12 93178542	ЪТ	+	36 017)	
1 420	(10 74740400	T 1		2 100	{	
1.430	COS (10.74743400	ld	+	3.108)	
1.426	cos(13.94083299	Td	+	120.117)	
1 425	000(16 69790102	TJ	÷	221 010	Ń	
1.420	COSI	10.00700192	10	+	521.010	/	
1.420	cos(16.55807176	Td	+	325.941)	
1 411	cosí	16 60033704	ЪТ	. 1.	88 801)	
1.10-	cost	10.05055794	Tu	Ŧ	00.091	2	
1.407	cos(14.91790413	ľd	+	264.415)	
1,400	cos(12.50817393	ЪТ	+	356 389)	
1 200	000(12 70720640	TI		205.000	1	
1.398	COS (13. 19132649	Id	+	445.054)	
1.393	cos(15.63799469	Td	+	191.003)	
1 370	0001	16 76074270	Td		6 022)	
1.019	cost	10.70074270	IU	+	0.032	2	
1.374	cos(14.53523027	Td	+	116.902)	
1.373	cost	14, 48739641	Td	+	344 814)	
1 260	0001	17 10604047	TI		210 105	1	
1.308	COS (17.10684247	Id	+	210.105)	
1.365	cos(12.89755255	Td	+	281.687)	
1 352	1200	17 74264721	Td		330 815)	
1.004	0001	11.11204121	1 U	T	000.010	1	

$\begin{array}{c} 1. \ 348\\ 1. \ 333\\ 1. \ 332\\ 1. \ 330\\ 1. \ 327\\ 1. \ 321\\ 1. \ 308\\ 1. \ 294\\ 1. \ 283\\ 1. \ 280\\ 1. \ 279\\ 1. \ 279\\ 1. \ 279\\ 1. \ 278\\$	cos(cos(cos(cos(cos(cos(cos(cos(11. 99558603 15. 01537465 14. 64460318 14. 61502320 13. 32140336 15. 06675072 12. 93642009 16. 64711162 12. 49208086 10. 93641587 13. 40330648 15. 16436615 11. 86796564 11. 75184477 13. 08433638 14. 97265124 16. 58984827 13. 51247108 15. 00253356 16. 09808077 14. 88185642 14. 62209202 10. 89314068 16. 13690634 17. 76294005 12. 31919555 16. 25522567 13. 90543795 12. 85022191 14. 02068605 13. 41235834 11. 44900303 13. 81321246 15. 55146640 14. 44661819 15. 93376470 18. 08875862 12. 85230587 14. 88604938 15. 03895140 11. 94770576 15. 58546058 15. 50823643 14. 96569406 12. 6953724 18. 20488705 12. 82250249	Td Td Td Td Td Td Td Td Td Td Td Td Td T	+ + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 258.737\\ 101.129\\ 356.900\\ 3.342\\ 18.658\\ 268.707\\ 304.724\\ 40.178\\ 341.102\\ 303.723\\ 128.563\\ 125.502\\ 130.544\\ 17.387\\ 168.260\\ 84.658\\ 159.384\\ 94.933\\ 151.966\\ 251.164\\ 92.333\\ 310.168\\ 71.811\\ 51.304\\ 145.873\\ 235.684\\ 354.202\\ 226.711\\ 350.947\\ 203.290\\ 76.130\\ 47.636\\ 290.373\\ 83.235\\ 321.827\\ 61.697\\ 174.201\\ 46.144\\ 132.973\\ 235.848\\ 196.933\\ 57.403\\ 348.95\\ 289.856\\ 174.917\\ \end{array}$	
1.057 1.053 1.050 1.050 1.047 1.031 0.995 0.979	cos(cos(cos(cos(cos(cos(cos(cos(14.96569406 12.56953724 18.20488705 12.82250249 11.33286953 18.13203162 17.66268018 15.03641206	Td Td Td Td Td Td Td Td Td	+ + + + + + + + + + + + + + + + + + + +	57.403 348.495 289.856 174.917 137.176 256.320 18.102 6.974))))))))))
0. 314	CUSI	12.413400/3	IU	Ŧ	5.015	'

	10.274	1 cos	(27	. 89	09828	9 To	d +	- 124	1.549) (
	9.644	1 cos	(27	. 57	88190	5 To	t +	- 14]	1.486	5)
	9.018	B cos	(27	. 92	95722	4 To	+ b	- 176	5.244	1)
	8.551	7 cos	(27	. 41	92514	0 T.	+ b	- 327	7.099)
	8.277	7 cost	(28	. 93	86189	8 To	+ F	172	2 402	
	8.082	2 cost	29	60	13308	9 T	4 4	. 114	204	1
	8 061		20	.00	12125	7 Ta		206	103	ε) 2)
	8 064		30	71	30506	1 Tc	лт 4.	107	7. 100 7. 201	
	8 046		(21)	16	00000		1 + 1 .	- 107	. 001	
	7 0 20		() I	. 100	50609	9 IC	1 +	· 55	. 668	5)
	7 000		. 29	. 11	1/189		1 +	. 72	. 900	
	7.005	1 COS	28	. 59!	91340	3 10	1 +	334	. 329))
	1.881	COS	28	. 44	19424	4 10	1 +	231	. 632	?)
	7.831	. cos(31	. 015	58934	5 Tc	1 +	224	. 611)
	7.816	cos(31	. 646	58277	4 Tc	1 +	321	. 695	;)
	7.770) cos(28	. 401	79395	1 Tc	1 +	130	. 567)
	7.754	cos(27	. 98:	19052	4 Tc	1 +	345	. 720))
	7.633	cos(27	. 858	39325	7 Tc	i +	17	. 928)
	7.460) cos(28	. 517	72210	9 Tá	1 +	4	. 199)
	7.284	cos(27	. 346	63596	6 Td	1 +	284	. 658)
	7.210	cos(31	. 086	653419	9 Td	1 +	36	. 895)
	7.198	cos(26	. 847	766389	9 Td	l +	301	. 921)
	7.187	cos(29	. 382	277143	3 Td	+	190	.839)
	7.132	cos(26	. 865	576056	5 Td	+	242	217)
	6.910	cos(27	0.34	44314	1 Td	 _	7	155	ì
	6.875	cost	30	077	7223	DT S		90	678)
	6 871	cos (29	961	56/31	LT S		328	675)
	6 842	cos (32	116	1270	LT I	. +	186	.013)
	6 795	cos (26	. 110	72020	i iu : Ta	. +	100	. 407)
	6 787	cos(20	1/1	21110	DIU DIIU	. +	102	. 910)
	6 700	cos(20	200	.31414 NENOE		. +	130	. 490)
	6 660	COS (20	385	09850		+	235	. 884)
	0.000	COS	30.	002	29201		+	59	. 636)
	0.000	COS	27.	066	23174		+	44	. 680)
	0.571	cos(29.	989	68287	Id	+	206	. 013)
	6.522	cos(31.	129	82760) Td	+	112	. 909)
	6.512	cos(27.	963	51249) Td	+	75	. 462)
	6.460	cos(30.	025	68754	. Td	+	262	. 972)
	6.364	cos(26.	521	85734	Td	+	269	. 675)
	6.362	cos(26.	765	53871	Td	+	126.	. 822)
	6.186	cos(30.	170	89199	Td	+	206	. 450)
	6.108	cos(29.	034	46806	Td	+	293.	.721)
	6.063	cos(31.	088	74808	Td	+	269.	. 686)
	6.020	cos(28.	054	76086	Td	+	198.	598)
	5.840	cos(31.	221	22997	Td	+	96.	977)
	5.823	cos(27.	508	17316	Td	+	9.	476)
	5.765	cos(31.	134	45191	Td	+	98.	205)
	5.763	cos(29.	489	83409	Td	+	7.	430)
	5.738	cos(29.	996.	52158	Td	+	150	698)
	5.629	cos(26.	332	87854	Td	+	148	844)
	5.604	cos (31	683	47824	Td	+	43	637)
	5.458	cos (26	843	03011	ЪТ	+	321	761)
	5.457	C0s(25	310	187/2	Td	T L	327	972)
	5 437	cos(26	366	8676A	Td	+	60	126)
	5 301	0000	20.	525	51700	DI LT	+	00.	430)
	5 354	cost	21.	120	04/04	TI	+	09.	015)
	5 272	cos(20.	434	20093	DI	+	136.	086)
	5 260	COS (31.	211	90/0/	Id	+	288.	728)
	5.200	COS (29.	9638	59852	Id	+	141.	256)
	5.205	COS (28.	3509	97234	Id	+	163.	740)
	5.194	COS (25.	9040	02819	ľd	+	100.	486)
	5.155	COS(31.	603	54857	Td	+	88.	647)
1	5.129	COS(27.	8860)6604	Td	+	74.	242)

5 000		2	1 05	:201	511	T		124	1.04	
5.09.	COS	().	1.20	0301	211	1 10	1 +	134	. 190))
5.085	cos	(3(). 15	5940.	303	3 Td	l +	344	. 473	3)
5 041		()(06	506	a 0 0	т.		200	000	Ś
5.042	cos	23	9.90	0000	690) 1d	+	202	. 884	()
5.031	cos	(- 28	3.31	211	232	? Td	+	220	977	•)
1 005		2	0	0.00	105	- T		220		. (
4.995	cos	3.	1.04	020	132) 1d	+	336	. 767)
4.964	cost	21	7.89	062	613	bT 8	+	221	605)
1 0 1 5		07	7 07	000	0.00			201	. 000	
4.940	cosi	21	. 87	944.	238	5 1d	. +	62	. 802	;)
4.773	cost	29	9.57	175	259	Td	+	155	776	
4 761		0	0 0 1	2200	201	- TU		200		
4.701	COS	. 34	2.81	329.	304	ld	+	322	. 748	
4.689	cos(28	3.43	5560	037	' Td	+	328	373	
4 675	/	00	10	2000	707	·		020	. 010	
4.677	COS	29	1.48	520	131	Id	+	26	. 668)
4.663	cost	30) 00	346	357	Td	1	10	632	
1.000	, 0031			1 - 00	201		т	13	. 032	
4.627	COS (. 26). 96	1590)68	ld	+	331	. 693)
4.508	cost	- 28	43	7400	997	Td	1	29	547)
4 450		00		1 100	200		1	40	. 041	
4.452	COS	29	1.62	4310)32	ld	+	197	. 069)
4.445	cos (27	38	0557	720	ЪТ	+	241	615)
1 202	/	0.0	. 00	1010	200			411	. 010	
4.393	COS	26	. 29	4016	590	ld	+	26.	. 160)
4.365	cos	25	39	2041	29	ЬT	+	2	230)
4 955		20	0	0000	200			00-	. 200	
4.300	COS (30	. 33	9962	:90	Id	+	205.	. 062)
4.351	cost	27	. 26	4420	960	Td	+	308	668)
1 202	0000	20	01	EEOS	770	TI		105	757	~
4.303	COS (32	. 81	2201	13	Id	+	195.	157)
4.280	cos(30	. 03	7616	575	Td	+	65	313)
1 250	0001	20	1.1	1270	24.4	TI		207	770	~
4.209	COS (28	. 44	4378	944	ld	+	321.	170)
4.196	cos(30	. 63	1188	374	Td	+	152	275)
1 166	0001	20	50	5120	110	TJ		210	604	(
4.100	COS (28	. 30	0132	48	Id	+	242.	694)
4.055	cos(-28	. 04	5694	.90	Td	+	263	515)
1 016	cool	21	25	5220	62	TJ			011	1
4.040	COS (21	. 20	5220	103	Id	+	δ.	011)
4.019	cos(29	. 02	9533	302	Td	+	243.	294)
4 006	0001	20	50	3214	71	TJ		124	350	í
4.000	CUSI	50	. 50.	5514	11	10	+	134.	352)
3.944	cos(30	. 61'	7239	53	Td	+	167.	568)
3 021	cocl	20	,10	2000	17	TI		67	500	1
5.951	COS	20	. 40.	2000	11	Id	+	07.	526)
3.906	cos(28	. 86	7976	86	Td	+	217.	356)
3 881	cosí	20	62	2006	Q 1	TA		200	106	Ń
0.004	COS	29	. 02.	2030	01	1 d	+	322.	100)
3.858	cos(30	. 50	1104	48	Td	+	262.	578)
3 850	0001	27	07	2816	86	TA		220	377	í
0.000	CUSI	41	. 314	2040	00	10	+	229.	3//)
3.845	cos(28	. 945	5520	48	Td	+	238.	623)
3 830	1200	28	820	2120	72	TH		274	596	1
0.009	CUSI	40	. 043	120	14	DI	+	214.	280)
3.815	cos(28	. 958	3419	36	Td	+	221.	448)
3 752	0001	32	15/	1996	96	ЪТ	.1	152	502)
0.102	COST	02	. 104	1000	10	IU T	+	100.	092	1
3.742	COS (28.	. 44()787	12	Td	+	273.	029)
3 727	0051	30	010	306	80	ЪТ	4	333	370)
0.710	0000	00.	1010	1100	05	TU	т	000.	510	1
3.712	COS(28.	123	2193	95	Id	+	273.	197)
3.660	cos(31.	528	3485	67	ЪТ	+	180	675)
2 652	202	20	= = = =		20	T -1	÷.	251	750	<
3.603	COS (29.	565	1555	32	ld	+	351.	153)
3.647	cos(30.	000)170	45	Td	+	326	061)
2 602	2000(21	100	2004	70	TI	,	107	2001	<
3.602	COS(31.	185	\$994	15	ld	+	137.	598)
3.577	cos(30.	615	50170	02	ЪТ	+	293	641)
0.011	000(00.	010	011	- 1	m	т	200.	041	<
3.499	COS (32.	744	851	51	ld	+	39.	332)
3.473	cos(29	009	7941	61	ЪТ	+	206	889)
2 200	000(20.	000	COOL	0.0	TI	'		700	1
3.392	COS (32.	259	6328	82	Id	+	21.	762)
3.388	cos(26	918	315	35	ЪТ	+	281	537)
2 207		21	610	0100	25	TI		10		~
3.387	COS (31.	010	020	35	ld	+	18.	575)
3.374	cos(27	904	644	30	ЪТ	+	21	675)
2 271	2001	20	CE0	2011	74	TI		07	100	<
3.3/1	COS (32.	628	304	74	ld	+	87.	400)
3.356	cos(28	838	396	14	Td	+	56	282)
2 200		00.	000	171	A T	T	1	00.	004	/
3.309	COS (26.	991	1/44	12	ld	+	313.	996)
3.305	cos(29.	148	3713	33	Td	+	320	447)
3 206	2021	20	500	2240	2.4	TJ		171	000	1
5.290	COSI	29.	283	2348	54	Id	+	1/1.	003)
3.260	cos(29.	999	7123	37	Td	+	187.	195)
3 251	0001	20	007	101	70	TA		70	220	1
0.201	CUSI	43.	551	404	9	10	+	10.	200)

2	040	(00 05		T 1		007 015	`
З.	242	COS(29.00	009052	Id	+	207.815)
3.	240	cos(27.96	387826	Td	+	334.368)
3	223	0000	31 68	560340	ТА		280 581)
2.	100	CUSI	07.00	505545	TU	+	200.001	(
3.	189	COS (27.97	749325	Id	+	133.344)
3.	173	cos(32.15	721354	Τd	+	27.721)
2	141	200(21 20	242002	тJ		220 570	Ś
э.	141	COS	31.22	343903	DI	+	330.579)
3.	125	cos(30.08	211061	Td	+	277.633)
3	072	cost	26 70	290748	ЪТ	1	208 144)
2.	0.00	003(05 05	740110	TU	T	200.144	
3.	069	COS (25.97	(48181	ld	+	134.739)
3.	019	cos(27.82	029147	Td	+	304.846)
3	016	cosi	30 07	00/526	ЪТ		320 647	Ì
0.	010	003(00.07	004020	TU m	т	520.047	(
3.	005	COS (29.03	664525	Τd	+	162.824)
2.	998	cos(30.12	321888	Td	+	281.065)
2	007	0001	28 04	010050	Ta	÷	106 242	Ń
<u>2</u> .	331	COSI	20.04	010002	10	+	100.242	
2.	946	cos(30.59	693317	Td	$^+$	355.898)
2.	894	cos(29.50	109341	ЪТ	+	354 693)
2	000	0000(20 02	200011	TJ		202 520	
4.	009	COSI	29.92	292239	10	+	292.528)
2.	885	cos(28.94	650493	Td	+	57.605)
2	881	cos(30 46	689662	Тd	+	124 965)
2.	076	000(20 07	710070	TI		210 705	1
4.	010	COSI	20.91	140070	10	+	310.785)
2.	875	cos(29.91	345863	Td	+	48.370)
2.	828	cost	28 43	772178	Td	+	298 774)
2	827	000(20.10	007555	TI		272 (54	~
4.	041	COS (29.30	901000	1 d	+	213.659)
2.	822	cos(29.56	734000	Td	+	203.557)
2	814	cost	28 45	341822	Td	+	265 322)
2.	702	203(20. 1	270000	TI	٢	074 605	~
4.	193	COS (30.01	370292	Id	+	274.605)
2.	782	cos(30.08	431435	Td	+	92.329)
2	766	cos	30 09	583677	ЪТ	+	297 359)
<u>.</u> .	760		00.00	000000	m	r	201.000	~
2.	103	COS	28.07	992226	ld	+	224.399)
2.	747	cos(31.76	560220	Td	+	232.239)
2.	732	cos(30 00	264185	ЪТ	+	140 145)
ວ. ດ	707	000(20.50	215400	TI		140.140	~
4.	101	cos(29.03	315489	Id	+	325.025)
2.	690	cos(30.06	844230	Td	+	103.243)
2	685	cost	27 53	311266	ЬT	-	164 286)
ບ. ດ	GEA	000(21 00	122001	T 1	1	175 655	~
Δ.	004	cos(31.00	133991	DD	÷	1/5.655)
2.	626	cos(31.13	666917	Td	+	336.327)
2.	619	cos(29.02	172985	ЪТ	+	11.237)
2	600	2000	21 61	202002	тJ	÷	254 201	Ń
<u> </u>	000	COSI	51.01	202992	10	+	254.291	2
2.	527	cos(27.61	060540	Td	+	179.652)
2.	525	cos(31.13	203049	Td	+	348.770)
2	107	000(27 70	1/2212	тJ	Ż	2 544	Ń
<i>4</i> .	431	COS	21.10	143314	Id	+	2.044	2
2.	476	COS(28.98	378545	Id	+	150.137)
2.	476	cos(29.02	990486	Td	+	144.413)
2	175	0001	28 98	6538/2	ЪТ		72 724	Ś
<i>د</i> .	410	CUSI	40.30	000042	Tu	+	12.124	~
2.	449	COS (32.66	757736	Td	+	256.808)
2.	427	cos(29.92	823783	Td	+	255.922)
2	303	0001	28 05	220813	Td		192 799	Ń
<u> </u>	000	CUSI	20.30	400013	nu	+	102.700	~
2.	384	COS (29.49	449062	ld	+	172.839)
2.	365	cos(28.51	966108	Td	+	143.263)
2	364	000	25 71	785576	ЪТ	+	34 586	Ì
ы. О	251	CUS	20.11	100010	TU	T	34.000	(
۷.	351	COS (28.43	960763	ld	+	312.269)
2.	337	cos(26.98	874173	Td	+	29.784)
2	334	cosí	30 63	084414	Td	+	252 017)
<u>.</u> .	210	cusi	00.05	105000	TU	Ŧ	106 547	~
4.	310	COS (26.87	485022	Id	+	186.743)
2.	309	cos(29.44	634118	Td	+	83.211)
2	307	000	28 00	361758	TH	4	130 102)
2.	201	CUSI	20.09	1001/00	1u	÷	139.192	~
4.	301	COS (28.98	439495	ld	+	258.490)
2.	299	cos(30.63	335131	Td	+	12.895)
2.	298	cos(28 51	489334	ЪТ	+	286 782)
2	202	000(20 51	600150	TI		50.072	1
4.	202	COS	30.51	033120	Id	+	50.313)

2.197	cos(28.	. 39417955	Td	+	36.385)
2.192	cost	27	43530581	Td	+	337 043)
2.104	cost	32	73115282	Td	Ť	122 /60)
2.156	cos	29	57856440	Td	т +	179 597)
2 142	cos	29	53528500	Td	+	130 872)
2.139	cos	31.	13911144	Td	+	333 104)
2.135	cos(32.	07285981	Td	+	315.537)
2.110	cos(28.	09139830	Tď	+	214.225)
2.109	cos(26.	49006768	Td	+	232.452)
2.107	cos(31.	55806179	Td	+	136.527)
2.087	cos(28.	63580042	Td	+	242.904)
2.080	cos(32.	66978682	Td	+	129.995)
2.078	cos(28.	90680015	Td	+	148.668)
2.068	cos(29.	92132908	Td	+	107.541)
2.060	cos(32.	20268275	Td	+	138.483)
2.048	cos(25.	24633432	Td	+	293.724)
2.039	cos(33.	28481452	Td	+	63.545)
2.038	cos(30.	71526721	Td	+	341.947)
2.032	cos(28.	58543342	Td	+	237.783)
2.027	cos(31.	71968065	Td	+	356.434)
2.012	cos(31.	21415391	Td	+	163.522)
1.987	cos(27.	81322402	Td	÷	39.875)
1.985	cos(31.	76781440	Td	+	106.276)
1.979	cos(28.	00243873	Td	+	206.951)
1.963	cos(28.	95453870	Td	+	347.897)
1.958	cos(27.	50131879	Td	+	129.366)
1.942	COS(30.	19604895	Id	+	235.017)
1.940	COS	30.	00706331	Id Tu	+	97.471)
1.939	cos(20.	20002724	DI TJ	+	130.083	
1.930	cost	21.	00362702	DI Td	+	64 422	
1.901	cost	28	09302792	Td	+	17 260	
1.923	cost	20.	97045137	ЪТ	T	136 647)
1 911	cos(29	92715713	Td	T.	324 891	ì
1.856	cos(27.	84523960	Td	+	101.058)
1.851	cos(28.	82469997	Tď	+	139.023)
1.844	cos(33.	28702867	Tď	+	296.472)
1.817	cos(30.	24640964	Td	+	37.960)
1.805	cos(30.	12102649	Td	+	353.495)
1.796	cos(28.	46541262	Td	+	72.023)
1.783	cos(29.	69274580	Td	+	97.397)
1.782	cos(29.	18015636	Td	+	357.565)
1.781	cos(27.	45119326	Td	+	16.197)
1.780	cos(27.	89299635	Td	+	301.029)
1.779	cos(27.	86356471	Td	+	356.264)
1.775	cos(29.	99498463	Td	+	46.222)
1.753	cos(32.	27554057	Td	+	173.980)
1.753	cos(28.	43719895	Td	+	118.553)
1.752	cos(25.	83177202	Td	+	66.143)
1.747	cos(26.	37150492	Id	+	221.094)
1.735	COS(30.	98410569	1d Td	+	40.300)
1.730	cos	21.	41957769	DI Ta	+	41.300	
1.722	cost	29.	11402577	DI Td	+	87 260	
1.710	cost	20.	96820608	LU LU	+	171 301	
1 707	cost	23.	56269822	ьт	+	303 272)
1 707	cos(27	30769989	ЬТ	+	208 088)
1.695	cos (29	90755985	Td	+	18,032)
1.689	cos(30.	20753961	Td	+	97.041)

Additional Terms Pnm = 22 (cnt)	Additional Terms Pnm = 22 (cnt)
Additional Terms Pnm = 22 (cnt) 1.683 cos(31.25743773 Td + 242.500) 1.661 cos(26.93861335 Td + 276.315) 1.654 cos(29.10266593 Td + 343.949) 1.645 cos(30.11854806 Td + 218.821) 1.632 cos(29.96341867 Td + 171.189) 1.645 cos(32.14571318 Td + 349.577) 1.609 cos(28.47735821 Td + 234.561) 1.605 cos(28.55020704 Td + 270.204) 1.601 cos(30.12070142 Td + 94.075) 1.589 cos(32.12320485 Td + 122.454) 1.577 cos(29.06161378 Td + 142.201) 1.570 cos(27.43753655 Td + 212.524) 1.569 cos(27.43753655 Td + 212.524) 1.569 cos(27.43753655 Td + 212.524) 1.561 cos(27.89757329 Td + 98.573) 1.545 cos(27.88849773 Td + 359.871) 1.545 cos(31.68844247 Td + 46.416) 1.536 cos(31.53069184 Td + 54.796) 1.515 cos(31.69032871 Td + 271.274) 1.514 cos(28.99442130 Td + 280.078) 1.501 cos(28.63799682 Td + 276.143) 1.488 cos(31.57397070 Td + 287.345) 1.480 cos(27.38519600 Td + 40.439) 1.476 cos(30.00506436 Td + 142.047) 1.476 cos(28.59250664 Td + 312.210) 1.465 cos(27.50595182 Td + 286.935) 1.446 cos(29.10506510 Td + 260.094) 1.476 cos(28.9927078 Td + 286.335) 1.445 cos(29.10506510 Td + 260.094) 1.437 cos(29.62651971 Td + 71.859) 1.445 cos(29.10506510 Td + 260.094) 1.437 cos(29.62651971 Td + 71.859) 1.445 cos(30.07261708 Td + 4.551) 1.420 cos(28.43997048 Td + 203.659) 1.417 cos(28.93272099 Td + 320.100) 1.396 cos(32.608333 Td + 321.199) 1.396 cos(32.605033 Td + 320.100) 1.396 cos(32.605033 Td + 320.100) 1.396 cos(32.8070578 Td + 310.368) 1.392 cos(30.20975078 Td + 310.368) 1.392 cos(31.01810527 Td + 310.368) 1.392 cos(31.01810527 Td + 316.720) 1.362 cos(32.81770542 Td + 73.128) 1.359 cos(28.4011948 Td + 108.852) 1.350 cos(28.4011948 Td + 221.186)	Additional Terms $Pnm = 22 (cnt)$ 1. 260 cos(28.01953539 Td + 229.945 1. 255 cos(26.32138622 Td + 107.441 1. 253 cos(31.73823374 Td + 151.122 1. 253 cos(30.64462539 Td + 180.952 1. 248 cos(29.91563948 Td + 130.836 1. 247 cos(29.40085716 Td + 310.647 1. 240 cos(28.01858167 Td + 62.297 1. 231 cos(28.49887930 Td + 106.633 1. 230 cos(28.48089876 Td + 75.382 1. 230 cos(29.98336528 Td + 356.144 1. 221 cos(27.91806163 Td + 133.630 1. 213 cos(30.97483119 Td + 234.712 1. 211 cos(29.14349951 Td + 107.243 1. 206 cos(25.82249342 Td + 285.419 1. 187 cos(28.43490669 Td + 177.609 1. 178 cos(27.99390585 Td + 330.375 1. 158 cos(27.94059006 Td + 300.276 1. 142 cos(29.53772514 Td + 142.803 1. 138 cos(29.41919822 Td + 29.823 1. 133 cos(27.31456302 Td + 243.468 1. 128 cos(30.03654974 Td + 217.915 1. 123 cos(29.03548701 Td + 108.214 1. 117 cos(26.43971563 Td + 94.862 1. 117 cos(26.43971563 Td + 94.862 1. 117 cos(26.98410403 Td + 124.353 1. 116 cos(30.07284046 Td + 33.697 1. 102 cos(32.9416420 Td + 229.904 1. 102 cos(33.21416420 Td + 229.904 1. 102 cos(29.83573115 Td + 9.059 1. 084 cos(27.45805846 Td + 76.623 1. 081 cos(29.93324808 Td + 282.218 1. 079 cos(28.46120078 Td + 219.859 1. 078 cos(29.83573115 Td + 9.059 1. 084 cos(27.45805846 Td + 76.623 1. 081 cos(29.93324808 Td + 282.218 1. 079 cos(28.46120078 Td + 219.859 1. 078 cos(29.83573115 Td + 9.059 1. 078 cos(29.8556392497 Td + 5.329 1. 068 cos(31.74044708 Td + 24.699 1. 064 cos(31.11174298 Td + 170.972 1. 055 cos(29.57891986 Td + 79.799 1. 052 cos(21.79738955 Td + 268.667 1. 045 cos(21.79738955 Td + 268.667 1. 045 cos(21.79738955 Td + 268.667 1. 045 cos(22.780659787 Td + 28.564 1. 033 cos(30.004114424 Td + 359.538 1. 028 cos(28.53827740 Td + 105.403
1. 480 cos(27. 38519600 Td + 20.439) 1. 476 cos(30.00506436 Td + 142.047) 1. 476 cos(28. 59250664 Td + 312.210) 1. 468 cos(28.97378920 Td + 153.291) 1. 465 cos(27.50595182 Td + 28.695) 1. 446 cos(32.26183942 Td + 256.335) 1. 445 cos(29.10506510 Td + 260.094) 1. 437 cos(29.62651971 Td + 71.859) 1. 425 cos(30.97261708 Td + 4.551) 1. 420 cos(28.4207048 Td + 4.551)	1. 123 cos(26. 55364225 Td + 211. 513 1. 123 cos(29. 03548701 Td + 108. 214 1. 123 cos(29. 03548701 Td + 108. 214 1. 117 cos(26. 43971563 Td + 94. 862 1. 117 cos(43. 98410403 Td + 124. 353 1. 116 cos(30. 07284046 Td + 33. 697 1. 102 cos(26. 98410049 Td + 229. 904 1. 102 cos(33. 21416420 Td + 265. 034 1. 091 cos(30. 09802527 Td + 172. 282 1. 087 cos(29. 83573115 Td + 9. 059 1. 084 cos(27. 4550246 Td + 140. 2050)
1.420 cos(28.43997048 1d + 203.659) 1.417 cos(27.99554318 Td + 149.422) 1.415 cos(28.93272099 Td + 320.100) 1.396 cos(32.66050833 Td + 321.199) 1.396 cos(28.98205655 Td + 310.368) 1.392 cos(30.20975078 Td + 330.417) 1.379 cos(32.12541401 Td + 355.466) 1.363 cos(31.01810527 Td + 316.720) 1.362 cos(32.81770542 Td + 73.128) 1.359 cos(28.40119484 Td + 108.852)	1.084 cos(27.45805846 ld + 76.623 1.081 cos(29.93324808 Td + 282.218 1.079 cos(28.46120078 Td + 219.859 1.078 cos(28.56392497 Td + 5.329 1.068 cos(31.74044708 Td + 24.699 1.064 cos(31.11174298 Td + 170.972 1.055 cos(29.57891986 Td + 79.799 1.052 cos(29.05253586 Td + 227.099 1.052 cos(31.79738955 Td + 268.667 1.045 cos(27.80659787 Td + 28.564
1.350 cos(28.98618110 Td + 136.305) 1.344 cos(30.03858404 Td + 221.186) 1.337 cos(26.47858277 Td + 217.692) 1.329 cos(26.00926884 Td + 171.323) 1.328 cos(30.05135923 Td + 162.054) 1.326 cos(30.59443590 Td + 56.927) 1.321 cos(30.42824016 Td + 229.577) 1.321 cos(26.73375121 Td + 90.458) 1.316 cos(29.96033187 Td + 123.627) 1.314 cos(28.40212430 Td + 281.348) 1.315 cos(29.6047005 Td + 281.348)	1.033 cos(30.04114424 Td + 359.538 1.028 cos(28.53827740 Td + 105.403 1.021 cos(28.96818981 Td + 154.661 1.015 cos(28.56735496 Td + 118.818 1.014 cos(14.52847918 Td + 259.331 1.013 cos(29.89725089 Td + 213.978 1.012 cos(29.43972716 Td + 253.256 1.012 cos(27.89637898 Td + 138.388 0.962 cos(26.26002028 Td + 115.904 0.959 cos(28.43865858 Td + 272.102)
1. 312 cos(20. 3004/995 1d + 261.709) 1. 304 cos(29. 99884892 Td + 231.444) 1. 300 cos(25. 86135595 Td + 48.242) 1. 297 cos(33.21195150 Td + 31.397) 1. 291 cos(30.04575459 Td + 210.305) 1. 288 cos(30.08653245 Td + 322.163) 1. 276 cos(13.98410399 Td + 124.351) 1. 268 cos(30.19826166 Td + 108.882) 1. 261 cos(29.95453224 Td + 75.627)	U.903 COS(20.44679901 1d + 179.481)

Td + 107.441) Td + 151.122) Td + 180.952) Td + 130.836) Td + 310.647) Td + 62.297) Td + 106.633)

)

2 201	,	0.00050001	20 1		01 111	
3.394	COS	3.20952281	ld	+	91.441)
3 373	cost	0 42581200	Td		110 083	1
0.010	CUS .	0.42001200	iu	T	110.000	/
3.274	cos(1.60598010	Td	+	195.533)
0.010		0.50000074	- C.		000.000	Ś
2.949	COS (2.58080874	ld	+	239.203)
2 680	cocl	0 46008250	Та		162 807	1
<u>.</u> .005	COSI	0.40500250	IU	Ť	102.051	/
2.551	cos(3.28016776	Td	+	251.371)
0 100		0.07500000	T 1		000 010	Ś
2.429	COS	0.07529030	1 a	+	332.212)
2 352	cost	1 65367237	ЪТ	+	189 221)
0.000	0050	1.00007207	10	1	100.221	(
2.337	COS (1.71989811	Td	+	60.952)
2 225	cosí	1 00004440	Тd	,	197 759	1
4.000	COST	1.00304443	IU	T	101.100	/
2.306	cos(0.54460185	Td	+	17.791)
0 0770	(0 10000050	T 1		55 640	Ś
2.213	COS	2.12298356	ld	+	55.649)
2 222	COSL	2 74021394	ЬT	+	225 301)
0.000	000(0.01001001	10	1	220.001	(
2.209	COS(0.00905487	Td	+	282.555)
2 203	0001	2 66725075	ТА	,	100 500)
2.200	CUSI	2.00133013	IU	+	190.309	/
2.109	cos(0.53752400	Тd	+	266.204)
0.004	000(0.0000070	m 1		141 744	(
2.094	COS	2.06822276	ld	+	141.744)
2 006	0051	0 46246412	Тd	+	357 995)
1 000	000(1 00010000	~ · ·		001.000	(
1.965	COS (1.68810988	Td	+	24.121)
1 878	cosl	0 11856358	Тd		25 623)
1.010	CUSI	0.110000000	ru	Т	20.020	
1.788	cos(1.02494864	Td	+	159.966)
1 620	000(0 02020022	та		212 215	1
1.020	005(0.93039032	10	+	212.313)
1.594	cos(2.15035851	Td	+	335 342)
1 574		0.00100010	TT 1		1 6 0 0 0 0	Ś
1.574	COS	0.62186649	ld	+	163.283)
1 563	000	3 28237847	Тd	L.	125 434)
1.000	0031	0.20201041	T.U.	r	120.404	(
1.547	cos(1.17994202	Td	+	34.001)
1 522	0001	1 56022172	Td		202 742	1
1.025	COSI	1.00932173	Ia	+	292.143)
1.519	cos(2.18434376	Td	+	48.827)
1 400	(1 00410047	T 1		076 170	Ś
1.489	COS (1.08410647	Ιa	+	210.419)
1.459	COS	1 72210749	ЪТ	+	295 008)
1 010	000(1. 50005705	T 1		040.540	<
1.312	COS (1.52605795	ld	+	240.542)
1 304	000	2 62187308	Td		83 231)
1.004	CUSI	2.02101000	IU	т	00.201	2
1.244	cos(1.59670879	Td	+	41.111)
1 101	000(1 06161170	ТJ		17 200)
1.191	COS	1.001011/9	10	+	47.398)
1.142	cos(0.03643536	Td	+	189.305)
1 1 2 0	(0 17027070	T .1		200 040	Ń
1.138	COS (0.4/83/0/0	ld	+	329.048)
1 137	COS	1 48277133	ЪТ	+	352 831)
1 1 1 0	000(0.04550550	- T- L	'	002.001	(
1.118	COS (0.04570558	ld	+	351.583	}
1 116	1200	3 75168927	Td	4	352 091)
	003(0.10100321	nu	ł	002.001	(
1.065	COS (1.67883021	ld	+	215.256)
1 065	000	2 22248274	ЪТ		150 034)
1.000	CUSI	4.20240014	IU	Ŧ	135.034	/
1.064	cos(1.64216211	Td	+	325.437)
1 050	0001	3 13445737	ЪТ		182 055)
1.039	COSI	5.15445757	ıu	+	105.055	2
1.033	cos(2.07749984	Td	+	307.016)
1 010	(0.00107400	m .1		107 000	Ń
1.019	COS (0.90107433	Id	+	107.630)
1.006	COS	1.60133128	Τd	+	22.584)
	0001	0.54100120	T I	1	100.001	1
0.977	COS (0.54193782	Id	+	196.861)
0.960	cost	0 55563137	Td	1	113 500)
0.000	CUSI	0.00000107	IU	Ť	110.000	/
0.952	cos(1.60818864	Td	+	76.916)
0 045	0001	2 72651442	ГJ		200 101)
0.945	COS (2. 12001443	Id	+	308.484)
0.920	cos(1.69032116	Td	+	258,108)
0 075	25-1	1 05457410	T.1		1.10 0.1.1	í
0.875	COS (1.05457419	Id	+	149.811)
0 863	1200	2 03864720	Td	+	337 295)
0.000	0001	1.554120	TU	1	050.200	~
0.833	COS(1.57419048	Id	+	352.462)
0 832	0001	1 55562765	Td		18 033)
0.002	0031	1.00002100	1U	т	10.300	/
0.779	COS(0.58787425	Td	+	251.690)
0 755	cocl	2 62409416	TA		318 166)
0.100	CUSI	2.02400410	IU	+	510.100	/
0.744	COS(3.12518203	Td	+	13.522)
0 742	cosí	0 39402764	Td	4	73 071)
0.144	cost	0.00402704	1u	Ť	15.011	/
0.697	COS(2.65587757	Td	+	146.833)

0.685	cos(1.13666237	Td	+	316.918	
0 001		0 75000000	T .1		000 110	
0.004	COS	2.12203300	10	+	220.112	
0.679	COS	2.15257404	Td	+	213 455	
0.070		0.01170017	TI		207 765	
0.672	COS	3.211/3315	ld	+	327.060	
0 670	cost	2 19805184	Тd	1	328 121	
0.070	0031	2.10000104	10	r	020.121	
0.656	cos(2.59008470	Td	+	48.456	
0 652	000/	3 13667020	Td		57 001	
0.002	CUSI	5.15007025	10	-1"	57.001	
0.624	cos(3.67883451	Td	$^+$	317.898	
0 610	2221	1 00526265	тJ		107 151	
0.010	005(1.99020200	Ia	+	107.451	
0.613	cos (1.05916162	Td	+	116.817	
0 505		1 10004700	T .1		117 105	
0.595	COS	1.10024720	Ιd	+	117.485	
0.580	cost	3 19803392	ЪТ	+	49 164	
0.000	000(1. 10000000	T 1		004 650	
0.576	COS (1.10929824	ld	+	234.658	
0.576	cosí	1 49427313	ЪТ	+	203 427	
0.010	000(1. 10 10 10 10			200.127	
0.572	COS (2.07970796	ld	+	182.727	
0.572	cocl	2 23/69586	Тd	£	33 406	
0.012	0030	2.20100000	10	;	00.400	
0.562	COS(1.00684130	Id	+	133.959	
0 561	cosl	2 26/2721/	Td	1.	195 666	
0.001	CUSI	6.20461614	1 U	T	199.000	
0.536	cos(1.49205570	Td	+	330.332	
0 536	cocl	2 15500380	Td		338 000	
0.000	CUSI	2.10000000	IU	т	520.330	
0.533	cos(1.09806023	Td	$^+$	77.901	
0 533	cocl	2 10020205	ТА	1	137 140	
0.000	CUSI	2.10323200	10	Ť	137.140	
0.531	COS (3.20732446	Td	$^+$	35.400	
0.528	cost	0 59228895	ЪТ		186 915	
0.020	0031	0.00220000	TU m	1	100.510	
0.527	COS (2.03643557	Td	+	102.713	
0.515	cost	0 97019078	ЬT	+	245 393	
0.514	000(1 = 7 0 0 0 0 0 0	TT 1		000 751	
0.514	COS	1.57639933	Id	+	220.701	
0.493	cos(1.63555027	Td	+	343.372	
0 400		0 20000004	TJ		100.000	
0.403	COS	0.59006904	10	+	122.930	
0.474	cos(0.00685188	Td	+	47.237	
0 169	000(2 11956400	TJ		204 012	
0.400	COS	2.11000499	10	+	304.913	,
0.467	cos(1.48056643	Td	+	288.270	ľ
0 166	000(1 00006002	ЪТ	,	155 907	
0.400	COS	1.00090903	10	+	100.097	
0.464	cos(0.93619137	Td	+	154.082	
0 150	000(0 12310/10	Тd		31 258	
0.400	CUS	0.12010410	TU.	т	01.200	-
0.453	cos(1.63996515	Td	$^+$	273.173	
0 446	000	1 01125636	Тd	+	246 670	
0.440	CUS	1.01120000	TU.	T	240.010	
0.444	COS (0.62407866	Id	$^+$	38.654	,
0 443	cosí	2 11151422	Td	1	7 250	
0. 110	000(0.55100510	m	'	1.200	1
0.443	COS (0.55123710	ld	+	359.307	
0.442	cosl	2 10707585	ЪТ	+	265 984	1
0. 112	003	2.10101000	m	'	200.004	1
0.442	COS (3.16624842	ld	+	218.312	
0 439	cost	2 17992657	ЬT	+	120 319	
0.400	000(0.00000000	TI	1	070 114	ļ
0.437	COS (2.65366730	ld	+	272.414	
0 431	cos	1 02274860	Τd	+	103 244	1
0.101		0.47005107	T 1		200.000	1
0.430	COS (0.47395187	ld	+	38.866	
0.423	cos	2 58301935	Τd	+	111.767	
0. 110	000(1 10007577	T 1		057 575	1
0.418	COS (1.10267577	Id	+	257.575	
0.407	cos(1.10708057	Td	+	183.654	
0 106	202(0 00007600	TJ		240 002	
0.400		0.00097090	IU	+	249.092	
0.403	COSI	0 =0000=00	TA	1	282.164	
	cos(2.39229569	10	T	w0w1 40 4	
0 402	cos(2.59229569	DI LT	T	7 720	
0.402	cos(cos(2.59229569	Td	+	7.720	
0.402 0.401	cos(cos(cos(2.59229569 1.52385259 2.20511433	Td Td Td	+ +	7.720 78.484	
0.402	cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804	Td Td Td	+ + +	7.720 78.484	
0.402 0.401 0.392	cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804	Td Td Td Td	+ + +	7.720 78.484 169.687	
0.402 0.401 0.392 0.384	cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041	Td Td Td Td Td	+ + + +	7.720 78.484 169.687 242.127	
0.402 0.401 0.392 0.384 0.381	cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543	Td Td Td Td Td Td	+ + + + + + + + +	7.720 78.484 169.687 242.127 192.041	
0.402 0.401 0.392 0.384 0.381	cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543	Td Td Td Td Td Td Td	+ + + + +	7.720 78.484 169.687 242.127 192.041	
0.402 0.401 0.392 0.384 0.381 0.380	cos(cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543 0.97725476	Td Td Td Td Td Td Td Td	+ + + + + + + + + +	7.720 78.484 169.687 242.127 192.041 179.570	
0.402 0.401 0.392 0.384 0.381 0.380 0.378	cos(cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543 0.97725476 0.63777289	Td Td Td Td Td Td Td Td Td	+ + + + + + + + + + + + + +	7.720 78.484 169.687 242.127 192.041 179.570 134.384	
0.402 0.401 0.392 0.384 0.381 0.380 0.378 0.374	cos(cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543 0.97725476 0.63777289	Td Td Td Td Td Td Td Td Td Td	r + + + + + + + + + + + + + + + + + + +	7.720 78.484 169.687 242.127 192.041 179.570 134.384 206.562	
0.402 0.401 0.392 0.384 0.381 0.380 0.378 0.374	cos(cos(cos(cos(cos(cos(cos(cos(2.59229569 1.52385259 2.20511433 1.72431804 2.53974041 3.68104543 0.97725476 0.63777289 1.64705262	Td Td Td Td Td Td Td Td Td Td	r + + + + + + + + + + + + + + + + + + +	7.720 78.484 169.687 242.127 192.041 179.570 134.384 206.562	

6.280 cc	s(12)	2. 3874	10520	6 Tc	1 +	277	. 254	Ł
6.186 cc	os(11	1.2893	37723	3 Tc	1 +	198	. 993	3
6.132 cc	s(15	5.0000	0229	9 Td	1 +	0	. 102)
5.978 cc	s(12	2.9295	57465	5 Td	1 +	355	671	
5.931 cc	s(12	8085	5810	1 T.		30	0/1	
5 882 cc	(11)	0000	013.	1 TU 1 TJ	ι + ι .	04	100	
5.002 CC		9000	0007.		l +	8	. 186),
5.875 CO	IS(17	. 1525	06664	1 Id	1 +	24.	. 268	5)
5.792 co	s(13	. 9841	.0472	2 Td	+	304.	. 900))
5.637 со	s(14	. 4055	50212	2 Td	+	291.	640))
5.546 co	s(11	. 7586	8899) Td	+	65.	423)
5.297 co	s(12	. 9635	6913	S Td	+	242	164	Ń
5 242 co	s(13	9/32	1115	DT (. 1	170	104	
5 162 00	a(10	0100	14142 E 0 0 0		. +	172.	120	
5.102 CO	5(1)	. 3109	0928	1 10	+	256.	147)
5.159 CO	S(16	. 1437	3543	3 I'd	+	263.	163)
5.070 co	s(17	. 2232	0565	5 Td	+	184.	545)
4.996 co	s(13	. 5490	1042	? Td	+	220.	664)
4.796 co	s(15	. 4668	8500) Td	+	299.	748)
4.653 co	s(13	. 4668	7679	bT (+	199	278)
4.629 co	s(17	1596	3867	' Td		316	635	í
4 421 co	e(15	6311	5010	LT I	T	216	640)
4 417 20	$\sim (10)$. 0311	1100		+	310.	649)
4,417 CO	S(10	. 5649	1186	Id	+	17.	780)
4.412 CO	s(17	. 7040	0257	Td	+	93.	551)
4.384 co	s(16	. 1459	4696	Td	+	137.	422)
4.314 co	s(15	. 0435	1436	Td	+	308.	878)
4.291 cos	s(17	. 7768	6608	Td	+	125.	714)
4.105 cos	s(17	. 1618	5238	ЪТ	+	189	388	í
4 062 00	= (15	5490	2036	ЪТ		136	630	Ś
3 922 cos	-(12	1602	5245	Ta	τ	212	701	~
2 706 20	-(12)	7700	0040	10	+	313.	791)
3.790 COS	5(17)	. 7790	8062	DI	+	358.	603)
3.704 cos	s (15.	. 5172	2914	Td	+	105.	463)
3.658 cos	s(17)	. 7062	1522	Td	+	327.	286)
3.612 cos	s(12.	4509	7939	Td	+	142.	984)
3.596 cos	s(14.	0298	2230	Td	+	127.	393)
3.505 cos	s (16.	0205	3528	ЪТ	+	242	852)
3 501 cos	(15	58300	1589	ЪТ		25	780	1
3 459 608	(15)	50670	1350	Td		201	216	~
2 457 000	(10.)	26000	1009	TO	+	304.	310	2
3.457 005	(11)	30223	5141	ld	+	233.	191)
3.250 COS	3(13.	35074	1773	Id	+	292.	591)
3.207 cos	s(12.	91808	3735	Td	+	135.	335)
3.188 cos	s(12.	30085	5076	Td	+	324.	217)
3.186 cos	(16.	05011	1308	Td	+	197.	786)
3.184 cos	(16.	09339	984	Τd	+	275	647	í
3.136 cos	(12	88607	7762	Тd		224	312	Ś
3 135 cos	(12)	37370	1870	Ta	т	250	042 070	$\frac{1}{2}$
3 122 000	(12.	20720	019	Tu	+	100	010	2
2 122 005	(13.	00105	941		+	180.	268)
3.122 COS	(14.	03202	:050	ľd	+	183.0	532)
3.121 cos	(12.	77679	371	Td	+	355.4	124)
3.112 cos	(15.	05012	2038	Td	+	113.9	959)
3.107 cos	(16.	69473	860	Td	+	200.6	584)
2.960 cos	(12.	97284	725	Td	+	49.6	511)
2.916 cos	(16	14815	420	bT	+	10.5	386)
2 897 005	(17	07740	800	Td	1	115 0	100)
2 820	(1)	57000	220	Tu	+	100.5	100	2
2.029 COS	(14.	57860	238	Id	+	193.3	568)
2.766 COS	(14.	50354	149	Id	+	104.()53)
2.750 cos	(15.	57859	513	Td	+	277.(016)
2.729 cos	(14.	53532	736	Td	+	118.4	160)
2.728 cos	(14.	45319	339	Td	+	299.7	709)
2.712 cos	(16	05940	699	Td	+	185 1	94)
2.697 005	(16	17552	452	TA	-	02.0	30)
2 631 005	(10.	11600	212	T	+	34.4	.59)
4.001 COS	14.	41098	313	Id	+	434.1	.49	1

Additional	Terms	Pnm	=	30	(cnt)

0 363	000(0 50574515	TI		100 005	1
0.303	COS	0.30374515	Id	+	100.065)
0.361	cos(1.09118491	Td	+	28.869)
0.359	cos(0.97946775	Td	+	50.442)
0.356	cos(0.42360457	Td	+	55.371)
0.346	cos(2.15719329	Td	+	199.535)
0.344	cos(0.08186176	Td	+	302.383)
0.340	cos(0.06820754	Td	+	39.838)
0.332	cos(2.11369056	Td	$^+$	67.138)
0.329	cos(0.51260574	Td	+	116.634)
0.320	cos(2.07042585	Td	+	14.485)
0.316	cos(1.55342481	Td	+	323.785)
0.311	cos(1.13225240	Td	+	23.470)

2.623	cos(14	. 9224	19534	Td	+	165.480)
2 566	cost	13	9520	18992	Тd	+	35 900)
2.500	000(1.6	0660	20011	TJ		249.001	
2.004	COS	10	. 0660)2011	id	+	348.991)
2.529	cos(-14	. 9178	36021	Td	+	159.029)
2 118	cosí	11	087	6770	Td	,	204 505	Ń
<u>2.410</u>	COST	11	. 401.	10//9	IQ	+	324.000)
2.370	cos(11	. 8748	31748	Td	+	331.780)
2 335	cost	13	4328	88809	Td	+	105 414)
0.010	000(17	. 1020	70000	TU	r.	100.414	
2.319	COS(11	. 694	2644	ld	+	285.083)
2.311	cos(15	. 6744	12246	Td	+	37.009)
2 290	cosí	11	90/13	20670	Тd		133 525	Ń
2.230	CUSI	11.	. 3040	55010	10	+	100.020	2
2.283	COS (12.	. 8359	95088	Td	+	113.294)
2.242	cos(15	0821	3969	ЪТ	+	201 131)
2 202	000(1 /	4101	00000	T.J	Ì	00 200	
2.200	CUSI	14.	4191	9005	10	+	20.324	/
2.183	cos(16.	. 6103	39313	Td	+	125.083)
2.178	cost	13	8611	2725	ЪТ	+	156 348)
0 100	000(10	0011	0700	T 1		100.040	
2.130	COS(16.	0980)2789	ld	÷	259.346)
2.083	cos(15.	6766	53327	Td	+	269.991)
2 062	c00 (16	1251	7068	Тd	÷	106 005	Ń
0.002	CUSI	10.	1201	1900	TU	+	100.995	/
2.049	COS(12.	8885	0330	Td	+	331.729)
2.039	cos(12.	8567	2056	Τd	+	324 034)
2 020	000(10	0063	2200	TJ		157 650	Ś
2.020	COS	12.	0003	57390	Ia	+	157.059)
2.020	cos(17.	. 2254	1563	Td	+	58.820)
1 955	cosl	12	9613	\$5596	ЪТ	1	7 147)
1 010	000(10	07040	7000	m	1.	1.111	~
1.910	COS (15.	9794	1269	Id	+	35.882)
1.841	cos(16.	5331	2078	Td	+	341.415)
1 821	cost	12	3463	3071	Td		71 102	Ń
1.021	CUSI	10	0400	0011	TU m	Ŧ	14.452	(
1.808	COS(13.	4646	6421	ld	+	324.811)
1.799	cos(13.	4443	6444	Td	+	149.785)
1 737	cos (14	6152	5758	ТЛ	,	250 801	Ń
1.701	CUSI	14.	0152	0100	Tu	+	239.001	
1.731	COS (11.	2165	2422	Id	+	164.775)
1.718	cos(16.	5671	2185	Td	+	251.987)
1 690	cosí	13	9791	7048	ЪТ	i.	143 817	Ń
1.000	CUSI	10.	5154	1040	TU m	+	143.017	(
1.684	COS (13.	5150	1745	ld	+	129.887)
1.660	cos(16.	6832	4912	Td	+	160.447)
1 618	0001	12	3370	5872	Td		202 618	Ń
1.010	CUSI	14.	0070	5014	Tu	+	292.010	(
1.556	COS(14.	9953	5825	Td	+	200.347)
1.551	cos(17.	6218	7440	Td	+	250.586)
1 545	0001	12	2642	0713	та		257 080	Ś
1.040	CUS	14.	2042	0715	Tu	Ť	201.009	2
1.520	COS (12.	9339	9082	Id	+	285.684)
1.518	cos (12.	8611	3549	ЪТ	+	71 522)
1 512	200	1.4	5671	1006	тJ		140 047	Ń
1.015	COS	14.	2071	1006	10	÷	149.247)
1.507	cos(15.	5194	4106	Td	+	339.829)
1.489	cos(14.	5627	0212	Td	+	41.500)
1 466	coc (16	6766	2620	тJ	ż	252 072	Ś
1.400	COSI	10.	0700	2030	IQ	+	555.915	2
1.439	COS(13.	3622	4202	Td	+	336.307)
1.429	cos	12	4487	6866	ЪТ	+	268 663)
1 207	000(12	4207	2444	тJ		160 571	~
1.307	COS	13.	4397	2444	Id	+	168.571)
1.379	cos(14.	9520	8427	Td	+	300.986)
1 370	cost	16	2187	9811	Тd	+	171 511)
1 257	0000	14	0620	0055	TJ		12 500	5
1.357	COS	14.	0638	0055	1 d	+	13.590)
1.356	cos(13.	9909	4198	Td	+	341.308)
1.350	cos(11	3600	2182	Td	+	358 805)
1 244	000(16	0000	4201	T		117 660	1
1.344	COS (10.	0221	4391	Id	+	117.663)
1.342	cos(13.	3074	7499	Td	+	213.872)
1.339	0051	13	8244	7801	ЪТ	+	267 672)
1 220	000(14	0500	0000	TI		262 610	1
1.339	COS (14.	0593	9230	Id	+	203.012)
1.333	cos(18.	2483	7944	Td	+	228.433)
1.329	cos(12	3145	5254	ЬT	+	242 216)
1 200	0001	16	0515	2027	LT.		120 652	1
1.490	COS	10.	0545	2031	DI	+	128.003)
1.283	COS(12.	8814	4086	Td	+	68.534)

1.269	cos(-16.21658484	Td	+	-298.614)
1.239	cos (16.64704765	Td	+	200 751)
1 226	cosí	13 002/2518	тd		20 361	1
1.015	0.03(10.00242010	TU	Ŧ	23.301	(
1.215	COS	12.88387404	Id	+	350.713)
1.183	COS (15.07748952	Td	+	12.391)
1.177	cos(17.16404682	Td	+	66.413)
1.177	cos(12.77458465	Td	+	121.343)
1.154	cost	16 59670183	Td	+	206 712)
1 150	coc (15 03201541	Td		97 270	Ń
1.140	COSI	17.70107000	TU	+	01.219	(
1.149	COS	17.78127808	Id	+	236.084)
1.137	COS (17.07970748	Td	+	350.406)
1.124	cos(17.70842382	Td	$^+$	201.853)
1.110	cos(18.25059148	Td	+	102.064)
1 102	cost	17 10928780	Td	+	152 622	Ń
1 000	203(12 00001210	Ta	T	164 722	~
1.009	COS	13.90001310	10	+	104.733	2
1.075	COS	12.34169947	ld	+	89.437)
1.072	cos(10.81785684	Td	+	98.281)
1.049	cos(13.43508729	Td	+	90.849)
1.034	cos(15.50353152	Td	+	8 836)
1 028	cost	15 43509576	Td		263 280	Ś
1 027	000(16 00561227	Ta	т	152 501	~
1.027	COS (10.09501257	10	+	153.591)
1.017	COS (14.36664310	ld	+	168.456)
0.999	cos(10.74500286	Td	$^+$	64.048)
0.981	cos(11.91588571	Td	+	179.843)
0.979	cos(15, 15962843	Тd	+	36 553)
0 967	000	11 82933262	ЪТ		223 038	í
0.052	cos (12 02107217	TA		242 575	~
0.952	COSI	13.90107217	TU	+	242.070	~
0.935	COS (14.01612012	Id	+	211.588)
0.930	cos(12.38519772	Td	+	220.602)
0.922	cos(16.52384973	Td	$^+$	166.082)
0.910	cos(14.48275697	Td	+	257.962)
0.908	cos (17.69693439	ЪТ	+	159 977)
0 903	0000	11 87260755	Тd		07 342	Ś
0.000	203(17 0200700	TJ	т	224 000	~
0.009	COS	17.23912000	Tu	+	334.202	2
0.884	cos (16.1///29//	Id	+	326.783)
0.881	cos(12.83374236	Td	+	239.103)
0.876	cos(13.47835425	Td	$^+$	62.753)
0.867	cos(13.04570087	Td	÷	83.596)
0.866	cos(14.57198791	ЪТ	+	206.806)
0 848	cosí	14 48056487	Тď		100 101	Ś
0.040	003(12 07400000	TJ	T	70 000	~
0.040	COSI	15.07402099		+	72.909	2
0.842	cos(15.04088647	ld	+	315.949)
0.832	cos(16.10023135	Td	+	132.213)
0.829	cos(15.66293026	Td	+	174.613)
0.827	cos(12.84304976	Td	+	49.627)
0.825	cos	13 47172177	ЪТ	+	76 525)
0 821	coc(13 08660227	TJ		245 700	Ń
0.021	COS	13.9000237	TU	+	245.790	2
0.810	cos	13.93177914	Id	+	135.169)
0.815	cos(11.84303348	Td	+	142.342)
0.805	cos(13.48056679	Td	+	295.266)
0.801	cos(13.90440516	Td	+	56.150)
0.797	cos(16.22100738	Td	+	45.680)
0 797	000	15 11637045	Td	+	340 800)
0 706	0001	1/ 02/22000	TJ		57 000)
0.790	COST	14.03422990	DI	+	01.003	1
0.785	COS (16.15035807	ld	+	244.582)
0.752	cos(13.95695619	Td	+	94.350)
0.752	cos(13.90198122	Td	+	282.730)
0.738	cos(16.53533360	Td	+	216.660)
0.733	cos (12,45805102	Td	+	249 642)
0 733	cos(16 01125627	Td	1	74 447	1
0.100	1000	10.01160067	14	+	14.441	1

/

6.403	cost	26 7	9975	694	Тd	+	76	068	
6 315	200	20.1	7504	757	Ta		21	207	
0.010 (205(20.9	1504	101	TU	+	21	. 297	
0.203 (COS	26.9	1288.	367	ld	+	342	. 389	
6.153 (cos(31.7	22109	910	Td	+	114	. 390	
6.071 d	cos(28.4	4216	645	Td	+	287	. 856	
6.051 (cos(27.8	7701	759	Td	+	124	. 193	
5.986 (cos(29.5	28709	552	Td	+	142	073	
5.925	-0s (28 3	50026	650	Td		267	110	
5 757 (-0e(28 9/	4767/	418	ЪТ	,	201	067	
5 458 4	203(20.5	17161	±10 241	TU TJ	+	110	120	
5.400 (205(29.0	1740.	041 120		+	149.	. 432	2
5.372 (cos	30.54	1081.	130	Id	+	253.	. 209	2
5.371 (cos (29.6	15266	520	Td	+	91.	. 424)
5.065 d	cos(27.42	28476	506	Td	+	106.	731)
4.988 (cos(30.15	59621	705	Td	+	229.	866)
4.862 0	cos(30.04	41073	302	Td	+	190.	276)
4.751 d	cos(31.73	33595	590	Td	+	156.	527)
4.634 c	cos(26.25	57590)27	Τd	+	175	770)
4.616.0	05(29 02	25174	147	Тď		135	222	Ś
4 516 6	200(20.01	16571	187	Td	,	100.	162	1
4.010 0	203(27.30	27200		Ta	Ť	141.	102	/
4.400 (205(27.00	7010/	100	10	+	82.	554	1
4.312 (cos (21.31	(8124	123	Id	+	302.	604)
4.1/4 C	cos(27.50)1328	398	ld	+	135.	292)
4.144 c	cos(27.30)5274	102	Td	+	268.	255)
4.059 c	cos(30.62	24075	593	Td	$^+$	38.	042)
4.025 c	cos(30.63	37774	120	Td	+	314.	337)
3.990 c	cos(28.59	90075	530	Td	+	51.	892)
3.837	:05(30.50	7940	961	Тd	+	131	033)
3 765 0	1200	28 30	1815	509	ЪТ	1	303	658	ì
3 622 0	.00(28 34	18538	261	БТ	,	224	705)
3 600 0	.03(20.04	5543	270	Ta	+	224.	702	
2 251 -	.05(20.00	0040	019	TU	+	210.	105)
3.354 C	:05(27.92	2493	20	Id	+	((.	555)
3.198 c	:0s(32.27	5770)38	Id	+	55.	069)
3.179 c	:os(28.47	3945	548	Td	+	119.	018)
3.143 с	:os(29.49	4260)17	Td	+	310.	150)
3.079 c	os(27.45	8047	77	Td	+	243.	732)
3.000 c	os(32.19	1420	21	Td	+	341.	304)
2.936 c	os(30.16	1837	'94	Td	+	103.	933)
2.930 c	os(30.00	2437	33	Td	+	298.	599)
2 915 c	05(27 38	2769	146	ЪТ	÷.	102	628	Ś
2.874 c	00(25 85	8023	20	Td	1	102.	251	$\langle \rangle$
2.014 0	03(20.00	20540	100	Tu	Ť	109.	204	/
2.000 C	.0S(32.21	3008	49	10	+	181.	689)
2.793 C	:0S(26.32	8236	34	ld	+	335.	140)
2.678 c	0S (25.78	6069	18	ld	+	75.	024)
2.675 c	os(26.94	5464	03	Td	+	144.	693)
2.588 c	os(27.95	9149	87	Td	+	325.	756)
2.550 c	os(27.92	9563	24	Td	+	344.	052)
2.517 c	os(29.57	6393	32	Td	+	123.	216)
2.504 c	os(30.09	1194	45	Td	+	304.	232)
2.445 c	05(27.41	4782	56	Td	+	190	387)
2 388 c	05(29 52	3834	13	ЪТ	, ,	266	662	1
2.000 c	00(28 01	2014	24	TA	T	200.	512	1
2.373 0	00(27 84	7441	06	Td	T	160	254	1
2.344 0	05(27.04	1441	20	TI	+	100.	204)
2.313 C	US(21.34	1940	39	DI	+	160.	306)
2.300 c	os(28.00	2424	38	ld	+	18.	161)
2.270 c	os(29.61	9669	39	Td	+	23.	382)
2.250 c	os(28.52	1645	64	Td	+	306.	162)
2.237 c	os(29.45	0989	85	Td	+	52.	558)
2.126 c	os(29.96	3572	35	Td	+	356.	085)
2.111 c	os(28.50	5731	79	Td	+	336	058)
2.031 c	os(29.54	2399	70	Td	+	60	139	1
-,					4 14		VV.	AUU	1

0.727 cos(13.54680327 Td + 166.946) 0.716 cos(13.55121936 Td + 275.901) 0.688 cos(13.39883318 Td + 29.039) 0.679 cos(14.40990618 Td + 37.248) 0.678 cos(11.21431459 Td + 290.272) 0.678 cos(12.29157808 Td + 338.265) 0.677 cos(14.60272725 Td + 50.472) 0.677 cos(16.63777395 Td + 50.947) 0.675 cos(11.94767189 Td + 5.841) 0.622 cos(15.58788021 Td + 86.624)

2.017	cos(31	. 107	08365	Td	+	180.302)
1 901	0001	20	042	02052	та		202 015)
1.501	CUSI	20	. 340	02902	IU	+	292.915 /
1.879	COS(-31	. 173	32667	Td	+	48.477)
1 873	0001	32	103	63114	ТЛ		215 104
1.010	CUSI	54	. 135	03114	10	+	215.194)
1.811	cos(-27	. 332	64420	Td	+	349.573)
1 800	coc (27	070	61810	Тd		100 015)
1.005	CUSI	21	. 310	04040	10	+	100.915 /
1.792	cos(30	. 081	89403	Td	+	313.946)
1 790	cosl	29	608	18197	ЪТ	.1	162 076)
1 700	000(00	. 0000	10101	TU	T	102.010)
1.788	COS (26	. 988	73827	Td	+	16.626)
1.764	cost	29	460	26291	ЬT	+	219 066)
1 764	(07	000	00400	T 1		00 700)
1.704	COS(21	. 902.	20423	ld	+	82.723)
1.750	cos(31	. 651	46401	Td	+	314.434)
1 737	0001	20	002	10622	TJ		246 101)
1.101	CUSI	20	. 904	19022	IΩ	+	340.101)
1.733	cos(27	. 9750	05410	Td	+	297.554)
1 705	000	26	833	75059	ЪТ	1	167 530)
1 000	000(20	1000	00000	TU m	т	107.000)
1.000	COS (31	. 166,	24435	ld	+	298.058)
1.632	cos(27	. 4898	84026	Td	+	279.119)
1 628	cosí	27	804	16480	та		20 244
1.020	COSI	41	. 004	10400	IU	+	09.344)
1.583	COS(31	. 0205	53762	Td	+	228.772)
1.576	cos (29	993	15019	ЪТ	Ŧ	311 793)
1 570	(00	401/	10010	701	1	10 104
1.572	COS (26	. 401(J8764	ld	+	10.104)
1.566	cos(28	. 3986	65757	Td	+	158,459)
1 551	000	20	1049	27020	тJ		25 472)
1.001	COSI	49	1040	51039	Id	+	25.473)
1.506	COS(31.	. 0956	50078	Td	+	136.726)
1.501	cos(27	2734	18702	ЪТ	+	231 653)
1 470	000(00	4000	20250	m	Ŧ	201.000)
1.4/0	COS (28.	. 4032	29352	Id	+	160.868)
1.457	cos(28.	4854	12956	Td	+	340.550)
1 444	0001	20	0320	0771	Td		250 045)
1.444	CUSI	43.	0320	JU111	10	+	550.045 /
1.442	COS(29.	. 0205	52925	Td	+	334.107)
1.409	cos(27	9240	3352	ЬT	+	4 114)
1 277		2.	2710	0710	TI	÷.	007 000)
1.5//	COS	20.	3/13	0110	Id	+	207.296)
1.375	cos(27.	8156	55071	Td	+	132.504)
1 346	0000	28	3211	169/2	ЪТ	1.	1/3 780)
1.010	003(20.	0211	10342	IU TU	T	143.705 /
1.321	COS (32.	2779	97066	Id	+	291.877)
1.285	cos(28.	9498	38869	Td	+	175.205)
1 255	coc(21	7243	21567	TJ	÷	240 100)
1.400	COSI	51.	1443	10616	Id	+	348.122)
1.254	COS(29.	066()1845	Td	$^{+}$	82.678)
1.246	cos(28.	9842	26521	Td	+	358 294)
1 220	000	20	=000	0776	T J		210 400)
1.200	COSI	30.	5900	0110	Id	+	319.490)
1.236	cos(30.	0364	12897	Td	+	30.601)
1 208	cosí	26	4443	36295	Td	1	241 644
1 1 1 0 0	003(20.	11110	0200	m	т	241.044)
1.169	COS (29.	4077	0600	ld	+	180.013)
1.166	cos(27.	8860)5384	Td	+	54,445)
1 153	0001	26	0560	5210	Td	,	250 602)
1.100	CUS	20.	3003	J240	Tu	+	330.003)
1.083	COS(28.	4807	9539	Td	+	2.209)
1.078	cos(27.	3556	52189	ЪТ	+	73 217)
1 072		20	0074	0514	T 1		00.005
1.072	COS	29.	0274	2314	DD	÷	20.665)
1.048	cos(26.	9136	57398	Td	+	108.982)
1.021	0001	32	2642	7250	Td	بلر	15 794)
1 001	000(02.	0710	0070	TI	٣	10.134)
1.021	COS (27.	8748	50978	ld	+	249.393)
1.018	cos(30.	1185	5544	Td	+	204.981)
1 016	0001	20	0730	7817	Td		15 307)
1.010	cust	43.	00100	0117	IU mi	+	10.007 /
1.001	cos(31.	0911	8117	Id	+	28.840)
0.991	cos(28	4284	6562	Td	+	12,161)
0 0.91	0001	31	7250	0000	TJ		20, 205)
0.301	CUSI	51.	1008	0909	Id	+	30.393)
0.973	COS(29.	5216	2960	Td	+	211.518)
0.958	cos(28	5194	2961	ЪТ	+	71,664)
0 0/1	0001	20.	1107	7027	TJ		274 420)
0.941	COSI	20.	440/	1931	DI	+	214.429)
0.922	cos(31.	6377	6645	Td	+	38.196)
0.902	cos(31.	6059	7637	Td	+	208,441)
	,				~ ~~		

0.885	cos(30.67221807	Td	$^+$	147.223)
0.880	cos(27.53311007	Td	+	151.709)
0.878	cos(29.54461060	Td	+	294.155)
0.878	cos(30.61965889	Td	+	108.138)
0.841	cos(26.84302214	Td	+	307.879)
0.830	cos(31.56491540	Td	+	2.380)
0.828	cos(28.59228440	Td	+	287.121)
0.824	cos(30.47616238	Td	+	94.747)
0.805	cos(28.47615797	Td	+	278.595)
0.785	cos(27.45565029	Td	+	143.409)
0.784	cos(26.25538196	Td	+	300.997)
0.776	cos(27.41919536	Td	+	118.634)
0.775	cos(26.76089884	Td	+	133.205)
0.754	cos(30.55829346	Td	+	295.870)
0.726	cos(31.13446410	Td	$^+$	103.347)
0.723	cos(31.06159763	Td	+	73.192)
0.719	cos(26.87041337	Td	+	58.049)
0.713	cos(27.38519207	Td	$^+$	208.746)
0.711	cos(28.93841039	Td	+	313.515)
0.694	cos(31.18214472	Td	+	93.951)
0.684	cos(28.91589383	Td	÷	263.197)
0.677	cos(27.37591064	Td	+	67.779)
0.662	cos(29.07088450	Td	+	321.608)
0.637	cos(27.30306517	Td	+	33.172)
0.635	cos(25.31454806	Td	+	334.267)

6 457 000 (45 6620250	7 T J	171 01		1 (0)	,		0001/00/					
- 0.457 COS(45.00293507	10	+ 174.044		1.431	cos (45	. 08214024	Id	+	200.2	294	,
5.976 COS(42.42383146) Id -	+ 293.888	5)	1.396	cos (43	. 97945963	Td	+	143.8	348	
5.964 cos(40.89998978	3 Td -	+ 300.167	7)	1.363	cos(44	.06623927	Td	+	145.4	101)
5.595 cos(42.92729408	3 Td -	+ 285.247	')	1.361	cos(42	. 38286102	Td	+	137.7	710	1
5.562 cos(40.82713583	Td -	- 265.908	})	1 320	cos	40	35561444	Td	1	165 1	157	1
5 096 cos(44 56490754	Td	95 650)	1 220	0030	46	76006772	TJ	Ŧ	200.1	101	1
4 636 con(42 56270199				1.520	COS	40	. 10090113	10	+	251.4	134	1
4. 404 (41. 84000505		- 137.803		1.317	COS (44	. 48764102	ld	+	131.7	(42))
4.404 cos(41.84082523	Id +	+ 86.954	.)	1.286	cos(42	. 46954682	Td	+	121.0)93)
4.382 cos(44.49205111	. Td +	- 241.686	i)	1.279	cos(41	. 51721728	Td	+	109.3	337)
4.140 cos(43.40109388	Td +	- 277.613)	1.278	cos(45	. 67001698	Td	+	284.6	525)
4.090 cos(45.12297707	Td +	- 148.314	.)	1 263	000	46	77245847	ЪТ		201 1	77	1
4 045 cos(43 98409596	Td	124 410		1 226	003	40	64004571	Tu	Ť	231.1	. / /	2
$3758\cos(42.37270006)$	Ta .	100 004		1.200	COS	44	. 04924571	10	+	172.7	98	2
2 720 (42.37370900	10 +	- 180.024	:)	1. 227	cos (41	. 87945725	Id	+	158.7	55)
3.720 cos(42.02980477	Id +	- 207.644)	1.226	cos(43	. 63114395	Td	+	61.9	92)
3.684 cos(45.12784146	Td +	- 207.947)	1.204	cos(42	.94327190	Td	+	94.5	561)
3.544 cos(41.87481737	Td +	- 358.342)	1.190	cos(44	. 95893164	Td	+	2.5	532)
3.418 cos(42.84523136	Td +	- 280, 820)	1 181	cosí	42	92698070	Тd	1	212 0	161	Ś
$3.304 \cos(43.43973100)$	t bT	349 055)	1 180	cos (13	01612746	Td	1	205 2	117	1
3 215 cos (45 13005131	Td	20 261)	1.100	CUSI	40	07004044	TU	+	303.2	,47	2
$2 211 \cos(42.04100131)$	TU +	00.201)	1.154	cos(40.	97284344	DI	+	334.4	:81)
5.211 COS(42.94106143	1d +	219.526)	1.149	cos(46.	76317764	Td	+	124.8	57)
3.197 cos(45.11635799	Id +	343.420)	1.138	cos(43.	48323768	Td	+	298.5	22)
3.123 cos(42.31455288	Td +	62.481)	1.137	cos(45.	54901554	Td	+	142.2	31)
3.113 cos(46.22100676	Td +	225.507)	1.128	cos(43.	59007731	Td	+	38.3	38)
2.877 cos(41.41257437	Td +	38.359)	1.113	cos	42	53090827	Td	+	289 6	50	ĥ
2,839 cos(44,53311614	Td +	87 996)	1 100	cos (12	80535418	Td		214 0	00	1
2 802 cos (45 66514555	Td	48 074		1,100	0000	42.	03030410	Tu	+	214.9	04	(
2,705 coo (42,26222507	TJ .	224 700)	1.090	COS	40.	03421744	10	+	344.1	03	2
2.755 COS (43.50225507	10 +	334.790)	1.084	cos(40.	75428256	ld	+	231.6	87)
2.792 COS (43.59935974	ld +	25.667)	1.077	cos(44.	14594125	Td	+	35.2	20)
2.752 cos(45.67883851	Td +	325.071)	1.067	cos(41.	44216067	Td	+	19.5	15)
2.609 cos(44.10707716	Td +	272.066)	1.039	cos(42.	54239321	Td	+	282.1	67)
2.586 cos(43.43288563	Td +	313.767)	1.026	cos(44.	65852211	Td	+	161 4	54)
2.515 cos(41.48542964	Td +	72.653)	1 025	cos(46	13666417	ЪТ	+	1/18 3	98	5
$2,446\cos(4613446196)$	Td +	274 152		1.020	cos(40. AA	07207701	Ta	T	140.0	30 . E4	<
2 379 cos (14 64704025	Td -	214.102)	1.014	COSI	44.	01301191	Iu	+	0.0	54 .	2
$2.010 \ cos(44.1427200)$	TU +	290.039)	1.010	cos(43.	08678091	Id	+	313.7	95)
2.232 COS(44.14373026	1d +	161.031)	0.999	cos(45.	58787587	Td	+	262.38	87)
2.225 cos(44.61524865	'I'd +	262.889)	0.953	cos(41.	95231535	Td	+	194.19	96)
2.164 cos(44.53532868	Td +	321.024)	0.949	cos(43.	46246036	Td	+	270.00	09)
2.162 cos(46.14373382	Td +	83.154)	0.949	cos(42.	96601145	Td	+	13.1	17)
2.145 cos(43.51501621	Td +	129.548)	0.937	cos(42.	85672239	ЪТ	+	141 39	56)
2.076 cos(42.49912365	Td +	251,606)	0 932	cosí	46	77025489	ЪТ		58 00	QA 1	Ś
$1.977 \cos(43.48984725)$	Td	102 064)	0.000	2000(11	22044240	TJ	т	202.0.	01	(
1 963 cos(44 07087161	TJ .	102.504)	0.000	COSI	41.	33044246		+	223.30	UI)	/
1.020 cos(41.06020174	Tu +	120.000)	0.004	cos	43.	99095351	Id	+	185.7.	16))
1.939 COS(41.30930174	1a +	346.550)	0.842	cos(40.	94105546	Ίd	+	297.7.	13))
1.877 cos(44.01611455	ld +	32.478)	0.824	cos(42.	30085619	Td	+	145.89	92))
1.875 cos(43.98874068	Td +	309.482)	0.819	cos(44.	56976716	Td	+	152.33	32))
1.859 cos(46.14594441	Td +	316.429)	0.817	cos(42.	45582037	Td	+	195.69	98)
1.859 cos(46.68810954	Td +	217.706)	0.801	cos(45	59449314	ЪТ	+	250 31	24	5
$1.851 \cos(44.10046404)$	Td +	106 654)	0 791	000(12	11656153	Td		214 50	$\overline{00}$	5
1 832 cos(41 98653263	Td i	155 107)	0.701	203(40	20276105	Tu	+	120.00	J3) 02)	(
1 823 cos(42 57418025	TJ .	242 641)	0.701	CUS	40.	20270105		+	130.85	93)	Ľ
1.025 CUS(42.07410055	10 +	342.041)	0.780	cos (44.	44878588	ld	+	187.91	17)	1
1.794 COS (41.88409135	ld +	139.267)	0.771	cos(41.	90218685	Td	+	79.71	16)	1
1.789 cos(44.61746021	Td +	135.649)	0.753	cos(41.	82933378	Td	+	45.07	79)	1
1.712 cos(42.97063515	Td +	352.652)	0.753	cos(45.	05011902	Td	+	114.79	94	1
1.633 cos(42.88850528	Td +	179.225)	0.748	cos	44	65632866	Td	+	103 55	55)
$1.610 \cos(41.80196500)$	Td +	323 940)	0 744	coe(43	00022665	Td	1	336 71	30)	
1 582 cos (46 69032174	Td	01 206		0.725	000(11.	04767000	TJ	Ť	20.73) 17)	
1 570 cos (42 04240074	Tu +	31.430 20 CEA		0.725	COSI	41.	94707280	Id	+	32.82	21)	ſ
1.575 COS (43.04349274	1a +	28.054)	0.724	cos(45.	13225973	Id	+	315.42	22)	I
1.509 COS(43.55608493	ld +	333.495)	0.719	cos(43.	93397711	Td	+	11.13	38)	I
1.469 cos(42.49668865	Td +	327.513)	0.716	cos(44.	02518194	Td	+	316.91	14)	1
1.459 cos(43.54679851	Td +	345.978)	0.714	cos(41.	95474444	Td	+	117.91	10)	1
								-				

Additional Terms

Pnm = 33

Additional Terms

Pnm = 33 (cnt)

200.294) 143.848) 145.401) 137.710) 165.157) 251.434) 131.742) 121.093) 109.337 284.625 291.177 172.798) 158.755) 61.992) 94.561) 2.532) 212.964) 305.247) 334.481) 124.857) 298.522) 142.231) 38.338)

0.692	cos(45.20069297	Td	+	240.974)
0.665	cos(44.45098339	Td	+	244.485)
0.660	cos(44.06846177	Td	+	23.497)
0.659	cos(43.56049540	Td	+	80.846)
0.659	cos(46.77466260	Td	+	167.055)
0.628	cos(45.00463347	Td	+	7.316)

4.129	cos(1.56954980	Td	÷	178.293)
4.120	cos(1.09583037	Td	+	21.538)
3.975	cos(2.19826665	Td	+	29.403)
3.812	cos(2.11392540	Td	+	313.172)
3.416	cos(2.18677914	Td	+	347.339)
2.357	cos(0.55365645	Td	+	302.553)
2.276	cos(0.47152159	Td	+	100.691)
2.086	cos(1.01589981	Td	+	234.728)
1.744	cos(1.10244863	Td	÷	186.004)
1.714	cos(2.74043870	Td	$^+$	288.596)
1.622	cos(0.00441188	Td	+	109.096)
1.525	cos(1.57176033	Td	$^+$	52.924)
1.481	cos(2.74265375	Td	+	161.433)
1.392	cos(2.11613453	Td	+	187.537)
1.261	cos(2.18898780	Td	$^+$	222.040)
1.247	cos(1.08874935	Td	$^+$	269.893)
1.166	cos(2.20047794	Td	$^+$	264.271)
1.080	cos(2.65830174	Td	$^+$	87.983)
1.009	cos(1.64020677	Td	+	156.215)
0.886	cos(0.55586571	Td	$^+$	176.663)
0.878	cos(0.47372645	Td	+	155.752)
0.874	cos(0.46931411	Td	+	47.505)
0.813	cos(0.08214210	Td	$^+$	199.219)
0.778	cos(1.01810154	Td	$^+$	291.108)
0.627	cos(0.08434199	Td	+	256.015)
0.492	cos(0.00220547	Td	+	235.353)

4.	455	cos(12.3	3006	53386	i Td	+	80.767	')
4.	296	cos(12.9	9271	14143	Td	+	57.903)
4.	129	cos(16.6	5834	17045	Td	+	43.649)
3.	848	cos(12.8	3542	28739	Td	+	23.716)
2.	739	cos(13.3	3964	15534	Td	+	283.004)
2.	667	cos(14.4	874	1298	Td	+	68.428)
2.	646	cos(12.2	2984	2317	Td Td	+	206.672)
2.	541	cos(15.5	5125	58811	Td	+	291.640)
2.	537	cos(14.5	695	64571	Td	+	90.187)
2.	507	cos(16.6	856	8101	Td	+	277.659)
2.	309	cos(16.0)569	6323	Td	+	66.256)
2.	299	cos(14.0)251	7270	Td	+	314.975)
1.	927	cos(16.1	435	1329	Td	+	17.609)
1.	911	cos(13.9	386	2468	Td	+	3.585)
1.	865	cos(13.4	800	6825	Td	+	214.067)
1.	822	cos(15.C	454	8112	Td	+	120.251)
1.	538	cos(14.4	988	9917	Td	+	291.847)
1.	530	cos(15.5	876	5125	Td	+	201.866)
1.	418	cos(15.5	832	3368	Td	+	271.244)
1.	407	cos(14.4	944	8307	Td	+	0.827)
1.	391	cos(16.1	298	1369	Td	+	100.847)
1.	391	cos(13.9	523	1691	Id	+	280.683)
1.	342	cos(12.8	405	8653	Id	+	107.947)
1.	213	cos(12.3	827	6258	Id	+	283.117)
1.	050	cos(13.3	893	8084	ld	+	169.897)
0.	953	cos(11.7	562	5832	Id	+	305.813)
0.	933	COS (14.9	589	2917	Id	+	169.671)
0.	040	cos(11.0	291	1349		+	339.990)
0.	010 700	cos (12.3	134	0134	Id	+	114.875)
0.	720	cos(10.0	100	13/5	D L L	+	9.481)
0.	652	cos	17 0	049 070	9209	DI TJ	+	144.247	~
0.1	630	cos	12 2	410 071	3001 7574	DI TJ	+	178.110)
0.	585	cost	16 1	260	0007	DI TJ	+	290.201	~
0.1	573	cos(10.1 17.2	202	0001 1110	Td Td	+	212.000	1
0.1	567	cost	11.2	540	4700	DI LT	+	71 720	
0.1	526	cos	13 /	693	1220	Td	+	316 350	
0.4	498	cos	11 8	260	0245	Td	+	105 804	
0.1	186	cos(12 3	712	7821	ЪТ	+	240 055	
0.4	483	cos(16 6	128	2606	ЪТ	Ť	240.300	
· · ·	100	1000	10.0	140.	4000	1 U	T	440.000	1

3.983	COS (-28	. 437	51934	Td	+	- 294.656)
3.385	cos(28	. 441	93485	Td	+	42.972)
3.307	cos(31	. 180	16114	Td	+	279.914)
3.109	cos(-28	. 430	44880	Td	+	1.813)
2.901	cos(28	. 512	58362	Td	+	23.565)
2.814	cos(30	. 079	93286	Td	+	145.836)
2.785	cos(26	. 797	32455	Td	+	136.883)
2.768	cos(31	. 182	37332	Td	+	153.507)
2.687	cos(27	. 968	20776	Td	$^+$	249.020)
2.455	cos(26	. 870	17882	Td	+	171.102)
2.411	cos(27	. 895	35527	Td	+	214.497)
2.379	cos(27	. 414	55471	Td	+	306.121)
2.239	cos(29	. 539	96711	Td	+	301.872)
2.238	cos(30	. 628	71689	Td	+	211.556)
1.656	cos(29	. 528	47743	Td	+	259.332)
1.174	cos(30	. 086	55429	Td	+	310.241)
1.161	cos(28	. 428	24016	Td	+	127.413)
1.143	cos(29	. 610	61219	Td	+	101.180)
1.142	cos(30.	. 553	65407	Td	+	302.675)
1.039	cos(26.	. 795	11533	Td	+	262.472)
1.038	cos(31.	. 098	02966	Td	$^+$	77.379)
1.022	cos(29.	. 066	24138	Td	+	325.294)
0.915	cos(26.	867	96930	Td	+	296.665)
0.885	cos(27.	412	34338	Td	+	71.296)
0.883	cos(26.	3258	80425	Td	+	36.145)
0.848	cos(31.	1845	58022	Td	+	28.483)
0.847	cos(28.	9796	59499	Td	+	13.298)
0.836	cos(27.	8816	65948	Td	$^+$	297.237)
0.811	cos(31.	7243	53654	Td	+	54.870)
0.769	cos(28.	5103	37640	Td	+	330.218)
0.763	cos(27.	4238	33271	Td	+	114.180)
0.754	cos(28.	3575	59707	Td	+	327.288)
0.710	cos(28.	5147	78863	Td	$^+$	78.675)
0.703	cos(27.	966(0109	Td	+	194.160)
0.680	cos(31.	7267	74841	Td	+	288.425)
0.633	cos(27.	893]	14338	Td	+	160.926)
0.626	cos(28.	9933	38728	Td	+	292.371)
0.623	cos(31.	1708	38062	Td	+	112.036)
0.600	cos(30.	0000)0728	Td	+	358.471)
0.535	cos(27.	8975	5988	Td	+	270.015)
0.448	cos(29.	6128	32267	Td	+	335.690)

3.683	cos(43.55364928	Td	+	214.616)
3.387	cos(43.00927553	Td	+	79.306)
3.375	cos(43.48300449	Td	+	55.761)
3.047	cos(42.93641983	Td	+	45.460)
2.138	cos(41.36687074	Td	+	47.130)
2.080	cos(44.56954923	Td	+	90.073)
1.826	cos(43.39866189	Td	+	338.544)
1.719	cos(43.47859472	Td	+	124.987)
1.523	cos(44.57882430	Td	+	258.156)
1.519	cos(45.66757459	Td	+	168.038)
1.462	cos(45.12761644	Td	+	141.455)
1.143	cos(43.46930265	Td	+	139.285)
1.124	cos(41.29401684	Td	+	12.901)
1.049	cos(42.92273015	Td	+	128.372)
1.009	cos(41.83618499	Td	+	272.802)
). 968	cos(44.58103394	Td	+	131.952)
).966	cos(42.46489978	Td	+	304.176)
).965	cos(45.66978547	Td	+	42.009)
0.910	cos(42.85428659	Td	+	203.522)
). 895	cos(41.90903716	Td	+	307.602)
). 868	cos(42.45341339	Td	+	82.539)
). 749	cos(45.04106881	Td	+	190.420)
). 745	cos(44.02958795	Td	+	244.720)
0.696	cos(43.55585893	Td	+	89.876)
). 606	cos(42.88607401	Td	+	240.306)
). 533	cos(45.12100163	Td	$^+$	335.925)
0.518	cos(42.93862977	Td	+	281.108)
). 505	cos(40.82249563	Td	+	272.152)
). 497	cos(46.22122594	Td	+	111.352)

4.332	cos(57.42162770	Td	+	58.637)
3.945	cos(56.40793747	Td	+	238.045)
3.366	cos(58.43972893	Td	+	169.504)
3.096	cos(58.52407178	Td	+	65.814)
2.075	cos(56.33508367	Td	$^+$	203.799)
1.874	cos(60.16426590	Td	+	44.316)
1.680	cos(57.89535319	Td	+	34.502)
1.632	cos(60.16647783	Td	+	277.764)
1.591	cos(59.06403799	Td	+	270.302)
1.366	cos(59.07064381	Td	+	75.722)
1.361	cos(58.59471583	Td	+	225.720)
1.237	cos(58.05034603	Td	÷	90.434)
1.125	cos(57.97748749	Td	+	56.514)
1.119	cos(57.92714268	Td	$^+$	71.209)
1.042	cos(58.51037523	Td	+	148.816)
0.998	cos(58.00927615	Td	+	246.711)
0.933	cos(55.86356230	Td	+	103.052)
0.917	cos(56.87725659	Td	+	282.737)
0.820	cos(56.95010626	Td	+	317.943)
0.807	cos(57.49447708	Td	+	94.002)
0.771	cos(59.61061372	Td	+	101.166)
0.762	cos(58.04106106	Td	+	103.091)
0.748	cos(56.48079134	Td	+	272.299)
0.746	cos(56.99337757	Td	$^+$	10.539)
0.719	cos(57.46489484	Td	$^+$	111.317)
0.692	cos(57.38276750	Td	+	296.163)
0.636	cos(58.59692626	Td	+	100.014)
0.519	cos(57.53775160	Td	+	145.494)
0.482	cos(55.93641626	Td	+	137.322)