グラウチングによる岩盤の力学的改良効果 に関する実験的研究

2011年

一目 次一

第1	章	序論	•••	• • • •	••••	••••	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •	••••	• • • • •	•••	•••	•••	1
	1.1	研究	己の背	景・	• • • •	••••	• • • •	• • • •	• • • •	• • • •	• • • •	••••	••••	• • • • •	•••	••••	•••	1
	1.2	グラ	・ウチ	ング	に関	する	用語	の定	義お	よび	分類	•••	••••	• • • • •	•••	••••	•••	4
	1	.2.1	グラ	ウチ	ング	に関	する	用語	の定	義・	• • • •	••••	••••	• • • • •	•••	••••	•••	4
	1	.2.2	グラ	ウチ	ング	に関	する	分類	•••	••••	• • • •	••••	••••	• • • • •	•••	•••	•••	5
		(1)コン	ソリ	デー	ショ	ング	ラウ	チン	グ・	• • • •	• • • •	••••	• • • • •	•••	••••	•••	5
		(2)カー	テン	グラ	ウチ	ング	•••	• • • •	• • • •	• • • •	• • • •	••••		•••	••••	•••	7
		(3)ブラ	ンケ	ット	グラ	ウチ	ング	•••	• • • •	• • • •	••••	••••	• • • • •	•••	• • • •	• • • •	8
	1.3	グラ	ラウチ	ング	に関	する	現状	と課	題・	• • • •	• • • •	• • • •	••••	• • • • •	•••	• • • •	•••	9
	1.4	グラ	ヮウチ	ング	によ	る岩	盤の	力学	的改	良効	果に	関す	る既行	往の福	开究・	•••	•••	17
	1	.4.1	平板	載荷	試験	によ	る検	討·	••••	• • • •	••••	••••	••••	• • • • •	•••	••••	•••	17
	1	.4.2	水室	試験	によ	る検	討・	• • • •	• • • •	• • • •	• • • •	• • • •	••••	• • • • •	•••		•••	18
	1	.4.3	弾性	波探	査に	よる	検討	••••	••••	••••	• • • •	• • • •	••••	• • • • •	•••	••••	•••	18
	1	.4.4	孔内	載荷	試験	によ	る検	討·	••••	• • • •	••••	• • • •	••••		•••	••••	• • • •	19
	1.5	本諸	鈫の	目的	•••	• • • •	• • • •	• • • •	••••	• • • •	• • • •	••••	••••	• • • • •	•••	• • • •	• • • •	20
	1.6	本諸	鈫の	内容	構成	•••		• • • •	• • • •	• • • •	• • • •	• • • •	••••	• • • • •	•••		•••	21
	1.7	本章	ぽの結	:論··	••••	••••		• • • •	• • • •	• • • •	• • • •	• • • •	••••		•••		•••	24
	参考	文献		• • • •	••••	••••	• • • •	• • • •	••••	••••	• • • •	••••	••••		•••		•••	25

第2章 グラウチングによる岩盤の力学的改良効果に関する確認試験の方法・・・・ 27

2.	1 原位	立置における確認試験の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 27
	2.1.1	グラウト注入孔における岩盤試験・・・・・・・・・・・・・・・・・・・・・・ 27
	2.1.2	チェック孔における岩盤試験・・・・・・・・・・・・・・・・・・・・・・ 33
	2.1.3	孔間弾性波試験・・・・・ 35
	2.1.4	原位置で適用した岩盤試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・36
	(1	1)孔内載荷試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	(2	2)孔内打擊応答試験・・・・・ 43
	(3	3)孔間弾性波試験······ 45
	2.1.5	確認試験の適用サイト・・・・・・・・・・・・・・・・・・・・・・・・・ 46

2.2 室区	内における確認試験の方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 47
2.2.1	節理面のラフネスを考慮したせん断試験方法 ・・・・・・・・・・ 47
2.2.2	節理面の連続性を考慮したせん断試験方法 ・・・・・・・・・・ 49
2.2.3	節理面の挟在物を考慮したせん断試験方法 ・・・・・・・・・・ 50
2.3 本重	章の結論・・・・・・・・・・・・・・・・・・・・・・・・・ 51
参考文献	52

第3章 グラウチングによる岩盤の変形特性に関する改良効果の定量的評価・・・・ 55

3.1 岩盤の固密化に関する検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.1 グラウト注入孔における岩盤試験による検討 ・・・・・・・・・ 5
(1)岩盤等級区分ごとの固密化に関する検討 ・・・・・・・・・・ 5
(2)岩種ごとの固密化に関する検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.2 チェック孔における岩盤試験による検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.3 孔間弾性波試験による検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 岩盤の均質化に関する検討 ····································
3.3 岩盤の一体化に関する検討 7
3.4 孔内打撃応答試験による改良効果の簡易評価方法に関する検討・・・・・ 7
3.5 本章の結論・・・・・・ 7
参考文献

第4章 グラウチングによる岩盤の強度特性に関する改良効果の定量的評価 ・・・ 75

4.1	原位	z置試験による強度特性に関する改良効果の定量的評価・・・・・・・ 75
4.2	室内	9せん断試験による強度特性に関する改良効果の定量的評価・・・・・・76
4	.2.1	節理面のラフネスとせん断強度との関係・・・・・ 76
4	.2.2	節理面の連続性とせん断強度との関係・・・・・ 79
4	.2.3	節理面の挟在物とせん断強度との関係・・・・・ 81
4.3	本章	ぎの結論・・・・・・・・・・・・・・・・・・・・・・・ 82
参考	文献	

第5章 グラウチングによる岩盤の力学的改良効果を考慮したダム基礎設計方法の構築 ・・・・・・・・・・・・・・・・・・・・・・・・・85

5.1	岩盤の力学的改良効果を考慮した設計せん断強度の設定方法・・・・・・・	85
5.2	岩盤の力学的改良効果を考慮したダム基礎設計方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
5.3	本章の結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
参考	文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92

第6章	グラウチングによる岩盤改良の高度化を目的としたダム基礎の調査・
	設計・施工システムの構築 ・・・・・ 93
6.1	ダム建設における既往の調査・設計方法・・・・・・・・・・・・・・・・ 93
6.2	グラウチングの調査・設計方法に関する課題・・・・・・・・・・・・ 97
6	.2.1 グラウト注入孔の削孔方向に関する課題・・・・・・ 97
6	.2.2 グラウチング施工時における水みちの評価に関する課題・・・・・101
6.3	グラウチングによる岩盤改良の高度化を目的とした調査・設計・施工
	システムの提案・・・・・103
6.4	水理地質構造の評価にもとづく最適注入システムの構築・・・・・104
6	.4.1 節理密度ダイアグラムを用いたグラウト注入孔の最適方向の決定方法
	104
	(1)節理密度ダイアグラム・・・・・104
	(2)ダムサイトにおける評価事例・・・・・・・・・・・・・・・・・・・・・107
	(3)試験施工によるグラウト注入孔の最適方向の決定方法・・・・・・・111
6	.4.2 地球統計学的解析を用いた水理地質構造の評価方法・・・・・112
6.5	グラウチングによる岩盤の力学的改良効果に関する評価システムの構築
6	.5.1 最終段階調査におけるグラウチング試験施工方法・・・・・116
	(1)孔内載荷試験結果を用いた調査・設計・・・・・・・・・・・・・・・・・・・・・・116
	(2)孔内打撃応答試験機を用いた簡易評価・・・・・・・・・・・・・・・・・・117
6	.5.2 施工段階における情報化設計・施工方法・・・・・・118
	(1)堤体基礎掘削時におけるダム基礎安定性評価・・・・・・・118
	(2)孔内打撃応答試験機を用いた情報化設計・施工・・・・・・119
6.6	本章の結論······121
参考	文献 ••••••••••••••••••••••122

第1章 序論

1.1 研究の背景

グラウチングは、ダム基礎岩盤などでボーリング孔を削孔し、当該孔から水とセメ ントを混合した注入材料であるグラウトを圧入する工法(写真-1.1.1参照)であり、岩 盤内の割れ目などの空隙にセメントを充填することにより、岩盤の力学的特性および 遮水性を改良することを目的とする.この工法は、従来からダム基礎岩盤やトンネル・ 地下空洞周辺岩盤などの改良に広く適用されており、近年、良好な地質状況における 土木・岩盤構造物の建設サイトが少なくなるとともに、放射性廃棄物地層処分空洞の 遮水性改良工事などにおいて品質に対する要求が厳しくなる中で、その重要性はより 高まっている¹⁾²⁾³⁾.

写真-1.1.1 ダム基礎岩盤におけるグラウチング施工状況

グラウチングによる岩盤の力学的な改良は、岩盤中の割れ目にセメントを充填する ことにより、変形特性および強度特性を向上させることで得られるものであり、これ により改良対象である基礎岩盤全体の「固密化」(割れ目にセメントを充填することに より力学的特性を向上させること)、「均質化」(力学的特性に関する物性値全体のば らつきを小さくすること)、「一体化」(割れ目にセメントを充填することにより連続 体に近づけること)を図ることを目的とする.しかしながら、現状の実施工時におけ る改良効果の確認については、全ての注入孔でルジオン試験を実施することにより遮 水性に関する確認を行っているものの、試験規模が大きくなる力学的改良効果の確認 については具体的な方法が確立されていない.

また,既往の力学的な改良効果に関する研究については,1959年にフランスのマル パッセダムで発生した片理面と断層に沿った基礎岩盤のせん断破壊に伴う決壊事故⁴⁾ (図-1.1.1参照)後,1960年代の一時期行われた⁵⁾⁶⁷⁾⁸⁾.しかしながら,岩盤の性質が 複雑かつ多様であること,原位置における簡易な岩盤試験が開発されていなかったこ となど種々の原因が妨げとなり,改良効果に関する定量的評価を詳細に実施するまで には至らなかった.その後も,各種岩盤試験法の進歩は図られたものの,力学的改良 効果を確認するための岩盤試験が実施された事例は少なく,特に土木・岩盤構造物の 設計において最も重要な物性値の一つである強度特性に関する検討事例は認められな い⁹⁾¹⁰.

図-1.1.1 マルパッセダム基礎岩盤破壊の概念^{4)に加筆}

このため、ダム基礎におけるコンソリデーショングラウチングなど、力学的な改良 を目的とした多数の施工事例があるものの、岩盤の固密化、均質化、一体化に関する 改良効果については現在においても土木・岩盤構造物基礎の設計に考慮されていない. これについては、上述した技術的な背景とともに、公共事業におけるコスト縮減が不 可欠である状況¹¹⁾などを考慮すると、グラウチングの主目的の一つである岩盤の力学 的特性に関する改良効果を定量的に評価し、その効果を設計・施工に反映することが 重要であると考えられる.

以上の背景に鑑み、本論文においては、グラウチングによる岩盤の力学的改良効果 を原位置試験および室内試験により定量的に確認し、その改良効果を考慮するための 調査・設計・施工システムを構築することを主たる内容とする.

本章においては、本論文を進めるにあたって、まず、1.2 節において本論文で用いる 用語を定義するとともにグラウチング工法について概括することで、本論文の適用対 象を明確にする.その後、1.3 節においてグラウチングに関する現状と課題を整理する とともに、1.4 節において既往の研究を総括した上で、1.5 節において本論文の研究目 的、1.6 節において本論文の内容構成を示す.

1.2 グラウチングに関する用語の定義および分類

グラウチングに関連する基本的な用語については,重複,混同して使用されている 場合が多く認められるため,ここでは本論文で使用する用語を明確に定義する.さら に,土木・岩盤構造物において実施されるグラウチングを分類し,本論文の適用範囲 を明確にする.

1.2.1 グラウチングに関する用語の定義

グラウチング

上述したようにグラウチングは、地中にボーリング孔を削孔し当該孔からセメント と水を混合した注入材料であるグラウトを圧入する工法であり、岩盤内の割れ目など の空隙にセメントを充填することにより、岩盤の力学的特性および遮水性を改良する ことを目的とするものである.

従来,注入(injection)は、グラウチング(grouting)の同義語として使われてきた. また,国際岩の力学学会(International Society of Rock Mechanics:以下,ISRMと呼称) の岩盤グラウチングに関する委員会(Commission of Rock Grouting)が編集した最終報 告書(Final Report)¹²⁾において、グラウチングは下記のように定義されている.

「グラウチングは、土壌や岩盤の空隙、岩盤の節理、またはコンクリートの亀裂を充 填することである.」

本論文ではこの定義に従う.

グラウト

従来,「グラウト」と「注入」および「グラウチング」は混同して使われているこ とが多かったが,「グラウト」はグラウチングにおける材料を意味し,「グラウチン グ」および「注入」は「充填」したり「注入」したりするといった行為を表現する用 語である.よって本論文では,「グラウト」を次のように定義する¹³⁾.

「グラウトはグラウチングにおけるセメントと水を混合した注入材料である.」

1.2.2 グラウチングに関する分類

ダム基礎における主たるグラウチングは,

(1)コンソリデーショングラウチング

(2)カーテングラウチング

(3)ブランケットグラウチング

に分類されており、これらの工法は各種土木・岩盤構造物における基礎岩盤の改良に 応用されている.以下に、これらのグラウチングの目的と具体的な内容について、平 成15年に改訂された「グラウチング技術指針・同解説」¹⁴⁾の記載内容に準じて整理す る.

(1) コンソリデーショングラウチング

コンソリデーショングラウチングは、図-1.2.1、図-1.2.2 に示すように、コンクリー トダムの着岩部付近において、基礎上流側に設定されるカーテングラウチングととも に遮水性の改良を目的とするものと、基礎下流側も含め断層・破砕帯などの弱部を補強 することを目的とするものの2種類に分類される.

<コンクリートダム>

図-1.2.1 コンクリートダムにおけるグラウチング工¹⁴⁾

図-1.2.2 コンソリデーショングラウチングの設計事例¹⁵⁾

ダム建設において所要の貯水機能を確保するためには, 湛水池に接する堤体上流側 の基礎岩盤における浸透流路長が短い部分の遮水性を改良することが重要である.こ のため,重力式コンクリートダムでは,図-1.2.1,図-1.2.2 に示すように,基礎上流端 から基礎排水孔までを対象に遮水性の改良を目的とした注入孔が設定される.また, コンクリートダムの着岩部において断層・破砕帯・強風化岩・変質帯などの弱部が分 布し,湛水時など基礎岩盤に作用する鉛直力およびせん断力が大きくなる場合などに, 基礎岩盤の不均一な変形や断層・破砕帯に沿ったせん断破壊などが懸念される.これ に対して,上述した地質不良箇所が分布する範囲に限定して,力学的な改良を目的と する弱部補強の注入孔が計画される¹⁴⁾.

なお孔間隔については、図-1.2.2の孔配置図の例に示すように、施工の初期段階で実施される1次孔の間隔が4~6m程度で設定されており、図中の1次孔を結んだ点線に 囲まれた正方形を1つの施工単位とし、その中央の2次孔まで施工する事例が多い¹⁴⁾.

(2) カーテングラウチング

図-1.2.1,図-1.2.3 に示すように,湛水池からの浸透流が最も通りやすいダム基礎岩盤上流端と,その両翼の左右岸地山部を示すリム部における岩盤の遮水性を改良することを目的として実施する,孔長の比較的長いグラウチングがカーテングラウチングである.なお,カーテングラウチングのうち,リム部を対象とするグラウチングを特にリムグラウチングと呼ぶことがある¹⁴⁾.

図-1.2.3 カーテングラウチング工の設計事例¹⁶⁾

この工法は、図-1.2.3 に示すように、グラウチングにより連続したグラウトカーテン を形成することにより、基礎岩盤上流端における浸透経路を長くし浸透流を抑制する ものであり、ダム基礎における揚圧力の増大や過大な流速およびパイピングなどの影 響を軽減することを目的とする.また、孔配置については、図-1.2.4 に示すような単列 で孔間隔 1.5~3.0m程度で設定される場合が多いが、基礎岩盤の地質状況、透水性状に 応じて、複数列のグラウトカーテンを形成したり、図-1.2.1 に示すようにグラウトカー テンの上流側で補助カーテンが計画されることもある¹⁴⁾.

図-1.2.4 カーテングラウチングの孔配置事例

(3) ブランケットグラウチング

図-1.2.5 に示すように、ロックフィルダムのコア着岩部付近を対象に、カーテングラ ウチングとともに遮水性を改良することを目的として実施する、孔長の比較的短いグ ラウチングをブランケットグラウチングという.

ロックフィルダムの堤体および基礎地盤の安定性を確保し,併せて所要の貯水機能 を確保するためには,基礎地盤においてコア着岩部付近の遮水性を改良することによ り浸透流を抑制する必要がある.これに対して,この部分を上下流方向で広範囲に改 良することにより,遮水ゾーンの基礎岩盤を水密性にして浸透流抑制を図るとともに, カーテングラウチングの効果を高めることを目的に実施される¹⁴.

図-1.2.5 ロックフィルダムにおけるグラウチング工¹⁴⁾

上述したようにグラウチングは,基礎岩盤における遮水性と力学的特性の改良を目 的として実施される.これに対して本論文においては,岩盤の力学的特性の改良を主 目的の一つとするコンソリデーショングラウチングを研究の適用対象とする.

1.3 グラウチングに関する現状と課題

ダム基礎におけるグラウチングに関する技術指針である「グラウチング技術指針・ 同解説」は、上述したように、平成15年に改訂された¹⁷⁾.これは、ダムの安定性を損 なわないことを前提として、①グラウチング本来の施工目的・施工範囲の明確化、②基 礎地盤の状況に適したグラウチングの実施、③施工状況に応じたグラウチング仕様の 継続的な見直しを基本的な柱として、仕様規定から性能規定への流れを反映する中で、 グラウチングの施工コスト縮減を目的としている¹⁷⁾.

本論文で研究対象とするコンソリデーショングラウチングは,技術指針が改訂され る以前には,基礎岩盤における力学的な改良を主目的として施工されていた.また, その施工範囲については,指針改訂後,図-1.2.1,図-1.2.2 に示すように,遮水性の改 良を主目的としてダム基礎上流側に集中して設定されているのに対し,旧指針におい ては図-1.3.1 に示すように基礎全面で施工されていた¹⁸⁾.これは,上述したフランスの マルパッセダムで発生した湛水時における基礎岩盤のせん断破壊に伴う決壊などの事 例を受け,ダム基礎の安定性確保を重要視していたためであると考えられる¹⁹⁾.

図-1.3.1 旧技術指針に準じたコンクリートダムにおけるグラウチング工¹⁸⁾

しかしながら、グラウチングによる岩盤の力学的改良効果に関する評価については、 後の 1.4 節における既往の研究で示すように、検討事例数自体が少ないとともに、原 位置試験の量的制約から必ずしも多くのデータが得られていないこともあり、詳細に 定量的な評価を実施するまでには至っていない²⁰⁾.また、現状の施工段階における改 良効果の確認については、遮水性に関してのみ全孔でルジオン試験などの透水試験を 実施することにより、施工の進捗に伴う改良の程度を定量的に評価している.これに 対して力学的な改良効果の確認については、原位置岩盤試験の規模が大きいため施工 サイクルに組み込めないなどの理由から、旧指針適用時はもちろんのこと、現在にお いても具体的な評価方法が確立されていない²¹⁾.

っまり,力学的な改良効果に関する評価については,遮水性の改良効果を確認する ことで岩盤の割れ目にセメントが充填されていると推定し,それをもって力学的にも 改良されていると定性的に判断されてきた.このため,旧指針適用時から現在に至る まで,力学的な改良をグラウチングの主目的の一つとしているにも関わらず,その改 良効果が定量的に評価されていないとともに,基礎岩盤における物性値の上昇がダム 基礎設計に考慮されていない²¹⁾.

実際にダム基礎の安定性を評価する際には、次式に示すような基礎岩盤のせん断破 壊に対する計算式を用いて検討を実施する²²⁾.

$$\frac{\tau_0 \bullet L + f \bullet V}{H} \ge 4.0 \tag{1.3.1}$$

τ₀: 基礎岩盤の純せん断強度
L: ダム底面の長さ
f: 基礎岩盤内の内部摩擦係数(tanφ)
V: ダム底面に作用する鉛直力(主に堤体荷重)
H: ダム底面に作用するせん断力(主に水圧)

この式はヘニーの式と呼ばれ、ダム基礎に作用する鉛直力やせん断力に対して基礎 岩盤が有する強度特性の比を算出するものであり、日本においてはこのせん断破壊に 対する安全率は 4.0 以上と定められている²²⁾. これに対して、基礎岩盤の割れ目にセ メントを充填することにより向上すると想定される、岩盤の変形特性、強度特性に関 する物性値の上昇量を定量的に評価することができれば、式(1.3.1)のτ₀とfに作用し、 安全率の上昇に寄与することができると考えられる.

上述した安定計算に用いる基礎岩盤のせん断強度については、表-1.3.1に示す既往の 調査・試験結果より得られた岩盤等級区分ごとの物性値が概略設計に適用される²³⁾と ともに、ダムサイトごとに調査横坑内で実施される原位置せん断試験²⁴⁾結果や他ダム の設定事例などをもとに、表-1.3.2に示すような詳細設計に用いる設計値が評価される. なお、この設計値については、表-1.3.2に示すAダムの事例のように岩盤等級区分ごと に設定される場合が多いが、BダムのC_M級のように複数に細区分される場合もある.

岩盤等級	変形	特性	強度	硝性波速度		
区分	変形係数 (MPa)	静弹性係数 (MPa)	粘着力 (MPa)	内部摩擦角 (°)	(km/s)	
B~C _H 級	2,000 以上	4,000以上	2.0 以上	40 以上	3.0以上	
C _M 級	2,000~500	4,000~1,500	2.0~1.0	45~30	3.0~1.5	
$C_L \sim D \&$	500以下	1,500以下	1.0以下	38~15	1.5 以下	

表-1.3.1 既往の岩盤等級区分から想定される物性値の範囲²³⁾

表-1.3.2 ダムサイトにおけるせん断強度設計値の例^{25), 26)}

岩級	A ダム 高さ 125m 重力式ダム 地質 花崗岩	B ダム 高さ 100m 重力式ダム 地質 玄武岩,安山岩,凝灰岩
B 級	C=3.00, φ=55°	_
C _H 級	C=2.30, φ=48°	C=2.50, $\phi = 50^{\circ}$
См級	C=1.90, φ=43°	$\begin{array}{ll} C_{M1} : C=1.90, & \phi = 45^{\circ} \\ C_{M2} : C=1.59, & \phi = 45^{\circ} \\ C_{M3} : C=1.20, & \phi = 45^{\circ} \end{array}$
C _L 級	C=1.10, φ=39°	C=0.79, φ=35°

c:粘着力(MPa)、φ:内部摩擦角

これらの設計値の設定根拠である,各ダムで実施される原位置せん断試験結果の一 例を示した図-1.3.2をみると,調査横坑内で岩盤等級区分ごとに3~4箇所で試験が実施 されており,その結果をもとに設計に用いるせん断強度が設定される.そして,一般 的なダム基礎設計検討時には,図-1.3.3に示すように基礎部をダム軸方向で15mに区切 ったブロックに分け,基礎に作用する鉛直力およびせん断力とその箇所に分布すると 想定される基礎岩盤の物性値をもとに安定計算を実施し,表-1.3.3に示すようなブロッ クごとのせん断破壊に対する安全率を算出する.このうち,各ブロックにおける基礎 岩盤のせん断強度に関しては,地質調査結果より想定される図-1.3.3に示すようなダム 基礎における岩盤等級区分図を作成し,表-1.3.2に示した岩盤等級区分ごとの設計値に その面積比を掛け合わせることにより,表-1.3.3に示す各ブロックにおける合成せん断 強度として評価される.

図-1.3.2 原位置せん断試験結果の一例(Aダム)²⁶⁾

図-1.3.3 堤体基礎面における岩盤等級区分図(Bダム)²⁷⁾

						岩級区分	(比率)			合成せん	も断強度		せん断	安全率		
ブロック	基礎標高 (EL.m)	鉛直力 (kN)	水平力 (kN)	CM級 1.90MPa 1.00 (45°)	CML級 1.59MPa 1.00 (45°)	CML'級 1.20MPa 1.00 (45°)	CL級 0.79MPa 0.70 (35°)	CL'級 0.33MPa 0.32 (18°)	D級 0.00MPa 0.00 (0°)	το (MPa)	f	7ィレット 設置標高 (EL.m)	フィレット 無し	フィレット 有り	ブロック	備考
BL1	223.2	1070.6	46.2	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.790	0.700		60.170	-	BL1	
BL2	216.1	1807.0	511.1	0.0%	0.0%	0.0%	100.0%	0.0%	0.0%	0.790	0.700		14.620	-	BL2	
BL3	203.1	5015.9	2641.4	23.4%	0.0%	0.0%	76.6%	0.0%	0.0%	1.049	0.770		8.400	-	BL3	
BL4	189.8	10558.7	6532.4	96.9%	0.0%	0.0%	3.1%	0.0%	0.0%	1.865	0.990		9.400	-	BL4	
BL5	174.8	20924.4	17500.8	73.2%	26.8%	0.0%	0.0%	0.0%	0.0%	1.816	1.000		5.850	-	BL5	
BL6	164.5	29438.9	22899.3	76.2%	23.8%	0.0%	0.0%	0.0%	0.0%	1.826	1.000		5.331	-	BL6	
BL7	150.8	42897.4	33849.0	70.0%	10.7%	0.0%	15.9%	3.5%	0.0%	1.637	0.929	159.00	4.049	4.352	BL7	
BL8	137.0	56928.3	49076.8	64.5%	29.2%	0.0%	6.2%	0.1%	0.0%	1.739	0.980	159.00	3.525	4.150	BL8	
BL9	137.0	55147.9	48929.8	60.0%	24.7%	11.6%	3.2%	0.5%	0.0%	1.698	0.987	159.00	3.447	4.063	BL9	
BL10	134.9	53985.1	48468.0	63.8%	20.9%	15.3%	0.0%	0.0%	0.0%	1.728	1.000	154.00	3.523	4.078	BL10	
BL11	129.5	63114.3	49476.3	59.0%	26.2%	14.8%	0.0%	0.0%	0.0%	1.715	1.000	148.00	3.606	4.154	BL11	
BL12	129.5	63114.3	49476.3	83.7%	13.0%	3.4%	0.0%	0.0%	0.0%	1.837	1.000	148.00	3.784	4.358	BL12	
BL13	136.9	53347.2	45284.8	64.5%	35.5%	0.0%	0.0%	0.0%	0.0%	1.789	1.000	155.00	3.831	4.351	BL13	
BL14	150.5	32463.1	41909.3	54.1%	45.9%	0.0%	0.0%	0.0%	0.0%	1.757	1.000	162.00	3.731	4.055	BL14	
BL15	158.0	24058.0	39307.5	67.8%	30.4%	1.8%	0.0%	0.0%	0.0%	1.793	1.000	162.00	3.954	4.077	BL15	
BL16	158.0	29268.7	34369.9	76.6%	17.1%	6.3%	0.0%	0.0%	0.0%	1.802	1.000		4.244	-	BL16	
BL17	164.0	26171.5	32912.7	66.2%	28.3%	5.5%	0.0%	0.0%	0.0%	1.773	1.000		4.339	-	BL17	
BL18	167.0	24775.8	31626.4	71.5%	28.5%	0.0%	0.0%	0.0%	0.0%	1.811	1.000		4.545	-	BL18	
BL19	167.0	28623.6	22032.7	56.6%	27.0%	0.0%	8.3%	0.0%	8.2%	1.570	0.894		4.708	-	BL19	
BL20	174.7	19456.8	9575.8	81.4%	12.0%	0.0%	3.4%	0.0%	3.2%	1.764	0.957		8.354	-	BL20	
BL21	185.7	8569.5	2496.9	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.900	1.000		21.998	-	BL21	
BL22	199.5	6327.3	3521.8	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.900	1.000		12.650	-	BL22	
BL23	216.7	1711.3	449.0	100.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.900	1.000		35.020	-	BL23	

	表-1.3.3	ダム基礎の各ブロ	ックにおける	安定計算結果の一例	(Bダム) ²
--	---------	----------	--------	-----------	--------------------

上述したような検討により、例えば図-1.3.4に示す堤高100m程度のダムの事例のよう に、堤高が40m程度以下の箇所であれば作用力が比較的小さいためC_L級岩盤で安全率 4.0を確保できるが、堤高が40m程度以上になる箇所においてはC_M級岩盤を基礎とする 必要があるといった検討結果が得られ、全体の堤体基礎掘削形状が決定される.また、 図-1.3.3に示したBL7~BL15の河床部などにおいては、その基礎岩盤に作用する水圧な どのせん断力が他のブロックと比較して大きくなるため、図-1.3.5に示すように、堤体 基本三角形の上流側にフィレットを付加し堤体の設置面積を広くすることにより、必 要安全率4.0を確保する方法が採用される²⁸⁾. 写真-1.3.1はダム現場における堤体打設工 事の状況を示すものであるが、上述したような方法により、点線で示したダム基礎に 所要の岩盤が分布するよう基礎掘削面が設計されるとともに、それと隣接する箇所に 掘削のり面が設定され、その安定性を確保するためにのり面保護工が計画される.

図-1.3.4 既往のダム基礎設計事例模式図

図-1.3.5 堤体の基本三角形とフィレット²⁸⁾

写真-1.3.1 ダム現場における堤体打設施工状況

これに対して、グラウチングによる岩盤の力学的な改良効果について、例えば C_L 級岩盤が C_M 級岩盤相当の物性値まで上昇することが定量的に評価できれば、その効果を 堤体基礎設計に考慮することにより、図-1.3.4の点線に示すように、既往の設計よりも 上部に基礎を設定できると考えられる.そして上述した検討が実現すれば、以下に示 す項目の施工数量を低減することが可能となる.

①堤体基礎掘削体積の低減
②堤体コンクリート体積の低減
③堤体周辺部掘削体積の低減
④原石山掘削体積の低減

ここで表-1.3.4 に,上述した 4 つの項目が実現した場合に付随して得られる効果をダ ム建設に関わるQ(品質)・C(経済性)・D(工程)・S(安全性)・E(環境への配慮) の項目に分けて整理する.これをみると,施工数量削減に伴う工事費削減と工期短縮 を実現できるとともに,のり面規模縮小による安定性向上,自然改変の最小化など, あらゆる側面を改善できることがわかる.このように,岩盤の力学的効果を考慮した 設計を実現することにより,改訂指針の趣旨に沿ったより効率的かつ効果的なダム建 設に寄与できると考えられる²⁹⁾.

	項目	Q (品質)	C (経済性)	D (工程)	S (安全性)	E (環境)
1	堤体基礎掘削体積の	0	0	0	0	0
	低減	(のり面の	(工事費削減)	(工期短縮)	(のり面の	(自然改変縮小)
		安定性向上)			安定性向上)	
2	堤体コンクリート		0	0		0
	体積の低減	—	(工事費削減)	(工期短縮)	—	(原石山自然
						改変縮小)
3	堤体周辺部掘削体積	0	0	0	0	0
	の低減	(のり面の	(工事費削減)	(工期短縮)	(のり面の	(自然改変縮小)
		安定性向上)			安定性向上)	
4	原石山掘削体積の	0	0	0	0	0
	低減	(のり面の	(工事費削減)	(工期短縮)	(のり面の	(自然改変縮小)
		安定性向上)			安定性向上)	

表-1.3.4 岩盤の力学的改良効果を考慮することにより得られる効果

なお、上述した技術指針改訂に伴う施工数量削減の影響を受け、改訂後に施工した ダムにおいて、改訂前のダムと比較して基礎排水量の多い事例が確認されている³⁰⁾. これに対しては、例えばダム基礎の広範に高透水部が想定される場合などにおいて、 旧指針に準じた孔配置により透水性状の改良を確実に実施する必要がある.このよう に適材適所に注入孔を設定することにより、基礎岩盤の遮水性に関する品質は向上す るもののグラウチング施工費は増大することになるが、力学的な改良効果を考慮する ことによる工事費の削減などを併せて検討することができれば、QCDSE全体のバラン スを考慮した最適なダム建設を実現できると考えられる.

1.4 グラウチングによる岩盤の力学的改良効果に関する既往の研究

グラウチングによる岩盤の力学的改良効果については、上述したように、ルジオン 試験などの原位置透水試験により、遮水性の改良効果を確認することで岩盤内の割れ 目にセメントが充填されていると推定し、それをもって力学的にも改良されていると 定性的に判断されてきた.これに対して事例は少ないが、透水試験によらず力学的な 改良効果を原位置岩盤試験により直接確認した既往の研究について、以下に整理する.

1.4.1 平板載荷試験による検討

建設省天ヶ瀬ダムにおいては、グラウチング前後で平板載荷試験を実施し、グラウ チングによる岩盤の変形特性に関する改良効果を定量的に検討した.この報告におい て飯田⁵⁾は、図-1.4.1に示すように、グラウチング前後で岩盤の変形特性は向上してお り、静弾性係数と変形係数の比はグラウチング後に減少すると述べている.この現象 の解釈として、岩盤の変形係数と静弾性係数の相違は岩盤の緩みのために生じるが、 グラウチングによりこの緩みが低減したためであると考察している.

図-1.4.1 天ヶ瀬ダムにおけるグラウチング前後の変形係数の関係⁵⁾

1.4.2 水室試験による検討

関西電力㈱の黒部ダムでは、C_H級およびC_M級岩盤において、グラウチング前後の変 形係数を水室試験により測定した.水圧をパラメータとしてグラウチング前後の変形 係数を対比させたところ、図-1.4.2 に示すように変形特性の改良が確認されたと述べて いる^の.

図-1.4.2 黒部ダムにおける水室試験によるグラウチング前後の変形係数の関係⁶

1.4.3 弾性波探査による検討

北陸電力㈱の有峰ダムにおいて,増田⁷は,グラウチング前後の弾性波速度の変化に 着目し,岩盤の力学的な改良効果について検討を行っている.この報告では,図-1.4.3 に示すように,グラウチング後の弾性波速度がグラウチング前に比べて増加しており, その増加量はグラウチング前の速度が小さい岩盤ほど大きく,グラウチング前の速度 が大きいほど小さくなっていると述べている.

図-1.4.3 有峰ダムにおけるグラウチング前後の弾性波速度の関係⁷⁾

1.4.4 孔内載荷試験による検討

金沢⁸⁾は、大内ダム基礎において、(a)グラウチング前、(b)グラウチング後(堤体盛 立て後)、(c)リグラウチング後の各段階において孔内載荷試験を行い、各段階の変形 係数の分布を検討したところ、段階を追うごとに改良効果が確認されたと述べている.

これらの既往の研究実績については、検討事例数自体が少ないとともに、原位置試 験の量的制約から必ずしも多くのデータが得られていないこともあり、詳細な定量的 評価や、岩盤等級区分および岩種ごとの効果の差違などに関する検討が十分であると は言い難い.また、上述したように、ダム基礎設計を検討する際に適用される岩盤の 強度特性については、検討事例が認められない¹⁾²⁾.

1.5 本論文の目的

上述した技術的な現状と課題を考慮すると、より効率的かつ効果的な土木・岩盤構造物建設を実現するためには、グラウチングの主目的の一つである基礎岩盤における 力学的な改良効果について定量的に評価することが重要であると考えられる.

これに対しては、力学的特性のうち変形特性について、1.4節に示した既往の研究と 比較してより詳細な定量的評価や、岩盤等級区分および岩種ごとの効果の差違などを 明確にする必要がある.また、既往の研究事例が認められない強度特性に関しても、 ダム基礎安定検討に用いる粘着力および内部摩擦角に関する改良効果を定量的に把握 することが重要であると考えられる.

さらに、グラウチングによる岩盤の力学的な改良効果を考慮するための調査・設計 方法について、調査段階の試験施工により当該ダムの地質における改良効果を直接、 定量的に確認した上で設計に考慮するとともに、実施工時にその効果を確認しながら 工事を進捗させる情報化設計・施工方法を構築する必要がある.

以上に鑑み、本論文では、グラウチングによる岩盤の力学的改良効果を定量的に評価し、その改良効果を考慮するための土木・岩盤構造物における調査・設計・施工シ ステムを構築することを目的とする.なお、具体的な検討対象は、土木・岩盤構造物 で実施されるグラウチングのうち、力学的改良効果を主目的の一つとするダムにおけ るコンソリデーショングラウチングとする.

1.6 本論文の内容構成

上述したように、本論文の目的は、グラウチングによる岩盤の力学的改良効果を定 量的に評価し、その改良効果を考慮するための土木・岩盤構造物における調査・設計・ 施工システムを構築することである.これに対して本論文の内容構成については、上 述した課題を解決するために、ダム基礎岩盤におけるコンソリデーショングラウチン グを例に実施した種々の検討内容について、下記の図-1.6.1 に示すように第1章~第7 章に分けて論述する.

図-1.6.1 本論文の内容構成

第2章においては、グラウチングによる岩盤の力学的改良効果を定量的に確認する ことを目的とした、原位置岩盤試験および室内せん断試験の具体的な実施内容につい て述べる.

力学的特性のうち変形特性に関する改良効果については、グラウチング施工段階ご とに孔内載荷試験および孔間弾性波試験を実施することにより、岩盤の変形特性およ び弾性波速度に関する物性値の変化を岩盤等級区分および岩種ごと定量的に確認する. また、施工時に簡易かつ短時間に力学的改良効果を評価することを目的として、孔内 打撃応答試験機³¹⁾の適用性を検討するための試験方法を考案する.

強度特性については,原位置岩盤における孔内載荷試験結果より得られる降伏応力 を用いた検討内容とともに,割れ目を模した供試体を用いてグラウチング前後で行う 室内せん断試験の方法について述べる.

第3章においては,岩盤の力学的特性のうち変形特性について,6種類の節理性岩盤における孔内載荷試験結果および2種類の節理性岩盤における孔間弾性波試験結果を整理する.そして,これらの結果をもとに,グラウチングによる岩盤の固密化,均質化,一体化に関して,岩盤等級区分および岩種ごと定量的に評価した結果について述べる.また,孔内打撃応答試験について,グラウチング前後に同一地点で実施した孔内載荷試験結果との相関関係について検証する.

第4章においては、原位置岩盤試験結果および室内せん断試験結果をもとに、既往の検討事例がほとんど認められない強度特性に関する改良効果について定量的に評価する.原位置試験においては、グラウチング前後における降伏応力の変化を確認することにより、岩盤の強度特性に関する物性値の上昇を定量的に確認する.また、室内試験においては、割れ目を模した供試体を用いてグラウチング前後で実施した室内せん断試験結果をもとに、最大せん断応力値に関する改良効果を定量的に評価する.

第5章においては,岩盤の力学的改良効果を考慮した土木・岩盤構造物基礎の設計 方法について,ダム建設を例に検討を実施する.具体的には,ダム基礎設計に用いる 岩盤のせん断強度に第3章および第4章で評価したグラウチングによる物性値の上昇 を考慮することにより,基礎掘削線を既往設計よりも上部に設定するための具体的な 方法について詳述する. 第6章においては、グラウチングに関する現状と課題および上述した力学的改良効 果に関する知見を考慮することにより、グラウチングによる岩盤改良の高度化を目的 とした調査・設計・施工システムを構築する.具体的には、割れ目の卓越傾向や水み ちの分布状況などの水理地質構造を考慮して確実なグラウト注入を実施するとともに、 試験施工時に力学的改良効果を直接確認した上で設計に反映させ、施工時に孔内打撃 応答試験機³¹⁾を用いて簡易かつ短時間に効果を確認しながら施工を進捗させる情報化 設計・施工方法について、具体的な実施項目を検討する.

最後に,第7章においては,本論文を総括して結論を述べる.

なお、本論文で適用する単位系については SI 単位を基本とするが、本文に引用する 参考文献中の単位が工学単位系の場合は、これに従うものとする.

1.7 本章の結論

本章においては、本論文の研究対象であるグラウチング工法について、用語の定義 や現状と課題を整理するとともに、それに対する既往の研究を総括した上で、本論文 の研究目的および内容構成を示した.

グラウチングは、従来からダム基礎岩盤やトンネル・地下空洞周辺岩盤などの力学的 特性および遮水性の改良を目的として広く適用されている工法であるが、既往の研究 や施工現場において力学的改良効果に関する定量的な評価が十分になされておらず、 現在においてもその効果が土木・岩盤構造物の設計に考慮されていない.

これに対して、一般的なダム基礎設計を例に力学的改良効果を考慮するための具体 的な方法を示すとともに、本論文の検討内容が工事費削減や工期短縮などダム建設に 関わるQ(品質)・C(経済性)・D(工程)・S(安全性)・E(環境への配慮)の改善に 寄与することを明らかにした.

以上に鑑み、本論文では、グラウチングによる岩盤の力学的改良効果を定量的に評価し、その改良効果を考慮するための土木・岩盤構造物の調査・設計・施工システム 構築することを目的とした.なお、具体的な検討対象は、力学的改良効果を主目的の 一つとするとするダムにおけるコンソリデーショングラウチングとした.

参考文献

- 1) 宇津木慎司, 宮本健也, 吉田眞教, 朝倉俊弘, 菊地宏吉: グラウチングによる岩盤 の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験 による検討—, ダム工学 Vol.21 No.3, pp.167-177, 2011.
- 2)Shinji UTSUKI, Toshihiro ASAKURA, Kohkichi KIKUCHI : In-situ experimental studies on improvement of deformability of rock masses by grout treatment, 12th International Congress of Rock Mechanics, Beijing, pp.2,163-2,166, 2011.
- 3) 菊地宏吉:地質工学概論,土木工学社, pp.231-234, 2000.
- 4)吉中龍之進:マルパッセダムと岩盤力学,ダム技術 No.127, pp.3-11, 1997.
- 5)飯田隆一:土木工学における岩盤力学概説,彰国社, pp.102-103, 1978.
- 6) 土質工学会編: 岩盤挙動の予測と実績, 土質基盤工学ライブラリー, 1989.
- 7)増田秀夫:わが国におけるコンクリートダムの基礎岩盤の弾性波速度に関する応用 地球物理学的研究,北海道大学学位論文,1962.
- 8)金沢紀一: ロックフィルダムの軟質基礎の盛立て中の挙動予測と監視, 大ダム No.114, pp.3-10, 1985.
- 9) 菊地宏吉: グラウチングによるダム基礎岩盤の力学的改良効果に関する評価技術の 現状と課題, ダム技術No.117, pp.3-12, 1996.
- 10)Tetsuo IGARI, Shinji UTSUKI, Yoshitada MITO, Kohkichi KIKUCHI : In-situ experimental studies on improvement of rock masses by grout treatment, NYROCK97, 1997.
- 11)古城一省:ダム事業困難の時代,ダム工学Vol.7 No.3, pp.137-139, 1997.
- 12)International Society of Rock Mechanics Commission of Rock Grouting : Final Report, pp.1, 1995.
- 13)建設省河川局監修, 財団法人国土技術センター編集: グラウチング技術指針同解説, pp.27, 1983.
- 14)財団法人国土技術研究センター編集: グラウチング技術指針・同解説, 大成出版, pp.4-7, 2003.
- 15)国土交通省東北地方整備局津軽ダム工事事務所:津軽ダム基本設計会議資料概要書, pp.42, 2007
- 16)国土交通省東北地方整備局津軽ダム工事事務所:津軽ダム基本設計会議資料概要書, pp.43, 2007
- 17)財団法人国土技術研究センター編集: グラウチング技術指針・同解説,大成出版,まえが き,2003.
- 18)建設省河川局監修, 財団法人国土技術センター編集: グラウチング技術指針同解説 pp.40, 1972.

19) 菊地宏吉:地質工学概論,土木工学社, pp.231-234, 2000.

- 20) 菊地宏吉: グラウチングによるダム基礎岩盤の力学的改良効果に関する評価技術の 現状と課題,ダム技術 No.117, pp.3-12, 1996.
- 21)宇津木慎司,宮本健也,吉田眞教,朝倉俊弘,菊地宏吉:グラウチングによる岩盤の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験による検討—,ダム工学 Vol.21 No.3, 2011.
- 22)土木学会:ダムの地質調査, pp.137-141, 2003.
- 23) 菊地宏吉:地質工学概論,土木工学社, pp.115, 2000.
- 24)土木学会:原位置岩盤法の指針―平板載荷試験法,せん断試験法,孔内載荷試験法, pp.38-39, 2000.
- 25)国土交通省東北地方整備局津軽ダム工事事務所:津軽ダム基本設計会議資料, pp.5.37-5.38, 2007
- 26)国土交通省東北地方整備局長井ダム工事事務所:平成10年度長井ダムダムサイト地質細部検討業務, pp.54, 1999.
- 27)国土交通省東北地方整備局津軽ダム工事事務所:津軽ダム基本設計会議資料, pp.5.37-5.38, 2007
- 28)土木学会:ダムの地質調査, pp.139-141, 2003.
- 29)宇津木慎司, 宮本健也, 吉田眞教, 朝倉俊弘, 菊地宏吉: グラウチングによる岩盤 の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験 による検討—, ダム工学 Vol.21 No.3, pp.167-177, 2011.
- 30)松枝修治, 西村重夫, 新見邦夫, 仁子幸子: 滝沢ダムの試験湛水結果, ダム技術 No.294, pp.61-76, 2011.
- 31) 菊地宏吉,水戸義忠,宇津木慎司: 孔内打撃応答試験機の適用性に関する検討, 応用地質 36 巻 1 号, pp.14-23, 1995.

第2章 グラウチングによる岩盤の力学的改良効果に関する 確認試験の方法

本章においては、上述したグラウチングに関する現状と課題、そしてこれに対する 本論文の目的を踏まえ、グラウチングによる岩盤の力学的改良効果を定量的に評価す るために実施した原位置および室内における確認試験の方法について述べる.

2.1 原位置における確認試験の方法

本論文においては、原位置においてグラウチングによる岩盤の力学的改良効果を確認するために、(1)グラウト注入孔における岩盤試験、(2)チェック孔における岩盤試験 および(3)孔間弾性波試験による検討を考案した.以下に、それぞれの具体的な方法について述べる.

2.1.1 グラウト注入孔における岩盤試験

ダムサイトにおけるグラウチング施工ヤードや試験用に設定したヤードにおいて, グラウチング前後の物性値の変化を直接確認することを目的として,以下に示す原位 置試験を実施した¹⁾²⁾.

まず,試験に先立ち,写真-2.1.1 に示すように試験ヤードの岩盤清掃を実施し,グラ ウチングを施工する箇所における地質状況を確認した.その後,写真-2.1.2 に示すよう なカバーコンクリートを打設することにより,施工足場の確保,グラウトの地表面へ のリーク防止を図った上で,写真-2.1.3 に示すボーリング作業,写真-2.1.4 に示すグラ ウチング作業,そして写真-2.1.5 に示す孔内載荷試験,写真-2.1.6 に示す孔内打撃応答 試験などの原位置岩盤試験を行った.

写真-2.1.1 試験ヤードにおける岩盤清掃実施状況

写真-2.1.2 試験ヤードにおけるカバーコンクリート打設状況

写真-2.1.3 試験ヤードにおけるボーリング施工状況

写真-2.1.4 試験ヤードにおけるグラウチング施工状況

写真-2.1.5 試験ヤードにおける孔内載荷試験実施状況

写真-2.1.6 試験ヤードにおける孔内打撃応答試験実施状況
ここで,具体的な実施内容を以下に整理するとともに,図-2.1.1 に孔内における原位 置試験実施位置を示す.

> グラウチング前の試験
>
> (1)ボーリング削孔,コア鑑定 直径 66mm,カバーロック部 1~2m,注入区間 5m,計 6~7m 削孔
> (2)孔内載荷試験 載荷区間 60cm, 1m 間隔で実施
> (3)孔内打撃応答試験 20cm 間隔,孔内載荷試験と同一地点において実施

(1)ルジオン試験 (2)グラウチング 表-2.1.1 注入仕様参照

<u>グラウチング後の試験</u> (1)リボーリング

直径 66mm, 高圧水による洗浄

- (2) 孔内載荷試験
- 載荷区間 60cm, グラウチング前と同一地点において実施
- (3) 孔内打擊応答試驗

20cm 間隔, 孔内載荷試験と同一地点において実施

図-2.1.1 孔内における原位置試験実施位置

	切り替え注入量(1)						
	Lu<10	10 <lu<20< td=""><td>20<lu< td=""><td>(注1)</td></lu<></td></lu<20<>	20 <lu< td=""><td>(注1)</td></lu<>	(注1)			
1:10	600						
1:8	600	600					
1:6	600	600	600				
1:4	600	600	600	200			
1:3	600	600	600	100			
1:2	600	600	600	100			
1:1.5	600	600	600	100			
1:1	1800	2400	3000	600			
計	6000	6000	6000				

表-2.1.1 グラウト注入仕様の一例

注 1) リーク配合

このように、グラウチング前後の同一地点において孔内打撃応答試験,孔内載荷試 験を実施し、その結果をもとにグラウチングによる岩盤の物性値の変化を定量的に確 認した.なお、リボーリングについては、削孔径を注入孔削孔時と同様に66mmとし てグラウト固着部を完全に除去したが、岩盤の強度と比較して固化したセメントの強 度が小さかったため、数箇所で実施したボアホールテレビ観察では孔壁におけるセメ ントの付着は認められなかった.

また、本研究においては、既往の実施工の注入仕様によるグラウチングによって得 られる岩盤の力学的改良効果を定量的に確認することを目的とした.このため、グラ ウト注入仕様については、試験を行った14箇所のダムサイトにおけるそれぞれの仕様 (表-2.1.1参照)を適用するとともに、注入孔削孔方向は鉛直下方とした.

32

2.1.2 チェック孔における岩盤試験

2.1.1 項で示した確認試験は、グラウチングを実施した孔において直接、改良効果を 確認するものである.これに対して、注入孔周辺岩盤における効果を評価することを 目的として実施するチェック孔における岩盤試験について、具体的な方法を以下に示 すとともに、試験ヤードにおけるグラウト注入孔配置図を図-2.1.2 に示す.

グラウチング前の試験(図-2.1.2 参照)

(1)1次孔ボーリング削孔
 (2)初期状態における孔内打撃応答試験
 (3)初期状態における孔内載荷試験

n 次孔グラウチング(n=1~4)

- (1)ルジオン**試験** (2)グラウチング 表-2.1.1 注入仕様参照
- <u>n+1 次孔における試験(図-2.1.2 参照)</u> (1)n+1 次孔ボーリング削孔 (2)n+1 次孔における孔内打撃応答試験 (3)n+1 次孔における孔内載荷試験

<u>グラウチング後のチェック孔における試験(図-2.1.2参照)</u> (1)チェック孔ボーリング削孔 (2)チェック孔における孔内打撃応答試験 (3)チェック孔における孔内載荷試験

図-2.1.2 グラウト注入孔の配置例

実際のグラウチング施工時には、図-2.1.2 に示すような孔配置で、中央内挿法と呼ば れる方法により1次孔~4次孔の順に注入が実施される.その中で、1次孔において グラウチング前の初期状態における試験を実施するとともに、n 次孔 (n=1~4) でグラ ウチングを行った後に n+1 次孔をチェック孔として試験を行った.これにより、2次 孔におけるグラウチング前の試験において既に施工完了した1次孔による改良効果を 確認する、3次孔の試験では2次孔までの効果を確認するといったように、施工段階 ごとの改良効果を評価した.そして全ての孔で注入を完了した後に、注入孔から数 m 離れたチェック孔を新たに削孔し、施工完了後における周辺岩盤の改良効果を確認し た.

2.1.3 孔間弾性波試験

孔間弾性波試験については、2箇所のダムサイトの試験ヤードにおいて、以下に示 す方法でグラウチングの施工段階ごとに同一測線で実施した.

> <u>グラウチング前の試験</u> (1)受振孔,発振孔削孔 受振孔 1-1 孔~1-4 孔削孔,発振孔 2-1 孔削孔(図-2.1.2 参照) (2)初期状態における孔間弾性波試験 深度 2~7m 区間,受·発振点 50cm 間隔,1 断面あたり計 121 測線

<u>n 次孔グラウチング</u> (1)受振孔,発振孔孔埋め (2)n 次孔ルジオン試験 (3)n 次孔グラウチング

<u>n 次孔グラウチング後の試験</u>
 (1)発振孔,受振孔リボーリング
 (2)n 次孔注入後における孔間弾性波試験
 グラウチング前と同一地点において実施

実際の試験位置は、図-2.1.2 に示す試験ヤード中央の 2-1 を発振点、端部の 1-1~1-4 を受振点とした孔間隔 7m 程度の計 4 断面であり、図-2.1.3 に示すように各孔の深度 2 ~7m のグラウト注入区間において 50cm ずつ受・発振点をそれぞれ移動させることに より、1 断面あたり 121 測線で試験を行った.

2.1.4 原位置で適用した岩盤試験

本節においては,確認試験に適用した(1)孔内載荷試験,(2)孔内打撃応答試験,(3) 孔間弾性波試験について,それぞれの試験機や測定方法の詳細について述べる.

(1) 孔内載荷試験

グラウチングによる岩盤の変形特性に関する物性値の変化を確認することを目的と して実施する原位置岩盤試験については,載荷試験としては比較的簡易で,グラウト 注入を実施するボーリング孔において直接,変形特性を評価する試験機として広く適 用されている孔内載荷試験機(等圧分布載荷方式:写真-2.1.7,図-2.1.4-2.1.5 参照)を 採用した.これにより,多種の岩盤においてグラウチング前後で多数の試験を実施し, 変形特性に関する物性値の変化を定量的に確認した.なお,適用した試験機は,応用 地質社製のエラストメータ2であり,試験方法は土木学会の指針³⁾に準拠して実施し た.

写真-2.1.7 孔内載荷試験機の外観

図-2.1.5 孔内載荷試験機の測定状況

実際の試験に際しては、図-2.1.6 に示すような載荷パターンに準じて載荷速度 0.5MPa/min で荷重を加えていき、その際の荷重と変位の関係が図-2.1.7 に示すような 荷重-変位曲線として整理される.そして、岩盤の変形特性を示す物性値である変形係 数については、図-2.1.7 の荷重-変位曲線における①で示した処女包絡線の勾配から、 そして静弾性係数は②に示す繰り返し載荷部の最終載荷曲線における接線の勾配から、 式(2.1.1)を用いて算出される.

$$D \text{ or } E = (1+v)R_m \bullet \bigtriangleup p / \bigtriangleup r \tag{2.1.1}$$

図-2.1.6 孔内載荷試験の載荷パターン

図-2.1.7 孔内載荷試験による荷重-変位曲線の例

なお、本研究においては、伊東⁴⁾が提唱している平板載荷試験と孔内載荷試験との 測定値の関係を検討した図-2.1.8 に示す既往の研究成果を参考に、孔内載荷試験から算 出した変形係数を平板載荷試験相当の値に変換して検討を行った.

図-2.1.8 孔内水平載荷試験と平板載荷試験の変形係数の関係⁴⁾

また,強度特性に関しては,図-2.1.9 に示すように一部の測定点で降伏応力が発生す るまで試験を実施し,図-2.1.7 に示す曲線内の弾性変形域から塑性変形域の変曲点を確 認し,その測定値を用いて下記に示す方法により強度特性の算定を行った.

図-2.1.9 降伏応力を確認するための孔内載荷試験の載荷パターン

一般に原位置において岩盤のせん断強度の改良度合いを推し量ることは非常に困難 なことである.これは、岩盤のせん断強度を得るためには原位置せん断試験において 岩盤を破壊させる必要があり、同じ供試体を用いてグラウチング後にせん断試験を再 び行うことができないためである.そこで著者は、多数の孔内載荷試験により得られ たグラウチング前後の降伏応力に関するデータをもとに、強度特性の改良効果に関す る検討を試みた.

降伏応力をもとにせん断強度を算定するにあたっては、以下に示す武内ら⁵⁾⁶⁾の方法 にしたがった.なお、ここで求めるせん断強度は降伏応力をもとに算出するものであ り、通常求められている最大破壊応力から算出されるせん断強度とは異なる.しかし ながら、降伏応力と最大破壊応力とはほぼ比例関係にあるという例が報告されている ⁷⁾ことからも、算出された値は真のせん断強度を評価する上での一つの指標となるもの と推察される. モール・クーロンの破壊基準により、力学的特性が同様の岩盤(均質な岩盤)において、測定箇所における土被り応力 P_0 と孔内載荷試験結果より得られた降伏応力 P_y との関係は、岩盤の粘着力c、内部摩擦角 ϕ を用いて次のようになるとされている.

$$Py = c \cdot \cos\varphi + (l + \sin\varphi) \cdot P_0 \qquad (2.1.2)$$

これにより深度 y_1 , y_2 における降伏応力 P_{y_1} , P_{y_2} および土被り応力 P_{01} , P_{02} より, 次のようにc, φ が導かれる.

$$\varphi = \sin^{-1} \left(\frac{P_{y2} - P_{y1}}{P_{02} - P_{01}} - 1 \right)$$
(2.1.3)

$$c = \frac{P_{yl} \cdot (l + \sin\varphi) \cdot P_{0l}}{\cos\varphi}$$
(2.1.4)

実際には,複数の深度yで求められる降伏応力Pyより最小二乗法を用いて,次式における係数a, bを求める.

$$Py = ay + b \tag{2.1.5}$$

$$\varphi = \sin^{-1} \frac{a - A}{a + A} \tag{2.1.6}$$

$$c = tan\varphi \cdot \frac{Ab}{a - A} \tag{2.1.7}$$

$$\gamma$$
:地盤の単位体積重量
 ν :ポアソン比
 $A = \gamma \cdot \frac{v}{1 - v}$

(2) 孔内打撃応答試験

岩盤の力学的特性を簡易に推定する試験機として,写真-2.1.8 に示すロックテストハンマー(シュミットハンマー)が広く適用されている.これは岩盤を打撃しその際の反発度を定量的に測定する試験機であり,その反発度と岩盤の強度特性および変形特性との相関関係が確認されている¹⁴⁾.

写真-2.1.8 ロックテストハンマーの外観

この原理をボーリング孔において適用し開発されたのが写真-2.1.9 に示す孔内打撃 応答試験機¹⁵⁾であり、ボーリング孔の孔壁を打撃しその反発度から岩盤の力学的特性 を推定するものである.この試験機については、その測定値と岩石供試体の一軸圧縮 強度および原位置における岩盤の変形特性との良好な相関関係が確認されている¹⁶⁾.

写真-2.1.9 孔内打撃応答試験機の外観

実際の試験に際しては、図-2.1.10 に示すように、電磁ハンマーおよびその駆動回路 を組み込んだゾンデをボーリング孔内に挿入し、プーリーを介して人力で上昇・下降 を行い、ゾンデのコントローラおよびデータロガーを収納した地上部端末を操作する ことにより計測を実施する¹⁷⁾.本試験機は、他の原位置岩盤試験機と比較してゾンデ が軽量で端末もハンディタイプであるとともに、測定に要する時間が1測点あたり数 分程度と、簡易かつ短時間に岩盤の力学的特性を推定できる利点を有する.

1.3節で述べたグラウチングに関する現状と課題において,既往のダム施工では,原 位置岩盤試験として広く適用されてきた孔内載荷試験や孔間弾性波試験などの規模が 比較的大きいとともに,測定に数時間程度要することなどの理由により,施工サイク ルに組み込まれてこなかった課題を指摘した.これに対し,もし仮にこの孔内打撃応 答試験機がグラウチング前後における岩盤の力学的特性に関する物性値の変化を定量 的に確認することができれば,施工時において,簡易かつ短時間に改良効果を評価す るための有効な方法として適用できると考えられる.

44

(3) 孔間弾性波試験

グラウチングによる岩盤の物性値の変化を面的に捉えることを目的として,グラウ チング前の初期状態と施工段階ごと同一測線において孔間弾性波試験を実施した.

ー般に地中を伝播する弾性波速度は、しばしば岩盤物性を表す指標として利用されている.理論的には岩盤が弾性体であれば弾性波速度 V_P と動弾性係数 E_D との関係は弾性波速度の2乗が動弾性係数と比例関係にあることが知られており⁸⁾⁹⁾, 土木学会¹⁰⁾は動弾性係数 E_D と静弾性係数 E_S の関係が E_D =(3~7)· E_S となることを示している.また、高橋ら¹¹⁾は、孔内載荷試験より得られた花崗岩の静的変形特性 E_{SP} と弾性波探査速度 V_{PS} との関係について、岩盤等級区分をパラメータとした図-2.1.11 に示すような相関関係を整理している.

図-2.1.11 岩盤等級区分ごとの E_{SP} と V_{PS}の関係¹¹⁾

上述した既往の検討結果などを踏まえ、ダム¹²⁾やトンネル¹³⁾などの土木・岩盤構造 物を対象とした岩盤分類においても、弾性波速度が岩盤の力学的特性を評価するため の指標や目安になっていることは広く知られている.このようなことから、弾性波速 度は、岩盤物性、特に変形特性について有効な指標となることが示されており、速度 値を媒体として岩盤の力学的特性を評価することが可能であると考えられる.

2.1.5 確認試験の適用サイト

上述した原位置岩盤試験を実施したのは、14箇所のダムサイトの実施工箇所および 試験施工ヤードである.このうち今回データ整理を実施したのは、表-2.1.2に示す、グ ラウチングによる変形特性の改良効果が高いと想定される割れ目の卓越した節理性岩 盤が分布する12箇所のサイト、7種類の岩種を選定し、計825箇所における孔内試験結 果および計968測線における孔間弾性波試験結果をもとに検討を実施した.

	地質	ダム名	岩盤等級区分	測定箇所
	花崗岩	Hダム	$C_{\rm H} \sim D$	孔内試験 313 箇所
		Yダム	$C_{M} \sim D$	孔間弾性波試験
火		Nダム	$C_{\rm H} \sim D$	4 断面, 484 測線 (V1 ダムのひで実施)
成岩		K1ダム	$C_{\rm H} \sim C_{\rm L}$	(KIクム00みで美旭)
	流紋岩	K2 ダム	$C_{\rm H} \sim C_{\rm L}$	孔内試験 87 箇所
		01ダム	$C_{\rm H} \sim C_{\rm L}$	
	安山岩	Gダム	$C_{\rm H} \sim C_{\rm L}$	孔内試験 62 箇所
	塊状 砂岩	Sダム	$C_{\rm H} \sim C_{\rm L}$	孔内試験 66 箇所
堆	凝灰 角礫岩	Mダム	$C_{\rm H} \sim D$	孔内試験 136 箇所
惧 岩	砂岩頁	Τダム	$C_{\rm H} \sim C_{\rm L}$	孔内試験 58 箇所
	石彑眉	Uダム	$C_{\rm H} \sim C_{\rm L}$	孔内試験 103 箇所
	粘板岩	02ダム	$C_{\rm H} \sim C_{\rm L}$	孔間弾性波試験 4 断面,484 測線

表-2.1.2 確認試験の適用サイト

2.2 室内における確認試験の方法

本節においては,強度特性に関する改良効果を定量的に評価することを目的として 実施する,室内における割れ目を模した供試体を用いたせん断試験(一面せん断試験) の方法について述べる.

2.2.1 節理面のラフネスを考慮したせん断試験方法

今回実施した室内せん断試験は、複数の岩盤の割れ目を型どった異なるラフネスを 有するモルタル供試体を用いて、割れ目にグラウチングを実施し、その前後に行った せん断試験結果を比較するものであり、その結果からグラウチングによる岩盤の強度 特性に関する改良効果を検証した¹⁹⁾.

供試体の作製に際しては、火山岩分布地域において、天然の節理面を含む岩盤ブロ ックを計5個(No.1~No.5)採取し、上下の節理面を流動性に富むシリコンで型どり、 型にモルタルを流し込むことによって、各節理につき8個の模型供試体を作製した. 供試体の寸法は、図-2.2.1に示すように、幅30cm、奥行き30cm、高さ20cmとし、節理面 を供試体のほぼ中央に位置させた.なおモルタルの配合は、砂:セメント(普通ポル トランド):水=4:2:1の重量比とし、打設後、水中で2ヶ月間養生させ、試験に供す るものとした.

図-2.2.1 室内せん断試験で用いた供試体の模式図

このような模型供試体は節理の種類ごとに8個作製したが、そのうち半数の4個について、図-2.2.2 に示すような注入装置を作製し、節理面沿いにグラウチングを実施した.本注入装置は、注入管を装置内の水室へ直結させ、水室から節理面内へグラウトを注入することによって節理面内で一方向流れを生じさせるような構造になっており、水頭差を 1m設けて注入を実施した.また、グラウト材としては、既往の実施工で適

用事例の多い高炉セメント B 種を使用し,配合については,表-2.1.1 に示す実施工時の注入仕様において高透水部の最終配合として適用される事例が多い,高濃度配合の水:セメント比 1:1 とした.そして,5種類の模型供試体について 6~8 リットル程度のミルクを注入し,節理内で十分に目詰まりが生じた後に注入を終了した.

図-2.2.2 グラウチング注入装置の模式図

実際のグラウチングによる岩盤のせん断強度に関する改良効果の検討に際しては、 グラウチングを実施していない供試体(グラウチング前)とグラウチングを実施した 供試体(グラウチング後)のせん断強度の違いから評価した.グラウチング前後を1 組とする5組の割れ目を模した供試体に異なる4段階の垂直応力(それぞれ0.5, 1.0, 1.5, 2.0MPa)を作用させた上で、変位速度1mm/minの条件のもとでせん断荷重を作用 させ、一面せん断試験を行った.せん断方向はグラウチング前後で同一の方向とし、 せん断変位が供試体長さの10%程度に達した段階で試験を終了した.

なお,試験に用いたのは写真-2.2.1に示す丸東製作所㈱製の岩石せん断試験装置 SG-1041であり,実際の試験方法は地盤工学会の基準²⁰⁾にしたがって実施した.

写真-2.2.1 室内せん断試験装置の外観

2.2.2 節理面の連続性を考慮したせん断試験方法

実岩盤内の節理の連続性は有限であり,必ずしも完全に分離しているとは限らず, インタクトブリッジと呼ばれる割れ目の接合部によって初期的な粘着力を有している と考えられる.そこで,模型供試体中に人工的な接合部を作製し,初期的に粘着力が 存在する場合について検討を行った¹⁹⁾.

まず,2.2.1項で述べた試験において用いた型枠にモルタルを流し込み,節理No.1について24個,節理No.2~4について8個の模型供試体をそれぞれ作製した.次に節理の種類ごとに8個の供試体に対して図-2.2.4に示すような配置で直径40mmのボーリングを削孔し、模型供試体と同一配合のモルタルを孔内に充填することにより接合部を作製した.また,節理No.1については,図-2.2.3(a)の接合部4箇所の配置に加えて,図-2.2.4(b)接合部2箇所,(c)接合部1箇所の配置でそれぞれ8個の模型供試体を作製した.そして,これらの供試体を用いて2.2.1と同様の方法で,グラウチング前後において一面せん断試験を実施した.

図-2.2.3 割れ目の接合部を考慮した供試体の模式図

2.2.3 節理面の挟在物を考慮したせん断試験方法

上記の型枠にモルタルを流し込み,節理No.1について試験数量分の模型供試体を作 製し,油性粘土を狭在物と想定して各供試体の節理面に挿入した.粘土の厚さを1mm に固定し,節理面全体に存在させた場合を100%として,図-2.2.4に示すように粘土を節 理面の面積に対する面積率が75%・50%・25%となるように設定した.以降,この面積率 を狭在物の占有面積率と呼ぶ.これらの供試体を用いて2.2.1項と同様の方法で,グラ ウチング前後において一面せん断試験を実施した.なお,狭在物として用いた油性粘 土を厚さ1mmに整形して4段階の垂直応力のもとでせん断試験を行った結果,粘着力 が0.057MPa,全ての摩擦角がほぼ0となった¹⁹.

図-2.2.4 割れ目に充填した粘性土の状況

2.3 本章の結論

本章においては、第1章に示したグラウチングに関する現状と課題、そしてこれに対 する本論文の目的を踏まえ、グラウチングによる岩盤の力学的改良効果を定量的に評 価するための原位置および室内における確認試験の方法を考案した.

原位置における確認試験については、孔内載荷試験および孔間弾性波試験を用いて、 グラウチング前の初期状態、施工段階ごと、そしてグラウチング施工完了後に試験を 実施し、変形特性、強度特性および弾性波速度に関する物性値の上昇量を定量的に評 価する方法を示した.また、実施工時に簡易かつ短時間に力学的改良効果を評価する ことを目的として、孔内打撃応答試験を孔内載荷試験と同一地点で実施することによ り、グラウチング前後における岩盤の変形特性との相関関係について確認する方法を 述べた.

室内における確認試験については、割れ目を模した供試体を用いてグラウチング前 後で一面せん断試験を実施することにより、強度特性に関する物性値の上昇量を定量 的に評価する方法を示した.具体的には、節理面の①ラフネス、②連続性、③挟在物 などの節理特性を考慮した供試体シリーズを作成し、試験に供するものとした.

参考文献

- 1) 宇津木慎司, 宮本健也, 吉田眞教, 朝倉俊弘, 菊地宏吉: グラウチングによる岩盤 の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験 による検討—, ダム工学 Vol.21 No.3, pp.167-177, 2011.
- Shinji Utsuki, Toshihiro Asakura, Kohkichi Kikuchi : In-situ experimental studies on improvement of deformability of rock masses by grout treatment 12th International Congress of Rock Mechanics, Beijing, pp.2,163-2,166, 2011.
- 3) 土木学会: 孔内載荷試験法の現状と課題, 土木学会, 1988.
- 4)伊東佳彦:ダム基礎岩盤における力学特性の総合的評価手法に関する研究,京都大学博 士論文, pp.112-114, 2005.
- 5)武内俊昭, 大橋武一郎: 孔内載荷試験による原位置岩盤の c, φの測定について, 第 6 回岩の力学国内シンポジウム, pp.175~180, 1984.
- 6)土木学会: 孔内載荷試験法の現状と課題, pp.99-102, 1988.
- 7)坂本良一, 大束洋志: 平戸大橋の地質調査, 土と基礎 第22巻6号, pp.45~51, 1974.
- 8) 土木学会:土木技術者のための岩盤力学,土木学会, pp.104, 1979.
- 9)大見美智人, 金沢鉄治, 井上正康: 風化安山岩の物性について, 応用地質 Vol.17 No.1, pp.1-9, 1979.
- 10)土木学会:土木技術者のための岩盤力学,土木学会, pp.94, 1979.
- 11)高橋幸蔵,高田志郎,石川浩次,羽竜忠男: 孔内測定を利用した岩盤調査,土と基礎 Vol.21 No.3, pp.15-21, 1973.
- 12)例えば, 菊地宏吉: ダム基礎の地質工学的評価に関する研究, 早稲田大学学位論文, pp.80, 1979
- 13)例えば,土木学会トンネル工学委員会:トンネル標準示方書―山岳工法・同解説―, pp.33-44, 2006.
- 14)斉藤和雄, 菊地宏吉:岩盤計測におけるシュミットハンマーの適用, 電力中央研究 所報告, 1972.
- 15)野澤是幸: 孔内打撃応答試験機の開発と適用に関する研究, 京都大学学位論文, 1999.
- 16)菊地宏吉,水戸義忠,宇津木慎司:孔内打撃応答試験機の適用性に関する検討,応 用地質, Vol.36 No.1, pp.14-23, 1995.
- 17)猪狩哲夫:ダム基礎グラウチングにおける力学的改良効果の評価システムの構築に 関する研究,京都大学学位論文,pp.94,2000.
- 18)宇津木慎司,宮本健也,吉田眞教,朝倉俊弘,菊地宏吉:グラウチングによる岩盤の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験による検討—,ダム工学 Vol.21 No.3, pp.167-177, 2011.

- 19)水戸義忠,若林成樹,平野勇,菊地宏吉:グラウチングによる節理のせん断強度の改良効果に及ぼす節理特性の影響に関する基礎実験,材料別冊第48巻第4号,pp.357~364,1999.
- 20)土木学会:原位置岩盤法の指針―平板載荷試験法,せん断試験法,孔内載荷試験法, pp.38-39, 2000.

第3章 グラウチングによる岩盤の変形特性に関する 改良効果の定量的評価

本章においては、グラウチングによる岩盤の変形特性に関する改良効果を定量的に 評価するために、孔内載荷試験結果および孔間弾性波試験結果を用いて、岩盤の ①「固密化」(割れ目にセメントを充填することにより力学的特性を向上させること) ②「均質化」(力学的特性に関する物性値全体のばらつきを小さくすること) ③「一体化」(割れ目にセメントを充填することにより連続体に近づけること) に関する検討を実施する.また、施工時に簡易かつ短時間に力学的改良効果の評価を 実施することを目的として、第2章で詳述した孔内打撃応答試験機について、グラウ チング前後に実施した試験結果と同一地点で得られる変形特性との対応関係を確認す る.

3.1 岩盤の固密化に関する検討

岩盤が固密化するということは、岩盤中の割れ目に充填したグラウトが硬化するこ とにより、変形特性などの力学的特性が向上すること、つまり岩盤の物性値がグラウ チング後に上昇することである¹⁾²⁾.本節においては、岩盤の変形係数と弾性波速度に 着目し、3.1.1項でグラウト注入孔における検討結果、3.1.2項でチェック孔における検 討結果、そして 3.1.3項で孔間弾性波試験による検討結果について述べる.なお、以下 の評価については、表-3.1.1に示した菊地による既往の岩盤試験結果より得られた物性 値と岩盤等級区分との対応関係³⁾を考慮し、便宜的に区分した表-3.1.2を用いて実施し た.またC_M級とC_L級については、それぞれ 1,000MPaと 350MPaで細区分し、改良効果 をより詳細に検討した.

坦般 笙纲	変形	特性	強度	硝性波速度	
区分	変形係数 (MPa)	静弹性係数 (MPa)	粘着力 (MPa)	内部摩擦角 (°)	(km/s)
В~Сн級	2,000 以上	4,000以上	2.0 以上	40 以上	3.0 以上
C _M 級	2,000~500	4,000~1,500	2.0~1.0	45~30	3.0~1.5
$C_L \sim D \&$	500以下	1,500以下	1.0 以下	38~15	1.5 以下

表-3.1.1 既往の岩盤等級区分から想定される物性値の範囲³⁾

評価	区分	変形係数 (MPa)	弹性波速度 (km/s)
0	Ч	2,000 以上	3.0 以上
См	С _{м1}	2,000~1,000	3.0~1.5
	С _{м2}	$1,000\sim~500$	
C_{L}	C_{L1}	500~350	1.5 以下
	C_{L2}	350~200	
]	D	200 以下	

表-3.1.2 検討に用いた変形係数と弾性波速度による区分

3.1.1 グラウト注入孔における岩盤試験による検討

ここでは、ボーリング孔の同一地点においてグラウチング前後に得られた変形係数 の差異について、(1)岩盤等級区分ごとおよび(2)岩種ごと検討した.

(1) 岩盤等級区分ごとの固密化に関する検討

ここで図-3.1.1 に, グラウチング前後においてボーリング孔内の同一地点で得られた 変形係数の対応関係を示す.この図は, 横軸にグラウチング前に実施した試験結果,

図-3.1.1 グラウチング前後における変形係数の関係

縦軸に同一地点で得られたグラウチング後の試験結果を示したものである.この図を みると、C_H級の一部の点を除いてほとんど全ての試験実施箇所において変形係数の上 昇が認められており、グラウチングにより岩盤が固密化されていることが判明した.

ここで、上述した事項をより詳細に検討する目的で、図-3.1.2 に岩盤等級区分ごとの グラウチング前後における変形係数の改良比に関する対数頻度分布を示す. なおこの 図では、C_M級とC_L級についてより詳細な検討を実施する目的で、概ね同一ランクの内 の中間点で上昇量の傾向が異なるC_M級の 1,000MPa, C_L級の 350MPaでそれぞれ細区分 している. これをみると、概ねグラウチング前の岩盤等級区分が不良なほど改良比が 大きく、岩盤等級区分が良好なほど改良比が小さい傾向が認められる.

岩盤等級区分	D	CL		СМ		СН
(細区分)	—	CL2	CL1	CM2	CM1	—
グラウチング前物性値	0~200	200~350	350~500	500~1,000	1,000~2,000	2,000~
度数	25	33	29	179	124	244
最大値	17.90	13.80	7.68	8.73	5.11	2.75
平均值+σ	9.04	5.54	3.29	2.85	2.12	1.68
平均值	4.54	3.23	2.26	1.88	1.53	1.35
平均值-σ	2.28	1.88	1.55	1.24	1.10	1.07
最小値	1.33	1.06	1.33	1.03	1.00	0.86
標準偏差	0.30	1.70	1.46	1.51	1.39	1.25
変動係数	0.46	0.45	0.46	0.67	0.78	0.77

図-3.1.2 グラウチング前後における変形係数の改良比に関する対数頻度分布

さらに、図-3.1.3 にグラウチング前後における変形係数に関する岩盤等級区分ごとの 対数頻度分布を示す.これをみると、 C_H 級および C_{M1} 級においては、平均値の上昇量 は大きいものの最小値の上昇がほとんど認められないことが確認できる.これに対し て C_{M2} 級および C_{L1} 級においては、平均値の上昇量が比較的大きいとともに、最小値も 上位ランクと比較して上昇量が大きいことから全体的に変形係数が上昇しており、特 に C_{L1} 級では全ての測定点が C_M 級の下限値 500MPaより上部に分布していることがわ かる.ただし、 C_{L2} 級およびD級においては、平均値および平均値±2 σ の帯は大きく 上昇しており、特に C_{L2} 級では平均値が C_M 級相当まで改良されているものの、ほとん ど上昇しないものも混在していることが認められる.

上述した確認事項については、飯田⁴などが指摘している既往のダムにおけるグラウ チング注入実績と地質状況との関係や、写真-3.1.1 に示す試験ヤードで採取したコア写 真、写真-3.1.2 に示す掘削のり面における地質状況などを考慮すると、割れ目の分布密 度や性状などによって変形係数の上昇傾向が異なるためであると考えられる. 具体的 には、 C_H 級および C_{M1} 級においては、岩質は新鮮・堅硬であるとともに、割れ目の分布 密度が低く割れ目沿いも比較的新鮮であることから、割れ目にグラウトが充填され変 形係数が上昇する場合と、割れ目が少ないため上昇がほとんど認められない場合とが 混在していると推察される.また、 C_{M2} 級および C_{L1} 級においては、岩質部の風化が進 行するとともに割れ目の分布密度が大きくなり、割れ目表面の風化が確認できるが、 この場合、グラウトがより多くの割れ目に充填されることにより確実に改良がなされ ていると考えられる.これに対して、 C_{L2} 級およびD級については、割れ目密度は大き くなるとともに全体的に強風化を受け、割れ目沿いに粘性土などを挟在しているもの もあることから、グラウトが割れ目に充填されやすい場合とされにくい場合とがあり、 上昇量のばらつきが大きくなると推察される.

このように、今回検討した地点における変形係数に関するグラウチングによる物性 値の変化は、検討したダムサイトの地質状況に応じて大きく異なることが明らかにな った.これを実施工に反映する際には、検討を実施する地点の地質においてどのよう な傾向が認められるのか、事前調査時に試験施工で直接評価するとともに、岩盤等級 区分ごとに上昇値の平均値、標準偏差最小値がどの程度であるのか、そしてその傾向 が地質状況とどのような関連があるのか、慎重に検討を進める必要があると考えられ る.

図-3.1.3 グラウチング前後における岩盤等級区分ごとの対数頻度分布

(コア箱横幅 1m)

写真-3.1.1 花崗岩の分布するダムサイトにおけるボーリングコア写真

C_H級主体

C_M級主体

C_L~D級主体

写真-3.1.2 玄武岩の分布する掘削のり面における岩盤等級区分ごとの地質状況

(2) 岩種ごとの固密化に関する検討

本項においては、グラウト注入孔における試験で得られたグラウチング前後の変形 係数に関する試験結果を岩種ごとに整理することにより、固密化に関する差異を検討 した.ここで図-3.1.4 に、3 種類の火成岩におけるグラウチング前後の変形係数に関す る対数頻度分布、図-3.1.5 に 2 種類の堆積岩における対数頻度分布をそれぞれ示す.こ れらの図をみると、全ての岩種において、グラウチング後の平均値、平均値±標準偏 差、最大値、最小値が上方に遷移しているとともに、火成岩の方が堆積岩と比較して 物性値の上昇量が大きいことが確認できた.

項目	花崗岩		流紋岩		安山岩	
	グラウチング前	グラウチング後	グラウチング前	グラウチング後	グラウチング前	グラウチング後
度数	313	313	87	87	62	62
最大値	7,800	8,230	4,880	5,260	3,910	5,440
平均值+σ	4,540	6,100	2,520	3,540	3,380	6,030
平均值	1,720	2,740	1,500	2,320	900	2,080
平均值-σ	650	1,230	890	1,520	240	720
最小値	12	20	480	840	12	60
標準偏差σ	1,380	1,700	870	1,030	990	1,800
変動係数	0.80	0.62	0.58	0.44	1.10	0.87

図-3.1.4 火成岩におけるグラウチング前後の変形係数に関する対数頻度分布

	変重	动係数	0.65	0.38	0.74	1.05	0.56	
図-	3.1.5	堆積岩	におけるク	「ラウチン	グ前後の変	形係数に	関する対数	頻度分布

830

590

630

490

510

標準偏差σ

また,図-3.1.1 に示したグラウチング前後における同一地点で得られた変形係数の対 応関係について、岩種ごとの変化の差異を確認する目的で、以下の検討を実施した. ここで図-3.1.6に、岩種ごとのグラウチング前後における対数平均値について、岩盤等 級区分ごとに整理した結果を示す.これをみると、C_H~C_L級、特にC_H~C_M級におい て、堆積岩と比較して火成岩で同一ランク内における平均値の上昇が大きいことが確 認できる.これは、試験ヤードやダムサイトにおける地質観察結果、コア観察結果な どより、堆積岩と比較して火成岩、特に火山岩の方が連続性の良い割れ目が卓越して いることから、グラウトが注入されやすいため、物性値の上昇が大きくなるものと推察される.なお、上述した傾向は、図-3.1.1において寒色系で示した火成岩系の結果と暖色系で示した堆積岩系との比較からも確認できる.

ただし、火成岩でも、深層風化などにより岩質部および割れ目沿いにマサ化しやすいことが知られている花崗岩などについては、前項で示した飯田⁴⁾などの指摘などを参照すると、割れ目沿いに土砂状や粘性土状を呈するC_{L2}~D級ランクなどにおいてグラウトが浸透しづらい状況も確認されているため、留意が必要となる.

クラリテンク 肌の変形係数(MP8	グ	ラワ	クチ	ング	前の	変形係数	汝(MPa
-------------------	---	----	----	----	----	------	-------

	変形係数の対数平均値								
岩	h 種	C	Н	C	М	C	L	I)
		グラウチング前	グラウチング後	グラウチング前	グラウチング後	グラウチング前	グラウチング後	グラウチング前	グラウチング後
火成岩	花崗岩	3,110	4,130	1,110	2,120	320	830	70	200
	安山岩	2,600	4,460	1,050	2,340	310	1,220	30	160
	流紋岩	2,780	3,320	1,220	2,000		1	1	1
堆積岩	凝灰 角礫岩	2,270	2,750	1,040	1,440	340	920	120	860
	砂岩	_		1,030	1,490	330	830		
全	体	2,980	4,000	1,090	1,810	340	920	70	330

図-3.1.6 グラウチング前後における岩種ごとの

変形係数に関する対数平均値の関係

3.1.2 チェック孔における岩盤試験による検討

上述した検討結果は、直接グラウチングを実施した孔において、注入前後の同一地 点で実施した試験結果をもとに整理したものである.これに対して本項においては、 2.1.2 項で示したチェック孔における確認試験の結果について述べる.

ここで表-3.1.3 に,凝灰角礫岩の分布した M ダムにおける試験結果について,図-2.1.2 に示した施工段階ごとの変形係数および静弾性係数の平均値を示す.これをみると, 岩盤の初期状態における変形特性を示す1次孔の平均値に対して,2次孔以降の平均 値が施工の進捗に伴って大きくなっていることがわかる.これは,2次孔以降の孔が それより次数の低いグラウチングの影響で固密化が図られているためであると考えら れる.

次数	変形係数(MPa)	静弹性係数(MPa)
1 次孔 (初期状態)	400	680
2次孔	600	930
3次孔	680	960
4次孔	610	1,080

表-3.1.3 各次数における変形係数および静弾性係数の平均値

また,砂岩の分布したSダムにおいては,図-2.1.2 に示したチェック孔の位置で周辺 孔からのグラウチング完了後に試験を実施することにより,注入孔周辺岩盤の物性値 の変化を確認している.図-3.1.5 をみると,チェック孔における平均値がグラウチング 前の平均値よりも上昇しているとともに,最大値および平均値±標準偏差の頻度分布 も上方に遷移している様子が認められる.これにより,注入孔から数m程度離れた箇 所においても,周辺孔のグラウトが浸透することにより,岩盤の変形係数が上昇した と考えられる.

しかしながら、チェック孔における最小値はグラウチング前と同程度の値を呈している.これは、チェック孔の位置が注入孔より数m程度離れているため、特に強風化しているC_L~D級の岩盤が分布する場合などにおいては、グラウトがチェック孔周辺に到達していない箇所もあるためであると推察される.

3.1.3 孔間弾性波試験による検討

面的にグラウチングによる岩盤の物性値の変化を確認する目的で、グラウチングの 施工段階ごとに実施した孔間弾性波試験結果を整理した.ここで図-3.1.7 に、粘板岩の ダムサイトにおける孔間弾性波試験結果,図-3.1.8 に花崗岩のダムサイトにおける孔間 弾性波試験結果をそれぞれ示す.これをみると、いずれの図においてもグラウチング 前の値と比較して、1次孔注入後に弾性波速度が大きくなるとともに、その後の注入 の進捗に伴って速度が徐々に大きくなっている様子が確認できる.これにより、測線 を設定した 7m 区間の断面において、周辺孔のグラウチング注入が進捗することによ り、その段階ごとに同一測定区間における岩盤の固密化が進行している様子が確認で きた.

また,図-3.1.7 に示す粘板岩の初期状態における弾性波速度はC_M級相当主体であったのに対し,図-3.1.8 の花崗岩では初期状態からC_H級相当であったが,3.1.1 項で述べた孔内載荷試験結果より求めた岩盤の固密化に関する検討と同様に,初期状態の地質状況が劣る粘板岩の方が明瞭な改良効果が確認できた.

測定位置	グラウチング前	グラウチング後				
	初期	1 次後	2 次後	3次後	4 次後	
1-1~2-1	2.40	3.25	3.33	3.33	3.56	
1-2~2-1	2.20	3.49	3.04	3.69	3.44	
1-3~2-1	2.98	3.92	3.76	4.22	4.21	
1-4~2-1	3.49	4.22	4.22	4.70	4.72	
平均	2.75	3.75	3.70	3.97	3.99	

度数:各平均値あたり121測線

図-3.1.7 粘板岩におけるグラウチング施工段階ごとの弾性波速度の平均値

測定位置	グラウチング前	グラウチング後			
	初期	1 次後	2 次後	3次後	4 次後
1-1~2-1	4.02	4.43	4.91	4.78	5.01
1-2~2-1	4.13	4.44	4.71	4.73	4.87
1-3~2-1	3.55	4.02	4.20	4.32	4.26
1-4~2-1	4.06	4.52	4.96	5.20	5.37
平均	3.87	4.42	4.60	4.74	4.85

度数:各平均値あたり121 測線

図-3.1.8 花崗岩におけるグラウチング施工段階ごとの弾性波速度の平均値

3.2 岩盤の均質化に関する検討

岩盤が均質化するということは、変形特性や強度特性に関する物性値のばらつ きが全体的に減少することである.ここでは、変形係数に論を絞って検討する.

図-3.1.4, 3.1.5 に示したグラウチング前後における変形係数に関する頻度分布 を参照すると、火成岩および堆積岩とも全ての岩種でグラウチング後の変形係数 全体のばらつきを示す変動係数が小さくなっていることがわかる.また、図-3.1.3 に示した岩盤等級区分ごとのグラウチング前後における変動係数については、図 -3.2.1 に示すように、全てのランクでグラウチング後の変動係数が大きくなると ともに、概ねランクが下がるごとに変動係数が大きくなる傾向が認められる.さ らに図-3.1.2 では、初期状態の岩盤等級区分が不良なほど変形係数の改良比が大 きくなることが確認された.

上述した事項を勘案すると、グラウチング後に変形係数が上昇することにより 同一岩盤等級区分内では測定点が物性値の大きい側に変動するとともに、上位ラ ンクほど上昇度合いが小さく下位ランクほど上昇度合いが大きいため、全データ で算出した場合にグラウチング後の変動係数が小さくなる、つまり均質化が進む と考えられる.

図-3.2.1 グラウチング前後における岩盤等級区分ごとの変動係数

これらの検討結果を詳細に確認することを目的として,図-3.2.2 にグラウチン グ前の変形係数とグラウチング前後における変形係数を除して算出した改良比 の関係を示す.これをみると,概ねグラウチング前の変形係数が小さいほど改良 比が大きく,グラウチング前の変形係数が大きいほど改良比が小さいという傾向 が確認でき,この図からも,グラウチングによって岩盤が均質化していることが 確認できる.

具体的には、 C_H 級岩盤では改良比が小さく平均 1.35 倍程度であるのに対し、 C_{M1} 級で 1.53 倍、 C_{M2} 級で 1.88 倍、そして C_{L1} 級で 2.26 倍、 C_{L2} 級で 3.23 倍、D 級で 4.54 倍と、グラウチング前の地質状況が不良なほど改良比が大きくなる傾向 が認められる.ただし、図-3.2.2 をみると、 $C_H \sim C_{L1}$ 級においてまでは、グラウチン グ前の変形係数が低いほど各点が上方に遷移していることが確認できるものの、 C_{L2} 級およびD級においては改良比の大きなものとほとんど認められないものとが混在し ていることが分かる.これは、3.1 項で述べたように、強風化した C_{L2} 級~D級につい ては割れ目沿いに土砂化もしくは粘性土化しているものもあり、グラウトが浸透しづ らい場合に改良が進まなかったためであると推察される.

図-3.2.2 グラウチング前の変形係数と改良比の関係

3.3 岩盤の一体化に関する検討

岩盤が一体化するとは,岩盤を分離する節理を主体とする不連続面が改良され, 岩盤が連続体に近づくことである.

具体的には,変形係数(D)が節理などの不連続面を含む岩盤全体の変形性を反映 する値であるのに対し,静弾性係数(E)はインタクトな部分の変形性を反映しやす い値であることが知られており,これらの比である D/E 比(変形係数/静弾性 係数比)は岩盤の物性における不連続面の影響度合いを示す値であるといえる. 図-3.3.1 はグラウチング前後の D/E 比の対応関係を示したものであるが,全体 的にややばらつきは認められるものの,大半の点がグラウチング後に増加してい る傾向が認められる.すなわち,グラウトが割れ目に充填されることにより,変 形係数(D)と静弾性係数(E)の値が近づくため,岩盤の変形特性における不連続面 の影響度合いが減少しているものと推察される.このことから,不連続面がグラ ウチングにより改良されて連続体に近づいている,すなわち岩盤の一体化が進ん でいることが判明した.

図-3.3.1 グラウチング前後における D/E 比の関係

3.4 孔内打撃応答試験による改良効果の簡易評価方法に関する検討

1.3 節におけるグラウチングに関する現状と課題で述べたように、グラウチング施工 時に力学的な改良効果を確認する具体的な方法が確立されていないため、現在におい てもダム基礎設計・施工にその効果が考慮されていない.これに対して、簡易かつ短 時間に岩盤の工学的特性を確認することを目的として開発された孔内打撃応答試験機 ⁵⁾について、グラウチング前後に同一地点で実施される孔内載荷試験結果との対応関係 を整理することにより、①打撃応答試験と岩盤の変形特性との対応関係を確認すると ともに、②グラウチング前後における測定結果の差異を評価した.

ここで図-3.4.1 に,各測定点におけるグラウチング前後の打撃応答量と同一地点で得 られた変形係数の関係を示す.この図より,打撃応答量は岩種によらず岩盤の変形特 性と比較的高い相関性を示すとともに,グラウチング前後でほぼ同様の相関関係を呈 している,つまりグラウチング後の変形特性が向上した状況を捉えていると考えられ る.

図-3.4.1 グラウチング前後における打撃応答量と変形係数の関係

また,図-3.4.2 は,グラウチング前後に同一地点で得られた打撃応答量の関係を示す ものであるが,孔内載荷試験と同様に,D級の一部の点を除くほとんど全ての試験実 施箇所において,グラウチング後における打撃応答量の上昇が認められる.これらの 図から,孔内打撃応答試験機については,グラウチング前後において岩盤の変形特性 と良好な相関関係が確認できるため,施工時に岩盤の力学的改良効果を簡易かつ短時 間に評価する有力な試験になると考えられる.

図-3.4.2 グラウチング前後における打撃応答量の関係

3.5 本章の結論

本章においては、グラウチングによる岩盤の変形特性に関する改良効果を定量的に 評価するために、孔内載荷試験結果および孔間弾性波試験結果を用いて、岩盤の①「固 密化」、②「均質化」、③「一体化」に関する検討を実施した.

まず,岩盤の固密化については,孔内載荷試験結果および孔間弾性波試験結果より, グラウチング施工段階ごとの物性値の変化を定量的に確認した.その結果,岩盤の初 期状態が不良なほど改良効果が大きいことが認められ,強風化岩相当の岩盤(C_{L1}級) が弱風化岩相当(C_{M2}級)の変形特性まで上昇することが明らかになった.

岩盤の均質化については、変形特性のばらつきを示す変動係数がグラウチング後に 減少する傾向を確認した.これは、グラウチング後の変形係数の上昇により、同一岩 盤等級区分内では測定点が物性値の大きい側に変動するとともに、上位ランクほど上 昇度合いが小さく下位ランクほど上昇度合いが大きくなるため、全データで算出した 場合にグラウチング後の変動係数が小さくなるためであることがわかった.

また,岩盤の一体化については,不連続面の影響度合いを示す値である D/E 比 (変形係数/静弾性係数比)を用いて検討を行った.その結果,グラウチング後 の値が増加している傾向が認められ,不連続面がグラウチングにより改良され岩 盤が連続体に近づいていることが判明した.

さらに、岩盤の力学的特性を簡易かつ短時間に推定できる孔内打撃応答試験機について、グラウチング前後に孔内載荷試験実施箇所で測定を行った.その結果、孔内載 荷試験より得られた岩盤の変形特性との相関関係について、岩種によらずグラウチン グ前後でほぼ同様の傾向が得られたことから、力学的改良効果を簡易かつ短時間に判 定できる試験機としての適用性を有していると考えられる.

73

参考文献

- 1)宇津木慎司,宮本健也,吉田眞教,朝倉俊弘,菊地宏吉:グラウチングによる岩盤の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験による検討—,ダム工学 Vol.21 No.3, 2011.
- 2)Shinji Utsuki, Toshihiro Asakura, Kohkichi Kikuchi : In-situ experimental studies on improvement of deformability of rock masses by grout treatment 12th International Congress of Rock Mechanics, Beijing, pp.2,163-2,166, 2011.
- 3)土木学会:ダムの地質調査, p.112, 2003.
- 4)飯田隆一:ダムの基礎グラウチング,技報堂出版, pp.329~330, 2002.
- 5)菊地宏吉,水戸義忠,宇津木慎司:孔内打撃応答試験機の適用性に関する検討, 応用地質 36 巻 1 号, 1995.

第4章 グラウチングによる岩盤の強度特性に関する 改良効果の定量的評価

本章においては、グラウチングによる岩盤の強度特性に関する改良効果を定量的に 評価することを目的として、4.1節で孔内載荷試験結果より求めた降伏応力による検討、 4.2節で割れ目を模した供試体を用いた室内せん断試験による検討を実施する.

4.1 原位置試験による強度特性に関する改良効果の定量的評価

孔内載荷試験結果より岩盤の強度特性を求める方法については、降伏応力とその測定深度の関係より算出する竹内ら¹⁾の検討方法を2.1.4項に示した.この深度と降伏点応力の関係式の係数を求めるにあたっては、力学的特性が均質な岩盤において採取された多数のデータをもとに最小2乗法などを用いて決定する必要がある.ここで均質な岩盤とは、本来はせん断強度特性である粘着力および内部摩擦角が概ね等しい岩盤を意味するものであるが、現実には変形特性など他の力学的特性が等しいものを均質な岩盤として評価せざるを得ない.ここでは、孔内載荷試験によって得られた変形係数の値の大きさにもとづいて岩盤を等級区分し、それぞれの岩級についてグラウチング前後のせん断強度を求めた.なお、内部摩擦角の値は、各ダムにおける岩盤等級区分と原位置せん断試験結果の対応関係をもとにあらかじめ表中の値に設定(固定)し、グラウチング前後で変化しないものとした.これは、後に4.2節で述べる検討結果を参考にしたものである.

ここで表-4.1.1に, Mダム地点, Tダム地点およびUダム地点で得られた試験結果から 算出されたグラウチング前後の粘着力の値を示す.これをみると,いずれの地点にお いても, C₁ ~D級岩盤において0.3~0.5MPa程度の物性値の上昇が認められた^{2) 3)}.

地点	岩種	岩盤等級 区分	改良前 粘着力 (MPa)	改良後 粘着力 (MPa)	粘着力 上昇量 (MPa)	内部 摩擦角 (°)
Mダム	凝灰 角礫岩	D 級 C _L 級	$\begin{array}{c} 0.68\\ 0.84 \end{array}$	1.10 1.30	0.42 0.46	33
Τダム	砂岩頁岩 互層	C _L 級 C _L 級	0.58 0.86	1.11 1.20	0.53 0.34	30
Uダム	砂岩頁岩 互層	C _L 級 C _L 級	0.29 1.14	0.77 1.64	0.48 0.50	35

表-4.1.1 グラウチング前後の岩盤の粘着力²⁾³⁾

4.2 室内せん断試験による強度特性に関する改良効果の定量的評価

本節においては、2.2節の室内における確認試験の方法で述べた、①節理面のラフネ スを考慮したせん断試験結果、②節理面の連続性を考慮したせん断試験結果、③節理 面の挟在物を考慮したせん断試験結果をもとに、強度特性に関する改良効果を定量的 に評価する.

4.2.1 節理面のラフネスとせん断強度との関係

図-2.2.1に示した割れ目を模した模型供試体を用いたグラウチング前後の一面せん 断試験結果として,節理面に作用させた垂直応力と最大せん断応力(ピーク応力)との関 係を節理面の種類別に図-4.2.1に示す.

本図には、岩盤の破壊基準として最も標準的に用いられているクーロンの破壊基準 に従う近似直線を併せて示した.これをみると、いずれの割れ目供試体においてもグ ラウチング後の最大せん断応力値がグラウチング前の値を上回っており、せん断強度 が改良されていることがわかる.また、前後で近似直線の傾きがほぼ一致しており、 内部摩擦角には顕著な変化が認められない、すなわち、グラウチングによる強度特性 の改良効果は粘着力の発現値0.1~0.3MPa程度の範囲である.三軸圧縮試験の結果から、 グラウト材自体の粘着力は7MPa程度であることが判明しているが、実際の粘着力の発 現値はそれに比して著しく小さい.

ここでせん断試験終了後の実際の節理面を観察すると、グラウト材自体の破壊はほ とんど観察されず、グラウト材が節理面より剥離した痕跡が多く認められた.このこ とから、グラウチング後の節理のせん断破壊はグラウト材内部で生じるのではなく、 グラウト材と節理面の付着面において生じるというメカニズムを考察できる.また、 グラウチング前後で内部摩擦角にほとんど変化が認められないことについては、割れ 目のかみ合わせがグラウチング前後でほとんど変化していないためであると考えられ る⁴⁾⁵⁾.

76

図-4.2.1 5つの割れ目供試体を用いたグラウチング前後におけるせん断試験結果

さて、節理面とグラウトの付着面積は、節理面のラフネスの程度によって異なる. すなわち、節理面が完全な平面の場合と比較して粗い場合には凹凸があるため、グラ ウトの付着面積も大きくなる.したがって、上記のメカニズムでせん断破壊が生じる 場合、グラウトの付着面積が大きい粗い形状の節理ほど、粘着力の発現値が大きくな るものと推察される.節理面が粗くなるに従って生じる節理の長さの増分*4x*は、フラ クタル次元*Df*とせん断長*L*を用いて次式によって求めることができる⁴⁾.

$$\Delta x = L \cdot (10^{Df-1} - 1)$$
 (4.2.1)

ここで図-4.2.2 に,節理面のラフネスに起因した節理長の増分と粘着力の発現値の関係を示す.この図をみると,節理長の増分が増えるに従って粘着力の発現値が増加している,すなわち粗い節理面ほど改良効果が大きいことがわかる.

図-4.2.2 初期粘着力とグラウチングによる上昇値の関係

4.2.2 節理面の連続性とせん断強度との関係

4.2.1項においては、5種類の節理面を模した供試体を用いて試験を実施することに より、ラフネスを考慮した定量的な評価を実施したのに対し、本項においては節理面 の接合部であるインタクトブジッジを設置することにより、節理面の連続性を考慮し た強度特性に関する改良効果を定量的に評価した.

ここで、インタクトブジッジが4箇所の場合におけるグラウチング前後の一面せん 断試験結果を図-4.2.3に示すとともに、インタクトブジッジが2箇所、1箇所の場合に おける節理No.1の一面せん断試験結果を図-4.2.4に示す.いずれの図においてもグラウ チング後の最大せん断応力値がグラウチング前の値を上回っており、せん断強度が改 良されていることがわかる.また、前後で直線の傾きがほぼ一致しており摩擦角に顕 著な変化がない、すなわち粘着力が上昇することによってせん断強度が改良されてい ることがわかる.このことから、接合部が存在する場合にも完全分離面の場合と同様 のメカニズムで改良がなされているものと考えられる.

さて, 接合部が4個の場合では粘着力の増分は0.4~0.6MPa程度の範囲である.4.2.1 項における分離面の場合に粘着力の増分が0.1~0.3MPaであったことと比較すると, 接 合部の存在によって改良効果が高まっていることが推察される.また,図-4.2.5 は節理 No.1 における初期粘着力と粘着力の上昇値の関係を示したものであり,分離面の結果 および接合部が1箇所,2箇所,4箇所の場合の結果がプロットされている.本図よ り,初期粘着力と粘着力の上昇値の間には正の相関関係が認められ,このことからも 初期粘着力の増加に伴い粘着力の改良効果が高まっていることがわかる⁶.

図-4.2.5 初期粘着力とグラウチングによる上昇値の関係

図-4.2.3

図-4.2.4 割れ目の接合部を1箇所および2箇所設定した際の グラウチング前後におけるせん断試験結果

4.2.3 節理面の挟在物とせん断強度との関係

図-2.2.5に示したような,粘土を挟在させた供試体を用いたグラウチング前後の一面 せん断試験結果を図-4.2.6に示す.いずれの狭在物占有面積率についても,グラウチン グ後の最大せん断応力値がグラウチング前の値を顕著に上回っており,せん断強度が 改良されていることがわかる.なお,狭在物占有面積率100%の供試体についてはグラ ウチング後の試験を実施していない.これは,節理面全体に狭在物が存在している場 合には,グラウトが内部に浸透しなかったことによる.確認のため垂直応力2.0MPaの 条件のもと狭在物占有面積率100%状態でグラウチングを実施してせん断試験を行っ たところ,グラウチング前後で最大せん断応力にほとんど変化が認められなかった.

まず,粘着力については,図-4.2.6に示すように狭在物占有面積率が小さいものほど グラウチング後で大きな発現値を示している.これは,狭在物占有面積率が小さいも のほど節理面内においてセメントミルクが進入する面積が大きくなり,節理面とグラ ウトの付着面積が大きくなるためであると推察される.次に内部摩擦角についてであ るが,グラウチング後の内部摩擦角はグラウチング前と比較して上昇しており,4.2.1 項および4.2.2項の結果とは一致しない.この理由としては,本試験においてはある程 度の厚みを有する狭在物を充填したため,グラウチング前に顕著な空隙部が生じてか み合わせが不完全であったのに対し,グラウチング後にはこの空隙部にグラウトが充 填されたため新たなかみ合わせが生じたためであると推察される.以上の検討から, 狭在物占有面積率が小さい節理ほど,グラウチングによるせん断強度の改良効果が高 いものと考えられる⁷⁾.

図-4.2.6 粘性土を挟在した供試体を用いたせん断試験結果

4.3 本章の結論

本章においては、グラウチングによる岩盤の強度特性に関する改良効果を定量的に 評価することを目的として、4.1節で孔内載荷試験結果より求めた降伏応力による検討、 4.2節で割れ目を模した供試体を用いた室内せん断試験による検討を実施した.

まず、4.1 節に示した原位置における降伏応力より算出した結果を参照すると、粘着 カがグラウチング後に 0.3~0.5MPa 程度上昇することが確認できた.また、4.2 節に示 した室内における割れ目を模したせん断試験結果より、粘着力が、分離した割れ目を 模した試験で 0.1~0.3MPa 程度、インタクトブリッジを設置した試験で 0.4~0.6MPa 程度、そして挟在物を挿入した試験で 0.3~0.5MPa 程度、上昇することがわかった. なお、内部摩擦角については、分離した割れ目の供試体とインタクトブリッジを設置 した供試体では前後で変化が認められなかったものの、挟在物を挿入した供試体では 最大 10°程度の上昇が確認できた.

上述した試験結果については、供試体の破壊面がグラウト材と節理面との付着面で 発生する状況を考慮すると、グラウト材と節理面との付着力が発現することにより粘 着力が上昇するとともに、内部摩擦角については前後で割れ目のかみ合わせに変化が ないため上昇が認められない状況が推察される.また、粘性土を挟在する場合には、 専有面積が小さいほどグラウト材と節理面の付着面積が大きくなることにより粘着力 の発現値が大きくなるとともに、グラウト材により新たなかみ合わせが生じたため内 部摩擦角も上昇したと考えらえる.

参考文献

- 武内俊昭,大橋武一郎: 孔内載荷試験による原位置岩盤の c, φの測定について,第6
 回岩の力学国内シンポジウム, pp.175~180, 1984.
- 2) 菊地宏吉: グラウチングによるダム基礎岩盤の力学的改良効果に関する評価技術の 現状と課題, ダム技術No.117, 1996.
- 3)成瀬琢也: グラウチングによる岩盤のせん断強度の改良効果に関する現場実験的研究, 京都大学修士論文, pp.40-46, 1995.
- 4)水戸義忠,若林成樹,平野勇,菊地宏吉:グラウチングによる節理のせん断強度の改 良効果に及ぼす節理特性の影響に関する基礎実験,材料別冊第48巻第4号, pp.357-364, 1999.
- 5)小柳聡:ダム基礎岩盤におけるグラウチングの力学的改良効果に関する実験的研究, 京都大学修士論文, pp.28-39, 1993.
- 6)吉野尚人: グラウチングによる節理のせん断強度の改良効果に関する室内実験的研究(初期粘着力による影響),京都大学修士論文,pp.22-26, 1995.
- 7)近藤聡史: グラウチングによる節理のせん断強度の改良効果に関する研究 一挟在 物・開口幅・壁面強度の影響に関する室内実験による検討-, 京都大学修士論文, pp.18-22, 1998.

第5章 グラウチングによる岩盤の力学的改良効果を 考慮したダム基礎設計方法の構築

本章においては、第3章におけるグラウチングによる岩盤の変形特性に関する改良効 果の定量的評価結果および第4章における強度特性に関する改良効果の定量的評価結 果をもとにして、グラウチングによる物性値の上昇をダム基礎設計に考慮するための 具体的な方法を構築することを目的として、種々の検討を実施する.

5.1 岩盤の力学的改良効果を考慮した設計せん断強度の設定方法

本論文においては、グラウチングによる岩盤の力学的改良効果について、第3章で変 形特性に関する改良効果、第4章で強度特性に関する改良効果をそれぞれ定量的に評価 し、表-5.1.1に示すような考察を述べた.

岩橋	监等級	3.変形特性に関する	4.強度特性に関	する改良効果	
区分 改良効果		改良効果	4.1原位置岩盤試験による	4.2室内せん断試験による	
		(図-3.1.3)	検討結果(表-4.1.1)	検討結果 (図-4.2.1-6)	
С	H級	C _H 級相当			
С _м 級	C _{M1} 級	平均値: C _H 級相当に改良	_		
	C _{M2} 級	平均値: C _{M1} 級相当に改良		粘着力C: 0.3~0.6MPa程度上昇 内部摩擦角 a · 変化なし	
C _L 級	C _{L1} 級	全測定点: C _{M2} 級相当に改良	粘着力C: 03~05MPa程度上显		
	C _{M2} 級	平均値: C _{M2} 級相当に改良	内部摩擦角φ:変化なし		

表-5.1.1 グラウチング後の力学的特性に関する改良効果に関する考察

変形特性の改良効果については、いずれの岩盤等級区分においてもグラウチング後 に物性値の上昇が認められ、特に強風化岩である C_{L1} 級で全ての測定点が弱風化岩の C_{M2} 級相当の物性値に、 C_{L2} 級で平均値が C_{M2} 級相当まで改良されていることが判明し た.これにより、風化岩における変形係数については、既往の岩盤等級区分における 半等級程度の改良効果が確認できた.

強度特性の改良効果については、原位置岩盤における孔内載荷試験の降伏応力より

求めたせん断強度に関する検討結果によると、C_L~D級岩盤において粘着力が0.3~ 0.5MPa程度上昇することが確認できた.また、割れ目を模した室内せん断試験結果に おいても、内部摩擦角の上昇は認められなかったものの、割れ目のインタクトブリッ ジを考慮した試験結果などにおいて0.3~0.6MPa程度の粘着力の上昇が認められた.こ れは、表-1.3.1、1.3.2に示した既往の試験結果より得られた岩盤等級区分ごとの粘着力 の差異が0.8~1.0MPa程度であることを考慮すると、変形特性と同様に、既往の岩盤等 級区分における半等級程度の改良効果が得られていると考えられる.

以上に鑑み、ダム基礎設計に用いる強度特性の物性値について、第3章の変形特性に 関する検討と同様に、 C_L 級をほぼ中間値で2つに細区分することを考える。例えば図 -1.3.2に示したAダムの原位置せん断試験結果を参照すると、図-5.1.1に示すように、既 往の C_L 級のせん断強度を C_{L2} 級の値とし、 C_{L1} 級については粘着力を既往の C_M 級 1.90MPaと C_L 級1.10MPaの中間値1.50MPaに設定する。そして、グラウチングによる改 良効果については、例えば第3章の検討結果より変形特性に関して全ての測定点で C_M 級相当まで改良された C_{L1} 級について、第4章の検討結果をもとに内部摩擦角は変化さ せず粘着力のみ0.40MPa程度上昇すると仮定する。その結果、図-5.1.1、表-5.1.2に示す ように、グラウチング後の C_{L1} 級の粘着力が1.90MPa程度と、既往の C_M 級相当の値まで 改良すると評価できると考えられる。

図-5.1.1 グラウチングの改良効果を考慮した岩盤のせん断強度の設定例(Aダム)

岩 級		グラウチング前	グラウチング後	
C _H 級		C=2.30, $\phi = 48^{\circ}$	C=2.30, $\phi = 48^{\circ}$	
C _M 級		C=1.90, $\phi = 43^{\circ}$	C=1.90, $\phi = 43^{\circ}$	
CL級	C _{L1}	C=1.50, $\phi = 39^{\circ}$	C=1.90, $\phi = 39^{\circ}$	
		(粘着力のみСм	(粘着力のみ	
		とCLの中間値)	0.4MPa 改良)	
C_{L2}		C=1.10, $\phi = 39^{\circ}$	C=1.10, $\phi = 39^{\circ}$	
		(もとのC _L 級相当)	(改良効果見込まず)	

表-5.1.2 グラウチングの改良効果を考慮した岩盤のせん断強度の設定例

5.2 岩盤の力学的改良効果を考慮したダム基礎設計方法

一般的なダム基礎設計時には、1.3節で示した事例のように、基礎に作用する鉛直力 およびせん断力と当該箇所に分布する基礎岩盤のせん断強度をもとに安定計算が実施 され、図-5.2.1に示すように「堤高が 40m程度以下であればC_L級岩盤」、「堤高が 40 ~100m程度であればC_M級岩盤」の分布が必要となる、といった結果が得られる.

ここで、5.1 節に示した方法を用いてグラウチングによる岩盤の力学的改良効果を考慮すると、図-5.2.2 に示すように、 C_M 級以上の着岩が必要とされる堤高 40m以深の箇所において、 C_{L1} 級岩盤がグラウチングにより C_M 級相当の物性値まで改良されると評価できれば、ダム基礎を図-5.2.1 よりも上部に設定することができると考えられる.また、せん断安全率が 4.0 を下回る場合に設置されるフィレットについても、力学的改良効果を考慮することによる物性値の上昇とともに、基礎岩盤を上部に設定できることによる作用力の低減を考慮することにより、その規模を縮小することが可能となる.

このようにして, 仮に $C_L \sim C_M$ 級部の基礎掘削線を 5~10m程度上部に設定できれば, 既往の設計線との差分の箇所の堤体掘削体積とともに,堤体コンクリート打設量を同 時に低減できる.具体的な削減数量については,既往のダムにおける設計事例をもと に計算すると,Aダム(高さ125m,堤体積120万m³)において8万m³程度,Bダムに (高さ100m,堤体積70万m³)において6万m³程度と,5~10%程度の削減に寄与で きると試算された.さらに上述した検討が実現できれば,1.3節で示したように,堤体 上部のり面など周辺箇所における掘削体積の低減,骨材製造量削減に伴う原石山掘削 体積の低減,そしてこれらの掘削のり面規模縮小に伴う安定性確保,自然改変の最小 化など,ダム建設に関わるQ(品質)·C(経済性)·D(工程)·S(安全性)·E(環境 への配慮),あらゆる側面を改善できると考えられる⁷⁾.

なお、上述したように、ダム基礎におけるグラウチングの技術指針は平成15年に改 訂された.これにより、従来、基礎岩盤の力学的な改良を主目的としていたコンソリ デーショングラウチングについて、基礎全面に注入孔を設定する既往の設計方法から、 上流側では遮水目的の孔を設定し、下流側では断層・破砕帯部などの弱部補強箇所に限 定して設定する設計方法に改訂されている⁸⁾.これに対しては、遮水性の改良を目的と した基礎上流側の注入箇所において力学的な改良効果を考慮することができれば、部 分的ではあるものの、当該箇所における基礎岩盤の安全率の上昇を評価することによ り、堤体基礎掘削体積および堤体コンクリート打設体積を低減できると考えられる.

また,既往の施工実績を考慮すると,例えば,割れ目が卓越し透水性状が高いと想 定される火成岩のC_L級岩盤などがダム基礎において上下流方向に連続して広範囲に 分布する場合などにおいては,上述した指針改訂に伴う数量削減による基礎排水量の 増大などが懸念される⁹.これに対しては,力学的特性と透水特性の改良,両方を目

図-5.2.1 既往のダム基礎設計事例模式図

図-5.2.2 グラウチングの改良効果を見込んだ設計事例模式図

的とした注入孔を部分的にでも基礎全面に設定することにより,ダム堤体の安定性確 保と基礎岩盤の遮水性確保をともに実現できると考えられる.その際には,①既往の 設計方法により掘削形状を設定し,主に基礎上流側のみ遮水性改良目的のコンソリデ ーショングラウチングを計画する場合と,②基礎全面に注入孔を設定する代わりに, 例えばC_L級岩盤の物性値の上昇を考慮して堤体基礎掘削体積および堤体コンクリー ト打設体積の低減を実現する場合など,複数の案を想定する必要がある.そして,そ れぞれの案について,ダム建設全体を考慮した項目ごとにQCDSEに関する検討を行い, その結果をもとに総合的な評価を実施することなどにより,所要の品質を確保した上 で最適なダム建設に寄与できると考えられる¹⁰⁾.

5.3 本章の結論

本章においては,第3章におけるグラウチングによる岩盤の変形特性に関する改良効 果の定量的評価結果および第4章における強度特性に関する改良効果の定量的評価結 果をもとに,グラウチングによる物性値の上昇をダム基礎設計に考慮するための具体 的な方法を示した.

まず,グラウチングによる岩盤の力学的改良効果を考慮したダム基礎岩盤の設計せん断強度について,第3章で変形特性に関する改良効果が明瞭であった強風化岩盤

(C_{L1}級)について,第4章の強度特性に関する検討で確認された粘着力が0.4MPa程度上昇することを考慮する具体的な事例を示した.また,改良効果を考慮したダム基礎設計方法については,既往の設計方法に上述した物性値の上昇を適用する方法について詳述し, 5~10%程度の堤体掘削体積とともに,堤体コンクリート打設量を同時に低減できることを述べた.

さらに、上述した設計を実施できれば、それに付随して、堤体上部のり面など周辺 箇所における掘削体積の低減、骨材製造量削減に伴う原石山掘削体積の低減、そして これらの掘削のり面規模縮小に伴う安定性確保、自然改変の最小化など、ダム建設に 関わるQ(品質)・C(経済性)・D(工程)・S(安全性)・E(環境への配慮),あらゆ る側面を改善できると考えられる.

参考文献

1)土木学会:ダムの地質調査, pp.112, 2003.

- 2) 菊地宏吉:地質工学概論,土木工学社, pp.115, 2000.
- 3)土木学会:原位置岩盤法の指針―平板載荷試験法,せん断試験法,孔内載荷試験法, pp.38-39, 2000.
- 4)国土交通省東北地方整備局津軽ダム工事事務所:津軽ダム基本設計会議資料, pp.5.37-5.38, 2007
- 5)国土交通省東北地方整備局長井ダム工事事務所:平成10年度長井ダムダムサイト地質細 部検討業務, pp.54, 1999.
- 6)土木学会:ダムの地質調査, pp.139-141, 2003.
- 7)宇津木慎司,宮本健也,吉田眞教,朝倉俊弘,菊地宏吉:グラウチングによる岩盤の力学的改良効果に関する実験的研究—節理性岩盤の変形特性に関する現場実験による検討—,ダム工学Vol.21 No.3, 2011.
- 8)財団法人国土技術研究センター編集: グラウチング技術指針・同解説, 大成出版, pp.4-7, 2003.
- 9)松枝修治,西村重夫,新見邦夫,仁子幸子:滝沢ダムの試験湛水結果,ダム技術 No.294, pp.61-76, 2011.
- 10) 宇津木慎司,小柳聡,吉野尚人,成瀬琢也,朝倉俊弘,菊地宏吉:グラウチングによる岩盤の力学的改良効果に関する実験的研究—変形特性と強度特性に関する評価 とダム基礎設計への展開—,土木学会論文集,2012.1掲載決定.

第6章 グラウチングによる岩盤改良の高度化を目的とした ダム基礎の調査・設計・施エシステムの構築

本章においては、ダム建設における既往の調査・設計方法に関する具体的な内容お よびそれらに関する課題について整理するとともに、効率的かつ効果的なグラウト注 入を実施し、岩盤の力学的改良効果をダム基礎設計・施工に反映することを目的とし た、調査・設計・施工システムに関する具体的な実施内容について検討する.

6.1 ダム建設における既往の調査・設計方法

既往のダム建設において,事前調査・設計段階から施工段階で実施する検討項目に ついては,図-6.1.1のダム建設と地質調査の流れ,表-6.1.1のダム建設における地質調 査の段階と方法および目的と項目に示すように,ダム事業の進捗に伴う技術的段階や 課題にしたがい順を追って行われる¹⁾²⁾³⁾.これにより,広域的・概略的調査から重点 的・詳細調査へ,網羅的項目から対照を絞った特定項目へ,定性的項目から定量的項 目へと移り変わるのが一般的である.

本論文の検討課題としているダム基礎設計については、まず、初期段階調査~中間 段階調査において、ボーリング調査や横坑調査などの地質調査により、ダム基礎とし て所要の力学的特性と遮水性を備えた岩盤の分布を概略的に確認することにより、当 該地点のダム建設箇所としての適性を評価する.そして最終段階調査において、詳細 な地質調査結果や原位置岩盤試験結果などより、基礎岩盤としての力学的特性および 遮水性などに関する工学的特徴の全容を明らかにするとともに、岩盤等級区分基準お よび岩盤の設計値などを確定することにより、具体的なダム基礎形状が決定される. また、施工段階調査においては、堤体基礎掘削のり面の地質状況を直接確認すること により、事前調査時の想定との差異などを評価し、実際にダムの安定性を確保するた めの所要の耐荷性を有しているか検討が行われる.

これに対してグラウチングについては、中間段階調査〜最終段階調査における検討 事項として、地質調査結果をもとにダム基礎における透水性状および地下水位の確認 や水理地質構造の検討が実施されるとともに、既往の類似ダムにおけるグラウチング 施工事例調査などにより、概略の設計および施工計画が策定される⁴⁾. その後、施工 の初期段階において、試験施工が図-6.1.2⁵⁾に示すような手順に従って実施され、施工 計画の妥当性が検証される. そして、その後の実施工時においては、注入実績をもと に注入圧力、配合などの注入仕様が適切であるか検討がなされるとともに、施工の進 捗に伴い透水性状が所要の基準値以下に改良されているかといった注入効果に関する 評価が実施される⁵⁾.

図-6.1.1 ダム建設と地質調査の流れ¹⁾²⁾

調査段階	主な地質調査	調査目的と項目
初期段階 (予備調査)	 ・既存資料調査(地質図,土地条件図, 土地利用図,活断層図など) ・地形図判読 ・空中写真判読 ・地形・地質踏査 	地形・地質的に有利な地点や欠陥個所を抽出して, それらの工学的な特徴や広がりを把握し,ダム建 設可否の判断,ダムサイト候補地選定,ダム型式・ 規模,貯水池保全計画などの概略検討に反映させ る.
中間段階 (実施計画調査)	 ・地表弾性波探査 ・ボーリング調査 ・横坑調査 ・トレンチ調査 ・原位置岩盤力学試験 	個々の調査個所についての地質的特徴の大枠を把握し、ダムサイト決定、ダム型式・規模、道路計画,貯水池保全計画などについて地質的側面から 煮詰め,概略設計や工事費の概算などに反映させる.
最終段階 (建設事業前半)	 ・ボーリング調査 ・横坑調査 ・原位置岩盤力学試験 ・その他,特定の地質的問題についての各種調査・試験 	個々の調査個所についての工学的判断に必要とす る地質的特徴の全容を明らかにするとともに,工 学的性質を定量的に把握,評価し,岩級区分図, ルジオンマップなど地質モデルや岩盤分類基準な どに取りまとめ,実施設計および施工計画に反映 させる.
施工段階 (建設事業後半)	 ・岩盤掘削面観察 ・堤体材料判定 ・グラウチング試験施工 ・岩盤および斜面計測 	ダムサイト基礎掘削面,材料採取地掘削面におい て地質観察,岩盤・斜面計測などを行い,設計・ 施工の前提としている地質条件や解析モデル,予 測・管理値と照査し,施工および設計変更,安全 管理に反映させる.グラウチング試験施工を行い, 注入範囲,注入パターン,注入仕様などグラウチ ング施工計画を決定する.
管理段階 (竣工後)	 ・目視点検 ・基礎岩盤および斜面計測 	湛水時の基礎岩盤および斜面挙動について点検・ 計測を行い,ダムの安全管理・運用に反映させる.

表-6.1.1 ダム建設における地質調査の段階と方法および目的と項目 1)2)

図-6.1.2 グラウチング試験施工および本施工における管理フロー⁵⁾

6.2 グラウチングの調査・設計方法に関する課題

6.1節で述べたように、グラウチングに関しては、調査・設計段階から施工段階にかけて種々の検討を実施することにより、各ダムの地質状況などに応じた最適な設計および施工計画が策定されてきた.しかしながら、目視不可能で複雑な性状を呈する岩盤において実施されるなどの理由により、第1章で述べたように力学的な改良効果が設計に考慮されてこなかったとともに、既往の施工実績において種々の課題が認められる.

本節においては、これらの課題の代表的な項目として、6.2.1 項でグラウト注入孔の 削孔方向に関する課題、6.2.2 項で施工段階における水みちの評価に関する課題につい て述べる.

6.2.1 グラウト注入孔の削孔方向に関する課題

グラウチングによるダム基礎の遮水性改良に関しては,1.3節で述べたように,指針 改訂後に施工されたダムにおいて,施工数量の削減が原因と推察される基礎排水量の 多い事例などが確認されている^の.

ー般にダム基礎として採用される事例の多い節理性岩盤における透水性は、写真 -6.2.1⁷⁾に示すように、節理面を通過する流れが岩質部を通過する流れに対して十分に 卓越するため、その浸透流は節理系を主たる浸透経路とする流れであると考えられて いる⁸⁾.このため、実際のダム基礎における透水特性を評価する際には、割れ目の①

写真-6.2.1 花崗岩における湧水状況⁷⁾

方向性,②連続性,③稠密性,④開口性,⑤挟在性,⑥粗面性,⑦連結性を考慮する ことが重要となる⁸⁾.これについては,「グラウチング技術指針・同解説」において,断 層・破砕帯や節理などの不連続面の分布状況や性状に留意する必要があり,その状況に 応じて適切な施工範囲を設定することの重要性が示されている⁹⁾.その中で,グラウ ト注入孔の削孔方向については,例えば,連続性の良い高角度の割れ目が上下流方向 の走向を有して分布する場合,ダム基礎を貫く水みちとなることが懸念されるため, 割れ目と斜交するようにグラウチング孔を設定した方が効果的な場合もあると記載さ れている.

これに対して,既往のダム建設におけるグラウト注入孔の削孔方向については,図 -1.2.1に示すカーテングラウチング,コンソリデーショングラウチングとも,鉛直下方 に設定される事例がほとんどである.これは,鉛直に設定した方がボーリングマシン セットなどの施工性が良好であるとともに,孔曲りなどの影響を受けにくいため所定 の位置に注入孔を設定できるなど,品質の面でも優位なためであると考えられる.そ して,鉛直方向に所要の間隔で面的に孔を配置することによりそれらの孔と岩盤中に 分布する割れ目が交差し,そこからグラウトが充填され,岩盤の透水特性および力学 的特性が改良される.

これについては、例えば図-6.2.1に示すように、実際の基礎岩盤に分布する割れ目が 高角度である場合においては、ボーリング孔を鉛直下方に設定すると両者が交差しに くいことにより、割れ目にグラウトが注入されないことが懸念される.また仮に、図 -6.2.1に示すような高角度の割れ目と交差しやすいよう水平方向にボーリング孔を設 定しても、割れ目に直交する方向では高透水を呈するものの平行する場合には低透水

図-6.2.1 透水異方性に関する模式図

となるなど,等間隔で複数の方向にボーリング孔を設定しても当該ステージで得られ る透水試験結果は大きく異なる.

ここで上記した内容を具体的に検討する目的で,図-6.2.2に割れ目の傾斜角度ごとの 鉛直下方5m区間において注入孔が交差するための最小孔間隔の関係図を示す.この図 をみると,割れ目の傾斜角度が60°程度の場合の最小孔間隔は3m程度,傾斜角75°程度 の場合には1.5m程度と,例えば,既往のコンソリデーショングラウチングの1次孔間 隔として設定される事例の多い5mに対してかなり狭くなっていることがわかる.この ように,水みちが岩盤中の割れ目の卓越傾向に左右される異方性を有していることに より,ボーリングの削孔方向によって大きく透水試験結果が異なるとともに,孔間隔 と割れ目の分布位置および傾斜角などの状況によっては,グラウチング孔と割れ目が 交差しない可能性もあると考えられる.

図-6.2.2 5mの鉛直ボーリング孔における割れ目の傾斜角と それと交差するための最小孔間隔の関係

上述した検討結果より、グラウチング孔の削孔方向については、技術指針が改訂さ れ必要最小限の施工数量で所要の品質を確保する必要がある中、施工性や経済性との 兼ね合いを考慮しつつ地質状況に応じた最適な方向に設定する必要があると考えられ る. なお、既往の施工実績については、図-6.2.3 に示すように、菊地¹⁰⁾らが東京電力 ㈱の奈川渡ダムにおいて、割れ目の卓越方向を考慮してより多くの割れ目と交差する ようにカーテングラウチングの削孔方向を傾斜させた事例がある.このように、水み ちを形成する岩盤の節理面などの割れ目について、ダムの事前調査で実施される調査 横坑における割れ目調査や堤体基礎掘削時の地質観察結果などより得られた走向・傾 斜に関するデータなどを考慮して、最適な削孔方向を計画することが重要であると考 えられる.

図-6.2.3 割れ目の卓越方向を考慮したグラウチング孔配置の一例¹⁰⁾

6.2.2 グラウチング施工時における水みちの評価に関する課題

既往のグラウチング施工時において水みちの評価を実施する際には,図-6.2.4 に示す ように各所で得られた深度 5m ごとの透水試験結果を左半円に,単位注入セメント注 入量を右半円に整理した図を用いて検討を行うのが一般的である.しかしながらこの 図については,高透水部および低透水部の分布状況を大まかに捉えることはできるも のの,水みちや未改良区間の詳細な分布性状を評価することは難しい.また,当該箇 所の透水性状と上述した割れ目などの地質状況との関連がわかりにくいため,水みち の原因を特定してそれに応じた最適な対策を講じることが困難である.

図-6.2.4 カーテングラウチングにおける透水試験結果および単位注入セメント量

岩盤の透水性状に関する改良効果の判定については、規定孔と呼ばれる設計最終次 数孔の注入が完了した時点で、図-6.2.5に示すような透水試験結果および単位注入セメ ント注入量を整理することにより、所要の基準値に照らして残存する未改良範囲の特 定および追加対策の必要性が検討される.具体的な方法については、図-6.2.5に示すよ うな最終次数孔のデータについて、ルジオン値の基準値を超える注入ステージの有無 を確認し、当該ステージの左右に追加注入ステージを設定する事例が多い.しかしな がら、図中の赤線に示されるような高角度の割れ目が水みちを形成している場合など においては、左右に設定された追加注入ステージが割れ目と交差しないことが懸念さ れる.このように、施工段階において、水みちやそれを形成する地質状況を詳細に評 価できないことにより、最適な位置に追加注入ステージが設定されず割れ目が改良さ れないことが懸念される.

6.3 グラウチングによる岩盤改良の高度化を目的とした調査・設計・施工システムの 提案

前節までに整理したグラウチングに関する現状と課題を考慮すると、改良対象とす る岩盤の地質状況や水みちの分布状況を考慮した注入方法によりグラウチングを確実 に実施するとともに、岩盤の力学的特性に関する改良効果をダム基礎設計・施工に反 映することを目的とした調査・設計・施工システムを構築することが重要となる.こ れに対して、本論文で提案する具体的な方法について、①水理地質構造の評価にもと づく最適注入システムと②岩盤の力学的改良効果に関する評価システムとに分け、図 -6.1.2 に示した技術指針における管理フローに点線部を加筆したものを図-6.3.1 に示す.

以下, 6.4 節および 6.5 節において,上述した項目に関する具体的な内容について詳述する.

図-6.3.1 グラウチング改良の高度化を目的とした調査・設計・施工システムの 管理フロー^{5)に加筆}

6.4 水理地質構造の評価にもとづく最適注入システム構築

6.4.1 節理密度ダイアグラムを用いたグラウト注入孔の最適方向の決定方法

(1)節理密度ダイアグラム

土木・岩盤構造物基礎岩盤の調査においては,地質構造の解明や岩盤性状の評価を目 的として,掘削面および切羽などの地質観察やボアホールカメラの観察などにより, 割れ目などの地質学的不連続面の方向性が検討される.測定された割れ目は図-6.4.1に 示すように,シュミットネットなどの球面投影法を用いて整理されるが,これらの方 法は方向性の定性的な評価に利用されるに留まっており,節理分布性状に起因する岩 盤の異方性を考慮するまでには至っていない.

図-6.4.1 シュミットネットによる節理方向分布図の一例(Aダム検討例)

これに対して筆者は水戸¹¹⁾¹²⁾と共同で,この球面投影法を用いて節理分布を評価し, 定量的に設計・施工に反映できる新しい図的解法を提案し,実施工現場に適用した.以 下にこの方法を用いたグラウト注入孔の最適方向に関する検討内容について詳述する.

土木・岩盤構造物基礎岩盤の調査において,割れ目を観察する手法としては,図-6.4.2 に示すように,掘削面などの平面で割れ目を観察する方法と,調査線を設定しそれに 交差する割れ目を観察する方法とに大別される.この図には,等間隔で分布する複数 の割れ目系を記載しているが, 6.2.1項で示したボーリング孔の削孔方向によって割れ 目交差密度が異なることと同様に,図中の調査線の設定方向によってそれぞれの割れ 目系のサンプリング頻度が異なることがわかる.

このような偏向を補正するにあたっては、母数を推定する際に各節理を等質に取り 扱うのではなく、それぞれの節理について抽出される確率を加重した統計計算により、 不偏性・有効性を備えた推定値を求めればよい.割れ目の調査線観察における、方向性 による偏向に関する加重値Wiは以下の式で表される.

$$Wi = cosec \left\{ \frac{\pi}{2} - cos^{-1} (\hat{n}_i \cdot \hat{n}_L) \right\}$$

$$= \frac{1}{|\hat{n}_i \cdot \hat{n}_L|}$$

$$\hat{n}_L : 調査線の単位方向ベクトル$$

$$\hat{n}_i : i節理面の単位法線ベクトル$$

$$0 \leq \cos^{-l} (\hat{n}_i \cdot \hat{n}_L) \leq \frac{\pi}{2}$$

ここで、任意の削孔方向mにおいて交差する割れ目の頻度を算定するには、サンプ リングされた個々の割れ目に関する調査線の設定方向による偏向を式(6.3.1)で補正し た上で、m方向における交差頻度を算定し、その後、全ての割れ目について実施した 計算結果を足し合わせる必要がある.具体的には、図-6.3.2に示した調査線長さ*L*にお いて観察された個々の割れ目*i*について、サンプリング方向による影響を排除する目的 で式(6.3.1)の加重平均を考慮すると、この割れ目*i*の法線方向における分布頻度 ρ_{Ri} は式 (6.3.2)のように表すことができる.

$$\rho_{R_i} = \frac{W_i}{\sum L}$$
(6.3.2)

 $W_i : 調査偏向を補正する荷重値$

 $\sum L : 調査線の長さの合計$

このとき,任意の削孔方向mにおけるi節理の見掛けの1次元密度 $\rho_{pi}(m)$ は,式(6.3.3)で表される.

$$\begin{split} \rho_{pi}(m) &= \rho_{Ri} \left| \hat{n}_{i} \cdot \hat{n}_{m} \right| \\ &= \frac{W_{i} \left| \hat{n}_{i} \cdot \hat{n}_{m} \right|}{\Sigma L} \\ \hat{n}_{m} : 原点を始点, 計測点を終点とする単位ベクトル \end{split}$$

したがって、m方向における節理密度 $\rho(m)$ は、全ての割れ目に関する1次元密度を 合算することにより、式(6.3.4)によって与えられる.

$$\rho(m) = \sum_{i=1}^{N} \rho_{P_i}(m)$$

$$= \frac{\sum_{i=1}^{N} (W_i | \hat{n}_i \cdot \hat{n}_m |)}{\sum L}$$

$$= \frac{\sum_{i=1}^{N} \frac{\hat{n}_i \cdot \hat{n}_m}{\hat{n}_i \cdot \hat{n}_L}}{\sum L}$$
(6.3.4)

そして、上述した式で算出した任意の方向における節理密度を全ての方向において 算出し、その結果を図-6.4.3に示すようなシュミットネットに整理したのが節理密度ダ イアグラムである.この図においては、任意の削孔方向において得られた不連続面密 度(単位:個/m)がシュミットネット上にコンター図として整理されている.

(2) ダムサイトにおける評価事例

本項においては、上述した節理密度ダイアグラムについて、実際のダムサイトにお けるグラウチング施工現場に適用した事例について詳述する.

検討を実施したダムサイトの地質は中生代白亜紀の花崗閃緑岩であり,調査横坑に おいて測線を用いた割れ目調査が実施されている.そして測線長 1,362m 区間で得られ た 2,337 個の割れ目を既往のシュミットネットにより整理した結果が先に示した図 -6.4.1 である¹³⁾. これをみると当該地点においては, NE-SW 走向高角度系である N48E56NE が最も卓越しているとともに, それと雁行する E-W 走向高角度系および概 ねそれと直交する NNW-SSE 走向高角度系のものも比較的多く分布しており, 花崗岩 特有の方状節理の分布状況を示していることがわかる.

このような当該ダムで卓越する傾斜角 60°程度の高角度で分布する割れ目は, 6.2 節において既往のグラウチング施工に関する課題で述べたように,鉛直下方に設定さ れるボーリング孔と交差しにくいことが懸念される.これに対して最適な削孔方向を 検討する際には,図-6.4.1 で最も卓越する割れ目系である NE-SW 走向高角度系の割れ 目と交差させる必要がある.ただし実際には,それと直交する割れ目系なども比較的 多く分布しており,この既往のシュミットネットのみから最も多くの割れ目と交差す る削孔方向を算出することはできない.

これに対して,前項で詳述した節理密度ダイアグラムを用いて,この 2,337 個の割

れ目について,任意の方向に削孔した際に交差する割れ目密度を算出したダイアグラ ムが先に示した図-6.4.3 である.これをみると,①最も割れ目と交差しやすい方向は N25W 方向で南東に水平から 20°傾斜させる方向であり,③最も交差しにくい向きは N30W 方向で北西に 60°傾斜させる方向であることがわかる.なお,実際の割れ目の交 差密度については,①方向が約 1.0 個/m に対して,通常のグラウチング施工で採用さ れる②鉛直下方が約 0.8 個/m,そして最も交差しにくい③方向では約 0.6 個/m と,削 孔方向により最大4割程度,割れ目密度が異なることが判明した.

上述した検討結果より,理論的には①方向が最も割れ目と交差しやすい方向である ことがわかった.しかしながら,実際の施工現場において 20°程度の緩傾斜の角度でボ ーリング孔を削孔するには,ボーリングマシンが設置困難であることなど施工性の問 題,孔曲がり発生のしやすさなどの品質の問題,そして所要の深度まで改良するため の施工数量増大などの工費の問題などが懸念される.これに対し,図-6.4.3 示した当該 ダムの節理密度ダイアグラムについて,例えば,カーテングラウチングの設定面であ るダム軸断面(当ダムでは N88W 走向で鉛直下方)に沿ってボーリング孔を傾斜させ る場合に得られる割れ目密度分布を,図-6.4.4 のように示す表現方法を考案した.この 図をみると,施工性や施工数量を考慮し,鉛直下方から左右岸方向 60°下方を対象範囲 とすると,できるだけダム軸上の東側,このダムでいえば左岸側に削孔方向を設定し た方がより多くの割れ目と交差することがわかる.

このような検討結果をもとに、品質、施工性、工費などを考慮した最適な削孔方向 を検討することにより、図-6.4.5の模式図に点線で示すような地質状況に応じた最適な グラウト注入孔削孔方向を評価できると考えられる.

図-6.4.4 ダム軸(N88W測線)における節理密度ダイアグラム検討結果

なお、当ダムにおいては、上述した検討結果を検証する目的で、地質状況や割れ目 の卓越傾向が同一の地点において、①既往の施工事例に準じた鉛直下方に設定した孔 と②上記検討結果より鉛直下方から東側に 60° 傾斜させた孔で透水試験を実施するこ とにより、試験結果の差異を確認した.ここで図-6.4.6に、2つの削孔方向ごとのルジ オン値に関する対数頻度分布を示す.この図は、当ダム河床部で実施された透水試験 について、(1)風化の影響は弱く全体的に低透水であるものの疎らに分布する高角度の 割れ目に沿ってのみ高透水を呈する C_H 級岩盤における結果、(2)割れ目が卓越するとと もに風化の影響を受け全体的に透水性が高い $C_M \sim C_L$ 級岩盤における結果、そして(3) その両者を足し合わせた河床部全体の結果を示したものである.この図をみると、い ずれの図においても、 260° 傾斜孔の方でルジオン値の最小値、平均値、そして平均値 ー標準偏差値が大きくなっており、より多くの割れ目と交差することにより高透水を 呈していると推察される.特に低透水を呈する C_H 級岩盤については、最小値が①方向 で0.1Luに対し②方向で0.9Lu、平均値一標準偏差値が①方向で<math>0.8Luに対し②方向で 2.2Lu、平均値が①方向で2.3Luに対して②方向で4.6Luと、明瞭な差が確認できる.

このように,施工性や品質の側面を考慮しながら地質状況に応じた最適な削孔方向 を評価し,より多くの割れ目を改良することにより,効率的かつ効果的なグラウチン グ注入を実現できると考えられる.

		(工戶側)		(工戶側)		(工戶側)
度数	32	14	31	10	63	24
最大値	26.2	11.3	29.2	25.3	29.2	25.3
平均值+σ	10.5	9.5	15.9	20.9	13.2	13.5
平均值	2.8	4.6	5.1	8.5	3.7	5.8
平均值-σ	0.8	2.2	1.7	3.5	1.1	2.5
最小値	0.1	0.9	0.5	2.3	0.1	0.9
標準偏差	3.7	2.1	3.1	2.5	3.5	2.3

図-6.4.6 ダム基礎おける削孔方向ごとのルジオン値対数頻度分布

(3) 試験施工によるグラウト注入孔の最適方向の決定方法

既往のグラウチング試験施工では、本施工の初期段階において、左右岸リムカーテ ングラウチング実施工箇所などで施工計画に準じた注入仕様、孔間隔で注入を実施し、 所要の注入効率、改良効果が得られているかを確認することにより、設計の妥当性を 検討していた.ただし、注入孔の削孔方向については、上述したように、割れ目の卓 越傾向などの地質状況によらず鉛直下方に設定される事例がほとんどであった.

これに対して図-6.4.7 に示すように、実施工開始前の最終調査段階において試験施工 を実施し、その際に節理密度ダイアグラムを用いて最適な削孔方向を評価する方法を 提案する.具体的にはまず、最終調査段階における横坑調査で得られる割れ目調査結 果を用いて、節理密度ダイアグラムによる最適な削孔方向を評価する.そして、地質 状況が同様な試験施工ヤードを2ヶ所設け、既往の施工実績に準じて鉛直孔より注入 した場合と検討結果をもとに傾斜させた孔より注入した場合について、透水性状、注 入効率、改良効果などを比較する.これにより、より多くの割れ目にグラウトを充填 することができる削孔方向を評価することにより、透水特性はもちろんのこと、力学 的特性に関しても改良効果を高めることができると考えられる.

図-6.4.7 試験施工における最適な削孔方向の評価方法

6.4.2 地球統計学的解析を用いた水理地質構造の評価方法

本節においては、6.2.2 項で述べたグラウチング施工時における水みちの評価に関する課題に対し、数m離れた点のデータとして整理される透水試験結果をもとに地球統計学的解析を実施することにより、水みちの分布状況を評価しその状況に応じて確実に対策を講じる方法について検討を行った.

地球統計学は、1950年代に鉱物資源埋蔵量の算出法を改善する目的で開発され、そ の後、地球科学の様々な分野に応用されるようになり、今日では空間的あるいは時間 的に相関があるデータの定量的評価に広く適用される方法となっている¹⁴⁾. この地球 統計学の具体的な適用例としては、サンプルデータから鉱床の品位分布を推定する事 例などが知られているが、ダム現場や天然ガス地下備蓄基地における透水性状の分布 状況を評価した事例¹⁵⁾もある.

ここで、節理密度ダイアグラムを適用したダムサイトにおけるカーテングラウチン グ施工結果について、図-6.4.8に上述した既往の実績図の形式で整理したものを示すと ともに、図-6.4.9に地球統計学的解析によるルジオン値の推定コンター図を示す.この 図は、12m間隔で設定されているパイロット孔と6m間隔で設定されている1次孔のデ ータをもとに、これらの孔間における透水性状の推定値を算出したものであり、図中 の赤線は透水性状が高いと想定されている連続性の良い弱層である.これらの図をみ ると、既往の実績図では透水試験結果が点のデータとして整理されているのに対して、 推定コンター図は高透水部と低透水部の分布状況を分かりやすく表示できており、図 中の赤線で示した高角度の弱層に沿って透水性状が規制されること、大まかに右岸側 で高透水、左岸側で低透水を呈する状況などが確認できる.

施工時には、規定孔と呼ばれる設計最終次数孔の注入が完了した時点で、図-6.2.5 に示すような最終次数孔における透水試験結果およびセメント注入実績を整理するこ とにより、改良効果の判定を実施するとともに、残存する水みちの評価および追加対 策の必要性が検討される.これに対して、図-6.4.10、6.4.11 に、図-6.4.8 で示したカー テングラウチング施工箇所おける施工段階ごとのルジオン値の推定コンター図を示す. この図をみると、図-6.4.9 のパイロット孔(12m 間隔)と1次孔(6m 間隔)施工時に は連続性のよい弱層沿いに高透水ゾーンが分布していたものの、図-6.4.10 の 2 次孔

(3m間隔)施工時,図-6.4.11の3次孔施工時(1.5m間隔)と施工の進捗に伴い,遮水性が改善されていく状況が詳細に確認できる.また,図-6.4.11において,寒色系で示された改良範囲と着眼部付近や弱層沿いに暖色系で示された高透水の範囲とが明確に分かれており,これにより,改良完了箇所の判定および追加対策が必要な箇所の評価を,既往の結果図よりも詳細かつ確実に実施できると考えられる.

図-6.4.9 パイロット孔と1次孔データを用いた解析結果

6.5 グラウチングによる岩盤の力学的改良効果に関する評価システムの構築

既往のダム建設においてグラウチングの試験施工は、6.1節で述べたように施工の初 期段階で実施されてきた.これに対して、グラウチングによる岩盤の力学的改良効果 をダム基礎設計・施工に考慮するための評価方法を確立するためには、ダム基礎の形 状が決定される最終段階調査において試験施工を実施し、そこで得られた知見を設計 に考慮する必要があると考えられる.一方、施工段階において、試験施工で評価した 力学的改良効果をダム基礎岩盤において直接確認することが重要であり、これについ ては簡易かつ短時間に力学的特性に関する物性値の上昇を評価する方法を構築するこ とが重要である.

本節においては、上述した力学的改良効果を考慮するための調査・設計・施工シス テムに関する実施項目について、下記の図-6.5.1に示すような項目を提案するとともに、 その具体的な内容について詳述する.

図-6.5.1 岩盤の力学的改良効果を考慮するための調査・設計・施工システム

6.5.1 最終段階調査におけるグラウチング試験施工方法

(1) 孔内載荷試験結果を用いた調査・設計

本論文の検討課題である、グラウチングによる岩盤の力学的特性に関する改良効果 をダム基礎設計に考慮するためには、検討を実施する基礎岩盤において、直接、第3 章および第4章で詳述したような改良効果に関する定量的な評価を実施することが重 要となる.これに対しては、最終段階調査でグラウチング試験施工を実施し、第2章 に示したような原位置岩盤試験を行うことにより、第3章で示したような改良効果を 岩盤等級区分および岩種ごとに評価する必要があると考えられる.これにより、例え ば、表-5.1.1に示すようなグラウチング後の物性値に関する知見を整理することにより、 平行して実施されるダム基礎設計に改良効果を考慮することができる.

ここで、グラウチング後の物性値の上昇を設計に適用する具体的な方法について、 図-3.1.3 に示すような岩盤等級区分ごとの対数頻度分布を用いて、物性値の上昇を考慮 する箇所の比率を設定する方法を提案する。例えば表-6.5.1 に示すように、C_{M1}級が平 均値で C_H級相当まで改良されるのを考慮して面積比 50%を改良範囲と考慮する、C_{L1} 級が全ての測定点で C_{M2}相当まで上昇するのを考慮して面積比 100%を改良範囲と考 慮するなど、岩盤等級区分ごとの改良状況に応じて物性値の上昇を反映する面積比を 評価するものである。

岩	級	既往の設計値	改良効果を考慮した 設計値設定例			備考
C _H 級		C=2.30, $\phi = 48^{\circ}$	C=2.30, $\phi = 48^{\circ}$		×	
См	C _{M1}	C=1.90, $\phi = 43^{\circ}$	面積比 50%	C=2.30, φ=43° (粘着力のみ 0.2MPa 改良)	0	・粘着力 C _H 級相当.
			面積比 50%	C=2.10, $\phi = 43^{\circ}$	×	
	C _{M2}		面積比 75%	C=2.10, φ=43° (粘着力のみ 0.2MPa 改良)	0	 ・粘着力 C_{M1}級相当.
			面積比 25%	C=1.90, $\phi = 43^{\circ}$	×	
C _L	C _{L1}	C=1.10, $\phi = 39^{\circ}$	面積比 100%	C=1.90, φ=39° (粘着力のみ 0.4MPa 改良)	0	 ・粘着力 C_{M2}級相当.
	C _{L2}		面積比 75%	C=1.50, φ=39° (粘着力のみ 0.4MPa 改良)	0	・粘着力 C _{L1} 級相当.
			面積比 25%	C=1.10, $\phi = 39^{\circ}$	×	

表-6.5.1 改良効果を考慮した設計値設定例(Aダム検討例)

○:物性値の上昇を考慮

×:物性値の上昇を考慮せず

ただし上述した検討結果は,第3章の変形特性に関する検討内容でも述べたように, グラウト注入孔における測定結果をもとに評価したものである.これに対しては,試 験施工時に,直接注入を実施していないチェック孔において,実施工の仕様,施工順 序に準じて全ての注入が完了した時点で原位置岩盤試験を実施することにより,注入 孔周辺岩盤の改良効果について確認する必要がある.そして例えば,表-6.5.1 に示す改 良効果の面積比をグラウト注入孔周辺 1m 以内とそれより外側の箇所に分けて評価す ることにより,実際の改良状況に即した評価を実施できると考えられる.

(2) 孔内打撃応答試験機を用いた簡易評価

孔内打撃応答試験機は、上述したように、施工段階において簡易かつ短時間に力学 的改良効果を評価する方法として有効であると考えられる.これについては、最終段 階調査での実施を提案している試験施工において、第2章で述べたような原位置試験 を実施し、打撃応答試験値と岩盤等級区分や変形特性との相関関係について、図-6.5.2 に整理したような既往の検討結果と当該ダム現場における測定結果との差異を確認す る必要がある.これにより、図中に示した岩盤等級区分ごとの測定値の範囲をもとに、 後に述べる施工時における力学的改良効果に関する評価を実施できると考えられる.

図-6.5.2 グラウチング前後における打撃応答量と変形係数の関係

6.5.2 施工段階における情報化設計・施工方法

(1) 堤体基礎掘削時におけるダム基礎安定性評価

ダム建設段階においては、堤体打設やグラウチング施工に先立ち、写真-6.5.1 に示す ような堤体掘削作業が実施される.その際、図-6.5.3¹⁶⁾に示すように、調査段階の想定 地質図に対し堤体基礎掘削のり面において実際に分布する岩盤等級区分図を作成する とともに、1.3 節に示したような安定計算が実施され、実際のダム基礎において上述し た所要の安全率4.0を確保しているか検討が行われる.

これについては,前項で述べたように例えば①注入孔 1m 内,②注入孔 1m 外それぞ れにおいて,表-6.5.1 に示すようなある面積比で岩盤等級区分ごとの改良効果を考慮し た設計値を適用した評価を実施すべきであると考えられる.

写真-6.5.1 コンクリートダムにおける堤体掘削状況

図-6.5.3 ダム基礎における調査時と施工時の岩盤等級区分図の一例¹⁶⁾

(2) 孔内打撃応答試験機を用いた情報化設計・施工

堤体掘削完了後,堤体打設と並行して実施されるグラウチング施工時において,力 学的特性に関する改良効果を直接評価する方法については,上述したように具体的な 内容が確立されていないとともに,既往の原位置岩盤試験が大規模で施工サイクルに 組み込めないなどの課題があった.

これに対しては、上述した孔内打撃応答試験機を適用することにより、簡易かつ短時間に評価を実施する方法を提案する.具体的には、図-6.5.4 に示すように、ダム基礎におけるグラウチング施工完了後、①注入孔をリボーリングし孔内打撃応答試験を実施する場合と、②チェック孔を削孔して試験を実施する場合を設ける.そして、基礎掘削面やボーリングコアの地質観察により得られる試験箇所の岩盤等級区分に対して、グラウチング後に得られた試験結果より推定される岩盤等級区分を比較して、所要の改良が得られている比率を算定することにより、表-6.5.1 に示した面積比の妥当性を検証する.その際、例えば C_L級のみ力学的改良効果を見込む設計手法を採用すると仮定すれば、その分布箇所に限定して試験を実施すればよい.

図-6.5.4 孔内打撃応答試験機を用いた情報化設計・施工方法

6.6 本章の結論

本章においては、ダム建設における既往の調査・設計・施工に関する実施内容およ び課題を整理するとともに、効率的かつ効果的なグラウト注入を実施し、岩盤の力学 的改良効果をダム基礎設計・施工に考慮することを目的とした、調査・設計・施工シ ステムに関する具体的な項目について詳述した.

まず,水理地質構造の評価にもとづく最適注入を実現することを目的として,既往 の管理フローに加え,①節理密度ダイアグラムを用いたグラウト注入孔の最適方向の 決定方法と②地球統計学的解析を用いた水みち評価方法を統合したシステムを構築し た.また,③グラウチングによる岩盤の力学的改良効果に関する評価システムについ ては,従来,施工の初期段階で行われる試験施工について,最終段階調査において第2 章で示したような原位置岩盤試験を実施する方法を提案した.そして,その結果をも とに,第5章で提案した方法を用いて改良効果をダム基礎設計に考慮するとともに,施 工時に孔内打撃応答試験を用いて改良効果をダム基礎で直接確認する,情報化設計・ 施工に関する具体的な方法を示した.

今回提案したグラウチングによる岩盤改良の高度化を目的とした調査・設計・施工 システムについては、ダム基礎設計・施工を例に具体的な実施項目を検討したもので あるが、他の土木・岩盤構造物においても、グラウチングの目的や施工方法などを考 慮した上で本システムを適用できると考える.

参考文献

1)土木学会:ダムの地質調査, pp.20-32, 2003.

- 2)市川彗,平野勇:目で見る地質調査(1)初期段階の調査,ダム技術 No.165, pp.21-41, 2000.
- 3)市川彗,平野勇:目で見る地質調査(1)中期および後期段階の調査,ダム技術 No.165, pp.26-43, 2000.
- 4)財団法人国土技術研究センター編集: グラウチング技術指針・同解説, 大成出版, PP.50-51, 2003
- 5)財団法人国土技術研究センター編集: グラウチング技術指針・同解説, 大成出版, PP.41, 2003
- 6)松枝修治, 西村重夫, 新見邦夫, 仁子幸子: 滝沢ダムの試験湛水結果, ダム技術 No.294, pp.61-76, 2011.
- 7)応用地質学会:写真で見る応用地質,2003.
- 8) 菊地宏吉:地質工学概論, 土木工学社, pp.81-98, 2000.
- 9)財団法人国土技術研究センター編集: グラウチング技術指針・同解説, 大成出版, PP.8-9, 2003
- 10) 菊地宏吉:地質工学概論,土木工学社, pp.255, 2000.
- 11)水戸義忠:節理分布性状の確率モデルを用いた節理性岩盤の解析に関する基礎研究,京都大学博士論文,1993.
- 12)Yoshitada Mito, Tsuyoshi Kito, Kohkichi Kikuchi: Joint Linear Density Diagram For the Description of Jointed Rock Masses, ISRM International Symposium - EUROCK 93 Lisbon, Portugal, June 21 - 24, 1993.
- 13)国土交通省東北地方整備局長井ダム工事事務所:平成10年度長井ダムダムサイト地質細部検討業務, pp.54, 1999.
- 14)地球統計学研究員会訳編:地球統計学, pp.1, 2003.
- 15)前島俊雄,山本浩志,宇野晴彦,池谷貞右,青木謙治:3次元不均質モデルによるLPG 岩盤貯槽掘削時の地下水挙動評価,第38回岩盤力学に関するシンポジウム講演集 講 演番号36, pp.202-207, 2009.
- 16)国土交通省東北地方整備局長井ダム工事事務所: 平成 19 年度長井ダム堤体基礎総合評価 業務報告書, 2008.

第7章 結論

本論文においては、ダム基礎を例に、グラウチングによる岩盤の力学的改良効果を 定量的に評価し、改良効果を考慮するための調査・設計・施工システムを構築すること により、効率的かつ効果的な土木・岩盤構造物建設を実現することを目的として、種々 の検討を実施した.

以下に、本論文で得られた結論について述べる.

第1章においては、本論文の研究対象であるグラウチング工法について、用語の定 義や現状と課題を整理するとともに、それに対する既往の研究を総括した上で、本論 文の研究目的および内容構成を示した.

グラウチングは、従来からダム基礎岩盤やトンネル・地下空洞周辺岩盤などの力学的 特性および遮水性の改良を目的として広く適用されている工法であるが、既往の研究 や施工現場において力学的改良効果に関する定量的な評価が十分になされておらず、 現在においてもその効果が土木・岩盤構造物の設計に考慮されていない.

これに対して、一般的なダム基礎設計を例に力学的改良効果を考慮するための具体 的な方法を示すとともに、本論文の検討内容が工事費削減や工期短縮などダム建設に 関わるQ(品質)・C(経済性)・D(工程)・S(安全性)・E(環境への配慮)の改善に 寄与することを明らかにした.

以上に鑑み、本論文では、グラウチングによる岩盤の力学的改良効果を定量的に評価し、その改良効果を考慮するための土木・岩盤構造物の調査・設計・施工システム 構築することを目的とした.なお、具体的な検討対象は、力学的改良効果を主目的の 一つとするとするダムにおけるコンソリデーショングラウチングとした.

第2章においては、第1章に示したグラウチングに関する現状と課題、そしてこれに 対する本論文の目的を踏まえ、グラウチングによる岩盤の力学的改良効果を定量的に 評価するための原位置および室内における確認試験の方法を考案した.

原位置における確認試験については, 孔内載荷試験および孔間弾性波試験を用いて, グラウチング前の初期状態, 施工段階ごと, そしてグラウチング施工完了後に試験を 実施し, 変形特性, 強度特性および弾性波速度に関する物性値の上昇量を定量的に評 価する方法を示した. また, 実施工時に簡易かつ短時間に力学的改良効果を評価する ことを目的として, 孔内打撃応答試験を孔内載荷試験と同一地点で実施することによ り, グラウチング前後における岩盤の変形特性との相関関係について確認する方法を 述べた.

室内における確認試験については、割れ目を模した供試体を用いてグラウチング前 後で一面せん断試験を実施することにより、強度特性に関する物性値の上昇量を定量 的に評価する方法を示した.具体的には、節理面の①ラフネス、②連続性、③挟在物 などの節理特性を考慮した供試体シリーズを作成し、試験に供するものとした.

第3章においては、グラウチングによる岩盤の変形特性に関する改良効果を定量的 に評価するために、孔内載荷試験結果および孔間弾性波試験結果を用いて、岩盤の① 「固密化」、②「均質化」、③「一体化」に関する検討を実施した.

まず,岩盤の固密化については,孔内載荷試験結果および孔間弾性波試験結果より, グラウチング施工段階ごとの物性値の変化を定量的に確認した.その結果,岩盤の初 期状態が不良なほど改良効果が大きいことが認められ,強風化岩相当の岩盤(C_{L1}級) が弱風化岩相当(C_{M2}級)の変形特性まで上昇することが明らかになった.

岩盤の均質化については、変形特性のばらつきを示す変動係数がグラウチング後に 減少する傾向を確認した.これは、グラウチング後の変形係数の上昇により、同一岩 盤等級区分内では測定点が物性値の大きい側に変動するとともに、上位ランクほど上 昇度合いが小さく下位ランクほど上昇度合いが大きくなるため、全データで算出した 場合にグラウチング後の変動係数が小さくなるためであることがわかった.

また,岩盤の一体化については,不連続面の影響度合いを示す値である D/E 比 (変形係数/静弾性係数比)を用いて検討を行った.その結果,グラウチング後 の値が増加している傾向が認められ,不連続面がグラウチングにより改良され岩 盤が連続体に近づいていることが判明した.

さらに,岩盤の力学的特性を簡易かつ短時間に推定できる孔内打撃応答試験機について,グラウチング前後に孔内載荷試験実施箇所で測定を行った.その結果,孔内載 荷試験より得られた岩盤の変形特性との相関関係について,岩種によらずグラウチン グ前後でほぼ同様の傾向が得られたことから,力学的改良効果を簡易かつ短時間に判 定できる試験機としての適用性を有していると考えられる.

124

第4章においては、グラウチングによる岩盤の強度特性に関する改良効果を定量的 に評価することを目的として、4.1節で孔内載荷試験結果より求めた降伏応力による検 討、4.2節で割れ目を模した供試体を用いた室内せん断試験による検討を実施した.

まず、4.1 節に示した原位置における降伏応力より算出した結果を参照すると、粘着 カがグラウチング後に 0.3~0.5MPa 程度上昇することが確認できた.また、4.2 節に示 した室内における割れ目を模したせん断試験結果より、粘着力が、分離した割れ目を 模した試験で 0.1~0.3MPa 程度、インタクトブリッジを設置した試験で 0.4~0.6MPa 程度、そして挟在物を挿入した試験で 0.3~0.5MPa 程度、上昇することがわかった. なお、内部摩擦角については、分離した割れ目の供試体とインタクトブリッジを設置 した供試体では前後で変化が認められなかったものの、挟在物を挿入した供試体では 最大 10°程度の上昇が確認できた.

上述した試験結果については、供試体の破壊面がグラウト材と節理面との付着面で 発生する状況を考慮すると、グラウト材と節理面との付着力が発現することにより粘 着力が上昇するとともに、内部摩擦角については前後で割れ目のかみ合わせに変化が ないため上昇が認められない状況が推察される.また、粘性土を挟在する場合には、 専有面積が小さいほどグラウト材と節理面の付着面積が大きくなることにより粘着力 の発現値が大きくなるとともに、グラウト材により新たなかみ合わせが生じたため内 部摩擦角も上昇したと考えらえる.

第5章においては,第3章におけるグラウチングによる岩盤の変形特性に関する改良 効果の定量的評価結果および第4章における強度特性に関する改良効果の定量的評価 結果をもとに,グラウチングによる物性値の上昇をダム基礎設計に考慮するための具 体的な方法を示した.

まず,グラウチングによる岩盤の力学的改良効果を考慮したダム基礎岩盤の設計せん断強度について,第3章で変形特性に関する改良効果が明瞭であった強風化岩盤

(C_{L1}級)について,第4章の強度特性に関する検討で確認された粘着力が0.4MPa程 度上昇することを考慮する具体的な事例を示した.また,改良効果を考慮したダム基 礎設計方法については,既往の設計方法に上述した物性値の上昇を適用する方法につ いて詳述し, 5~10%程度の堤体掘削体積とともに,堤体コンクリート打設量を同時 に低減できることを述べた.

さらに、上述した設計を実施できれば、それに付随して、堤体上部のり面など周辺 箇所における掘削体積の低減、骨材製造量削減に伴う原石山掘削体積の低減、そして これらの掘削のり面規模縮小に伴う安定性確保、自然改変の最小化など、ダム建設に 関わるQ(品質)・C(経済性)・D(工程)・S(安全性)・E(環境への配慮),あらゆ る側面を改善できると考えられる. 第6章においては、ダム建設における既往の調査・設計・施工に関する実施内容お よび課題を整理するとともに、効率的かつ効果的なグラウト注入を実施し、岩盤の力 学的改良効果をダム基礎設計・施工に考慮することを目的とした、調査・設計・施工 システムに関する具体的な項目について詳述した.

まず,水理地質構造の評価にもとづく最適注入を実現することを目的として,既往 の管理フローに加え,①節理密度ダイアグラムを用いたグラウト注入孔の最適方向の 決定方法と②地球統計学的解析を用いた水みち評価方法を統合したシステムを構築し た.また,③グラウチングによる岩盤の力学的改良効果に関する評価システムについ ては,従来,施工の初期段階で行われる試験施工について,最終段階調査において第2 章で示したような原位置岩盤試験を実施する方法を提案した.そして,その結果をも とに,第5章で提案した方法を用いて改良効果をダム基礎設計に考慮するとともに,施 工時に孔内打撃応答試験を用いて改良効果をダム基礎で直接確認する,情報化設計・ 施工に関する具体的な方法を示した.

今回提案したグラウチングによる岩盤改良の高度化を目的とした調査・設計・施工 システムについては、ダム基礎設計・施工を例に具体的な実施項目を検討したもので あるが、他の土木・岩盤構造物においても、グラウチングの目的や施工方法などを考 慮した上で本システムを適用できると考える.

以上,本論文においては,グラウチングによる岩盤の力学的改良効果を岩盤等級区 分ごと定量的に評価するとともに,その改良効果を考慮するためのダム基礎における 調査・設計・施工システムを構築した.