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A BST R A C T 
 

An effective approach to mitigate the destructive effects of an earthquake is by 

implementation and enforcement of seismic resistant design. Evidence of seismic hazard 

from distant seismic sources and ground motions recorded within the country is enough 

proof to warrant a serious consideration for seismic resistant design for structures, 

particularly bridges, in Malaysia. This is because bridges are critical lifelines, which support 

the everyday life of the public and must be operational at all times including in the event of 

an earthquake.  

Despite being located in the stable Sunda shelf, Malaysia is exposed to low seismic 

hazard. Felt earthquakes have psychologically affected the public in several occasions and 

the questions on how the structures fare when subjected to earthquake excitations have been 

debated publicly and in the Parliament of Malaysia a few times. Consequently, several 

government agencies, including the Public Works Department, have been assigned to 

address these issues since 2003. 

preparedness against unpredictable earthquake events. Malaysia has a moral obligation and 

responsibility to start considering seismic resistant design to secure the public safety and 

address the issues related to seismic risk due to the lack of seismic resistance in structures. 

Thus, the main objective of this research is to evaluate a suitable seismic design motion for 

the design of bridges by surpassing the challenges posed by insufficient ground motion data.  

Four main tasks were conducted to complete the research. These include examining 

suitable attenuation relationships, which best represent the seismic condition of Malaysia. 

Four attenuation models were selected to predict peak ground acceleration (PGA) and 

velocity (PGV) values, which were then used to compare with observed PGA and PGV 

values recorded at seismic stations. It was deduced that attenuation models established by 

Dahle et al. (1990) and that by Atkinson and Boore (1995) may appropriately reflect the 

seismic conditions of Malaysia.  

The maximum magnitude earthquake for Peninsular Malaysia has been predicted as 

magnitude 6.5, based on historical data of Malaysia. Peak ground velocity is estimated at 60 

cm/s, while peak ground displacement is estimated as 150 mm. For this reason and 

considering near-fault earthquakes, the Kobe ground motion has been selected for dynamic 
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analysis. It is also of interest to adopt the peak ground displacement of 150 mm as the 

maximum displacement allowed in bridges, in the event of moderate to large earthquakes. 

The major bulk of the research involves selecting the Samudera Bridge as a subject for 

seismic assessment. A multiple-degree-of-freedom (MDOF), three-dimensional, model was 

developed in OpenSees and later subjected to seismic simulation using three input ground 

motions, namely the 1995 Kobe, 1940 El Centro and 2005 Sumatera earthquakes. Structural 

responses demonstrate nonlinear behavior of piers and the bridge would suffer considerable 

damage under the large Kobe earthquake. However, small damages are anticipated in the 

bridge following excitation under the El Centro and the 2005 Sumatera time-histories. In 

general, the Samudera Bridge is expected to survive without collapse when subjected to all 

chosen ground motions, if transverse reinforcements are sufficiently provided in the piers. 

The most important deduction from this task is that the displacement capacity is a more 

significant factor, than the seismic coefficient, in ensuring bridge survival during an 

earthquake excitation. 

mitigating the destructive effects of earthquakes. A supporting sub-research was carried out 

to examine the impact of implementing seismic resistant design on the construction cost. 

This is a study carried out to observe the relationship between reducing the displacement 

response and the construction cost. The price difference was based on the contractual price 

of the steel reinforcement and concrete materials as listed in the bill of quantities for the 

Samudera Bridge project. The increase in construction cost has been determined to not 

exceed one percent of the bridge structure cost only. 
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Chapter 1 

 

Introduction 
 

 

1.1 Background of Research 

 

1.1.1 Rationale for Seismic Resistant Design of Bridges in Low Seismicity Region 

The world can be categorized into the high, low to moderate and stable seismicity regions. 

Despite of having different levels of seismic hazard, countries belonging to each region 

collectively share a common aim: safeguarding the public safety and welfare. Theoretically, 

the public safety may be improved if the seismic risk is mitigated. One of the effective 

strategies, which may be employed to mitigate the destructive effects of earthquakes, is by 

implementing seismic resistant design (Paz, 1994). 

Essentially, a bridge goes beyond connecting one location to the other. It serves as a 

dynamic connectivity in our daily lives. It plays 

economy, and effectively connects the social path of humans. Therefore, due attention 

should be given to reinforced concrete bridges, mainly bridge piers, as they are important 

civil structures (Nguyen, 2008). Observations of past earthquakes have shown how severe 

damages and failure of bridge structures have caused highways closure and disrupted traffic 

flow, such as that caused by the 1995 Hyogoken-Nanbu (or Kobe) earthquake (Scawthorn, 

2003). Bridges are vital lifelines, which when severely damaged may hamper rescue 

attempts, disrupt social activities and community functioning (Elnashai and Di Sarno, 2008). 

Thus, essentially, a bridge must remain operational at all times, including during an 

earthquake event.  

It has been recognized in some megacities, of the world, that population growth is so 

rapid that human security is of great concern. Urbanization and economy boost in big cities 

within a country have also attracted larger population to these cities, and as such, the 

authorities have to play a major role to provide and maintain acceptable safety levels for the 
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public. In the context of earthquake engineering, lost of lives and economy devastation in 

these cities cannot be tolerated.  

In recent years, various researchers have shown great interests in improving the seismic 

performance of bridges following extensive damage and disruption of these lifelines during 

large-scale earthquakes, for instance during the 1994 Northridge and the 1995 Hyogoken-

Nanbu earthquakes. Although the majority of these researches have generally concentrated 

on the impacts of large earthquakes in seismically active regions, with increased awareness, 

considerable attention has also been directed, recently, to possible earthquake disasters in 

the low to moderate seismicity areas. As such, researchers have managed to convey a 

message that seismic resistant design of bridges is indispensible in seismically affected 

regions including that in the low to moderate seismicity region.  

Malaysia acknowledges the effects of distant earthquakes, from its neighboring 

countries, which include vibrations in tall dwellings, public and office buildings; 

infrastructure damages on roads; and non-structural damages, such as cracks of wall 

plastering in affected houses. Several experiences with motions in tall buildings have 

prompted the authorities to categorize bridges as important structures, alongside buildings, 

which require due attention in seismic design. The main reason for this is that bridge 

structures are equally affected by ground motions as tall buildings are. 

Earthquakes cannot be prevented nor can it be accurately predicted. Even in the low 

seismicity regions, seismic hazard is real and apparent. Regardless of their level of seismic 

hazard, low seismicity regions must prepare themselves for the unpredictable nature, 

frequency, or magnitude of earthquakes. This is because injuries and death are known to 

have been 

and not due to the ground shaking.  

In view of the above discussion, seismic resistant design is seen as an effective approach 

to address all of these concerns because it improves the seismic performance of bridges, and 

as a result may effectively minimize injuries and death during a devastating earthquake 

event.  

 

1.2 Significance of Research 

The motivation for implementation of seismic resistant design in the low seismicity regions 

lies in the fact that there is clear evidence of seismic activities within the region, indicating 

the presence of seismic hazard. A country such as Malaysia, although situated on the stable 
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seismicity zone of the Sunda plate, has been reported to record small to medium size locally 

generated ground motions, and has been affected by distant earthquakes from the active 

seismic sources of Indonesia and the Philippines (MOSTI, 2009). Thailand and Singapore 

experience similar situation with recorded ground motions within their countries, as well as 

from neighboring countries.  

Seismic risk is perceived as considerable when there is a lack of seismic resistance in 

bridge structures. Such situation is common in low seismicity countries because the design 

of bridges in these countries continues to follow the traditional method of accounting for 

vertical loads and a small percentage of horizontal loads, such as that calculated to resist 

wind loading. Therefore, exposure of these bridge structures to seismic loads may be 

devastating. In line with human security engineering, there is enough warrant to begin 

seismic resistant design of bridges, as well as to investigate the vulnerability of existing 

bridges to seismic forces in countries belonging to the low seismicity region.  

Following reports of felt ground motion in building structures, in several occasions; the 

government of Malaysia has embarked on seismic hazard research for Malaysia since 2003. 

(PWD) has conducted various studies including the investigation on the vulnerability of 

public buildings to seismic loads. The ultimate goal is to revamp the design codes used in 

current practice, by designers, to include seismic loadings in the design of new structures as 

a strategy to mitigate seismic risk. This research is performed as a support to the continuous 

effort by a group of researchers, practitioners, and implementers, in Malaysia, towards 

preparing Malaysia for the impacts of larger ground motions. 

 

1.3 Objectives of Research 

In view of the above scenario, the main objective of this research is to clarify an advanced 

concept of seismic design for bridges in a low seismicity region such as in Malaysia. The 

ultimate aim of this research is to derive an acceptable seismic design coefficient and 

allowable ultimate displacement to incorporate in the current bridge design code as a 

measure to secure the public safety against the potential destruction brought about by an 

earthquake motion.  

In order to achieve the main objective of the research, the following tasks are proposed: 
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i. evaluate existing attenuation models, previously developed by various 

researchers, and select suitable attenuation relationships to reflect the seismicity 

and hazard for Malaysia, 

ii. examine the seismic performance of an existing reinforced concrete bridge using 

finite element modeling, as in OpenSees (Mc Kenna et al., 2001), to observe its 

dynamic response to selected input ground motions, 

iii. estimate base shear capacity and ultimate displacement of selected bridge 

structure by conducting nonlinear static pushover analysis. The resulting 

pushover curve shall then be used to evaluate the damage state of the bridge in a 

dynamic analysis,  

iv. examine the implication on the economy following implementation of seismic 

resistant design in Malaysia, and  

v. justify the requirement for fail-safe mechanism to prepare for unexpected ground 

motions in Malaysia. 

The investigation on the impact of seismic resistant design on construction cost is 

particularly important for economically challenging countries, such as Malaysia, because 

higher construction cost, than normal, may become a hindrance to practicing seismic 

resistant design.  

The objective of this research is limited to understanding of the seismic behavior in a 

typical bridge in Malaysia, whereby the behavior shall be discussed in reference to the 

ultimate displacement, and anticipated damages in the longitudinal reinforcements and 

crushing of concrete. 

 

1.4 Methodology 

To accomplish the objectives mentioned in section 1.3, the research is divided into two 

main tasks. The first task is dedicated to determining a reasonable seismic design motion, 

which reflects the seismicity of Malaysia. An important tool, which may be used to estimate 

design motion is by examining existing attenuation models. Existing attenuation 

relationships are selected and estimated values of peak ground acceleration (PGA) and peak 

ground velocities (PGV) calculated from these models are compared with PGA and PGV 

values recorded at the Malaysian network of seismic stations. Details of this study are as 

discussed in chapter 3. 
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The second task emphasizes on modeling of a bridge structure near Kuala Lumpur prior 

to performing the pushover and dynamic analyses. The bridge model is then used to perform 

pushover analysis to determine its seismic capacity, ultimate displacement, and seismic 

coefficient. Next, the model is simulated under selected ground motions; its seismic 

response is observed and evaluated for adequacy against seismic forces. The dynamic 

analysis is an essential method of analysis in that it helps to determine an appropriate design 

of a bridge structure, which can satisfactorily withstand the effects of frequent small 

earthquakes, as well as perform with sufficient ductility in the event of a large earthquake. 

As a result, a flexible design of a bridge structure is possible, in place of a strong and stiff 

structure, which is uneconomical for developing countries.  

Although design motions are generally presented as peak ground accelerations (PGA) in 

attenuation models or pseudo-acceleration response spectrums, this research has to divert 

ground motion data. While this poses a challenge in the course of the research, an 

alternative approach to address this matter is considered through the application of the static 

nonlinear pushover analysis. After all, pushover analysis has been widely used in the 

seismic design codes across the globe to propose seismic forces for use in seismic resistant 

design of structures. Moreover, seismically active countries, for instance Japan, are still 

using the seismic coefficient method, together with the dynamic analysis, in the design of 

highway bridges. The flow and mapping of this research is as illustrated in Figure 1.1. 
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F igure 1.1 Study flow diagram. 

 

 

1.5 Outline of the Thesis 

The thesis consists of eight chapters. Following this introductory chapter, Chapter 2 reviews 

and discusses a list of available literatures on: 

i. attenuation models considered in the research before concluding the best model to 

represent the seismicity and seismic hazard for Malaysia,  

ii. the benefits and capability of the open source software, OpenSees used in the 

seismic simulation of the selected bridge structure, 

iii. modeling assumptions in finite element modeling of the bridge structure in 

OpenSees, 
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iv. the mechanical behavior and application of constitutive models of material for 

analyzing nonlinear behavior of pier structures, 

v. application of moment-curvature analysis to develop the backbone curve of pier 

hysteresis, represented as dashed line in the pier hysteresis diagrams, and  

vi.  nonlinear static pushover analysis as the means to estimate base shear and seismic 

coefficient value, C, as a result of ground motion excitation on the bridge structure. 

Chapter 3 presents a sub-research on identifying the most suitable attenuation model to 

represent the seismic hazard of Malaysia. This is a step in the research deemed necessary to 

understand the characteristics of locally recorded earthquakes in Malaysia. Furthermore, an 

estimate of a design motion is meaningless without information on the seismic hazard. 

The description and development of the Samudera Bridge model and the selection of input 

ground motions to use in the investigation are explained in detail in Chapter 4. The main 

features of the bridge elements and materials; modeling assumptions; selection of loading 

patterns; constitutive law of materials employed in the analysis; and selected ground 

motions used in simulating the expected dynamic behavior of the bridge are presented here. 

The major bulk of the research work involves selecting the Samudera Bridge as a 

subject of seismic assessment by employing the nonlinear static pushover analysis (NSP) 

and the dynamic analysis. The pushover analysis is performed to determine the seismic 

capacity, the ultimate displacement, and seismic coefficient of the bridge. This is discussed 

in detail in Chapter 5. 

The multiple-degree-of-freedom (MDOF), three dimensional model developed in 

Chapter 4 is excited to three input ground motions, namely the 1995 Kobe, 1940 El Centro 

and 2005 Sumatera earthquakes. Chapter 6 illustrates the results of this dynamic analysis in 

terms of the moment-curvature relationship of pier sections, displacement response, stress-

strain response, and pier hysteresis. The discussion of results is limited to observation of 

damages based on the comparison of the seismic demand obtained from dynamic analysis 

with the seismic capacity obtained from Chapter 5, pier hysteresis, and yielding of 

longitudinal reinforcement and concrete crushing. 

Chapter 7 addresses the typical issue surrounding the perception, on the stakeholders  

side, 

the destructive effects of earthquakes. Many believe that enforcement of seismic 

requirements would escalate construction cost beyond their means. A supporting sub-

research is conducted to examine the impact of reducing displacement response on 
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construction cost. The price difference is calculated based on the contractual price of the 

steel reinforcement and concrete materials listed in the bill of quantities for the Samudera 

Bridge project. This chapter also briefly discusses about the need for fail-safe mechanism. 

regions, may risk increasing the displacement response during an earthquake excitation. 

Thus, fail-safe mechanism is an important element to be considered, even in a low 

seismicity region, to prepare for the unexpected earthquake events. 

The overall conclusions of the research activities performed in chapters 3 through 7 are 

summarized in chapter 8.  

 

1.6 Conclusions 

Recently, Malaysia has accepted the fact that seismic effects may pose threats to structures, 

including bridges, which lack aseismic provisions. Thus, Malaysia is moving towards 

implementing seismic resistant design as a measure to mitigate potential destructive effects 

of earthquakes. The primary aim of this research is to propose a seismic design coefficient 

and allowable ultimate displacement for consideration in the design of new bridges.  

trend of defining seismic loading as attenuation model or response spectrum. Rather, 

representation of seismic design motion is proposed as acceleration coefficient or seismic 

coefficient value. 
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Chapter 2 

 

L iterature Review 
 

 

2.1 Introduction 

Historical data of felt earthquakes collected by the Malaysian Meteorological Department 

since more than a century ago, of local and distant origins, shows apparent seismic hazard in 

Malaysia. The following discussion provides justification for an improvement of the bridge 

design code in Malaysia.  

Seismic resistant design of bridges is one of the answers to ensure public welfare and 

safety in the event of an earthquake. As such, it is indispensible to include seismic design 

provisions, which is currently absent, in existing the design codes as a tool for seismic risk 

mitigation. 

Inclusion of the seismic design provisions in design codes may well begin with the 

evaluation of a seismic design motion. A seismic design motion is generally represented by 

a design spectrum, capacity spectrum, seismic hazard map, attenuation model, or seismic 

coefficient. However, in some cases locally recorded data for such evaluation is insufficient 

for the development of a design motion. The question now arises: how best to evaluate 

seismic design motions for countries with a lack of ground motion records? Reference to 

seismic design guidelines in Japan and the United States of America indicate that 

representation of the seismic design motion is feasible in terms of seismic coefficients. This 

method is also largely used internationally in seismic design codes across the globe. 

This chapter provides a brief review of the seismic hazard and seismicity conditions in 

Malaysia to understand the seismicity of Malaysia, as well as to justify the need for 

evaluation of a seismic design motion for the country. A larger remaining portion of this 

chapter is attributed to giving an overview of the performance-based design, displacement-

based design, and nonlinear static pushover analysis employed in the course of evaluating a 

seismic design motion for Malaysia. A brief mention of the OpenSees software is presented 
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in this chapter to highlight the features, and advantages of using an open source software 

framework in the analysis of a bridge. 

 

2.2 Seismic Hazard and Seismic Studies in Malaysia 

Many believe that an earthquake, large enough to cause life-threatening crisis, will never 

affect Malaysia. Such is mainly because Malaysia is situated on the stable Sunda shelf. 

However, previous reports of felt ground motions in the country, and the fact that existing 

structures lack seismic resistance, have initiated efforts, by the government, to prepare the 

country for potential danger from a larger earthquake impact. The following paragraphs 

illustrate the reasons for concern and the need to develop a suitable seismic design motion 

for the design of new bridges and assessment of existing bridge structures.  

 

2.2.1 Bridge Design Code for Loading in Malaysia 

The design of bridges in Malaysia follows the British Standards BS 5400 (British Standards 

Institution, 1978). BS 5400 consists of ten main parts, and has been accepted as the code of 

practice (CP) for the design and construction of bridges on motorways and highways. For 

the design of reinforced concrete bridges, bridge designers in Malaysia are familiar with the 

specification for loading, denoted by BS 5400:Part 2:1978 (hereinafter called BS 5400:Part 

2). The main specification for the design of concrete bridges is BS 5400:Part 4:1990 

(hereinafter called BS 5400:Part 4). It is worth to note that the code of practices in the BS 

5400 group do not require consideration of seismic loading or detailing in a bridge design. 

Designers are also familiar with the Design Manual for Roads and Bridges, BD37/01 (The 

Highway Agency, 2001), which specifies the loadings to be used for the design of highway 

bridges through the attached revision of BS 5400:Part 2. According to BS 5400:Part 2, and 

BD 37/01, the design of bridges should consider dead, superimposed dead, highway live, 

horizontal and temporary loads. Design practice in Malaysia also requests that designers 

account for horizontal loads as a function of basic wind speed applied to the entire bridge 

height. Evidently, the absence of seismic design provisions, in the existing design codes, 

resulted in the lack of seismic resistance in almost all existing bridges in Malaysia. 

Consequently, existing bridges are exposed to seismic risk.  

In 2006, the Bridge Section of the Public Works Department of Malaysia (PWD) 

incorporated the seismic design requirement in its Terms of Reference (TOR) for Bridges 
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and Viaduct Structures (Public Works Department, 2006). In clause 1.4(b) of the TOR, 

PWD calls for the application of earthquake loading to complex and long-span lifeline 

bridges equivalent to 1.0 in the ultimate limit state considering load combination 4 only i.e. 

combination of permanent load, primary and secondary live loads. Application of the 

horizontal seismic load is required in any direction at the superstructure level and has the 

following pattern: 

 

               10% (permanent DL+superimposed DL)  

                                                                                     +         (2.1) 

             20% longitudinal HA traffic load  

 

where DL and HA denote the dead load and normal vehicle loading, respectively. 

The seismic loading requirement in the TOR was derived from the value recommended 

by the consultant for the Penang Bridge when the structure was designed in the 1980s 

(Ismail Mohamed Taib, 2009, personal communication). It should be noted that until 2008 

PWD has only instructed, in a few occasions, for seismic design of bridges in earthquake 

prone areas, for instance in the Federal Territory of Kuala Lumpur and Selangor.  

 

2.2.2 The Seismicity of Malaysia 

A seismotectonic study conducted by the Minerals and Geoscience Department of Malaysia 

(MGDM) confirms that Malaysia is tectonically situated within the relatively stable 

Sundaland. Thus, Malaysia belongs to the low seismicity group, except for the state of 

Sabah, which shows clear rate of crustal deformation (MGDM, 2006). Sabah owes its 

moderate seismicity condition to the active Mensaban, and Lobou-Loubo fault zones, which 

have brought about earthquakes that caused light damages to infrastructures, such as roads.  

Most people perceive that Malaysia is free from life-threatening seismic crisis. In reality, 

seismic hazard in Malaysia is irrefutable, with seismic hazard originating from seismically 

active neighboring countries of Indonesia and the Philippines. Distant ground motions have 

been recorded by the Malaysian network of seismic stations, from two most active plate 

tectonic margins in the world, the Sumatran subduction zone, and the 1650 km long 

Sumatran fault; and the Philippines plate alike. In general, the impacts of these distant 

earthquakes, as reported, include panick-attack among inhabitants of tall buildings, and felt 

Horizontal seismic loading =    
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ground motion in high-rise dwelling and office buildings (Pan and Sun, 1996; Pan, 1997; 

Pan et al., 2001). 

Records of felt earthquakes in Malaysia are available for events that began since 1815; 

however, they are scanty and poorly correlated  (MOSTI, 2009). The information obtained 

from the Malaysian Meteorological Department (MMD) indicated that within a period of 

more than a century, beginning 1909, Peninsular Malaysia has experienced tremors of 

maximum intensity equivalent to VI, on the Modified Mercalli Intensity (MMI) scale. 

Between 1984 and 2007, Peninsular Malaysia recorded 35 distant ground motions, resulting 

from seismic events in Sumatera. In addition, it has also recorded 32 weak earthquakes, of 

local origin, with magnitudes ranging from 0.3 to 4.2 Mb (Chai et al., 2011). These weak 

earthquakes occurred between November 2007 and December 2009 in the Bukit Tinggi area, 

which is approximately 50 km from Kuala Lumpur. Mustaffa Kamal Shuib (2009) suggests 

that the earthquake occurrences in the Bukit Tinggi area were fault 

reactivation due to stress buildup as a result of the present-day tectonics in the Sundaland

He further discussed that the weak earthquakes detected at the Bukit Tinggi area indicates 

that, following the December 26, 2004 Sumatera earthquake, the Sundaland core is 

deforming. 

While Peninsular Malaysia has only experienced weak local earthquakes and been jolted 

by distant earthquakes from Sumatera, East Malaysia has recorded moderate scale tremors 

of magnitudes between 3.6 and 6.5 between 1984 and 2007. Since 1897, the state of Sabah 

has recorded the highest number of ground motions in the country i.e. 77 earthquake events, 

most of which are of local origin believed to be contributed by several active faults. The 

maximum intensity reported was VII on the MMI scale. It is worth noting that an 

earthquake of scale VII can cause human injuries and property damages. Records of felt 

earthquake in the state of Sarawak may be traced back from 1874 and until recently, 21 

events with magnitude between 3.5 and 5.8 have been observed. Table 2-1 shows the list of 

felt earthquakes and their frequency of occurrences by state, recorded during the period of 

observation between 1874 and 2010. Earthquakes originating from the Philippines and 

Indonesia have also affected East Malaysia. Figure 2.1 illustrates the seismic activities, 

within Malaysia and around its region for the past 35 years, recorded between 1973 and 

2008. The epicenters of the Bukit Tinggi earthquakes are as depicted in Figure 2.2. A 

magnified pictorial of the seismicity of Sabah is as shown in Figure 2.3. A study conducted 

by the Minerals and Geoscience Department of Malaysia (MGDM) has confirmed the 
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presence of the Mensaban and Loubo-Loubo active faults, in the Ranau-Kinabalu area, 

which have contributed to the non-structural damages in the Kundasang High School and 

as captured and shown in Figure 2.4. 

 

 

 

 

 

 

Frequency of occurrence recorded as 40 by MMD, but reported as 77 by MOSTI (2009) 

**Frequency of occurrence recorded as 17 by MMD, but reported as 21 by MOSTI (2009) 

 

 

 

 

 

 

State 
 

F requency of 
Occurrence 

Maximum 
Intensity (M M I) 

Peninsular Malaysia (1909  July 2010) 
Perlis 3 V 
Kedah 18 V 
Penang 41 VI 
Perak 24 VI 

Selangor 50 VI 
Negeri Sembilan 14 V 

Malacca 19 V 
Johor 32 VI 

Pahang  35 III 
Terengganu 2 IV 

Kelantan 3 IV 
Kuala Lumpur/Putrajaya 38 VI 

East Malaysia    
Sabah (1897- July 2010) 40 (77)* VII 

Sarawak (1874  July 2010) 17 (21)** VI 

Table 2-1  Frequency and intensity of felt earthquakes recorded from 1874 to 2010 
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F igure 2.2     Epicenters of the Bukit Tinggi earthquakes recorded 

between 2007 and 2008 (Shuib, 2009). 

Sabah  

Sarawak  

Peninsular  
Malaysia  

F igure 2.1  Records of earthquake epicenter in Malaysia and neighboring 

countries between 1973 and 2008, excluding the Bukit Tinggi events  

(adopted from the USGS website). 



17 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

F igure 2.3 Focal mechanisms of earthquakes in Sabah for the period of 1976 to 

2006 (MOSTI, 2009). 
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F igure 2.4 Non-structural damages captured at the Kundasang High School attributed 

by the Mensaban and Loubo-Loubo active faults (MOSTI, 2009) 

 

 

2.2.3 Seismic Research in Malaysia 

Following the 2001 Gujarat earthquake event, seismic research in Malaysia has received full 

support from the government since 2002. It all started following a cabinet note, featuring 

the 2001 Gujarat earthquake, which was presented by MMD before the Prime Minister and 

his cabinet members. The cabinet note briefly explained how distant shock waves during the 

2001 Gujarat earthquake spread and travelled 600 km from the epicenter and caused 

devastation to many cities (Bendick et al., 2001). The cabinet note has managed to convey 
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an important message to the government administration that distant earthquakes are indeed 

devastating and cannot be disregarded. Having been affected by both local and distant 

ground shakings, Malaysia has come to realize that seismic hazard in the country is real and 

has the potential to threaten the public safety and welfare, and may cause damages to 

properties. Such a concern is attributed to the fact that less than one percent of buildings in 

Malaysia are seismic resistant (Taksiah Abdul Majid, 2009). Taksiah Abdul Majid (2009) 

mentioned that among the very few structures, which were designed to seismic requirement 

are the Penang Bridge, the KOMTAR tower in Penang, and the Petronas Twin Tower in 

Kuala Lumpur. 

The December 26, 2004 Sumatera earthquake has also become a revelation to the people 

in Malaysia that distant earthquakes should not be ignored. Following this earthquake event, 

t awareness and concern on the impacts of earthquakes has significantly 

improved. The public has since demanded assurance, from the government, of the stability, 

and capability of existing structures to withstand seismic forces. Hence, since 2005, the 

government of Malaysia has taken various efforts, through the Ministry of Science, 

Technology, and Innovation (MOSTI), to assess and address the risks associated with 

potential earthquake events. 

Research on reduction and mitigation of earthquake risk in Malaysia started 

immediately, and by January 2009 MOSTI has published the final report entitled Seismic 

and Tsunami Hazards and Risks Study in Malaysia (MOSTI, 2009). Some important 

publications, which were mentioned in the report included the macrozonation contour maps 

based on peak ground acceleration (PGA) at 10% and 2% probabilities of exceedance in 50 

years for bedrock of Malaysia (Adnan et al. 2005); and the assessment on the vulnerability 

of public buildings (Adnan et al., 2006). In the study on the vulnerability assessment of 

public buildings by Adnan et al. (2006), a total of 65 buildings across the country was 

subjected to earthquake forces. The assessment was performed to ATC 21 Rapid Screening 

of buildings for Potential Seismic Hazards: a Handbook (Applied Technology Council, 

2002), and ATC 22 A Handbook for Seismic Assessment of Existing Buildings (Applied 

Technology Council, 1989). The study concluded that the vertical element design provision 

was inadequate for at least 50% of the buildings, hence posing higher earthquake damage 

risk. 

Malaysia, like many other countries, concerned with seismic hazard, has worked on 

developing macrozonation and microzonation maps. The macrozonation mapping for 



20 

several major cities in Malaysia was completed, in 2005, by a team of researchers headed by 

Associate Professor Azlan Adnan of Universiti Teknologi Malaysia. These maps give 

estimates of expected ground motions, which can be readily used in the design of structures. 

They are synonymously called the peak ground acceleration (PGA) maps of Malaysia. The 

PGA values derived from the macrozonation maps were later adopted by PWD in its 

proposal for seismic design guidelines for concrete buildings in Malaysia (PWD, 2007). 

This proposal has been submitted, for review, to the Institution of Engineers Malaysia; 

however, it has yet to be published. The PGA values adopted in the draft document for 

seismic design guidelines have been challenged as impractical and relatively high, by at 

least a researcher who suggested that the analysis philosophy utilized to derive the PGA 

values might have to be reviewed (Chiang, 2008). The microzonation map for Kuala 

Lumpur City Centre was published in 2008 (Adnan, 2008). 

 

2.3 Fundamentals of Performance-based Seismic Design  

In the United States of America, performance-based design started as an attempt at 

developing systematic guidelines for seismic rehabilitation of buildings (Chen and Lui, 

2006). A growing interest in performance-based design is attributable to many observations 

of structural behavior following disastrous destruction brought upon by large earthquakes in 

seismically active countries, such as in Japan and the United States of America. It is 

probably not an overstatement to say that the performance-based design was an outcome 

following observations of substantial losses, of life and monetary, impacted by earthquake 

events. Large earthquake events, which have caused tremendous damage and losses, such as 

the 1989 Loma Prieta, and the 1995 Kobe earthquake, have made researchers realized of the 

significance of seismic performance levels. Consequently, in 1994 the California 

Department of Transportation (CALTRAN) incorporated the performance-based design 

approach, emphasizing on capacity design, in the Caltrans Bridge Design Specifications 

(BDS). BDS relates to performance-based design by adopting the two-level seismic 

performance in its design provision. The Applied Technical Council (ATC) 

recommendations ATC-32 recognizes the significance of relative displacement in the 

seismic performance of bridges where bridges are classified based on their importance. 

Japan has also learnt from observations of many earthquake disasters that losses can be 

reduced with the implementation of performance-based design. A year after the 1995 Kobe 

earthquake, bridge design procedures, Part V: Seismic Design of Highway Bridges (JRA, 
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1996) has shifted from the conventional design concept using the seismic coefficient 

method (SCM) to the ductility method. Two seismic performances were introduced: the 

level 1 performance with SCM remaining as the design method; and the level 2 

performance where the ductility design method must be used. Level 1 and 2 performances 

in both Japan and the United States of America refer to the performance of bridges in small 

but frequent earthquakes, and large but rare earthquake occurrences, respectively. 

 

2.3.1 Displacement-based Design Approach 

Bridges are important lifelines, which must remain operational in an earthquake event. 

Therefore, since decades ago, seismic design of these structures has been emphasizing on 

no-collapse performance. For this purpose, prior to the 1970s, designers have 

conventionally worked to achieve no-collapse state by first utilizing the elastic method. 

However, observations of damage in bridges, which were designed and constructed to the 

elastic method, indicated some critical deficiencies of the elastic method (Priestley et al. 

1996). These deficiencies are attributed to the fact that the elastic method ignores ductility 

and consideration of appropriate strength. Consequently, the elastic method was replaced by 

the force-based design approach. The force-based design approach has played a major role 

in the development of seismic design codes across the globe. However, since three decades 

ago, as the earthquake engineering community welcome the performance-based design 

philosophy, researchers and designers began to notice the importance of the displacement-

based design approach. 

While force-based appr -base approach (in 

which the displacement-based design approach is based upon) emphasizes on 

-based to performance-based was prompted when 

researchers recognized that damage can be appropriately related to strain, and therefore is 

better represented by displacement, rather than by force. It is immediately recognized that 

damage is a function of displacement demand, and as such, structural damage can be 

effectively controlled by specifying displacement limit in the design of a bridge structure 

(Calvi and Kingsley, 1995).  

The displacement-based design has been in development since almost two decades ago 

with the aim to address deficiencies in the force-based design method. In the displacement-

based design, nonlinear forces are obtained for a desired performance level: the 

serviceability limit state or the ultimate limit state. This method has become such an 
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appealing method of design mainly because stakeholders are allowed to specify the 

structural levels of performance in bridges, hence resulting in cost effective and economical 

design and construction.  

The displacement-based approach focuses on displacement demand based on the 

assumption of a displaced shape, and uses predefined displacement response spectrum to 

determine the target period of vibration. The target period of vibration will then be used to 

calculate the force distribution for use in bridge design, or to determine seismic demand and 

capacity. The displacement-based approach incorporates the Substitute Structure approach 

developed by Gulkan and Sozen (1974) to approximate the displacement of an inelastic 

system with equivalent linear elastic system. As can be seen from Figure 2.5, the Substitute 

Structure approach emphasizes the significance of two parameters: secant stiffness, Keff 

(rather than initial stiffness), and equivalent viscuous damping value, eff. Essentially, this 

method is capable of estimating the base shear and the ductility of a bridge, given the target 

displacement and material properties of structural elements. 

The displacement-based design procedures have been utilized in seismic design of 

single-degree-of-freedom (SDOF) bridges (Kowalsky et al., 1995), and multi-degree-of-

freedom (MDOF) bridge structures (Calvi and Kingsley, 1995). Both literatures outlined 

procedures on obtaining the target displacement and lateral force distribution. The 

procedures to calculate displacement demands and lateral load distribution, or base shear 

values for various types of structure are also discussed by Priestley et al. (2007). 

In both SDOF and MDOF systems, displacement-based design procedures begin with 

the selection of performance level to identify acceptable damage level in bridge structures. 

Damage levels are represented, among others, in terms of first yield, cracking, plastic 

rotation, or concrete crushing. The next step is to evaluate the target displacement, u for 

use in seismic design. For MDOF system, it is essential to define the target displacement for 

each column in the bridge system so that the critical column can be identified. The shortest 

column is usually the critical column, and governs the selection of the displacement pattern, 

however, depending on the bridge geometry; other columns can appear as the critical 

column (Kowalsky, 2002).  

u can be estimated by referring to the drift limit value 

recommended in seismic design codes, or the strain limits prescribed when defining the 

damage level.  
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F igure 2.5  Substitute Structure approach for seismic response of a bridge structure 

(adopted from Kowalsky et.al, 1995) 

 

 

2.4 Seismic Design Motion  

Earthquake prone countries require seismic resistant procedures to ensure acceptable 

structural seismic performance. As such, it is the duty of engineers, within the Human 

Security Engineering framework, to ensure safety of bridge structures, and avoid severe 

damages, which may cause collapse. This is because bridge structures are important lifeline 

features, which need to remain operational during an earthquake, i.e. bridges must be 

seismic resistant. Seismic resistant provisions generally begin with the definition of a 

seismic design motion, an engineering model, which may be used to predict strong ground 

motion amplitude for use in the design and assessment of bridges. Conventionally, estimates 

of strong ground motion for engineering practice are derived from strong motion records, 

which are gathered by strong motion network.  

Seismic design motion is one of the seismic resistant elements used, in building codes 

across the globe, to protect public safety and welfare (Hamburger, 2002). In seismically 

active countries of the United States of America and Japan, building codes were originally 

developed to provide design recommendations to avoid collapse of structures. These early 

recommendations were strictly based on experience and observations of structures during 

y   u  
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damaging earthquakes, such as the 1868 Hayward earthquakes. The early twentieth century 

saw the introduction of lateral load, also known as the equivalent lateral force (ELF) rule, as 

a measure to provide structures with sufficient strength. According to the record, following 

the devastating 1906 San Francisco earthquake, San Francisco city was the first state in the 

United States of America to include the ELF concept in the building code (Hamburger, 

2002).  

In the context of Japan, Toshikata Sano was responsible for introducing the concept of 

seismic coefficients for use in the analysis of buildings in 1916. He estimated maximum 

ground accelerations brought about by the 1855 Ansei-Edo earthquake in the Honjo, 

Fukugawa, and Yamanote areas. However, it was not until the 1923 Kanto earthquake 

devastation, that the Japan Urban Building Law Enforcement Regulations was revised, in 

1924, to include a seismic coefficient of 0.10 (Otani, 2004). Japan introduced its first 

seismic provision for bridges in 1926, incorporating the use of a lateral load equivalent to 

20 percent of the gravity load (superstructure dead weight) as the resisting seismic force. 

Modern earthquake engineering started with the advent of the accelerograph, developed 

by M. Ishimoto in 1931. Since then, records of accelerograph have been used by many 

researchers, whose works have bloomed into significant engineering applications, for 

engineering evaluation. Some names worth mentioning are Biot (1933) who introduced the 

response spectrum; and Veletsos and Newmark (1960) who emphasized the importance of 

system ductility to resist base shear due to ground motions.  

A seismic design motion represents the engineering demand in the form of design 

spectrum, capacity spectrum, seismic hazard map or peak ground acceleration map, 

attenuation relationships, or seismic coefficient. It indicates the amount of seismic forces, 

sometimes defined as inertial forces or base shear, which a structure must resist to survive 

potential earthquake forces. In modern seismic design, an acceptable and reliable evaluation 

of seismic design motions is dependent upon understanding the behavior of a structure 

under dynamic loads. Therefore, an effective estimate of a seismic design motion, relies 

heavily on ground motion records from past earthquake events. While seismically active 

countries may have ample data to develop design motions, low seismicity areas have 

obvious challenges in developing reliable design motion. In the instance of insufficient 

ground motion data, an alternative approach to inelastic dynamic analysis to evaluate 

structural response is necessary. An analysis tool capable of predicting nonlinear response 

of a structure by utilizing static loading is the nonlinear static pushover analysis (Lawson, 
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1994; i, 2001). The nonlinear static pushover (NSP) 

procedures have the capabilities to predict nonlinear structural response, deformation, and 

provide force-deformation relationship in terms of base shear. Nevertheless, one should be 

cautious when using NSP, as it requires careful definition of analysis inputs, such as 

realistic target displacement estimate, and reliable lateral load distribution, which will 

ensure accurate evaluation of the deformation of a structure. A brief review of NSP is as 

discussed below in section 2.4.2. 

 

2.4.1 Open System for Earthquake Engineering Simulation (OpenSees) 

Computer simulation through OpenSees, Open System for Earthquake Engineering 

(OpenSees, 2009) is gaining popularity since its introduction to the earthquake engineering 

community over a decade ago. OpenSees is a finite element framework software developed 

by the Pacific Earthquake Engineering Research Centre (PEER) specifically for earthquake 

engineering simulation. It is capable of modeling and analyzing nonlinear response of 

systems under earthquake excitation. Users start by building the model of a system to 

analyze, by creating nodes and elements; identifying materials, and defining boundary 

constraints. What follows next is the definition of load patterns; selection of solver 

algorithm, constraint handlers, and integrators for analysis procedures; and specifying the 

outputs to observe during simulation in appropriate recorders.  

OpenSees appeals to users because it is downloadable from the internet, free of charge, 

fully programmable, and modeling is very flexible. For example, OpenSees allows users to 

. Detail information on OpenSees is available at 

http://opensees.berkeley.edu. This website provides, among others, source codes, examples, 

command language manual, and a community board for online support to users who need 

consultation on solving problems related to simulation. 

 

2.4.2 Nonlinear Static Pushover Analysis (NSP) 

Pushover analysis first manifests itself in earthquake engineering through the work of 

Gulkan and Sozen (1974), which derived an equivalent linear elastic single degree of 

freedom (SDOF) system to represent a nonlinear multi-degree of freedom (MDOF) system. 

Over the years, when engineers came to recognize the importance of inelastic assessment, 

pushover analysis has begun its application as an analysis tool to observe inelastic response 

http://opensees.berkeley.edu/
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and damage in structures. Similar to other proposed analysis, pushover analysis also has 

disadvantages and setbacks (Krawinkler et al., 1998). Krawinkler et al. (1998) mentioned 

some of the difficulties involving pushover procedures, mainly in defining the target 

displacement and load pattern; and the errors incurred with the omission of higher mode 

effect in tall buildings and irregular bridges.  

Pushover analysis can be categorized into two groups: conventional, and advanced. In 

brief, conventional pushover analysis involves a procedure, whereby three critical elements 

are considered. These elements are the nature of the forcing function (constant lateral load 

or displacement), the distribution of the forcing function, and its magnitude. In conventional 

pushover analysis, the structure is first applied with gravity load before it is subjected to 

constant monotonically increasing forcing function, i.e. a set of displacements or forces, 

until a predetermined target displacement is reached at a monitoring point. At each 

increment in force the resistance of the structure to the applied force is evaluated using 

static equilibrium equations, whereby stiffness matrix is updated, and unbalanced force is 

reapplied until convergence, and predefined limit state is achieved (Elnashai, 2001). The 

estimates of target displacement and lateral load distribution may be derived from 

displacement response of piers, and the mode shape recorded during dynamic analysis. 

Alternatively, procedures for obtaining target displacement and force distribution are as 

explained in section 2.3.1. 

In contrast to the conventional analysis, the adaptive analysis deals with possible 

changes in force distribution, i.e. the forcing function is not constant. Pushover analysis 

methods, which belong to this group, are the multi-mode pushover (Sasaki et al., 1998), 

adaptive pushover method (Gupta and Kunnath, 2000), N2 method (Fajfar, 2000), modal 

pushover analysis (Chopra and Goel, 2001), and adaptive pushover analysis (Elnashai, 

2001). The advanced pushover analysis differs from that of conventional as it accounts for 

the effects of higher modes of vibration and progressive degradation of stiffness (Elnashai, 

2001; Antoniou and Pinho, 2004). Various researchers have demonstrated the importance of 

accounting for the effects of higher modes, especially in tall structures (Sasaki et al., 1998; 

Elnashai, 2001; Moghadam et al., 2002). Calvi and Kingsley (1995) have shown the 

significance of mass participation factor in the analysis of irregular or asymmetrical bridges.  

In keeping up with recent development in performance-based design, NSP has found its 

application in seismic evaluation of structures mainly because of its simple-to-perform, and 

less time-consuming attributes. It has gained significance because despite its simplicity it is 
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capable of providing critical regions of inelasticity, such as plastic hinge locations, and 

sequence of failure.  

NSP procedures are simple enough that they have been adopted by well-known seismic 

codes, such as EC8, FEMA 273/356 (Building Seismic Safety Council; American Society 

of Civil Engineers, 2000), and ATC-40 (Applied Technology Council, 1996). Since the past 

decade, NSP has become an increasingly popular tool for assessment of building structures. 

However, application of NSP in assessment of bridges has been rather limited. Some studies 

on reinforced concrete bridges include those conducted by Karim and Yamazaki (2001), 

Abeysinghe et al. (2002); Chiorean (2003), and Mwafy et al. (2007). 
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Chapter 3 

 

Assessment of Possible G round Motions in Peninsular Malaysia  
 

 

3.1 Introduction 

Seismic resistant design emerges as a solution for better and acceptable designs to minimize 

the destructive effects of earthquakes. Prior to establishing a seismic design motion, it is 

essential to assess earthquake occurrences and the hazard associated with the magnitude of 

ground motions. For a country such as Malaysia, where historical data is scarce, seismic 

activities are low, and where information on geologic structures is absent, the assessment of 

possible ground motion and seismic hazard may be represented by any of the attenuation 

models previously established by past researchers. In addition, seismic hazard may also be 

defined as maximum magnitude earthquakes, which may occur within inland area. 

This chapter is dedicated to investigating the characteristics of distant ground motions in 

Peninsular Malaysia, which originated from the active tectonic plates of Sumatera. The 

methodology employed is by comparing recorded peak ground acceleration (PGA) and peak 

ground velocity (PGV) values of ground motions recorded by the Malaysian network of 

seismic stations with those estimated using established attenuation models. The 

investigation of attenuation characteristics of ground motion shall consider that of the rock 

site condition.  

In addition, this chapter discusses about estimating the maximum magnitude 

earthquakes, which are expected to occur within inland Malaysia, based on historical 

earthquake records. PGA and PGV values are evaluated using attenuation equations, which 

can consider near-source effect. 

These assessments are significant to estimate the ground motion at a site, due to an 

earthquake at an epicenter, for structural design. In many cases, engineers are also interested 

to know the maximum magnitude earthquakes to define the hazard at a seismic source. 
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3.2 Selection of A ttenuation Models for Earthquakes 

Peninsular Malaysia is located within the low seismicity region of the stable Sunda tectonic 

plate. However, for the past 25 years strong ground motions have affected Malaysia several 

times. Sources of these strong ground motions include the Sumatran subduction zone, the 

most active plate tectonic margins in the world (Petersen et al., 2004), and the 1650 km long 

Sumatran fault. While no real structural damage has been reported following these 

earthquake tremors, there have been reports of swaying motion and panicked-attack 

suffered by occupants of tall buildings in densely populated cities such as Kuala Lumpur, 

Putrajaya, Penang, and Johor Bharu. Such reports have motivated a good number of 

researches on seismic hazard assessment, and have reflected the importance of deriving a 

seismic design motion for engineering evaluation and design in Malaysia.  

The development of a design motion requires ample information on the characteristics 

of ground motions, which may affect a structure. This information may be found by 

analyzing important time-domain parameters, such as the peak ground acceleration (PGA) 

and, or peak ground velocity (PGV). However, for a country, such as Malaysia, where 

historical data is scarce and seismic activities are low, previously established attenuation 

models may be utilized to examine the characteristics of ground motions at site. This entails 

the selection of appropriate attenuation models, which best represent the seismicity of 

Malaysia.  

In determining the characteristics of ground motions, PGA has become the most widely 

used parameter simply because strong motion seismometers record time history 

accelerations. Hence, PGA values can be instantly read off the accelerograms. In addition to 

using PGA, Chandler and Lam (2004) suggested that the characteristics of low frequency, 

long period seismic waves, resulting from large and distant earthquakes, as are typically 

recorded across Malaysia, may be better described by using PGV. 

Thus, the selection of attenuation model for Malaysia depends on input parameters such 

as PGA and PGV derived from locally recorded accelerograms, distance, and magnitude. It 

is important to mention that the context of discussion within this chapter is restricted to 

PGA and PGV values in reference to rock site conditions. 
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3.2.1 Dataset for Study 

Malaysia has a national network of seismic stations to gather information on seismic 

activities within the country and from around the region. In 2008, the network comprises of 

14 three-component real time stations, six in Peninsular Malaysia, five in Sabah, and three 

in Sarawak. Figure 3.1 depicts the locations of seismic stations across Malaysia. The 

Malaysian Meteorological Department (MMD) monitors and gathers information on seismic 

activities within Malaysia and from around its region. MMD also keeps records of 

earthquake event dated more than a century ago; however, compilation of digital ground 

motion records has only started in 2004. Thus, the ground motion records used for analysis 

come from 171 earthquake events, which occurred between May 2004 and July 2007. These 

records are as tabulated in Table 3A-1, in Appendix 3A, at the end of the chapter. However, 

due to the constraints set about by all four attenuation relationships selected for study, the 

original set of 171 ground motion records were reduced to a maximum of 46 accelerograms. 

, with their accompanying ground motion parameters, are as shown in 

Table 3A-2 in appendix 3A. Accelerograms corresponding to the dataset are as tabulated in 

Appendix 3B. This dataset are visible records, which are free from background noises. 

Insignificant waveforms have been excluded by applying a resolution value of 0.2 gal for 

PGA, and 0.05 cm/s for PGV.  

In this study, only horizontal components of the accelerograms were considered for 

analysis, whereby recorded PGA and PGV values have been derived by taking the larger of 

the North-South (N-S) and East-West (E-W) components. 

Between May 2004 and July 2007, 15 interplate earthquake events of magnitude Mw 

5.0, and shallow hypocentral depth hhypo 

three were shallow strike-slip events, which occurred along the Sumatran fault, while the 

remaining 12 events occurred within the subduction zone. The hypocenters of all 15 events 

were adopted from the National Earthquake Information Center (NEIC) of the United States 

Geological Survey (USGS) and the MMD. Figure 3.1 illustrates the epicenters of the 15 

earthquake events chosen for this study, and their profiles are briefly summarized in Table 

3-1. Data distribution with respect to earthquake magnitudes and source-to-site distances is 

as demonstrated in Figure 3.2, which clearly shows that distant ground motions recorded in 

Malaysia have distances ranging from 450 to 2300 km. 
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F igure 3.2  Distribution of data between May 2004 and July 2007. A total of 46 

data was available for PGA analysis, whereas 44 data were incorporated in PGV 

analysis. 

 

 

  

F igure 3.1  Seismic station network across Malaysia (as in 2007) which recorded 

15 earthquake events selected for the study. Epicenters of earthquakes are shown as 

grey circles, while their f
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3.2.2 Selection of A ttenuation Models  

The selection of attenuation model(s) that best describes the seismicity of Malaysia involves 

the comparison between estimated PGA and PGV values with those recorded by the seismic 

stations. Estimated PGA and PGV values are obtained from attenuation functions, which are 

presented in an attenuation model. For this purpose, four existing attenuation models have 

been selected: the Atkinson and Boore (1995), Toro et al. (1997), Dahle et al. (1990), and Si 

and Midorikawa (1999). Their selections were based on the types of tectonic environment 

i.e. for shallow crustal earthquakes and subduction zone; and source-to-site distance. 

The Atkinson and Boore (1995) attenuation relationship was developed using the 

stochastic method, for tectonically stable, low seismicity regions of Eastern North America 

(ENA). The model provides expressions to estimate PGA and PGV values and is intended 

for applications within rhypo of 10 to 500 km, and for Mw ranging from 4.0 to 7.25. The 

attenuation function is represented by the following expression: 

 

 
   

 
 Ref. 

Number Date Mw Latitude Longitude 
Source 
Depth 

Number of 
Recordings 

 
  

(°) (°) (km) 
 1 2004/05/11 6.1 0.415 97.8 21 4 

2 2004/12/26 9.0 3.295 95.982 30 9 
3 2005/03/28 8.6 2.085 97.108 30 8 
4 2005/04/03 6.3 2.022 97.942 36 3 
5 2005/04/10 6.7 -1.644 99.607 19 5 
6 2005/04/28 6.2 2.132 96.799 22 1 
7 2005/05/14 6.7 0.587 98.457 34 2 
8 2005/05/19 6.9 1.989 97.041 30 1 
9 2005/07/05 6.7 1.819 97.082 21 2 
10 2005/10/11 5.9 4.82 95.098 30 2 
11 2006/02/06 5.2 1.607 97.101 26 1 
12 2006/05/16 6.8 0.093 97.05 12 2 
13 2006/12/17 5.8 4.815 95.018 36 3 
14 2007/03/06 6.4 -0.493 100.498 19 2 
15 2005/07/21 5.2 5.003 97.456 30 1 

Table 3-1.   Profile of 15 earthquake events recorded between May 2004 and 

July 2007 
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  ln Y = f1 (Mw, rhypo) + f2 (S)      (3.1) 

 

where Y is the horizontal component of PGA or PGV, and  

 
  f1 (Mw, rhypo) = c1 + c2 (Mw - 6) + c3 (Mw - 6)2  ln rhypo + c4 rhypo (3.2) 

 
    f2 (S) = c5 SDeep     (3.3) 

 

The values of regression coefficients c1, c2, c3, c4, c5, and SDeep are presented in Atkinson and 

Boore (1995). 

Similarly, the Toro et al. (1997) attenuation relationship was derived to estimate strong 

ground motions for ENA. It only provides expressions to estimate PGA values, which are 

applicable for Mw between 4.5 and 8.0; and Joyner-Boore distance rjb of up to 500 km. The 

representation of the model is as shown below: 

 

  ln Y = c1 + c2 (M - 6) + c3 (M - 6)2  c4 ln R + c5 f (R) + c6 R (3.4) 

 

where Y is the horizontal component of PGA, M = Mw or mLg, and 

 

    0   

     ln (R/100) for R > 100 km   (3.5) 

 

    2
jb + c2

7)     (3.6) 
 

Regression coefficients c1, c2, c3, c4, c5, c6, and c7 are as tabulated in Toro et al. (1997). 

Due to the constraints posed by the Atkinson and Boore (1995) and the Toro et al. 

(1997) models, it is obvious that these models are able to represent only four percent of the 

field data. This is due to the fact that majority of the data used in this study are distant 

ground motions with epicenters exceeding 300 km.  

Dahle et al. established an attenuation model in 1990 for the stable tectonic region of 

Europe. It incorporated worldwide database from 56 intraplate earthquakes in North 

America, Europe, China, and Australia. This model gives expressions to predict PGA values 

for earthquake magnitudes between 3.0 and 6.9 and is applicable for source-to-site distances  

f (R)   =
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of up to 1000 km. Thus, the Dahle et al. (1990) model can represent 71 percent of the 

observed data. Estimates of ground motion by this model are represented by the following 

expression: 

 

ln Y = c1 + c2 Ms + ln R + c3 rhypo    (3.7) 
 

where Y is the largest component of PGA, and 

 

    1/rhypo   for rhypo  

     (1/100)(100/ rhypo ) for rhypo > 100 km  (3.8) 

 

c1, c2, and c3 are regression coefficients listed in Dahle et al. (1990). 

Si and Midorikawa (1999) derived the attenuation relationship for Japan to predict PGA 

and PGV values. They treat earthquakes into three types of faulting: crustal, interplate, and 

intraplate. Attenuation expressions for Si and Midorikawa (1999) model are presented as 

follows: 

 

   Log A = b  log (X + c) k X     (3.9) 
 

where A is maximum amplitude of PGA (cm/s2), and PGV (cm/s), and Mw is earthquake 
magnitude. 

 

   b = a Mw + h D + i Si     (3.10) 
 

   c = 0.0055 x 100.50M
w

           for PGA    (3.11) 
 

   c = 0.0028 x 100.50M
w

           for PGV    (3.12) 

 

Some of the parameters used in the model are: 

 

 D= hypocentral depth (km) 

 X = shortest distance from hypocenter (km) 

 Si = fault type 

 a, b, c, d, e, h, and k = regression coefficients 

R   = 
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Si and Midorikawa (1999) suggested application of their model with a cutoff fault distance 

R of 300 km. Although, it is clear that ground motion records for Malaysia represent fault 

distances larger than 300 km, this model has been included in the analysis mainly to avoid 

because the comparison for 

PGV values is provided only by the Atkinson and Boore (1995) model.  

The Si and Midorikawa (1999) model was also utilized to compare estimated PGA 

values with recorded ones. Table 3-2 lists important ground motion parameters of the 

selected attenuation models used in the present study. 

 

 

 

 

 

3.2.3 Methodology 

The first step in analysis is to determine PGA and PGV values of 171 available 

accelerograms. For this purpose, horizontal components of ground motions were processed 

with a band-pass filter between 0.1 and 50 Hz for PGA. PGV values were obtained by 

integrating the accelerograms. At this stage, waveforms for all accelerograms were plotted, 

and insignificant ones were identified and excluded by introducing resolution values: 0.2 gal 

for PGA and 0.05 cm/s for PGV.  

Region Types of 
Earthquake 

M w Supporting  
range (km) 

L iterature 
Reference 

Stable 
Continental 

Region 

 

 

Stable tectonic 
region of Europe 

Shallow crustal 
earthquake in ENA 

 

Shallow crustal 
earthquake in ENA 

 
Intraplate worldwide 

4.0-7.25 

 

 

4.5-8.0 

 

3.0 6.9 

rhypo 
10-500 

 

rjb 
1-500 

 
rhypo 

6-1000 

Atkinson & 
Boore (1995) 

 

Toro et al. 
(1997) 

 
Dahle et al. 

(1990) 

Active Tectonic 
Region of Japan 

Crustal, intraplate 
and interplate 

5.8 -8.2 R 
0-300 

Si & 
Midorikawa  

(1999) 

Table 3-2 Summary of four attenuation models selected for study 
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What follows next is the determination of estimated PGA and PGV values using 

expressions given by each attenuation model. However, prior to calculating these values, 

estimates of source-to-site distances, such as rhypo, rjb, and R were calculated. rhypo is a term 

commonly used in both the Dahle et al. (1990), and Atkinson and Boore (1995) models. 

Toro et al. (1997) used rjb in their model; while Si and Midorikawa (1999) used the term R 

to define source-to-site distance. The value of rhypo is reasonably easy to estimate by using 

the familiar expression: 

 

   rhypo =  r2
epi + h2

hypo)      (3.13) 

 

where repi is the epicentral distance. Campbell (2003), however, suggested that rhypo is a 

poor representation of distance for earthquakes with large rupture areas . The distance 

measure rjb i.e. the closest horizontal distance to the vertical projection of the rupture plane 

was introduced by Joyner and Boore (1981). Figure 3.3 shows the various distance 

measures, which are widely used in characterizing ground motions: rrup or the closest 

distance to the rupture plane was introduced by Schnabel and Seed (1973), while rseis or the 

closest distance to the seismogenic part of the rupture plane was first used by Campbell 

(1987, 2000b). 

The distance R is defined as the closest distance from the station or site to the rupture 

plane. In this study, the values R were derived by considering the source rupture model of 

the December 26 2004, Mw 9.0 earthquake, proposed by Megawati and Pan (2009). This 

rupture model was considered because the Mw9.0 earthquake was the largest earthquake 

recorded in Sumatera in the modern age of ground motion recording. 

Reference to Megawati and Pan (2009) has facilitated us to assume a rupture plane 

located between 2.1ºN and 6.1ºN. The rupture model measuring 410 x 170 km, has a strike 

of N329ºE and a dip angle of 8º. The rupture plane was subdivided into 6 x 8 grid system, 

and the shortest distance from the station to the rupture plane can be determined. The 

present study accounts for PGA and PGV values calculated for rock site conditions as all 

seismic stations in Peninsular Malaysia are sited on rock areas. 

The correlation between recorded and estimated PGA values is presented using all four 

attenuation models, while comparison of PGV values was examined using the Atkinson and 

Boore (1995), and the Si and Midorikawa (1999) models.  
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For analysis purposes, an attenuation model is assumed to give a good estimation of 

PGA and PGV values, if the observed values fall within the prediction ranges i.e. within the 

attenuation curve. Further verification of a good agreement between observed and estimated 

values is confirmed if both the observed and estimated values fall on or very close to the 

straight line making a 45-degree angle, which run through the axes of the plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 3.3  Comparison of distance measures (Abrahamson, N.A. and Shedlock, K.M. 

199 -23.). 

 

 

3.2.4 Results and Discussion 

Following seismic analysis on 15 earthquake events between May 2004 and July 2007, it 

was revealed that minimum value of PGA is approximately 0.3 gal corresponding to the 

March 6, 2007 Mw 6.4 earthquake, recorded in the E-W direction at station KUM. Minimum  
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PGV value of 0.05 cm/s was recorded by the October 11, 2005 Mw 5.9 earthquake in the E-

W direction at station IPM, 656 km from the epicenter. Maximum PGA and PGV values are 

20 gal and 15 cm/s, respectively. These correspond to the March 28, 2005 Mw 8.6 

earthquake recorded in the N-S direction at FRM station near Kuala Lumpur, located 

approximately 515 km away from the fault plane. Comparisons between recorded and 

estimated PGA and PGV values are as presented in Figures 3.4 through 3.10. 

 

3.2.4.1 Peak G round A cceleration (PG A) 

Figure 3.4 shows the plots of observed PGA values on the Atkinson and Boore (1995) 

attenuation curves for magnitudes Mw 6.3 and 6.7. Observation indicates that the Atkinson 

and Boore (1995) attenuation model estimated the data well for both earthquakes since 

observed data fall within the prediction range.  

Similarly, Figure 3.5 indicates that the Toro et al. (1997) model predicted earthquakes 

Mw 6.3 and 6.7 well as observed PGA values fall very close to the attenuation curves. The 

same trend can be seen in Figure 3.6, whereby most of the observed PGA values lie on or 

clustered around the Dahle et al. (1990) attenuation curves for earthquakes Mw 6.1, 6.7, 8.6 

and 9.0. Observation on Figure 3.7 indicates that the Si and Midorikawa (1999) model 

estimated PGA values fairly well, within the first order, for earthquake magnitudes Mw 5.9, 

6.1, 6.7, 8.6, and 9.0, up to a distance of 700 km. 

As suggested by Figures 3.4 through 3.7, the selected attenuation models provide 

relatively good estimates of PGA values for distant ground motions originated in Sumatera. 

The analysis has shown that recorded PGA values, for earthquake magnitude between 5.9 

and 9.0, seem to agree well with the values predicted using the Atkinson and Boore (1995), 

the Toro et al. (1997) and the Dahle et al. (1990) models. The results show that the Dahle et 

al. (1990) model estimates PGA values most accurately. Figure 3.8 shows that the majority 

of the data points, representing recorded and estimated PGA values, fall on or close to the 

45-degree line through the axes. This further confirms that the Dahle et al. (1990) model 

would best represent the attenuation characteristic of ground motions in Peninsular 

Malaysia. 
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F igure 3.4  Comparison of recorded PGA with estimated PGA using the 

Atkinson and Boore (1995) model, for Mw 6.3 and 6.7. 

F igure 3.5  Comparison of recorded PGA with estimated PGA using the 

Toro et al. (1997) model for Mw 6.3 and 6.7. 
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The Si and Midorikawa (1999) model, on the other hand, only gave good PGA 

predictions for earthquake magnitudes Mw 5.9, 6.1, 6.7, 8.6, and 9.0, for distances up to 700 

km. A possible explanation for this is that the Si and Midorikawa (1999) model was 

developed to predict ground motions for source-to-site distances up to 300 km and as such 

is out of range for estimating distant ground motions resulting from the Sumatran 

earthquakes. 

 

 

 

 

 

 

F igure 3.6  Comparison of recorded PGA with estimated PGA using 

the Dahle et al. (1990) model for Mw between 6.1 and 9.0. 
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F igure 3.7  Comparison of recorded PGA with estimated PGA using 

Si and Midorikawa (1999) model for Mw between 5.9 and 9.0 

F igure 3.8  Comparison between estimated and observed PGA values. 
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3.2.4.2 Peak G round V elocity (PG V) 

Comparisons of recorded PGV with those estimated using attenuation models of Atkinson 

and Boore (1995), and Si and Midorikawa (1999) are as demonstrated in Figures 3.9 and 

3.10, respectively. Results of comparison using the Atkinson and Boore (1995) model in 

Figure 3.9 show that the model predicted the Sumatran earthquakes well since recorded 

values fall very close or on the attenuation curves for both Mw 6.3 and 6.7 earthquakes. 

 

 

 

 

 

 

 

 

 

 

 

F igure 3.9   Comparison of recorded PGV with estimated PGV using the 

Atkinson and Boore (1995) model for Mw 6.3 and 6.7. 

 

 

Comparison using the Si and Midorikawa (1999) model, as shown in Figure 3.10, 

illustrates that the model underestimated PGV values for all earthquake magnitudes under 

study. Again, as have been discussed earlier in section 3.2.4.1, a possible explanation for 

this is that, ground motions recorded by seismic stations in Peninsular Malaysia have 

source-to-site distances beyond 300 km and therefore, are out of range for this model. The 

Si and Midorikawa (1999) model was developed using near-field strong ground motions of 

the seismically active region of Japan and therefore is not appropriate to represent distant 

ground motions of Sumatera. Figure 3.11 further supports the deduction whereby the 

observed and estimated PGV data points lie at the lower portion of the 45-degree line. On 

the other hand, the comparison of recorded PGV with those estimated using the Atkinson 
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and Boore (1995) attenuation relationship suggested that the Atkinson and Boore (1995) 

model predicted PGV values well for earthquakes of magnitudes Mw 6.3 and 6.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 3.10  Comparison of recorded PGV with estimated PGV using the Si 

and Midorikawa (1999) model for Mw between 5.9 and 9.0. 
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3.3 Maximum Magnitude Earthquake within Inland Malaysia 

It is important to assess the maximum magnitude earthquake for a seismic source, as this 

parameter may dominate the ground motion assessment in low seismicity regions (Bender, 

1984). For a country with insufficient historical earthquake data; and a lack of information 

on geologic structures and recognizable earthquake faults, area sources may be employed to 

estimate maximum magnitude earthquake. For the case of low seismicity regions, it is 

assumed that the largest historical earthquake is the minimum value for a maximum 

earthquake estimate (Tenhaus et al., 2003). This research regards that it is significant to 

estimate the maximum magnitude earthquake because this value may influence the design 

earthquake ground motion chosen for an engineering evaluation of structures including 

bridges.  

From section 2.2.2, it can be identified that the maximum magnitude earthquake 

observed in Malaysia within a period of 136 years, beginning 1874, is 6.5 Mb, which was 

recorded in the state of Sabah. At an instance, one may assume a maximum magnitude 

earthquake as 6.5 Mb, however, to estimate a maximum magnitude earthquake with a return 

period of 1000 years, it is predicted that larger earthquakes may occur in Malaysia. This is 

considering the claim of reactivation of the Bukit Tinggi fault due to the occurrences of 

several earthquakes in Sumatera (Mustaffa Kamal Shuib, 2009). As such, it is assumed that 

the minimum earthquake magnitude expected in Malaysia is an earthquake, which will 

result in a surface rupture. Based on the knowledge that an earthquake of magnitude 6.5 and 

F igure 3.11  Comparison between estimated and observed PGV values. 
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larger is capable of producing surface rupture, it is thus decided that the maximum 

magnitude earthquake expected for Malaysia shall be 6.5, with a recurrence interval of 1000 

years. Note that, as the M6.5 earthquake may be associated with surface rupture, we cannot 

predict where the earthquake would occur. 

It would be interesting to estimate the ground motion at a chosen site, some distance 

away from a seismic source, for seismic performance assessment. For this purpose, the 

Samudera Bridge, located 30 km away from the Bukit Tinggi fault, has been chosen for 

study. The Bukit Tinggi fault is selected on the capacity that it recorded 32 small magnitude 

earthquakes between November 2007 and December 2009. In section 3.2.4.1, it has been 

shown that the Dahle et al. (1990) attenuation model predicts PGA values in Malaysia most 

accurately, and thus, the ground acceleration at the Samudera Bridge is estimated using this 

model. Considering that the Bukit Tinggi fault would generate a 6.5 magnitude earthquake, 

and assuming a shallow earthquake of 5 km depth, the ground acceleration at the Samudera 

Bridge, which is sited on rock, is predicted as 135 gal. However, if the earthquake occurs at 

a nearer location its ground acceleration will be larger. 

Another important parameter, which describes the characteristics of possible ground 

motions, is the peak ground displacement (PGD). This parameter can determine the 

maximum allowable displacement that a bridge may resist to avoid failure. PGD can be 

estimated from the peak ground velocity (PGV) attenuation models.  

Considering the near fault scenario as described above, the PGV value may be best 

estimated by using the Si and Midorikawa (1999) model. This model is selected because it 

accounted for near source data, unlike other attenuation models discussed in this chapter, 

which did not incorporate near source data well. 

For these parameters: M=6.5, D=10 km, X=1 km, the PGV value is calculated, using the 

Si and Midorikawa (1999) model, to be approximately 60 cm/s. PGD can now be estimated 

as: 

 

  f        (3.14) 

 

where 

  frequency (sec-1) 

  f = natural frequency = 1/T (Hz) 
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  T = natural period of structure (sec) 

 

Assume the worst case scenario, whereby the damage anticipated during the 6.5 magnitude 

earthquake, would occur during the predominant period in the range of 1.5 to 2.0 seconds, 

as with the case during the 1995 Kobe earthquake. Taking the predominant period as 1.5 

to 4.2 sec-1. With PGV of sec-1, the 

peak ground displacement is estimated at approximately 15 cm. Thus, it is safe to deduce 

that the allowable ultimate displacement for Malaysia is 150 mm. 

The next important task is choosing input ground motions for seismic performance 

evaluation of the Samudera Bridge based on the ground acceleration estimate. In addition to 

subjecting the bridge to the largest ground motion recorded in Malaysia i.e. the 2005 

Sumatera earthquake, this study proposes to employ the 1995 Kobe and the 1940 El Centro 

ground motions to evaluate the seismic performance of the Samudera Bridge to observe its 

response to larger ground motions. The selection of the Kobe ground motion is justified 

considering the location of the bridge, which is within a short distance from the Bukit 

Tinggi fault. The shortest distance from the fault to the bridge is 15 km.  

 

3.4 Conclusions 

Understanding the attenuation characteristics of ground motions is crucial for optimized 

seismic hazard assessment or design of seismic resistant structures. For this reason, 

researchers have heightened their efforts to gather information on earthquake motions over 

the decades. In earthquake engineering, PGA and PGV are two most important strong 

motion parameters used in seismic hazard assessment, estimation of acceleration response 

spectra, and dynamic analysis. PGA has been widely used in studying the characteristics of 

any strong ground motion, whereas PGV has found its application in estimating possible 

damage. In addition, PGD is also important to evaluate allowable ultimate displacement to 

consider non-linear response.  

Seismic activities in Malaysia are low, resulting in limited historical data for the 

development of an attenuation relationship. In addition, developing an attenuation model for 

Malaysia is a great challenge due to uncertainties in identifying seismic sources within the 

country. Therefore, an appropriate approach, which can be used to predict the characteristics 

of ground motions in Malaysia, is by selecting an attenuation model, from a list of 
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established models, which would best describe its seismicity. Section 3.2 of this chapter has 

described a methodology for selection of attenuation model(s) for Peninsular Malaysia. 

Results of analysis show that attenuation characteristics of ground motions for 

Peninsular Malaysia can be appropriately represented by attenuation models established for 

stable tectonic region, used herein. As such, these models may be used to estimate or predict 

ground motion amplitudes across Peninsular Malaysia, for application in seismic hazard 

assessment, seismic design or engineering assessment of structures. In conclusion, the 

Dahle et al. (1990) model best represents the attenuation characteristics of ground motion in 

terms of PGA, while the Atkinson and Boore (1995) model may appropriately estimate 

ground motion in terms of PGV for distant earthquakes. 

It is also worth noting that estimating a maximum magnitude earthquake within a near 

inland area is essential to help understand the seismic hazard in a low seismicity region. 

Engineering evaluation or structural design may refer to this value for future design of both 

bridges and buildings. In reference to the available historical earthquake data, it is proposed 

that the maximum magnitude earthquake for Peninsular Malaysia is 6.5. Based on this 

magnitude, the PGV is estimated at 60 cm/s, and the PGD is calculated as 150 mm. 

Therefore, it is proposed that the seismic performance evaluation of the bridge, in chapter 4 

of the thesis, should employ large acceleration ground motion, such as that recorded by the 

1995 Kobe earthquake. 
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       Appendix 3A 

 
Table 3A-1  Raw data obtained from the Malaysian Meteorological Department 

  

Entry  
    

Date                                      Peak G round A cceleration (PG A) 
(Y/M /D) ST A T I O N E W (gal) NS (gal) 

1 
 

20040511 BTM 1.3747440 1.7307780 

2 
 

20040511 FRM 1.1661020 2.3541560 

3 
 

20040511 IPM 0.8468180 0.4318860 

4 
 

20040511 KDM 0.1064280 0.1082900 

5 
 

20040511 KGM 0.4804940 0.5851580 

6 
 

20040511 KKM 0.6608140 0.4193420 

7 
 

20040511 KSM 0.1594460 0.2565640 

8 
 

20040511 KTM 1.5284080 1.0727080 

9 
 

20040511 KUM 0.4640300 0.2940000 

10 
 

20040511 
 

SDM 0.4075820 0.5001920 

11 
 

20040511 
 

TSM 0.5152840 0.5029360 

12 
 

20040725 
 

BTM 3.3721800 3.2356660 

13 
 

20040725 
 

FRM 0.8704360 1.8697420 

14 
 

20040725 
 

IPM 0.4410000 0.5274360 

15 
 

20040725 
 

KDM 2.1428680 3.6247260 

16 
 

20040725 
 

KGM 2.7548780 2.9634220 

17 
 

20040725 
 

KKM 5.7105580 3.9878160 

18 
 

20040725 
 

KSM 1.0562440 2.3298520 

19 
 

20040725 
 

KTM 1.0280200 1.0406620 

20 
 

20040725 
 

KUM 0.4537400 0.3732820 

21 
 

20040725 
 

SDM 3.9819360 2.9120700 

22 
 

20040725 
 

TSM 3.4561660 2.1277760 

23 
 

20041226 
 

BTM 1.4867580 1.2762540 

24 
 

20041226 
 

FRM 7.1367520 9.4571960 
 

25 
 

20041226 
 

IPM 
 

11.8248760 
 

10.6155560 
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26 20041226 KDM 0.6234760 0.6874700 

27 
 

20041226 
 

KGM 
 

3.6360940 
 

4.7922000 
 

28 
 

20041226 
 

KKM 
 

1.0241980 
 

0.6464080 

29 
 

20041226 
 

KSM 1.3901300 1.8608240 

30 
 

20041226 
 

KTM 5.1529380 9.0207040 

31 
 

20041226 
 

KUM 8.0402140 7.9019360 

32 
 

20041226 
 

SDM 1.0040100 0.7364700 

33 
 

20041226 
 

TSM 0.7323540 0.5724180 

34 
 

20050205 
 

BTM 5.3374720 5.3584440 

35 
 

20050205 
 

FRM 3.1784340 2.7924120 

36 
 

20050205 
 

IPM 0.1308300 0.0764400 

37 
 

20050205 
 

KDM 0.7427420 0.7253960 

38 
 

20050205 
 

KKM 9.2667820 6.9242880 

39 
 

20050205 
 

KSM 0.2416680 0.3054660 

40 
 

20050205 
 

KTM 0.3086020 0.4530540 

41 
 

20050205 
 

KUM 0.0564480 0.0416500 

42 
 

20050205 
 

SBM 0.6695360 0.6096580 

43 
 

20050205 
 

SDM 2.0427120 1.9570600 

44 
 

20050205 
 

TSM 1.1000500 1.0641820 

45 
 

20050328 
 

BTM 0.2208920 0.2767814 

46 
 

20050328 
 

FRM 16.4412640 19.7693440 

47 
 

20050328 
 

IPM 8.8303880 12.8717120 

48 
 

20050328 
 

KDM 8.8731158 12.7537199 

49 
 

20050328 
 

KGM 9.0482420 14.6857900 

50 
 

20050328 
 

KKM 1.8187820 0.8097740 

51 
 

20050328 
 

KSM 3.9353860 4.0614140 

52 
 

20050328 
 

KTM 9.9553300 12.1240700 

53 
 

20050328 
 

KUM 11.7982200 8.9319160 
 

54 
 

20050328 
 

SBM 
 

2.3226980 
 

5.0986460 
 

55 
 

20050328 
 

SDM 
 

12.5881003 
 

8.9775839 
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56 
 

20050328 
 

TSM 12.5881003 8.9775839 
 

57 
 

20050403 
 

FRM 
 

2.6920600 
 

5.5933500 

58 
 

20050403 
 

IPM 53.4149980 2.2378300 
 

59 
 

20050403 
 

KDM 
 

0.2208920 
 

0.2767814 

60 
 

20050403 KGM 1.2171600 0.8299620 

61 
 

20050403 KTM 1.1285680 0.8943480 

62 
 

20050403 KUM 0.4768680 0.9844100 

63 
 

20050410 BTM 0.9634380 0.8793540 

64 
 

20050410 FRM 2.0729940 1.9735240 

65 
 

20050410 IPM 36.1656260 0.7810600 

66 
 

20050410 KDM 0.1273020 0.1875720 

67 
 

20050410 KGM 2.5800460 1.7348940 

68 
 

20050410 KKM 1.3690600 1.7442040 

69 
 

20050410 KSM 0.6134800 0.6199480 

70 
 

20050410 KTM 0.7551880 0.6213200 

71 
 

20050410 KUM 0.9324700 0.5641860 

72 
 

20050410 SDM 0.1443540 0.1039780 

73 
 

20050410 TSM 0.1320060 0.1088780 

74 
 

20050419 BTM 5.3676560 4.9267540 

75 
 

20050419 FRM 12.5881003 8.9775839 

76 
 

20050419 IPM 12.5881003 8.9775839 

77 
 

20050419 KDM 12.5881003 8.9775839 

78 
 

20050419 KKM 0.2407860 1.2556740 

79 
 

20050419 KSM 0.0556640 0.3535840 

80 
 

20050419 KTM 12.5881003 8.9775839 

81 
 

20050419 KUM 12.5881003 8.9775839 

82 
 

20050419 SBM 1.4892080 1.3139840 
       
      83 

 
20050419 

 
SDM 

 
0.0692860 

 
0.2855720 

84 
 

20050419 TSM 12.5881003 8.9775839 
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85 20050428 FRM 0.8072260 1.1411120 

86 
 

20050428 IPM 21.5732300 0.4768680 

87 
 

20050428 KGM 
 

0.2593080 
 

17.2293800 
 

88 
 

20050428 
 

KTM 
 

0.3128160 
 

0.2743020 

89 
 

20050428 KUM 0.9182600 0.3648540 

90 
 

20050514 BTM 0.2208920 0.2767814 
 

91 
 

20050514 
 

FRM 
 

4.5550400 
 

3.5418180 

92 
 

20050514 IPM 37.8043820 1.3062420 

93 
 

20050514 KGM 0.2208920 0.2767814 

94 
 

20050514 KTM 1.6703120 1.9921440 

95 
 

20050514 KUM 1.2771360 0.8746500 

96 
 

20050519 FRM 2.0681920 3.8545360 

97 
 

20050519 IPM 18.0714940 1.0698660 

98 
 

20050519 KGM 0.2208920 0.2767814 

99 
 

20050519 KTM 0.8362340 0.8374100 

100 
 

20050519 KUM 1.3148660 0.9162020 

101 
 

20050523 BTM 1.5069460 2.0251700 

102 
 

20050523 KDM 1.5461460 1.7987900 

103 
 

20050523 SBM 0.3323180 0.5817280 

104 
 

20050523 SDM 7.6554660 8.6048900 

105 
 

20050523 TSM 0.7272580 0.5906460 

106 
 

20050630 BTM 1.2732160 0.9564800 

107 
 

20050630 KKM 0.7525420 0.7246120 

108 
 

20050630 KSM 0.1588580 0.1871800 

109 
 

20050630 SBM 0.1155420 0.1246560 

110 
 

20050630 SDM 0.1035860 0.0919240 

111 
 

20050630 TSM 0.0592900 0.0568400 
 

112 
 

20050705 
 

FRM 
 

2.1359100 
 

3.5637700 

113 
 

20050705 IPM 36.5642900 1.1972660 

114 
 

20050705 KGM 0.2208920 0.2767814 
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115 
 

20050705 KTM 1.0232180 0.8511300 

116 
 

20050705 KUM 1.4139440 0.8905260 
 

117 
 

20050724 
 

FRM 
 

0.8207500 
 

1.6044560 

118 
 

20050724 IPM 0.3721060 0.3495660 

119 
 

20050724 KGM 0.2208920 0.2767814 

120 
 

20050724 KTM 0.4184600 0.3701460 

121 
 

20050724 KUM 1.4009100 0.2764580 
 

122 
 

20051011 
 

IPM 
 

0.4142460 
 

0.4774560 

123 
 

20051011 KGM 0.2208920 0.2767814 

124 
 

20051011 KTM 0.2579360 5.1016840 

125 
 

20051011 KUM 0.3234980 0.4128740 

126 
 

20060127 BTM 2.2351840 2.8693420 

127 
 

20060127 KDM 1.1286660 1.6167060 

128 
 

20060127 KKM 8.9948320 5.9997560 

129 
 

20060127 KSM 0.5514460 0.3204600 

130 
 

20060127 SBM 2.3052540 1.3109460 

131 
 

20060127 SDM 1.2573400 1.2339180 

132 
 

20060127 TSM 1.5336020 2.4679340 

133 
 

20060206 KDM 0.0996660 0.1147580 

134 
 

20060206 KKM 0.1866900 0.4556020 

135 
 

20060206 SDM 0.0752640 0.1491560 

136 
 

20060206 TSM 0.2950780 0.3727920 

137 
 

20060516 IPM 0.7009940 0.8323140 

138 
 

20060516 KGM 2.0034140 18.1178480 

139 
 

20060516 KTM 0.8379000 0.5601680 

140 
 

20060516 KUM 0.9913680 0.9717680 
 

141 
 

20060928 
 

KDM 
 

0.3301620 
 

0.2286340 

142 
 

20060928 KKM 1.0136140 0.9915640 

143 
 

20060928 TSM 0.2670500 0.2964500 
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144 20061201 FRM 3.3045600 2.6671680 

145 
 

20061201 IPM 11.7012980 3.4757660 

146 
 

20061201 KGM 1.0152800 7.8273580 
 

147 
 

20061201 
 

KTM 
 

1.2091240 
 

0.6208300 

148 
 

20061201 KUM 2.1266980 2.2335180 
 

149 
 

20061201 
 

SBM 
 

0.1920800 
 

0.1604260 

150 
 

20061217 FRM 10.1601500 6.3039480 

151 
 

20061217 IPM 1.9078640 0.9489340 

152 
 

20061217 KGM 3.8948140 9.0579440 

153 
 

20061217 KTM 1.2818400 1.0215520 
 

154 
 

20061217 
 

KUM 
 

1.0208660 
 

0.4799060 

155 
 

20070306 FRM 6.1694920 9.1875980 

156 
 

20070306 IPM 8.2128900 0.4678520 

157 
 

20070306 KTM 0.8689660 0.5548760 

158 
 

20070306 KUM 0.5215560 0.3190880 

159 
 

20070306 FRM 4.8434540 2.4152100 

160 
 

20070306 IPM 1.0294900 0.7935060 

161 
 

20070306 KUM 1.0018540 0.7589120 

162 
 

20070721 IPM 3.1787280 0.6534640 

163 
 

20070721 KTM 0.3216360 0.3261440 

164 
 

20070724 IPM 0.7187320 0.6849220 

165 
 

20070724 KTM 0.3908240 0.2805740 

166 
 

20070724 KUM 0.3874920 0.4046420 

167 
 

20070808 BTM 1.3459320 2.3412200 

168 
 

20070808 IPM 0.7999740 2.4974320 

169 
 

20070808 KKM 2.1538440 1.5398740 
 

170 
 

20070808 
 

KSM 
 

0.6272000 
 

0.9578520 

171 
 

20070808 KTM 0.8787660 2.0793640 
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Table 3A-2  Dataset used in analysis, after filtering of insignificant waveform 

Entry 
 

 

Station 
 

Location Of 
Site   

(Station) Epicentre 
Repi(M) 

 
M agnitude 

Rhypo 
(M) 

/Fault 
Dist 

Date Lat Long Lat Long 

1 
 

20040511 IPM 4.6 N 101.0 E 0.415 97.825 583.68 6.1 584 

2 
 

20040511 KGM 2.0 N 103.3 E 0.415 97.825 634.03 6.1 634 

3 
 

20040511 KUM 5.3 N 100.7 E 0.415 97.825 629.83 6.1 630 

4 
 

20041226 FRM 3.2 N 101.6 E 3.295 95.982 624.50 9.0 570 

5 
 

20041226 IPM 4.6 N 101.0 E 3.295 95.982 575.43 9.0 534 

6 
 

20041226 KDM 6.9 N 116.8 E 3.295 95.982 2335.30 9.0 2297 

7 
 

20041226 KGM 2.0 N 103.3 E 3.295 95.982 826.80 9.0 813 

8 
 

20041226 KKM 6.0 N 116.2 E 3.295 95.982 2258.42 9.0 2215 

9 
 

20041226 KSM 1.5 N 110.3 E 3.295 95.982 1605.80 9.0 1543 

10 
 

20041226 KTM 5.3 N 103.1 E 3.295 95.982 819.93 9.0 779 

11 
 

20041226 KUM 5.3 N 100.7 E 3.295 95.982 568.58 9.0 535 

12 
 

20041226 TSM 4.3 N 117.9 E 3.295 95.982 2435.56 9.0 2383 

13 
 

20050328 FRM 3.2 N 101.6 E 2.085 97.108 514.35 8.6 515 

14 
 

20050328 IPM 4.6 N 101.0 E 2.085 97.108 514.39 8.6 515 

15 
 

20050328 KGM 2.0 N 103.3 E 2.085 97.108 688.94 8.6 690 

16 
 

20050328 KKM 6.0 N 116.2 E 2.085 97.108 2157.47 8.6 2158 

17 
 

20050328 KSM 1.5 N 110.3 E 2.085 97.108 1469.50 8.6 1470 

18 
 

20050328 KTM 5.3 N 103.1 E 2.085 97.108 754.04 8.6 755 

19 
 

20050328 KUM 5.3 N 100.7 E 2.085 97.108 535.01 8.6 536 

20 
 

20050328 SBM 2.5 N 112.2E 2.085 97.108 1679.02 8.6 1679 

21 
 

20050403 KGM 2.0 N 103.3 E 2.022 97.942 596.09 6.3 597 

22 
 

20050403 KTM 5.3 N 103.1 E 2.022 97.942 677.56 6.3 679 

23 
 

20050403 KUM 5.3 N 100.7 E 2.022 97.942 475.51 6.3 477 

24 
 

20050410 KGM 2.0 N 103.3 E -1.644 99.607 577.31 6.7 578 

25 
 

20050410 KKM 6.0 N 116.2 E -1.644 99.607 2022.59 6.7 2023 

26 
 

20050410 KSM 1.5 N 110.3 E -1.644 99.607 1240.36 6.7 1241 

27 
 

20050410 KTM 5.3 N 103.1 E -1.644 99.607 863.83 6.7 864 

28 
 

20050410 KUM 5.3 N 100.7 E -1.644 99.607 782.18 6.7 782 
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29 20050410 TSM 4.3 N 117.9 E -1.644 99.607 2134.76 6.7 2135 
 

30 
 
20050428 

 
KUM 

 
5.3 N 

 
100.7 E 

 
2.132 

 
96.799 

 
557.71 

 
6.2 

 
558 

31 
 

20050514 FRM 3.2 N 101.6 E 0.587 98.459 454.08 6.7 455 
 

32 
 

20050514 
 

KUM 
 

5.3 N 
 

100.7 E 
 

0.587 
 

98.459 
 

579.97 
 

6.7 
 

581 

33 
 

20050519 KUM 5.3 N 100.7 E 1.989 97.041 547.70 6.9 549 

34 
 

20050705 KTM 5.3 N 103.1 E 1.819 97.082 771.02 6.7 771 

35 
 

20050705 KUM 5.3 N 100.7 E 1.819 97.082 557.31 6.7 558 

36 
 

20050724 IPM 4.6 N 101.0 E 7.920 92.190 1042.54 7.2 1043 

37 
 

20051011 IPM 4.6 N 101.0 E 4.820 95.098 655.30 5.9 656 

38 
 

20051011 KUM 5.3 N 100.7 E 4.820 95.098 623.30 5.9 624 

39 
 

20060516 IPM 4.6 N 101.0 E 0.093 97.050 665.94 6.8 666 

40 
 

20060516 KTM 5.3 N 103.1 E 0.093 97.050 885.99 6.8 886 

41 
 

20060928 KKM 6.0 N 116.2 E 11.79 95.001 2431.96 4.9 2432 

42 
 

20061217 FRM 3.2 N 101.6 E 4.815 95.018 753.11 5.8 754 

43 
 

20061217 IPM 4.6 N 101.0 E 4.815 95.018 664.15 5.8 665 

44 
 

20061217 KUM 5.3 N 100.7 E 4.815 95.018 632.19 5.8 633 

45 
 

20070306 _KTM 5.3 N 103.1 E -0.493 100.498 705.54 6.4 706 

46 
 

20070306 KUM 5.3 N 100.7 E -0.493 100.498 645.17 6.4 645 
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Chapter 4 

 

Bridge Modeling and Procedures of Seismic Performance 

Investigation  
 

 

4.1 Introduction 

One of the main concerns among the structural and earthquake engineering community is 

how well a bridge performs under the seismic force. Such concern prompted various 

researchers to investigate the seismic demand by which ground motions may generate on 

existing bridges. This is because, the information on seismic demand and capacity can 

provide some insights into the possibilities of estimating suitable seismic design motion for 

use in the design of new bridges and retrofitting existing bridges. 

The mapping of historical seismic activities within Malaysia and from distant seismic 

sources, since a century ago, provides evidence of low to moderate seismic hazard in 

Malaysia. Notwithstanding, the design of bridges in Malaysia has always been guided by 

the design requirements outlined in the British Standard BS 5400, which does not include 

the provision for seismic loading. Although seismic hazard in Malaysia is categorized as 

low to moderate, it should not be disregarded especially when most bridge structures in 

Malaysia lack seismic resistance. This is more so, especially knowing that earthquakes have 

occurred and continue to occur  (Scawthorn, 2003). Thus, 

immediate evaluation of a seismic design motion is necessary to ensure the public welfare 

and safety against the potential damaging effects of ground motions. Equivalently important 

is the need for seismic assessment of existing bridges in Malaysia. 

One of the many tools, which can be used for earthquake risk mitigation is through a 

revamp of the existing code of practice by including seismic provisions for the design of 

new bridges, and assessment of existing bridges. This calls for, among others, an estimation 

of a seismic design motion in the form of a design spectrum or a formulation of a seismic 

coefficient as have been largely used in the seismic design codes. 
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The development of a design motion incorporates the knowledge of seismic demand and 

capacity of a bridge. In modern earthquake engineering, and with the advent of 

performance-based engineering, the evaluation of the capacity and demand of a bridge calls 

for the use of nonlinear analysis. Such is because researches have managed to show that 

structures would deform into the inelastic range in the event of severe earthquakes. In 

general, seismic demand in a bridge is determined by evaluating its structural response 

under earthquake excitations. One of the most commonly used analysis tool to acquire 

seismic demand is the dynamic analysis, which employs nonlinear time-history analysis 

(Priestley et al., 1996). 

In order to achieve the aforementioned objective, an existing multi-span reinforced 

concrete bridge structure has been selected for study, modeled for dynamic simulation, and 

analyzed to static and ground motion loadings. In this context, the nonlinear dynamic 

analysis has a two-fold objective: to evaluate the seismic performance of the bridge system 

in order to understand the seismic risk of the bridge, and to estimate the seismic demand in 

the bridge system.  

Reliable seismic analysis of a bridge structure requires the integration of these critical 

components: structural modeling, definition of performance limit states, and determination 

of loading combinations. Thus, this chapter is dedicated to describe each of these 

components in the following subsections. The bridge was conceptualized as a three-

dimensional system, and structural elements have been modeled, as accurately as possible, 

to account for all information as have been -  

Where information is absent, reference and assumptions have been made based on existing 

literatures. 

The seismic performance is evaluated to satisfy the limit states conditions, by which a 

designer would like the structure to demonstrate when subjected to ground motions. This 

corresponds to no-collapse state or acceptable damages.  

This chapter deals with modeling of the Samudera Bridge prior to performing dynamic 

simulation to assess its seismic performance. 

 

4.2 Procedure for Conducting Seismic Performance Evaluation 

The analysis procedure incorporated in this study includes four main phases: 

(i) Develop a three-dimensional analytical model for nonlinear dynamic analysis in the  
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(ii) open source software called Open System for Earthquake Engineering Simulation or 

OpenSees (McKenna and Fenves, 2006). The modeling shall refer to the -

structural drawing, and carefully include all elements in the selected bridge, which 

may influence its dynamic response under earthquake excitation; 

(iii) Perform moment-curvature analysis to study the force-deformation characteristics of 

pier sections, which have been discretized into concrete and steel fibers. The 

theoretical moment-curvature relationship is developed based on selected stress-

strain relations for concrete and steel. This analysis accounts for axial load due to 

gravity, the effects of concrete confinement, and steel strain hardening on pier cross 

sections; 

(iv) Perform nonlinear dynamic simulation of the bridge system to observe its response 

to input ground motions, resulting deformation, and hysteresis. Horizontal 

components of the 1940 El Centro, 1995 Kobe and the 2005 Sumatera ground 

motions are applied in three different patterns: the transverse and longitudinal 

directions simultaneously; in the longitudinal direction only; and in the transverse 

direction only. P- is considered during the analysis by using the OpenSees 

command for geometrical transformation  to include P- ; and 

(v) Develop absolute acceleration response spectrums for all three ground input motions 

to evaluate their frequency contents. This procedure is necessary to understand the 

simulation results as well as the behavior of the structure under chosen excitations.  

A pictorial description of the procedure is as illustrated in Figure 4.1. 

 

 

 

 

 

 

 

F igure 4.1 Procedure for evaluation of seismic performance 
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4.3 Description of the B ridge Structure 

The Samudera Bridge, which was selected for the study, is located approximately 15 km 

away from the Kuala Lumpur city center. It was designed approximately a decade ago, 

according to the British Standards BS 5400:Part 2:1978 (British Standards Institution, 1978), 

BS 5400:Part 4:1990 (British Standards Institution, 1990), and BD 37/01 (the Highways 

Agency, 2002). It is noteworthy that seismic loading was not considered at the design stage 

mainly because there was no such provision in the design code. 

The Samudera Bridge is a six-lane, dual carriageway viaduct structure located along the 

Federal Route 28, Middle Ring Road II, which serves the Batu Caves Industrial area and the 

residential area of Taman Samudera. The bridge system is a 28-span structure of 38 m 

centre to centre, with pier heights ranging from 4.5 m to 10.4 m. 

The superstructure carries a 25.6 m wide, 200 mm thick reinforced concrete deck on 

eight prestressed U-beam girders, each mounted on laminated elastomeric rubber bearings. 

The deck, between piers P12 and P22, is slightly curved to suit the right of way (ROW) path, 

and this curvature has been taken into consideration during the modeling phase. According 

to BS 5400:Part 9 (British Standards Institution, 1983), bearings in bridges function as 

connections to control the interaction of loadings and movements between the 

superstructure and the substructure. As such, bridge bearings were not designed as seismic 

isolators. Figure 4.2 depicts the layout, elevation, and pier section of the bridge system. 

The substructure consists of 27 rectangular cantilever piers, seven of which are of fixed 

type labeled as P2, P6, P10, P14, P18, P22, and P26. Based on the as-built drawings, fixed 

piers are equipped with bearings, which allow rotation about the longitudinal axis. The 

remaining piers are of free type where longitudinal movement and rotation about the 

longitudinal axis are allowed. Expansion joints are located at piers P4, P8, P12, P16, P20, 

and P24. However, for seismic simulation, all piers are assumed as having no bearings i.e. 

the node at the top of the pier and the node at the bottom of the deck are not connected. 

freedoms. 

All piers are supported on either four or five-bored pile groups of different lengths, 

socketed into the limestone. 
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                                (b) 

 

F igure 4.2 (a) Layout of the bridge structure, (b) transverse and longitudinal views of 

the bridge system, and idealized rectangular pier section. 
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4.3.1 Bridge Pier Detailing 

Fixed and free piers are reinforced with basic longitudinal reinforcements equivalent to 

68T40.  

Fixed piers have been detailed with an additional 20T40 and 36T32 longitudinal steel bars 

(total main bar is 88T40 + 36T32). Confinement of piers is provided by high yield 

rectangular hoops, of 10 mm diameter, spaced at 250 mm and 150 mm in fixed and free 

piers, respectively. The sectional detailing of the fixed and free piers are as illustrated in 

Figure 4.3. 

 

4.3.2 F iber Configuration 

Each pier has a rectangular cross-section with a depth of 3.5 m, width of 1.5 m, and a 35 

mm concrete cover around the entire section. The concrete stress-strain curve adopted in 

this study was calculated using the model proposed by Mander et al. (1988). The number of 

steel layers corresponds to the number of longitudinal bars present in both fixed and free 

piers.  

It is essential to determine the optimum number of concrete fibers to model the column 

section with, to effectively minimize simulation run-time. A suitable method to determine 

the optimum number of fibers for accurate and reliable results is by using the moment-

curvature analysis. In this study, the configuration of fibers for concrete cover has been set 

to one layer. Therefore, a parametric study was focused on varying the number of fibers for 

concrete core to observe the differences, if any, in the moment-curvature capacity. Table 4-

1 tabulates ten fiber configurations of the concrete core, which have been chosen for 

investigation. 

The moment-curvature analysis was conducted on free pier sections only to determine 

which of the ten fiber configurations gives the optimum concrete core configuration for use 

in the dynamic simulation. Figure 4.4 shows the moment-curvature plots of each trial, and 

observation indicates very small improvement in the moment-curvature capacity even as the 

number of fibers was increased in both the weak and strong axes. When the number of 

fibers along the strong axis was kept constant between 7 and 20, and that of the weak axis 

was increased, no improvement in the moment capacity and strength was observed. This 

suggests that refinement of fiber size will not improve the simulation results of the bridge. 

Bearing in mind that increasing the number of fibers, unnecessarily, in a pier section would 

result in unfavorably longer simulation run-time, it was decided that the maximum number 
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of fibers in the local y, and z axes to be employed for analysis are 35 and 10, respectively. 

The discretization of the concrete section is as shown in Figure 4.2(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 4.3 Sectional detailing of piers. Fixed piers have higher amount of 

longitudinal bars as that in free piers. 
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T rial Number Number of fiber in local y 
axis 

Number of fiber in local z 
axis 

1 7 3 
2 10 5 
3 20 5 
4 50 5 
5 20 7 
6 50 7 
7 35 10 
8 50 10 
9 200 10 
10 100 20 

Table 4-1 Trials of fiber configurations to determine optimum number of fibers in 

concrete core  

F igure 4.4  The moment-curvature relationship comparison for free pier sections having ten 

different fiber configurations. 
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4.4 Bridge Modeling and Idealization 

This section describes the main assumptions and constitutive law of materials adopted in 

modeling the bridge structure. The aforementioned structure is an overpass bridge mounted 

on laminated rubber bearings. Hence, the bridge has been idealized as a multiple degree of 

freedom (MDOF) system. The bridge system was developed as a three-dimensional model, 

with each nodal point having six DOFs, using OpenSees. Masses were lumped at the neutral 

axis of the deck and neutral axis of the capbeam.  

Typical in an earthquake engineering research of a bridge, structural elements at the 

superstructure level are expected to remain elastic, while its piers would deform into the 

nonlinear range under severe earthquake excitation. Thus, plastic hinges have been assumed 

to form only in the piers. In this study, the abutments and foundations have been assumed to 

behave infinitely rigid under seismic action, and boundary conditions have been fixed in all 

six DOFs. Soil-structure interaction was ignored mainly because the bridge structure had 

been constructed on limestone area. Thus, all pier bases were assumed fixed. 

 

4.4.1 Material Properties and Performance L imit States 

The prestressed U-beam girders have a concrete nominal strength of 50 N/mm2 (grade 50 

concrete), while other structural elements have a 28-day compressive concrete strength of 

40 N/mm2 (grade 40 concrete). The yield strength of both longitudinal and transverse steel 

reinforcements is 460 N/mm2. Elastic moduli for grade 40 concrete and steel are 31000 

N/mm2 and 200000 N/mm2, respectively.  

In the analytical model, the prestressed girders, and other elements at the superstructure 

level have been modeled using linear-elastic elements at their neutral axis on the assumption 

that they remain elastic under seismic action. Similarly, the capbeam elements and vertical 

connections between the girder and the top of the pier have been represented by elastic 

elements.  

To simulate and ensure linear-elastic behavior of the superstructure during dynamic 

simulation, the superstructure elements, capbeam elements, and the vertical connection 

between the girder and the top of the pier have been assigned a large elastic modulus value 

of 1.0x1010 N/mm2.  

The structural damping ratio of the bridge system was assumed at two percent (2 %). 

Figure 4.5 is an illustration of the idealized model of the bridge system in OpenSees. 
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F igure 4.5 The bridge system as idealized in OpenSees. 

 

 

As in any earthquake simulation, nonlinear response of piers is particularly of interest to 

researchers. In order to observe nonlinear behavior in pier sections, piers would have to be 

idealized using nonlinear beam-column elements with a focus to capture the nonlinear 

deformation. In OpenSees, there are basically two types of finite element model for 

evaluating  

nonlinear response of beam-column members. These are the concentrated plasticity, and the 

distributed plasticity models. In the concentrated plasticity model, the nonlinear behavior of 
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pier elements can be observed by defining a rotational spring at the ends of an elastic 

element . On the other hand, in the distributed 

plasticity model, plasticity is assumed to spread along the entire element section. The 

distributed plasticity model is constructed by assigning fiber elements in the entire pier 

element based on the assumption that potential plastic hinges may form at any location 

along the nonlinear element. Since the concentrated plasticity approach is deficient, because 

they separate axial-moment interaction from the element behavior (Scott et al., 2003), the 

distributed plasticity model has been selected for analysis.  

Within the distributed plasticity category, comparison was done between the force-based, 

and the displacement-based beam-column element approaches. Based on Neuenhofer and 

Filippou (1997), the modeling for nonlinear response using the force-based element 

approach is more favorable due to its simplicity and several advantages it has over the 

displacement-based element approach. The most appealing advantage being the ability to 

use only one forced-based element to simulate the nonlinear response, thus the number of 

DOF in a model can be kept to a minimum. For these reasons, in this research, pier elements 

were represented by the force-based distributed plasticity element, also known as the 

 element. Second-order P- by 

 Figure 4.6 depicts the distributed plasticity 

finite element model of bridge piers considered in the research. 

The cross sections of the piers were defined using concrete and steel fibers. Each fiber 

was modeled with appropriate stress-strain relationships representing confined concrete (or 

con  

was selected to represent both the concrete core and cover. MacGregor and Wight (2005) 

suggested that concrete might have a tensile strength in the range of 8 to 15 percent, 

therefore in this study, concrete has been assumed capable of carrying a tensile stress 

equivalent to 10 percent of its compressive strength.  
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F igure 4.6 Finite element model for observing nonlinear reinforced concrete section, 

considering distributed plasticity. 

 

 

The confined concrete properties have been estimated based on the constitutive model 

proposed by Mander et al. (1988). The stress-strain model is illustrated in Figure 4.7, and is 

based on the equation derived by Popovics (1973). Equation (4.1) has been derived for the 

longitudinal compressive concrete stress, fc subjected to a slow (quasi-static) strain rate and 

monotonic loading.  

 

          (4.1) 

 

where  cc =  

 

  x =          (4.2) 
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where  

 
 l = effective lateral confining stress 

 co = unconfined concrete compressive stress 

c = longitudinal compressive concrete strain 

cc = compressive strength (peak stress) of confined concrete.  

 

The strain at maximum concrete stress cc is given as  

 

cc co [       (4.3) 

 

co of unconfined concrete, co is generally taken as 0.002. 

 

r =         (4.4) 

 

  Esec =         (4.5) 

 

Ec and Esec denote modulus of elasticity of concrete and secant modulus of confined 

concrete at peak stress, respectively. 

Mander et al. (1988) recommended the use of equation (4.6) for estimating the (tangent) 

modulus of elasticity. However, in this research the modulus of elasticity, Ec, was assumed 

as 31000 N/mm2, corresponding to the value used when the bridge was designed. 

 

Ec =  N/mm2      (4.6) 

 

For rectangular sections, the effective lateral confining stresses in the x and y directions, lx 

ly, can be calculated to consider different transverse reinforcement area ratios, x and 

y in the principal directions. The effective lateral confining stresses, lx ly, have been 

derived by using the following relationships 

 

         (4.7) 
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         (4.8) 

 

where the confinement effectiveness coefficient Ke is 

 

Ke =      (4.9) 

 

  x =         (4.10) 

 

  y =         (4.11) 

 

i, bc, dc  are as shown in Figure 4.8. Asx and Asy are the total 

area of transverse bars running in the x and y directions, respectively. fyh is the yield 

strength value of the transverse reinforcement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 4.7 The stress-strain model for concrete in compression (Mander et al., 1988). 
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F igure 4.8 Effectively confined core for rectangular hoop reinforcement (Mander et al., 

1988). 

 

 

The peak stresses of the confined concrete in free and fixed piers were calculated to be 

46 and 45 N/mm2, respectively. The compressive strains corresponding to these peak 

stresses were estimated at 0.0035 and 0.0032, respectively. For the ultimate confined 

concrete compression stresses, reference has been made to several literatures. A study 

performed by Mander et al. (1988) to observe stress-strain curves, of square columns 

confined by square and octagonal hoops, shows that first hoop fracture in square columns 

occurred at strains larger than 0.04. Reference on the typical ultimate compression strain 

values recommended by Paulay and Priestley (1992) indicates that typical values for strain 

at crushing of the concrete core, in rectangular sections, range from 0.012 to 0.05. Penelis 

and Kappos (1997) illustrated several analytical models for confined concrete by Park et al. 

(1982), Sheikh and Uzumeri (1982), and Kappos (1991). Among all literatures reviewed, 

Penelis and Kappos (1997) gave clear pictorial reference and relationship to calculate the 

confined concrete ultimate stress. Therefore, it was decided that the stresses at crushing of 

concrete would occur as recommended by Park et al. (1982), as shown in Figure 4.9. 
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F igure 4.9 Park, Priestley and Gill (1982) model for confined concrete stress-strain. 
 

 

In this study, the confinement index K is obtained from the relationship established by 

Mander et al. (1988). Park et al. (1982) model assumes that concrete crushes when the 

compressive stress drops to 20% of the confined concrete stress (i.e. analysis is carried out 

until the concrete stress reac cc). The slope of the descending branch, which is linear, 

is calculated from the following relationship. 

 

  Z =         (4.12) 

 

where 

  cc50 =  +   )     (4.13) 

 

  cc1 = 0.002K        (4.14) 

 

  K =  1 +         (4.15) 

 



89 

fc w cc50, bc,, fy, and S denote concrete compressive strength, volumetric ratio of 

transverse reinforcement, strain at 50% confined compressive stress, size of confined core, 

yield strength of transverse reinforcement, and transverse reinforcement spacing, 

respectively. 

As such, the ultimate compressive strains, i.e. cc20, for free and fixed piers are 0.025 

and 0.019, respectively. These values also correspond to the minimum possible values, 

which did not cause non-convergence issue during simulation, as did some lower trial 

values between 0.008 and 0.011. The peak stress of the concrete cover was assumed equal 

to the concrete compressive stress (i.e. 40 N/mm2), where the peak strain was 0.002. The 

crushing of concrete cover was assumed to occur when the peak stress value drops 90% of 

the compressive stress at an ultimate strain value of 0.006. 

The u

reinforcements, and strain hardening was assumed at a small value of 0.0001. According to 

the steel material properties mentioned earlier, yielding of reinforcements would start to 

occur at a strain value of 0.0023 i.e. the ratio of yield strength to elastic modulus. 

 

4.5 Loading and its Application for Analysis 

Prior to conducting seismic simulation, it is critical to determine input quantities such as the 

gravity load and ground motions, which make up the seismic load combination. These 

loading quantities are affecting parameters, which influence the response of the Samudera 

Bridge under earthquake loading. Thus, this section provides the assumptions considered in 

determining gravity load and the selection of ground motions as inputs in the seismic 

simulation. 

 

4.5.1 Seismic Load Combination 

The gravity load (or axial load) is defined to consider the dead load (DL), which makes up 

the bridge structure. The dead load included all primary superstructure weights, such as the 

prestressed U-beam girders, concrete deck, road pavement, and selfweight of the pier. It 

also accounted for the secondary weight, such as that of the road divider, parapet, railing, 

and diaphragm.  

In the dynamic simulation, all piers have been applied a constant gravity load of 14000 

kN at the deck level. In all piers, the capbeam level was subjected to a gravity load of 
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approximately 4000 kN. Meanwhile, the abutments were subjected to 50 percent of the 

value applied at the piers.  

All nodes at pier bases were applied with similar earthquake excitation using three 

ground motion records from three earthquake events. They are the 1940 El Centro (hereafter 

called the El Centro), the 1995 Kobe (hereafter called the Kobe), and the largest locally 

recorded distant ground motion in Malaysia (until 2007), which corresponds to the March 

28, 2005 Sumatera earthquake (hereafter referred to as the 2005 Sumatera earthquake).  

The earthquake load is an application of the ground motion horizontal components 

bidirectionally as is illustrated in Figure 4.10. Bidirectional application of ground motions is 

considered in the analysis since seismic waves reach a particular site at a random manner 

and impact a structure in all directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 4.10 Seismic loading and its application 
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Thus, the seismic load combination considered in this research is illustrated by the 

following relationship: 

 

GRAVITY LOAD + 1.0 EQT + 1.0 EQL     (4.16) 

 

GRAVITY LOAD, EQT and EQL are axial load calculated as described earlier, earthquake 

action in transverse and earthquake action in longitudinal directions, respectively.  

The procedure of nonlinear dynamic simulation included two main loading steps: the 

bridge was first loaded with the gravity load in ten steps, after which structural responses 

were held still, before it was subjected to the ground motion. The input loading pattern 

subjected with equal magnitude of input motion. The dynamic simulation was 

predetermined to continue until concrete stresses were reduced to 20 percent of the confined 

concrete compressive stress. 

 

4.5.2 G round Input Motion 

The horizontal components of strong motion recordings of the El Centro (Mw 7.0), Kobe 

(MJ =7.3 or M6.9), and the distant 2005 Sumatera (Ms= 7.2) earthquakes were selected as 

the input motions in this study. Figure 4.11 depicts the El Centro acceleration time histories, 

recorded for 50 seconds, acquired from the website of the Pacific Earthquake Engineering 

Research Center, http://peer.berkeley.edu/research/motions. The acceleration amplitude 

observed during this earthquake was 0.35 g in the North-South direction.  

The second set of input ground motions considered in this research was that of the Kobe 

earthquakes recorded between 25 and 75 seconds. Peak ground acceleration (PGA) value of 

approximately 0.8 g was observed in the North-South direction. These acceleration time 

histories were acquired from the Japan Meteorological Agency (JMA), and are as shown in 

Figure 4.12. 

Comparison of acceleration pattern between the El Centro and Kobe ground motions 

shows that peak ground acceleration occurred earlier during the ground shaking i.e. between 

2 and 12 seconds in the El Centro accelerograms, whereas the Kobe time histories show that 

strong motion was recorded between 8 and 12 seconds.  

 

http://peer.berkeley.edu/research/motions
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F igure 4.11 Horizontal components of the 1940 El Centro earthquake 

recorded at the Imperial Valley Irrigation District substation, El Centro, 

California. 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 4.12 Horizontal components of the 1995 Kobe input ground 

motion recorded at the Kobe Marine Observatory. 
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From the suite of locally recorded acceleration time histories, collected by the Malaysian 

Meteorological Department (MMD) between 2004 and 2007, it was identified that the 

largest PGA value observed in Malaysia corresponds to the 2005 Sumatera earthquake. This 

earthquake event recorded PGA value of 0.02 g, at station FRM, which is coincidently 

located approximately 15 km away from the bridge site. The acceleration time histories are 

as shown in Figure 4.13. For the purpose of simulation, this input motion has been selected 

to run for 115 seconds. This is to account for acceleration amplitudes, which occurred at 

different times in both the horizontal components. A longer simulation period was allowed 

for, to appropriately include the significant time histories of both the horizontal components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 4.13 Horizontal components of the March 28, 2005 Sumatera 

ground motion, recorded at station FRM, near Kuala Lumpur. 

 

 

These ground motions have been selected as inputs to perform dynamic simulations to 

observe the bridge response to two levels of earthquake. The Kobe earthquake is an 

example of a typical large earthquake, which rarely occurs, with a high return period. It has 

been selected to study the dynamic response of the Samudera Bridge to account for 
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maximum magnitude earthquake, which is predicted to occur at the Bukit Tinggi fault, a 

seismic source located approximately 30 km from the bridge site.  

In contrast, the 2005 Sumatera earthquake represents small earthquake events, which 

occur more frequently or in shorter return period. The El Centro ground motion was 

selected for investigation owing to the fact that it has become one of the most popular time 

histories ever used by researchers since decades ago before more recent accelerograms were 

considered.  

The seismic performance of a bridge structure is meaningless without an evaluation of 

the frequency contents of the ground motions used in the analysis. Frequency content is a 

useful tool employed to understand the behavior of the structure under an earthquake 

excitation. As part of the seismic performance evaluation exercise, the frequency content of 

all three selected ground motions shall be investigated via absolute acceleration response 

spectrum. This is possible by employing a series of SDOF systems and subjecting them to 

the ground motions before constructing the response spectrum for each ground motion. 

Further detail of the procedure is outlined in chapter 6. 

 

4.6 Conclusions 

The inputs and procedures for use in the seismic performance investigation on the Samudera 

Bridge have been discussed in detail in this chapter. The structural response can be obtained 

by running nonlinear dynamic simulations on the bridge. The simulation results are 

discussed in detail in chapter 6. 

 

References 

British Standards Institution (1978). Specification for Load, BS 5400: Part 2, British 

Standards Institution, London. 

British Standards Institution (1990). Code of Practice for Design of Concrete Bridges, BS 

5400: Part 4, British Standards Institution, London. 

British Standards Institution (1983). Code of Practice for Design of Bridge Bearings,BS 

5400: Part 9. British Standards Institution, London. 

Council of Standards Australia (2004). Bearings and Deck Joints, AS5100.4-2004. 

Australian Standards. 

 



95 

Elnashai, A. and L. Di Sarno (2008). Fundamentals of Earthquake Engineering, John Wiley 

& Sons, Ltd., West Sussex, United Kingdom 

Japan Meteorological Agency (2009). http://www.jma.go.jp/. 

MacGregor, J. and J.K. Wight (2005). Reinforced Concrete Mechanics and Design, 4th ed., 

Pearson Prentice Hall, Upper Saddle River, New Jersey. 

Mander, J.B., M.J.N. Priestley and R. Park (1988). Theoretical stress-strain model for 

confined concrete. Journal of the Structural Division, ASCE, 114(8), 1804-1826. 

Mander, J.B., M.J.N. Priestley and R. Park (1988). Observed stress-strain behavior of 

confined concrete. Journal of the Structural Division, ASCE, 114(8), 1827-1849. 

Mc Kenna, F. and G.L. Fenves (2006). The OpenSees Command Language Manual, Pacific 

Earthquake Engineering Research Center, University of California at Berkeley, California 

(http://opensees.berkeley.edu/). 

Malaysian Meteorological Department (2010). http://www.met.gov.my/. 

Neuenhofer, A. and F.C. Fillipou (1997). Evaluation of nonlinear frame finite-element 

models. Journal of Structural Engineering, ASCE, Vol. 123 (7), 958-966. 

Paulay, T. and M.J.N. Priestley (1992). Seismic Design of Reinforced Concrete and 

Masonry Buildings. John Wiley & Sons, Inc., New York. 

Penelis,G.G, and A.J. Kappos (1997). Seismic Earthquake-Resistant Concrete Structures, 

Taylor& Francis, 2 Park Square, Milton Park, Abingdon, Oxon. 

Popovics, S. (1973). A numerical approach to the complete stress-strain curves for concrete. 

Cement and Concrete Research, 3(5), 583-599 

Priestley, M.J.N., F. Seible and G.M. Calvi (1996). Seismic Design and Retrofit of Bridges, 

J. Wiley & Sons, New York. 

Scawthorn, C. (2003). Earthquakes: Seismogenesis, Measurement, and Distribution. 

Earthquake Engineering Handbook. Section II Chapter 4. CRC Press,Florida. 

Scott, M.H., and G.L. Fenves (2006). Plastic hinge integration methods for force-based 

beam-column elements. Journal of Structural Engineering, ASCE, Vol. 132 (2), 244-252. 

 

 

 

 

 

 

 

http://www.jma.go.jp/
http://opensees.berkeley.edu/
http://www.met.gov.my/


96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

 

 

Chapter 5 

 

Nonlinear Static Pushover (NSP) Analysis as a Tool to Estimate 

Seismic Capacity and the Seismic Coefficient Value  
 

 

5.1 Introduction 

A seismic evaluation performed on a bridge structure requires an incorporation of the 

nonlinear static pushover analysis (hereinafter called pushover analysis), as a tool to 

evaluate the displacement or deformation capacity. Such information is fundamental to 

identify the extent of damage in the bridge when it is subjected to ground motions during 

dynamic analysis. Pushover analysis is also a useful tool, which can be used to derive the 

seismic coefficient value of piers. Thus, this chapter discusses the pushover analysis 

performed on two types of pier, namely the free and fixed piers, and deduces the ultimate 

displacement values, which shall be used in the evaluation of the Samudera Bridge in 

Chapter 6. 

 

5.2 One-pier Pushover Analysis to Determine Seismic Capacity 

Prior to conducting the dynamic analysis of the Samudera Bridge, the pushover analysis 

was conducted on each type of pier i.e. free and fixed piers. Free pier P17 and fixed pier 

P18 have been selected to undergo pushover analysis because they represent the majority of 

the piers in the bridge system: they are similar in heights, and most piers have relatively 

similar heights with these two piers.  

One-pier pushover analysis is a reliable method to understand the seismic capacity of 

the entire bridge system under nonlinear loading. The results provided by the pushover 

curve are fundamental to evaluate the seismic performance of the Samudera Bridge under 

dynamic loading, using ground motion records. Pushover analysis is capable of providing 
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 information, the 

seismic performance of the bridge, under a particular input motion, may be predicted and 

seismic resistant provisions may be designed to improve the bridge performance under a 

variety of earthquake levels. 

A description of the Samudera Bridge and its modeling is explained in great detail in 

chapter 4. Important information on the bridge structure and its model are briefly 

summarized here, and related figures from chapter 4 are reproduced in this chapter to recall 

on the detailed modeling process, which has been conducted earlier. 

 

5.3 Description of the Samudera Bridge 

The Samudera Bridge is a 28-span, six-lane dual carriageway viaduct structure with varying 

pier heights, between 4.5 m and 10.4m (height measured to the neutral axis of the capbeam). 

The substructure consists of rectangular piers of size 3500x1500 mm. The sectional view of 

the bridge system is as illustrated in Figure 5.1.  

Both piers are reinforced with basic longitudinal reinforcements equivalent to 68T40. 

Fixed piers have been detailed with an additional 20T40 and 36T32 longitudinal steel bars 

(total main bar is 88T40 + 36T32). Confinement of piers is provided by high yield 

rectangular hoops, of 10 mm diameter, spaced at 250 mm and 150 mm in fixed and free 

piers, respectively. The sectional detailing and cross sections through piers are as illustrated 

in Figure 5.2. 
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F igure 5.1 Sectional view of the Samudera Bridge: transverse view (left) and 

longitudinal view (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 5.2 Sectional detailing of fixed (left) and free (right) piers. 
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5.3.1 Bridge Model 

The bridge has been idealized as a multiple degree of freedom (MDOF) system, and was 

developed as a three-dimensional model with each nodal point having six DOFs using the 

OpenSees software (McKenna and Fenves, 2006). Masses were lumped at the deck and the 

neutral axis of the capbeam. The piers have a 28-day compressive concrete strength of 40 

N/mm2. The yield strength of both longitudinal and transverse steel reinforcements is 460 

N/mm2. Elastic moduli for grade 40 concrete (concrete strength 40 N/mm2), and steel are 

31000 N/mm2 and 200000 N/mm2, respectively. The capbeam elements and the vertical 

connection between the girder and the top of the pier have been represented by elastic 

elements having modulus of elasticity of 1.0x1010 N/mm2. The bridge structure had been 

constructed on limestone area, thus, pier bases were assumed fixed. The structural damping 

ratio of the bridge system was assumed at two percent (2 %).  

nonlinearBeamColumn plasticity is 

assumed to spread in the entire pier element. The pier element was discretized as concrete 

and steel fibers. Each fiber was modeled with appropriate stress-strain relationships 

representing confined concrete, unconfined concrete and reinforcing steel. Confined 

concrete properties have been estimated based on the constitutive model proposed by 

Mander et al. 

occur at a strain value of 0.0023. Figure 5.3 is an illustration of the idealized model of the 

bridge system. 

In this study the ultimate limit state has been defined as the following: a reinforced 

concrete section is said to have reached the ultimate limit state as the strain in steel reaches 

0.0023, while the concrete will fail when its peak compressive stress drops to a value of 

80%. At the ultimate limit state, steel reinforcement would yield and crushing of concrete is 

expected. The displacement capacity is generally defined at the ultimate limit state and is 

then used to compare with the displacement demand obtained from dynamic analysis. 
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F igure 5.3 The Samudera Bridge as modeled and idealized in 

OpenSees. 

 

 

5.4 Nonlinear Static Pushover Analysis 

The nonlinear static pushover analysis, or pushover analysis for short, has been widely used 

as a tool to evaluate the inelastic seismic behavior of structures. One of the many objectives 

of pushover analysis is to determine the lateral force resisting capacity or predict the seismic 

demand (Mwafy et al., 2007). This implies the possibility of employing the pushover 

analysis as a tool to determine the base shear capacity of a structure.  

Essentially, the pushover analysis requires careful selection of a lateral load distribution,  
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estimation of target displacement and choosing the controlling node at which displacement 

is to be monitored during pushover analysis. Figure 5.4 represents the pushover curve 

considered in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

** F1 is the lateral load applied at the superstructure level  

F igure 5.4   Pushover curve. 

 

 

5.5 Pushover Analysis Procedures 

The pushover procedures include modeling of the Samudera Bridge as idealized in Figure 

5.3. In this section, input information shall be carefully identified prior to performing the 

pushover analysis. These include the target displacement, lateral load profile, and selection 

of an observation point to monitor the development of base shear capacity-displacement 

curve.  

When dealing with nonlinear static analysis, various researchers refer to the 

Displacement Coefficient Method (FEMA356, 2000) or the Capacity Spectrum Method 

(ATC-40, 1996) for estimating the maximum displacement demand. The Capacity Spectrum 

Method is popular because displacement demand is represented graphically by elastic 

spectrum, making its application more appealing. In the Displacement Coefficient Method, 
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displacement demand is represented by inelastic displacement spectra, which is obtained for 

the elastic displacement spectra by using correction factors. However, in this study, the 

estimate of the displacement demand is based on the allowable 3% drift limit as 

recommended in the displacement-based design procedure for multi-degree-of-freedom 

structures (Calvi et al., 1995). This is represented by equation (5.1). 

 

   d = 0.03 h       (5.1) 

 

d pier or column. The 

overall height of piers P17 and P18 is taken as 11 m, giving a desired displacement of 330 

mm. An important fact to note on the displacement demand is that its value changes with 

ground motion amplitude i.e. different earthquake loading gives a different displacement 

demand value. Thus, according to FEMA 273, it is appropriate to carry out pushover 

analysis to at least 150% of the calculated target displacement, so that the pushover curve 

will reflect the seismic capacity under extreme seismic load condition. As such, a 500 mm 

target displacement has been considered. The pushover analysis is stopped when the bridge 

reaches the predefined displacement limit of 500 mm. 

In general, the lateral force profile can be accurately defined from examining the 

fundamental elastic first mode shape of the pier, which can be determined from the 

eigenvalue analysis. Since pushover analysis is performed on a one-pier system, the lateral 

load has been defined as a reference load. In this study, the lateral load is taken as 

equivalent to 5% of the gravity load, or 450 kN, and is applied to the deck level only. It 

should be noted that the pushover analysis accounted for application of the lateral load 

profile in the longitudinal and transverse directions, separately. Figure 5.4 represents the 

pushover curve considered in this study. 

The procedure begins by loading the structure with a maximum gravity load of 18000 

kN, before subjecting it to monotonically increasing displacements in small increments of 

0.2 mm, to a maximum displacement value of 500 mm. The monitoring point for 

displacement is at the deck level of piers P17 and P18. The bridge is then subjected to a 

static lateral force, which reflects the inertial force distribution related to the fundamental 

mode of vibration.  

Following the pushover analysis, the resulting seismic capacity curve (base shear versus 

displacement) is then used to examine the ultimate displacement at the ultimate limit state. 
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For design purposes, the ultimate limit state has been defined to occur when the confined 

compressive strength of the pier drops to 80%. 

The ultimate displacement obtained from the pushover analysis is then compared to the 

maximum displacement response recorded, in the Samudera Bridge, from the dynamic 

analysis (to be conducted in Chapter 6). The extent of damage can then be evaluated with 

the understanding that the bridge performance is deemed satisfactory when the seismic 

demand is lower than the seismic capacity. 

The seismic coefficient value of the piers is then calculated using the relationship as 

shown in equation (5.2).  

 

  C =          (5.2) 

 

where 

 

 = base shear (from pushover curve) 

 = seismic weight 

 

5.6 Results and Discussion 

Force-deformation curves from the pushover analysis are presented in Figures 5.5 through 

5.8. Figures 5.5 and 5.6 illustrate the pushover curves of pier P17 subjected to lateral load in 

the longitudinal and transverse directions, respectively. A scrutiny of the pushover curves of 

free pier P17 indicates that in the longitudinal direction, the ultimate limit state occurs at a 

displacement capacity of 230 mm, measured at the top of the pier. At this point, the base 

shear capacity is 3 MN, and the ultimate curvature is expected at 0.06 (1/m). In the 

transverse direction, pier P17 has the capacity to deform to a maximum displacement of 76 

mm before reaching its ultimate state, at a curvature of 0.016 (1/m). 

Figures 5.7 and 5.8 depict the pushover curves of pier P18, subjected to lateral load in 

the longitudinal and transverse directions, respectively. It is observed from Figure 5.7 that 

fixed pier P18 has the capacity to deform to a maximum displacement of 190 mm in the 

longitudinal direction, before entering the ultimate limit state, at which point the curvature 

is predicted as 0.04 (1/m). Pushover in the transverse direction indicates that pier P18 has a 
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displacement capacity of 65 mm before it reaches the ultimate limit state. The 

corresponding curvature in the transverse direction is 0.01 (1/m). 

An essential deduction from the pushover analysis is that, although the pier section is 

thin in the longitudinal direction it is observed that the resulting displacement capacity is 

large. It is also clear that in the transverse direction, the pier section is thicker, but the 

displacement capacity is smaller. For example, the displacement capacity of pier P17 in the 

longitudinal direction is 300 mm (measured at the deck level), which is 3 times larger than 

that in the transverse direction. In the case of fixed pier P18, the displacement capacity is 

slightly lower than that of pier P17 in both directions. 

Essentially, the pushover analysis has provided a basis for evaluating the seismic 

coefficient value C for the free and fixed piers. The C values for each pier in the direction of 

pushover is calculated using the relationship in equation (5.2), and are as tabulated in Table 

5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 5.5   Pushover curve of P17 (base shear vs. displacement) in the 

longitudinal direction.  
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F igure 5.6   Pushover curve of P17 (base shear vs. displacement) in the 

transverse direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 5.7 Pushover curve of P18 (base shear vs. displacement) in the 

longitudinal direction.  
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F igure 5.8 Pushover curve of P18 (base shear vs. displacement) in the 

transverse direction.  

 

 

Table 5-1   Results of pushover curve, and estimate of seismic coefficient value C 

 

 

The results in Table 5-1 shows that the seismic coefficient in the transverse direction 

(shorter dimension) in both types of pier is higher than that in the longitudinal direction 

(longer dimension).  

 

 

 

Pier Direction of 

Pushover 

Base Shear 

Capacity 

(kN) 

Displacement 

capacity (mm) 

(top of pier) 

Total 

Weight of 

Pier (kN) 

Seismic 

Coefficient 

Value C 

P17 Longitudinal 3140 230 14000 0.22 

Transverse 7600 76 14000 0.54 

P18 Longitudinal 4330 191 60000 0.07 

Transverse 10200 65 18000 0.57 
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5.7 Conclusions 

Pushover analysis has been conducted on single-pier system of free pier P17 and fixed pier 

P18. It is significant to evaluate the seismic capacity and the ultimate displacement prior to 

performing the dynamic analysis because these information are fundamental in assessing the 

seismic performance of the Samudera Bridge. The results provided by the pushover analysis 

shall then be compared with the seismic demand predicted by dynamic analysis, which will 

be presented in Chapter 6. By comparing the seismic capacity with seismic demand, the 

seismic performance and the extent of damage in the Samudera Bridge, due to the excitation 

of a particular ground motion, may be estimated reliably.  

The results, gathered from the pushover analysis, indicate an important deduction on the 

displacement capacity of pier sections with unequal dimensions. For this bridge structure, 

the pushover curve has illustrated that in the longitudinal direction, although the pier section 

is thin and the seismic coefficient is small, it possesses a large displacement capacity. In the 

transverse direction, although the pier section is thicker, and the seismic coefficient is larger, 

the displacement capacity in that direction is lower. 
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Chapter 6 

 

Analytical Results of Dynamic Analysis 
 

 

6.1 Introduction 

This chapter presents the major findings gathered from the investigation on the seismic 

performance of the Samudera Bridge in OpenSees (McKenna et al., 2001). The 

investigation employed the structural model and procedures as have been detailed in chapter 

4. Input ground motions used in the dynamic analysis were the 1940 El Centro, the 1995 

Kobe, and the 2005 Sumatera ground motions. The seismic performance of the bridge is 

essentially described by the bridge response to ground motion excitations, and is conducted 

by performing the dynamic analysis. The dynamic analysis provides engineers with the 

seismic demand, which is presented as displacement response or pier hysteresis. A reliable 

seismic evaluation of a bridge depends heavily on the application of both the dynamic and 

the nonlinear static pushover analysis (NSP). NSP is useful in evaluating the seismic 

capacity of structures, whereby the force-deformation relationship obtained from the 

analysis may be used to determine the ultimate limit state at which failure occurs in the 

bridge. These are the fundamental information, which helps to compare the seismic capacity 

with the demand obtained from dynamic analysis, and thus, is significant in evaluating the 

extent of damage in a bridge, which is subjected to ground motions. 

The investigation findings include the analytical results obtained from the static 

moment-curvature analysis, and from the dynamic simulations of the bridge to input ground 

motions. Important results discussed in this chapter are the moment-curvature relationship, 

stress-strain response of the concrete core and steel fibers, displacement response of piers, 

and the hysteresis pattern of piers recorded during dynamic analysis. The moment-curvature 

plot displays the force-deformation relationship anticipated in the pier cross sections. The 

displacement response, stress-strain response and pier hysteresis due to ground motions 
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would enable prediction of damage in the pier section during the simulation. Of further 

interest to engineers is the base shear recorded at pier bases. 

In OpenSees, dynamic analysis consists of the eigenvalue and transient response 

analyses. The eigenvalue analysis is performed, , to determine 

the eigenvalues, which correspond to the fundamental mode shapes. The transient analysis 

the gravity load 

and ground motion records to observe the dynamic response of the bridge structure under 

ground motion excitation.  

It is also desirable, to engineers, to investigate the frequency content of a ground motion 

to understand the manner in which structures respond to the ground motion, and to predict 

the magnitude of potential damage due to a particular earthquake shaking. At this point, the 

response spectrum analysis is useful to display such information. For this purpose, absolute 

acceleration response spectrums were plotted to observe the frequency content, and the peak 

responses of various SDOF systems to all three input ground motions selected for study. 

The discussion of results focuses on the dynamic response of piers corresponding to 

assumptions made earlier that piers are expected to deform into the nonlinear range during 

large earthquake events.  

 

6.2 Fundamental V ibration mode  

Prior to performing non-linear earthquake simulation, eigenvalue analysis has been carried 

out in order to observe the fundamental vibration modes in the structure. Dynamic 

simulations were carried out for 50 seconds, using the El Centro and Kobe input motions, 

while the evaluation of the seismic performance to the 2005 Sumatera input motion was 

conducted for 115 seconds. The natural periods for the first three modes are 0.57, 0.51, and 

0.45 seconds. From the analysis, it was evident that the fundamental vibration mode of the 

bridge system is in the transverse direction when it was subjected to the Kobe ground 

motion. Under the excitation of the El Centro input motion, the bridge system is observed to 

record a fundamental mode of vibration in the longitudinal direction. 

 

6.3 Moment-Curvature Analysis 

Moment-curvature analysis was conducted to establish the force-deformation relationship of 

the pier sections under increasing moment. It was also used to construct the theoretical  
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backbone curve, labeled as the dashed line in the hysteresis diagrams, for the hysteretic 

behavior of materials in pier sections. The pier sections were modeled with two nodes, 

having the same coordinates, and connected by a element, where the 

pier cross section was discretized into concrete and steel fibers. The fiber discretization of 

the pier section has been described in detail in section 4.3.2 of chapter 4. The zero-length 

element geometry is as shown in Figure 6.1.  

The pier section was then subjected to monotonically increasing compressive axial load, 

of 18000 kN, denoted as P in Figure 6.1. The axial load was applied in one hundred steps to 

obtain a strain profile, which reflects an equilibrium between the applied compressive axial 

load and the resulting internal forces. A reference moment of 1 Nmm was also applied 

linearly, about the stronger z-axis, to the pier section. OpenSees would further use the strain 

profile to calculate the corresponding curvature values at every step of gravity load 

application. Based on the prescribed concrete and steel properties mentioned in section 4.4.1, 

the resulting moment-curvature relationships for both free and fixed piers are as illustrated 

in Figure 6.2.  

It can be observed that fixed piers have larger moment-curvature capacity compared to 

that of free piers. Such is because a larger amount of longitudinal reinforcements is 

provided in the fixed piers, thereby resulting in better strength capacity in the fixed piers. 

The moment-curvature relationships are used together with the concrete and steel strain 

limit states, defined in the material discretization, to estimate the values of yield curvature, 

and ultimate moment. The yield curvature corresponds to that curvature at the yielding of 

steel reinforcements, while the ultimate moment is defined as the value of peak moment 

capacity. From the moment-curvature analysis, it was observed that the yield curvature 

would occur at 0.00095 (1/m), when steel reinforcements are expected to yield. From Figure 

6.2, the ultimate moments for the free and fixed piers are 81 MNm and 110 MNm, 

respectively. 
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F igure 6.1 The geometry of the zero-length element used in the moment curvature 

analysis in OpenSees (after Mc Kenna and Scott, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 6.2 Moment-curvature relationships of the free and fixed bridge piers. 
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6.4 Response to the 1995 Kobe Input Motion 

The Samudera bridge was excited to the Kobe input ground motion for 50 seconds. The 

simulation results are presented in this section to establish its seismic performance as 

discussed below. 

 

6.4.1 Stress-strain Response 

Plots of cyclic loading stress-strain response of concrete and steel fibers can assist an 

engineer on how to assess the extent of damage in pier sections following an excitation by a 

ground motion. The bridge structure chosen for study has 27 piers, however, for observation 

purposes stress-strain plots of selected piers are presented as shown in Figure 6.3.  

In section 4.4.1, the criteria of failure have been defined to occur when steel 

reinforcement starts to yield at a strain of 0.0023. Failure of concrete core would occur at 

the ultimate limit state defined at 80% of the confined concrete compressive strength. In 

free piers, the ultimate limit state would occur at 36.8 MPa, while in fixed piers concrete is 

expected to crush at 35.8 MPa.  

Dynamic simulation predicted that the steel reinforcement would yield in all piers 

between 7.28 and 8.64 seconds. Further scrutiny of the steel stress-strain response indicates 

that the reinforcements in fixed pier P2 yielded the earliest at 7.28 seconds into the 

excitation. In general, all fixed piers demonstrated steel yielding earlier than in free piers. 

The steel stress-strain response depicted in Figure 6.3 shows that the longitudinal 

reinforcements would sustain peak strains a few times higher than the yield strain of 0.0023, 

with free piers recording higher strains. 

From the concrete core stress-strain response mapping, observed in Figure 6.3, concrete 

core crushing is anticipated in all piers, except in those equipped with expansion joints. 

Crushing of concrete is expected between 7.6 and 7.72 seconds with the shorter piers 

crushing earlier. It is noteworthy that crushing of concrete may occur if transverse 

reinforcements are insufficient. Insufficient transverse reinforcements may lead to low 

confinement, which in turn may lead to shear failure in piers and collapse of piers. The 

summary of damage in the piers is tabulated in Table 6-1. 
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Table 6-1  Observation of damage in piers, due to excitation under the Kobe 

ground motion, in terms of yielding of reinforcement steel and crushing of 

concrete core in piers 

Pier T ime (sec) 

Steel Y ielding Concrete C rushing 

P1 7.52 7.62 
P2 7.28 7.6 

P3 7.58 7.64 

P4 8.64 no damage 

P5 7.6 7.68 

P6 7.32 7.64 

P7 7.62 7.68 

P8 7.94 no damage 

P9 7.62 7.68 

P10 7.32 7.64 

P11 7.62 7.68 

P12 7.94 no damage 

P13 7.62 7.7 

P14 7.32 7.66 

P15 7.62 7.68 

P16 7.94 no damage 

P17 7.62 7.68 

P18 7.32 7.64 

P19 7.62 7.68 

P20 8.62 no damage 

P21 7.62 7.68 

P22 7.32 7.64 

P23 7.64 7.72 

P24 8.6 no damage 

P25 7.58 7.64 

P26 7.86 7.62 

P27 7.54 7.62 
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F igure 6.3 Selected stress-strain response relationships of concrete core (left) and steel 

reinforcement (right), as a result of excitation under the 1995 Kobe time histories. 
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6.4.2 Displacement Response 

Deformation or damage in a bridge during an earthquake is associated with how much the 

structure is displaced under an earthquake excitation. Hence, it is of interest to engineers 

and designers to observe the displacement response recorded in a bridge in order to estimate 

the extent of deformation following an exposure to ground motions.  

Table 6-2 summarizes the displacement responses of the bridge structure in the 

transverse and longitudinal directions. These displacements are maximum values observed 

in each pier throughout the simulation period. From the simulation, it is evident that 

displacement responses are more dominant in the transverse direction, both at the top of the 

piers and at the superstructure level.  

The largest displacement observed in the longitudinal direction, at the top of the pier, 

was 230 mm, corresponding to the deformation at fixed pier P14. In the transverse direction 

free pier P17 recorded the largest displacement response of 255 mm.  

Similar behavior was observed at the deck level, whereby the maximum response was 

recorded as 354 mm, at pier P8. The deck recorded consistent displacements in the piers 

belonging to the same block. A block refers to all piers making up the structure, separated 

by expansion joints. It is clear that, piers P1 to P4, of block 1, demonstrated displacement 

response of 114 mm; piers P5 to P8, of block 2, recorded a consistent displacement response 

o f 217 mm; and so on. Such observation demonstrates an elastic response behavior at the 

superstructure level. The largest displacement response recorded at the deck level, in the 

longitudinal direction, was 232 mm in pier P16. Meanwhile, the deck recorded a larger 

displacement response of 354 mm in the transverse direction  

Figures 6.4 and 6.5 illustrate selected plots of the displacement response time histories 

at the top of the piers and their corresponding deck level, respectively. These plots are 

representative of the displacement response in other piers.  

The pushover analysis performed on single-pier P17 indicates that the displacement 

capacity in the longitudinal direction, at the top of the pier, is 230 mm. This value is almost 

equal to the seismic demand recorded through dynamic analysis. This gives an indication 

that the bridge almost reaches the ultimate limit state in that direction. In the transverse 

direction, the maximum seismic demand is 255 mm, three times the value obtained by 

pushover analysis. Thus, it is clear that the bridge is anticipated to sustain severe damage 

when subjected to the Kobe input motion. 
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Table 6-2 Summary of the estimated displacement response recorded in the 

transverse and longitudinal directions, using the 1995 Kobe acceleration time history. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pier H eight 

(m) 

Maximum Displacement (mm)  

Top of Pier Deck Level 

Longitudinal T ransverse Longitudinal T ransverse 

P1 4.5 33 53 114 73 

P2 6.5 114 90 114 115 
P3 7.7 207 146 114 174 
P4 8.5 65 22 113 233 

P5 8.5 124 134 217 157 
P6 8.5 217 159 217 191 
P7 8.7 211 227 217 265 

P8 8.7 67 23 217 354 
P9 8.7 177 184 228 215 

P10 8.8 228 180 228 214 

P11 8.8 174 250 228 291 
P12 8.9 83 25 228 353 
P13 9.0 161 171 231 199 

P14 9.0 230 175 230 208 
P15 8.9 207 172 231 200 
P16 8.8 64 23 232 192 

P17 8.7 157 255 222 297 
P18 8.7 225 185 225 221 
P19 8.7 227 178 228 207 

P20 8.8 77 23 229 216 
P21 8.7 158 218 221 254 
P22 8.7 221 168 221 201 

P23 10.4 172 143 221 164 
P24 8.4 63 22 221 127 
P25 8.0 166 160 140 189 

P26 7.4 140 99 140 123 
P27 4.4 21 53 140 72 
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F igure 6.4 Displacement responses observed at the top of selected piers, as a result of 

excitation to the 1995 Kobe ground motion. 
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F igure 6.5 Displacement response observed at the superstructure level supported 

by selected piers, as a result of excitation to the 1995 Kobe ground motion. 
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6.4.3 Hysteresis Loop 

Typical in any earthquake simulation, it is of great interest to ascertain the nonlinear 

behavior of piers subjected to ground motion excitations. This nonlinear behavior is 

commonly presented as hysteresis loops, as a result of cyclic deformation due to inelastic 

behavior. In this study, hysteresis of piers is presented in the form of cyclic moment-

curvature response. Hysteresis plots of selected piers are as illustrated in Figure 6.6. The 

theoretical backbone curve, shown as dashed line, has been included to observe whether the 

cyclic dynamic response is within the envelope of the monotonic response, which was 

derived using the moment-curvature analysis.  

In general, the dynamic simulation results display hysteresis loops, which are within the 

envelope of the backbone curve i.e. the simulation results are in good agreement with that 

predicted by static analysis. The simulation results further indicate that under large 

earthquake excitations such as that generated during the 1995 Kobe earthquake, all the piers, 

except those equipped with expansion joints, would deform inelastically through losses in 

stiffness and strength. In general, hysteresis loops are observed about the local y and z-axes, 

whereby hysteresis is more dominant about the y-axis. In all piers, except those with 

expansion joints, the hysteresis indicates that these piers are heavily damaged. The piers 

failed in the longitudinal direction first due to loss of stiffness. The curvature observed in 

the longitudinal direction exceeded the curvature capacity at the ultimate limit state.  

Figure 6.6 also illustrates that the fixed piers are anticipated to sustain larger 

deformation, in the longitudinal direction, under the Kobe earthquake excitation. This is 

supported by the large deformation observed in both the local y and z-axes.  

Taking into consideration the displacement and stress-strain response relationships from 

Figures 6.3 through 6.5; and hysteresis diagrams shown in Figure 6.6, it can be deduced that 

the damages are significant and collapse of the bridge structure is likely if transverse 

reinforcements present in the piers are insufficient to prevent shear failure in the bridge 

piers.  

 

 

 

 

 



123 

 

F igure 6.6 Hysteresis diagrams of selected piers demonstrating nonlinear behavior in 

pier sections when the bridge is subjected to the 1995 Kobe ground motion. 
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6.5 Response to the 1940 E l C entro Input Motion 

The following section discusses the response of the Samudera Bridge structure to the 1940 

El Centro acceleration time histories. The emphasis of discussion makes reference to the 

dynamic simulation results in the longitudinal direction, in correspondence to the bridge 

fundamental mode of vibration.  

 

6.5.1 Stress-strain Response 

The stress-strain response of the concrete and steel fibers, of selected piers, to the El Centro 

time histories are presented in Figure 6.7. The seismic performance of the bridge is dictated 

by the allowable strain limits as defined in section 4.4.1. The dynamic simulation predicted 

that all piers, except short piers P1 and P27; and those equipped with expansion joints i.e. 

P4, P8, P12, P16, P20 and P24 would sustain yielding of steel reinforcement. Steel yielding 

is anticipated at a period as early as 1.54 seconds in fixed pier P22. Steel yielding is 

expected following tension strain response in the steel fibers, which is larger than the 

allowable strain limit of 0.0023. Simulation also shows that all fixed piers would suffer 

concrete crushing. Within the free pier group, piers P7, P11, P13, P15, P17, and P21 are 

anticipated to sustain concrete crushing. This is because the recorded compression strain 

response in the concrete fibers illustrated higher values than the allowable strain limit 

defined for concrete crushing. The summary of the damage in the piers are as tabulated in 

Table 6-3. 

 

6.5.2 Displacement Response 

A summary of the displacement response corresponding to the excitation to the El Centro 

ground motion is as tabulated in Table 6-4. It is evident from Table 6-4 that the 

displacement response is dominant in the longitudinal direction at the top of the piers and 

the superstructure level. It can be observed that the response in the longitudinal direction of 

the fixed piers tend to be equivalent to that recorded at the deck level. Observation of 

response at the top of the piers shows that the maximum displacement in the longitudinal 

direction was 84 mm, recorded at the tallest pier P23. The response at the top of the piers, in 

the transverse direction was 63 mm in pier P11.  

Comparison of the maximum displacement response obtained by dynamic analysis with 

the seismic capacity value obtained from pushover analysis in the longitudinal direction 
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shows that the demand is 80 mm versus the displacement capacity of 230 mm. This 

suggests that the demand is lower than the capacity, indicating that small damage is 

expected in the longitudinal direction. Similarly, in the transverse direction, the demand is 

63 mm, which is lower than the estimated capacity of 76 mm. Thus, it is safe to deduce that 

the piers would experience damage, but will survive the El Centro ground motion. However, 

the bridge piers would sustain moderate damages in the transverse direction or face. In piers 

with expansion joints, displacement response recorded are relatively smaller i.e. 

approximately 30 mm. 

In the case of fixed piers, the maximum displacement recorded in the longitudinal 

direction was 70 mm in comparison to the estimated displacement capacity by pushover 

analysis of 191 mm. The demand in the transverse direction was observed as 53 mm, which 

is lower than the value predicted by pushover analysis of 65 mm. Thus, the bridge is 

expected to satisfactorily withstand the seismic forces generated by the El Centro input 

motion. 

A similar trend was observed at the superstructure where displacement response is 

dominant in the longitudinal direction. The largest displacement response recorded in the 

longitudinal direction is 71 mm in pier P13, which smaller than the displacement capacity of 

295 mm. The deck behaved elastically, as demonstrated by the consistent displacement 

response in all piers within the pier blocks, each block separated by expansion joints. 

Figures 6.8 and 6.9 depict the displacement response at the top of selected piers and at the 

superstructure level, respectively. These are representative of the displacement responses in 

all piers recorded during the dynamic simulation. 
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F igure 6.7 Stress-strain response relationships of the concrete core (left) and steel 

reinforcement (right) of selected piers, as a result of excitation to the 1940 El Centro 

acceleration time histories. 
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Table 6-3  Observation of damage in piers, due to excitation to the El Centro 

ground motion, in terms of yielding of reinforcement steel and crushing of 

concrete core in piers 

Pier T ime (sec) 

Concrete C rushing Steel Y ielding 

P1 No Damage No Damage 

P2 4.62 4.56 

P3 No Damage 4.68 

P4 No Damage No Damage 

P5 No Damage 2.04 

P6 1.94 2 

P7 2.2 2.04 

P8 No Damage No Damage 

P9 No Damage 2.04 

P10 1.92 2 

P11 2.22 2.06 

P12 No Damage No Damage 

P13 2.24 2.06 

P14 1.94 1.58 

P15 2.24 2.06 

P16 No Damage No Damage 

P17 2.22 2.04 

P18 1.94 2 

P19 No Damage 2.04 

P20 No Damage No Damage 

P21 2.24 2.06 

P22 1.92 1.54 

P23 No Damage 2.12 

P24 No Damage No Damage 

P25 No Damage 2.02 

P26 4.7 2 

P27 No Damage No Damage 
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Table 6-4 Summary of the displacement response recorded in the transverse 

and longitudinal directions as a result of excitation by the 1940 El Centro 

ground motion 

Pier Height 
(m) 

Maximum Displacement (mm)  

Top of Pier Deck L evel 
Longitudinal T ransverse Longitudinal T ransverse 

P1 4.5 3 5 20 7 
P2 6.5 20 9 20 12 
P3 7.7 23 16 20 21 
P4 8.5 21 5 68 31 
P5 8.5 37 30 68 37 
P6 8.5 68 39 68 48 
P7 8.7 54 50 68 61 
P8 8.7 18 5 64 43 
P9 8.7 56 44 64 53 
P10 8.8 64 53 64 64 
P11 8.8 51 63 64 75 
P12 8.9 23 5 71 56 
P13 9.0 56 51 71 61 
P14 9.0 70 53 70 64 
P15 8.9 57 53 70 63 
P16 8.8 25 5 69 60 
P17 8.7 52 59 64 71 
P18 8.7 64 51 64 61 
P19 8.7 59 45 64 55 
P20 8.8 19 5 64 48 
P21 8.7 59 53 63 64 
P22 8.7 63 47 63 57 
P23 10.4 84 46 63 54 
P24 8.4 28 5 63 53 
P25 8.0 33 23 42 28 
P26 7.4 42 13 42 17 
P27 4.4 2 4 42 6 
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F igure 6.8 Displacement responses at the top of selected piers, as a result of 

excitation to the 1940 El Centro ground motion. 
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F igure 6.9 Displacement responses at the deck level supported by selected 

piers, as a result of excitation to the 1940 El Centro ground motion. 
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6.5.3 Hysteresis Loops 

In this section, the response of the Samudera Bridge to the El Centro input motion is 

displayed as the cyclic moment-curvature hysteresis as shown in Figure 6.10. Hysteresis of 

selected piers in Figure 6.10 is representative of the hysteresis in entire bridge structure. It 

can be observed that nonlinear response is expected in all piers.  

In general, Figure 6.10 suggests that the stiffnesses of the pier sections are higher in the 

transverse direction (about the major axis) than they are in the longitudinal direction. This 

justifies the fundamental mode of vibration in the longitudinal direction, and that the pier 

sections are stiffer in the transverse direction. It can be observed that nonlinear response is 

anticipated in all fixed piers with the pier sections expected to sustain a curvature of 0.022 

(1/m) and 0.004 (1/m) about the weak axis (local y-axis) and z-axis, respectively. These 

values are well above the curvature capacity, and as such fixed piers are expected to fail due 

to crushing in the longitudinal direction first. 

Nonlinear behavior can also be observed in piers P7, P9, P11, P13, P15, P17, P19, P21 

and P23, which have been identified earlier on, in section 6.5.1 as sustaining concrete 

crushing. 

It can be deduced from the hysteresis plots, in addition to the stress-strain response 

relationships, that the bridge system is expected to satisfactorily withstand the El Centro 

ground motion, without facing the danger of collapse.  
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F igure 6.10 Hysteresis diagrams of selected piers demonstrating nonlinear behavior 

in pier section when the bridge is subjected to the 1940 El Centro ground motion. 
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6.6 Response to the 2005 Sumatera Input Motion 

Apart from conducting investigations to study the seismic performance of the bridge 

structure to large and medium scale ground motions, such as that generated by the 1995 

Kobe and the 1940 El Centro events, it is also essential to observe the response of the bridge 

to small, locally recorded earthquakes. For this reason, the Samudera Bridge was 

dynamically simulated to the, 0.02 g, 2005 Sumatera earthquake. The simulation results are 

discussed in this section. 

 

6.6.1 Stress-strain Response 

The Samudera Bridge was excited to the 2005 Sumatera input ground motion for 115 

seconds. Figure 6.11 depicts the stress-strain response plots of the concrete and steel fibers 

of selected bridge piers. It is very clear that when the bridge was excited to the small 

intensity 2005 Sumatera input motion, the bridge piers exhibited a linear response in both 

the steel and concrete fibers. This is shown by the linear relationship between stress and 

strain as observed in Figure 6.11. Dynamic simulation predicts that in all the piers, damage 

is unlikely to occur as evidence indicates that the tension strain response recorded in steel, 

and the compression strain response in concrete fibers were well below the limiting strain 

values defined, in section 4.4.1. It is anticipated that the concrete core would remain intact, 

while steel reinforcements would not yield throughout the excitation. Hence, the bridge 

would be able to withstand the excitation satisfactorily without apparent damage. Table 6-5 

summarizes the damage anticipated in the bridge as a result of excitation under the 2005 

Sumatera ground motion. 

 

6.6.2 Displacement Response 

Figures 6.12 and 6.13 illustrate the displacement response time histories at the top of the 

piers and superstructure level of selected piers. These are representative plots of the 

deformation in the entire bridge structure. It is apparent from Figures 6.12 and 6.13 that the 

bridge responded fundamentally in the transverse direction.  

A summary of peak displacements in response to the 2005 Sumatera input motion is as 

tabulated in Table 6-6. These are displacements recorded in the transverse and longitudinal 

directions. The maximum displacement response recorded in the transverse direction, at the 

top of the pier, was as a mere 0.6 mm at pier P23. At the deck level, the largest 
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displacement response in the transverse direction was observed as 1.0 mm, corresponding to 

the deformation at pier P14. The bridge response in the longitudinal direction is anticipated 

to be insignificant in most piers with the largest displacement recorded, at the top of the pier, 

as 1.0 mm. In general, deformation is anticipated to be very small to observe by the naked 

eyes, and as such, it can be concluded that the Samudera Bridge would experience 

insignificant response to the 2005 Sumatera ground motion. The superstructure remained 

elastic, as illustrated by very small and similar displacement response in all piers. It is 

anticipated that the Samudera Bridge would successfully withstand the local ground motion 

of 0.02 g. 

 

 

Table 6-5  Observation of damage in piers, due to excitation to the 2005 Sumatera 

ground motion 

Pier T ime (sec) 
Steel Y ielding Concrete C rushing 

P1 No Damage No Damage 
P2 No Damage No Damage 
P3 No Damage No Damage 
P4 No Damage No Damage 
P5 No Damage No Damage 
P6 No Damage No Damage 
P7 No Damage No Damage 
P8 No Damage No Damage 
P9 No Damage No Damage 
P10 No Damage No Damage 
P11 No Damage No Damage 
P12 No Damage No Damage 
P13 No Damage No Damage 
P14 No Damage No Damage 
P15 No Damage No Damage 
P16 No Damage No Damage 
P17 No Damage No Damage 
P18 No Damage No Damage 
P19 No Damage No Damage 
P20 No Damage No Damage 
P21 No Damage No Damage 
P22 No Damage No Damage 
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P23 No Damage No Damage 
P24 No Damage No Damage 
P25 No Damage No Damage 
P26 No Damage No Damage 
P27 No Damage No Damage 
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F igure 6.11   Linear stress-strain response of concrete core (left), and steel reinforcement 

(right) indicating damage is unlikely if the bridge were to be subjected to the 2005 

Sumatra input motion. 
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6.6.3 Hysteresis Loop 

In order to observe the likely performance of piers under the excitation of the 2005 

Sumatera input motion, hysteresis diagram of selected piers have been plotted as shown in 

Figure 6.14. These hysteresis plots are typical cyclic deformation responses observed in the 

entire bridge system, and are representative of the response in the entire bridge. The 

simulation results indicate linear response with very small curvature sustained in all piers. 

This is a reflection of very small displacement responses as observed in figures 6.12 and 

6.13. This linear response further confirmed the claims made in section 6.5.1 that the bridge 

piers are unlikely to experience any damage. As such, the bridge is expected to withstand 

small intensity excitation, such as the 2005 Sumatera ground motion, satisfactorily without 

having to enter the nonlinear range.  
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Table 6-6 Summary of peak displacement responses in the longitudinal and 

transverse directions recorded under the 2005 Sumatera acceleration time-history. 

 

 

 

 

 

 

 

Pier Height 
(m) 

Displacement (mm) 
Top of the pier Deck level 

Longitudinal T ransverse Longitudinal T ransverse 

1 4.5 0.03   0.10   0.27   0.44  

2 6.5 0.25   0.27   0.30   0.77  

3 7.7 0.06   0.42   0.31   0.93  

4 8.5 0.06   0.50   0.31   1.01  

5 8.5 0.06   0.49   0.65   1.01  

6 8.5 0.65   0.48   0.65   1.00  

7 8.7 0.07   0.51   0.65   1.04  

8 8.7 0.06   0.51   0.65   1.04  

9 8.7 0.06   0.52   0.87   1.05  

10 8.8 0.87   0.52   0.87   1.06  

11 8.8 0.07   0.53   0.87   1.07  

12 8.9 0.07   0.54   0.87   1.08  

13 9.0 0.07   0.55   1.06   1.09  

14 9.0 1.06   0.55   1.06   1.10  

15 8.9 0.07   0.54   1.06   1.08  

16 8.8 0.07   0.53   1.06   1.07  

17 8.7 0.08   0.52   0.80   1.06  

18 8.7 0.80   0.52   0.80   1.06  

19 8.7 0.07   0.53   0.80   1.07  

20 8.8 0.06   0.53   0.80   1.08  

21 8.7 0.06   0.52   0.90   1.07  

22 8.7 0.87   0.53   0.90   1.08  

23 10.4 0.12   0.59   0.90   1.08  

24 8.4 0.06   0.52   0.90   1.06  

25 8.0 0.05   0.47   0.46   1.01  

26 7.4 0.43   0.35   0.45   0.88  

27 4.4 0.03   0.07   0.43   0.34  
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F igure 6.12 Displacement response at the top of selected piers, as a result of 

excitation to the 2005 Sumatera ground motion. 
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F igure 6.13 Displacement response at the deck level supported by selected piers, as a 

result of excitation to the 2005 Sumatera ground motion. 
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F igure 6.14  Hysteresis loops of selected piers illustrating linear behavior in the bridge 

system when excited by the 2005 Sumatera ground motion. 
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6.7 Response Spectrum 

A response spectrum may be used to describe the frequency content of a recorded ground 

motion. The frequency content of a ground acceleration record has become an essential tool 

in explaining the behavior of a structure under an earthquake excitation.  

In this section, evaluation of the absolute acceleration response spectrums for all three 

selected ground input motions were carried out to study the differences between their 

frequency contents. A series of elastic single degree of freedom (SDOF) systems have been 

subjected to all the acceleration time histories chosen for study, and the absolute 

acceleration response spectrums in the transverse direction have been plotted considering a 

5 percent damping ratio. Figures 6.15, 6.16 and 6.17 depict the response spectrum plots of 

the 1995 Kobe, the 1940 El Centro and the 2005 Sumatera input motions, respectively. The 

response spectrums for the Kobe and El Centro earthquakes illustrate high frequency 

content region between 0.2 and 0.6 seconds. In contrast, the 2005 Sumatera ground motion 

demonstrates high frequency content region between 1.5 and 3.0 seconds.  

As have been shown in previous sections, dynamic simulation using the Kobe and El 

Centro input motions predict that the bridge piers deformed into the nonlinear range. 

Simulation also indicates that when the structure was excited using the 2005 Sumatera 

ground motion, small deformation was observed and all piers remained elastic. However, 

before concluding that small, locally recorded ground accelerations are incapable of causing 

damage to structures in Malaysia, it is essential to illustrate where the bridge structure is 

located on the response spectrum. 

It is evident from Figure 6.15 that the fundamental period of the structure is within the 

region of high frequency content, and this explains the reason for the damage experienced 

by the bridge through steel yielding, spalling and cracking of concrete in most piers when 

the bridge is excited to the Kobe input motion. From Figure 6.16 it can be observed that the 

fundamental period of the bridge is located within the high frequency range of the El Centro 

response spectrum. However, since the acceleration response is a half of that recorded by 

the Kobe earthquake, the damage extent in the bridge is anticipated to be lower than when it 

is excited under the Kobe input motion. This justifies the smaller damage in bridge piers 

when excited to the El Centro time-histories. On the other hand, Figure 6.17 shows that the 

natural period of the structure is located where the frequency content is low; hence, very 

small deformation would be expected if the bridge were to be simulated under the 2005 

Sumatera input motion. The response spectrum also suggests that slightly larger 
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deformation would be expected in a structure with fundamental periods between 1.5 and 3 

seconds. Thus, the derivation of response spectrum has shown us that locally recorded 

acceleration time history can affect structures with lower natural frequency. 

 

 

 

 

 

 

F igure 6.15   Absolute acceleration response spectrum of the1995 Kobe ground 

motion, damping ratio = 5 percent. 
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F igure 6.16   Absolute acceleration response spectrum of the 1940 El Centro ground 

motion, damping ratio = 5 percent 

 

 

 

F igure 6.17   Absolute acceleration response spectrum of the 2005 Sumatera ground 

motion recorded in Malaysia, damping ratio = 5 percent. 
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6.8 Conclusions 

 states, which have recorded 

felt earthquakes in Malaysia (MMD, www.met.gov.my). Kuala Lumpur has observed 

maximum intensity of VI, on the MMI scale within an observation period of approximately 

110 years. This information confirms the existence of seismic hazard in the capital city. 

Combined with the fact that existing bridges in Malaysia were designed to the existing 

design codes, which exclude the effects of seismic forces, it is of great interest to observe 

the behavior of bridges in or near the proximity of Kuala Lumpur.  

Evaluation of the seismic performance of bridges has become a popular task among 

researchers in the low seismicity regions. This chapter has also been dedicated to evaluating 

the seismic performance of the Samudera Bridge, mainly to accomplish two main objectives. 

The first objective is to investigate the likely performance of the bridge to possible 

maximum magnitude earthquake of 6.5, and the second objective is to derive an acceptable 

seismic coefficient value for bridge design in Malaysia. The decision to select the most 

appropriate seismic coefficient value for Malaysia will have to incorporate the pushover 

analysis results and the seismic response from dynamic analysis. 

The Samudera Bridge has been selected for investigation of its seismic performance 

against three ground motions: the 1995 Kobe, the 1940 El Centro and the 2005 Sumatera 

ground motions. Dynamic simulations performed suggest that the bridge under study is 

likely to face the danger of sustaining severe damages or even suffer collapse when 

subjected to large earthquakes, such as that generated during the 1995 Kobe earthquake. 

This is mainly supported by simulation results featuring nonlinear hysteresis loops observed 

in all the piers. In addition, the seismic demand recorded by the bridge under the excitation 

of the Kobe input motion exceeded the displacement capacity determined using the 

pushover analysis. The curvature capacity is also greatly exceeded, and thus it is believed 

that the bridge would be heavily damaged in the event of large earthquakes. If the 

longitudinal bars are confined by sufficient transverse reinforcements, the displacement 

demand would be significantly reduced, and collapse may be avoided.  

Excitation of the bridge to the 1940 El Centro ground motion predicts that the Samudera 

Bridge is capable of withstanding the seismic forces without experiencing collapse. 

However, cracks or damage caused by concrete crushing are expected in fixed piers and the 

piers in the middle portion of the structure. Damage is also anticipated through yielding of 
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longitudinal reinforcement in all piers except in those at locations of expansion joint after 

only 1.58 seconds into the excitation.  

In the event that the bridge structure is subjected to the largest earthquake motion 

recorded locally, the structure is capable to withstand the 0.02 g input motion and only 

experience minute damages unseen by the naked eyes. This has been deduced based on the 

linear hysteresis pattern in all piers indicating linear behavior in piers when excited by the 

2005 Sumatera earthquake. However, it is important to note that the response spectrum 

analysis has aided us to understand that other structures having natural periods between 1.5 

and 3.0 seconds are likely to experience larger deformation if they were to be subjected to 

such acceleration time histories. 

The investigation of the seismic performance functions to study the anticipated seismic 

demand and level of damage of the Samudera Bridge. Analysis results are based on the 

expected behavior by which the structure was modeled i.e. damage is expected in piers but 

not the superstructures. It is aimed that the modeling would assist in estimating the seismic 

coefficient value for the design of new bridges, as well as for assessing the seismic 

performance of existing bridges in low seismicity areas. Another objective of the seismic 

performance investigation is to gather information on the seismic demand to compare with 

the seismic capacity of the Samudera Bridge. Thus, the extent of damage under different 

levels of ground motion can be predicted. Table 6-7 summarizes the seismic demand 

information derived from subjecting the Samudera Bridge to three ground motions.  

From pushover analysis, it has been observed that the seismic coefficients of the free 

pier P17 and fixed pier P18, in the longitudinal direction, are low i.e. 0.22 and 0.07, 

respectively, and the displacement capacities for both piers in that direction are quite high, 

at 295 mm and 250 mm, respectively. In the transverse direction, the seismic coefficients of 

the free and fixed piers are relatively similar at 0.54 and 0.57, respectively, but their 

displacement capacities are low i.e. 100 mm and 90 mm, respectively. Observation of the 

damage during dynamic analysis, for instance under the Kobe excitation, indicates that the 

piers are heavily damaged in both the transverse and longitudinal directions. An important 

observation is that although the seismic coefficient value is higher in the transverse 

direction, the pier is heavily damaged in that direction. Similarly, the pier is heavily 

damaged in the longitudinal direction where the seismic coefficient is lower. Thus, it can be 

deduced that seismic coefficient is not an important factor, which dictates the survival of the 

bridge structure under a large excitation. Rather, displacement capacity plays an important 

role to ensure the survival of the bridge during a large ground motion. 
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Table 6-7 Summary of the seismic demand resulting from excitation to the 1995 Kobe, 

1940 El Centro, and 2005 Sumatera ground motions 

Ground motion Maximum displacement (mm) 

Top of pier Superstructure L evel 

Longitudinal T ransverse Longitudinal T ransverse 

1995 Kobe 230 255 232 354 

1940 E l C entro 84 59 71 75 

2005 Sumatera < 1 < 1 < 1 1 
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Chapter 7 

 

The Impact of Introducing Seismic Resistant Design to the 

Malaysian E conomy 
 

 

7.1 Introduction 

As much as the structural engineering community in Malaysia would like to welcome the 

introduction of seismic design guidelines, many stakeholders perceive that the inclusion of 

seismic design requirements for the design of bridges would lead to an excessive increase in 

the construction cost. Such perception may hamper the implementation of seismic resistant 

design, and may further heighten the anxiety of the public on the level of safety of structures 

in Malaysia. 

This chapter explores the impact of introducing seismic resistant design on the cost of 

bridge constructions to be implemented by the government of Malaysia. The methodology 

used involved examining the level of ductility in the fixed pier section by employing the 

nonlinear pushover analysis. The pushover analysis shall be used to determine the pushover 

curve (base shear versus displacement), from which the ductility factor may be estimated. 

The procedure is presented in the following section. 

 

7.2 Proposed M ethod for Estimating Cost of Aseismic Design 

Aseismic design minimizes damage in bridges and loss of life in the event of an earthquake 

by accounting seismic forces, in addition to dead and live loads, during analysis. In 

performance-based design concept, designers aim to design structures to achieve a 

satisfactory deformation state under a design-level earthquake. Consequently, aseismic 

design emphasizes on enhancing ductility to ensure that a bridge structure has the ability to 

deform into the inelastic range with acceptable stiffness reduction. Such behavior is 
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favorable because it enhances the seismic performance of a bridge structure, even though 

damages are allowed to occur. 

Ductility of concrete can be improved by increasing its confinement by using transverse 

steel reinforcement (Elnashai and Di Sarno, 2008). By increasing the transverse 

reinforcement, the confinement of concrete core can be enhanced, thus, boosting its seismic 

performance. It is largely known that improved confinement helps reduce the displacement 

demand under an earthquake excitation.  

With this concept in mind, it is proposed that the investigation on economy would 

account for displacement ductility focusing on enhancing the transverse reinforcement 

while retaining the amount of longitudinal reinforcements.  

In this study, the fixed pier is chosen as the subject for investigation because it has smaller 

amount of transverse reinforcement in comparison to the free pier. The as-built drawings on 

pier detailing show that the fixed piers are confined with 10 mm diameter transverse bars at 

250 mm spacing. The free piers, on the other hand, have been provided with a richer amount 

of transverse reinforcement (T10 bars at 150 mm spacing), almost double the amount in 

fixed piers.  

Bearing in mind that 

concept, this study will employ the use of the original pier section and a modified section, 

which is flexible, but is ductile enough to survive seismic forces. Furthermore, to illustrate 

how seismic resistant design may not necessarily end up with skyrocketing construction 

cost, this study has chosen to educate readers that the use of flexible piers in a bridge may 

help in keeping the construction cost at a reasonable level. 

A detailed description of the procedure used in this study is as discussed below: 
 

a. Choice of pier: Pier P18  is selected for 

study mainly because it has lower transverse reinforcement than the free pier. The 

pushover curve of Pier P18 has been previously established and studied in 

Chapter 5. Thus, focus shall be given to performing the pushover analysis on the 

modified section. 

The modeling of pier is explained in detailed in chapter 4. 

b. Modified section: Only one section shall be investigated. A flexible pier can be 

achieved by making the original section smaller. The limit of section reduction 

considers the provision in BS5400: Part 4(1990). This guideline was used because 
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the Samudera Bridge was designed to this design standard. Thus, consider the 

slenderness limit of 

 

  lo = 100b2       (7.1) 

 

where lo, h and b are column clear height, the larger dimension of a column, and 

the smaller dimension of the column, respectively. This limit suggests a 

modified section of size 2800 x 1500 mm.  

The revised pier reinforcement ratio in the modified section is based on the 

provision stated in BS 5400:Part 4 i.e. the minimum percentage of longitudinal 

reinforcement is 0.4%, but longitudinal reinforcement should not exceed 6%. 

The total longitudinal reinforcement provided in the modified section is 48T40 + 

56T32.  

c. Calculate the confined concrete properties for modified section: The confined 

concrete compressive strength and its ultimate strain are calculated based on the 

model proposed by Mander et al. (1988). These values are obtained from 

equations (4.1) to (4.11) in chapter 4. This model suggests that the modified 

section has a confined concrete strength of 48 N/mm2, and crushes at an ultimate 

limit state of 0.025. 

d. Conduct pushover analysis on the modified section: Perform pushover analysis 

on the modified section in the longitudinal and transverse directions, separately. 

Apply gravity loading, followed by a lateral load equivalent to 5% the 

superstructure weight. The pushover analysis shall be conducted to a maximum 

displacement of 500 mm with monitoring node at the deck level. Establish the 

force-deformation relationship of the pier. Observe and identify the displacement 

at the ultimate limit state. The ultimate limit state shall be defined at 80% its peak 

compressive strength. Yielding of steel reinforcement shall be taken to occur 

when the strain reaches 0.0023. 

e. Estimate the ductility: The ductility of the original and modified sections shall 

be estimated in order to 

Flexible section should be able to deform larger than the original section. The 

relationship is as shown in Figure 7.1.  
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F igure 7.1 Force-deformation relationship, obtained from pushover 

analysis, used to estimate ductility 

 

 

The estimate of displacement ductility factor is as given below 

 

   =         (7.2) 

 

where 

 

yo = yield displacement of the original section (mm) 

ym = yield displacement of the modified section (mm) 

uo  = ultimate displacement of the original section (mm) 

um  = ultimate displacement of the modified section (mm) 

 

f. Run dynamic analysis to determine displacement response: Compare the 

displacement response of the original and modified sections recorded by the 

dynamic analysis. If the responses are approximately equal, then the modified 
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section can be assumed to have similar ability to resist seismic forces, as that by 

the original section. Thus, economically, the modified section may be used as an 

alternative section to the larger, stiffer original section. 

g. Calculate the amount of saving or additional spending: The impact on the 

economy can be determined as a percentage of the total cost of the bridge 

structure. The prices of building materials such as steel reinforcement in piers and 

Serta Pembinaan Bertingkat di Persimpangan Jalan Taman Samudera dan 

 

 

7.3 Results of Pushover Analysis 

Pushover analysis has been performed on the original section (from Chapter 5), and the 

modified section. Figure 7.2 represents the ductility of the original and modified sections, 

respectively. From Figure 7.2, it can be observed that the modified section is more ductile, 

as shown by the larger displacement capacity. The ductility factor of the original section is 

2.86, while the modified section 2.57. This supports the fact that the modified section is 

more ductile than the original section.  

 

 

 

 

 

 

 

F igure 7.2 Comparison of ductility factor between the modified and 

original sections. 

 



154  

7.4 Results of Dynamic Analysis 

Dynamic analysis is performed on the entire bridge system using the Kobe input motion. 

The modified section recorded a maximum displacement response of 205 mm, while the 

original section recorded 250 mm. The displacements recorded using dynamic analysis did 

not differ too much, and thus the modified section can be used as an economical alternative 

pier section in the bridge system.  

 

7.5 How Expensive is Seismic Resistant Design? 

Most people perceive seismic resistant design as an expensive solution to mitigate seismic 

risk. This is true a few decades ago when construction of seismic resistant structures 

generally used bulky and stiffer structural elements. However, in recent years, the 

engineering community has understood the role of flexible elements in seismic resistant 

structures. Flexible elements have gained popularity due to their ability to withstand seismic 

forces with smaller sections, which are ductile and more economical. 

This study has attempted to use the flexible pier element as a strategy to illustrate how 

smaller sections can survive an earthquake excitation, and offer an economical solution to 

the construction industry. 

The contract document prepared for the Samudera Bridge project is used as a reference 

for the cost of material. The main materials involved in the calculation of savings or 

spending, due to the implementation of the seismic resistant design are concrete and 

reinforcements. The currency used in the calculation of addition or savings in the 

construction cost is the Malaysian Ringgit or MYR. 

The cost reference for concrete and reinforcements are MYR 230 per cubic metre of 

concrete and MYR 1.80 per kg of steel reinforcements. The total reduction of concrete 

volume from 27 piers due to downsizing of pier size is 233 cubic metre. This is translated as 

a saving of MYR 54,000. With smaller pier sections, less longitudinal reinforcements are 

used and as a result, there is a reduction of 19679 kg of T40 bars and 6816 kg of T32 

longitudinal bars. As such, there is a further savings of MYR 48,000. In fixed piers, 

transverse reinforcements have been added to enhance their seismic performance, and due 

to that, an additional 920 kg T10 bars have been used, which marks a spending of MYR 

1655. It can be demonstrated that by using flexible pier sections in the construction of the 

bridge, a savings of MYR 100,000 is possible. 
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Apart from these savings, smaller pier sections require the use of smaller foundations 

and pile size. Thus, flexible sections would result in further savings. However, one must 

realize that due to a reduction in pier size, displacement response may increase, and thus 

fail-safe mechanism may be required. Fail-safe mechanism secures bridges from unexpected 

large earthquakes. It is important to consider the installation of fail-safe mechanism in 

bridges and an allocation for it should be made in the construction of bridges. This budget 

can be taken from the savings on material cost, calculated earlier, and can be added when 

necessary. 

Since there has been no reference, in Malaysia, of the cost of fail-safe mechanism to 

protect a bridge from the damaging effects of seismic forces, this study will consider the 

cost of elastomeric bearings to estimate this cost. Noting that fail-safe mechanisms shall be 

provided at locations of expansion joints, they will be installed at piers P4, P8, P12, P16, 

P20 and P24. Based on the highest price of a piece of 600 (W) x600 (L) x200 (H) mm 

elastomeric bearing, which is MYR 1500, a pier requires a cost of MYR 24,000 for fail-safe 

mechanism. Thus, the total cost to protect the bridge from unexpected large earthquakes, 

which may result in large displacement response, is approximately MYR 200,000. This cost 

is calculated based on the material cost of the year 2003 and may vary due to price change 

in the market.  

Assuming the calculation above, the cost of seismic resistant design for the Samudera 

Bridge is 0.4%. However, this is only the price of material alone, and after an addition of 

the installation cost, the total cost of fail-safe mechanism may be estimated at a minimum of 

0.5%, but not to exceed one percent. 

 

7.6 Fail-safe Mechanism 

Historical earthquakes have given us invaluable insights of the possible types of damage in 

a bridge structure excited by ground motions. Thus, researchers are able to understand the 

nature of damage and improve bridge design in order to minimize seismic risk. Some of the 

common damages observed at superstructure level are span failures due to unseating at 

movement or expansion joints following pounding between adjacent elements or structures 

(Priestley et al., 1996).  

Excessive movement has been linked to bridge collapse during several earthquakes in 

high seismicity countries such as the United States and Japan. Reconnaissance reports from 

the 1995 Kobe earthquake confirm that pounding effects contributed to the collapse of 
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bridge decks (Otsuka et al., 1996). In the United States, bridge failures due to separation at 

expansion joints in bridge decks were devastating during the 1994 Northridge earthquake. 

Bridge deck collapse from supports and joints observed during the 1971 San Fernando 

earthquake 

 

Recent seismic design requires that superstructure should be designed as elastic and 

nonlinear response is expected in columns during large earthquakes. Thus, damage is 

anticipated in columns rather than at superstructure. As such, superstructure collapse due to 

unseating or separation at expansion joints is undesirable and must be avoided. During a 

large earthquake, adjacent beams or structures separated by a gap can vibrate out-of-phase 

because these beams are not connected together and are free to move independently. 

Consequently, there is a relative displacement between them and if the relative displacement 

exceeds the initial gap width provided, the deck may give way and collapse.  

Evidently, superstructure collapse can be avoided by considering fail-safe mechanisms 

in bridges. The California Department of Transportation (CALTRANS), in a seismic 

retrofitting program of bridges across California, has explored some structural control 

techniques to improve the seismic performance of existing bridges. An example of 

protection technique considered were the hinge restrainer cables to allow for elastic 

movement. In many designs, restrainers have been provided across the movement joint to 

prevent excessive movement, which can lead to collapse of span. Restrainers work to 

prevent separation of adjacent structures and unseating during an earthquake. They gain 

popularity following the collapse of several bridges during the 1971 San Fernando 

earthquake (DesRoches et al., 2002).  

Although the use of fail-safe mechanism in bridges is widely emphasized in high-

seismicity regions, it is a good practice to investigate its application in low seismicity 

regions for preparedness against unexpected larger magnitude earthquakes. 

It is noteworthy that although the use of flexible piers in bridges may seem appealing, 

one should realize that flexible piers may experience larger displacement response under an 

earthquake excitation. Thus, flexible piers should be considered together with the 

application of fail-safe mechanism. In fact, fail-safe mechanism must be compulsory in all 

seismic regions, be it of high, moderate or low seismicity. This is because earthquakes 

cannot be predicted, thus, preparation for the worst is necessary. 
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7.7 Conclusions  

Essentially, seismic resistant design does not necessarily mean allocating a large budget in 

construction. Rather, a reliable and smart resistant design may keep the construction cost at 

an acceptable level. Of course, important structures may need extra strengthening but, 

basically an additional cost involved in seismic resistant design is due to providing and 

installing fail-safe mechanisms.  

Based on the illustration of savings in material cost and an additional budget for fail-

safe mechanism, calculated in section 7.5, it is observed that the cost, which will be incurred 

to implement seismic resistant design, is less than one percent of the bridge structure cost. It 

is important to note that for a low seismicity region, flexible sections may be used to 

achieve ductility; however, designers must be aware that flexible sections may result in 

larger displacement response during an earthquake. Thus, fail-safe mechanisms must be 

provided. It is only natural to use the savings resulted from using flexible sections as an 

allocation for fail-safe mechanism. 
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Chapter 8 

 

Conclusions  
 

 

8.1 Introduction 

Despite being geographically located on the stable Sunda shelf and categorized in the low 

hazard region, evaluation of seismic design motion is indispensible in Malaysia. Such is 

attributable to evidence of seismic hazard from distant, active seismic sources of Sumatera; 

and ground motions recorded within the country. Felt earthquakes have psychologically 

affected the public and the question as to whether bridges in Malaysia are able to perform 

satisfactorily in the event of an earthquake has become a subject of concern to stakeholders 

in the construction industry. Although bridge designers are aware of seismic hazard in 

Malaysia, bridges are continuously designed according to the traditional design guidelines, 

which ignore seismic requirements. Such practice exposes bridges to the destructive effects 

posed by earthquakes, and consequently public safety is at risk. 

Based on this scenario, the government of Malaysia has shown a great interest on 

mitigation of seismic risk and the destructive effects of earthquakes. A recognized approach 

to achieve this is through implementation and enforcement of seismic resistant design. This 

research was conducted as an attempt to evaluate a seismic design motion for the design of 

bridges in Malaysia. A summary of findings is presented below. 

 

8.2 Suitable A ttenuation Model for Malaysia 

For countries belonging to the low seismicity region, attenuation models may be applied to 

estimate the seismic hazard or seismic design motion pertaining to each country. For this 

reason, comparisons of observed peak ground acceleration (PGA) and peak ground velocity 

(PGV) at seismic stations with those values predicted by attenuation models were carried 

out. Four attenuation models have been considered in this research: the Atkinson and Boore 
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(1995), Toro et al. (1997), Dahle et al. (1990), and Si and Midorikawa (1999). Their 

selections were based on the types of tectonic environment they represent i.e. for shallow 

crustal earthquakes and subduction zone; and source-to-site distance. It was deduced that 

attenuation relationships established by Dahle et al. (1990) and that by Atkinson and Boore 

(1995) may appropriately reflect the seismic conditions in Malaysia. 

In addition, maximum magnitude earthquake for Peninsular Malaysia has been 

predicted as magnitude 6.5, based on historical data of Malaysia. Peak ground velocity is 

estimated at 60 cm/s, while peak ground displacement is estimated as 150 mm. For this 

reason the Kobe ground motion has been selected for dynamic analysis. It is also of interest 

to adopt the peak ground displacement of 150 mm as the maximum displacement allowed in 

bridges, in the event of moderate to large earthquakes. 

 

8.3 Evaluation of Seismic Performance of the Samudera Bridge 

The most fundamental step prior to the evaluation of the Samudera Bridge is modeling of 

the bridge system to capture acceptable behavior and responses during earthquake excitation 

by incorporating the performance-based design framework. After careful modeling, the 

bridge was subjected to the 1995 Kobe earthquake, 1940 El Centro and 2005 Sumatera 

earthquake time-histories.  

Simulation results demonstrate nonlinear behavior of piers and the bridge is anticipated 

to sustain severe damages under the Kobe earthquake. Excitation of the bridge to El Centro 

and 2005 Sumatera earthquakes shows small damages in the bridge. In general, the bridge 

performs satisfactorily, without collapse, under the El Centro and 2005 Sumatera ground 

motions. 

Prior to performing dynamic analysis, pushover analysis has been carried out to determine 

the displacement capacity at ultimate limit state. Pushover analysis was also used to 

estimate the seismic coefficient of free and fixed piers. After conducting dynamic analysis 

using the Kobe ground motion, it was observed that the piers with higher seismic coefficient 

but low displacement capacity were heavily damaged, whereas the piers with low seismic 

coefficient, but having high displacement capacity survived. This shows that seismic 

coefficient is not an important parameter to survive an earthquake. Rather, displacement 

capacity is most important. It is noteworthy that displacement capacity can be enhanced by 

enriching the transverse reinforcement in piers. 
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8.4 Prediction of Seismic Coefficient Value using the Nonlinear Static Pushover 

Analysis 

The attempt to develop suitable and reliable seismic design motions for low seismicity 

regions has remain one of the many challenges in earthquake engineering discipline since a 

few decades ago. This is due to insufficient ground motion data for establishing a design 

response spectrum. Therefore, for a country such as Malaysia, it is difficult or quite 

impossible to estimate a design motion by employing procedures, which were developed for 

regions with abundant ground motion records. Rather, an alternative approach to evaluate a 

design motion is by deriving seismic coefficient values, as have been widely employed in 

seismic design codes for buildings. To achieve this goal, the nonlinear static pushover 

analysis has been employed. With the help of dynamic analysis, it has been confirmed that 

for a low seismicity country such as Malaysia, seismic coefficient is not significant in 

ensuring seismic resistance. Rather, displacement capacity must be set a priority in seismic 

design of bridges. Displacement capacity can be enhanced by introducing proper 

confinement in bridge piers. 

 

8.5 The Impact of Seismic Resistant Design on E conomy 

the destructive effects of earthquakes. A supporting study was carried out to examine the 

impact of implementing seismic resistant design on the construction cost. This is a study to 

observe the effect of reducing displacement response on construction cost. The price 

difference was based on the contractual price of the steel reinforcement and concrete 

materials listed in the bill of quantities for the Samudera Bridge project. The increase in 

construction cost due to the implementation of seismic resistant design has been predicted 

not to exceed one percent of the bridge structure cost only. 


