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Abbreviations 

 

APCI atomospheric pressure chemical 

  ionization 

aq. aqueous 

br broad (spectral) 

Bu butyl 

°C degrees Celsius 

calcd calculated 

cat. catalytic 

Co. company 

cod 1,5-cyclooctadiene 

Cp cyclopentadienyl 

Cy cyclohexyl 

Cyp cyclopentyl 

! chemical shift in perts per million 

d doublet (spectral) 

DBU 1,8-diazabicyclo[5.4.0]-7-undecene 

E entgegen (means “opposite”) 

Ed(s) editor(s) 

EI electron ionization 

equiv equivalent(s) 

ESI electrospray ionization 

Et ethyl 

FAB fast atom bombardment 

h hour(s) 

HRMS high-resolution mass spectrum 

Hz hertz (s
–1

) 

i iso 

IMes 1,3-bis(2,4,6-trimethylphenyl)imi- 

 dazol-2-ylidene 

IPr 1,3-bis(2,6-diisopropylphenyl)imi- 

 dazol-2-ylidene 

IR infrared (spectral) 

J coupling constant (spectral) 

m multiplet (spectral) 

M molar (1 M = 1 mol dm
–3

) 

Me methyl 

mg milligram(s) 

MHz megahertz 

mL milliliter(s) 

mm millimeter(s) 

mmol millimole(s) 

mp. melting point 

nm nanometer(s) 

pp. page(s) 

Ph phenyl 

ppm parts per million (spectral) 

Pr propyl 

q quartet (spectral) 

rt room temperature (ca. 25 °C) 

s singlet 

sept septet 

SIMes 1,3-bis(2,4,6-trimethylphenyl)imi- 

 dazolin-2-ylidene 

t triplet 

t (tert) tertiary 

TLC thin-layer chromatography 

Z zusammen (means “together”) 
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General Introduction 

 

1. Transition-metal-catalyzed C–C bond formation via !-"  isomerization 

 

 Since a carbon–carbon !-bond is more energetically stable than a "-bond, "-components 

such as alkenes and alkynes can construct new carbon–carbon !-bonds via !-" bond 

isomerization (Scheme 1).  Development of reactions involving such isomerization is an 

attractive project not only from synthetic chemical point of view, but also from atom economical 

point of view.
1
  Among the classical reactions, Alder–ene reaction

2
 and Diels–Alder reaction

3
 

are the most noteworthy reactions through !-" isomerization.  However, the process is not 

always easy in spite of the energetic advantage.  To address the problem, transition-metal 

catalyzed reactions have been investigated. 

R1

R2

R3

R4

+ R1

R3

R4

R2

 

Scheme 1. !-" Isomerization. 

 

 Alder–ene reaction is a reaction between an alkene bearing allylic hydrogens and an 

enophile, which is typically another unsaturated compound.  The reaction usually requires harsh 

reaction conditions and suffers lack of selectivity.  By adding Lewis acids, the reaction can be 

highly stereoselective, and less reactive enophiles can also be used.
2b

  However, simple alkenes 

and alkynes, which are absence of Lewis basic site, preclude such an approach. 

 Transition-metal complexes have successfully catalyzed the formal Alder–ene reaction 

employing unactivated alkynes.
4,5

  For instance, Trost reported ruthenium-catalyzed 

codimerization of alkenes with alkynes to afford 1,4-dienes (Scheme 2).
4
  Ruthenacyclopentene 

arising from oxidative cyclization of an alkene and an alkyne with ruthenium(II) is proposed as 

an intermediate of the reaction, which is followed by #-hydrogen elimination and reductive 

elimination to give the 1,4-diene. 
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R1 R2
R1 R2+

cat.
CpRu(cod)Cl

Ru

H

R1 R2

– Ru (II)
!-Hydrogen elimination
Reductive elimination

Ru(II)
Oxidative cyclization

HH

 

Scheme 2. Ruthenium-catalyzed codimerization of alkenes with alkynes to afford 1,4-dienes. 

 

 Alkynes as dienophiles do not work efficiently in a Diels–Alder reaction.  In order to 

circumvent extreme reaction conditions, transition-metal-catalyzed [4+2] cycloaddition of dienes 

with unactivated alkynes has been investigated.
6–9

  For instance, Wender reported 

nickel-catalyzed intramolecular [4+2] cycloaddition of dienynes to provide 1,4-cyclohexadine-

containing bicycles (Scheme 3).
8
  In the reaction, formation of a seven-membered nickelacycle 

followed by reductive elimination gives the 1,4-cyclohexadiene. 

X

R1

R2

cat. Ni(0)

Ni

XR1

R2

X

R1

R2

Ni(0) – Ni(0)

 

Scheme 3. Nickel-catalyzed intramolecular [4+2] cycloaddition. 

 

 As overviewed above, transition-metal-catalyzed reactions, involving !-" isomerization, are 

very important synthetic methods for the atom-economical construction of structurally diverse 

molecular frameworks.
10

  The development of efficient catalysts for novel reactions using 

various compounds containing unsaturated carbon–carbon bonds is a challenging task.  Since 

metallacycles have been proposed as intermediates of most preceding reactions, design of 

catalytic systems to form a metallacycle could be a hopeful approach. 
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2. Nickel-catalyzed reactions of $,#-unsaturated carbonyl compounds with alkynes 

 

 To develop novel transition-metal-catalyzed !-" isomerization, the author focused on the 

nickel-catalyzed reaction of $,#-unsaturated carbonyl compounds, such as enones, enals, and 

enoates, with alkynes.
11

  The mechanistic proposals for the reactions have largely focused on the 

involvement of nickelacycles derived from the oxidative cyclization of an $,#-unsaturated 

carbonyl compound and an alkyne with nickel(0). 

 Three types of nickelacycles are presumable: a five-membered C-enolate type, a seven-

membered O-enolate type, and an intermediary %3
-oxaally type (Scheme 4).  They would be in 

equilibrium under the reaction conditions.  In some cases, the nickelacycles have been isolated 

and characterized.  Montgomery reported that treatment of an alkynylenal with stoichiometric 

amount of nickel(0) complex gave a seven-membered %1
-oxanickelacycle (Scheme 5a).

12
  

Ogoshi reported intermolecular reaction of nickel(0) with an enone and an alkyne to afford a 

%3
-oxaally nickel complex (Scheme 5b).

13 

O Ni Ni

O
Ni

O
Ni

O

 

Scheme 4. Formation and equilibrium of nickelacycle. 
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Scheme 5. Examples of characterized nickelacycles. 
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 Catalytic reactions via formation of nickelacycles have been widely studied, especially using 

stoichiometric amount of organometallic reagents or reducing reagents (Scheme 6).
11,14,15

  The 

reactions efficiently afford new !-bonds from "-components. 

R1

O

R2
R3

R4

+ + R5 Mtl
R1

O

R3

R5

R4R2

cat. Ni(0)

 

Scheme 6. Nickel-catalyzed three-component coupling. 

 

 In contrast to the reactions employing stoichiometric amount of metal reagents, there are not 

so many examples of reactions without metal reagents.  In the absence of metal reagents, the 

reaction with another $,#-unsaturated carbonyl compound or alkyne is most likely.  

Montgomery and Ogoshi reported cycloaddition of two molecules of acyclic enones with one 

molecule of alkynes (Scheme 7).
13,16

 

R1

O

R2
+ R3 R4

R3

R4

R2

R2

R1

O

R1O

cat. Ni(cod)2

cat. PR3

 

Scheme 7. Nickel-catalyzed [2+2+2] cycloaddition of two acyclic enones with an alkyne. 

 

 When cyclic enones are employed without metal reagent, a nickelacyclopentadiene arising 

from oxidative cyclization of two alkynes with nickel(0) is preferentially formed, which reacts 

with the remaining enone.  Ikeda and Cheng reported nickel-catalyzed [2+2+2] cycloaddition of 

one molecule of enones with two molecules of alkynes in the presence of catalytic amount of 

Lewis acid to activate the enones (Scheme 8).
17
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+ R R

1) cat. Ni(0)
1) cat. Lewis acid

R
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via:
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n n

 

Scheme 8. Nickel-catalyzed [2+2+2] cycloaddition of a cyclic enone with two alkynes. 

 

 To tune reaction systems, the reaction of the nickelacycle with the third component can be 

attained.  For example, Montgomery reported nickel-catalyzed three-component reaction 

between an enone, an aldehyde, and an alkyne (Scheme 9).
18

 

R1

O

R2

R3 H

O

R4

R5

R1

O

R3O
R4

R5

H
R2

+ +

Ni(cod)2

PCy3 or IPr

 

Scheme 9. Nickel-catalyzed three-component coupling of enones, aldehydes, and alkynes. 

 

 Reductive elimination of seven-membered %1
-oxanickelacycles can furnish six-membered 

oxacyclic compounds.  Matsubara and Kurahashi reported [4+2] cycloaddition of enones 

bearing an ester group with alkynes to give 4H-pyrans (Scheme 10).
19

  They proposed that the 

enone activated by the ester group initially formed a five-membered oxanickelacyle and 

following insertion of the alkyne gave the nickelacycle. 
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R1

O

R2 + R3 R4

cat. Ni(cod)2

cat. PMe3

CO2Et

O

R1

CO2Et

R2

R4

R3

O Ni

R1

CO2Et

R2 O
Ni

R3

R4

R2

EtO2C

R1

 

Scheme 10. Nickel-catalyzed [4+2] cycloaddition of enones with alkynes. 

 

 As reviewed above, the nickel-catalyzed reactions of $,#-unsaturated carbonyl compounds 

with alkynes have also been efficient tools for construction of highly functionalized carbon 

frameworks or heterocyclic compounds.  It might be difficult to control reactions without a 

metal reagent, but suitable design of substrates and proper choice of ligands would provide new 

methodologies to approach molecular complexity. 
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3. Overview of this Thesis 

 

 The author investigated nickel-catalyzed reactions of $,#- or $,#,&,'-unsaturated carbonyl 

compounds with alkynes to develop new methods for a selective construction of carbon 

frameworks by utilizing !-" isomerization.  The reactions were attained without using other 

metal reagents owing to ligands or design of the unsaturated carbonyl compounds. 

 

3.1. Nickel-catalyzed reactions of acrylates with alkynes (Chapters 1–3) 

 

 In contrast to enones, enoates have not drawn much attention as a reactant of 

nickel-catalyzed reactions.  A few examples have shown that nickel catalyzes cotrimerization of 

acrylates with alkynes to afford 1,3,5-trienes.
13,17c

  However, nickel-catalyzed reaction of 

acrylates with alkynes has been limited to the cotrimerization except for using relatively reactive 

phenyl enoates,
15b,c

 strained cyclopropylideneacetates,
20

 and the reaction with arynes.
21

  The 

author shows that choice of ligands and additives has expanded the capability of the reactions of 

acrylates. 

 In Chapter 1, the author describes two types of cotrimerization of acrylates with alkynes.  

The reactions proceed selectively depending on the ligand.  Cotrimerization of two molecules of 

acrylates with one molecule of alkynes took place to afford 1,3-dienes with N-heterocyclic 

carbene (NHC) ligand, whereas acrylates reacted with two molecules of alkynes to afford 

1,3,5-trienes when phosphine ligand was employed (Scheme 11).  As is the reaction with cyclic 

ketones (Scheme 8),
17

 preferential formation of nickelacyclopentadiene from two alkynes might 

give the 1,3,5-triene.  On the other hand, strongly !-donating and sterically bulky NHC ligand 

would stimulate the oxidative addition of an acrylate and an alkyne with nickel(0), which reacted 

another acrylate to give the 1,3-diene. 
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+

R R

cat. Ni(cod)2

cat. P(4-MeOC6H4)3

NiR

R R
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via:

CO2R'

R
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R
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cat. IPr•HCl, tBuOK

R

R

CO2R'

CO2R'

 

Scheme 11. Two types of cotrimerization of acrylates with alkynes. 

 

 In Chapter 2, the author describes codimerization of an acrylate with an alkyne to afford a 

1,3-diene (Scheme 12).  The reaction was performed by addition of 2-aminopyridine.  

Hydrogen bonding between a carbonyl group of the acrylate and a proton on the nitrogen atom of 

the additive would construct bidentate-like ligand, which discouraged the coordination of two 

alkynes to nickel(0) to form nickelacyclopentadiene. 

CO2R1 R2 R3+

cat. Ni(cod)2

cat. PCy3

N
H
N

R

R2

R3

CO2R1

N R
N

O

R1O

Ni
H

L

R2 R3
L
NiR2

R3

OR1

OL
NiR2

R3 R2

R3 R2 R32

 

Scheme 12. Nickel-catalyzed codimerization of an acrylate with an alkyne. 

 

 In Chapter 3, the author describes [2+2+1] cycloaddition of an acrylate, an alkyne, and an 

isocyanate.  The mixture of the compounds could give various products, but, as mentioned 

above, NHC ligand would promote the selective formation of nickelacyclopentene from an 

acrylate and an alkyne, which reacted with the third component, isocyanate, to afford a 

&-butyrolactam (Scheme 13). 
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CO2R1
R2 R3 R4 NCO+ + N

CO2R1

O

R4

R2

R3

cat. Ni(cod)2

cat. IPr

NiR2

R3

CO2R1

via:

 

Scheme 13. Nickel-catalyzed [2+2+1] cycloaddition of acrylates, alkynes, and isocyanates. 

 

3.2. Nickel-catalyzed cycloadditions of $ ,#,& ,'-unsaturated carbonyl compounds with 

 alkynes (Chapters 4 and 5) 

 

 In the course of his study, the author became intrigued by the use of different compounds 

containing unsaturated carbon–carbon bonds, as reaction partners in place of $,#-unsaturated 

carbonyl compounds.  In view of the potentially unique reactivity of $,#,&,'-unsaturated 

carbonyl compounds, which contain a 1,3-diene fragment,
22

 the author explored the 

nickel-catalyzed cycloaddition of $,#,&,'-unsaturated carbonyl compounds with alkynes.  He 

employed a &-ester substituted $,#,&,'-unsaturated ester and a simple $,#,&,'-unsaturated ketone.  

The former has a structure combining two enoates, which would construct a C–Ni bond at the 

$-position of one of the enoate moieties and a C–C bond at the #-position of the other enoate 

moiety (Figure 1b) as simple enoate forms the bonds at $- and #-positions (Figure 1a).  The 

latter has a structure combining an enone with an electron-rich olefin, which would construct 

nickelacycle from the enone part and sequentially react with the remaining olefin (Figure 1c).  

The author shows nickel-catalyzed cycloaddition reactions utilizing the route (b) in Chapter 4 and 

the route (c) in Chapter 5. 

O

ONi !

"

Ni

O

O

O

O

!

"

!(#)
"($)

Ni
O

!

"
#

$

(a) (b) (c)

 

Figure 1. Formation of C–C and C–Ni bonds of unsaturated carbonyl compounds. 
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 In Chapter 4, the author describes [4+2] cycloaddition of dienoates with alkynes, which 

corresponds to inverse electron-demand Diels–Alder reaction.  Formation of seven-membered 

nickelacycle followed by reductive elimination might furnish a cyclohexadiene, and subsequent 

aromatization gave a highly substituted arene (Scheme 14). 

R1

CO2Et

R3 R4

+

cat. Ni(cod)2

cat. PPh3

CO2R2

CO2R2

CO2Et

R1

R3

R4

Ni

R3

R4

R1 CO2Et

CO2R2

CO2R2

CO2Et

R1

R3

R4

DBU
under air

 

Scheme 14. Nickel-catalyzed [4+2] cycloaddition of dienoates with alkynes. 

 

 In Chapter 5, the author describes cycloaddition of dienones with alkynes to construct 

bicyclo[3.1.0]hexenes (Scheme 15).  Nickelacycle derived from oxidative cyclization of an 

enone moiety and an alkyne with nickel(0) is a plausible intermediate, and sequential 

intramolecular insertion of the remaining double bond would give the bicyclic product. 

R2

O

R1
R3 R4

H

H

R1

R4

R3

R2

O

+

cat. Ni(cod)2

cat. P(4-MeC6H4)3

via:

ONi R2R1

R4

R3

 

Scheme 15. Nickel-catalyzed cycloaddition of dienones with alkynes. 
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Chapter 1 

 

 

Selective Synthesis of Trienes and Dienes via Nickel-Catalyzed 

Intermolecular Cotrimerization of Acrylates with Alkynes 

 

 

 Nickel-catalyzed cotrimerization of two molecules of acrylates with one molecule of alkynes 

took place to afford 1,3-dienes when IPr was employed as a ligand.  Although oxidative 

cyclization of two alkynes with nickel(0) could preferentially proceed, steric and electronic 

property of IPr would promote the oxidative cyclization of an acrylate and an alkyne with 

nickel(0), which provided the 1,3-diene.  On the other hand, using phosphine ligand gave 

1,3,5-trienes via cotrimerization of one molecule of acrylates with two molecules of alkynes.  

Nickelacyclopentadiene from two alkynes would be an intermediate of the cotrimerization. 
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Introduction 

 

 Transition-metal-catalyzed intermolecular cooligomerization reactions of alkenes and 

alkynes are important tools to form C–C bonds in organic synthesis.  The reactions 

atom-economically provide acyclic carbon frameworks from readily available starting materials.  

A representative example of codimerization is ruthenium-catalyzed formal Alder–ene reaction to 

produce 1,4-dienes.
1
  Cobalt-catalyzed Alder–ene type reaction have also been reported.

2
  

Another example of codimerization is construction of 1,3-dienes.  The reaction is 

straightforward method to synthesize highly substituted conjugated dienes, and various catalytic 

systems have been developed.
3–6

 

 In contrast, cotrimerization of alkenes and alkynes has not received much attention, although 

the reaction would construct more complex skeletons.
7,8

  Among precedents, the reaction of 

acrylates with alkynes catalyzed by nickel(0) likely has prospects,
8a

 because !,"-unsaturated 

carbonyl compounds can react with alkynes in the presence of nickel catalyst to produce various 

functionalized molecules.
9
  However, another nickel-catalyzed reactions of enoates have been 

limited to using activated phenyl enoates,
10

 strained cyclopropylideneacetate,
11

 and the reaction 

with arynes.
12

  In this Chapter, the author shows that N-heterocyclic carbene (NHC) ligand 

educes novel reactivity of acrylates.  When NHC ligand was used, nickel(0) catalyzed 

cotrimerization of two acrylates and an alkyne to produce a 1,3-diene.  On the other hand, the 

same acrylates and alkynes reacted in different manner to produce 1,3,5-trienes when phosphine 

was used as a ligand. 

 

Results and Discussion 

 

 First, the author investigated nickel-catalyzed cotrimerization of ethyl acrylate (1a) with 

4-octyne (2a) using NHC ligand (Table 1).  The reaction employing IPr as a ligand gave 

1,3-diene 3aa in moderate yield, along with trace amount of triene 4aa when toluene or 
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1,4-dioxane was used as solvent (Table 1, entries 1 and 2).  Acetonitrile was poor solvent for the 

reaction to afford 1,3-diene 3aa, and 1,3,5-triene 4aa was formed in 11% yield (entry 3).  

Increasing the equivalent of 1a improved the yield of 3aa (entry 4).  Using 5 mol% of Ni(cod)2 

and 10 mol% of IPr afforded 3aa in good yield (entry 6), and a hydrochloride salt of NHC can be 

employed without decreasing the yield (entry 7).  When less sterically hindered IMes was used, 

the reaction afforded 3aa in 51% yield, along with 4aa in 21% yield (entry 8). 

 

Table 1. Nickel-catalyzed cotrimerization of ethyl acrylate (1a) with 4-octyne (2a) using NHC 

ligand
a
 

CO2Et

Pr Pr

1a

2a

+

Ni(cod)2
Ligand

solvent, 100 °C, 24 h

+

3aa 4aa

Pr

Pr

CO2Et

CO2Et

Pr

Pr

Pr

Pr

CO2Et

 

     Yield [%] 

Entry Ni(cod)2 [mol%] Ligand [mol%] Solvent 3aa
b
 4aa

c
 

1
d
 10 IPr 10 toluene 53 <10 

2
d
 10 IPr 10 1,4-dioxane 56 <10 

3
d
 10 IPr 10 CH3CN 28 11 

4
e
 10 IPr 10 1,4-dioxane 69 <10 

5
e
 5 IPr 5 1,4-dioxane 37 <10 

6
e
 5 IPr 10 1,4-dioxane 89 (78) <10 

7
e
 5 IPr

f
 10 1,4-dioxane 87 (82) <10 

8
e
 5 IMes

f
 10 1,4-dioxane 51 21 

a Reactions were carried out using Ni(cod)2, ligand, ethyl acrylate (1a) and 4-octyne (2a; 0.50 mmol) 

in 2 mL of solvent at 100 °C for 24 h. b Yield as determined by NMR spectroscopy based on 2a (0.50 

mmol). Yield of the isolated product is given in parentheses. c Yield as determined by NMR 

spectroscopy based on 2a (0.25 mmol). d 1a (1.2 mmol). e 1a (2.0 mmol). f Hydrochloride salt of 

NHC (10 mol%) and tBuOK (11 mol%) were used. 
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 Then, the substrate scope of the reaction to form 1,3-diene 3 was examined using IPr as a 

ligand (Table 2).  Methyl acrylate (1b) and tert-butyl acrylate (1c) produced the diene 3 in 71% 

and 49% yield, along with the triene 4 in 5% and 23% yield, respectively (Table 2, entries 1 and 

2).  Unsymmetrical alkynes, such as 2b and 2c, gave the 1,3-diene in moderate yields consisting 

of regioisomeres in 1/1 ratios (entries 3 and 4), whereas bulky tert-butyl substituted alkyne 2d 

also reacted with 1a to produce the diene 3ad in lower yield, but with better regioselectivity 

 

Table 2. Cotrimerization of two acrylates with an alkyne to afford a 1,3-diene
a
 

CO2R1
R2 R3

1 2

+

Ni(cod)2 (5 mol%)
IPr•HCl (10 mol%)
tBuOK (11 mol%)

1,4-dioxane, 100 °C, 24 h

3

R2

R3

CO2R1

CO2R1

 

Entry 1 R
1 

2 R
2 

R
3 

3 Yield [%]
b
 

1 1b Me 2a Pr Pr 3ba 71 

2
d,e

 1c tBu 2a Pr Pr 3ca 49 

3 1a Et 2b Me C5H11 3ab 50 (1/1)
c
 

4 1a Et 2c Me iPr 3ac 60 (1/1)
c
 

5 1a Et 2d Me tBu 3ad 24 (3/1)
c
 

6
d,f

 1a Et 2e Ph Ph 3ae 68 

7
d,f

 1a Et 2f 4-MeOC6H4 4-MeOC6H4 3af 82 

8
d,f

 1a Et 2g 4-FC6H4 4-FC6H4 3ag 30 

9
g
 1a Et 2h Ph Me 3ah 53 (1/1)

c
 

a Reactions were carried out using Ni(cod)2 (5 mol%), IPr•HCl (10 mol%), tBuOK (11 mol%), 1 

(2.0 mmol, 2 equiv) and 2 (0.50 mmol) in 2 mL of 1,4-dioxane at 100 °C for 24 h. b Yield of the 

isolated product. c Ratio of regioisomers. d Ni(cod)2 (10 mol%), IPr•HCl (20 mol%) and tBuOK 

(22 mol%). e 1c (3.0 mmol, 3 equiv). f Slow addition of 2 over a period of 20 h. g The reaction was 

carried out for 44 h with slow addition of 2h over 40 h. 
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(entry 5).  The reactions of 1a with aryl-substituted acetylenes also gave the dienes 3 upon slow 

addition of alkynes (entries 6–9).  Without slow addition, the formation of 2ae resulted in lower 

yield (49%), and 1-phenyl-1-propyne (2h) gave no cotrimer because of rapid [2+2+2] 

cyclotrimerization of 2h. 

 When phosphine was used as a ligand, same acrylates and alkynes afforded 1,3,5-trienes via 

another type of cotrimerization (Table 3).
8
  The reaction of 1a with 2a in the presence of 

Ni(cod)2 (10 mol%) and P(4-MeOC6H4)3 (20 mol%) in acetonitrile at 80 °C for 24 h produced 

triene 4aa in 92% yield (Table 3, entry 1).  Methyl acrylate (1b) and tert-butyl acrylate (1c) also 

gave triene 4 in 94% and 75% yield, respectively (entries 2 and 3).  In this condition, the 

reaction of ethyl acrylate (1a) with diphenylacetylene (2e) afforded 1,3,5-triene 4ae as mixture of 

two stereoisomers derived from isomerization of terminal substituent R
2
.  Alternatively, the 

reaction using PCy3 as a ligand in toluene at 40 °C for 48 h gave the cotrimer 4ae in 77% yield 

without isomerization (entry 4).  Functionalized diarylacetylenes 2f and 2g also gave the 

corresponding trienes using PCy3 in toluene (entries 5 and 6).  Although unsymmetrical alkynes 

2b and 2c gave the trienes, products were obtained as mixtures of four regioisomers.  On the 

other hand, aryl-substituted unsymmetrical alkyne 2h afforded triene 4ah in high regioselectivity 

(entry 7).  

 Acrylamides also reacted with two molecules of alkynes (Scheme 1).  The reaction of 

N,N-dimethylacrylamide (5a) with 4-octyne (2a) provided cotrimer 6aa in 71% yield.  

N-Methyl-N-phenylacrylamide (5b) reacted with alkyne 2h to provide 1,3,5-triene 6bh, which 

was isolated as a single isomer in 49% yield.  Figure 1 shows the result of the single-crystal 

X-ray analysis of triene 6bh. 
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Table 3. Cotrimerization of an acrylate with two alkynes to afford a 1,3,5-triene 4
a
 

CO2R1
R2 R3

1 2

+

Ni(cod)2 (10 mol%)
P(4-MeOC6H4)3 (20 mol%)

CH3CN, 80 °C, 24 h

4

R2

R3

CO2R1

R2

R3

 

Entry 1 R
1 

2 R
2 

R
3 

4 Yield [%]
b
 

1 1a Et 2a Pr Pr 4aa 92 

2 1b Me 2a Pr Pr 4ba 94 

3 1c tBu 2a Pr Pr 4ca 75 

4
c
 1a Et 2e Ph Ph 4ae 77 

5
c
 1a Et 2f 4-MeOC6H4 4-MeOC6H4 4af 64 

6
c
 1a Et 2g 4-FC6H4 4-FC6H4 4ag 69 

7 1a Et 2h Ph Me 4ah 86 (9/1)
d
 

a Reactions were carried out using Ni(cod)2 (10 mol%), P(4-MeOC6H4)3 (20 mol%), 1 (0.75 

mmol, 1.5 equiv) and 2 (1.0 mmol) in 2 mL of acetonitrile at 80 °C for 24 h. b Yield of the 

isolated product. c Reactions were carried out using PCy3 (20 mol%) in place of P(4-MeOC6H4)3 

in 2 mL of toluene at 40 °C for 48 h. d Ratio of regioisomers. 

 

N
Ph

Me

O

Ph Me

Me

Ph

Ph

Me

N

O

Me

Ph

+

Ni(cod)2 (10 mol%)
P(4-MeOC6H4)3 (20 mol%)

CH3CN, 80 °C, 24 h

5b 2h
6bh 49% yield

(isolated as a single isomer)

N
Me

Me

O

Pr Pr

Pr

Pr

Pr

Pr

N

O

Me

Me

+

Ni(cod)2 (10 mol%)
P(4-MeOC6H4)3 (20 mol%)

CH3CN, 80 °C, 24 h

5a 2a
6aa 71% yield

 

Scheme 1. Nickel-catalyzed cotrimerization of acrylamide with alkyne. 
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Figure 1. ORTEP drawing of triene 6bh. 

 

 A plausible mechanism of the reaction to afford 1,3-diene 3 is shown in Scheme 2.  An 

acrylate and an alkyne coordinate to nickel(0) complex to form nickelacyclopentene 7.  This 

intermediate reacts with the second acrylate 1 to generate a nickelacycle 8.  Subsequent 

!-hydrogen elimination followed by reductive elimination furnishes conjugated diene 3 and 

regenerates nickel(0) complex. 

1

2

+

NiR1O2C

R

R

7

NiR1O2C CO2R1

R R

8 3

Ni(0) 1 – Ni(0)

CO2R1

RR R

CO2R1

R

CO2R1

 

Scheme 2. Plausible reaction mechanism to construct 1,3-diene 3. 

 

 Considering the mechanical studies on nickel-catalyzed reactions of ",!-unsaturated 

carbonyl compounds with two molecules of alkynes,
11c,13

 the formation of 1,3,5-triene 4 is 

rationalized as arising from oxidative cyclization of two alkynes with nickel(0) (Scheme 3).  

Insertion of an acrylate to the complex 9 leads to a seven-membered nickelacycle 10 and 
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following !-hydrogen elimination and reductive elimination afford triene 4.  However, it may 

not be ruled out that insertion of alkyne to nickel complex 7 gives the intermediate 10. 

1

NiR

R

R

9

Ni CO2RR

RR

10 4

Ni(0) – Ni(0)

R

R

2

RR

CO2R1

R

R

R

CO2R1

R

 

Scheme 3. Plausible reaction mechanism to construct 1,3,5-triene 4. 

 

 When NHC was employed as a ligand, strong "-donating and week #-accepting property of 

NHC ligand caused the reaction of nickel complexes with electron-deficient #-bond of 

acrylates.
14

  In addition, the result, more sterically hindered IPr was effective ligand for 

construction of diene 3, indicates that steric repulsive interaction between ligand and alkynes 

prevents the formation of nickelacycle from two alkynes (Scheme 4). 

N N

iPr iPr

iPr iPr

N N

iPr iPr

iPr iPr

N N

iPr iPr

iPr iPr

Ni Ni
R

R

R1O2C

Ni
R

R R

R

R

R

N N

iPr iPr

iPr iPr

NiR

R R

R

R1O2C

7'

9'

3

4

 

Scheme 4. Effect of IPr ligand on cotrimerization of acrylates with alkynes. 

 

Conclusion 

 

 The author demonstrated novel nickel-catalyzed cotrimerization of acrylates with alkynes.  

The steric and electronic property of IPr ligand would promote the formation of 
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nickelacyclopentene 7 from an acrylate and an alkyne, which reacted another acrylate to give a 

1,3-diene.  He also showed that same acrylates and alkynes reacted in inverse ratio to afford 

1,3,5-trienes when phosphine was employed as a ligand.  Nickelacyclopentadiene 9 from two 

alkynes is a plausible intermediate of the latter cotrimerization. 
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Experimental Section 

 

General remarks compatible to all the experimental part in the present Thesis 

All manipulations of oxygen- and moisture-sensitive materials were conducted in a dry box or 

with a standard Schlenk technique under a purified argon atmosphere.  
1
H NMR (500 MHz) and 

13
C NMR (125.7 MHz) spectra were taken on Varian UNITY INOVA 500 spectrometer and were 

recorded in CDCl3.  Chemical shifts (!) are in parts per million relative to CHCl3 at 7.26 ppm 

for 
1
H and relative to CDCl3 at 77.0 ppm for 

13
C unless otherwise noted.  Elemental analyses 

were performed by Elemental Analysis Center of Kyoto University.  High-resolution mass 

spectra were obtained with a JEOL JMS-MS700 (EI), a JEOL JMS-HX110A (FAB) or a Thermo 

Fisher SCIENTIFIC EXACTIVE (ESI, APCI) spectrometer.  Infrared spectra (IR) spectra were 

determined on a SHIMADZU IR Affinity-1 spectrometer.  Melting points were determined 

using a YANAKO MP-500D.  TLC analyses were performed by means of Merck Kieselgel 60 

F254 (0.25 mm) Plates.  Visualization was accomplished with ultraviolet light (254 nm) and/or 

an aqueous alkaline KMnO4 solution followed by heating.  Flash column chromatography was 

carried out using Kanto Chemical silica gel (spherical, 40–50 mm).  Unless otherwise noted, 

commercially available reagents were used without purification.  1,4-Dioxane, acetonitrile, and 

toluene were purchased from Wako Pure Chemical Co. and stored in a dry box under a purified 

argon atmosphere. 

 

Chemicals.  1,2-Bis(4-methoxyphenyl)ethyne (2f) and 1,2-bis(4-fluorophenyl)ethyne (2g) were 

prepared by Sonogashira cross-coupling of corresponding acetylenes with aryliodides.  

N-Methyl-N-phenylacrylamide (5b) was prepared by Schotten–Baumann reaction of acryloyl 

chloride with N-methylaniline.  Pottasium tert-butoxide was purchased from Wako Pure 

Chemical Co. and purified by sublimation. 
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Experimental procedure for the nickel-catalyzed cotrimerization of two acrylates with an 

alkyne to afford a 1,3-diene 

General Procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  An acrylate (2.0 mmol) and an alkyne (0.50 mmol) were 

added to a solution of bis(1,5-cyclooctadiene)nickel (6.8 mg, 0.025 mmol), IPr•HCl (21 mg, 

0.050 mmol) and pottasium tert-butoxide (6.2 mg, 0.055 mmol) in 1,4-dioxane (2 mL) in a dry 

box.  The VIAL was taken outside the dry box and heated at 100 ºC for 24 h.  The resulting 

reaction mixture was cooled to ambient temperature and filtered through a silica gel pad, 

concentrated in vacuo.  The residue was purified by flash silica gel column chromatography 

(hexane/ethyl acetate = 10:1) to give the corresponding conjugated diene. 

Slow addition procedure.  The reaction was performed in a 15 mL sealed tube equipped with a 

Teflon-coated magnetic stirrer.  An acrylate (2.0 mmol) was added to a solution of 

bis(1,5-cyclooctadiene)nickel (14 mg, 0.050 mmol), IPr•HCl (43 mg, 0.10 mmol) and pottasium 

tert-butoxide (12 mg, 0.11 mmol) in 1,4-dioxane (0.5 mL) in a dry box and the VIAL was taken 

outside the dry box.  To the mixture was added dropwise a solution of alkyne (0.50 mmol) in 

1,4-dioxane (1.5 mL) at 100 ºC over 20 h.  The resulting mixture was stirred for 4 h and cooled 

to ambient temperature and filtered through a silica gel pad, concentrated in vacuo.  The residue 

was purified by flash silica gel column chromatography (hexane/ethyl acetate = 10:1) to give the 

corresponding conjugated diene. 

 

Characterization data 

 

Diethyl (2E,4Z)-4,5-dipropyl-2,4-octadienedioate (3aa). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.71 (d, J = 15.5 Hz, 1H), 

5.85 (d, J = 15.5 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 4.12 (q, J = 7.0 Hz, 

2H), 2.62 (t, J = 8.0 Hz, 2H), 2.38 (t, J = 8.0 Hz, 2H), 2.21 (t, J = 8.0 Hz, 

2H), 2.15 (t, J = 8.0 Hz, 2H), 1.44 (m, 2H), 1.38 (m, 2H), 1.31 (t, J = 7.0 Hz, 3H), 1.25 (t, J = 7.0 

Pr

Pr

CO2Et

CO2Et
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Hz, 3H), 0.95 (t, J = 7.0 Hz, 3H), 0.93 (t, J = 8.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 172.70, 

167.88, 147.45, 142.00, 132.30, 116.71, 60.51, 60.18, 35.55, 34.31, 30.26, 27.28, 22.49, 21.97, 

14.39, 14.35, 14.30, 14.18. IR (neat): 2961, 2907, 1732, 1712, 1614, 1466, 1300, 1261, 1177, 

1040, 980, 860, 739 cm
–1

. HRMS (EI) calcd for C18H30O4 ([M]
+
): 310.2144. Found: 310.2140. 

 

Dimethyl (2E,4Z)-4,5-dipropyl-2,4-octadienedioate (3ba). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 7.68 (d, J = 15.5 Hz, 1H), 

5.84 (d, J = 15.5 Hz, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 2.60 (t, J = 8.0 Hz, 

2H), 2.38 (t, J = 8.0 Hz, 2H), 2.18 (t, J = 8.0 Hz, 2H), 2.12 (t, J = 8.0 Hz, 

2H), 1.42 (m, 2H), 1.35 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 

MHz, CDCl3): ! 173.03, 168.21, 147.50, 142.07, 132.30, 116.27, 51.60, 51.42, 35.50, 33.98, 

30.17, 27.23, 22.42, 21.92, 14.35, 14.24. IR (neat): 2959, 2872, 1741, 1715, 1614, 1435, 1304, 

1265, 1171, 1022, 860, 739 cm
–1

. HRMS (EI) calcd for C16H26O4 ([M]
+
): 282.1831. Found: 

282.1842. Anal calcd for C16H26O4: C, 68.06; H, 9.28. Found: C, 68.26; H, 9.27. 

 

Ditert-Butyl (2E,4Z)-4,5-dipropyl-2,4-octadienedioate (3ca). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.63 (d, J = 15.5 Hz, 1H), 

5.76 (d, J = 15.5 Hz, 1H), 2.56 (t, J = 8.0 Hz, 2H), 2.30 (t, J = 8.0 Hz, 

2H), 2.19 (t, J = 8.0 Hz, 2H), 2.13 (t, J = 8.0 Hz, 2H), 1.50 (s, 9H), 1.43 

(s, 9H), 1.50–1.38 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, 

CDCl3): ! 172.08, 167.34, 147.22, 141.23, 132.05, 118.33, 80.42, 79.93, 35.48, 35.44, 30.24, 

28.22, 28.07, 27.26, 22.48, 21.96, 14.37, 14.31. IR (neat): 2965, 1730, 1709, 1614, 1456, 1368, 

1308, 1258, 1150, 982, 849, 754 cm
–1

. HRMS (FAB) calcd for C22H38O4 ([M]
+
): 366.2770. 

Found: 366.2764. 

 

 

 

Pr

Pr

CO2Me

CO2Me

Pr

Pr

CO2tBu

CO2tBu
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Diethyl (2E,4Z)-5-methyl-4-pentyl-2,4-octadienedioate and  

diethyl (2E,4Z)-4-methyl-5-pentyl-2,4-octadienedioate (1:1 mixture) (3ab). 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 

7.79 (d, J = 15.5 Hz, 0.5H), 7.75 (d, J = 15.5 Hz, 

0.5H), 5.84 (d, J = 15.5 Hz, 1H), 4.21 (q, J = 7.0 

Hz, 2H), 4.12 (q, J = 7.0 Hz, 1H), 4.11 (q, J = 7.0 Hz, 1H), 2.64 (m, 2H), 2.40 (m, 2H), 2.22 (t, J 

= 7.5 Hz, 1H), 2.17 (t, J = 8.0 Hz, 1H), 1.87 (s, 1.5H), 1.79 (s, 1.5H), 1.31 (m, 6H), 1.25 (m, 6H), 

0.89 (t, J = 6.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 172.69, 172.62, 167.93, 167.77, 147.68, 

142.80, 141.68, 132.54, 127.26, 116.95, 116.35, 60.51, 60.13, 34.13, 33.95, 33.64, 32.07, 32.05, 

29.73, 28.56, 28.32, 28.14, 27.81, 22.54, 22.52, 19.87, 14.34, 14.17, 14.08, 14.03, 13.97. IR 

(neat): 2959, 2872, 1738, 1713, 1614, 1466, 1368, 1301, 1267, 1177, 1037, 978, 856, 731 cm
–1

. 

HRMS (EI) calcd for C18H32O4 ([M]
+
): 310.2144. Found: 310.2148. Anal calcd for C18H32O4: C, 

69.64; H, 9.74. Found: C, 69.77; H, 9.53. 

 

Diethyl (2E,4Z)-4-isopropyl-5-methyl-2,4-octadienedioate and  

diethyl (2E,4E)-5-isopropyl-4-methyl-2,4-octadienedioate (1:1 mixture) (3ac). 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 7.75 

(d, J = 16.0 Hz, 0.5H), 7.75 (d, J = 16.0 Hz, 0.5H), 

5.86 (d, J = 16.0 Hz, 0.5H), 5.85 (d, J = 16.0 Hz, 

0.5H), 4.21 (q, 7.0 Hz, 2H), 4.14 (q, J = 7.0 Hz, 1H), 4.11 (q, J = 7.0 Hz, 1H), 3.03 (sept, J = 7.0 

Hz, 0.5H), 2.92 (sept, J = 7.0 Hz, 0.5H), 2.59 (t, J = 8.0 Hz, 1H), 2.51 (t, J = 8.0 Hz, 1H), 2.37 (m, 

2H). 1.29 (m, 6H), 1.04 (t, J = 7.0 Hz, 6H). 
13

C NMR (125 MHz, CDCl3): ! 172.86, 172.60, 

167.66, 167.16, 151.90, 143.48, 142.56, 137.57, 135.97, 126.30, 120.42, 117.29, 60.48, 60.41, 

60.21, 60.13, 35.85, 33.50, 31.71, 30.95, 29.48, 22.65, 20.91, 20.66, 18.65, 14.31, 14.19, 14.17, 

13.63. IR (neat): 2976, 1738, 1712, 1614, 1460, 1368, 1290, 1177, 1038, 982, 858 cm
–1

. HRMS 

(EI) calcd for C16H26O4 ([M]
+
): 282.1831. Found: 282.1837. Anal calcd for C16H26O4: C, 68.06; 

H, 9.28. Found: C, 68.29; H, 9.34. 

Me

C5H11
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Diethyl (2E,4E)-4-tert-butyl-5-methyl-2,4-octadienedioate and  

diethyl (2E,4E)-5-tert-butyl-4-methyl-2,4-octadienedioate (3:1 mixture) (3ad). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.85 

(d, J = 16.0 Hz, 0.25H), 7.34 (d, J = 16.0 Hz, 

0.75H), 5.88 (d, J = 16.0 Hz, 0.25H), 5.59 (d, J = 

16.0 Hz, 0.75H), 4.21 (q, J = 7.0 Hz, 0.5H), 4.20 (q, J = 7.0 Hz, 1.5 H), 4.13 (q, J = 7.0 Hz, 0.5H), 

4.10 (q, J = 7.0 Hz, 1.5H), 2.73 (t, J = 8.5 Hz, 0.5H), 2.32 (m, 3.5H), 1.98 (s, 0.75H), 1.85 (s, 

2.25H), 1.30 (t, J = 7.0 Hz, 3H), 1.26 (s, 2.25H), 1.24 (t, J = 7.0 Hz, 3H), 1.14 (s, 6.75H). 
13

C 

NMR (125 MHz, CDCl3): ! 173.12, 172.43, 167.71, 166.53, 153.94, 148.53, 145.48, 140.19, 

131.30, 128.43, 121.59, 117.17, 60.47, 60.29, 60.22, 60.13, 36.95, 35.80, 35.66, 33.54, 33.44, 

31.04, 30.70, 26.06, 19.84, 17.45, 14.31, 14.26, 14.17. IR (neat): 2978, 1736, 1721, 1638, 1613, 

1466, 1368, 1304, 1261, 1175, 1098, 1036, 988, 864 cm
–1

. HRMS (FAB) calcd for C17H28O4 

([M]
+
): 296.1988. Found: 296.1978. Anal calcd for C17H28O4: C, 68.89; H, 9.52. Found: C, 68.93; 

H, 9.56. 

 

Diethyl (2E,4Z)-4,5-diphenyl-2,4-octadienedioate (3ae). 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 8.12 (d, J = 15.5 Hz, 1H), 

7.13-7.30 (m, 6H), 6.94–6.89 (m, 4H), 5.53 (d, J = 15.5 Hz, 1H), 4.19 (q, J 

= 7.0 Hz, 2H), 4.10 (q, J = 7.0 Hz, 2H), 3.15 (t, J = 8.0 Hz, 2H), 2.39 (t, J 

= 8.0 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.24 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): 

! 172.43, 167.47, 147.48, 142.51, 140.95, 138.62, 136.82, 130.63, 129.00, 127.80, 127.67, 

126.83, 126.60, 122.47, 60.55, 60.33, 33.16, 29.49, 14.27, 14.17. IR (neat): 2982, 1732, 1713, 

1614, 1443, 1368, 1292, 1175, 1034, 978, 868, 770, 700, 598 cm
–1

. HRMS calcd for C24H26O4 

([M]
+
): 378.1831. Found: 378.1828. 
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Diethyl (2E,4Z)-4,5-bis(4-methoxyphenyl)-2,4-octadienedioate (3af). 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 8.09 (d, J = 15.5 

Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 6.68 

(d, J = 9.0 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 5.55 (d, J = 15.5 Hz, 

1H), 4.19 (q, J = 7.0 Hz, 2H), 4.09 (q, J = 7.0 Hz, 2H), 3.73 (s, 

3H), 3.71 (s, 3H), 3.11 (t, J = 8.0 Hz, 2H), 2.37 (t, J = 8.0 Hz, 

2H), 1.27 (t, J = 7.0 Hz, 3H), 1.24 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 172.52, 

167.60, 158.26, 158.07, 146.94, 143.21, 135.90, 133.31, 131.81, 131.23, 130.37, 121.88, 113.38, 

113.16, 60.50, 60.24, 55.06, 33.34, 29.55, 14.29, 14.18. IR (neat): 2980, 1732, 1712, 1607, 1508, 

1292, 1248, 1175, 1034, 978, 868, 835, 600 cm
–1

. HRMS (EI) calcd for C26H30O6 ([M]
+
): 

438.2042. Found: 438.2032. Anal calcd for C26H30O6: C, 71.21; H, 6.90. Found: C, 71.10; H, 

6.99. 

 

Diethyl (2E,4Z)-4,5-bis(4-fluorophenyl)-2,4-octadienedioate (3ag). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 8.07 (d, J = 15.5 Hz, 

1H), 6.91–6.78 (m, 8H), 5.50 (d, J = 15.5 Hz, 1H), 4.20 (q, J = 7.0 

Hz, 2H), 4.09 (q, J = 7.0 Hz, 2H), 3.12 (t, J = 8.0 Hz, 2H), 2.37 (t, J 

= 8.0 Hz, 2H), 1.27 (t, J = 7.0 Hz, 3H), 1.24 (t, J = 7.0 Hz, 3H). ).
 

13
C NMR (125 MHz, CDCl3): ! 172.21, 167.22, 161.54 (d, JCF = 

245 Hz), 146.77, 142.20, 136.65, 136.25, 134.38, 132.17 (d, JCF = 8.1 Hz), 130.67 (d, JCF = 8.0 

Hz), 122.83, 115.03 (d, JCF = 21.0 Hz), 114.90 (d, JCF = 21.0 Hz), 60.63, 60.44, 33.03, 29.55, 

14.26, 14.16. IR (neat): 2983, 1733, 1713, 1615, 1602, 1506, 1292, 1223, 1178, 1159, 1046, 978, 

838, 736 cm
–1

. HRMS (EI) calcd for C24H24F2O4 ([M]
+
): 414.1643. Found: 414.1650. 
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Diethyl (2E,4E)-4-methyl-5-phenyl-2,4-octadienedioate and  

diethyl (2E,4E)-5-methyl-4-phenyl-2,4-octadienedioate (1:1 mixture) (3ah). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 7.97 

(d, J = 16.0 Hz, 0.5H), 7.96 (d, J = 15.5 Hz, 

0.5H), 7.36 (m, 2H), 7.30 (m, 1H), 7.10 (dd, J = 

7.5, 1.5 Hz, 1H), 7.01 (dd, J = 8.0, 1.5 Hz, 1H), 5.99 (d, J = 16.0 Hz, 0.5H), 5.23 (d, J = 15.5 Hz, 

0.5H), 4.25 (q, J = 7.0 Hz, 1H), 4.16 (q, J = 7.0 Hz, 1H), 4.15 (q, J = 7.0 Hz, 1H), 4.05 (q, J = 7.0 

Hz, 1H), 2.97 (t, J = 8.0 Hz, 1H), 2.80 (t, J = 8.0 Hz, 1H), 2.54 (t, J = 8.0 Hz, 1H), 2.28 (t, J = 8.0 

Hz, 1H), 1.68 (s, 1.5H), 1.63 (s, 1.5H), 1.34–1.19 (m, 6H).
 13

C NMR (125 MHz, CDCl3): 

! 172.52, 172.44, 167.61, 167.54, 146.95, 144.10, 142.29, 142.13, 141.74, 139.16, 135.85, 

129.49, 128.89, 128.50, 128.32, 128.28, 127.24, 126.99, 120.39, 119.05, 60.63, 60.43, 60.31, 

60.14, 33.49, 33.21, 29.54, 29.24, 21.36, 16.31, 14.34, 14.27, 14.20, 14.12. IR (neat): 2981, 1732, 

1712, 1617, 1443, 1368, 1293, 1177, 1036, 976, 861, 772, 704 cm
–1

. HRMS (EI) calcd for 

C19H24O4 ([M]
+
): 316.1675. Found: 316.1683. 

 

Experimental procedure for the nickel-catalyzed cotrimerization of an acrylate with two 

alkynes to afford a 1,3,5-triene 

General procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  An acrylate (0.75 mmol) and an alkyne (1.0 mmol) were 

added to a solution of bis(1,5-cyclooctadiene)nickel (14 mg, 0.050 mmol) and 

tris(4-methoxyphenyl)phosphine (35 mg, 0.10 mmol) in acetonitrile (2 mL) in a dry box.  The 

VIAL was taken outside the dry box and heated at 80 ºC for 24 h.  The resulting reaction 

mixture was cooled to ambient temperature and filtered through a silica gel pad, concentrated in 

vacuo.  The residue was purified by flash silica gel column chromatography (hexane/ethyl 

acetate = 40:1) to give the corresponding conjugated triene. 
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Characterization Data 

 

Ethyl (2E,4Z,6E)-4,5,6-tripropyl-2,4,6-decatrienoate (4aa). 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 7.78 (d, J = 16.0 Hz, 1H), 

5.76 (d, J = 16.0 Hz, 1H), 5.00 (t, J = 7.0 Hz, 1H), 4.17 (q, J = 7.5 Hz, 2H), 

2.25 (m, 2H), 2.20 (t, J = 8.0 Hz, 2H), 2.12 (m, 4H), 1.48–1.26 (m, 8H), 

1.28 (t, J = 7.5 Hz, 3H), 0.96–0.88 (m, 12H). 
13

C NMR (125 MHz, CDCl3): ! 168.15, 154.13, 

146.16, 138.65, 132.58, 132.26, 114.71, 59.87, 33.13, 31.58, 30.09, 30.01, 22.99, 22.37, 21.83, 

21.30, 14.41, 14.33, 14.17, 13.95. IR (neat): 2959, 2872, 1711, 1613, 1458, 1266, 1165, 1045, 

991, 899, 853, 746 cm
–1

. HRMS (EI) calcd for C21H36O2 ([M]
+
): 320.2715. Found: 320.2708. 

 

Methyl (2E,4Z,6E)-4,5,6-tripropyl-2,4,6-decatrienoate (4ba). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 7.79 (d, J = 16.0 Hz, 1H), 

5.77 (d, J = 16.0 Hz, 1H), 5.04 (t, J = 7.5 Hz, 1H), 3.71 (s, 3H), 2.25 (m, 

2H), 2.20 (t, J = 7.5 Hz, 2H), 2.11 (m, 4H), 0.96–0.87 (m, 12H). 
13

C 

NMR (125 MHz, CDCl3): ! 168.56, 154.34, 146.44, 138.72, 132.55, 132.31, 114.29, 51.19, 33.18, 

31.65, 30.08, 30.02, 22.94, 22.36, 21.83, 21.33, 14.42, 14.30, 14.16, 13.86. IR (neat): 2957, 2872, 

1722, 1614, 1456, 1433, 1267, 1165, 1045, 991, 898, 858, 748 cm
–1

. HRMS (EI) calcd for 

C20H34O2 ([M]
+
): 306.2559. Found: 306.2558. 

 

tert-Butyl (2E,4Z,6E)-4,5,6-tripropyl-2,4,6-decatrienoate (4ca). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 7.65 (d, J = 16.0 Hz, 1H), 

5.67 (d, J = 16.0 Hz, 1H), 5.04 (t, J = 7.5 Hz, 1H), 2.23 (m, 2H), 2.18 (t, 

J = 7.0 Hz, 2H), 2.11 (m, 4H), 1.47 (s, 9H), 1.45–1.24 (m, 8H), 0.95–0.87 

(m, 12H). 
13

C NMR (125 MHz, CDCl3): ! 167.48, 153.24, 145.06, 138.72, 132.60, 132.08, 

116.77, 79.44, 33.14, 31.61, 30.05, 28.23, 23.05, 22.39, 21.83, 21.29, 14.45, 14.35, 14.16, 13.98. 

IR (neat): 2956, 2872, 1703, 1613, 1456, 1366, 1287, 1150, 988, 897, 856, 746 cm
–1

. HRMS (EI) 
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calcd for C23H40O2 ([M]
+
): 348.3028. Found: 348.3024. 

 

Ethyl (2E,4Z,6E)-4,5,6,7-tetraphenyl-2,4,6-heptatrienoate (4ae).
 

Pale yellow powder, mp. 159–161 °C (CH2Cl2).
 1

H NMR (500 MHz, 

CDCl3): ! 8.38 (d, J = 15.5 Hz, 1H), 7.19 (m, 8H), 7.13 (m, 7H), 

7.00–6.94 (m, 5H), 6.89 (s, 1H), 6.82 (m, 1H), 5.69 (d, J = 15.5 Hz, 1H), 

4.12 (q, J = 7.0 Hz, 2H), 1.18 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 167.45, 151.69, 

146.21, 141.32, 138.90, 138.75, 138.33, 136.44, 134.52, 131.10, 130.47, 129.68, 129.56, 128.19, 

128.06, 128.03, 127.35, 127.32, 127.03, 127.00, 121.75, 60.11, 14.12. IR (KBr): 1709, 1608, 

1280, 1178, 698 cm
–1

. HRMS (EI) calcd for C33H28O2 ([M]
+
): 456.2089. Found: 456.2099. 

 

Ethyl (2E,4Z,6E)-4,5,6,7-tetrakis(4-methoxyphenyl)-2,4,6-heptatrienoate (4af). 

Pale red powder, mp. 56–60 °C (hexane-AcOEt). 
1
H NMR (500 

MHz, CDCl3): ! 8.27 (d, J = 15.0 Hz, 1H), 7.14 (d, J = 9.0 Hz, 

2H), 7.05 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 6.92 (d, J 

= 9.0 Hz, 2H), 6.76 (d, J = 9.0 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H), 

6.67 (s, 1H), 6.66 (d, J = 9.0 Hz, 2H), 6.49 (d, J = 9.0 Hz, 2H), 

5.64 (d, J = 15.0 Hz, 1H), 4.10 (q, J = 7.0 Hz, 2H), 3.78 (s, 6H), 

3.72 (s, 3H), 3.65 (s, 3H), 1.17 (t, J = 7.0 Hz, 3H). 
13

C NMR 

(125 MHz, CDCl3): ! 167.75, 158.82, 158.59, 158.49, 158.32, 151.61, 147.35, 139.57, 137.01, 

133.57, 132.34, 132.05, 131.64, 131.56, 131.22, 130.97, 130.87, 129.54, 120.44, 113.67, 113.58, 

112.86, 59.98, 55.21, 55.17, 55.03, 54.94, 14.18. IR (KBr): 1705, 1604, 1507, 1290, 1248, 1174, 

1033, 833 cm
–1

. HRMS (EI) calcd for C37H36O6 ([M]
+
): 576.2512. Found: 576.2523. 
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Ethyl (2E,4Z,6E)-4,5,6,7-tetrakis(4-fluorophenyl)-2,4,6-heptatrienoate (4ag). 

White powder, mp. 156–158 °C (hexane). 
1
H NMR (500 MHz, 

CDCl3): ! 8.25 (d, J = 15.5 Hz, 1H), 7.15 (m, 2H), 7.05 (m, 4H), 

6.92 (m, 6H), 6.83 (m, 2H), 6.80 (s, 1H), 6.67 (m, 2H), 5.66 (d, J = 

15.5 Hz, 1H), 4.13 (q, J = 7.0 Hz, 2H), 1.19 (t, J = 7.0 Hz, 3H). 
13

C 

NMR (125 MHz, CDCl3): ! 167.24, 162.17 (d, JCF = 247 Hz), 

162.04 (d, JCF = 246 Hz), 161.95 (d, JCF = 246 Hz), 161.16 (d, JCF = 

247 Hz), 150.41, 145.60, 139.90, 137.86, 134.54 (d, JCF = 3.3 Hz), 

134.38 (d, JCF = 3.3 Hz), 133.99, 133.85 (d, JCF = 3.4 Hz), 132.70 (d, JCF = 8.1 Hz), 132.11 (d, 

JCF = 8.5 Hz), 131.38 (d, JCF = 7.8 Hz), 131.26 (d, JCF = 8.1 Hz), 122.31, 115.58 (d, JCF = 21.5 

Hz), 115.36 (d, JCF = 21.4 Hz), 115.30 (d, JCF = 21.5 Hz), 114.76 (d, JCF = 21.5 Hz), 60.31, 14.13. 

IR (KBr): 1714, 1600, 1502, 1285, 1225, 831 cm
–1

. HRMS (EI) calcd for C33H24F4O2 ([M]
+
): 

528.1712. Found: 528.1711. 

 

Ethyl (2E,4E,6E)-4,6-dimethyl-5,7-diphenyl-2,4,6-heptatrienoate (4ah, major).
 

Colorless oil.
 1

H NMR (500 MHz, CDCl3): ! 8.03 (d, J = 15.5 Hz, 1H), 

7.37 (m, 6H), 7.27 (m, 4H), 6.49 (s, 1H), 6.00 (d, J = 15.5 Hz, 1H), 4.21 (q, 

J = 7.5 Hz, 2H), 1.88 (s, 3H), 1.78 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H). 
13

C 

NMR (125 MHz, CDCl3): ! 167.71, 153.74, 145.80, 139.67, 137.79, 137.38, 132.65, 129.38, 

129.11, 128.87, 128.19, 128.14, 127.65, 126.81, 117.71, 60.14, 18.16, 16.32, 14.30. IR (neat): 

2980, 1717, 1615, 1288, 1179, 1037, 857, 753, 701 cm
–1

. HRMS (EI) calcd for C23H24O2 ([M]
+
): 

332.1776. Found: 332.1771. 

 

(2E,4Z,6E)-N,N-Dimethyl-4,5,6-tripropyl-2,4,6-decatrienamide (6aa). 

Colorless oil.
 1
H NMR (500 MHz, CDCl3): ! 7.70 (d, J = 15.0 Hz, 1H), 

6.17 (d, J = 15.0 Hz, 1H), 5.04 (t, J = 7.5 Hz, 1H), 3.08 (s, 3H), 3.00 (s, 

3H), 2.27 (m, 2H), 2.18 (t, J = 8.0 Hz, 2H), 2.10 (m, 4H), 1.46–1.28 (m, 
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8H), 0.96–0.87 (m, 12H). 
13

C NMR (125 MHz, CDCl3): ! 168.01, 152.33, 143.52, 138.64, 

132.40, 131.76, 113.97, 37.34, 35.72, 33.24, 31.83, 30.20, 30.08, 22.99, 22.40, 21.80, 21.35, 

14.52, 14.40, 14.18, 13.96. IR (neat): 2957, 2872, 1643, 1595, 1458, 1389, 1265, 1130, 990, 899, 

844, 735 cm
–1

. HRMS (EI) calcd for C21H37NO ([M]
+
): 319.2875. Found: 319.2873. 

 

(2E,4E,6E)-N,4,6-trimethyl-N,5,7-triphenyl-2,4,6-heptatrienamide (6bh). 

White powder, mp. 142–144 ºC (hexane-CH2Cl2).
 1

H NMR (500 MHz, 

CDCl3): ! 7.99 (d, J = 15.5 Hz, 1H), 7.42-7.21 (m, 15H), 6.48 (s, 1H), 

5.93 (d, J = 15.5 Hz, 1H), 3.37 (s, 3H), 1.78 (s, 3H), 1.59 (s, 3H).
 13

C 

NMR (125 MHz, CDCl3): ! 166.99, 152.37, 144.03, 142.84, 140.13, 137.94, 137.56, 132.26, 

129.44, 129.39, 129.26, 129.02, 128.15, 128.04, 127.37, 127.29, 126.67, 118.58, 37.43, 18.23, 

16.24. IR (KBr): 1642, 1597, 1495, 1417, 1374, 1283, 1125, 773, 750, 698 cm
–1

. HRMS (EI) 

calcd for C28H27NO ([M]
+
): 393.2093. Found: 393.2088. 
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Chapter 2 

 

 

Nickel-Catalyzed Codimerization of Acrylic Acid Derivatives with Alkynes 

 

 

 By using hydrogen bonding, nickel-catalyzed codimerization of an acrylic acid derivative 

with an alkyne to produce a 1,3-diene proceeded over cotrimerization.  Codimerization of a 

secondary acrylamide with an alkyne proceeded in the presence of nickel catalyst.  Isolated 

nickel complex indicated that hydrogen bonding between two acrylamides was essential for the 

reaction.  Adding 2-aminopyridine, nickel(0) complex catalyzed codimerization of an acrylate 

with an alkyne to afford a corresponding 1,3-diene, which would be promoted by hydrogen 

bonding between the acrylate and the 2-aminopyridine. 
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Introduction 

 

 Transition-metal-catalyzed codimerization of alkenes and alkynes to afford 1,3-dienes is a 

straightforward method for construction of highly substituted conjugated dienes.  Various 

catalytic systems have been reported, using ruthenium,
1
 palladium,

2
 rhodium

3
 or cobalt 

complexes.
4
  They have shown different chemo-, regio- and stereoselectivity depending on 

catalyst.  In addition to them, in this Chapter, the author describes nickel-catalyzed reaction 

system.  The reaction provides 1,3-dienes stereo- and regioselectively from internal 

alkyl-substituted alkynes, which have been difficult to react selectively. 

 In Chapter 1, the author described two types of cotrimerization of acrylates with alkynes 

catalyzed by nickel(0) complex.  Acrylates reacted with two molecules of alkynes to provide 

1,3,5-trienes when phosphine was used as a ligand.
5
  In addition, the reaction of tertiary 

acrylamides with alkynes also proceeded under the same reaction condition.  In the course of his 

study, he found that codimerization of a secondary acrylamide with an alkyne took place to 

afford a 1,3-diene, and that the proton on the nitrogen atom was essential for this reaction.  

Following the result, he anticipated that an additive bearing NH group would promote 

codimerization of an acrylate with an alkyne.  Then, he examined the nickel-catalyzed reaction 

with addition of 2-aminopyridine, which afforded 1,3-dienes via codimerization. 

 

Results and Discussion 

 

 First, the author examined the reaction of N-phenylacrylamide (1a) with 4-octyne (2a).  As 

shown in Scheme 1, treatment of 1a and 2a in the presence of Ni(cod)2 (10 mol%) and PCy3 (10 

mol%) in 1,4-dioxane at 80 °C for 24 h afforded conjugated diene 3aa in 77% yield.  Both 

electron-donating and -withdrawing group substituted derivatives 1b and 1c also gave 

corresponding dienes.  It is noteworthy that formation of 1,3,5-triene via cotrimerization was not 

observed in those attempts.
5
  On the other hand, N-methyl-N-phenylacrylamide (1d) reacted 
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with two molecules of 2a under the same reaction condition to produce 1,3,5-triene 4da without 

forming 1,3-diene. 

Pr Pr

1a (X = H)
1b (X = OMe)
1c (X = CF3)

2a

 (1.2 equiv)

+

Ni(cod)2 (10 mol%)
PCy3 (10 mol%)

1,4-dioxane
80 °C, 24–48 h

3aa 77% (24 h)
3ba 61% (24 h)
3ca 76% (48 h)

H
N

O
X Pr

Pr N
H

O
X

Pr Pr

2a

(1.2 equiv)

+

Ni(cod)2 (10 mol%)
PCy3 (10 mol%)

1,4-dioxane, 80 °C, 24 h

N

O

Ph

Pr

Pr N
Ph

O
Pr

Pr
Me

1d

4da 54%

Me

 

Scheme 1. Nickel-catalyzed cooligomerization of N-arylacrylamide 1 with 4-octyne 2a. 

 

 Treatment of N-phenylacrylamide (1a) with stoichiometric quantity of Ni(cod)2 and PCy3 

gave nickel complex 5.6  Single-crystal X-ray analysis of 5 showed that two amides and one 

phosphine ligand are coordinated to the nickel in a trigonal planar arrangement (Figure 1).  A 

short intermolecular N!!!O distance (2.816 Å) may indicate that two amides are intermolecular 

NH!!!O=C hydrogen-bonded.7 

 

Figure 1. Structure and ORTEP drawing of nickel-amide complex 5. 

O

NH
Ph

N

O

Ph

H
Ni PCy3
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 While the reaction to form conjugated trienes such as 4da would be initiated by formation of 

nickelacyclopentadiene 6, the codimerization probably proceeds via nickelacycle 7.  The author 

proposed that two acrylamides connected through a hydrogen bonding coordinated to nickel(0) as 

a diene-like ligand,
8
 which inhibited forming nickelacycle 6 (Scheme 2).  Furthermore, he 

expected that 2-aminopyridine would promote codimerization of an acrylate with an alkyne by 

constructing complex 8 as an analog of complex 5. 

O

NH
Ph

N

O

Ph

H
Ni L

L
Ni

Pr

Pr Pr

Pr Pr Pr2 Pr Pr

5

6

L
Ni

Pr

Pr

N
H

O

Ph

7

N R
N

O

MeO

Ni

H

L

8

Pr Pr

L
Ni

Pr

Pr

OMe

O

9

 

Scheme 2. Effect of hydrogen bonding. 

 

 Indeed, the reaction of methyl acrylate (10a) with 4-octyne (2a) in the presence of Ni(cod)2 

(10 mol%), PCy3 (10 mol%), and N-methyl-2-aminopyridine (11a; 20 mol%) in toluene at 

100 °C for 24 h afforded codimer 12aa in 56% yield, along with cotrimer 13aa in 25% yield 

(Table 1, entry 1).  In the absence of 2-aminopyridine, the reaction afforded 13aa in 39% yield 

as a sole product (entry 2).
5
  Encouraged by this result, he further examined ligands and 

additives to improve the selectivity of the reaction.  Among phosphine ligands examined, PCy3 

gave the best yield of 12aa (entries 1, 3 and 4).  It was found that N-phenyl-2-aminopyridine 

(11b) was effective for the codimerization (entry 5).  Almost same results were obtained when 

trifluoromethyl-, methoxy-, or methyl-substituted derivative was employed as an additive (entries 
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Table 1. Optimization of reaction conditions
a
 

CO2Me Pr Pr+

Ni(cod)2 (10 mol%)
Ligand (10 mol%)

N
H
N

R

11 (20 mol%)

toluene, 100 °C, 24 h

Pr

Pr

CO2Me

Pr

Pr

CO2Me

Pr

Pr10a 2a

+

12aa

13aa  

Entry R (11) Ligand Yield of 12aa
b
/13aa

c
 [%] 

1 Me (11a) PCy3 56/25 

2 —
d
 PCy3 <5/39 

3 Me (11a) PBu3 42/36 

4 Me (11a) PPh3 52/27 

5 Ph (11b) PCy3 95/<5 

6 3-CF3C6H4 (11c) PCy3 95/<5 

7 4-MeOC6H4 (11d) PCy3 91/<5 

8 2-MeC6H4 (11e) PCy3 91/<5 

a Reactions were carried out using Ni(cod)2 (10 mol%), ligand (10 mol%), 

2-aminopyridine 11 (20 mol%), methyl acrylate (10a; 0.60 mmol, 1.2 equiv) 

and 4-octyne (2a; 0.50 mmol) in 5 mL of toluene at 100 °C for 24 h. b NMR 

yields based on 2a (0.50 mmol). c NMR yields based on 2a (0.25 mmol). d The 

reaction was carried out without adding 2-aminopyridine. 

 

6–8). 

 The scope of the reaction of various acrylates with alkynes is summarized in Table 2.  In 

the presence of nickel catalyst and 2-aminopyridine, tert-butyl acrylate (10b) also provided 

1,3-diene 12ba in 92% yield (entry 2).  The reaction with unsymmetrical alkynes, such as 

2-octyne (2c) and 4-methyl-2-pentyne (2d), gave the corresponding codimer 12ac and 12ad 

consisting of regioisomers in 5/1 and 10/1 ratio, respectively (entries 4 and 5).  The 



Chapter 2 

 42 

codimerization reaction is also compatible with aryl-substituted alkynes and afforded 

corresponding 1,3-dienes in good yield with excellent regioselectivities (entries 6–8).  

Cyclopropyl-substituted alkyne 2h also reacted with 10a to furnish 1,3-diene 12ah in 53% yield 

regioselectively (entry 9).  However, terminal alkynes, such as 1-octyne and phenylacetylene, 

failed to participate in the reaction. 

 

Table 2. Codimerization of acrylate 10 with alkyne 2
a
 

CO2R1 R2 R3+

Ni(cod)2 (10 mol%)
PCy3 (10 mol%)

N
H
N

11 (20 mol%)
toluene, 100 °C, 24 h

R2

R3

CO2R1

10 2

12X

 

Entry 10 R
1
 (equiv.) 2 R

2 
R

3 
11 X 12 Yield [%]

b
 

1 10a Me (1.2) 2a Pr Pr 11b H 12aa 95 

2 10b tBu (1.2) 2a Pr Pr 11b H 12ba 92 

3 10a Me (1.2) 2b C5H11 C5H11 11b H 12ab 90 

4 10a Me (1.2) 2c Me C5H11 11e 2-Me 12ac 79 (5/1)
c
 

5 10a Me (1.2) 2d Me iPr 11e 2-Me 12ad 69 (10/1)
c
 

6 10a Me (2.0) 2e Ph Pr 11c 3-CF3 12ae 62 

7 10a Me (2.0) 2f 4-MeOC6H4 C5H11 11c 3-CF3 12af 87 

8 10a Me (2.0) 2g 4-FC6H4 C5H11 11c 3-CF3 12ag 67 

9 10a Me (2.0) 2h Ph Cyclopropyl 11c 3-CF3 12ah 53 

a Reactions were carried out using Ni(cod)2 (10 mol%), PCy3 (10 mol%), 11 (20 mol%), 10 

(0.60–1.0 mmol, 1.2–2.0 equiv) and 2 (0.50 mmol) in 5 mL of toluene at 100 °C for 24 h. b Yield of 

the isolated product. c Ratio of regioisomers. 
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 It should be noted that 2-aminopyrideines have less effects on the regioselectivity of the 

reaction.  The reaction of 10a with 2c in the presence of various derivatives of aminopyridine 

was examined, and it was found that the reaction afforded 1,3-diene 12ac consisting of 

regioisomers in 5/1 ratio independent of aminopyridines (Table 3, entries 1–4).  The phosphine 

ligands have more influence on the regioselectivity of the reaction (entry 5).  The result might 

indicate that 2-aminopyridine has effect not on forming intermediate 9 but on forming 8 to 

discourage construction of 6 (Scheme 2).  The regioselectivity is derived from steric repulsion 

between a bulkier substituent of the alkyne and the phosphine ligand when both substituents of 

the unsymmetrical alkyne are alkyl group. 

 

Table 3. Regioselectivity of the codimerization of 10a with 2c
a
 

CO2Me Me C5H11
+

Ni(cod)2 (10 mol%)
Ligand (10 mol%)

N
H
N

11 (20 mol%)
toluene, 100 °C, 24 h

Me

C5H11

CO2Me

10a 2c
12ac

X

+

C5H11

Me

CO2Me

12ac'  

Entry Ligand X (11) Yield [%]
b
 Ratio of 12ac/12ac’ 

1 PCy3 H (11b) 76 5/1 

2 PCy3 3-CF3 (11c) 76 5/1 

3 PCy3 4-OMe (11d) 73 5/1 

4 PCy3 2-Me (11e) 79 5/1 

5 PPh3 H (11b) 40 3/2 

a Reactions were carried out using Ni(cod)2 (10 mol%), ligand (10 mol%), 

2-aminopyridine 11 (20 mol%), methyl acrylate (10a; 0.60 mmol, 1.2 equiv) and 

2-octyne (2c; 0.50 mmol) in 5 mL of toluene at 100 °C for 24 h. b Yield of the isolated 

product. 
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Conclusion 

 

 The author developed a new nickel-catalyzed codimerization of an acrylic acid derivative 

with an alkyne to provide a 1,3-diene.  Although tertiary acrylamides gave 1,3,5-trienes via 

cotrimerization with alkynes, secondary acrylamides gave 1,3-dienes via codimerization.  

Codimerization between an acrylate with an alkyne proceeded with addition of 2-aminopyridine.  

In the absence of 2-aminopyridine, 1,3,5-trienes arising from cotrimerization were solely 

obtained.  Hydrogen bonding between the hydrogen atom on the nitrogen and the oxygen atom 

of the carbonyl group would promote the oxidative addition of an acrylic acid derivative and an 

alkyne with nickel(0) over formation of nickelacyclopentadiene 6 from two alkynes. 
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Experimental Section 

 

Chemicals.  Acrylamide 1a–d were prepared by Schotten–Baumann reaction of acryloyl 

chloride with corresponding aniline derivatives.  Alkyne 2f–h were prepared by Sonogashira 

cross-coupling reaction of 1-heptyne or ethynylcyclopropane with corresponding aryliodides.  

2-Aminopyridine derivatives 11b–e were prepared according to the literature.
9
 

 

Experimental procedure for the nickel-catalyzed codimerization or cotrimerization of 

acrylamides with alkynes 

General procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  An acrylamide (0.50 mmol) and an alkyne (0.60 mmol) were 

added to a solution of bis(1,5-cyclooctadiene)nickel (14 mg, 0.050 mmol) and tricyclohexyl-

phosphine (14 mg, 0.050 mmol) in 1,4-dioxane (5 mL) in a dry box.  The VIAL was taken 

outside the dry box and heated at 80 ºC for 24 h.  The resulting reaction mixture was cooled to 

ambient temperature and filtered through a silica gel pad, concentrated in vacuo.  The residue 

was purified by flash silica gel column chromatography (hexane/ethyl acetate = 10:1) to give the 

corresponding conjugated diene or triene. 

 

Characterization data 

 

(2E,4E)-N-Phenyl-4-propyl-2,4-octadienamide (3aa). 

White powder, mp. 107–108 ºC (CH2Cl2). 
1
H NMR (500 MHz, CDCl3): 

! 7.59 (d, J = 7.5 Hz, 2H), 7.46 (br, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.30 (d, 

J = 15.5 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 5.92 (d, J = 15.5 Hz, 1H), 5.87 (t, J = 7.5 Hz, 1H), 

2.23 (t, J = 8.0 Hz, 2H), 2.16 (td, J = 7.5, 7.5 Hz, 2H), 1.44 (m, 4H), 0.93 (t, J = 7.5 Hz, 6H).
 13

C 

NMR (125 MHz, CDCl3): ! 164.89, 146.64, 142.09, 138.29, 137.04, 128.96, 124.07, 119.82, 

117.57, 30.79, 28.80, 22.44, 21.96, 14.20, 13.87. IR (KBr): 3254, 2959, 2870, 1655, 1599, 1541, 

Pr

Pr

N
H

O

Ph
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1499, 1441, 1339, 1246, 1182, 1087, 901, 866, 754, 690 cm
–1

. HRMS (EI) calcd for C17H23NO 

([M]
+
): 257.1780. Found: 257.1786. Anal calcd for C17H23NO: C, 79.33; H, 9.01; N, 5.44. Found: 

C, 79.42; H, 9.13; N, 5.43. 

 

(2E,4E)-N-(4-Methoxyphenyl)-4-propyl-2,4-octadienamide (3ba). 

Pale yellow powder, mp. 69–70 ºC (CH2Cl2). 
1
H NMR (500 

MHz, CDCl3): ! 7.48 (d, J = 9.0 Hz, 2H), 7.31 (br, 1H), 7.27 (d, 

J = 15.5 Hz, 1H), 6.86 (d, J = 9.0 Hz, 2H), 5.89 (d, J = 15.5 Hz, 

1H), 5.87 (t, J = 7.5 Hz, 1H), 3.79 (s, 3H), 2.23 (t, J = 7.0 Hz, 2H), 2.16 (td, J = 7.5, 7.5 Hz, 2H), 

1.44 (m, 4H), 0.93 (t, J = 7.5 Hz, 6H).
 13

C NMR (125 MHz, CDCl3): ! 164.66, 156.25, 146.19, 

141.80, 137.04, 131.45, 121.52, 117.64, 114.14, 55.46, 30.77, 28.80, 22.46, 21.97, 14.22, 13.88. 

IR (KBr): 3287, 2957, 2870, 1651, 1616, 1537, 1514, 1466, 1408, 1348, 1302, 1252, 1180, 1171, 

1040, 976, 824, 750 cm
–1

. HRMS (EI) calcd for C18H25NO2 ([M]
+
): 287.1885. Found: 287.1882. 

Anal calcd for C18H25NO2: C, 75.22; H, 8.77; N, 4.87. Found: C, 75.08; H, 8.91; N, 4.87. 

 

(2E,4E)-4-Propyl-N-(4-(trifluoromethyl)phenyl)-2,4-octadienamide (3ca). 

White powder, mp. 70–72 ºC (CH2Cl2). 
1
H NMR (500 MHz, 

CDCl3): ! 7.71 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 

7.43 (br, 1H), 7.33 (d, J = 15.5 Hz, 1H), 5.92 (t, J = 7.5 Hz, 1H), 

5.90 (d, J = 15.5 Hz, 1H), 2.24 (t, J = 8.0 Hz, 2H), 2.18 (td, J = 7.5, 7.5 Hz, 2H), 1.45 (m, 4H), 

0.94 (t, J = 7.5 Hz, 6H).
 13

C NMR (125 MHz, CDCl3): ! 165.48, 147.62, 143.07, 141.46, 136.99, 

126.16 (q, JCF = 3.38 Hz), 125.74 (q, JCF = 33.0 Hz), 124.10 (q, JCF = 270 Hz), 119.46, 117.08, 

30.81, 28.71, 22.36, 21.90, 14.10, 13.81. IR (KBr): 3339, 2961, 2872, 1665, 1620, 1533, 1406, 

1343, 1157, 1115, 1067, 968, 831, 648 cm
–1

. HRMS (EI) calcd for C18H22F3NO ([M]
+
): 325.1653. 

Found: 325.1655. Anal calcd for C18H22F3NO: C, 66.45; H, 6.82; N, 4.30. Found: C, 66.70; H, 

7.05; N, 4.22. 
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(2E,4Z,6E)-N-Methyl-N-phenyl-4,5,6-tripropyldeca-2,4,6-trienamide (4da). 

Pale yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.70 (d, J = 15.5 Hz, 1H), 

7.39 (t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 

5.66 (d, J = 15.5 Hz, 1H), 5.03 (t, J = 7.5 Hz, 1H), 3.35 (s, 3H), 2.12 (m, 

6H), 1.94 (t, J = 7.5 Hz, 2H), 1.46 (m, 2H), 1.38 (m, 4H), 1.18 (m, 2H), 

0.94 (t, J = 7.5 Hz, 3H), 0.90 (t, J = 7.5 Hz, 3H), 0.85 (t, J = 7.5 Hz, 3H), 0.67 (t, J = 7.5 Hz, 3H). 

13
C NMR (125 MHz, CDCl3): ! 167.37, 152.32, 144.30, 142.75, 138.69, 132.63, 131.78, 129.29, 

127.39, 127.07, 115.86, 37.12, 33.26, 31.87, 30.16, 30.14, 23.03, 22.20, 21.81, 21.37, 14.52, 

14.13, 14.06, 13.99. IR (neat): 2958, 2871, 1657, 1596, 1496, 1362, 1289, 1122, 990, 898, 857, 

772, 700 cm
–1

. HRMS (EI) calcd for C26H39NO ([M]
+
): 381.3032. Found: 381.3031. 

 

Experimental procedure for the nickel-catalyzed codimerization of acrylates with alkynes 

General procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  An acrylates (0.60 mmol) and an alkyne (0.50 mmol) were 

added to a solution of bis(1,5-cyclooctadiene)nickel (14 mg, 0.050 mmol), tricyclohexyl-

phosphine (14 mg, 0.050 mmol) and N-phenyl-2-aminopyridine (17 mg, 0.10 mmol) in toluene (5 

mL) in a dry box.  The VIAL was taken outside the dry box and heated at 100 ºC for 24 h.  The 

reaction mixture was poured into 0.5 M HCl aq. (30 mL) and the mixture was extracted with 

ethyl acetate (3 " 10 mL).  The combined organic layers were washed with brine, dried over 

sodium sulfate and concentrated in vacuo.  The residue was purified by flash silica gel column 

chromatography (eluted by hexane/ethyl acetate = 40:1) to give the corresponding conjugated 

diene. 
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Characterization data 

 

Methyl (2E,4E)-4-propyl-2,4-octadienoate (12aa). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.25 (d, J = 15.5 Hz, 1H), 

5.88 (t, J = 7.5 Hz, 1H), 5.80 (d, J = 15.5 Hz, 1H), 3.75 (s, 3H), 2.21 (t, J 

= 9.5 Hz, 2H), 2.16 (td, J = 7.5, 7.5 Hz, 2H), 1.43 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 

7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 168.15, 149.28, 142.78, 137.35, 114.58, 51.42, 

30.79, 28.57, 22.41, 21.90, 14.19, 13.88. IR (neat): 2960, 2873, 1722, 1625, 1464, 1434, 1378, 

1307, 1265, 1191, 1168, 1043, 985, 858 cm
–1

. HRMS (EI) calcd for C12H20O2 ([M]
+
): 196.1463. 

Found: 196.1462. Anal calcd for C12H20O2: C, 73.43; H, 10.27. Found: C, 73.18; H, 10.51. 

 

tert-Butyl (2E,4E)-4-propyl-2,4-octadienoate (12ba). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.14 (d, J = 15.5 Hz, 1H), 

5.83 (t, J = 7.0 Hz, 1H), 5.72 (d, J = 15.5 Hz, 1H), 2.20 (t, J = 8.0 Hz, 

2H), 2.15 (td, J = 7.0, 7.0 Hz, 2H), 1.49 (s, 9H), 1.43 (m, 4H), 0.92 (t, J = 7.5 Hz, 6H). 
13

C NMR 

(125 MHz, CDCl3): ! 167.13, 147.96, 141.77, 137.38, 116.94, 79.93, 30.74, 28.65, 28.21, 22.47, 

21.94, 14.20, 13.87. IR (neat): 2961, 2872, 1709, 1624, 1456, 1368, 1308, 1285, 1256, 1152, 

1086, 984, 858 cm
–1

. HRMS (EI) calcd for C15H26O2 ([M]
+
): 238.1933. Found: 238.1935. 

 

Methyl (2E,4E)-4-pentyl-2,4-decadienoate (12ab). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.24 (d, J = 16.0 Hz, 1H), 

5.86 (t, J = 7.5 Hz, 1H), 5.80 (d, J = 16.0 Hz, 1H), 3.75 (s, 3H), 2.21 (t, 

J = 7.5 Hz, 2H), 2.17 (q, J = 7.5 Hz, 2H), 1.46–1.25 (m, 12H), 0.89 (t, J = 7.0 Hz, 6H).
 13

C NMR 

(125 MHz, CDCl3): ! 168.14, 149.27, 142.74, 137.52, 114.58, 51.37, 32.02, 31.57, 28.86, 28.71, 

28.44, 26.62, 22.52, 22.50, 13.99, 13.96. IR (neat): 2956, 2860, 1722, 1622, 1467, 1435, 1379, 

1308, 1268, 1166, 1096, 1044, 985, 851 cm
–1

. HRMS (EI) calcd for C16H28O2 ([M]
+
): 252. 2089. 

Found: 252.2084. 

Pr

Pr

CO2Me

Pr

Pr
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C5H11

C5H11
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Methyl (2E,4E)-4-ethylidene-2-nonenoate (12ac) and 

methyl (2E,4E)-4-methyl-2,4-decadienoate (12ac’) (5:1 mixture). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 

7.32 (d, J = 15.5 Hz, 0.17H), 7.24 (d, J = 16.0 

Hz, 0.83H), 5.96 (q, J = 7.0 Hz, 0.83H), 5.91 (t, J = 7.0 Hz, 0.17H), 5.80 (d, J = 16.0 Hz, 0.83H), 

5.78 (d, J = 15.5 Hz, 0.17H), 3.75 (s, 3H), 2.23 (t, J = 8.0 Hz, 1.67H), 2.19 (td, J = 7.0 Hz, 7.0 Hz, 

0.33H), 1.80 (d, J = 7.0 Hz, 2.5H), 1.76 (s, 0.50H), 1.45–1.27 (m, 6H), 0.89 (t, J = 7.0 Hz, 3H).
 

13
C NMR (125 MHz, CDCl3): ! 168.17, 149.04, 138.63, 136.58, 114.43, 51.42, 31.95, 28.10, 

26.21, 22.54, 14.48, 14.02. IR (neat): 2959, 2873, 1721, 1624, 1435, 1308, 1269, 1192, 1167, 984, 

818 cm
–1

. HRMS (EI) calcd for C12H20O2 ([M]
+
): 196.1463. Found: 196.1454. 

 

Methyl (2E,4E)-4-isopropyl-2,4-hexadienoate (12ad) and 

methyl (2E,4E)-4,6-dimethyl-2,4-heptadienoate (12ad’) (10:1 mixture). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 

7.34 (d, J = 15.5 Hz, 0.09H), 7.24 (d, J = 16.0 Hz, 

0.91H), 5.96 (d, J = 16.0 Hz, 0.91H), 5.89 (q, J = 7.0 Hz, 0.91H), 5.78 (d, J = 15.5 Hz, 0.09H), 

5.71 (d, J = 9.0 Hz, 0.09H), 3.74 (s, 3H), 2.92 (sept, J = 7.0 Hz, 0.91H), 2.68 (dsept, J = 9.0, 7.0 

Hz, 0.09H), 1.78 (d, J = 7.0 Hz, 0.91H), 1.77 (s, 0.09H), 1.11 (d, J = 7.0 Hz, 5.45H), 1.01 (d, J = 

7.0 Hz, 0.55H).
 13

C NMR (125 MHz, CDCl3): ! 167.91, 146.99, 143.05, 130.93, 115.98, 51.39, 

27.23, 20.76, 14.10. IR (neat): 2963, 2874, 1722, 1621, 1435, 1300, 1270, 1173, 1045, 985, 865, 

821 cm
–1

. HRMS (EI) calcd for C10H16O2 ([M]
+
): 168.1150. Found: 168.1158. 

 

Methyl (2E,4E)-4-benzylidene-2-heptenoate (12ae). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.42 (d, J = 16.0 Hz, 1H), 

7.38 (t, J = 7.5 Hz, 2H), 7.31 (m, 3H), 6.81 (s, 1H), 5.99 (d, J = 16.0 Hz, 

1H), 3.79 (s, 3H), 2.45 (t, J = 8.0 Hz, 2H), 1.56 (m, 2H), 0.99 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 

MHz, CDCl3): ! 167.82, 149.44, 138.99, 138.83, 136.63, 129.04, 128.45, 127.78, 116.74, 51.54, 

Me

C5H11

CO2Me
C5H11

Me

CO2Me

+

Me

iPr

CO2Me
iPr

Me

CO2Me

+

Ph

Pr

CO2Me
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29.36, 22.18, 14.28. IR (neat): 2957, 2873, 1717, 1619, 1435, 1309, 1266, 1168, 1084, 1031, 983, 

851, 696 cm
–1

. HRMS (EI) calcd for C15H18O2 ([M]
+
): 230.1307. Found: 230.1301. 

 

Methyl (2E,4E)-4-(4-methoxybenzylidene)-2-nonenoate (12af). 

White solid, mp. 35–37 ºC (hexane-AcOEt). 
1
H NMR (500 

MHz, CDCl3): ! 7.41 (d, J = 15.5 Hz, 1H), 7.29 (d, J = 9.0 Hz, 

2H), 6.91 (d, J = 9.0 Hz, 2H), 6.73 (s, 1H), 5.94 (d, J = 15.5 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 

2.46 (t, J = 7.5 Hz, 2H), 1.56 (m, 2H), 1.37 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, 

CDCl3): ! 167.98, 159.34, 149.98, 138.60, 137.44, 130.65, 129.24, 115.67, 113.98, 55.29, 51.47, 

32.17, 28.38, 27.31, 22.44, 14.04. IR (neat): 2954, 2871, 1717, 1618, 1601, 1509, 1435, 1306, 

1255, 1165, 1035, 982, 851, 824, 730 cm
–1

. HRMS (EI) calcd for C18H24O3 ([M]
+
): 288.1725. 

Found: 288.1728. Anal calcd for C18H24O3: C, 74.97; H, 8.39. Found: C, 74.98; H, 8.68. 

 

Methyl (2E,4E)-4-(4-fluorobenzylidene)-2-nonenoate (12ag). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.39 (d, J = 16.0 Hz, 

1H), 7.29 (dd, JHH = 9.0 Hz, JHF = 5.0 Hz, 2H), 7.07 (dd, JHH = 9.0 

Hz, JHF = 9.0 Hz, 2H), 6.75 (s, 1H), 5.98 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H), 2.43 (t, J = 8.0 Hz, 

2H), 1.53 (m, 2H), 1.34 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 167.76, 

162.20 (d, JCF = 247 Hz), 149.18, 139.04, 137.36, 132.75 (d, JCF = 3.4 Hz), 130.75 (d, JCF = 7.8 

Hz), 116.89, 115.49 (d, JCF = 21.5 Hz), 51.55, 32.08, 28.48, 27.23, 22.37, 13.98. IR(neat): 2954, 

2872, 1706, 1622, 1598, 1506, 1435, 1312, 1269, 1235, 1167, 1091, 981, 855, 826, 728 cm
–1

. 

HRMS (EI) calcd for C17H21FO2 ([M]
+
): 276.1526. Found: 276.1521. Anal calcd for C17H21FO2: 

C, 73.89; H, 7.66. Found: C, 73.63; H, 7.66. 

 

Methyl (2E,4E)-4-cyclopropyl-5-phenyl-2,4-pentadienoate (12ah). 

White powder, mp. 62–65 ºC (Et2O). 
1
H NMR (500 MHz, CDCl3): ! 7.52 

(d, J = 7.5 Hz, 2H), 7.41 (d, J = 15.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 

C5H11

CO2Me

MeO

C5H11

CO2Me

F

Ph
CO2Me
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7.28 (t, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.36 (d, J = 15.5 Hz, 1H), 3.79 (s, 3H), 1.61 (m, 1H), 0.89 

(m, 2H), 0.25 (m, 2H).
 13

C NMR (125 MHz, CDCl3): ! 167.92, 149.56, 140.07, 138.53, 136.11, 

130.06, 127.94, 127.89, 117.99, 51.47, 9.71, 8.89. IR (KBr): 3026, 2988, 2949, 1709, 1615, 1447, 

1429, 1309, 1292, 1195, 1162, 1006, 857, 694 cm
–1

. HRMS calcd for C15H16O2 ([M]
+
): 228.1150. 

Found: 228.1156. Anal calcd for C15H16O2: C, 78.92; H, 7.06. Found: C, 78.85; H, 7.20. 
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Chapter 3 

 

 

Nickel-Catalyzed [2+2+1] Cycloaddition of Acrylates, Alkynes and Isocyanates 

 

 

 [2+2+1] Cycloaddition of acrylates with alkynes and isocyanates proceeded in the presence 

of nickel catalyst to afford !-butyrolactams.  Nicklacyclopentene arising from oxidative 

cyclization of an acrylate and an alkyne with nickel(0) would be an intermediate of the reaction.  

Although the mixture of such compounds could give various products, N-heterocyclic carbene 

ligand promoted the selective formation of the nickelacycle, which sequentially reacted with 

isocyanate. 
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Introduction 

 

 Transition-metal-catalyzed cycloaddition reactions are the most powerful methodologies for 

the construction of structurally diverse carbo- or heterocyclic compounds from readily accessible 

starting materials.
1,2

  Hetero-Pauson-Khand reaction, which is formal [2+2+1] cycloaddition 

promoted by transition-metal complex, represents a facile synthetic access to !-butyrolactams
3
 or 

-lactones,
4
 and has been a research subject of great interest.  On the other hand, another route to 

access such heterocycles would be needed to circumvent using stoichiometric amount of metal 

carbonyl complexes or poisonous carbon monoxide.
5
 

 In Chapter 1, the author described nickel-catalyzed cotrimerization of acrylates with alkynes.  

When N-heterocyclic carbene (NHC) was used as a ligand, a 1,3-diene was furnished via 

intermediate 1 (Scheme 1a).  On the basis of the result, he anticipated that nickelacycle 1 would 

react with isocyanate to afford a heterocyclic compound.
6,7

  According to this working 

hypothesis, he attempted the reaction of acrylates and alkynes with isocyanates in the presence of 

nickel catalyst, and found that the reaction afforded !-butyrolactams through [2+2+1] 

cycloaddition (Scheme 1b). 

CO2R L
Ni CO2R

CO2R

CO2R

N

O

CO2R

N C O

CO2R

+
Ni(0)

– Ni(0)

– Ni(0)

1

Chapter 1     (a)

This Chapter     (b)
(L = NHC)

 

Scheme 1. Formation of nickelacycle 1 and reaction with acrylate or isocyanate. 
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Results and Discussion 

 

 First, the author examined the reaction of methyl acrylate (2a), 4-octyne (3a; 2 equiv), and 

phenyl isocyanate (4a) in the presence of Ni(cod)2 (5 mol%) and IPr (10 mol%) in 1,4-dioxane at 

100 °C for 5 h.  The reaction afforded !-butyrolactam 5a in 37% yield, along with hydantoin 

produced by cycloaddition of an acrylate with two isocyanates in 42% yield (Table 1, entry 1).
6i

  

 

Table 1. Screening of reaction conditions 

CO2Me

Pr Pr

Ph NCO+ + N

CO2Me

O

Ph

R2

R3

N

CO2Me

O

Ph

R3

R2

2a Me C5H11

3a

3b

4a

or

5a (R2, R3 = Pr, Pr)

5b (R2, R3 = Me, C5H11)

5'

+

Ni(cod)2

Ligand

1,4-dioxane
100 °C, 5 h

 

Entry Ni [mol%] Ligand [mol%] Alkyne Equiv of 2a:3:4a Yield [%]
a
 Ratio of 5/5’ 

1 5 IPr 10 3a 1:2:1 37 — 

2 5 IMes 10 3a 1:2:1 47 — 

3 5 IMes 10 3a 2:1:1 29
b
 — 

4 5 IMes 10 3a 1:1:2 27 — 

5 5 IMes 10 3a 1:4:1 48 — 

6 5 IPr 10 3a 1:4:1 44 — 

7 5 SIMes 10 3a 1:4:1 33 — 

8 5 PPh3 10 3a 1:4:1 <1 — 

9 5 PCy3 10 3a 1:4:1 <1 — 

10 5 IMes 5 3a 1:4:1 48 — 

11 10 IMes 10 3a 1:4:1 66 — 

12 10 IMes 10 3b 1:4:1 48 1/1 

13 10 IPr 10 3b 1:4:1 76 5/1 

a NMR yield based on acrylate 2a (0.50 mmol). b NMR yield based on alkyne 3a (0.50 mmol). 
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IMes gave cycloadduct 5a in better yield (entry 2), and it was found that the ratio of 2a/3a/4a 

with 1:4:1 gave the highest yield of 5a without formation of hydantoin (entries 3–5).  Phosphine 

ligands did not afford 5a but gave 2-pyridone as a major product via cycloaddition of two alkynes 

with an isocyanate (entries 8 and 9).
6a–e

  The ratio of ligand to nickel did not affect the yield of 

5a (entry 10), and increasing the amount of catalyst improved the yield to 66% (entry 11).  Then, 

the reaction employing 2-octyne (3b) was examined, but two regioisomers 5b and 5b’ were 

obtained in low selectivity (entry 12).  In this case, employing IPr instead of IMes improved 

both the yield and the selectivity of 5b (entry 13).  

 The author next investigated the scope of the reaction (Table 2).  The reaction using 

4-methyl-2-pentyne (3c) afforded corresponding !-butyrolactam 5c in 72% yield with a 

regioselectivity ratio of 7/1 (entry 1).  Unsymmetrical alkynes possessing ether group 3d and 3e 

gave the products consisting of regioisomers in 1/1 and 2/1 ratio, respectively (entries 2 and 3).  

The cycloaddition was also compatible with aryl-substituted alkyne 3f and provided cycloadduct 

5f in 56% yield with a regioselectivity ratio of 2/1 (entry 4).  Terminal alkynes, such as 1-octyne 

and phenylacetylene, failed to participate in the reaction.  The scope of the [2+2+1] 

cycloaddition was also explored by using various isocyanates.  Either electron-donating or 

-withdrawing substituents on phenyl isocyanate tolerated the reaction conditions to afford 

corresponding cycloadducts in moderate yield (entries 5–9).  However, alkyl isocyanates, such 

as propyl isocyanate (4e) and cyclohexyl isocyanate (4f), reacted with 2a and 3a to provide 

!-butyrolactam in poor yield (entries 10 and 11).  It should be noted that isocyanates have no 

effect on the regioselectivity of the reaction.  The reaction using ethyl acrylate (2b) or tert-butyl 

acrylate (2c) afforded !-butyrolactam in lower yield but with better regioselectivity (entries 12 

and 13).  Therefore, the steric environment of the acrylate 2 and alkyne 3 dictated the 

regioselectivity of the reaction. 
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Table 2. Scope of nickel-catalyzed [2+2+1] cycloaddition
a
 

CO2R1 R2 R3 R4 NCO+ + N

CO2R1

O

R4

R2

R3

N

CO2R1

O

R4

R3

R2

2 3 4

5 5'

+

Ni(cod)2 (10 mol%)

IPr (10 mol%)

1,4-dioxane
100 °C, 5 h

 

Entry 2 R
1 

3 R
2 

R
3 

4 R
4 

5 Yield [%]
b
 Ratio of 5/5’ 

1 2a Me 3c Me iPr 4a Ph 5c 72 7/1 

2 2a Me 3d CH2OMe Pr 4a Ph 5d 45 1/1 

3 2a Me 3e (CH2)2OMe Pr 4a Ph 5e 69 2/1 

4 2a Me 3f Me Ph 4a Ph 5f 56 2/1 

5 2a Me 3b Me C5H11 4b 4-MeOC6H4 5g 56 5/1 

6 2a Me 3b Me C5H11 4c 4-CF3C6H4 5h 61 5/1 

7 2a Me 3b Me C5H11 4d 4-FC6H4 5i 66 5/1 

8 2a Me 3c Me iPr 4b 4-MeOC6H4 5j 54 7/1 

9 2a Me 3c Me iPr 4d 4-FC6H4 5k 60 7/1 

10 2a Me 3b Me C5H11 4e Pr 5m 29 5/1 

11 2a Me 3b Me C5H11 4f Cy 5n 24 5/1 

12 2b Et 3b Me C5H11 4a Ph 5o 63 6/1 

13 2c tBu 3b Me C5H11 4a Ph 5p 28 10/1 

a Reactions were carried out using Ni(cod)2 (10 mol%), IPr (10 mol%), acrylate 2 (0.50 mmol), 

alkyne 3 (2.0 mmol, 4 equiv) and isocyanate 4 (0.50 mmol) in 2 mL of 1,4-dioxane at 100 °C for 5 h. 
b NMR yield. 
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 A plausible reaction pathway to account for the formation of !-butyrolactam 5 is outlined in 

Scheme 2.  The catalytic cycle of the present reaction may consist of oxidative cyclization of an 

acrylate 2 and alkyne 3 with nickel(0) to provide nickelacyclopenetene 1 (Scheme 2, path a), in 

which the steric repulsive interaction is minimal between the bulkier R
L
 and the IPr ligand on the 

nickel.  Then, subsequent insertion of isocyanate 4 takes place, to give intermediate 6.  

"-Hydrogen elimination would give 7, in which a C–C double bond inserts into the Ni–H bond to 

provide 8.  Following reductive elimination would give 5 and regenerate the nickel(0).  

Alternatively, reductive elimination from intermediate 7 followed by intramolecular Michael 

addition could give !-butyrolactam 5 (Scheme 3),
6i,8

  although corresponding intermediate 10 

was not detected.  Another mechanism involving the oxidative cyclization of alkyne 3 and 

isocyanate 4 with nickel(0) may not be ruled out (Scheme 2, path b).
6a–f

  However, since 

isocyanates did not affect the regioselectivity in contrast to acrylates (Table 2, entries 7–13 versus 

entries 14 and 15), the mechanism via intermediate 1 (path a) may be more plausible.  In 

addition, the reaction pathway through nickelacycle 9 would afford inverse regioisomer 5’ as a 

major isomer because of steric repulsion between R
L
 and the ligand on the nickel.

6f
 

          

Ni(0)

Ni CO2R1

RL

L

RS Ni CO2R1

RS

L

RL

1 1'

N
Ni CO2R1

RLRS

O

R4

N

H

Ni
R4

O

RS RL

CO2R1

N Ni CO2R1

R4

O

RS RL

N
Ni RL

RSO

R4

>>

2 + 3

3

+
4

6
7

8

9

5
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2

4

H

H L

 

Scheme 2. Plausible reaction pathway. 
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7

– Ni(0)

RS

NH

O

R4

RL

CO2R1
Michael addition

510

N

H

Ni
R4

O
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CO2R
1

N
O

RS
RL

CO2R1
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Scheme 3. Alternative reaction pathway. 

 

Conclusion 

 

 An unprecedented type of [2+2+1] cycloaddition of acrylates and alkynes with isocyanates 

was successfully demonstrated using a nickel catalyst.  The key intermediate is a nickelacycle 1, 

which would be formed via oxidative cyclization of an acrylate and an alkyne with nickel(0) 

when NHC was used as a ligand. 
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Experimental Section 

 

Experimental procedure for nickel-catalyzed [2+2+1] cycloaddition of acrylates, alkynes, 

and isocyanates. 

General procedure.  The reaction was performed in a 15 mL sealed tube equipped with a 

Teflon-coated magnetic stirrer bar.  An isocyanate (0.50 mmol), an alkyne (2.0 mmol) and an 

acrylate (0.50 mmol) were added to a solution of bis(1,5-cyclooctadiene)nickel (14 mg, 0.050 

mmol) and IPr (19 mg, 0.050 mmol) in 1,4-dioxane (2 mL) in a dry box.  The flask was taken 

outside the dry box and heated at 100 °C for 5 h under argon atmosphere.  The resulting reaction 

mixture was cooled to ambient temperature and filtered through a silica gel pad, concentrated in 

vacuo.  The residue was purified by flash silica gel column chromatography (hexane/ethyl 

acetate = 3:1) to give the corresponding product. 

 

Characterization data 

 

Methyl 2-(5-oxo-1-phenyl-3,4-dipropyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5a). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.49 (m, 2H), 7.38 (m, 2H), 7.15 

(m, 1H), 4.95 (dd, J = 4.5, 2.0 Hz, 1H), 3.55 (s, 3H), 2.64 (dd, J = 15.0, 8.0 

Hz, 1H), 2.47 (m, 1H), 2.53 (dd, J = 15.5, 7.0 Hz, 1H), 2.33–2.25 (m, 2H), 

2.22 (m, 1H), 1.64 (m, 1H), 1.56–1.52 (m, 2H), 1.47 (m, 1H), 0.98 (t, J = 7.5 Hz, 3H), 0.94 (t, J = 

7.5Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.5, 170.0, 153.1, 136.7, 133.7, 128.9, 124.7, 

122.4, 58.2, 51.7, 35.7, 28.4, 25.6, 22.0, 21.8, 14.1, 14.0. IR (neat): 2959, 2872, 1738, 1694, 1599, 

1501, 1381, 757 cm
–1

. HRMS (ESI) calcd for C19H26NO3 ([M+H]
+
): 316.1913. Found: 316.1908. 

 

 

 

 

N

Pr

Pr

CO2Me

Ph

O
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Methyl 2-(4-methyl-5-oxo-3-pentyl-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5b).   

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.48 (m, 2H), 7.39 (m, 2H), 

7.17 (m, 1H), 4.97 (m, 1H), 3.56 (s, 3H), 2.63 (dd, J = 15.5, 4.5 Hz, 1H), 

2.51 (m, 1H), 2.50 (dd, J = 16.0, 7.5 Hz, 1H), 2.24–2.18 (m, 1H), 1.87 (s, 

3H), 1.62–1.43 (m, 2H), 1.38–1,27 (m, 4H), 0.92 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, 

CDCl3): ! 170.7, 170.5, 153.3, 136.7, 129.4, 129.0, 124.9, 122.6, 58.6, 51.9, 35.7, 31.7, 28.1, 

26.5, 22.3, 13.9, 8.8. IR (neat): 2954, 2871, 1737, 1694, 1599, 1501, 1381, 760 cm
–1

. HRMS 

(ESI) calcd for C19H26NO3 ([M+H]
+
): 316.1913. Found: 316.1909. 

  

Methyl 2-(3-methyl-5-oxo-4-pentyl-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5b’). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.47 (m, 2H), 7.39 (m, 2H), 

7.16 (m, 1H), 4.88 (m, 1H), 2.71 (dd, J = 15.5, 4.0 Hz, 1H), 2.50 (dd, J = 

16.0, 7.5 Hz, 1H), 2.31 (t, J = 7.0 Hz, 2H), 2.00 (s, 3H), 1.50 (m, 2H), 

1.36–1.28 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): d 170.6, 170.0, 148.9, 

136.7, 133.9, 129.0, 124.8, 122.4, 60.0, 51.8, 35.6, 31.6, 28.0, 23.5, 22.4, 14.0, 12.1. IR (neat): 

2954, 2858, 1738, 1687, 1598, 1394, 1121, 757 cm
–1

. HRMS (ESI) calcd for C19H26NO3 

([M+H]
+
): 316.1913. Found: 316.1910. 

 

Methyl 2-(3-isopropyl-4-methyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5c). 

Colorless crystal, mp. 68–70 °C (CH2Cl2). 
1
H NMR (500 MHz, CDCl3): ! 

7.45 (m, 2H), 7.38 (m, 2H), 7.16 (m, 1H), 4.95 (m, 1H), 3.50 (s, 3H), 2.76 

(sept, J = 7.0 Hz, 1H), 2.65 (dd, J = 16.0, 5.5 Hz, 1H), 2.58 (dd, J = 16.0, 5.0 

Hz, 1H), 1.94 (d, J = 1.0 Hz, 3H), 1.30 (d, J = 7.0 Hz, 3H), 1.26 (d, J = 7.0 Hz, 3H). 
13

C NMR 

(125 MHz, CDCl3): ! 170.6, 170.6, 157.3, 136.5, 128.9, 128.5, 125.0, 123.0, 59.0, 51.8, 35.7, 

27.7, 21.3, 20.5, 9.4. IR (KBr): 2964, 2919, 2871, 1733, 1662, 1502, 1434, 1265, 760, 699 cm
–1

. 

HRMS (ESI) calcd for C17H22NO3 ([M+H]
+
): 288.1600. Found: 288.1593. 
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Methyl 2-(4-isopropyl-3-methyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5c’). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.46 (m, 2H), 7.38 (m, 2H), 

7.16 (m, 1H), 4.81 (dd, J = 7.0, 4.0 Hz, 1H), 3.57 (s, 3H), 2.89 (sept, J = 7.0 

Hz, 1H), 2.66 (dd, J = 15.0, 4.0 Hz, 1H), 2.51 (dd, J = 15.0, 7.0 Hz, 1H), 

2.02 (d, J = 0.5 Hz, 3H), 1.28 (d, J = 7.0 Hz, 3H), 1.24 (d, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, 

CDCl3): ! 170.5, 169.4, 147.5, 137.9, 136.6, 128.9, 124.8, 122.5, 59.9, 51.8, 35.6, 25.1, 20.5, 

20.3, 12.1. IR (neat): 2962, 2932, 1736, 1688, 1501, 1392, 757, 694 cm
–1

. HRMS (ESI) calcd for 

C17H22NO3 ([M+H]
+
): 288.1600. Found: 288.1596. 

 

Methyl 2-(4-(methoxymethyl)-5-oxo-1-phenyl-3-propyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 

(5d). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.47 (m, 2H), 7.38 (m, 2H), 

7.18 (m, 1H), 5.03 (dd, J = 7.0, 4.5 Hz, 1H), 4.23 (d, J = 12.0 Hz, 1H), 

4.20 (d, J = 12.0 Hz, 1H), 3.57 (s, 3H), 3.39 (s, 3H), 2.71 (m, 1H), 2.66 

(dd, J = 15.5, 4.5 Hz, 1H), 2.56 (dd, J = 16.0, 7.0 Hz, 1H), 2.27 (m, 1H), 1.66 (m, 1H), 1.54 (m, 

1H), 0.99 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.4, 169.1, 159.0, 136.4, 130.0, 

129.0, 125.1, 122.7, 63.5, 58.8, 58.5, 35.5, 28.6, 22.1, 14.1. IR (neat): 2960, 2874, 1738, 1687, 

1598, 1386, 1096, 695 cm
–1

. HRMS (ESI) calcd for C18H24NO4 ([M+H]
+
): 318.1705. Found: 

318.1701. 

 

Methyl 2-(3-(methoxymethyl)-5-oxo-1-phenyl-4-propyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 

(5d’). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.48 (m, 2H), 7.49 (m, 2H), 

7.18 (m, 1H), 5.07 (dd, J = 3.5, 3.5 Hz, 1H), 4.33 (dd, J = 14.5, 13.0 Hz, 

2H), 3.56 (s, 3H), 3.37 (s, 3H), 2.72 (dd, J = 15.0, 4.0 Hz, 1H), 2.62 (dd, 

J = 15.5, 7.0 Hz, 1H), 2.40–2.26 (m, 2H), 1.59–1.52 (m, 2H), 0.93 (t, J = 7.5 Hz, 3H). 
13

C NMR 

(125 MHz, CDCl3): ! 170.2, 169.4, 148.6, 136.5, 135.7, 129.0, 125.1, 122.7, 66.5, 58.7, 58.3, 
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51.6, 35.4, 25.7, 21.9, 13.8. IR (neat): 2958, 2873, 1728, 1678, 1598, 1500, 1172, 759, 694 cm
–1

. 

HRMS (ESI) calcd for C18H24NO4 ([M+H]
+
): 318.1705. Found: 318.1700. 

 

Methyl 2-(4-(2-methoxyethyl)-5-oxo-1-phenyl-3-propyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 

(5e). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.48 (m, 2H), 7.38 (m, 2H), 

7.17 (m, 1H), 4.99 (dd, J = 6.5, 4.0 Hz, 1H), 3.56 (s, 3H), 3.52 (t, J = 

6.5 Hz, 2H), 3.33 (s, 3H), 2.67–2.50 (m, 5H), 2.22 (m, 1H), 1.64 (m, 

1H), 1.49 (m, 1H), 0.99 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.5, 169.8, 155.3, 

136.6, 130.3, 129.0, 124.9, 122.5, 70.5, 58.5, 58.5, 51.8, 35.6, 28.5, 24.5, 22.1, 14.2. IR (neat): 

2959, 2875, 1737, 1661, 1599, 1494, 1367, 758, 694 cm
–1

. HRMS (ESI) calcd for C19H26NO4 

([M+H]
+
): 332.1862. Found: 332.1857. 

 

Methyl 2-(3-(2-methoxyethyl)-5-oxo-1-phenyl-4-propyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 

(5e’). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.48 (m, 2H), 7.39 (m, 2H), 

7.17 (m, 1H), 4.99 (dd, J = 5.0, 5.0 Hz, 1H), 3.57 (m, 1H), 3.53 (s, 

3H), 3.50 (m, 1H), 3.36 (s, 3H), 2.85 (td, J = 14.5, 6.0 Hz, 1H), 2.68 

(dd, J = 15.0, 4.0 Hz, 1H), 2.64 (dd, J = 15.0, 6.0 Hz, 1H), 2.54 (m, 1H), 2.29 (m, 1H), 1.54 (m, 

2H), 0.95 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.4, 169.8, 150.4, 136.7, 135.0, 

128.9, 124.9, 122.7, 71.0, 59.2, 58.7, 51.7, 35.3, 27.0, 25.8, 21.9, 14.0. IR (neat): 2957, 2873, 

1737, 1694, 1598, 1500, 1112, 759, 694 cm
–1

. HRMS (ESI) calcd for C19H26NO4 ([M+H]
+
): 

332.1862. Found: 332.1857. 
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Methyl 2-(4-methyl-5-oxo-1,3-diphenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5f) and methyl 

2-(3-methyl-5-oxo-1,4-diphenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5f’) (2:1 mixture). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.56–7.39 

(m, 8.33H), 7.35 (m, 0.67H), 7.22-7.18 (m, 1H), 5.50 (m, 

0.67H), 5.04 (m, 0.33H), 3.61 (s, 1H), 3.29 (s, 2H), 2.80 

(dd, J = 16.0, 4.5 Hz, 0.33H), 2.65 (dd, J = 15.5, 7.0 Hz, 0.33H), 2.51 (dd, J = 15.0, 5.0 Hz, 

0.67H), 2.46 (dd, J = 15.5, 6.0 Hz, 0.67H), 2.19 (s, 1H), 2.07 (d, J = 1.5 Hz, 2H). 
13

C NMR (125 

MHz, CDCl3): ! 174.9, 170.4, 170.4, 170.1, 168.6, 150.9, 150.6, 136.6, 132.9, 132.2, 131.0, 

130.3, 129.3, 129.1,129.1, 129.0, 128.7, 128.4, 128.2, 128.0, 125.3, 125.2, 123.1, 122.8, 60.3, 

59.2, 52.0, 51.6, 36.7, 35.6, 13.3, 10.0. IR (neat): 3060, 2952, 1738, 1729, 1694, 1674, 1597, 

1494, 1385, 1176, 759, 696 cm
–1

. HRMS (ESI) calcd for C20H20NO3 ([M+H]
+
): 322.1443. Found: 

322.1438. 

 

Methyl 2-(1-(4-methoxyphenyl)-4-methyl-5-oxo-3-pentyl-2,5-dihydro-1H-pyrrol-2-yl)- 

acetate (5g). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.32 (m, 2H), 6.91 

(m, 2H), 4.86 (m, 1H), 3.79 (s, 3H), 3.53 (s, 3H), 2.60–2.47 (m, 

3H), 2.20 (m, 1H), 1.85 (s, 3H), 1.56 (m, 1H), 1.45 (m, 1H), 

1.37–1.29 (m, 4H), 0.91 (t, J = 6.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.6, 170,5, 157.2, 

152.9, 129.3, 128.9, 125.0, 114.2, 59.3, 55.4, 51.7, 36.7, 31.7, 28.1, 26.4, 22.3,13.8, 8.7. IR 

(neat): 2955, 2870, 1737, 1682, 1514, 1248, 1170, 830 cm
–1

. HRMS (ESI) calcd for C20H28NO4 

([M+H]
+
): 346.2018. Found: 346.2013. 
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Methyl 2-(4-methyl-5-oxo-3-pentyl-1-(4-(trifluoromethyl)phenyl)-2,5-dihydro-1H-pyrrol- 

2-yl)acetate (5h) and methyl 2-(3-methyl-5-oxo-4-pentyl-1-(4-(trifluoromethyl)phenyl)-2,5- 

dihydro-1H-pyrrol-2-yl)acetate (5h’) (1:1 mixture). 

Colorless oil. 
1
H NMR (500 MHz, 

CDCl3): ! 7.68–7.63 (m, 4H), 5.01 (m, 

0.5H), 4.91 (m, 0.5H), 2.74 (dd, J = 

15.5, 3.5 Hz, 0.5H), 2.67 (dd, J = 16.0, 4.0 Hz, 0.5H), 2.55–2.50 (m, 1.5H), 2.31 (m, 1H), 2.22 

(m, 0.5H), 2.02 (s, 1.5H), 1.88 (s, 1.5H), 1.60–1.45 (m, 2H), 1.39–1.28 (m, 4H), 0.93–0.88 (m, 

3H). 
13

C NMR (125 MHz, CDCl3): ! 170.5, 170.4, 170.3, 170.1, 154.1, 149.7, 139.9, 133.9, 

129.3, 126.2, 126.2, 125.1 (q, JCF = 188 Hz), 123.0, 121.3, 121.2, 59.6, 58.2, 52.0, 52.0, 50.9, 

35.4, 35.3, 33.5, 31.7, 31.6, 31.0, 29.7, 28.0, 26.7, 26.5, 23.5, 22.4, 22.4, 22.3, 13.9, 13.9, 12.1, 

8.7. IR (neat): 2956, 2929, 1731, 1701, 1692, 1681, 1614, 1378, 1325, 1164, 1120, 1067 cm
–1

. 

HRMS (ESI) calcd for C20H25F3NO3 ([M+H]
+
): 384.1787. Found: 384.1777. 

 

Methyl 2-(1-(4-fluorophenyl)-4-methyl-5-oxo-3-pentyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 

(5i) and methyl 2-(1-(4-fluorophenyl)-3-methyl-5-oxo-4-pentyl-2,5-dihydro-1H-pyrrol-2-yl)- 

acetate (5i’) (5:1 mixture). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 

7.41 (m, 2H), 7.07 (m, 2H), 4.90 (m, 

0.83H), 4.80 (dd, J = 7.0, 5.5 Hz, 0.17H), 

3.57 (s, 0.5H), 3.55 (s, 2.5H), 2.64-2.49 (m, 2.83H), 2.29 (dd, J = 8.0, 7.5 Hz, 0.33H), 2.21 (m, 

0.83H), 2.00 (s, 0.5H), 1.86 (s, 2.5H), 1.58 (m, 0.83H), 1.50–1.42 (m, 1.17H), 1.40–1.29 (m, 4H), 

0.90 (m, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.5, 170.5, 161.0, 159.0, 153.3, 148.8, 133.8, 

132.7, 132.7, 129.3, 124.8, 124.7, 124.6, 124.5, 115.8, 115.7, 60.5, 59.1, 51.9, 35.6, 35.6, 31.7, 

31.6, 28.1, 28.0, 26.5, 23.5, 22.4, 223, 13.9, 13.9, 12.1, 8.7. IR (neat): 2955, 2932, 2872, 1738, 

1733, 1694, 1674, 1511, 1383, 1222, 1157, 835 cm
–1

. HRMS (ESI) calcd for C19H25FNO3 

([M+H]
+
): 334.1818. Found: 334.1813. 
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Methyl 2-(3-isopropyl-1-(4-methoxyphenyl)-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)- 

acetate (5j). 

Colorless crystal, mp. 70–72 °C (CH2Cl2). 
1
H NMR (500 MHz, 

CDCl3): ! 7.30 (m, 2H), 6.90 (m, 2H), 4.86 (m, 1H), 3.79 (s, 3H), 

3.48 (s, 3H), 2.76 (sept, J = 7.5 Hz, 1H), 2.64 (dd, J = 16.0, 5.5 Hz, 

1H), 2.51 (dd, J = 16.0, 5.5 Hz, 1H), 1.93 (d, J = 2.0 Hz, 3H), 1.28 (d, J = 7.5 Hz, 3H), 1.25 (d, J 

= 7.5, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.7, 170.6, 157.3, 157.0, 129.5, 128.5, 125.4, 114.2, 

59.7, 55.4, 51.7, 35.9, 27.7, 21.4, 20.5, 9.4. IR (KBr): 2966, 2930, 1732, 1682, 1516, 1437, 1246, 

1036, 840 cm
–1

. HRMS (ESI) calcd for C18H24NO4 ([M+H]
+
): 318.1705. Found 318.1699. 

 

Methyl 2-(1-(4-fluorophenyl)-3-isopropyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-yl)- 

acetate (5k). 

Colorless crystal, mp. 108–109 °C (CH2Cl2). 
1
H NMR (500 MHz, 

CDCl3): ! 7.39 (m, 2H), 7.07 (m, 2H), 4.89 (m, 1H), 3.50 (s, 3H), 2.77 

(sept, J = 7.5 Hz, 1H), 2.66 (dd, J = 16.0, 5.5 Hz, 1H), 2.53 (dd, J = 16.0, 

5.0 Hz, 1H), 1.94 (d, J = 1.5 Hz, 3H), 1.29 (d, J = 7.0 Hz, 3H), 1.25 (d, J = 7.5 Hz, 3H). 
13

C 

NMR (125 MHz, CDCl3): ! 170.7, 170.4, 161.1 (d, JCF = 243 Hz), 157.3, 132.6, 128.5, 125.2 (d, 

JCF = 8.1 Hz), 115.8 (d, JCF = 22.3 Hz), 59.4, 51.8, 35.7, 27.7, 21.3, 20.4, 9.4. IR (KBr): 2966, 

2929, 1736, 1673, 1509, 1217, 1158, 842, 757 cm
–1

. HRMS (ESI) calcd for C17H21FNO3 

([M+H]
+
): 306.1505. Found: 306.1500. 

 

Methyl 2-(4-methyl-5-oxo-3-pentyl-1-propyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5m). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 4.31 (m, 1H), 3.73 (m, 1H), 

3.69 (s, 3H), 2.95 (m, 1H), 2.61 (dd, J = 16.0, 5.5 Hz, 1H), 2.48 (dd, J = 

16.0, 6.5 Hz, 1H), 2.43 (m, 1H), 2.14 (m, 1H), 1.79 (s, 3H), 1.59 (m, 1H), 

1.53–1.45 (m, 2H), 1.40 (m, 1H), 1.36–1.24 (m, 4H), 0.89 (t, J = 7.5 Hz, 3H), 0.86 (t, J = 7.5 Hz, 

3H). 
13

C NMR (125 MHz, CDCl3): ! 172.0, 171.0, 152.3, 129.2, 57.7, 52.0, 41.8, 35.5, 31.6, 28.1, 
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26.3, 22.3, 21.7, 13.9, 11.2, 8.8. IR (neat): 2958, 2932, 2873, 1737, 1686, 1455, 1415, 1159, 1095 

cm
–1

. HRMS (ESI) calcd for C16H28NO3 ([M+H]
+
): 282.2069. Found: 282.2064. 

 

Methyl 2-(1-cyclohexyl-4-methyl-5-oxo-3-pentyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5n). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3) ! 4.31 (m, 1H), 3.68 (s, 3H), 

3.55 (tt, J = 11.5, 4.0 Hz, 1H), 2.66 (dd, J = 15.5, 4.5 Hz, 1H), 2.58 (dd, J 

= 16.0, 6.5 Hz, 1H), 2.42 (m, 1H), 2.08 (m, 1H), 1.90 (m, 1H), 1.83–1.70 

(m, 8H), 1.48 (m, 1H), 1.40–1.22 (m, 8H), 1.16 (m, 1H), 0.88 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 

MHz, CDCl3): ! 172.4, 170.9, 152.7, 129.4, 58.1, 53.7, 51.8, 36.5, 31.7, 31.1, 30.8, 28.0, 26.3, 

26.2, 26.1, 25.4, 22.3, 13.9, 8.6. IR (neat): 2930, 2855, 1737, 1667, 1452, 1372, 1256, 1156, 1024 

cm
–1

. HRMS (ESI) calcd for C19H32NO3 ([M+H]
+
): 322.2382. Found: 322.2376. 

 

Ethyl 2-(4-methyl-5-oxo-3-pentyl-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5o). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.48 (m, 2H), 7.39 (m, 2H), 

7.16 (tt, J = 7.0, 1.5 Hz, 1H), 4.96 (m, 1H), 4.08–3.94 (m, 2H), 2.62 (dd, J 

= 16.0, 4.5 Hz, 1H), 2.52 (m, 1H), 2.50 (dd, J = 15.5, 7.0 Hz, 1H), 2.23 (m, 

1H), 1.87 (dd, J = 1.5, 1.0 Hz, 3H), 1.47 (m, 1H), 1.38–1.23 (m, 4H), 1.16 (t, J = 7.0 Hz, 3H), 

0.91 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 170.5, 170.2, 153.3, 136.7, 129.4, 129.0, 

124.8, 122.5, 60.9, 58.6, 35.8, 31.7, 28.1, 26.5, 22.3, 14.0, 13.9, 8.7. IR (neat): 2984, 2938, 1666, 

1643, 1499, 1371, 1293, 1155, 759, 694 cm
–1

. HRMS (ESI) calcd for C20H28NO3 ([M+H]
+
): 

330.2069. Found: 330.2063. 

 

tert-Butyl 2-(4-methyl-5-oxo-3-pentyl-1-phenyl-2,5-dihydro-1H-pyrrol-2-yl)acetate (5p). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.50 (m, 2H), 7.38 (m, 2H), 

7.15 (tt, J = 7.0, 1.5 Hz, 1H), 4.90 (m, 1H), 2.58 (dd, J = 16.0, 4.0 Hz, 1H), 

2.52 (m, 1H), 2.46 (dd, J = 15.5, 7.0 Hz, 1H), 2.28 (m, 1H), 1.86 (s, 3H), 

1.61 (m, 1H), 1.50 (m, 1H), 1.35 (s, 9H), 0.91 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3) ! 
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170.5, 169.1, 153.4, 136.9, 129.2, 129.0, 124.6, 122.2, 81.3, 58.6, 36.5, 31.7, 28.1, 27.8, 26.5, 

22.4, 13.9, 8.7. IR (neat): 2957, 2931, 1725, 1693, 1501, 1381, 1143, 759, 693 cm
–1

. HRMS 

(ESI) calcd for C22H32NO3 ([M+H]
+
): 358.2382. Found: 358.2376. 
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Chapter 4 

 

 

Nickel-Catalyzed [4+2] Cycloaddition of Electron-Deficient Dienes with 

Alkynes for Highly Substituted Arenes 

 

 

 Nickel(0) efficiently catalyzed [4+2] cycloaddition of electron-deficient dienes with 

unactivated alkynes, and subsequent aromatization gave highly substituted arenes.  This formal 

inverse electron-demand Diels–Alder cycloaddition is attributed to the formation of a 

seven-membered nickelacycle from a diene and an alkyne.  The process is driven by two ester 

groups of the diene. 
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Introduction 

 

 In Chapters 1–3, the author described nickel-catalyzed reactions of acrylates with alkynes.  

The reactions are attributed to the oxidative cyclization of an acrylate and an alkyne, which 

results in the formation of a C–Ni bond at the !-position of the acrylate with the nickel complex 

and a C–C bond at the "-position with the alkyne (Scheme 1a).  Based on the observations, he 

anticipated that a diene, which comprises two enoate moieties, could form a C–Ni bond at the 

!-position of one of the enoate moieties and a C–C bond at the "-position of the other enoate 

moiety to create a seven-membered nickelacycle intermediate.  Following reductive elimination, 

this intermediate would change in to a six-membered carbocycle (Scheme 1b).  According to 

this working hypothesis, he started his research and found nickel-catalyzed [4+2] cycloaddition 

of a #-ester substituted !,",#,$-unsaturated ester with an alkyne.
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Scheme 1. Formation of nickelacycles. 

 

 Although many transition-metal complexes have also been catalyzed successfully through 

the [4+2] cycloaddition of dienes with alkynes,
1–5

 most studies on this topic are limited to 

reactions with electron-rich or electronically neutral dienes.  On the other hand, a reaction with 

electron-deficient dienes, namely inverse electron-demand Diels–Alder type cycloaddition, is 

rare.
2g,3b

  In this Chapter, the author reports that the nickel-catalyzed [4+2] cycloaddition of 

electron-deficient dienes with alkynes and subsequent aromatization of the resultant cycloadducts 

results in the creation of highly substituted arenes.
6,7 
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Results and Discussion 

 

 Initially, the author examined the reaction of diene 1a with alkyne 2a in the presence of 

Ni(cod)2 (10 mol %) and PPh3 (20 mol %) in toluene at 100 °C for 6 h.  This reaction afforded 

several isomers of cyclohexadienes and aromatized cycloadduct 3aa as an inseparable mixture.  

After nickel-catalyzed cycloaddition, adding DBU in one-pot followed by vigorous stirring under 

air for 2 h provided isophthalate 3aa as single product in 69% yield (Scheme 2).
8
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Pr Pr

+
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3aa 69% (overall)

DBU, under air
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+

 

Scheme 2. Nickel-catalyzed [4+2] cycloaddition of diene 1a with alkyne 2a and sequential 

aromatization. 

 

 To improve the yield of 3aa, the use of several phosphine ligands was examined (Table 1).  

Alkyl-substituted phosphines were less effective than PPh3 (Table 1, entries 2–4), while 

electron-rich triarylphosphines gave the product at similar yields (entries 5 and 6).  On the 

contrary, an electron-deficient ligand resulted in a poor yield (entry 7).  Decreasing the amount 

of ligand to 12 mol% did not affect the reaction (entry 8), while a low reaction rate was observed 

when the amount of ligand was increased to 30 mol% (entry 9).  Decreasing the amount of 

Ni(cod)2 to 5 mol% did not lower the yield (entry 10).  Finally, it is found that the use of 3 equiv 

of 2a improved drastically the yield and 3aa was obtained at a yield of 84% (entry 11). 
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Table 1. Optimization of reaction conditions
a
 

Ph

CO2Et
Pr Pr+

1) Ni(cod)2, Ligand
1) toluene, 100 °C, 6 hCO2Me

1a 2a

CO2Me

CO2Et

Ph

Pr

Pr

2) DBU, under air
2) rt, 2 h

3aa  

Entry Ni(cod)2 [mol%] Ligand [mol%] Yield [%]
b
 

1 10 PPh3 20 69 

2 10 PCy3 20 49 

3 10 PCyPh2 20 57 

4 10 PMePh2 20 16 

5 10 P(4-MeC6H4)3 20 70 

6 10 P(4-MeOC6H4)3 20 67 

7 10 P(4-FC6H4)3 20 31 

8 10 PPh3 12 68 

9 10 PPh3 30 47 

10 5 PPh3 6 68 

11
c
 5 PPh3 6 84 (82) 

a Reactions were carried out using Ni(cod)2, ligand, diene 1a (0.50 mmol) and 

4-octyne (2a; 1.0 mmol, 2 equiv) in 1 mL of toluene at 100 °C for 6 h, followed by 

addition of DBU (1.0 mmol, 2 equiv) and stirring under air at room temperature for 

2 h. b Yield as determined by NMR spectroscopy. Yield of the isolated product is 

given in parentheses. c 2a (1.5 mmol, 3 equiv). 
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 With the optimized reaction conditions in hand, the author examined the substrate scope of 

this cycloaddition reaction (Table 2).  Dienes with an aryl substituent at R1 were effective 

participants.  In the reactions of methoxyphenyl-substituted dienes 1b and 1c, deactivation of 

the nickel catalyst was observed.  This was prevented by using 10 mol% of phosphine ligand 

(Table 2, entries 1 and 2).  Among the aryl-groups that he examined, the electron-deficient 

groups afforded aromatized cycloadduct 3 in higher yields (entries 3 and 4).  Sterically bulky 

2-tolyl and 1-naphthyl groups also participated in the cycloaddition (entries 5 and 6). 

 Various internal alkynes were also examined for their reactivity.  Alkyl-substituted 

symmetrical alkynes 2b and 2c reacted with 1a to afford 3ab and 3ac in good yields (entries 7 

and 8).  The reaction with cycloalkynes gave ring-fused arenes.  Whereas strained 

cyclododecyne (2d) resulted in a relatively low yield (entry 9), less strained cyclopentadecyne 

(2e) gave arene 3ae at a yield of 81%.  Of note, the aromatization step of this reaction was time 

intensive (entry 10).  Unsymmetrical alkyne 2f gave two corresponding regioisomers at a yield 

of 61% but its selectivity was low (entry 11).  Aryl-substituted alkynes also participated in the 

[4+2] cycloaddition.  Diphenylacetylene (2g) reacted with diene 1h to afford 3hg in 56% yield 

(entry 12).  Although two regioisomers were possible outcomes in the reaction with 

1-phenyl-1-propyne (2h), the product 3hh was obtained as a single isomer (entry 13).  Similar 

unsymmetrical alkyne a methoxy group or fluorine also reacted stereoselectively to afford arene 3 

(entries 14 and 15).  However, terminal alkynes failed to participate in the reaction. 
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Table 2. Nickel-catalyzed [4+2] cycloaddition of electron-deficient dienes with alkynesa 

R1

CO2Et
R3 R4+

1) Ni(cod)2 (5 mol%)
1) PPh3 (6 mol%)
1) toluene, 100 °C, 6 hCO2R2

1 2

CO2R2

CO2Et
R1

R3
R4

2) DBU, under air
2) rt, 2 h

3  

Entry 1 R1 R2 2 R3 R4 3 Yield [%]b 

1c 1b 4-MeOC6H4 Me 2a Pr Pr 3ba 54 

2c 1c 3-MeOC6H4 Me 2a Pr Pr 3ca 56 

3 1d 4-FC6H4 Me 2a Pr Pr 3da 81 

4 1e 4-F3CC6H4 Me 2a Pr Pr 3ea 77 

5 1f 2-MeC6H4 Me 2a Pr Pr 3fa 70 

6 1g 1-Naphthyl tBu 2a Pr Pr 3ga 68 

7 1a Ph Me 2b Et Et 3ab 71 

8 1a Ph Me 2c C5H11 C5H11 3ac 78 

9 1a Ph Me 2d     –(CH2)10– 3ad 44 

10d 1a Ph Me 2e     –(CH2)13– 3ae 81 

11 1a Ph Me 2f iPr Me 3af 61 (1/1)e 

12 1h Ph Et 2g Ph Ph 3hg 56 

13 1h Ph Et 2h Me Ph 3hh 43 

14 1a Ph Me 2i C5H11 4-MeOC6H4 3ai 67 

15 1a Ph Me 2j C5H11 4-FC6H4 3aj 46 
a Reactions were carried out using Ni(cod)2 (5 mol%), PPh3 (6 mol%), diene 1 (0.50 mmol) and 
alkyne 2 (1.5 mmol, 3 equiv) in 1 mL of toluene at 100 °C for 6 h, followed by addition of DBU 
(1.0 mmol, 2 equiv) and stirring under air at room temperature for 2 h. b Yield of the isolated 
product. c PPh3 (10 mol%). d The second step reaction was carried out for 15 h. e Ratio of the 
regioisomers. 
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 As shown in Scheme 3, the [4+2] cycloaddition of (E)-isomer 4a with alkyne 2a also 

resulted in 3aa at a yield of 83%.  It is unclear which isomer gave the cycloadduct, because the 

isomerization between (Z)-isomer 1a and (E)-isomer 4a was rapid. 

CO2Et
Pr Pr+

1) Ni(cod)2 (5 mol%)
1) PPh3 (6 mol%)
1) toluene, 100 °C, 6 hCO2Me

4a 2a

CO2Me

CO2Et

Ph

Pr

Pr

2) DBU, under air
2) rt, 2 h

3aa 83% yield

Ph

 

Scheme 3. Nickel-catalyzed [4+2] cycloaddition of (E)-isomer 4a with alkyne 2a. 

 

Conclusion 

 

 In conclusion, the author developed a nickel-catalyzed [4+2] cycloaddition reaction that 

centers on electron-deficient dienes with alkynes.  This reaction corresponds to an inverse 

electron-demand Diels–Alder reaction.  In addition, subsequent aromatization by using base and 

air produces highly functionalized arenes.  Activation of both olefins of the diene is essential for 

the cycloaddition reaction. 
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Experimental Section 

 

Chemicals.  Triphenylphosphine was purchased from Wako Pure Chemical Co. and purified by 

recrystallization from ethanol.  Dienes 1a–h,
9
 cyclododecyne (2d), and cyclopentadecyne (2e)

10
 

were prepared according to the literature. 

 

Experimental procedure for nickel-catalyzed [4+2] cycloaddition of dienes with alkynes and 

sequential aromatization 

General procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  A diene 1 (0.50 mmol) and an alkyne 2 (1.5 mmol) were 

added to a solution of bis(1,5-cyclooctadiene)nickel (7 mg, 0.025 mmol) and triphenylphosphine 

(8 mg, 0.030 mmol) in toluene (1 mL) in a dry box.  The VIAL was taken outside the dry box 

and heated at 100 ºC for 6 h.  After cooled to ambient temperature, DBU (0.15 mL, 1.0 mmol) 

was added to the mixture, and this was stirred vigorously under air at room temperature for 2 h.  

The resulting reaction mixture was filtered through a silica gel pad and concentrated in vacuo.  

The residue was purified by flash silica gel column chromatography (hexane/ethyl acetate = 10:1) 

to give the corresponding arene 3. 

 

Characterization data 

 

2-Ethyl 4-methyl 5,6-dipropyl-[1,1'-biphenyl]-2,4-dicarboxylate (3aa). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 8.08 (s, 1H), 7.36 (m, 3H), 

7.16 (m, 2H), 3.95 (q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 2.95 (t, J = 8.0 Hz, 2H), 

2.42 (t, J = 8.0 Hz, 2H), 1.59 (m, 2H), 1.31 (m, 2H), 1.04 (t, J = 7.0 Hz, 3H), 

0.92 (t, J = 7.5 Hz, 3H), 0.72 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 168.33, 167.83, 

145.50, 144.89, 141.64, 140.18, 130.27, 130.07, 128.80, 128.74, 127.59, 127.02, 60.75, 52.13, 

32.18, 32.04, 25.12, 24.38, 14.71, 14.51, 13.64. IR (neat): 2962, 1728, 1232, 703 cm
–1

. HRMS 

CO2Et

CO2Me

Ph

Pr

Pr
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(APCI) calcd for C23H29O4 ([M+H]
+
): 369.2060. Found: 360.2053. Anal calcd for C23H28O4: C, 

74.97; H, 7.66. Found: C, 74.91; H, 7.67. 

 

2-Ethyl 4-methyl 4'-methoxy-5,6-dipropyl-[1,1'-biphenyl]-2,4-dicarboxylate (3ba). 

White powder, mp. 66–67 °C (hexane-AcOEt). 
1
H NMR (500 

MHz, CDCl3): ! 8.04 (s, 1H), 7.07 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 

9.0 Hz, 2H), 3.98 (q, J = 7.0 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 

2.93 (t, J = 8.0 Hz, 2H), 2.43 (t, J = 8.0 Hz, 2H), 1.58 (m, 2H), 

1.30 (m, 2H), 1.03 (t, J = 7.5 Hz, 3H), 0.98 (t, J = 7.0 Hz, 3H), 

0.74 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 168.31, 167.99, 158.58, 145.38, 144.56, 

142.07, 132.30, 130.43, 129.99, 129.80, 128.53, 113.02, 60.77, 55.19, 52.15, 32.19, 31.97, 25.10, 

24.38, 14.75, 14.59, 13.79. IR (KBr): 2961, 1727, 1707, 1516, 1250, 1028, 841 cm
–1

. HRMS 

(APCI) calcd for C24H31O5 ([M+H]
+
): 399.2166. Found: 399.2154. Anal calcd for C24H30O5: C, 

72.34; H, 7.59. Found: C, 72.49; H, 7.75. 

 

2-Ethyl 4-methyl 3'-methoxy-5,6-dipropyl-[1,1'-biphenyl]-2,4-dicarboxylate (3ca). 

Pale yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 8.07 (s, 1H), 7.28 

(dd, J = 8.0, 7.0 Hz, 1H), 6.90 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H), 6.76 

(ddd, J = 7.0, 1.5, 1.0 Hz, 1H), 6.71 (dd, J = 2.5, 1.5 Hz, 1H), 3.97 

(q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 3.80 (s, 3H), 2.94 (t, J = 8.5 Hz, 2H), 2.43 (t, J = 8.0 Hz, 2H), 

1.57 (m, 2H), 1.34 (m, 2H), 1.04 (t, J = 7.0 Hz, 3H), 0.96 (t, J = 7.0 Hz, 3H), 0.75 (t, J = 7.0 Hz, 

3H). 
13

C NMR (125 MHz, CDCl3): ! 168.27, 167.78, 158.93, 145.59, 144.58, 141.55, 141.44, 

130.17, 129.93, 128.72, 128.62, 121.42, 114.36, 112.67, 60.79, 55.24, 52.20, 32.15, 32.05, 25.12, 

24.61, 14.78, 14.63, 13.69. IR (neat): 2960, 1727, 1589, 1465, 1233, 790, 708 cm
–1

. HRMS 

(APCI) calcd for C24H31O5 ([M+H]
+
): 399.2166. Found: 399.2154. 
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2-Ethyl 4-methyl 4'-fluoro-5,6-dipropyl-[1,1'-biphenyl]-2,4-dicarboxylate (3da). 

Pale yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 8.09 (s, 1H), 

7.14–7.06 (m, 4H), 3.99 (q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 2.93 (t, J = 

8.0 Hz, 2H), 2.39 (t, J = 8.0 Hz, 2H), 1.58 (m, 2H), 1.29 (m, 2H), 

1.04 (t, J = 7.0 Hz, 3H), 0.99 (t, J = 7.0 Hz, 3H), 0.74 (t, J = 7.0 Hz, 

3H). 
13

C NMR (125 MHz, CDCl3): ! 168.23, 167.56, 161.98 (d, JCF = 245 Hz), 145.66, 143.84, 

141.84, 135.99 (d, JCF = 3.3 Hz), 130.46, 130.33 (d, JCF = 7.6 Hz), 129.93, 128.87, 114.62 (d, JCF 

= 21.5 Hz), 60.87, 52.23, 32.18, 32.02, 25.11, 24.34, 14.75, 14.57, 13.76. IR (neat): 2963, 1727, 

1513, 838 cm
–1

. HRMS (APCI) calcd for C27H28FO4 ([M+H]
+
): 387.1966. Found: 387.1951. 

 

2-Ethyl 4-methyl 5,6-dipropyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2,4-dicarboxylate (3ea). 

White powder, mp. 55–56 °C (hexane-AcOEt).
 1
H NMR (500 MHz, 

CDCl3): ! 8.16 (s, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 

2H), 3.97 (q, J = 7.0 Hz, 2H), 3.93 (s, 3H), 2.94 (t, J = 8.0 Hz, 2H), 

2.36 (t, J = 8.5 Hz, 2H), 1.59 (m, 2H), 1.29 (m, 2H), 1.04 (t, J = 7.0 

Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H), 0.72 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 168.14, 

167.10, 146.02, 144.24, 143.50, 141.35, 130.86, 129.31 (q, JCF = 32.4 Hz), 129.30, 129.21, 

129.16, 124.58 (q, JCF = 3.9 Hz), 124.22 (q, JCF = 271 Hz), 60.94, 52.30, 32.14, 32.03, 25.11, 

24.38, 14.75, 14.53, 13.54. IR (KBr): 2969, 1730, 1701, 1324, 1237, 1163, 1126, 842 cm
–1

. 

HRMS (APCI) calcd for C24H28F3O4 ([M+H]
+
): 437.1934. Found: 437.1926. Anal calcd for 

C24H27F3O4: C, 66.04; H, 6.24. Found: C, 66.32; H, 6.26. 

 

2-Ethyl 4-methyl 2'-methyl-5,6-dipropyl-[1,1'-biphenyl]-2,4-dicarboxylate (3fa). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 8.14 (s, 1H), 7.26–7.15 (m, 

3H), 6.99 (dd, J = 7.5, 1.0 Hz, 1H), 3.96 (q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 

3.07 (m, 1H), 2.84 (m, 1H), 2.47 (m, 1H), 2.16 (m, 1H), 1.97 (s, 3H), 

1.63 (m, 1H), 1.56 (m, 1H), 1.34–1.18 (m, 2H), 1.03 (t, J = 7.5 Hz, 3H), 

CO2Et

CO2Me

Pr

Pr
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0.93 (t, J = 7.0 Hz, 3H), 0.69 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 168.38, 167.48, 

145.84, 144.41, 141.54, 139.52, 135.66, 130.08, 129.41, 129.32, 129.19, 128.63, 127.35, 125.04, 

60.71, 52.19, 32.09, 32.02, 25.17, 23.83, 19.97, 14.69, 14.67, 13.61. IR (neat): 2961, 1728, 1233, 

730 cm
–1

. HRMS (APCI) calcd for C24H31O4 ([M+H]
+
): 383.2217. Found: 383.2204. 

 

1-tert-Butyl 3-ethyl 4-(naphthalen-1-yl)-5,6-dipropylisophthalate (3ga) 

Pale yellow viscous oil. 
1
H NMR (500 MHz, CDCl3): ! 8.04 (s, 1H), 

7.86 (m, 2H), 7.46 (m, 2H), 7.31 (m, 2H), 7.21 (dd, J = 7.0, 1.0 Hz, 

1H), 3.68 (q, J = 7.5 Hz, 2H), 3.03 (m, 1H), 2.85 (m, 1H), 2.39 (m, 

1H), 2.07 (m, 1H), 1.65 (m, 2H), 1.65 (s, 9H), 1.23 (m, 2H), 1.04 (t, J 

= 7.5 Hz, 3H), 0.56 (t, J = 7.5 Hz, 3H), 0.47 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 

167.98, 167.60, 144.38, 142.25, 142.08, 138.00, 133.43, 133.13, 132.60, 130.47, 128.50, 128.03, 

127.47, 126.34, 125.90, 125.84, 125.59, 124.83, 81.78, 60.39, 32.57, 32.07, 28.18, 25.24, 24.60, 

14.71, 14.52, 13.04. IR (neat): 2964, 1722, 1251, 1153, 1028, 851, 802, 781 cm
–1

. HRMS (EI) 

calcd for C30H36O4 ([M]
+
): 460.2614. Found: 460.2607. 

 

2-Ethyl 4-methyl 5,6-diethyl-[1,1'-biphenyl]-2,4-dicarboxylate (3ab). 

White powder, mp. 41–42 °C (hexane-AcOEt). 
1
H NMR (500 MHz, 

CDCl3): ! 8.09 (s, 1H), 7.37 (m, 3H), 7.18 (m, 2H), 3.95 (q, J = 7.5 Hz, 2H), 

3.93 (s, 3H), 3.03 (q, J = 7.5 Hz, 2H), 2.52 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 

7.5 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 

168.25, 167.75, 146.76, 144.90, 142.62, 140.07, 130.17, 130.01, 128.80, 128.75, 127.62, 127.03, 

60.78, 52.20, 23.17, 22.64, 15.87, 15.32, 13.65. IR (KBr): 2984, 1725, 1711, 1244, 707 cm
–1

. 

HRMS (APCI) calcd for C21H25O4 ([M+H]
+
): 341.1747. Found: 341.1733. Anal calcd for 

C21H24O4: C, 74.09; H, 7.11. Found: C, 74.17; H, 7.27. 
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2-Ethyl 4-methyl 5,6-dipentyl-[1,1'-biphenyl]-2,4-dicarboxylate (3ac). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 8.07 (s, 1H), 7.35 (m, 3H), 

7.16 (d, J = 8.0 Hz, 2H), 3.95 (q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 2.95 (t, J 

= 8.0 Hz, 2H), 2.43 (t, J = 8.0 Hz, 2H), 1.56 (m, 2H), 1.45–1.34 (m, 4H), 

1.27 (m, 2H), 1.08 (m, 4H), 0.92 (t, J = 7.0 Hz, 6H), 0.75 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, 

CDCl3): ! 168.34, 167.81, 145.68, 144.89, 141.72, 140.11, 130.19, 129.87, 128.77, 128.70, 

127.57, 127.00, 60.76, 52.18, 32.49, 32.07, 31.52, 30.49, 30.11, 29.71, 22.41, 21.87, 14.05, 13.82, 

13.64. IR (neat): 2956, 1727, 1234, 1031, 703 cm
–1

. HRMS (APCI) calcd for C27H37O4 

([M+H]
+
): 425.2686. Found: 425.2675. 

 

3-Ethyl 1-methyl 4-phenyl-5,6,7,8,9,10,11,12,13,14-decahydrobenzo[12]annulene-1,3-di- 

carboxylate (3ad). 

White powder, mp. 83–85 °C (hexane-AcOEt).
 1

H NMR (500 MHz, 

CDCl3): ! 8.06 (s, 1H), 7.35 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 3.94 (q, J = 

7.0 Hz, 2H), 3.92 (s, 3H), 3.09 (t, J = 8.5 Hz, 2H), 2.55 (t, J = 8.5 Hz, 2H), 

1.72 (m, 2H), 1.56 (m, 4H), 1.44 (m, 6H), 1.38 (m, 2H), 1.23 (m, 2H), 0.92 

(t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 168.53, 167.81, 145.50, 145.18, 141.75, 

140.17, 130.72, 129.93, 128.76, 128.55, 127.53, 127.02, 60.77, 52.22, 29.16, 28.79, 28.58, 28.44, 

28.29, 27.88, 27.39, 22.86, 22.65, 13.66. IR (KBr): 2934, 1723, 1705, 1296, 1154, 1028, 702 

cm
–1

. HRMS (ESI
+
) calcd for C27H35O4 ([M+H]

+
): 423.2530. Found: 423.2525. Anal calcd for 

C27H34O4: C, 76.74; H, 8.11. Found: C, 76.72; H, 7.99. 
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3-Ethyl 1-methyl 4-phenyl-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-5H-benzo[15]annu- 

lene-1,3-dicarboxylate (3ae). 

White powder, mp. 104–105 °C (hexane-AcOEt). 
1
H NMR (500 MHz, 

CDCl3): ! 8.10 (s, 1H), 7.36 (m, 3H), 7.15 (d, J = 8.0 Hz, 2H), 3.95 (q, J 

= 7.5 Hz, 2H), 3.92 (s, 3H), 2.93 (t, J = 8.0 Hz, 2H), 2.42 (t, J = 8.5 Hz, 

2H), 1.67–1.55 (m, 4H), 1.45–1.23 (m, 16H), 1.10 (m, 2H), 0.92 (t, J = 

7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 168.28, 167.76, 145.84, 

145.13, 141.83, 140.17, 130.26, 129.90, 128.85, 128.61, 127.60, 126.98, 60.76, 52.20, 30.08, 

29.66, 29.30, 28.45, 27.92, 27.56, 26.56, 26.30, 26.27, 26.03, 24.94, 24.92, 13.64. IR (KBr): 2925, 

1730, 1705, 1239, 1029, 709 cm
–1

. HRMS (ESI
+
) calcd for C30H41O4 ([M+H]

+
): 465.2999. 

Found: 465.2996. Anal calcd for C30H40O4: C, 77.55; H, 8.68. Found: C, 77.29; H, 8.88. 

 

2-Ethyl 4-methyl 6-isopropyl-5-methyl-[1,1'-biphenyl]-2,4-dicarboxylate and 

2-ethyl 4-methyl 5-isopropyl-6-methyl-[1,1'-biphenyl]-2,4-dicarboxylate (1:1 mixture) (3af). 

Colorless oil. 
1
H NMR (500 MHz, CDCl3): ! 7.98 (s, 

0.5H), 7.78 (s, 0.5H), 7.36 (m, 3H), 7.13 (m, 2H), 3.95 

(q, J = 7.0 Hz, 2H), 3.92 (s, 3H), 3.46 (sept, J = 7.0 Hz, 

0.5H), 3.20 (sept, J = 7.0 Hz, 0.5H), 2.65 (s, 1.5H), 2.11 (s, 1.5H), 1.37 (d, J = 7.0 Hz, 3H), 1.19 

(d, J = 7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 170.49, 168.58, 

168.04, 167.61, 148.06, 146.20, 144.54, 140.70, 136.57, 132.14, 132.03, 129.51, 128.64, 128.58, 

127.92, 127.75, 127.69, 127.46, 127.04, 126.96, 60.81, 60.75, 52.39, 52.19, 31.11, 30.57, 21.10, 

20.93, 18.65, 17.92, 13.65, 13.64. IR (neat): 2959, 1728, 1257, 1235, 1030, 703 cm
–1

. HRMS 

(APCI) calcd for C21H25O4 ([M+H]
+
): 341.1747. Found: 341.1735. 
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Diethyl 6'-phenyl-[1,1':2',1''-terphenyl]-3',5'-dicarboxylate (3hg). 

Pale red powder, mp. 128–130 °C (hexane-AcOEt). 
1
H NMR (500 MHz, 

CDCl3): ! 8.25 (s, 1H), 7.10 (m, 6H), 6.97 (m, 4H), 6.87 (m, 3H), 6.68 (m, 

2H), 4.02 (q, J = 7.0 Hz, 4H), 0.93 (t, J = 7.0 Hz, 6H).
 13

C NMR (125 MHz, 

CDCl3): ! 167.94, 143.77, 142.76, 139.29, 138.01, 131.95, 131.03, 129.43, 129.06, 127.17, 

126.78, 126.62, 125.93, 61.15, 13.61. IR (KBr): 1730, 1318, 1200, 1085, 761, 699 cm
–1

. HRMS 

(APCI) calcd for C30H27O4 ([M+H]
+
): 451.1904. Found: 451.1893. Anal calcd for C30H26O4: C, 

79.98; H, 5.82. Found: C, 79.98; H, 5.96. 

 

Diethyl 2'-methyl-[1,1':3',1''-terphenyl]-4',6'-dicarboxylate (3hh). 

Pale red powder, mp. 68–72 °C (hexane-AcOEt). 
1
H NMR (500 MHz, 

CDCl3): ! 8.15 (s, 1H), 7.39 (m, 6H), 7.19 (d, J = 8.0 Hz, 4H), 4.01 (q, J = 

7.0 Hz, 4H), 1.81 (s, 3H), 0.96 (t, J = 7.0 Hz, 6H).
 13

C NMR (125 MHz, 

CDCl3): ! 167.73, 144.68, 140.11, 136.71, 131.32, 128.54, 128.03, 127.60, 127.19, 60.96, 18.83, 

13.66. IR (KBr): 1719, 1251, 1026, 765, 707 cm
–1

. HRMS (APCI) calcd for C25H25O4 ([M+H]
+
): 

389.1747. Found: 389.1736. 

 

4'-Ethyl 6'-methyl 4-methoxy-2'-pentyl-[1,1':3',1''-terphenyl]-4',6'-dicarboxylate (3ai). 

Pale yellow viscous oil. 
1
H NMR (500 MHz, CDCl3): ! 8.08 (s, 1H), 7.36 

(m, 3H), 7.22 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 

8.5 Hz, 2H), 3.99 (q, J = 7.0 Hz, 2H), 3.85 (s, 3H), 3.60 (s, 3H), 2.25 (t, J 

= 8.0 Hz, 2H), 1.03 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H), 0.82 (m, 2H), 0.70 

(m, 2H), 0.57 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 168.04, 

167.75, 158.64, 144.47, 144.42, 142.41, 139.55, 131.59, 131.53, 129.88, 128.89, 127.65, 127.30, 

127.14, 113.14, 60.93, 55.18, 52.05, 31.62, 30.31, 29.80, 21.49, 13.67, 13.61. IR (neat): 2956, 

1728, 1515, 1247, 1032, 833, 704 cm
–1

. HRMS (APCI) calcd for C29H33O5 ([M+H]
+
): 461.2323. 

Found: 461.2310. Anal calcd for C29H32O5: C, 75.63; H, 7.00. Found: C, 75.72; H, 7.02. 
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4'-Ethyl 6'-methyl 4-fluoro-2'-pentyl-[1,1':3',1''-terphenyl]-4',6'-dicarboxylate (3aj). 

Pale yellow viscous oil. 
1
H NMR (500 MHz, CDCl3): ! 8.13 (s, 1H), 

7.37 (m, 3H), 7.23–7.17 (m, 4H), 7.10 (m, 2H), 3.99 (q, J = 7.0 Hz, 2H), 

3.61 (s, 3H), 2.22 (t, J = 8.0 Hz, 2H), 1.02 (m, 2H), 0.95 (t, J = 7.0 Hz, 

3H), 0.81 (m, 2H), 0.70 (m, 2H), 0.57 (t, J = 7.0 Hz, 3H).
 13

C NMR (125 

MHz, CDCl3): ! 167.66, 167.60, 162.01 (d, JCF = 245 Hz), 144.71, 

143.71, 142.19, 139.29, 135.24 (d, JCF = 3.3 Hz), 132.06, 131.09, 130.42 (d, JCF = 7.6 Hz), 

128.84, 127.70, 127.61, 127.27, 114.75 (d, JCF = 21.0 Hz), 61.02, 52.07, 31.60, 30.33, 29.78, 

21.44, 13.66, 13.59. IR (neat): 2956, 1733, 1512, 838, 703 cm
–1

. HRMS (APCI) calcd for 

C28H30FO4 ([M+H]
+
): 449.2123. Found: 449.2110. Anal calcd for C28H29FO4: C, 74.98; H, 6.52. 

Found: C, 75.07; H, 6.38. 
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Chapter 5 

 

 

Nickel-Catalyzed Cycloaddition of ! ," ,# ,$-Unsaturated Ketones with Alkynes 

 

 

 Nickel(0) complex catalyzed unprecedented manner of cycloaddition of !,",#,$-unsaturated 

ketones with alkynes to produce bicyclo[3.1.0]hexenes.  Formation of nickelacycle from an 

!,"-double bond and an alkyne followed by intramolecular carbonickelation to the remaining 

#,$-double bond would construct such bicyclic compounds.  The products were obtained as 

single diastereomers. 
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Introduction 

 

 !,"-Unsaturated carbonyl compounds, such as enones and enoates, have been widely used 

for substrates of nickel-catalyzed cycloaddition to furnish functionalized carbo- or heterocyclic 

compounds.
1–3

  In Chapter 4, the author described nickel-catalyzed [4+2] cycloaddition of 

dienes, which have a structure combining two enoate moieties, with alkynes.  The diene would 

form nickelacycle by construction of a C–Ni bond at the !-position of one of the enoate moieties 

and a C–C bond at the "-position of the other enoate moiety with an alkyne, which was the 

intermediate of the [4+2] cycloaddition (Scheme 1a).  On the other hand, simple 

!,",#,$-unsaturated carbonyl compounds have a structure combining an enone with an 

electron-rich olefin.  In view of the potentially unique reactivity of !,",#,$-unsaturated carbonyl 

compounds,
4,5

 the author explored the nickel-catalyzed cycloaddition of !,",#,$-unsaturated 

ketones with alkynes.  As the result of this investigation, he found that the reaction proceeded 

through fomation of nickelacycle from an enone moiety and an alkyne followed by intramoleclar 

reaction of the remaining olefin to afford bicyclo[3.1.0]hexenes (Scheme 1b).
6,7

 

(a) Chapter 4

(b) This Chapter
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Scheme 1. Formation of C–Ni and C–C bond of !,",#,$-unsaturated carbonyl compounds. 
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Results and Discussion 

 

 First, the author examined the reaction of !,",#,$-unsaturated ketone 1a with 4-octyne (2a) 

in the presence of Ni(cod)2 (10 mol%) and PPh3 (20 mol%) in toluene at 100 °C for 16 h (Table 1, 

entry1).  The reaction took place stereoselectively to afford the bicyclo[3.1.0]hexene 3aa as a 

Table 1. Optimization of reaction conditions
a
 

Ph

O

Ph
Pr Pr

H

H

Ph

Pr

Pr

Ph

O
+

Ni(cod)2

Ligand

toluene, 100 °C

1a 2a

3aa  

Entry Ni [mol%] Ligand [mol%] t [h] Yield [%]
b
 

1 10 PPh3 20 16 70 (57) 

2 10 PCy3 20 16 51 

3 10 PCyPh2 20 16 67 

4 10 PMePh2 20 16 <1 

5 10 PPh3 12 16 65 

6 10 PPh3 30 16 63 

7 10 PPh3 30 48 76 (64) 

8 10 P(4-MeC6H4)3 30 48 82 (71) 

9 10 P(2-MeC6H4)3 30 48 <1 

10 10 P(4-MeOC6H4)3 30 48 30 

11 10 P(4-FC6H4)3 30 48 79 (67) 

12 5 P(4-MeC6H4)3 15 48 (69) 

a Reactions were carried out using Ni(cod)2, ligand, 1a (0.50 mmol) and 4-octyne 

(2a; 1.0 mmol, 2 equiv) in 2 mL of toluene at 100 °C. b Yield as determined by 

NMR spectroscopy. Yield of the isolated product is given in parentheses. 

 



Chapter 5 

 94 

single diastereomer.  Then, various ligands and the ratio of Ni(0) to ligands were investigated to 

improve the yield.  When alkyl-substituted phosphines were used, the yield became lower 

(entries 2–4).  Tuning the molar ratio of Ni(0) to ligand, the cycloadduct 3aa was obtained in 

lower yield, along with some unreacted 1a, when 30 mol% of PPh3 was used (entry 6).  By 

prolonging the reaction time to 48 h, the yield of 3aa was increased (entry 7).  Among 

triarylphosphines examined in this condition, P(4-MeC6H4)3 gave the best yield of 3aa (entries 

8–11).  Decreasing the amount of catalyst to 5 mol% did not lower the yield of 

bicyclo[3.1.0]hexene 3aa (entry 12). 

 Having determined the optimal reaction conditions, the author next confirmed the 

stereochemistry of the cycloadduct by performing the reaction of 1b with 2b (Scheme 2).  The 

reaction provided 3bb in 51% yield as a single isomer.  The molecular structure of 3bb was 

confirmed using X-ray crystal structure analysis that showed that 3bb has cis-exo stereochemistry 

at the ring fusion (Figure 1). 

Np

O

Np
Et Et

H

H

Np

Et

Et

Np

O

+

Ni(cod)2 (5 mol%)

P(4-MeC6H4)3 (15 mol%)

toluene, 100 °C, 48 h

1b 2b

3bb 51%  

Scheme 2. Nickel-catalyzed reaction of 1b with 2b. Np = 2-naphthyl. 

 

Figure 1. ORTEP drawing of cycloadduct 3bb. 
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 Then, the author examined the reaction of 4-octyne (2a) with various !,",#,$-unsaturated 

carbonyl compounds 1 having different functional groups (Table 2).  It was found that 

diarylsubstituted !,",#,$-unsaturated ketones 1 reacted with 4-octyne (2a) in the presence of a 

nickel catalyst to stereoselectively provide the corresponding substituted bicyclo[3.1.0]hexenes 3.  

Among the examined aryl substituents at R
2
, an aryl group with an electron-withdrawing group 

afforded a higher yield of cycloadduct 3 (entry 1 versus entry 3).  Meanwhile, among the 

examined aryl substituents at R
1
, an electron-donating group substituted aryl group gave 3 in 

higher yield (entry 6 versus entries 7–10).  In addition, heteroaryl substituents at R
2
 were 

tolerated to yield bicyclo[3.1.0]hexenes 3 (entries 4 and 5).  The reaction of thienyl-substituted 

dienone 1m also provided cycloadduct 1ma in 66% by using 10 mol% of nickel catalyst (entry 

11).  Alkyl substituent at R
1
 afforded corresponding cycloadduct 3na in 23% yield (entry 12).  

Acetyl-substituted diene (R
2
 = Me) and !,",#,$-unsaturated ester (R

2
 = OMe) did not participate 

in the nickel-catalyzed reaction with 2a. 

 After demonstrating the scope of !,",#,$-unsaturated ketones 1, the author investigated the 

reaction scope with regards to alkynes 2.  Alkyl-substituted symmetrical alkynes 2b and 2c 

reacted with 1a to afford bicyclo[3.1.0]hexenes 3 (Table 2, entries 13 and 14).  Cycloalkynes 

also participated in the reaction with 1a.  Whereas the reaction of strained cyclododecyne (2d) 

resulted in low yield (entry 15), less strained cyclopentadecyne (2e) gave cycloadduct 3ae in 68% 

yield (entry 16).  Moderate regioselectivity of the reaction with an unsymmetrical alkyne 2f was 

achieved by using PCyPh2 in place of P(4-MeC6H4)3 (entry 17).  In the case of using 

P(4-MeC6H4)3 as a ligand, 3af was obtained in 57% yield with a regioselectivity ratio of 2:1.  

Terminal alkynes and aryl-substituted alkynes failed to participate in the reaction because of 

rapid oligomerization of the alkynes. 
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Table 2. Nickel-catalyzed reaction of !,",#,$-unsaturated ketones 1 with alkynes 2
a
 

R2

O

R1
R3 R4

H

H

R1

R4

R3

R2

O

+

Ni(cod)2 (5 mol%)
P(4-MeC6H4)3 (15 mol%)

toluene, 100 °C, 48 h

1 2
3  

Entry 1 R
1
 R

2
 2 R

3 
R

4 
3 Yield [%]

b
 

1 1c Ph 4-NCC6H4 2a Pr Pr 3ca 60 

2 1d Ph 2-MeC6H4 2a Pr Pr 3da 49 

3 1e Ph 4-MeOC6H4 2a Pr Pr 3ea 28 

4 1f Ph 2-furyl 2a Pr Pr 3fa 53 

5 1g Ph 3-pyridyl 2a Pr Pr 3ga 41 

6 1h 4-F3CC6H4 Ph 2a Pr Pr 3ha 19 

7 1i 2-MeOC6H4 Ph 2a Pr Pr 3ia 66 

8 1j 3-MeOC6H4 Ph 2a Pr Pr 3ja 54 

9 1k 4-MeOC6H4 Ph 2a Pr Pr 3ka 74 

10 1l 4-Me2NC6H4 Ph 2a Pr Pr 3la 67 

11 1m 2-thienyl Ph 2a Pr Pr 3ma 66 

12
c
 1n Me Ph 2a Pr Pr 3na 23 

13 1a Ph Ph 2b Et Et 3ab 64 

14 1a Ph Ph 2c C5H11 C5H11 3ac 64 

15 1a Ph Ph 2d    –(CH2)10– 3ad 30 

16 1a Ph Ph 2e    –(CH2)13– 3ae 68 

17
d
 1a Ph Ph 2f Me iPr 3af 53 (7/2)

e
 

a Reactions were carried out using Ni(cod)2 (5 mol%), P(4-MeC6H4)3 (15 mol%), 1 (0.50 mmol) and 

2 (1.0 mmol, 2 equiv) in 2 mL of toluene at 100 °C for 48 h. b Yield of the isolated product. c 

Ni(cod)2 (10 mol%) and P(4-MeC6H4)3 (30 mol%). d The reaction was carried out using PCyPh2 (15 

mol%) in place of P(4-MeC6H4)3. 
e Ratio of the regioisomers. 
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Scheme 3. Plausible reaction mechanism. 

 

 While the mechanism of this reaction has not been completely elucidated, based on the 

observed results the author propose the following reaction mechanism to account for the 

formation of bicyclo[3.1.0]hexenes 3, and the stereochemical outcome of the reaction (Scheme 3).  

The reaction is initiated by the coordination of dienone 1 and alkyne 2 to Ni(0).  Oxidative 

cyclization leading to the formation of nickelacycle 5 is followed by ring expansion to form a 

seven-membered oxanickelacycle 6 by 1,3-migration.
1h,8

  The subsequent intramolecular 

insertion of the olefin affords bicyclic intermediate 7, which undergoes 1,3-migration and 

reductive elimination to give cycloadduct 3 and regenerate the starting Ni(0) catalyst.  The cis 

stereochemistry of the ring fusion in bicyclo[3.1.0]hexene 3 may be ascribed to an intramolecular 

syn carbonickelation of the olefin in intermediate 6.  The configuration of substituent R
1
 is also 

established by this process.  The stereochemistry of the arylcarbonyl substituent on the 

cyclopropane ring results from the steric repulsion between this substituent and the cyclopentene 
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ring.  In the reaction of unsymmetrical alkyne 2f, the sterically demanding environment among 

the alkyne substituents and the ligand may favor orientation of the small methyl group proximal 

to the ligand as in 4. 

 

Conclusion 

 

 The author developed an unprecedented reaction, which forms bicyclo[3.1.0]hexene by a 

nickel-catalyzed intermolecular stereoselective reaction of !,",#,$-unsaturated ketones with 

alkynes.  Although various diastereomers were possible, the product was obtained as a single 

diastereomer.  The structure combining an enone with an electron-rich olefin would be essential 

for construction of such bicyclic skeleton. 
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Experimental Section 

 

Chemicals.  !,",#,$-Unsaturated ketones 1a–n were prepared by aldol condensation of 

corresponding acetophenone derivatives with enals. 

 

Experimental procedure for the nickel-catalyzed cycloaddition of ! ,",# ,$-unsaturated 

ketones with alkynes 

General procedure.  The reaction was performed in a 5 mL sealed vessel equipped with a 

Teflon-coated magnetic stirrer tip.  An !,",#,$-unsaturated ketone 1 (0.50 mmol) and an alkyne 

2 (1.0 mmol) were added to a solution of bis(1,5-cyclooctadiene)nickel (7 mg, 0.025 mmol) and 

tri(4-methylphenyl)phosphine (23 mg, 0.075 mmol) in toluene (2 mL) in a dry box.  The VIAL 

was taken outside the dry box and heated at 100 ºC for 48 h.  The resulting reaction mixture was 

cooled to ambient temperature and filtered through a silica gel pad, concentrated in vacuo.  The 

residue was purified by flash silica gel column chromatography (hexane/ethyl acetate = 40:1) to 

give the corresponding bicyclohexene 3. 

 

Characterization data 

 

Phenyl((1R*,4S*,5R*,6R*)-4-phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)methanone 

(3aa).
 

Yellow Powder, mp. 37–39 °C (AcOEt). 
1
H NMR (500 MHz, CDCl3): $ 

7.60 (d, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 

7.31 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.5 Hz, 2H), 

4.43 (d, J = 7.0 Hz, 1H), 2.72 (dd, J = 7.0, 3.0 Hz, 1H), 2.53 (td, J = 7.0, 3.0 Hz, 1H), 2.36 (t, J = 

3.0 Hz, 1H), 2.29-2.11 (m, 3H), 1.75 (m, 1H), 1.56 (m, 2H), 1.35 (m, 1H), 1.23 (m, 1H), 0.97 (t, J 

= 7.0 Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): $ 199.19, 142.50, 141.44, 

137.97, 136.90, 132.34, 128.50, 128.37, 128.29, 127.80, 126.36, 54.81, 39.39, 36.45, 32.52, 

H

H

Ph

Pr

Pr

Ph

O
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30.52, 28.32, 21.61, 21.15, 14.14, 13.96. IR (KBr): 2957, 1645, 1449, 1382, 1221, 704 cm
–1

. 

HRMS (EI) calcd for C25H28O ([M]
+
): 344.2140. Found: 344.2134. 

 

((1R*,4S*,5R*,6R*)-2,3-Diethyl-4-(naphthalen-2-yl)bicyclo[3.1.0]hex-2-en-6-yl)(naphthalen-

2-yl)methanone (3bb). 

White crystal, mp. 128–130 °C (hexane-CH2Cl2). 
1
H NMR (500 MHz, 

CDCl3): ! 7.91 (m, 3H), 7.73 (m, 2H), 7.66 (m, 3H), 7.55 (m, 2H), 7.45 

(m, 2H), 7.30 (t, J = 7.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 4.69 (d, J = 

6.0 Hz, 1H), 2.95 (dd, J = 6.0, 3.5 Hz, 1H), 2.60 (t, J = 3.5 Hz, 1H), 

2.58 (d, J = 3.5 Hz, 1H), 2.35 (m, 3H), 1.89 (sext, 7.5 Hz, 1H), 1.20 (t, 

J = 7.5 Hz, 3H), 0.94 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 199.25, 142.72, 140.45, 

137.03, 135.17, 135.10, 133.67, 132.45, 132.24, 129.61, 129.22, 128.11, 127.96, 127.92, 127.77, 

127.76, 127.55, 127.43, 126.41, 126.24, 126.21, 125.53, 123.53, 54.56, 37.70, 36.88, 33.22, 

21.55, 19.49, 13.39, 12.96. IR (KBr): 2961, 1656, 1390, 821, 749 cm
–1

. HRMS (EI) calcd for 

C31H28O ([M]
+
): 416.2140. Found: 416.2137. 

 

4-((1R*,4S*,5R*,6R*)-4-Phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-ene-6-carbonyl)benzonitrile 

(3ca). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.57 (m, 4H), 7.37 (t, J = 

7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H), 4.45 (d, 

J = 6.5 Hz, 1H), 2.79 (d, J = 6.5 Hz, 1H), 2.54 (t, J = 6.5 Hz, 1H), 2.26 

(s, 1H), 2.26–2.13 (m, 3H), 1.76 (m, 1H), 1.55 (m, 2H), 1.35 (m, 1H), 

1.23 (m, 1H), 0.97 (t, J = 7.5 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 

197.93, 142.33, 141.28, 140.96, 137.18, 132.20, 128.51, 128.41, 128.15, 126.55, 118.03, 115.56, 

54.76, 39.82, 37.74, 33.16, 30.45, 28.30, 21.62, 21.13, 14.13, 13.95. IR (neat): 2959, 2231, 1740, 

1669, 1375, 1216, 1046, 734 cm
–1

. HRMS (EI) calcd for C26H27NO ([M]
+
): 369.2093. Found: 

369.2096. 
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((1R*,4S*,5R*,6R*)-4-Phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(o-tolyl)methanone 

(3da). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.34 (t, J = 7.5 Hz, 2H), 

7.27 (t, J = 7.5 Hz, 1H), 7.24 (m, 1H), 7.12 (m, 3H), 7.01 (m, 2H), 4.43 

(d, J = 6.5 Hz, 1H), 2.71 (dd, J = 6.5, 2.5 Hz, 1H), 2.53 (td, J = 6.5, 2.5 

Hz, 1H), 2.25 (s, 3H), 2.23 (m, 2H), 2.12 (t, J = 2.5 Hz, 1H), 2.12 (m, 1H), 1.73 (m, 1H), 1.55 (m, 

2H), 1.33 (m, 1H), 1.21 (m, 1H).
 13

C NMR (125 MHz, CDCl3): ! 203.54, 142.34, 141.27, 139.33, 

136.93, 131.24, 130.48, 128.55, 128.38, 126.35, 125.40, 54.79, 39.77, 36.98, 35.57, 30.50, 28.34, 

21.65, 21.14, 20.36, 14.15, 13.95. IR (neat): 2958, 1668, 1454, 1378, 1212, 732, 704 cm
–1

. 

HRMS (EI) calcd for C26H30O ([M]
+
): 358.2297. Found: 358.2286. 

 

(4-Methoxyphenyl)((1R*,4S*,5R*,6R*)-4-phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)- 

methanone (3ea). 

White powder, mp. 78–80 °C (AcOEt). 
1
H NMR (500 MHz, CDCl3): 

! 7.60 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.0 Hz, 2H), 7.25 (t, J = 7.0 Hz, 

1H), 7.15 (d, J = 7.0 Hz, 2H), 6.79 (d, J = 7.5 Hz, 2H), 4.42 (d, J = 

6.5 Hz, 1H), 3.82 (s, 3H), 2.67 (d, J = 6.5 Hz, 1H), 2.48 (td, J = 6.5, 

3.0 Hz, 1H), 2.31 (s, 1H), 2.28–2.10 (m, 3H), 1.74 (m, 1H), 1.55 (m, 2H), 1.34 (m, 1H), 1.22 (m, 

1H), 0.96 (t, J = 7.5 Hz, 3H), 0.81 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 197.64, 

163.00, 142.62, 141.55, 136.71, 131.02, 129.99, 128.50, 128.35, 126.31, 113.47, 55.38, 54.77, 

38.90, 35.87, 32.07, 30.53, 28.33, 21.60, 21.14, 14.14, 13.94. IR (KBr): 2956, 1639, 1602, 1387, 

1171, 1025, 707 cm
–1

. HRMS (EI) calcd for C26H30O2 ([M]
+
): 374.2246. Found: 374.2245. 
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Furan-2-yl((1R*,4S*,5R*,6R*)-4-phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)methanone 

(3fa). 

Yellow powder, mp. 61–65 °C (AcOEt). 
1
H NMR (500 MHz, CDCl3): ! 

7.50 (d, J = 1.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 

7.14 (d, J = 7.5 Hz, 2H), 6.91 (d, J = 3.5 Hz, 1H), 6.43 (dd, J = 3.5, 1.5 Hz, 

1H). 4.40 (d, J = 7.0 Hz, 1H), 2.65 (dd, J = 7.0, 3.0 Hz, 1H), 2.57 (td, J = 7.0, 3.0 Hz, 1H), 2.31 (t, 

J = 3.0 Hz, 1H), 2.28–2.08 (m, 3H), 1.71 (m, 1H), 1.56 (m, 2H), 1.32 (m, 1H), 1.20 (m, 1H), 0.97 

(t, J = 7.5 Hz, 3H), 0.80 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 187.50, 153.06, 

146.01, 142.16, 141.13, 137.28, 128.52, 128.28, 126.40, 116.18, 111.95, 54.83, 39.59, 35.00, 

32.04, 30.44, 28.27, 21.54, 21.11, 14.08, 13.92. IR (neat): 2956, 1637, 1468, 1403, 1054, 771, 

704 cm
–1

. HRMS (EI) calcd for C23H26O2 ([M]
+
): 334.1933. Found: 334.1922. 

 

((1R*,4S*,5R*,6R*)-4-Phenyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(pyridin-3-yl)metha- 

none (3ga). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 8.81 (s, 1H), 8.67 (d, J = 2.5 

Hz, 1H), 7.85 (d, J = 3.0 Hz, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.28 (m, 2H), 

7.15 (d, J = 7.5 Hz, 2H), 4.44 (d, J = 6.5 Hz, 1H), 2.76 (d, J = 6.5 Hz, 

1H), 2.59 (t, J = 6.5 Hz, 1H), 2.33 (s, 1H), 2.30–2.11 (m, 3H), 1.75 (m, 

1H), 1.56 (m, 2H), 1.34 (m, 1H), 1.22 (m, 1H).
 13

C NMR (125 MHz, CDCl3): ! 197.91, 152.84, 

149.35, 142.25, 141.22, 137.36, 135.00, 133.15, 128.51, 128.40, 126.59, 123.35, 54.85, 40.20, 

37.19, 32.77, 30.47, 28.31, 21.63, 21.12, 14.12, 13.94. IR (neat): 2958, 1667, 1586, 1381, 1231, 

704 cm
–1

. HRMS (EI) calcd for C24H27NO ([M]
+
): 345.2093. Found: 345.2087. 
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((1R*,4S*,5R*,6R*)-2,3-Dipropyl-4-(4-(trifluoromethyl)phenyl)bicyclo[3.1.0]hex-2-en-6-yl)- 

(phenyl)methanone (3ha). 

Pale yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.63 (d, J = 8.0 Hz, 2H), 

7.57 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 2H), 

7.28 (d, J = 8.0 Hz, 2H), 4.50 (d, J = 6.5 Hz, 1H), 2.74 (dd, J = 6.5, 2.5 Hz, 

1H), 2.54 (td, J = 6.5, 2.5 Hz, 1H), 2.31 (t, J = 2.5 Hz, 1H), 2.29–2.15 (m, 

3H), 1.70 (m, 1H), 1.57 (m, 2H), 1.34 (m, 1H), 1.22 (m, 1H), 0.98 (t, J = 7.5 

Hz, 3H), 0.83 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 198.58, 146.77, 142.45, 137.77, 

136.02, 132.57, 128.84 (q, JCF = 33 Hz), 128.72, 128.37, 127.69, 125.36 (q, JCF = 3.9 Hz), 124.28 

(q, JCF = 267 Hz), 54.52, 39.30, 35.73, 32.37, 30.51, 28.28, 21.59, 21.12, 14.12, 13.91. IR (neat): 

2960, 1665, 1326, 1125, 1069, 698 cm
–1

. HRMS (EI) calcd for C26H27F3O ([M]
+
): 412.2014. 

Found: 412.2011. 

 

((1R*,4R*,5R*,6R*)-4-(2-Methoxyphenyl)-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)-

methanone (3ia). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.51 (d, J = 7.5 Hz, 2H), 7.43 (t, 

J = 7.5 Hz, 1H), 7.26 (m, 3H), 6.97 (t, J = 7.5 Hz, 1H), 6.87 (m, 2H), 4.78 (d, 

J = 6.5 Hz, 1H), 3.82 (s, 3H), 2.72 (dd, J = 6.5, 2.5 Hz, 1H), 2.66 (td, J = 6.5, 

2.5 Hz, 1H), 2.30–2.14 (m, 3H), 2.20 (t, J = 2.5 Hz, 1H), 1.80 (m, 1H), 1.55 

(m, 2H), 1.35 (m, 1H), 1.23 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H), 0.83 (t, J = 7.5 Hz, 3H). 
13

C NMR 

(125 MHz, CDCl3): ! 199.56, 157.69, 141.36, 138.12, 137.35, 132.18, 131.35, 128.35, 128.23, 

127.78, 127.20, 120.03, 110.23, 55.41, 47.56, 39.17, 35.73, 32.84, 30.61, 28.58, 21.65, 21.37, 

14.11, 14.03. IR (neat): 2957, 1663, 1217, 1023, 756, 699 cm
–1

. HRMS (EI) calcd for C26H30O2 

([M]
+
): 374.2246. Found: 374.2243. 
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((1R*,4S*,5R*,6R*)-4-(3-Methoxyphenyl)-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)-

methanone (3ja). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.63 (d, J = 7.5 Hz, 2H), 7.46 (t, 

J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 6.81 (m, 

1H), 6.75 (d, J = 7.5 Hz, 1H), 6.72 (t, J = 2.0 Hz, 1H), 4.40 (d, J = 6.5 Hz, 

1H), 3.81 (s, 3H), 2.70 (dd, J = 6.5, 2.5 Hz, 1H), 2.52 (td, J = 6.5, 2.5 Hz, 

1H), 2.39 (t, J = 2.5 Hz, 1H), 2.28–2.10 (m, 3H), 1.77 (m, 1H), 1.55 (m, 2H), 1.36 (m, 1H), 1.23 

(m, 1H), 0.96 (t, J = 7.5 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 199.14, 

159.73, 144.16, 141.49, 138.01, 136.90, 132.35, 129.26, 128.30, 127.84, 120.94, 114.64, 111.42, 

55.18, 54.84, 39.31, 36.28, 32.57, 30.51, 28.40, 21.61, 21.21, 14,12, 13.97. IR (neat): 2957, 1665, 

1217, 1044, 699 cm
–1

. HRMS (EI) calcd for C26H30O2 ([M]
+
): 374.2246. Found: 374.2243. 

 

((1R*,4S*,5R*,6R*)-4-(4-Methoxyphenyl)-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)-

methanone (3ka). 

Yellow powder, mp. 55–58 °C (AcOEt).
1
H NMR (500 MHz, CDCl3): ! 

7.64 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 7.33 (t, J = 7.5 Hz, 2H), 

7.08 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.38 (d, J = 6.5 Hz, 1H), 

3.81 (s, 3H), 2.69 (dd, J = 6.5, 2.5 Hz, 1H), 2.51 (td, J = 6.5, 2.5 Hz, 1H), 

2.34 (t, J = 2.5 Hz, 1H), 2.27–2.09 (m, 3H), 1.72 (m, 1H), 1.55 (m, 2H), 

1.34 (m, 1H), 1.19 (m, 1H), 0.96 (t, J = 7.5 Hz, 3H), 0.81 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, 

CDCl3): ! 199.19, 158.26, 141.11, 138.06, 137.24, 134.54, 132.34, 129.40, 128.31, 127.83, 

113.84, 55.28, 54.09, 39.50, 36.46, 32.58, 30.54, 28.33, 21.62, 21.13, 14.13, 13.96. IR (neat): 

2957, 1664, 1511, 1248, 1039, 829, 699 cm
–1

. HRMS (EI) calcd for C26H30O2 ([M]
+
): 374.2246. 

Found: 374.2243. 
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((1R*,4S*,5R*,6R*)-4-(4-(Dimethylamino)phenyl)-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)- 

(phenyl)methanone (3la). 

Yellow viscous oil. 
1
H NMR (500 MHz, CDCl3): ! 7.65 (d, J = 7.5 Hz, 

2H), 7.45 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.03 (d, J = 9.0 Hz, 

2H), 6.74 (d, J = 9.0 Hz, 2H), 4.34 (d, J = 6.5 Hz, 1H), 2.94 (s, 6H), 2.68 

(dd, J = 6.5, 2.5 Hz, 1H), 2.51 (td, J = 6.5, 2.5 Hz, 1H), 2.36 (t, J = 2.5 Hz, 

1H), 2.27–2.05 (m, 3H), 1.75 (m, 1H), 1.55 (m, 2H), 1.35 (m, 1H), 1.22 (m, 

1H), 0.96 (t, J = 7.5 Hz, 3H), 0.81 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 199.41, 

149.41, 140.63, 138.18, 137.67, 132.21, 130.45, 129.14, 128.25, 127.90, 112.82, 54.05, 40.80, 

39.46, 36.68, 32.78, 30.56, 28.35, 21.63, 21.18, 14.12, 13.96. IR (neat): 2956, 1662, 1515, 1216, 

816, 699 cm
–1

. HRMS (EI) calcd for C27H33NO ([M]
+
): 387.2562. Found: 387.2553. 

 

((1R*,4R*,5S*,6R*)-2,3-Dipropyl-4-(thiophen-2-yl)bicyclo[3.1.0]hex-2-en-6-yl)(phenyl)me- 

thanone (3ma). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.88 (d, J = 7.5 Hz, 2H), 7.52 (t, 

J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 2H), 7.20 (d, J = 5.0 Hz, 1H), 6.98 (m, 

1H), 6.89 (d, J = 3.5 Hz, 1H), 4.71 (d, J = 6.5 Hz, 1H), 2.69 (dd, J = 6.5, 2.5 

Hz, 1H), 2.63 (td, J = 6.5, 2.5 Hz, 1H), 2.53 (t, J = 2.5 Hz, 1H), 2.20 (m, 2H), 

2.06 (m, 1H), 1.77 (m, 1H), 1.54 (m, 2H), 1.39 (m, 1H), 1.24 (m, 1H), 0.94 (t, J = 7.5 Hz, 3H), 

0.83 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 198.80, 145.40, 140.56, 137.86, 137.50, 

132.54, 128.43, 128.00, 126.38, 125.35, 123.73, 50.39, 39.88, 35.61, 34.14, 30.43, 28.26, 21.50, 

21.28, 14.04, 13.93. IR (neat): 2957, 1648, 1449, 1388, 1227, 700 cm
–1

. HRMS (EI) calcd for 

C23H26OS ([M]
+
): 350.1704. Found: 350.1713. 
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((1R*,4R*,5S*,6R*)-4-Methyl-2,3-dipropylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)methanone 

(3na). 

Pale yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.96 (d, J = 7.5 Hz, 2H), 

7.54 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 3.20 (qd, J = 7.0, 6.5 Hz, 

1H), 2.56 (dd, J = 6.5, 2.0 Hz, 1H), 2.46 (td, J = 6.5, 3.0 Hz, 1H), 2.16–2.02 

(m, 4H), 1.78 (m, 1H), 1.46 (m, 3H), 1.28 (m, 1H), 1.12 (d, J = 7.0 Hz, 3H), 0.91 (t, J = 7.5 Hz, 

3H), 0.89 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 MHz, CDCl3): ! 199.49, 139.94, 138.38, 138.24, 

132.41, 128.44, 127.85, 43.11, 40.39, 35.58, 32.89, 30.27, 27.94, 21.63, 21.15, 16.22, 14.09, 

14.06. IR (neat): 2958, 1662, 1383, 1216, 698 cm
–1

. HRMS (EI) calcd for C20H26O ([M]
+
): 

282.1984. Found: 282.1973. 

 

((1R*,4S*,5R*,6R*)-2,3-Diethyl-4-phenylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)methanone 

(3ab). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.61 (d, J = 8.5 Hz, 2H), 7.45 (t, 

J = 7.5 Hz, 1H), 7.33 (m, 4H), 7.26 (t, J = 7.5 Hz, 1H), 7.17 (d, J = 7.0 Hz, 

2H), 4.47 (d, J = 6.5 Hz, 1H), 2.73 (dd, J = 6.5, 2.5 Hz, 1H), 2.53 (td, J = 6.5, 

2.5 Hz, 1H), 2.37 (t, J = 2.5 Hz, 1H), 2.25 (m, 3H), 1.73 (qd, J = 15.0, 7.5 Hz, 1H), 1.12 (t, J = 

7.5 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H). 
13

C NMR (125 MHz, CDCl3): ! 199.20, 142.46, 142.25, 

138.05, 137.55, 132.34, 128.50, 128.38, 128.30, 127.82, 126.40, 54.48, 38.92, 36.21, 32.67, 

21.46, 19.33, 13.35, 12.90. IR (neat): 2964, 1668, 1449, 1386, 1217, 702 cm
–1

. HRMS (ESI) 

calcd for C23H25O ([M+H]
+
): 317.1900. Found: 317.1891. 

 

((1R*,4S*,5R*,6R*)-2,3-Dipentyl-4-phenylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)methanone 

(3ac). 

Yellow oil. 
1
H NMR (500 MHz, CDCl3): ! 7.61 (d, J = 7.5 Hz, 2H), 7.45 

(t, J = 7.5 Hz, 1H), 7.33 (m, 4H), 7.26 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 7.0 

Hz, 2H), 4.43 (d, J = 6.5 Hz, 1H), 2.71 (dd, J = 6.5, 2.5 Hz, 1H), 2.54 (td, 
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J = 6.5, 2.5 Hz, 1H), 2.36 (t, J = 2.5 Hz, 1H), 2.29-2.14 (m, 3H), 1.73 (m, 1H), 1.53 (m, 2H), 1.33 

(m, 5H), 1.26–1.11 (m, 5H), 0.90 (t, J = 7.5 Hz, 3H), 0.83 (t, J = 7.5 Hz, 3H).
 13

C NMR (125 

MHz, CDCl3): ! 199.16, 142.51, 141.44, 138.00, 136.90, 132.34, 128.51, 138.36, 128.28, 127.80, 

126.35, 54.84, 39.47, 36.36, 32.60, 31.89, 31.61, 28.42, 28.15, 27.63, 26.18, 22.57, 22.45, 14.07, 

13.94. IR (neat): 2931, 1666, 1449, 1383, 1218, 703 cm
–1

. HRMS (EI) calcd for C29H36O ([M]
+
): 

400.2766. Found: 400.2758. 

 

Phenyl((1R*,1aR*,12S*,12aR*)-12-phenyl-1,1a,2,3,4,5,6,7,8,9,10,11,12,12a-tetradecahydro- 

cyclopropa[3,4]cyclopenta[1,2][12]annulen-1-yl)methanone (3ad). 

White powder, mp. 107–110 °C. 
1
H NMR (500 MHz, CDCl3): ! 7.64 (d, 

J = 8.0 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.32 (t, 

J = 8.0 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 2H), 4.43 

(d, J = 6.5 Hz, 1H), 2.84 (dd, J = 6.5, 2.5 Hz, 1H), 2.56 (td, J = 6.5, 2.5 

Hz, 1H), 2.53 (m, 1H), 2.43 (t, J = 2.5 Hz, 1H), 2.37 (m, 1H), 2.08 (m, 1H), 1.73 (m, 2H), 

1.65–1.48 (m, 3H), 1.43–1.18 (m, 12H).
 13

C NMR (125 MHz, CDCl3): ! 199.29, 142.45, 141.55, 

138.01, 137.35, 132.30, 128.57, 128.32, 128.25, 127.82, 126.39, 54.45, 38.41, 36.87, 32.44, 

25.44, 24.80, 24.66, 24.60, 24.53, 24.43, 24.21, 22.73, 22.43, 22.20. IR (KBr): 2924, 2851, 1667, 

1452, 1219, 708 cm
–1

. HRMS (EI) calcd for C29H34O ([M]
+
): 398.2610. Found: 398.2621. 

 

Phenyl((1R*,1aR*,15S*,15aR*)-15-phenyl-1a,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15a-hexadeca- 

hydro-1H-cyclopropa[3,4]cyclopenta[1,2][15]annulen-1-yl)methanone (3ae). 

Pale yellow solid, mp.110–114 °C. 
1
H NMR (500 MHz, CDCl3): ! 7.61 

(d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.34 (m, 4H), 7.27 (t, J = 

7.0 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 4.45 (d, J = 6.5 Hz, 1H), 2.80 (dd, 

J = 6.5, 2.5 Hz, 1H), 2.54 (td, J = 6.5, 2.5 Hz, 1H), 2.38 (t, J = 2.5 Hz, 

1H), 2.33 (m, 1H), 2.17 (m, 2H), 1.71 (m, 1H), 1.56 (m, 2H), 1.43–1.23 (m, 20H). 
13

C NMR (125 

MHz, CDCl3): ! 199.29, 142.57, 141.56, 138.02, 136.98, 132.31, 128.54, 128.35, 128.26, 127.82, 
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126.36, 55.11, 39.07, 36.65, 32.56, 27.75, 27.68, 27.64, 27.22, 27.06, 26.91, 26.86, 26.37, 26.30, 

26.23, 25.97. IR (KBr): 2927, 2855, 1664, 1640, 1450, 1383, 1222, 1023, 703 cm
–1

. HRMS (ESI) 

calcd for C32H41O ([M+H]
+
): 441.3152. Found: 441.3140. 

 

((1R*,4S*,5R*,6R*)-2-Isopropyl-3-methyl-4-phenylbicyclo[3.1.0]hex-2-en-6-yl)(phenyl)me- 

thanone (3af, major) 

Yellow viscous oil. 
1
H NMR (500 MHz, CDCl3): ! 7.61 (d, J = 7.5 Hz, 2H), 

7.45 (t, J = 7.5 Hz, 1H), 7.33 (m, 4H), 7.26 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 

7.5 Hz, 2H), 4.31 (d, J = 6.5 Hz, 1H), 2.79 (m, 2H), 2.53 (td, J = 6.5, 3.0 Hz, 

1H), 2.33 (t, J = 3.0 Hz, 1H), 1.54 (s, 3H), 1.13 (d, J = 6.5 Hz, 3H), 1.12 (d, J = 6.5 Hz, 3H).
 13

C 

NMR (125 MHz, CDCl3): ! 199.07, 146.84, 142.34, 138.02, 132.36, 130.52, 128.50, 128.40, 

128.32, 127.80, 126.37, 57.16, 36.16, 35.89, 33.10, 27.30, 21.69, 21.18, 12.26. IR (KBr): 2956, 

1665, 1449, 1219, 698 cm
–1

. HRMS (EI) calcd for C23H24O ([M]
+
): 316.1827. Found: 316.1833. 
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