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Preface

Vibronic coupling or electron-vibration coupling is intrinsic to molecules and solids. The

vibronic coupling has been considered to play an important role in many phenomena such

as, for instance, the Jahn–Teller effect, absorption and emission spectra, superconductiv-

ity, chemical reaction, and so on. Therefore the vibronic coupling have been investigated

extensively in molecules and solids. In this thesis, the author concentrates on the vibronic

couplings in molecules.

In order to discuss the vibronic couplings in concrete systems, we must know the

vibronic coupling constants. However, in many systems, the vibronic coupling constants

have not been precisely determined. Sometimes several couplings have been proposed for

one system. For example, fullerene (C60) is one of such systems. Thereby it is desired

to establish robust theoretical method to derive the vibronic coupling constants. The

vibronic coupling density obtained from the electronic and vibrational structures has

been proposed as a useful concept to explain the vibronic coupling. The vibronic coupling

density gives us a local picture of the vibronic couplings, which allows us to control the

vibronic couplings more easily.

This thesis aims to develop the theory of the vibronic coupling and to apply the theory

to several molecules. In part I, two fundamental problems in the Jahn–Teller effect, the

origin of the Jahn–Teller distortion and the isotope effect on the Jahn–Teller system,

are studied. In part II, the vibronic coupling constants of C−60 and C60 derivatives are

evaluated and analyzed in terms of the vibronic coupling density. The vibronic coupling

density of C60 for the reaction mode is proposed as a chemical reactivity index. In part III,

from the view point of the vibronic coupling, several properties of molecules are discussed.

The author hopes that present thesis will contribute to development of the theory to

deal with the vibronic couplings in molecules and solids.
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General Introduction

0.1 Vibronic couplings in molecules

The vibronic (electron-vibration) coupling or electron-phonon coupling is one of the funda-

mental couplings in molecules and solids, and it plays an important role in the Jahn–Teller

effect, absorption and emission spectra, charge transport, superconductivity, ferroelectric-

ity, chemical reaction, and so on [1–7]. Therefore, insight into the vibronic couplings is

crucial to understand these phenomena. The aim of this thesis is to develop the theory

of vibronic coupling in molecules and to apply the vibronic coupling to several systems.

In this section, we introduce the vibronic coupling and vibronic Hamiltonian. The

molecular Hamiltonian is written as

H = Tn(Q) +He(r,Q), (1)

He(r,Q) = Te(r) + Uee(r) + Uen(r,Q) + Unn(Q), (2)

where r is a set of electronic coordinates, Q a set of nuclear coordinates, Tn the nuclear

kinetic energy, Te the electronic kinetic energy, Uee the Coulomb interaction between elec-

trons, Uen the Coulomb interaction between electrons and nuclei, and Unn the Coulomb

interaction between nuclei. In this thesis, we choose a closed-shell system with the equi-

librium geometry as the reference system [8]. For the nuclear coordinates Q, the mass-

weighted normal coordinates of the reference system is used. The origin of the normal

coordinates Q = 0 indicates the equilibrium geometry of the reference system. Expand-

ing the electronic Hamiltonian (2) with respect to the normal coordinates Q around the

reference geometry Q = 0 up to the second order, we obtain

He(r,Q) = He(r,0) +
∑
iΓγ

ViΓγQiΓγ +
1

2

∑
iΓ′γ′jΓ′′γ′′

WiΓ′γ′jΓ′′γ′′QiΓ′γ′QjΓ′′γ′′ , (3)

where Γ is an irreducible representation of the point group of the reference system G, γ

is a row of Γ, and i distinguishes the Γγ modes with different frequencies. The second

1



and the third terms in the right hand side are called the linear and the quadratic vibronic

couplings, respectively [1–3, 8]. The electronic parts of the vibronic couplings, ViΓγ and

WiΓ′γ′jΓ′′γ′′ , are defined by

ViΓγ =

(
∂He(r,Q)

∂QiΓγ

)
0

, (4)

WiΓ′γ′jΓ′′γ′′ =

(
∂2He(r,Q)

∂QiΓ′γ′∂QjΓ′′γ′′

)
0

. (5)

The representations are assumed to be real. Since Γ′ ⊗ Γ′′ is reducible in general, the

electronic and vibrational parts of the quadratic terms can be symmetrized [1, 8].

{WiΓ′jΓ′′}Γγ =
∑

Γ′γ′Γ′′γ′′
WiΓ′γ′jΓ′′γ′′〈Γ′γ′Γ′′γ′′|Γγ〉, (6)

{QiΓ′ ⊗QjΓ′′}Γγ =
∑

Γ′γ′Γ′′γ′′
QiΓ′γ′QjΓ′′γ′′〈Γ′γ′Γ′′γ′′|Γγ〉, (7)

where 〈Γ′γ′Γ′′γ′′|Γγ〉 is a Clebsch–Gordan coefficient of G [9]. We assume that each

irreducible representation Γ does not appear more than once in Γ′⊗Γ′′. Substituting Eqs.

(6) and (7) into Eq. (3), we obtain

He(r,Q) = He(r,0) +
∑
iΓγ

ViΓγQiΓγ +
1

2

∑
iΓ′jΓ′′

∑
Γγ

{WiΓ′jΓ′′}Γγ {QiΓ′ ⊗QjΓ′′}Γγ . (8)

Hereafter, Eq. (8) is used as the electronic Hamiltonian He in the molecular Hamiltonian

H (1).

The eigenstates of the molecular Hamiltonian (1), which are called vibronic states, are

written by using the crude adiabatic approximation [6,8,10]. Within the crude adiabatic

approximation, the set of the electronic eigenstates {|ψαΓγ〉} of He(r,0) is used as the

basis set of the total wavefunction, which gives the relationship

He(r,0)|ψαΓγ〉 = EαΓ|ψαΓγ〉, (9)

where α distinguishes the Γγ electronic states. The vibronic states are represented by

|ΨμΛλ〉 =
∑
αΓγ

|ψαΓγ〉|χμΛλ
αΓγ〉, (10)

where Λ is an irreducible representation, λ is a row of the representation Λ, and μ distin-

guishes the Λλ states.

The Hamiltonian matrix with the electronic basis set {|ψαΓγ〉} is expressed by(
Ĥ
)
mn

= Emδmn + Tn(Q)δmn +
∑
iΓγ

(ViΓγ)mn QiΓγ

+
1

2

∑
iΓ′jΓ′′

∑
Γγ

(
{WiΓ′jΓ′′}Γγ

)
mn

{QiΓ′ ⊗QjΓ′′}Γγ , (11)

2



where the electronic states αΓγ are replaced bym,n for simplicity, (ViΓγ)mn = 〈ψm|ViΓγ|ψn〉

are the linear vibronic coupling constants (VCC), and ({WiΓ′jΓ′′}Γγ)mn = 〈ψm|{WiΓ′jΓ′′}Γγ|ψn〉

are the quadratic VCCs. The Hamiltonian matrix (11) does not have nonadiabatic terms

which appear in the Born–Oppenheimer or Born–Huang approximations [6, 8, 10]. More-

over, the potential terms are written by simple polynomials of the normal coordinates.

Therefore, physical meaning of each term in the Hamiltonian matrix (11) is clear and the

Hamiltonian matrix is suitable for analytical treatment.

From the selection rule [9], we obtain the modes with nonzero vibronic couplings.

When the electronic states m = (αΓγ) and n = (βΓ′γ′) belong to different eigenenergies,

the vibrational modes whose irreducible representations are included in the direct product

Γ ⊗ Γ′ are active. If the eigenstates m,n belong to the same eigenenergy (m = (αΓγ),

n = (αΓγ′)), the electronic state couples to the modes whose irreducible representations

are included in the symmetric product [Γ2]. Applying the Wigner–Eckart theorem [9] to

the vibronic coupling constants,

〈
ψαΓγ

∣∣ViΓ̄γ̄

∣∣ψβΓ′γ′
〉

= V αΓβΓ′
iΓ̄

〈Γγ|Γ̄γ̄Γ′γ′〉, (12)〈
ψαΓγ

∣∣{WiΓ1jΓ2}Γ̄γ̄
∣∣ψβΓ′γ′

〉
= W αΓβΓ′

ijΓ̄
〈Γγ|Γ̄γ̄Γ′γ′〉, (13)

where Γ̄ is an irreducible representation, and γ̄ is a row of Γ̄.

Next, the electronic eigenenergy of interest is assumed to be separated from other

ones. For a nondegenerate electronic state |ψαΓ〉, all of the totally symmetric modes are

active. Thereby, the vibronic Hamiltonian is given by

Ĥ = EαΓ +
∑
iΓ̄γ̄

1

2

(
P 2
iΓ̄γ̄ + ω2

iΓ̄Q
2
iΓ̄γ̄

)
+
∑
i

ViAQiA, (14)

where the linear VCC V αΓ
iA is expressed by ViA, A indicates the totally symmetric repre-

sentation, cross terms of the quadratic couplings are neglected, and ω2
iΓ̄

= WαΓαΓ
iiΓ̄

. Eq.

(14) is the Hamiltonian for the displaced oscillators.

For a degenerate electronic state |ψαΓγ〉, the vibronic Hamiltonian becomes

Ĥ =

⎡
⎣EαΓ +

∑
iΓ̄γ̄

1

2

(
P 2
iΓ̄γ̄ + ω2

iΓ̄Q
2
iΓ̄γ̄

)⎤⎦ Ĉ0

+
∑
iΓ̄γ̄

ViΓ̄QiΓ̄γ̄ĈΓ̄γ̄ +
∑

iΓ1jΓ2

∑
Γ̄γ̄ �=A

WijΓ̄ {QiΓ1γ1 ⊗QjΓ2γ2}Γ̄γ̄ ĈΓ̄γ̄ , (15)

where Ĉ0 =
∑

γ |ψαΓγ〉〈ψαΓγ| is the unit matrix, and ĈΓ̄γ̄ is the matrix whose elements

3



are the Clebsch–Gordan coefficients 〈Γγ|Γ̄γ̄Γγ′〉. This Hamiltonian is the starting point

to discuss the Jahn–Teller effect.

0.2 The Jahn–Teller effect

In 1937, H. A. Jahn and E. Teller proved a theorem on the instability of the degenerate

system (Jahn–Teller theorem) [11]:

All non-linear nuclear configurations are therefore unstable for an orbitally

degenerate electronic state.

More rigorous theorem is given elsewhere [1–3]. If the Jahn–Teller theorem is fulfilled, the

system distorts and is stabilized. This distortion reduces the symmetry of the system and

the degeneracy of the electronic state is lost. This phenomenon is called the Jahn–Teller

effect.

As an example, we discuss a system with C3v or D3h symmetry. The electronic state

is assumed to be doubly degenerate E. From the selection rule, the system couples to

totally symmetric a1 modes and doubly degenerate e modes. If the system has one e mode

and does not have the couplings to the a1 modes, the system is called E ⊗ e Jahn–Teller

system [1,3, 8]. The E ⊗ e Jahn–Teller Hamiltonian is written as

Ĥ =
∑
γ=θ,ε

1

2

(
P 2
γ + ω2

EQ
2
γ

)
σ̂0 + VE

⎛
⎝Qθ Qε

Qε −Qθ

⎞
⎠+WE

⎛
⎝Q2

θ −Q2
ε −2QθQε

−2QθQε −(Q2
θ −Q2

ε)

⎞
⎠ ,(16)

where σ̂0 is the 2 × 2 unit matrix, and the electronic eigenenergy EαΓ in Eq. (15) is

removed since it is a constant.

The adiabatic potential energy surface clearly shows the reason of the instability of

the degenerate system with high symmetry. The potential energy surface is obtained by

diagonalizing the potential term of Eq. (16). Figure 1 shows the potential energy surface

without the quadratic vibronic coupling, that is, with WE = 0. This potential has a

conical intersection at the origin of the coordinates where the symmetry of the system is

high and consists of a one-dimensional trough in the lower sheet. Therefore, the system is

not stable at the origin and has a distorted structure around the trough. The symmetry

of the distorted structure is lower than that of the reference geometry Q = 0. The

gap between the conical intersection and the minima EJT = V 2
E/(2ω

2
E) (Fig. 1) is called
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Figure 1: The adiabatic potential energy surface of the linear E⊗ e Jahn–Teller system.

the Jahn–Teller stabilization energy. This distortion is generally called the Jahn–Teller

distortion.

Figures 2(a) and (b) show the potential energy surface and contour of the lower sheet

with finiteWE, respectively. The quadratic coupling generates the warping of the potential

energy surface. The lower surface has three minima separated by saddle around the conical

intersection (Fig. 2 (b)). With sufficiently large quadratic coupling, the system is localized

at one of the three minima.

The Jahn–Teller distortion gives rise to the orbital mixing, which is caused by the off-

diagonal vibronic couplings between these orbitals. The change of the orbital accompanied

by the Jahn–Teller distortion is a key in the photoactivation process of a photocatalyst,

V2O5/SiO2. The study on the V2O5/SiO2 is presented in chapter 1 in Part III.

Next, we take into account the kinetic energy in Eq. (16) (dynamic Jahn–Teller effect)

and discuss the vibronic state (10). The vibronic state is governed by the structure of the

adiabatic potential energy surface [1, 3]. Especially, existence of the conical intersection

plays a crucial role in the dynamic Jahn–Teller problem. Longuet-Higgins et al. noted

that the phase factor of the electronic wavefunction changes by π due to an adiabatic

rotation around the conical intersection [12–14]. In order to keep the singlevaluedness of

the vibronic state, the vibrational part also has to change the sign to cancel the phase

change of the electronic part. This phase change turns out to be an example of the Berry

phase [15] which appears in various areas and characterizes the phenomena [16]. Ham

has established manifestation of the Berry phase in the Jahn–Teller effect [17]. With the
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(a) (b)

Figure 2: (a) Adiabatic potential energy surface of the quadratic E ⊗ e Jahn–Teller

system. (b) Contour plot of the lower-sheet of the adiabatic potential energy surface of

the quadratic E ⊗ e Jahn–Teller system.

Berry phase, the order of the vibronic levels of the E ⊗ e Jahn–Teller system is given as

follows:

E,A1(2), A2(1), E, E, · · · , (17)

where A1, A2, and E are the irreducible representations. On the other hand, if the Berry

phase is ignored, the order of the representations of the vibronic levels is given by

A1, E,A1(2), A2(1), E, E, · · · . (18)

The role of the conical intersection or Berry phase in various Jahn–Teller systems has been

extensively studied [18–22]. One of the purposes of this thesis is to give a new insight into

the dynamics around the conical intersection.

From this point of view, isotope effect of the Jahn–Teller system is an interesting

problem because the isotopic substitution retains the degeneracy of the electronic state.

Due to the isotopic substitution, the kinetic energy should change, while the potential

term does not. Therefore, as in the case of the original Jahn–Teller system, the isotopomer

has a one-dimensional trough. The isotope-substituted system is regarded as a generalized

Jahn–Teller system. Experimentally, isotope substituted system has been investigated by

several authors [23–29]. The isotope effect has been discussed based on a preferred Jahn–

Teller distortion in terms of the change in the zero-point energy. However, the origin of

6



such a distortion has not been revealed completely. Moreover, manifestation of the conical

intersection in the isotope effect has not been fully understood hitherto. The isotope effect

on the E ⊗ e Jahn–Teller system is analyzed and discussed in detail in chapter 2 in Part

I.

0.3 Vibronic coupling density

Origin of the Jahn–Teller distortion is still an important topic in the Jahn–Teller effect

[30, 31]. One naive explanation on the origin of the Jahn–Teller effect is given on the

basis of the on-site Mulliken charge. In the case of a triangular molecule X3, it seems

possible to explain the Jahn–Teller distortion using the on-site charge because of the

asymmetric distribution of the Mulliken charge. However, in the case of a cubic molecule

X+
8 , the distribution of charge is symmetric and it is impossible to discuss the Jahn–Teller

distortion based on the repulsion between on-site charge [30].

In order to reveal the origin of the Jahn–Teller distortion, the concept of the vibronic

coupling density (VCD) [8,32] is useful. First, we consider a diagonal element of vibronic

coupling constants, Vα = 〈ψm|Vα|ψm〉, where Vα is the electronic part of the linear vibronic

coupling operator (4), and iΓγ in Eq. (4) is replaced by α for simplicity. Integration of

the VCD ηα over three-dimensional space x gives the vibronic coupling constant (VCC)

Vα.

Vα =

∫
dxηα(x). (19)

The VCD ηα is given by the product of the electron density difference Δρ and the potential

derivative vα:

ηα(x) = Δρ(x)× vα(x), (20)

where Δρ is defined by the difference between the electron densities of the system ρ and

the reference system ρ0,

Δρ(x) = ρ(x)− ρ0(x), (21)

and vα by the derivative of the one-electron Coulomb potential u(x,Q) between an elec-

tron at x and all the nuclei at Q in the molecule with respect to the normal coordinate
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Qα,

vα(x) =

(
∂u(x,Q)

∂Qα

)
0

. (22)

The vibronic coupling density for an off-diagonal vibronic coupling, Vα = 〈ψiΓγ|Vα|ψiΓγ′〉,

is given by

ηα(x) = ργγ′(x)× vα(x). (23)

The overlap density ργγ′ is written as follows:

ργγ′(x) = N
∑

σ1···σN

∫
dr2 · · · drNψiΓγ(xσ1, r2σ2, · · · rNσN)ψiΓγ′(xσ1, r2σ2, · · · rNσN),(24)

where N is the number of electrons in the molecule, ri the coordinate of ith electron, σ

the z component of the electron spin, and ψiΓγ(xσ1, r2σ2, · · · rNσN) the electronic wave-

function. Since the VCD is calculated from the electronic and vibrational structures, the

VCD gives a local picture of the vibronic coupling, which enables us to discuss the origin

or the strength of the vibronic couplings. Sato et al. have analyzed the vibronic couplings

in hole-transporting materials of organic light-emitting device [33–36] and succeeded to

design novel hole- or electron-transporting materials [37,38]. One of the aims in this thesis

is to deepen the understandings of the physics of the vibronic couplings using the VCD.

The VCD analysis of Li3 and Li+8 is presented in chapter 1 in Part I. The VCD analysis

is also employed to explain the order of the vibronic couplings in C−60 (chapter 2 in Part

II), C60 derivatives used as electron-transporting materials of organic photovoltaic cells

(chapter 4 in Part II), and picene anion (chapter 3 in Part III). The VCD is used to

design high-spin organic amines in chapter 2 in Part III.

Moreover, based on the theory of Parr and Yang [39], Sato et al. has proposed the

VCD for the reaction mode as a chemical reactivity index [8,32]. Application of the VCD

for Diels–Alder reactions of C60 is presented in chapter 3 in Part II.

0.4 Vibronic couplings in C60

Fullerene (C60) is an interesting system in molecular science since it has the highest point

group symmetry, Ih. In addition, C60 has been paid to much attention because of its

various electronic properties, for instance, superconductivity and insulating property of
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the alkali-doped fullerides [40–44], ferromagnetism of tetrakis(dimethylamine)ethylene-

C60 [45]. Particularly, in connection with the electronic properties of the alkali-doped

fullerides, the vibronic coupling constants (VCC) or electron-phonon couplings [46] in C−60

anion has been intensively investigated. However, disagreement between the theoretical

and experimental works have been pointed out.

The first work on the vibronic couplings of C−60 was published by Varma et al. in

1991 [47], in which, they found that the electron-phonon couplings for the stretching

hg(7) and hg(8) modes are strong, while that for the bending hg(2) mode weak. This

order agrees with many theoretical results [48–52]. In 1995, Gunnarsson et al. evaluated

the coupling constants from the photoelectron spectrum [53]. Contrary to many works

described above, they concluded that the hg(2) mode has the largest electron-phonon cou-

pling. This result has been supported by some theoretical calculations [54] and derivation

from the experimental data [55, 56]. Moreover, the Jahn–Teller stabilization energy de-

pends on the individual methods. The theoretical values are in the range of 33.6 meV

to 51.0 meV. On the other hand, Gunnarsson’s experimental value is 88.2 meV. Thus

not only the order but also the absolute values of the vibronic coupling constants of C−60

have not been determined so far. To solve this problem, both the agreement between

theoretical and experimental vibronic constants and physical insight into the order of the

couplings are necessary. One of the aims of this thesis is to determine the VCCs in C−60.

Recently, new photoelectron spectrum of C−60 has been published by Wang et al. [57].

This spectrum is measured at lower temperature with higher resolution than the previous

one by Gunnarsson et al. In the above spectrum [57], fine structures which originate from

the vibronic couplings in C−60 are seen. Therefore, this spectrum can be a candidate that

gives an answer to the long standing problem.

Derivation from the photoelectron spectrum [57] and the density-functional theory

(DFT) calculations are presented in chapter 1 in Part II. The order of the VCCs is

explained in terms of the VCD in chapter 2 in Part II. The same DFT method is adopted

for the derivation of the coupling constants of C60 derivatives used in organic photovoltaic

cell as electron-transporting materials (chapter 4 in Part II).

9



0.5 Contents of the thesis

In this thesis, the author studies both fundamental vibronic problems and applications of

the vibronic couplings in molecules.

Part I deals with two problems on the Jahn–Teller effect. The first one is concerned

with the origin of the Jahn–Teller distortion. The second one is concerned with the isotope

effect on the isotope-substituted Jahn–Teller system.

In chapter 1, the origin of the vibronic couplings in Jahn–Teller systems is discussed.

We analyze the vibronic couplings in triangular and cubic molecules such as, Li3 and Li+8 .

The nonzero vibronic couplings for the Jahn–Teller modes of Li3 and Li+8 are explained

in terms of the vibronic coupling density (VCD). In the case of Li+8 , the electron density

difference Δρ on the bonds and overlap density ργγ′ on the faces are crucial for the eg

and t2g distortions, respectively. In the case of Li3, Δρ on the bond is important for the

Jahn–Teller distortion.

In chapter 2, isotope-substituted linear E ⊗ e Jahn–Teller model is analyzed. An

isotopomer X2Y of a triangular molecule X3 (X = H, D, Li, etc.) is treated. Isotopic-

substitution retains the one-dimensional trough in the adiabatic potential energy surface.

However, due to change of the mass in the kinetic energy term, the potential for the

pseudorotation is warped. This warped potential has two minima, which is in contrast

to the three minima of the quadratic E ⊗ e Jahn–Teller system. As a result, the vibronic

wavefunction is concentrated around the minima of the warped potential. Although the

point group symmetry of the isotopomer X2Y is no more than C2v, each vibronic level is

doubly degenerate. This degeneracy appears because of the additional parity symmetry

of the Hamiltonian. These results were also obtained from numerical calculations. The vi-

bronic coupling constants (VCC) of H3 and Li3 are calculated using the density-functional

theory (DFT) calculations. The DFT calculations support the possibility of observation

of the isotope effect on the isotopomers of these molecules.

Part II deals with the vibronic couplings in C−60 and derivatives.

In chapter 1, the VCCs of C−60 are evaluated from an experimental photoelectron

spectrum of C−60 and the DFT calculations. As a model Hamiltonian of C−60, we employ

the linear T1u ⊗ (2ag ⊕ 8hg) Jahn–Teller Hamiltonian. The vibronic state is obtained

diagonalizing the Jahn–Teller Hamiltonian numerically. Effect of the thermal excitation

is taken into account assuming that each C−60 is in the thermal equilibrium. The intensities
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of the photoelectron spectrum is calculated within the sudden approximation. From the

simulation of the photoelectron spectrum, it is clarified that the present stabilization

energy is smaller than the previous experimental value by 30 %. The VCCs for the hg(7)

and hg(8) modes turn out to be strong. On the other hand, the coupling for the hg(2)

is so weak that the electron-phonon coupling for the mode cannot be the strongest. The

coupling constants obtained from the DFT calculations agree well with the experimental

ones.

In chapter 2, the order of the vibronic couplings in C−60 are explained on the basis

of the VCD analysis. The VCD for the bending hg(2) mode is localized around atoms,

while that for the stretching hg(8) mode is delocalized on 6:6 C=C bonds. The localized

VCD is canceled out, and thus the coupling for the bending mode becomes weak. The

delocalized negative VCD contributes to the negative VCCs for the stretching modes.

The delocalized VCD on the bonds originates from the polarized Δρ. This polarized Δρ

appears due to the orbital relaxation.

In chapter 3, the concept of the VCD is applied to the analysis of the Diels–Alder reac-

tion of C60. Following the theory of Parr and Yang, the strength of the vibronic coupling

for the reactive mode can be regarded as an index of chemical reactivity. The distribution

of the VCD of C−60 is similar to that of ethylene monoanion. This result indicates that the

reactivity of C60 is similar to that of ethylene in the Diels–Alder reaction. Considering the

threefold degeneracy of the electronic state, C60 bears six ethylene moieties in its cage,

which is consistent with the existence of hexakis adducts.

In chapter 4, the VCCs of several C60 derivatives which are used as electron-transport

materials in organic photovoltaics are calculated. As the C60 derivatives, we treat [6,6]-

phenyl-C-61-butyric acid methyl ether (PCBM) and C60 pyrrolidines. The vibronic cou-

plings of C60 derivatives monoanions are close to the VCCs of C−60. The LUMOs of the

C60 derivatives originate from the t1u LUMO of a neutral C60. The electron density dif-

ferences Δρ of derivatives are localized on the C60 fragments. Consequently, the VCDs

for the effective modes are close to that of C−60.

Part III deals with miscellaneous applications of the theory of the vibronic coupling.

In chapter 1, the initial photoactivation process of a photocatalyst, dispersed V2O5/SiO2,

is studied. The active species has been known to be VO4 with C3v symmetry. The a2

HOMO and the e LUMO of the active species, VO4, do not have large orbital coefficients
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on the terminal oxygen in the ground state. Therefore, in the Franck–Condon state, it is

difficult to explain the reactivity of VO4. So far, a structural relaxation along the totally

symmetric V=O stretching modes has been taken into account, while the Jahn–Teller

distortion has not. In this work, the Jahn–Teller distortion of VO4 in the excited state

is considered. Accompanied with the Jahn–Teller distortion, the a2 HOMO and the e

HOMO-1 mix due to the vibronic coupling between these orbitals. Since the HOMO-1

has coefficients on the terminal oxygen, the HOMO has finite coefficients on the terminal

oxygen after the Jahn–Teller distortion. Thereby, the active center of VO4 is induced by

the Jahn–Teller effect.

In chapter 2, the relationship between the vibronic coupling and spin multiplicity of

the ground state of m-phenylene diamine derivative is discussed. The ground state of

m-phenylene diamine dication is triplet. However, m-phenylene diamine with a methoxy

group has a closed-shell singlet ground state. To recover the triplet state, the vibronic

coupling in the singlet state must be reduced. The VCC of the singlet state can be

controlled by introducing a substituent group. The reduction of the VCCs are discussed

on the basis of the VCD analysis.

In chapter 3, the author presents the calculations of the vibronic coupling constants of

picene in its anionic and the excited states and the VCD analysis. Using the theoretical

VCCs of picene molecule in the excited state, the electron energy loss spectrum of the

pristine picene is simulated at 20 K within the Franck–Condon approximation. The

simulated spectrum is compared with the experimental spectrum. Similarly, the VCCs

of picene molecule in the mono and the trianionic states are calculated. From our result,

the vibronic coupling of the monoanion is the strongest for the C=C stretching mode.

The VCC is analyzed in terms of the VCD. The coupling for the C=C stretching is

strong because of considerable overlap between the electron density difference Δρ and the

potential derivative v.
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Barentzen (Springer–VerlagBerlin and Heidelberg, 2009), p. 25.

[31] A. Ceulemans, E. Lijnen, P. W. Fowler, R. B. Mallion, and T. Pisanski, Proc. R.

Soc. A (2011).

[32] T. Sato, K. Tokunaga, and K. Tanaka, J. Phys. Chem. A 112, 758 (2008).

14



[33] T. Sato, K. Shizu, T. Kuga, K. Tanaka, and H. Kaji, Chem. Phys. Lett. 458, 152

(2008).

[34] K. Shizu, T. Sato, K. Tanaka, and H. Kaji, Chem. Phys. Lett. 486, 130 (2010).

[35] K. Shizu, T. Sato, K. Tanaka, and H. Kaji, Org. Elec. 11, 1277 (2010).

[36] T. Sato, K. Shizu, K. Uegaito, N. Iwahara, K. Tanaka, and H. Kaji, Chem. Phys.

Lett. 507, 151 (2011).

[37] K. Shizu, T. Sato, K. Tanaka, and H. Kaji, Appl. Phys. Lett. 97, 142111 (2010).

[38] K. Shizu, T. Sato, A. Ito, K. Tanaka, and H. Kaji, J. Mater. Chem. 21, 6375 (2011).

[39] R. G. Parr, and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).

[40] O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

[41] O. Gunnarsson, Alkali-Doped Fullerides: Narrow-Band Solids with Unusual Proper-

ties (World ScientificSingapore, 2004).

[42] Y. Iwasa, and T. Takenobu, J. Phys.: Condens. Matter 15, R495 (2003).

[43] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod. Phys. 81, 943

(2009).

[44] N. Manini, and E. Tosatti, Jahn–Teller and Coulomb correlations in fullerene ions

and compounds (LAP Lambert Academic PublishingSaarbrücken, 2010).

[45] P. M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. holczer, S. Donovan, G.
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Chapter 1

Origin of the Jahn-Teller Distortions:

Vibronic Coupling Density Analysis

for Jahn-Teller Molecules

1.1 Why is a Jahn-Teller molecule distorted?

In 1937 Jahn and Teller stated a theorem that is known as Jahn-Teller theorem nowadays

[1]:

All non-linear nuclear configurations are therefore unstable for an orbitally

degenerate electronic state.

This theorem is restated that a nonlinear molecule with a degenerate electronic state

is distorted into a nuclear configuration without degeneracy. Since a molecule with a

symmetry axis Cn or Sn (n ≥ 3) can have an electronic degeneracy, such a molecule is

distorted into a low symmetry structure. The symmetry-lowering distortion is called a

Jahn-Teller distortion.

Jahn and Teller proved this theorem by making a thorough investigation for all the rel-

evant point groups [1]. Recently Ceulemans and Lijnen have proved the theorem elegantly

employing permutational groups [2, 3].

The vibrational mode Γv which is responsible for the Jahn-Teller distortion in a Jahn-

Teller molecule with a degenerate electronic state Γe is predicted by the selection rule

Γv =
[
Γ2
e

]
− A1, (1.1)
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Figure 1.1: Structure of the model Jahn-Teller molecules.(a) Triangle and (b) cubic.

where [Γ2] denotes the symmetric product representation of the irreducible representation

Γ, and A1 the totally symmetric representation [4]. The selection rule is based on an

integral of a vibronic coupling [5]〈
ΨΓeγe

∣∣∣∣∣
(

∂H

∂QΓvγv

)
R0

∣∣∣∣∣ΨΓeγ′
e

〉
, (1.2)

where H is a molecular Hamiltonian, γ distinguishes the degenerate representation Γ,

QΓvγv denotes a mass-weighted normal coordinate of the Jahn-Teller active mode Γvγv,

ΨΓeγe degenerate electronic wavefunction, andR0 undistorted symmetric nuclear-configuration.

The integral can be factorized as a product between a Clebsch-Gordan coefficient 〈Γeγe|Γeγ
′
eΓvγv〉

and a reduced matrix element 〈ΓE||Γv||ΓE〉. Therefore, the vibronic coupling constant

VΓe×Γv depends on Γe and Γv, not on γe and γv.

The displacement of the Jahn-Teller distortion is expressed by VΓe×Γv . For a doubly

degenerate electronic state E in a triangle molecule (Fig. 1.1(a)), doubly degenerate

vibrational mode e couples with the electronic state. A Hamiltonian for the E × e Jahn-

Teller molecule is given by

HE×e = VE×e

⎛
⎝ Qθ −Qε

−Qε −Qθ

⎞
⎠+

1

2
ω2
(
Q2

θ +Q2
ε

)⎛⎝ 1 0

0 1

⎞
⎠ , (1.3)

where Qθ and Qε are the mass-weighted normal coordinates, and ω the vibrational fre-

quency of the Jahn-Teller active mode [6, 7]. The eigen values of HE×e is obtained as

E±E×e(Qθ, Qε) =
1

2
ω2
(
Q2

θ +Q2
ε

)
± VE×e

∣∣Q2
θ +Q2

ε

∣∣ = 1

2
ω2ρ2 ± |VE×e| ρ, (1.4)

where Qθ = ρ cosφ and Qε = ρ sinφ. For the lower energy

E−E×e(ρ) =
1

2
ω2

(
ρ− |VE×e|

ω2

)2

− V 2
E×e
2ω2

, (1.5)
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the molecule relaxes by the Jahn-Teller distortion

ρE×e =
|VE×e|
ω2

, (1.6)

and the stabilization energy (Jahn-Teller energy) is

EE×e =
V 2
E×e
2ω2

. (1.7)

Accordingly the Jahn-Teller distortion is dominated by the vibronic coupling constant.

For a cubic X8 cluster, when a three-fold degenerate electronic state T couples with

a three-fold degenerate vibrational mode t2, a Hamiltonian of the T × t2 Jahn-Teller

molecule is written by

HT×t2 = VT×t2

⎛
⎜⎜⎜⎝

0 Qxy Qzx

Qxy 0 Qyz

Qzx Qyz 0

⎞
⎟⎟⎟⎠+

1

2
ω2
(
Q2

xy +Q2
zx +Q2

yz

)
⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ , (1.8)

where VT×t2 is a vibronic coupling constant, Qxy, Qzx, and Qyz are mass-weighted normal

coordinates of the t2 mode [6].

Figure 1.2: Symmetry adapted molecular orbitals of the triangle molecule.

From Eq. (1.2), the vibronic coupling constant corresponds to a force acting on the

molecular framework. We consider the simplest model Jahn-Teller molecule X3 in which

an s atomic orbital |i〉 (i = 1, 2, 3) is located on each site. What is the origin of the

driving force of the Jahn-Teller distortion? A näıve explanation would be as follows: since

degenerate frontier orbitals are

|θ〉 =
1√
6
(2 |1〉 − |2〉 − |3〉) , (1.9)

|ε〉 =
1√
2
(|3〉 − |2〉) , (1.10)
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and the on-site density is not totally symmetric, the resulting positive and negative Mul-

liken charges are responsible for the Jahn-Teller distortion.

However, there is a counter example for which such an explanation cannot be valid.

In the case of a cubic X8 cluster with an s atomic orbital |i〉 (i = 1, 2, · · · , 8) on each

site, since three-fold degenerate orbitals are

|x〉 =
1

2
√
2
(|1〉+ |2〉+ |3〉+ |4〉 − |5〉 − |6〉 − |7〉 − |8〉) , (1.11)

|y〉 =
1

2
√
2
(|1〉+ |2〉 − |3〉 − |4〉+ |5〉+ |6〉 − |7〉 − |8〉) , (1.12)

|z〉 =
1

2
√
2
(|1〉 − |2〉 − |3〉+ |4〉+ |5〉 − |6〉 − |7〉+ |8〉) , (1.13)

and all the on-site density are equal to 1/8, there occurs no charge polarization in spite

of the orbital degeneracy.

The Mulliken population analysis fails to explain the driving force of the Jahn-Teller

distortion in the X8 molecule.

Figure 1.3: Symmetry adapted molecular orbitals of the cubic molecule.

(a) (b) (c)

1

2

3

4

5

6

7

8

Figure 1.4: On-site charge distributions of the model Jahn-Teller molecules. (a) (b) of

the triangle molecule, and (c) cubic.
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1.2 Vibronic coupling density analysis

1.2.1 Definitions

Vibronic coupling density η [7–11] for a E × e Jahn-Teller molecule and non Jahn-Teller

molecule (diagonal vibronic interaction, see Eq.(1.3)) is defined by

η(r) = Δργe(r)× v(r), (1.14)

where Δρ is the electron density difference between the degenerate electronic state Ψ and

a non-degenerate (neutral or ionic) reference electronic state. The reference configuration

R0 in Eq.(1.2) is defined by an equilibrium configuration for the reference electronic state

Ψ0.

Δρ(r) = ρ(r)− ρ0(r), (1.15)

where ρ(r) and ρ0(r) are one-electron densities for Ψ and Ψ0, respectively. v(r) is one-

electron part of the potential derivative with respect to QΓvγv :(
∂Une

∂QΓvγv

)
R0

=
N∑
i

v(ri) =
N∑
i

M∑
A=1

vA(ri), (1.16)

where Une is the nuclear-electronic potential, M and N are the numbers of the nuclei and

electrons, respectively.

For a T × t2 Jahn-Teller molecule (off-diagonal vibronic interaction, see Eq.(1.8)),

η(r) = ργeγ′
e
(r)× v(r), (1.17)

where ργeγ′
e
(r) is a overlap density defined by

ργeγ′
e
(r) =

∫
· · ·
∫

dr2 · · · drNΨ∗γe(r, r2, · · · , rN)Ψγ′
e
(r, r2, · · · , rN). (1.18)

Vibronic coupling constant and vibronic coupling density has the following relation:

VΓe×Γv =

∫
drη(r). (1.19)

Therefore, η describes a local picture of the vibronic coupling in terms of the electronic

and vibrational structures through Eqs. (1.14) and (1.17). Moreover, atomic vibronic

coupling density ηA is obtained by replacing v by vA in Eqs. (1.14) and (1.17). Atomic

vibronic coupling constant is defined by

VA =

∫
drηA(r), (1.20)
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and

VΓe×Γv =
M∑

A=1

VA. (1.21)

Derivation of vibronic coupling density is discussed in detail in Ref. [7].

Vibronic coupling density η contains zero component η′ which yield no contribution to

V because of the symmetry of v and ρ around each atom [12]. Reduced vibronic coupling

density (RVCD) η̄ is defined by

η̄(r) = η(r)− η′(r), (1.22)

and

V =

∫
drη(r) =

∫
drη̄(r). (1.23)

1.2.2 Li+8

As a real system for X8, we calculated a cluster ion Li+8 . Geometry optimization and

vibrational analysis of Li8 was performed at RHF/6-31G(d) level of theory. Electronic

state of Li+8 was calculated at state-averaged CAS(5,3)/6-31G(d) level of theory. The

geometry is constrained in a cubic structure. For the optimizations, vibrational analysis,

and force calculations, we used Gaussian 09 [13].

Table 1.1: Vibronic coupling constants of Li+8 .

Frequency(cm−1) VCC(10−4 a.u.)

a1g(1) 224.5 -11.3209

eg(1) 272.1 -8.7535

t2g(1) 46.4i -2.2199

t2g(2) 232.9 -3.4048

The VCCs of Li+8 are tabulated in Table 1.2.2. We discuss the t2g(2) and eg(1) modes.

Figures 1.5 shows the VCD η, zero component η′, and RVCD η̄. There are on-site

symmetric negative and positive regions in the distribution of the VCD and RVCD, as

well as large negative regions on the bonds. Although the on-site symmetric VCD cancels

out, the negative VCD on the bonds contributes to the negative V of the t2g(2) mode.
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(a) (b) (c)

Figure 1.5: Vibronic coupling density for t2g(2) mode of Li+8 (isovalue:1.0 × 10−6 a.u.).

(a) VCD η(r), (b) zero component η
′
(r), and (c) RVCD η̄(r). Light grey is positive, and

dark gray is negative.

(a) (b)

(c) (d)

Figure 1.6: Vibronic coupling density analysis for t2g(2) mode of Li+8 . (a) t2g(2) mode, (b)

potential derivative v(r) (isovalue:1.0×10−2 a.u.), (c) overlap density ρx,y(r) (isovalue:1.0×

10−3 a.u.), and (d) VCD η(r) (isovalue:1.0× 10−6 a.u.).
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(a) (b)

(c) (d)

Figure 1.7: Vibronic coupling density analysis for eg(θ) mode of Li+8 . (a) eg(θ) mode, (b)

potential derivative v(r) (isovalue:1.0 × 10−2 a.u.), (c) electron density difference Δρ(r)

(isovalue:5.0× 10−3 a.u.), and (d) VCD η(r) (isovalue:2.0× 10−6 a.u.).
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The negative VCD on the bonds originate from the distribution of the overlap density.

In Fig. 1.6(b), the potential derivative v has a symmetric on-site distribution, while the

overlap density ρx,y (Fig. 1.6(c)) has a spherically-symmetric on-site distribution as well

as a distribution on the bonds. The spherically symmetric ρx,y does not contribute to V

because of the on-site symmetry of v.

Therefore the vibronic coupling originates from the on-bond distributions of the over-

lap density. Mulliken population analysis smears these effects. As in the case of the t2g(2)

mode,

the potential derivative for the eg mode has symmetric on-site distribution (Fig. 1.7

(b)). The electron density difference Δρ (Fig. 1.7 (c)) has a symmetrical on-site distri-

bution and a distribution on the face of the cube. This density on the face couples to

the potential derivative v. Consequently the vibronic coupling density has large negative

distribution on the face which contribute to the negative V for the eg mode.

1.2.3 Li3

As a real system for X3, we took a triangle cluster Li3. Geometry optimization and

vibrational analysis of Li+3 was performed at RHF/6-31G(d) level of theory. Electronic

state of Li3 was calculated at state-averaged CAS(1,2)/6-31G(d) level of theory.

Table 1.2: Vibronic coupling constants of Li3.

Frequency(cm−1) VCC(10−4 a.u.)

a1’(1) 298.0 -8.3947

e’(1) 240.8 -5.2665

In Table 1.2 and 1.3, the VCCs and AVCC for e′(1) mode of Li3 are summarized,

respectively.

We focus on the Jahn-Teller-active e′ θ mode. Figures 1.8 shows the VCD analysis of

the Li3. Apparently Mulliken population analysis for this case appears to be succeeded.

However, this is not the case also. Because of the on-site symmetry of v, the on-site

distribution of the electron density difference Δρ does not contribute to the VCC. It is

clear that the on-bond distributions of the electron density difference does contribute to

the VCC.
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Table 1.3: Atomic vibronic coupling constants of Li3.

AVCC(10−4 a.u.)

Li(1) -1.57163693

Li(2) -3.41907866

Li(3) -3.41907866

(a) (b)

(c) (d)

Figure 1.8: Vibronic coupling density analysis for e
′
θ mode of Li3. (a) e

′
θ mode, (b)

potential derivative v(r) (isovalue:1.0× 10−2 a.u.), (c) electron density difference between

Li+3 Δρθ(r)

(isovalue:2.0× 10−3 a.u.), and (d) VCD η(r) (isovalue:5.0× 10−6 a.u.).
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1.3 Non-Jahn-Teller molecules

When the electronic state of a molecule changes, there occurs vibronic interactions with

totally symmetric modes even for non-Jahn-Teller molecules, since the symmetric repre-

sentation of any irreducible representation contains a totally symmetric irreducible rep-

resentation.

The VCD analysis has been applied for a naphthalene anion [11]. It has been found

that orbital relaxation is crucial in the vibronic couplings.

Vibronic couplings play an important role in a carrier-transporting molecule for organic

light-emitting diodes. They inhibit carrier transports, and give rise to a reduction of the

mobility and an energy dissipation due to the inelastic scattering of a carrier with phonons.

In order to investigate carrier-transporting molecules, the VCD analysis has been applied

for hole-transporting molecules, TPD [14], TPA [12], and CBP [15]. It has been found that

strong localization of the electron density difference on atoms give rise to weak vibronic

couplings. On-bond density gives rise to increase of vibronic couplings. Based on this

finding, a novel electron-transporting molecule has been designed [16]. The VCD analysis

has been also applied for other fields, a single electron transport through molecular wires,

oligothiophenes [17], the simulation of an inelastic electron tunneling spectra [18], and

well-known organic donor, BEDT-TTF [19].

Pseudo Jahn-Teller molecules in which vibronic couplings with excited electronic con-

figurations give rise to a distortion or red shift in frequency are another important class of

non-Jahn-Teller molecules [6]. An application of the VCD analysis for pseudo Jahn-Teller

molecules will be discussed in the future.
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Chapter 2

Kinetic Localization in an

Isotope-Substituted Jahn–Teller

System

The Jahn–Teller effect has attracted much attention because it is not only one of the

intriguing topics in molecular physics but also crucial to the optical and magnetic prop-

erties of point defects, electronic properties of fullerides, and so on [1, 2]. Therefore, an

insight into a vibronic state is a key to reveal the properties of molecules and solids. The

structure of the adiabatic potential energy surface plays a crucial role in studies on the

Jahn–Teller effect. For instance, a warping of the potential surface gives rise to the lo-

calization of a vibronic wavefunction. The warping of the potential surface can originate

from quadratic vibronic couplings [1]. In this chapter, we propose a different mechanism

of the localization of kinetic origin in isotope-substituted Jahn–Teller systems. Substitut-

ing some of the nuclei by their isotopes, the degeneracy of the vibrational states is lifted.

On the other hand, the electronic states remain degenerate. In other words, the isotopic

substitution affects not on the potential energy term but on the kinetic energy term. The

isotope effect on the kinetic energy may play a role as the quadratic vibronic coupling in

the potential energy term in a Jahn-Teller system.

Isotope effects on Jahn–Teller systems have been observed in spectroscopic studies

[3–9]. In these investigations, the isotope effects have been explained on the basis of

the preferable Jahn–Teller distortion which arises through the zero-point energy [4, 8, 9].

However, the mechanism of the distortion induced by an isotope substitution has not
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been established. Moreover, in previous treatments, the role of the Berry phase in the

Jahn–Teller system [10] with an isotope substitution has not been fully discussed.

As an example of the Jahn-Teller system, we adopt a trimer X3 (X = H, D, Li, Na,

etc.) with D3h symmetry. In the Cartesian coordinates, the vibronic Hamiltonian which

incorporates the linear E ⊗ e Jahn–Teller interaction is written as

Ĥ =

(
9∑

i=1

p̂2i
2m0

+
9∑

i,j=1

Kij

2
xixj

)
σ̂0 −

9∑
i=1

xi (Fθ,iσ̂z + Fε,iσ̂x) , (2.1)

where xi and p̂i are the nuclear displacements and the conjugated momenta, Kij the

Hessian, Fγ,i(γ = θ, ε) the vibronic coupling for xi, m0 the mass of nucleus X, σ̂0 the

2× 2 unit matrix, and σ̂x and σ̂z the Pauli matrices. Fγ’s are chosen so that the vibronic

coupling constants to the mass-weighted a′1 and e′ modes are 0 and VE, respectively.

The vibronic Hamiltonian for the isotopomer X2Y is obtained replacing one of the mass

of X with that of an isotope Y in the kinetic energy term. The electronic state is unaffected

by the substitution, and the Hessian Kij and vibronic coupling Fγ do not change. The

symmetry of the substituted system is reduced from D3h to C2v. Therefore the a′1 and

e′ modes in the original system are mixed since a′1 ↓ C2v = a1 and e′ ↓ C2v = a1 ⊕ b1.

Consequently, the doubly degenerate electronic state couples to the two a1 modes and b1

mode. Passing from Eq. (2.1) to the vibronic Hamiltonian for the substituted system in

the mass-weighted normal coordinate,

Ĥ =
∑
α

1

2

(
P̂ 2
α + ω2

αQ
2
α

)
σ̂0 +

2∑
i=1

Va1(i)Qa1(i)σ̂z + Vb1Qb1σ̂x, (2.2)

where α = a1(1), a1(2), b1, Qα and P̂α are the mass-weighted normal coordinates and the

conjugated momenta, respectively, ωα the frequency of the mode α, and Vα the vibronic

coupling constants. The Hamiltonian has one-dimensional trough (Fig. 2.1). The stabi-

lization energy is the same as that of Eq. (2.1) EJT because the potential terms do not

change upon the isotope substitution.

Although the vibronic Hamiltonian (2.2) lose the rotational symmetry SO(2) in the

linear E⊗e Jahn–Teller Hamiltonian (2.1), each eigenstate of Hamiltonian (2.2) is doubly

degenerate. To prove the degeneracy, we introduce a unitary operator π̂ defined by

π̂ = σ̂y exp
[
iπ
(
N̂a1(1) + N̂a1(2) + N̂b1

)]
, (2.3)

where N̂α is the number operator of the vibrational quanta of the mode α, and σ̂y the

Pauli matrix. π̂ is analogous to the operators P of Leung and Kleiner [11] and P̂ of
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Figure 2.1: Mass-weighted normal coordinates (Qa1(1), Qa1(2), Qb1), effective coordinates

(qa1(1), qa1(2), qb1), and the trough.

Bersuker and Polinger [1] for the linear E ⊗ e Jahn–Teller problem. π̂ commutes with σ̂y

and anticommutes with P̂α, Qα, σ̂x, and σ̂z. Thus, Ĥ and π̂ commute, [Ĥ, π̂] = 0. When

|Ψ〉 is one of the eigenstates of Ĥ, |π̂Ψ〉 is also the eigenstate which belongs to the same

eigenenergy of Ĥ. |Ψ〉 and |π̂Ψ〉 are different from each other because the irreducible

representation of π̂ is b1. If |Ψ〉 is a1(b1), then |π̂Ψ〉 is b1(a1). Thereby, |Ψ〉 and |π̂Ψ〉

are degenerate eigenstates which are orthogonal to each other. The eigenvalue of π̂ is ±1

and the eigenstate is written as |Ψ±〉 = (|Ψa1〉 ± i|Ψb1〉)/
√
2, where |Ψa1〉 and |Ψb1〉 are

degenerate vibronic states whose representations are a1 and b1, respectively. Therefore,

we can regard π̂ as a parity operator.

The two-fold degeneracy of each vibronic level is lifted in some cases in which some

perturbations exist. First, the existence of the conical intersection is necessary for the

degeneracy. If we add V̂ = Δσ̂z (Δ is real) to Ĥ to remove the conical intersection,

the degeneracy of the vibronic state is lost because [π̂, σ̂z] 	= 0 and the Hamiltonian

does not have the parity symmetry. Second, quadratic Jahn–Teller coupling removes

the degeneracy. The quadratic coupling is not invariant by the operation π̂ because

[π̂, QαQβ] = 0, [π̂, σ̂x] 	= 0, and [π̂, σ̂z] 	= 0. Finally, zero coupling of the a′1 mode in

the Hamiltonian of X3 is necessary. If Eq. (2.1) has a nonzero coupling to the a′1 mode,

the Hamiltonian of the isotopomer has a term of V̂ =
∑

i V
′
a1(i)

Qa1(i)σ̂0 which does not

commute with π̂. V ′a1(i) comes from the vibronic coupling to the a′1 mode of X3, and
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V ′a1(i) 	= Va1(i). Note that the coupling to the totally symmetric mode can be removed by

appropriate choice of the reference structure of X3.

Towards a better understanding of the properties of the vibronic state described

above, we derive the ground and low-lying vibronic levels and wavefunctions analyt-

ically in the strong coupling limit [12, 13]. Following Ref. [13], we introduce the ef-

fective coordinates: two of them, qa1(1) and qb1 , vibronically couple to the electronic

state, and the other one qa1(2) does not. Then, we use the cylindrical coordinates,

(qa1(1), qb1 , qa1(2)) = (ρ cosφ, ρ sinφ, z). In the strong coupling limit, we use the adiabatic

approximation and treat the Hamiltonian for the lower-sheet. Replacing the vibronic

state Ψ with Φ/
√
ρ, the vibronic Hamiltonian for Φ is

ĤLS = −1

2

(
∂2

∂ρ2
+

∂2

∂z2
+

1

ρ2
∂2

∂φ2

)
+

ω2
ρ

2
ρ2 +

ω2
z

2
z2

− |VE|
√

2δ + 3

3δ + 3
ρ− ω2

zγρz cosφ+
ω2
z

2
γ2ρ2 cos2 φ, (2.4)

where δ = (m − m0)/m0, γ = δ/
√

(3δ + 3)(δ + 3), ωρ = ωE

√
(2δ + 3)/(3δ + 3), ωz =

ωA

√
(δ + 3)/(2δ + 3), and ωE and ωA are the frequencies of the e′ and a′1 modes of X3,

respectively. Furthermore, we treat the radial and longitudinal vibrations (ρ, z) and the

pseudorotation (φ) separately since the former are fast, and the latter is slow.

First, we solve the vibrational state at a fixed φ. We divide ĤLS into the Hamiltonian

for the harmonic oscillators around ρ = ρ0 = |gE|
√
(3δ + 3)/[ωE(2δ + 3)] and z = 0, Ĥ

(0)
F ,

and last two terms in Eq. (2.4), V̂F, where gE = VE/
√

ω3
E is the dimensionless constant.

When |gEδ| = ε is small (ε 
 1), V̂F can be regarded as a perturbation to Ĥ
(0)
F . Applying

the second order perturbation theory, we obtain the ground vibrational level EF
0 (φ) and

the ground state |ψF
0 (φ)〉 of Ĥ

(0)
F .

Next, we obtain the pseudorotational state. The rotational Hamiltonian is obtained

averaging ĤLS by |ψF
0 (φ)〉. Neglecting the terms of o(ε2/g2E) and removing the constants,

we obtain the pseudorotational Hamiltonian with a potential:

Ĥrot = − 1

2ρ20

∂2

∂φ2
+

κ

ρ20
cos 2φ, (2.5)

where κ = −γ2ρ20ωρωz/[8(ωρ + ωz)] (κ < 0). Although there is no barrier in the trough

of the vibronic Hamiltonian (2.2), we obtain a warped potential. The warping is a conse-

quence of the mixing of the vibrational states induced by the change of the mass in the

kinetic energy.
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The eigenvalue problem of Ĥrot is equivalent to the Mathieu’s equation [14]. The

rotational states ψS(φ) have to satisfy the boundary condition ψS(φ + 2π) = −ψS(φ) to

fulfil the single-valuedness of the total vibronic wavefunction. This sign change comes

from the Berry phase of the electronic state of the Jahn–Teller system [10]. In this case,

each eigenstate is characterized by a half-integer ν, ψS
ν . In addition, each level of Ĥrot is

doubly degenerate, Eν = E−ν , which is consistent with the two-fold degeneracy of each

vibronic level of Eq. (2.2).

In the case of the linear E ⊗ e Jahn–Teller system, the pseudorotational level and its

eigenstate are written as ν2/2ρ20 and eiνφ, respectively [1]. The pseudorotational state

of the original Jahn–Teller system is delocalized along the trough. On the other hand,

for finite ε, using the perturbation theory, we obtain corrections for the pseudorotational

level,

Eν =
ν2

2ρ20
+

κ2

4ρ20(ν
2 − 1)

, (2.6)

and the eigenfunction which belongs to Eν ,

ψS
ν (φ) = eiνφ

[
1 +

|κ|
4

(
e2iφ

ν + 1
− e−2iφ

ν − 1

)]
. (2.7)

The densities of the ground (|ν| = 1/2) and first excited (|ν| = 3/2) rotational wavefunc-

tions |ψS
ν (φ)|2 are concentrated at φ = 0, π and φ = ±π/2, respectively. One should note

that this localization (kinetic localization) is generated by the modification of the kinetic

energy.

Here, we see the role of the Berry phase. In the case of the E ⊗ e Jahn–Teller system,

if the Berry phase is ignored, ψS(φ + 2π) = ψS(φ), the representations of the ground

and first excited levels are A and E, respectively [10]. Due to the isotopic substitution,

the first excited E level splits. One should note that each level is doubly degenerate

when the Berry phase exists. The ground state is written as 1 + (|κ| cos 2φ)/2. The

second term is obtained as a result of the constructive interference of the excited states

e±i2φ. On the other hand, ei(ν±2)φ partly cancel each other in Eq. (2.7). Therefore,

the localization is quenched by the Berry phase. The first and second excited states are

approximately written as cosφ and sinφ, respectively. Therefore, the density of the first

excited rotational state has maxima at φ = 0 and π, which is the opposite of the correct

one.
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Next, we consider the effect of the quadratic vibronic coupling. Weak quadratic cou-

pling is written as ηρ20 cos 3φ [1,2]. We assume that the coupling is the same order as the

potential in Eq. (2.5). Owing to the quadratic coupling, one of the minima of the poten-

tial of Ĥrot is deeper than the other. One of the ground vibronic states is localized around

lower minimum and the other around the higher one. Consequently, the degeneracy of

the level is lifted.

To confirm our analytical result, we calculated the vibronic states by diagonalizing the

Hamiltonian (2.2) numerically. The vibronic basis employed here is a set of the products of

the electronic states |γ〉 and vibrational states |na1(1), na1(2), nb1〉, {|γ〉|na1(1), na1(2), nb1〉; γ =

θ, ε, 0 ≤ na1(1) + na1(2) + nb1 ≤ 30}. The zero-point vibrational energy is chosen as the

zero of energy. Parameters for the calculations are as follows: gE is varied from 0 to 3 by

0.1, ωE = 1, ωA = 1.3, and δ = 1. The ratio ωA/ωE is close to those of H3 (1.26) and Li3

(1.27) (see Table 2.1). The density of the wavefunction is calculated as ρ(Q) = |〈Q|Ψ±〉|2,

where Q = (Qa1(1), Qa1(2), Qb1).

The vibronic levels of the E⊗(a⊕e) Jahn–Teller system (dotted and dashed lines) and

the isotopomer (solid lines) are shown in Fig. 2.2. The stabilization energy EJT = g2EωE/2

is added to each vibronic level. The behavior of the vibronic levels of the isotopomer

is similar to that of the Jahn–Teller system. Nonetheless, contrary to the Jahn–Teller

system, the vibronic levels of the isotopomer avoid each other because each level is doubly

degenerate and the irreducible representations of the degenerate states are a1 and b1. The

kinetic localization is clearly seen as the increase of gE. The densities ρ(Q) of the ground

and first excited vibronic states on the plane of the trough (Fig. 2.1) at gE = 3 are shown

in Fig. 2.3. The densities of the ground and the first excited states are localized around

φ = 0, π and φ = ±π/2, respectively. These distributions agree with analytical results.

In order to see the possibility of observation of the isotope effect in molecules, we eval-

uated the vibronic coupling constants of H3 and Li3 (Table 2.1). The coupling constants

of X3 were obtained from the gradient of the adiabatic potential energy surface at the

equilibrium geometry of X+
3 . The equilibrium geometries, frequencies, and gradients were

obtained performing the density functional calculations (B3LYP/6-311G(d,p)) [15]. The

frequencies are scaled by 0.9619 [16].

In both systems, the coupling to the a′1 mode is weaker than that to the e′ mode.

The vibronic coupling constant for the e′ mode is sufficiently strong for the localization.
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Figure 2.2: Ground and low-lying vibronic levels of X2Y (solid line) and X3 (dotted and

dashed lines). Dotted and dashed lines indicate the levels of the E⊗e Jahn–Teller system

with zero and one a vibrational excitation, respectively. EJT = g2EωE/2 is added to each

level. gE is varied from 0 to 3 by 0.1. ωE = 1, ωA = 1.3, and δ = 1.

Therefore, the kinetic localization could be observed in the isotopomers of H3 and Li3.

The shapes of the UV spectra of H3 and the isotopomers depend on the system [6], which

should reflect the structure of the vibronic states. In the case of Li3, |δ| is relatively small.

However, there are differences in the rovibronic spectra [7], which may be a result of the

kinetic localization.

Table 2.1: The absolute values of the dimensionless vibronic coupling constants gΓ(Γ =

a′1, e
′) and frequencies (cm−1) of H3 and Li3.

H3 Li3

Irrep. Freq. gΓ Freq. gΓ

E ′ 2589 2.63 235 2.27

A′1 3266 1.16 298 0.64

In this chapter, we studied the Jahn–Teller problem of an isotopomer of trimer X3.

Within the linear coupling model, each vibronic level is doubly degenerate because of
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(a) (b)

Figure 2.3: The densities of the (a) ground and (b) first excited vibronic states calculated

with gE = 3, ωE = 1, ωA = 1.3, and δ = 1. The cross section corresponds to the plane of

the trough (see Fig. 2.1). The densities of the light gray area is the largest and that of the

dark gray the smallest. The values of the smallest, largest, and spacing of the contours

are 0.002, 0.016, and 0.002, respectively.

the parity. For the degeneracy, existence of the conical intersection is necessary. In the

analytical treatment, we found that the potential for the pseudorotation is warping. Con-

sequently, the vibronic state is localized around the minima (kinetic localization). The

degeneracy of the vibronic level and the kinetic localization are confirmed performing the

exact diagonalization of the vibronic Hamiltonian. Moreover, with finite quadratic vi-

bronic coupling, the degeneracy of each vibronic level is lifted. The origin of the splitting

is explained from view of both the symmetry and the structure of the potential. Den-

sity functional calculations supports the possibility of experimental observation of the

kinetic localization. Present result and concept could be useful to not only the analysis

of the vibronic states of the trimers but also investigations on other dynamic Jahn–Teller

systems.
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Chapter 1

Vibronic Coupling in C−
60 Anion

Revisited: Precise Derivations from

Photoelectron Spectra and DFT

Calculations

1.1 Introduction

Much attention has been paid to the Jahn–Teller effect of fullerene (C60) in various elec-

tronic states not only because the Jahn–Teller effect is an interesting problem in molecular

physics [1] but also because it is expected to play an important role in the mechanism

of the superconductivity in alkali-doped fullerides [2]. Thus, the strength of the electron-

vibration coupling (vibronic coupling) of C60 which characterizes the Jahn–Teller effect

has been one of the important topics. The vibronic coupling constants (VCCs) have been

estimated experimentally [3–5] and theoretically [6–14].

In the experimental studies of vibronic coupling in fullerene, a landmark is the pho-

toelectron spectroscopy (PES) of C−60 in gas phase by Gunnarsson et al [3]. As C−60 is

one of the most studied systems, in addition to this experimental work, computational

works have been performed by many authors. However, discrepancy between the coupling

constants of the experimental and theoretical works have been reported [3, 11, 12]. The

theoretical stabilization energies as estimated by density functional theory (DFT) calcu-

lation were always obtained smaller than that derived from the experiment of Gunnarsson
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et al. Besides uncertainties intrinsic to the DFT method, whose predictions depend on

the used exchange-correlation functional, one should note that the derivation of vibronic

coupling constants in Ref. [3] is not perfect either. First, the thermal excitations were not

included in the simulation, although the vibrational temperature of C−60 was estimated

about 200 K in the experiment. Second, not all vibronic coupling constants have been

estimated from the spectrum because of the low resolution. For the same reason, the

computed VCCs of totally symmetric modes were used to simulate the PES.

Recently, Wang et al. remeasured photoelectron spectra of C−60 [15]. In their experi-

ment, the vibrational temperature of C−60 is between 70 K and 90 K and the resolution

is about 16 meV, i.e., much smaller than the resolution of 40 meV in the experiment of

Gunnarsson et al. Accordingly, the spectrum of Wang et al. is narrower and has more

structures, therefore, it is expected to yield more reliable coupling constants.

In this work, we simulate the photoelectron spectra of Wang et al. [15] and Gunnarsson

et al. [3] and give new derivations of the VCCs of C−60. We also compute the VCCs of C−60

using the DFT method and compare them with the experimental values.

1.2 The solution of the Jahn–Teller problem of C−
60

The equilibrium geometry of neutral fullerene is taken as the reference nuclear configu-

ration. At this reference structure, the ground electronic state of C−60 is T1u. According

to the selection rule, the T1u electronic state couples with two ag and eight hg vibrational

modes:

[
T 2
1u

]
= ag ⊕ hg. (1.1)

We consider the linear T1u ⊗ (2ag ⊕ 8hg) Jahn–Teller Hamiltonian. The Hamiltonian is

written as follows:

H =
2∑

i=1

[
1

2

(
P 2
ag(i) + ω2

ag(i)Q
2
ag(i) + Vag(i)Qag(i)

)]
Î

+
8∑

μ=1

2∑
m=−2

[
1

2

(
P 2
hg(μ)m + ω2

hg(μ)Q
2
hg(μ)m

)
Î +

√
5

2
(−1)mVhg(μ)Qhg(μ)mĈ−m

]
,(1.2)

where QΓ(μ)m is the mass-weighted normal coordinate of m element of the Γ(μ) mode

(Γ = ag, hg), PΓ(μ)m is the conjugate momentum of the normal coordinate QΓ(μ)m, ωΓ(μ)

is the frequency of the Γ(μ) mode, VΓ(μ) is the VCC of the Γ(μ) mode, and Î and Ĉ−m
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are the 3× 3 unit matrix and a matrix whose elements are Clebsch–Gordan coefficients,

respectively. The normal modes and frequencies of C60 are used for C−60 , so the higher

vibronic terms which mix the normal modes of fullerene are neglected. As a T1u electronic

basis set {|mel〉;mel = −1, 0, 1} and normal coordinates of the hg modes {Qhg(μ)m;m =

−2,−1, 0, 1, 2}, we use complex basis which transform as spherical harmonics {Y1mel
;mel =

−1, 0, 1} and {Y2m;m = −2,−1, 0, 1, 2}, respectively, under the rotations [16, 17]. Then

Î and Ĉ−m are written as [18]

Î =

⎛
⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ , Ĉ−2 =

⎛
⎜⎜⎜⎝
0 0

√
3
5

0 0 0

0 0 0

⎞
⎟⎟⎟⎠ ,

Ĉ−1 =

⎛
⎜⎜⎜⎝
0 −

√
3
10

0

0 0
√

3
10

0 0 0

⎞
⎟⎟⎟⎠ , Ĉ0 =

⎛
⎜⎜⎜⎝

1√
10

0 0

0 −2√
10

0

0 0 1√
10

⎞
⎟⎟⎟⎠ ,

Ĉ1 =

⎛
⎜⎜⎜⎝

0 0 0√
3
10

0 0

0 −
√

3
10

0

⎞
⎟⎟⎟⎠ , Ĉ2 =

⎛
⎜⎜⎜⎝

0 0 0

0 0 0√
3
5

0 0

⎞
⎟⎟⎟⎠ . (1.3)

This type of the Jahn–Teller problem was investigated by O’Brien [19] and the vibronic

coupling constants defined by her are often used. Thus we introduce the coefficient
√

5/2

in front of the vibronic term to make Vhg the same as O’Brien’s coupling constants.

Since the linear T1u⊗(2ag⊕8hg) Jahn–Teller Hamiltonian (1.2) commutes with squared

vibronic angular momentum J and the z component of J [20], the eigenstate of the Hamil-

tonian (1.2) is the simultaneous eigenstate of the vibronic angular momentum J , the z

component of the vibronic angular momentum M , where the vibronic angular momentum

J is the sum of the vibrational angular momentum L and the “energy spin” S describing

the threefold orbital degeneracy (S = 1) [20]. In the case of linear vibronic coupling, the

eigenstate of H is the product of the T1u ⊗ (8hg) Jahn–Teller part and the ag vibrational

part. As a vibronic basis a set of the products of electronic states and vibrational states

of the ag and hg modes is used:

{
|mel〉| · · ·nμ · · · 〉|v1v2〉ag

}
, (1.4)

where nμ means a set of vibrational quantum numbers of the hg(μ) mode, nμ = {nμm},

v1, v2 are vibrational quantum numbers of the ag(1) mode and the ag(2) mode respec-
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tively. Then the eigenstate |Ψv1v2kJM〉 of the Hamiltonian (1.2) which belongs to the

eigenvalue
∑2

i=1

[
�ωag(i)vi − V 2

ag(i)
/(2ω2

ag(i)
)
]
+EkJ is represented as a linear combination

of the vibronic basis with constants CJT
mel,n1···n8;kJM

.

|Ψv1v2kJM〉 =
1∑

mel=−1

∑
n1

· · ·
∑
n8

|mel〉|n1 · · ·n8〉CJT
mel,n1···n8;kJM

×
∞∑

v′1=0

∞∑
v′2=0

|v′1v′2〉agSv′1v1(gag(1))Sv′2v2(gag(2)), (1.5)

where EkJ is an eigenvalue of the T1u ⊗ (8hg) Jahn–Teller Hamiltonian, k distinguishes

energy levels with the same J and M , the dimensionless VCC of the Γ(μ) mode gΓ(μ)

(Γ = ag, hg) is defined as

gΓ(μ) =
VΓ(μ)√
�ω3

Γ(μ)

, (1.6)

the Franck–Condon factor of the ag mode Sv′v(g) is written as

Sv′v(g) =

√
v′!v!
2v′−v

e−
1
4
g2

v∑
l=lmin

(
−1

2

)l
g2l+v′−v

l!(v − l)!(v′ − v + l)!
, (1.7)

lmin = 0 for v ≤ v′, and lmin = v − v′ for v > v′. The origin of the energy is the lowest

energy of C−60 without vibronic couplings.

To obtain the vibronic states, we diagonalize the linear T1u ⊗ 8hg Jahn–Teller Hamil-

tonian numerically using Lanczos method. We use a truncated vibronic basis set,

{
|mel〉| · · ·nμ · · · 〉;

8∑
μ=1

2∑
m=−2

nμm ≤ N

}
, (1.8)

where N is the maximum number of the vibrational excitations in the vibronic basis set

(1.8). We treat the vibronic states which Js are from 0 to 7. Frequencies ωag(i), ωhg(μ) are

taken from the experimental frequencies of Raman scattering in solid state C60 [21].

Lastly, we introduce stabilization energies which we use to show our results. The

stabilization energy of each mode is defined as

Es,i =
V 2
ag(i)

2ω2
ag(i)

, (1.9)

EJT,μ =
V 2
hg(μ)

2ω2
hg(μ)

, (1.10)
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and the total stabilization energies of the ag modes and hg modes are

Es =
2∑

i=1

Es,i, (1.11)

EJT =
8∑

μ=1

EJT,μ. (1.12)

They represent the depth of the potential energy surface from the energy of undistorted

fullerene monoanion.

1.3 Simulation of the photoelectron spectrum

The photoelectron spectrum is simulated within the sudden approximation [22]. We

assume that each C−60 is in a thermal equilibrium state, hence we use a Boltzmann’s

distribution to calculate the statistical weight. With these assumptions, the intensity of

the transition which appears at the binding energy �Ω is written as follows:

I(Ω) ∝
∑
k,J

∑
v′1,v

′
2

pv′1pv′2pkJ

1∑
mel=−1

∣∣CJT
mel,n1···n8;kJ0

Sv′1v1(gag(1))Sv′2v2(gag(2))
∣∣2

× δ

[
E0+Es − EkJ

�
+

8∑
μ=1

2∑
m=−2

ωhg(μ)nμm +
2∑

i=1

ωag(i)(vi − v′i)− Ω

]
, (1.13)

where pvi and pkJ are the statistical weights of the ag(i) mode and the Jahn–Teller part,

respectively,

pvi =
1

Zag

exp
(
−�ωag(i)viβ

)
, (1.14)

pkJ =
2J + 1

ZJT

exp (−EkJβ) , (1.15)

Zag and ZJT are corresponding statistical sums, and E0 is the gap between the ground

electronic energies of C60 and C−60. The envelope function is represented by using the

Gaussian function with the standard deviation σ:

F (Ω) =

∫ ∞

−∞
I(Ω′) exp

[
−(Ω− Ω′)2

2σ2

]
dΩ′. (1.16)

For a decent simulation of experimental PES one should include in Eq. (1.16), in prin-

ciple, also the contributions from the rotational spectrum of C−60. However, due to a

large momentum of inertia of fullerene and restrictive selection rules for the transitions

between different rotational levels [23] our estimations gave an expected enlargement of
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the transition band of only several wave numbers. This is negligible compared the full

width at half maximum (FWHM) given by the envelope function (1.16).

To evaluate the agreement between the simulated spectrum and the experimental

spectrum, we calculate the residual of theoretical spectrum Fcalc(Ω) and the experimental

spectrum Fexp(Ω). The residual R is defined by the equation:

R = min
f,Ωshift

{∑M
i=0 [Fcalc(Ωi)− fFexp(Ωi − Ωshift)]

2∑M
j=0 F

2
calc(Ωj)

}
, (1.17)

where f is the parameter to vary the height, Ωshift is the parameter to shift the experimen-

tal spectrum, Ωi is a sampling point. The minimum and maximum of Ωi is Ωmin and Ωmax,

and the gap between adjacent sampling points ΔΩ is constant. Then M is represented as

M = (Ωmax−Ωmin)/ΔΩ and Ωi = Ωmin+ iΔΩ. In the calculation of the residual R, Ωmin,

Ωmax, and ΔΩ are −200 cm−1, 1600 cm−1, and 0.5 cm−1 respectively. We avoid the trun-

cation of the zero phonon line of Gunnarsson et al. [3]. VCCs are varied in order to make

R as small as possible within the accuracy of the experiment. The accuracy is determined

from the range of the vibrational temperature of C−60 in the experiment of Wang et al. [15].

In their experiment, the vibrational temperature is between 70 K and 90 K. Although

the shapes of the simulated spectra at 70 K and 90 K are different from each other, we

cannot distinguish them from the experiment of Wang et al. In terms of the residual R,

the difference between R at 70 K and R at 90 K is practically indistinguishable.

1.4 DFT calculation of vibronic coupling constants

The linear vibronic coupling constant of the ag(i) mode is a diagonal matrix element of

the first derivative of the electronic Hamiltonian with respect to the normal coordinate

at the reference geometry [20].

Vag(i) = 〈ψ|
(
∂Hel(R)

∂Qag(i)

)
R0

|ψ〉, (1.18)

where ψ is the ground electronic state. By applying the Hellmann–Feynman theorem [24]

to Eq. (1.18) and then transforming it into the formula with the vibrational vector, we

obtain

Vag(i) =

(
∂E(R)

∂Qag(i)

)
R0

(1.19)

=
60∑

A=1

(
∂E(R)

∂RA

)
R0

· u
ag(i)
A√
M

, (1.20)
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where A indicates a carbon atom in C60, RA is the Cartesian coordinate of A, R is the

set of all RA, Hel(R) is the electronic Hamiltonian at the structure R, R0 is the reference

nuclear configuration, E(R) is the ground electronic energy 〈ψ|Hel(R)|ψ〉, M is the mass

of carbon atom, u
ag(i)
A is the vibrational vector of the ag(i) mode. Similarly, absolute value

of the coupling constant of the hg(μ) mode is written as

Vhg(μ) =

√√√√ 2∑
m=−2

(
∂E(R)

∂Qhg(μ)m

)2

R0

(1.21)

=

√√√√ 2∑
m=−2

[
60∑

A=1

(
∂E(R)

∂RA

)
R0

· u
hg(μ)m
A√
M

]2
. (1.22)

The equilibrium geometry R0, the vibrational vectors uag(i), uhg(μ)m, and the gradient of

the electronic energy (∂E(R)/∂RA)R0
, entering the Eqs. (1.20) and (1.22), are obtained

from ab initio calculations. Note that the vibronic coupling constants (1.19), (1.21) are

not equal to the gradients of the frontier levels (see Appendix).

We compute the VCCs of C−60 using the DFT method. As exchange-correlation func-

tional, the hybrid functional of Becke [25] (B3LYP) is used. To find VCCs which are close

to the experimental results the fraction of the Hartree–Fock exchange energy are varied

from the original fraction 20% to 30% by 5%. We use the triple zeta basis sets, 6-311G(d),

6-311+G(d), and cc-pVTZ.

The structure optimization and the calculation of the vibrational modes are performed

for the neutral fullerene. The electronic wavefunction of C−60 are obtained from the vari-

ational calculation of an unrestricted Slater determinant. As far as the method based on

the single determinant is used, the spatial symmetry of the wavefunction is broken and

the degeneracy of the singly occupied degenerate level is lifted [26, 27]. However, in the

case of the cyclopentadienyl radical, it was demonstrated that the splitting of the total

electronic energies estimated by the unrestricted B3LYP method is only 0.4 meV [26,27].

It is expected that the splitting of the T1u ground electronic energies of C−60 is tiny and

the symmetry of the electronic state may not be broken significantly. Thus we treat the

wavefunction as a T1u wavefunction. We calculate the energy gradient ∂E(R)/∂RA|R→R0

with the coupled perturbed Kohn–Sham method. In the calculation of the dimensionless

VCCs (1.6) and the stabilization energies (1.10), we use the experimental frequencies [21].

To compute electronic structures we use the Gaussian 03 program [28].

51



1.5 Derivation of the vibronic coupling constants of

ag modes from the structures of C60 and C−
60

We also derive the stabilization energies of the ag modes from the experimental bond

lengths of C60 and C−60. The structures of C60 and C−60 with Ih symmetry are determined

by the C-C bond lengths of the edges between two hexagons (6:6) and a hexagon and

pentagon (6:5). We use average 6:6 and 6:5 C-C bond lengths of TDAE-C60 for C−60 and

fullerite for C60. The data of TDAE-C60 are obtained from the results of X-ray diffraction

at 7K by Narymbetov et al. [29] and at 25K and 90K by Fujiwara et al. [30]. The average

bond lengths of fullerite are taken from the results of neutron diffraction at 5K by David

et al. [31] and X-ray diffraction at 110K by Bürgi et al. [32]. To remove the thermal

expansion of the C-C bond lengths, we use sets of bond lengths of C60 and C−60 which are

measured at close temperature. That is, the bond lengths of C60 measured at 5K is used

with the bond lengths of C−60 measured at 7K and 25K, and the bond lengths of C60 at

110K is used with the bond lengths of C−60 at 90K. The vibronic coupling constants of the

ag modes Vag(i)(i = 1, 2) are obtained from the equation

Vag(i) = −
60∑

A=1

(RA −R0,A) ·
u
ag(i)
A√
M

. (1.23)

To perform the calculation, we use the vibrational vector defined in the calculations with

the B3LYP method and the cc-pVTZ basis.

1.6 Results and discussion

1.6.1 Simulation of the PES of Wang et al.

We simulate the photoelectron spectrum measured by Wang et al. [15] at 70 K. The basis

set in Eq. (1.5) includes up to 6 vibrational excitations (N = 6). The experimental and

simulated spectra are shown in Fig. 1.1. The transition between the ground states of C−60

and C60 (the 0–0 line) [33] is chosen as the origin of these spectra. From the spectrum of

Wang et al., we obtain several sets of VCCs listed as (1), (2), and (3) in Tables 1.1 and 1.2.

We extract σ = 80 cm−1 by fitting the FWHM of the 0–0 line (188 cm−1). The increase or

decrease of the σ makes the agreement between the simulated and experimental spectra

worse.
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Figure 1.1: The photoelectron spectrum measured by Wang et al. (black line) and the

simulated spectrum (gray line). The simulation is performed at 70 K with σ = 80 cm−1.
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To assess the thermal population of the excited vibronic states, we calculate statistical

weights of the excited Jahn–Teller levels pkJ at 70 K and 90 K. The vibronic levels are

obtained using the set of VCCs (1). In the calculation of the distribution function ZJT,

we include all excited vibronic levels whose weights are larger than 10−7. The computed

weights are shown in Table 1.3. Although these statistical weights are computed using

the set (1), rest of the sets of VCCs (2), (3) give similar results. The statistical weights

of the ground vibronic level at 70 K and 90 K are more than 90 %. This indicates that

the transition from the ground vibronic level is dominant in the PES of Wang et al. We

focus, therefore, on the ground vibronic level to discuss the effect of the size of the basis

(1.8) on the calculated vibronic states. The ground vibronic level is −962.65 cm−1 when

we use the basis set with N = 5. Compared with the gap between the ground and first

excited vibronic levels with J = 1, the change of the ground vibronic level due to the

increase of the size of the vibronic basis set is only about 0.07 %. Therefore, we regard

our basis set as large enough to simulate the spectrum of Wang et al.

Table 1.3: The lowest vibronic levels (cm−1) and the statistical weights pkJ (%) at 70

K and 90 K. J is the magnitude of the vibronic angular momentum. To calculate the

vibronic levels, the set of VCCs (1) in Table 1.1 is used.

Level J Energy Weight

70 K 90 K

1 1 -962.85 97.75 92.48

2 3 -713.97 1.37 4.04

3 2 -683.40 0.52 1.77

4 1 -672.75 0.25 0.90

Sum 99.89 99.19

The differences between several sets of VCCs are in the constants of ag(2), hg(7), and

hg(8) modes. If we increase the dimensionless VCC (the stabilization energy) of the ag(2)

mode from 0.1 to 0.3 (0.9 to 8.2 meV) and at the same time decrease the dimensionless

VCCs of hg(7), hg(8) modes, the shape of the PES does not vary significantly (see Fig.

1.2). This is due to a poor resolution of the peaks of ag(2), hg(7), and hg(8) modes and

essentially the same problem arose in the analysis of Gunnarsson et al. [3]. In the latter
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Figure 1.2: The peak of the photoelectron spectra due to ag(2), hg(7), and hg(8) modes.

The black line indicates the experimental spectrum of Wang et al. [15], the gray solid line

indicates the simulated spectrum, and the dashed line indicates the difference between

the experimental and simulated spectra. The left of the two spectra is simulated using

the VCCs (1) and the right one is simulated using the VCCs (3) from Table 1.1. The

simulation is performed at 70 K with N = 6 and σ = 80 cm−1.

Table 1.4: Residuals of the experimental and simulated spectra. The calculation of the

residual is performed for all sets of VCCs in Table 1.1 at 70 K and 90 K.

Set (1) Set (2) Set (3)

70 K 90 K 70 K 90 K 70 K 90 K

R× 10−4 8.35 8.07 8.41 8.16 8.76 8.41

case, the stabilization energy of ag(2) is varied from 0 to 45 meV, i.e., in a range larger

than ours. Owing to the narrow peaks of the spectrum of Wang et al., we can derive the

VCCs with less ambiguity.

We compute the residuals (1.17) of the experimental and the simulated spectra for all

sets of VCCs at 70 K and 90 K. The values are shown in Table 1.4. The differences of the

residuals of the different sets of VCCs are almost within the ambiguity of the vibrational

temperature. Therefore, we conclude that these sets of VCCs cannot be distinguished

from the experiment of Wang et al.

Although we obtain several sets of VCCs, the stabilization energies Es+EJT are similar

to each other (see (1), (2), and (3) in Table 1.2). On the other hand, present stabilization

energies are smaller than the stabilization energy of Gunnarsson et al. [3] by 30 % (see
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Table 1.5), i.e., the Jahn–Teller coupling is weaker than previously expected. We find

that the distributions of Es,i and EJT,μ also differ from each other (Tables 1.2, 1.5). In

Ref. [3], the stabilization energy of hg(2) was found the strongest, while our results show

that the strongest is the stabilization energy of hg(7).

Hands et al. estimated the Jahn–Teller stabilization energy EJT of 57.94 meV within

the single-mode T1u⊗hg Jahn–Teller model from the visible and near-infrared spectrum [5].

The present Jahn–Teller stabilization energy agrees well with their value.
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1.6.2 Simulation of the PES of Gunnarsson et al.
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Figure 1.3: The experimental photoelectron spectrum measured by Gunnarsson et al. [3]

(black line) and the simulated spectrum (gray line). The simulation is performed at 200

K with σ = 120 cm−1.

As a preliminary calculation, we compute the vibronic levels using the data from

Ref. [3], that is, the same VCCs and the same size of the vibronic basis (N = 5). The

statistical weight of the ground state at 200 K is obtained ca. 39 %. This result indicates

that not only the ground level but also excited levels must be considered in order to

simulate the spectrum of Gunnarsson et al. [3].

We simulate this spectrum at 200 K with the FWHM of 283 cm−1 (σ = 120 cm−1).

The size of the vibronic basis set is N = 7. The experimental and the simulated spectra

are shown in Fig. 1.3. As was mentioned also by Gunnarsson et al. [3], we obtain several

sets of VCCs that give close stabilization energies. These sets of dimensionless VCCs and

stabilization energies are (4), (5) in Table 1.1 and 1.2 respectively. In comparison with

the original stabilization energy of Gunnarsson et al., present stabilization energies are

smaller by 10 meV. However, stabilization energies are still larger than those obtained

from the spectrum of Wang et al. by 20 meV. The inconsistencies of these VCCs come

from the difference between the shapes of the spectra of Wang et al. and Gunnarsson et
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al., due to different vibrational temperature and resolution.

Simulating the spectrum of Gunnarsson et al., we encounter two problems. First, the

spectrum is too broad and, second, the vibrational temperature is too high. In fact, the

statistical weights of the ground vibronic level at 200 K are about 37 % in both cases (see

Table 1.6), hence, we must consider many excited vibronic states. To represent the excited

vibronic states with enough accuracy, we expect that the vibronic basis must be larger

than the present one. Furthermore, as the vibrational temperature is further increased,

the weight of each vibronic level and the shape of the spectrum varies easily. Although

the range of the vibrational temperature is not reported, we increased the temperature

by 20 K which is the uncertainty range of vibrational temperature in the case of Wang

et al. [15]. The statistical weights of the ground vibronic level decreased from ca. 37 %

to ca. 31 % with this increase of the temperature. This change of the weight affects the

shape of the spectrum. Therefore it is difficult to perform an accurate simulation and to

estimate VCCs from the spectrum of Gunnarsson et al.

Given better the experimental conditions of Wang et al. [15] allowing for more accurate

simulations, we may conclude that the VCCs extracted from these experiments should be

considered more reliable than those obtained by Gunnarsson et al. [3].

1.6.3 DFT calculations of the vibronic coupling constants

We compute the vibronic coupling constants of C−60 using the DFT method described

in Sec. 1.4. It is well known that in the high-symmetry geometry the occupied level

moves upwards in energy relative to the empty levels when pure DFT functional is used

[34]. However in our case the situation is opposite (the occupied level is the lowest one)

because of the Hartree–Fock exchange contribution contained in the B3LYP functional.

The splitting between the t1u Kohn–Sham levels are about 1 eV (see Table 1.7) and the

variations of the total electronic energies for different occupation schemes of t1u orbitals

are less than 0.2 meV. Moreover, the vibronic coupling constants do not depend on the

choice of the electronic states significantly. The variation of the total stabilization energy

is ca. 1 meV. The dimensionless VCCs and the stabilization energies are shown in Table

1.1 and 1.2. Although we use several basis sets, the VCCs do not depend on the basis

set significantly. On the other hand, the VCCs vary with the increase of the fraction of

the Hartree–Fock exchange energy in the exchange-correlation functional. Increasing this

61



Table 1.6: The computed vibronic levels (cm−1) and statistical weights pkJ (%) using the

sets of VCCs (4), (5) which are derived from the experimental spectrum of Gunnarsson

et al. [3]. The statistical weights are calculated at 200K.

Level Set (4) Set (5)

J Energy Weight J Energy Weight

200 K 200 K

1 1 -1067.6 36.56 1 -1134.4 37.00

2 3 -845.2 17.22 3 -914.7 17.77

3 2 -785.9 8.03 2 -850.2 7.98

4 1 -771.3 4.34 1 -829.9 4.14

5 3 -697.5 5.95 3 -742.5 5.15

6 2 -616.0 2.37 2 -687.8 2.48

7 5 -613.1 5.10 5 -685.5 5.37

8 1 -590.0 1.18 1 -667.0 1.28

9 3 -580.3 2.56 3 -650.1 2.65

10 2 -535.1 1.32 2 -595.0 1.27

11 4 -531.4 2.06 4 -594.0 2.02

12 1 -525.4 0.74 1 -590.6 0.74

13 3 -485.2 1.29 3 -543.5 1.23

14 5 -464.8 1.75 5 -515.2 1.58

15 4 -445.7 1.11 4 -495.6 1.00

16 2 -404.6 0.52 2 -456.7 0.47

17 7 -371.4 1.22 7 -446.6 1.31

18 4 -362.7 0.61 3 -436.7 0.57

19 3 -362.1 0.53 4 -432.7 0.63

20 5 -339.6 0.71 5 -414.8 0.77

21 0 -330.5 0.06 0 -400.2 0.06

22 2 -317.4 0.28 4 -388.3 0.46

23 4 -316.8 0.44 2 -387.9 0.29

24 1 -291.3 0.14 1 -357.6 0.14

25 6 -275.4 0.53 6 -336.5 0.52

Sum 96.62 96.88
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Table 1.7: The splitting between the lifted one-electron t1u levels Δε (meV).

6-311G(d) 6-311+G(d) cc-pVTZ

20 % 25 % 30 % 20 % 20 % 25 %

Δε 691 874 1059 686 693 876

fraction leads to larger VCCs and stabilization energies. We find that the stabilization

energies of high frequency modes, ag(2), hg(7), and hg(8) are the strongest. Compared

with other DFT calculations, we may conclude that the stabilization energies of ag modes

agree well with the previous calculations, while the present stabilization energy Es +EJT

is larger than the previous results.

In comparison with present simulation of the experimental PES, the DFT calculations

with the energy functionals including fractions of 20 % and 25 % of the Hartree–Fock ex-

change energy give close values. Although the stabilization energy Es+EJT obtained using

the original B3LYP functional is slightly smaller than the experimental value, the result

obtained with it is also close to the experimental one. The distribution of the computed

stabilization energy of each hg mode EJT,μ qualitatively agrees with the experimental

results. The stabilization energy of the hg(7) mode is obtained smaller and that of the

hg(8) mode is obtained larger than the experimental values. The slight difference between

theoretical and experimental results should originate from still inaccurately computed vi-

brational vectors. Indeed, it was shown that a small mixing of the vibrational vectors in

fullerene affects the values of VCCs significantly [3]. Besides the present computational

results, the LDA calculation by Manini et al. [11], the GGA calculation by Frederiksen et

al. [13], and the B3LYP calculation by Saito [12] and Laflamme Janssen [14] give similar

relative values for the coupling constants of hg modes as the present simulations of PES of

Wang et al. [15]. On the other hand, the LDA and GGA calculations give smaller absolute

values of the VCCs and of the total stabilization energies than the presently obtained.

The LDA calculation of Breda et al. [10] gives the distribution of relative strengths of

VCCs which is similar to the results of Gunnarsson et al. and do not agree with the

values derived here from PES of Wang et al. Varma et al. [6] computed VCCs using

MNDO method, however, the distribution of the stabilization energies is different from

the present simulations of experiment and the theoretical values obtained here.

63



Table 1.8: Stabilization energies (meV) derived from the experimental C-C bond lengths

of C60 and C−60.

Frequency (cm−1) Stabilization energies of ag modes (meV)

(3) (10) Narymbetov1 Fujiwara1 Fujiwara2

7K 25K 90K

ag(1) 496 7.7 2.6 8.0 0.1 58.8

ag(2) 1470 8.2 16.9 0.0 7.5 7.0

On the contrary, the theoretical stabilization energy of the ag(1) mode is too small

and that of the ag(2) mode is too large compared to Es,i derived from experiment (Tables

1.1, 1.2). To find the correct order of the corresponding VCCs, we derive the coupling

constants of the ag modes from the experimental bond lengths as described in Sect.

1.5. The obtained stabilization energies Es,i are shown in Table 1.8. Unfortunately,

as we can see, Es,i depend very strongly on the set of the C-C bond lengths, thus we

cannot draw a conclusion about their relative strength. This comes from the fact that we

use the structural data measured by different techniques (X-ray and neutron scattering)

on different systems (TDAE-C60 and fullerite) for C−60 and C60, respectively. In both

cases, fullerenes should be deformed due to the environment compared with the free C60

molecule. The distortions caused by the crystal fields of C60 in TDAE-C60 and fullerite

are different from each other. Furthermore, the expected changes in the bond lengths

in C60 and C−60 are within the experimental accuracy of the structural data. Thus, the

origin of the discrepancy of the relative strength of VCCs of the ag modes between the

simulations and DFT calculations remains unclear.

Note that although the values of Es,i are different from the experimental results, their

sum, as well as, the distribution of EJT,μ and Es + EJT are close to the experimental

values. Therefore, we may conclude that the present theoretical method gives improved

values of vibronic coupling constants.
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1.7 Conclusion

In this chapter, we simulated the PES of Wang et al. and derived the vibronic coupling

constants of C−60. We obtain several sets of VCCs, because the frequencies of ag(2), hg(7),

and hg(8) modes are close to each other. Considering the ambiguity of the vibrational

temperature in the experiment, these sets of VCCs cannot be distinguished. Thus, to

obtain more accurate coupling constants, it is desired to perform an observation of a PES

of C−60 in still better experimental conditions. Although we find several sets of VCCs from

the spectrum, the stabilization energies are similar to each other. In comparison with the

total stabilization energy derived by Gunnarsson et al. [3], our value is smaller by 30 %.

We also calculated the VCCs using the DFT method. Even though the experimental and

theoretical orders of Es,i disagree with each other, the distribution of EJT,μ and the total

stabilization energy Es + EJT agrees well with the experimental values. Thus we may

conclude that the problem of the discrepancy between the experimental and calculated

coupling constants, persistent in the previous studies, is basically solved in the present

chapter. As an extension of the present chapter we expect that the theoretical approach

used here could be successfully applied for the calculation of VCC of Cn−
60 anions in AnC60

fullerides as well as of their multiplet splitting parameters.

Appendix: Vibronic coupling constants and the gra-

dient of Kohn–Sham levels

The total energy E(R) in the DFT is written as follows:

E(R) =
∑
μΓγ

εμΓγ(R)− 1

2

∫
dr

∫
dr′

n(r;R)n(r′;R)

|r− r′|

+ Exc [n(r;R)]−
∫

drn(r;R)Vxc(r;R) + Vnn(R), (1.24)

where Γγ is the irreducible representation of the Kohn–Sham orbital, μ is the quantum

number other than Γγ, εμΓγ is the Kohn–Sham level,
∑

μΓγ is taken over occupied levels,

n(r;R) is the ground electronic density, Exc [n(r;R)] is the exchange-correlation energy

functional, Vxc(r,R) is the exchange-correlation potential, and Vnn(R) is the Coulomb
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potential energy between nuclei. The vibronic coupling constant of Γ′γ′ mode is

VΓ′γ′ =
∑
μΓγ

(
∂εμΓγ(R)

∂QΓ′γ′

)
R0

−
∫

dr

(
∂n(r;R)

∂QΓ′γ′

)
R0

∫
dr′

n(r′;R)

|r− r′|

−
∫

drn(r;R)

(
∂Vxc(r;R)

∂QΓ′γ′

)
R0

+

(
∂Vnn(R)

∂QΓ′γ′

)
R0

. (1.25)

For the totally symmetric modes, all the derivatives in the right-hand side of Eq. (1.25)

are not zero. For the Jahn–Teller active modes, the sum of the gradient of the completely

occupied Kohn–Sham levels belonging to the same Γ is zero due to the symmetry reasons,

and the gradient of the Coulomb potential between the nuclei is zero also because of the

symmetry. However, the second and third terms which include the derivative of n(r;R)

and Vxc(r;R) with respect to QΓ′γ′ , respectively, are nonzero because n(r;R) is not a

totally symmetric function. Therefore, in general, the vibronic coupling constant is not

equal to the gradient of the frontier Kohn–Sham level.
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Chapter 2

Effect of Coulomb Interactions on

the Vibronic Couplings in C−
60

2.1 Introduction

The vibronic coupling (electron-vibration coupling) [1–3] in C−60 anion has been investi-

gated extensively [4–14] because the coupling is not only a fundamental interaction to

characterize the Jahn–Teller effect in C−60 [3] but also important to discuss the mecha-

nism of the superconductivity of alkali-doped fullerides [15]. Reliable vibronic coupling

constants (VCC) are required in solid state physics of the fullerides. However, vibronic

couplings obtained from the photoelectron spectrum [5] have been larger than theoretical

evaluations [4,10–14]. Among the intramolecular electron-phonon couplings, Gunnarsson

et al. have concluded that the coupling to the bending hg(2) mode is the strongest from

the experiment [5]. On the other hand, many theoretical works have suggested that the

couplings to the stretching hg(7) and hg(8) modes are the strongest [4,10–14]. Among the

investigations on the vibronic couplings in C−60, some authors [4, 8, 9] have explained the

order of the VCCs. However, the strongest coupling mode is still controversial. There-

fore, both the agreement between experimental and theoretical VCCs of C−60 and physical

picture of the couplings are crucial to understand the vibronic couplings.

Recently, we have estimated the VCCs in C−60 performing the exact diagonalization of

a dynamic multimode Jahn-Teller Hamiltonian with the totally symmetric a1g modes [16]

to fit the experimental photoelectron spectrum (PES) of C−60 measured by Wang et al. [17],

and evaluated the VCCs using the density-functional theory (DFT) calculations [16]. It
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has been found that our experimental and theoretical VCCs agree well with each other.

Our experimental and theoretical results show that the hg(7) and hg(8) have strong VCCs,

while the coupling to the hg(2) mode is weak. In this study, we employ a concept of

vibronic coupling density (VCD) [18,19], to elucidate this order of the vibronic couplings.

The VCD whose integral over a 3D space yields a VCC is defined from the electronic and

vibrational structures. Since the VCD is a function of the position r in a molecule, it

provides a local picture of the vibronic coupling. Employing the VCD analysis, we have

succeeded in designing for novel carrier-transporting materials [20,21]. Furthermore, with

the use of the VCD analysis, we have revealed a crucial role of the Coulomb interaction in

the VCCs of hole-transporting molecules such as TPD and TPF [22,23]. In this chapter,

we apply the VCD analysis to the VCCs of C−60, to explain the order of the vibronic

couplings.

2.2 Theory

2.2.1 Vibronic coupling constant

As a reference system, the neutral C60 in its equilibrium geometry R0 with Ih symmetry

was adopted as in Ref. [16]. We use the convention of the molecular orientation by Boyle

and Parker [24] (Fig. 2.1). The irreducible representation of the ground electronic state

1
2

3
4

5 6

7
8

9

8’z

x y

Figure 2.1: The orientation and the atomic labelling of C60.

of C−60 is T1u. From the selection rule, the ground electronic state couples to two ag and
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eight hg modes. The VCCs of C−60 for the Γ(μ) modes (Γ = ag, hg) are defined by [25]

Vag(i) =

〈
ΨT1uλ

∣∣∣∣∣
(

∂Ĥ

∂Qag(i)

)
R0

∣∣∣∣∣ΨT1uλ

〉
, (2.1)

Vhg(μ) =

〈
ΨT1uz

∣∣∣∣∣
(

∂Ĥ

∂Qhg(μ)θ

)
R0

∣∣∣∣∣ΨT1uz

〉
, (2.2)

where Ĥ is the electronic Hamiltonian which includes the Coulomb potential between

nuclei, |ΨT1uλ〉 (λ = x, y, z) the electronic ground state of C−60 at the geometry of the

reference system R0, and QΓ(μ)γ the normal coordinates of the neutral C60 for the Γ(μ)γ

mode (Γγ = ag, hgθ, hgε, hgξ, hgη, hgζ). Among the three electronic states λ = x, y, z,

we choose the T1uz electronic state because the electronic state couples only to the hgθ

modes [3]. Hereafter we will present results for the T1uz electronic state and the hgθ

vibrational modes. The phase of the ag and hgθ modes are chosen so that the VCCs are

negative. Applying the Hellmann–Feynman theorem, we obtain

Vag(i) =
60∑

A=1

(
∂E(R)

∂RA

)
R0

· u
ag(i)
A√
M

, (2.3)

Vhg(μ) =
60∑

A=1

(
∂E(R)

∂RA

)
R0

· u
hg(μ)θ
A√
M

, (2.4)

where E(R) = 〈ΨT1uz|Ĥ|ΨT1uz〉, A denotes an atom in C60, RA the Cartesian coordinates

of the atom A, R the set of all coordinates of RA, u
Γ(μ)γ
A the displacement of the atom A

of the mass-weighted Γγ vibrational vector, M the mass of carbon. For the calculation

of the VCCs, we used Eqs. (2.3) and (2.4). The VCCs are decomposed into couplings for

the atoms

Vag(i),A =

(
∂E(R)

∂RA

)
R0

· u
ag(i)
A√
M

, (2.5)

Vhg(μ),A =

(
∂E(R)

∂RA

)
R0

· u
hg(μ)θ
A√
M

. (2.6)

We call Vag(i),A and Vhg(μ),A atomic vibronic coupling constants (AVCC).

Instead of the VCC, Vhg(μ), an electron-vibration coupling constant λhg(μ) is often

used [26]. The electron-phonon couplings to the hg(μ) modes λhg(μ) are defined by

λhg(μ)

n(0)
=

5V 2
hg(μ)

6ω2
hg(μ)

, (2.7)

where n(0) is the density of states per molecule per spin at the Fermi level, and ωhg(μ) is

the frequency.
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Note that Eq. (2.4) is slightly different from the formula that we used in Ref. [16]. In

the previous chapter, we used Eq. (2.8) to evaluate the VCCs for the hg modes.

V ′hg(μ) =

√√√√∑
γ

[(
∂E(R)

∂RA

)
R0

· u
hg(μ)γ
A√
M

]2
. (2.8)

Eq. (2.8) and Eq. (2.4) give the same result as long as the symmetries of both the

wavefunction and the vibrational modes are kept. Since unrestricted wavefunction with

slightly broken symmetry is employed (see Sec. 2.3) , the couplings to vibrational modes

other than θ components are not zero. We found that the difference between couplings

calculated using Eq. (2.8) and (2.4) are close to each other. The difference of VCCs

between the two methods is less than 0.3 % of the present VCCs.

2.2.2 Vibronic coupling density

The VCCs can be rewritten as the integral form using electronic and vibrational structures

[18,19]. For the hg modes, the VCCs are written as

Vhg(μ) =

∫
d3rηhg(μ)(r). (2.9)

The vibronic coupling density (VCD) ηhg(μ) is defined by the product of the electron

density difference Δρ and the potential derivative vhg(μ):

ηhg(μ)(r) = Δρ(r)× vhg(μ)(r), (2.10)

where the electron density difference Δρ is the difference between the electron density ρ

of C−60 and the electron density ρ0 of C60 :

Δρ(r) = ρ(r)− ρ0(r). (2.11)

The potential derivative vhg(μ) is the derivative of the one-electron potential u(r;R) acting

on a single electron from all the nuclei of C60 with respect to Qhg(μ)θ:

vhg(μ)(r) =

(
∂u(r;R)

∂Qhg(μ)θ

)
R0

, (2.12)

=
60∑

A=1

−Z(r−R0,A)

|r−R0,A|3
· u

hg(μ)θ
A√
M

, (2.13)

where u is

u(r;R) =
60∑

A=1

−Z

|r−RA|
, (2.14)
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where Z = 6, the atomic number of carbon atom. From the VCD, we obtain a local

picture of the vibronic coupling constant.

2.2.3 Contribution of each orbital to the electron density differ-

ence

Within the Kohn–Sham method, Δρ is written as follows:

Δρ(r) =
∑
νΛλσ

(
NΛ(ν)λσψ

2
Λ(ν)λσ(r)−N0,Λ(ν)λσψ

2
0,Λ(ν)λ(r)

)
, (2.15)

where {ψΛ(ν)λσ} is a set of Kohn–Sham orbitals of the C−60 anion, {ψ0,Λ(ν)λ} a set of the

orbitals of the neutral C60, Λ the irreducible representations, λ the components of Λ, σ

the z component of the electron spin, ν the quantum number except for Λ, λ, and σ,

and NΛ(ν)λσ and N0,Λ(ν)λσ the occupation numbers of the orbitals ψΛ(μ)λσ and ψ0,Λ(μ)λ,

respectively. The Kohn–Sham orbitals are chosen to be real. In order to evaluate the

contribution of each orbital to the electron density difference, we expand Δρ in terms of

{ψ0,Λ(ν)λ}:

Δρ(r) =
∑
νΛλσ

A(Λ(ν)λσ)ψ2
0,Λ(ν)λ(r)

+
∑

νΛλν′Λ′λ′σ

B(Λ(ν)λΛ′(ν ′)λ′σ)ψ0,Λ(ν)λ(r)ψ0,Λ′(ν′)λ′(r), (2.16)

A(Λ(ν)λσ) =
∑
ν̄Λ̄λ̄

NΛ̄(ν̄)λ̄σ〈ψ0,Λ(ν)λ|ψΛ̄(ν̄)λ̄σ〉2 −N0,Λ(ν)λσ, (2.17)

B(Λ(ν)λΛ′(ν ′)λ′σ) =
∑
ν̄Λ̄λ̄

NΛ̄(ν̄)λ̄σ〈ψ0,Λ(ν)λ|ψΛ̄(ν̄)λ̄σ〉〈ψ0,Λ′(ν′)λ′ |ψΛ̄(ν̄)λ̄σ〉. (2.18)

2.3 Method of calculation

To obtain the electronic states, the equilibrium geometry R0, and the vibrational modes,

density-functional theory (DFT) calculations were performed. In the DFT calculations,

we employed the hybrid functional B3LYP [27] with a triple-zeta basis set 6-311G(d).

The gradients of E(R) were calculated analytically for both a symmetrized wavefunction

|ΨS
T1uz

〉 and a symmetry-broken wavefunction |ΨBS
T1uz

〉 which comes from the z component

of the T1u state. The vibrational modes employed are symmetrized. For the DFT cal-

culations, we used GAUSSIAN 09 [28]. The VCCs and VCDs were calculated using our

code.
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2.4 Results and discussion

2.4.1 Calculation of the vibronic coupling constants

Experimental [5,16] and present theoretical vibronic coupling constants (VCCs) are shown

in Table 2.1. Present theoretical couplings with the symmetry-broken wavefunction

|ΨBS
T1uz

〉 (Table 2.1, BS) are in line with our experimental ones [16]. On the other hand,

in comparison with the experimental VCCs, some of the VCCs calculated with the sym-

metrized wavefunction |ΨS
T1uz

〉 (Table 2.1, S) are qualitatively different; the VCC for the

hg(4) mode is overestimated and VCCs for the hg(5), hg(6), and hg(7) are underesti-

mated. This discrepancy occurs because the orbital relaxation is not fully included. We

will discuss this issue later. Hereafter, we concentrate on the VCCs calculated with the

symmetry-broken electronic wavefunction |ΨBS
T1uz

〉 and analyze them.

Next we compare our VCCs with the Gunnarssons’ result. The theoretical VCCs to

the stretching hg(7) and hg(8) modes (the hg(8) mode is shown in Fig. 2.2) are as large as

those of Gunnarsson et al. On the other hand, our vibronic coupling to the bending hg(2)

mode (Fig. 2.2) is almost the half of theirs. Moreover, in terms of the electron-phonon

coupling (2.7), the coupling constant for the hg(2) mode (11 meV) is about one quarter

of that estimated by Gunnarsson et al. (40 meV). Consequently the coupling of the hg(2)

is not the strongest, which is consistent with many theoretical studies [4, 10–14].

In order to obtain the contribution to the VCCs from each atom, we calculated the

AVCCs (2.5) and (2.6). The AVCCs are shown in Table 2.2. In general, the AVCCs of

the hg(2) mode are smaller than those of the hg(7) and hg(8) modes. In the case of the

stretching hg(7) and hg(8) modes, the AVCC is the largest at the C8 atom which is one

of the 6:6 carbons.

(a) (b)

Figure 2.2: The θ elements of the (a) hg(2) and (b) hg(8) modes.
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Table 2.1: Vibronic coupling constants to the ag and hg modes (10−4 a.u.) and the

stabilization energies (meV). The VCCs obtained from PES are taken from Refs. [16]

and [5]. Frequencies are taken from the data of a Raman scattering measurement of

fullerite [29].

Freq. PES B3LYP

(cm−1) Iwahara [16] Gunnarsson [5] BS S

ag(1) 496 0.537 0.15 0.301 0.308

ag(2) 1470 1.644 2.33 2.352 2.396

hg(1) 273 0.215 0.36 0.185 0.128

hg(2) 437 0.458 0.84 0.435 0.448

hg(3) 710 0.837 0.77 0.740 0.655

hg(4) 774 0.628 0.99 0.554 1.163

hg(5) 1099 0.992 1.15 0.758 0.211

hg(6) 1250 1.010 0.85 0.544 0.111

hg(7) 1428 2.283 1.78 2.096 1.783

hg(8) 1575 1.581 2.29 2.031 2.110

Es 15.9 17.0 19.2 19.9

EJT 57.7 88.2 49.4 51.0

Es + EJT 73.6 105.2 68.6 70.9

2.4.2 Vibronic coupling density analysis

The strengths of the vibronic couplings can be explained in terms of the VCD (2.9). The

difference between the AVCCs for the hg(2) and hg(8) modes is the largest at the C8 atom

(Table 2.2), thus we focus on these two modes in the vibronic coupling density analysis.

The t1uz lowest unoccupied molecular orbital (LUMO) of C60 and the electron density

differences of C−60 are shown in Fig. 2.3. The positive (light gray) area of electron density

differences Δρ originates from the LUMO density. One should note that Δρ obtained

using the symmetry-broken wavefunction |ΨBS
T1uz

〉 (Fig. 2.3 (b)) has not only positive but

also polarized negative (dark gray) area. This negative area appears due to the Coulomb

repulsion between the electron in the t1u LUMO and other doubly-occupied electrons.
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Table 2.2: Atomic vibronic coupling constants of the ag and hg modes (10−4 a.u.). The

atomic label is shown in Fig. 2.1.

Atom ag(1) ag(2) hg(1) hg(2) hg(3) hg(4) hg(5) hg(6) hg(7) hg(8)

1 -0.004 0.014 -0.010 0.004 -0.003 -0.001 0.004 0.009 -0.028 0.005

2 0.003 -0.015 0.009 -0.007 -0.001 0.009 -0.026 0.006 0.012 -0.001

3 -0.011 -0.090 -0.048 -0.044 0.021 -0.063 -0.093 0.065 -0.028 -0.098

4 -0.005 0.002 -0.018 0.008 -0.005 -0.027 0.006 -0.036 -0.006 -0.006

5 -0.027 -0.061 0.042 0.030 -0.051 0.019 0.069 -0.038 -0.039 -0.072

6 0.008 -0.041 0.012 -0.021 -0.018 0.032 -0.079 -0.018 -0.059 0.010

7 0.002 -0.031 -0.007 -0.003 -0.013 -0.014 -0.013 -0.103 -0.057 -0.004

8 -0.031 -0.118 0.002 -0.019 -0.014 -0.057 0.074 0.103 -0.132 -0.193

9 0.019 -0.012 -0.017 -0.020 -0.035 0.006 0.003 0.000 -0.010 0.022

Total -0.301 -2.352 -0.185 -0.435 -0.740 -0.554 -0.758 -0.544 -2.096 -2.031

Polarization in Δρ has been reported in other π system. [18]

In Fig. 2.4, the potential derivatives and the VCDs for the hg(2) and hg(8) modes are

shown. The potential derivative of the bending hg(2) mode (vhg(2)) is localized on each

atom (Fig. 2.4 (a1)). On the C1, C3, C4, C7, C8, and C9 atoms, the displacements of

the hg(2) modes are perpendicular to the surface of the C60 cage, and the signs of vhg(2)

of the inside and outside of the cage are opposite. The VCD ηhg(2) is localized on each

atom (Fig. 2.4 (a2)), and hence the integral of the VCD is canceled around the atom. In

the case of the stretching hg(8) mode, on the other hand, vhg(8) is delocalized on the C-C

bonds of the 6:6 carbons (Fig. 2.4 (b1)). Since both Δρ and vhg(8) are delocalized on the

C-C bonds, ηhg(8) is also delocalized on the C-C bonds (Fig. 2.4 (b2)). Particularly, ηhg(8)

has large density on the C8-C8’ bonds, thus the AVCC of the C8 atom is the largest. The

delocalized ηhg(8) on the C8-C8’ bonds appears because of the polarized electron density

difference. Therefore the polarization of Δρ is crucial to evaluate the vibronic coupling

constants. In fact, the orbital VCC 〈ψ0,Lz|vhg(8)θ|ψ0,Lz〉 is −0.775× 10−4 a.u. where ψ0,Lz

is the LUMO of the neutral C60.

The electron density difference calculated using the symmetrized electronic state |ΨS
T1uz

〉
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(a) (b) (c)

Figure 2.3: (a) LUMO, (b) Electron density difference Δρ of the symmetry-broken wave-

function and (c) electron density difference of the symmetrized wavefunction. The light

gray and dark gray indicate positive and negative, respectively. The isosurface value is

0.035 a.u. for LUMO and 0.0008 a.u for electron density differences.

(Fig. 2.3 (c)) has small negative density. Moreover, Δρ has negative density on the C1,

C2, and C9 atoms despite the small LUMO coefficients there. This result suggests that

the Coulomb repulsion is not fully included in the electron density difference. The dis-

crepancy between the experimental VCCs and theoretical ones computed with |ΨS
T1uz

〉

should come from the the electron density difference.

Some authors have explained the order of the VCCs of C−60 [4, 8, 9]. Varma et al.

considered that the couplings to the stretching hg(7) and hg(8) modes are stronger than the

coupling to the bending hg(2) mode because for a normalized displacement the distortion

along the stretching mode gives larger change in energy than that along the bending mode

does [4]. However, since they explained the VCC using the force constant, their discussion

will not always give a correct result. Hands et al. assumed that the vibronic coupling is

strong when the overlap between the t1u LUMO and the displacements of the atoms is

large [8, 9]. They concluded that the coupling to the hg(2) mode is large. Nonetheless,

they did not take into account the derivative of the Coulomb potential between electron

and nuclei v(r), and that leads to opposite result to ours.

2.4.3 Electron-electron interactions in the electron density dif-

ference

In order to evaluate the contribution from each Kohn–Sham orbital to Δρ, we decomposed

Δρ into orbital densities (2.16). Fig. 2.5 shows the contribution of each Kohn–Sham
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(a2) (b2)

(a1) (b1)

Figure 2.4: Potential derivatives for the (a1) hg(2) and (b1) hg(8) modes and vibronic

coupling densities for the (a2) hg(2) and (b2) hg(8) modes. The light gray and dark

gray indicate positive and negative, respectively. The isosurface value is 0.01 a.u. for the

potential derivatives and 10−5 a.u. for the VCDs.

orbital to Δρ (
∑

λ

∑
σ=↑,↓A(Λ(ν)λσ)). Since one of the triply degenerate t1u orbitals

is occupied by an electron and the positive density of Δρ mainly originates from the

t1u(7) orbital, the contribution of the LUMO (t1u(7)) is the largest. However, as we have

discussed in 2.4.2, the contributions to Δρ from both the occupied orbitals other than

the LUMO are crucial too. The coefficients for the doubly occupied orbitals are negative

because of the Coulomb repulsions between the doubly occupied electrons and the electron

in the LUMO. Since these orbitals have finite orbital coefficients of s atomic orbitals and

in-plane p atomic orbitals, Δρ has negative polarized density. Among the orbitals other

than LUMO, hg(10) and t1g(3) orbitals (Fig. 2.6) have the largest negative and positive

coefficients, respectively. The densities of these orbitals can mix with each other because

these orbitals have common representations in their direct products. Since the density

of the hg(10) orbital overlaps the LUMO density, the Coulomb repulsion between the

electrons occupied in the LUMO and hg(10) orbitals is large. The Coulomb interactions

give rise to an additional negative contribution in the Δρ. Due to the decrease of the

hg(10) density, the density around C1, C2, and C8 atoms where there is small SOMO

density also decreases. The negative density around C1, C2, and C8 is canceled by the
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t1g(3) density. As a result, Δρ is small around the C1, C2, and C8 atoms where the

density of the t1u(7) SOMO is small, whereas there are both positive and negative areas

around the atoms where the SOMO density is large.

It is desired that the wavefunction of C−60 has the correct symmetry. Moreover, for

the calculation of the VCCs, we must take into account the polarization of Δρ. To fulfill

both of them, a state-averaged post Hartree–Fock method could be one of the solutions.

In the post Hartree–Fock calculation, we have to include not only frontier orbitals but

also other orbitals which contribute to Δρ.
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-0.001
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 0.001

 0.002
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Figure 2.5: Contribution of each Kohn–Sham orbital to Δρ. t1u(7) orbital is the LUMO.

(a) (b)

Figure 2.6: (a) hg(10) orbitals and (b) t1g(3) orbitals.
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2.5 Conclusion

In this chapter, we analyzed the order of the vibronic coupling constants (VCCs) using

the concept of the vibronic coupling density (VCD). The coupling to the bending hg(2)

mode is small because the displacement of the vibrational mode is perpendicular to the

surface of the C60 cage and the VCD is localized on atom. On the other hand, the coupling

to the stretching hg(8) mode is large due to the delocalization of the VCD on the C-C

bond. The polarization of the electron density difference is crucial for the couplings to

the stretching modes. From the analysis of Δρ, we found that the contribution from

not only the frontier orbitals but also other orbitals are large. The VCD analysis clearly

demonstrates the weakness of the vibronic coupling to the hg(2) mode. This may shed

light on the mechanism of the electronic properties in alkali doped fullerides, A4C60, band

insulator vs Mott-Hubbard insulator [30–32]. In addition to the solid state properties in

fullerides, the VCD analysis can also be useful in the studies on C60 derivatives for organic

photovoltaic cells.
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Chapter 3

C60 Bearing Ethylene Moieties

3.1 Introduction

In order to functionalize fullerenes, [4+2] cycloadditions to C60 (Figure 3.1) have been

extensively studied in synthetic and material chemistry [1–3]. For example, mono adduct

[4], bis adduct [5], and hexakis adduct with the Th symmetry [6] have been isolated and

characterized. The reactive site of these reactions is usually carbons of the C=C double

bonds between two adjacent hexagon rings (6:6 carbons). Since the LUMOs of C60 are

low-lying, C60 acts as a good dienophile.

Though these experimental findings indicate that C60 bears ethylene moieties in its

cage, it is well known that the frontier orbital theory encounters difficulty to predict the

reactivity. The t1u LUMOs of C60 are three-fold degenerate and strongly delocalized as

shown in Figure 3.2. Since the averaged frontier electron density shown in Figure 3.3 is

totally symmetric, one cannot predict the reactive site. In order to overcome the difficulty,

Fukui et al. have proposed the interaction frontier orbitals (IFO) [7]. The IFO approach

is based on an orbital localization technique. Chikama et al. have applied the IFO theory

for the Diels-Alder reaction of C60 [8].

In addition to an electronic structure, molecular vibrations are also essential for chemi-

cal reactions because they cause molecular distortions in the reaction processes. Therefore,

in chemical reactions, it is desired to discuss a vibronic (electron-vibration) coupling [9,10]

which is a driving force of the distortions. In this chapter, we propose that vibronic cou-

pling density (VCD) [11, 12] for a reaction mode can be regarded as a reactivity index.

We demonstrate this for the [4+2] cycloaddition to C60.

84



Figure 3.1: Numbering scheme of C60. C8 is one of the 6:6 carbons of the C=C bonds

between two adjacent hexagons.

3.2 Theory

The vibronic coupling density is defined as a product of the electron density difference

Δρ between a neutral and an ionized (charge-transfer) state and the potential derivative

vα with respect to a mass-weighted normal coordinate Qα:

ηα(r) := Δρ(r)× vα(r). (3.1)

The potential derivative vα(r) is defined as a derivative of a potential u(r) acting on one

electron from all the nuclei:

vα(r) :=

(
∂u(r)

∂Qα

)
0

. (3.2)

The vibronic coupling constant (VCC) Vα is exactly equal to the integral of ηα [11, 12]:

Vα =

∫
ηα(r) d

3r. (3.3)

Based on Eq. 3.3, we can discuss a vibronic coupling in terms of the electronic structure

Δρ and the vibrational structure vα. We have applied the VCD analysis for carrier-

transporting molecules, and succeeded in elucidating that a hole-transporting molecule,

TPD, has small VCCs from view of the VCDs [11]. Furthermore, we have shown that

VCCs can be controlled based on the VCD analysis to design highly-efficient carrier-

transporting molecules [13, 14].
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Figure 3.2: Symmetrized t1u LUMOs of C60.

Here we show the theoretical background of the VCD analysis for chemical reac-

tions. Parr and Yang have derived the classical frontier-orbital theory from the concep-

tual density-functional theory [15]. Ground-state electronic energy of a species S is a

functional of the number of electrons N and u: E = E[N ; u]. Chemical potential μ is

defined by (∂E/∂N)u. The total differential of E = E[N ; u] is

dE = μ dN +

∫
ρ(r) du(r) d3r. (3.4)

The total differential of μ = μ[N ;u] is written as

dμ = 2ηdN +

∫
f(r) du(r) d3r, (3.5)

where η is the hardness, and f is the Fukui function:

f(r) :=

(
δμ

δu(r)

)
N

=

(
∂ρ

∂N

)
u

. (3.6)

The last equality comes from the Maxwell relation of Eq. 3.4. The problem of chemical

reactivity is what direction is preferred when a reagent R approaches S. Parr and Yang
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Figure 3.3: Averaged density of the LUMOs.

assumed that the preferred direction is the one for which the initial |dμ| for the species S

is a maximum [15]. Based on the principle, they have derived the classical frontier-orbital

theory.

Let us start from this principle. We assume that (1) the Fukui function is approximated

by Δρ and (2) du is expressed in terms of normal modes:

du =
∑
α

(
∂u

∂Qα

)
0

dQα =
∑
α

vαdQα, (3.7)

where α = ag(1), ag(2), hg(1), · · · , hg(8). Furthermore, the effective mode s is assumed to

coincide with the direction of the reaction path:

ds :=
∑
α

λαdQα,where λα :=
Vα√∑
α V

2
α

. (3.8)

Finally we obtain

dμ = 2ηdN +

∫
Δρ(r)vs(r) ds d

3r = 2ηdN +

∫
ηs(r) ds d

3r, (3.9)

where vs and ηs are the potential derivative and the vibronic coupling density for the

reaction mode s, respectively. From the principle by Parr and Yang, the preferred direction

is the one for which the initial |ηs| for the species S is a maximum.

3.3 Method

We have published vibronic coupling constants of C−60 which reproduce the experimental

photoelectron spectrum well [16]. The VCD for the reaction mode was calculated em-

ploying our previous results by using B3LYP/6-311G(d) [16]. A VCC can be decomposed
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into atomic contributions, atomic vibronic coupling constants (AVCC) [17]. We also cal-

culated the AVCC for the reaction mode. We show the results for the vibronic coupling

between the electronic T1u(z) state and the reaction mode consisting of all the ag and

hg(2z
2 − x2 − y2) modes.

3.4 Results and discussion

Table 3.1: Atomic vibronic coupling constants for the reaction mode in 10−4 a.u. The

labeling is defined in Figure 3.1.

Label Num. of equiv. atoms AVCC

C1 4 -0.003

C2 8 -0.006

C3 8 -0.138

C4 8 -0.014

C5 8 -0.088

C6 8 -0.067

C7 8 -0.071

C8 4 -0.223

C9 4 -0.008

Total -4.008

The calculated AVCCs are tabulated in Table 3.1. The 6:6 carbon C8 has the max-

imum of the AVCCs. Figure 3.4 shows the electron density difference Δρ, the reaction

mode s, and the potential derivative vs. Though Δρ is delocalized like a belt, the reaction

mode has a large displacement on C8 atoms. Accordingly |vs| on C8 has a large value.

Figure 3.5(a) shows the vibronic coupling density ηs. |ηs| has the maximum on the 6:6

carbon, C8. The VCD of ethylene anion is also shown in Figure 3.5(b) for comparison.

It is clear that the distribution of the VCD on the C8 atoms of C60 is almost the same

as that of the ethylene. From view of the vibronic coupling density, C60 bears ethylene

moieties in its cage.

Since there are other two reaction modes corresponding to the T1u(x) and T1u(y)

electronic states, the C60 cage contains six dienophiles, which is consistent with the ex-
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Figure 3.4: (a) Electron density difference Δρ, (b) reaction mode s, and (c) potential

derivative vs for the reaction mode in C−60.

perimental observation of the hexakis adduct [6]. In the previous theoretical studies, both

the t1u LUMOs and the t1g next LUMOs of C60 compose the frontier bonding orbitals

of the hexakis adduct [18, 19]. Our theory is consistent with these results because Δρ

includes contributions from the LUMOs of C60 as well as the other orbitals due to the

effects of orbital mixing and relaxation. Since we consider not the t1u LUMOs but the T1u

electronic states, all the possible contributions from the orbitals other than the frontier

orbitals including the t1g next LUMOs are naturally incorporated to the VCD for the

reaction mode. In other words, the present theory has an advantage that the concept of

the VCD is free from the orbital approximation.

Figure 3.5: Vibronic coupling density analysis for the reaction mode in (a) C−60 and (b)

ethylene monoanion.
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3.5 Conclusion

The vibronic coupling density for the reaction mode can be regarded as a reaction index

which can be employed even for large systems such as a fullerene. One of the advantages

is that the results of post Hartree-Fock calculations can be employed since the VCD is

not based on the orbital approximation. In addition, no orbital localization technique is

required. From view of the vibronic coupling density, C60 bears ethylene moieties which

behave as a dienophile. In other words, the C60 cage contains the six isolated double bonds

as a functional group. The VCD analysis may extract a picture of a functional group from

the results of quantum-chemistry calculations without any localization technique as in the

ethylene moieties of C60. We will apply the present theory for similar reactions of higher

fullerenes including metallofullerenes [20] and fullerenes encapsulating a molecule such as

H2O [21] in the near future.
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Chapter 4

Vibronic Couplings in C60

Derivatives for Organic

Photovoltaics

4.1 Introduction

Fullerene (C60) derivatives have been employed as acceptors in organic photovoltaics

(OPV) [1]. C60 derivatives are known to be good electron-transporting materials since

the vibronic couplings (VC) which give rise to inelastic scattering of an electron are small.

The VCs have been discussed using a reorganization energy which can be decomposed into

vibronic coupling constants (VCC) and vibrational frequencies. So far, the reorganization

energy of a C60 derivative has been estimated in solution [2, 3].

Recently we have estimated the VCCs of C−60 from the photoelectron spectrum in

gas phase [4] using the exact diagonalization of a dynamic Jahn-Teller Hamiltonian [5].

Furthermore the estimated VCCs agree well with the density functional calculation [5].

Therefore, the method of calculation is expected to be applied for accurate estimations

of the VCCs in C60 derivatives.

The VCCs can be analyzed in terms of vibronic coupling density (VCD) [6]. The VCD

provides a local picture of the VC from the electronic and vibrational structures. More-

over, using the VCD analysis, we have succeeded in designing novel hole- and electron-

transporting molecules with small VCCs [7, 8].

In this study, we calculate the VCCs or reorganization energies in C60 derivative anions
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(see Fig. 4.1) and analyze the VCs in terms of VCD, and compare the VCs with those

in C60 anion. (see Figs. 4.1). [6,6]-phenyl-C-61-butyric acid methyl ether (PCBM) is

employed as an acceptor in organic thin film solar cells [1]. Fullerene pyrrolidines (2, 3)

are used as acceptors in donor acceptor dyads [3]. The calculated results are analyzed in

terms of vibronic coupling density analysis.

1 (PCBM, C1) 2 (Cs) 3 (C1)

Figure 4.1: Calculated C60 derivatives.

4.2 Theory

Vibronic coupling constant for a vibrational mode α is defined by

Vα =

〈
Ψ(R0, r)

∣∣∣∣∣
(
∂Ĥ(Q, r)

∂Qα

)
R0

∣∣∣∣∣Ψ(R0, r)

〉
, (4.1)

where Ψ denotes the electronic wavefunction for the anionic state at the equilibrium

structure of the neutral stateR0, r = (r1, · · · , ri, · · · , rN) a set of the electron coordinates,

Ĥ molecular Hamiltonian, Q = (Q1, · · · , Qα, · · · ) a set of the normal coordinate Qα.

Vibronic Hamiltonian can be written as

Ĥvibro = E0 +
3M−6∑

α

(
− |Vα|Qα +

1

2
ω2
αQ

2
α

)
, (4.2)

where E0 is the ground-state electronic energy of the anion at R0. The direction of mode

α is defined so as Vα is negative. The vibronic Hamiltonian can be rewritten as

Ĥvibro = E0 +
3M−6∑

α

[
1

2
ω2
α

(
Qα − |Vα|

2ω2
α

)2

− V 2
α

2ω2
α

]
. (4.3)

93



From Eq.(4.3), reorganization energy for mode α is obtained as

ER,α =
V 2
α

2ω2
α

. (4.4)

Total reorganization energy is calculated from

ER =
∑
α

ER,α. (4.5)

VCD for a vibrational mode α is defined by

ηα(ri) = Δρ(ri)× vα(ri), (4.6)

where Δρ(ri) = ρ(ri)−ρ0(ri) is the electron density difference between the anionic density

ρ and the neutral density ρ0. Potential derivative vα(ri) is defined using the nuclear

attraction potential acting on a single electron:

u(ri) =
M∑

A=1

− ZAe
2

4πε0|ri −RA|
, (4.7)

where M is the number of the nuclei, and RA and ZA denote the position and the charge

of nucleus A, respectively. The potential derivative is defined by

vα(ri) =

(
∂u(ri)

∂Qα

)
R0

, (4.8)

The space integral of a vibronic coupling density ηα yields the VCC:

Vα =

∫
ηα(ri) d

3ri =

∫
Δρ(ri)× vα(ri) d

3ri. (4.9)

The VCC can be analyzed in terms of the electronic structure Δρ and the vibrational

structure vα through the VCD ηα based on Eq. (4.9). Note that a VCD is sometimes

canceled in a certain region since a VCD distributes with positive and negative values.

Effective mode with the VCC

Veff =

√∑
α

V 2
α (4.10)

is defined by

ueff =
3M−6∑
α=1

(
|Vα|
Veff

)
uα, (4.11)

where uα is a vibrational vector of mode α. For the effective mode, the frequency and

the reorganization energy are

ω2
eff =

∑
α

V 2
α

V 2
eff

ω2
α, (4.12)

Eeff =
V 2
eff

2ω2
eff

. (4.13)

respectively.
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4.3 Method of calculation

We employed the B3LYP functional with the 6-311G(d,p) basis set. The reference struc-

tures were obtained by geometry optimizations of the neutral states. Vibrational analyses

were applied for the optimized structures to be checked if the structure is a stationary

minimum. Analytical force calculations were performed for the optimized structures of the

neutral states. We employed the Gaussian09 packages for the optimizations, vibrational

analysis, and force calculations [9]. The VCCs were evaluated using the results of the

force calculations. The VCD analyses were performed using the electronic wavefunctions

of the neutral and anionic states at their reference geometry as well as the vibrational

modes. The VCC and VCD calculations were performed using our codes. In order to

analyze the electronic structures, we performed the fragment molecular orbital analysis

using the YAeHMOP program [10].

4.4 Results and discussion

4.4.1 Vibronic coupling constants

Figures 4.2 show the calculated vibronic coupling constants Vα of C−60 [5] and the anions

of its derivatives. The VCCs of the derivatives are quite similar to those of C−60. For C
−
60,

the VCCs of the ag(2) (1492 cm−1), hg(7) (1442 cm−1), and hg(8) (1608 cm−1) modes are

strong. For the derivative anions, the vibrational mode originating from the ag(2) mode

of C60 is the most intense among other modes, and the mode from the hg(8) mode of C60

is the second strongest.

Since the symmetry of C60 is Ih, and the LUMOs belong to the t1u irreducible repre-

sentation, the T1u electronic state couples with ag and hg modes from the selection rule,

[T 2
1u] = ag⊕hg. In C60, there are two ag modes and eight sets of hg modes. Therefore, the

number of the vibronically active modes is 42 for C−60. The VCCs of the other modes are

exactly zero. On the other hand, the symmetries of the derivatives are lower than that

of C60. The derivatives has larger number of active modes than C60 does. For example,

PCBM has 258 active modes. However, note that the VCCs for the modes which originate

from the active modes of C−60, ag and hg modes, are large.
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Figure 4.2: Vibronic coupling constants of (a) C−60, (b) PCBM
−, (c) C60 pyrrolidine

− (Cs),

and (d) C60 pyrrolidine derivative− (C1) in 10−4 a.u.

4.4.2 Reorganization energies

Reorganization energies ER,α are shown in Fig. 4.3, and total reorganization energies ER

are tabulated in Table 4.1. The reorganization energies of the derivatives are almost the

same as that of C−60. The reorganization energy of PCBM is larger than C60 by 7 meV.

Since the symmetry of PCBM is C1, all the vibrational modes are active and contribute

to the reorganization energy. Present reorganization energies are slightly larger than

experimental value of ca. 50 meV [2].

The VCCs and total reorganization energies for the effective modes of the derivatives

are the same as C60 as tabulated in Table 4.1. Moreover, the Mulliken charges on the

substituent group are small. These result indicates that the vibronic couplings in the

derivatives originate from the coupling in C60.
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Table 4.1: Total reorganization energies ER (meV). Frequencies ωeff (cm−1, vibronic cou-

plings Veff (10−4 a.u.), and stabilization energies Eeff (meV) of the effective modes. Sums

of Mulliken charges on the substituent groups.

ER ωeff Veff Eeff Charge

C−60 67.2 1450 4.01 50.1

1− 74.0 1452 4.03 50.4 -0.098

2− 69.2 1466 4.00 48.8 -0.095

3− 69.1 1460 4.00 49.1 -0.109

4.4.3 Vibronic coupling density

Figure 4.4 (a) shows the LUMO and the electron density difference of PCBM. The LUMO

is strongly localized on the C60 fragment.On the other hand, the electron density difference

appears not only on C60 but also on the substituent (Fig. 4.4 (b)). In addition, σ-type

polarization of Δρ is found on the C60 cage. These properties of Δρ are due to the

Coulomb interactions between the doubly occupied electrons and an additional electron

in the anion. In other words, the many-body effect strongly affects Δρ, and therefore,

VCCs [11].

The LUMOs of the derivatives originate from a t1u LUMO of C60, and the Δρ’s are

localized on the C60 fragments. The electronic states of the derivative anions strongly

couple to vibrational modes corresponding to ag(2) and hg(8) modes of C60. Therefore,

the distributions of the VCDs in the derivative anions are similar to that of C−60 (see

chapter 2 in Part II). Furthermore, the effective modes of the derivative anions are the

stretching mode of the 6:6 C=C double bond, which is the same as in C−60 (see chapter 3

in Part II). Figure 4.5 shows the VCD analysis of the effective mode.

The VCCs or reorganization energies of C−60 and derivatives are close to each other

because the distribution of the LUMOs of the derivatives are similar to that of C60. This

conservation of LUMO is explained based on the FMO analysis. For FMO analysis, each

C60 derivative is divided into C60 (Fragment A) and the substituted group (Fragment B).

The FMO of PCBM is shown in Fig. 4.6. The HOMO of PCBM consists of hg and t1u

frontier orbitals of C60 and the LUMO of Fragment B. One of the t1u LUMOs contributes
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Figure 4.3: Reorganization energies ER,α of (a) C−60, (b) PCBM−, (c) C60 pyrrolidine−,

and (d) C60 pyrrolidine derivative− in meV.

to the HOMO and the others do not. The latter are almost unchanged under addition

of the substituent. Therefore, the LUMO of PCBM is almost the same as the LUMO of

C60. As long as the LUMO of a derivative is similar to the LUMO of C60, the VCCs or

reorganization of the derivative is almost the same as those of C60.

4.5 Summary

VCCs and reorganization energy of C60 derivative anions including PCBM were evaluated.

The results were analyzed in terms of the VCD.

All the molecules calculated exhibit almost the same VCCs in C−60. Since the LUMO

of the derivatives originate from the t1u LUMOs, Δρ is localized on the C60 fragment.

The reorganization energy of PCBM is slightly larger than that of C60. This is because

the molecular symmetry of PCBM is low. In order to avoid increase of the reorganization
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energy, (1) Δρ should localize on the C60 fragment, and (2) the molecular symmetry should

be high. Therefore, a low symmetry derivative with a delocalized LUMO would exhibit

large VCCs and not be suitable for a OPV material from view of vibronic couplings.
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(a) LUMO

(b) Δρ

x-direction y-direction

Figure 4.4: (a) LUMO (isosurface value=0.025 a.u.), (b) Δρ (isosurface value=0.001 a.u.),

of PCBM.
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(a) veff

(b) ηeff

x-direction y-direction

Figure 4.5: (a) veff (isosurface value=0.005 a.u.) and (b) ηeff (isosurface value=5×10−6

a.u.) of the effective mode in PCBM.
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Figure 4.6: FMO analysis for PCBM. Threshold of the MO is 0.03 a.u. for the system

and fragment A and 0.05 a.u. for the fragment B.
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Chapter 1

Active Center Induced by Vibronic

Interactions in V2O5/SiO2

1.1 Introduction

Highly dispersed vanadium oxide on silica, V2O5/SiO2, is a photocatalyst which promotes

the oxidation of light alkenes [1–4]. The active species is the isolated VO4, which has a

C3v structure (see Fig. 1.1(a)) [5,6]. The vanadium oxide has two kinds of oxygen, basal

oxygen (Ob) and terminal oxygen (Ot). The terminal oxygen reacts with a substrate

in the photo-excited T1 state [2, 3, 7]. Spectroscopy and molecular orbital calculation

have revealed that the HOMO of the ground state consists of p orbitals of the basal

oxygens, and LUMO’s are doubly degenerate orbitals which originated from d orbitals

of vanadium [8, 9]. The first triplet state is assigned to the excitation from the HOMO

to the LUMO [9]. In the T1 state, the frontier orbitals have no orbital coefficient on the

terminal oxygen, although a substrate reacts with the terminal oxygen. In addition, a

driving force of the ligand-to-metal charge transfer (LMCT) from the terminal oxygen to

the vanadium is still open [8].

In this chapter, we will address these problems in terms of the vibronic coupling

theory [10–12] using the density functional calculation as well as the vibronic model cal-

culation. Vibronic coupling, or electron-phonon interaction, in a molecule with degenerate

electronic state gives rise to a symmetry-lowering distortion, which is so called a Jahn-

Teller distortion. We focus on the JT distortion in the molecule and discuss the reaction

mechanism considering the vibronic coupling.
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Figure 1.1: (a) Isolated active species of highly dispersed vanadium oxide supported on

silica, VO4/SiO2. There are two kinds of oxygen, terminal oxygen Ot and basal oxygen

Ob. (b) Model molecule H3VO4.

1.2 Structures

We performed preliminary calculations for VO4 clusters with some SiO2 units. The or-

bitals corresponding to the HOMO in H3VO4 are largely localized on the VO4. Accord-

ingly, we employed H3VO4 as a model of the isolated VO4 on silica (VO4/SiO2), where

three Si atoms bonded with the Ob are replaced by hydrogen atoms (Fig. 1.1(b)). We

optimized the singlet ground state and the triplet state of H3VO4 using the density func-

tional method. We employed the B3LYP functional with a basis set, LANL2DZ for V,

6-31G(d) for O, and 6-31G for H. To obtain vibrational modes and frequencies, vibra-

tional analyses were performed. For simplicity, we adopted the result of the ground state

as vibrational modes of the present system. Molecular orbitals were obtained employing

the extended Hückel method. All the density functional calculations and the extended

Hückel calculations were performed using the Gaussian03 package [13].

For the ground state, we optimized the structure within the C3v symmetry. The

vibrational frequencies are tabulated in Table 1.1, and the vibrational a1 and e modes are

depicted in Fig. 1.2. One imaginary mode a2(1) remains in the C3v-optimized structure,

which will give rise to a distortion from C3v to C3 or lower symmetry. It is ascribed to

the pseudo Jahn-Teller effect in the ground state.

Since this effect is not important in the present discussion, we simply refer the opti-
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Table 1.1: Vibrational frequency (cm−1) of X1A1 state of H3VO4. The asymmetric a2(1)

mode with an imaginary frequency suggests that the pseudo Jahn-Teller effect occurs in

the singlet ground state.

a1(1) 255.4 a2(1) 124.0 i e(1) 216.6

a1(2) 698.2 e(2) 294.4

a1(3) 758.7 e(3) 407.1

a1(4) 1151.7 e(4) 637.7

a1(5) 3763.6 e(5) 799.9

e(6) 3756.4

mized structure within the C3v symmetry as the optimized structure.

On the other hand, for the triplet state, we obtained two Cs structures, one is a local

minimum, and the other a saddle point with one imaginary frequency. Fig. 1.3 shows a

schematic representation of the potential surface of the triplet state. At the middle, the

potential surfaces conically intersect, and the minima are located along the trough which

corresponds to the deformed structures. The minima are separated by the saddle points.

This suggests that the Jahn-Teller effect occurs in the triplet state, and the vibronic

coupling may play an important role in the mechanism of the photocatalytic reaction.

In fact, in the Cs structure, the frontier orbitals have finite coefficients on the terminal

oxygen, while, in the C3v structure, the HOMO has no coefficient on the terminal oxygen

at all. Therefore, the reaction center appears, and the LMCT occurs associated with the

Jahn-Teller distortion. In other words, the vibronic coupling induces the active center of

the photocatalyst. The effects on the frontier orbitals are discussed in detail in Sec. 1.3.

Since the electronic term of the photo-excited state is 3E, the Jahn-Teller active vi-

brational modes are deduced from the symmetric product representation:

[E]2 = a1 ⊕ e. (1.1)

Thus, the Jahn-Teller active mode is an e mode. In the model molecule, H3VO4, there are

five a1 and six e modes. Among them, some vibrational modes significantly couple to the

electronic state. To find such modes, the distortion from the ground state structure with

the C3v symmetry to the triplet state with the Cs symmetry was projected onto these
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Table 1.2: Distortion of H3VO4 in the T1 state from C3v to Cs projected on the normal

coordinates (amu1/2Å).

a1(1) 0.330 e(1) -0.039

a1(2) 0.390 e(2) 0.567

a1(3) 0.438 e(3) 1.397

a1(4) 0.607 e(4) 0.149

a1(5) -0.616 e(5) 0.132

e(6) 0.436

vibrational modes. The result is summarized in Table 1.2. It is found that the e(2) mode

has large contribution to the Jahn-Teller distortion and the deformation of VO4 is large.

Thus, we concentrate ourselves on the e(2) mode, for simplicity. The a1 modes also couple

to the electronic state, though they cannot lower the molecular symmetry, and they shift

the orbital levels. Therefore, they can contribute to the deformation associated with the

transition from the singlet ground state to the triplet state. Among them, the a1(4) mode

is particularly important since it corresponds to a stretching mode of the V=Ot bonds

which has been attributed to the progression in the emission spectra [7, 14, 15].

1.3 Vibronic model

As mentioned in the previous section, the e(2) mode has the largest contribution to the

Jahn-Teller distortion of VO4 among the six e modes. Fig. 1.4 shows the change of the

HOMO and NHOMO along the e(2) mode. Note that we denote HOMO, next HOMO

(NHOMO), and LUMO as those of the singlet ground state, not the triplet state, through-

out this chapter. The orbital patterns and levels were calculated using the extended Hückel

method in the DFT optimized structures [13]. The LUMO’s originate from the d orbitals

of the vanadium, and they are doubly degenerate, which results in the Jahn-Teller effect

after the electronic excitation E ← A1. In the NHOMO, the molecular orbital is local-

ized on the terminal oxygen as well as the basal oxygens. The HOMO consists of the p

orbitals of the basal oxygens and has no coefficients on the terminal oxygen as long as

the molecular symmetry is C3v. From Fig. 1.4, it is clear that the finite coefficient on the
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terminal oxygen appears in the HOMO with the e(2) deformation.

Since the LUMO level is doubly degenerate, denoted by e∗, the Jahn-Teller coupling

exists between the LUMO’s, denoted by θ∗ and ε∗. In addition, the NHOMO’s are also

e, and they are denoted by θ and ε. The NHOMO’s also couple to the e mode.

The Jahn-Teller active e mode can couple the e orbitals with a2 and a1 orbitals:

a1 ⊗ e = e, a2 ⊗ e = e. (1.2)

Therefore, such off-diagonal couplings should be taken into account in the present

model. Since an off-diagonal coupling is important as long as two levels are close, we

consider the off-diagonal couplings between the HOMO (a2) and NHOMO (e), and that

between the NHOMO and HOMO-2 (a1).

Accordingly, we set up the following vibronic Hamiltonian:

Ĥ = Ĥ0 + ĤLJT + Ĥoff−diag, (1.3)

Ĥ0 =
∑
i

εi|i〉〈i|, (1.4)

ĤLJT = V1 [(−|θ∗〉〈θ∗|+ |ε∗〉〈ε∗|)Qθ + (−|θ∗〉〈ε∗|+ |ε∗〉〈θ∗|)Qε]

+ V3 [(−|θ〉〈θ|+ |ε〉〈ε|)Qθ + (−|θ〉〈ε|+ |ε〉〈θ|)Qε] , (1.5)

Ĥoff−diag = V2 [(|a2〉〈ε|+ |ε〉〈a2|)Qθ + (−|a2〉〈θ|+ |θ〉〈a2|)Qε]

+ V4 [(|a1〉〈θ|+ |θ〉〈a1|)Qθ + (|a1〉〈ε|+ |ε〉〈a1|)Qε] , (1.6)

where i = a1, θ, ε, a2, θ
∗, ε∗, and εi denotes the orbital level of the molecular orbital i. Ĥ0

is the Hamiltonian without a distortion. ĤLJT describes the linear Jahn-Teller couplings

of the e∗ and e orbitals, respectively. Ĥoff−diag describes the off-diagonal coupling between

the e and a2 orbitals and that between the e and a1 orbitals. V1, V2, V3 and V4 denote the

corresponding orbital vibronic coupling constants.

We obtained the orbital vibronic coupling constants for the e(2) mode by fitting the

eigenvalues of the above Hamiltonian (1.3) to the orbital energy levels calculated using the

extended Hückel method. The calculated constants are V1 = 1.2 10−1 eV/(amu1/2Å), V2 =

3.3 10−2 eV/(amu1/2Å), V 3 = −1.1 10−2 eV/(amu1/2Å), V 4 = 2.5 10−2 eV/(amu1/2Å).

Fig. 1.5 shows the eigenvalues of the vibronic Hamiltonian (1.3) with the parameters

calculated above (solid lines) and the orbital level from the extended Hückel calculation

(dotted lines). It is found that the Jahn-Teller stabilization mainly comes from the Jahn-

Teller coupling V1 of the LUMO e∗. Furthermore, the HOMO a2 is slightly destabilized
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against the Jahn-Teller distortion with the off-diagonal coupling V2. The HOMO which

has no coefficient on the Ot interacts with the NHOMO e via the Jahn–Teller-active mode

e. Fig. 1.4 shows the orbital mixing of the HOMO and NHOMO. In other words, the

whole system is stabilized by the Jahn-Teller coupling V1, and, in the same time, the

active center is induced by the off-diagonal vibronic coupling V2 between the HOMO and

NHOMO.

1.4 Conclusion

We calculated the optimized structure in the singlet ground and triplet excited states of

the model molecule of vanadium oxide on silica, and the energy spectrum of the vibronic

Hamiltonian. Major findings are as follows:

1. The optimized structures of the triplet state have Cs symmetry, which is ascribed

to the Jahn-Teller effect.

2. The Jahn-Teller stabilization mainly comes from the orbital vibronic coupling of

the LUMO e∗ originated from the d orbitals of the vanadium with the e vibrational

mode.

3. The off-diagonal vibronic coupling V2 induces the active center in the photocatalytic

reaction, while the whole system is stabilized with the Jahn-Teller coupling V1.

Since the SOMO consists of the atomic orbitals of the basal oxygens as well as the terminal

oxygen, the present result does not exclude the possibility of the reactivity on the basal

oxygens. The JT effect contributes not only to the appearance of the active center on

the terminal oxygen but also to the stabilization of the active center. Furthermore, it

may contribute to the life time of the phosphorescent state, because of the reduction of a

Franck-Condon factor.

Since the a1 and e modes couple to the phosphorescent state, the emission spectrum

should shed light on the vibronic structure in the present system. In the assignments

published so far, explaining the various separations of the vibrational fine structure have

failed since they have considered only the stretching of V=Ot bond (a1(4) mode) [7,14,15]

or attributed the progression to a stretching of the V-O-Si ligands [9].
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Our study reveals the crucial role of the e modes as well as the a1 modes in the

phosphorescent state. Further study on the complete assignment of the phosphorescence

spectra is now in progress. The result will be published in the future.
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Figure 1.2: Vibrational a1 and e modes of the X1A1 state.
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Figure 1.3: Schematic representation of the optimized structures and the Jahn-Teller

potential surface in the triplet state. (a) The triangle indicates three basal oxygens (b)

Cross section of the potential along the line between the minimum and the saddle point.

At the center, the potential curves conically intersect.
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Figure 1.4: Orbital mixing of the HOMO a2 and NHOMO e.
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and calculated energy spectrum of the vibronic Hamiltonian with the parameters (solid
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Chapter 2

Molecular Design for High-Spin

Molecules in View of Vibronic

Couplings

2.1 Introduction

Aromatic amines have been paid to much attention for decades since they can exhibit a

high-spin ground state [1, 2]. In 1950 Longuet-Higgins proved that the ground state of a

molecule with m-xylene skeleton is expected to be a high-spin, triplet ground state [3].

Within the Hückel molecular orbital (HMO) approximation, molecules with am-phenylene

diamine (1 in Figs. 2.1) skeleton can have pseudo-degenerate frontier orbitals which can

result in a triplet ground state after oxidation. The Longuet-Higgins’ theory has been a

guiding principle for designing high-spin organic molecules. However, since the Longuet-

Higgins’ theory is based on the HMO theory, the ground state of such a molecule is not

always a triplet because of the electronic correlation [4, 5] and structural relaxation.

Within higher approximations than the HMO theory, there remains a pseudo degener-

acy in the frontier level. A degeneracy or pseudo degeneracy of frontier orbitals is crucial

to realize high-spin molecules. However, the Jahn-Teller or pseudo Jahn-Teller effect

reduces the degeneracy or pseudo degeneracy due to the vibronic couplings, or electron-

vibration interactions [6, 7]. Strong vibronic couplings (VC) cause the level splitting of

the frontier level and stabilize the closed-shell singlet state with a structural relaxation.

When the structural stabilization energy of the closed-shell singlet ΔES is smaller enough
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1 2 3

4 5 6

Figure 2.1: Target molecules.

than that of the triplet ΔET, the ground state can be a triplet (see Figs. 2.2). Thus, in

order to design a high-spin molecule, the stabilization energy ΔES which is ascribed to

the VCs in the singlet state should be reduced.

To analyze the strength of the VC, or vibronic coupling constant (VCC), we have

proposed vibronic coupling density (VCD) [8, 9]. Based on the concept of the VCD, we

can discuss the VCs from the relations between the electronic and vibrational structures

of a molecule. Furthermore, we can control the VCs by designing the molecular structure.

In this article, we focus on m-phenylene diamine 1 and its derivatives (2-6) shown in

Figs. 2.1. We evaluate their VCCs and analyzed them in terms of the concept of the
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Figure 2.2: Relation between the ground electronic state and the stabilization due to

structural relaxation. (a) The vibronic coupling of the singlet electronic state is weak,

and the ground electronic state is a triplet. (b) The vibronic coupling of the singlet

electronic state is strong, and the ground electronic state is a closed-shell singlet.

VCD. Since the dication of 4 has the closed-shell singlet ground state at the equilibrium

geometry, our goal is to find a substituent group which makes the ground state of the

dicationic state of 4 a triplet.

2.2 Vibronic coupling constant and vibronic coupling

density

The strength of the VC with respect to vibrational mode α is defined by the VCC Vα

[6, 7, 9]:

Vα =

〈
Ψ

∣∣∣∣∣
(
∂He(R)

∂Qα

)
R0

∣∣∣∣∣Ψ
〉
, (2.1)

where R is the set of the nuclear coordinates of a molecule, R0 the reference geometry,

Qα the mass-weighted normal coordinate of mode α, He(R) the electronic Hamiltonian of

the dication, and Ψ the electronic wavefunction of He(R0). The reference geometry R0 is

the equilibrium structure of the neutral m-phenylene diamine or its derivative. Applying

the Hellmann–Feynman theorem [10] for Eq. (2.1), the VCC is rewritten as follows:

Vα =

(
∂E(R)

∂Qα

)
R0

(2.2)

=
∑
A

(
∂E(R)

∂RA

)
R0

· uα
A√
MA

, (2.3)
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where E(R) is the eigenvalue of He(R), RA the position of Ath nucleus, uα
A the 3D

components of the Ath nucleus of the normal modes α, and MA the nuclear mass. In the

calculation of the VCCs, Eq. (2.3) is employed.

To analyze the VCCs, we use the concept of the VCD [8,9] which gives a local picture

of the VC. The VCC Vα is written as a space integral of the VCD ηα:

Vα =

∫
ηα(r)dr, (2.4)

where ηα(r) is defined by the product of the electron-density difference Δρ(r) and the

potential derivative vα(r) [8, 9]:

ηα(r) = Δρ(r)vα(r), (2.5)

where the electron-density difference Δρ(r) is defined by the difference of the one-electron

density of the system ρ(r) and reference system ρ0(r):

Δρ(r) = ρ(r)− ρ0(r). (2.6)

The potential derivative vα(r) is expressed as

vα(r) =

[
∂

∂Qα

(
−ZA

|r−RA|

)]
R0

(2.7)

=
∑
A

−ZA (r−R0,A)

|r−R0,A|3
· uα

A√
MA

. (2.8)

Δρ(r), vα(r), and ηα(r) give information about the origin of the VC. If the electron-density

difference Δρ is localized not on bonds but on atoms, the VCCs become small [11]. Based

on an analysis for the distribution of Δρ, we have succeeded in designing an electron-

transporting molecule for organic light-emitting diodes [12]. Thus, in this article, we

focus on the electron-density difference Δρ.

We performed density-functional theory (DFT) calculation with the B3LYP functional

[13] to obtain the optimized geometries, the normal modes uα
A, and the gradient of the

total electronic energy (∂E(R)/∂RA)R0 . For the neutral and closed-shell singlet states

of the dications, we used the spin restricted B3LYP method. For the triplet states of

the dications, we employed the spin unrestricted B3LYP method. The basis set is the

triple zeta cc-pVTZ. In addition, the time-dependent DFT calculations with the B3LYP

functional were performed to confirm the assumption that the triplet and closed-shell

singlet states are more stable than the open-shell singlet states for 1, 4, and 6. The

calculation for the electronic and vibrational structures were performed using Gaussian

03 [14].
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2.3 Results and discussion
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Figure 2.3: Equilibrium geometries in the neutral states.

We optimized the geometries of the target molecules (Figs. 2.1) in the neutral and

dication states. The equilibrium geometries of the neutral molecules are shown in Figs.

2.3. The optimized geometries of molecules 1, 2, and 3 are C2 symmetry. The C2 axis

intersects the carbon atoms C1 and C4 in 1, C1, C4, C5, and C6 in 2, and C1, C4, C5,

C6, C7, and C8 in 3. (labels of nuclei are shown in Figs. 2.3). On the other hand, the

optimized geometries of 4, 5, and 6 are C1 symmetry.

For all the molecules, the total electronic energy of the triplet states are lower than

those of the closed-shell singlet states at the reference geometries R0 as expected from

the Longuet-Higgins’s theory (see the energy gap ΔE
(0)
S−T in Table 2.1). Although all the

triplet states are the ground state at the reference geometries, the structural relaxations

must be taken into account since the dications have nonzero vibronic coupling constants.

Since molecules 1, 2, and 3 belong to the C2 symmetry, the electronic states of the
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Table 2.1: Energy gaps in meV between the singlet and triplet states at the reference

geometries ΔE
(0)
S−T and at the equilibrium geometry ΔES−T . Relaxation energies of the

singlet and triplet states in meV, ES and ET , respectively. The negative values of ΔES−T

denote that the ground state is a closed-shell singlet.

1 2 3 4 5 6

ΔE
(0)
S−T 544 902 803 177 534 624

ΔET 760 624 605 1468 849 731

ΔES 964 833 702 2219 1433 1033

ΔES−T 341 693 706 −574 −50 322

dications couple with only totally symmetric a modes. Molecules 1, 2, and 3 have 20, 34,

and 48 a modes, respectively. On the other hand, since the symmetry of 4, 5, and 6 is

C1, the electronic states couple with all the vibrational modes. The number of the modes

are 56, 84, and 114 modes, respectively.

Figs. 2.4 show the VCCs of the dications 12+, 22+, and 32+. In the case of 12+,

the VCCs of the singlet state tend to be larger than those of the triplet state. However,

the ground electronic state at the relaxed structure is a triplet (see ΔES−T in Table 2.1)

since the energy gap at R0 between the singlet and triplet states ΔE
(0)
S−T is large enough.

Among twenty active a modes, the a(14) mode (1630 cm−1. 1a in Figs. 2.6) has the

largest value (−6.66 × 10−4 a.u.) in the singlet 12+. The potential derivative of the

C-C stretching mode va(14) is shown as 1b in Figs. 2.6. Since both the electron-density

difference of the singlet state (1b in Figs. 2.5) and potential derivative are localized on the

bonds between C2 and C3, the coupling constant is large. On the other hand, Δρ of the

triplet state (1a in Figs. 2.5) is localized not on the bonds but on C3 atoms. Therefore,

the VCC of the triplet state (−0.26 × 10−4 a.u.) is smaller than the VCC of the singlet

state (−6.66× 10−4 a.u.).

In order to stabilize the triplet state of 12+, it is desired to reduce the strength of the

VC in the singlet state. We introduced a phenyl or biphenyl group to the m-phenylene

diamine as a substituent group. The position of the substituent is chosen so that the

symmetry of the system is kept (2 and 3 in Figs. 2.3).

The electron-density differences of 22+ and 32+ are displayed in Figs. 2.5. In com-
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parison with Δρ of 12+, Δρ’s of 22+ and 32+ decrease on the m-phenylene diamine. The

maximum-coupling mode of 22+ in the singlet state is the a(25) mode (1636 cm−1. 2a in

Figs. 2.6). This mode is localized on m-phenylene diamine and corresponds to the a(14)

mode of 1. However, the VCC of the a(25) mode (−4.81×10−4 a.u.) is smaller than that

of the a(14) mode of the singlet 12+ because Δρ of the singlet state tends to be localized

on C3 atoms in 2. The a(36) mode of 3 (1635 cm−1. 3a in Figs. 2.6) also is localized on

m-phenylene diamine, however, the VCC of the singlet is smaller (3.23× 10−4 a.u.) than

that of 12+. It should be noted that Δρ’s in 3 are strongly localized on N and C3 atoms

for the triplet state and N and C1 atoms for the singlet state. These localizations on the

atoms are responsible for the small VCCs in 3. This is the most important effect of the

biphenyl as a substituent group.

Besides the modes which originate from the m-phenylene diamine, 2 and 3 have modes

that originate from the phenyl and biphenyl groups. For instance, 2 and 3 have C-

C stretching modes of the phenyl (a(26), 1644 cm−1) and biphenyl (a(37), 1643 cm−1)

groups. The couplings of these modes are rather strong in both the singlet and triplet

states. Moreover, the a(37) mode of 3 is the maximum-coupling mode in the singlet state

(−4.16 × 10−4 a.u.). However, in spite of the additional modes of substituents in 2 and

3, the maximum VCCs are reduced from the values of 1 due to the localization of Δρ’s

on the atoms. Consequently, the stabilization energies ΔES are decreased and the gaps

between the singlet and triplet at the relaxed structures ΔES−T are increased, i.e., the

triplet state is stabilized (see the Table 2.1).

The ground state of molecule 42+ is a closed-shell singlet state (see the Table 2.1). The

VCCs of 42+ are shown in Figs. 2.7 (4a and 4b). The magnitude of the strongest VCC

of 42+ is as large as that of 12+ since the patterns of Δρ of the triplet and singlet 42+ (4a

and 4b in Figs. 2.8) are similar to those of 12+. Furthermore, as mentioned above, 42+

has more than twice as many active modes as 12+, the couplings as a whole are stronger

than those of 12+. In consequence, the stabilization energy ΔES of 42+ is increased and

the ground state after the structural relaxation is a closed-shell singlet (Table 2.1).

Even in the case of 42+, it is possible to make the ground state a triplet state intro-

ducing an appropriate substituent group for 42+. The Δρ of 52+ and 62+ are shown in

Figs. 2.8. It should be noted that the Δρ’s on the bonds between C2-C3 and C5-C6 in 4

and 5 are disappeared in 6. Moreover, there is little Δρ on the biphenyl. The electron-
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density difference of 62+ is strongly localized on C5 atoms (C5 is shown in Figs. 2.3),

hence the localized Δρ does not contribute to the VCCs significantly. Thereby the VCCs

in 62+ are weakened (6 in Figs. 2.7), and the ground state of 62+ is a triplet in spite of

its low symmetry. From view of the electronic theory of organic chemistry, 6 would not

be favorable as a high-spin molecule because of the following reasons: (1) the electron-

donating/withdrawing character of the substituents would reduce the localization of the

spins on N atoms, (2) many quinoid-type structures which yield a large structural relax-

ation would contribute to the resonance structures of 62+. Therefore, it is surprising that

the ground state of 62+ is theoretically predicted to be a triplet. However, we can realize

the stability of the triplet state based on the VCD theory.

2.4 Summary

We investigated a relation between the vibronic coupling and the ground electronic states

of the derivatives of m-phenylene diamines. To stabilize the high-spin state, the vibronic

coupling of the low-spin state should be reduced. In order to reduce the VCCs, the

localization of the electron-density difference on atoms are effective.
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Figure 2.4: Absolute values of VCCs of 12+, 22+, and 32+ (10−4 a.u.). 1, 2, and 3 in the

figure correspond to the numbers of molecules in Figs. 2.1. 1a-3a are the VCCs of the

triplet states. 1b-3b are the VCCs of the singlet states.
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1a 2a 3a

1b 2b 3b

Figure 2.5: Electron-density difference Δρ. 1a-3a are Δρ of the triplet states. 1b-3b are

Δρ of the singlet states. The isosurface value of Δρ is 0.008 a.u..
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1a 2a 3a

1b 2b 3b

Figure 2.6: 1a, 2a, and 3a correspond to the a(14) of 1, a(25) of 2, and a(36) of 3 modes,

respectively. 1b, 2b, and 3b are the potential derivatives. The isosurface value of the

potential derivative va(i) is 0.015 a.u..
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Figure 2.7: Absolute values of VCCs of 42+, 52+, and 62+ (10−4 a.u.). 4, 5, and 6 in the

figure correspond to the numbers of molecules in Figs. 2.1. 4a-6a are the VCCs of the

triplet states. 4b-6b are the VCCs of the singlet states.
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4a 5a 6a

4b 5b 6b

Figure 2.8: Electron-density difference Δρ. 4a-6a are Δρ of the triplet states. 4b-6b are

Δρ of the singlet states. The isosurface value of Δρ is 0.008 a.u..
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Chapter 3

Vibronic Couplings in Picene from

View of Vibronic Coupling Density

Analysis

After the discovery of the superconductivity in alkali-metal (K, Rb) doped picene, [1]

experimental and theoretical studies on the electronic structure on the picene have been

piled up. [2–14] The vibronic coupling (electron-vibration coupling) [15] is an important

interaction in the electronic properties such as superconductivity. Okazaki et al. have

discussed an importance of the vibronic couplings in doped picene based on their pho-

toelectron spectra (PES) [2]. Therefore, evaluation of the vibronic coupling constants

(VCC) is crucial to discuss electronic properties of doped picenes. Some authors have

published the VCCs of picene anions [10, 11, 16, 17]. However, some of the calculated

VCCs are controversial. Subedi and Boeri have concluded that the electron-phonon cou-

pling of the modes around 1600 cm−1 are strong [10], while those calculated by Kato et

al are weak in this region [11, 16,17].

Vibronic effects can be experimentally observed in spectra. [15] Roth et al. measured

electron energy loss spectrum (EELS) of pristine picene at 20 K [5]. They have observed

vibronic progressions in the EELS of the intramolecular excitation to S2(
1B2) state.

We have recently published calculation of the VCCs in C−60 from the gradients of the

total energies [18]. The results are consistent with the experimental observation of the PES

by Wang et al. [19]. We have proposed a concept, vibronic coupling density (VCD) [20,21].

Based on the vibronic coupling density, we can discuss vibronic couplings from view of
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electronic and vibrational structures. On the basis of the VCD analysis, we have succeeded

in designing carrier-transporting molecules with small vibronic couplings which is required

in organic electronics such as organic light-emitting diodes (OLED) [22, 23].

In this chapter, we present the VCCs of the excited, monoanionic, and trianionic states

of picene based on the same method of calculation employed in the calculation for C−60.

Using the VCCs of the excited 1B2 state, we simulate EELS and compare the spectrum

with the experimental one [5]. From the view of the VCD analysis, we critically discuss

the previous VCCs in Refs. [11, 16,17].

We evaluated VCCs of mode α Vα from the gradients of the adiabatic potential energy

surface E with respect to a mass-weighted normal coordinates Qα [18, 22–24]:

Vα =

〈
Ψ

∣∣∣∣∣
(

∂Ĥ

∂Qα

)
R0

∣∣∣∣∣Ψ
〉

=

(
∂E

∂Qα

)
R0

, (3.1)

where Ĥ denotes a molecular Hamiltonian, R0 is the equilibrium geometry of the ground

state of the neutral picene, and Ψ is a electronic wavefunction of the excited or anionic

state at R0. The vibronic Hamiltonian is written as

Ĥvibro =
∑
α

[
T̂ (Qα) +

1

2
ω2
αQ

2
α + VαQα

]
, (3.2)

where T̂ (Qα) denotes kinetic energy operator of a vibration and ωα vibrational frequency.

We employed Becke’s hybrid functional (B3LYP) [25] and Perdew and Wang’s one with

generalized gradient approximation (PW91) [26] with the triple-zeta 6-311+G(d,p) ba-

sis set. The geometries were optimized for the neutral ground state. The optimized

structures with C2v symmetry were checked with vibrational analysis to be a minimum.

The time-dependent density-functional-theory (TD-DFT) is applied for the excited state

calculations. We performed analytical force-calculations for the excited and the anionic

states to obtain the VCCs. The electronic and vibrational structures as well as the forces

were obtained using Gaussian09. [27]. The VCCs are calculated using our codes.

EELS was simulated employing the same method as described in Ref. [18]. We con-

sidered thermal excitation at 20K where Roth et al. observed the EELS. The calculated

excitation energies are 3.7040 and 3.2520 eV, for the B3LYP and PW91 functionals, re-

spectively. The result using the PW91 functional reproduces the experimental excitation

energy 3.25 eV well. Using the calculated VCCs, we simulated the EELS. In the sim-

ulations, the 0-0 transition is set to 3.24 eV, and the linewidth σ is assumed to be 270

133



(a) PW91 (b) B3LYP

 3  3.2  3.4  3.6  3.8  4

Lo
ss

 fu
nc

tio
n 

(a
rb

. u
ni

ts
)

Energy (eV)
 3  3.2  3.4  3.6  3.8  4

Lo
ss

 fu
nc

tio
n 

(a
rb

. u
ni

ts
)

Energy (eV)

Figure 3.1: Gray lines are simulated electron energy loss spectra (EELS) calculated by (a)

the PW91 and (b) the B3LYP functional. Dots indicate the experimental one by Roth

et al. [5]. The 0-0 transition is set to 3.24 eV. The other parameters employed in the

simulations are T = 20 K and σ = 270 cm−1.

cm−1 (The FWHM is 39.4 meV). The simulated EELS are shown in Figs. 3.1. The

spectrum calculated employing the PW91 functional shows a better fit than that using

the B3LYP functional. In the calculation employing the B3LYP, the second strongest

vibronic couplings around 1350 cm−1 are estimated larger than those in the result using

the PW91. Therefore, the relative intensities of EELS in the lower energy are reproduced

employing the PW91. [28]. Judging from the calculations of the excitation energies and

the simulated spectra, we employ the PW91 functional hereafter for the calculation of the

ionic states.

We calculated the VCCs Vα in the monoanion, dianion, and trianion . The authors

have calculated orbital vibronic coupling constants (OVCC) of the lowest unoccupied

molecular orbitals (LUMO) and next LUMO (NLUMO). Hence we also calculated the

OVCCs Vi,α from the VCCs Vα for comparison with the ones previously reported. The

vibronic Hamiltonian (3.2) is mapped onto a model Hamiltonian. The model Hamiltonian

is written as follows:

Ĥvibro =
∑
α,i,σ

�ωα

[
b̂†αb̂α +

gi,α√
2

(
b̂†α + b̂α

)
ĉ†iσ ĉiσ

]
, (3.3)

where orbitals i are LUMO (L) and NLUMO (NL), and α runs over all the active a1 modes.

The dimensionless orbital vibronic coupling constant gi,α is defined by gi,α = Vi,α/
√

�ω3
α.
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Figure 3.2: Calculated (top) orbital vibronic coupling constants Vi,α and (bottom)

electron-phonon couplings λi,α/N(0) in the (a) monoanion and the (b) trianion. The

subscripts L and NL denote LUMO and NLUMO, respectively. Insets show the orbital

vibronic couplings between 1300 to 1650 cm−1.

ĉ†iσ(ĉiσ) is the creation (annihilation) operator of orbital i and spin σ, and b̂†α(b̂α) is the

creation (annihilation) operator of mode α. The OVCCs of LUMO VL,α and NLUMO VNL,α

are obtained from the VCCs of monoanion Vmono,α and the difference between VCCs of

trianion Vtri,α and dianion Vdi,α, respectively: VL,α = Vmono,α and VNL,α = Vtri,α − Vdi,α. It

should be noted that the present OVCCs effectively incorporate the contributions from

all the occupied orbitals which are important in quantitative arguments [18]. The OVCCs

Vi,α and intramolecular electron-phonon couplings λi,α/N(0) = V 2
i,α/ω

2
α are shown in Figs.

3.2 and tabulated in Tables 3.1 and 3.2. N(0) is the density of states at the Fermi level.

In both the monoanion and trianion, two sets of modes with strong VCCs are observed:
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Table 3.1: Vibronic coupling constants in the monoanion Vmono,α and the electron-phonon

couplings of picene calculated using PW91. They are used as orbital vibronic coupling

constants and electron-phonon couplings of LUMO.

Mode Freq. Vmono,α λL,α/N(0) Mode Freq. Vmono,α λL,α/N(0)

(cm−4) (10−4 a.u.) (meV) (cm−4) (10−4 a.u.) (meV)

a1(1) 137.26 -0.027 0.51 a1(19) 1336.39 -1.990 29.07

a1(2) 254.53 -0.426 36.68 a1(20) 1366.13 -1.624 18.52

a1(3) 414.49 -0.269 5.51 a1(21) 1378.84 -1.123 8.69

a1(4) 511.75 -0.131 0.86 a1(22) 1422.08 -0.506 1.66

a1(5) 578.75 -0.318 3.97 a1(23) 1431.36 -0.866 4.80

a1(6) 637.81 -0.121 0.48 a1(24) 1503.69 -0.417 1.01

a1(7) 724.19 -0.109 0.30 a1(25) 1516.13 -0.111 0.07

a1(8) 852.75 -0.055 0.05 a1(26) 1582.56 -0.161 0.14

a1(9) 903.23 -0.397 2.53 a1(27) 1604.85 -2.682 36.61

a1(10) 1033.96 -0.248 0.75 a1(28) 1607.88 -2.374 28.58

a1(11) 1072.59 -0.121 0.17 a1(29) 3098.63 -0.001 0.00

a1(12) 1135.59 -0.066 0.04 a1(30) 3102.42 -0.062 0.01

a1(13) 1151.08 -0.119 0.14 a1(31) 3110.34 -0.179 0.04

a1(14) 1179.90 -0.421 1.67 a1(32) 3125.09 -0.385 0.20

a1(15) 1202.83 -0.575 3.00 a1(33) 3134.88 -0.304 0.12

a1(16) 1235.73 -0.453 1.76 a1(34) 3145.00 -0.246 0.08

a1(17) 1253.59 -0.951 7.55 a1(35) 3148.33 -0.223 0.07

a1(18) 1269.67 -0.337 0.93
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Table 3.2: Orbital vibronic coupling constants VNL,α and electron-phonon couplings

V 2
NL,α/ω

2
α of next LUMO (NL) of picene calculated using PW91. The orbital vibronic

couplings are calculated from the differences between the vibronic couplings in the trian-

ion and dianion.

Mode Freq. VNL,α λNL,α/N(0) Mode Freq. VNL,α λNL,α/N(0)

(cm−1) (10−4 a.u.) (meV) (cm−1) (10−4 a.u.) (meV)

a1(1) 137.26 -0.000 0.00 a1(19) 1336.39 0.641 3.02

a1(2) 254.53 -0.265 14.18 a1(20) 1366.13 -0.444 1.38

a1(3) 414.49 0.049 0.18 a1(21) 1378.84 -1.283 11.34

a1(4) 511.75 -0.258 3.34 a1(22) 1422.08 -1.088 7.68

a1(5) 578.75 -0.131 0.67 a1(23) 1431.36 -0.117 0.09

a1(6) 637.81 0.131 0.55 a1(24) 1503.69 0.436 1.10

a1(7) 724.19 0.608 9.25 a1(25) 1516.13 0.352 0.71

a1(8) 852.75 0.338 2.05 a1(26) 1582.56 -1.435 10.78

a1(9) 903.23 -0.118 0.23 a1(27) 1604.85 0.371 0.70

a1(10) 1033.96 -0.649 5.17 a1(28) 1607.88 2.390 28.95

a1(11) 1072.59 0.339 1.31 a1(29) 3098.63 -0.171 0.04

a1(12) 1135.59 0.460 2.16 a1(30) 3102.42 -0.622 0.53

a1(13) 1151.08 0.462 2.11 a1(31) 3110.34 0.240 0.08

a1(14) 1179.90 -0.134 0.17 a1(32) 3125.09 -0.595 0.47

a1(15) 1202.83 -0.668 4.05 a1(33) 3134.88 -0.367 0.18

a1(16) 1235.73 0.440 1.66 a1(34) 3145.00 -0.359 0.17

a1(17) 1253.59 0.555 2.57 a1(35) 3148.33 -0.522 0.36

a1(18) 1269.67 0.571 2.65
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(1) the maximal coupling modes around 1600 cm−1 and (2) the second group of strong

modes around 1350 cm−1. This is qualitatively consistent with the calculations by Subedi

and Boeri [10,29] . However, in the calculations of Refs. [11,16,17,30], the modes around

1600 cm−1 are weak for both the monoanion and trianion. The total electron-phonon

couplings λL/N(0) =
∑

α λL,α/N(0) and λNL/N(0) =
∑

α λNL,α/N(0) are 196.6 meV and

119.9 meV, respectively. The total coupling of the trianion λNL/N(0) is in line with that of

Subedi and Boeri (110± 5 meV) [10]. On the other hand, in Ref. [11], λL/N(0) = 178 meV

and λNL/N(0) = 206 meV. They underestimated and overestimated the total couplings

for the monoanion and trianion, respectively.

We will discuss the disagreement from view of the electronic and vibrational structures.

The calculated VCCs can be rationalized based on the vibronic coupling density. A VCD

ηα is defined as

ηα(r) = Δρ(r)× vα(r), (3.4)

where Δρ = ρ(r) − ρ0(r) is the electron density difference between the electron density

of an ionic state ρ and that of a neutral state ρ0. The potential derivative vα(r) is the

derivative with respect to a mass-weighted normal coordinate Qα of the potential u(r)

acting on one electron at a position r from all the nuclei. The vibronic coupling constant

is equal to the integral of ηα(r) over space r:

Vα =

∫
d3r ηα(r). (3.5)

We will concentrate on the a1(27) mode of the maximal-coupling mode around 1600

cm−1 and the a1(21) mode from the second group around 1350 cm−1 because the a1(27)

and a1(21) modes are close to the mode 5 in Ref. [10] and 21st mode (ν21) in Ref. [11],

respectively. Figures 3.3 show the potential derivatives vα(r) for the a1(27) and the a1(21)

modes. The distribution of the potential derivative with respect to the a1(27) mode is

located on the armchair-edges of the central three hexagons. On the other hand, that

with respect to the a1(21) mode is on the terminal hexagons.

Fig. 3.4(b) shows the electron density difference of the monoanion. The π density is

reflected by the orbital density of the LUMO shown in Fig. 3.4(a). It should be noted that

there occurs σ density in the molecular plane with the opposite sign. Such a polarized

density originates from the Coulomb interactions between the electron occupied in the

LUMO and all σ electrons doubly occupied below the highest occupied molecular orbital
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(a) a1(27) (1605 cm−1) (b) a1(21) (1379 cm−1)

Figure 3.3: Potential derivatives vα for (a) a1(27) (1605 cm−1) and (b) a1(21) (1379 cm−1)

modes. Light gray and dark gray areas indicate positive and negative, respectively. The

threshold is 1.0 × 10−2 a.u.

(HOMO) [20]. Neglecting such a polarization can give rise to quantitative, or sometimes

qualitative, errors in VCC calculations based on the orbital levels [18]. In addition, an

electron density difference is usually different from the orbital density of HOMO or LUMO.

Many-body effect sometimes plays a crucial role on the electron density difference, and

therefore vibronic couplings [24].

Figures 3.5 show the vibronic coupling densities of the monoanion with respect to the

a1(27) and a1(21) modes. As for the a1(27), the electron density difference Δρ(r) shows

considerable overlap with the potential derivative vα(r). Accordingly, the VCC of the

a1(27) mode is larger than that of the a1(21) mode.

The authors have calculated VCCs as the gradients of the orbital levels (orbital gra-

dients) with respect to normal coordinates [16]. We also obtained the orbital gradients of

selected modes from the neutral LUMO ∂εL/∂Qα and from the singly occupied molecu-

lar orbital (SOMO) of the monoanion ∂εS/∂Qα to compare the present VCCs calculated

analytically from the total energy gradient as well as numerical gradients. The orbital

gradients and the numerical energy gradients were obtained by fitting linear and quadratic

polynomials, respectively, in the range from -0.2 a.m.u.1/2 a0 to 0.2 a.m.u.1/2 a0 with a

step size 0.05 a.m.u.1/2 a0 where a0 is the Bohr radius. We summarize the results of the

calculations in Table 3.3. All the results indicate that the vibrational modes around 1600

cm−1 have the maximal coupling.

Though the gradients of the LUMO level can yield results which are qualitatively

consistent with the gradients of the total energy, the results in Refs. [11, 16] are not the
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(a) LUMO (b) Δρ

Figure 3.4: (a) Lowest unoccupied molecular orbital (LUMO) and (b)electron density

difference Δρ for the monoanion. Light gray and dark gray areas indicate positive and

negative, respectively. The threshold is 5.0 × 10−2 a.u. for LUMO and 1.8 × 10−3 a.u.

for Δρ.

(a) a1(27) (1605 cm−1) (b) a1(21) (1379 cm−1)

Figure 3.5: Vibronic coupling densities for (a) a1(27) (1605 cm−1) and (b) a1(21) (1379

cm−1) modes of the monoanion. Light gray and light gray areas indicate positive and

negative, respectively. The threshold is 2.0 × 10−5 a.u.
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Table 3.3: Calculated frequencies (cm−1) and orbital gradients ∂ε/∂Q and total-energy

gradients ∂E/∂Q as vibronic coupling constants (10−4 a.u.) for the selected modes of the

monoanion. The subscripts L and S denote the neutral LUMO and the SOMO of the

anion, respectively.

Freq. ∂εL/∂Q ∂εS/∂Q ∂E/∂Q

Num. Anal.

a1(2) 254.5 0.372 0.475 0.426 0.426

a1(19) 1336.4 2.019 1.889 1.988 1.990

a1(20) 1366.1 1.872 1.365 1.639 1.624

a1(21) 1378.8 0.820 1.335 1.130 1.123

a1(27) 1604.9 3.070 2.281 2.706 2.682

a1(28) 1607.9 2.090 2.580 2.377 2.374

case. In their calculations, the vibrational mode around 1380 cm−1 has the maximal

coupling, 2.3×10−4 a.u. for the monoanion [16]. However, since the Δρ (see Fig.3.4b) is

mainly located on the armchair-edges of the central three hexagons, it does not overlap

with the potential derivatives of the mode (Fig.3.3b), the VCC of the mode cannot be

the maximal. Similar discussion holds for the mode around 1520 cm−1 which has the

maximal coupling, 2.6×10−4 a.u. for the trianion [11].

In summary, we calculated the VCCs of the excited state 1B2, the monoanionic, and

the trianionic states of picene from the gradients of the total energies with respect to

the normal modes. Employing the VCCs of the excited state, we simulated the EELS.

The spectrum agrees well with the experimental one by Roth et al. The VCD analysis

can provide an insight on the VCCs based on the relations between an electronic and a

vibrational structures.
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General Conclusion

In this thesis, the author studied theory of the vibronic couplings in molecules.

Part I dealt with two fundamental problems on the Jahn–Teller effect, that is, the

origin of the Jahn–Teller distortion and the isotope effect on the E⊗e Jahn–Teller system.

In chapter 1 was discussed the origin of the Jahn–Teller distortion of Li3 and Li+8 in

terms of the VCD analysis. The VCCs of Li3 and Li+8 were calculated. To explain the

vibronic couplings for the Jahn–Teller modes, the VCD analysis was performed. The

overlap electron density ργγ′ of Li+8 distributes on the atoms and bonds. For the couplings

for the t2g modes, ργγ′ on the bonds was proved to contribute significantly. The electron

density difference Δρ of Li+8 has large distribution on the faces of the cube. The on-face

Δρ significantly overlaps the potential derivative v for the eg mode, and hence the on-

face density has a large contribution to the VCC of the eg mode. The electron density

difference Δρ of Li3 has large distribution on a Li-Li bond. The overlap between the

on-bond Δρ and v is important for the vibronic coupling to the e′ mode. Δρ and ργγ′

also have symmetric on-site density, while the VCD is almost asymmetric around the

atoms. Thus on-site VCDs will not give significant contribution to the VCCs. Present

analysis thus clarifies that the Jahn–Teller distortion is not explained based only on the

on-site density, while that the on-bonds or on-face densities must be taken into account.

The concept of the VCD could be useful for analysis of the vibronic couplings in general

Jahn–Teller systems.

In chapter 2 was analyzed the isotope effect on the linear E ⊗ e Jahn–Teller system.

For this purpose, we employed a triangular molecule X3 (X = H, D, Li, etc.). Substituting

one of the three atoms with the isotope Y, we obtained an isotopomer X2Y. The isotopic

substitution changes the mass in the kinetic energy term, while it does not change the

electronic state and potential term. Therefore, the potential energy surface of X2Y retains

the original one-dimensional trough. The isotope effect on the Jahn–Teller system was
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analyzed in the strong coupling limit. It was found that the potential energy surface for

the pseudorotation is warped due to the change of mass. The potential has two minima

and two saddles. The structure of the potential is different from that of the quadratic

Jahn–Teller system because the latter has three minima. The vibronic wavefunction is

localized around the two minima. Since the change of the kinetic energy term gives

rise to the localization, the concentration of the wavefunction ought to be called kinetic

localization. We found that the Hamiltonian has a parity symmetry, and hence each

vibronic level is doubly degenerate. This parity symmetry is lost by removal of the conical

intersection. The dynamic Jahn–Teller Hamiltonian of X2Y was numerically diagonalized.

The distribution of the analytical vibronic wavefunction obtained qualitatively agrees with

the numerical one. The DFT calculations were performed to estimate the VCCs of H3

and Li3. The VCCs of these molecules are rather strong, which supports the possibility

of observation of the kinetic localization.

In part II, the vibronic coupling constants of C−60 were determined and analyzed in

terms of the VCD. The VCD of C−60 was used as a chemical reactivity index in the Diels–

Alder reaction. Lastly, the VCCs of electron-transporting C60 derivatives were calculated

and compared with the couplings of C−60.

In chapter 1 were evaluated the VCCs of C−60 from both the experimental photoelectron

spectrum (PES) measured by Wang et al. and the DFT calculations. The vibronic states

of C−60 were obtained by diagonalizing the linear T1u⊗(2ag⊕8hg) Jahn–Teller Hamiltonian.

The thermal excitations are further taken into account assuming that each C−60 is in the

thermal equilibrium state. For the calculation of the intensities of the PES, the sudden

approximation is used. The simulated spectrum at 70 K agrees well with the experimental

data. The VCCs for the stretching hg(7) and hg(8) modes are strong. On the other hand,

the VCCs for the bending hg(2) mode is weak. Contrary to Gunnarsson’s result, the

electron-phonon coupling to the hg(7) as well as the hg(8) are stronger than that to the

hg(2). The total reorganization energy of the active ag and hg modes eventually becomes

74 meV. This stabilization energy is smaller than Gunnarsson’s experimental value of 105

meV by 30 %. The DFT calculations were performed to derive the VCCs of C−60, which

agrees well with the present experimental constants. Present theoretical method will give

reliable VCCs of alkali-doped fullerides, C60 derivatives, and so on.

In chapter 2 was performed the VCD analysis of the vibronic couplings of C−60. The
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electron density difference Δρ is close to the density of the LUMO of a neutral C60.

However, negative polarized density is also seen in Δρ. This negative density appears

due to the Coulomb repulsion between an electron occupying the SOMO and the other

electron in the occupied orbitals. The VCD for the bending hg(2) mode is localized on

atoms. Thus the integral of the VCD around the atom is canceled out, and the VCC for

the hg(2) mode is small. On the other hand, the VCD for the stretching hg(8) mode has

density on the both atoms and 6:6 C=C bonds. Although the density on the atoms is

canceled out, the delocalized density on the bond contributes to the VCC considerably.

In fact, with the use of the LUMO density of a neutral C60 to neglect the polarized

density, the coupling for the hg(8) mode is significantly small. In this chapter, a physical

explanation on the order of the vibronic couplings in C−60 was given. The physical picture

of the vibronic couplings in C−60 is a base to discuss the couplings in other fullerenes, C60

complexes, and so on.

In chapter 3, the concept of the VCD was applied to the chemical reactivity index

in the Diels–Alder reaction of C60. The VCD of C−60 for the reaction coordinates were

calculated. We found that the VCD is similar to that of ethylene monoanion. Therefore,

we concluded that C60 has ethylene moieties in its cage. Consideration of the degeneracy

of the electronic state of C−60 could conclude that there are six ethylene moieties. This

result is supported by the existence of the hexakis adduct. It would be possible to use

the VCD as a chemical reactivity index.

In chapter 4 were calculated the VCCs of several electron-transporting C60 derivatives

of organic photovoltaic cells. The theoretical method is the same as that for C−60. It was

found that the VCCs and the reorganization energies of C60 and the C60 derivatives are

close to each other. The VCDs for the effective modes of the C60 derivatives are similar

to that of C−60. The electronic structures of the derivatives were analyzed by using the

fragment MO analysis (FMO). Although one of the LUMOs of the C60 fragment mixes

with the orbitals of the substituent group, two of them do not. Therefore, the LUMOs of

the derivatives originates from one of the t1u LUMOs of C60 which does not mix with the

orbitals of the substituent groups. To design the C60 derivative with a small reorganization

energy, the LUMO should originate from C60.

Part III dealt with miscellaneous applications of the theory of the vibronic couplings

to several molecules.
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In chapter 1, the initial process of the photoactivation of dispersed V2O5/SiO2 in the

excited state was studied. The active species VO4 has C3v symmetry. The a2 HOMO and

the e LUMO do not have large coefficients on the active center in the ground state. In

particular, the a2 HOMO does not have finite coefficients at the terminal oxygen due to

the symmetry. However, the Jahn–Teller distortion occurs in the excited state because

the LUMO of the active species is doubly degenerate. Accompanied by the Jahn–Teller

distortion, the a2 HOMO mixes with the e HOMO-1 which has finite coefficients on the

terminal oxygen. This mixing occurs due to the off-diagonal orbital vibronic couplings

between the HOMO and the HOMO-1. As a result, the HOMO has finite coefficients on

the terminal oxygen. A molecular design to control the VCCs could lead to improvement

of photocatalysis.

In chapter 2 was studied the relationship between the vibronic couplings and the spin

states of the m-phenylene diamine derivatives. The ground state of m-phenylene diamine

dication is triplet. However, the ground state of the m-phenylene diamine derivative

with a methoxy group is closed-shell singlet. To recover the high-spin state, the vibronic

coupling of the singlet state should be reduced. Introducing a biphenyl group, the vibronic

coupling in the closed-shell singlet state is in fact reduced, and the high-spin ground state

is recovered. Substitution of the biphenyl group reduces the VCD on the m-phenylene

diamine unit. Moreover, Δρ on the m-phenylene diamine is localized and the VCD is

canceled out. Present molecular design cannot be performed on the basis of the organic

chemistry.

In chapter 3 were calculated the vibronic coupling constants of picene which is the first

hydrocarbon superconductor. The experimental EELS of the pristine picene is simulated

using the theoretical VCCs developed in this thesis at 20 K. The Franck–Condon approx-

imation was used for calculation of the intensities. The simulated EELS agrees with the

experimental one. A similar theoretical method was used to evaluate the VCCs of the

mono and trianions of picene. The VCCs of monoanion are the strongest for the C=C

stretching mode. Based on the VCD analysis for the monoanion, the electron density

difference Δρ and potential derivative v for the stretching mode were clarified to localize

around the central three rings. Therefore, Δρ significantly overlaps with v, and the VCC

is strong. The insight into the vibronic couplings in picene anions obtained here should

be a key to reveal the solid state properties of alkali-doped picene.
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In this thesis, we investigated the vibronic couplings in molecules. The vibronic cou-

pling gives a clear picture on the properties of molecules. In addition, in terms of the

vibronic coupling density, the vibronic couplings can be controled. Therefore, the con-

cept of the vibronic coupling will enable us to understand and predict new phenomena in

molecules and solids. The author hopes that the present thesis will contribute to further

development of the theory of the vibronic coupling.

149


