学 位 審 査 報 告 書

(ふりがな)	さわだ まこと		
氏名	澤田 真理		
学位 (専攻分野)	博 士 (理 学)		
学位記番号	理 博 号		
学位授与の日付	平成 年 月 日		
学位授与の要件	学位規則第4条第1項該当		
研究科·専攻	理学研究科 物理学・宇宙物理学 専攻		

(学位論文題目)

Plasma Diagnostics for Non-Standard Supernova Remnants in the Galactic Center Region – Origin of Recombining Plasma and Missing Branch of SNR Evolution–

(銀河系中心領域における非標準型超新星残骸のプラズマ診断 - 再結合優勢プラズマの起源と超新星残骸の未知の進化機構 -)

論 文 調 查 委 員

(主查) 鶴 剛 教授
中家 剛 教授
長瀧 重博 准教授

理 学 研 究 科

(続紙 1)	,	
京都大学	博士 (理学)	氏名	澤田 真理
論文題目	Plasma Diagnostics for Non-Sta Center Region - Origin of Reco Evolution- (銀河系中心領域における非標準 - 再結合優勢プラズマの起源と	mbining Pl 型超新星療	。 も骸のプラズマ診断
(論文内容(の要旨)		
heating and observationa dominant sta- plasmas, a m for three non peculiar mon Another SNI ends of the s	following ionization and recombinal results of SNRs predict that the pates. Tilstchdeis to explains the product of the sum of the s	ation proceolasmas have ore new evior this purpenter (GC) io bands, bmas; twin t	ss (SNRs) are described by the shock sses. The shell-like morphologies and ionization dence in the thermal structure of SNR bose, we investigate the thermal plasmas region. One of the SNRs, G 1.2–0.0, has ut the X-ray spectrum is thermal origin. Thermal plasmas are found in the both telegron surrounded by non-thermal radio
by the GC m region. Unlil spectra are of thermal plas consistent w coincide in p in the GC reg the standard	apping project.	nd from the on is found in highly ion nees of hearnee.	nized atoms, and fitted with optically thin vy elements. Etaylseamdah&n-thermal radio s is likely to be a single source, a new SNR
by multi-spi sources at the spectra, which plasma temp each other. Tornado, origin of the outflows from	ral structures, and hence called the ne head and tail of Tornado. Emissi ch are fitted with an optically thin peratures, interstellar absorptions,	e Tornado non lines fro thermal pla and fluxes Eagliaba mal plasma ndard SNR on of a mas	of these two sources are very similar to soorpstions controlled to sassociated to Tornado. We interpret the s, due to shock excitation of bipolar sive star.
emission line single-tempe	es from highly ionized atoms. Opti	cally thin the cally thin the cally thin the call the cal	reproduce the data with line-like and

W 28 is a MM SNR in the GC region.

Eax emission is very bright with the spectra exhibiting emission lines from highly ionized atoms. Optically thin thermal plasma in CIE, either single-temperature or multi-temperature model failed to reproduce the data with line-like and bump-like residuals at Si Lymanα energy and at 2.4–5.0 keV, respectively.

Car but correspond to radiative recombination continua from He-like Si and S. Simple recombining plasma model nicely fit the bump structures, but failed to fit low energy bands.

Earnd spectra can be fitted with a multi-ionization temperature plasma with a common electron temperature.

All of the three non-standard SNRs have different and distinct nature. Among them, only the archetype MM SNR W 28 exhibits a clear RP. Since the standard SNRs cannot produce RP, we further examine the RP structure of W 28. W 28 is found to have different ionization temperatures among elements:

heavier (Fe) elements. In initial interpretation temperatures are interpreted as elemental difference of ionization and recombination timescales. In its ionization and electron temperatures. In its ionization and electron temperatures.

🖪 plasma is shock -heated to high temperature, and then electron temperature quickly drops so that recombining process is now going on. As one plausible scenario, we propose a rarefaction

model: the plasma breaks-out from dense circum-stellar medium into a tenuous interstellar space.				

(論文審査の結果の要旨)

超新星残骸の形成・進化は、銀河における元素合成、質量・エネルギーの放出、星間空間との相互作用や銀河全体の進化を解明する上で重要である。しかしながら、銀河系で知られる超新星残骸プラズマの半数近くは不規則な空間構造をもち、殼型構造を予言する標準的な進化モデルでは説明できない。これらの非標準型残骸に関しては、これまで断片的な研究しかなかった。申請者は、非標準型残骸が銀河系中心領域に集中して存在することに着目し、この領域に特有の極限環境がその形成に関連する可能性を指摘した。形成過程を解明するため、銀河系中心領域でもきわめて特異な構造をもつ3つの残骸を選定し、これらに特有の熱的構造を探査した。熱的プラズマからのX線放射スペクトルを精密に解析するためには、優れたエネルギー分解能と大有効面積が必要である。本論文では、現時点でこれらの性能にもっとも優れたX線衛星「すざく」を用いて撮像分光観測を行い、そのデータ解析結果に基づき非標準型残骸の系統的な研究成果を提示した。

「すざく」の低バックグラウンドを活かした詳細な空間構造解析から、3つの残骸はそれぞれ、星形成領域からのブローアウト構造、双極的な爆発による双子プラズマ構造、非標準型の最大多数を占める「混合形態」構造をもつことを明らかにした。さらに、混合形態を示したW28のX線スペクトルから、標準モデルでは実現できない再結合優勢な熱的構造を発見した。申請者は、この特殊な熱的構造が混合形態型に選択的に見いだされることに着目し、W28のデータに基づき、混合形態型の形成起源に迫る定量的研究をはじめて行った。再結合優勢プラズマの空間構造を解明し、中心から外側に向かい電離温度と電子温度がともに低下することを示した。また、再結合優勢プラズマのX線スペクトルをはじめてフルバンドで再現することに成功し、電離温度がシリコンと硫黄で高く、ネオン、マグネシウムといった軽い元素、および最も重い鉄では低いことを発見した。これらの結果は、過去の急激な冷却過程とそれに続く緩和過程で再現できることを示した。その具体的なプロセスとして、高密度の星周物質から希薄な星間空間へ衝撃波がブレイクアウトすることで断熱冷却するレアファクションモデルを提示し、混合形態型を統一的に説明する描像をはじめて打ち立てた。

これらの成果は、物理学諸分野の深い知見、観測装置の特性に対する理解および申請者自身が率先して行った軌道上での較正作業、高エネルギー天体現象に対する洞察力によって成し得たものである。また本論文は超新星残骸の観測研究のターニングポイントとなるものであり、他波長や理論分野への大きな波及効果も期待できる。また次期X線衛星ASTRO-Hによる超精密分光観測で今後飛躍的に発展することも期待される。以上から、本論文が博士(理学)の学位論文として十分な価値をもつことを認め、平成24年1月16日に行った論文内容および関連項目についての口頭試問の結果、合格と認めた。

要旨公開可能日: 年 月 日以降