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The excluded-volume parameter B for brush-like polymers is calculated assuming

that each brush-like segment is consisting of a straight main chain with Gaussian side

chains. Interactions between brush-like segments were represented by the binary and

ternary interactions among side-chain segments. The leading term for the perturba-

tion calculation in terms of the binary interaction between side-chain segments gave

much larger B than the experimental values, which were determined from analyses

of the second virial coefficient A2 of polystyrene polymacromonomers in toluene,

suggesting that consideration of higher terms is necessary. Results based on the

smoothed-density (SD) model gave much closer values to the experimental values.

Perturbation calculation considering the ternary interactions among side-chain seg-

ments revealed that consideration of residual ternary interactions is necessary for

theta solvent systems. This is rather contradicting to the experimental results that

A2 for polystyrene polymacromonomers in cyclohexane vanishes at 34.5 ◦C. How-

ever, the calculated results based on the SD model showed that the contribution

from these effects is within the experimental error.

Keywords: brush-like polymers; second virial coefficient; cluster integrals; excluded-

volume effect; polymacromonomer;
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INTRODUCTION

Comb-branched polymers with dense side chains are called brush-like polymers.1–3

After the establishment of synthesis routes, number of studies on such polymers

increased because of their curious properties, such as liquid crystal formations.4–6 A

typical method to obtain brush-like polymers is polymerization of macromonomers,7,8

which are consisting of linear polymers with a polymerizable group at one end of

the chain. From solution studies of polymacromonomers in solution, it was shown

that these molecules behave as stiff chains.1,2, 9–14

We have studied dimensional properties of polymacromonomers consisting of

polystyrene (PS) in a good (toluene at 15.0◦C) and a theta (cyclohexane at 34.5◦C)

solvents and determined the stiffness parameter λ−1 as functions of the degree of

polymerization of side chain ns.
11–13,15–18 The λ−1 values obtained for these polymers

were explained by the first-order perturbation calculation in terms of segmental in-

teractions among side chains.19 It was also shown that polymacromonomer chains in

the good solvent are expanded by intramolecular excluded-volume effects,12,13 when

the main chain is sufficiently long comparing with the Kuhn segment length or λ−1.

The magnitude of these effects are quantified by the excluded-volume parameter

B,20,21 which represents the excluded volume of a pair of segments divided by the

square of the segment length. The B values, obtained from the radius expansion

factor, were found to increase with the side chain length. The interaction between

polymacromonomer segments may be described as a sum of segmental interactions

among side-chains.

In the calculation of λ−1 for brush-like polymers, we modeled the polymer

molecule by a wormlike main chain with Gaussian side chains.19 The essentially

same model, i.e. a straight main chain with Gaussian side chains, may be used for

the brush-like segment, which is an interacting unit of brush-like polymers. Interac-

tions between two brush-like segments may be described by a sum of the interactions
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among side chain beads. Since two side chains belong to different brush-like segments

contact at a place apart from the main chains, interactions between these segments

can be regarded as long-ranged. Thus, the problem is similar to segment-segment

interactions of polyelectrolytes.22

The interaction between segments are also reflected by the second virial coeffi-

cient A2. Here, we analyze previously obtained data for A2 of PS polymacromonomers

in toluene11,15,18 to determine B values for different side chain lengths. Those values

for B obtained are compared with the theoretical results based on the perturbation

and the smoothed-density (SD) methods.

THEORIES

Basic Equations

The brush-like segment is modeled by a straight main chain of the length a with

Gaussian side chains connected to it at intervals of hs. Each side chain is consisting

of ns beads connected by bonds of length b.

The excluded volume for a pair of brush-like segments may be given by22

v =

∫ ⟨
1 − e−W12(r)/kBT

⟩
dr (1)

We note that the inter-segment potential W12(r) depends on the direction of the

main chains of these segments as well as the distance r between the middle points

of the main chains. The angular brackets of the above equation mean averaging

over the relative direction of these segments. The excluded-volume parameter B is

defined by

B = v/a2 (2)

The distance and directions of two brush-like segments are illustrated in Figure 1.

The first brush-like segment (segment 1) is assumed to lie along the z-axis of the

Cartesian coordinate with its center of mass at the origin O. The side chains are

numbered from 1 to a/2hs from the one closest to the origin for positive z and from
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−1 to −a/2hs for negative z. The side chain beads (or segments) are numbered

from 1 to ns from the closest one to the main chain. Here, the number of side

chains in one segment a/hs and ns are considered to be much larger than 1. The

position of the center of the main chain of the second brush-like segment (segment

2) is represented by r. The direction of the segment 2 may be represented based

on the other Cartesian coordinate (x′, y′, z′) with its origin fixed at the center of

the segment 2 and with each axis being parallel to the first Cartesian coordinate.

The azimuthal and rotational angles around the z′ axis are represented by θ and ϕ,

respectively. The ways of numbering side chains and side-chain beads of the segment

2 are taken to be the same as those of the segment 1.

⟨ Figure 1 ⟩

The probability that the pith bead of the ith side chain of the segment 1 lies

between R and R + dR may be given by the following Gaussian function

P (R; ri, pi)dR =

(
3

2πb2

)3/2

exp

[
−3(R − ri)

2

2pib2

]
dR (3)

Here, ri represents the position of the connecting point of the ith side chain to the

main chain. A similar expression for P (R; rj, qj) for the the qjth bead of the jth

side chain of the segment 2 can be obtained, where rj represents the distance from

the origin O to the connecting point of the jth side chain to the main chain of the

segment 2.

The probability density that two segments pi and qj are in contact can be cal-

culated as19

P (0piqj
; rij, pi, qj) =

∫
P (R; ri, pi)P (R; rj, qj)dR

=

(
3

2πb2

)3/2
1

(pi + qj)3/2
exp

[
−

3r2
ij

2b2(pi + qj)

]
(4)
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Here, rij = rj − ri and 0piqj
means that the distance between the segments pi and

qj is zero. We note that ri and rj − r can be written as follows:

ri = (0, 0, ihs)

rj − r = (jhs sin θ cos ϕ, jhs sin θ sin ϕ, jhs cos θ)

Thus, rij is a function of r, i, j, θ, and ϕ, although we do not indicate for clarity.

Binary-Cluster Approximation

Perturbation Calculation. The potential for two brush-like segments W12(r) may

be expressed by the sum of the pair potentials w(upiqj
) between segments pi and qj,

separated by upiqj
.

W12(r) =
∑
i,j

∑
pi,qj

w(upiqj
) (5)

Introducing the following function,

χpiqj
= e−w(upiqj )/kBT − 1 (6)

1 can be expanded as23

v =
∑
i,j

∑
pi,qj

∫
⟨χpiqj

⟩dr +
∑
i,j,k

∑
pi,qj ,sk

∫ ⟨
χpiqj

χpisk

⟩
dr + · · · (7)

Assuming the short range interaction between segments, χpiqj
may be replaced

by −β2δ(upiqj
) with the delta function, where β2 means the binary cluster integral

between side-chain beads. Then, the first term of the right-hand side of 7, designated

by v2−1, can be written as

v2−1 = β2

∑
i,j

∑
pi,qj

⟨∫
P (0piqj

; rij, pi, qj)dr

⟩
(8)

Substituting 4 into the above equation, we obtain

v2−1 =

(
nsa

hs

)2

β2 (9)
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This is an obvious result, because (nsa/hs)
2 represents the total number of cases

that one bead of the segment 1 and another bead of the segment 2 are in contact as

shown in 2-1 of Figure 2.

⟨ Figure 2 ⟩

We also calculated the second term of the right-hand side of 7. However, it was

found that the value of the second term is more than ten times as large as the first

term, showing that the convergence of the power series is not good. Some discussions

about this will be given in Conclusions.

Smoothed-Density Model. Since the convergence of the perturbation calculation

was not good, we calculate v according to the smoothed-density (SD) model. In this

model, the inter-segment potential is written as23

W12(r)

kBT
= β2

∑
i,j

∑
pi,qj

P (0piqj
; rij, pi, qj) (10)

Substituting the above equation with 4 into 1, the excluded volume vSD
2 for this

model is given by

vSD
2 =

∫ ⟨
1 − exp

−β2

∑
i,j

∑
pi,qj

(
3

2πb2

)3/2
1

(pi + qj)3/2
exp

[
−

3r2
ij

2b2(pi + qj)

]
⟩

dr

(11)

The sums over i and j may be approximated by integrals from −∞ to ∞. Further,

we make the following assumption according to Fixman and Skolnick.22 In Figure

1, we may denote the plain which is parallel to the z-axis and contains the main

chain of the segment 2 as S. Assuming that the interaction between two brush-like

segments occurs only when the projection of the main chain of the segment 2 onto
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the xy plain crosses the perpendicular from the origin O to the plain S, we obtain

vSD
2 =a2

∫ ∞

0

du

∫ π

0

dθ sin2 θ
{

1 − exp
[
− β2

(
3

2πb2

)1/2
1

h2
s sin θ

∑
pi,qj

1

(pi + qj)1/2

× exp

(
− 3

2b2(pi + qj)
u2

) ]}
(12)

Here, u represents the distance between the origin and the plain S. We obtained vSD
2

by numerical integration over u and θ after summing over pi and qj.

Effects of Ternary Clustering

Perturbation Calculation. It is known that ternary-cluster terms are not negligibly

small at and near the theta point as the result that the binary-cluster integral reduces

to the same order of the ternary-cluster integral.24

Here, we consider two ternary-clustering terms. One is for the case that two

beads of a side chain belonging to segment 1 and one bead of a side chain belonging

to segment 2 contact, as shown in 3-1 of Figure 2, where the former side chain makes

a loop. The term for this case may be written as

v3−1 = 2β3

∑
i,j

∑
pi,qi,sj

⟨∫
P (0piqi

,0pisj
; rij, pi, qi, sj)dr

⟩
(13)

Here, the side chains i and j belong to the segment 1 and 2, respectively. The

segments pi and qi are on the side chain i and the segment sj is on the side chain

j. The factor 2 comes from the two cases that the side chain making a loop belongs

to the segment 1 or 2. The probability density in 13 is obtained with the aid of the

Wang-Uhlenbeck theory23,25 as

P (0piqi
,0pisj

; rij, pi, qi, sj) =

(
3

2πb2

)3
1

(qi − pi)3/2(pi + sj)3/2

× exp

[
−

3r2
ij

2b2(pi + qi)

]
(14)

The sums in 13 over pi, qi, and sj may be substituted into integrals from 0 to ns

and those over i and j may be substituted by integrations from −∞ to ∞. After
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performing these integrations along with those on r, θ, and ϕ, we obtain

v3−1 =
4a2n2

s

h2
s

(
3

2πb2

)3/2 (
1

σ1/2
− 2

n
1/2
s

)
β3 (15)

Here, σ means the minimum number of segments for making a loop. If we combine

v3−1 with v2−1, we obtain

v2−1 + v3−1 =

(
nsa

hs

)2
[
β2 + 4

(
3

2πb2

)3/2 (
1

σ1/2
− 2

n
1/2
s

)
β3

]
(16)

The expression in the brackets of the above equation is the same as that appears

in the second virial coefficient of linear polymers.24,26 It is known that the negative

β2 and the positive β3 terms considered to cancel out at the theta point, where A2

becomes zero, by

β2 +
4

σ1/2

(
3

2πb2

)3/2

β3 = 0

Thus, we can expect that the contribution from v2−1 + v3−1 to B vanishes at this

point for sufficiently large ns.

Next, we consider the case that two beads belonging to different side chains of

segment 1 and one bead belonging to a side chain of the segment 2 contact. The

term for this case, which is represented by 3-2 of Figure 2, may be written as

v3−2 = 2β3

∑
i,j,k

∑
pi,qj ,sk

⟨∫
P (0pisk

,0qjsk
; rik, rij, pi, qj, sk)dr

⟩
(17)

Here, the side chains i and j belong to the segment 1 and the side chain k to the

segment 2. The factor 2 appears from the same reason as 13. The probability

density for this case can be written as

P (0piqj
,0pisk

;rik, rij, pi, qj, sk) =

(
3

2πb2

)3
1

(piqj + qjsk + pisk)3/2

× exp

{
− 3

2b2(piqj + qjsk + pisk)
[qjr

2
ik + pir

2
ij + skh

2(j − i)2]

}
(18)

Substituting 18 into 17, we obtain

v3−2 = (4 ln 2)
n2

sa
2

h3
s

β3 (19)
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Here, all the summations were approximated by integrals.

Smoothed-Density Model. The contribution of the ternary-clustering to v may also

be calculated by the SD model. If we consider interactions of three beads belonging

to different side chains, the potential for segments 1 and 2 may be given by

W12(r)

kBT
= β3

∑
i,j,k

∑
pi,qj ,sk

P (0piqj
,0pisk

; rik, rij, pi, qj, sk) (20)

From the similar argument to that for the SD model in the binary-cluster ap-

proximation, we obtain

vSD
3 = 2a2

∫ ∞

0

du

∫ π

0

dθ sin2 θ

{
1 − exp

[
− β3

(
3

2πb2

)3/2
1

h3
s sin θ

∑
pi,qj ,sk

× 1

[(piqj + qjsk + pisk)(pi + qj)]1/2
exp

(
− 3(pi + qj)

2b2(piqj + qjsk + pisk)
u2

) ]}
(21)

Here, we have multiplied the right-hand side of the above equation by 2 from the

same reason of 17.

CONPARISON WITH EXPERIMENTS

Good Solvent Systems

Previous A2 data for PS polymacromonomers with different side chain length in

toluene at 15.0◦C12,15,18 are plotted against the weight average molecular weight

Mw in Figure 3. Here, F15, F33, F65, and F110 represent polymacromonomers

consisting from side chains with 15, 33, 65, and 113 styrene residues. It is seen that

A2 decreases with Mw and that the slope becomes steeper with increasing side chain

length.

⟨ Figure 3 ⟩

These data may be explained by the following equation for the wormlike chain,27

A2 = A0
2 + A

(E)
2 (22)
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Here, A0
2 represents the term without the contribution of the chain-end effect and

may be calculated from the following equation for the wormlike chain21

A0
2 =

NAL2B

2M2
h(λB, λL) (23)

where NA, L, and M denote the Avogadro constant, the contour length of the

polymacromonomer molecule, and molecular weight, respectively. The last two pa-

rameters can be related by L = M/ML with the molecular weight per unit contour

length ML. The dimensionless h(λB, λL) may be calculated from the modified Bar-

rett equation27,28 (see ref 21).

The term A
(E)
2 for the chain-end effects may be expressed as27

A
(E)
2 = a2,1M

−1 + a2,2M
−2 (24)

Here, a2,1 and a2,2 are constants. The second term of the right-hand side of 24 is

neglected here.

We determined B and a2,1 by fitting calculated curves to the data points as is

illustrated by the solid lines in Figure 3. Here, we used known values of λ−1 and ML

for each sample12,15,18 and hs = 0.26 nm, the averaged value for these samples,12,15,18

along with β2 = 0.034 nm3 for linear PS in toluene at 15.0◦C29 and b = 0.74 nm

determined from the unperturbed dimension of PS in cyclohexane at 34.5◦C.30 The

resulted values are summarized in Table 1. Figure 4 shows the plots of B thus

determined against ns. The values obtained from the current analyses are close to

those determined from ⟨S2⟩.

⟨ Table 1 ⟩

⟨ Figure 4 ⟩

The dashed line in Figure 4 represents the calculated values from 9. It is seen

that they are much larger than the experimental values. The calculated values from
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the SD model are much closer, but still larger than the experimental values by 10 -

50%. This may be ascribed to the approximated smoothed-density potential.

Theta Solvent Systems

In Table 2, calculated B values from v2−1 and vSD
2 according to 19 and 21, respec-

tively, are summarized. Here, we used β3 = 0.004 nm3 determined from the third

virial coefficients of linear PS in cyclohexane at 34.5◦C.24 It is seen that the values

from the perturbation calculation are much larger than those for the SD model.

We may calculate the maximum values of A2 from 23 with h(λB, λL) = 1, if we

ignore the chain-end effect. The A2 values obtained with B based on the SD model

were less than 3 × 10−5 cm3 mol g−2, except for F15. From our previous results,

the absolute values of A2 for PS polymacromonomers in cyclohexane were less than

3 × 10−5 cm3 mol g−2 at the theta temperature (34.5◦C) irrespective of molecular

weight.11,15,18 Thus, we may regard the calculated values for F33, F65, and F110

by the SD model agree with the experimental results. The value for F15 was about

9 × 10−5 cm3 mol g−2, which is rather larger than the experimental values.11 This

suggests necessity of consideration of some other interactions, effects from chain-ends

or thernary-clustering of brush-like segments. The first-order perturbation calcula-

tions gave much larger A2 values (order of 10−4 cm3 mol g−2) than those from the

SD model, showing the importance of the closed form.

⟨ Table 2 ⟩

CONCLUSIONS

In this study, theoretical studies of B for brush-like polymers in good and theta

solvents were carried out. It was shown that the SD-model calculations gave closer

values to the experimental ones both in good and theta solvent systems if binary

and ternary interactions among side chain beads were taken into consideration. The

first-order perturbation calculation of B gave much larger values than observed ones,
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being similar to the zeroth-order approximation of A2 for linear flexible polymers.23

The calculated value for β2
2 term of B was much larger than the β2 term, showing

that the convergence of the power series in terms of β2 is not good. The β2
2 terms

for B arise from the double interactions between side chain beads belonging to

different brush-like segments. Such higher-order interactions are considered to occur

frequently when brush-like segments in almost parallel configuration approach each

other. For the same reason, the SD model calculation with β3 interactions gave much

closer values to the experimental ones for theta solvent systems than the first-order

perturbation calculation. However, those values still deviate from experimental

values. To obtain quantitative agreements, Monte Carlo calculations of B for the

brush-like segments may be desirable.
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Figure 2. Diagrammatic representation of interactions among
side chains. Thick and thin solid lines indicate the main and side
chains, respectively. Dashed lines connect interacting segments.
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Figure 3. Molecular weight dependence of second
virial coefficient for polystyrene polymacromonomers
with different degree of polymerization of side chain in
toluene: circles, F15;12 filled triangles, F33;12 unfilled
triangles, F65;15 squares, F110;18 lines, calculated val-
ues.
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Figure 4. B for polystyrene polymacromonomers de-
termined from the radius expansion factor (squares)12

and the second virial coefficient (circles). Dashed and
solid lines show calculated values from Eq (2) with (9)
and (12), respectively.
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Table 1. Molecular parameters for PS polymacromonomers in toluene at 15.0◦C.

B / nm

Sample ns ML/103 nm−1 λ−1/nm a2,1/cm
3 g−1 from ⟨S2⟩ from A2

F15 15 6.2a 16a 5 4.5a 7

F33 33 13.0a 36a 12 18a 12

F65 65 25.0b 75b 20 — 18

F110 113 45.5c 155c 23 — 20

aRef.12, bRef.15, cRef.18
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Table 2. Calculated B for PS poly-
macromonomers in cyclohexane at 34.5◦C.

B / nm

ns from v3−2 from vSD
3

15 55 12

33 268 21

65 1038 33

113 3137 47
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