K3 SURFACES WITH INVOLUTION, EQUIVARIANT ANALYTIC
TORSION, AND AUTOMORPHIC FORMS ON THE MODULI
SPACE III: THE CASE r(M) > 18

KEN-ICHI YOSHIKAWA

ABSTRACT. We prove the automorphic property of the invariant of K3 surfaces
with involution, which we obtained using equivariant analytic torsion, in the
case where the dimension of the moduli space is less than or equal to 2.

1. INTRODUCTION

Let (X,t) be a K3 surface with anti-symplectic holomorphic involution and let
H?(X,Z) be the invariant sublattice of H?(X,Z) with respect to the t-action.
By Nikulin [12], the topological type of ¢ is determined by the isometry class of
H?(X,Z). Let M be a sublattice of the K3-lattice and let M+ be the orthogonal
complement of M in the K3-lattice. The pair (X,:) is called a 2-elementary K3
surface of type M if H2(X,Z) is isometric to M. In this case, M is a primitive,
2-elementary, Lorentzian sublattice of the K3-lattice by [11]. Let M$,. be the
coarse moduli space of 2-elementary K3 surfaces of type M. By the global Torelli
theorem for K3 surfaces, the period map gives an identification between M¢,, and
a Zariski open subset of the modular variety Q]T/[L /O (M™). Here QJJ\F/[L is the
period domain for 2-elementary K3 surfaces of type M, which is isomorphic to a
symmetric bounded domain of type IV of dimension 20 — r(M), and Ot (M*) C
O(M+ ® R) is a certain arithmetic subgroup.

In [17], we introduced a real-valued invariant 7a7(X,¢) of (X,¢), which we ob-
tained using equivariant analytic torsion [2] and a Bott—Chern secondary class [3].
(See Sect.2.) Then 7y gives rise to a function on the coarse moduli space M9, . .

Let (M) be the rank of M. When r(M) < 17, the function 73y on M¢,. is
expressed as the Petersson norm of an automorphic form on Q;\FJ . characterizing
the discriminant locus [17], where the automorphic form takes its values in a certain
O*(M™)-equivariant line bundle on QL 1. The purpose of this note is to extend
the automorphic property of 7p; to the case (M) > 18.

Let X* be the set of fixed points of ¢: X — X. If »(M) > 18, X" is the disjoint
union of finitely many compact Riemann surfaces, whose total genus is determined
by M (cf. [12]). Let g(M) be the total genus of X*. Then our main result is stated
as follows.

Theorem 1.1 (Theorem 5.3). There exist an integer v € Z~q, an (possibly mero-
morphic) automorphic form W on Q. of weight v(r(M)—6) and a Siegel modu-
lar form Sy on the Siegel upper half space & 4(nry of weight 4v such that, for every
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2-elementary K3 surface (X,1) of type M,
(X, 0) = [ War (@ar (X, ) |72 1 Sn (20X |72

Here Ty (X, 1) € MG, denotes the period of (X,1), 2(X") € &yar)/Sp2g(ar)(Z)
denotes the period of X*, and || - || denotes the Petersson norm.

In [19], we shall use Theorem 1.1 to give explicit formulae for ¥y, and Sy, In
fact, Wy, is expressed as an explicit Borcherds lift of a certain elliptic modular form
and S)s is expressed as the product of all even theta constants.

This note is organized as follows. In Sect.2, we recall the invariant 75,. In
Sect.3, we recall the moduli space of 2-elementary K3 surfaces of type M and
prove a technical result. In Sect.4, we study the singularity of 75;. In Sect.5, we
prove Theorem 1.1. In Sect.6, we prove a technical result used in the proof of the
main theorem for a certain M.

Acknowledgements We thank the referee for helpful comments.

2. K3 SURFACES WITH INVOLUTION AND THE INVARIANT Tjs

Let X be a K3 surface and let t: X — X be a holomorphic involution acting
non-trivially on holomorphic 2-forms on X . The pair (X, ¢) is called a 2-elementary
K3 surface. Let Lxs be a fixed even unimodular lattice of signature (3,19), which
is called a K3-lattice. Then H?(X,Z) equipped with the cup-product pairing is
isometric to Lgs. Let M C Lgs be a sublattice. The pair (X, ¢) is of type M if the
invariant part of H?(X,Z) with respect to the t-action is isometric to M. By [11],
there exists a 2-elementary K3 surface of type M if and only if M is a primitive,
2-elementary, Lorentzian sublattice of Ls3.

Let (X,¢) be a 2-elementary K3 surface of type M. Identify Zs with the sub-
group of Aut(X) generated by ¢. Let k be a Zs-invariant Kéhler form on X. Let
77, (X, k)(¢) be the equivariant analytic torsion of the trivial Hermitian line bundle
on (X, k). For the definition and the basic properties of (equivariant) analytic tor-
sion, we refer the reader to [13], [3], [2], [8], [9]. Set vol(X, k) := (2m)~2 [, x?/2L.
Let 1 be a nowhere vanishing holomorphic 2-form on X. The L2-norm of 7 is
defined as [|9]|7. :== (2m) 72 [y n A 7.

Let X* := {z € X; «(x) = x} be the set of fixed points of + and let X* =5".C;
be the decomposition into the connected components. By [12], the total genus
g(X*) of X* depends only on M and hence is denoted by g(M). Set vol(C;, k|¢;) ==
(2m)~t fCi klc,. Let ¢1(Cy, k|, ) be the Chern form of (T'C;, k|¢,) and let 7(C;, k| c,)
be the analytic torsion of the trivial Hermitian line bundle on (Ci, Ele,)-

By [17, Th. 5.7], the real number

14—r(M)

T (X, ) :=vol(X, k)™ 3 TZQ(X7/$)(L)HVO](C’i7f€\Ci)T(Ci,n

3

1 nATf Vol(X,m))’ }
X exp | = lo . (X' kx|,
p[s /X g(nz/z! iz )|, & nx)

is independent of the choice of k. Hence 7 (X, ¢) is a real-valued invariant of (X, ¢).
We regard 7); as a function on the moduli space of 2-elementary K3 surfaces of
type M.

Ci)




3. THE MODULI SPACE OF 2-ELEMENTARY K3 SURFACES

3.1. The moduli space of 2-elementary K3 surfaces. For a complex vector
space V, let P(V) denote its projectivization. By the global Torelli theorem for
K3 surfaces, the period domain for 2-elementary K3 surfaces of type M is given
by the set

Qe i=A{[n) e P(M*+ @ C); (n,m) =0, (n,7) >0},

which consists of two connected components QLL and QX/H' Since sign(M*) =

(2,20 — r(M)), Q;\QL is isomorphic to a symmetric bounded domain of type IV of
dimension 20 — r(M). Let O(M™) be the group of isometries of M=, which acts
projectively on ;.. Let O* (M) be the subgroup of O(M~) of index 2, which

preserves the connected components of ;1. We define
My = QLL/OJr(Ml).
The Baily—Borel-Satake compactification of M. is denoted by M3, ., which is

a normal projective variety of dimension 20 — r(M) with regular part (M7, )reg-

Recall that the discriminant locus of Qx[ N

Dyei=  |J  Ha o Ho={ln) € Q. (dn) =0},
deA,, 1 /+1
where Ayu = {d € M*; (d,d) = —2} is the set of roots of Mt. Let D1 be
the divisor of M7, defined as the closure of the image of Dj,. by the projection
Iy QF . — My, By [17, Th.1.8], the period map induces an isomorphism

ML
between the coarse moduli space of 2-elementary K3 surfaces of type M and the

quasi-projective variety of dimension 20 — (M)
Qe = (5, \ D) /OT(M*) = My \ Dy
The boundary locus of ./\/l*M . is defined as the subvariety:
BM = M},{\/[L \MMJ_
Since dim By = 1 if (M) > 18 and dim By, = 0 if »(M) = 19, By, is a subvariety
of M3, with codimension greater than or equal to 2 when (M) < 17 and is a
divisor when r(M) > 18.

is the divisor defined as

3.2. One parameter families of 2-elementary K3 surfaces. We need a mod-
ification of [17, Th. 2.8], which shall be used in Sects.4 and 6.

Theorem 3.1. Let C C M3, be an irreducible projective curve.

(1) There exist a smooth projective curve B, a morphism ¢: B — M3, ., an
irreducible projective threefold X with an involution 6: X — X, and a
surjective morphism f: X — B with the following properties:

(a) @(B) = C.

(b) The involution §: X — X preserves the fibers of f: X — B.

(¢) There is a non-empty Zariski open subset B® C B such that (X, 0|x,)
is a 2-elementary K3 surface of type M with period p(b) for b € B°.

(2) Let p: Z — A be a proper surjective projective morphism from a smooth
threefold to the unit disc and let v: Z — Z be a holomorphic involution
preserving the fibers Zy = p~L(t) of p. Assume that (Z;,t|z,) is a 2-
elementary K3 surface for allt € A* := A\{0} and that the period map for
p: (Z,0)|ar — A* extends to a non-constant holomorphic map v: A — C.
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Let v € Z>q. Then there exist p: B — C, f: X — B, 0: X — X as

above in (1) and a point p € ¢~ 1(v(0)) and an isomorphism of germs

Y (A4,0) = (B,p) with the following properties:

(d) (Xp,00x,) = (Zo,tlz,)

(e) The maps of germs ¢: (B,p) — (C,v(0)) and v: (A,0) — (C,~(0))
have the same v-jets: For any F € Oc (o),

Fogpou(t)— Fon(t) € tVT1C{t}.

(f) Let Def(Zy) be the Kuranishi space of Zy and let py: (B,p) — Def(Z)
and pp: (A,0) — Def(Zy) be the maps of germs induced by the defor-
mations f: (X, X,) — (B,p) and p: (Z£,Zy) — (A,0), respectively.
Then py and i, have the same v-jets: For any F' € Opeg(z,),

Foupot(t)— Fopu,(t) €t 11C{t}.

Proof. We follow [17, Th.2.8]. By the same argument as in [17, Proof of Th.2.8
(Step 1) and Claim 1], there exist an irreducible projective variety T and a family
of projective surfaces with involution 7: (X,Z) — T with the following properties:

(i) Let D C T be the discriminant locus of 7: X — T and define T° :=
T\ (SingTUD). Then (X;,Z;) is a 2-elementary K3 surface of type M for
all t € T°.

(ii) Let @ro: T — M¢,. be the period map for 7|ro: (X|po,Z|po) — T°.
Then 7. (T°) C C and @r.(T°) contains a non-empty open subset of C.

(iii) The period map @y.: T° — C extends to a rational map zr: T --+ C.

(iv) In (2), there is a map ¢: A — T with ¢(A*) C T° such that p: (Z,1) - A

is induced from 7: (X,Z) — T by c.

(1) Let I' € T x C be the closure of the graph of .. Let B be a smooth
projective curve and let h: B — T' be a holomorphic map with pry(h(B)) = C. We
set ¢ :=pryoh: B — C. Let mg: (X x1r B,Z xidg) — B be the family of algebraic
surfaces with involution induced from 7: (X,Z) — T by pry o h: B — T. Then
the period map for 7p: (X xr B,Z x idg) — B is given by @y o pry o h. Since
I' € T x C is the closure of the graph of Tp., we get @y opr; oh = pryoh = ¢.
If we set B® :=v=Y(BN(T° x C)), then mp: (X xr B,Z x idg) — B satisfies (a),
(b), (c). This proves (1).

(2) To prove (2), we must choose B more carefully as in [17, Proof of Th. 2.8
Claim 2]. Let 0: A — T be the map defined as o(t) := (c(t),y(t)) for t € A. Let
Y:T — T be a resolution such that I is projective. Since ¢(A*) € T'\ SingT
and hence o(A*) C T'\ SingT, o lifts to a holomorphic map &: A — I such that
o =X od. By [5, Th.1.1], there exist a pointed smooth projective curve (B,,p,),
a holomorphic map hy: B, — I and an isomorphism of germs ¥: (A,0) = (B,p)
such that for any G € (91:7;(0),
(3.1) Gohyo(t) — God(t) € t"t1C{t}.

Set B:=B,, h:=2Xo hy,: B — T and we consider the family of 2-elementary
K3 surfaces mp: (X xp B,Z xidg) — B of type M. By construction, we get (a),
(b), (c), (d). Since

(3.2) @ =prgoh = (prgoX)oh,, y=pryoo = (pryo¥)oo,



we get by (3.1), (3.2)
(3.3)
Fopoy(t)— Foy(t)=(FopryolX) o%(t) —(Fopryo X)oa(t) €t C{t}.

This proves (e). Let pr: (T, ¢(0)) — Def(Zp) be the map induced by the deforma-
tion m: (X, X)) — (T, ¢(0)). Since

(3.4)
pp=pmopryoh = (uxoproX)oh,  py,=propri00 = (uzopr;oX)od,
we get by (3.1), (3.4)

(3.5)
Fopot(t)— Fox(t)=(Fopr o X)oh(t) - (Fopr, o X)od(t) € t*C{t}.
This proves (f). This completes the proof of (2). O

4. THE SINGULARITY OF T/

We prove the logarithmic divergence of 7, for any one-parameter degeneration
of 2-elementary K3 surfaces of type M. For this, we recall the following:

Theorem 4.1. Let m: X — S be a proper surjective holomorphic map from a
connected projective algebraic manifold X of dimension n+1 to a compact Riemann
surface S. Let G be a finite group. Assume that G acts holomorphically on X and
trivially on S and that w: X — S is G-equivariant. Hence G preserves all the fibers
Xy:=7"1(s), s€S. Let A := {s € S; Sing(X;) # 0} be the discriminant locus.
Let hx be a G-invariant Kdhler metric on X and set hg := hx|x, fort € S\ A.
Let 7¢(Xs, hs)(g) be the equivariant analytic torsion of the trivial Hermitian line
bundle on (Xs,hs). Let t be a local coordinate of S centered at 0 € A. If N is the
order of g € G, then there exists 34(m, Xo) € Y <pon Qexp(2mik/N) such that

log 7c:(X¢, he)(g) = By (m, Xo) logt* + O(log(—log [t])) ~ (t —0).

Proof. See [20, Th.1.1 and Cor.6.10]. We remark that A # S by Sard’s theorem,
since A is the analytic subset of S defined as the image of the critical locus of 7. [

Theorem 4.2. Let (S,0) be a pointed smooth projective curve equipped with a
coordinate neighborhood (U,t) centered at 0, let X be a smooth projective threefold
equipped with a holomorphic involution 0: X — X, and let m: X — S be a surjective
holomorphic map. Assume the following:

(1) the projection m: X — S is Zqo-equivariant with respect to the Zq-action on
X induced by 0 and with respect to the trivial Zs-action on S.
(2) (Xt,0|x,) is a 2-elementary K3 surfaces of type M for all t € U \ {0}.

Then there exists o € Q such that
log ar (X4, 0| x,) = a log \t|2 +0 (log(— log |t|2)) (t—0).

Proof. Set 6; := 0|x,. Let hx be a Zo-invariant Kéhler metric on X with Kéahler
form wy and set wy := wx|x,. By Theorem 4.1, there exists 8 € Q such that

(4.1) log 7z, (X, w)(6;) = B log|t|* + O (log(— log |t\2)) (t —0).
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Let X? be the set of fixed points of §: X — X and let A C S be the discriminant
locus of m: X — S. By the Zs-equivariance of m, we have the decomposition

X =Xx%1x?,

where 7(X%) C A and 7r|Xz{ is a surjective map from any component of X to S.
Set Y := X% and f := 7T|X%. Then Y is a smooth complex surface and f: Y — S
is a proper surjective holomorphic map such that Y; = Xf * is the disjoint union of

compact Riemann surfaces for ¢t € U \ {0}. It follows from Theorem 4.1 again that
there exists v € Q with

(4.2)
log 7(X{", wi| <o) = log (Ve wely,) = v log [t]” + O (log(~log [t[*))  (t — 0).

Let Kx/g := Q% ® (7*Q%)~! be the relative canonical bundle. Then the di-
rect image sheaf 7, Kx,g is locally free on S by e.g. [16, Th.6.10 (iv)]. By as-
sumption (2), m.Kx/s has rank one. By shrinking U if necessary, there exists
E € H(m1(U), %) such that ny,s := 2@ (7*dt)"' generates m.Kx/s as an
Og-module over U. In particular, we may assume ny,g|x, 7# 0 for ¢ # 0. Since
Kx/s|x, is trivial for ¢ # 0 by (2), this implies that 1y,s|x, is nowhere vanishing
on Xy, t # 0. Hence div(Z) C Xo. We set 7, := Resx,[2/(m —t)] € H*(X;,0%,)
for t € U. Then nx;s|x, = 2® (7*dt)"'|x, is identified with ;.

We prove the existence of § € Q such that as t — 0

(4.3)

A7 Vol(Xi,
[ e (T “’f))\ e (Xl o) = 6 log i + O (log(~ o 1))
)(tt Xtt t

wi/28 ImellZe

Let ¥, C X be the critical locus of 7 and let TX/S := ker 7. | x\x,, be the relative
tangent bundle of 7: X — S. Let hx/g := hx|rx/s be the Hermitian metric on
TX/S induced from hx and let wx, g be the (1,1)-form on TX/S associated to
hx;s. We identify wx,g with the family of Kéhler forms {w;}scs. Let N%, x be
the conormal bundle of X; in X for ¢t € U\ {0}. Since drr = n*dt € H°(X,, N;‘(t/x)
generates N fort € U \ {0}, N%, x is trivial in this case. Since the Hermitian
metric on QY is induced from hx via the C* identification Q, = (N, )+ and
since ("‘J%(/S/Q!”Xt is the volume form on X;, we get on X \ ¥

w3 wi/s dm dr
4.4 —X INE A )
44 T <Z||d7r|| ||d7r>

Since Z|x, = n: ® dm, we get the following equation on X \ X, by (4.4)
(4.5) B B
nx/s Nx/s (-1)33=EAE (-1*PEAE 1 =P
wis/? (w%/s/2) A (idm A dr) wx /3! ldm|* [l

Let ¥y C Y be the critical locus of f: Y — S and let hry,s be the metric on
the relative tangent bundle TY/S := ker fi|y\x, induced from hx via the inclusion



TY/S CTY C TX|y. Define
(4.6)

ca(TY/S, hryys)
Y\f71 (W(E‘n))
Vol(Ygen, wx |vyen)

HUX/sH%z

A(X/S) = f. |1og (W)

wk/s/2!

+ X(Ygen) log

where Ygon denotes a general fiber of f: Y — S and x(Ygen) denotes its topological
Euler number. By [20, Th. 6.8], there exists €; € Q such that

(4.7) log [nx/sll7> = €1 log [t|* + O (log(~log [t|*)) ~ (t — 0).

Let w: P(TY) — Y be the projection from the projective tangent bundle of
Y toY. Let g: Y — Y be the resolution of the indeterminacy of the Gauss map
v:Y\Xr 3y — [T,Ys] € P(TY) (cf. [18, Sect. 2]) and set fi=foq:Y — Sand
V:=voq:Y — P(TY). Then f and ¥ are holomorphic maps. Let £ — P(TY)
be the universal line bundle and let hs be the metric on £ induced from w*hy via
the inclusion £ C w*TY. Then

(4.8) a1 (TY/S, hTY/S) =7v"c1(L, he).
Substituting (4.5) into (4.6), we get
(4.9)

=12
A(X/S) = f* |:10g (|tl:T||2> Cl(TY/S, hTY/S) - Xtop(chn) log HnX/SH%Z + O(].)
= J. [log(¢"|Z]*) 7 ex (£, he)] — f- [log(q”[ldr||*) 7 er (L, hr)]
— €1 Xtop(Y:gen) 1Og |.lf|2 + 0 (log(_ log |t‘2)) ’

where we used (4.7) and (4.8) to get the second equality. Since ¢*Z is a holomorphic
section of the holomorphic line bundle ¢*Q3 with div(¢*Z) € 7 1(0), there exists
by [18, Lemma 4.4] a constant €2 € Q such that

(4.10)

Fo [log(@*IZ1?) 7 er (L, he)] = exlog|t> +0(1) (¢ — 0).
By [18, Cor. 4.6], there exists €3 € Q such that
(4.11)
7. log(q" a2 51 (£, he)] = eslog |t +O(1) (¢ —0).
Setting § := €2 — €3 — €1 Xtop(Ygen) € Q, we get (4.3) by (4.9), (4.10), (4.11).
By the definition of 7ps, the result follows from (4.1), (4.2), (4.3). O

Theorem 4.3. Let C C M}, be an irreducible projective curve intersecting
Dyre U Bar properly. Let b € C N (Dyye U Byy) and let Cy = J,c; CF) be the
irreducible decomposition of the set germ Cy = (C,b). Let v : (A,0) — C’,EZ) be

the normalization. Then there exists ozgi) € Q such that ast — 0,

log Tar (VD (1)) = al” log|t] + O(log(— log|t])).
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Proof. Let f: (X,0) — B be the family of 2-elementary K3 surfaces of type M
with period map ¢: B — C as in Theorem 3.1 (1). By [1, Th. 13.4], there exists a
resolution of the singularities p: X — X such that 6 lifts to an involution : X —
X. We set f = fop. Since i is an isomorphism outside the singular fibers of f, the
period map for f. (X, 0) — B coincides with ¢: B — C. Replacing f: (X,0) — B
by f: (X, 5) — B if necessary, we may assume that X is smooth.

For i € I, let p® € »~1(b) be such that (B b)) = C(i . Let (V@ s) be a
coordinate neighborhood of p® in B with s(p) = 0. Let ¢®: V() — A be
the holomorphic map such that ¢ = (1)~ o on VI \ {p(’}. There exists
m; € Zwo and €;(s) € C{s} such that t o (¥ (s) = s™i¢;(s) and (0) # 0. By
Theorem 4.2 applied to the family f: (X,0) — B, there exists a; € Q such that

log Tar (V") 0 D (5)) = @ log|s| + O(log(~log|s[)) (s — 0).

This, together with the relation ¢ o ¢(¥)(s) = s™i¢;(s), yields the desired estimate

with agi) = a;/m;. a

5. THE AUTOMORPHIC PROPERTY OF Tjs: THE CASE (M) > 18

In [17, Main Th.], we proved that 7 is expressed as the Petersson norm of an
automorphic form on the period domain for 2-elementary K3 surfaces of type M if
r(M) < 17. In this section, we extend this result when r(M) > 18. For n € Z, (n)
denotes the 1-dimensional lattice Z equipped with the bilinear form (x,y) = nxy.
We denote by U the 2-dimensional lattice associated to the matrix ((1J é)

5.1. Automorphic forms on the moduli space. We fix a vector [;. € M+ ®R
with (Ipre,l310) > 0 and set

(v(m)s lagr)
<777 lMl>

Since {lpre,lpre) > 0, jare(7,-) is a nowhere vanishing holomorphic function on
Q-‘r
ML

Jare (v, [n)) == M eQf,., ~veOot(M*).

Definition 5.1. A holomorphic function F' € O(QIT/I 1) is an automorphic form on

Q7. for OF(M*) of weight v if the following two conditions are satisfied:
(i) There exists a unitary character x: O (M+) — U(1) such that
F(ly(m) = x() e ([ F(E), - [ € Qpe, v € OF(MH).

(ii) Denote by ||F[|* € C*°(2},.) the Petersson norm of F (cf. [17, Def.3.16]
with p = v, ¢ = 0), which is regarded as a C* function on M, in the
sense of orbifolds. Then log ||F||? € L{  ((M3%,. )reg) and there exists an
effective divisor D on M3, such that

—dd®log ||F||*> = v@pe — 6p

as currents on (M7, )reg. Here Wy 1 is the current on (M7, )reg defined
as the trivial extension of the Ké&hler form of the Bergman metric, and
d® = 7-(d — 0) for a complex manifold.

The notion of meromorphic automorphic form is defined in the same manner.
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Since Bj; is a subvariety with codimension greater than or equal to 2 when
(M) < 17, an automorphic form on Q| for O (M=) of positive weight extends to
a holomorphic section of the corresponding Hodge bundle on M3, by the Koecher
principle (cf. [4, p.498]). In particular, the second condition (ii) follows from the
first one (i) in this case.

5.2. The equation satisfied by 7); on the period domain. Let A, denote the
Siegel modular variety of degree g, which is the coarse moduli space of principally
polarized Abelian varieties of dimension g. The Petersson norm of a Siegel modular
form S on the Siegel upper half space of degree g is denoted by |S|? (cf. [17,
Sect. 3.2]), which is a C'° function on A, in the sense of orbifolds. If k is the
weight of S, the (1,1)-form w4, := —3ddlog ||S||? on A, in the sense of orbifolds
is the Kéhler form of the Bergman metric.

As an application of Theorem 4.3, we prove the automorphic property of 7as
when (M) > 18. For this, we need an extension of [17, Sect. 7].

Theorem 5.2. Let Ily;: QLL — Mpsr be the projection and let T+  be the
ML
Ot (M™)-invariant function on QLL \ Dpsv defined as Tor | = I3ty Then

TQLL lies in L%OC(Q;\F/[L) and satisfies the following equation of currents on Q;\F/IL:

r(M)—6 N 1
(5.1) dd‘log ot = % war + Jyway o — Z(SDJ‘“ .
Proof. Let O* (M%), C OT(M*) be the stabilizer of ] € Q} . As in [17], set
H = {[n] € Ha; OF (M) = {1, £sa}}, o= J HS
deA, 1

and Zy. = UdeAMl Hy\ HS. When r(M) < 18, Zy. is an analytic subset of
QLL with codimension greater than or equal to 2 by [17, Prop.1.9 (2)]. By [17,

Sect. (7.1)], T+ . lies in Li(Q},. \ Zp+) and satisfies the following equation of
M

loc

currents on 0, \ Zprei:

(5.2) dd®log o+ = W wy + Jywa
ML 4

Since codim Zy;1 > 2 when (M) < 18, we deduce from (5.2) and [15, p.53, Th. 1]

that Eq.(5.1) holds in this case. We consider the case r(M) > 19. Since Q|

consists of a unique point when r(M) = 20, i.e., M+ = (2) @ (2), the assertion is

trivial in this case. It suffices to prove (5.1) when (M) = 19, in which case either

M+t = (2)®(2) ®(-2) or M+ =2 U (2) by [12, p.1434, Table 1].

Assume M+ = U & (2). By [6, Th.7.1], there exist isomorphisms Q7 , =
$ and O (M=) =2 SLy(Z) such that the O (M~)-action on QF , is identified
with the projective action of SLa(Z) on 9. Let F := {z € 9; |2| > 1, |Rz| <
1/2} be the fundamental domain for the PSLy(Z)-action on $. For 7 € 9, let
SLy(Z); C SLy(Z) be the stabilizer of 7. Let d € Apr and let z € F be the point
corresponding to [7] € Hq. Since O (M=), D Zs X Zs and hence # O (ML), >
4, we get #PSLy(Z). > 2. By e.g. [14], we get z € {i,e™/3 e2™/3}, If z = ™/3
or e?™/3  then PSLy(Z), = Zs. In this case, SLy(Z), = O (M=), does not
contain a subgroup of order 4, which contradicts the fact O (M=), D {£1, +s4} =
Z; x Zy. Hence we get z = i. Since #SLy(Z); = 4, we get O (M*)},) = {£1, £sa}.

16
g(M) E Dpre
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This implies H; = Hg and Zj; = () when M = U & (2). This proves (5.1) when
M = U@ (2). For the case M+ = (2) @ (2) @ (—2), see Sect.6. O

5.3. The automorphic property of 7.

Theorem 5.3. There exist an integer v € Zso and an (possibly meromorphic)
automorphic form Way on Qf  for OF (ML) of weight v(r(M) — 6) and a Siegel
modular form Sy on Sy of weight 4v such that for every 2-elementary K3
surface (X, 1) of type M,

T (X 0) = |V p (T (X, L))H71/2u”S}V[(Q(XL))”71/21/'

Here Ty (X, 1) € My1 denotes the period of (X,1) and 2(X") € Ay denotes
the period of X*.

Proof. Since the assertion was proved when (M) < 17 (cf. [17]), we assume r(M) >
18. Let ¢ € Z~( be sufficiently large. Let S be a Siegel modular form of weight 4/
on S,y such that the function M3, 3 (X,¢) — [|S(£2(X*))|* € R>o does not
vanish identically. Let F' be a non-zero automorphic form on QL , for OF (M) of
weight ((r(M) —6). Let Jy,wa,,, be the current defined as the trivial extension
of (Jir)*wa, gy, from Qur \ Dago to Qppe, where Jir: Qe \ Dy — Agqary is
the holomorphic map defined as J§, (@ (X, ¢)) = 2(X*) (cf. [17, Sects. 3.1-3.4]).
Then the following equations of currents on QL . hold:

(53) — ddp IOg HS||2 =44 J]T/[(A)AQ(M) — 6J;{div(s),
(5.4) — dd°log || F||* = £(r(M) — 6) wnr — daiv(r)-
We set

=19 (IFI- 1SN
M

By (5.1), (5.3), (5.4), there is an O (M*)-invariant Q-divisor D on €}, satisfying
the following equation of currents on QJD L

(5.5) —ddlogyp = ép.

Let [no] € QLL and let m € Z-o be an integer such that mD is an integral
divisor on Q]T/[i' We define G([n]) := exp (m f[% 0log ap). Since the residues of

the logarithmic 1-form m dyp on QL . are integral, G is a meromorphic function on
QX/IL with div(G) = m D. By the definition of G' and the equality dlog ¢ = dlog ¢,
we get

(n]

[70]

(5.6)  |G(In)|* =exp (m dlogp + 510g<p> = ()™ e([no]) ™™

Let v € OT(M*1). By the Ot (M~)-invariance of ¢, we get v*9logp = dlog ¢,
which yields that dlog(v*G/G) = 0. Hence there exists a constant x(y) € C* with

(5.7) 7°G = x(7)G.



11

Since (vy')* = (v')*~* for v,7 € OF(M*), we deduce from (5.7) that x: OF(M*) —
C* is a character. We see that |x(v)| = 1. Indeed, by the definition of y, we get

: - Sl TCGT
X" = "Gm) ( @ )

( ¥-[mo] > < v-[no] _ >
= dlogy | - exp m/ dlog
(58) [10] [m0]
()L
= exp / dlog
[m0]

= exp [m log (v - [10]) — m log p([no])] = 1,

where the second equality follows from the fact dlogy = dlogy and the last
equality follows from the OT(M*)-invariance of . By (5.7) and (5.8), G~ F™
satisfies Definition 5.1 (1).
Set C':=log ¢([no]). By the definition of ¢ and (5.6), we get
(5.9)
Tot | = G FI| - 1SN = eC(IGH F™ |- |5 %)~ /A

We set v :=ml, Uy = G~¥F™ and Sy := S™. Then

o = ([l Sar %) 7147
Since Sy is a Siegel modular form of weight 4/m = 4v and since ¥, is a mero-
morphic function on Q"A'/[ . satisfying the functional equation in Definition 5.1 (1)
with weight (r(M) — 6)¢m = (r(M) — 6)v, it suffices to prove that ¥y, satisfies
the regularity condition (2) in Definition 5.1. Since |G| is an Ot (M*)-invariant
function on Q. \ Dyse by (5.6), we regard |G| as a function on M¢,.. Since F
is an automorphic form on QF 17 and hence satisfies the regularity condition (2) in
Definition 5.1, it suffices to prove log |G|*> € L{, (M}, )reg) and the existence of a
Q-divisor ® on M3, satisfying the following equation of currents on (M3, )reg:

(5.10) — ddlog |G|* = 0.

Let @ be the function on M¢, . such that ¢ = IT;;®. Let D be the closure of
ITy (D) in M3,.. By (5.5), we have the equation of currents on (M1 )reg:
(5.11) — dd®log ® = d5.

Let By = Upea Burya be the irreducible decomposition. Since r(M) > 18,

By is a divisor on M7}, . Let €' C M3, be an arbitrary irreducible projective
curve intersecting Bjys properly. Let b € C' N By be an arbitrary point and let

Co = Ujer C(i) be the irreducible decomposition of the set germ Cp = (C, b). Let

v (A,0) — C(z) be the normalization. By Theorem 4.3, there exists a ) eQ
such that as t — 0

(5.12) log Tar o D)) = ol log |t| + O(log(— log [¢]))-

Since F' and S are automorphic forms on QL 1 and &4(pr) respectively, there exists
ﬁél),vél) € Z by [10, Th.3.1] (cf. [17, Prop. 3.12]) such that as ¢t — 0,

(5.13) (log | E[)| o0 (7 (1)) = 8y logt] + O(log(~log [1]).
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(5.14) (log 15Dl oo (7 (1)) = 7, log]t] + O(log(~log [1]).

By (5.12), (5.13), (5.14), there exists egi) € Q such that

(5.15)
log @] (¥ (1)) = ¢, log |t] + O(log(~log [#])) (¢ — 0).

By (5.11), (5.15), there exists nc,o € Q such that the following equation of currents
on C holds:

(516) — ddc IOg (I)|C = 6EF‘IC + Z nC,oc 651\4,(1[’}0.
acA

Since C' C M, is arbitrary, this implies that 0log ® is a logarithmic 1-form on
(ML )reg and that nc o is the residue of 0log ® along the irreducible divisor Bas,o
for sufficiently general C. Since nc o is independent of the choice of sufficiently
general C, we write ng for nc o. By (5.11) and (5.16), we get ® € L{, (M%,,) and
the following equation of currents on (M3, )reg:

(5.17) —dd°log® =65+ > Na0By.a-

acA
Set D =m(D + Y, o Bur,a)- Since ¢ = eC|G|*™ by (5.6), we get (5.10) from
(5.17). This completes the proof. O

Remark 5.4. In fact, one can prove that the boundary divisor B); is irreducible
when r(M) > 18. The irreducibility of By, plays a crucial role to give an explicit
formulae for ¥y, and Sy, when (M) > 18. See [19, Sect. 11.4] for the details.

6. The case M+ = (2) & (2) & (—2)
Throughout Sect.6, we assume
M*=(2)®(2)®(-2)
and prove that (5.1) holds in this case.
6.1. Preliminaries. Since M+ = (2) @ (2) ® (—2), we get the explicit expression:
QX/H ={(z:y:2)ePH a?+y> =22 =0, |z|?+|y|> = |2]> > 0, |z +iy| > |z —iy|}.
The unit disc A = {z € C; |z < 1} is isomorphic to €2}, by the map
(6.1) c:ABZH(l—gzz:1;i22:z>EQLL.
For € €]0,1[, we set A(e) := {z € A; |z| < €} and Qf, | () := c(A(e)). We also set
§:=(0,0,1) € Aprr. Then ss(x :y: 2) == (x : y: —z) is the reflection on Q|
associated to d, and we have

Hsn Qo ={c(0)} ={(1:—i:0)}.

Lemma 6.1. Let OT(M™*)(, be the stabilizer of [n] € QF,. in OT(M™*). Then
#O*(MJ-)M] = 8. Moreover, the natural projection Il : QX/[L — Mo has ram-
ification index 4 at c(0) € Q7. .
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Proof. Since
(6.2)
1 0 0 0 1
OF (M )eo) = (=1ags) X (s6) x ), s5={0 1 0 |, p:={-1 0
0 0 —1 0 0 1

we get the first assertion. Since —1,;1, ss and p act on A as follows under the
identification (6.1):

(6.3) — 1y (2) =2, ss(z) = —=z, w(z) =1z,
we deduce from (6.2), (6.3) that the projection ITyr. : Q. — Mju at ¢(0) € QF .
is identified with the map C > z — z* € C at z = 0. (]

We recall the notion of ordinary singular families of 2-elementary K3 surfaces.
Let Z be a smooth complex threefold. Let p: Z — A be a proper surjective
holomorphic function without critical points on Z \ p~(0). Let t: Z — Z be a
holomorphic involution preserving the fibers of p. We set Z; = p~1(¢) and 1; = 1|z,
fort € A. Then p: (£,1) — A is called an ordinary singular family of 2-elementary
K3 surfaces of type M if p has a unique, non-degenerate critical point on Z,; and
if (Z, 1) is a 2-elementary K3 surface of type M for all t € A*. See [17, Sects. 2.2
and 2.3] for more about ordinary singular families of 2-elementary K3 surfaces.

Proposition 6.2. There exist € €]0,1] and an ordinary singular family of 2-
elementary K3 surfaces p: (Z,1) — QF . (e)/(ss) of type M with the following
properties:
(1) The period map for p: (£,1) — Qf,.(€)/(ss) is given by the projection
Q;\r/p(e)/<36> — Mpye.

(2) The map p: Z — QF, . (e)/(ss) is projective.

Proof. We follow [17, Th.2.6]. By Lemma 6.1, we get Hf = (). In particular, [17,
Th. 2.6] does not apply at once for M+ = (2) @ (2) & (—2). However, in the proof
of [17, Th. 2.6], the fact ¢(0) € Hy was used only to deduce the following (i), (ii):
(i) ss(c(t)) = c(—t) for all t € A(e).
(ii) Under the inclusion M+ = (2) @ (2) @ (—2) C Lgs, set

AC(O) = {d € AILK3§ <d, (17 —i,O)) = 0}.

Then there exists m € M such that (m,m)y; > 0 and m* N Aco) = {£6}.

Once (i), (ii) are verified, the proof of [17, Th. 2.6] for the existence of an ordinary
singular family of 2-elementary K3 surfaces p: (Z,1) — Q7 (€)/(ss) with (1), (2)
works. (Notice that the condition 7(M) < 17 was not used in [17, Th. 2.6].) Hence
it suffices to prove (i), (ii). By (6.1), we get (i). By [17, Lemma A.2], it suffices to
prove M+ N A = {£d}. Since c(0) = (1 : —i : 0), we get M+ N Ay = {£0}.
This proves (ii). O

Proposition 6.3. Set q := IIj;1(c(0)) € Myro. Then there exist a pointed smooth
projective curve (B,p), a neighborhood U of p, a holomorphic map between curves
@: (B,p) = (M3,1,q), a smooth projective threefold X with an involution : X —
X, and a surjective holomorphic map p: X — B with the following properties:
(1) o(B) = M;,. and the map flv: (U,p) — (©(U),q) is a double covering
with a unique ramification point p.
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(2) The map p: X — B is Zs-equivariant with respect to the Zy-action on X
induced by 0 and with respect to the trivial Zs-action on B.

(3) The family of algebraic surfaces with involution p|,-1 vy : (X,0)|,-1 )y — U
is an ordinary singular family of 2-elementary K3 surfaces of type M with
period map ¢|y.

Proof. We follow [17, Th.2.8]. Since H = () and hence D$,, = () by Lemma 6.4
below, [17, Th.2.8] does not apply at once for M+ = (2) @ (2) ® (—2). Set S :=
Q7. (e)/(s5) = A. Let ¢0) € S be the image of ¢(0) and let v: (5,&(0)) —
(Mpr1,p) be the projection induced from ITy;1. By Proposition 6.2, there is an
ordinary singular family of 2-elementary K3 surfaces p: (Z£,t) — S of type M with
period map y. We set C':= M3, . By Theorem 3.1 (2) applied to p: (Z,:) — S,
there exist p: B — C, f: X — B and 6: X — X as in Theorem 3.1 satisfying (a),
(b), (), (), (e), (D).

We prove that Sing X N X, = 0. Since (Xy,0|x,) = (Z0),t2.,) by Theo-
rem 3.1 (d) and since Zj has a unique A;-singularity o := Sing Z, the deformations
p: (X, X,) — (B,p) and p: (Z,Zy) — (5, ¢(0)) induce maps py: (B,p) — Def(A;)
and pp: (A,0) — Def(A;), where Def(A4;) = (C,0) is the Kuranishi space of 2-
dimensional A;-singularity. Since (Zp,0) is an A;-singularity, there is an isomor-
phism of germs (X,0) = (Z,0) if and only if mult,p; = multyp,.

Recall that Def(Zy) is the Kuranishi space of Zy and let p: Def(Zy) — Def(A;)
be the map of germs induced by the local semiuniversal deformation of Z, over
Def(Zy). Recall that us: (B,p) — Def(Zy) and p,: (A,0) — Def(Zy) are the
maps induced by the deformations f: (X, X,) — (B,p) and p: (Z,Z,) — (4,0),
respectively. Since py = po uy and p, = p o pip, there exists by Theorem 3.1 (f) an
isomorphism of germs v¢: (A,0) = (B, p) such that py o ¥(t) — pp(t) € t"C{t}. By
choosing v > 2 in Theorem 3.1 (2), this implies that mult,p; = multop,. Since Z
is smooth, we get Sing X N X, = 0. Let U be a small neighborhood of p in B.

Since the map v: (S,¢(0)) — (C, q) has ramification index 2 by Lemma 6.1, we
get (1) by Theorem 3.1 (e). We get (2) by Theorem 3.1 (b). By Theorem 3.1 (c),
(X, 0)x,) is a 2-elementary K3 surface of type M with period ¢(b) for b € U\ {p}.
Since p~1(U) is smooth, plp-1wy: (X,0)|p-1wy — U is an ordinary singular family
of 2-elementary K3 surfaces of type M with period map ¢|y. This proves (3).

There is a resolution X — X such that 6 lifts to an involution #: X — X 1,
Th. 13.4]. Replace (X, ) by (X,8). Then (1), (2), (3) are satisfied and X is smooth.
This completes the proof. ([

Lemma 6.4. The group O (M™) acts transitively on Ay / £ 1.

Proof. Let L be an odd unimodular lattice of signature (2,1) and let 6,6’ € L be
vectors with (4,) = (§,8") = —1. Set A := 6+ and A’ := (§'). Since AY/A =
(Z5)Y /(Z5) and (A')V /N =2 (Z&')Y /(Z5'), the equality (4,d) = (§’,8") = —1 implies
that A and A’ are positive-definite unimodular lattices of rank 2. It is classical that
A= A'. Since Z6 ® A C L and since both of Zd ® A and L are unimodular, we
get L = Z0 ® A. Similarly, L = Z¢’ ® A’. Let ¢: A — A’ be an isometry. Then
g+ ZOBA > mi+ X\ — £md'+o(N) € Z§ BN’ is an isometry of L with g4 (6) = £’
such that either g € Ot (L) or g— € O"(L). This proves the lemma. O
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6.2. Proof of (5.1). By [17, Th. 5.9], we have the following equation of C*° (1, 1)-
forms on QF | \ Dpse

c T(M) -0 *
(6.4) dd 1OgTQLL = fwM—I—JMwAg(M).
By Theorem 4.3 and (6.4), there exists my € Q for every d € A1 such that the
following equation of currents on QL . holds:
(6.5)

M)—6
7“( ) - wpr + J]T/IWAQ(M) - Z m(d)dm,-

dd®log T+ =
ML
dGAJ\IJ— /E

We compute m(d) for § = (0,0,1) € Apro. In Proposition 6.3, we may assume
that U is equipped with a coordinate function u centered at p. By [17, Th.7.5] ap-
plied to the ordinary singular family p|,-1(): (X,0)|,~1 ) — U in Proposition 6.3
(3), we get

(6.6)
log a1 (X, 0lx,) = —é log |ul® + O (log(—log |u|?)) (u—0).
Let t be a coordinate function on f(U) centered at p. By Proposition 6.3 (1), there
exists €(u) € O(U) with €(0) # 0 such that
(6.7) to f(u) = u’e(u).
By (6.6) and (6.7), we get
log 7 (f (u)) = log Ty (Xu, 0] x,,)

1
(6.8) =3 log |u|? + O (log(f log \u|2))

= L toglro F) + O (log(~ gt S

Since the projection Ily;i: QL
Lemma 6.1, we get by (6.8)

(6.9)

. — My has ramification index 4 at ¢(0) by

1.
o+ (c(2)) = —E(lndexC(O)HML) log |z|* + O (log(—log |2|*))

ML
1
= —Zlog|z|2—|—O(log(—log\z|2)) (z —0).

By (6.9), we get m(8) = 1. Since Ay, /£1=O0%(M*)-§ by Lemma 6.4 and since

To+ is OT(M*)-invariant, we get m(d) = m(6) = & foralld € Apy.. Substituting
ML

m(d) = % into (6.5), we get (5.1). This completes the proof of (5.1). O
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