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Abstract 
   A numerical method for evaluating the stress intensity factors (SIFs) of a three-dimensional 
interface crack between dissimilar anisotropic materials subjected to thermal and mechanical 
stresses is proposed. The M1-integral method was applied to an interfacial crack between 
three-dimensional anisotropic bimaterials under thermal stress. The moving least square 
approximation was utilized to calculate the value of the M1-integral. The M1-integral in conjunction 
with the moving least square approximation can be used to calculate the SIFs from nodal 
displacements obtained by finite element analysis. SIF analyses were performed for double edge 
cracks in jointed dissimilar isotropic semi-infinite plates subjected to thermal load. Excellent 
agreement was achieved between the numerical results obtained by the present method and the 
exact solution. In addition, we computed the SIFs of an external circular interfacial crack in jointed 
dissimilar anisotropic solids under thermal stress and showed the distributions of SIFs along the 
crack front. The distribution of stress and the crack opening displacement obtained by the 
asymptotic solution using the computed SIFs were compared with those obtained by the finite 
element analysis with fine mesh. They were almost identical to each other, except for the minor 
component of SIFs that is much smaller than the major component of SIFs. These results indirectly 
demonstrate the accuracy of the obtained SIFs. 
Keywords: Stress intensity factor, Interfacial crack, Anisotropic material, Stroh formalism, 
M1-integral, Moving least-square approximation, Thermal stress 
 

1. Introduction 

   Electronic devices and micro-electro-mechanical systems (MEMS) are composed of many 
different materials and have many interfaces. The thermal stress resulting from the mismatch of the 
coefficient of thermal expansion between different materials often causes delamination along the 
interface. The delamination of the interface between different materials is one of the main causes of 
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the malfunction or the reliability degradation of electronic devices. 
   The stress intensity factors (SIFs) of an interface crack are important for evaluating the fracture at 
interfaces. Gotoh [1], Clements [2], Willis [3], Bassani and Qu [4], and Wu [5] have investigated 
the stress field around interfacial cracks between dissimilar anisotropic materials. Hwu [6] has 
proposed an asymptotic solution for stress around an interface crack between dissimilar anisotropic 
materials using the Stroh formalism [7], and defined the SIFs of an interface crack. Few analytical 
solutions of the SIFs of interface cracks between dissimilar anisotropic materials have been 
proposed due to the mathematical difficulty. The energy release rate of an interfacial crack can be 
obtained using an energy method such as the virtual crack extension method, the J-integral method 
or the crack closure integral method. Sun and Qian [8] and Ikeda et al. [9] proposed numerical 
methods to calculate the mode-separated SIFs of a two-dimensional interfacial crack between 
dissimilar anisotropic materials subjected to mechanical loads. Nagai et al. [10] and Nomura et al. 
[11] presented computational methods to determine the SIFs of a two-dimensional interfacial crack 
and corner between dissimilar anisotropic solids under thermal stress, respectively. Nagai et al. [12] 
proposed the modified M1-integral method, which is a combination of the J-integral method and the 
superposition method, to obtain the SIFs of a three-dimensional crack between anisotropic 
bimaterials. However, there is still no numerical method based on the energy method to determine 
the SIFs of a three-dimensional interfacial crack between dissimilar anisotropic materials subjected 
to thermal stress. 
   We extended the M1-integral to determine the SIFs of a three-dimensional interface crack between 
dissimilar anisotropic materials under thermal stress. In this method, the moving least-square 
approximation is employed to calculate the value of the M1-integral, and the stress and strain in the 
M1-integral are approximated from the nodal displacements obtained by the finite element analysis. 
Therefore, in the computation of the M1-integral, this method does not need to extract any elemental 
data from the finite element analysis. The M1-integral method presented here can calculate the SIFs 
easily and requires less time for the data preparation than other procedures. 
 

2. Stress intensity factors of an interface crack between dissimilar anisotropic materials 

   The general solutions of an interface crack between dissimilar anisotropic materials, as shown in 
Figure 1, are expressed using the Stroh formalism [7]. 
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u j =A jf j z( ) +A jf j z( ),

ϕ j = B jf j z( ) + B jf j z( ),          in Material j.
 (1) 

where the overbar denotes the complex conjugate, and subscripts 1 and 2 indicate Material 1 ( x2 > 
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0 ) and Material 2 ( x2 < 0 ), respectively. Aj and Bj are 3 x 3 complex matrices composed of Stroh’s 
eigenvectors for material j, which are calculated from the elastic stiffnesses (Cijks) for Material j. u j 
and ϕ  j are the displacement and stress function vectors in Material j, respectively. 
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Function vectors f1(z) and f2(z) are related to the function vector ψ(z) by the following formula: 
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f1 z( ) = B1
−1ψ z( )

f2 z( ) = B2
−1M *−1M*ψ z( )

 . (3) 

M* is a bi-materials matrix obtained from the Barnett-Lothe tensors [13] of two materials as 
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M* =D− iW  (4) 
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D = L1
−1 + L2

−1,    W = S1L1
−1 −S2L2

−1 , (5) 

where i is the complex number (i2 = – 1). Barnett-Lothe tensors S and L are obtained by 
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S =
1
π

N1 θ( )
0

π

∫ dθ,      L = −
1
π

N3 θ( )
0

π

∫ dθ  . (6) 

N1(θ) and N3(θ) are the functions of the elastic constants of the respective materials. 
   Hwu [6] has defined the SIFs of an interface crack between dissimilar anisotropic materials which 
are compatible with those for a crack in a homogeneous material: 
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Λ = λ1,  λ2,  λ3[ ] (8) 

where r is the distance from a crack tip, lk is an arbitrary characteristic length, and the angular 
brackets 
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 denote the diagonal matrix. λ1, λ2, and λ3 are eigenvectors of the following equation:  
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M* + e2iπδ M *( )λ = 0 . (9) 

The explicit solution for the eigenvalues δα were given by Ting [14] as 
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In the case of a crack in a homogeneous material, each mode of the stress field is independent, and 
the SIFs, KII, KI, and KIII, are related with their respective stress fields. However, in the case of an 
interface crack between dissimilar anisotropic materials, each mode is related to the others, and the 
SIFs cannot be divided into independent modes. If both the upper and lower materials possess a 
symmetric plane parallel to the x1-x2 plane, mode III is independent while modes I and II are 
coupled. 
   The ratio between KII, KI, and KIII depends on the value of lk in Equation (7). We must fix the 
value of lk to relate the set of SIFs with a unique stress field. In this study, we fixed the value of lk as 
10 µm. The SIFs vector K for a value of lk can easily be converted to K’ for a different l’k using the 
following relation: 
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The stress ahead of an interface crack along the x1-axis and the crack opening displacement in the 
vicinity of the crack tip are expressed using the SIFs. 
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The energy release rate G and the SIFs K are related as 
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G =
1
4
KTEK,    E =D+WD−1W  . (15) 

In the vicinity of a crack tip, ψ(z) in Equation (3) can be simplified as 
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ψ z( ) = Λ
2z1 2+ iεα
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p0  (16) 

 

€ 

p0 =
1

2 2π
eπεα

lk
iεα cosh πεα( )

Λ−1K  (17) 

 

3. Numerical analyses 



5 

3.1 The M1-integral method for the three-dimensional thermoelastic problem 

   The stress distribution around an interface crack tip is essentially in mixed mode. Thus, it is 
necessary to evaluate KII, KI and KIII in order to characterize the fracture behavior of a bimaterial 
interface crack. The distribution of stress and displacement around a crack tip in a homogeneous 
material is symmetric to the x1-axis for KI, and skew-symmetric for KII. This relationship is often 
utilized for the mode separation of the SIFs of a crack in a homogeneous body. However, the 
distributions of stress and displacement around an interface crack do not have this feature. Yau and 
Wang [15] applied the M1-integral, which was originally proposed by Chen and Shield [16] for a 
mixed mode crack problem in a homogeneous material, to bimaterial interface crack problems. Shih 
and Asaro [17] and Matos et al. [18] also utilized the M1-integrals for mode separation of the SIFs 
of interface cracks in conjunction with the domain integral and the virtual crack extension method, 
respectively. The M1-integral method for a three-dimensional thermoelastic problem is briefly 
explained as follows. 
   Several basic techniques have been developed for the numerical computation of the J-integral in a 
three-dimensional problem. In the present paper, the three-dimensional contour-integral method 
[19-21] and the domain integral method [22, 23] were employed. 
   We define a local orthogonal coordinate system at a point s on the crack front such as in Figure 2. 
The x2 axis is perpendicular to the crack plane, and the x1 and x3 axes lie on the crack plane, and are 
normal and tangent to the crack front, respectively. Kishimoto et al. [20] defined the J-integral for a 
three-dimensional crack under thermal stress as 
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where Γ is an arbitrary contour pass on the x1 – x2 plane enclosing the crack tip in a 
counterclockwise direction, and Ω is the area surrounded by the contour pass. We is the elastic strain 
energy density, ni is the xi-component of a unit outward normal on Γ, and ui, σij, αij and 
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ϑ  are the 
displacement, stress, and coefficients of thermal expansion and temperature, respectively. Under the 
isothermal plane strain condition, the domain integral in Equation (18) vanishes because the partial 
differentiations of temperature with respect to x1 and of displacements and stresses with respect to x3 
become zero. 
   Shih et al. [22] developed the domain integral method to evaluate the J-integral for 
three-dimensional thermoelastic cracks as 

 

€ 

J = − Wδki −σ ij

∂u j

∂xk

& 

' 
( 

) 

* 
+ 
∂qk
∂xi

+ σ ijα ij
∂ϑ
∂xk

& 

' 
( 

) 

* 
+ qk

. 
/ 
0 

1 
2 
3 V∫∫∫ dV η s( )

Lc
∫ ds , (19) 



6 

where Lc is a small segment that undergoes a virtual crack advance in the plane of the crack of a 
curved crack front that lies on the x1 – x3 plane (see Figure 3(a)). η(s) is a virtual crack advance at 
each point s. V is a tubular domain surrounding the crack segment and bounded by the surface St 
and So (see Figure 3(b)). It should be noted that St must shrink onto the crack tip in order to evaluate 
the pointwise value of the J-integral along the crack front. qk is a test function which is continuously 
differentiable in V, and it takes the following values on St and S0: 
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where ξk(s) is the xk-component of the crack advance vector. In the present work, we can assume 
that the crack front in the vicinity of the crack tip is straight locally, because the sizes of finite 
elements around the crack tip were significantly smaller than those in the outer area. Therefore, 
Equation (19) is expressed as follows: 
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   Consider two independent equilibrium states with field variables denoted by superscripts (1) and 
(2) for a region surrounding a crack tip as shown in Figure 4. Superscript (1) indicates the “target 
problem” that we are trying to solve, and superscript (2) indicates the “reference problem” whose 
distributions of displacement, stress, and whose SIFs are already known. The superposition of the 
two equilibrium states leads to another equilibrium state, the “Superposed problem,” denoted by the 
superscript (1+2). The distributions of displacement, stress and temperature in the superposed 
problem are obtained by the superposition of these two equilibrium states, (1) and (2), i.e., 
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The SIFs vector can also be superposed as 
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K(1+2) =K(1) +K(2) . (23) 

Substituting Equation (23) into Equation (15), the energy release rate of the superposed state (1+2) 
is obtained as 
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Hence, 
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Any known problem can be used as the reference problem. The asymptotic solutions shown in 
Equations (1), (3), (16) and (17) can be the most convenient reference problem, and were used in 
this study. The M1-integral corresponding to Equations (18) and (21) are expressed as follows: 
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In the present work, Equation (26) is labeled as the contour M1-integral and Equation (27) is labeled 
as the domain M1-integral. If the asymptotic solutions for (a) [
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where Eij are components of matrix E defined in equation (15). 
 
3.2 Moving least-squares approximations [24] 

   We used moving least-squares approximation to calculate the J-integral and the M1-integral. In the 
example shown in Figure 5, stress and strain used for the path integral are approximated from nodal 
displacements, obtained by finite element analysis. Therefore, the presented M-integral needs no 
elemental information from the finite element analysis. The approximation of displacement uh(x) at 
an arbitrary point x can be written as follows: 
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uh x( ) = pT x( )a x( ) (29) 
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p x( ) = 1, x,  y,  z{ }T  . (30) 

a(x) is determined by minimizing the following weighted least-square form: 
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where uI is the displacement at node I as shown in shown in Figure 6. The following exponential 
weight function was employed in this paper: 
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where dI = || x – xI || and c = β dmI, and β is a parameter which determines the sharpness of the 
weight function. The stationary of R in Equation (31) with respect to a(x) is  
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Equation (33) leads to the following form: 
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X x( )a x( ) = Y x( )u     or     
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a x( ) = X−1 x( )Y x( )u , (34) 

where X(x) and Y(x) are defined by 
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I

n

∑

Y x( ) = w x − x1( )p x1( ),w x − x2( )p x2( ),  ... w x − xn( )p xn( )[ ]
 . (35) 

Substituting Equation (34) into Equation (29), we obtain 
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where the shape function is given by 

 

€ 

φI x( ) = p j x( ) X−1 x( )Y x( )[ ] jI
j

m

∑ . (37) 

Strain and stress can be calculated using the following derivative of the shape function from nodal 
displacements obtained by the finite element analysis. 
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−1Y( ) jI + p j X,i
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j

m

∑  (38) 

 

 

4. Numerical results 

   The accuracy of the presented method was examined for several typical three-dimensional 
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interface crack problems. For all the analyses presented here, thermoelastic analyses were carried 
out using the MSC.Marc™ finite element program. Twenty-noded isoparametric hexahedral 
elements were used. No singular elements around a crack tip were used in these analyses. 

 

4.1 Double edge cracks in jointed dissimilar isotropic plates under uniform cooling 

   As a benchmark, double edge cracks in jointed dissimilar isotropic semi-infinite plates subjected 
to a uniform change of temperature (Δ

€ 

ϑ  = – 20˚C), as shown in Figure 7, were analyzed. This 
model satisfies a plane strain condition because the nodal displacements on the X-Y planes of the 
surface of the specimen are constraint for the Z direction. The exact solution of the SIFs is shown as 
the following equation [25, 26]: 
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K I + iKII =
4µ1µ2 cosh πε( )

µ1 +κ2µ1 +1 κ1µ2 + µ2

α1η1 −α2η2( )ϑ πa 2ε − i( )        for   lk = 2b., (39) 

where κj = 3 – 4νj , ηj = 1 + νj for the plane strain condition, and µj and αj are the shear modulus and 
the coefficient of linear thermal expansion for material j. 
   The Young’s moduli and Poisson’s ratio were set to be E1 = 150 GPa, E2 = 20 GPa and ν1 = 0.30, 
ν2 = 0.25, respectively. The corresponding bimaterial constant is ε = –0.08552. The coefficients of 
linear thermal expansion were α1 = 3.0x 10–6 (1/˚C) and α2 = 1.0x 10–4 (1/˚C), respectively, and the 
change of temperature 

€ 

ϑ  was – 20˚C. The exact solutions of the SIFs for lk = 2b obtained by 
equation (39) were converted to the SIFs for lk = 10µm using equation (12). The converted SIFs for 

lk = 10µm are KII = –3.78 (MPa m ) and KI = 1.97(MPa m ). Due to the symmetries of the 
geometry and thermal loading, a half model was analyzed as shown in Figure 7. The numbers of 
nodes and elements of the finite element mesh, whose smallest element size, m, around a crack tip 
was 1/20 of the ligament length b, were 280,309 and 66,150, respectively. The ligament length 2b 
was 20 mm.  
   In this study, three different types of test functions q1 for the domain J-integral and the domain 
M1-integral were examined. The first is (a) a Bilinear function defined as 
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where r is the distance from the crack tip on the x1 – x2 plane. r2 is the radius of the integration 
domain, and r1 is an arbitrary radius within the range 0 ≤ r1 < r2, as shown in Figure 3(b). q1 is the 
continuous function that varies bilinearly in the r direction, and varies linearly in the x3 direction 
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(see Figure 8(a)). This function q1 is constant within the range r from 0 to r1 for the constant x3, and 
so ∂q1/∂r = 0. The second type of test function q1 is (b) a Quadratic function, which is defined to 
vary quadratically in the r and the x3 directions, as shown in the following equation (see Figure 
8(b)): 
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The third is (c) a Bilinear-Quadratic function defined as 

 

€ 

q1 r,x3( ) =

1− x3

Lc 2
# 

$ 
% 

& 

' 
( 

2) 
* 
+ 

, + 

- 
. 
+ 

/ + 
                            0 < r ≤ r1

1− x3

Lc 2
# 

$ 
% 

& 

' 
( 

2) 
* 
+ 

, + 

- 
. 
+ 

/ + 

r2 − r
r2 − r1

# 

$ 
% 

& 

' 
(                 r1 < r ≤ r2

) 

* 

+ 
+ + 

, 

+ 
+ 
+ 

, (42) 

where q1 is a continuous function that varies bilinearly in the r direction, and varies quadratically in 
the x3 direction. 

   The energy release rate G at the center of the plate thickness (see Figure 7) was calculated by the 
domain J-integral using the three types of test functions q1, (a) the Bilinear function, (b) the 
Quadratic function and (c) the Bilinear-Quadratic function, whose integral domains were selected 
such that the segment Lc was equal to the length of an element allocated at the crack tip; Lc/m = 1.0, 
and the r1 took a value in the range of zero through three times the length of an element; r1/m = 0.0, 
1.0, 2.0 and 3.0.  

   The relationships between errors and the domain radii r2 are shown in Figures 9 (a)-(c). In Figures 
9 (a) and (c), when the domain radii r2 are more than r2/m = 4.0 and r1/m = 1.0, 2.0, and 3.0, the 
results show good path-independency and accuracy within 2%. On the other hand, the results 
obtained under the condition r1/m = 0.0 were much worse than others. Figure 9 (b) shows the good 
path-independency and accuracy within 2% when the domain radii r2 are more than r2/m = 2.5. We 
examined the effect of the segment length Lc on the results under the condition r1/m = 2.0, as shown 
in Figure 10. There was a little difference in accuracy between the results obtained by Lc/m = 1.0 
and those obtained by Lc/m = 2.0. If the crack front is curved, the length of the segment Lc cannot be 
made longer due to the assumption of a locally straight crack front.  

   The energy release rate G at the center of the plate thickness was also obtained using the contour 
J-integral. In order to check the path independency, the contour J-integral was calculated using 
several paths by varying the radius of the integral path. The relationship between the rate of error 
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and the path radius is shown in Figure 11. When the radius of the integral path is more than r/m = 
2.0, which is equal to two times the length of an element at the crack tip, the results show good 
path-independency within about 2.0% accuracy. 

   We evaluated the SIFs along the crack front using the contour M1-integral and the domain 
M1-integral, as shown in Figure 12. The contour M1-integral was calculated selecting r/m = 4.0 as 
the integral path, and the domain M1-integral was calculated with a (a) Bilinear function q1 whose 
integral domain was set as r1/m = 2.0, r2/m = 4.0 and Lc/m = 2.0. The relative errors of the numerical 
results obtained by the present methods based on the analytical solution were defined as 

 

€ 

Errori =
Ki −Ki |  exact

K II |  exact
2 + K I |  exact

2 + K III |  exact
2

     ( i = I, II, III ) , (43) 

where Errori is the relative error (%), and Ki | exact is the analytical solution of the SIFs.  
   Figure 12 shows that there is little difference between the accuracy of SIFs obtained by the 
contour M1-integral and that obtained by the domain M1-integral. Both methods were able to 
provide accuracies within 1.1%. The error of KII was larger than those of KI and KIII, because KII is 
the dominant mode in the thermoelastic problem. 

 

 

4.2 An external circular interface crack between dissimilar anisotropic materials under thermal load 

   We next analyzed an external circular interface crack between dissimilar anisotropic materials, as 
shown in Figure 13. Two different boundary conditions were examined, the uniform change of 
temperature (Sample 1, 

€ 

ϑ  = –20˚C) and the uniform gradient of temperature with respect to X 
(Sample 2: ∂

€ 

ϑ /∂X = –0.1˚C/mm). The material properties of the anisotropic materials are shown in 
Table 1. In these tables, Aragonite and Topaz are orthotropic materials, and LT and GSO are 
monoclinic materials. The combinations of materials are described in Table 2. Utilizing the 
symmetries of the geometry, thermal loading and material properties, a half body was modeled. 
   We performed thermoelastic analyses using three sets of finite element meshes with different 
fineness, as shown in Table 3. The size of the smallest elements of Meshes 1 – 3 were 1/20, 1/40 
and 1/80 of the half ligament length b, respectively. Because we could not find the exact solutions 
for these problems, the convergences of the numerical solutions were examined. The energy release 
rate and SIFs at ϕ = 22.5˚, 90˚, 157.5˚ of the crack front as shown in Figure 13 were calculated by 
the contour M1-integral and the domain M1-integral, and they are shown in Tables 4 – 9. The domain 
M1-integral was calculated with a Bilinear function q1 whose integral domain was set as r1/m = 2.0, 
r2/m = 4.0 and Lc/m = 2.0. In these tables, as the meshes become finer, the obtained energy release 
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rate and SIFs converge towards constant values. There was little difference between the results 
calculated by the contour M1-integral and those calculated by the domain M1-integral. In the 
combination of LT and GSO, KI at ϕ = 90˚ is a negative value, which indicates that two crack 
surfaces overlap over a relatively large area. This phenomenon is mathematically correct but 
physically incorrect. If we use the SIFs as the fracture criteria in our future study, we need to 
consider the effect of this overlap. However, in this study we focused on the numerical techniques 
to obtain the SIFs of the traditional asymptotic solution, which allows that stress oscillates and the 
two crack surfaces overlap.   The asymptotic solution of stress distributions ahead of the crack tip 
along the interface and crack opening displacements (COD), which were obtained by substituting 
the SIFs analyzed by the contour M1-integral using Mesh 1 into Equations (13) and (14), were 
compared with those obtained by the finite element method using Mesh 3, as shown in Figures 14 – 
21. These figures show results of the following two material combinations. One is Case a 
(Aragonite and Topaz). Figures 14 and 15 show the Sample 1 and Figures 18 and 19 show the 
Sample 2, respectively. Another is Case c (LT and GSO). Figures 16 and 17 show the Sample 1 and 
Figures 20 and 21 show the Sample 2, respectively. The asymptotic solutions of stress and the COD 
are in excellent agreement with the distributions obtained by the finite element analyses, except σ23 
and Δu3 at ϕ = 90˚ and σ22 at ϕ = 22.5˚, 90˚, and 157.5˚. In the case when the asymptotic solutions 
are in disagreement with the finite element results, KI and KIII, which are strongly related to σ22, Δu2, 
and σ23, Δu3, respectively, are relatively small values compared with the other modes of SIFs. It is 
necessary to use a very fine mesh to accurately analyze SIFs with such small values. 
   In Figures 22 and 23, the distributions of SIFs along the crack front obtained by the contour 
M1-integral using Mesh 1 are demonstrated. As shown in these figures, KII and KIII are the dominant 
modes of SIFs in the thermoelastic problem and show complicated variations along the crack fronts 
due to the effect of elastic anisotropy. 
 

5. Conclusions 

   A numerical method is proposed for evaluating the stress intensity factors of a three-dimensional 
interfacial crack between general anisotropic bimaterials subjected to thermal stress. In this paper, 
the three-dimensional thermal contour-integral method and the three-dimensional thermal 
domain-integral method were examined to calculate the J-integral and the M1-integral of interfacial 
cracks in a three-dimensional body under thermal stress. The moving least-square approximation 
was utilized to calculate the value of the J-integral and the M1-integral. The M1-integral in 
conjunction with the moving least-square approximation can calculate the stress intensity factors 
from the nodal displacements obtained by the finite element analysis. The present methods were 
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initially applied to double edge interfacial cracks in jointed dissimilar isotropic semi-infinite plates 
under uniform cooling. The results obtained by the present methods showed excellent agreement 
with the analytical solutions. Thermoelastic analyses of external circular interface cracks between 
jointed dissimilar anisotropic materials subjected to a uniform change of temperature and to a 
uniform gradient of temperature were also performed. The convergence of the energy release rate 
and the stress intensity factors calculated by the present methods was examined using several finite 
element meshes which possess different fineness. In the vicinity of an interfacial crack tip, the 
asymptotic solutions of stress and the COD obtained by the stress intensity factors were in good 
agreement with those obtained directly by the finite element analysis with a very fine mesh. These 
facts indirectly prove that the results obtained by the presented methods are reasonable. 
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Table 1 Elastic stiffnesses Cij (GPa) and CTE (x10–6/K) used in the thermoelastic analyses. 

Elastic 
Stiffnesses 

Aragonite 
(Orthotropic) 

Topaz 
(Orthotropic) 

LT 
(Trigonal) 

GSO 
(Monoclinic) 

C11 159 281 230 223 

C12 36.6 126 42 108 

C13 1.97 84.6 79 98.5 

C15 0 0 11 84 

C22 87 349 = C11 150 

C23 15.9 88.2 = C13 102 

C25 0 0 = – C15 33.3 

C33 85 295 275 251 

C35 0 0 0 –6 

C44 41.3 108 96 78.8 

C46 0 0 = C15 6.6 

C55 25.6 133 = C44 68.8 

C66 42.7 131 = (C11 – C12)/2 82.7 

α11 35.0 5.9 16.1 4.4 

α22 17.0 4.8 16.1 14.0 

α33 10.0 4.4 4.1 6.8 

α31 0 0 0 –1.4 

 
 

Table 2 Combinations of anisotropic materials used in the thermoelastic analyses. 

 Material 1 Material 2 

Case a Aragonite Topaz 
Case b Aragonite GSO 
Case c LT GSO 

 
 
 

Table(s)



 
Table 3 Finite element meshes for the analyses of an external circular interface crack under thermal 
load. 

 Number of nodes Number of elements m/b 

Mesh 1 246,487 58,432 0.05 

Mesh 2 474,851 114,00 0.025 

Mesh 3 685,529 165,840 0.0125 

m: size of the smallest element around a crack tip. 
 
 
 
Table 4 Calculated stress intensity factors of an external circular interface crack for Sample 1 
(Aragonite-Topaz). 

ϕ (degree) Mesh G (102 J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 1.40 1.41 4.31 4.33 1.35 1.37 0.97 0.98 

22.5 Mesh 2 1.39 1.40 4.31 4.33 1.36 1.37 0.97 0.98 

 Mesh 3 1.39 1.40 4.33 4.35 1.35 1.36 0.97 0.97 

 Mesh 1 0.37 0.37 2.07 2.09 0.88 0.92 - - 

90.0 Mesh 2 0.36 0.36 2.08 2.09 0.90 0.92 - - 

 Mesh 3 0.37 0.37 2.09 2.10 0.91 0.91 - - 

 Mesh 1 1.40 1.41 4.31 4.33 1.35 1.37 –0.97 –0.98 

157.5 Mesh 2 1.39 1.40 4.31 4.33 1.36 1.37 –0.97 –0.98 

 Mesh 3 1.39 1.40 4.33 4.35 1.35 1.36 –0.97 –0.97 

 
 



 
Table 5 Calculated stress intensity factors of an external circular interface crack for Sample 1 
(Aragonite-GSO). 

ϕ (degree) Mesh G (102 J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 1.26 1.27 3.79 3.80 1.03 1.03 1.21 1.22 

22.5 Mesh 2 1.25 1.25 3.78 3.78 1.02 1.02 1.20 1.20 

 Mesh 3 1.26 1.26 3.79 3.80 1.02 1.01 1.20 1.19 

 Mesh 1 0.07 0.06 0.73 0.76 0.22 0.26 –0.02 –0.03 

90.0 Mesh 2 0.06 0.06 0.75 0.77 0.24 0.26 –0.03 –0.04 

 Mesh 3 0.06 0.06 0.75 0.78 0.24 0.26 –0.03 –0.04 

 Mesh 1 1.23 1.24 3.62 3.64 0.97 0.97 –1.33 –1.35 

157.5 Mesh 2 1.22 1.23 3.64 3.64 0.98 0.98 –1.33 –1.34 

 Mesh 3 1.22 1.23 3.65 3.67 0.97 0.98 –1.33 –1.33 

 
 
 
Table 6 Calculated stress intensity factors of an external circular interface crack for Sample 1 
(LT-GSO). 

ϕ (degree) Mesh G (J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 28.5 28.7 2.37 2.37 0.05 0.05 0.61 0.62 

22.5 Mesh 2 28.7 28.7 2.35 2.35 0.04 0.04 0.60 0.61 

 Mesh 3 28.9 28.9 2.35 2.35 0.04 0.04 0.60 0.60 

 Mesh 1 2.69 2.38 0.61 0.64 –0.03 –0.02 –0.02 –0.03 

90.0 Mesh 2 2.49 2.40 0.63 0.64 –0.03 –0.02 –0.04 –0.05 

 Mesh 3 2.45 2.42 0.64 0.65 –0.03 –0.02 –0.06 –0.06 

 Mesh 1 27.7 27.8 2.15 2.17 0.01 0.02 –0.72 –0.74 

157.5 Mesh 2 27.6 27.6 2.18 2.19 0.02 0.02 –0.73 –0.74 

 Mesh 3 27.5 27.7 2.19 2.21 0.02 0.02 –0.74 –0.74 

 
 



 
 
Table 7 Calculated stress intensity factors of an external circular interface crack for Sample 2 
(Aragonite-Topaz). 

ϕ (degree) Mesh G (J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 38.7 39.0 2.27 2.28 0.71 0.72 0.49 0.50 

22.5 Mesh 2 38.4 38.6 2.27 2.28 0.71 0.72 0.49 0.49 

 Mesh 3 38.4 38.7 2.28 2.29 0.71 0.71 0.49 0.49 

 Mesh 1 9.22 9.19 1.03 1.05 0.44 0.46 –0.07 –0.07 

90.0 Mesh 2 9.13 9.13 1.04 1.04 0.45 0.46 –0.07 –0.07 

 Mesh 3 9.17 9.18 1.05 1.05 0.46 0.46 –0.07 –0.07 

 Mesh 1 31.5 31.8 2.04 2.05 0.64 0.65 –0.48 –0.49 

157.5 Mesh 2 31.4 31.5 2.04 2.05 0.65 0.65 –0.48 –0.49 

 Mesh 3 31.4 31.6 2.05 2.06 0.64 0.65 –0.48 –0.48 

 
 
 
Table 8 Calculated stress intensity factors of an external circular interface crack for Sample 2 
(Aragonite-GSO). 

ϕ (degree) Mesh G (J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 34.5 34.8 1.99 1.99 0.53 0.53 0.63 0.63 

22.5 Mesh 2 34.3 34.4 1.98 1.98 0.53 0.53 0.62 0.63 

 Mesh 3 34.4 34.4 1.99 1.99 0.53 0.53 0.62 0.62 

 Mesh 1 1.78 1.53 0.36 0.38 0.11 0.13 –0.05 –0.05 

90.0 Mesh 2 1.58 1.52 0.37 0.38 0.12 0.13 –0.06 –0.06 

 Mesh 3 1.53 1.53 0.38 0.39 0.12 0.13 –0.06 –0.06 

 Mesh 1 28.1 28.2 1.73 1.73 0.46 0.46 –0.64 –0.65 

157.5 Mesh 2 27.8 27.9 1.73 1.74 0.46 0.46 –0.64 –0.64 

 Mesh 3 27.8 28.0 1.73 1.75 0.46 0.46 –0.64 –0.64 

 
 
 



 
Table 9 Calculated stress intensity factors of an external circular interface crack for Sample 2 
(LT-GSO). 

ϕ (degree) Mesh G (J/m2) KII (MPa m1/2) KI (MPa m1/2) KIII (MPa m1/2) 

  Contour Domain Contour Domain Contour Domain Contour  Domain 

 Mesh 1 7.84 7.87 1.24 1.25 0.02 0.02 0.32 0.32 

22.5 Mesh 2 7.88 7.88 1.24 1.23 0.02 0.01 0.31 0.31 

 Mesh 3 7.91 7.92 1.24 1.23 0.01 0.01 0.31 0.31 

 Mesh 1 0.73 0.64 0.30 0.32 –0.01 –0.01 –0.04 –0.04 

90.0 Mesh 2 0.65 0.62 0.31 0.32 –0.01 –0.01 –0.05 –0.05 

 Mesh 3 0.63 0.62 0.31 0.32 –0.01 –0.01 –0.05 –0.06 

 Mesh 1 6.27 6.31 1.03 1.04 –0.01 0.01 –0.35 –0.36 

157.5 Mesh 2 6.26 6.26 1.04 1.04 0.01 0.01 –0.35 –0.36 

 Mesh 3 6.25 6.30 1.04 1.05 0.01 0.01 –0.36 –0.36 
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Figure 1 An interfacial crack between dissimilar anisotropic materials. 
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Figure 2 Schematic of the J-integral in a three-dimensional crack. 
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(a) A small segment of a crack front that undergoes a virtual crack advance. 
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(b) The tubular domain surrounding a segment of a crack front. 
 
 
 
 
 
 
Figure 3 Schematic of the domain integral in a three-dimensional crack. 
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Figure 4 The concept of the superposition of a reference problem onto a target problem. 
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Figure 5 Three-dimensional contour integral using moving least-square approximation. 
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Figure 6 The influence domain for the moving least-square approximation. 
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Figure 7 Double edge cracks in jointed dissimilar isotropic plates under uniform cooling.  



 
 
 
 
 

 

Crack
Ligam

ent

Lc

η(s)s

 
(a) Linear 

Crack
Ligam

ent

Lc

η(s)s

 
(b) Quadratic 

 
 
 
 

Figure 8 Variations of weight function along x3 direction of the domain J-integral. 
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(c) Bilinear-Quadratic function 
Figure 9 The relationship between errors and path radii for the domain J-integral (m: size of the 
smallest element around a crack tip). 
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Figure 10 The relationship between errors and path radii for several segment Lc. 
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Figure 11 The relationship between errors and path radii for the contour J-integral (m: size of the 
smallest element around a crack tip). 
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Figure 12 Distributions of the errors of the stress intensity factor along an interface crack in jointed 
dissimilar isotropic plates under uniform cooling. 
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Figure 13 An external circular interface crack between dissimilar anisotropic materials under 
thermal load. 
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Figure 14 Asymptotic solutions of stress ahead of crack tips compared with those obtained by the 
FEM (Case a for Sample 1). 



B

B

B

B

B

B

B

B

B

B

B

E

E
E E E E E E E E E

H
H
H H H

H H H H H H

0

1.0

2.0

3.0

0 0.25 0.5 0.75 1

B

E

H

Δu1
Δu2
Δu3

FEM A.S.

r (mm)

C
O

D
 x

 1
03

 (m
m

)

B

B

B

B

B

B

B

B

B

B
B

E

E
E E E E E E E E E

H H H H H H H H H H H0

0.4

0.8

1.2

1.6

0 0.25 0.5 0.75 1

B

E

H

Δu1
Δu2
Δu3

FEM A.S.

r (mm)

C
O

D
 x

 1
03

 (m
m

)

B

B

B
B
B

B

B

B
B

B
B

E

E E E E E E E E E E

H
H
H H H H H H H H H

–1.0

0

1.0

2.0

3.0

0 0.25 0.5 0.75 1

B

E

H

Δu1
Δu2
Δu3

FEM A.S.

r (mm)

C
O

D
 x

 1
03

 (m
m

)

(a) ϕ = 22.5º

(b) ϕ = 90.0º

(c) ϕ = 157.5º  
Figure 15 Asymptotic solutions of the COD compared with those obtained by the FEM (Case a for 
Sample 1).
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Figure 16 Asymptotic solutions of stress ahead of crack tips compared with those obtained by the 
FEM (Case c for Sample 1). 
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Figure 17 Asymptotic solutions of the COD compared with those obtained by the FEM (Case c for 
Sample 1). 
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Figure 18 Asymptotic solutions of stress ahead of crack tips compared with those obtained by the 
FEM (Case a for Sample 2). 
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Figure 19 Asymptotic solutions of the COD compared with those obtained by the FEM (Case a for 
Sample 2). 
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Figure 20 Asymptotic solutions of stress ahead of crack tips compared with those obtained by the 
FEM (Case c for Sample 2). 
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Figure 21 Asymptotic solutions of the COD compared with those obtained by the FEM (Case c for 
Sample 2). 
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Figure 22 The distributions of stress intensity factors along the crack fronts obtained by the contour 
M1-integral with Mesh 1 for Sample 1. 
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Figure 23 The distributions of stress intensity factors along the crack fronts obtained by the contour 
M1-integral with Mesh 1 for Sample 2. 



Nomenclatures 
 

 and : Stroh's eigenvectors matrices of a material 
Cijks: Elastic stiffness tensors 
D and W: Bi-materials constant matrices 
E: Bi-materials constant matrix 
Eij: Bi-materials constant tensors 
f: Function vector 
G: Energy release rate 
J: J-integral 

� 

K =
K II

K I

K III

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
:   Stress intensity factors 

L and S: Barnett-Lothe tensors 
 :  Characteristic length 

Lc : Small segment along a crack front 
M*: Bi-materials matrix 
ni: Unit normal vector on the boundary 
N1 and N3: Functions of elastic constants 
p : Linear basis 
qk (k = 1, 2, 3): Test functions 
r : Distance from the crack-tip 
S and L: Barnett-Lothe tensors 
So and St : Surfaces of Tubular domain V 

: Boundary tractions 
u: Displacement vector 
ui (i= 1, 2, 3):  Displacements 
V: Tubular domain surrounding the crack segment 
We: Elastic strain energy density 
w: Weight function 
xi (i=1, 2, 3): Rectangular coordinate system 
α ij (i = 1, 2, 3; j = 1, 2, 3): Coefficients of thermal expansion tensors 
δα (α =1, 2, 3): Eigenvalues 
ε : Oscillation index 
η : Virtual crack advance 
φ : Shape function 
Λ: Eigenvector matrix 
λ i (i=1, 2, 3): Eignevectors 
ε ij (i = 1, 2, 3; j = 1, 2, 3): Elastic strain tensors 
Γ: Arbitrary contour pass on the x1 – x2 plane enclosing the crack tip 
µk: Shear modulus 
σij (i = 1, 2, 3; j = 1, 2, 3): Stress tensor 

: Temperature 
ξk (k = 1, 2, 3):  Crack advanced vectors 
Ω: Area surrounded by the contour pass Γ 
ψ: Stress function 

*Nomenclature


