
STUDIES ON
DISJUNCTIVE LOGIC

PROGRAMMING

by

CHIAKI SAKAMA

A dissertation submitted to
the Faculty of Engineering of

Kyoto University
for the degree of Doctor of Engineering

July 1994

Preface

Recent studies have enriched the expressive power of logic programming as a know!

edge representation tool and the growing importance of logic programming in artificial
intelligence is well recognized these days. Disjunctive logic programming is one of such
extensions of logic programming which provides us with the ability of reasoning with
indefinite information. Due to their expressiveness, disjuncl1ve logic programming
has been given an increasing attention over the past few years.

In this dissertation, we study theoretical frameworks for disjunctive logic program

ming. Our particular interest is in the semantic issues of disjunctive logic programs
and their correspondences to commonsense reasoning in artificial intelligence.

As a semantics of disjunctive logic programs, we propose a new declarative se
mantics called the possible model semantics. The possible model semantics is an
alternative theoretical framework for disjunctive logic programs, which provides a

flexible inference mechanism for representing knowledge and also has a computational
advantage over the classical minimal model semantics.

To relate disjunctive logic programs to commonsense reasoning in artificial intel
ligence, we propose transformations from disjunctive logic programs to various forms

of nonmonotonic reasoning such as default logic, circumscription, and autoepisternic
logic. Moreover, we discuss connections between disjunctive logic programs and ab

ductive logic programs, and reveal close relationships between each framework.

Another important issue for commonsense reasoning is the treatment of incon
sistcnt knowledge. Since classical logic programming is not useful in inconsistent

programs, we introduce paraconsistent semantics for disjunctive logic programs which
provide uniform frameworks for handling both indefinite and inconsistent information
in a program.

We finally discuss program optimization issues in disjunctive logic programs. A
technique of partial deduction in logic programming is extended to disjunctive logic

programs and its correctness is presented.

Ill

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor, Shuji Doshita, for

his continuous guidance and encouragement. I would also like to thank the judging

committee members, Yoshihiro Matsumoto and Toru Ishida.

This r<'search was started when I was at ICOT (Institute for 1'\ew Generation

Computer Technology), and was continued at ASTE\1 (Advanced Software Technol
ogy and Mechatronics Research Institute of Kyoto). I would like to thank Kazuhiro

Fuchi and Yutaka Ohno for providing me with opportunities to pursue this research

\.1y appreciation also goes to my research managers, Hidcnori Itch, Shun-ichi l:chida,

and Koichi Furukawa for their helpful advice and encouragement.

Special thanks are due to Susumi Yamasaki, who guided me to the area of logic.
programming when I was at Kyoto Vniversity. I am also grateful to my research

colleagues for their fruitful discussions and valuable comments. Though I cannot list

all their names, my special thanks go to Katsumi Inoue and Hirohisa Seki.

Discussions with researchers in the areas of logic programming and nonmonotontc

reasoning are always stimulating and helpful. In particular, I would like to thank

Edward P. F. Chan, Hendrik Decker, Jiirgen Dix, Michael Gelfond, Georg Gottlob.

John Grant, Jack Minker, and V. S. Subrahmaruan for useful correspondence on the

work presented in this dissertation.

IV

Contents

Preface

Acknowledgments

1 Introduction
1.1 Motivations and Objectives

1.2 Contributions · · · · · · ·
l.3 Outline of the Dissertation

1.4 Publications · · · · · · ·

2 Preliminaries
2.1 First-Order Logic

2.1.1 Language

2.1.2 Model Theory ·

2.2 Logic Programming · ·
2.2.1 Horn Logic Programs ·

2.2.2 Normal Logic Programs

2.2.3 Extended Logic Programs

2.3 Disjunctive Logic P rogramming ·

2.3.1 P ositive Disjunctive Programs

2.3.2 Normal Disjunctive Programs

2.3.3 Extended Disjunctive P rograms

2.4 Fixpoint Theory · · · · · · · · · · · · ·
2.5 Computational Complexity · · · · · · ·

3 Possible Model Semantics for Disjunctive Logic Programs

3.1

3.2

Introduction .. ·
Possible Model Semantics for Positive Disjunctive Programs

V

Ill

iv

1

3

6
7

8

11
11

11

12

14
14
17

21

23

23

25
27
28
29

33
33

35

3.3

3.4

3.5

3.6

3.7

3.8

3.2.1 Negation m Positive Disjunct1ve Programs
3 2.2 Possible Model Semantics

Possible Model Semantics for NorU:a; Oi~j~~c~i~e ·P·r~g~a~~ :
F1xpoint Semant1cs .

3.4 1 F~xpo~nt Sema~ti·c~ f~r· ~o~i~i~e· Di~j~n~t;v~ ~;o~r~~~
3.4.2 F1xpomt Semantics for Normal Disjunctive Programs
Computing Possible Models

........ 0 •••

3.5.1 Bottom-up Model Generation Procedure
3.5.2 Query Answering . .

Computational Complexity ..

D1scuss1on

3. 7.1 Declarative Semantics
3. 7.2 Fixpoint Semantics
3. 7.3 Proof Procedure .

Summary

4 Relating Disjunctive Logic Programs to Default Theories
4.1 Introduction

4.2 Default Logic. :

36

38
42

47
47
50

55

55

57

58
62
62

64

65

66

67

67
69
71

4.3 Default Translation of Normal Disjunctive Programs
4.3.1 Positivist Default Theory Revisited

4.3.2 Representing .\'ormal Disjunctive Pr~g~a;n~ ~y· ~~f~uit·1·h· . .
7

7

3

2

4 4 D f I T . cones
· e au t ranslat10n of Extended Disjunctive Programs 77

4.4.1 Representing Extended Disjunct1ve Programs by Default Theones 78
4.4.2 Relationship to Disjunctive Default Theory

4.5 Connections with Autoepistemic Logic and Circumscription
4.5.1 Autoepistemic Logic
4.5.2 Circumscription

4.5.3 Characterizing Possible Model Semantics .
-1 .6 Summary ..

• • • • • • • • 0 •••••••••••

5 Equivalence between Disjunctive and Abductive Logic Programs
5.1 Introduction .

5.2 Abductive Logi~ ~;o~r~r~~i·n~ : : : : : : : : : : : :

5.3 Connections be.tween Disjunctive and Abduct1ve Logic ·p~~g~a~~ :

5.3.1 Generalized Stable Models are Possible Models

VI

80
82
82
84
87
89

91

91
93
95

95

5.3.2 Possible Models are Generalized Stable ~1odels. 97

5.4 Abductive Disjunctive Programs . 100

5.4.1 Generalized Disjunctive Stable Models and Possible Models 100
5.4.2 Generalized Possible Models are Generalized Stable Models 101

5.5 Discussion 103
5.6 Summary . 1 05

6 Handling Inconsistency in Disjunctive Logic Programs 107
6.1 Introduction . I 07

6.2 Paraconsistent Semantics for Positive Extended Disjunctive Programs I 09
6.2.1 Multi-valued Logic . 109

6.2.2 Paraconsistent Possible Model Semantics 112

6.3 Paraconsistent Semantics for Extended Disjunct1ve Programs . 113

6.3.1 Paraconsist.ent Stable Model Semantics . 113

6.3.2 Paraconsistent Possible Model Semantics
6.3.3 Connection to the Answer Set Semantics

6.4 Fixpoint Semantics of Extended Disjunctive Programs

6.5 Reasoning with Inconsistency ..

6.5.1 Preferred Stable Models .

6.5.2 Suspicious Stable Models .

6.5.3 Semi-Stable Models .

6.6 Related Work
6. 7 Summary

115

115

117

119
119
119

122

126

127

7 Partial Deduction of Disjunctive Logic Programs 129
7.1 Introduction . 129

7.2 Partial Deduction of Positive Disjunctive Programs 131

7.2.1 Normal Partial Deduction 131

7.2.2 Disjunctive Partial Deduction 133

7.3 Partial Deduction of Normal Disjunctive Programs 135
7.3.1 Disjunctive Partial Deduction of Normal Disjunctive Programs 135

7.3.2 Connections between Normal and Disjunctive Partial Deduction 137

7.3.3 Preservation of the Possible Model Semantics 139

7.4 Goal-Oriented Partial Deduction

7.5 Discussion

7.6 Summary

Vll

140

141
142

8 Conclusion

8.1 Summary and Contributions
8.2 Future Research .

0 ••••••

List of Publications

Bibliography

viii

143

143
147

151

153 Chapter 1

Introduction

All parties to the debate agree that a central goal of research is that com
puters must somehow come to "know" a good deal of what every human
bemg knows about the world and about organisms, natural and artifictal,
that inhabit it. This body of knowledge - indefinite, no doubt, in tls bound
aries -goes by the name "common sense".

David Israel [1983].

After the discovery of resolution princtple by J. Alan Robinson [1965al, logic based
approaches to artificial intelligence (AI) have been developed in the area of automated
theorem proving in the late 1960's [Chang and Lee, 1973]. In the early 1970's, Kowal
ski [1974] attached a procedural interpretation to Hom clause logic and introduced
the framework of logic programmmg. This leads to the design of the programming
language P ROLOG by Colmerauer and his group (1973]. After the success of PRO

LOG, the logic programming framework has been employed in many AI projects in
the world, including the Japanese Ftfth Generatwn Computer ProJect in the 1980's.

A prominent feature of logic programming is its formal logical basis. That is, a
logic program is viewed as a set of axioms, its computation corresponds to deduction,
and the meaning of a program is exactly the logical consequences of the program. It is
worth noting that such a formal foundation of logic programming enables researchers
in this field to communicate with each other using mathematical logic as a common
language. This is an important and distinguished advantage of logic programming
which is never seen in the fields of expert systems nor object-oriented databases today.
This unique feature of logic programming has promoted theoretical studies in its own
right, and found various applications ranging from databases to artificial intelligence
[Gallaire et al., 1984; Kowalski, 1991; Baral and Gelfond, 1994].

2 CHAPTER 1. INTRODUCTiON

:nother imp~rtant feature of logic programming is the separation of logic and

~::/:' ~Kow~l~kl, ~979~. That is, logic programs specify declarative sentences repre-

th
I g now e ge m t e world, while their algorithms are designed independent of

e contents of programs S h · . . k · uc a separat1on IS also 1mportant from the v·e · t f
no;ledge rep_resentati~n in artific~al intelligence [McCarthy and Hayes, ;9;~~

10 0

m t decla~~t~v~ meanmg ~f a log1c program is characterized by the declarative se
h a~ acs, w IC IS usually given by the model theory of first-order logic On the other

s::a~~c:om~~t~t.ional ~pect of a logic program is characterized by .the procedural
, w IC IS pr~vlded as a p:oof procedure of the program. Thus, declarative

and procedural semantics charactenze two different aspects of log' . IC programnung.

ski 1~;~r~anti~ ~ l~gic ~rogramming was firstly studied by van Emden and Kowal
lo i ' m w IC t e~ mtroduced declarative and procedural semantics of Horn

h
g c progl:am~. Horn log•c programs are the simplest class of logic programming and
ave app 1cat10ns such as th · 1 [Gallaire et al., 1984). e programmmg anguage PROLOG or deductave databases

th Horn logic progr~rns have powerful computational mechanisms in the sense that
e.y are as expressive as a Turing machine [Tarnlund 1977) C 'd . H log k • · ons1 enng orn

de~~i~;~~~:ms ~ a . no~ledge representation language, however, they describe only
. . rma IOn m t e world and provide no inference mech . f .

With mcomplete informatio~. In fact, these limitations have ofte;n:::e~rar:~t~;i~~
that knowledge representatiOns based on formal logics and ded t' . ~
not useful for commonsense reasoning in Al. uc IVe •n erence are

. ~dhe necdesbsityLof dealin[g with incomplete information in knowledge representation
IS a resse Y evesque 1983):

The .re~on incomplete knowledge bases are so important is that, in man
applications.' the kn.owledge base undergoes a continual evolution. A~
~a~h fist.age~ m formation can be acquired that is potentially very vague or
~~ e nJte !n nature. More important, a problem solving system cannot
~Imply. wait f~r the knowledge base to stabilize in some final and complete
orm smce th1s may never happen.

Then, i~ order to overcome those limitations, attempts have been done to enh
the. expressiveness and inference abilities of logic programming S h t . ance
mamly achieved in two ways. · uc ex eos10ns are

First extension is the representation of negation. In a definite Ilo n I .
each f t d · ed f h r og1c program

f ac env .rom t e program represents true knowledge in the program whil~
any act unproved m the program is assumed to be false as default negation or n;gation

1.1. MOTNATIONS AND OBJECTIVES 3

as failure to prove [Clark, 1978; Re1ter, 1978]. Such d<•fault negation can augment
incomplete knowledge in a program, while it makes logic programming :-<•mantics
nonmonotontc. Together with this non classical mechanism, the framework of logic
programming was extended from Horn logic programs to non-Horn logic programs by
incorporating default negation in programs. Stmttficd logtc programs [Chandra and
llarel, 1985; Apt et al., 1988; van Gclder, 1988] and no1'1nal logic programs [Gelfond
and Lifschitz, 1988; van Gelder et al., 1991] are such <'Xtcnsions. Those frameworks
were further extended by Gelfond and Lifschitz [1990] to extended log1c programs

which include classacal negalton as well as default negat1on.
Second extension is the representation of tndefimlt or disjunctwe mformation.

Logic programming which can represent such informat1on is called di~Junrtwe logtc
programming. A theoretical framework of disjunctive logic programming was firstly
studied by Minker [1982] for positwe disjunctive progmms, and then generalized to
normal disjunctive progmms [Lobo et al., 1992], and l:tlended dis]uncltve programs

[Gelfond and Lifschitz, 1991] by including negation.

Negation and disjunctions are two important extensions of logic programming
which provide abilities to deal with incomplete information in a program. Those
extensions of logic programming greatly increase the expressive power of logic pro
gramming as a knowledge representation tool and r<'alize commonsense reasoning in

artificial intelligence.
With these backgrounds, in this dissertation we study theoretical fram<'works of

disjunctive logic programming.

1.1 Motivations and Objectives

Most of the semantics of logic programming have traditionally been studied based on
the notion of mmtmal models. The notion of minimal models reflects th<' so-called
Occam 's razor1 in the sense that a minimal model contains exactly as many facts as
required to hold in a program. Such a pnnciple of rmnunality has been supported in
the area of not only logic programming, but also nonmonotonic logics in artificial in
telligence. Therefore, it has be<"n r<•cognized that the principle of minimality is one of
the most basic and indispensable criteria that each semantics for commonsense reason
ing should obey [Schlipf, 1992a]. In fact, the least Ho·brand model semantics of Horn
logic programs [van Em den and Kowalski, l 976), the p(1ject model .~emantics of strat
ified logic programs [Przymusinski, 1988al, and th<' :;tabl£ model semant1rs of normal

1 William of Occam, 1285-1349?, England, Scholastic Philo~phn

4 CHAPTER 1. INTRODUCTION

logic programs [Gelfond and Lifschitz, 1988] are all based on the principle of minimal
ity. This is also the case in the context of disjunctive logic programrmng, namely, the
mimmal model semantics of positive disjunctive programs [M"inker, 1982] and the dts
junctive stable model semanltcs of normal disjunctive programs [Przyrnusinski, 199la;
Gelfond and Lifschitz, 1991] arc both minimal.

However, such a minimalism is not always appropriate in a program containing
indefinite information. Ross and Topor [1988] have firstly notic<>d this problem in
the context of inferring negation in disjunctive logic programs. They argue that
when one infers negation from a disjunctrve logic program, one should be cautious to
interpret disjunctions inclusivdy rather than exclusively. In fact, the minimal model
semantics minimizes truth facts, then it usually interprets disjunctions exclusively
and maximizes negative information inferred from a program.

Then Ross and Topor gave a framework for inferring negation in inclusive disjunc
tive logic programs, which is different from the minimal model semantics. However,
the problem is that therr fram<>work, on the contrary, has difficulty for treating exclu
sive disjunctions in a program. Moreover, they provided no model throretical meaning
for inclusive disjunctive logic programs as a counterpart of the minimal model seman
tics. Thus our first objective is to give a theoretical framework of disjunctive logic
programs which can distinguish both exclusive and inclusive disjunctions uniformly
10 a program.

Our second objective is to clarify the relatrons between disjunctive logic pro
grams and various forms of commonsense reasonmg in artificial intelligence. Re·
cent studies have revealed close relationships between logic programming and non
monotonic reasoning [Reitcr, 1982; Lifschitz, 1985; Gelfond, 1987; Lifschitz, 1988;
Przymusinski, 1988b; Gelfond et al., 1989; Bidoit and Froidevaux, 199la; Bidoit and
Froidevaux, 1991 b], and there are increasing int<>rcsts to investigate interrelations be
tween the two areas [~erode et al., 1991; Pereira and i\erode, 1993]. These studies
are important both for logic programming and artificial intelligence. Representing
logic programs in terms of nonmonotonic formalisms helps us to realize commonsensc
reasoning in logic programming, on the other hand, it opens possibilities for using
logic programming proof procedures as inference engines for nonmonotonic reasoning.
Thus, clarifying such interrelations enables us to use techniques developed in one area
by the other, and it will help researchers in each community to progress their work
and enrich perspectives. Until now, those interrelations have been mainly studied
for normal logic programs, then our next goal is to extend those previously studred
results to the case of disjunctive logic programs.

1.1. MOTIVATION$ A/\'D OBJEC'TI\' ES 5

Abduction is also a form of comrnonsense reasoning to which much attention has
been paid recently. Abduction supplies an ability to pcrf~rm ~easoning wi.th hypothe
s<'s, and its growing importance in various AI problems rs wrdely recognl:tt•d. In the
context of logic programming, abductron is realized by the fram~wo~k of abducl.n:e
logic programmmg [Kakas et al., 1992}. Abductive !ogre programmm? IS an c~tcn~10n
of logic programming and also realizes reasoning with inc~r~plet~ rnfor~nat10n m a
program. In this regard, abductive logic progra~s and d.rsJunc.trve log1c programs
appear to deal with very similar problems from drffercnt vrew~omts. However, each
formalism has been independently developed so far and has d1fferent. syntax and se
mantics from the other. Then our primary interest is whether there is any formal

correspondences bet wcen those two frameworks.

Another important aspect of comrnonsense reasoning in logic pro~rarnmin.g i~ the
treatment of inconsistent knowledge. In practical situations, inconsistency IS hkely
to happen as well as indefiniteness when we build a large scale o~ knowle~ge b~e.
In such a knowledge base, it may be the case that a program conta1ns loc~l rnconsr~
tency and yet might have a global intended rnea~ing. l.loweve~, as t~adrt10~al !ogre
programming is based on classical first-order !ogre, a prece of rnc.ons~stent Informa
tion makes a whole program trivial. A logic which is not. destructrve ~n t.~c presen~e
of inconsistent. information is called paraconsistent logtc, and its apphcat10n to logrc
programming is known as paraconsistent logic .programm~ng [BI~ir .and Su~rah~a
nian, 1989). Then, in order to treat both inconsrstent and mdefimte mformat10n m a
program, paraconsistent frameworks for disjunctive logic programs arc nec<•ssary.

Our last objective is an optimization issue of disjunctive logic programs. In l~gic
programming, program transformation and optimization are im~ortant. from pract1cal
viewpoints since correctly specified programs are not nccessa.nl~ e.fficr~nt progr.ams.
Partial deduction or partial evaluation is known as one of such optrmrzatron techn1ques
in logic programming. Partial deduction derives a more. s~ecific pr~gram thro~gh
performing deduction on a part of the program, while retammg .the ongrnal me~~mg
of the program. Such a specialized program is usually more cffic1ent than. the ongr~al
program when executed. Partial deduction techniques hav~ been ~~rnly. stud1e.d
for normal logic programs so far. However, since computa.tr~n of drsjunct1ve log1c
programs is generally expensive than normal logic programs, rt rs necessary to develop

partial deduction techniques for disjunctive logic programs also.

To summarize the objectives of this dissertation arc to study various aspects of

disjunctive logic ~rogramming from both theoretical and practical points of view·

6 CHAPTER I. INTRODUCTIO.'V

1.2 Contributions

The contributions of the research reported in this dissertation are as follows.

l. We propose a new declarative semantics of disjunctive logic programs called
the poss1ble modd semantics. The possible model semantics is a different the
oretical framework from the classical minimal model semantics, and provides
a flexible negative inference mechanism under the closed world assumption. A
new fixpoint semantics of disjunctive logic programs is introduced to charac
terize the pos:sible model semantics and its proof procedure is presented. It is
shown that the possible model semantics also has a computational advantage
over the minimal and the stable model semantics of disjunctive logic programs.

2. We show a method of representing disjunctive logic programs in terms of de
fault logic [Reiter, 19801. The problem of previously proposed approaches is
pointed out, and an alternative correct transformation from disjunctive logic
programs to default theories is proposed. We also present the correspondences
between disjunctive logic programs and other forms of nonmonotonic reasoning
in AI such as dlSJunctwe default logic [Gelfond et al., 1991), Clrcumscrzpllon
[McCarthy, 19801, and autoepistemic logic [Moore, 19851.

3. We reveal a close relationship between disjunctive logic programs and abductive
logic programs. It is shown that the possible models of disjunctive logic pro
grams are essentially equivalent to the generalized stable models of abductive
logic programs [Kakas and Mancarella, 19901. We also show that the possible
model semantics is useful to characterize abductive logic programs from the
computational complexity point of view.

4. We propose paraconsistent frameworks for disjunctive logic programs which can
distinguish inconsistent information from other information in a program. Para
consistent semantics for extended disjunctive programs are introduced wh1ch
are based on lattice structured multi-valued logics. Fixpoint characterizations
of those paraconsisl<'nt semantics are presented, and methods for reasoning with
inconsistency are discussed.

5. We develop partial deduction techniques for disjunctive logic programs. In dis
junctive logic programs, normal partial deduction is shown to be not useful, and
a new partial deduction method for disjunctive logic programs is introduced.
It is shown that the proposed partial deduction preserves the meanings of dis
junctive logic programs, and its application to goal oriented partial deduction
is presented for query optimization.

1.3. OUTLISE OF THE DI5SLHTA1'10.\' 7

1.3 Outline of the Dissertation

This dissertation consists of eight chapters. The rest of th<' dissertation is organiz<·d

as follows.

In Chapter 2, we first g1ve basic notions of logic programmin? _and ~ther r_elatcd
notions used in this dissertation. We introduce the framework of diSJunctiVe log1c pro·
gramming and review prev10usly studied results on logic programming and disjunctive

logic programming.

In Chapter 3, we propose a new theoretical framework of disju~ctive logi~ pro-

ms T he possible model semantics is introduced as a declarat1ve semant1cs of gra
disjunctive logic programs. Negative inference under the _poss1ble m~del se~~nt1c~ IS

presented and its properties arc discussed. A new fixpo1nt semant1cs o~ d1sJ~nct1ve
logic programs is introduced to characterize the possible model semant1cs. For _the
procedural part, a bottom-up proof procedure is provided to compute the poss1ble
model semantics of positive and normal disjunctive programs. We also compare com
putational complexities of various semantics of disjunctive logic programs and show
that the possible model semantics has a computational advantage over other proposed

semantics.

In Chapter 4, we present a method of relating disjunctive logic progr~ms to Re
iter's default logic. We first point out the problem of previously stud1ed results,
then establish a correct. default translation of disjunctive logic programs. We show a
one-to-one correspondence between the stable models of a disjunctive logic program
and the extensions of its associated default theory. Next we extend the resull:s to
extended disjunctive programs and investigate the connection with Gelfond et al. :s
disjunctive default logic. The stable model semantics of di:sjunctiv~ lo~ic progr~ms IS

also characterized by Moore's autoepistemic logic and McCarthy s c1rcu~scnpt1on.
We also show that the possible model semantics is naturally expressed m terms of

autoepistemic logic.

In Chapter 5 we present the equivalence relationship between disjunctive logic
programs and abductive logic programs. We show that the generalized stab_le_ mod:ts
of abductive logic programs can be translated into the possil~le m_o~els ~f diSJunctive
logic programs, and vice v('rsa. It is also shown that abduct1ve. d1sJunct1ve programs
can be expressed by abductive logic programs under the poss1ble model semant1~s.
\1orcover we observe that when considering the disjunctive stable model semant1c.s
instead of the possible mod<•l semantics, it is unlikely that disjunctive logic programs
can be efficiently expressed in terms of abductivE' logic programs. The usefuhw~s

s CHAPTEH 1. INTRODUCTION

of tht: possible model semantics for abductive logic programs is also verified by its
computational complexity.

In Chapter 6, we propose declarative semantics of possibly inconsistent. disjunC'tive
logic programs. \\'e introduce the pamcon.~~-~lenl minimal and :olablc model :ocmantics
for extended disjunctive programs, which can distinguish inconsistent information
from other information in a program. The possible model s<•mantics introduced in
Chapter 3 is also extended to t.hc paracons1.~tent possible model semantics in extended
disjunctive programs. These semantics are natural extensions of the answer s< l se
mantles of extended disjunctive programs [Gelfond and Lifschitz, 1991], and are based
on lattice-structured multi-valued logics. Paraconsistent semantics are also charac
terized by a fixpoint semantics of extended disjunctive programs, and methods for
reasoning in inconsistent programs arc addressed.

In Chapter 7, we present methods of partial deduction for disjunctive logic pro
grams. We first show that normal partial deduction is not useful for disjunctive logic
programs, then introduce d!SJUnctwe parltal deductwn for disjunctive logic programs.
It is proved that disjunctive partial deduction preserves the minimal model semantics
of pos1tive disjunctive programs and the disjunctive stable model semantics of normal
disjunctive programs. We also show that together with suitable program transforma
tions, normal partial deduction can compute disjunctive partial deduction and also
preserves the possible model semant1cs. The proposed partial deduction method is
applied to goal-oriented partial deduction for query optimization.

In Chapter 8, we conclude the dissertation and address future directions of the
research.

1.4 Publications

Some chapters of this dissertatiOn are based on the published papers as follows.

Chapter 3 is based on the papers [Sakama, 1989] and [Sakama and Inoue, 1993a),
which were presented at the Ftrst lnt<rnalzonal Confer(nce on Deductive and Object
Onented Databa.scs (DOOD'89; Kyoto, Japan, December 1989) and the Tenth ln
ternallonal Conference on Logzc Programmmg (ICLP'93; Budapest, Hungary, June
1993), respectively. Also much of this chapter is in [Sakama and Inoue, 1994c] which
will appear m the Journal of Automated Reason m g.

Chapter 4 is based on the paper [Sakama and lnoue, 1993b] which was presented
at the Second International Worbhop on Logtc Progmmmmg and Nonmonotonic
Reasoning (LPNMR'93: Lisbon, PortugaL June 1993).

1.4. PUBLICATJOl\'5
9

[s k d I 1994a] which was pre-
Cha ter 5 is based on the pap<'r a ama an noue, . >• .

scnted :t the Elet•cnth International Conference on Logic PI'Ogrammmg (!CL! 9
4

,

S. Margherita Ligure, Italy, Jnne 1994).

Cha ter 6 is based on the paper [Sakama and Inoue, 199·tb] wh~ch will ~ppcar
. th journal of Loglc and C'omputatton. Related topic is also discussed Ill the
ln c [S k 1992] which was presented at the International Conference on Fljth
paper a ama, 99'2)
Generation Computer Systems (FGCS'92; Tokyo, Japan, Jun<: 1 .

Cha ter 7 is based on the paper [Sakama and Sekt, 1994] "'.hich was pre<;cnted at

F
p h I t t. I Workshop on Logic Program Synthc.MS and Tran4ormaltOn the ourt n erna tona . . . h

(LOPSTR'94; Pisa, Italy, June 1994). Related topiC 1s also presente
1
d 1n t e paper

[Sakama and Jtoh, 1988] which was published in the Journal of /1. ew Gcncratwn

Computing, vol. 6, Nos.2-3. .

The dissertation does not include those topi<'s present<•d in author's publtshled

[s k
d It h 1988] and [Sakama and Okurnura, 19S8]. These papers a so

papers a ama an ° ' . · oning from
discuss theoretical aspects of logic programmmg and nonmonotomc reas

different viewpoints.

10
C'llAPTEH 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces basic notions and terminologies used in this dissertation and
reviews previously studied results on logic programming.

2.1 First-Order Logic

A framework of logic programming stems from classical first-order logic. Then we
start from a brief overview of first· order theories. Terminologies and notations pre
sented in this section are based on [Lloyd, 1987; Apt, 1990).

2.1.1 Language

An alphabet of a first-order language consists of a set of constants, variables, function

symbols, predicate symbols, and usual punctuation symbols, together with connectives
/\, V, .,, :::>, 1 ::::: and quantifiers 3 and V.

A term is defined inductively as either a variable or a constant or an expression
of the form f(t 1 , ••• ,tn) where f is a function symbol and t,'s are terms.

A formula is defined inductively as follows:

(i) An atom p(t 1 , ••• , tn) is a formula where p is a predicate symbol and t, 's are
terms.

(ii) For formulas F and G, .,p, F VG, F 1\ G, F :::> G, and F = G are all formulas.

(iii) For a formula F and a variable x, 3x F and Vx F are formulas.

1In the context of logic programming, the connective - is also used for implication

11

12 CHAPTER 2. PRELIMINARIES

A ~ormu!a is closed if it contains no free occurrences of any variable (that is, any
~anable 1s bounded by some quantifier). A term or a formula containing no variables
1s called ground. A ground formula is also called a proposrl1on or a propositional
formula. A first order language Lover an alphabet is defined as the set of all formulas
constructed from the symbols of the alphabet. A literal is an atom A or its negation
-.A. A literal is called positive if it is an atom, otherwise it is called negative.

A clause IS a formula of the form:

Vx" ... , V:rs. (A1 V ... V At V -.B. V ... V -.Bm)

where each A, (1 Si S /)and BJ (1 S j S m) arc atoms and x., ... ,:rk are variables
occurring in the formula. A clause is also written as:

or simply as:

A1 V··· V At+- 81 I\ ... I\ Bm. (2.1)

The left-hand side of the clause (2.1) is called the head, and the right-hand side of the
clause is called the body. Note that any closed first-order formula can be transformed
to clausal form [Chang and Lee, 1973].

2 .1.2 Model Theory

The meaning of a first-order theory is given by an interpretation of formulas.
An interpretation I for a first-order language L consists of a non-empty set D

called the domain of I, and an assignment defined as follows: '

• each constant in Lis assigned to an element in D,

• each n-ary function in Lis assigned to a mapping from D" to D,

• each n-ary relation r in L is assigned to a mapping from D" to {true, J a/se},

where true and J a/se are the tntlh values assigned to propositions.
Given an interpretation I of L, a variable ass1gnmenl V is an assignment to each

variable in L of an element in the domain of I. The term assignment (with respect
to I and V) of the terms in L is defined as follows:

• for each variable in L, the assignment according to V,

• for each constant in L, the assignment according to I,

2.1. FIRST-ORDER LOGIC
13

• for each n-ary function f{t 1, ... , In) in L, the assignment f'(t;, ... , I~) where!'
is the assignmt•nt of J according to I. and t;, ... , t~ are the term assignments

oft],····tn.

Now given an interpretation I and a variable assignment V, truth values of for

mulas are inductively defined as follows.

(i) If the formula is an atom p(t1 , ••• , tn), then its truth v_alue is.obtaincd by calcu
lating the value of p'(t;, ... , t~), where p' is the mappmg ass1gned top by I and

t~, ... , t~ are the term assignments of t 1 , ... , ln with respect to I and V·

(ii) Given formulas F and G,

• -.F is true (resp. false) i ff F is false (resp. true).

• F VG is true (resp. false) iff either For G is true

(resp. both F and G are false).

• F I\ G is true (resp. false) iff both F and G are true

(resp. either F or G is false).

• F :) G is true (resp. false) iff either F is false or G is true

(resp. both F is true and G is false).

• F:: G is true (resp. false) iff both F :) G and G :) Fare true

(resp. either F:) G or G:) F is false).

(iii) The formula 3x F is true iff there exists d E D such that F has a t.ruth ~alue
true with respect to I and V(xfd), where V(x/d) is V except that xIS ass1gned

to d; otherwise its truth value is false.

(iv) The formula Vx F is true iff for all dE D, F has a truth value true with respect

to I and V(xfd); otherwise its truth value is false.

A formula F is satisfied in an interpretation I (written I F= F) iff F is true in I
for any variable assignment V. In par~icular, when F is closed, the truth value of the
formula is independent of V. Given a set of formulas S, an interpretation I IS called a
model of S if I satisfies every formula in S. A set of formulas S is called satt::.fiable or
consistent if it has a model; otherwise S is called unsaltsfiable or meonststcnt. When

every interpretation is a model for 8, we say that S is valid.

14 CHAPTER 2. PRELIMINARIES

2.2 Logic P rogramming

In computer science, logic plays an important role for designing, analyzing, and rea
soning about computer programs. On the other hand, logic p1·ogramming, advocated
by Kowalski [1974), uses first-order predicate logic itself as a procedural program

ming language. Logic programming has a very simple syntax and a clear semantics
based on the formal mathematical logic and the theory of resolution proof procedures.
Compared with conventional programming languages, logic programming provides a
very high-level specification language for describing problems, and at the same t1me,
it serves as a computer executable programming language.

In this section, we review the framework of logic programming and present previ
ously studied results (not necessarily in a comprehensive manner).

2 .2.1 H orn Logic Programs

An early stage of logic programming is defined as a subset of first-order clauses of the
form (2.1), called Horn clauses [Kowalski, 1974).

A Horn logic program is a finite set of Horn clauses of the form:

A1 - 81 1\ ... 1\ Bm (0 :5 I :5 I; m ~ 0) (2.2)

where A1 and B, 's are atoms.

A Horn clause with a non-empty head (I = 1) is called a definite clause, and a
definite clause with the empty body (m= 0) is called a unit clause. A Horn clause
with the empty head (/ = 0) and a non-empty body (m :f; 0) is called a negative
clause, which is also called a goal or an integnty constramt depend on its usage. A

Horn log1c program including only definite clauses is called a definite log'c program.
From the database point of view, a set of Horn clauses attaches deductive ca

pabilities to conventional relational databases in the context of deductwe databases
[Gallaire et al., 1984). For example, in a definite logic program it is easy to specify
the transitive closure of a relation by recursive clauses like that:

ancestor(x, y)- parent(x, z) 1\ ancestor(z,y),

ancestor(x, y) - parent(x, y),

which cannot be expressed in relational databases [l'llman, 1982).

The declarative semantics of logic programming is usually defined by means of
particular models of a program, called Herbrand models.

2 2. LOGIC PROGRAMM/1'\G
15

Given a logic program P, its Herbrand universe Up 11> the l>Ct of all gro~nd ~erms,
which can be formed out of the constants and function symbols appeanng m the
language L of P? The Herbrand base 'HJ3p is the set of all ground atoms formed by

predicate symbols from L with ground terms from Up ~ a.rgu~en_ts.
An Herbrand interpretatton for P is the interpretatiOn wh1ch IS defined over the

Herbrand universe Up as a domain with an assignment as follows:

• each constant in L is assigned to 1tself in Up,

• each n-ary function symbol J in L is assigned to the mapping from (UP)" to

Up defined by (t1, ... ,tn)-+ J(tl,···•tn),

• each n-ary relation r in L is assigned to a mapping from (Up)" to {true, false}·

Note that since the assignment to constants and function symbols is fixed in Her
brand interpretations, any Herbrand interpretation is identified with a corresponding

subset of the Herbrand base.
An Herbrand model for P is an Herbrand interpretation which is a model for P.

Throughout the dissertation, an interpretation means an Herbrand interpretation and
a model means an Herbrand model. A consistent program has an Herbrand model.

while an inconsistent program has none.

A substitution is a finite mapping from variables to terms u = {x1/t1> .. · ,xn/tn},
where each x; is a variable, each t, is a term distinct from x, and the variables
xI> .. . , Xn are distinct. The substitution u is called a ground substitution if all t, 's

are ground. If u is empty, it is called an empty substitution. . .
By an expression we mean a term, a literal, or a clause and denote 1t by E. G1ven

an expression E and a substitution u, the expression Eu presents an instance of E
by u, which is obtained from E by simultaneously replacing each ~ccurren~ of the
variable in E with the corresponding term according to u. An mstance IS called

ground if it contains no variable. .
A substitution u is called a untfier of expressions E and F df Eu = Fu holds.

In particular, a unifier u is called the most general umfier (mgu) iff for any unifier 0

such that EO= FO there is a substitution >.such that 0 = >.u.
Given a logic p~ogram p and a clause C in P, an /lerbrand instantiation of C

is the set of all ground instances of C by any substitution u which replaces every
variable in C with an element from Up. The ground program of P is the (possibly
infinite) set of all Herbrand instantiations of every clause from P. A logic program

2We usually consider constants and function symbols appearing m a program unless stated oth
erwiSe. If the program contains no constants, some constant is added to form ground terms.

16 CHAPTER 2. PRELIMI.VARIES

P has an Her brand model M iff its ground program has the Her brand model M.
Thus, any logic program P is semantically identified with its ground program, so we
usually assume ground programs in this dissertation when considering semantics of
logic programs.

The declarative semantics of Horn logic programs is defined as the smallest Her
brand model, called the least Herbrand model. The least Herbrand model is also
obtained as the intersection of all Herbrand models of the program [van Emden and
Kowalski, 1976]. A definite logic program is always consistent and has the least
Herbrand model.

The procedural semantics of logic programming is defined by proof procedures in
two-ways. A bottom-up proof procedure is based on usual modus ponens and starts
from the given facts and proceeds forward to the conclusions. On the other hand,
Kowalski {1974] introduced a procedural interpretation of Horn logic programs in
which the head of a definite clause is viewed as a procedure name and the body of
the clause is viewed as a set of procedural calls. A top-down proof procedure of logic
programming is based on this idea. It starts from a given goal to be proved and goes
backward to premises in a program by iteratively producing its subgoals.

For definite logic programs, van Emden and Kowalski {1976] present bottom-up
hyperresolulton and show that the set of all ground atoms derived fmm a definite logic
program by hyperresolution coincides with the least Herbrand model of the program.
The least Ilerbrand model is also characterized by the success set of top-down SLD
resol~tion {Apt and van Emden, 1982]. Various proof procedures for {function-free)
defimte log•c programs are also studied in the context of query answering in deductive
databases {Bancilbon and Ramakrishnan, 1988].

The least Herbrand model assigns the truth value true to each atom included in
the model, and remained other atoms are interpreted as false. Proof-theoretically
speaking, however, definite logic programs allow to derive only positive consequences
and negative facts are never derived from a program. To infer negative information
in a program, we can use negative clauses to represent false facts in a Horn logic
program. However, it is impractical to represent negative information explicitly in a
program, since a program usually specifies true sentences in the actual world while
other false facts not written in the program are relatively huge (possibly infinite) in
their amount. Then it is more convenient to consider a collection of definite clauses
representing known positive information, and assume any fad non-derivable from the
program to be false by negalton as fatlure to prove. Such negation is also called
default negatton and is distinguished from classical negation in first-order logic.

2.2. LOGIC PROGRAMM/1\'G 17

To formalize an inference rule for default negation in logic programming, Reiter
{1978] introduced the closed world assumption {CWA). Given a program P and for

any ground atom A, the CWA is formally stated as follows:

CW A(P) I= -.A iff P ~A.

An alternative formalization of default negation is known as Clark's program com
pletion [Cl ark, 1978]. Program completion characterizes the fimt e failure st:l of SLO
resolution, while it has some drawbacks compared with the CWA {Shepherdson, 1984;

1988].
Note that default negation in logic programming is nonmonotonic in its nature.

That is an addition of a new fact might withdraw a previously presumed default fact.
' .

It is known that such nonmonotonic reasoning is useful for commonsense reasomng
in artificial intelligence. Thus introduction of default negation enhances inference
abilities of logic programming beyond monotonic deduction, while it makes the theory

of logic programming depart from classical first-order logic.

2 .2.2 Normal Logic Programs

A (definite) Horn logic program is the simplest form of logic p.rogram~i~g, ho~evc~,
as a knowledge representation language, its expressive power 1s very hnutcd smce 1t
only allows one to specify conjunctions and implications between relations. With this
restriction, we cannot compute even the complement of a given relation. We have
already seen that default negation introduces a mechanism of negative inference into
Horn logic programs. Then the first extension of logic programming is to incorporate
such negation into a program and use it during deductive inference. To express default
negation in a program, Horn logic programs are extended to include normal clauses

as follows.

A normal logic program is a finite set of normal clauses of the form:

A
1

+- B
1

1\ ... 1\ Bm 1\ not Bm+l 1\ ... 1\ not Bn (0 $ I $ 1; n ?: m ?: 0) (2.3)

where A
1

and B, 's are atoms and not is the negation-as-failure operator. A normal
clause with the empty head and a non-empty body is called an integnly constraint.

Note here that negation in normal clauses represents default negation and is dis
tinguished using a new connective not. The above normal clause (2.3) is read as that
A

1
is true if 8

1
, ••• , Bm are true and Bm+ 1, ..• , Bn are not true. Clearly, normal logic

programs reduce to Horn logic programs in the absence of default negation.

18 CHAPTER 2. PRELIMINARIES

A normal logic program is called stratified [Chandra and Hare!, 1985; Apt et al.,
1988; van Gelder, 1988] if it contains no predicate derived recursively through its
negation. More precisely, a normal logic program P is stratified if there is a partition
P = P1 U ... U Pn such that the following conditions hold for i = 1, ... , n:

(i) If a predicate occurs positively in a clause in P., then its definition (i.e, clauses
containing the predicate in their heads) is contained within U P

J$• r

(ii) If a predicate occurs negatively m a clause in P,, then its definition is contained
within UJ<• Pr

P1 can be empty.

For example, the popular Aying-bird example is written in a stratified logic pro
gram like that:

fly(x) +- bird(x) /1. not abnormal(x),

btrd(x) +- penguin(x),

abnormal(x) +- pengUtn(x),

which means that a bird Aies if she is not an abnormal bird.

The notion of stratified logic programs is further extended to locally stratified logic
p.rograms [Przymusinski, 1988a] which contain no self-recursive atom through nega
tJo~, and ca/1-consistentjorder-consistent logic programs [I<unen, 1989; Sato, 1990]
wh1ch contain no self-recursive predicate/atom through an odd number of negation.

In contrast to stratified logic programs, possibly unstratified normal logic pro
grams are often called general log1c programs [van Gelder, 1988; Gelfond and Lifs
chitz, 1988; van Gelder et al., 1991]. The following game program [van Gelder et al.,
1991] is an example of such programs:

wmntng(x) +- move(x,y) 1\ not wmmng(y),

which presents a game situation that one is in a winning position if there is a move
to a losing position.

The model theoretical meaning of a normal logic program is defined in the same
ma.nner as t.hat of a Horn logic program with an additional statement that an interpre
tatiOn I sat1sfies default negation not A whenever A is not true in I (I 1= not A iff I ~
A). Then a model of a normal logic program is defined as an interpretation satisfying
every normal clause from the program. A normal logic program is consistent 1£ it has
a model, otherwise it is mcons1stent.

2.2. LOGIC PROGRAMMING 19

A declarative semantics of normal logic programs is defined in terms of the par
ticular Herbrand models called the minimal models. An Herbrand model M is a
minimal model of a program P if no proper subset of M is a model of P.

In case of definite logic programs, every program has exact,ly one minimal model,
the least Herbrand model. However, in the presence of non-Horn clauses , a program
may have several minimal models in general. In this situation, some canomcal models
are usually chosen as the intended meanmg of a program. By the "intended meaning"

we mean that one who writes/reads the program is likely to expect it.
One of the criteria for choosing canonical models is the supportedness [Apt et al. ,

1988]. For a program P, a. model M is called supported if for any atom A included
in M, there is a ground clause of the form (2.3) from P such that A = At and M

satisfies the body of the clause.
The condition of supportcdness is quite natural and appealing, since we arc inter-

ested in a model which includes atoms actually derived from a program. For example,
the program {a+- not b} has two minimal models {a} and {b}, where the first one
is supported while the second one is not. In fact, b is never derived from the program
and the intended meaning of the above program is {a} reAccting the sentence that

"a is true if b is not proved".

The stable model semantics proposed by Gelfond and Lifschitz [1988] characterizes

such canonical models for normal logic programs.
Given a normal logic program P, an interpretation I is called a stable model of P

if I coincides with the least Ilerbrand model of the Horn logic program pi defined as

pi = { At +- B1 /1. ... /1. Bm I there is a ground clause of the form (2.3)

from P such that {Bm+h ... , Bn} n I = 0 }.

An intuitive meaning of the above definition is that we first consider an assumption
set I and compute the reduct pi of P with respect to the assumption set I. Then. if
I coi~cides with the set of logical consequences of P1

, the assumption set I is justified

as an intended meaning.
Stable models are minimal and supported models, but not vice versa [Marek and

Subrahmanian, 1992]. A normal logic program may have none, one, or multiple stable
models in general. In particular, a consistent (locally) stratified logic program has a
unique stable model called the perfect model [Przymusinski, 1988a].

Note that a consistent program does not always have a stable model. For example,
the program {a+-, b +- notb} is consistent since it has a model {a, b}, "':hile the
program has no stable model. A program having at least one stable model 1s. called
coherent otherwise it is called incoherent. For sufficient conditions of the ex1stence

'

20 CHAPTER 2. PRELIMINARIES

of a stable model, call-consistent logic programs or order-consistent logic programs
are always coherent [Fages, 1990; Dung, 1992b].

Another well-known semantics for normal logic programs is the well-founded se
mantles, originally proposed by van Gelder et al. [1991]. We do not address the
detailed definition of the well-founded semantics here, but refer the reader to the
literature [van Geldcr et al., 1991; Przymusinski, 1989a; van Gelder, 1989].

The stable model semantics and the well-founded semantics provide alternative
theoretical frameworks for normal logic programs. An essential difference between
two formalisms is that the stable model semantics is based on the classical two
valued logic, while the well-founded semantics is based on the notion of three-valued
well-founded parltal model.

The well-founded semantics has an advantage that the well-founded (partial)
model is uniquely defined for any consistent normal logic program, while this is not
the case for the stable model semantics. However, this deterministic feature often
makes the well-founded semantics too skeptical compared with the stable model se
mantics. For example, the program { c .- a, c .- b, a .- not b, b .- not a }
has two stable models {a, c} and { b, c}, while its well-founded model is the empty set
(i.e. each atom has truth value unknown). Thus, the stable model semantics or the
well founded semantics is usually chosen according to applications.

Recent studies of logic programming have extended the stable model semantics
and the well-founded semantics in various ways, while their original forms still serve
as two representative semantics for normal logic programs at present. Moreover, both
formalisms are revealed to be closely related with each other [Przymusinski, 1990c;
Dung, 1992b; Baral and Subrahmanian, 1993].

For proof procedures, bottom-up algorithms are proposed for computing stable
models in [Sacca and Zaniolo, 1990; Eshghi, 1990; Inoue et al., 1992; Fernandez et al.,
1993; Subrahmanian et al., 1993; Bell et al., 1993], and for computing well-founded
models in [Kemp et al., 1992; Subrahmanian et al., 1993].

As a top-down proof procedure for normal logic programs, SLD-resolution is ex
tended to SLDNF-resolution [Ciark, 1978; Lloyd, 1987]. For stratified logic programs,
SLDNF-resolution is modified to cope with infinite failure in [Kemp and Topor, 1988;
Seki and ltoh, 1988; Przymus1nsk1, 1989c] under the perfect model semantics. An
abductlve proof procedure by Eshghi and Kowalski [1989] is a procedure based on
SLDNF-resolut.ion and is correct. with respect to the stable model semantics for call
consistent logic programs. For the stable model semantics, however, there is no simple
top-down proof procedure applicable for any normal logic program in general. This is
due to the trrelevance property of the stable model semantics [Dix, 1992b] such that

2.2. LOGIC PROGRAMMII\'G
21

the truth value of an atom is often affected by a clause irreJe,·ant to its derivation.
On the other hand, some general top-down proof procedures a~e known for the well~
founded semantics such as [Ross, 1989a; Przymusinski, 1989a; B1do1t and Legay, 1990,

Chen and Warren, 1993].

2.2.3 Extended Logic Programs
In logic programming, it is often useful to represent explicit negation as well as d<.fault

t . · program Gelfond and Lifschitz [1990] have extended the framework of nega 10n m a · . .
normal logic programs to include classtcal negatwn m a program.

An extended logic program is a finite set of extended clauses of the form:

£
1

._ £
1

A ... A Lm 1\notLm+ll\ ... /\not Ln (0 1 1; n 2:: m 2:: 0) (2.4)

where each L, is a literal. A not-free extended logic program is called a posttive
extended logtc program. An extended clause with the empty head and a non empty

body is called an integnty constraint.
Note that in extended logic programs, two k1nds of negatiOn, class1~al negatiOn <.)

and default negation (not), are distinguished.3 For exampl:, awarding scholarshipS
to college students is written by the following extended logic program [Gelfond and

Lifschitz, 1990]:

Eligible(x) .- HighGPA(x),

-.Eltgible(x) .- -.FairGPA(x),

Jntervtew(x) .-not El!gible(x) 1\ not -.Eltgtblc(x),

where -.Eligible(x) means that x is non-eligible, while not Eltgtble(x) means that

there is no evidence that x is eligible. .
Introduction of classical negation enables us to represent negat1ve knowl:dge ex-

plicitly in a program. While positive and negative kno:vledge are now eqUJv~l<>ntly
specified in a program, those not explicitly represented m a program are consl~crcd
to be unknown. This means that the closed world assumption .is not assumed m .an
extended logic program any more, but is specified for each pred1cate by the followmg

CWA-rule:
-.P(x) .-not P(x).

Thus, in an extended logic program we can freely specify the ~losed world assumptio.n
depending on whether a relation is complete ~r not. In th1s sense, extended log1c

programs can represent incomplete knowledge 1n a program.

3ln contrast to default negation, classiCal negation as also called erp/Jcat negation.

22 CHAPTER 2. PRELIMINARIES

The stable model semantics for normal logic programs is extended to the answer
set semantics for extended logic programs [Gelfond and Lifschitz, 1990]. The answer
sets are defined in two steps.

Let P be a positive extended logic program and Cp be the set of all ground literals
from the language of P. Then, an answer set of P is defined as the smallest subset
S of Cp satisfying the conditions:

For each ground clause Lt - L1 A ... A Lm from P, {L., ... , Lm} S:; S implies
Lt E S. In particular, for each ground clause ._ L1 A ... A Lm from P,
{Lt. ... , Lm} ~ S; and

2. IfS contains a pair of complementary literals L and -.L, then S = Cp.

Next, let P be an extended logic program and SS:; Cp. The rcduct ps of P with
respect to S is defined as

P5 = { L, ._ L1 A ... A Lm I there is a ground clause of the form {2.4)

from P such that {Lm+h ... , Ln} n S = 0 }.

Then S is an answer set of P if S is an answer set of P5 . An extended logic pro
gram has either cons1stent answer sets different from Cp, or the untque contradictory
answer set Cp, or no answer set. An extended logic program having at least one
answer set is called coherent, otherwise it is called mcoherent.

Gelfond and Lifschitz also show a syntactic translation from extended logic pro
grams into normal logic programs. Given an extended logic program P, its pos1twe
form p+ is defined as a normal logic program obtained by replacing each negative
literal -.A in P with a newly introduced atom A' in p+ where A' and A have the
same arity. For example, the previous program is rewritten by the following positive
form:

Eligible(x) ._ HighGP A(x),

Eligible'(x) ._ FairGPA'(x),

Interview(x) ._not Eligible(x) A not Eligible'(x).

Then consistent answer sets of an extended logic program P arc expressed in terms
of stable models of the corresponding normal logic program p+.

Note that the semantics of extended logic programs is different from classical first
order logic even in the absence of default negation in a program. For instance, the
meanings of the clauses L, ._ L2 and -.L, +- -.L1 are different in an extended logic

2.3. DISJUi\CTIVE LOGIC PROGRAMMISG

am. given L L is derived from the first clause, but not from the s<'cond claus<·. progr , ,, 1

In this sense, an extended clau!>e is not contraposittve with resp<'ct to - and
The well-founded semantics is also generalized to extended logic programs in [Przy

musinski, 1990a; Pereira and Alferes, 1992]. Logic programming with two kinds of
negation is studied in [Wagner, 199la; Alferes and Pereira, 1992} fro~ different view
points. Proof procedures for extended logic programs are developed m [lnouc <•t al ..

1992; Teusink, 1993b; Alferes et al., 1994].

As presented in this section, a framework of logic program_ming s~arts from cla~si
cal first-order logic, while it becomes quite different from classtcallogtc when negatt~n
is introduced in a program. In a normal/extended logic program, each clause has tts
intended meaning depending on its syntax (written form), and is viewed as a dt-nva
tion rule or a constructive statement [Bry, 1989} rather than just a clause. With this
reason, a clause in a program is often called a rule in some literature, but we abuse
the term "clause" in this dissertation as far as no confusion arises.

2.3 Disjunctive Logic Programming

Logic programs introduced in the previous section specify knowledge ha~ing ~ defi~itc
consequence in the head of each clause. By contrast, logic programs pos~tbly mdudtng
clauses with disjunctive heads are called indefinite logic programs or diSJUncllve log1c
programs [Gallaire et al., 1984; Lobo et al., 1992]. Indefinite or disjunctive logic
programs are more expressive than definite logic programs since th.ey can. rcprese~t
indefinite information as well as definite one in a program. Our prtmary tnterest Ill
this dissertation is in such programs, and hereafter we use the term disjunctive logic

programs or simply disjunctive programs.

2.3.1 Pos itive Disjunctive Programs

A foundation of disjunctive programs is firstly studied by Minker [19821, in which he
provided a theoretical framework of positive disjunctive programs.

A positive disjunctive program is a finite set of clauses of the form:

A 1 V ... V A1 ._ 8 1 A ... A Bm (1, m?:: 0) (2.5)

where A-'s and B 's are atoms. A clause is called disjunctive if its ht'ad contains more
than on~ atom (l > 1); otherwise it is a Horn clause. Thus a positive disjunctive

program is a generalization of a Horn logic program.

24 CHAPTER 2. PRELIMINARIES

In a disjunctive program, indefinite information is specified using disjunctive

clauses. That is, when the condition of a disjunctive clause (2.5) holds, at least
one of the disjuncts A, {1 ~ i ~ I) becomes true, but it is generally unknown wh1ch
one is true.

In real life situations, disjunctive knowledge appears in two ways. For example,
the clause:

male V female+- human

is intended to mean an exclusive disjunction such that human is either male or
female but not both. On the other hand, the clauses:

land ammal V acqu.atic +- animal,

amphibian +- land-animal /1. acquatic

have an mclussve disjunction meaning that 1f an animal is both a land-animal and
acqu.atic, it is an amphzbtan.

A declarative semantics of positive disjunctive programs is given by the minimal
model semantics [Minker, 19821, which is defined as the set of all minimal models of a
program. A consistent positive disjunctive program has at least one minimal model,
while an inconsistent program has none. The minimal model semantics coincides
with the least Herbrand model semantics in Horn logic programs. The minimal
model semantics also has its origin in McCarthy's ctrcumscriptlon [McCarthy, 1980]
and close relationships between circumscription and logic programming semantics are
studied in [Gelfond et al., 1989].

Inference rules for default negation are also introduced in disjunctive programs. In

the presence of disjunctive information in a program, however, Reiter [1978] pointed
out that the CWA causes an mconsistency in a program. For example, in the program
{ aVb +-},the CWA implies both -.a and -.b, which are inconsistent with the program.
To improve such a situation in d1sjunctive programs, two alternative extensions of the

CWA are known. One is the gtneralized closed world assumption (GCWA) by Minker
[1982], and the other is the weak generalized closed world assumption (WGCWA) by
Rajasekar et al. [1989]. The WGCWA is also independently proposed by Ross and
Topor [1988] under the name of the disjunctwe database rule (DDR) Comparing each

rule, the GCWA provides a strong inference rule for negation, while the WGCWA or
the DDR provides a weak inference rule for negation. Both extensions fairly generalize
the CWA, however , each rule has some limitation 1n its inference ability as discussed
in Chapter 3. The completion semantics of normal logic programs is also extended

to disjunctive programs in [Lobo et al., 1992].

2.3. DISJUNCTIVE J,OGIC PROC:RAMMI.'VG
25

Proof procedures for the minimal model semantics and the GC\\'A ar<• st1:diPd
. the literature such as [Bossu and SIPgel, 1985; Yahya and Henschen, J%5; ~ran_t
:nd Minker, 1986; Henschen and Park, 198&; ManthPy and Bry, 1988; ~rzyrnusmskl,
1989b; Lobo et al., 1989; Minker and RaJasekar, 1990, Fcrnandcz and ~1mkcr, 1991 al,
while those for the WGCWA are in [Ross and Topor, 19!)8; RaJasekar et al., 1989].

2.3.2 Normal Disjunctive Programs

As the case of Horn logic programs, positive disjunctive p~ogr~ms are extended to
normal disjunctive programs by incorporating default ncgat1on m a program.

A normal dtS;unctive program is a finite set of clauses of the form:

At v ... vAt +- 8
1

/1. .•. /1. Ern /1. notBrn+l /1. •.. /1. not Bn (I;:::: 0, n ;:::: m > 0) (2.6)

h A 's and B 's are atoms and not is the negation as-failure operator. A clause is w ere , J 1 ·
called a (normal) disjunctive clause if its head contains more than one ~~om; ~~ terw~se
it is a normal clause. A normal disjunctive program rPduccs to a posltlV<' ~ISJunctlve
program in the absence of default negation, and reduces to a normal log1c program

in the absence of disjunctive clauses. . . .
The notions of models and consistent/inconsistent normal d1sJunct1ve programs

are defined in the same way as those of normal logic programs. T.h~ sta~le model se
mantics of normal logic programs is directly extended to normal diSJunct 1ve programs

as follows. ll d (d · t')
Given a normal disjunctive program P, an interpretation I is ea e. ~ t~J~nc t~e

stable model • of p if I coincides with a minimal model of the pos1t1ve d1SJunct1ve

program P1 (called a reduct) defined as

pi = { A
1
v ... v At +- B

1
/1. ... /1. Brn 1 there is a ground clause of the form (2.6)

from P such that {Ern+~> ... , Bn} n I= 0 }.

The disjunct1ve stable model semantics [Przymusinski, 199\a; Gelfond ~~d Lifs
chitz 1991] is defined as the set of all stable models of the program. By dcfinttJOn, the
disju~ctive stable model semantics reduces to Gelfond and Lifschitz's stable model ~e
mantics in normal logic programs, and also ~oin~idc:;~wit~ the perfect model semantiCS

in stratified disjunctiVe programs [Przymusmsk•, 19~8a].
4We use the term disjunctive stable models when we dbtmgui~h them from stable models of

normal logic programs Otherwise, we samply say stable models. . .
5The definition of a stratified disjuncttV(' program is a direct cxtPnsaon of that of a stratafied logac

program.

26 CIIAPI'ER 2. PRELIMISAIUES

The notion of support('d models is also extended to disjunctive programs. Givt•n a
normal disjunctive program P, a model M of Pis suppoded if for any atom A included
in M, there is a ground clause of the form (2.6) from P such that A = A, (1 $ 1 ~ I)
and A1 satisfies the body of the clause. Stable models of a normal disjunctive program
arc minimal and supported models.

Like normal logic programs, there are consistent normal disjunctive programs
having no stable model. :\ normal disjunctive program is called cohert.nl (rc:.p. ill·

coherent) if it has a (rcsp. no) stable model.

The well-founded semantics of normal logic programs is also extended to the dis
junctive well-founded scmanltcs [Ross, 1989b; Baral et al., 1992a] or the slatwn
a1y semantics [Przymusinski, 1990b; 1991 b] in normal disjunctive programs. Proof
procedures for normal disjunctive programs arc developed in the literature such as
[Ross, 1989b; Baral et al., 1992a; Inoue et al., 1992; Dung, 1992a; Dung, 1993;
Fernandez and Minkcr, 1992].

~ow we compare the stable model semantics approach and the well-founded se
mantics approach to normal disjunctive programs. Both the disjunctive stable model
semantics and the disjunctive well-founded/stationary semantics generalize the min
imal model semantics of positive disjunctive programs. However, there arc essential
differences between two approaches as follows.

1. The disjunctive stable model. man tics characterizes non-deterministic bchavior
of a disjunctive program in terms of multiple stable models. On the other hand,
the disjunctive well founded/stationary semantics presents the meaning of a
program by a set of ground disjunctions called a state, which is different from
classical approaches based on Herbrand interpretations.

2. The stable model ~emantics is closely related to nonmonotonic reasoning in Al.
However, the well-founded semantics is based on the three-valued logic, and in
order to relate the well-founded semantics to nonmonotonic formalisms, three
valued extensions of the formalisms are needed [Przymusinski, l99lcl.

3. The stable model S('mantics is also known to be useful to characterize abduc
tive reasoning in A I, while the well-founded semantics is not usually used for
abduction due to its deterministic feature.

Thus, approaches based on the stable model semantics still stay in cla:;sical two
valued logic and arc u~eful to characterize commonsense reasoning in disjunctive
programs. With these rea:;ons, we take the stable model approach rather than the
wdl-founded model approach in this dissertation.

2 .. 3. DISJUI\'CTIVE LOGIC PROGRAM.\11:\'G

2.3.3 Ex tended Disjunctive Programs

In disjunctive programs, classical negation is also indudNI under the framework of

extended disjunctive programs.

An extended dtsjunctwe program is a finite set of clauses of the form:

£
1
v ... v L1 +- L1+l 1\ .. • 1\ L,. 1\ not Lm+t 1\ ... 1\ not L,. (n ~m~ I~ 0) (2.7)

where each L, is a literal. A clause is called an (extended) disjunctive clause if its
head contains more than one literal; otherwise it is an cxtt•ndcd clause. An extended
disjunctive program containing no not is called a positive c.xtend.e~ dtsj.uncllve pro
gram. An extended disjunctive program reduces to a normal dtsJ~ncttve program
when all L, 's are atoms, and in the absence of disjunctive clauses tt reduces to an

extended logic program.
The answer set semantics of extended logic programs is directly extended to ex -

tended disjunctive programs as follows.
Let p be a positive extended disjunctive program and Lp be the set of all g_r~und

literals from the language of P. Then, an answer :;et of P is defined as the nuntmal

subset S of Lp satisfying the conditions:

1. For each ground clause L1 V ... V Le+- Le+t/\ ... 1\L,. from P, {Le+t, · · ·, L,.} <;; 8
implies L, E S for some i (1 ~ i ~ 1). In particular, for each ground clause

+- L 1 1\ ... 1\ Lm from P, {Lt. ... , Lm} ~ S; and

2. IfS contains a pair of complementary literals L and -.L, then S = Lp.

~ext, let p be an extended disjunctive program and S C Cp. The reduct P
5

of

P with respect to S is defined as

pS = { L
1
v ... v Le +- Lt+t 1\ ... 1\ L,. I there is a ground clause of the form (2 .7)

from P such that { Lm+l> ... , L,.} n S = 0 }.

Then S is an answer set of P if S is an answer set of P 5
. The notions of

consistent/contradictory answer sets, and coherent/incoherent programs are corre
spondingly defined as in extended logic programs. A positive fonn of an extende_d
disjunctive program is also defined in the same manner as that of an extended logtc

program. . .
Proof procedures for extended disjunctive programs are stud1ed m [Inoue et al.,

1992; Ben-Eliyahu and Dechter, 1992].

28
CllAPTEU 2. PREUMIJ\ARIES

. In_ extended disjunctive programs, incomplete information is expressed by dis -
JUndtons as W<'ll as classical negation. In this sense ext"nded d' . · t'

ro . d (· 1 · • ' ISJunc tve programs
P \ J e a au ~ general framework for r<•prescnting commomense knowledge.

. Note that tn ~x~cnd~d disjunctive programs, tlw non contrapositive feature of
extended clausl.'s ts mhented from extended logic programs ~lorrover the m ·
of the con t' v · l 'ff ' eamng nee IVC IS< I erE>nt from classical logic For insta11ce tl1e cl v · 1 · • . · · • · ause a -.a ._
IS a tauto ogy tn 1ts class1cal sense, then the programs { b ._ a a v } d
{b._ } · • -.a<- an

a are equ1valc>nt under first-order logic. However, the first program has t
an wer sets {a b} a d { } h 1 h wo
. • • n -.a , w 1 e t e second one has the empt} answer set. This
1~ because an answer set represents a sc•t of literals possibly derived from a program
t en JO the abs<'nce of the clause a V -.a -. there IS no way to deri\ e a nor -.a m,
the second program. In this sense, the clause a V -.a._ is not a tautolo an
Hence, another connective "I" instead of V is often u ·ed . . I' gy Y more.

· 1 . s tn some 1terature, but for
notatlona conventence we use the classical connective V in this dissertation.

2.4 Fixpoint Theory

Fixpoint t~cor~ ~escribes dcnota.tional aspects of programming languages. In lo ic
progra.mmmg, 1t ts usually used to characterize declarative semantics of logic g
gra._ms. For a. dcfini~e logic program, van Emden and Kowalski [1976] introduc:~oa.
closure operator wh1ch acts over the lattice of IIcrbrand intt~rpretations 2?-ffJp.

Given a defi~ite _logic program P and its interpretation I, an immediate conse-
quence operator Tp 1s defined as the mapping Tp . 2?-ffJp ?'HBp h h

· -t - sue t at

Tp(J) = { A I A- Et 1\ ... 1\ Em is a ground clause from P

and {B, ... ,Bm} ~I}.

The ordmal powers of Tp ts defined as:

Tp T 0 = 0,
Tp T n + 1 = Tp(Tp T n),
Tp T vJ = u.,<...,TP T n,

wh~rc n is a succ<-ssor ordinal and w is a limit ordinal. Then the ftaiil jiJpoint ofT
1s g1vcn by 1'p T w. P

Van Emdcn and Kowalski have shown I hat the above lea<;t fixpoint coincides with
the least_ Hcrbrand model of a definite logic program P. The result is extended b
Apt, Dlalr and Walker [1988], in their papt:r they developed a nonmonotonlc fixpoin~

2.5. COMPUTATIOS.-\L COMPLLXIJY 29

operator and its 1teratwe fixpoint Cor logic programs with IH'gation. Przymusinski
[1988a] showed that Apt et al.'s fix point characterizes tiH• perfect model of a stratified
logic program. Further extensions of fixpoint semant1cs for normal logic programs arc
studied for the stable model semantics [Sacca and Zaniolo, 1990: Fages, 1991] and the
well-founded semantics [van Gelder, 1989. Przymusinski, 19-9a; van Gdder c>t al.,
1991].

In the context of disJunctive programs, Minker and Raja'it'kar [1990] introduced a
new fixpoint semantics for positive disjunctive programs. They first introduced the
extended Herbrand base as the set of all ground positive d1sjunctions from a pwgram,
and defined the notion of a. state as a set of positive disjunctions from the ext<'nded
base. Then they developed a fixpoint operator which operates on states and showed
that its least fixpoint contains disjunctions which are true in every minimal mod<'l of
a program.

Such a. state based fix point semantics is extended to stratified disjunctive programs
!Rajasekar and Minker, 1989] and normal disjunctive programs !Baral et al., 19CJ2a;
Przymusinski, 1990b; Przymusinski, 199lb]. Yet other fixpoint semantics arc also
presented in the literature such as !Ross and Topor, 1988; Re<'d et al., 1991; Fernandez
and Minker, 199lb; Decker, 1992; Inoue and Sakama, 1992]. Detailed discusston on
the fixpoint semantics of disjunctive programs is presented Ill Chapter 3.

2.5 Computational Complexity

In this section, we briefly review ba-;ic concepts of complex1ty tht'Ory. More on the
subject can be found in [Garey and Johnson, 1979; Johnson, 1990]

Complexity theory is used to class1fy problems according to their intrinsic corn·
puta.tiona.l difficulties. For classification, some complexity classes are introduced to
characterize problems. In this dissertation, we are mawly concerned with dcc1sion

problems which admit boolean answers (}cs/no) .
The class P represents the set of all dt•cision problt•ms solvable by ddcnruniiilic

Turing machmes m polynom1al tim<' A problem in this class is called tractable or
effictcntly sol va.blc.

On the other hand, the class ~p represt'nts the set of all dcx:ision problems solvable
by non-deterrrnmsttc Tunng machinr.~ in polynomial time. The class co-~P is the set
of problems whose complements are in :\P Apparently, the class P is included both
in the class ~p and in co-NP. The quest1on wht'ther this indusion is strict n•mains
open, but it is usually considered that P.f;-,'P.

30 CIIAPTER 2. PRELIMINAIUES

The polynomial hierarchy consists of class<.•s ~f, ~f. and IIf dt>fined as follows:

... ~P - NPEi
L.k+l - ,

In particular, ~f==P, Ef==NP, and ITf==co NP.

In the above, ~f+t (resp. Ef+t) is the set of problems solvable dcterministically
(resp. non-deterministically) in polynomial time with an oracle for the problems in
Ef, while ITf+t consists of the complements of Ef+,. An oracle is considered as a
subroutine without cost, that is, it is decided in unit time for any problem.

In the polynomial hierarchy, the relations ~f <;;; Ef n nf and }:f U nf ~ ~f+,
hold. Problems included in the upper levels of the hierarchy arc more difficult to
solve than those in lower levels unless the polynomial hierarchy collapses.

A problem is called C-hard if every problem in a class C is efficiently reducible to
the problem by a polynomial-time transformation. The C-hard problem is also called
C-complete if the problem itself belongs to the class C. For instance, checking the
satisfaction of any prepositional theory is an NP-complete problem.

When we discuss the complexity issue of logic programming, (finite) prepositional
logic programs are usually assumed. This is because in the presence of function
symbols, a program containing variables has the infinite set of ground clauses, then
checking its satisfiability is undecidable even in the case of Horn logic programs.6 For
prepositional Horn logic programs, deciding whether a ground atom is derived from a
program is tractable. This is also the case for the decision problem under the perfect
model semantics of prepositional stratified logic programs [Apt et al., 1988].

On the other hand, when a propositional logic program has multiple canonical
models, the computational complexity of the program is usually characterized by the
following three decision problems.

ExiStence: Deciding the existence of a canonical model of a program.

Set-Membership: Deciding whether a ground atom is true in some canonical mode-l
of a program.

Set-Entailment: Deciding whether a ground atom is true in every canonical model
of a program.

6 For programs containing vanables, their undecadabilities are characterized by the anlhmelac
h1erarchy of recursion theory. But we do not discuss such recursion-theoretic characterizations in
the dissertation.

2.5. COMPUTATIONAL COMPLEXITY
31

The set-membership problem also characterizes en dulous reason111g, wh~le the
:.et-entailment problem characterizes skcptical reasonmg . For example, ~he e)ostence
problem and the set-membership problem for the stable m~del semanlt~s o·f. nor':'al

· b th 1'\P complete while the set-c•ntatlment problem ts eo:\ P-logtc programs arc o 1 - • • • • bl
complete [Marek and Truszczynski, 1991a; 1?9lbJ. In <b~~uncttve prograt~ls.' pro ems
become harder than normal logic programs m general. 1 he set-.membershlp pr~blem
for the disjunctive stable model semantics is Ef-cornplete, while the set entailme~t
problem is nf complete. It is known that similar results also hold for nonmonotomc

logics [Gottlob, 1992!. . . . [
For surveys on the complexity issues tn logtc programmmg, sec Schhpf, 1992b;

Eitcr and Gottlob, 1993a; Cadori and Schaerf, 1993!.

32
CHAPTER 2. PRELI.\11.\'ARIES

Chapter 3

Possible Model Semantics for
Disjunctive Logic Programs

In this chapter, we introduce a new declarative semantics of disjunctive programs
called the poss,ble model semantics. The possible model semantics is an alternative
theoretical framework to the classical minimal model semantics and provides a flexible
inference mechanism for inferring negation in disjunctive programs. The possible
model semantics is characterized by a new fixpoint semantics of disJHnctive programs.
We also present a proof procedure for the possible model semantics and show that
the possible model semantics has an advantage from the computational complexity
point of view.

3 .1 Introduction

Traditionally, the declarative semantics of logic programming and deductive databases
has been studied based on the notion of minimal models. For instance, the ltast
Herbrand model semantics for Horn logic programs (van Emden and Kowalski, 19761,
the prefect model semantzcs for stratified logic programs (Przymusmski, l988a], and
the stable model semantics for normal logic programs [Gelfond and Lifschitz, 1988]
are all minimal models. The minimal models reflect the so-called Occam 's razor such
that "only those objects should be assumed to exist which are min1mally required by
the context". Such a princzple of minimality plays a fundamental rol<• in the area of
not only logic programming but also nonmonotonic na.soning in artificial intelligence
[McCarthy, 1980]. Therefore, it has be<>n recognized that the principle of minimality is
one of the most basic and indispensable criteria that each semantics for commonsensc
reasoning should obey [Schlipf, 1992a].

33

POSS!DLE MODJ~L SE.\JANTICS

This ,is ab~ the case i_n_ the ~O~ltext. of disjunctive programs, namely, the minimal
model scmanlu:.~ for pos1.t1ve diSJunct1vc programs [~1 inker 19\1')} d th i
f" t bl d . ' _,_ an e t '·'June
~v~f s ~ e :;;.fcl St manllCsJ· for normal disjunctive programs [Przymusinski 1988b·
~~ on an ·~~_eh t~, 19~1 are both minimal. llowev<·r, it has also bC'cn poi~ted 011;

~ at sucl.l a lllllllmaltsm IS not always appropriate in a theory <"Ontainin inddimt<•
~~~~OrJ~i\llon. R_oss ~nd?opor [198S) have firstly noticed this problem 111 th; context of 
111 ernng negat1on m disJunctive programs, They argue th·Lt wh<' · r . 
from a J" . t' < n OOC lnJers negatiOn 
~ .. I < I~Jun~ IVe program, one should be cautious to interpret disjunctions inc/u. 
... tt y ~at er t lan _crrlu!>wdy In fact, the minimal mod,•! semantics minimiz<':> truth 

~xt.~ns_~~:~s of predicates as muc~ as possible, then it usually interpn•h disjunctions 
<X< us1vc Y and maxm11zes rwgat 1\ c 1nformat10n Inferred from a p . r .· . d' . . roglam. 

n positive ISJUnCtlve programs, Minker [1982) has extended Reiter's C\V A to the 
gt.neralt::ed closed world assumpllon (GC \V-\) On th th h d R ! 19 '8} l . . e o er an ' oss and Topor 

hl:) h lave proposed an altNnatne rule called tht• disjunclwe database: rule (DDR) 
w 1c turns out to be equivalent to the k . I' d ' ' 
(\\'GC\\'A) . d d wea g(nera 1ZC closrd wol'id assumption 

_m epen <'ntly proposed by Raja.c;ekar et al. [1989). 
an Comparmg these tw~ :ules,_ the GCWA is ba.o;ed on the minimal model semantics 

d usually mterprets diSJunctlons exclusively, whlle the DDR and the \\'GC\\'·\ 
wt•aker than th GCW \ d · . . . art> 

d e • an lllterpn•t d1SJunct1ons inclusively. Thus, both the CC'WA 

:: i~~:r:~YC:ffiA (ortDfDR) fairhly extend the CWA, but the problem is that thev 
' er(rt rom eac other In fact th b f · f k I . , Ill c a sence o a smgle uniform 

. rame~or ~ ~ne 1as to use th<'Se separate rules in order to treat both e 1 · , d 
1ndus1ve d 1s1unct'o th X<" usne an 

I rr . . I ns m_ e same program. Such a situation actually happens in our 
rea I e l:i1tuat1ons. For mstancc, consider the program: 

land animal V aquatic+- animal, 

biped V quadruped+- land-animal. 

amph1bum +- land-amma/1\ aquat1c, 

in which the dis1· t' · 1 fi I . unc 1011 m t le rst c a use 1s mclus1ve while the d' · r · h 
S<'<'ond clause is <'xclusive A h . . , . ISJUn<" Ion In t e 
h b d d

. . . · s anot er example, a d1s]unct1ve clause possibly contains 
Y n ISJunctlons such as· 

Sunday V national-holiday V weekday +- calendar days, 

in which SundayVweekd · 1 · h' 
'I' . ay IS cxc USIV<', w lie SundayVnatwnal-hohday is inclusive 

o treat such kmds of prog . . d . · 
two kind f d' . . rams, \\ < nee a smgl<' framework which can distinguish 

so ISJunctlons. Another point is that Ross and Topor, and RaJasekar et al. 

POSITIVE DTSJl'.\'CTIVE PROGRA.\1S 35 

have provided a rule for inferring negation in inclusive disjunctive programs. however, 

they concern only negative information in a program and do not provide an) model 

theoretical meaning for inclusive disjunctive programs as a <"Ounlcrpart of the minimal 

model semantics. 

In this chapter, we present an alternative approach to the declarative semantics 

of disjunctive programs. We first introduce a new :semantics call<'d the possrb/,. modd 

semantics for disjunctive programs. In contrast to the classical minimal model se 

mantics, the possible model semantics cons1ders not only min1mal models but also 

certain kinds of non-minimal models in a program. Due to its non-minimal feature, 

we show that the poss1ble model S<'mantics enjoys several mteresting propert1es Es 

pecially by treating both inclusive and exclusive disjunct10ns un1formly m a program, 

it can provide a flexible mechanism for inferring negation in a program. ~ext we 

present a new fixpoint semantics of disjunctive programs. We mtroduce a mapping 

operating over sets of interpretations and show that its fixpoint closure character· 

izes the possible models of a disjunctive program. We also develop an algonthm to 

compute the possible model semantics in normal disjunctive programs which is based 

on a bottom-up model generation proof procedure. We finally discuss the computa 

tional complexity of the possible model semantics and show that the possible model 

semantics has a computational advantage <"Ompared with other minimal model based 

semantics. 

The rest of this chapter is organized as follows In Section 3.2, we introduce the 

possible model semantics for positive disjunctive programs and present its properties. 

The possible model semantics is also extended to normal disjunctive programs in Sec

tion 3.3. In Section 3.4, we propose a new fixpoint semantics of disjunctive programs 

to characterize the possible model S<'mantics. A proof procedure for computing pos 

sible models is given in Section 3.5. In Section 3.6, W<' discuss the computational 

aspect of the possible model semantics. Section 3. 7 presents detailed comparisons 

with related work, and Section 3.8 summanzes this chapter. 

3 .2 Possible Model Semantics for Positive Dis
junctive Programs 

In this section, we first consider positive disjunctive programs, that is, disjunctive 

programs containing no default negation. 



36 POSSIBLE MODEL SEMA.VTICS 

3.2.1 Negation in Positive Disjunctive Programs 

As presented in Section 2.3, Reiter's CWA is not useful in the context of disjunc. 
tive programs. Then, for inf<'rring negation in positive disjunctive programs, Reiter's 
CWA is mainly extended in two ways: one is Minker's generalized closed world as 
surnp~ion (GCWA) and the other is Ross and Toper's dtsjunctive database rule (DDR) 
or RaJasekar et al.'s weak generalized closed world assumption (WGCWA). 1 We first 
review definitions and properties of those two frameworks. 

Given a positive disjunctive program P, let us denote by MMp the set of all 
minimal models of P. Then the GC\VA is defined as follows. 

Definition 3.1 ([Minker, 1982)) Let P be a consistent positive disjunctive program. 
Then GCW A(P) is defined as: 

GCWA(P) ={...,A I A E 1{8p and A(/ I Cor any I E MMp}. o 

On the other hand, the WGC\VA provides a weaker form of closed world reasonmg 
in positive disjunctive programs as follows. 

The Horn transformalton [Ross and Topor, 1988) of a positive disjunctive program 
P is defined as: 

Horn(P) = {A, +- B1 1\ ... 1\ Bm I A1 V ... V A,+- 8 1 1\ ... 1\ Bm E P 

and l $ i $ l, l 2: 1 } . 

Not~ here that Horn( P) is always consistent since it does not contain integrity 
constratnts. 

Definition 3.2 ({Ross and Topor, 1988; Rajasekar et al., 1989)) 
Let P be a consistent positive disjunctive program and H orn(P) be its Horn transfer· 
mat10n. Let MHorn(P) be the least Herbrand model of llorn(P). Then WGCW A(P) 
is defined as: 

WGCWA(P) ={-.A I A E 1{8p and A(/ MHorn(P)}· 0 

Properties of the GC\VA and the WGCWA are as follows. 

Theorem 3.1 ([Minker, 1982: Ross and Topor, 1988; Rajasekar et al., 1989)) 
Let P be a consistent postttve disjunctive program and A be a ground atom. Then, 

1 
According to [Raj~kar et al • 1989; Lobo et al., 1992). the DDR and the WGCWA are equiv

alent , Then we use the term WGC\\'A hereafter. 

POSITIVE DISJUSCTIVE PROGRA.\1S 

(i) P U GCW A(P) is consistent. 
P U WGCW A(P) is consist<'nt. 

(ii) PI= A iff P u GCW A(P) I= A. 
PI= A iff P U WGCW A(P) f= A. 

(iii) P ~ P' does not imply GCWA(P') ~ GCW A(P). 
p ~ P' implies lt'GCW A(P') ~ WGCW A(P). 

(iv) WGCW A(P) ~ GCWA(P). 

37 

(v) For a definite logic program P, OCW A(P) = WGCW A(P) CW A(P). 0 

That is, (i) both GCW A(P) and WGCW A(P) are con~n~ltnl with P, (ii) positi.ve 
facts proven from pare tnvariant, (tii) the GC\-\' A (resp. \'\'GC\\'A) is non-decre~z.ng 
(resp. decreasing), (iv) the GC'WA is ~tronger than the \\'G('\V:\, and (v) for defimte 

logic programs each rule reduces to the C\\'A. 

Example 3.1 Let P be the program: 

{ a V b V c +-, d +- a 1\ b, e <- b 1\ c, <- b 1\ c. } 

where MMp = {{a},{b},{c}} and MHorn(P) = {a,b,c,d,t.}. Then, CCWA(P)
{...,d,...,e}, while WGCWA(P)- 0. 0 

In the above example, the CC\\'A interprets each disjunction cxcluszvcly, while 
the WGCWA interprets them incltl!iivcly. Then, GCW A(P) excludes the inclusive 
interpretation of a v b and infers ...,d from the program. On the other hand, the in· 
tegrity constraint +- b 1\ c inhibits an inclusive interpretation of b V c, neve~theless, 
WGCW A(P) cannot infer ..... c. This is because the WGC'WA does not constder the 
model theoretical meaning of a given program, and ignores the eff<•ct of integrity con
straints in a program. In fact, Muorn(P) is no longer a model of P. Generally spe~king, 
the GCWA is too strong to interpret inclusive disjunctions, whil~ the WGCWA tS too 
weak to treat exclusive disjunctions. Then, to treat both types of dtsjunctions in a 
program, one has to use two different rules in the same program. . 

To improve such a situation, in the next section we introduce a new declarattve 
semantics called the posstble model semantics, which can distinguish two types of 

disjunctions uniformly in a program. 



38 POSSIBLE ,\fODEL SEMA.\TICS 

3.2.2 Possible Model Semantics 

A disjunctive pr~gram is considcrcd to represent a set of possible facts that might 
have been true m the actual world. The possible model semant1cs is intended to 
formulate this situation. 

Give~ a positive disJ~nctive program P, a spilt program is defined as a ground 
Horn log1c program obtamed from P by replacing each ground disjunctive clause of 
the form: 

A, V ... V At +- B, 1\ ... 1\ Bm 

with the following ground definite clauses (called spltl rlauses ): 

A, +- B, 1\ ... 1\ Bm for every Ai E S 

where S is so~e.non·emp~y subset of {A~. . ... At}. ~ote that cvery ground Horn 
clause from P IS mcluded m any split program of P. Then, a po$slble model of p is 
defined as the least Ilerbrand model of any split program of P. The set of all possible 
models of P is denoted by PM p. 

Example 3.2 Let P be the program: 

{aVb+-, bvc-, +-bl\c}. 

Then the split programs of P arc 

{a+-, 

{a+--, 

{b-. 
{b +-, 

b +-, +- bl\c}, 

c +-, +- bAc}, 

+-bl\c}, 

c+-, +-bAc}, 

{a+-, b+-, c+-, +-bl\c}. 

~ince the last two split programs are inconsistent, the set of all poss1ble models of p 
Js'PMp={{a,b},{a,c},{b}}. 0 

Possible models have the following properties. 

Proposition 3.2 A consistent positive disjunctive program has at least one possible 
model. 

Proof- Since a consistent pos1tive disjunctive program has a consistent 
split program, the result immediately follows. o 

POSITIVE DISJ(.jf\CTIVE PROGRAAIS 39 

Proposition 3.3 A possible model of a positive disjunctive program P is a modcl 
of P. 

Proof: Let M be a possible model of P such that i\.1 is thc IE•ast Her brand 
model of a consistent split program P,. Then, for each clause C' : A, +-

81 A ... A Bm in P., thcr<• is a corresponding clause C : A1 V •.. V At +-

81 A ... A 8m in P where 1 S t S I. Since J/ satisfies each C'. it also 
satisfies C. Also each integrity constraint in P is includt•d in P. and is 
satisfied in M. Hence M is a model of P. 0 

The notion of possible modcls is different from minimal models. In fact. in Exam· 
pie 3.2, {a, b} is a possible model, but not a minimal model. The intuitive meaning 
of the possible model is that each atom iucluded in a possible model has its possible 
justification in a program. Thus, both inclusive and exclusive interpretations of dis· 
junctions are considered whenever there is no integrity constraint to inhibit inclusive 
interpretations. The following property directly follows from tht: definition. 

Proposition 3.4 A possible model is a supported model. 0 

Note that the converse of the above proposition does not hold m gt"neral. For 
example, {a} is a supported model of the program { a V b +- a } , but not a possible 
model. The following relationship holds between possible models and minimal models 
of a program. 

Proposition 3.5 Let P be a consistent positive disjunctive program. Then the set 
of all minimal elements from 'PMp coincides with M;vtp. 

Proof- Let M be a minimal model of P. Then, for each clause A1 V ... V 

At +- B 1 A ... A Bm in P, {81, ... , Bm} ~ M implies A, E .\f for some 
i (1 Si S 1). In this case, there is a split program P, of P which contains 
A, +- B 1 A ... A Em· Since ,\1 satisfi(•s each integrity constralllt in P, M IS 

the least Herbrand model of the consistent Horn logic program P., ht•nce 
a possible model of P. Thus, MMp is includt•d in 'PMp. On the other 
hand, since each possible model is a model of P by Proposition 3.3, the 
set of all minimal elements from P/vtp coincides with ,\.-t).tfp. D 

Thus the set of minimal models is a subset of the set of posstble models. In 
particular, a definite logic program has a unique possible model which is the least 
Herbrand model of the program. The above propos1tion implics that as for the infer
ence of positive facts, the posstble model semantics coincides with the minimal model 
semantics. 



40 POSSIBLE MODEL SEMANTICS 

Theorem 3.6 Let P be a consistent positive disjunctive program. An atom A is 
true in P iff A is included in every possible model of P. 0 

::--:ote that possible models depend on the syntax of a program. For instance, two 
pr~grams { a V b .-, a ._ } and { a .- } arc equivalent under first-order logic, 
while the first program has the possible model {a, b} which is not a possible model 
of the second program. This is because the first program is intended to specify some 
indefinite information about b, while it is not the case in the second program. Such 
a distinction is in fact meaningful in knowledge representation. Suppose a situation 
like that: 

There is a visitor at my house whom I do not know. I am living with 
my parents so that I guess either my mother or farther must know him: 
know( mother, visitor) V know(father, uisztor). After a while, mother 
comes back and she actually knows him: know( mother, v~sitor ), and 
at this moment the possibility is open that my father's knowing him 
too. However, if we replace the previous belief know( mother, vzsztor) V 

know(! at her, visitor) with know( mother, visitor), the negation 
-.know(! ather, visitor) is assumed under the closed world assumption. 

Thus, logically equivalent sentences do not necessarily have the same meaning 
from the viewpoint of knowledge representation Generally speaking, the syntax of 
a program plays an important role in logic programming to spcc1fy our intended 
knowledge, then it appears natural that the possible model semantics also shares 
such syntax-dependent properties. 

Next we consider the inference of negative facts under the possible model seman
tics. Under the possible model semantics, negation is defined as follows. 

Definition 3.3 Let P be a consistent positive disjunctive program. Then the poss,b/e 
world assumption (PWA) of P is defined as: 

PWA(P) ={-.A J A E h8p and A rf. I for any I E 'PMp}. o 

Theorem 3.7 Let P be a consistent positive disjunctive program and A be a ground 
atom. Then, 

(i) P U PW A(P) is consistent. 

{ii) PI= A ilf P U PW A(P) I= A. 

POSITIVE DISJUNCTIVE PROGRAMS 

(iii) P ~ P' does not imply PW A(P') ~ PW A(P). 

(iv) For a definite logic program P, PlVA(P) = ClV A(P). 

Proof: (l) Since P is consistent, it has a minimal model M which is 
also a possible model of P. Then, by definition, M is also a model of 
PUPW A(P), hence the result follows. (ii) The result directly follows from 
Theorem 3.6. (iii) Let P = { avb .-, c._ aAb} and P'- PU{ ~ aAb }. 
Then PW A(P) = 0, while PW A(P') = { -.c}. (iv) For a definite log1c 
program P, 'PMp contains the unique least Hcrbrand modE'l of P, hence 
the result follows. 0 

41 

The next theorem presents that the PWA is stronger than the WGCWA and 
weaker than the GCWA. 

Theorem 3.8 Let P be a consistent positive disjunctive program. Then the following 
relationship holds: 

WGCW A(P) ~ PW A(P) ~ GCW A(P). 

In particular, WGCW A(P) = PW A(P) if P U Horn(P) is consistent. 

Proof: The relationship PlV A(P) ~ GCW A(P) immediately follows 
from the fact that MMp C 'PMp. Since the least Herbrand model 
MHorn(P) of Jlorn(P) is a superset of any possible model in 'PMp, the re
lationship WGCW A(P) ~ PW A(P) also holds. In particular, Horn(P) 
is the set of all definite clauses included in the maximal split program 
of P. Then, if P U Horn(P) is consistent, Mflorn(P) coincides with the 
maximal element in 'PMp, hence the result follows. 0 

Example 3.3 (cont. from Example 3.1) Let P be the program: 

{ a V b V c ._, d ._ a Ab, e ._ b A c, .- b A c } 

where 'PMp = {{a},{b},{c},{a,b,d},{a,c}}. Then, PWA(P) implies -.e, but not 
-.d. 0 

Note that in the above example P U H orn(P) is inconsistent and lVGCW A(P) 
fails to capture the intended meaning of P. By contrast, the possible model semantics 
can infer proper negatiOn by distinguishing two kinds of d1sjunctions usmg integrity 
constraints. 

The possible model semantics was independently discovered by Chan [1993) under 
the name of the possible world semantics. In [Chan, I 993), both notions arc proven 
to be equivalent in positive disjunctive programs. 



42 

3.3 

POSSIBLE MODBL SEMANTICS 

Possible Model Semantics for Normal Dis
junctive Programs 

In this section, we extend the possible model semantics of positive disjunctive pro 
grams to normal disjunctive programs. 

The notiOn of split programs is defined in the same manner as positive disjunctive 
programs. Given a normal disjunctive program P, its spilt progrom is defined as a 
ground normal logic program obtained from P by replacing each ground disjunctive 
clause of the form: 

A1 V ... V At+- 81 1\ ... 1\ Bm 1\ not Bm+l 1\ ... 1\ not 8,. 

with the following ground normal clauses ( call<'d split clauses): 

A, +- 81 1\ ... A Bm 1\ not Bm+l 1\ ... 1\ not Bn for every A, E S 

where S 1s some non-empty subs<'t of {A1, ... ,A,}. Then, a pos~>tblt model of Pis 
defined as a stable model of any split program of P. The set of all poss1ble models of 
P is denoted by P Mp. A normal disjunctive program having at least one possible 
model is called p-coherent, otherwise it is called p-incoherent. 

The poss1ble models defined above reduce to those presented in the previous sec
tion in a positive disjunctive program. Also, possible models coincide with stable 
models in normal logic programs. The following properties hold. 

Proposition 3.9 A possible model of a normal disjunctive program P is a model of 
P. o 

Proposition 3.10 A possible modPI is a supported model. but not v1ce versa. 0 

Proposition 3.11 Let P be a consistent normal disjunctive program and ST p be 
the set of all stable models of P. Then the set of all minimal elcrn<'nts from P.\ltp 
contains ST p. 

Proof" By definition, a stable model M of P is also a stable model of 
some split program of P. Then M is also a possible model of P S1nce .'vf 
is minimal, it is also a minimal element in 'PM p. 0 

The above proposition implies that a coh<'rcnt normal disjunct1ve program is also 
p-coherent (but not vice versa, see Example 3.9). The converse of the above proposi
tion does not hold in general. That is, minimal possibl<' models ar<' not always stable 
models. 

NORMAL DISJUNCTIVE PROGRAMS 43 

Example 3.4 Let P be the program: 

{aVb+-, b+-a, c+-nota} . 

Then PMp = {{a,b},{b,c}}, and {a,b} is a minimal clement in P;\lfp but not a 

stable model of P. 0 

In the above example, { b, c} is the unique stab I<' model of P, hence t is true 
under the disjunctive stable model semantics. However, tlus IS n_otthe case ~u.ld<>r ~he 
possible model semantiCS, since there is an inclusive interpretation o~ t_he cll_sJ_unctJ.on 
{a,b} in which c is not true. Thus, in contrast to the ca~e ~f p0~1t1\·e d_1s!unct1\e 
programs, positive facts true under the possible model semantiCS (v~z: pos~t1ve facts 
true in every possible model) diffPr from those ones under the disJunctive stable 
model semantics. At the end of this subsection, we will also show the case that the 
possible model semantics implies more posit1ve facts than the disjunctive stable model 

semantics. 

;-.;0w we consider negative mference in normal disjuncti,·e programs. We first 
define an extension of the GC\VA as negation und<'r the disjunctive stdble model 

semantics. 

Definition 3.4 L(•t P be a coherent normal disjunctive program. Then G('W A~(P) 
is defined as: 

GCW A~( P) = {·A I A E 'H.B p and A f/. I for any I E ST P}. D 

Next, in order to define a suitable extension of the \\'GCW~, we introduce a 
transformation from a normal disjunctive program to a normal log1c program. 

The NLP-transfor·mation of a normal disjunctive program P is defined as: 

N LP(P) = {A; 1- 8 1 1\ ... 1\ Bm 1\ not Bm+t 1\ ... 1\ not Bn I A1 V··· V At 4-

81 1\ ... 1\ Bm 1\ not Bm+ 1 1\ •.. 1\ not Bn E P and I ~ t ~ l. l ~ 1 } · 

The NLP(P) is a direct extension of Horn(P), and .\LP~~) = ~/orn(P) holds 
for a positive disjunctive program P. For a coherent normal d1sJunct1ve program P, 

N LP(P) is not always coherent. 

Example 3.5 Let P be the program: 

{ avb-nota }. 

Then its N £?-transformation becomes 

NLP(P)...; {a~ nota, b +-nut a}. 

Here ST p = { {b} }, while ST NLP(P) = 0. 0 



44 POSSIBLE ,'vfODEL SEMANTICS 

Conversely, there is an incoherent program whose N £?-transformation h . t 
blc model. as a s a-

Example 3.6 Let P be the program: 

{aVb+-, b+-a, +-nota}. 

Then ST p = 0, while ST NLP(P) = {{a, b} }. o 

We say that a normal disjunctive program P is weakly coherent if either p or 
N LP(P) _has a stable model. Clearly, a coherent program is also weakly coherent 
but not v1ce versa. 

1 

Definition 3.5. Let P be a weakly coherent normal disjunctive program Then 
WGCW A~(P) IS defined as: . ' 

WGCWA-(P) ={-.A I A E 'H8p and A(/. I for any I EST p u ST NLP(P)} o 

This definition is natural in the sense that WGCW A~(P) t · t ·t · . ~ . res ne s 1 s negat1ve 
1_n c_rence hke ~he _WGCW~ by_ taki~g into ac~ount the stable models of N LP(P). A 
s•mllar exte_n~1on IS also g1ven m ID•x, l992a]m a different context. Note that in the 
above defimt1on, one may consider that by analogy with the WGC'·VA ·d · ST · v 1 cons1 enng 
. NLP(P} IS enough instead of ST p U ST NLP(P)· But this is not the case. For 
mstance,letP-{aVb+-, c+-nota, c+-notb}.ThenSTp={{ac} {be}} 
hence GCW A~(P) does not imply -.c. On the other hand, N LP(P) = { ~ .-:., 

1

b +-: 

~;not a, c +-not b}, then ST NLP(P) = {{a, b}} which implies -.c. Thus, without 
p, the WGCWA~ IS not weaker than the GCWA~ any more. 

The PWA is also extended in normal disjunctive programs as follows. 

~efinition 3.6 Let P be a p coherent normal disjunctive program. Then PW A~(P) 
IS defined as: 

PW A~(P) - {-.A I A E 'H.8p and A(/. I for any I E 'P Mp }. o 

Now we investigate the properties of each rule. In the following we write p F A 
(resp. P FPM A) if A E I for any I EST p (resp. 1 E 'PMp). ' ST 

Theorem 3.12 Let P be a normal disjunctive program and A be a ground atom. 
Then the follow1ng properties hold. 

.1'\0RMAL DISJtNCTIVE PROGRA.\IS 

1. (i) If P is coherent, P U GCW A~(P) is coherent. 

(ii) P f=sr A iff P u GCW A~(P) f=sr A. 

(iii) P ~ P' does not imply GCWA~(P') ~ GCW A~(P). 

(iv) For a positive disjunctive program P, GCW A~(P) = GCW A(P). 

2. (i) If P is weakly coherent, P U WGCW A~(P) is weakly coherent. 

(ii) p FST A iff p u wccw A~(P) FST A. 

45 

(iii) P ~ P' does not 1rnply WGCW A~(P') ~ WGC'W A~(P). 
(iv) For a positive disjunctive program P, WGCW 4~{P) = WGC'W A(P). 

3. (i) If P is p-coherent, P U PW A~(P) is p-coherent. 

(ii) p FPM A iff p u PW A~(P) FP\1 A. 

(iii) P ~ P' does not imply PW A~(P') ~ PW A~(P). 
(iv) For a positive disjunctive program P, PW A-(P) = PW A(P). 

Proof: 1. (i) Since P is coherent, it has at least one stable model 
and every negated atom in GC\V A~(P) is not 1ncluded in any stable 
model of P, hence P U GCW A-(P) is coherent. (ii) Any negated atom 
in GCW A~(P) is not mcludcd in any stable model Then adding such 
negative facts to P does not affect the construction of stable models. 
Hence the result follows. (iii) The GCWA- is non-decreasing s1nce the 
GCWA~ includes the GCWA (by (iv)) which is non-decreasing. (1v) Since 
stable models reduce to minimal models in a positive disjunctive program, 

the result immediately follows. 

2. (i) When P is weakly coherent, every negated atom in WGCW A~(P) 
is not included in any stable model of P and S LP(P). Hence, P U 
WGCW A~(P) is also weakly coherent. (ii) The result follows from (i). 
(iii) For the non-decreasing property of WGCW A-(P), sec Example 3.7 
(iv) Since ST p U ST NI.P(P) reduces to MMP U {MHorn(P)} in a positive 
disjunctive program P, and each minimal model in MMP is a subset of 

MHorn(P)
1 

the result also holds. 

3. (i) and (ii) follow directly from the definition. (iii) The PWA- is 
non-decreasing since the PWA- includes the PWA (by (iv)) wh1ch IS non
decreasing. (iv) Since possible models in a normal disjunctive program 
reduce to those presented in the previous section in a pos1tive d1sjunctive 

program, the result immediately follows. 0 



46 POSSJBLE .\10DEL SEMA.\TJCS 

Notice that in contrast to the WGCWA, the WGCWA ~ is non decreasing. 

Example 3. 7 Let P be the program: 

{ a V b ._ not c, c ._ d } 

and P' = Pu { d +- }. Then, STpUST..,'LP(PJ = {{a}.{b},{a,b}} and STp, U 
ST.,·LP(P'J={{c,d}}. Hence, H·GCWA~(P) = {-.c,-.d}, while WGCWA~(P') = 
{-.a, -.b}. 0 

Thus, in the presence of default negation in a program, the monotonic decreasing 
property of the WGC\\'A does not hold any more. 

For coherent normal logic programs, the three rul<•s comcide. 

Proposition 3.13 Let P be a coherent normal logic program. TIH'n, GCW A~(P) = 
U GCWA~ P) = PWA~(P). 

Proof' Fora coherent normal logic program P STpUST - ST 
I IV 1-P(P) - I'· 

Then the relation GCW A~(P) = WCC'W A~(P) holds by each definition 
The relation GCW A~(P) PW A~(P) also holds since ST P = P,\11

1 
holds for a coherent normal logic program P. o 

. T~e next theorem presents the relationship among the three rules in normal dis
JUnCtive programs. 

Theorem 3.14 Let P be a cohcrt•nt normal disjunctive program. Then, 

(i) WCCW A~(P) ~ GCW A~(P). 

(ii) PW A~(P) ~ GCW A~(P). 

Proof' Since ST P ~ ST P U ST Nt-P(P), (i) follows from defin1tions. The 
part (ii) also follows from the fact that ST p ~ P.\11 p. o 

As for the \VGCWA ~ and the P\\'A ~. there is no mdus1on relationship. 

Example 3.8 Consider the program: 

P = { a V b V c._ not d, e ._a /1. b 11. not c }. 

Th~nSTp"'"" {{a},{b},{c}},STNLP(PJ = {{a,b,c}},and WGCWA~(P) = {-.d,-.e}, 
whdePMp = {{a),{b},{c},{a,b,e},{b,c},{c,a},{a,b,c}} and PWA~(P) _ {-.d}. 
Hence, WGCW A (P) ~ PW A~(P). The converse inclusion relation does not hold 
b~ !heo~em 3.8 either, since each rule reduces to the \\'GC\\'A or the P\\'A in pos1tive 
diSJunctive programs. 0 

FIXPOINT SEMANTICS .jj 

In the above example, WGC'W A~(P) treats the disjunction a V b V c inclusively, 
then it infers -.e. Th1s is also the case for G'CW A~( P) which tr<>ats it exclus1\·cly. On 
the other hand, there is the possible mode•) {a, b, t} in which a and b arc inclusively 
true and c is exclusively false at the same time, then -.e is not inft•rred by PIVA~(P). 
This example illustrates that the possible model semantics also properly treats both 
types of disjunctions in normal disjunct1ve programs and pro\'ides the most careful 
negative inference compared with the other two rules. 

Moreover, the PWA~ can often infer proper negation even in an incoherent pro
gram. 

Example 3.9 Let P be the program: 

{avb._, b._a, <-nota, c..-notb}. 

Then STp = 0, ST,LP(PJ = {{a.b}}, and 'P}v1p = {{a.b}}. hence GCWA~(P) i~ 
not well defined, while PW A~(P) and WGCW A~(P) 1mply -.c. 0 

The above program is incoherent, but p-coherent, since {a, b} is a possible model 
of P which is not a stable model. Observing the above program, the third clause 
asserts that a should be true, which poss1bly holds by the first disjunctive clause. 
Also the truth of a implies the truth of bin the second clause, tlwn it seems natural 
to assert the falsity of c by the last clause 

As shown in the above example, the disjunctive stable model semantics often 
fails to capture the intended meaning of a program because of its minimal feature 
By contrast, the possible model semantics is well-defined whenever a stable model 
exists, and is often useful than the disjunct1ve stable model s<'mantics thanks to its 
non-mimmal nature. 

3.4 Fixpoint Semantics 

In this section, we present a new fixpoint semantics for d1sjunctJve programs to charac
terize the possible model semantics presented in the previous sections. We first give 
a fixpoint semantics for positive disjunctive programs, and g<'n<•ralize it to normal 
disjunctive programs. 

3.4.1 Fixpoint Semantics for Pos itive Disjunctive Programs 

In a definite logic program, van Emden and Kowalski [1976) mtroduced a fixpoint 
operator which computes the definite consequences of the program. However, the 



48 POSSIBLE MODEL SEMANTICS 

situation becomes more complicated in the presence of indefinite consequences in 
disjunctive programs. In order to characterize such non·detcrrninistic behavior of 
disjunctive programs, we first introduce a closure operator which operates over the 
lattice of sets of Herbrand mterpretations 22H

11
p. 

Definition 3. 7 Let P be a positive disjunctive program and I be a set of interpre· 
tations. Then a mapping Tp : 22'HIIp -+ 22'HIIp is defined as 

Tp(I) = U Tp(I) 
lET 

where the mapping Tp : 2HBp -+ 22Hnp is defined as follows: 

l 
0, 

Tp(I) = { J I 

if {B., ... , Bm} s I for some ground integrity constraint 
+- B1 A ... A Bm from P; 

for each ground clause C, : A1 V ... V At, +- 8 1 A ... A Bm, 
from P such that {81 , ••. , Bm.} sI, 

J = I U Uc, {A1 } (1 $ j $1,) } , otherwise. 0 

Thus, Tp(I) is the set of interpretations J's such that for each clause C, whose 
body is satisfied by I, I is expanded into J by adding one disjunct A1 from the heads 
of every such C,. In particular, if I does not satisfy an integrity constraint from P, I 
is removed in Tp(I). 

Example 3.10 Let P be the program: 

{a V b +- c, d +- c, c.-, +-a Ab}. 

Then, Tp( {c}) = { {c, d, a}, {c,d, b}} and Tp( { {c,d, a}, {c, d, b}}) = { {c,d, a}, {c, d, b}, 
{c,d,a, b} }. 0 

Definition 3.8 The ordinal powers of Tp are defined as follows: 

Tp T 0 = {0}, 
Tp T n + 1 == Tp(Tp T n), 
Tp T w = Uo<w no::;n<w Tp T n, 

where n is a successor ordinal and w is a limit ordinal. 0 

The above definition means that at the limit ordinal w the closure retains interpre-
tations which arc persistent in the preceding iterations. That is, for any interpretation 
I in Tp T w, there is an ordinal o smaller than w such that for every n ( o $ n < w ), 

I is included in Tp T n. Such a closure definition is also used in [Fages, 1991; 
Teusink, 1993a] for computing stable models of normal logic programs. 

FIXPOINT SEMANTICS 

Theorem 3.15 Tp T w JS a fixpoint. 

Proof: When I E Tp T w, suppose that there is no interpretation J in 
Tp T w such that I E Tp( {J} ). In this case, for any o there JS some 

n (o $ n < w) such that J is not included m Tp T n. Then I f/. Tp T 
n + 1. This contradicts the fact that I E Tp T w. Thus, J E Tp T w, so 
I E Tp(Tp T w). Conversely, if I E Tp(Tp T w), there is an interpretation 

J in Tp T w such that I E Tp( { J} ). Then J is m eluded in any Tp T n for 
o $ n < w by definition. Thus I E Tp T n for any o + I < n < w. Hence, 

I E Tp T w. o 

Example 3.11 (cont. from Example 3.10) Given the program P, it becomes 

Tp T 1 = { { c}}, 
Tp T 2- { {c,d,a}, {c,d, b} }, 

Tp T 3 = { {c,d,a}, {c,d, b}, {c,d,a, b}}, 

Tp j4 = {{c,d,a},{c,d,b},{c,d,a,b}}. 

where Tp T w = Tp T 3. 0 

49 

In the above example, the interpretation { c, d, a, b} in Tp T 3 is pruned in Tp T 4 
by the integrity constraint +- a Ab, while the same mterpretation is also generated 

from {c,d,a} and {c,d,b} in Tp j 3, hence {c,d,a,b} remains m Tp T 4. . 
By definition, the fixpoint closure presented above exists for any ~rogram an.d IS 

uniquely determined. Intuitively, the fixpoint characterizes a set of mterprctat10ns 
which are "generated" in a program by starting from the empty interpretation. Next 
we show that the fixpoint closure in fact contains what we want, i.e., the set of all 

possible models. 

Lemma 3.16 Let P be a positive disjunctive program. Then T is a model of P iff 

IETp({I}). 

Proof: I is a model of P 
iff it satisfies integrity constraints and for each clause A1 V ... V At +-

B1A .. . ABm in P, {B., ... , Bm} s I implies A, E !for some A, ( 1 $ i $I) 

iff I E Tp({I}). 0 

Let p.(Tp j w) = { I I I E Tp T wand I E Tp( {I}) }. Then, by Lemma 3.16, 
p.(Tp j w) represents the set of models of P which arc included in the fixp.oint clos~re. 
Also let min(I) = {I E I 1,~ J E I such that J C I}. Then the followmg relat10ns 

hold. 



50 POSSIBI.E .\JODEL SE.\fAVTICS 

Theorem 3 .17 L<•t P he a positive disjunctive program. Then, 

(i) PMp = p.(Tp T w). 

(ii) /vtMp = min(J-t(Tp T w)). 

Proof: (i) I is in Jt(Tp T w) 
iff I is included in Tp T wand is a model of P (by Lemma 3.16) 
iff each A, in I is included in the derived head of a ground clause A 1 V 

... V At +- 8 1 1\ ... 1\ Bm { 1 :5 i :5 l) in P and I sal isfies every integrity 
constraint in P 
iff I is the least llcrbra.nd model of a consist<•nl split Horn logic program 
P. of P and each A, in I is derived by the split clause A, +- E 1 1\ ... 1\ IJ.,. 
in P. 
iff I is in P/vtp. 

{ii) The result follows from (i) and Proposition 3 .. 1. 0 

Corollary 3. 18 A positive disjunctive program Pis inconsistent iff p.(Tp T w) = 0. 
0 

Example 3 .12 (cont. from Example 3.11) 
Jt(Tp T w) = {{c,d,a},{c,d,b}}, which coincides with the ~et of all possiblr models 
of P. 0 

For definite logic programs, our fixpoint construction reduces to van Emdcn and 
Kowalski's fixpoint semantics !van Emden and Kowalski, 19761. 

Corollary 3.19 Let P he a definite logic program. Then Tp Tu; contains the unique 
least IIerbrand model of P. 0 

3.4 .2 Fixpoint Sem a ntics for Normal Disjunctive Progra m s 

:'-low we extend the fixpoint semantics of positive disjunctive programs to normal dis
junctive programs. To this end, we first introduce a program transformation which 
translates a normal disjunctive program into a semantically equivalent positive dis
junctive program. 2 

2The t ransformatiOn IS onginally Introduced in [lnoue et al., 1992] in a d1fferent form 

FIXPOINT SEMA."JTICS 51 

D efin ition 3 .9 Let P be a. normal disjunctive program. Then its cpistcmic transfor
malton is defined as the positive disjunctive program P" obtained from P by replacing 

each clause containing default negation: 

A 1 V ... V At +- E 1 1\ ... 1\ Bm 1\ not Bm+ 1 1\ ... 1\ not Bn (m #- n) (3.1) 

with the following not-free clauses in P": 

>.1 V ... V >.t V KBm+1 V ... V KEn +- Bt 1\ ..• 1\ Bm, (3.2) 

A, +- >., for t - 1, ... , l, (3.3) 

+- >., 1\ B
1 

for t = 1, ... , 1 and j = m + I, ... , 11, (3.-1) 

>.,+-A,I\>.k fort =1, ... ,landk=l, ... ,l. (3.5) 

In particular, each integrity constraint containing default nt•gation is transformed into 

KBm+t V ..• V KEn +- Bt 1\ ... 1\ Bm. 

Note here that each not-free clause tn P is included in P" a.'i it is. 0 

In the epistemic transformation, the newly introduced atom KB1 means that 8 1 

1s believed. With this epistemic reading, each default negation not B1 in the body of 
a clause is rewritten in -.KB which means that B1 is d1sbrlicvcd,3 and shifted to the 
head of the clause. Also each >., is a newly introduced atom appraring nowhere in P 
and is uniquely associated with each ground instance of a clause (3.1) from P ·

4 

An intuitive reading of the transformed clauses is that if Bt, ... , Em are true, then 
some A, ( 1 :5 i :5 /) becomes trur via >., when Bm+t,.. , Bn arc not true; otherwise, 
some B

1 
(m+ 1 $ j :5 n) is believed. The clause (3.5) ha.-; an effect to assocta~<· 

>., with A, whenever A, is true and another disjunct Ak is derived from (3.2) v1a 
>.k.~ In this way, every normal disjunctive program P is transformed into a positive 
disjunctive program P". Then we can construct the fixpoint of P" as presented in 

the previous section. 

Let / " be an interpretation of P". Then I" is called canomcal if KA E I" implies 
A E f" for any atom A in 'HB p. That is, in a canonical intcrprt•tation each believed 

atom has a justification. Given a srt of interpretations Ip~, l<·t 

objc(Ip~) = { 1" n 'HB p If" E IpK and I" is canonical } . 

3Such an interpretation of default negalton IS firstly proposed by [Gel fond, 1987] 
~If a clause contains n d1stinct free variables x = Zt. .•• , Zn, then a new atom A,(x) can be 

associated w1th each A, where A, is an n-ary pred1cate symbol appearing nowhere in P. . 
~ In case of 1 = 1, the clause (3.5) becomes a tautological clau~e A - A 1\ A and hereafter we w11l 

omit such a clause in P~. 



52 POSSIBLE MODEL SEMANTICS 

Now we present the fixpoint characterization of possible models in normal dis
junctive programs. We first prove preliminary lemmas. 

Lemma 3.20 Let P be a normal disjunctive program. Then, 

ST p = objc(min(J,L(Tp. T w))). 

Proof Suppose that I is in objc(min(p(Tp. T w))). Let I" be a canonical 
interpretation in mm(lt(Tp. T w)) such that I" n 'Hl3p = I. Then, for 

e~ch gr?und clause of the form (3.1) from P, {B1 , ••• ,Bm} <;;:I" implies 

e.t~her (t) 3A, "E /" (1 $ i $ 1), A, E I", and {Bm+l• ... , 8n} n I"= 0, or 
(u) 3KB1 E I (m+ I $ j $ n) by (3.2), (3.3), and (3.4).6 

In case of (i), {Bm+t. ...• Bn} n f'< = 0 implies {Bm+t, ... , Bn} n I = 0. 
Then there is a clause of the form: 

A, V ... V At+- B, 1\ ... I\ Bm (•) 

in pi, Since {B" ... ,Bm} ~ J~< and A, E I" implies {B1 , ... ,Bm} ~ I 
and ~· E I, I satisfies the clause (•) in pi_ In case of (ii), since I" is 
canontcal, KB1 E 1" implies B1 E !", and thus B

1 
E I. In this case, the 

clause ( *) is not included m pi_ Thus, in both cases, I satisfies every 
clause m PI. 

Supp~se that there is an mterpretation J such that (a) J c I and {b) 
J sattsfies each clause from pi. Then, two conditions (a) and (b) are 

satisfied only if there is a clause ( *) such that { 8 1 , ••. , Bm} ~ J and 
for some two atoms A,, and A,2 (1 $ i 1, i2 $ I; i 1 f:. 12), A,, E J but 

A,, E I\ J. Without loss of generality, we can assume that just one such 
clause exists in pi_ Smce I does not contain atoms 8 B the co m+ I'···, n, !'· 
responding canonical interpretation I" does not contain K8 KB . m+l>"·> n 
etther. Thus, { B" ... , Bm} ~ I implies 3Ak E J" for some 1 < k < 1. 
Since A,,, A,, E I implies A,,, A,, E I", Ak E I" implies A,,,~., E- f'< 

by (3.5). Let J"" = I"\ {A,,, A,,}. Then, the interpretation J" satisfies 
all the clauses (3.2). (3.3), (3.4 ), (3.5) in P". This contradicts the fact 
that I" ts a minimal model of P". Then I is also a minimal model of pi 
hence a stable model of P _ ' 

6
When a clause (3.1) contains no not, {B1 ... Bm} C /"implies A E /"(I< i <f) as · 1 case of (i). ' ' - • _ _ a specta 

FIXPOINT SEMANTICS 

Conversely, suppose that I is a stable model of P. Then, for each dause C 
oftheform(3.l)fromP,let/.x : Uc{A, {81 , •.• Bm} ~ I,{Bm+t.····B,.} 
n I = 0, and A; E I ( l $ i $ I)} and I K = Uc { KB1 I { 8,, ... , B,.} ~ 
I and 8 1 E I (m+ 1 $ j $ n)}. Let !"' = I U h U I r. Then, /"' satisfi(•s 

each clause (3.2), (3.3), (3.4), and (3.5) from P", and by the construction 
of !"'', !"'' E p(Tp• j w). Now let us define ]" IUS where S is a 
minimal subset of hUlK such that each A, or KB1 is chosen in a way that 
I" satisfies every clause in P". Note that for each atom KB in I", 13 E I 
by definition, so 8 E 1". Hence I" is canonical. :\cxt assume that thl're 
exists J" E p(Tp• T w) such that J" C !". Since we have defined /"'as a 
minimal set with respect to the atoms from 1). U I", the inclusion n•lation 
implies J" n 'H/3 p C I"' n 'H/3 p. Then 3A, E J"' \ .1". In this case, there is 
a clause (3.2) in P"' such that {131 , ••• ,Bm} ~ J", A, E I"\J"", KB1 E J" 
for some 1 $ 1 $ I and m + 1 $ J $ n. Since J" C I", KB1 E /"'. As 
I" is canonical, KB1 E I" implies 8 1 E !". But this is impossible from 
the condition (3.4 ). Thus, there ts no J" which is smaller than I", hence 
I" E min(p(Tp. j w)). Since I" is canonical, I E obJ,(mm(p(Tp. T w))). 
0 

Lemma 3.21 Let P be a normal logic program. Then, 

ST p '= objc(p(TpA T w)). 

Proof: By Lemma 3.20, obJc(min(p(TpA j w))) is the set of all stable 
models of P. Since I E objc(min(p(TpA T w))) implies I E objc(ft(Tp. T 
w)), we show that the converse is also true. Assume that the converse does 
not hold. That is, there is a non-minimal set I E obj,(p(Tp• T w)) and 
3J E objc(mm(J,L(TpA T w))) such that J C I. In this case, there exists an 
atom A such that A E I\ J. Let I = I" n 'H/3p and J = J" n 'H/3p for 
some canonical interpretations ]"' and J". Then, corresponding to (3.2), 

(3.3), and (3.4 ), there exist clauses: 

A V KBm+t V ... V KEn.- Bt 1\ ... 1\ Bm, 

A+- A, 

+- .A 1\ 81 (J = m + 1, ... , n) 

in P", where {81 , ••• , Bm} ~ !", {B~o ... , 8m} ~ J", A E I", and 3KB1 E 
J" (m+ l $ 1 $ n). Note here that the clause (3.5) becomes A .- A 1\ A 
and is neglected. Since J" is canonical, 8 1 E J". Then J C I implies 
8 1 E I~<. But this is impossible from the third clause above. 0 

53 



54 POSSIBLE AfODFL SEMA ,VTJCS 

Now we arc ready to prove the main theorem. 

Theorem 3.22 Let P be a normal disjunctive program. Then, 

Plv1p = objc(p.(Tp. T w)) . 

Proof: L<•t I be a possible model of P. Then I is a stable model of 
some coherent split normal logic program P. of P. By L<'mma 3 21, for 
the transformed program P." of P., I is in obJc(J.L('TJ>,• T w) ). Stncc P, 
is a program obtained by splitting each disjunctive clause in P, <'V<'ry 
interpretation included in TP,• T w is also obtained by splitting during 
the computation of Tp• T w. Moreover, since l satisfies each integrity 
constraint in P.", it also satisfies the same integrity constraints in P". 
ll<•ncc I is also in objc(lt(Tp• T w) ). The conv<'rse is also shown in the 
same mann<'r. 0 

The above l<·mmas and theorem are direct extensions of Theorem 3.17. 

Corollary 3.23 Let P be a normal disjunctive program. Then, 

(i) Pis inconsistent tiT ~t(Tp. T w) = 0. 

(ii) Pis incoherent iff objc(min(lt(Tp• T w))) = 0. 

(iii) Pis p-incoherent iff objc(~t (Tp• T w)) = 0. 0 

Example 3.13 (cont. from Example 3.4) The program 

P = { a V b .-, b <- a, c <- not a } 

is transformed into the ept::;temic form: 

P" {avb.-, b.-a, AV Ka<-, c<-A, <-A/\a}. 

Then it become:; 

Jl(Tr~ T w)- {{a, b, Ka}, {b, Ka}, {b,c, A}, {b, c, A, Ka} }. 

Thus, 

objc(~t(Tp• Tw)) = {{a,b},{b,c}}, 

which contains the po::;sible models of P. On the other hand, 

mm(p.(TpK Tw)) = {{b,Ka},{b,c,A}}, 

then 
objc(min(~t(Tp. T w))) = { {b, c} }. 

which contains the stable model of P. 0 

COMPUTING POSSIBLE MODELS 55 

As noticed in the previous section, stable models are not necessarily minimal pos
sible models. However, the above example shows that we can compute stable models 
exactly by computing the minimal set of the closure p(Tp. T ... :) before applying the 

operation objc( · ). 

3.5 Computing Possible Models 

In this section, we provide a bottom-up proof procedure to compute possible models 
of disjunctive programs. We assume in this section that a program is function free and 
range-restricted, that is, a program containing no functton symbol and any variablf' 
in a clause has an occurrence in a positive atom in the body. Such conditions are 
usually imposed on a program in the context of deductive databases. 

3.5 .1 Bottom-up Model G e ner atio n P r ocedure 

The algorithm we use to compute possible models in disjunctive programs is ba!>cd 

on a bottom-up modrl generation proof procedure. 

Let p be a positive disjunctive program and Ij> be a set of int<•rprctations of P. 
Let Iy, = {0}. Fori~ 0 do: 

1. For any I E I~, if there is an integrity constraint in P of the form: 

such that I f= (B1 1\ . . . 1\ Bm)a for some ground substitution a, then remove I 
from Ij,. 

2. For any I E Ij,, for every clause Ck in P of the form: 

C": A 1 V ... V A1 ,_ B 1 1\ ... 1\ Bm (I~ 1) 

such that I ~ (8 11\ ... 1\Bm)a for some ground substitution a, put lU Uc_. { A1a} 
into T/1 for every j - 1, ... , /. 

3. Iterate the above two steps until it reaches the fixpoint I/>+ 1 

closed under the above two operations. 

Ip which ts 

In step 1, the procedure prunes interpretations which do not satisfy integrity 
constraints m the program. In step 2, the procedure generates the new set of mter
pretations z;,+• from the given interpretations Ij, by performing forward reasoning 



56 POSSIBLE MODEL SEMANTICS 

based on hyperresolution 7 and case-splitting on non-unit derived clauses. Note here 
that since a program is range-restricted, each disjunct A1o- generated in step 2 is al
ways ground. Hence the soundness for unsatisfiability by case-splitting is guaranteed 
(Manthey and Bry, 1988]. Moreover, since we consider a finite function-free program, 
the above procedure always terminates in a finite step. 

The connection between the above closure computation and the fixpoint semantics 
with the mapping Tp given in Section 3.4.1 is obvious. This correspondence can also 
be regarded as an extension of the relation between hyperre:;olution and van Em
den and Kowalski's fixpoint semantics for definite logic programs (van Emden and 
Kowalski, 1976, Section 8]. 

Now we characterize the possible model semantics using the algorithm presented 
above. Let If> be the fixpoint closure obtained by the above procedure. Then the 
following results directly follow from Theorem 3.17. 

Theorem 3.24 Let P be a positive disjunctive program. Then the following relations 
hold. 

(i) 'PMp = J.l(Irp). 

(ii) MMp = min(JJ(Icp)). 

In particular, P is inconsistent iff J.l(If,) = 0. 0 

Corolla ry 3 .25 For a consistent positive disjunctive program Panda ground atom 
A, 

(i) GCW A(P) f= ..,A iff A rt I for any I E mm(JJ(I?)). 

(ii) WGCW A(P) F ..,A iff A rt I for I E IJiorn{P)' 

{iii) PW A(P) f= ..,A iff A rt I for any I E JJ(I?). 

Proof' (i) and (iii) directly follow from each definition and the results 

in Theorem 3.24. Since IJiorn(P) contains a unique element which is the 
least Herbrand model of florn(P), (ii) also follows from the definition of 
the WGCWA. o 

For normal disjunctive programs, the following results hold by Lemmas 3.20, 3.21 
and Theorem 3.22. 

7 A1 V .. V At is said to be obtained from A 1 V. V A B 1\ 1\ 8 d B B b · I - I · · · m an I , · · . , m Y 
hypernsoluhon [Robinson, 1965b) 

COMPUTING POSSIBLE MODELS 57 

Theorem 3.26 Let P be a normal disjunctive program and P" be its epistemic 

transformation. Then the following relations hold. 

(i) 'PM p = obJc(J.l(I'P~) ). 

(ii) ST p = objc(min(J.l(If>.))). 

(iii) For a normal logic program P, 'PMp = ST p = objc(J.l(Icp.)). 

In particular, Pis p-incoherent (resp. incoherent) iff ob]c(J.l(Iop.)) = 0 
(resp. objc(min(JJ(Ip.))) = 0). 0 

Corollary 3 .27 Let P be a normal disjunctive program and A be a ground atom. 

(i) For a coherent program P, GCW A~(P) f= ..,A iff Art I for any I E objc(min(JJ(I'P.))). 

(ii) For a weakly coherent program P, WGCW A~(P) f= ..,A iff A rt I for any 

I E objc(min(J.l(Ip.))) U objc(J.l(I'tnP(P)")). 

(iii) For a p-coherent program P, PW A~(P) f= ..,A iff Art I for any I E obJc(J.l(Iop.)). 

Proof: (i) and (iii) directly follow from Theorem 3.26 (i) and (ii). (ii) 
also follows from Theorem 3.26 (iii) and the definition of the WGCWA ~. 
0 

3 .5.2 Query Answering 

In this section, we address an application of the previously presented algorithm to 
query answering under the possible model semantics in normal disjunctive programs. 

A query we consider here is the following form: 

Q(x) - B1 1\ ... 1\ Bm 1\ not Bm+J 1\ ... 1\ not Bn (3.6) 

where (3.6) is a function-free range-restricted normal clause and x represents variables 
appearing in the body of the clause. An answer to the query is a ground substitution 
o- for variables in Q(x). In particular, if Q contains no variable, o- is the empty 

substitution. 
For a given normal disjunctive program P, let PQ be a program obtained from P 

by adding a query of the form (3.6). Then, the query is true in P under the possible 
model semantics if for every possible model I of PQ there is an answer o- such that 
Q(x)o- is included in I . Else if for some possible model I of PQ there is an answer o
such that Q(x)o- is included in I, a query is possibly true. Otherwise, if there is no 
such answer, a query is false. By Theorem 3.26 (i), the following results hold. 



.ss POSSIBLE MODEL SJ.;MASTICS 

Theorem 3.28 Let P be a normal disjunctive program and Q be a qu<'ry. Then, 

(1) Q JS true m P if£ for any I E objc(Jt(I'PQ~)), Q(x)a E I for some a. 

(ii) Q is possibly true in P if£ for some I E objc(JL(I'PQ•)), Q(x)a E I for some a. 

(iii) Q is false in P if£ for any I~ obJc(p(I?Q•)), Q(x)a f! I for any a. 0 

Example 3.14 Let P be the program: 

{ p(a) V p(b) ..,_ }. 

Then. q.(.r) +- p(.r) is true, q2 +- p(a) is possibly true. and q3 +- p(c) is false. 0 

By using Theorem 3.26 (ii) instead, the above result 1s also applicable to query 
answering under the disjunctive stable model semantics 

3.6 Computational Complexity 

In a propositional positive disjunctive program, a minimal model exists whenever 

the program is satisfiable. Then the complexity of the existence problem (resp. the 
set entailment problem) for the mmimal model semant1cs 1s :'\P complete resp. co
NP-complete). Since the possible model S<'mantics coincides with the minimal model 
semantics for positive inference, those complexity results also hold for the poss1-
ble model semant1cs in proposit1onal positive disJunctive programs. On the other 
hand, it is known that the complexity of the set membership problem for the mini
mal model semant1cs is £~ complete, and thus inferring negation under tht> GC\\'A is 
IT~-complete [Eiter and Gottlob, 1993c]. Uy contrast, Chan [1993] has shown that, m 
a propositional positive disjunctive program, inferring negation under the WGCWA 

or the PWA is still co-:-.:P complete. In particular. in the absence of mtegntv con-
straints both the \VG CWA and the PW A are tractable. • 

These observatiOns tell us that the possible model semantics has the computational 
advantage over the minimal model semantics for inferring negat1on. since 1t does not 
increase the complexity more than the classical propositional entailment. Moreover, 
~ shown in Section 3.2, smce the P\\'A is more intuitive than the \\'GC'WA, 1t is 
concluded that the possible model semantics is the best choice among others from 
both the reasoning and computational points of view. 

In this section, we prove that the complexity results for the poss1ble model seman
tics is still within (eo-)NP, even in normal disjunctive programs. We show this fact 
by transforming possible models in a normal disjunctive program mto stable models 
in a normal logic program. 

COMPUTATIONAL COMPLEXITY 59 

Definition 3.10 Let P be a normal disjunctive program. Then th<> pm-transformatiOn 
transforms P into tbe normal logic program p( P) which is obtained from P by re

placing each disjunctive clause: 

A1 V ... V A,+- f 

in P with the following normal clauses and an integrity constraint: 

A, ..,_ f /\ not A: for t = 1, ... , I , 

A: +- f /\ not A, for i 1, ... , I , 

+- f /\ A~ /\ ... /\ A; , 

(3.7) 

(3.8) 

(3.9) 

(3 10) 

in p(P) where f denotes a conjunction in the body of the clause and each A: is a 
new atom not appearing in P and JS uniquely introduced for each A, in 11.8p. 0 

The intuitive meaning of the pm-transformation is that: when A, becomes true 
by the disjunctive clause (3.7), we can make it true also by the correspondmg normal 
clause (3.8) in p(P) by assuming that its compl<'mentary atom A: is not true. Else 
when A, does not become true by (3.7), we will make A: true by assuming that A, 
is not true in the corresponding normal clause (3.9) in p(P). The condition (3.10) 
states that when f is true, every A: cannot become true at the same time, that 
is, at least one A, should be true. Thus, the transformed clauses represent ever) 
possible selection of disjuncts from the disjunctive head of the cl;u1se, which exactly 
characterizes every set of split clauses of (3 7). 

Now we show that there is a one-to one correspondence between the possible 
models of P and the stable models of p(P). We first present a pr<>liminary lemma. 

Lemma 3.29 Let P be a normal disjunctive program. Then A/ is a possible model 
of P if£ M is a possible model of pM_ 

Proof' M is a poss1ble modf'l of P 
if£ M is a stable model of some split normal logic program P. of P 
if£ M is the least Herbrand model of P.M 
iff M is the least Herbrand model of some split Horn logic program P\~ 
of pM 

if£ M is a po<;sible model of P·\1. 0 

Theorem 3.30 Let P be a normal disjunctive program and p(P) be its pm transformation. 

Then PMp = STp(P)n'H8p holds, whereSTp(PJrl'H.Bp {In11.8p I C STP!Pd· 



60 POSSIBLE MODEL SEMANTICS 

Proof: (i) First we show that 'P Mp = ST p(P) n 1{/3 p holds for a positive 
disjunctive program P. Let M be a possible model of a positive disjunctive 
program P. Then M is the least Herbrand model of a split program P. of 
P. In this case, M is also the least Herbrand model of a program in which 
each disjunctive clause (3. 7) in P is replaced with its split clauses {A, +
r I A, E M n {At. ... ' At}}. Now let us consider a Horn logic program 
P~ which is obtained from P by replacing each disjunctive clause (3.7) 

with clauses of {A,+- r I A, EM n {Al,····At}} u {A~+- r I A) E 
{AI! .. . ,AI}\ M}. Let M' be the least Herbrand model of P;. Then 
clearly M = M' n 1{/3p holds. Here a program P: together with the 
integrity constraint (3.1 0) coincides with the program ~(P)M'. Since M F 
r implies at least one A, E M, M' satisfies the coudition (3.10). Then 
M' is also the least Ilerbrand model of p( P)M', hence a stable model of 
p(P). 

Conversely, let M be a stable model of p(P). Since M satisfies the condi
tion (3.10), M I= f implies that at least one of the clauses (3.8) becomes 
A, +- fin p(P)M, and for each such clause M I= f implies A, E M. In this 
case, there is a split program P. of P in which each disjuncti\·e clause (3. 7) 
is replaced with its split clauses {A, +- r I A, E M n {At. ... 'At}}. Smce 
M is the least llerbrand model of p( P) M, M n 1{/3 p is also the least 
llerbrand model of P., hence a possible model of P. 

(ii) Next we show that 'PM p = ST p(P) n 1{/3 p holds for a normal dis
junctive program P. Let M be a possible model of a normal disjunctive 
program P. By Lemma 3.29, M is also a possible model of a positive 
disjunctive program pM. Then, by (i), there is a stable model M' of 

p( PM) such that M = M' n 1{13 p, which is abo the least Herbrand model 
of p(PM)M'. S1nce p(P· ... 1)\f' == p(P,..1')M' = p(P)M', .\/'is also a stable 

model of p(P). 

Conversely, let M be a stable model of p(P). Then M is the least Her
brand model of p(P)M. Since p(P)M = p(PM)M, M is also the least 
Herbrand model of p(PM)M, and a stable model of p(PM). Then, by (i), 
M n 1{/3p is a possible model of PM. Since pM_ pMn'ffiJp, M n 1{/3p is 

a possible model of P by Lemma 3.29. D 

The above theorem presents that the possible models of any normal disjunctive 
program are expressed by the stable models of the corresponding transformed normal 
logic program. 

COMPUTATIOSAL C0.\1PLEXl'J) 61 

For the stable model semantics 111 propositional normal log1c programs, both the 

existence problem and the set-membership problem are N P complete, while the set 
entailment problem is co-NP-complcte [Marck and Truszczynski, 199la; 199lbJ.8 We 
use this fact to show the computational complexity of the possihl<' model semantics. 

Theor em 3.31 Let P be a propositional normal disjunctive program. Then, 

(i) Deciding the existence of a possible model of P is :\?-complete. 

(i 1) Deciding whether an atom is true in some possible mod<•l of P IS :\P-complete. 

(iii) Deciding whether an atom is true in every possible mod<•l of P is co-::\P-

complete. 

P1·ooj: Since possible models coincide with stable models in normal logic 
programs, each decision problem under the possible models semantics is 
(eo-)NP-hard. To see that it is in (eo- )NP, the pm transformation cf. 
ficiently translates each decision problem for posstble models into the 
corresponding problem for stable models which is in (eo )::\P, then the 

membership in (eo- )!'\P follows. 0 

Corolla ry 3 .32 Inferring negat.ton under the PWA ~ is co-::\P-romplcte. 0 

It is known that the decision problems for the disjuncti\'e stable model semantics 

is Ef-complete for the existence and the set-membership problem, and Tif-complete 
for the set-entailment problem [Eitcr and Gottlob, 1993al. Then the following result 

also follows from the definition. 

C oroll a ry 3 .33 Inferring negation under the GCWA ~or the WGCWA ~ is both nf

complete. 0 

The complexity results for disjuncti\'e programs are summarized in Table 3.1. 
These results show that the frameworks based on the minimal/disjunctive sta

ble model semantics introduce an additional source of complexity for minimality 
checking, while this is not the case for computation of possible models due to its 

non-minimal feature. 
We have a lready seen in the previous sections that the possible model semantics 

can provide flexible reasoning mechanisms compared with the minimal/disjunctive 
stable model semantics thanks to its non-minimal nature. The results of this sec
tion present that this unique feature of the possible model semantics also brings a 

computational advantage over those minimal model based semantics. 

'In (Marek and Truszczynslo, 199la; 199lb), integrity constratnts are not include~ in a program . 
However, a program containing antegn~y constraints is easily reductblt> to tlw one wtthout them by 
rewnting each integrity constraint- G by the normal clause fol~e- G 



62 POSSIBLI· .\fODEL SEA1ANTICS 

Table 3.1: Complexity Results for Disjunctive Programs 

I Semantics I Complexity ! Program 

Positive OLP minimal model (GCWA) n; -complete 
WGCWA co-NP-complete 
possible model (PWA) co-NP-complete 

Normal DLP disjunctive stable model (GCWA ~) r lr -complete 
WGCWA~ nr -complete 
possible model (P\VA ~) co-r\P-complete 

3. 7 Discussion 

In this section, we present the background of the possible model semantics and com
pansons with related work. 

3. 7.1 Declarative Semantics 

The minimal model semant1cs of pos1tive d1sjunctive programs was firstly introduced 
by Minker [1982] and extended by Przymusinski [1988a] to the perfect model seman
tics for (locally) stratified disjunctive programs. Further extensions to normal disjunc
tive programs hav(' twen done in tlw context of tlw stable model semantics IPrzymusin
skl, 199la; Gelfond and Lifschitz, 1991) and the well-founded semantics [Hoss, 1989b: 
Przymusinski, 1991 b, Bar a! cl al., l992a) As non-minimal model approaches, Ross 
and Topor I19Sb], and Rajasekar cl al. 11989] have proposed the DDR and the 
WCCWA as a counterpart of tlw GC\VA. llowever, they present only negative in
fert·nce in inclusive disjunctive programs and do not provide any mod<•! theoreti
cal nH:aning for such programs. Ross and Topor also suggest in their paper the 
usage of integrity constraints to distinguish exclusive disjunctions from mclusive 
ones, but they give no semantics for such programs. To rharacterize the meaning 
of inclusive disjunrtive programs, Dix [l992a) presents the weak perfect/stationary 
mod<•! semantics for normal d1sjunct1ve programs without 1ntegrity constraints. How 
ever, these weak semantics have some drawbacks compared with the possible model 
semantics. First, the weak semantics cannot represent exclusive disjunctive pro
grams. Second, the weak semantics do not work well in tlw presence of integrity 
constraints. For example, in Example 3.1 the weak semantics of the program is 
given by M.\lfp U {MHorn(P!} = {{a}.{b},{c},{a,b,c,d,t}}. but as noted there, 
{a,b,c,d,e} is not a model of P. Then, if we choose models satisfying the constraint 

DISCUSSION 63 

and give the meaning of P by {{a}, {b}, {c} }, it cannot represent the inclusive dis
junction a V b anymore. 

To treat both exclusive and inclusive disjunctions, Ross ll989b] has proposed tlw 

opltmal well ~ founded semantics which can distinguish two types of disjunctions in nor· 
mal disjunctive programs. However, his semantics requires each rule to be clanjifd 
whether it is exclusive or inclusive, and it cannot treat a disjunctive dause containing 
hybrid disjunctions as presented in the introductory <•xample. Dung 11991] has also 
presented a completion theory of negation which can distinguish two types of disJunc 
t10ns in a program. However, it is defined for only positive disjunctive programs and 
also cannot treat hybrid disjunctions in a program. Przymusinski 11991 b) sugg<•sts 
that his stat1onary scmanflcs can also treat two types of disjunctions by alt<'ring 
the GCWA and the WGCWA during the construction of completions of disjunctions, 
while it seems impossible to treat disjunctive clauses contaming hybnd disjunctions. 
Gelfond 11991) has developed an episternic theor) for disjunctive programs and pro
vided a flex1ble mechanism for inferring closed world negation. His approach is ba.s<'d 
on modal log1c and is different from our object-level approach. 

Recently, Either et al. 11993] have introduced a circumscriptive approach for 
inclusive disjunctions m a first-order theory. Their good models provide a modd 
theoretical counterpart of inclusive interpretations of disjunctions. In contrast to our 
approach, however, their Curb theory is defined for a first order theory and is classical 
in its nature. For instance, {a, b} is a possible model of the program { a V b +-1 a +- } 

as presented in Section 3.2.2, while they identify the above program with {a +-} and 
{a} is the unique good mod<•!. In th1s sense, their approach is syntax mdependcnt and 
different from our syntax dependent log1c programming approach. Moreover, their 
Curb theory is defined for a first-order theory and its application to log1c programming 
is limited to positive disjunctive programs. 

The possible model semantics was also independently discovered by Chan [1993] 
under the name of the possible world semantics. Lately 1t was rediscovered by Derker 
11992) under the name of the sustained model semantics. Decker and Casamayor 
[1993) have also shown that their sustained world assumption, wh1ch corresponds to 
the PWA, satisfies the properties such as cautious monotonicily, cumulativ1ty and 
rationality in the sense of IKraus et al., 1990]. These works have characterized the 
possible model semantics from different v~ewpoints, while they consider only positive 
disjunctive programs and extensions to normal disjunctive programs are not studied 
in the literature. 

To distinguish two types of disjunctions, one may consider that instead of inserting 
integrity constraints, inserting cychc clauses under the usual minimal model semantics 
is enough to interpret inclusive disjunctions. But this 1s not the case. Consider to 



61 POSSIBLE ,\10DEI- SEMA.'VTTCS 

make the disjunction a V b inclusive by adding cyclic clauses a +- b and b +- a to 
it. The resultant program now implies the equivalence a ~ b. Applying it to the 
introductory example, we obtain land-animal ~ aquatic, which is of course not our 
intention. 

We have used integrity constraints to distinguish exclusive disjunctions from in
clusive ones. Then if one wishes to simulate the GCWA und<'r the PWA, it is enough 
to insert integrity constraints for each exclusive disjunction. Such a simulation is 
discussed in [Chan, 19931. 

3. 7.2 Fixpoint Semantics 

A fixpoint semantics for disjunctive programs has been studied by S<'veral researchers. 
An early approach to provide a fixpoint semantics for positive disjunctive programs 
was given by (Minker and Rajasekar, 19901. In the paper, they devdoped a fixpoint 
operator which operates on states, sets of positive disjunctions from the extended 
Hcrbrand base. Then they showed that its fixpoint closure characterizes the minimal 
model semantics of positive disjunctive programs. Our fixpoint semantics is basically 
different from tlwirs in the following points. First, our fixpoint operator is des1gned 
to compute possible models as well as minimal models of disjunct1ve programs. Sec
ond, our fixpoint semantics is well-defined not only for positive disjunctive programs, 
but also for every normal disjunctive program. Third, our fixpoint construction is 
based on the manipulation of standard Herbrand interpretations and does not require 
any extension of the HNbrand base. The state based fixpoint semantics have also 
been developed for stratified disjunctive programs in [Rajao;ckar and ~1inker, 19891 
and for normal disjunctive programs in [Baral et al., 1992a; Przymusinski, 1990b; 
Przymusinsk1, 199lbl. Reed et al. (19911 provide a different fixpoint s<>rnantics which 
charactenzes logical consequences of a positive disjunctive program. 

Fernandez and Minker (199lbl have presented a fixpoint semantics for stratified 
disjunctive programs using a fixpoint operator over sets of interpretations. With 
this fixpoint operator, they have shown that its iterative fixpoint characterizes the 
perfect models of a stratified disjunctive program. In [Fernandez and Minker, 1992; 
Fernandez et al., 19931, the result is further extended to normal disjunctive programs, 
in which they have developed a method for computing stable models by transforming 
a normal dtsjunctive program into a stratified disjunctive program with integrity 
constraints. Their approach is close to ours, however, an essential difference is that 
their fixpoint operator computes minimal and stable models, while ours also computes 
possible models. Inoue and Sakama [19921 developed yet another fixpoint semantics 
for computing minimal and stable models but not possible models. 

DISCUSSIO!\ 65 

Decker (1992; 19941 has also developed a fixpoint semantics of disjunctive pro
grams. His fixpoint operator maps a disjunction of interpretations into a disjunction 
of interpretations, and computes sustamed model.~ which is equivalent to possible 
models. However, he provides the fixpoint semantics only for positive disjunctive 
programs, and its extension to normal disjunctive programs is not discuss(•d. 

Ross and Topor (19881 have given a fixpoint construction for pos1tive disjunc
tive programs to characterize the semantics of the DDR, but thc1r fixpoint closure 
computes the least Herbrand model of a transformed Horn program and does not 
characterize any model theoretical meaning of the original program. 

3.7.3 Proof Procedure 

Proof procedures for disjunctive programs are developed by several researchers. Fer
nandez et al. !Fernandez and Minker, L991a; Fernandez et al., 19931 dt'vclop a model 
generation proof procedure for computing minimal and stable models of disjunctive 
programs using a similar program transformation to ours. Compared with their ap 
proacb, our algorithm is designed for computing not only minimal/stable models but 
also possible models of a program, and is easily realizable in a non-deterministic 
or-parallel environment like [Inoue et al., 19921. The model g<>neration procedure 
presented in Section 3.5 might be considered as a variant of SATCHMO (Manthey 
and Bry, 19881 or MGTP (Inoue et al., 19921, but these procedures arc des1gned to 
compute minimal/stable models and different from ours. For computmg possible 
models, Chan [19931 presents a different procedure which, given a positive disjunctive 
program P and its model M, finds a subset of M that is also a possible model of P. 

We have also presented a method of using a bottom-up procedure to evaluate 
queries under the possible model semant1cs. As an alternative approach, we can 
design a top-down proof procedure for the possible model semantics as follows. In 
Section 3.6 we have presented that possible models of a normal disjunctive program 
can be expressed in terms of stable models of a normal logic program by using the 
pm-transformation. This means that, using the pm-transformation, a top down proof 
procedure for the stable model semantics of normal logic programs can also be used 
as a procedure for the possible model semantics of normal disjunctive programs. 
For instance, Eshghi and Kowalski's (19891 abductive proof proccdw·c is known to 
be correct with respect to call-consistent normal logic programs. Since the pm
transformation preserves the call-consistency, the abductive procedure is also used 
as a proof procedure for the possible model semantics. For positive disjunctive pro
grams, yet other top-down procedures are developed in (Sakama, 1989; Decker, 1992; 

Decker and Casamayor, 19931. 



66 POSSIBLE A.fODEL SEAtANTICS 

3.8 Summary 

In this chapter, we have introduced the possible model semantics for positive and 
normal disjunctive programs, which is an alternative non-minimal model approach 
to the declarative semantics of disjunctive programs. The possible model semantics 
gives a uniform framework to treat both inclusive and exclusive disjunctions in a 

program, and provides a flexible negative inference mechanism compar<•d with the 
previously proposed closed world assumptions. The possible model semantics was 
also characterized by a new fixpoint semantics of disjunctive programs. 

For computing possible models, we have presented a bottom up model generation 
proof procedure for positive and normal disjunctive programs. The procedure is 
sound and complete with respect to the possible model semantics as well as the 
minimal/stable model semantics in function-free range-restricted programs. We have 
also shown that the possible model semantics has a computational advantage over 
the minimal/stable model semantics. 

In normal disjunctive programs, we have defined the possible model semantics 
based on the stable model semantics. However, since its definition i~ given through 
the set of split normal log1c programs, it is easy to construct anotlwr version of the 
possible model semantics based on any semantics of normal logic programs other than 
the stable model semantics. In this sense, the possible model semantics presented in 
this chapter provides a fairly general framework independent of any specific semantics. 
In other words, it establishes the principle of possibilism as a semantical counterpart 
of the traditional minimalism, which contributes to enrich our perspectives for com
monsense reasoning in log1c programming and artdkial intelligence. 

Chapter 4 

Relating Disjunctive Logic 
Programs to Default Theories 

In this chapter, we pr<•scnt the relationship between disjunctive programs and !lell<•r's 
default logic. We first point out the problem of previously proposed approaclws, and 
propose an alternative default translation of normal disjunctiv<.' programs. The results 
are applied to extended disjunctive programs, and a correspondence bet w<.-en default 
logic and Gelfond et al.'s disjunctive default logic is investigated. \\'e also address the 
connections between disjunctive programs and other major nonmonotonic formalisrns 
such as Moore's autoepistemic logic and McCarthy's circumscription. The possible 

model semantics of disjunctive programs is also characterized by autoepistcmic logic. 

4.1 Introduction 

Logic programming realizes a kind of default reasoning in the presence of dt•fault 
negation in a program. Such default reasoning is, on the other hand, known a-; 
nonmonotonic reasoning in artificial intelligence. Recent studies hav<' sh<'d light on 
the relationship between logic programming semantics and nonrnonotonic r<'asoning, 
and it is now known that each of these areas relate to the other in a wide scop<'. 

Default logic initially introduced by Reiter [1980] is known as one of the major 

formalisms of nonmonotonic reasoning in AI, and it turned out that default logic is 
closely related to the declarative semantics of logic programming. ll1doit and Fro1de 

vaux [1991a; 1991b] have firstly mvestigated the relationship betw<'<'n log1c program 
ming and default logic and introduced a postlivisl default theory for stratifiable and 

non-stratifiable logic programs . .Marek and Truszczynski [19b9a] have also developed 
transformations from logic programs to default theories, and shown a one-to-one 

67 



68 HELATING DISJl.iNCTIVE PROGRAMS TO DEFAULT THEORIES 

correspondence between the stable models of a logic program and its corresponding 
default extensions. The result was further extended by Gelfond and Ltfschitz [1991] 
to logic programs with classical negation, in which they present a connection between 
answer sets of a program and default extensions of its corresponding default theory 

It is often said that a difficulty of Reiter's default logic arises when one considers 
default reasoning with disjunctiv<' information. Using a popular example from [Poole, 
1989], when we consider the default rules: 

: lh-usable 1\ -.lh-broken : rh-usable 1\ -.rh-broken 

lh-u.sable rh-usable 

with the disjuncttve formula: 

lh·broken V rh-broken, 

they have a single extension containing both lh-usable and rh-u.sablc, which is un
intuitive since the justifications of the defaults -.lh-broken and -.7·h-broken cannot 
hold at the same time. 

In the context of disjunctive programs, Bidoit and Hull [1986] present a one-to-one 
correspondence between the minimal models of a positive disjunctive program P and 
the extensions of a default theory which is obtained from P by adding defaults: 

:-.A 
.,A 

for each atom A from 1{/3 p. In the presence of default negation in a program, Bidoit 
and Froidevaux [199la] present a relationship between a stratified disjunctive program 
and its associated positivist default theory. However, as pointed out in this chapter, 
Bidoit and Froidevaux's positivist default theory contains a problem and cannot be 
applicable to a disjunctive program with negation even if it is stratifiable. Recently, 
Gelfond et al. [1991] proposed a new framework called dtsjunctivc dt..fault logic which 
is a direct extension of Reiter's default logic. While the disjunctive default logic 
is closely related to the answer set semantics of extended disjunctive programs, it 
remains open whether there is a correspondence between Reiter's default logic and 
disjunctive programs in general. 

In this chapter, we study the relation between disjunctive programs and default 
theories. We first point out the problem of Bidoit and Froidevaux's positivist default 
theories and propose an alternative correct default translation of normal disjunc
tive programs. The result is further extended to a transformation from extended 
disjunctive programs to default theories. We then present a connection between 

DEFAULT LOGIC 69 

default theories and disjunctive default theories through extended disjunctive pro
grams. Furthermore, we investigate correspondences between disjunctive programs 
and other major nonmonotonic formalisms, circumscription and autoepistemic logic, 
and present methods of expressing stable models and possible models of disjunctive 

programs in terms of those nonmonotonic formalisms. 
The rest of this chapter is organized as follows. In Section 4.2, we introduce 

basic notations of default logic. In Section 4.3, we point out problems of prt'Vtously 
studied results and introduce an alternative default translation of normal disjunctive 
programs. In Section 4.4, we extend the r<>sults to extended disjunctive programs. and 
present a connection between default and d1sjunctive default theories. In Section ·L5, 
we relate disjunctive programs to auto<>pistemic logic and ctrcumscriptton, and show 
an autoepistemic translation of the possible model semantics. Section 4.6 summarizes 

this chapter. 

4.2 D e fault Logic 

Classical first-order logic is always monolonic, that is, adding new axioms will never 
invalidate old theorems. However, this monotonic feature of classical logic is not 
necessarily adequate for formulating human commonsense reasoning, sinre we often 
confront situations where complete knowledge is not available, but nevertheless must 
draw conclusions. In such situations, we have to jump to conclusions with suitable de
fault assumptions, and such conclusions might be revised after getting more accurate 

information. 
Nonmonotonic logics are frameworks for such r<>a.soning and they play unportant 

roles today as theoretical tools for commonsense reasoning in Al. Among many non
monotonic formalisms, Reiter's default logtc [Reiter, 19$0] is known as a simple and 

powerful framework. 

In default logic, nonmonotonic inference is presented by a default rule. For in

stance, the sentence "birds normally fly" can be represented as 

bird(x): fly(x) 
fly(x) 

The above rule is read as "if x is a bird and it is consistent to assume that x flies, 
then conclude that x flies". Thus, if all we know about Tweety is that she is a bird 
btrd(Tweety), then it is concluded that she can fly fly(Twcety). Howevt'r, if we learn 
that Tweety is a penguin, and we already know that penguins cannot fly, then the 



70 RELATING DISJL.VCTIVE PROGRA MS TO DEE~UI:I' 'I'llEORIES 

assumption fly(Tu:eety) now becomes inconsistent and the application of the default 
is blocked. 

In dt'fault logic, knowledge about the world is represented as a default theory which 
consists of a set of first-order formulas and a set of default rul<'s. A set of first-order 
formulas represents valid but incomplete information about the world, while a set of 
default rules supplements the first-order formulas with the ability of reasoning with 
incomplete information. A default theory is formally stated as follows. 

A default theory D is a set of default rules of the form: 

Q : /31 , ---, /3 ... 
'Y 

(4.1) 

where o, /31, ... , /3,.. and "f are quantifier-free first-order formulas and rcsp('ctively 
called the prercqui:;tte, the justtfications and the constqtttnl .1 A <kfault rule ( 4.1) 
with the empty prerequisite (resp. empty justifications) is ca.ll<'d a ptY.I'(QUt$ite-frce 
(rcsp. justtficaho11-frte) default. A default theory which consists of prerequisite
free (resp. justification-free) defaults is called a pre.rcquisilt-fnc dtfault theory (resp. 
JU:;itfication-fref- default theory). 

~ote here that the above definition, which is due to [Gelfond et al., 19911, is 
different from the original one [Reiter, 1980] m which the theory is given by the pair 
(D, W) of ddaults and first-order formulas. As noted in [Gelfond et al., 1991J, since 
a. formula Pin W is ,•iewed as a special default with the prPrPquisite true (or empty) 
and the empty justification: 

F 
m D, both definitions are equivalent. Hence, throughout this chapter, we do not 
distinguish W from D, and such a special default is written by F instead of -p. A 
default rul<• with variables is considered as a shorthand for the set of all its ground 

instances obtained by substituting variables with the ground tNms from the language 
of D. 

A set of formulas S is deducllvely closed ifS= Th(S) where Th is the deductive 
closure operator as usual. An extension of a default theory is defirwd as follows. 

D efinit ion 4.1 Let D be a default theory and E be a set of formulas. Then E is an 
exle11st0n of D if it coincides with the smallest deductively closed set of formulas £' 
satisfying the condition: for any ground instance of any default rule of the form ( 4. 1) 
from D, if o E E' and -.{31, •.• , -.[3 ... f/_ E then 'Y E £'. 0 

' Here we consider quantifier-free defaults for Simplicity reasons Such a convention 11o abo assumed 
in [Gelfond et al., 1991). 

DEFAULT TRANSLATIOV OF :VOR.\1:\L DJS.JLXCTIVE PROURAAIS 71 

A default theory may have none, one or multiple extensions in gent•ral. Any 
extension of a default thE'Ory is minimal, that is, for any two ext<"nsions f.' and F. 
E ~ F implie. E = F. In particular, if the set of all justification-fr<'(' ddaults from 
D is inconsistent,2 D has the unique contradictory Ciif.n.'>IOn which consists of every 

formula in the language of D.An extension is called con!>istcnt if it is not contradictory. 
The following results are due to [Rciter, 1980]. which present basic prop<•rties of 

default extensions. 

Proposition 4 .1 L<•t D b<' a default theory. Then E is an extension of D iff /~' = 
U~o E, where 

Eo = { F I F IS a first order formula in D}, 

{ I 
0 : fJt' · · · 'Sn D h E d ·~ ~ d 1 '} o = Th(E,)U 'Y E wereo:E J,an -.1-'1·····-.Pn'l' ~. 

'Y 

Proposition 4.2 Let D be a default theory and E be an extension of D. I'hen, 

{ l
a:,1t.····,Jn h E d :J {3 df'}) 0 E- Th( 'Y E D w ere o E "'an ..,J.It, .•. ,.., n 'I' ' . 

1 

Note that the converse of the above proposition does not hold in g<'nt"ral. 

E xample 4 .1 Let D be the default theory: 

{
a:b 

b • 
b: a}. 

a 

Then E = Th( {a, b}) satisfies the above equation, while the <•xtension of/) is 0. 0 

A set E satisfying the cquat ion in Proposition 4.2 is called a wt ak t .rlt 11.-;Wil of D 
[Marek and Truszczynski, 19891>]. 

4.3 Default Translation of Normal Disjunctive Pro
grams 

In this section, we first review previously studied results on translating uorrnal dis
junctive programs mto default theories. The problem of those approaclH•s IS pointed 
out, and an alternative correct default translation of normal d1sjuuctivc programs is 

presented. 

2 A set of JUStification-frt>e defaults is inconsistent iff its extension i!> inconsistf'nt. 



72 RELATING DISJUNCTIVE PROGRAMS TO DEFAULT THEORIES 

4.3.1 Positivist D efault Theory R evisited 

To relate logic programming with default theories, Bidoit and Froidevaux [l99la] have 
presented a transformation from disjunctive programs to so-called positivist default 

theones. According to [Bidoit and Froidevaux, l99la], the transformation is presented 
as follows. 

Definition 4.2 ([Bidoit and Froidevaux, 199la]) Let P be a normal disjunctive 
program. Then the positivist default theory D associated with P is constructed as 
follows: 

(i) For each not-free clause A 1 V ... V At +- 8 1 1\ ... 1\ Bm in P, its corresponding 
first-order formula 8 1 1\ ... 1\ Bm :) A 1 V ... V At is in D. 

(ii) Each clause containing not in its body A 1 V ... V At +- B 1 1\ ... 1\ Bm 1\ notBm+l 1\ 

... 1\ notBn in P is transformed into the following default in D: 

81 1\ ... 1\ Bm : -.Bm+l• ... , -.Bn 

AI V ... VA, 

(iii) For each atom A in ?i8p, the following CWA-default is in D: 

(iv) Nothing else is in D. 0 

Then, [Bidoit and Froidevaux, 1991a] claims that a positivist default theory asso
ciated with a stratified disjunctive program always has at least one extension ([Bidoit 
and Froidevaux, 199la, Theorem 3.5]). Moreover, 

({Bidoit and Froidevaux, J99Ja, Theorem 4.1.3}) Let P be a stratijiable 
logical database. Then M is a perfect model for P iff M is a default model 
for its positivist default theor·y. 

In the above theorem, a "default model" means an Her brand model of an extension 
and a "logical database" corresponds to a disjunctive program in our terminology. 
However, the following example shows that there exists a stratified disjunctive progmm 
whose positivist default theory does not have any extension. 

DEFAULT TRANSLATION OF NORMAL DISJUNCTIVE PROGRAMS 73 

Example 4.2 Let P be the stratified disjunctive program: 

{ a +- b 1\ not c, b +- a 1\ not c, a V b +- } , 

which has the perfect model {a, b}. Then consider its positivist d<'fault theory D: 

{ b : -.c, a : -.c a V b, : -.a : -.b : -.c } . 
a b -.a -.b ' -.c 

If we assume E = Th({a,b,-.c}), then E' = Th({a V b,-.c}) is the smallest 
deductively closed set satisfying each default in D. Since E # E', E is not an 
extension. In fact, D has no extension. 0 

The above example shows that the result presented in [Bidoit and Froidevaux, 
1991a) is incorrect. In fact, when a program contains disjunctive information as 
well as negation, the positivist default theory causes a problem.3 This observation 
leads to the assertion that the result [Przymusinski, 1990a, Theorem 5.2], which 
presents the relationship between positivist default theories and the disjunctive stable 
model semantics, does not hold too. Since previously presented results turned out 
to be incorrect, we now need modification and reconstruction of theories to relate 
disjunctive programs with default theories. 

4.3.2 R epresent ing Norma l Disjunctive Progr a m s by D e
fault Theories 

Now we present an alternative transformation from disjunctive programs to default 
theories. 

D efini t ion 4 .3 Let P be a normal disjunctive program. Then its associated default 

theory D p is constructed as follows: 

(i) Each clause A 1 V ... V A, +- B 1 1\ ... 1\ Bm 1\ not Bm+l 1\ ... 1\ not Bn in P is 
transformed into the following default in Dp: 

(4.2) 

In particular, each integrity constraint: +- B 1 1\ ... 1\ Bm 1\ not Bm+l 1\ ... I\ not Bn 
in P is transformed into the following default in D p: 

: -.Bm+I•···,-.Bn 
B1 1\ ... 1\ Bm :) false· 

--------------------------
3 According to our analysis, the proof of Lemma 3.3 in [Bidoit and Froidevaux, I 99 la] seems to 

contain an error. However, if a disjunctive program contains no not, lhe positivist default theory 
reduces to the defaults presented in [Bidoil and Hull, 1986] and it works well. 



74 RELATJ\G DISJC'.\CTI\'E PROGR:\.\1$ TO DEFAULT THFORIES 

(ii) For ea<-h atom A in 'HBp, the following CWA-default is in /)p : 

(4.3) 

(iii) Nothing clst• is in Dp. 0 

:\oti<-e that the difference between the positivist default theory and the associated 
ddault theory i~ the transformation of clauses containing default nt•gation. That is, in 
our transformation, a normal disjunctive program is translat<'d into a prerequisite-free 

dcfaul t t hrory. Both transformations coincide for positive d isj unci i ve programs. 

Now sev<'ral remarks are in order. Marek and Truszczynski [1 989a] have <~<'v<'lopcd 
three kinds of transformations tr" tr2 and tr3 from normal logic programs to default 
thcori<'S. Considering these transformations in the context of disjunct ivc programs, 
the transformation (1.2) can be regarded as an ext<'nsion of tll<'ir 1 ransformation 

tr2 except that we are considering the C\\'A-default (4 .3) \\'Ill le a 1 ransformation 
based upon tr3 corresponds to the positivist default t h<'ory pr<•s<'n tt•d in the previous 
section, it has already turned out inappropriate to characterize disjuncti\'e programs. 
A tr1-bascd transformation translates each clause into thE' dt.fault: 

B, A ... A Bm : ..,Bm+l· . ... -.Bn 
A1 V . . . VAt 

together with CWA-dt•faults for each atom. 

The diff<'rence between tr1 and tr3 is that in tr3 each not-free clause is transformed 

into a first -ord<'r formula in D, while in tr1 it is transfornwd into a justification

free d<'fault in D. However, this tr 1 -ba~ed transformation is also inappropriate to 
characteriz(' disjunctive programs as the following example shows. 

E x a m p le 4 .3 Lt•t us consider the program: 

{ a ~ b, b ~ a, a V b ~ } . 

Then, by the above tr1-bascd transformation, it is translated into the set of defaults: 

{ ~-
a 

a V b, 
: ..,b 
~}, 

a: 

b' 
which has no extension. 0 

DEFAULT TRA.VSLATIO!\' OF .\'ORA1AL DISJL\C'f/VE PHOGH \.\IS i5 

These observations tell us that, from the viewpoint of extending thr<·e dt•fault 
transformations for normal logic programs in [~1arek and Truszczynski, 19S9a], the 
tr1-based transformation is the only candidate that can be used to charadl'rize the 

semantics of disjunctive programs. 
Then we verify the correctness of the transformation. \\'(' first acldrt~s~ some 

features of prercquisitc-frt.'C default theories. 

Lemm a 4 .3 Let D be a prerequisite-free default theory. Th('n E is an t•xtcnsion of 

D iff 

E , ( { I . ;1,, ...• Jn D h .~ .':) d !:. ' }) :;:;; Th 1 E were ...,1-'1>····-.tJn"".:. . 
I 

Proof: By Proposition 4.1, E is an extension of D iff E :;:;; U;:-"0 E, whert• 

Eo :;:;; {F IF is a first order formula in D}, 

, { : 81, · · ·, /3n · d f ' } = Th(E,) U 11 E D where -.{3,, ... ,-.fJn"" :- . 
I 

Then £ , :;:;; Th(Ed fori ~ 2, and the result immediately follows. 0 

The above lemma presents that prerequisite-free default theories provide a suffi· 
cient condition to assure the converse of Proposition 4.2. That is, th<' notions of weak 
extensions and extensions coincide for prerequisite-free default tlworit•!> [Marek and 

Truszczynski, 1989b]. 
The above result is further simplified as follows. Let D be a default theory and E 

be a set of formulas. Then. let DE be a default theory which is obtained from IJ by 

E { Q : Q : Pt' · · · • ~n · d · f d f I . f) D :;:;; - I ts a groun mstancc o a eau t 111 
.., .., 

and -.{31> ... , ..,Jn ft £} 

where DE is called the reduct of D with respect to E [Gel fond et al., I 991]. Then 

the following property holds. 

L emma 4.4 ([Gclfond et al., 1991]) A set of formulas E is an extension of a default 
theory D iff E is an extension of the justification-free default theory DE. 0 

From the above two lemmas, we get the following result. 

Propos ition 4 .5 Let D be a prerequisite-free default theory. Then E is an extension 

of D iff E:;:;; Th(DE). o 



76 RELATING DISJUNCTIVE PROGRAMS TO DEFAULT THEORIES 

Now we are ready to prove the main result of this section. Before that, we recall 
the following result for positive disjunctive programs. 

Lemma 4.6 ([Bidoit and Hull, 1986; Lobo and Subrahmanian, 1992]) 
Let P be a positive disjunctive program. If E is a consistent extension of D p, then 
En 11.13 p is a minimal model of P. 0 

Theorem 4 .7 Let P be a. normal disjunctive program and Dp be its associated 
default theory. Then the following relations hold. 

(i) If M is a stable model of P, then there is an extension E of D p such that 
M= En1il3p. 

(ii) If E is a. consistent extension of D p, then M = En 1{13 p is a stable model of P. 

Proof" (i) Suppose that M is a stable model of P and let E = Th(M U 
..,M) where -.M = {-.A I A E 11.13 p \ M}. Then, for each clause At V 
... V At +- Bt 1\ ... 1\ Bm in pM, the corresponding formula Bt 1\ .. . 1\ 
Bm :::> At V ... V At is in Dpe. Since M is a minimal model of pM 
and DpE = pM U {-.A I A rt M}, M is also a minimal model of DpE. 
Thus, Th(M U -.M) = Th(DpE) holds. Therefore, by Proposition 4.5, 
Th(Mu-.M) is an extension of Dp, and since Th(Mu-.M)n1il3p =M, 
the result follows. 

(ii) When E is a consistent extension of Dp, E = Th(DpE) holds by 
Proposition 4.5. Let M= En1il3 p. Then, for each formula Btl\ ... 1\Bm :::> 
At V ... V At in DpE, the corresponding clause At V ... V At +- Btl\ ... I\ Bm 
is in PM. Since E is also an extension of DpE, M is a minimal model of 
pM (by Lemma 4.6). Hence M is a stable model of P. 0 

Corollary 4 .8 Let P be a normal disjunctive program. Then, 

(i) P is inconsistent iff D p has the contradictory extension. 

(ii) Pis consistent but incoherent iff Dp has no extension. 0 

The above theorem presents a one-to-one correspondence between the stable mod
els of a normal disjunctive program and the consistent extensions of its associated 
default theory. The above results also reduce to the corresponding results in [Marek 
and Truszczynski, 1989a] for normal logic programs. 

DEFAULT TRANSLATION OF EXTENDED DISJt'.VCTIVE PROGRAMS 77 

Example 4 .4 ([Gelfond et al., 1991]) Let P be the program consisting of the clauses: 

l h-usable +- not ab1, 

rh-usable +- not ab2, 

abt +- lh-broken, 

ab2 +- rh-broken, 

lh-broken V rh-broken +- . 

These clauses are transformed into the following defaults in D p: 

: -.abt : ..,ab2 
--:---:-,b,....' lh-broken :::> abt. rh-broken :::> ab2, lh-broken V 1·h-broken 

lh-usable' rh-usa le 

with the CWA-defaults: 

: -./h-broken : -.rh-broken : -./h-usable : -,1·h-usable : -.abt : ..,ab2 

-./h-broken ' -,rh-broken ' -./h-usable ' -.lh-usable ' -.ab1 ' -.ab2 • 

Then Dp has two extensions such that the sets of all atoms from them become 

{ lh-usable, rh-broken, ab2 } and {rh-usable, lh-bro!.·en, abd, 

which coincide with the stable models of P. 0 

The above example illustrates that Poole's paradox can be eliminated in Reiter's 
default theory by the effect of the CWA-defaults in the associated default theory. 

4.4 Default Translation of Extended Disjunctive 
Programs 

This section first extends the results of the previous section to extended disjunctive 
programs. Then we discuss a connection between default theories and disjunctive 
default theories recently proposed by Gelfond et al. [1991]. 



78 RELATING DISJU.f\'CTIVE PROGRAMS TO DEE·\CLT THEORIES 

4.4.1 Representing Extended Disjunctive Programs by De
fault Theories 

An extended disjunctive program is a disjunctive program containing classical nega
tion along with default negation in the program [Gelfond and Lifschitz, 1991]. As 
presented in Chapter 2, an extended disjunctive program P is translated into a nor
mal disjunctive program by considering its posztive Jo1-m p+. Using this translation, 
we extend the results in the previous section to extended disjunctive programs. 

Given an extended disjunctive program and its answer sets, let s+ be a positive 
form of an answer set S where each negative literal -.A in S is rewritten by A' in 
S+. Then the following relationship holds, which is a straightforward extension of 
the result for extended logic programs [Gelfond and Lifschitz, 1991, Proposition 2]. 

Proposition 4.9 Let P be an extended disjunctive program. Then a consistent set 
s is an answer set of p ifT s+ is a stable model of p+. 0 

Since an extended disjunctive program reduces to a normal disjunctive program by 
considering its pos1tive form, we can directly apply Definition L3 to give an associated 
default theory for an extended disjunctive program. \\'e first rephrase Theorem 4. 7 
for our current use. 

Lemma 4.10 Let P be an extended disjunctive program. 

(i) If M is a stable model of p+, then there is an extension E of Op+ such that 
M = E n 1-l/3 p+ . 

(ii) If E is an extension of D p+, then M = En 1-l/3 p+ is a stable model of p+. 0 

We say that a consistent extension E of Dp+ is poszlively constslcnt if it does not 
contain a pair of complementary atoms A and A'. The next theorem directly follows 
from the above proposition and lemma, which presents a one-to-one correspondence 
between the consistent answer sets of a program and the (positively) consistent ex
tensions of its associated default theory. 

Theorem 4.11 Let P be an extended disjunctive program. 

(i) If S is a consistent answer set of P, then there is an extension E of D p+ such 
that s+ =En 1-l/3p+. 

(ii) If E is a positively consistent extension of Dp+, then s+ = E n 1-l/3 P+ IS a 
positive form of an answer set S of P. 0 

DEFAULT TRANSLATION OF EXTE.'\'DED DISJU.\'CTJ\'E PROGR:\MS 79 

Clearly the above results reduce to the case of extended log1c programs in the 
absence of disjunctions in a program.4 It should be noted that when a program has 
no consistent answer set, we cannot apply Theorem 4.11 in a straightforward manner. 

Corollary 4.12 Let P be an extended disjunctive program. If Lp is the unique 
answer set of P, then Dp+ has no positively consistent extension. 0 

The converse of the above corollary does not hold in general. 

Example 4.5 Let P be the extended logic program: 

{ a ._ not b, -.a ._ } , 

which has no answer set. In this case, its positive form p+ becomes 

{a._ notb, a'._}, 

and its associated default theory D p+ is 

{a', 
: -.b 

a 

: ~b 

-.b' 

which has the unique extension Th( {a, ~b, a'}). 0 

: -.a' 
}, 

-.a' 

To characterize a program having no consistent answer set, consid<'r a program 
pCp which is the reduct of P with respect to Lp. By the definition of answer sets, 
Lp is the answer set of P ifT Lp is the answer set of pep. Let pep+ be a positive 

form of pep. Then the following result holds. 

Theorem 4 .13 Let P be an extended disjunctive program. Then, 

(i) P has the answer set Lp iff Dpc.p+ has a consistent extension but no positively 
consistent extension. 

(ii) P has no answer set iff either D pep+ has a positively consistent extension but 
Dp+ has no positively consistent extension, or D pep+ has the contradictory 

extension. 0 

The results of Theorem 4.11 and 4.13 present that the answer set semantics of 
extended disjunctive programs is also characterized by Reiter's default theories. 

4 (Gelfond and Lifschitz, 1991] presents a default translation of extended log1c programs, which is 
an extension of tr1 of (Marek and Truszczynski, 1989a] and different from ours 



80 RELATING DISJ['NCTIVE PROGRA.\15 TO DEFAt:LT THEORIES 

4.4.2 R elationship to Disjunctive De fa ult Theory 

Disjunctive default logic, recently proposed by Gelfond et al. [1991]. is known as one 
of the extensions of Reiter's default logic, which is devised to treat default reasoning 
with disjunctive information. In this section, we investigate the connection b<'tween 
disjunctive default theories and associated default theones presented in the previous 
sections. 

A disjunctive default theory ~ is a set of defaults of the form: 

Q : /J1 ' · · · , fJm 
/1 I·· ·I In 

( 4.4) 

where o, /31, ... , f3m, 1 1, ... , In (m, n ;::: 0) are quantifier free first-order formulas and 
respectively called the prerequisite, the justifications and the consequents. The for
mula. 1 1 l12 represents a disjunction meaning "11 is true or 12 is true", rather than 
"11 V 12 is true". 

An extension E of a disjunctive default theory is defined in the same manner 
as that of a default theory except that it is a minimal deductively closed set E' of 
formulas such that for each default rule (4.4) in~. 1f E' satisfies the prerequis1te and 
E is consistent with the justifications, then E' is requ1red to contain some consequ<'nt 
/ 1 ( 1 ~ i ~ n) rather than the disjunction itself. 

Given an extended disjunctive program P, each clause 

L1 V ... V L1 1- L1+1 1\ ... 1\ Lm 1\ not Lm+l 1\ ... 1\ not Ln 

in P is translated into the following d isjunctive default in !ts associated dis]um·tzvc 
default theory 6p: 

{,1+1 1\ · · · 1\ Lm : -.£m+h • • •, -.Ln 
L1 j ... L1 

( 4.5) 

Note here that any C\VA-default is not included in 6p. The following proposition 
is due to [Gelfond et al., 19911 which presents the relation between an extended 
disjunctive program and its associated disjunctiv<' default theory. 

Proposition 4.14 Let P be an extended disjunctiv<' program and 6p be its associ

ated disjunctive default theory. Then a consistent set S is an answer set of P iff S is 
the set of all literals from an extension of 6p. 0 

In the previous section, we have presented the relationship between extended 
disjunctive programs and default theories. Then the next results follows from Thco 
rem 4.11, Theorem 4.13, and Proposition 4.14. Recall here that s+ is a positive form 
of an answer set S. 

DEFAULT TRANSLATION OF EXTE.\'DED DISJt:SC'TIVr; PROGR UfS 81 

T h e orem 4 .15 Let P be an extended disjunctive program. 

(i) If Ea. is a consistent extension of 6p and S = Ea. nCp, th<·n there is an extension 

E of Dp+ such that s+ - En 'H.Bp+. 

(ii) If Eisa positively consistent extension of Dp+ and s+ = E n 'H.B p+, then there 
is an extension Ea. of D.p such that S = Ea. n Cp. 0 

Coro lla ry 4 .16 Let P be an extended disjunctive program. Then, 

(i) 6p has the contradictory extension iff e1ther D pc.p+ has a consistent extension but 
no positively consistent extension, or D pc.p+ has the contradictory extension. 

(ii) 6p has no extension iff D pc.p+ has a positively consist<'nt extension but Dp+ 
has no positively consistent extension. D 

The above results bridge the gap between disjunctive default th<'orics and Reiter's 

default theories in terms of extended disjunctive programs. 

In [Gelfond et al., 19911, the difficulty of expressing disjunctive tnformation in 
Reiter's default theory is discussed using some examples. Ilow<•ver, we have already 
seen that Poole's paradox is eliminated by considering the Cv\,\-defaults in its asso
ciated default theory (Example 4.4). The following examples, which arc also given in 
[Gelfond et al., 1991) to differentiate each formalism, present that we do not lose any 
information under Reiter's default theory in the presence of disjunctive information. 

Example 4 .6 Let 6p be the disjunctive default theory: 

{a= b, a I b }. 

Then the corresponding default theory 

Dp = { a = b, a V b, 

has the unique extension Th( {a, b}) which is equivalent to the extension of ~p. 

Example 4 . 7 Let 6p be the disjunctive default theory: 

{alb, ab:' ::a}. 

Then the corresponding default theory 

Dp = { a V b, a :::> b, 
:~a 

c 

0 

has the unique extension Th({ -.a, b, c}) where Th({-.a, b, c} n 'H.Bp) = Th({b, c}) 

coincides with the unique ext<'nsion of 6p. 0 



82 RBLA'J'/1'\G DISJLSCTl\"E PROGRAMS TO DEFAULT 'I'JJEORIES 

It remains open whether there is a general correspondenre between the disjunctive 
default theory and the default theory.5 However, the result:, presented in this section 
show that Reiter's default theory has the same expressiveness as the disjunctive de

fault tht'<>ry to characterize the stable model semantics and the answer ~et !iemantics 
of normal and extended disjunctive programs. 

4.5 C onnections with Autoepistemic Logic and 
Circumscription 

In thts sectton, we consider connections between disjunctive programs and other two 
representative nonmonotonic formalisms. The one is Moon•'s autocpistcmic logir, 
and the other is McC'arthy's circumscription. 

4.5 .1 Autoepist emic Logic 

A utoepi~temic logic !Moon\ 1985] is a modal non-monotonic logic which is developed 
as a reconstruction of nonmonolo111c logic by !M:cDermott and Doylc, 1980]. 

In autoepistemic logic, nonmonotonic reasoning is achieved as rt•asonmg with an 
agent's own belief. For instance, the bird-fly sentence is repre-sented as 

bird(x) /1. --.L--.Jiy (x) :::> fly(.r) 

wh(•re L is a modal belitf operator. The above formula is read as "if .r is a bird and 
there is no evidence to believe that x does not fly, then x flies". 

Thus, if we know the fact bird(Tweely) and there is no reason to b<·lieve the 

oppositt• farl -.Jly(Twetty), then fly(Tweety) is concluded. 

An autoepisternic th('Ory is defined in a similar way to a first order throry except 
that its language includes modal formulas built from modal operator L and usual 
first-order connectives, with the restriction that quantification into the scope of the 

modal opt•rator is not allowcd.6 

An <'xpansion of an autoepistemic theory is defined as follows. 

~A recf'nt study (~iter and Gottlob, 1993b] indicates that both default theorif's and disjunctive 
default theori<-s are at the same «econd level of the polynom1al hierarchy Therefore, "there must 
exist a polynomial transformation from reasoning tasks 111 disJunctive do•fault theories to analogous 
reasomng tasks in default theones" (G Gottlob, pr1vate communication) . 

6Th us, frre variablt>S appearing in an autoepistemic formula are viewed as ro•pro•,.•nting its ground 
instance~ . 

AUTOEPISTEMIC' LOGIC A:\'D CIRCC.:.\1SCRIPTTO.\ S:3 

D efini t ion 4.4 Let AE be an autoepistemic theory. Then its t.rpan1•ion H b defined 

as 
E = Tlt(AEU {L<P I <:> E £} u {-.L<:> I<:> f! E}). 0 (·1.6) 

An autoepistemic expansion E satisfies the following conditions: 

(i) E = Th(E), 

(ii) A E E iff LA E E, and 

(iii) A f! E iff -.LA E E (where E is consistent). 

A correspondence between autoepistemic logic and logic programming is firstly 
studied by Gelfond [1987] for the perfect model semantics of stratified logic programs. 
The result is cxtmded to the stable model semantics of normal logic programs in 

!Gelfond and Lifschitz, 1988]. 
We present an autoepistemic translation of normal disjunctive programs using 

the relation betw<'en default theories and autoepistemic tht'Ories. It is known that 
the extensions of a default theory are related to the expansions of an autocpistt•mic 
theory [Konolige, 1988; ~1arek and Truszczynski, 1989b]. ~1arek and 'I ruszczynski 
ll989b] have shown that there is a one-to-one correspondence between a wt•ak t•xtcn
sion of a default throry and an expansion of its corresponding autoepistemic tllt'ory. 
Since weak extensions coincide with extenstons in prercquisit<!- frce clt·fault thc·oril's. 
the above r<!sult implies that the default translation of disjunctive programs prt'sc•nted 
in Section 4.3 is also rephrased in the context of autoepistemic logic. That is, in Dc•fi
nition 4.3 (i), instead of transforming each clause in a program into the corresponding 

default rule, we can transform each clause into the following autoepistemic formula: 

81 A .. . A B.,. A --.LBm+t A ... A --.LBn :::>At V ... V At. (-1. 7) 

and instead of th<> CWA defaults in (ii), we have the CIVA-formula: 

-.LA:::> -.A. ( 4 .8) 

In this way, the autoeptstemic theory A Ep associated with a dtsjunctivc program 

P is defined. Then the following result holds. 

Theore m 4.17 Let P bt> a consistent normal disjunctive program and AEp be its 
associated autoepistcmic theory. Then A1 is a stable model of P iff E-: is an expansion 

of AEp and M = En 'HB p. D 



84 HELATh\G DISJl 'XCTI\:'E PROGRAMS TO DEFAULT T JJEORIES 

The above theorem provides an autoepistemic characterization of disjunctive pro
grams. Such an autoepistemic translation is also presented in [Przymusinski, 1990a] 
in the context of the 3-valued stable model semantics. Using the same techniques pre
sented in the previous sections, we can also provide autoepistemic characterizations 
of extended disjunctive programs and associated disjunctive default theories. An al
ternative autoepistcmic translation for extended disjunctive programs is presented in 
[Lifschitz and Srhwarz, 1993; Chen, 1993]. 

4.5.2 C ircumscription 

Ctrcumscription [McCarthy, 1980; 1986] is a lso known as one of the popular frame
works of nonmonotonic reasoning in AI. Different from default logic and autoepistemic 
logic, circumscription is still within classical logic but augmented with an ability of 
nonmonotonic reasoning. 

Using the bird fly example again, let us consider the first -order formula: 

Vx bird(x) A -.abnormal(x) ::::> fly(x). 

Then, if bird(Twcety) is the all known facts about Twecty, by minimizing the ex
tension of the predicate abnormal {in this case the empty set), nrcumscription con
cludes fly(Tweety). Ebe if there is an evidence that Tweety is an abnormal bird 
abnormal(Twecty), fly(Tweety) is not derived any more. 

Several variations of circumscription have been proposed so far. In what follows, 
we use predtcate circumscrtptzon originally proposed by McCarthy [1980]. 

Given a first· order theory T and a set of predicates n = {PI' 0 0. 'Pn} from T, the 
circumscription ofT with respect to n is defined as the second-order axiom that 

n n 

Ctrc(T; fl ):;;:: T(p;, ... ,p~) A/\ (Vx p:(x ) ::::> p,(x )) ::::> /\ (Vx p,(x ) ::::> r:(x )) {4.9) 
•=I 

where each r: is a predicate variable with the same arities as p,. 

The above schema means that for any theory T(p;, ... , p~) obtained from T by 
replacing each p, with p:, there is no theory which has smaller extensions of p~, .. . , Pn 
with respect to T. 

Predicates in II are said to be minimized, while the rest of predicates in the 
language of T are said to be fixed. Any model of Circ(T; Tl) is called a fi-mmimal 
model of T, in which extensions of each predicate from n are minimized with fixed 
interpretations for the rest of predicates. 

AUTOEPISTE.\.1/C LOGIC A.\'D CIRCL'MSCRIPTIO.\' 

Circumscription is also closely related to logic programming semantics. Lifschitz 
[1985] showed a connection between predicate circumscription and the CW,\ . The re· 
suit is further extended to stratified logic programs [Lifschitz, I 9oS]. and normal logic 
programs [Lifschitz, 1989; Lin and Shoham. 1992: Yuan and You. 199'3]. For positive 
disjunctive programs, circumscription coincides with the minimal model !'emantics 
if no fixed predicate exists. The perfect model semantics of stratified disjunctive 
programs is also characterized by priorit1zed circumscnpl10n [Pr7.ymusinski , 19S8a]. 
Gelfond et al. [1989] study various forms of closed world assumptions in t(•nns of 

circumscription. 
In the following, we characterize the disjunctive stable model s<'mantics of normal 

disjunctive programs by circumscription. 

For a normal disjunctive program P, let Pr., be a first-order tlwory which is ob
tained from P by replacing each not A in P by -.LA, where LA is a new atom meaning 
A is believed.1 Then Pr., is a set of formulas of the same form as ( 4. 7) except that each 
modal formula -.LB, is replaced by a first-order literal -.LB,. Gtvcn a theory Pr.,, its 
Herbrand base is defined as 'H/3 p U {LA I A E 'H/3 p}, and an ll£>rbrand interpretation 
is defined as a. subset of the Herbrand base. We restrict our attent1on to Hcrbrand 
models of the theory Pr.,, since we are interested in a semantic relationship between P 
and PL· Also such a restnction has an effect to incorporate both the domatn closun 
assumptton and the unique name assumption into Pr., [Bossu and Si<'gel, 1985]. 

Let n be the set of all predicates appearing in the language of P Th<'n circum
scription Ctrc( Pr.,; Il) represents that circumscribing the predicates 11 in Pr., with the 
fixed predicates Ln, where Ln == {Lp I p E n}. In the following, for M ~ 'H/3p, we 
write L M = {LA I A EM}, and Ln = n means 1\p,en Vx Dp,(x) = p,(x). 

Let us cons1der a propositiona.l theory Pr., LM which is obtained from the ground 
instance of the theory Pr., by deleting (i) each formula which has a negative literal 
-.LA in its antecedent such that LA E LM, and (ii) all negative literals -.LA in the 
antecedents of the r<'maining formulas. Then the following lemma holds. 

Lemma 4.18 Let P be a normal disjunctive program. Then MU LM is an I INbrand 
model of Circ( Pr., LM; II) A LU = II iff MU LM is an Her brand model of Ctrr( PL; TI) 1\ 

Ln :::: n. 

Proof: Suppose that MU LM is an Herbrand model of C'rrc{ P1, LM; I I) A 

LTI =: n. Then, for each ground formula B1 A ... A Bm ::::> A, V ... V At 

7The meaning of LA IS the same as KA tn Chapter 3, but here we use the notation LA to compare 
it with an autoepistemic formula LA 



86 RELATT:VG DI)Jl SC'TTVE PROGRA.\15 TO DEFAl'LT 1'11EORTES 

m pLLM, {B., ... ,Bm} <;;:: M implies A, EM for some t (1 ~ t ~ /). 

In this case, there is a corresponding ground formula 8 1 1\ ... 1\ Bm ::) 
A, V ... V At V LBm+l V ... V LBn from PL such that {81, ... , Bm} <;;::M 
and A, E M hold. Since M is fl-minimal, MU LM 1s also an Herbrand 
model of Ctrc( PL; TI) 1\ Lll = n. 
Conversely, suppose that MU LM is an Ilcrbrand model of Circ( P1,; fl) 1\ 
Lfl = TI. Then, for each ground formula 8 1 1\ ... 1\ Bm ::) A 1 V ... V A1 V 

LBm+l V ·V LBn from Pt, { 8 1, ... , 8"'} <;;:: J,f implic~ either (i) A, E .\1 
for some i (1 ~ t ~/)or (u) L81 ELM for some j (m+ 1 ~ j $ n). 

In case of (i), when LB1 r:f. LM, there is a corresponding ground formula 
8,1\ ... /\ Bm::) A, V ... V At in pLLM such that {B., ... ,Bm} ~M 
implies A, E M. In case of (ii), there is no corresponding ground formula 
in PL LM. In each case, Jf U L\f is also a model of PL L\f. Since \1 is 

fl-rninimal, Af u L.\1 is an Herbrand model of Ctrc( PL L.\f; fl) 1\ LTI = n. 
0 

Now we present the theorem which provides a connection betwecn disjunctive 
programs and circumscription. 

T heorem 4 .19 Let P be a normal disjunctiv<' program. Then M is a stable model 
of P iff MU LM is an Herbrand model of C'trc(PL; fl) 1\ Lll : fl. 

Proof' M is a stable modcl of P 
1ff M is a minimal model of pM 

iff M is an llcrbrand model of Circ( pM; I!) 
iff Af is an Her brand model of Circ( PL LM; fl) 

iff AfULM IS an Herbrand model ofCtrc(PLLM;TI)I\ Ln = n 
iff J'l-fULM ts an Herbrand model of Ctrc( PL; fi)/\Lfl ::: 11 (by Lemma 4.18). 
0 

The above theorem generalizes the corresponding results for normal logic programs 

ILifschitz, 1989; Ltn and Shoharn, 1992; Yuan and You, 19931, and also provides a 

method of characterizing extt•ndcd disjunct1ve programs and associated disjunctive 
default theories in terms of circumscription.8 

8
1-'or normal disjuncltve programs, a similar resull is also reported tn [Lin and Shoham, 1992) 

wilhoul proof. 

A UTOEPISTEMIC LOGIC A.\'D CIRCL'MSCRIPTIO.\ S7 

4 .5 .3 C ha ract erizing Possible Model Sema ntics 

We finally discuss the issue of characterizing the possible model semantics by non 
monotonic formalisms. 

We have already sccn that possible models of normal disjunctive programs arc 
translated into stable models of normal logic programs by the pm· transformation in 
Section 3.6. Since stable models of normal logic programs can be expressed by the 
nonmonotonic frameworks as presented in the previous sections, possible models are 
also expressed by each nonmonotonic framework via stable models. 

However, the pm-transformation introduces extra atoms like 4:'s, which arc not 
included in the language of the original program. Hence nonmonotonic translations 
of possible models through the pm-transformation also include tho~w extra-language 
formulas, which does not precisely coincide with the original meaning of the program. 

Then, in this section we consider a possibility to express possible models directly 
in terms of each nonmonotonic formalism. For this purpose, we can first exclude 
(disjunctive) default logic and circumscription. Thts is because those formal isms are 
based on the principle of minimality, that is, default extensions and circumscribed 
models are always minimal. Thereby the remaining candidate is autoepistemic logic. 

Fortunately, autoepistemic expansions are not ncccssarily minimal with respcct 
to first-order formulas. For instance, the autoepistemic theory {La ::) a } has two 
expansions: one containing a and La, while the other containing -.La but neithf'r a nor 
-.a. Historically, non-minimal expansions are considered as anomalous expansions, 
and efforts have been done to eliminate such expansions IKonolige, 19881. Ilowcver, 
as shown below, non-mint mal expansions are useful to express posstble models •n an 
autoepistemic theory. 

Let us consider the autoepistemic theory AE - { La :::> a, Lb ::) b}, which 
has four expansions containing the sets, £ 1 = {a, La, -.Lb}, £ 2 - {b, Lb, -.La}, 
E3 = {a, b, La, Lb}, and E4 = {-.La, -.Lb}, respectively. Then we can observe 
that the first three expansions correspond to the possible models of the program 

P={aVb+-}. 
Rewriting AE by AE' = {a V -.La, b V -.Lb} will help to undcn;tand the corre

spondence. Each formula in AE' presents that an atom is true or not believed, which 
exactly characterizes interpretations of split programs of P. That is, E" £2, and £3 
express episternic interpretations of split programs P1 = {a +-}, P2 - { b +-}, and 
P3 ={a+-, b +-},respectively. On the other hand, stnce there is no split program 
corresponding to £ 4 , we add the formula La V Lb to AE to remove this expanston 

from AE. This formula presents that when a V b is true in P, one of the disjuncts is 
believed. 

Formally, expressing possible models in autoepistemic logic is achieved as follows. 



88 REl-ATING DISJC.;.\'CTIVE PROGRA.\15 TO DEF:4CLT TIIEORIES 

Definition 4.5 Let P be a normal disjunctive program. Then its associated pm
autoepi:;temtc theory AE~m is constructed as follows: 

(i) Each disjunctive clause A1 V ... V At +- 8 1 1\ ... 1\ Bm 1\ not Bm+l 1\ ... 1\ not Bn 
from Pis transformed into the following autoepistemic formulas in AE~m: 

Rt 1\ ... 1\ Bm 1\ -.LBm+t 1\ ... 1\ _,LBn ~A, V _,LA, fori= 1, ... , /,(·1.10) 

Btl'l ... /\ Bm 1\ _,LBm+tl'l . . . /\ -.LBn ~ LAt V ... V LA,. (4.11) 

In particular, each normal clause A, +- 8 1 1\ ... 1\ Bm 1\ not Bm+ 1 1\ ... 1\ not Bn 
from P is transformed into the following autoepistemic formula in A£';'1 : 

(ii) Nothing else is in AE~m. 0 

Note here that AE~m contains no CWA-formula (4.8). 

The first formula (4.10) represents that if the antecedent of the formula is true, A; 

is true or not believed. The second formula ( 4.11) represents that if the antecedent is 
true, at least one of the disjuncts is believed. Recall that an autoepistemic expansion 
E satisfies the conditions that -,LA, E E implies A, rf E and LA, E E implies A, E E. 

Now we have the following result. 

The ore m 4 .20 Let P be a consistent normal disjunctive program and AE~m be its 
associated pm-autoepistemic theory. Then M is a possible model of P iff E is an 
expansion of AE~m and M = En 11.8 p. 

Proof: Let M be a possible model of P. Then there is a split program 
P' of P such that M is a stable model of P'. Suppose that each ground 
disjunctive clause A1 V ... V A, +- 8 1 1\ ... I\ Bm 1\ not Bm+tl'l .. . I\ not Bn in 
P is replaced with the split clauses: A, +- 8 1 1\ . .. 1\ Bm 1\ not Bm+ 1 1\ ... 1\ 

not Bn in P', where A, E S for some non-empty subsetS of {A 1 , ••• , A1}. 

In this case, it is easy to see that the corresponding autoepistemic theory 
AE~m has an expansion E such that A, E M iff A, E En 'H.Bp, and 
A, rf M iff -.LA, E E. Hence, the result follows. The converse is also 
shown in the same manner. 0 

SUMMARY 89 

4.6 Summa ry 

This chapter has presented the relationship between disjunctiv<' programs and default 

theories. 
We first pointed out the problem of Bidoit and Froidevaux's positi\'ist ddault 

theories, and developed an alternative correct default translation of normal disjunctive 
programs. It was shown a one-to-one correspondence between the stable models of 
a disjunctive program and the default extensions of its associat<•d d<>fault theory. 
We also extended the results to default translation of extended disjuncttve programs 
and the answer set semantics. The results indicate that Reiter's default th<'ory is as 
expressive as Gelfond et al.'s disjunctive default theory to charact<'rizt• the semantics 

of disjunctive programs. 
We finally presented the connections between disjunctive programs and auto<'pis

temic logic, and circumscription. The possible model semantics of disjunctive pro 
grams was also characterized using non-minimal feature of aulocpistc>mlc t•xpansions. 



90 RELATIJVG DISJt'.\'CTIVE PlWGRAMS TO DEFAl.,'LT THEORIES 

Chapter 5 

Equivalence between Disjunctive 
and Abductive Logic Programs 

Abductive logtc programmmg is a recently proposl'd framework which enhancl's logic 
programming by supplying the ability of abductive reasoning in Al. In this chap
ter, we consider such an abductive logic programming framework and reveal its close 
relationship to disjunctive programs. We show that the generalized stable model se 
mantics of abductive logic programs arc viewed as the posstble model semantics of 
disjunctive programs, and vice versa. We also demonstrate that abductive disjunc 
tive programs do not increase expressiveness of disjunctive programs. Interrelations 
between various semantics of disjunctive and abduct.ive logic programs are discussed 
in terms of computational complexity. 

5.1 Introduction 

Abduction is a form of hypothetical rca'ioning and is widely used today in various AI 
problems such as diagnosis and planning. Abduction is a reasoning for hypotheti
cal generation from a given observation, and provides a weak kind of non-deductive 
inference as a tool for commonsense reasoning. 

In logic programming, abduction is realized in the framework of abductive log1c 
programmmg. The framework was firstly proposed by Eshghi and Kowalsk1 (1989), 
in which they gave an abductive interpretation of negation as failure in normal logic 
programs. They showed a one-to-one correspondence between the stable models of 
a normal logic program and the extensions of its associated abductive framework. 
Kakas and Mancarella (1990) extended their framework to abductive logic programs 
containing abducibles which represent not necessanly default negation but pos1tive 

91 



92 DISJL'NCTIVE A."JD ABDUCTIVE LOGIC PROGRAA,fS 

hypothetical facts . They also introduced the generalized stable model semantics as 
a theoretical framework of such programs. Further extensions of abductive logic 
programming have been studied by several researchers in the last few years [Kakas et 
al., 1992]. 

Comparing betw<.-en disjunctive programs and abductive logic programs, both 
frameworks enhance logic programming by supplying the ability of reasoning with 
incomplete information. It is achieved in disjunctive programs by reasoning with dis
junctive information, while in abductive logic programs by reasoning with hypotheses. 
Disjunctive programs and abductive logic programs have been independently devel
oped so far and have different syntax and semantics from each other. However, in 
disjunctive programs, each disjunction is considered to represent knowledge about 
possible alternative beliefs, and such beliefs can also be regarded as a kind of hy
potheses. In abductive logic programs, on the other hand, each candidate hypothesis 
is examined whether it is adopted or not, and this situation can be considered as 
meta-level disjunctive knowledge that either a hypothesis is true or not. Thus, each 
formalism appears to deal with very similar problems from different viewpoints. Then 
the question naturally arises whether there is any formal correspondence between 
these two frameworks. 

There are some studies which can be related to the above question. Dung [1992a] 
presents a program transformation from acyclic disjunctive programs to normal logic 
programs under the stable model semantics and uses Eshghi and Kowalski's abductive 
proof procedure for such programs. However, Dung's transformation is restricted to 
acyclic disjunctive programs and not applicable in general. Console et al. [1991] char
actenze abduction using Clark's completion technique in abductive logic programs. 
They show that abductive solutions are obtained by deduction in the only-if part of 
the completed abductive program which 1s viewed as a kind of disjunctive program, 
but the technique is applicable only to acyclic abductive programs. lnoue and Sakama 
[1993] present a program transformation from abductive logic programs to disjunctive 
programs under the stable model semantics and use a bottom-up model generation 
proof procedure for computing abduction. While their transformation is fairly gen
eral, it is a one- way transformation from abductive logic programs to disjunctive 
programs. 

In this chapter, we investigate a general correspondence between disjunctive pro
grams and abductive logic programs. For the part from abductive logic programs 
to disjunctive programs, we show that the generalized stable models of an abductive 
logic program are characterized by the possible models of the transformed disjunc
tive program. Conversely, from disjunctive programs to abductive logic programs, 

ABDUCTIVE LOGIC PROGRAM.\IJ.VG 93 

we show that the possible models of a disjunctive program are exactly thr gE-ner
alized stable models of the transformed abducti\·e logic program. ~1oreovcr , if the 
disjunctive stable model semantics is taken as the underlying semantics instead of the 
possible model semantics. it is unlikely that disjuncti\·e programs can be cflicicntly 
expressed in terms of the generalized stable model semantics. It is also shown that 
abductive disjunctive programs can be expressed by abductive logic programs under 
the possible model semantics. 

The rest of this chapter is organized as follows. In Scct1on .'>.2, we introduce the 
notion of abductive logic programming. In Section 5.3, we pr<'scnt program transfor· 
mations between abductive logic programs and disjunctive programs. It is shown that 
the generalized stable models of an abductive logic program are characterized by the 
possible models of the transformed disjunctive program, and vice vc•rsa. In Section 
5.4, we introduce abductive disjunctive programs and present their translation into 
disjunctive programs. It is shown that abductive logic programs are as expr<•ss1ve as 
abductive disjunctive programs under the possible model semantics. Section 5 .. ') dis 
cusses the relation between disjunctive programs and abductn•e log1c programs from 
the computational complexity viewpoint. Section 5.6 summarizes this chapl<•r. 

5.2 Abductive Logic Programming 

Abduction is firstly introduced by Peirce [1932] who characterizt:d three distinguished 
forms of reasoning, abduction, induction, and deduction. Abduction is a non ·cleductive 
inference and IS formally presented as follows. 

Given a theory T and an observation 0, abduction is dcfincCI as an inference of 
an explanation E such that 

TU E f= 0 where TU E is consistent. ( 5.1) 

Thus, abduction can be thought of as a form of hypothetical reasoning which 
produces, with background knowledge T, hypothetical sentenc<'s E that are sufficient 
to account for 0. 

Abductive logic programming is a form of such abductivc frameworks in which T 
is given as a logic program. 

An abductivc log1c program is a pair ( P, A) where P is a normal logic program 
and A is a finite set of atoms called the abducibles. 1 

1 We slightly modified the origtnal definttton of [Kakas and ~1ancarella, 1990) by mcluding integnty 
constraints in a program and considering abducible atoms instead of abducible prcdicalt'!l. llcrl', an 
abducible containing variables b identtfied with tls ground instances . 



94 DIS.JL\CTI\'E A.\'D ABDL.C'Tl\'E LOGIC PROGRAMS 

Abducibles are pre sp<'cified sentences, which r<'pr<'sent candidate hypotheses used 
for explanations. Such a specification is needed to get "best" explanations sine<' there 
might be many candidate explanations which can deduce a given observation from 
the condition ( 5.1). 

A declarative semantics of abductive logic programs is given by Kakas and Man
carella [1990] who extended the stable model semantics of normal logic programs 
to the generalized stable model semantics of abduclive logic programs. Similar ex
tensions are done in [Gelfond, 1990; Inoue, 1991] in the context of extended logic 
programs. 

Let ( P, A) be an abductive logic program and E he a subset of A. An tnlerpre
tation I is a generail::cd .~table model of ( P, A) if l is a stable model of the normal 
logic program P U E. A generalized stable model l is called A -minimal if th<'re is no 
generalized stable modd J such that J nA C I nA. Clearly, (A-minimal) generalized 
stable models coincide with stable models if A 0 

Let ( P, A) be an abductive logic program and 0 be an atom which r<'prcs<'nts 
obsen.•ation. Then a set £ ~ A is an e:rplanalion of 0 if there is a generalized stable 
model I of ( P, A) such that I satisfies 0 and E = l n A. An explanation E of 0 is 
rmnimal if no E' C E is an explanation of 0. 

Note that the problem of finding explanat1ons is <.'Ssentially equivalent to the 
problem of finding generalized stable models since 8 is a (minimal) explanation of 0 
with respect to ( P, A) iff l is a (A-minimal) generalized stable model of ( P U { +

notO}, A ) such that In A- E. 
Also note that without loss of generality an observation is assumed to be a non

abducible ground atom. Tlus 1s because if 0 is an ahduciblc, its explanatiOns trivially 
contain 0. Else 1f O(x contains a tuple of frt>c variablt>s x. we can introduce a 
new proposition 0 wluch IS considered &. an observation in the program P U { 0 +

O(x)}. Else if mult1ple observations are given like that 0 1, ... , Om are observed 
and Om+h ... , On arc not observed. they arc also realized by introducing a clause 
0 +-- 0 1 1\ ... 1\ Om 1\ not Om+l 1\ ... 1\ not On into P and computing explanations of 
0 [Inoue and Sakama, 1993]. 

Example 5.1 Let ( P, A} be an abductive logic program such that 

P = { p(.r) +-- q(.r) 1\ not r(x), q(.r) +- .s(:r), q(x) +-- t(x)} 

and A = { s(.r), t(b) }. Then, for a given observation 0 = p(a), the (A-minimal) 

generalized stable model l = { p(a), q(a), .s(a) } of ( P, A) satisfies 0 and its 
(minimal) explanation is E lnA = { .s(a) }. Here, lis also the unique gent•ralizcd 
stable model of ( P U {+--not p(a)}, A). 0 

DTSJU.'VCTNE Al\D ABDl'CTl\'E LOGIC PROGRA.\15 95 

5.3 Connections between Disjunct ive and Abduc
tive Logic Program s 

In this section, we characterize disjunctive programs in terms of abductive logic pro
grams, and vice versa. Then we. reveal close relationships bctwe(•n the generalized 
stable models of abductive logic programs and the posstble models of disjunctive. 
programs. 

5.3 .1 Ge neralized Stable M odels are P ossible Models 

We first present a program transformation from abdurtivc logtc programs to disjunc 
tive programs, then show that the generalized stable models of an abductive logic 
program can be expressed by tll(' possible models of the tr<Lnsfornwd disjunctive pro 

gram. 
In an abductive logic program, each candidate hypoth<~'>is is either assumed or 

not. Such a situation is naturally <'xpressed by disjunctions in a program. 

Definition 5.1 Let ( P, A) be an abductive logic program. Th<m its dip-transformation 
is defined by a normal disjuncttvc program dip( ( P, A)) which is obtained from P by 
adding the following disjunctive clauses for each abduriblc A E A: 

AVc+- (5.2) 

where c is an atom not appearing elsewhere in P. 0 

The intuitive meaning of the. dip-transformation is that when an abduciblc A 
is assumed in an abductivc logic program ( P, A), the corresponding disjunct A is 
chosen from (5.2) in the transformed disjunctive program (1/p(( P.A)). Else when 
A is not assumed, the newly introduced atom c is chosen from (5.2). Thus the dip
transformation specifies meta-lcvel knowledge representing whc.th<>r each abduciblc. is 

assumed o r not. 

Now we express the generalized stable model semantics in terms of dip( ( P, A)). 
Let I be a possible model of a normal disjunctive program P. We say that I is 
A-minimal if there is no possible model J of P such that J n A C In A. In the 
following, an atom A is identified with the unit clause A .._ m 1· 

T heorem 5.1 Let ( P, A) be an abductive logic program. Then. 

(i) I\ {c} is a generalized stable model of (P,A) 1ff l is a possible model of 

dlp((P, A )). 



96 DI8JIJNCTJVE AND ABDUCTIVE LOGIC PROGRAMS 

(ii) I\ { e} is an A-minimal generalized stable model of ( P, A} iff I is an A-minimal 
possible model of dip( ( P, A}). 

Proof" (i) Let I' be a g(:neralized stable model of ( P, A}. Then I' 
is a stable model of P U r; for some E from A. Now let us consider 
the transformed disjunctive program dip( ( P, A}). Then there is a split 
program P' of dip( ( P, A}) such that for each disjunctive clause (5.2), 
A +- is in P' if A E E ; ! +- is in P', otherwise. When e +- is in P', 
I' U { e} is a stable model of P' and also a possible model of dip( ( P, A}). 
Else when t +- is not in P', I' is a stable model of P' and also a possible 
model of dip( ( P, A)). II<·ncc the result of only-if part follows. 

Conversely, when I is a possible model of dip( ( P, A)), it is a stable model 
of some split program P' of dip( ( P, A ) ) Let E be the set of all split 
clauses included in P'. Then l1s a stable model of PUE. Since E\ {e +-} 
consists of instances from A. 1\ { e} is a generalized stable model of ( P, A). 

(ii) The result directly follows from (i) and the definitions of A-minimal 
generalized stable models/ A-minimal possible models. 0 

Corollary 5.2 Let ( P, A} be an abductivc logic program. Then, for a given obser
vation 0, there is a (minimal) explanation E of 0 1ff there is an (A minimal) possible 
model I of dip( ( P, A }) satisfying 0 and In A = E. 0 

Example 5.2 Let ( P, A} be an abductive logic program such that 

P = { wet shoes - wet-grass 1\ not driving-car, 

wet-gras-' - rained, 

wet-grass +- spnnkltr-on }, 

and A = { ramed, sprtnkler-on }. Then, 

dip( ( P, A }) = P U { rained V e -, sprinkler-on V e - } 

which has the five possible models: 

{ratned, sprinkler-on, wet-grass, wet-shoe.)}, 

{e}' 

{ e, ratned, wet-grass, wet-shoes}, 

DISJUNCTNE AND ABDUCT/VB LOGIC PROW?AMS 97 

{e, sprinkler-on, wtt-grass, wet ,,hoes}, 

{ e, ramed, sprinkler-on. wet-gras~, wt t-shoe~}. 

Thus, the generalized stable models of ( P, A) coincide with the sets whirh are ob
tained by removing e from each possible model. In particular,{£} is the A minimal 
possible model and it corresponds to the A-minimal g<•ncralizcd stab!<> model 0 of 
(P,A}. o 

The result of this section indicates that abductive logic programs arc also consid
ered as disjunctive programs. In the nt•xt section, we pn•scnt that the ronv<·r~<' is also 
the case. 

5.3.2 Poss ible Models are Generalized Stable Models 

As presented in the introduction, mdefimte information in disjunctiV<• programs is 
viewed as possible hypotheses in a program. Then it is natural to represent disjuncts 
in terms of abducibles in an abductivc log1c program. However, the prohlt•rn is that 
disjunctive clauses poss1bly have conditions in their bodies, while abductive logic 
programs introduced in Section 5.2 lack the ability of expressing assumptions with 
preconditions. Then our first task is to extend the framework of abductive logic 
programs to possibly include such hypothetical rules. 

An abductive logic program considering in this section is a pair ( P, C) where P 
is a normal logic program and C is a finite set of normal clauses called the abduczble 
rules. The abducible rule intuitively means that if tht' rule is abduced then 1t is 
used for inference together with the background knowledge from P. In this sense, 
abductive logic programs presented in the previous sections are considered ;u; a special 
case where each abducible rule has the empty precondition. The generalized stable 
model semantics of such an extended framework is defined as follows. 

Definition 5.2 Let ( P,C} be an abductive logic program and F be a subset of C. 
An interpretation I is a generalized stable model of ( P, C} if it is a stable model of 
the normal logic program P U F. 0 

The generalized stable model introduced above is a direct extension of the one 
presented in the previous sections, and it reduces to the usual notion wh<'n C - A. 

Next we provide a program transformation which translates normal disjunctive 
programs into abductive logic programs. For a normal disjunctive program P, we 
define P = disJ(P) U disj(P) where dzsj(P) is the s<'t of all disjunctive clauses from 
P and disj(P) is the set of all normal clauses and integrity constraints from P. In 
the following, r denotes the conjunction in the body of a clause. 



98 DISJLVCTI'v'E ASD ABDUCTI\'E LOGIC PROGRAMS 

Definition 5.3 Given a normal disjunctive program P, let us consider the set of 
normal clauses 

c = { A, +- I' I At V ... V At +- r E di$) ( P) and 1 ~ i ~ I } (5.3) 

and the integrity constraints 

IC = { +- r 1\ not AI 1\ .•. I\ not At I AI V ... V At-rE disj(P) }. (5..1) 

'!'hen we define the alp-lmn::.formation of P by alp(P) = ( d1sj(P) U IC, C). 0 

The intuitive mf'aning of the alp-transformation is that each disjunctive clause 
in a program is replaced with a set of abducible rules (5.3) in C. The int<'grity 
constraints (5.4) in IC impose the condition that at least one of disjuncts is chosen 
as an abducible whenever the body of a disjunctive clause is true. In this way, by the 
alp-transformation ea.ch disjunctive clause is rewritten by a set of abduciblc rules. 

~ow we present the relationship between the possibl<• models of a normal disjunc:
ttve program P and the generalized stable models of tlw transformed abductive logic 
program alp(P). 

Theorem 5.3 Let P be a normal disjunctive program. Then I is a possible modd 
of P iff I is a generalized stable model of alp( P). 

Proof' Let I be a possible model of P. Thf'n there is a split program 
P' of P such that I is a stable model of P'. Suppose that each ground 
disjunctive clause C"': At V ... V A,. +- f4 from Pis replaced with the 
split clauses in C} = {A, +- r 1: I A, E S} in P' where s is a non-empty 
subset of { A 11 ••• , A1,}. Then I is a stable modt'l of di~J( P)UU~: C~. Since 
U~: C~ consists of instanct'S from C and I satisfic·s integrity constramts IC. 
I is also a generalizc•d stable model of alp(P). 

Conversely, let I be a generalized stable model of alp(P). Then I is a 
stable model of P U F where F is a subset of C. For each normal clause 
A, +- r in F, there is a corresponding disjunctive clause c : AI V ... V 

A1 +- r in disJ(P) such that 1 ~ i ~ I. Also, sine(' I satisfies integrity 
constraints I C, when I satisfies f, at least one normal clause A, +- I' 
is included in F. In this Ca.\>e, there is a split program P' of P in which 
each ground instance of a disjunctive clause C is split into a corresponding 
ground instance of a normal clause A, +- r. Thus I is also a stable model 
of P', hence a possible model of P. 0 

DISJUNCTNE ASD ABDUC'I'!VE LOGIC PROGHA.\tS 

Example 5.3 ([Chan, 19931) Let 

P = { violent V psychopath +- su8ptcl, 

dangerous +- vwlent 1\ psychopath, 

suspect +- }. 

Then, alp(P) = ( disj(P) U IC, C) where 

disj(P) U IC = { dangerous +- violent 1\ psychopath, 

::.u.~pc.ct +-, 

.- ,\U.spc.ct 1\ not violent 1\ not p.~yrlwpaih }. 

C = { vwlcnt +-suspect, psychopath t suspect}. 

Thus, alp(P) has three gcn<-raliz<'d stable models: 

{suspect, violent}, 

{suspect. psychopath}, 

{suspect, violwt, psychopath, dangt r·ou., }. 

which coincide with the possible modds of P. 0 

99 

Note that in the above example there is no minimal modf'l of P conta1nmg 
dangerous. By contrast, alp(P) has a generalized stable model in which dangcrow:• 

is true, which corresponds to a possible model in which the disjt:nction is inclusiv<•ly 
true. 

The abductive logic programming framework present<'d in this section is also in
troduced by Inoue [19911 in tht• context of the knou•lulgt ... y.,tcm for extended logic 
programs. He also shows that an abducti\·e logic program ( P.C) can be translated 
into a semantically equivalent usual abductive logic program ( P. A). Given an ab
ductive logic program ( P,C ). let us consider a program P' which is obtained from P 
by including the clause: 

A+- A' 1\ r 
for each abducible rule A+- r in C. Here A' is a newly introduced atom not appearing 
elsewhere in P and is uniquely associated with each A. :\lso let A' be a set of 
abducibles which consists of every newly introduced atom A'. Then he proves that 
there is a one-to-one corrc:;pondence between the generalized stable models of ( P. C) 
and the generalized stable models of ( P', A'). This fact implies that the possibl<' 
models of a normal disjunctive program are also expressed by the generalized stable 
models of a usual abductive logic program. 



100 DISJUNCTIVE AND ABDUCTIVE LOGIC PROGRAMS 

5.4 Abductive Disjunctive Programs 

This section extends a framework of abductive logic programs to abductive disjunctive 
programs, and discusses their correspondence to disjunctive programs and abductive 
logic programs. 

5.4.1 G ener a lized Disjunctive Stable Models and Possible 
Models 

Abductive disjunctive programs are disjunctive programs with abducibles. The defi
nition of an abductive disjunctive program ( P, A) is the same as an abductive logic 
program except that P is a normal disjunctive program. For a given set E ~ A , an 
interpretation I is a gene1·alized disjunctive stable model of ( P, A ) if I is a disjunctive 
stable model of the normal disjunctive program P U E. On the other hand, I is a 
genemlized possible model of ( P, A) if I is a possible model of the normal disjunctive 
program P U E. A generalized disjunctive stable model (resp. generalized possi
ble model) I is A -minimal if there is no generalized disjunctive stable model (resp. 
generalized possible model) J such that J n A C In A. 

The above definitions are direct extensions of the previously proposed notions. In 
fact, generalized disjunctive stable models (resp. generalized possible models) reduce 
to disj unctive stable models (resp. possible models) in normal disjunctive programs 
with A = 0, and both generalized disjunctive stable models and generalized possible 
models reduce to generalized stable models in abductive logic programs. 

A difference between generalized disjunctive stable models and generalized possi
ble models is illustrated in the following example. 

Exa mple 5.4 Let ( P, A) be an abductive disjunctive program such that 

P = { a V b .- c, d .- a 1\ b } 

and A = { c}. Then, 0, { c, a}, { c, b}, { c, a, b, d} are all generalized possible models, 
while { c, a, b, d} is not a generalized disjunctive stable model. Thus, for a given 
observation 0 = d, it has an explanation c under the generalized possible models, 
while no explanation is available under the generalized disjunctive stable models. 0 

In this way, the generalized possible model semantics can provide explanations 
which come from inclusive disjunctions, while the generalized disjunctive stable model 
semantics cannot in general. 

ABDUCTIVE DISJUNCTIVE PROGRAMS 101 

5.4.2 G e neralized Possible Models a re Generalized Stable 
Models 

Abductive disjunctive programs are generalization of disjunctive programs. However, 
in this section we present a somewhat unexpected result that abductive disjunctive 
programs do not increase expressive power of disjunctive programs. We show this 
fact by introducing a translation from abductive disjunctive programs into disjunctive 
programs. 

For an abductive disjunctive program ( P, A), we define its dip-transformation 

dip( ( P, A )) in the same manner as presented in Definition 5.1. Then the following 
results hold. 

Theorem 5 .4 Let ( P, A) be an abductive disjunctive program. Then, 

(i) I\ {t:} is a generalized possible model of (P,A} iff I is a possible model of 
dip( ( P, A }). 

(ii) I\ { £} is an A-minimal generalized possible model of ( P, A} iff 1 is an A-minimal 
possible model of dip( ( P, A}). 

Proof" Similar to the proof of Theorem 5.1. 0 

The above theorem, together with Theorem 5.3, implies the following result. 

Corollary 5.5 Let ( P, A) be an abductive disjunctive program. Then I \ {t:} 
is a generalized possible model of ( P, A } iff I is a generalized stable model of 
alp(dlp(( P , A })) . o 

By Theorem 5.4, normal disjunctive programs are as expressive as abductive dis
junctive programs under the possible model semantics. Moreover, Corollary 5.5 
presents that abductive disjunctive programs can be expressed even by abductive 
logic programs under the generalized possible model semantics. 

Next we consider the corresponding relations under the disjunctive stable model 
semantics. 

Given an abductive disjunctive program ( P, A), its dlp.1-transformation is defined 
as a normal disjunctive program dlp,1( ( P, A )) which is obtained from P by adding 
the following disjunctive clauses for each abducible A E A : 

(5.5) 



102 DISJt"SCTIVE ASD ABDl'C'TIVE LOGIC PROGRAMS 

where eA is an atom not appearing elsewhere in P, and is uniquely associated with 

<'ach A. 
Note here that different from the dip-transformation presented in Definition 5. 1, 

the unique EA is associated with each A in (5.5 ). This modification is needed to assure 
the existence of a disjunctive stable model corresponding to any generalized stable 
model of ( P, A) (see Example 5.5 below). 

Let us call I an A minimal disjunctive stable model if it is a disjuncti\·e stable 
model such that I() A IS minimal. Then the follow1ng results hold. 

Theorem 5.6 Let ( P, A) be an abductive disjunctive program. Then, 

(i) I\ {eA} is a generalized disjunctive stable model of ( P,A) iff [is a disjunctive 
stable model of dip,1( ( P, A)). 

(ii) I\ {e,.t} is an A -minimal generalized disjunctive stable model of ( P, A) iff I 1s 
an A-minimal disjunctive stable model of dip,1( ( P, A)). 

Proof: (i) Let /' be a generalized disjunctive stable model of ( P, A). 
Then I' is a disjunctive stable model of P U E for some E from A. r-.:ow 
let us consider the transformed disjunctive program dip,1( ( P, A)). Then 
there is a disjunctive stable model I of dip,1 ( ( P, A)) such that for each 
disjunctive clause AV tA +-,A E I ifT A E I', and EA E I iff A rf. I'. Hence 
the result follows. The converse is also shown in the same manner. 

(ii) The result holds from (i) and the definition of A -minimal (generalized) 
disjunctive stabl<' modds. 0 

Corollary 5. 7 Let ( P. A) be an abductive logic program. Then I\ {EA} is a gen
Nalized stable model of ( P. A) iff I is a disjunctiv<' stable model of dip,1( ( P, A)). 
0 

Example 5.5 Let ( P, A) be an abductive disjunctive program such that P 0 
and A= {a, b}. Then, 0, {a}, {b}, and {a,b} are the generalized disjunctive stable 
models of ( P, A). On the other hand, 

dip,1(( P,A)) = {a V ea+-, b V tb +- }, 

and {e .. ,eb}, {a, tb}, { b, Ea}, and {a, b} are the corr~ponding disjuncti\'e stable models 
of dip,1( ( P, A )). 

Note here that if we do not distinguish ea and Eb, {a,tb} and {b,ea} do not b<'come 
disjunctive stable models of dip,1( ( P, A)). 0 

DISCUSSION 103 

The above theorem presents that normal disjunctive programs are also as expres
sive as abductive disjunctive programs under the disjunctive stable model semantics.2 

However, in contrast to the case of the possible model semantics, abductive disjunctive 
programs cannot be efficiently reduced to abductive logic programs under the gen 
eralized disjunctive stable mod<'l S<'mantics. We verify this fact in the next section 

from the computational complexity viewpoint. 

5.5 Discussion 

In this section, we discuss the computational aspects of disjunctive and abductivc 
logic programs. Throughout the section, programs arc assumed to be propositional 

programs. 
When abductive logic programs do not contain default negation, Selman and 

Levesque [1990] and Eiter and Gottlob [1992] show that the decision problem of the 
existence of explanations for a given observation in an abduclive Horn program is 
)lP-complete. In other words, in an abductive Horn program, deciding whether there 
is a generalized stable model satisfying an observation IS ~ P complete. 

Inoue [1991] and Satoh and lwayama [1991] show that an abductive logic program 
can be translated into a semantically equivalent normal logic program. For an ab 
ductive logic program ( P, A), consider a normal logic program obtained from P by 
adding the following clauses for <'ach abducible A in A: 

A+- not A', 

A'+- not A, 

where A' is a newly introduced atom not appearing ebcwhNc in P and is uniquely 
associated with each A. Then th<'l>e authors show that there is a one-to-one corre
spondence between the generalized stable models of ( P, A) and the stable models of 
the transformed normal logic program. Since it is known that the set-membership 

problem under the stable model semantics is NP-complet<' [Marek and Truszczynski, 
1991a], the above polynomial time translation implies that deciding whether there is 

a generalized stable model satisfying a given observation is also :\ P-complete.3 

2 S1m1lar results are presented in (Inoue and Sakama, 1993; 1994) using d1fferent transformations 
3More precisely, the generalized stable models include the stable models as a special case, then 

its set-membership problem is 1'\P-hard Smce the polynomial-time transformation translates the 
decision problem for a generalized stable model into the corresponding problem for a stable model 
wh1ch IS 111 NP, the membership in NP also follows. 



104 DISJUNCTlVE AND ABDUCTIVE LOGIC PROGRAMS 

Table 5.1: Comparison of Computational Complexity 

I Program I Semantics I Complexity 

Abductive LP Horn Abduction NP-complete 
Generalized Stable Model 1\P-complete 

Normal DLP Possible Model NP-complete 
Disjunctive Stable Model Ef -complete 

Abductive DLP Generalized Possible Model NP-complete 
Generalized Disjunctive Stable Model Ef-complete 

From the results presented in Section 5.4, generalized possible models can be effi
ciently translated into possible models. Since we have already seen in Section 3.6 that 
the set-membership problem under the possible model semantics is NP-complete, the 
corresponding decision problem for generalized possible models is also NP complete. 

On the other hand, we have also shown in Section 5.4 that abductive disjunctive 
programs are reducible to normal disjunctive programs under the disjunctive stable 
model semantics. Since the set-membership problem under the disjunctive stable 
model semantics is Ef complete IEiter and Gottlob, I993a], dccidmg whether there 
is a generalized disjunctive stable model satisfying a given observation IS also ~f
complete. These results are summarized in Table 5.1. 

The above complexity measures verify the results of this chapter that the gener
alized stable model semantics of abductive logic programs can be expressed in terms 
of the possible model semantics of normal disjunctive programs by a polynomial-time 
transformation, and vice versa. Moreover, we can observe that there is no efficient 

way to express the disjunctive stable model semantics in terms of the generaltzed stable 
model semantics unless the polynomial hierarchy collapses. This observation extends 
the fact that disjunctive stable models cannot be expressed by stable models of a 
normal logic program in polynom1al time IEiter and Gottlob, 1993b]. Also we can 
observe that when considering to extend the framework of abductive logic programs 
to abductive disjunctive programs, the generalized possible model semantics enables 
us to extend the framework wtthout mcreasing computational complexity, whtle this is 
not the case for the generalized dtsjunctive stable model semanltcs. 

The possible model semantics is originally introduced in order to provide a flex
ible mechanism for closed world assumptions in disjunctive programs. However, the 
results of this chapter reveal that the possible model semantics is also useful to charac
terize abductive logic programs. Moreover, in Section 3.6 we have shown that normal 

SUMMARY 105 

d1sjunctive programs are reducible to normal logic programs under the possible model 
semantics. Since abductive disjunctive programs are reducible to normal disjunctiVe 
programs, we can conclude that adding disjunctions and abducibles does not increase 
the expressive power of normal logic programs under the possible model semantics. 

5.6 Summary 

This chapter has investigated formal correspondences between disjunctive programs 
and abductive logic programs. 

We first presented program transformations between abductive logic programs 
and disjunctive programs. It was shown that the generalized stable models of an 
abductive logic program are characterized by the possible models of the transform<>d 
normal disjunctive program, and vice versa. 

Next we showed that disjunctive programs are as expressive as abductive disjunc
tive programs. Moreover, normal disJunctive programs, abductive logic programs, 
and abductive disjunctive programs arc all equivalent under the possible model se 
mantics. On the other hand, we have argu<>d that expressing the disjunctive stable 
model semantics in terms of generalized stable models is most unlikely possible in 
polynomial time. 

The results of this chapter indicate that disjunctive programs and abductive log1c 
programs are just different ways of looking at the same problem if we choose the ap 
propriate semantics. Also the usefulness of the possible model semantics was vcrifi<>d 
not only for disjunctive programs but also for abductive logic programs. 



106 DISJC:NCTNE A.'\D ABDL'C'TI\"E LOGIC PROGRA.\15 

Chapter 6 

Handling Inconsistency in 
Disjunctive Logic Programs 

An extended disjunctive program is an extension of a normal disjunctive program, 
which contains classical negation along with default negation. In the presence of 
explicit negation, however, an extended disjunctive program poss1bly becomes incon 
sistent, and classical logic programming semantics are of no use rn such inconsistent 
programs. In this chapter, we present theoretical frameworks for possibly inconsistent 
disjunctive programs. To achieve this goal, we introduce paraconststent semantics for 
extended disjunctive programs, which can distinguish inconsistent information from 
other information in a program. These semantics arc bas<>d on lattice-structured 
multi-valued logics, and are characterized by a fixpoint semantics of extended dis
junctive programs. The proposed paraconsistent semantics are used for reasoning in 
inconsistent programs. 

6.1 Introduction 

Representing and reasoning with incomplete information in a program is one of the 
central issues in recent studies of logic programming. Extended disjunctive programs 

introduced by Gelfond and Lifschitz [1991] provide a fairly general framework for 
that purpose. An extended disjunctive program can specify incomplete information 
by using classical negation as well as disjunctions in a program. In the presence of 
such expljcit negation in a program, however, an extended disjunctive program pos
sibly becomes contradictory, srnce negative consequences are allowed in the program. 
In [Gelfond and Lifschitz, 1991], a declarative semantics of extended disjunctive pro· 
grams is given by the notion of answer sets, which is a generalization of stable models 

107 



108 1."\CO.\'SISTE.VCY l.V DTSJl'.\CTTVE PROGRAJfS 

of normal dbjunctive programs. However, the problem of the answ<>r set ~emantics 
is that the answer ~et becomes trivial tn an inconsistent program and implies every 
formula from th~ program. This is also the case for most of the traditional logic 
programming Sl'mantics in which local inconsistency might spoil the whole program. 
Practically speaking, when we build a large-scale knowledge base in logic program
ming framework, inconsistent information as well as incomplete information is likely 
to happen in the knowledge base. In such a knowledge base, a piece of contradictory 
information would make the whole program inconsistent, but still the program may 
contain m<'aningful information which is not affected by the local inconsistency. 

Paraconst.~lcnllogic is a logic which is not destructive in th<' pr<'sencc of inconsis
tent informat1on. In this logic, the contradictory statement A A ""'A does not deduce an 
arbitrary formula, hence would not trivialize the whole theory. In this regard, para
consistent logic can localize inconsistent information in a theory and serves as a useful 
inference tool in artificial intelligence. Historically, paraconsistent logic has b<'cn de 
veloped in the area of philosophical logic [Arruda, 1980], and a formal framework 
for inconsistent theories was given by da Costa [1974]. Applications of paraconsis
tent logic to log1c programming have also been investigat<'d by sevcral rescarchers. 
Blair and Subrahmanian [1989] firstly introduced a framework of paraconstslent logzc 

programmmg. They extcnded Fitting's three-valued semantics of logic programmmg 
[Fitting, 1985] and developed a theory for possibly inconsistent logic programs using 
Belnap's four-t•alued logic [Belnap, 1975]. The result was generalized by Subrahma
nian [1992] to programs containing disjunctive information. Recently, the paracon
sistent logic programming framework was further extended to treat default negation 
along with explicit negation in a program [Pimentel and Rodi, 1991; Wagner, 1991a; 
Kifcr and Lozinskii, 1992; Grant and Subrahmanian, 1992]. However, in the context 
of extended disjunct1vc programs, a suitable paraconsistent extension of the answer 
set semantics has not been studied in the literature. 

In this chapter, we present declarative semantics of possibly inconsistent extended 
disjunctive programs. The disjunctive stable model semantics and the possible model 
semantics of normal disjunctive programs are extended to the corresponding paracon
sistent semantics for extended disjunctive programs. The proposed paraconsistent se
mantics are based on lattice-structured multi-valued logics, and are characterized by 
the fixpoint semantics of extended disjunctive programs. We also present applications 
of the paraconsistent semantics for reasoning in inconsistent programs. 

The rest of thts chapter is organized as follows. In Section 6.2, we first present the 
paraconsistent minimal and possible model semantics for positive extended disJunctive 
programs. The re:;ults are generalized in Section 6.3 to the paraconsistent stable 

POSITIVE EXTEl\'DED DISJUSCTTVE PROGRA.\1S 109 

and possible model semantics for extended disjunctive programs. In 5(•ction 6..t. 
a fixpoint semantics for extended disjunctive programs ts prescntt•d to characterize 
the paraconsistent semantics of extended disjunctive programs. In Sect ion 6.5, we 
discuss the issue of reasoning in inconsistent programs. The notions of prt•ferrNI stable 
models, suspicious stable models, and semi-stable models arc introduced as \'ariants 
of the paraconsistent stable model semantics. Section 6.6 addrcsscs comparisons with 
related work, and Section 6.7 summarizes this chapter. 

6.2 Paraconsist ent Semant ics for Pos itive E x t ende d 
Disjunctive Programs 

In this section, we first consider positive extended disjunctive programs, that 1s, 

extended disjunctive programs containing no default negation. 

6.2.1 Multi-valued Logic 

To formalize the semantics of possibly inconsistent logic programs, multi· valu<"d log· 
ics are often used instead of the traditional two-valued logic. Then W<' start from 
introducing such a new logic and define its model theory. 

The set of truth values of four-valued logic is defined as /V = { t, f, T. 1.}, in which 
t, f , T, 1. are propositions in the language of a program and resp<"ctively denote 
true, false, contradictory, and undefined. The set of truth values H ' makt•s a complete 
lattice under the ordering ~ such that 1. ~ x ~ T for x E { t, f} {Figure 6.1 ). Such 
a lattice is also known as Belnap's four-valued logic [Belnap, 1975].1 

In extended disjunctive programs, negative literals have the same status as positive 
literals, then it is natural to consider the Herbrand base of a program P as llw set 
of all ground literals .Cr from the language of P. For simplicity, we assume that 
programs do not contain the reserved propositions from IV and /V~ .Cp.2 

Let I be a subset of .Cr. An interpretation of a positive extc>nded disjunctive 
program P is defined as a function I : .Cp __. IV such that for each literal {, E .Cp, 

{ 

t if L E I and -.L fi I, 
l(L) _ f if -.LE I and L fi I, 

- T if both LE I and ""'L E /, 
1. otherwise. 

1 Note LhaL the order considerang here 1s the so-called knowledge ordtnng, whill· there IS the 
alternat1ve troth ordtnng in the context of b•latllces (Gmsberg, 1988, fitting, 1991) . 

2This assumption is not essential and can be removed, but this issue is not d1scus~d here. 



110 Il\'CONSISTEI\'CY IN DISJL\'CTIVE PROGRAMS 

T 

f t 

Figure 6.1: Four-valued lattice IV 

Note that /(L) '= t iff f(-.L) = f , /(L) = T iff I(-.L) = T, and l(L) = .l iff 

I(-.L) = .l. 
In this chapter, when no confusion arises, we identify a set of literals I with its 

interpretation I(L) for each LE I. For instance, we identify I= {L} with I(L) = t; 
I= {L, -.L} with /(L) = T; I= 0 with I(L) = .l for any LE Lp, and so on. 

Satisfaction of each clause m a program is inductively defined a.s follows. 

D e fi n it io n 6 .1 Let P be a positive extended disjunctive program and I be an inter

pretation. Then, 

1. For any literal L E .Cp, 

(a) I I= L iff t j I(L), 

(b) I I= -.L iff f j I(L). 

2. For any disjunction of ground literals F = L1 V ... V Ln, 
I I= F iff /I= L, for some i (1 ~ i ~ n). 

3. For any conjunction of ground literals G = L1 1\ ... 1\ Ln, 
11= G iff I I= L, for every i (1 ~ i ~ n). 

4. For any ground clause C = F ,_ G, I I= C iff I I= For I ~G. 
In particular, /I= ,_ G iff I ~ G, and I I= F ,_ iff I I= F. 0 

POSITIVE EXTENDED DISJL',VCTIVE PROGRAMS Ill 

An interpretation I is a model of a positive extended disjunctive program P if I 
satisfies every ground clause from P. The ordering ~ on truth \'alues is abo defined 
between interpretations. For interpretations I and J, I~ Jiff I(L) ~ J(L) for any 
L E .Cp. The orderings t, -<, >- are defined in the usual way. ~otc that when we 
identify a set of literals with its interpretation, I ~ J iff I ~ J. A model I is mmimal 
if there is no model J such that J -< I. A model I is least if I ~ J for every model 
J. To distinguish terms from standard logic programming, a minimal/lca.st. model 1s 
also called a paraconsistent minimal/least model (shortly, p-mmimaf/p-lca~tt modrl). 
A consistent model is a model I such that I(L) f. T for any LE .Cp, ot.lwrw1sc I 1s 
an inconsistent model. A positive extended disjunctive program is called con$1$ltnl 

if it has a consistent model, otherwise it is called inconstslent. 

Proposition 6 .1 If a positive extended disjunctive program has a model, it has at 
least one p-minimal model. 

Proof: Let us consider a decreasing sequence of models I 1 2 /2 :::> •.• 
and their greatest lower bound I = n,>1 / ,. Then, for each ground clause 
F ,_ G from a positive extended disju~ctive program P, if I t- G, I, 1- G 
for any i > 1. In this case, since each I, is a model of P, F is not empty 
and I, I= F holds for any i ~ 1. Thus I I= F. Hence, I IS also a model of 
P, and by definition it is a p-minimal model. 0 

P rop osition 6 .2 A consistent positive extended disjunctive program has a consis
tent p-minimal model. 

Proof' When a positive extended disjunctive program P is consistent, 
it has a consistent model I by definition. If I is not minimal, there is a 
p minimal model J such that J-< I by Proposition 6.1. Then, I(L) f. T 
for any LE .Cp implies J(L) f. T for any LE .Cp. 0 

C orolla ry 6 .3 If a positive extended logic program has a model, it has the unique 
p-least model. In particular, a consistent positive extended logic program has the 
consistent p-least model. 0 

Example 6 .1 Let P be the program: 

{avb ..... , -.a ..... , -.b ..... , c-}. 

Then P has two p-minimal models {a,-.a,-.b,c} and {b,-.a,-.b,c}. 0 



112 ISCO.VSISTESCY IN DISJl'SCTIVE PROGRAMS 

~ote that the above program is inconsistent and the classical minimal model 
semantics makes the program trivial, while the p-minimal models retain truth infor
mation about c that is not affected by the inconsistency. 

Remark: 

I. As presented in Chapter 2, the meanings of the clauses +- /.., and -./.., +- are 
different in extended disjunctive programs. In our multi-valued setting, this is 
also the case. In fact, I(L) = 1. is a model of the first clause, while it is not a 
model of the second clause. Such a difference is due to the non contrapositive 
fcatur<• of th<• connective+- in extended disjunctive programs. 

2. Corresponding to the above fact, the program {L +-, -./.., +-} has a model 
I(L) = T while {L +-, +- L} has no model. That is, we consider any inter
pretation meaningless if it does not satisfy integrity constraints. However, it is 
easy to construct a paraconsistent theory for integrity violation if desired. 

6.2.2 Paraconsistent Possible Model Semantics 

The possible model semantics for positive disjunctive programs is extended to positive 
extended disjunctive programs in a straightforward manner. 

Given a positive extended disjunctive program P, a spltl program is defined as a 
ground positive extended logic program obtained from P by replacing each ground 
disjunctive clause C : L1 V ... V L1 +- L1+1 A ... A Lm with the following ground 
extended clauses (called split clau::.es ): 

L, +- L1+1 A ... A Lm for every L, E S 

where S is some non-empty subset of {Lt, ... ,LI}. Then a p-po::.szbh model of Pis 
defined as the p least model of any split program of P. 

By definition, any p-possible model is a model of P. 

Example 6.2 Let P be the program: 

{ a V b +-, c +- a 1\ b, -.c +- } . 

Then P has the three p-possible models {a,-.c}, {b,-.c} and {a,b,c,-.c}. 0 

Note here that if P contains the integrity constraint +- c instead of the clause 
-.c +-, the positive disjunctive program has two p-possible models {a} and { b}. 

The following properties are direct consequences from Propositions 6.1 and 6.2. 

EXTENDED DISJU.VCTI\'E PROGRA.\15 113 

Proposition 6.4 \\'hen a positive extended disjunctive program has a model, it has 
at least one p-possible model. 0 

Proposition 6.5 A consistent positive extended disjunctive program has a consis
tent p-possible model. 0 

As for the relation to p-minimal models, the following property holds. 

Proposition 6.6 Any p-minimal model is a minimal p-possible model, and vice 
versa. 0 

6.3 Paraconsistent Semantics for Extended Dis
junctive Programs 

This section extends the results presented in the previous S<'ction to <•xtmded dis
junctive programs in general. 

6.3.1 Paraconsistent Stable Model Semantics 

We first extend the model theory given for positive extended disjunctive programs in 
the previous section to extended disjunctive programs containing default negation . 

In an extended disjunctive program, the notion of interpretations and satisfaction 
of literals and clauses are defined in the same manner as in Definition 6.1 except that 
for each formula not L, we include the additional statements: 

• I f=notL iff I (L) ~ f , 

• I f= not-.L iff I(L) ~ t . 

The first condition indicates that if Lis false in I, its default negation not D holds in 
I; else if Lis undefined in I , not L holds in I as negation as failure to prove; otherwise 
I ~not L. The second condition gives the counterpart statement. 

The notion of (p minimal) models is defined in the same way as in the previous 
section . 

The paraconsistent stable model semantics of an extended disjunctive program is 
defined as follows. 



114 INCONSISTENCY IN DISJUNCTIVE PROGRAMS 

Definition 6.2 Let P be an extended disjunctive program and I be a subset of .Cp. 
The reduct of P with respect to I is the positive extended disjunctive program P 1 

such that a clause 

Lt V ... V L1 +- L1+1 A ... A Lm 

is in P 1 iff there is a ground clause of the form: 

(6.1) 

Lt V ... V £1 +- L1+1 A ... A Lm A not Lm+t A ... A not Ln (/2: 0) (6.2) 

from P such that {Lm+t, ... , Ln} n I = 0. Then I is called a paraconsistent stable 
model (shortly, p-stable model) of P if I is a p-minimal model of P 1 . 0 

Example 6.3 Let P be the program: 

{a V b +-, -.a+-, -.b +-, c +- notd }. 

Then P has two p-stable models {a,-.a,-.b,c} and {b,-.a,-.b,c}. 0 

A p-stable model I is consistent if I(L) f T for any L E .Cp, otherwise I ts 
inconsistent. There is a program which has no p-stable model. 

Example 6.4 The program 

P = { a +- not a, b +- } 

has no p-stable model. 0 

A program which has at least one p-stable model is called coherent, while a pro
gram having no p-stable model is called incoherent. By definition, the notion of 

p-stable models reduces to that of p-minimal models in positive extended disjunctive 
programs. In extended disjunctive programs, every p-stable model is minimal. 

Proposition 6.7 A p-stable model is a p-minimal model. 

Proof: Let I be a p-stable model of a program P. Assume that there is 
a p-minimal model J of P such that J ~ I. Since J is a model of P and 
satisfies each clause (6.2) in P, and { Lm+l• ... , Ln} n I = 0 and J ~ I 
imply {Lm+l• ... , Ln} n J = 0, J also satisfies each clause (6.1) in P1. 

Thus J is a model of P 1 , and since I is a p-minimal model of P 1 , J ~ I 
implies J = I. 0 

The converse of the above proposition does not hold in general. For instance, in 
Example 6.4, {a, b} is the p-minimal model of P, but not p-stable. 

EXTENDED DISJUNCTIVE PROGRAMS 115 

6.3.2 Paracons ist ent P ossible M odel Sem a n t ics 

The paraconsistent possible model semantics for positive extended disjunctive pro
grams is also directly extended to extended disjunctive programs. 

Given an extended disjunctive program P, a split program is defined as a ground 
extended logic program obtained from P by replacing each ground disjunctive clause 
C : Lt V ... V £1 +- Ll+l I\ . .. I\ Lm I\ not Lm+l/1. ... I\ not Ln with the following ground 
extended clauses (called split clauses): 

L; +- Ll+l I\ .. . I\ Lm I\ not Lm+l I\ ... I\ not Ln for every L, E S 

where S is some non-empty subset of { L 1 , ••• , Li}. Then a p-possible model of P is 
defined as a p-stable model of any split program of P. 

It is easy to see that any p-possible model is a model of P. The following properties 
are direct extensions of those presented in Section 3.3. 

P rop osition 6.8 A coherent extended disjunctive program has at least one p-possible 
model. 0 

Proposition 6 .9 Any p-stable model is a minimal p-possible model, but not vice 
versa. 0 

As is the case of normal disjunctive programs, there are incoherent programs 
having p-possible models. 

Example 6 .5 Let P be the program: 

{aV-.b+-, -.b+-a, +-nota}. 

Then P has the p-possible model {a, -.b}, while it has no p-stable model. 0 

6.3.3 Connection to the Answ er Set Se mantics 

For extended disjunctive programs, Gelfond and Lifschitz [1991] have introduced the 

answer set semantics. The answer sets are defined in the same manner as p-stable 
models in Definition 6.2 except that the definition of p-minimal models of a positive 
extended disjunctive program P 1 is changed in a way that I = .Cp if a model I 
contains a pair of complementary literals L and -.£. For instance, in Example 6.3, 
P has two inconsistent p-stable models, while it has the unique answer set .Cp. Thus 
p-stable models are paraconsistent, while answer sets are not. 



116 TSCOSSJSTENCY IS DISJU\ CTH'E PROGRAMS 

In this st.-ction, we provide a connection between the p-stable model semantics 
and the answer set semantics in extended disjunctive programs. As presented above, 
the essential difference between the two semantics is the treatment of inconsistency. 
Then we relate p-stable models to answer sets by trivializing inconsistent p-stable 
models. 

Let us consider a program P,, obtained from P by incorporating the tnviali::atron 
rult.: 

N +- L 1\ -.L (6.3) 

for all literals L and N from .Cp. Then the relationship between answer sets and 
p-stable models of cxtendcd disjunctive programs is as follows. 

T heorem 6.10 Let P be an extended disjunctive program. Then I is an answer set 
of P iff I is a p-stable model of P,,. 

Proof: Since consistent answer sets coincide with consistent p-stable 
models, the result follows when I is a consistent answer set. Ot herw1se, 
suppose the case that P has the contradictory answer set .Cp. Thcn, by 
the dd1nition of answer sets, the positive extended d1sjunctive program 
P'" has the answer set .Cp. In this case. P'" has no consistent p-minimal 
model, but an inconsistent p-minimal model. Thus, in the presence of the 
triviali?.ation rule (6.3), P,';" has the p-minimal model containing every 
literal N from .Cp. Hence, .Cp is the unique p-stable model of P,,. On the 
other hand, 1f I 1s an inconsistent p-stable model of P,., it contains every 
literal .V from .Cp by (6.3). In this case, .Cp is the p mmimal model of P,';", 
and thus each p minimal model of P'P contains a pair of complementary 
literals. Hence, .Cp is the unique answer set of P. 0 

The above theorem indicates that we can easily simulate the "classical" meaning 
of logic programming by a simple program transformation. Note that w1thout the 
t.rivialization rule, there is no one-to-one correspondence between inconsistent p stable 
models and the ans wer set .Cp in general. 

Example 6 .6 The program 

{ -.a +-, a +- not b } 

has no answer set, while it has an inconsistent p-stable model {-.a, a}. On the other 
hand, the program 

{ a +-, -.a +-, b +- not b } 

has the answer set .Cp, while it has no p-stable model. 0 

EXTENDED DISJUNCTIVE PROGR.A.\-!S 117 

The example illustrates that. a program possibly has an inconsi~tent p-~tahk model 
even when there is no answer set of the program. \\'hen a program has no p-stablc 
model, on the other hand, the program has either no answer set or tlw tri\'ial answer 
set .Cp. Since the answer set semantics brings no useful information, the absence of 
p-stable models in this case is not a serious drawback. From this observation, the 
paraconsistent stable model semantics is considered to be more useful than the answer 
set semantics. 

By Proposition 6.9, the answer set semantics is related to the paraconsistent pos
sible model semantics as follows. 

Corollary 6. 11 Let P be an extended disjunctive program. If I is an ;mswer set of 
P, then I is a minimal p possible model of P,,. D 

As previously discussed, paraconsistent possible models are well defined whenever 
paraconsistent stable models are. Then, together with the above obs<•rvation, we can 
conclude that the paraconsistcnt possible model semantics is the bPst chmce among 
others as a semantics of extended disjunctive programs. 

P-stable models of an extended disjunctive program are also charactcri:.wd by 
stable models of the positive jo1·m of the program. Recall that a positive form of 
an extended disjunctive program P is defined as a normal disjunctive program p+ 
which is obtained by replacing each negative literal -.£ in P with a corresponding 
newly introduced atom L' in p+. Let ]+ be a model of such p+. Then the following 
relation holds by definition. 

Proposit ion 6.12 Let P be an extended disjunctive program and p+ bt• its positive 
form. Then I is a p stable model of P iff J+ is a stable model of p+. 0 

Note that in case of t.he answer set semantics the above relation holds only for 
consistent answer sets !Gelfond and Lifschitz, 1991). 

6.4 Fixpoint Semantics of Extended Disjunctive 
Programs 

A fixpoint semantics of positive extended disjunctive programs is dcfirwd in the same 
manner as that of positive disjunctive programs in Section 3.4 except that. in this case 
the closure operator acts over the lattice of sets of interpretations 22'". 

G. • • d d d" . . p . 'T 22 Cp 22 Cp IVen a pOSitiVe exten e ISJUnCtiVe program 1 a mapp1ng ~ p : -+ 

is defined as in Definition 3 7, and its fixpoint closure Tp T w is defined as well. 



118 INCONSISTENCY IN DISJUNCTIVE PROGRAMS 

Let 'PMMp be the set of all p-minimal models, and PPMp be the set of all 
p-possible models of a program P. Then the following results hold. 

Theorem 6.13 Let P be a positive extended disjunctive program. Then, 

(i) PPMp = p(Tp T w). 

(ii) PMMp = min(p(Tp j w)). 

Proof: Viewing each negative literal in P as an atom, the results directly 
follow from Theorem 3.17 in Section 3.4. 0 

Corollary 6. 14 Let P be a positive extended logic program. Then Tp T w contains 
the unique p-least model of P. 0 

The above corollary corresponds to Blair and Subrahmanian 's fixpoint semantics 
of paraconsistent logic programs [Biair and Subrahmanian, 1989]. 

The fixpoint semantics is also generalized to extended disjunctive programs. Given 
an extended disjunctive program P, let us define the notions of the epistemic trans
formation P", canonical interpretations, and the function objc(IpK) in the same way 
as those of normal disjunctive programs. Let PST p be the set of all p-stable models 
of an extended disjunctive program P. Then the following results hold. 

Theorem 6 .15 Let P be an extended disjunctive program. Then, 

(i) PPMp = objc(JJ.(TpK T w)). 

(ii) PST p = objc(min(p(TpK T w))). 

In particular, when Pis an extended logic program, PST p = objc(JJ.(TpK T w)). 

Proof' The results follow from Lemma 3.20, Lemma 3.21, and Theo
rem 3.22 in Section 3.4. 0 

As for the answer set semantics, the following relation holds by Theorem 6. 10. 

Corollary 6.16 Let P be an extended disjunctive program and A Sp be the set of 
all answer sets of P. Then, 

where P1~ is the epistemic transformation of Ptr· In particular, when Pis an extended 
logic program, ASp= objc(JJ.(TP,". T w)). 0 

REASONING WITH INCONSISTENCY 119 

6.5 Reasoning with Inconsistency 

This section presents applications of paraconsistent semantics for reasoning with in
consistent information. In this section, we discuss the issue based on the paracon
sistent stable model semantics, while the techniques are directly applicable to the 
paraconsistent possible model semantics. 

6.5 .1 Preferred Stable Models 

In the previous section, we have defined the paraconsistent stable model semantics 
by the collection of all p-stable models. However, when a program has consistent 
models as well as inconsistent ones, a rational reasoner may prefer consistent models 
to inconsistent ones and consider truth values only in consistent models. 

Example 6 . 7 Let P be the program: 

{ -.a V b +-, a +- -.c, -.c +- not c } , 

which has two p-stable models {a, -.a, -.c} and {a, b, -.c}. In this case, however, it 
seems natural to prefer the consistent model {a, b, -.c} and conclude the truth of a 

and b. 0 

When an extended disjunctive program has consistent p-stable models, we distin
guish these consistent p-stable models as preferred p-stable models. Thus preferred 
p-stable models characterize "consistent" meaning of a program. In fact, preferred p
stable models coincide with consistent answer sets of extended disjunctive programs. 

Theorem 6 .17 Let P be an extended disjunctive program. Then I is a preferred 
p-stable model of P iff I is a consistent answer set of P. 

Proof' Since consistent answer sets coincide with consistent p-stable 
models, the result follows. 0 

6.5 .2 Suspicious Sta ble Models 

When a program contains inconsistent information, it is useful to distinguish facts 
affected by such information from other information in a program. 



120 ISCOSSISTESCY l.l\' DISJl.\C'TI\'f~ PROGRAMS 

T 

f 

sf 

..L 

Figure 6.2: Six-valued lattice VI 

Example 6.8 Let P be the program: 

{a+- bl\notc, b +-, •b +-, d +- }. 

Then P has the p stable model {a, b, •b,d}. However, the truth of a is less credible 
than the truth of d, since a is derived through the contradictory fact b. 0 

In order to distinguish such suspicious facts from others, we present suspicious 
reasoning under the paraconsistent stable model semantics. To this <'nd, we first 
introduce two new truth values st and sf, which respectively denote su.~ptriously true 
and susptctously false. These newly introduced values together with the values in IV 
constitute a lattice of six-valued logic V I such that .l ~ sx ~ x -< T for x E { t , f} 
(Figure 6.2). 

Let .Cj, = .Cp U { !.' I L E .Cp} and I' be a subset of .Cj,, where each adorned 
literal L' d<'notes a su.c:ptetous lzteral. Then an interpretation under the logic V I is 
defined a.s a function I' : .Cj, -+ V I such that for each literal L E .Cp, 

I'(L) = lub{x I x = t if LE I•, 

X = f if ·L E 1', 

x = st if L' E I', 

x = sf if •L' E I', 

x = .l otherwise } . 

That is, the truth value of each literal I'(L) is defined as the least upper bound 
of each value x which is determined by the literal occurrences in I'. Thus, I' (L) = T 
iff either L E I' and •L E I', or L' E I' and -.£' E I', or LE I' and -.£• E I', or 

REASO.'\'ING \\'ITII ll\'CO.\'SISTE.\'CY 121 

•L E I' and L' E I' ~ote that I'(L) =stiff I'(•L) = sf. Under tht• logic\'/. 
satisfaction of literals and default negation is defined as follows. 

• I' F= L liT st ~ I'(L). 

• I' F= •L iff sf ~ I'(L), 

• I' F= not L iff I'(L) ~ f , 

• I' F= not •L iff /'(L) ~ t . 

Satisfaction of clauses is the same as before. 

Next, for a positive extended disjunctive program P and an interpretation 1', let 
T; be a mapping which is defined in the same way as in Definition 3.7 except that 
we consider the mapping r;, instead of Tp as follows: if /' F Lt 1\ ... 1\ Lm for som<' 
ground integrity constraint +- L 1 1\ ... 1\ Lm from P, then Tj,(l') = 0; otherwise, 

Tf,(I') - { J' I for each ground clause C, : L1 V ... V L1, +- L1,+1 1\ ... 1\ Lm, 

from P such that I' F= Lt,+l 1\ ... 1\ Lm,, 

J' =I' U U {L/} (1 s; j s; /,) where 
c, 

L/ = L1 tf L~: E /'and I' ~ •L~: for each I~k (/,+I s; k s; m,}; 

L/;.;: L;. otherwise}. 

The intuitive meaning of Tp is that when the body of a clause C, is satisfi<'d by 
/', each derived disjunct L/ = L1 is added to I' if any literal L~: in th<' body is 
derived without susptcion and its negative counterpart •Lk or •Dj. is not includ<>d in 
I•. Otherwise, the derived disjunct is suspicious L/ = L; , since it t!> d<•rivcd through 
inconsistent information in a program. 

Given an extended disjunctive program P and its epistemic transformation P", let 
us consider the fixpoint closure SPST p = objc(min(J-L(Tp~ T w})). We call SPST p 

the suspicious p-stable models of P. 

Theorem 6.18 Let P be an extended disjunctive program. Tlwn a suspicious p
stable model is a model of P. 

Proof: In a suspicious p-stable model, the truth value of each literal 
possibly becomes s t or s f when its truth value is respectively t or f in its 
corresponding p-stable model. Let I' be a suspicious p-stable model and 
I be its corresponding p-stable model in which each literal L' is identified 



122 INCONSISTENCY IN DISJUNCTIVE PROGRAMS 

with L. By definition, !' I= L iff I I= L, and I• I= not L iff I I= not L. 
Thus I• satisfies each clause of P whenever I is a p-stable model of P. 
Hence the result follows. 0 

Corollary 6.19 For each suspicious p-stable model ]• of P, I = {L I /' I= L} is a 
p-stable model of P. Conversely, for each p-stable model J of P, there is a suspicious 
p-stable model J• of P such that J = { L I J' I= L}. 0 

Thus suspicious p-stable models can distinguish information derived through con
tradictory facts from other information. Clearly, suspicious p-stable models reduce 
to p-stable models in the absence of suspicious information. 

Note that a proved fact is considered to be suspicious if every proof of the fact 
includes inconsistent information. Then if an interpretation includes both L and L', 
it means that there is a proof of L depending on no inconsistent information. In this 
case, by taking the least upper bound oft and s t , the truth value of L becomes t . 

Example 6 .9 (cont. from Example 6.8) 
P,. becomes 

{~V Kc+-b, a+-~, +-~1\c, b+-, ~b+-, d+-}, 

and 
objc(min(lt(Tp~ j w))) = {{a', b, ~b, d} }. 

Then, /'(a)= st, /'(b)= T, /'(c)= .1, and /'(d)= t. 0 

6.5.3 Semi-Stable Models 

There is an extended disjunctive program which has no p-stable model but still con
tains useful information. For instance, in Example 6.4, P has no p-stable model but 
it seems reasonable to conclude the truth of b. Roughly speaking, incoherency arises 
when a literal is implied by its default negation in a program. Since incoherency 
is viewed as a kind of inconsistency, it is desirable to provide a framework which 
is paraconsistent for such incoherency. In this section, we introduce the notion of 

semi-stable models which is paraconsistent for incoherent programs. 

To represent incoherent facts, we first introduce five extra truth values b t, bf, 
b T, tcb , and fcb which respectively denote believed tr·ue, believed false, believed 
contradictory, true with contradictory belief and false with contradictory belief. These 

values together with the values in /V constitute a lattice of nine-valued logic I X such 
that ..L ~ bx ~ x ~ x cb ~ T and b x ~ b T ~ xcb for x E { t, f } (Figure 6.3). 

REASONING WITH INCONSISTENCY 123 

T 

f t 

1. 

Figure 6.3: Nine-valued lattice IX 

Let C:J, = Cp U {KL I LE Cp} and I,. be a subset of Cj,. Then an interpretation 
under the logic I X is defined as a function Jt< : Cj, ---. I X such that for each literal 
LE £p, 

I"(L) = lub{xlx=t ifLE/,., 

X = f if ~L E ]t<, 

X = b t if KL E Il(' 

X= bf if K-.L E /", 

x = ..L otherwise}. 

Thus, Jt<(L) = b T iff both KL E /,. and K-.L E /"; l"(L) = fcb iff both KL E /,. 
and -.£ E I\ I"(L) = t cb iff both K-.L E Jt< and L E I\ and so on. Note that 
/"(£) = bt iff I,.(-.£) = b f , /"(£) = bT iff f"{-.£) = bT, and Jt<(L) = t cb iff 
I~<( -.L) = fcb . 

The intuitive reading of each newly introduced truth value is that if I""(L) = b t, 
I,. contains a belief KL without its justification L. On the other hand, if J~<(L) = tcb, 
I" contains a fact L with its opposite belief K-.£. 

Under this logic, satisfaction of literals and default negation is defined in the same 

way as Section 6.3, i.e., I I= L iff t ~ I(L); I I= -.£ iff f ~ I(L); I I= not L iff 
I(L) ~ f ; and I I= not -.L iff /(L) ~ t. Satisfaction of clauses is also defined as 
before. 

According to the above definition, when I(L) = b t or I(L) = bT, it holds that 
I ~Land I ~not L. This means when Lis believed true, it is too weak to conclude 
the truth of L, but enough to reject not L.3 Else when I(L) = tcb , I I= L while 

3 Recall that not L corresponds to -.KL. 



124 1.\COSSISTESCY IN DISJt..:SCTIVE PROGRAMS 

I ~ nol-oL. This means when L is true with contradictory belief, I concludes the 
truth of L but rejects not -.L in the presence of its opposite belief K-.L. 

Next let Ip. be a set of interpretations of a program P"' obtained by the epistemic 
transformation of an extended disjunctive program P. Then an interpretation /"' E 
Ip. is said maximal/y canonical if there is no interpretation J"' E Ip· such that {KL I 
KL E J"' and L (/. J"'} C { KL I K L E I" and L (/. I"}. That is, a maximally canonical 
interpretation is an interpretation such that the canonical condition is satisfied as 
much as possible. In particular, if Ip· contains an interpretation /"' which is canonical, 
it is also rnaximally canonical. Now let 

ob;~.(II'") = {I" n .C"p I I" E Ip. and /" is maximally canonical } . 

Theorem 6.20 Let P be an extended disjunctive program. Then any interpretation 
included in SST p = obj~c(min(p(Tp. T w))) is a model of P. 

Proof: By definition, each maximally canonical interpretation /"' included 
in min(p(Tp. T w)) is a model of P"'. Then, for each transformed clauses: 

~~ V ... V J.., V KLm+t V ... V KLn +- Lt+t 1\ ... 1\ Lm, 

L, +- ~. for t = 1 .... , I , 

{Lt+ 1 , .. • Jm} ~ 1"' implies either L, E I" (1 ~ i ~I) or KL1 E I" (m+ 1 
~ J ~ n ). In case of L, E I", I" satisfies the corresponding clause: 

L1 V ... V L, +- Lt+t 1\ ... 1\ Lm 1\ not Lm+t 1\ ... 1\ not Ln (•) 

in P. In case of KL1 E /",when L1 E I", I" satisfies the clause (•) in P. 
Else when L1 (/. I"', (i) if -.L1 (/. !"', the truth value of L1 is bt or b T, then 
I" ~not L1 . (ii) Else if -.L1 E I", the truth value of L1 becomes fcb, then 
I"' ~not Lr In either case, I,. satisfies the clause ( *) in P. Th<>rcfore, I" 
satisfies each clause in P. Hence, !" n .C"p, which is obtained from /" by 
removing every~ .. is also a model of P. 0 

We call models SST p the semi-stable models of P. 
The notion of semi-stable models reduces top-stable models in coherent programs. 

Coro llary 6.21 Let P be a coherent program. Then its :;emi-stable models coincide 
with the p-stable models. 

Proof' When min(p(Tp• T w)) contains canonical interpretations, they 
are also maximally canonical. Hence the result follows by definition. 0 

REASOSINC \\'11'1I ISCOSSISTE.\'CY l ·r _.) 

The existence of semi-stable models is guaranteed for any program which ha~ 
models. 

Theorem 6.22 When a program has a ntodel, it has a semi-stable rnod<'l. 

Proof' When a program P has a model, it is easy to sec that P" also h<t~ 
a model. Then the closure min(p(Tp• T w)) contains models which ar<' 
maximally canonical, hence SST p is not empty. 0 

Thus incoherent programs get the meaning by considering scmi-stahk mod<·ls. 

Example 6.10 (narbar's Paradox) 
Let P be the program: 

{ shave(Nocl,x) +- notshave(x,x), mayor(Casanova) +- }. 

Then its epistemic transformation P" becomes 

{ ~(x) V Kshave(x,x) +-, 

shave( Noel, x) +- J..(x), 

+- J..(x) 1\ shave(x,x), 

mayor(Casanova) +- }. 

Thus, 

mm(p(Tp. T w)) = { {Kshave(.'V, N), Kshave(C, C). mayor( C)}, 

{Kshave(N, N), J..(C), shave(N, C), mayo1·(C)} }. 

In the above closure, the second interpretation is maxirnally canonical, lwncc 

obj;;.c(min(p(Tp• T w))) = { { Kshave(N, N), shave(N, C), mayor( C) } }, 

which contains the unique semi-stable model of P such that shave(N, (')and mayor( C) 
are true, while shave(N, N) is believed true. 0 

Note that the above program has neither standard two-valued stable models nor 
answer sets. 

In the incoherent program {a +- not a}, it is known that interpretations "oscil
late" between 0 and {a} under the stable class semantics [Baral and Subrahmanian, 
1992]. Then it is interesting to observe that the truth value /(a) = bt in its semi
stable model correspondingly lies between .L and t. 



126 1.'\CO.VSISTE.\'CY /.V DISJU\CTIVE PROGRAMS 

6 .6 R e la te d Work 

A framework of paraconsistent logic programming is firstly developed by Blair and 
Subrahmanian [1989] in the context of annotated logic programs. They employ Bel
nap's four-valued logic as a theoretical basis, but their framework does not treat 
default negation in a program. Fitting [1991] provides a general framework for logic 
programming in terms of bilattices, but he does not discuss programs contaimng two 
kinds of negation. Kifer and Lozinskii [1992] extend Blair and Subrahmanian's anno 
tated logic programming framework to a theory poss1bly containing default negat1on, 

and Wagner [199la; 199lb] also develops a theory of inconsistent logic programs with 
two kinds of negation. Compared with our approach, they do not treat disjunctions 
in a program and the underlying logics presented in these literature are different from 

our stable model semantics. 
Subrahmanian [1992] has extended the work of [Blair and Subrahmanian, 1989] 

to programs containing disjunctive information. However, he does not treat default 
negation in a program. He also provides a fixpoint semantics of paraconsistent dis
junctive programs bast'd on Minker and Rajasekar's model state fixpoint semantics, 
which is different from ours as presented in Section 3.7. Lu and Henschen [1992] 
consider specifying the closed world assumption in paraconsistent definite and dis
junctive logic programs. However, they neither consider programs containing two 
kinds of negation nor develop any fixpoint theory for disjunctive programs. 

Paraconsistent stable model semantics is also proposed by several researchers. Pi
mentel and Rodi [1991], Grant and Subrahmanian [1992], and Wagner [1993] study 
paraconsistent stable model semantics from different viewpoints. The differences be
tween these approaches and ours are as follows. First, their paraconsistent stable 

model semantics are defined for extended logic programs and do not treat disjunctive 
information in a program. Second, they do not prov1de any mechanism to compute 

their stable models, while our fixpoint computation realizes constructive computation 
of paraconsistent stable models by using bottom up model generation techniques as 
presented in Section 3.5. Third, we have introduced the notion of semi-stable models 

which are paraconsistcnt for incoherent programs, while they do not discuss the is
sue of handling incoherency. Recently, Fitting [1993] provided a framework of stable 

model semantics in terms of bilattices, but did not treat disjunctive programs. An 
other point is that our paraconsistent extensions are not only for the stable model 

semantics, but also for the possible model semantics. Sakama [1992] has also de
veloped a paraconsistent well-founded semantics for extended logic programs and 
disjunctive programs, which is different from the stable model approach presented m 

this chapter. 

SUMMARY 127 

The paraconsistent semantics presented in this chapt<•r is intended to localize in 
consistent information in a program. There is an alternative approach which tries to 

detect the source of inconsistency and recover the consistency of a program. Gener 
ally speaking, however, it is a hard task to automatically resolve inconsistency in a 
program. When inconsistency ames from default assumptions, Percira et al. [1991] 
and Dung cl al. [1991] present methods of removing the inconsistency by preferring a 
fact that does not depend on any ddault assumption. Howevt'r, their approaches an• 
of no use in a program where inconsistency 1s derived without default assumptions. 
Kowalski and Sadn [1990] resolve contradiction by giving a higher priority to one of 
the conflicting conclusions as an exc<'ption, but such an approach generally requ1rcs 
one to specify a preference for each individual rule. Inoue [1!.191] and Baral et al. 
[1992b] consider the meaning of an inconsistent program as a collect1on of maximally 
consistent subsets of the program, but such a collection exponent1ally grows according 
to the increase of inconsistent information. 

6.7 Summary 

This chapter has presented paraconsistent frameworks for extended disjunctive pro
grams. We have introduced the paraconsistent minimal, stable, and possible model 
semantics for extended disjunctive programs based on lattice structured multi-valued 
logics. The paraconsistent semantics are characterized by a fixpoint semantics of 
extended disjunctive programs. We have also discussed applications of the paracon 
sistent semantics for reasoning with inconsistency. 

The paraconsistent semantics arc natural extensions of those corresponding se· 
mantics for normal disjunctive programs, and compared with Gclfond and Lifschitz's 
answer set semantics, the proposed semantics do not triviahze a program in the 
presence of inconsistent informal ion The paraconsistent semantics prc~ented 1n this 
chapter generalize previous stud1es of paraconsistent logic programming and provide 

a uniform framework of logiC programming possibly containing inconsistent infor
mation, disjunctive information, integrity constraints, and both explicit and default 
negation in a program. From the computational viewpoint, the bottom-up model gen 
eration procedure presented in Section 3.5 is used to compute the p stable/p-possible 
models, and complexity results presented in Section 3.6 arc directly applicable to 
the corresponding paracons1stcnt semantics. Thus the paraconsistent possible model 
semantics has a computational ad,·antage over the paraconsistent minimal and stable 

model semantics, and the answer set semantics. 



128 l.\'CO.\'SISTE.\'CY f.V DIS.Jl'SCTI'VE PROGRA.\15 

Chapter 7 

Partial Deduction of Disjunctive 
Logic Programs 

In this chapter, we present partial deduction of disjunctive programs. \\'e first show 
that normal partial deduction in logic programming is not applicable as it is in the 
context of disjunctive programs. Then we introduce a new parttal deduction technique 
for disjunctive programs, and show that it preserves the minimal model semantics of 
positive disjunctive programs, and the disjunctive stable model semantics of normal 
disjunctive programs. Normal partial deduction is also us<'d together with suitable 
program transformations from disjunctive programs to normal logic programs, and 
the possible model semantics is preserved through such transformations. Partial de
duction techniques are also applied to goal-oriented partial deduction for query opti
mization. 

7.1 Introduction 

Logic programming provides a methodology as a declarative programming language, 
while a correctly specified logic program is not necessarily cffici<'nt as a practical 
programming language. In order to bridge the gap betw<'<'n declarative and practical 
programming, studies have been devoted to develop techniqu<'s for optimizing logic 
programs. 

Parttal deduction or partial evaluation is known as one of the optimization tech
niques in logic programming. Given a logic program, partial deduction derives a more 
specific program through performing deduction on a part of the program, while pre
serving the meaning of the original program. Such a specialized program is usually 
more efficient than the original program when executed. 

129 



130 PARTIAL DEDUCTION 

Partial deduction in logic programming was firstly introduced by Komorowski 

[1981] and has been developed by several researchers from various viewpoints [Sestoft 

and Zamulin , 19SS: Komorowski, 1992]. From the semantic point of view, Lloyd 

and Shephcrdson [1991] formalized partial evaluation for normal logic programs and 

provide the conditions to assure the correctness with rcspect to Clark's program 

completion semantics. On the other hand, Tamaki and Sato [198·1] showed that partial 

deduction preserves the least Herbrand model semantics of dcfinitc logic programs in 

the contt•xt of unfold/fold transformation. The result is extended to the p<'rfect model 

semantics for stratified logic programs [Seki, 1991; Maher, 1993], and the well-founded 

semantics for normal logic programs [Seki, 1993]. 

Wh<'n we consid<'f disjunctive programs, they incr<'aSc expr<•ssiv<' power of logic 

programming on the one hand, but their computation is gcn<•rally exp<'nsive on the 

otlwr hand. Then optimizations of disjunctive programs ar<' smportant issu<'s for 

practical usage, however, the partial deduction technique in normal logic programs 

is not applicable to disjunctive programs in its present form. This is because normal 

partial d<'duction is based on unfolding between normal clauses, and it supplies no 

mechanism for unfolding between disjunctive clauses. 

In this chapt<'r, we develop partial deduction techniques for disjunctive programs. 

We first show that normal partial deduction is not useful in the presence of disjunctive 

information in a program, then introduce disjunctive partial d<'duct ion for disjunc

tive programs. \\'e prove that the proposed partial deduction mt-thod prcs<•n•es the 

minimal model st•mantics of positive disjunctive programs, and the disjunctsve stable 

model s<'mantscs of normal disjunctive programs. We also dsscuss the prc:wrvation of 

the possible model semantics, and present goal-oriented part1al dcduction for query 

optimization. 

The rest of this chapter is organized as follows. In Section 7 .2, we presC'nt disjunc

tive partial deduction for positive disjunctive programs and show its <'Orrectncss with 

respect to the minimal model semantics. Section 7.3 extends the result to normal 

disjunctive programs containing default negation, and shows that proposed partial 

deduction also works well for the disjunctive stable model semantics A connection 

bctw<>en normal and disjunctive partial deduction is presented, and the preservation 

of the possible model semantics is discussed. In Section 7.1, the partial deduction 

technique is applied to goal-oriented partial deduction for query optunszation. Section 

7.5 discusses further issues, and Section 7.6 summariws this chapter. 

POSITIVE D ISJUNCTIVE PROGRAA,fS 131 

7.2 Partial Deduction of Positive Disjunctive Pro
grams 

In this section, we first present partial deduction of positive disjunctive programs. In 
the following, when we write A V E +- f, E denotes a disjunction (possibly fal~c) in 
the head, and r denotes a conjunction (possibly true) in the body. Note here that 
when we write a clause as A V E +- r, it does not necessarily mean that A should be 
the leftmost atom in the head of the clause. That is, any two clauses are identified 
modulo the permutation of disjuncts/conjuncts in their heads/bodies. 

Since a program is semantically identified with its ground program, we consider 
ground programs throughout this chapter unless stated otherwise. We also assume 
without loss of generality that a disjunction in the head of a ground clause is already 
factored, that is, each atom in the disjunctive head of a clause is different. 

7.2.1 Normal Partial D eduction 

Partial deduction in logic programming is usually defined as unfoldmg of clausC's in 
a program. 1 For a Horn logic program P, partial deduction ss formally presented as 
follows. 

Given a Horn clause C from P: 

C: H+-AI\f, 

suppose that Ct .... , C~c are all of the clauses in P such that each of which has the 
atom A in its head: 

c. : A +- r. (I ~ i ~ k). 

Then normal parltal deductwn of P (with respect to C on A) is defined as the 
program 11'fc;A} ( P) (called a 1·estdual program) such that 

1r{c;A}(P) = (P \ {C}) u {c;, ... , c~} 

where each c: is defined as 

c: : H +- r A r .. 
When we simply say normal partial deduction of P (written 1rN(P)), it means 

normal partial deduction of P with respect to any clause on any atom. 

1 Partial deductiOn 1s also called partial evaluation. However, we prefer to use the term partial 
deduct1on, since partial evaluation often mcludes non-deductive procedures. 



132 PARTIAL DEDUCTION 

Example 7.1 Let P be the program: 

P = { a +- b, b +- c, b +- a, c ._ } . 

Then normal partial deduction of P with respect to a +- b on b becomes 

1rfa-b;b}(P) = { a +- c, a ._a, b +- c, b._ a, c._ }. 0 

In the context of unfold/fold transformation of logic programs, Tamaki and Sato 
[19841 showed that normal partial deduction preserves the least Herbrand model se
mantics of definite logic programs. 

Lemma 7.1 ([Tamaki and Sato, 19841) Let P be a definite logic program and Mp be 
its least Herbrand model. Then, for any residual program 1rN(P) of P, Mp = M1fN(P)· 

0 

The result also holds for Horn logic programs, that is, programs containing in
tegrity constraints. 

Theorem 7.2 Let P be a Horn logic program and 1rN (P) be any residual program 
of P. Then Mp = M.,N(P)· 

Proof: By identifying each integrity constraint ._ G with false +- G, 
Mp contains false iff M.,.N(P) contains false. In this case, both programs 
are inconsistent. Then the result follows from Lemma 7.1. 0 

Thus, in what follows we do not take special care for the treatment of integrity 
constraints, that is, they are identified with normal clauses during partial deduction 
as presented above. 

Now we consider partial deduction in disjunctive programs. If we consider to ex
tend normal partial deduction to a program possibly containing disjunctive clauses, 
however, normal partial deduction does not preserve the minimal models of the pro
gram. 

Example 7 .2 Let P be the program: 

P = { a V b ._, a ._ d, c ._ a } 

where the set of all minimal models of P becomes M M p = { {a, c}, { b}}. On the 
other hand, 

1r{c-c;c}(P) = { a V b +-, a +- d, c +- d} 

whereMM1fN (P)={{a},{b}}. 0 
{c-o,o} 

POSITIVE DISJUNCTIVE PROGRAMS 133 

The problem is that normal partial deduction of logic programs is defined as 
unfolding between normal clauses. In the above example, however, there is the dis
junctive clause a V b ._ containing the atom a in its head, so unfolding between c +- a 
and a V b ._ would be needed. 

Then our first task is to extend the normal partial deduction method to the one 
which supplies unfolding for disjunctive clauses. 

7.2.2 Disjunctive P artia l Deduction 

Partial deduction of positive disjunctive programs is defined as follows. 

Defin ition 7 .1 Let P be a positive disjunctive program and C be a clause in P of 
the form: 

C: L:+-AAf. (7.1) 

Suppose that Ct, ... , Ck are all of the clauses in P such that each of which includes 
the atom A in its head: 

C; : A V L:, +- f, ( l ::; i ::; k) . (7.2) 

Then disjunctive partial deduction of P (with respect to Con A) is defined as the 
program 1rfc;A}(P) (called a 1·esidual program) such that 

1rfc,A}(P) = (P\ {C})u {C~, ... ,C~} 

where each Ci is defined as 

c: : L: v L:, - r" r. , (7.3) 

in which L; V L:; is factored. o 

Disjunctive partial deduction is a natural extension of normal partial deduction. 
In fact, the clause (7.3) is a resolvent of the clauses (7.1) and (7.2). In Horn logic 
programs, disjunctive partial deduction coincides with normal partial deduction. 

Now we show that disjunctive partial deduction preserves the minimal model 
semantics of positive disjunctive programs. We first present a preliminary lemma. 

Lem m a 7 .3 Let P be a positive d isjunctive program and M be its minimal model. 
Then an atom A is in M iff there is a clause C A V L; +- f in P such that 
M\ {A} I= f and M\ {A} ~ L:. 



134 PA RTIAD DEDL1CTION 

Proof: (::}) Suppose that for some atom A in Af, there is no clause C 
in P such that Jf \{A} f: rand M \ {A} ~ E. Then, for each clause 
C, M\ {A} ~for M\ {A} f: E, and hence it holds that M\ {A} f: r 
implie:s M\ {A} f: E. In this case, since M\ {A} satisfies each clause C, 
it becomes a model of P, which contradicts the assumption that Af is a 
minimal modd. Hence the result follows. 

(-~)Assume that A is not in M. Then M\ {A} =M, and for a clause C' 
in P, M f: rand M~ E imply A EM, contradiction. o 

Theorem 7.4 Let P be a positive disjunctive program and 1r
0 (P) be any residual 

program of P. Th<>n MMp = MM,. o(P)· 

Proof: (~) Let M be a minimal model of P. Since the clause (7.3) 
is a resolvent of the clauses (7 .1) and (7 .2) in P, M also satisfies each 
clause (7.3) in 1r0 (P). Then M is a model of 1r0 (P). Assume that there 
is a minimal model N of 1r

0 (P) such that N C M. Since N is not a 
model of P, N does not satisfy the clause (7.1). Then N f: r, N f: A, 
and N ~ E As a minimal model .V of 1r0 (P) implies A, 1t follows from 
Lemma 7.3 that there is a clause C of the form (7.2) or (7.3) in 1r

0 (P) 
such that C contatns A in 1ts head. (i) Suppose first that C 1s of the 
form (7.2). Then N f: A implies N \{A} f: r, and .V\ {A} ~ E, (by 
Lemma 7.3). Here N \{A} f: r, implies N f: r,. Besides, the diSJUnctive 
head A V E, is assumed to be already factored, then E, does not include 
A. Thus N \ {A} ~ E, also implies .V ~ E,. In this case, however, .N 
does not satisfy the clause (7.3). This contradicts the assumption that N 
is a model of 1r0 (P). (ii) Next suppose that C is of the form (i.3) such 
that E - A V E'. Then N f: A implies N f: !:, which contradicts the fact 
N ~ E. Hence, M is also a minimal model of 1r

0 (P). 

(2) Let M be a minimal model of 1r0 (P). If M is not a model of P, 
M does not satisfy the clause (7 .1 ). In this case, M ~ E, M f: A, and 
M f: f. Since a minimal model M of 1r

0 (P) implies A, it follows from 
Lemma 7.3 that there is a clause C of the form (7.2) or (7.3) in 1r 0 (P) 
such that C contains A in its head. When C is of the form (7.2), M 1=- A 
implies M f: r, and M ~ E, (by Lemma 7.3 and the discussion presented 
above). Thus M does not satisfy the corresponding clause (7 .3), which 
contradicts the assumption that ,\4 is a model of 1r

0 (P). Else when C is 
of the form (7.3) such that ~ = A V E', M f: A implies M f: E, which 
contradicts the fact Af ~ E. Hence M is a model of P. :--;ext assume that 

NORMAL DISJUNCTNE PROGRAMS 

there is a minimal model N of P such that .V C M. By (~). V 1s also 
a minimal model of 1r

0 (P), but this is impossible since Jf is a mmimal 
model of 1r

0 (P). 0 

135 

Corollary 7 .5 Let P be a positive disjunctive program. Then P is inconsbtent iff 
1r

0 (P) is inconsistent. 0 

E xample 7 .3 (cont. from Example 7.2) Given the program P, its disjunctive partial 
deduction 1f~-a;a} ( P) becomes 

11'~-a;a}(P)={avb ..... , a._d, c ..... d, bVc+-}, 

and MM.,o (P) = {{a, c}, {b} }, which is exactly the same as MMp . 0 
(c-a,a) 

7.3 Partial Deduction of Normal Disjunctive Pro
grams 

In this section, we extend disjunctive partial deduction to normal disjunctive pro 
grams. 

7.3.1 Disjunctive Partial Deduction of Normal Disjunctive 
Programs 

The definition of disjunctive partial deduction for normal disjunctive programs is the 
same as Definition 7.1, except that in this case each clause possibly contains default 
negation. 

Example 7.4 Let P be the normal disjunctive program: 

P = { a V b ..,_ not c, a +- d, c ..,_ a } . 

Then disjunctive partial deduction of P with respect to c +- a on a becomes 

7rfc-a;a}(P)={aVb+-notc, a+-d, c+-d, bVc+-notc}. 0 

As shown in the above example, disjunctive partial deduction is not affected by 
the presence of default negation in a program. Thus we can directly apply previously 
defined disjunctive partial deduction to normal disjunctive programs and the following 
result holds. 



136 PARTIAL DEDUCTION 

Theorem 7.6 Let P be a normal disjunctive program and ST p be the set of all 
stable models of P. Then ST p == ST ,.n(P)· 

Proof: Let M be a stable model of P. Then M is a minimal model of 
pM. Since pM is a positive disjunctive program, by Theorem 7.4, M is 
also a minimal model of 1r0 (PM). Now let us consider the clauses: 

E ~ A 1\ r 1\ not f' ( *) 

and 
A V E, ~ r I 1\ not r: ( 1 ~ i ~ k) (t) 

in P, where not f' is the conjunction of default. negation formulas in the 
body. 

(i) If M~ f' and M~ r: for some i (1 ~ i ~ k), the clauses: 

E ~A 1\ f (*') 

and 
AVE,~ri (t') 

are in pM. From these clauses, disjunctive partial deduction generates 
the clauses: 

EVE, ~ f 1\ f, (t') 

in 1r0 (PM). On the other hand, from (*) and (t) 1n P, there are the 
clauses: 

E V Ei ~ f 1\ f i 1\ not f' 1\ not r; ( t) 

in 1r0 (P), which become (t') in 1r0 (P)M. 

(ii) Else if M I= f' or M I= r; for any i (1 ~ i ~ k), the clauses(*) or (t) 
is respectively eliminated in pM. Then the clauses (t') are not included 
in 1r0 (PM). In this case, each clause (t) in 1r0 (P) is also eliminated in 
1rD(P)M. 

Thus, there is a one·tO·one correspondence between the clauses in 1r0 (PM) 
and the clauses in 1r0 (P)M, hence 1r0 (PM) = 1r0 (P)M. Therefore M is 
also a minimal model of 1r0 (P)M, and a stable model of 1r0 (P). 

The converse is also shown in the same manner. 0 

Corollary 7. 7 Let P be a normal disjunctive program. Then P is incoherent iff 
1r

0 (P) is incoherent. 0 

NORMAL DISJUNCTNE PROGRAMS 137 

The above theorem also implies that in normal logic programs, normal partial 
deduction preserves Gelfond and Lifschitz's stable model semantics. 

Corollary 7.8 Let P be a normal logic program. Then ST p == ST ,.N(P)· 0 

The above result is also presented in [Seki, 1990]. 

7.3.2 Connections between Normal and Disjunctive Partial 
Deduction 

In this section, we consider connections between normal and disjunctive partial deduc· 
tion. We first give a sufficient condition such that normal partial deduction preserves 
the meaning of disjunctive programs. 

Theorem 7.9 Let P be a normal disjunctive program and C be a clause of the form 
E ~A 1\ f from P. If A does not appear in the head of any disjunctive clause in P, 
then ST p = ST ,N (P)· That is, normal partial deduction of P with respect to C 

{C;A} 

on A preserves the disjunctive stable model semantics. 

Proof" In this case, disjunctive partial deduction coincides with normal 
one, hence the result follows from Theorem 7.6. 0 

Next we present a method to compute disjunctive partial deduction in terms of 
normal partial deduction. 

Definition 7.2 Let P be a normal disjunctive program. Then the n/p.transformation 
transforms P into the normal logic program rt(P) which is obtained from P by re· 
placing each disjunctive clause: 

C : A1 V ... V A, ~ f (7.4) 

with I normal clauses: 

Ci- : Ai ~ f 1\ A~ 1\ ... 1\ Ai_ 1 1\ Ai+• 1\ ... 1\ AI (l ~ i ~I). (7.5) 

where each Aj is a new atom introduced for each Ar 
In particular, C == ci- if I ~ l. o 

Now we show that disjunctive partial deduction of a normal disjunctive program P 
with respect to a clause C is obtained through normal partial deduction of rt(P) with 
respect to each ci-. In the following, the function .,.,-• is the reverse transformation 
which shifts each atom Aj appearing in the body of each clause in a program to the 
atom Ai in the head of the clause. Also E- means A~ 1\ ... /\AI where E == A1 V ... V A1• 



138 PARTIAL DEDUCTION 

Theorem 7.10 Let P be a normal disjunctive program. Then, 

11"fc;A}(P) = 17-1(7r{c,-;A}(7J(P))) 

where 11"{c,-;A}(77(P)) means normal partial deduction of 17(P) with respect to each 

normal clause c,- on A. 

Proof: Corresponding to the clauses {7.1) and (7.2) in P, there are the 
clauses: 

A'+-AI\ri\E'- (where E=E'VA') (*) 

and 
A+- r, 1\ E~ (1 ~ i ~ k) (t) 

in 17(P), respectively. Then the clauses: 

A' +- r 1\ r, 1\ E'- 1\ E~ (t) 

are obtained from ( *) and ( t) by normal partial deduction in 17( P). In 
this case, by the reverse transformation 17- 1

, each clause of the form 
(t) becomes a disjunctive clause of the form (7.3). Hence, 7rfc:A}(P) = 

17-1(7r{c,-;A}(77(P))). O 

Example 7 .5 Let P be the program: 

P = {a V b +-, a+- b, b +-a}. 

Then, 
1r~-b;b}(P) = {a V b +-, a+-, a+- a, b +-a}. 

On the other hand, the nip-transformation of P becomes 

and 
1rfo-b;b}(17(P)) = {a+- b-, b +-a-, a+- a-, a+- a, b +-a}. 

Thus, 
17-1 (7rfo-b;b}(17(P))) = {a V b +-, a+-, a+- a, b +-a}. 

Therefore, 1r~-b;b}(P) = 17- 1 (1r~-b;b}(7J(P))). 0 

The above theorem presents that disjunctive partial deduction 11"fc;A}(P) is ob
tained by the transformation sequence: P-+ 17(P) -+ 1r{c;-;A}(17(P))-+ 7]-

1(7r{c;-;A}(77(P))). 
That is, together with the nip-transformation, normal partial deduction can also be 
used for normal disjunctive programs. 

NORMAL DISJUNCTNE PROGRAMS 139 

7 .3 .3 Preservation of t he Possible Mode l Sem antics 

We consider partial deduction for disjunctive programs under the possible model 
semantics. Unfortunately, disjunctive partial deduction does not preserve the possible 
model semantics in general. 

Example 7.6 Let P be the disjunctive program: 

P={aVb+-, c+-b}. 

Then disjunctive partial deduction of P with respect to c +- b on b becomes 

1r~-b;b}(P) = {a V b +-, a V c +- }. 

In this case, 'PMp = {{a},{b,c},{a,b,c}}, while the residual program has the pos
sible models {a,b} and {a,c} in addition to 'PMp. 0 

In the above example, a dependency relation between c and b is not expressed after 
partial deduction. This observation tells us that resolution- based disjunctive partial 
deduction often fails to preserve syntax-dependent logic programming semantics. In 
fact, the above example shows that even the supported models of P are not preserved 
during partial deduction; {a, c} is a supported model of the residual program but it 
is not a supported model of P. 

Then we first consider a sufficient condition for preserving the possible model 
semantics. A result similar to Theorem 7.9 holds. 

Theore m 7.11 Let P be a normal disjunctive program and C be a clause of the 
form E +- A 1\ r from P . If A does not appear in the head of any disjunctive clause 
in P , then 'PMp = PM"o (P)· 

{C.A} 

Proof" In this case, stable models of each split program of P are pre
served, hence the result follows. 0 

Next we present a method of partial deduction for preserving possible models in 
general. We have already seen in Section 3.6 that possible models of any disjunctive 
program are expressed by stable models of a normal logic program obtained by the pm
transformation. Then, we compute partial deduction for the possible model semantics 
in terms of normal partial deduction in such a transformed program. 

The following result follows from Theorem 3.30 and Corollary 7.8. 

Theorem 7 .12 Let P be a normal disjunctive program and &?(P) be a normal logic 
program obtained by pm-transformation. Then P Mp = ST ""'{p(P)) n 'HB p. 0 



140 PARTIAL DEDUCTION 

1.4 Goal-Oriented Partial Deduction 

In this s<'Ction, we pre:;ent goal-oriented partial deduction in disjunctive programs. 
GoaJ.oricntcd partial deduction specializes a program with respect to a given goal, 
which is us<·ful to optimize programs for query-answering. Lloyd and Shepherdson 
(19911 discuss a framework of goal-oriented partial evaluation for normal logic pro
grams with respect to SLD!\F proof procedures. In our framework, goal-oriented 
partial deduction 1s presented as follows. 

Let us consider a query of the form: 

Q : Q(x) +- 81 1\ ... 1\ Bm 1\ not Bm+l 1\ ... 1\ not Bn (7.6) 

whNc Q(x) is a new atom not appearing elsewhere in a program and x represents 
variables appearing in the body of the clause. 

Then, given a normal disjunctive program P, partial deduction of P with respect 
to Q is defined as 11'fQ;B,}(PQ) where 8, is any atom occurring positively in the body 
of Q and PQ is the program P U { Q}. When a query contains variables, we consider 
partial deduction with respect to its ground instances. 

As introduced in Section 3.5, an answer to a query is defined as a ground substi
tutiOn q for variables in Q(x). 

A query Q is true 10 P under the disjunctive stable model semantics if for every 
stable model I of Po there is an answer u such that Q(x)u is mcluded in /. Else if 
for some stable model/ of Po there 1s an answer u such that Q(x)u 1s mcluded in /, 
the query is pos.stbly true. Otherwise, if there is no such answer, the query is false. 
By Theorem 7.6, the following results hold. 

Theorem 7.13 Let P be a normal disjunctive program and Q be a query. Then, 
under the disjunctive stable model semantics, 

(i) Q is true in P iff Q is true in 11'pQ;B,}(PQ)· 

(ii) Q is possibly true in P iff Q is possibly true in 11'pQ;B,)(PQ)· 

(iii) Q is false in P iff Q is false in 11'fQ;B,}(PQ). 0 

Example 7.7 Let P be the program: 

{ p( a) V p( b) +- } , 

in which the query Q: q(x) +- p(x) is true. Then, 

71'pQ;p(r}}(Po) = { q(a) V p(b) +-, q(b) V p(a) +-, q(a) V q(b) +-, p(a) V p(b) +-} 

and Q is also true in 11'PQ.p(r)}(PQ) under the disjunctive stable model semantics. 0 

DISCUSSION 141 

Note that in the above example, we assume that the ground queries q(a) +- p(a) 
and q(b) +- p(b) are unfolded consecutively in the program. That is, 71'fQ;p(r)}(PQ) 
means "'fQ;p(o)}(7rfo.p(o)}(PU { q(a) +- p(a), q(b) +- p(b)} )). In this case, the order of 
unfolding does not affect the result of partial deduction since each partial d<>duction 
preserves the stable models of the program PQ· 

Using the technique presented in the previous section, corresponding results also 
hold for goal-oriented partial deduction under the possible mod<•l semantics. 

7.5 Discussion 

So far, we have considered partial deduction of propositional programs, while disjunc
tive partial deduction is also directly extended to programs containing variables. 

Let P be a normal disjunctive program and C be a clause in P of the form: 

C: ~+-AJ\f. 

Then, for any clause 
C,: A, V E, +- r, {1 ~ i ~ k) 

from P such that Au, = A,u, holds with an mgu u., the following clauses 

c:: (EvE, - r 1\ r,)u, 

are in the residual program 71'~;A}(P) = (P \ { C}) U {C;, ... , Cl:}. 
Correct.ness of such disjunctive partial deduction with respect to the disjunct.ive 

stable model semantics is proved in a similar way to the propositional case. 
Disjunctive part.ial deduction is implemented on the bottom-up model generation 

procedure presented in Section 3.5, and it preserves the disjunctive stable model 
semantics in range-rest.ricted function-free normal disjunctive programs. On the other 
hand, a transformation from disjunctive partial deduction to normal partial deduction 
presented in the previous section enables us to use a partial evaluator for normal logic 
programs also as a procedure for disjunctive partial deduction. Partial deduction 
under the possible model semant.ics is also executed using a partial evaluator of normal 
logic programs with respect to the stable model semantics. 

In the context of deductive databases, a program usually consists of a large amount 
of data (called an extcnsional database) and a comparatively small set of derivat.ion 
rules (called an intenstonal database). For query processing in such a database, it 
is effective to partially evaluate a query in the intensional database at first, and 
subsequently evaluate it in the extensional database (Gallairc et al., 1984]. Such a 



142 PARTIAL DEDUCTION 

technique can also be realized in our goal-oriented partial deductton presented in 
Section 7.4 . Related topics are discussed in [Sakama and Itoh, 198SJ for optimizing 
queries in deductive databases. 

The partial deduction technique presented in this chapter is also directly applica
ble to extended disjunctive programs. Moreover, since positive disjunctive programs 
are identified with first-order theories, disjunctive partial deduction has potential ap
plication to first-order theorem provers. Recently, Brass and Dix [19941 independently 
developed a partial deduction technique for disjunctive programs which is equivalent 
to ours. They discuss several abstract properties of disjunctive programs and con
clude partial deduction as one of the fundamental properties that logic programming 
semantics should satisfy. 

7 .6 Summary 

In this chapter, we have presented a method of partial deduction for disjunctive pro
grams. We first showed that normal partial deduction is not applicable to disjunctive 
programs in its present form. Then we introduced disjunctive parttal deduction for 
disjunctive programs, which is a natural extension of normal partial deduction for 
normal logic programs. Disjunctive partial deduction was shown to prc:;erve the min
imal model semantics of positive disjunctive programs, and the disjunctive stable 
model semantics of normal disjunctive programs. We also showed a method of trans
lating disjunctive partial deduction into normal partial deduction, and presented an 
application to goal-oriented partial deduction for query optimization. 

Chapter 8 

Conclusion 

8.1 Summary and Contributions 

In this dissertation, we have studied theoretical aspects of disjunctive logic program· 
ming from various viewpoints. 

It has been considered that the principle of minimality is a basic criterion for any 
rational semantics of logtc programming and cornmonsense reasoning in AI. However, 
it was also noticed that this principle is not always appropriate in the presence of 
indefinite information in a program. Then we started to develop a new theoretical 
framework of disjunctive logic programs, which vlOlates this common principle. To 
this end, in Chapter 3 we proposed a new declarative semantics of disjunctive logic 
programs called the possible model semantics. Due to its non-minimal property, the 
possible model semantics can freely specify both inclusive and exclusive disjunctions 
in a program, and provides a flexible negative inference mechanism under the clo~cd 
world assumption. The possible model semantics was also characterized by a new 
fixpoint semantics of disjunctive logic programs, and a bottom-up proof procedure 
for computing possible models was presented. The advantage of the possible model 
semantics lies not only in its representational power, but also in its computational 
complexity. That is, computation of possible models does not need an extra nl<'cha
nism for minimality-checking, which makes computing the possible model semantics 
much easier than the minimal-model based semantics. We have vcrtficd this fact by 
comparing the computational complexity of each semantics. 

Logic programming semantics is known to be closely related to nonmonolonic 
formalisms in Al. There have been studied methods of representmg normal logic pro
grams in terms of nonmonotonic formalisms, and their extensions to disjunctive logic 
programs were also proposed by several researchers. In Chapter 4, however, we have 

143 



144 CONCLUSION 

pointed out that the previously studied result on default translations of disjunctive 

logic programs is incorrect. Then we introduced an alternative corrl"cl transformation 
from disjunctive logic programs to default theories, and showed that the disjunctive 
stable model semantics is characterized in terms of default extensions. The result 
indicatl"s that H<•itt•r's default logic still works well to characterize disjunctive logic 
programs, which breaks the folklore that Reiter's default logic is inappropriate to 
characterize disjunctive logic programs in general. In fact, Gclfond et al.'s disjunc
tive default logic is proposed to treat disjunct ions "properly" in a default theory, while 
we have shown that Rcitt>r's default logic has the same express1vcn<'ss as disjunctive 
default log1c to characterize the semantics of disjunctive logic programs. Disjunctive 
logic programs were also characterized by auto<'pistemic logic and circumscription. 
Morl"ovcr, we have shown that the possible model semantics of disjunctive logic pro 
grams is expressed by the non-minimal feature of autoepistemic expansions. 

Abduction IS also a form of cornrnonsense reasoning in AI, and its application to 
logic programming IS known as abductive logic programming. Disjunctive logic pro
grams and abductive logic programs are two extensions of logic programming which 
provide frameworks for reasoning with incomplete information, while little attention 
has been paid for their interrelations. Then, in Chapter 5, we revealed a close re
lationship between disjunctive logic programs and abductive logic programs. It was 
shown that the possible model semantics of disjunct1ve logic programs is essentially 
equivalent to the generalized stable models of abductive logic programs. This fact in
dicates that disjunctive log1c programs and abductive logic programs are just difTt>rent 
ways of looking at the same problem 1f we choose the appropriate semantics. More
over, the possible model semantics is useful not only for disjunctive logic programs 
but also for abductive logic programs, and establishes links between <>ach framework. 
The usefulness of the possible model semantics in abductivc log1c programming was 
also verified from the computational complexity viewpoint. 

Another important issue for commonsense reasoning in logic programming is the 
treatment of inconsistent information in a program. In the context of <'xtended logic 
programs, a program may become inconsistent in the presence of explicit negation. 
However, classical logic programming framework is useless in the presence of incon
sistent information, and paraconsistent extensions are needed in order to treat incon 
sistcnt information properly in a program. In Chapter 6, we then proposed paracon

sistcnt frameworks for disjunctive logic programs which can cope with inconsistent 
information as well as indefinite information in a program. The paraconsistcnt sta
ble and possible model semantics were introduced for extended disjunctive programs, 
and those semantics were shown to be useful compared with the answer set semantics. 

SUMMARY AND COSTRIBUT/0\'S 145 

Each paraconsistent semantics was also characterized by the fixpoint s<•mantics of <'X

tended disjunctive programs, and \'arious methods for reasoning with inron:;istt•nt 
information were discuss<.>d . 

Disjunctive logic programs inc rease expressive power of logic programming, while 
their computation arc generally more expensive than normal logic programs. Then, 
in Chapter 7, we develop<'d partial deduction techniques for optimLdng disjunctive 
logic programs. We first argued that normal partial deduction for logic programs is 
not directly applicable to disjunctive logic programs, then introduced a new partial 
deduction method for disjunctive logic programs. The proposed disjunctiw part1al 
deduction was shown to preserve the minimal model semantics of pos1tive disjunctive 
programs and the disjunctiv<> stable models semantics of normal disjunctive programs. 
We also showed a m<.>thod of translating disjunctive partial d<•duction into normal 
partial deduction, and prcs<>ntcd a method of using normal partial deduct ion for the 
possible model semantics. An application to goal-oriented partial deduction 1s also 
presented for query optimization in disjunctive deductive databas<•s. 

In this dissertation, we have discussed semantic issues for vanous ('Xtcnsions of 
logic programming. Interrelations between those extensions arc prc~<·nted in Fig
ure 8.1. 

Now we know the following relationships between each class of programs. 

• Normal disjunctive programs are reducible to positive disjunctive program by 
the epistemic transformation presented in Section 3.4. This transformation 
preserves both the disjunctive stable model semantics and th<> possiblf' model 
semantics. 

• Normal disjunctive programs are reducible to normal logic programs preserving 
the possible model semantics by the pm-transformation presented in Section 3.6. 

By contrast, under the disjunctive stable model semantics, such a transfonna
tion is most unlikely possible in polynomial time. 

• Abductivc logic programs are transferable to normal disjunctive programs and 
vice versa under the possible model semantics. Also abductive disjunctive pro
grams are reducible to normal disjunctive programs under the disjunctiv<> stable 
model semantics and the possible model semantics (Chapter 5). 

• Extended disjunctive programs and extended logic programs arc respectively 
reducible to normal disjunctive programs and normal logic programs by cons1d 
ering their positive forms. Each semantics for extended programs are <'xprcssed 
by the corresponding semantics of normal programs (Chapter 6). 



146 COSCLUSIO.'V 

ELP 

PDP 

HLP 

HLP: Horn logic programs, :-\LP· normal logic programs, POP: positive disjunc
tive programs, :-\DP: normal disjunctive program!>, F:LP: extended logic pro
grams, EDP: extended disjunctive programs, ALP: abductive logic programs, 
ADP: abductive disjunctive programs. 

Figure 8.1: Extensions of Logic Programming 

The first fact presents that default negation can be rC'presented by disjunctions, 
while the second fact prc~ents that the converse is also true under the posstble model 
semantics. The third fact pr<~ents that abductive hypotheses are identified with 
disjunctions under the possible model semantics, and abductive disjunctive programs 
do not increase expressive power of normal disjunctive programs. The fourth fact 
presents that classical negation in extended programs can be interpreted within the 
frameworks of normal programs. 

These observations indicate a somewhat surprising result that all ··extenswns" of 

log1c programming a1-e esM>nlially equivalent tmder the possible model semantics. That 

IS, default negation, dis;unclton, ar1d abducibles can be used mterchangeably under the 

possible model semantics, and classtcal negation IS nothmg but '"~yntax-sugar". 

This fact suggests that the po~sible model semantics provides a unifying framework 
for the semantics of logic programs, and its potential expressiveness would contribute 
to enrich our perspectives of logic programming as a theoretical tool for commonsense 
reasoning in ar tificial intelligence. 

FUTURE RESEARCH 147 

8.2 Future R esearch 

In this dissertation, we have discussed various extensions of logic programming and 
their theoretical frameworks. Syntactically speaking, further ext<>nsions besides those 
presented in the dissertation are considered. One extension is incorporating classical 
negation in abductive logic/disjunctive programs. Abducltve cxtmdcd logtc program:> 

and abductive extended disjunctive programs are extensions of abductive logic pro
grams and abductive disjunctive programs respectively, whtch are obtained by re
placing normal logic/disjunctive programs with extended logtc/ disjunctive programs 
in each abductive framework. llowcvcr, such frameworks arc r<>ducible to normal 
abductive logic/disjunctive programs by considering their pos1t1ve forms, so it is easy 
to extend the results presented in Chapter 5 to abductive ext<>nded logic/disjunctive 
programs. Inoue and Sakama [1993] have introduced a fixpoint semantics of abduc 
tive extended disjunctive programs and shown that abducttve extended disjunctive 
programs are transferable to extended disjunctive programs under the answer set 
semantics. 

Another extension is to incorporate default negation 111 the head as well as 111 the 
body of each clause in extended disjunctive programs. Such an extension of logic 
programming is known as logic programs with ''postltvt not". A unique feature of 
such programs is that answer sets of those programs are not n<>ccssarily minimal, how
ever, its application to knowledge representation was remained open [Lifschitz and 
Woo, 1992]. Inoue and Sakama [1994] have recently shown that such non-minimal 
answer sets are useful to characterize abductive reasoning and inclusive disjunctions 
in logic programming. Moreover, they show that the possible model semantics plays 
an important role for such characterizations. This extension of logic programming is 
fairly new, and further applications of such programs arc r<>maincd to be seen. How
ever, since the framework is closely related to the possible mod<>l semantics, further 
investigation would also exploit new applications of the possible model semantics. 

Considering the relationship to nonmonotonic reasoning, we have shown in Chap
ter 4 that disjunctive logic programs are translated into nonmonotonic formalisms in 
Al. Since abductive logic/disjunctive programs are transferable to disjunctive logic 
programs as presented in Chapter 5, by combining these two transformations, we 
can also relate abductive logic programming to each nonmonotonic formalism. From 
the computational complexity viewpoint, it is known that dtsjunctive stable model 
semantics and those nonmonotonic formalisms are interrelated at the second level of 
the polynomial hierarchy (Eiter and Gottlob, 1993b]. This fact implies that reasoning 
tasks in each nonmonotonic formalism can also be efficiently r<>alized in disjunctive 



14S CO:VCLUSION 

logic programs. In other words, disjunctive logic programs have potential applications 
for nonmonotonic reasoning in A I. 

On the other hand, we have shown that non-minimal nature of autoepistemic 
logic is useful to characterize inclu~ive disjunctions in knowledge representation. It is 
shown in [Inoue and Sakama, 199tl that such non-minimal autocpistemic expansions 
are also useful for characterizing abduction. Th~e facts suggest that the principl<' 
of minimality is not a dominant rule for commonscnsc reasoning in AI any more. So 
it is interesting to seek further applications of non minimal nonmonotonic rea.son
ing, which would open new pcrspecti\'es of nonmonotonic formalisms as knowledge 
representation tools. 

As for the procedural a.-;pects of disjunctive logic programs, in Section 3.5 we 
have presented a bottom up proof procedure which is sound and complete with re
spect to the possible model semantics/disjunctive stahle model semantics for function 
free range-restricted normal disjunctive programs. However, the proposed bottom up 
proof procedure is rather naive for query-answering, and in the presence of huge 
databases, it might need some optimization techniques as presented in [Bancilhon 
and Ramakrishnan, 1988]. For instance, partial deduction presented in Chapter 7 is 
one of such optimization techniques, and it would be us<'d to reduce search space for 
a given query. In this dissertation, we have not presented a top down proof procedure 
for disjunctive logic programs since it is generally inefficient. However, as discussed 
in Section 3.7, conc<.'rning the possible model semantics a top down proof procedure 
is realized using a proof proc<'dure for the stable model semantics in pm-transformed 
normal logic programs. 

From the standpoint of deductive databases, tnlcgrity checkmg and view update 
in disjunctive logic programs are also important. We have considered the mean 
ing of a disjunctive log1c program as the collection of all possible models satisfying 
integrity constraints. Such selection is done during the bottom-up computation of 
possible models and any model violating integrity constraints is pruned away. Thus, 
if the procedure generates no possible model, we know that a database violates in 
tegrity constraints. Note that we consider integrity constraints in the form of negative 
clauses, while more general form of integrity constraints are transformed into negative 
clauses as presented in [Sadri and Kowalski, 1988]. 

There are difficulties in view update in disjunctive deductive databases. Without 
disjunctive information, view update is usually achieved by translating an update 
request on a virtual relation into a real update on the underlying database relations. 
For example, in a database containing the clause p(x) +- q(x) where pis a virtual 
relation and q is a real database relation, the addition of the virtual fact p(a) is 

FUTURE RESEARCH 149 

translated into the addition of the real fact q(a). Then p(a) is impli<'d in the updated 
database. However, given the disjunctive clause p(:r) V r(x) .- q(.r), it is not so easy 
to translate the addition of p(a) into the real update on q(.r). This is because the 
addition of q(a) in this case doc·s not necessarily imply the truth of p(a). Several 
problems arise in updating indt•finite knowledge bases and further investigation is 
needed. 

Last but not least, practical applications of disjunctivt• logic programming are also 
very important. In this dissertation, we are mainly concerned with the theoretical 
aspects of disjunctive log1c programming, however, we considN that disjunctive logic 
programming has promising applications due to its rich <'Xprcssivencss. For instance, 
in Section 5 we have presented an equivalence relationship betw('('n disjunctive and 
abductive logic programs. This fact implies that applications of abductive logic pro
gramming, such as diagnosis and planning, can also become applications of disjunctiv<• 
logic programming. On the other hand, recent studiPS in artificial int<'lligence r<'cog
nize the need of standardized knowledge representation for clt•veloping reusable and 
sharablc knowledge bases [1\eches et al.. 1991]. Such technologies are important since 
they would greatly reduce the cost of designing and mainta1mng knowledge bas~. Of 
course it might be difficult to develop a single common language which is useful for 
different kinds of multi-purpose knowledge bases. However, logic programming has 
potential possibilities to serve a.-; an archetype of the common language because it 
provides a universal framework based on mathematical logic. Moreover, since logic 
programming has nice relations with databases and nonmonotonic reasoning, it en 
abies us to develop knowledge bases combining existing databa~e and A I technologi<'S. 

Thus we believe that logic programming and disjunctive logic programming play 
important roles in knowledge representation and artificial intelligence in the next 
generation, and we hope that the studies presented in this dissertation will contribute 
to further development of research in the fields. 



150 CONCLUSION 

List of Publications 

[Sakama and ltoh, 1988) Sakama, C. and Itoh, H., Parttal Evaluation of Queries in 
Deductive Databases, New Generation Computing 6(2&3), Ohmsha and Springer
Verlag, 249-258, 1988. 

[Sakama and Itoh, 1988) Sakama, C. and Itoh, H., Handling Knowledge by its Rep
resentative, Proceedings of the 2nd International Conference on Expert Database 
Systems, Benjamin/Cummings, 551-565, 1988. 

[Sakama and Okumura, 1988) Sakama, C. and Okumura, A., Nonmonotonic Parallel 
Inheritance Network, Logic Programming '88, Proceedings of the 7th Conference, 
Lecture Notes in Artificial lntelligmce 383, Springer· Verlag, 53-66, 1988. 

[Sakama, 1989) Sakama, C., Possible Model Semantics for Disjunctive Oatabases, 
Proceedings of the 1st lnternallonal Conference on Deducltve and Object-Oriented 
Databases, North Holland, 369-383, 1989. 

[Sakama, 1992) Sakama, C., Extended Well-founded Semantics for Paraconsistent 
Logic Programs, Proceedings of the International Conference on Fifth Generation 
Computer Systems, ICOT, 592-599, 1992. 

[Inoue and Sakama, 1992) lnoue, K. and Sakama, C., A Uniform Approach to Fix
point Characterization of Disjunctive and General Logic Programs, ICOT Technical 
Report TR-817, 1992. 

[Inoue and Sakama, 1993) Inoue, K. and Sakama, C., Transforming Abductive Logic 
Programs to Disjunctive Programs, Proceedings of the lOth International Confer
ence on Logic Programming, MIT Press, 335-353, 1993. 

[Sakama and Inoue, 1993a) Sakama, C. and Inoue, K., :-.legation in Disjunctive Logic 
Programs, Proceedmgs of the 1Oth lnternatwnal Confe,·ence on Log1c Programmmg, 
MIT Press, 703-719, 1993. 

[Sakama and lnoue, 1993b] Sakama, C. and Inoue, K., Relating Disjunctive Logic 
Programs to Default Theories, Proceedings of the 2nd International Workshop on 
Logic Programming and Nonmonotonic Reasoning, MIT Press, 266-282, 1993. 

151 



152 LIST OF PUBLICATIONS 

{Inoue and Sakama, 1994) Inoue, K. and Sakama, C., On Positive Occurrences of 
Negation as Failure, Proceedings of the ,jth International Conference on Princzples 
of I<nowledge Representatwn and Reasoning, :Morgan Kaufmann, 293-304, 1994. 

[Sakama and Inoue, 1994a) Sakama, C. and Inoue, K., On the Equivalence between 
Disjunctive and Abductive Logic Programs, Proceedmgs of the 11th lnternaiwnal 
Confcnnrc on Logic Programming, MIT Press, 489-503, 1994. 

{Sakama and Inoue, 1994b) Sakama, C. and Inoue, K., Paraconsistent Stable Seman
tics for Extended Disjunctive Programs, Journal of Logic and Computation, Oxford 
University Press, to appear, 1994. 

[Sakama and Inoue, 1994c) Sakama, C. and Inoue, K., An Alternative Approach to 
the Semant1cs of Disjunctive Logic Programs and Deductive Databascs, Journal of 
Automattd Reasonmg, Kluwer Academic, to appear, 1994. 

[Sakama and Seki, 1994) Sakama, C. and Seki, H., Partial Deduction of Disjunctive 
Logic Programs: A Declarative Approach, Proceedings of the 4th International 
Workshop on Loglc Program Synthesis and Transformatwn, Lecture Notes in Corn 
puter Science, Spnnger-Verlag, to appear, 1994. 

Bibliography 

[Alferes and Pereira, 1992] Alferes, J. J. and Pereira, L. M., On Logic Program Se
mantics with Two Kinds of Negation, Proceedings of the Joint international Con
ference and Symposmm on Logic Programming, MIT Press, 574-588, 1992. 

[Alferes et al., 1994] Alfercs, J. J., Damasio, C. V. and Pereira., L. M., Top Down 
Query Evaluation for Well Founded Semantics with Explicit Negat1on, Procerdmgs 
of the 11th European Conference on Artificial Intellzgence, John Wilcy&Sons, 1994. 

[Apt and van Emden, 1982) Apt, K. R. and van Emden, M. 11., Contributions to the 
Theory of Logic Programming, Journal of the A CM 29(3), 841 862, 1982. 

[Apt et al., 1988] Apt, K. R., Blair, H. A. and Walker, A., Towards a Theory of 
Declarative Knowledge, in [Mmker, 1988], 89-148, 1988. 

[Apt, 1990] Apt, K. R., Logic Programming, in Handbook of Theoreflcal Computer 
Science, vol. B, J. van Leeuwen (ed.), Elsevier Science Publishers B. V., "iorth
Holland, 495 574, 1990. 

[Arruda, 1980] Arruda, A. I., A Survey of Paraconsistent Logic, Afathcmaizcs Loglr 
in Latin America, A. I. Arruda, R. Chuaqui, and N. C. A. da Costa (cds.), ~orth 
Holland, 1-41, 1980. 

[Bancilhon and Ramakrishnan, 1988] Bancilhon, F. and Ramakrishnan, H.., Perfor· 
mance Evaluation of Data Intensive Logic Programs, in [Minker, 1988], 439 517, 
1988. 

[Baral et al., 1992a] Baral, C., Lobo, J. and Minker, J., Generalized Disjunctive Well
Founded Semantics for Logic Programs, Annals of Mathematics and Al"tificial In
telligence 5, 89-132, 1992. 

[Baral et al., 1992b] Baral, C., Kraus, S., Minker, J., and Subrahma.nian, V. S., Com
bining Knowledge Bases Consisting of First-Order Theories, Computational intel
ligence 8(1), 45-71, 1992. 

[Baral and Subrahmanian, 1992] Baral, C. and Subrahmanian, V. S., Stable and Ex
tension Class Theory for Logic Programs and Default Logics, Journal of A utomaicd 
Reasomng 8(3), 345-366, 1992. 

153 



154 BIBLIOGRAPHY 

[Baral and Subrahmanian, 1993] Baral, C. and Subrahmanian, V. S., Dualities be
tween Alternative Semantics for Logic Programming and Nonmonotonic Reasoning, 
Journal of Automated Reasoning 10{3), 399-420, 1993. 

[Baral and Gelfond, 1994] Baral, C. and Gelfond, M., Logic Programming and 
Knowledge Representation, Journal of Logic Programming 19/20, 73-148, 1994. 

[Bell et al., 1993] Bell, C., Nerode, A., Ng, R., and Subrahmanian, V. S., Implement
ing Stable Semantics by Linear Programming, in [Pereira and Nerode, 1993], 23-42, 
1993. 

[Belnap, 1975] Bel nap, N. D., A Useful Four-Valued Logic, in Modern Uses of 
Multiple- Valued Logic, J. M. Dunn and G. Epstein (eds.), Reidel Publishing, 8-
37, 1975. 

[Ben-Eliyahu and Dechter, 1992] Ben-Eliyahu, R. and Dechter, R., Propositional Se
mantics for Disjunctive Logic Programs, Proceedings of the Joint International 
Conference and Symposium on Logic Programming, MIT Press, 813-827, 1992. 

[Bidoit and Hull, 1986] Bidoit, N. and Hull, R., Positivism vs. Minimalism in Deduc
tive Databases, Proceedings of the 5th AGM SIGACT-SIGMOD-SIGART Sympo
sium on Principles of Database Systems, 123-132, 1986. 

[Bidoit and Legay, 1990] Bidoit, N. and Legay, P., Well !: An Evaluation Proce
dure for All Logic Programs, Proceedings of the Srd Internaltonal Conference on 
Database Theory, Lecture Notes in Computer Sciences 4 70, Springer-Verlag, 335-
348, 1990. 

[Bidoit and Froidevaux, 1991a] Bidoit, N. and Froidevaux, C., General Logic 
Databascs and Programs: Default Logic Semantics and Stratification, Journal of 
Information and Computation 91(1), 15-54, 1991. 

[Bidoit and Froidevaux, 1991b] Bidoit, N. and Froidevaux, C., Negation by Default 
and Unstratifiable Logic Programs, Theoretical Computer Science 78(1), 85-112, 
1991. 

[Blair and Subrahmanian, 1989] Blair, H. A. and Subrahmanian, V. S., Paraconsis
tent Logic Programming, Theoretical Computer Science 68, 135-154, 1989. 

[Bossu and Siege!, 1985] Bossu, G. and Siege!, P., Saturation, Nonmonotonic Reason
ing and the Closed World Assumption, Artificial Intelligence 25(1 ), 13-63, 1985. 

[Brass and Dix, 1994] Brass, S. and Dix, J., A Disjunctive Semantics Based on Un
folding and Bottom-up Evaluation, P1·oceedings of the 13th JFIP World Com
puter Congress, GI- Workshop on Disjunctive Logic Progmmming and Disjunctive 
Databases, 1994. 

BIBLIOGRAPHY 155 

[Bry, 1989] Bry, F., Logic Programming as Constructivism: A Formalization and 
its Application of Databases, Proceedings of the 8th AGM SIGACT-SJGMOD
SIGART Symposium on Principles of Database Systems, 34-50, 1989. 

[Cadori and Schaerf, 1993] Cadori, M. and Schaerf, M., A Survey of Complexity Re
sults for Nonmonotonic Logics, Journal of Logic Programming 17(2,3& 4), 127-160, 
1993. 

[Chan, 1993) Chan, E. P. F., A Possible World Semantics for Disjunctive Databases, 
IEEE Transactions on Knowledge and Data Engineering 5(2), 282-292, 1993. Pre
liminary version in: Research Report CS-89-47, Department of Computer Science, 
University of Waterloo, 1989. 

[Chandra and Harel, 1985) Chandra, A. and Hare), D., Horn Clause Queries and Gen
eralizations, Journal of Logic Programming 2(1), 1-15, 1985. 

[Chang and Lee, 1973) Chang, C. L. and Lee, R. C. T., Symbolic Logic and Mathe
matical Theorem Proving, Academic Press, New York, 1973. 

[Chen, 1993) Chen, J., Minimal Knowledge+ Negation as Failure= Only Knowing 
(sometimes), in [Pereira and Nerode, 1993), 132-150, 1993. 

[Chen and Warren, 1993) Chen, W. and Warren, D. S., Query Evaluation under 
the Well Founded Semantics, Proceedings of the 12th AGM SIGACT-SIGMOD
SIGART Symposium on Principles of Database Systems, 168-179, 1993. 

[Clark, 1978] Clark, K. L., Negation as Failure, in [Gallaire and Minker, 1978), 293-
322, 1978. 

[Colmerauer et al., 1973] Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P., 
Un Systeme de Communication Homme-Machine en Francais, Research Report, 
Groupe, Intelligence Artificielle, Universitae de Aix-Marseille II, France, 1973. 

[Console et al., 1991) Console, L., Dupre, D.T. and Torasso, P., On the Relationship 
between Abduction and Deduction, Journal of Logic and Computation 1(5), 661-
690, 1991. 

[da Costa, 1974) da Costa, N. C. A., On the Theory of Inconsistent Formal Systems, 
Notre Dame Journal of Formal Logic 15{4), 497-510, 1974. 

[Decker, 1992] Decker, H., Foundations of First-Order Databases, Research Report, 
Siemens, 1992. Preliminary version in: Proceedings of the 2nd Inter·national Wo1·k
shop on the Deductive A pp1·oach to Informatton Systems and Databases, 149-173, 
Universitat Politecnica de Catalunya, Report de recerca LSI/91/30, 1991. 

[Decker and Casamayor, 1993) Decker, H. and Casamayor, J. C., Sustained Models 
and Sustained Answers in First Order Databases, Proceedings of the Srd Interna
tional Workshop on the Deductive Approach to Information Systems and Databases, 
1993. 



156 BIBLIOGRAP IIY 

!Dccker, 1994] Decker, 11., Alternative Models and Fixpoints for First Order 

Databases, Draft ~anuscript, 1994. 

[Dix. 1992a] Dix, J., Classifying Semantics of Disjunctive Logic Programs, ProceEd
ings of the Joint Internatwnal Conference and Symposium on Logic Programmmg, 

MIT Press, 798 812, 1992. 

{Dix, 1992b] Dix, J., A Framework of Representing and Characterizing Semantics of 
Logic Programs, Proceedings of the 3rd International Conference on Principles of 
Knowledge Rcpresentatwn and Rea$oning, Morgan Kaufmann, 591-602, 1992. 

[Dung, 1991] Dung, P. M., Negation as Failure for Disjunctive Logic Programming, 
Proceedmg~ of the ILPS'91 Post-Conference Ji.'orkshop on Dlsjunctive Logic Pro

grams, 1991. 
[Dung and Ruamviboonsuk, 1991] Dung, P. M. and Ruamviboonsuk, P., Well

Founded Reasoning with Classical Negation, in [:-.:erode et al., 1991], 120-132, 1991. 

[Dung, 1992a] Dung, P. M., Acycl1c D1sjunctive Logic Programs with Abductive Pro 
ccdure as Proof Procedure, Pmcefdtngs of the International Conference on Ftfth 
Generatwn Computer Systems. ICOT, 555-561, 1992. 

[Dung, 1992b] Dung, P M., On the Relations between Stable and Well-founded Se
mantics of Logic Programs, Theoretical Computer Science 105(1), 7-25, 1992. 

[Dung, 1993] Dung, P. M., An Abdu<'tive Procedure for Disjunctive Logic Programs, 
Draft Manuscript, 1993. 

[Eitcr and Gottlob, 1992} Eiter, T. and Gottlob, G., The Complexity of Logic-Based 
Abduction, Research Report CD-TR 92/35, Technical University Vienna, 1992. To 

appear in Journal of the AGM. 

[Eiter and Gottlob, 1993a] Eiter, T and Gottlob, G., Complexity Aspects of Vari
ous Semantics for Disjunctive Databases, Proceedings of the 1 ~th A CM SIGA CT
SIGMOD-SIGART Sympostum on Principles of Database Systems, 158-167, 1993. 

[Eiter and Gottlob, 1993b] Eiter, T. and Gottlob, G., Complexity Results for Dis
junctive Logic Programmmg and Application to ::-.:onmonotonic Logics, Proceedmgs 
of the International Logic Programming Symposium, MIT Press, 266-278, 1993. 

[Eiter and Gottlob, 1993c] Eiter, T. and Gottlob, G., Propositional Circumscription 
and Extended Closed World Reasoning are nf-complete, Theoretical Computer 

Sclence 114, 231-245, 1993. 

[Eiter et al., 1993} Eiter, T., Gottlob, G. and Gurevich, Y., Curb Your Theory ! : A 
Circumscriptive Approach for Inclusive Interpretation of Disjunctive Information, 
Proceedings of the 19th International Joint Conference on Artificial Intelligence, 

Morgan Kaufmann, 634-639, 1993. 

BIBLIOGRAPHY 157 

[Eshghi and Kowalski, 1989] Eshghi, K. and Kowalski, R. A., Abduction Compared 
with Negation by Failure, Proceedings of the 6th International ConfeT'(.nCf on Log1c 
Programming, MIT Press, 234 254, 1989. 

[Eshghi, 1990] Eshghi, K., Computing Stable Models by Usmg the ATMS, Proceed
ings of the 8th Natwnal Conference on Artificwl Intelligence, MIT Press, 272-277, 
1990. 

[Fages, 1990] Fages, F., Consistency of Clark's Completion and Existence of Stable 
Models, Research Report, LIENS-90 15, 1990. 

[Fages, 1991] Fagcs, F., A New Fixpoint Semantics for General Logic Programs Corn
pared w1th the Well-Founded and the Stable ~1odel Semantics, Sew Ge~teration 
Computing 9(3&4 ), 425-443, 1991. 

[Fernandez and Minker, 1991al Fernandez, J. A. and Minker, J , Bottom up Evalua· 
tion of Hierarch1cal Disjunctive Deduct1ve Databa.scs, Proceedmgs of the 8th Intcr
nallonal Conference of Loglc Programming, MIT Press, 660 675, 1991 

[Fernandez and Minker, 1991b] Fernandcz, J. A. and Minkcr, J., Computing Per 
feet Models of Disjunctive Stratified Databases, Proceeding~ of the ILPS '91 Post
Conference Workshop on D1sjunctive Loglc Programs, 1991 

[Fernandez and Minker, 1992] Fernandez, J. A. and Minker, J., Oisjunct1ve Dcduc· 
tive Databases, Proceedings of the International Conference on Logic Programming 
and Automated Reasoning, Lecture Notes in Artificial Intelligence 624, Springer 
Verlag, 332-356, 1992. 

[Fernandez et al., 1993] Fernandez, J. A., Lobo, J., Minker, J. and Subrahmanian, 
V. S., Disjunctive LP + Integrity Constraints = Stable Model Semantics, Annals 
of Mathematics and Arlificwl Intelligence 8(3&4), 449-474, 1993. 

[Fitting, 1985] Fitting, M., A Kripke-Kieene Semantics for Logic Programming, Jour
nal of Logic Programming 2, 295-312, 1985. 

[Fitting, 1991] FiUing, M., Bilattices and the Semantics of Logic Programming, Jour 
nal of Logzc Programming 11, 91-116, 1991. 

[Fitting, 1993] Fitting, M., The Family of Stable Models, Journal of Logic Program
ming 17(2,3&4), 197-225, 1993. 

[Gallaire and Minker, 1978] Gallaire, H. and Minker, J. (eds.), Logic and Data Bases, 
Plenum, New York, 1978. 

[Gallaire et al., 1984} Gallaire, H., Minker, J. and Nicolas, J., Logic and Databases: 
A Deductive Approach, AGM Computing Surveys 16(2), 153-185, 1984. 

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S , Computers and In
tractability: A Gulde to the Theory of NP-completeness, W. Il. Freeman and Com
pany, NY, 1979. 



158 BIBLIOGRAPHY 

[Gelfond, 19871 Gelfond, M., On Stratified Autoepistemic Theories, Proctcdmgs of 
the 6th National Conference on Arttfictal fntellzgence, ~1organ Kaufmann, 207-

211, 1987. 

[Gelfond and Lifschitz, 19881 Gelfond, M. and Lifschitz, V., The Stable Model Se
mantics for Logic Programmmg, Proceedings of the Jomt International Conference 

and Symposium on Logic Programming, MIT Press, 1070-1080, 1988. 

{Gelfond et al., 19891 Gelfond, M., Przymusinska, H. and Przymusinski, T., On the 
Relationship between Circumscription and Negation as Failure, A rtrficial Intelli

gence 38, 75 94, 1989. 

[Gelfond and Lifschitz, 19901 Gelfond, M. and Lifschitz, V., Logic Programs with 
Classical Negation, Proceedings of the 7th International Confcnnce on Logic Pm

gramming, MIT Press, 579-597, 1990. 

[Gelfond, 19901 Gelfond, M., Epistemic Approach to Formalization of Commonsense 
Reasoning, Research Report, Computer Science Department, tTniversity of Texas 

at El Paso, 1990. 

[Gelfond, 19911 Gelfond, M., Strong Introspection, Proceedmgs of the 9th National 
Conference on A rttficial lntelligwce, MIT Press, 386-391, 1991. 

[Gelfond and Lifsch1tz, 19911 Gelfond, M. and Lifschitz, V , Classical Negation in 
Logic Programs and Di!ijunctive Databases, New Generatwn Computing 9(3&4 ), 
365 385, 1991 

[Gelfond et al., 19911 Gelfond, ~1., Lifschitz, V., Przymusinska, H. and Truszczynski, 
M., Disjunctive Defaults, Proceedings of the ~nd lnternatwnal Conference on Prin

Ctples of Knowledge Representation and Reasonmg, Morgan Kaufmann, 230-237, 
1991. 

[Ginsberg, 1988] Ginsberg, M. L., Multivalued Logics, Computatronal lntelltgence 4, 
265-316, 1988. 

[Gottlob, 1 992] Gottlob, G., Complexity Results for Nonmonotonic Logics, Journal 
of Logic and Computation 2(3), 397-425, 1992. 

[Grant and Minker, 1986] Grant, J. and Minker, J., Answering Queries in Indefinite 

Databases and the Null Value Problem, in Advances in Computing Theory 3, The 
Theor·y of Databases, P. Kanellakis (ed.), JAI Press, Greenwich, 247-267, 1986. 

[Grant and Subrahmanian, 19921 Grant, J. and Subrahmanian, V. S., Reasoning in 
Inconsistent Knowledge Bases, draft manuscript, University of Maryland, 1992. To 
appear in IEEE Transactwns on Knowledge and Data Engmeenng. 

[Henschen and Park, 19881 Henschen, L. J. and Park, H., Compiling the GCWA in 

Indefinite Deductive Databases, in [Minker, 19881, 395-438, 19&8. 

BIBLIOGRAPHY 159 

[Inoue, 1991] Inoue, K., Extended Logic Programs with Default Assumptions, Pro

ceedings of the 8th International Conference on Logic Progmmming, ~fiT Press, 
4 90-504. 1991. 

[lnoue et al., 19921 Inoue, 1\., Koshimura, ~1. and Hasegawa, R., Embc•dding i'cga
tion as Failure into a Model Generation Theorem Prover, Proeu.dings of the 11th 

fnternattonal Conftrence ort Automated Deduction, Lecture ~otcs in Artificial In 
telligence 607, Sprmgcr Vcrlag, 400-415, 1992. 

[Israel, 1983] Israel, D., The Role of Logic in Knowledge Reprcl>entation, 11:-'EE Com
puter 16(10), 37-12, 1983 

[Johnson, 1990] Johnson, D. S., A Catalog of Complexity Clas~cs, in Handbook of 
Theoretical Computer Scunee, vol. A, J. van Leeuw<·n (cd.), Elscvicr Scicnet' Pub
lishers B. V., North Holland, 68-161, 1990. 

[Kakas and Mancarclla, 19901 Kakas, A. C . and Mancarella, P, Generaliz(•d Stable 

Models: A Semant 1rs for Abduction, Proceedmgs of the 9th European C'onfcrcnc:t 
on Ar·tificial lntelltgcncc, Pitman, 385-391, 1990. 

[Kakas et al., 1992) Kakas, A. C., Kowalski, R. A. and Toni, F., Abductivc Logic 
Programming, Journal of Logtc and ComputatiOn 2(6), 719-770, 1992. 

[Kemp and Topor, 19881 Kemp, D. B. and Topor, R. \V., Completeness of a Top
Down Query Evaluation Procedure for Stratified Databa..,t•s, Proctcdings of tht 
Joml International Conference and Symposzum on Logic Progr-amming, ;\liT Press, 
178-194. 1988. 

(Kemp et al., 1992] Kemp, D. B., Stuckey, P. J. and Srivasta\"a, D., QuNy H.t•stricted 
Bottom-up Evaluation of :'\ormal Logic Programs, Proceedings of the Jomt hitcr. 

national Conff.rcne£ and Symposium on Logic Programming, MIT Press, 2Sh 302, 
1992. 

[Kifer and Lozinskii, 19921 Kifer, M. and Lozinskii, E. L., A Logic for Reasoning with 
Inconsistency, Jottrnal of Automated Reasoning 9(2), 179-215, 1992. 

(Komorowski, 1981] Komorowski, J ., A Specification of an Abstract Prolog Mach111e 
and its Application to Partial Evaluation, Technical Report LSST 69, Linkoping 
University, 1981. 

[Komorowski, 19921 Komorowski, J ., An Introduction to Partial Deduction, P,-orctd
ings of the S1·d International Workshop on Meta-programmmg m Logic, Lt•cture 
Notes in Computer Science 649, Springer- Verlag, 49-69, 1992. 

[Konolige, 19881 Konolige, K., On the Relation between Default and Autoepistemic 
Logic, A rttficial Intelligence 35, 343-382, 1988. Its Errata, in A l"lifictal lntelltgence 
41, page 115, 1989. 



160 BIBLIOGRAPIIY 

[Kowalski, 1971] Kowalsk1, R. A., Predicate Logic as a Programming Language, In

formation Processing 74, ~orth-Holland, 569 574, 1974. 

[Kowalski, 1979- Kowalsk1, R. A., \lgorithm = Logic+ Control, Communtcattons of 

the A CM 22(7), 424 436, 1979. 

(Kowalski and Sadn, 1990] Kowalski, R A. and Sadri, F., Logic Programs with Ex
ception, Procccdmgs of the 7th International Confe1·cnce on Logic Programmmg, 

~UT Press, 598-613, 1990. 

(Kowalski, 1991 1 Kowalski, R. \ , Logic Programming 1n Artific1al Intelligence, Pro
cced1ngs of the 12th lnlcrnatwnal Jomi Conference on Arttficwl Intelligence, Mor

gan Kaufmann, 596 603. 1991 

(h.raus et al., 1990] Kraus, S., Lchmann, D. and Magidor, ~1., ~onmonotonic Rea
soning, Preferential Models and Cumulative Logics, Artificial fntclhgence 44(1), 

167-207, 1990 
[Kunen, 1989] Kunen, K., Signed Data Dependencies 1n Logic Programs, Journal of 

Logic Programmmg 7, 231-245. 1989. 

[Levesque, 1983] Levesque, H. J., The Log1c of Incomplete Knowledge Bases, in 
On Conceptual Modelling: Perspectives from A rllficial Intelligence, Databases, 
and Programmmg Languages, ~1. Brodie, J Mylopoulos and J. Schmidt (cds.), 

Spnnger-Verlag, 1\'Y, 165-186, 1983. 

[Lifschitz, 1985] Lifschitz, V., Closed World Database and Circumscription, Artificial 

Intelligence 27, 229-235, 19b5. 

[Lifschitz, 1988] Lifschitz, V., On the Declarative Semantics of Logic Programs with 
Negation, in [Minker, 1988]. 177-192, 1988. 

[Lifschitz, 1989] Lifschitz, V., Betw<'Cn Circumscription and Autoepisterruc Logic, 
Proceedings of the /::;t International Conference on Princtples of !\now/edge Rep

resentation and Reasonmg, ~1organ Kaufmann, 235 244, 1989. 

(Lifschitz and Woo, 1992] Lifschitz, V. and Woo, T. Y. C., Answer Sets in Gen
eral Nonmonotonic Reasoning (preliminary report), Proceedmgs of the 3rd Inter
national Conference on Prmctples of !\now/edge Rcpresentallon and Reasoning, 

Morgan Kaufmann, 603-614, 1992. 

[Lifschitz and Schwarz. 1993] L1fschitz, V. and Schwarz, G., Extended Logic Pro
grams as Autoepistemic Theories, in [Pereira and Nerode, 1993], 101-114, 1993. 

[Lin and Shoham, 1992] Lin f. and Shoham, Y., A Logic of Knowledge and J ustified 

Assumptions, Aritficwl Intelltgence 57, 271-289, 1992. 

[Lioyd, 1987] Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer

Verlag, 1987. 

BIBLIOGRAPHY 161 

[Lloyd and Shephcrdson, 1991] Lloyd, J. \V. and Shepherdson, J C., Partial Eval
uation in Logic Programming. Journal of Logu· Programmtng 11 (3& 1 ). 217 2·12. 
1991. 

[Lobo et al., 1989] Lobo, J .. ~1inkcr, J. and Rajasckar, A .• Extending tlw Semantics 
of Logic Programs to DlsJuncti\C Logic Programs, Procudmg., of tht 6th Intern a
/tonal Conference on Logtc Programmzng, M IT Press, 255-268, 1989. 

[Lobo and Subrahmanian, 1992] Lobo, J. and Subrahmanian. V S., R<•lating :..1ini
mal Models and Pre-Requisite-Free :\ormal D('faults, Information Prorcs:;mg Lti
tcrs 44, 129-133, 1992. 

[Lobo et al., 1992] Lobo. J., :..1ink<•r, J. and Rajasckar. A . Foundations of Disjunciit·c 
Logic Progmmmmg, MI I Press, 1992. 

(Lu and Hcnschen, 1992] Lu, J. J. and Hcnschen, L. J .. The Closed World Assump
tion in Paraconsistent Deductive Databases. draft manuscript, :\orthwcstern Uni
versity, 1992. 

[Maher, 1993] Maher. M., A Transformation System for Dcducti\'C Database .\1odulcs 
with Perfect .\todel Semantics, Theorettcal Computer Sctcncc 110, 377 103, 1993. 

[Manthey and Bry, 1988] Manthcy, R. and Bry, F., SATCI!MO: A Thcor<•m Provcr 
Implemented m Prolog, Procccdmg::; of the 9th International Conferwa on Auto
mated Deduct10n, Lecture Notes in Computer Science 310, Spnnger· V<>rlag, 41.5-
434, 1988. 

[Marek and Truszczynski. 1989a] \1arek, \\'. and Truszczynsk1, M., Stable Seman
tics for Logic Programs and Default Theories, Proccedwgs of the No1'/h A me1·iran 
Confert:.nce on Logic Programming, :..1JT Press. 243-256, 1989 

[Marek and Truszczynski, 1989b] Marek, W. and Truszczynski, M., R<'lating Au
toepistcrruc and Default Logics, Proceedings of the 1st International Conference 
on Pnnetples of Knowledge Rtpresentaiton and Rf.asonmg . .\1organ Kaufmann, 
276-288, 1989. 

(Marek and Truszczynski, 1991a] Marek, W. and Truszc7ynski, M .. Autoepistt>mic 
Logic, Journal of the AC.\1 38(3), 588 619, 1991. 

[Marek and Truszczynski, 199lb] Marek, W. and Truszczynski, M., Computing In
tersection of Autoepistemic Expansions, in (Ncrode et al., 19911, 37-50, 1991. 

[Marek and Subrahmanian, 1992] Marek, W. and Subrahmanian, V. S., 1 he Rela
tionship between Stable, Supported, Default and Autoepistemic Semantics for Gen
eral Logic Programs, Theorettcal Computer Sczence 103{2), 365 386, 1992. 

[McCarthy and Hayes, 1969] McCarthy, J. and I! ayes, P., Some Philosophical P rob
lems from the Standpoint of Artificial Intelligence, in Machme Intelltgence 4, 8. 
Meltzer and D. Michie (eds.), Edinburgh University Press, 463-502, 1969. 



162 BIBLIOGRA.PH)' 

[McCarthy, 1980] McCarthy, J., Circumscription A Form of Nonmonotonic Rea-
soning, Artificial Intdligtncr. 13, 27-39, 1980. 

[McCarthy, 1986] McCarthy, J., Applications of Circumscription to Formalizing 
Commonscnse Knowlcdg(', Arttficiallntelligence 28, 89 118, 1986. 

[McDcrmott and Doyle, I 980] Md)crmot.t, D. and Doyle, J., ~on-monotonic Logic 
I, Artificial !ntelligc.nce 25, 41-72, 1980. 

[~1inkcr, 1982] ~tinker. J., On Indefinite Data Bases and the Closed World Assump
tion, Proceedings of the 6th lnlcrnat10nal Conference on A utomaled Deduct ton, 

L<•c.ture !'\otes in ComputN Sci<'nce 138. Springer Vcrlag, 29'2 'lOo, 1982. 

IMink<'r, 1988] Minker, J. (<'<!.), Foundatwns of Dtductit•t Databa<>es and Logtc Pl'o

gramming, Morgan Kaufmann, 1988. 
[Minker and Rajasekar, 1990] Mink<>r, J. and Rajasekar, A, A Fixpoint Semantics 

for Disjunctive Logic Programs, Joumal of Logtc Programmtng 9, 45-74, 1990. 

IMoore, 1985] Moore, R. C., St•rnantical ConsideratiOns on :-\onmonolonic Logtc, Al'

tificial/ntelligence 25, 75 91, 19':>5. 
"\ech<'s cl al., 1991] :\eches, R .. I·1kes. R .. Finin, T., Grubcr, T., Patil, R., Senator, 

f. and Swartout, W. R., Enabling Technology for Knowlt·dge Sharing. AI Magazine 

12(3). 36-56, 1991 
[\<'rode et al., 1991] :'\erode, A, Marek, W., and Subrahmanian, V. S. (eds.), Logtc 

Programm.mg and 'Vonmonolontc Rcasonmg, Procudmg.s of tiH J.~t lntemaltonal 

Wotk.-.hop, MIT Press, 1!:191. 
IPeirce, 1932] Peirce, C. S., h'ltmntfs of Logic, in Coll~cted Paptrs of Cha7'ics Sand< rs 

Pt irce 11, Hartshorn et al. (eds.), Hanard Univers1ty PrPss, Cambridge, 1932. 

[Pereira et al., 1991] Pereira, L. \1, \Heres, J. J. and Aparicio, :"\., Contradiction 
Removal within Well-Founded St·rnantics, in [~erode et al., 19911, 105-119, 1991. 

IPercira and Alferes, 1992] Pt•re1ra, L. ~1. and Alfercs, .J. J ., Well -Founded Seman
tics for Logic Programs with Explicit :\egation, ProcHding.~ of the lOth Europla1t 

Conferwce on Artifictallntelligence, \\'iley, 102-106, 1992. 

IPc•reira and Nerode, 199:J] Pcrcira, L. ~Land Nerod<·, A. (t•ds.), Logic Programmtng 
and Nonmonotonic Reasonmg, Proceedmgs of the 2nd lnlfrnattonal Workshop, 

M IT Press, 1993. 
IPirncntel and Rodi, 1991] Pimentel, S. G. and Rodi, \V. L., Belief Revision and Para

consistency in a Logic Programm1ng Framework, in [Ncrode et al., 19911, 228-242, 

1991. 
IPoole, 1989] Poole, D., \\'hat the Lottery Paradox Tells us about Default Reason

ing, Proceedings of the 1st lntemational Conference on Pnnc1ples of Knowledge 

Representation and Rcasomng, Morgan Kaufmann, 333 3·10, 1989. 

BIBLIOGRAPHY 163 

[Przymusinski, 1988a] Przymusinski, T. C., On the Declarative Semantics of Deduc
tive Databases and Logic Programs, in [Minker, 19881, 193-216, 1988. 

IPrzymusinski, 1988b] Przymusinski, T. C., On the Relationship between Nonmono
tonic Reasoning and Logic Programming, Proceedings of th(. 7th Natwnal Conft r
ence on Artificial Intelligence, Morgan Kaufmann, 144 148, 1988. 

IPrzymusinski, 1989a] Przymusinski, T. C., Every Logic Program has a :-\alural 
Stratification and an Iterated Least Fixed Point ~1odel, Procadings of the 8th 

AGM SIGACT-SIG,HOD-SIGART Symposrum on Principlt of Database Syslfm:;, 

11-21, 1989. 

IPrzymusinski, 1989b] Przymusinski, T. C., An Algorithm to Compute Circurnscnp
tion, Artificial lntelligwce 38, 19-73, 1989. 

IPrzyrnusinski, 1989c] Przymusinski, T. C., On the Dcclarattve and Procedural St• 
mantics of Logic Programs, Journal of Automated Reasontng 5, 167-205, 1989. 

[Przymusinski, 1990a] Przymusmski, T. C., Extended Stable Semantics for Normal 
and Disjunctive Programs, Proct cdings of the 7th lni£1"1lllftonal Conference on Logir 

Programming, ~IT Press, 459-4 77, 1990. 

IPrzymusinski, 1990b] Przymusinski, T. C., Stationary Semantics for Disjunctive 
Logic Programs and Deductive Databases, Proceedings of tlu North American Con

ference on Logic Programmmg, MIT Press, 40-62, 1990. 

[Przymusinski, 1990c] Przyrnusinski, T. C., The Well-found<'d Semantics Coincid<'s 
with the Three-Valued Stable Semantics, Fundament a lnformalicae 13, 445-461, 
1990. 

IP rzymusinski, 199la] Przymusinski, T. C., Stable Semantics for Disjunctive Pro
grams, New Generalton Computmg 9(3&4), 401-424, 1991 

[Przymusinski, 199lb] Przymusinski, T. C., Semantics of Disjunctive Logic Programs 
and Deductive Databases, Proceedings of the 2nd lnternattOnal Conference on De

ductlve and Object-Ortented Dalabases, Lecture Notes in Comput.er Science 566, 
Springer-Yerlag, 85-107, 1991. 

IPrzymusinski, 1991c] Przymusinski, T. C., Three-valued Nonmonotonic Formalisms 
and Semantics of Logic Programs, Artificwllntelltgence 49,309343, 1991. 

[Rajasekar et al., 1989] Rajasckar, A., Lobo, J. and Minkcr, J., Weak Generalized 
Closed World Assumption, Joumal of A ulomated Reasonmg 5, 293-307, 1989. 

(Rajasekar and Minker, 1989] Rajasekar, A. and ~1inkcr, J , A Stratification Seman
tics for General Disjunctive Programs, Proceedings of the North American Confer

ence on Logic P rogrammmg, MIT Press, 573-586, 1989. 



164 BIBLIOGRAPHY 

[Reed et al., 1991) Reed, D.W., Loveland. D.W. and Smith, BT., An Alternative 
Characterization of Disjunctive Logic Programs, Procecdmgs of the Intematwnal 

Logic Programming Symposzum, MIT Press, 54-68, 1991. 

[Rcitcr, 1973) Reiter, It, On Closed \\'orld Datab~es, in [Gallaire and \tinker, 19781, 

55-76, 1978. 

[Reitt>r, 1980) Rciter, R., A Logic for Default Reasoning, Ar·tificial Intelligence 13, 

81-132, 1980 

[Reiter, 1982) Reiter, R., Circumscription implies Predicate Completion (Some
times), Proccedmgs of the 2nd Natwnal Conference on Ar·tifictal Inte//zgence, 

\\'illiam Kaufmann, 418-420, 19b2. 

[Robinson, 1965a) Robinson, J., A Machine-Oriented Logic Based on the Resolution 

Principle, Journal of the A C:\.1 12, 23 41, 1965. 

[Robinson, 1965b) Robinson, J., .'\utomattc Deduction with llyper-Resolution, Jour

nal of Computer Mathematzcs 1, 227-234, 1965. 

[Ross and Topor, 1988) Ross, K. <\.and Topor, R. \V., Inferring Negative Information 
from Disjunctive Databases, Jou.mal of A utomatcd Reasoning 4, 397 424, 1988. 

[Ross, 1989a) Ross, K., A Procedural Semantics for Well Founded Negation in Logic 
Programs, Proceedmgs of the 8th AGM S!GACT-SIGMOD-SIGART Symposzum 

on Pnnczples of Database Sy~>tcms, 22· 33, 1989. 

!Ross, 1989b] Ross, I<., The Well Founded Semantics for Disjunctive Logic Programs, 
Proceedmgs of the 1st /nternatwnal Conference on Deductive and Ob;ect-Onented 

Databases, North-Holland, 3b5-402, 1989. 

[Sacca and Zaniolo, 1990] Sacca, D. and Zaniolo, C., Stable Models and Non
determinism in Logic Programs with 11:egation, Proceedmgs of the 9th AGM 
SIC A CT-SIGMOD-SIGA RT Sympo~>zum on Prmciples of Database Systems, 205-

229, 1990. 

[Sadri and Kowalski, 1988) Sadri, F. and Kowalski. R., A Theorem-Proving Ap
proach to Database Integrity, in [Minker, 1988), 313-362, 1988. 

[Sato, 1990) Sato, T., Completed Logic Programs and their Consistency, Journal of 

Logzc Programmmg 9( 1), 33-14. 1990. 

[Satoh and lwayama, 1991) Satoh, K. and Iwayama, K., Computing Abduction by 
using the TMS, Proceedings of the 8th International Conference on Logic Program

mmg, MIT Press, 505-518, 1991. 

[Schlipf, 1992a) Schlipf, J. S., Formalizing a Logic for Logic Programming, Annals of 

Mathematics and Artificial Intelligence 5, 279-302, 1992. 

BIBLIOGRAPIIY 165 

[Schlipf, 1992b) Schlipf, J. S .. A Survey of Complex1ty and Cndccidability Results 
in Logic Programming, Proceedmgs of the JICS/.?'92 Po:.t-Conf£..rence Workshop 
on Structural Comple:rity and Recursion- Theordtr Afethod$ m Log1c Progrommmg, 

143-164, 1992. 

[Seki and Itoh, 1988] Scki, H. and Itoh, H., A Query Evaluation Mcthod for Strat
ified Programs under the Extended C\VA, Proaedmgs of the Jowl lnternatronal 
Conference and Symposium on Logic Programmmg, ~11'1' Press, 195 211. 198S. 

[Seki, 1990) Seki, H., A Comparative Study of the Well-Founded and the Stable 
Model Semantics: Transformation's Viewpoint, Pmceedtng~> of the NA CLP '90 Post
Conference Workshop on Logrc Programmmg and \'onmOIIOiontc Rtasonmg, 115-
123, 1990. 

[Seki, 1991] Seki, H., Unfold/Fold Transformation of Strat1fied Programs, Thc.oretical 
Computer Sctence 86, 107-139, 1991. 

[Sekt, 1993) Seki, H., L nfold/Fold Transformation of General Logic Programs for the 
Well-Founded Semantics, Journal of Logrc Programming 16(1), 5-23. 1993 

[Selman and Levesque, 1990) Selman, B. and Levcsque, H. J ., Abduc.ttve and Default 
Reasoning: A Computational Core, Proca,ding:. of the 8th Natwnal Confennce on 
Artificial lnte//igencr, M IT Press, 343 348, 19!)0. 

[Sestoft and Zamulin, 19!:>8) Sestoft, P. and Zamulm, A. \t , Annotated Btbllogra
phy on Partial Evaluation and Mixed Computation, Ntw Gcn£..mlton Compulmg 
6(2&3), 309-354, 1988. 

[Shepherdson, 1984) Shepherdson, J., ~egat10n as failure: A Comparison of Clark's 
Completed Data Base and Re1ter's Closed World Assumption, Journal of Logic 
Programming 1, 51-79, 1984. 

[Shepherdson, 1988) Shepherdson, J., Xegation in Logic Programming, in [Minker, 
1988], 19-88, 1988. 

[Subrahmanian, 1992) Subrahmanian, V. S., Paraconsistent Disjunctive Deductive 
Databases, Theoretzcal Computer Sczence 93, 115141, 1992. 

[Subrahmanian et al., 1993) Subrahmanian, V. S., Nau, D. and Vago, C., WFS + 
Branch and Bound = Stable Models, Research Report, University of ~aryland, 
1993. 

[Tamaki and Sato, 1984) Tamaki, H. and Sato, T., Unfold/Fold Transformation of 
Logic Programs, Proceedings of the fend International Conference on Logzc Pro
gramming, 127-138, 1984. 

[Tarnlund, 1977) Tarnlund, S. -A., Horn Clause Computability, BIT 17(2), 215-226, 
1977. 



166 BIBLIOGRAPHY 

[Teusink, 1993a] Teusink, F., A Characterization of Stable Models using a 1\on
monotonic Operator, in [Pereira and Nerode, 1993], 206 222, 1993. 

[Teusink, 1993b] Teusink, F., A Proof Procedure for Extended Logic Programs, P1·o
cecdings of the lnternatwnal Logtc Progmmming Symposwm, MIT Press, 235-249, 
1993. 

[Cllman, 1982] Ullman, J. D., Principles of Database Sy::.tem:;, 2nd edition. Computer 
Science Press, 1982. 

[van Emden and Kowalski, 1976] van Emden, ~L H. and Kowalski, R. A., The Se 
man tics of Predicate Logic as a Programming Language, Journal of the AGM 23(4), 
733 742, 1976. 

[van Geldcr, 1988] van Gelder, A., Negation as Failure Using Tight Derivations for 
General Logic Programs, in [Minker, 1988], 149-176, 1988. 

[van Gelder, 1989] van Gelder, A., The Alternating Fixpoinl of Logic Programs with 
~egation, Proceedings of the 8th A CM SIGACT-SIG.\fOD-SIGA RT Symposium on 
Principle:; of Database Systems, 1-10, 1989. 

[van Gelder et al., 1991] van Gcld<>r, A., Ross, K. and Schlipf, J. S., The Well
Founded Semantics for General Logic Programs, Journal of the A CM 38(3), 620-
650, 1991. 

[Wagner, 199Ia] Wagner, G., A Database Needs Two Kinds of Negation, Procudings 
of the !h·d Symposium on Mathematical Fundamentals of Database and /\'now/edge 
Base Systems, Lecture Notes in Computer Science 495, Springer-Verlag, 357-371, 
1991. 

[Wagncr, 1991b] Wagner, G., Ex contradictione nihil st'quitur, Proceedings of the 
12th lnternatwnal Jomt C'onfu'Cnce on A rllficwl fntelbgt ·na, ~1organ Kaufmann, 
53~-54 3, 1991. 

[Wagner, 1993] Wagner, G., R<'a:;oning with Inconsistency in Extended Deductive 
Databases, in [Pereira and Ncrodc, 1993]. 300-315, 1993. 

[Yahya and Henschen, 1985] Yahya, A. and Henschen, L . .J., Deduction in Non-Horn 
Databases, Journal of Automated Reasoning 1(2), 141 160, 1985. 

[Yuan and You, 1993] Yuan, L. Y. and You, J-H., Autocpistemic Circumscription 
and Logic Programming, Journal of Automated Reasomng 10(2), 143-160, 1993. 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093

