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Preface 

A large quantity of data has been overflowing in our daily life nowadays, therefore it 

is important for us to extract only the necessary data efficiently and utilize them for 

our own purpose. In order to do so, many pioneers have constructed the 'database' 

to store or accumulate the similar kind of data from which we are able to obtain 

necessary information. Such databases have been commercially developed, and 

have become indispensable for many institutions such as school, hospital, library, 

company, especially for bank and railway and airline company, whose essential task 

is to process a large amount of data. 

In the light of its the theoretical aspect, the databases can be said to have 

started in 1970 when E. F. Codd proposed the so-called relational data model and 

relational calculus, although a few ideas about the subject had been seen before 

them. The relational data model prevailed immediately because it was strictly and 

mathematically formalized, based on the theory of relational algebra, and also has 

theoretical clarity. It is not too much to say that most of the recent database 

systems in practical use owe their implementations to Codd's theory. 

Since relational databases are always increasing in their size and complexity, 

the common data among several databases or the data inferred from others are 

considered to be redundant. For this reason, data are not always saved doubly or 



explicitly. Such sophisticated data are sometimes called knowledge. This knowl

edge is implemented in databases as the forms of rules, which are applied to the 

data as the forms o f facts, for inferring new data. This type of databases to support 

deductive capabilities are called deductive databases. In short, deductive databases 

consist of rules and facts. Once relational or deductive databases are constructed, 

the most important issue for their users is to retrieve necessary data accessed by 

their queries as effi ciently as possible. A large number of studies have been made 

in this field from bo th theoretical and practical point of view. Especially, the 

studies on the efficient query processing for deductive databases have been very ac

tive because they require special contrivance , wh ich is not necessary for relational 

databases, to attain efficiency. 

Our studies belong to the field of the optimization of query processmg m re

lational and deductive databases , and the main aim of th is thesis is to provide a 

method to estimate the cost for query processing in advance, in order to find a 

most efficient o ne among the numerous existing methods of query processing. The 

cost depends greatly on the probabi listic distributions of the stored data, a nd our 

approach pays much attention to this point. 

The importance of efficient query processing will never lose its necessity to all 

kinds of databases in use , because, as we know, the quantity of data is increasing 

considerably day by day and shows much more variety. The author hopes that 

the work contained in this thesis contributes to develop efficiency in processing 

databases, a nd helps further studies in this significant field. 

Mar c h , 1995 
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Chapter 1 

Introduction 

1.1 Historical Background on the Study of Databases 

The studies on da.tabases are said to have its historical origin in 1955 when W. C. McGee 

developed general programs called Report Generator for data processing (McG 59]. The 

programs included general routines for sorting data, file management. and report. gen

eration. Since his proposals, the studies in databases and database ~ystems have been 

enforced by the inventions of data models, that is, network, hierarchical and relational 

data models. For example, two methods for modeling the real world data were proposed, 

network data model and hierarchical data model in 1960's, and a number of database 

systems based on those data models are made into practical uses. The first commercial 

database system, which integrated the function of accumulating and r<'trieving data, was 

IDS {Integrated Data Store) released by General Electric Co. in 1963. Afterwards, the 

DBTG (Data Base Tcu:;k Group) of CODASYL {Conference in Data System Languages) 

improved the data model implemented in l DS as the DBTG network model, and it is 

now recognized to be a typical system of network data model. In 1968, IBM released 

IMS {Information Management System), which was a database management system that 

employs a hierarchical data model. 

1 



2 CHAPTER 1 INTRODUCTION 

Although a few basic ideas of database systems owe their origin to the network and 

hierarchical data models and were already announced in 1960's, it was in 1970's that 

the studies on databases came out on the full scale. The trigger was the proposal of a 

new data model, called a relational data model, by E. F. Codd in 1970 [Cod 70]. This 

model was entirely different from the former two models in that it was thoroughly and 

strictly defined by the mathematical theory based on the relational algebra. In other 

words, it is based on the notion that a database is a set of relations. He insists that if the 

relational data model is implemented on computers, the data independency, which is the 

independence between the data and the data manipulation language, would be attained. 

Because of its theoretical clarity, the relational data model soon took the position 

of the network and hierarchical data models. In 1980's, the relational data model was 

studied and developed into two directions; one is for the study of basic theory of relational 

data model and its formalization [Cod 70, Gard 89, Ull 89b), and the other is for the 

development of practical database management systems. Among such practical systems, 

some of the famous ones are, INGRES by Berkeley of the University of California, and 

IBM developed System R with the relational database language SEQUEL, which was 

later standardized into SQL. 

Recently, new conceptual models of data, such as object-oriented data model and 

semantic data model have been proposed from distinct viewpoints [Ull 89b, Ull 90). The 

characteristics of such types of new models are said to be superior in the ability of data 

manipulation, but are inferior in the freedom of data processing because the definition 

of their data becomes more complex. Whatever new kinds of conceptual models are 

proposed, they usually utilize the ability of relational data model when those models are 

further modeled into logical databases in order to implement them on computers. 

Thus the importance of the relational data model has never been lost since it was 

introduced by Codd in 1970. 

1.2 Optimization of Query Processing in Database System.... 3 
------------------------~ 

1.2 Opthnization of Query Processing in Database Systems 

\\'e observe the importance of optimization of query processing m database systems 

[Card 89, Cll 89b) in this section. 

In general, the relational data model mw;t provide the following two functions: 

• data definition, 

• data manipula1tion language (DML). 

In this thesis, we adopt the following two popular mod<•ls as DML: 

• relational algebra, 

• datalog. 

In the classical databases, data consist only of raw data {facts), and these data are 

called relational databa.ses. On the other hand, in the recent databases especially written 

in datalog, they can also store another kind of data called rules as well as facts. They are 

not raw data but are used for inferring new data. ln other words, the database contains 

'knowledge" in itself. The databases containing both facts and rules are referred to as 

deductive databases [Ban 86a, Bay 85b, Gard 89, Kif 86, Miy 89]. 

Once a relational or deductive daLabase system is consLructed, users issue requests for 

retrieving the database, which are written in the DM L provided by the database manage

ment system [Ull 85b). We call this request a {databcu;e) query, and the query processing 

is to derive answers to the query from the databases. In the form of datalog description, 

we have to consider both non-recursive and recursive quc•ries [Ban 86a, Bay 85b, Gun 86], 

which require finite and infinite times of retrievals of facts, respectively. 

According to the original proposal of Codd, database queries in the relational data 

model are written by a. set of operations defined in relational algebra [Gard 89, Ull 85a, 

Ull 89b, Uno 92}, which consists of some kinds of set operations and some newly defined 

and unique operations for manipulating single or multiple relations. In order to express 
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recursive queries, we have to introduce a new operation, callt·d transitive closure (Agr 87, 

Aho 74, loa 86, loa 88, Jak 91, Jak 92, Lu 87], which includes the execution of infinite 

times of join operations, and some generalization of transitive closures (Sip 88]. 

The query processing is an important task of a database management system (DBMS). 

First of all, the DBMS has to provide us with a convenient means to express queries. 

being an good interface between data and their users. l n addition to this, a significant 

issue of practical importance is to derive the answers from data as efficienLiy (cheaply) 

as possible. 

T he way of deriving the answers to a given query from data is not always unique, 

and there can be alternative methods (strategies) to retrieve and p rocess the raw data. 

Among these methods, finding the method to attain the highest efficiency among possible 

methods and process the queries by the selected method is referred to as the query 

optimization or optimization of query processing. In order to evaluate and compare the 

efficiency a mong many methods, the efficiency of each method must be first measured. 

As a measure of efficiency, we often adopt the t ime complexity (or the time consumed) 

for processing the query. We usually use the term "cost" of a method, to imply the time 

requ ired for obtain ing the answers to the query by the method . In other words, the query 

optim ization can be u nderst ood as the reduction of t he cost for query processing . 

T here are two main approaches for query optimization: 

1. Considering t hat a query is expressed by a sequence of operations in relational 

a lgeb ra, fi nd a method to make a beUer expression, which is irrelevant to the 

characteristics of data (e.g. the d istribution of data in a relation), to obtain the 

same answer, that is, the query transformation (Ban 86a], and 

2. Noticing that even if the same method is app lied to derive the answer, the cost 

for q uery processing depends on the features of data such as the data size or the 

distribution of data, find a means to measure its cost before actually processing 

1.2 Optimization of Qupr y Processing in Database Syst <> m s _____________ 5 

the queries [Haa 92. K ri ':16. Lip 9, Lip 90. Lyn ~ . l'no 92, Uno 94a]. \\'e then 

compare the costs of all possible method~ in ad\'ance, and carry out the act.ual 

query processing by using the most economical method. 

In the first approach, we often utilizt' the constants included in the given queries. Tht• 

so-called magic set mc·thod, magic template method and the counting method an• tlw 

typical among these query transformation tecl111iqu1?s [Ban 86b, B~·l? 87, C'er 87, C:1 a !J3, 

Cup 92, Han 93, Hen 84, Sek 89, Ull 89a, You 92, Zan 86]. Tlwn· an• other kinds of 

query transformation, such as thos~· which try to n•cluet' the number of \'atiables iu\'olvt•d 

in the query. 

In the second approach, we suppose that the llll't hod of query processing is expn•sst•d 

by a sequence of operations in relational algebra and transitive closun•s. The first impor

tant issue here is how il:o executP each operation dlkiently. It is kuown that the cost of 

a join operation is computationally rather expensive than the cost of ot hN operations in 

relat ional algebra [Gra 93, K im 80]. T his also implies that the cost of transitive clostln's 

is also expensive becau:se transitive closure includes computation of many joins. For this 

reason, studies on the efficient computation of joins and transiti\'c closures havt· lwt>n 

very active. 

Even if the set of applied operations is the same, t ht•re arc many difff'rent sequenn•s of 

operations, which give the same result (answer). The cost of processing queries critically 

depends on the sequence of executing these operations. Then, it is crucial to find tlw 

sequence that minimizes the resulting cost. T hc·refore, the studi<'s on schedul ing t.he 

sequence of operations is one of the main streams (Jbara 84 , Kri 86, llll 89b]. 

As explained in this section, tlwre are many approaches to achieve efficient quNy 

processing. A great deal of effort, having been and being devoted to this fie ld, proves the 

importance of optimization of query processing. 
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1.3 R esearch Objectives and Out line of the Thesis 

Onl' of tlw main aims of this thesis is to pro\'ide quantitative estimations of the cost 

for query proc<'ssing, which we define as the sum of the co~b of the operations of re

la! ional algebra used to process the query. Furthermore, we would like to clarify the 

computational complexity of the problem of optimizing the query processing cost. 

Chapter 2 introduces the basic notions of relational database as a data model and 

prC'pare several definitions and notations, which are necessary for the study of relational 

and deductivC' databases (Ga.rd 89, Ull 89b]. Especially, description of the datalog and 

the definition of the operations of relational algebra, as well as transitive closures, are 

provided. 

In Chapter 3, firstly we introduce a. method of obtaining an approximation estimation 

of the costs (sizes) of all operations in relational algebra and thE' operation of transitive 

closure, assuming that the original relations are randomly generated from the uniform 

prohabilistic distribution. In order to prepare for subsequent discussions, we define the 

gcncralitt•d transitive closure, which is defined over two or more attributes and relations. 

C'onn·rning with the results, we show some computational experiments of the cost of 

joins and transitive closures, which are considered to bC' the most important operations. 

Finally, wr present some examples of applying our approximations to practical database 

querit•s to show their effectiveness [Uno 92]. 

Chapter ·1 proposes another approximation method to estimate the costs of all oper

nt ions as an impro\'ement of the method in Chapter 3, under the assumption that the 

original n·lations are randomly generated from the genl'ral probnbilistic distribution {in

cluding uniform distribution as a special case). This approximation is rather complicated 

if compared with the one proposed in Chapter 3, but it is a more accurate approxima

tion l'Wll for the case of uniform distribution. It also give~ a means to estimate join 

sl•leclivitil•s (which tell and indicate us the size of the relation after joining two relations) 

1.3 R esearch Objectives and Outline of the The:,is 7 

between any of the arbitrary attributes of relations [Uno 91a]. (The precise definition is 

given in Chapter 2.) 

In Chapter 5 gives a method of computing the t•xnct !>ize of a tran:;itive closure, 

based on the theory of random graph:; and random digraphs, and present an algorithm 

for computing it by dynamic programming. Tlwn, we present lower and upper bounds 

on the size of a transitive closure. These bounds can be computed in linear time with 

respect to its domain (input) size. Throughout Chapters 4 and 5, we also give some 

numerical experiments to illustrate the effectiveness of our proposals [Uno 94b]. 

In Chapter 6, we fo•rma.lize the problem OPTJOIN, which determines the optimum 

join order when many join operations have to be executed. The join operations under 

consideration are conv~·ntionally represented by query graphs. These query graphs are 

given with relation size·s and join selectivities. Unfortunately, even if the query graphs 

are restricted to trees, the problem OPTJOI~ turns out to be NP-hard. Then, we find 

some special classes of query trees, for which there are polynomial time algorithms to 

solve OPTJOIN [Uno 91]. 

Finally, in Chapter 'i', we summarize our study in this thesis and state the contribution 

of our study to this field. 

Importance of efficient processing of database queries is evident to everybody, as the 

size of data. is always increasing. The author hopes that the work in this thesis will be 

helpful for making the efficient processing databases possible. 
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Chapter 2 

Prelimin<lries 

2.1 Data, Databases and Data Models 

2.1.1 D a ta 

Data is generally recognized and defined as "facts'' or "phenomena", based on which 

computations and inferences are performed. We should notice that data and information 

are different and should distinguish them. Data are purely raw, and they have no meaning 

unless we accept them, :interpret them and give them sont<' meanings. If a piece of data 

supplies us with new knowledge that we have not. had befor<', it can he called informal-ion. 

There exist various kinds of data in our society; personal data, addresses and tele

phone numbers, school records of students, visual dat,a front television, literature data in 

the libraries, and so on. No matter what kind of data we are concerned, it is necessary 

that we should collect them and exploit them efficiently according to our needs. 

2.1.2 D a tabase and Quer y 

A database is a (logical) model of the data in the real world constructed on a computer. 

In other words, the data in the real world are modeled by some means in order to im-

9 



10 CHAPTER 2 PRELIMINARIES 

plement a database on a computer. Mathematically, a database is a set of data collected 

systematically. Once a database is constructed, the users of it can make requests for 

retrieving some useful information from the data in the database. Those requests are 

called database query (or simply query), and the set of data that satisfies our requests is 

referred to as answer to the query. 

A database management system (DBMS) is an interface between database and users, 

i.e., it gives us a means to access a large amount of database easily and efficiently. 

Roughly speaking, a DBMS supports the ability of modeling the data in the real world 

and supplies a language for answering queries (often called a query language or data 

manipulation language (DML)) that allows us to access, retrieve and manipulate the 

relevant data. 

A database system consists of two parts; a database and a DBMS. 

2.1.3 Data Modeling 

As mentioned above, we have to map the data in the real world onto computers in order 

to implement database on computers. This process is called data modeling. 

The process of data modeling consists of the following two phases as shown in Figure 

2.1, that is, 

1. 'n·ansformation of the real world data into conceptual models, and 

2. 'fransformation of conceptual models into logical models (i.e. databases). 

A conceptual model is a description of how a database designer recognizes the real 

world conceptually, and it is introduced as an intermediate model between the data and 

the databases. The term 'conceptual model' is sometimes used as the means or the 

formalization of the transformation of the real world data into conceptual models. It 

does not matter whether a conceptual model can directly be implemented on computers 

or not. 

2.1 Data, Databases and Data Models 11 

Data Modehng 

Conceptual Model 

Data Model 

C Database • Logical Model 

Figure 2.1: Data modeling. 

We now describe some of the models proposed to be used in such conceptual models. 

• An Entity-Relational (E-R) model 

This is proposed by P. P. Chen in 1976. This model tries to recognize the real 

world by the concept of entity and relationship. A relationship expresses the 

semantic relationship among multiple entities. Then, we construct an entity

relationship diag:ram which connects entities through relationships. 

• An Object-Oriented model 

This model desc1ribes the real world as directly as we see by the object identities 

and class hierarchies. This concept is adopted by some object-oriented program

ming languages, such as Smalltalk-80, C++, and so on. 

A data model is a mathematical formalism of transforming a conceptual model into 

a logical model (this is indeed referred as "database"), which consists of: 

1. A definition or a notation for describing data, and 
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2 A set of operations used to manipulate data (called data manipulate language 

(DML) or query language, as explained before). 

SC>veral proposals for the data models are categorized into three typical models. 

• Network data model 

Th<> network data model is a special case of the E-R model, in which relationships 

are restricted to be binary. Data are connected by pointers, therefore, the entire 

set of data constitutes a simple directed graph (network). This model is adopted 

by IDS, which is the first commercial DBMS. 

• Hierarchical data model 

In this model, parent data and child data are connected by pointers to construct 

a tree, and this model includes a number of such trees. As a result, it con

stitutes a forest. This model was implemented in IMS, which was the D8).1S 

commercialized by IBM in 1968. 

• Rt•lational data model 

This model is proposed by E. F. Codd in 1970. Because of its mathematical 

formality, the relational data model currently becomes the main stream of the 

data models and implemented in many general DBMSs. Our discussion in this 

theses is main ly based on this model. For this reason, this will be explained in 

the next subsection more carefully. 

2 .2 Relatio n a l D ata Mod e l 

2.2.1 Structure of the Relational D ata Model 

Among several types of data model described in the previous section, we concentrate 

on the relational model throughout this thesis. As mentioned in Section 2.1, a data 

model <"Onsists of two parts; the data definition part and the part of operations for data 

2.2 R elationa l Data Model 

m ani pulat ion. 

The relational data model adopts only relations for defining data. 

There are two kinds of formalizations as l);\lL, that is, 

1. Relational algebra, 

2. Relational calculus, 

13 

and it. is known that the expressive power (of queries) of these two formalizations are 

equivalent. 

Th<> relational algebra is based on the set tlH•ory in matht•tnatin; and proposed by 

Codd at the same time of the proposal of relational data model in 1970 [Cod 70}. In thl' 

relational algebra, there are 8 operations, and th<> rt'l>ltlt of applying thosl' operations to 

relations as sets becomes the answer to the query. 

On the other hand, the relational calculus is bast•d ou the theory of (first -order) pred

icate calculus [Cha 73} and this is also proposed by C'odd in 1972. In this formalization, 

a query is expressed by predicates and the answt•r is the s<>t of data that satisfies tlw 

predicate. Among the relational calculus, what we call tlw dat.alog model [Pil 89b] is 

often used for its notational convenience. lt is also knowu that dalalog has at least th<> 

equivalent expressive power to the relational algebra. 

In the subsequent subsections, we give more drtails of the relational data model. 

2.2.2 Data in the Relational Model 

In this thesis, we take rdatwnal algebra as the matiH•matical formalism for manipulating 

data (i.e., DML) in the relational database model, namely, the system of operations in 

the relational model. 

In the relational model, a relation as a set of data is defined as follows. 

Let a domain D, be a finite set of different values or elements e,1. The number of 

different values in D1 is called the size of a domain Dtl denoted by ID,I or d1 • The 
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Carteswn product (or product) of domains D1, ... , DJ... written D 1 x · · · x Dk> is the set 

of all k-tuples ( c1, ... , q) such that c1 E D 1, ... , q E DJ.., where k is a positive integer. 

A relatzon R is any subset of the Cartesian product of k domains, and the members of a 

r<"lation ar<" called tuples. A relation which is a subset of a Cartesian product D1 x · · · x D1.., 

is said to have anty k, or simply a k-ary relation. Especially, when k = 2, we often call 

it a bmary relation. A tuple t = ( ct .... , q), which has k compo ncnts c1 , ... , q, is called 

a k-tuple. The size of a relation R is the number of different tuples in R, and we denote 

it by IRI or r, similar to the notation of the size of a domain. 

We usually see a relation as a table, which we call a relational table. In doing so, each 

row of the table represents a tuple, and each column which corresponds to a domain Di 

is often given a name, for example A 11 and the name is called an attribute. We often use 

the notation R(A1, ... , Ai,;) when a relation R has attributes A1, ... , Ak· Furthermore, 

if an attribute At of a relation R and a tuple t in R are to be specified, R.A1 and t.A 1 

are respectively used to denote them. 

Example 2.1: We give an example of a relation and a relational table here. Let domains 

D 1 ={Engineering, Information , Economics}, 

D2 = {Math, Database}, 

D3 = {1, 2, 3, 4}. 

Thrn, a relation LECTURES is a subset of the product D1 x D2 x D3 such as 

LECTURES= {(Engineering, Math, 1), (Information, Math, 1), 

(Information, Database, 3), (Economics, Math, 2)} 

Here, LECTURES is a 3-ary relation and each of the members of LECTURES is a (3-) 

tuple. Now, we show the relational table of LECTURES in Figure 2.2. In this relational 

table, DEPARTMENT, SUBJECT and GRADE are the attributes for domains D 1 , D2 

and D3, respectively. • 
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DEPARTMENT SUBJECT GRADE 

Engineering Math 1 

Information Math 1 

Information Database 3 

Economics Math 2 

F'igure 2.2: A relation as a relational table. 

2.2.3 Operations in the Relational Model 

There are 8 operations [Gard 89, Ull 85a, Ull 89bJ in the relational algebra. These oper

ations are introduced a:nd defined in this subsection. 

The operations in re>Jational algebra consist of two groups: one includes the set opera

tions, while the other includes some operations unique to relational algebra. Each group 

has 4 operations. 

• Set Operations 

*Union 

The union of relations R1 and R2, denoted R 1 UR2, is the set of tuples that are 

in R1 or R2. We apply the union operation to the relations with the same arity, 

and the corr,esponding attributes have the same domain. Therefore, all tuples 

in the result have the same number of components. Even if the attributes of 

the corresponding domains are different, we can take the union by renaming 

them into appropriate attributes. This also applies to the operation of set 

difference amd the intersection described below. 

* Set differe1r1ce 

The difference of relations R1 and R2, denoted R 1 - R2 or R1 \R2, is the set 

of tuples in R1 but not in R2. Relations R 1 and R2 must have the same arity. 
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* Intersec tion 

The intersection of relations R1 and R2, denoted R1 n R2, is the set of tuples 

that belongs to both RI and R2. Relations R1 and R2 must have the same 

arity. Note that 

R1 n R2 = R1- (R1- R2) 

= R2 - ( R2 - RI). 

* Cartesian product 

Let relations R1 and R2 have arities k1 and k2, respectively. The Cartesian 

product (product), denoted R1 x R2, is the set of all (ki + k2) tuples whose 

first ki components is a tuple in R1 and the last k2 components is a tuple in 

R2, that is, all the concatenations of a tuple from R1 and a tuple from R2 . 

• Operations in Relational Algebra 

* Projection 

Let a relation R have arity k, and let A = {Ai,, ... , Aim} be a given set of 

attributes selected from the set of all attributes {At , ... , Ak} of R. Then the 

projection -rrAR, which is also a relation, has set of attributes A . T he tuples 

in -rrA R consist of the tuples of m components, obtained from t he t uples of 

R by removing all components wit hout corresponding to the attributes in A. 

Note that, duplicate tuples may be generated in this process, but such tuples 

are eliminated except only one tuple, because a relation is a set of t uples and 

does not allow to have duplicate tuples . 

* Selection 

Let a relation R have arity k. The selection ocR selects all t he tuples from R, 

which satisfy the given condit ion C. T he condition is described in the form of 

where Bt can be a binary arith metic comparison operator chosen from 

2.2 Rela tional Da t a M ode l 17 

<,=,>,~,'=/=and;::: . 

* 0-join, equijjoin and natura l join 

The 0-join is a very important operation in relational data model, because it 

can directly define a relationship between the data in different relations. The 

0-join of relations R1 and R2 on attribute A1 in R1 and A1 in R2 is denoted 

by R 1 1X1 .R2, where 0 is an arithmetic comparison operator. It is defined 
A,9A1 

as 

where C = {A,OA1 }. In other words, the 0-join of RI and R2 consists of the 

tuples in RI >< R2 so that the i-th component of R1 and the j-th component of 

R2 satisfy a relation B. If 0 is=, which we often encounter in real applications, 

the 0-join is called the equijoin. 

Let Ak,, ... , Akm be all the attributes appearing both in RI and R2. Then 

the natural join of R1 and R2, denoted R1 lXI R2, is a relation defined as 

where C = { R1.Ak1 = R2.Ak1 , ••• , R1.Ak.., = R2.Ak,,.} and A is the set of all 

the attributes in R1 and R2 in the appeared order except Ak
1

, ••• , Ak, in R2, 

that is, the resulting relation of the join is k attributes less than that of the 

equijoin. 

We now define the general case of the natural join. Even if two relations 

do not have the same attributes, the natural join can join them by the cor-

responding attributes that have same domains, and furthermore it does not 

necessarily join by all the attributes that have same domains or by all the same 

attributes. This natural join can be defined by specifying a set of attributes 

Ai1 , • • . , Ai,. in RI and the same number of attributes A1, , ... , Aj.,. in R2, and 
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(The domain of the corresponding attributes A11 and A 11 must be the same.) 

We can rename the attributes .4,1 and .411 used for the natural join by appro

priate new attributes (usually by one of the original attributes A,k and Au of 

R1 and R2). To denote this kind of natural join, we use 

or simply 

R1 txJ R2. 
A, 1 -AJ1 •. .• A,., = AJm 

We distinguish between the latter case and the former case of natural join by 

specifying the condition under the join symbol txl or not. But we often omit 

this specification of general natural join in our discussion when the condition 

is obvious. 

Throughout this thesis, we usually use the term "join" to represent the natural 

join of this type. 

* Quotient 

This operation is not so important for our discussion in this thesis. Moreover, 

this operation is redundant as we state below, so we omit its explanation here. 

We have introduced 8 operations in relational algebra and defined 7 of them. Among 

them, {union, set difference, product, projection, selection} is called the set of five ba

sic operations, because the rest operations are redundant in the sense that they can 

be expressed by the combinations of these five basic operations, as seen in the above 

description. 

2.2.4 Datalog on R elat ional Calculus 

Now, we define datalog step by step. 

An atomtc formula, is a predicate symbol with a list of arguments. We use lower case 

letters for predicate symbols. An argument can be either a variable or a constant. We 
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use, for convention, lower case letters for constants and upper case letters for variables. 

We can also use arithmetic comparison predicates (operator) as predicate symbols in 

datalog. Then atomic formulas, for example p (X, Y), where p is a predicate, mean a 

relation. In this form, we can identify the variables X and Y with the attributes in 

the relation. Without noticing in particular, we often use upper case letters, such as 

P, for relations corresponding to the predicate symbols, such asp. A literal is either an 

atomic formula or a negated atomic formula, denoted, for example, by p(a, Y). A negated 

atomic formula is called a negative literal, and otherwise, a positive literal. A clause is a 

conjunctive form of literals. 

A Horn clause [Bay 85a, Gard 89, Ull 89b] is a clause with at most one positive literal. 

Thus, a Horn clause whose predicates are written without arguments for convenience here, 

is in one of the following forms: 

1. A single positive literal, say q, 

2. A single positive literal and one or more negative literal 

P1 V··· V Pn V q , 

which is logically equivalent to the form of 

P1 1\ · · · 1\ Pn -+ q, 

3. One or more neg;ative literals with no positive literals. 

In general, however, the 3rd type of Horn clauses is not usually taken into consideration 

as datalog expressions because it only implies constraints and does not give any positive 

information. We follow this convention and consider only 1st and 2nd types in our thesis. 

We often rewrite the 1st and 2nd formulas in the following P rolog-like style: 

1. q -, 

2. q +- P1, · · · , Pn· 
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A Horn clause of the 1st type (i.e. a predicate p) expresses a relation. Therefore, we refer 

a Horn clause of the 1st type as a fact, and that of the 2nd type as a rule [Cha 73, Ull 89b]. 

A query is also regarded as a special kind of a rule and often expressed explicitly in the 

form such as 

query(X, Y) +- p(X, Y), 

query(X) +- p(X, Y), 

query(Y) +- p( a, Y), 

and so on. In a rule, the lefthand side of an arrow is called the head and the righthand 

side the body of a rule. Each of the p1 's in the body is called a subgoal. A collection of 

given facts and rules is sometimes called a logical program. 

Finally, datalog is a logical program, in which no function symbol (except for the 

6 arithmet ic comparison operators <, =, >,::;,=I= and 2:) and no negated subgoals are 

allowed. 

In order to see the correspondence between relational algebra and datalog expressions, 

we provide a simple example here. 

Example 2.2: Let us consider the following datalog program: 

p(Y) +- r(X,W),s(a,W,Z),t(Z,Y), (2.1) 

where we assume that predicates r, s and t are given as facts or already computed as 

relations R, S and T. We can decompose and rewrite the datalog formula (2 .1) into 

another form of datalog program such as 

{ 

u(Z) +- r(X, W), s (a , W, Z), 

p(Y) +- u(Z), t(Z, Y), 

by introducing a new intermediate predicate p. 

Now, we can give an interpretation of this datalog formula in relational algebra by 

introducing an intermediate relation U, that is, 

U(Z) = 7r{z} ( R(X, W) t><1 (a{V=a}S(V, W, Z))), (2.2) 
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P(Y) = 7r{Y} ( U(Z) t><1 T(Z, Y)), (2.3) 

and so we can obtain a final expression about the predicate p as the following sequence 

of relational operations 

P(Y) = 1r{Y} ( 11·{z} ( R(X, W) t><1 (a{v aJS(V, W, Z))) t><1 T(Z, Y)), (2.4) 

from equations (2.2) and (2.3). • 
In a datalog program, predicates that appear only in the body of rules (unless they 

are defined as facts ex.plicitly), such as s and t in Example 2.2, can be recognized as 

facts, and such predicates (relations) are called extensional database (EDB) predicates 

(relations). On the other hand, predicates that appear in the head of rules, such as u 

and p in Example 2.2, are the predicates whose relations are not stored but have to 

be computed by the EDB relations. These predicates (relations) are called intensional 

database (IDB) predic.ates (relations). 

In the subsequent discussion, therefore, we use both kinds of expressions, relational 

algebra and datalog, d·epending on the context. 

2.3 Deductive Database 

2.3.1 Recursive Database Query 

The definition of datalog permits us to define the recursions in datalog programs. 

We can define the recursion by making what we call a dependency graph [McK 81, 

Ull 89b]. Let Pi be predicates. In a dependency graph, vertices are predicates. If the 

predicate Pi occurs in the body of a rule whose head predicate is p1 , there is an arc from 

predicate Pj to Pi· A datalog program is recursive if its dependency graph has one or 

more cycles, and otherwise, non-recursive. All the predicates that are {not) on cycles are 

said to be recursive (non-recursive) predicates. A predicate on a cycle of length 1 (loop) 
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is referred to as (simple) recursive, while n predicate on a cycle of ll'ngth more that 1 is 

referred to as mutual recursive. All the rules that (do not) include n·cursive predicates 

are called recursive (non-recursive) rules, and finally, a query that gives the answer to 

the recursive predicate is called a recursiw query. and otherwise non-recursive query. 

Example 2.3: J'he following datalog program 

{ 

anc(X, Y) + par{X, Y), 

anc(X,Y) • anc(X,Z),par{Z,Y), 

is a typical recursive datalog expressing the ancestor-descendant relation, because its 

dependency graph in Figure 2.3 contains a cycle {loop). In this datalog, par is an EDB 

0 
I 

par 

Figure 2.3: A dependency graph. 

predicate that m<>ans the parent relation, and anc is an IDB predicate that means the 

ancestor relation. Then, the next query 

query{X, Y) - anc(X, Y), 

is a recursive query because it contains a recursive predicate anc in its body. • 
Answering the query and obtaining the anc relation of the recursive query 111 the 

example requires to retrieve the par relation recursively. But we cannot translate the 

recursive rules into the relational algebra expressions, because they require applications 

of an infinite sequence of operations in relational algebra, such as 
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anc(X, Y) +--- par(X, Y), 

anc(X,Y)- par(X,Z1),par{Zl,Y), 

It follows from this example that the t•xpressive power of datalog is beyond that of 

relational algebra. Therefore in the next section, in order to capture the expressive 

power of the recursive query of datalog, we introduce a new op<>ration, the transitive 

closure, which includes in itself an infinite sequence of relational opt>rations. 

2.3.2 Query Gra ph 

As we have seen, a database query is written by a sequence of relational operations or 

by datalog. Among relational operations, the join is known as the most expensive and 

time consuming operation. Concentrating on this fact, a query gmph [Ibara 84, Kri 86] 

is introduced to represent how joins are executed in a database query. In a query graph, 

each node represents a. relation and each edge denotes that there exists a join execution 

between the two relations connected by the edge. The edge is often given a label of the 

attribute which is used for the join. A query tree is a special case of a query graph, in 

which the shape of the graph is a tree. 

In F igure 2.4, we show the query graph {tree) of the databas<> query in Example 

2.2. Although this is a. non-recursive query, we cannot extend this to recursive queries, 

because they include infinite number of joins, and therefore, cannot be represented by a 

finite graph. 

2.3.3 D eductive Database 

According to the definition of EDB and IDB predicates {relations) in datalog, we also 

refer to a set of facts as EDB and a set of rules as IDB. 

A relational database consists only of EDBs. On the other hand, a deductive database 
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Figure 2.4: A query graph. 

consists of both EOBs and lOBs, that is, it can take not only facts but also rules. As 

a result, by applying rules to facts, a deductive database can produce new facts that 

are not stored explicitly as EOBs. Since we usually use datalog for expressing queries, a 

deductive database can be constructed from EOBs and JOBs written in datalog. Thus, 

a deductive database allows both recursive and non-recursive queries. 

When we see the fact that the data can be divided into two forms EOBs (facts) and 

lOBs (rules) from practical viewpoint, we can say the followings. As the data in relational 

databases is increasing in size and complexity, common data among several databases 

or data which is inferred by the other data can be considered to be held as common 

knowledge not be saved in the form of raw data Those knowledge is implemented as rules 

in databases, and such databases to support deductive capabilities are called deductive 

databases. These are the reasons why deductive databases are called the "knowledge 

base", or are thought to infer knowledge. All of these subjects are studied as a certain 

field of what we call artificial intelligence [Cha 73]. 
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2.4 Joins and Transitive Closures 

2.4.1 Efficiency of Computing J oins 

Since the join is the most expensive operation in n•lational algebra, much effort has been 

devoted to compute it efficiently [Kim 80, Wol 90]. We explain two typical methods 

for computing joins, that is, nested-loops and nwrg<' scan algorithms [Gra 93, lbara 84, 

Kim 80, Kri 86]. 

• Nested-loops algorithm 

This is the simplest and most direct algorithm for computing joins. Consider 

a join R1 1><1 R2 • For the A11 component of each tuple in Rt (outer loop), 
A1,=B9 

this method tri.es to find all the tu pies in R2 (inner loop) whose values of B'l 

component coincides with the valut• of tht• component in the outer loop, and 

creates new tuples. 

• Merge-scan algorithm 

Consider a join R1 1><1 R2. We first sort the t uples in R1 and R2 by the values 
Ap - Bq 

of join attribut•es Ap and Bq, respectively. Then, scanning the tuples in R1 and 

R2 simultaneously in the increasing order of the values of components in Bq for 

each A11 , we merge the tuples in R 1 and R2 whose values in the join attributes 

coincide, into new tuples. 

The detail and the implementation as programs of thes<• two methods and some discus

sions about them will be shown in Chapter 6. 

2.4.2 Selectivity of Joins 

We have considered the natural join R. 1><1 R1 between two relations R. and R,, 
Ap 8 9 

whose sizes are r t and r 1 , respectively. When considering the size of the resulting relation 

R. 1><1 R1, it is said to be determined by rt, r1 and the probability of creating a new 
Ap - 8 9 
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tuple from a pair of tuples randomly chosen from R1 and Rr 

Now, we give the notion of this probability as a definition [Ibara 84, Kri 86, Lyn 88, 

Ull 90]. 

D efin it ion 2 .1: The selcctiuity s11 with respect to the attribute Ap in R, and Bq in R1 

is the expected fraction of tuple pairs from R1 and R1 that will join among rtr1 possible 

pairs, or the probability of creating a new tuple, that is, 

E (1~ Apr;;B~ R11) 
SR,.A1,,R;.D1 = (2.5) 

where E( • ) denotes the expected value of the resulting relation. As it is often the case 

that the join attributes are obvious from the context, we usually denot e the selectivity 

by 

(2.6) 

without showing those join attributes Av and Bq in R i and R j . • 
According to this definition, the expected size of the resulting relation of a join ~ t><1 

AI.= Dq 

R1 is given by Sijr,rJ. (Alternatively, SiJ of the resulting size Sijrirj may be taken as 

another definition of the selectivity.) 

In general, the exact value of the selectivity is difficult to know unless the join is 

actually carried out . However, it is usually possible to estimate si1 with some accuracy 

by taking into account the characteristics of the relevant attributes . For example, if a 

join is computed between attributes Au of R1 and B,, of R2, both with domain D, and if 

the values of these Au and Bto are independently chosen with equal probability from D, 

then we have 

d (1 1) 1 
Sl2 = L d X d = d' 

J - 1 

(2.7) 

More generally, if a value e1 is chosen independently with probability PuJ from attribute 

A 11 in R1 and q1,1 from attribute Bt> in R2, then we have 
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$12 = LPIL)q,,)" 
)=1 
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(2.8) 

For most of the practical cases, a crude but simple estimation (2.7) may be sufficient. 

In the following discussion, we assume that selectivities are given beforehand by some 

means or estimated by the assumption that how the relations are generated. 

2.4.3 Tra nsitive C losures 

As we saw in the previous section, clatalog can express recursivt' queries but relational 

algebra cannot. In ordcer to provide a means to represent recursive queries by relational 

algebra, it is necessary to add a new operation, transitive closure [Agr 87, loa 88, Jak 91, 

Lu 87], to the original •operations of relational algebra. 

T here are t wo alternative approaches to define the transitive closure; one is from the 

viewpoint of relations, and the other from that of graph theory. Furthermore, there are 

two kinds of definition:s of transitive closures, denoted R+ and R .. , which we often en

counter in practical uses. We see the d ifference between them in the following definitions. 

First, we define a transitive closure in terms of relations. 

D efinit ion 2.2: Let R: be a binary relation, with two attributes A 1 and A2 of the same 

domain D. Then, the transitive closure R+ and R* of R is defined as follows: 

1. R+ is the set of all the tuples ( e1, e2) for which there is a sequence of elements 

ei1 , ••• ,e,,. (et; E D), such that 

(a) Ci1 = e1, ei,. = e2, and 

(b) (et;,ei
1
+l) ER for all j (1 ~ j ~ n -1). 

2. R* is the set olf all the tuples ( e1 , e2) for which there is a sequence of elements 

et1 , .•. , e1,. (et; E D), such that 

• 
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Now, we give the second definition of a transitive closure in terms of graph theory. 

Definition 2.3: Let V be a given set of vertices v, and A be a set of arcs (v,, Vj). They 

define a directed graph G = (V, A). Then, 

1. The transitive closure G ... = (V, A+) of G has an arc (v1 ,v1 ) if a vertex v1 is 

reachable from v1 in G, that is, there is a path of length more than or equal to 1 

from v, to v1 . 

2. The transitive closure G* = (V,A•) of G has an arc (v,,v1 ) if a vertex v1 is 

reachable from v, in G, that is, there i!; a path of length more than or equal to 0 

from u, to u 1 . 

The set of arcs A or A" is also called the transitive closure of G. • 
The definition of the transitive closure in terms of relations can be easily interpreted 

in the light of graph theory by dint of replacing all the elements e1 in D with all the 

vertices v, in G, and all the tuples (e,e1 ) in R with all the arcs (v.,v1 ) in G. Thus, we 

see that these two definitions give the same result. 

We note her<> the difference between R+ (A+) and R* (A*), where R* permits the 

reflexive law, or it is equal toR+ to which all the unit element (e,,e,), ei E Dare added. 

1 n terms of graph theory, this means that self-loops (Vi, v,), v, E V are added to c+. 

We usually consid<'r the transitive closure R+, but not R*, as the transitive closure of a 

relation R. 

When we use the datalog notation, we can give definitions of the transitive closures 

A+ and A• of a graph G =(V, A). 

In the following datalog program, 

{ 

path1(V1, V2) ,_ arc(Vt, V2), 

path1(V1, V2) ....__ arc{V1, W), path1(W, V2), 
(2.9) 

where the EDB predicate arc (V1 , V2 ) indicates that there is a directed arc from vertex 

v1 to t'2, the predicate path1 indicates the transitive closure A+ of the graph G. 
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Similarly, in the slight modification of the datalog program (2.9) shown below, 

path2(Vt. V1) ..-, 

path2(V1, V2) ....__ arc(V1, V2), (2.10) 

path2(V t. V2) ....- arc(V 1. W). path2(W. V2 ), 

the predicate path2 indicates the transitive c:losure A" of the graph C. 

We often use the notation arc 1-(Vt, V2) (arc"'(V1 , V2)), or simply arc+ (arc") for 

expressing the transitiv·e closure path of the predicate arc. 

Finally, we define the transitive closure of a single vertex '' in a graph G = (V, A). 

D efin ition 2.4: The transitive closure v-+ of a vertex u in a graph G = (V, A) is th<' 

answers to the query 

query(X) ,_ path1(v, X), 

in the datalog program {2.9). 

Similarly, the transitive closure v· of a vertex v in a graph (,' . (V, A) is the answ<'rs 

to the query 

query(X) ....__ path2{v, X), 

in the datalog program (2.10). • 
To put it another way, the transitive closure v+ is the set of VC'rtices that is reachahl<' 

from v, and v• is the set of vertices that is reachable from v including itself. 

2.4.4 Efficiency oJf Computing Transitive Closures 

Since the cost of joins is rather expensive, compared with other operations of relational 

algebra, the cost of transitive closures is also expensive because the computation of 

transitive closures includes many times of computing joins. 

Many papers have been published on the efficient computation of transitive closures 

as well as joins. There can be seen naive algorithm [Ban 86a, Bay 85b, loa 88, Lu 87], 
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semi-naive algorithm [Ban 86a, Bay 85b, loa 88, Lu 87} and logarithmic algorithm [Lu 87] 

among typical methods wltich are based on computing relations, as well as Warshall's 

algorithm [Agr 87, loa 88, War 62] based on the graph theory. In addition to these 

classical methods, new approaches are continuously proposed now on [J ak 91, J ak 92}. 

We give their outline here, and will describe some more details in Chapter 3. 

• Warshall's algorithm 

This algorithm computes the transitive closure by manipulating the incident ma

trix of a graph C, which is the Boolean matrix representation of the vertex-arc 

incidence relation of G. This algorithm requires the number of iterations that is 

the same as the length of the longest path in the graph. 

• Naive algorithm 

This is the most direct and straightforward algorithm. This algorithm computes 

R1 = R, R2 = R1 txJ R, R3 = R2 txJ R, ... , successively until no more new tuples 

are generated. 

• Semi-naive algorithm 

The naive algorithm is inefficient because it uses the whole relation Ri generated 

in each iteration, which includes a lot of duplications of generated tuples. The 

semi-naive algorithm stores only the new tuples generated at each iteration. 

• Logarithmic algorithm 

While the semi-naive algorithm tries to optimize the computation of transitive 

closures by reducing the intermediate data size involved in the computation, the 

logarithmic algorithm tries to reduce the number of iterations not up to the length 

of the longest path in the transitive closure graph, but up to its logarithm. At 

the 0-th iteration, this algorithm holds the original relation Rl> where f4 includes 

the pairs of vertices reachable by the path of length i. At the 1st iteration, it 

computes R2 by joining R1 with R1 . At the 2nd iteration, it computes R3 and 
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R-1 by joining R2 with R1 and R2 • and so on. In general. it computes R 2• 1 + l· 

...• R2 • at the i-th iteration b) joming R, 1 with R1 . ... , R, - I· Therefore, this 

algorithm requires less number of iterations than 1'i aive or Semi-N atve algorithm. 

Optimization of the Cost for Processing Queries 

A query to relational •Or deductive databases can be expressed hy datalog and it can 

also be expressed by operations in relational algebra and transitive dosures. To process 

a query is to find tuples from databases that satisfy the answer prt:'dicate according 

to these operations. The optimization of processing database queries is to reduce the 

processing cost withou1L changing the answer. 

In other words, processing a query is to determine the execution of operations because 

it is regarded as a finite sequence of operations. The number of orders of operations is 

numerous enough to examine all of them, although some of them can be known inefficient 

in advance. But there must be the optimum way of processing among them based on a 

certain cost measure. 

As we mentioned that the process of answering a query is divided into a sequence of 

applying several operations to relations and that the order of applying those operations 

is critical to the efficiency of answering a query, we have to define the cost of computing 

each operation for the purpose of finding the faster and cheaper way of answering a query 

and optimizing it. 

To define the computing cost of each operation, there can be two measures to it; 

1. the number of tuples accessecl (i.e., scanned, compared, and so on) during the 

computation of the operation, or 

2. the number of 1tuples outputted as the result of computing the operation. 

The measure 1 is usually used for comparing the efficiency between different methods to 

compute the same operation, such as the nested-loop and the merge-scan methods for 
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computing joins. 

In general, since the processing cost is usually determined by the space complexity 

of memories and the time complexity for processing, the measure 1 is sometimes not 

sufficient enough to express the space complexity. Moreover, it is widely believed that 

output.t.ing the tuples of the resulting relation explidt,ly is much more time consuming 

than only accessing tuples. Therefore, the measure 2 is often adopted as the cost of 

computing each operation [Ban 86a, Kri 86, Ull 90], and we also adopt it in this thesis. 

This cost not only represents the space complexity but 1s often dominant in the other 

complt•xitirs. The rightness of this cost in case of join operation will be discussed later 

in Chapter 6. 

The number of tuples outputted as the result of each operation can be said the 'size 

of inl<'rrll<'diate relation' generated after applying the operation. Thus, we can define 

tl11.· proce:;sing cost of a query which is a sequence of operations as the sum of the size 

of intcrnwdiate (including the final) relations generated after computing each operation. 

The importance of this value is obvious from the above discussions. Our main theme in 

this tht•sis is to optimize this cost required for processing queries, or to find the optimum 

order of applying operations. 

3 .1 

Chapter 3 

Approxirnate Evaluation of 

Processirtg Costs of Uniform 

Data 

Introduction 

Database queries are processed by applying the operations of relational algebra [Uil 89b] 

or the transitive closure operation. Among such operations, joins and transitive closures 

are known to be expemsive. T herefore, much effort has been devoted to the study of 

efficient computation of joins and transitive closures [Agr 87, loa 88, Lu 87, Sip 88]. 

The method of obtaining the answer to a database query is not unique, and actually 

there are many methods of deriving them from databases in general. It is desirable, 

therefore, to know the most efficient one before we carry it out. In order to do so, we 

have to evaluate beforehand the computing cost required by each method. Since we can 

regard that each metho·d consists of a finite sequence of operations in relational algebra 

and transitive closures, we define the processing cost to be the sum of the cost of these 

33 
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operations. TIH•rc•fon·. tlw task is redun·d to the evalua.Lion of the cost of Ntch operation. 

There can b<• difren.·nt viewpoints in defining the computing cost, and in this thesis. 

we con:;ider it as tlw size of the rt'St!lting rei at ion after applying the operation under 

consideration [Ban b6a. Kn 86}. This size rcpre:;ents not only tlw space complexity (as 

it gives the amount of intermediate data size) but also the otlwr complexities such as 

the number of co111putational steps. Therefore, the size can be used as an approximate 

measure of the computing cost, and the reduction of the intermedia.tt• data size directly 

leads to the reduction of the computing cost. 

There are a great deal of results to reduce such computing cost, for some representa· 

ti,·e form of queries, for example ··the same generation query" [Ban 86a, Ban 86b, Bee 87. 

Gard 89, Miy 89, Sek 89], by transforming them into more tractabl<.' forms. Although 

these results are useful, it is difficult to generalize and apply them to other situations 

because they arc constructed on their unique characteristic of queries, and they cannot 

give us the computing cost for different data. On the other hand, our approach has gen-

erality and convenience. It can be applied whenever we decompose the query processing 

algorithm into the basic operations. 

In this chapter, we evaluate approximately the expected sizes of relations obtained 

after applying the operations in relational algebra such as selection, projection, natural 

join, transitive closure of binary relations and its extensions. Although the derivation 

of approximate formulas is relatively easy for basic operations in relational algebra, it is 

not so for the operation of transitive closure. For this area. only empirical approaches 

such as sampling methods were known so far [Haa 92, Lip 89, Lip 90, Lyn 88]. Finally, 

we use the same gt•neration query as an example of deductive database, and it will be 

shown that the computing cost for processing this query can be easily evaluated to some 

accuracy. Based on this evaluation, we can choose the best method in advance among 

some possible methods of processing the same generation query. 
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3.2 Con1put ing Cos t of Operation s in R ela tion a l Algebra 

In this section, Wl' examine and eYaluatt' tlw t•xpected ~izt' or it:; approximate ,·alue of tlw 

resulting rdat ion after the operations of rl'!ational algebra an• applit·rl. We ~elect, a~ t ho::>t' 

operations, Cartesian product, intersection. union. set ditfen.•IH'f', st•lt•d ion. project ion, 

and natural join, whose definitions arc given in Section 2.2, ami furtlwrrnon-, transitiw 

closure in t.he next section. 

3.2.1 Assumpt ions on R ela tions 

As explained in Chapter 2, a relation does not contain two or more identical t u pies 

in it. To meet this condition, throughout this chapter, relations are considered to b(• 

stochasLically generated as follows. In a relation R, with domains D 1, •.. , D~.; of sizes 

:~:~~~l~:,.::~::;:o:• a:i1 
~~~ d( d~i:~r;~ ~=~~:le:::.~;::~:::~~~:, '.;::J1:,::.:il::: 

1/ ( d1 
. ; . d~.;). Therefore, the probability p,1 that value ( elcmt~nt) t•

1 
E D

1 
appears in 

attribute A, is 1/dt for all i and j, that is, the values in attribute A, are generated by 

the uniform distribution. 

Consequently, in the following discussions, we may regard that the elements in any 

attribute in a relation R are generated stochastically independC'nt from the elements in 

the other attributes in R. Furthermore, we assume that such an arbitrary relation R, is 

generated stochastically independent from any other relation R
1 

W hile the resulting size of a relation after applying most of the operations to relation::; 

is considered to be a stochastic variable, the size r, of an original relation ~ and the 

resulting size of Cartesian product ~ x R1 are not stochastic variables. But we do not 

distinguish them in their. notations in Chapter 3 and 4. for convenience. 
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3.2.2 Set Oper ations 

Let relations R 1 and R2 have domains D,,, ... , D, ,.. and D11 , ... , Dj.,, respectively. The 

size of Cartesian product R1 x Rz becomes 

(3.1) 

In the following operations, relations R1 and Rz have the same domains D1, . · · , 

DJ.:. Since the probability that an arbitrary tuple in R1 belongs to Rz is rz/d1 · · · dk, the 

expected size of the intersection is 

(3 .2) 

By using the above result, we obtain the following formulas about the operations of union 

and set difference. 

(3.3) 

IR1 - Rzi = I RI!- IR1 n Rzl 

(3.4) 

3.2.3 Selection and Projection 

Let the domains of R be D 1 , . . . , D~.;. Then, let us consider the selection crcR with a 

condition C such that 

The expected size of the relation after selection is 

(3 .5) 

Let us consider the projection 1rA R to a given set of attributes A= {Ai1 , . • · , Ai,., }. 

After taking care of eliminating duplicate tuples, the expected size of the new relation 
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becomes 

(3 .6) 

Now, we see the reason why the above formula holds. Consider a tuple, whose elements 

(values) of i1, . . . , im-th components are specified, (say Cq = ei,, ... , c,,., = ei..,,) and 

the probability that such a tuple appears in the result of the projection. In the above 

formula, the product of fractions in the righthand side expresses that such tuples do not 

appear when we choose r tuples from all the possible d1 · · · d~.; tuples successively. The 

bracket { } denotes the probability of the complementary event, that is, a tuple with 

specified values ei1 , ••• :• e,,., appears at least once in R, and the whole term gives the 

expected size of different tuples with attributes A,1 , ••• , A1,. 

3.2.4 Natural Join 

Suppose that R1 and Rz have attributes A,1 , ••• , Ai,., and A]J, ... , A1.,, respectively. 

We consider the natural join R1 IXl Rz which is joined by attributes Ai.
1 

, ••• , Ai,P in R1 

and Ai, , . .. , Ai, in Rz, where D.. = D1·1 , ••• , D, = D1, are assumed. Then, the 
I P I I •v p 

expected size of the tabl.e after the natural join R 1 IXl Rz is 
A,. l = A,,I , .... A,,I' = A,,J' 

IR1 IXl Rzi = r1r2/di,
1

· • • d,,v (3.7) 

( = r1r2/d111 • • • dj11,). 

This is because the probability that the values of attributes Ai, , ... , A, of a tuple in 
I 6p 

R1 coincide with the values of attributes A1·, , ... , A1·, of a tuple in Rz is 1/d, · · · d, , 
1 /) •t 4 J' 

and the number of pairs of such tuples is r1rz. In other words, the (join) selectivity 

between R1 and Rz (with respect to the attributes A,. , ... , A,. in R1 and A,, , .. . , A,, 
I I• I P 

in Rz) defined in the formula (2 .6) in Chapter 2 turns out to be 
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s,, = 1/ dl ... di . 
"t "I' 

As a special case, let us consider the natural join of two binary relations. Suppose 

that R1 has attributes A1 and A2, R2 has attributes A3 and .44, and A2 and A3 have 

the common domain D of size d. Then the resulting size after computing natural join 

(3.8) 

and the selectivity between R1 and R2 is 

512 = ljd. 

3.3 Computing Cost of Transitive Closure 

3.3.1 Algorithms for Computing Transitive Closure 

Naive Algorithm 

In this section, we first explain some basic algorithms for computing the transitive closure 

R+ of a binary relation R(X, Y), where the domains of the two attributes X and Y are 

assumed to be the same domain, which is denoted D. 

T he first algorithm is what we call Naive algorithm [Ban 86a, Bay 85b, loa 88, Lu 87]. 

This is described in Program 3.1. In line 5 of algorithm Naive!, the attributes X and Y 

in R+ (X, Y) and R(X, Y) are renamed as R+(x, Z) and R(Z, Y), respectively. Such an 

obvious renaming is usually understood from the context, and we sometimes express line 

5as 

by omitting the names of attributes. Conversely, the domains of attributes that are joined 

must be same, and the corresponding domains of attributes of R+ in each iteration and 

the original relation R must also coincide. 
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Procedure Naivel 
Input: R 
Output: R+ 

begin 
R+ := R; 

while 'R+ changes' do 

begin 
R+ := R+ U rr{x.Y}(R+(X,Z) IXl R(Z, Y)); 

end 
end. 

Program 3.1: Naive algorithm l. 

39 

In order to represent. the related attributes compactly, we also use the notation $i to 

indicate the i-th attribute of all the relevant relations. in place of the attribute At of R. 

By using this notation, we write line 5 in the algorithm Naivel as 

or 

To simplify the notation further, we sometimes denote the composite operation of the 

natural join and the projection by 

Then, a tuple ( e1, e2) determined by a sequence e1 = ei1 , e12 , •.• , e,~ = e2 of length k in 

the transitive closure R'~ is obtained by (k- 1) iterations of joining R 1 and R2 . The set 

of all tuples obtained in this way is denoted by 

Rk = R IXl R l><l • • • IXl R ( IXl : k - 1 times). 

With this notation, R+ is expressed by 
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.,.., 
R+ = U R1... 

1.. 1 

(3.9) 

When we discuss this algorithm as graph theory, it concatenates one or more arcs in the 

graph G in order to find reachable pairs of vertices until no more new pair is generated. 

This method is implemented as Warshall's algorithm [Agr 87, loa 88, War 62). 

Finally, by rewriting the condition 'R+ changes' into another statement of programs 

by introducing a IH"W relation t::.R, we can obtain the following algorithm Naive2 of 

Program 3.2, which is another form of the algorithm Naivel. 

2 

3 

4 

5 

G 

7 

8 

9 

10 

Procedure Naive2 

Input: R 
Output: R 

begin 

t::.R:=R; 
Temp_Rr := R; 
whil<' t::.R i= </> do 

begin 
R .. :=Temp_R+ U R~ 1X1 R; 
t::.R := R-r-Temp_R+; 

Temp_R+ := R+; 

end 
end. 

Program 3.2: Naive algorithm 2. 

Semi-Naive Algorithm 

Now, we describe t.he Semi-Naive algorithm [Ban 86a, Ban 86b, loa 88, Lu 87], which is 

an improvement of the Naive algorithm. This is based on the idea to store only those 

tuples newly generated in the i-th iteration, which is denoted by t::.R •. The algorithm is 

called Semi-Naivel and given in P rogram 3.3. By introducing parameter i for expressing 
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Procedure Semi-Naivel 

Input: R 

Output: R'" 
begin 
t::.R:=R; 
Rt := R; 
while t::.R i= </> do 

begin 

t::.R :== t::.R 1X1 R; 
t::.R :== t::.R- R•; 
R+ :== R+ u t::.R; 

end 
end. 

Program 3.3: Semi-Naive algorithm I. 
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the number of iterations for the while loop of lines from 4 to 9, we have the algorithm 

of Program 3.4, which is called Semi- aive2. In the algorithm of Semi-Naive2, corre· 

sponding to (3.9), we compute the transitive closure R+ as the sum of true increment 

?C 

R+ := U t::.RI... 
k-1 

{3. 10) 

As the iteration can be stopped whenever t::.R" = </> holds, the number of iterations is 

finite, and indeed, at most within (d- 1) iterations, as we mentioned before. We will 

evaluate in the subsequent subsections the size of transitive closure from formula (3.10) 

of the algorithm Semi-Naive2. 
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Procedure Semi-.\an:e2 
Input: R 
Output· R-t 

begin 

2 6R1 := R ; 

3 

1 for i = 2 to d - 1 do 

G 

7 

.'l 

!J 

10 

begin 
f>R, := D.R, _1 [X) R; 
t::.R, := f>R, - R, 1; 

R, := R,_ t U D.R,; 
e nd 

end. 

Program 3.4: Semi-.\aive algorithm 2. 

3.3.2 Generalization of Transitive C losure 

From binary to k-ary r e lat ions 

Th<' definition of the transitive closure of a. binary relation can be easily generalized to 

the transitive closure of a. k-ary relation. 

D efin ition 3.1: Let R be a k-ary relation R(A 1 , ••• , AJ,;) (the domain of A1 is D1 ), and 

C = {A.1 : A11 , ••• , A. .... =A,,. }. Now, consider the (i- 1)-th iteration for computing 

the transitive closure: 

R, R, 1 [X) R = rrAt ac(R,_1 x R) 

= iT A(O) ( Ri- 1 [X) R)' 
A,1 =A, 1 ••••• A,"' = A, ,. 

where A(U) is the set of k attributes which are chosen from the result of R1 1 [X) R, such 

that their domains are equivalent to those of A1 , ... , Ak. Furthermore, C is the condition 

of selection (or natural join) with respect to the m attributes A,1 , ••• , A •. n in R,_ 1 and 
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A11 , ••• • A 1,. in R. T hen. the transitive clo~urt' If~ by C and , \1111 is defint>d as 

'-

R t [c; A<"1] = LJ R,, 
• 1 

where R1 = R is assumed. • 
From one r elation to multiple relations 

Next, we consider a mo:re general transitive closure of a n•latiou R which joins R and 

one or more relations Q1 , ... , Q 11 at each iteration. Aft t•r t•ach join operation, projection 

op<'ration is executed on to the attributes with th<' same domains as the original relation 

R. Now, we give a precise definition. 

D efinition 3.2: Let R be a k-ary relation R(A 1, ••• , At ), when· the domain of A, is D,. 

Q," h = 1, ... , u be u relations. Let AI" I , h = 1, ... , u be sets of attributes belonging to 

both R and Qll, where we assume that A{ll), h = 1, . . . , u, are disjoint with each other, 

and let C' = {R.A(l l = Q 1.AI 11, ... ,R.A(u) - Q,.A'"'}. Let us consider the following 

computation as a single cmd the ( i -1)-th iteration for computing a transitive closure; the 

joins of R, 1 and u relations Q1, ... , Q11 are performed at the same time as specified by 

the condition C. The projection of this result onto the set of k attributes A(n), which are 

chosen from the attributes in Rand Q1, ... , Q,, is tlwn performed, and their domains are 

same as the domains in R. Here, we assume that A<0 1 = {A 1 , .. , A.t.} and A1, ... , A,, are 

chosen from R and A,•+l, ... , Am are chosen from Q 1, ... , Q,, without loss of generality. 

We express the entire computations as 

Rt = R, 

Finally, the transitive closure R+ by Q1, ... ,Qu, C and Al0 l is defined as 
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'X 

R lQ1, ... ,Q.,: C: A101] = U R,. 
l 1 

• 
W<' note that the transitive closure of a k-ary r£>1ations, given in Definition 3.1, is a 

spt•cial case of this definition. 

In Definition 3.2, we may consider the sequence of composite operations of joining 

Q 1, ••• , Q11 , selection by the condition C and projection onto A<0 l to be a single operator, 

which we- denote by <p, i.e., 

and there-fort>, we have 

3.3.3 The Size of Transitive Closure 

For the deflnition of the generalized transitive closures and the operator <p, we can modify 

algorithm Semi-Naive2, by only replacing line 6 by 

(3.11) 

or by introducing the new intermediate relation R~, 

{ 

R: := t1R, t 1><1 (Qt, ... , Qu) 

6R. := 7r A(Ol R~. 
(3 .12) 

In this section, we analyze and evaluate the size of the generalized transitive closure 

ba~wd on the modified version of algorithm Semi-Naive2. 

Evaluat io n of the resulting s ize by operation <p 

First of all, we evaluate the expected size of the relation resulting after operator <p ts 

applied, which is the result of single iteration (3.11). 
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For this, we first examine the expected siz<' of the relation after natural join t:iR, 1 1><1 

(Q1 , ... , Q 11 ). Let thesizeofthedomain D~' 1 of an attrihute A~' 1 E _.11•1 used for joining 

Q, be d~' 1 , and define 

q -IQ I de''= I= t I II d
(r) 
J . 

Then, by using formula (3.7) iteratively, we obtain 

Ql Qu 
lt:iR, JIXI (QJ, .. . ,Qu)l = t:ir, 1 X- X··· X - t:ir·, 1 X p, 

dll) d(ll) 

where 

91 9u 
p =: d(l) X ... X ~i(u) = Pt91 X ... X p,q,, 

p, = 1 j de' l, i = 1, ... , u, 

that is, the selectivity s between t:iR, -1 and Q::; is 

11 1 

s = II d<''. 
t=l 

(3.13) 

(3.1 4) 

(3.15) 

(There are some cases in which formula (3.15) of the probability p, of joining the corre-

sponding attributes is not appropriate and given differently, as will be se£>n in the later 

examples.) 

After the above join operation, we execute the projection to the set of attributes A {Ill 

of the resulting relation. T his time, the domain of each attribute A~01 E A(o) is not equal 

to D)'ll, and its size ~(OI should be considered to be 

£,10
' "'~Ol {I -(I -dtoJ} , (3. 16) 

because only those value·s that have appeared in the original R can appear in the new 

domain. The righthand side of this formula gives the <'Xpected value of the number 

of different tuples when r elements are chosen independently from domain Dj01 
with 

equal probability. (Here, if the independence of entriC's is not guaranteed, d;01 should 

be estimated in a different manner.) Then applying formula (3.6) of projection to the 
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rclatioll oR,-1 txl (Ql ..... Q, J. whose size's ~r 1 X p, and to tht• :;et of attributes _-lflll 

of sizt• d~1111 , we have 

c:: IT ,1(0) 
a, . 

(3.17) 

( 3. 18) 

The reason why these formulas are only approximations is that, in addition to that for-

nntla (3.6) is an approximation, we use only the expected values of the size of the relation 

Cl n, -1 txl ( Q 1, ... , Q u) and the domain D~(O) without considering their distributions, even 

though they are random variables. In order to emphasize this, we adopt in the following 

the notations 8p,, Clp., p,, p+ instead of 6R, .J.R,, R,, R+, if they are computed by 

formula ( 3.17). 

R ccursiv<> equation and its so lution 

As mentioned in Subsection 3.3.2, the transitive closure R+- of a relation R by operation 

cp is computed by lines from 6 to 8 in algorithm Semi-Naive2. Corresponding to those 

relations computed in lines from 6 and 8, we have the following approximate formulas of 

their sizes, 

Op, = C { 1- (1- ~) /::;f>,-l Xp } (by (3.17)) 

Clpi = 6p, (1- P•;l) (by (3.4)) 

p, = P•-1 + b.p,. 

Eliminating 6p, from the first two formulas in (3.19) gives us 

{ :p~ ~.:!~ ~~~- ~r-···} (1 -7) 

By formula (3.10), we then obtain 

(3.19) 

(3 .20) 

(3.21) 
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Howe\'er. it is not easy to soln' tlw recursiw <'quation of (:t:?O) directly. Therefore. 

taking into account the fact that l/c << 1 holds iu prnctin•, we linearizt' and approximate 

(3.:?0) as 

up, ~ C { 1 - ( 1 - ~ X ~p, 1 X p) } ( 1 - p,C I) 

= p (1- P•; ~)opt 1· ( 3.22) 

Since this approximation formula does not indudt> tlw st•Coll(l and higlH'r t<'rms of Taylor 

expansion of (1- l/c) 6 "•-l xp, it has a tendt•ncy that up, grows faster than the trut• 

value when p grows. Therefore, p-+ in (3.2 1) has the sanw lt•ndcncy that it grows faster 

than the solution of the original recursive equation. 

Then we transform f.ormula (3.22) into 

c 
- · Clpt ~ (c- Pi·-d · tlp1-1 
p 

= c · Clp, -1- Clp, 1 · P•-i• 

and add these for i = 2, 3, ... , to obtain 

; (p+ Clpt) ~c. p+- ~ (p+
2 + ~ {Clp,}2

). 

Here, we replace the last term of the righthand side by 

(X, 

'L {b.pt}2 ~ Clp3. p+, 
l () 

'X. 

(3.23) 

(3.24) 

because it is difficult to compute L {Clp,}2 exactly, and Clp3 • p+- was observed to be a 
t=l 

better approximation than Clp1 · p+ and Clp2 · p-+ in some numerical experiments, though 

the lefthand side of (3.24) tends to become larger than the righthand side when p becomes 

large. Furthermore. 

p2 2 
Clp3 ~ 3 · tlp1 · (c- p · Clpt) · (c- Clpt) . 

c 

as easily shown by applying (3.22) iteratively. As a result, we have 

(3.25) 
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by (3.23), and 

p+ ~ 2~ {- (p · b.p3 + 2c- 2cp) + V(P · b.p3 + 2c- 2cp)2 + 8cp · 6.p1 }· (3.26) 

The approximation (3.26) tends to be larger than the correct value, because the error 

between (3.22) and (3.24) becomes large for large p. But judging from the later experi-

ments for binary relations, formula (3.26) appears to be sufficient for practical purpose 

for p::::; 2. 

Binary relations 

We can apply the result of formula (3.26) to a binary relation R. In this case, since the 

p in formula (3.14) by a single operation l><l is given 

p = rjd, 

we substitute it into (3.17) and derive 

{ ( 
l)t.r,_lxrfd} 

cp (b.~_t) = IRi-1 l><l RI ~ c 1 - 1 - ~ . (3.27) 

Formulas (3.25) and (3.26) then become 

r 3 2r4 r 5 r 5 2r6 r 7 

b.p3 = d2 - cd2 + c2d2 - cd3 + c2d3 - c3d3, 

P + "' H -( l'> P3 + 
2
:d - 2c) + V ( l'> P3 + 

2
:d - 2c )' + Bed } (3.28) 

3.3.4 Numerical Experiments 

We report the computational results for transitive closures of binary relations R, and 

evaluate the precision of approximations (3 .27) and (3.28) in this section. 

E x p eriment 1: Estimation of IR l><l RI by formula (3.27). 

For d = 50,100 and 200, and for several values of r for each d, we generate r tuples 

of R at random, computeR l><l Rand count its size. Figure 3.1 shows the average size of 

3.3 Computing Cost of Transitiive Closure 

I Rt><J RI 
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Figure 3.1: Estimation of IR l><l RI· 
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1><3 for :30 trials. In the figure. the solid cun·es dt>note the valut.•::, of formula f3.27) and 

tbt' dotted circles 0 are the results of our experiment::.. From these. we may say that 

formula (:L27) giw·s a rather accurate approximation. 

Experiment 2: Estimation of IR'+ I by p+ of formula (:1.28). 

Figure 3.2 shows the average values of p+ for some selected values of d and r, where 

tht' solid curves give the result of solving recursive equation ( 3.20) until tlpk < 0.01 is 

attained, and the cross signs, which are not seen in most of the part in the figure because 

it mostly coincide with solid curves, give the approximate values given by (3.28), and the 

dotted circles 0 are the results of our experiments. 

From thE'se results, we see that the accuracy of our approximations are satisfactory 

for the range in which d is rather large, and r is comparatively smaller than d (e.g., in 

case of p = r / d ~ 2). which is usually satisfied in practical applications. 

3.3 Computing Cost of Thansitive Closure 
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3.4 Application to the Same Generation Query 

As an example for applying our estimation method, we choose the same generation 

relation query sg (a, Y) to output all persons who are the same generation as a given 

person a, which is well known in the deductive database applications. 

By comparing the estimates with computational results, we shall see that our ap

proach is useful for practical purposes. Therefore, our estimations can be used to assess 

the computational costs of various methods that answer a given query, and can compare 

them to pick up the most efficient one for the given problem instance. 

3.4.1 Three Representative Methods 

D efinit ion 0 of the same generation predicate: 

{ 

sg(X, X) +-

sg(X, Y) .- par(X, Xl), par(Y, Yl), sg(Xl, Yl). 
(3.29) 

Query: 

query(Y) +- sg(a, Y). 

Here, par is an EDB predicate, while sg is an IDB predicate. We assume that the 

domains of two attributes in relation par are the same, and d = 50 and jpari = 20 in our 

example. We use this example throughout this section, and apply three representative 

methods to derive its answers. 

Method 1: This method considers the following definitions which are equivalent to 

(3.29). 

Definition 1 of the same generation predicate: 

{ 

sg(X, X) +-

sg(X, Y) +- par X par(X, Y, Xl , Yl ), sg(Xl , Yl ) . 
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This method generates a, 4-ary relation h (X, Y, Xl. Y1) = parx par(X, Y, Xl, Yl) 

which is the Cartesian product ofpar(X, Xl) and par(Y, Y1), and compute its transitive 

closure I{ (X, Y, X2, Y2) by 

<p(Il.i) = rr{x.Y.X2.Y2} ( fi.t-1 (X, Y, X 1, Y1) txl ft (X l, Y 1, X2, Y2)). 

Then, it selects the tuples of It whose third element coincides with the fourth element, 

that is, !2 (X, Y, X2, Y2) = o{x2:::Y2}It(X, Y,Xl, Yl), and project them onto the first 

and second columns. The resulting relation is sg(X, Y). Finally, we select the luples 

whose first element is a from sg(X, Y), which are the answer sg(a, Y). 

Estimation: First of all, the expected number of different values that appear in each 

attribute of a relation par is 

d' =50 { 1- ( 1 -· 5
1
0) 

20

} = 16.62 (by (3.16)). 

The size of the transitive closure It is 

6.p1 = lftl = 20 X 20 = 400 (by (3.1)), 

c = (16.62)4 (by (3.18)), 
400 

p = = 0.16 (by (3.14)), 
50 X 50 

6.p3 = 10.12 {by (3 .25)) . 

Therefore, 

II{(X, Y, X2, Y2) I= 475.90 (by (3.26)). 

Then, the sizes of h (X, Y, X2, Y2), sg(X, Y ) and sg(a,X) are 

ih(X, Y, X2, Y2)j = 475.90/16.62 = 28.63 (by (3.5)), 

jsg(X, Y)j = 16.622 
{ 1- ( 1- 16 _~22 ) 

28

.G

3

} 

= 27.2~5 (by (3.6)), 

!sg(a, Y )l = 27.25 /16.62 = 1.64 (by (3.5)) . 



54 CHAPTER 3 APPROXIMATE COSTS OF PROCESSING uNIFORM DATA 

As a result. the sum of the sizes of all intermediate relations (i.e .. which can be considered 

as the processing cost) by ~1ethod 1 is 

Cost 1 = jl, (X, Y, X1, Y1 )j + lli (X, Y. X2, Y2)j 

+ll2(X, Y,X2, Y2)j + jsg(X. Y)l + l:>g(a, }) = 933..12. 

• 
Method 2: This method considers the following definitions, which are equivalent to 

(3.29). 

D<>finition 2 of the same generation predicate: 

{ 

sg(Xl, Yl) .- par(Xl, Z), par(Yl, Z) 

sg(X, Y) +- par(X, Xl), sg(Xl, Yl). par(Y, Yl). 

This nwthod first computes 

sgl(X l , Yl) = rr{Xl.Yl} (par(X1, Z) !Xl par(Yl,Z)). 

Then, it prepares the transitive closure sg(X, Y) = sgl +(X, Y) by repeating a single 

operation 

<p(sg lt) = 7T{X.Y} ( sg1;-l(Xl, Yl) !Xl (par(X, X l) ,par(Y, Yl))). 

Finally, sg(a, Y) = a{x a} sg(X, Y) gives the answer. 

E s timation: First, we estimate the size of sg1 as follows: 

jpar(X, Y)l = 20, d =50, 

d' = 16.62 (same as Method 1), 

c = 16.622 (by (3.18)), 

lsg l(X. Y)l = 16.622 {1- (1- -
1

-.,) 
2106·~~ } 

16.62-

= 23.09 (by (3.6) and (3.8)). 

Next, the size of the transitive closure sg(X, Y) of sgl(X, Y) and sg(a, Y) becomes 
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~P1 = jsgll = n.09, 
1 1 

p = 
50 

X 
50 

X 20 X 20 = 0.16 (by (~U·I )}. 

~P3 = 0.49 (by (3.25)), 

J~g( \', Y) = 27.:23 (by (3.26)), 

jsg(a, Y)l = 27.23/16.62 = 1.64 (by (:3.5)) . 

Therefore, the processing cost is 

Cost 2 = jsg1(X, Y)l + jsg(X, Y)j + jsg(a, Y)j = 5Ul5. 

• 
M e thod 3: The Magic Set method. 

Definition 3 of the same generation predicate: 

{ 

m-sg(X) +- m-sg(a) 

m-sg(X) +- m-sg(Xl), par(Xl, X), 

{ sg(Xl, Yl) .- m-sg(Xl), par(Xl, Z), par(Y1, Z) 

sg(X, Y) +- m-s.g(X), par(X, X1), sg(X 1, Yl ), par(Y, Yl). 

This method derives only the ancestors of a and a itself as m-sg(X), which is defined by 

the first two formulas. Namely, we compute the transitive closure sg(X, Y) by 

<pz(sgl1
) = rr{x.Y]. (sgl'(Xl, Yl) !Xl (par'(X, X l),par(Y, Y 1))), (3.30) 

where 

sgl'(X1, Y1) = rr{Xl.Yl} (par'(X1, Z) !Xl par(Y 1. Z)). 

par'(X, X1) = m .. sg(X) !Xl par( X, X 1). 

Finally, we select from sg(X, Y) the tuples with the first <'l<'tnent X - a. 

Estimation: We first remark that m-sg(X) is the union of a and the transitive closure 

m sg1 +-(X) defined by 
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<pdm-sgl) = ;r{Y}(m-sg1 (X ) IXlpar (X.Y )). 

whc·re m -sg1 ( X ) = a{Xl= u} par (Xl, X). As the size of m-. ..;gl (X ) is 

!a{Xl = 11 }par(XL X )l = 20/ 16.62 = 1.20 (by (:U)), 

we obtain 

1 
1.20, p = 20 X 

50 
= 0.4, d1 = C = 16.62, 

0.16 (by (3.25)), 

lm sgl +(X)I = 1.92 (by (3.26)), 

and tlwr<'fon• 

lm-sg(X)I = lm -sgl+(X) U {a}l 

_ •) 1.92 X 1 _ ? 
- 1.9_ + 1- 50 - -.89 (by (3.:3 ) ). 

TIH'n we compute par' by joining m-sg(X) and par(X, X 1) by attribute X. But since 

m -sg(X) is uot g(•nerated randomly at this time. it. may not be appropriate to apply 

forwula (:l.7). Therefore, as the tuples in m -sg(X) of size 2.89, we consider element a 

(size I) and ot l1er elements (size 1.89) separately, when the probability of being joined 

with 71ar(X, \'1) is estimated, that is 

ipar1(.\',Xl)l = 1 X 20 X 16~62 + 1.89 X 20 X 
5

1

0 

= 1.20 + 0. 76 = 1.96. (3.31) 

ln this formula, the first term in the righthand shows the expected value of the number 

or luplt•s in par'(X, Xl) with X= a, and the second term shows the expected value of 

the numb<'r of tuples in which X (#a) is one of the ancestors of a. 

"\ext. we evaluate the size of sg11
• Since the number of different values that appear 

as XL in par'(Xl, Z) is the number of a and its ancestors, it becomes 2.89 which is 

computed as the size of m-sg(X). Similarly, the number of different values of Y1 in 

par(Y l , Z) is 16.62. By formulas (3.18), (3.8) and (3.6), therefore, 

C- 2.89 X 16.62 = 47.97, 
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1 , , _ } """'iT . 

{ 

1 ~c } 
lsgl (.\1.} 1 I = ·17.9t 1- (1- --;:--::;-) 

41.91 
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By using these results, we can estimate the sizt' of ~g which i::. the t1an::.itive clo~un· of 

par'. It is clear that 

6.p1 = lsgl'l = 2 .32, 

c = 47.97 (same as the previous c). 

Then in order to estimate p for a single iteration in th<• transitive closure, we examine 

the probability for the XI in sg11 (Xl, Yl) to lw joined with tlw Xl in par'(Xl,Z), in 

formula (3.30). The element a and its proper ann·stors appear at the ratio of 1.20 : 0.76 

as the values of Xl in sgl'. This is the same as in par' (by (3 .:!1)). Therefore, the 

probability of joining these elements with X 1 in par' is 

1.20 X ..!.._ + 0.76 X _1_ = Q.21, 
1.96 50 1.96 1.92 

because the probability for a to be joined with \" l is <'qual to the probability that a 

appears as an ancestor of a, which is 1/50 from the uniform randomness of par, and 

the probability for a's ancestors to be joined with X I is 1/lm sgl +(X)I by assuming 

that a's ancestors appear as Xl in par' with equal probability. On the other hand, the 

probability for Yl in sgl' to be joined with Yl in par is 1/50 bC'cause of the randomness 

of par. From these facts, p can be estimated as 

p = (0.21 X 1.96) >< ( 5~ X 20) = 0.17 (by (3.14)). 

This implies, 

6.p3 = 0.059 (by (3.25)), 

sg(X, Y) = 2.77' (by (3.26)). 

Finally, since a and a's ancestors(# a) should app<'ar in X at the ratio of 1.20: 0.76. in 

selecting the tuples of X =a in sg(X, Y), we have 

I ( I 
1.20 

sg a, Y) = 2.77 >( -

9
- = 1.70. 

1. 6 
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Consequently, the total processing cost is 

Cost 3 = lm-sg(X)I + jpar'(X1, Z)l + isg11(X1, Y1)i 

+lsg(X, Y)l + lsg(a, Y)l = 8.08. 

• 
From the above discussion with the proposed three methods, we obtain the following 

estimations of processing costs, 

Method 1: 932.52, Method 2: 51.95, Method 3: 8.08. 

The differences among these costs are remarkable. Indeed, we recognize again that the 

magic set method is quite efficient. The final sizes of the answer set sg(a, Y) is estimated 

as 

Method 1: 1.64, Method 2: 1.64, Method 3: 1.70. 

It should be noted that these three values are close to one another, although they are 

estimated as a result of applying several different operations. 

From these facts, our approximations in this chapter may be said to be fairly accurate. 

3.4.2 Numerical Experiments 

To see the accuracy of our estimation in this section, we randomly generated [Knu 75] 

sample relations with d = IDI = 50,100,200 and several r = lpar(X, Y)l for each d, 

and computed the average sizes of intermediate relations that appear during executing 

Method 1 of this section. The results are shown in Tables 3.1. 3.2 and 3.3. Except 

that lhl and jsg(X, Y)l have some discrepancy between the real data and the estimated 

values, it appears that our approximations give rather accurate estimations in almost all 

cases. 
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I 1' I Classification Ill I lit I llzl l.,g(X. Yll I~<.IJ(H.Y)I Cost 1 

20 Tht>ory 400.00 475.90 28.63 27.2:> 1.64 933.42 I 
Experiment 400.00 471.40 39.40 21.05 1.50 936.35 

30 Theory 900.00 1404.00 61.78 58.28 2.56 2426.62 

Experiment 900.00 1365.80 103.60 49.95 2.10 2421.45 

40 ThC'ory 1600.00 4410.81 159.15 143.83 5.19 6318.98 

Experiment 1600.00 5334.30 317.60 93.35 5.00 7350.25 

Table 3.1: Results of Method l in case of d = 50. 

I T I Classification llzl isg(X. Y)l 1.-;g(a. Y)l 11 Cost 1 

40 Theory 1600.00 1904.47 57.53 56.07 1.69 3619.76 

Experiment 1600.00 1952.50 96.80 53.65 1.85 3704.80 

50 Theory 2500.00 3332.54 84.37 82.15 2.08 6001.14 

Experiment 2500.00 3437.85 146.05 70.50 2.20 6156.60 

60 Theory 3600.00 5622.71 124.16 120.51 2.66 9470.04 

Experiment 3600.00 5779.00 230.60 03.65 2.60 9705.85 

70 Theory 4000.00 9600.21 190.04 183.17 3.63 14877.0G 

Experiment 4900.00 10410.30 421.55 147.30 3.65 15882.80 

Table 3.2: Results of Method 1 in case of d = 100. 
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)' Classification I III I I{ I 1121 lsg(X. YJI jsg(n. YJI Cost I 

40 ThPory 1600.00 1666.63 45.87 -45.10 1.24 3358.84 

Ex pcri men t 1600.00 1739.25 65.45 45.25 1.35 3451.30 

GO Theory 3600.00 3955.94 76.15 75.10 1.45 7708.64 

Experiment 3600.00 4008.10 111.50 71.00 1.45 7792.05 

80 Theory 6400.00 7618.75 115.31 113.82 1.72 14249.60 

Experiment. 6400.00 7760.05 185.75 101.25 1.45 14448.50 

100 Tli('Ol'Y 10000.00 13332.53 169.10 166.83 2.12 23670.58 

ExpPl'i nwnt 10000.00 13697.80 321.00 153.35 1.90 24174.65 

Table 3.3: Results of Method 1 in case of d = 200. 

3.5 Conclusion 

In this chapter, we propose approximation formulas for estimating the sizes of resulting 

relations when typical operations in relational algebra and the operation of transitive 

closure arc applied. Since these enable us to estimate the sizes of the resulting relations 

from the original sizes of original relations and domains, we can easily evaluate in advance 

the sizes of intermediate relations generated in processing deductive databases. This can 

be used to find efficient processing methods to derive answers to given database queries, 

without really executing the methods. In fact, we could indicate the differences among 

the three known methods for deriving answers of the same generation problem from given 

relations in Section 3.4. 

Our initial assumptions on relations may not be appropriate in some cases, because 

3.5 Conclusion 61 

very few relations in the real world would have uniformly generated tuples in the precise 

sense. Therefore, we also have to consider the cases in which the probability distribution 

of values in the given domain is not uniform. In the next chapter tlH'refore, we attempt to 

obtain estimation formulas of the expected sizes of resulting relations, when the original 

data are generated by general distributions. 
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Chapter 4 

Approxin1.ate Evaluation of 

ProcessinLg Costs of General Data 

4.1 Introduction 

For the purpose of estimating the cost of processing queries in advance, we proposed a 

new approximation method in Chapter 3 to evaluate the size of transitive closure as well 

as the operations in relational algebra. These approximations were derived on condition 

that the value of each element of the original relations is randomly generated by th<> 

uniform probability distl"ibution, independent of the values of other elements. 

Although the above method gives a fairly accurate approximation within the range 

of uniform data, the distribution of real data seldom obeys the uniform distribution 

[Lyn 88, Wol 90J. Fortunately, in many cases, the probability dist rihution of the values 

in each domain of a relation is known in advance to a certain c>xtent. To take a simplc> 

example, the distribution of family names in J apan is roughly knowu from the statistical 

data of names. Therefore, we suggested the necessity of handling the data that do 

not obey the uniform distribution in Chapter 3. The cost of processing queries can be 

evaluated more accurately if it is based on the real distribution of data values. 
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4.2 

CHAPTE R 4 APPROXIMATE COSTS OF PROCESSI:'-lG GENERAL DATA 

In this chaplet, we assume that the distribution in each domain is known, or can 

be estimated by ~onu.· means in advance. Then, we propose approximate methods for 

evaluating tht~ computing cost of operations iu rclat ional algebra, e:-;pecially transitive 

closures, whose definition was extended as pn•senled in Chaptt•r 3. The ideas to obtain 

approximate fortuulas are the refined version of those in the previous chapter, but several 

new idea.c; are incorporated in their construction. The result is more accurate even for 

Uw case of uniform distribution, as evidenced hy some numerical eXJH'rinwnts. 

Finally, WP takt- the Zipf distribution [Knu 73, Knu 75, Lyn ~8, \\ ol 90] as a typical 

f.'X<unplc. and demoust rate the effectivene:;s of our approximations by t•xperiments. The 

Zipf distribution can represent fairly wide spectrum of distributions from uniform to very 

skcwed ones. 

Computing Cost of Operations in Relational Algebra 

4.2.1 Assumptions on R elations and Functional De p endencies 

\Ve assume that the occurrence probability p,1 of \'alue e1 in at tribute A, is known in 

advance or can be ('stimated by some means in this chapter. For example, by counting the 

number of occu rTenc~s of value e1 in att r ibute A, of given relatio n R, we m a.y regard that 

p,1 ~ n,1 fr, whkh ma.y be sufficient for practical purposes. All entries of a. given relation 

R, are generated independently according to such probability distribution. However, 

since we define that a relation does not contain the same tuple more than once, after 

generating tuples in the above manner, we remove all the duplicate tuples but one, and 

consider t he remaining set of tuples fo rms a given relation R. 

As a result of the above eliminations, the independence among t he entries d oes not 

hold any longer, strictly speaking, and the probability distribution of the resulting values 

may be slightly distorted from the original distribution p11 • But , for the ease of analysis, 

we consider and assume that the independency still holds an d the distribution of values 
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still obey the original distribution 7>11' 

Concerning with the independ<.'IH'Y a:-;sunrption, there i:-; a di$cu:;sion !iaying that tlw 

independency does not hold because I ht• rl'iat ions we ~ncount t•r in tIll' real world lr<\\'t' 

functional depend{•ncy [t'll 9b among at I rihuU·s . For exam pit•, in t ht· parent-child n·

lation par(.\, Y), attribute X (the child's family name) and at t rihute } (the par<.'nt ':-; 

family name) have the high probabilistic tt•nd<.>ncy that a child and his/ht•r parent havt• 

the same family name (even if a femaiP may change her family IH\Illt' aftt•r her marriag<'). 

T his is an example in which X and Y an• functionally dependt•nt, and X and }' an• 

not dependent. However . as another t>xamplt•s. let us con:;ider th(' relation fl ight( X. }r) . 

which implies that then• is a direct £light from the airport \' to } . and 1 he relal ion 

class(X , Y), which implies that a leach<>r V teaches a subjt•cl \ . l n t lwse relation:-;, \' 

an d Y may be functionally dependent, si rH'<' for examp!P in the I at tt'r caR<', Y would dP 

term.ine X almost uniquely. However. it is difficult to believe that lht-r<• are probabilistic 

dependency among airport names X and }' and subject X and tPacher names }'. In 

other words, even if the values in each attribute are randomly gt•rwralt'd independt•nlly 

of the values in the other attributes, a functional dependency l)('t W(•t•n those attributes 

can hold . T hese t ell that t he probabi listic independence and the functional depenclt•ncy 

are not contradictory each other. In this sense, even if the asswnpt io11 of independency 

is made, the results will supply useful inforlllation for most of relations practically en

countered. On the other hand. it is also true that the cost analysis of operations is very 

difficult without the assumption of independency. 

T here is another factor to be considered in our analysis. That is, ('ven if we assume 

that a relation R is generated in the above manner, the prob ab ility distribution will lw 

modified whenever any operation is applied to R. T his is quite different from the cas<.' 

of uniform distribution. because the uniform distribution is maintained after applying 

many of the operations under consideration. T herefore, in the analysis of this section, 
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we can.·fully consider how the distribution changl'S while estimating t.he cost of various 

operations. 

4.2.2 Set Operations 

Corresponding to the results in Section 2 of Chapter 3, we present the approximate 

formulas for the computing cost of basic operations in rC'Iational algebra under the general 

probabilistic distribution of values in each attribute. 

First, the size of the Cartesian product R1 x R2 is independent of the distribution, 

and is 

{4.1) 

Let k-ary relations R1 and R2 have attributes A, and B, (i = 1, ... ,k), respectively, 

where A, and B, have the same domain D,. Let the occurrence probability of the value 

e1 in A, and B, be p,1 and q,1 , respectively. Then, the expected size of their intersection 

IS 

dt eh 
IRI n R21::::::: L .. ·2: { 1- (1- PlJt ... Pk)l r· }{ 1 - {1- 91Jt ... Qk)l r2 

}· (4.2) 
}t -1 JA=l 

W hen P111 · · · p~.;11 and Ql]t · · · q~,.14 are sufficienlly smaller than 1, we can linearize the 

above formula as 

dt d4 

IRI n R21::::::: rlr2. L .. ·L: PlJt .. ·p~)Aql)l .. ' QJ..u 
Jt=l u=t 

111 practice. Especially. when the values in domain D, are generated by the uniform 

distribution, that is, p,11 = q,11 = Ijd, (i = 1, ... k, Jt = 1. ... , d,), the above formula 

becomes 

= r1r? · , 
- dl ... d~,; 

as already presented in Chapter 3. 
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The sizes of union and set difference can ue obtained from the size of intersection, 

that is. 

( 4.3) 

and 

( 4.4) 

4.2.3 Selection, Projection and Natural Join 

The expected size of projection 1rcR with the condition that 

C= {Ai1 =e1t, ... ,A,,.. =e1 ... } 

is approximately equal to 

d,, d,, 

11fARI::::::: L .. ·I: { 1 - (1- Ptl}l ... p,l)l)' }. {4.5) 
J1=l u=I 

Similarly, the expected size of selection a A onto the- set of attributes 

is 

(4.6) 

Now, let R1 and R2 have attributes A1, ... , A,. and B1, ... , 8,., respectively, and the 

occurrence probability of value e1 in the attribute A, (13,) of Rt (R2) be p,1 (q,1 ). Then, 

the expected size of the natural join with respect to some of attributes Ai,, ... , A,, in R1 

and B11 , ..• , B1 in R2. where the domains of A,. and H1 coincide, becomes 

r d,. 

IR1 IXl R2l::::::: r1r2 IT L Pt.m · qJ•m· 
.~=1 m=l 

In other words, we estimated the selectivity 512 between Rt and R2 as 

r d,. 

5}2 = IT L Pt,m · QJ,m· 
.~-I m=l 

(4.7) 
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As a special case, which is important. in practice, let us consider the natural join 

of R(A1, A2), where the domains of the two attributes A 1 and A2 are the same D. 

Furthermore, let. the occurrence probability of value e1 in A1 and A2 be PlJ and p21 , 

respectively. Thcn, the expected size of the resulting relation is 

d 

I R IXl R j ::::::: r x r x L p 11 Q2r 
Az = At 

] = 1 

Computing Cost of Transitive Closure 

4.3.1 Outline of the Estimation 

In this section, we derive an approximate formula for estimating the size of a transitive 

closure by a similar approach as used in Chapter 3. 

Recall that the Scmi-Naive algorithm for the generalized transilive closure is summa-

rized in the following computation: 

In this computation, we first initialize the intermediate relations 6.R1 and R1 as 

( 4.8) 

Then, the following computation is iterated fori= 2, 3, ... , 

(4.9) 

Finally, the transitive closure R+ of R by Q1, ... ,Qu, C = {R.A(l) = Ql.A(ll, ... , 

R.A(ul = Q
11

.A(tt) and A(O) is computed by 

'-

R+[Ql,····Qu;C;A(O)] = U R. (R1 = R). 
1. - 1 
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We estimated in Chapter 3 the sizc of the generalized transitive closure by decompos 

ing the computation in each iteratiou into the operations of n•lational algebra. In this 

case, operations such as ~1atural join. project ion, set differenn· and union are used In 

other words, we can estimate the expectNI si ze of the t1ausitiW c-losure if we can know 

the sizes of relations and the probability distribution of values aft er such operations. 

If all the values of all attributes are gcnerated by the uniform dbt ribution, the uniform 

distribution is preserved after applying the above operations to tlw original relations, and 

we could analyze their behaviors rather easily as described in Chapter 3. In the case of 

general probability distribution, howt•ver. the distribution changes after applying each 

operation to relations. Since it is not easy to trace how the probability distribution 

changes, we use approximate distribution in our computation. As it is often the case 

that the probability distributions in the original relations R ( = LlR 1) and Q1, ... , Q 11 arc 

already given by approximation, this simplified treatment may b<' surflcicnt for practical 

purposes. 

The initial relations uR1 = R 1 - R as well as the resulting n•lations R, after imme· 

diate or a few iterations still maintain the characteristics of the original distribution. As 

the iteration of computitng Rt progresses, however, probability distribution of values will 

become more spread out and will approach to the uniform distribution eventually. This 

is because we eliminate duplicate tuples at each iteration, and add th<' set of new tuples 

6.~ to Rt. As a result of these modifications, each value tends to appear uniformly. 

For the purpose of estimating the accurate sizes of relations R1 for general data, we 

have to trace the changes of probability distribution of values for every operations, as we 

mentioned. If it can be possible, we should trace them completely after each iteration. 

But it is too complicated to do so in practice. Therefore, in the subsequent discussion 

in this section, we estimate the size of relations R. approximately by dividing the entire 

computation into the following two phases: 
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• The first iteration which is based 011 the original probability distribution of R, 

and 

• The second and higher iterations \',:hich are based on the uniform distribution of 

R,. 

4 .3.2 First Iteration 

First of all, consider relations R and Q 1 , ... , Qu, and assume that the occurrence proba-

bility of value e j in attribute A, (i = 1, ... , k) of R is p1j (j = 1, ...• di) and the occurrence 

probability of value e1 in attribute A~h) of Q~a (h = 1, ... , u) is t~;l). 

The computation in the first iteration is obtained by substituting i = 2 in (4.9), such 

as 

R2 tlRtl><l(Qt, . . . ,Qu) 

6R2 = 7roR2 
(4.10) 

tlR2 - 6Rz- R 

R2 "= R1 u uR2. 

We estimate the expected sizes of R2, 6R2, tlR2 and R2 in the above formulas in this 

order. 

The size of R2 

The probability that all the join attributes A~111 E A lhl in each relation Qh (whose size 

is qh) are joined with the corresponding attributes in tlRI(= R), that is, the selectivity 

/!1 between R and Q h, becomes 

( h = 1 ' ... ' 1t) . 

Therefore. by using the formula (3.7) of join iteratively, we obtain 
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In other words, the selectivity s betwcen R nnd Q,, ... . Qu is 

,, 
s = rr J,. 

•= I 

The size of 6R2 

The relation 6R2 is obtained by projecting R~ onto the set of alt ribut<•s A IUI. In this 

process, we use the new domain sizes of A, E A (o), 

tl 

d~ = 2:::{1 - (1-- p,1Y} (i = J •••• ,v). 
J 1 

d 

d~ = L {I - (l -- t~~''Y'11 } (i = v + l , ... , m), 
J I 

because only those values which have already appeared in the attribules A 1 in A(O) of the 

original R and Q1 , ... , 1Qu can appear in the new attributes A1 in U~ . The first formula 

expresses the expected number of different values in attribute A, ( E A<01 ) in R and the 

second one expresses that of attribute A, (E A101) in Q, 's. 

It is not so easy to know that the exact probability distribution of these d: different 

values because we have to consider all the combinations of possible values appeared in 

the resulting relation. Therefore, for simplicity, we suppose that tlwst, d: different valu<'S 

are generated by the folllowing probability distributions PtJ and ~~~11 , which are slightly 

(11). Q h modified from the original probability distribution p,1 in R and I ,
1 

tn , = l, ... , u: 

u = 1, ... , r d~ 1 ) . 

These probability distributions assume that only the first f d:l valut>s with high occur · 

rence probability (we consider that e,1 , •••• e,r.,, are the first fd:l values without loss 

of generality) are generated in the new relation by the normalized distributions of the 

original distributions. 
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In conclusion, we can estimate the expected size of 6R2 by using those modified 

distributions as 

(hE {1, ... ,u}). 

The size of 6.R2 

The relation 6.R2 is obtained by the set difference, that is, it consists of only newly 

generated tuples in the first iteration. Therefore, the size of 6.R2 becomes 

(4.11) 

The size of R2 

Finally, we have to estimate the size of R2, which is the union of R1 ( = 6.R1 = R) and 

6.R2. Here, we know that there are no tuples that belong to both R1 and 6.R2 because 

of the definition of 6.R1 . Therefore, we obtain 

IR21 = IRtl + I6.R21 

= r + I6.R2I· 

This concludes the computation of the first iteration. For the same reason as we men-

tioned in Chapter 3, we use notations p~, 6pi, 6.pi and p1 in place of the approximate sizes 

of R~, 6R., 6.R. and R., respectively, in order to emphasize that these are approximations. 
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4.3.3 Second and Higher Iterations 

In the second and high•er iterations (i 2': 3), the probability distribution of values in 

each attribute A1 of the incremental relation i:lR1 a::;ymptotically approaches from the 

original distribution of relation R to the uniform distribution as the number of iterations 

i increases. To take into this effect, we consider that the distribution of values in all the 

relations R~, 8Rt, 6.Rt and R. in the second and higher iterations to be uniform, whose 

domains are further restricted from the d~ 's in the previous sect ion to 

fd:l 
d~' = L { 1 - ( 1 ·- PU ~p2 

} ( i = l' ... ' V)' 
j=l 

fd:l 
d~' = L { 1- (1 ·- <;l))~f'2 } (i = v + 1, ... , m). 

j=l 

Then, in the computation of R~ = 6.R1 1 1><1 (Ql, ... ,Q,), the selectivity s~, between 

R1 - l and each Qh (which is joined with the set of attributes A~"l) becomes 

fd:' l 
I IT " 1 (h) 

sit = L_; r d"l · t,J 
A(h JEA(hJ J = l t 

• 

(h = 1, ... , u), 

because we assumed that all the values in attribute A, of 6.R, _l obey the uniform 

distribution of f d~1l different values. Then, the total selectivity s1 between 6.R1 1 and 

tl 

I IT I s = sh. 
h= l 

Finally, we can get the sizes for iterations i 2': 3 as 

(4. 12) 
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Throughout the n•maining iterations, we ns<' these approximations. ln these formulas, 

by letting 

d. = d" . . . d" 1 ,, .. 

and by considering that d~ · · · d~:, » 1 usually holds, we can substitute the first formula 

of ( 4.12) into the second formula and derive the approximate formula 

~ ._ { (l 1 ) t;,.p, 1 · F} 
6p, ~ d 1 d· 

~ Llp, 1 ·I· - 2~. ( Llp, 1 ·F) ( Llp, 1 · F- 1) 
~ p2 (2d. ) 
-- Llp, 1 . Llp, 1 

2d• F 

( 
1 )C:,.p,_l.p 

where we use only the first and second terms of the Taylor expansion of 1 - d* . 

Then, by substituting this 6p, into the third formula in (4.12), we obtain the following 

recursive equations 

{ 

Llp, ~ ~·:2 ( 2~• - Llp, _l) X ( d• - Pt - 1) Llp,_1 

p, = Pt - 1 + LlPi· 

Consequently, solving this recursive equation leads us to 
~ 

p+ ~ :L Llp, = Llp1 + -p 
I 1 

"'-' 

p= l:Llp,, 
l 2 

which gives an approximate size of the transitive closure R+. 

4.3.4 Solving the R ecursive Equation Approximately 

{4.13} 

{4.14) 

Similar to th<> case of the uniform distribution in Chapter 3, it is not <>asy to solve 

recursive equation ( 4.13) exactly. Therefore, we try to solve it approximately. 

Let us transform the first formula in (4.13) into 

2d.2 2d· 2 2d* 
p2 . up, ~ F . UPt-1 - F . Pa- l u p, 1 
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•) 

- d • . ( Llp, 1 r + p,_ 1 . C.p, 1 . Llp, 1. 

where 

?d·2 
C:•) == ---. 

~ F c, = d·. 

Then, by summing them up for i = 2. 3, . .. , and using C't, Cz, C3 and C" we obtain 

c1 CP- Llp2) ~ C:!- -p- ~c3 (p2 + 2)Llp,)2) 
I 2 

"- "-

- C.t 'L)C.p,)2 + 'L)p, Llp,. Llp,). 
I 2 l 2 

In this formula, we used t he following three approximations: 

oc. 

'L)Ll p,)2 ~ p. LlpJ, 
t=2 

"" 
L)Llp,)3 ~ p. {6.p3)2 
t 2 

to obtain 

c1 (P- Llp2) = c2 · -p- ~ · c3 (r.i2 + P · Llp3) 

- C4 · p · Llp3 + ~ (p2 
· Llp·l + p · ( Llp3) 

2
) , 

where 

Llp2) . l::ip2, 

and Llp2 is computed by {4.11). Therefore, by solving the above quadratic equation in 

p, we have the solution 

c + {c2 + sc1 ( c3 - Llp3) Llp2 
p= 

2( c4- Llp3) 
? 

C- 2Ct- 2C:! + C3 · Llp3 + 2C4 · Llp3- ( up3 )-. 

{4.15) 
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Finally, the expected size p+ of the transitive closure R t- [Qt, ... , Qu; C; A(0 )] is approx

imately estimated by 

+ A -P ~ u pl + p. (4.16) 

4.4 Examples of Approximate Evaluations of the Sizes of Tran-

sitive C losure 

In this section, we give some numerical examples of our results in this chapter, that is, 

we compute the sizes of transitive closures for some probability distributions. 

4.4.1 Zipf Distribution 

We consider the so-called Zipf distribution [Knu 73, Knu 75, Lyn 88, Wol 90] as a con-

crete example of a general distribution of values. 

The Zipf distribution is defined as follows: 

Definition 4 .1: (Pure Zipf dis tribution) For a given domain of size n, the proba

bility of value e1 is 

where 

1 . 
P; = ~H , J = 1, . . . , n, 

J 11 

11 1 
H,= L -:-· 

; = lJ 

( 4.17) 

• 
It is known that this distribution is commonly observed in the frequency of words in the 

sentences or the frequency of family names in one nation, and so on. Zipf distribution is 

often extended into the following form: 

D efinition 4.2: (G ener a lized Zipf distribution) For a given domain of size n, the 

p robability of value e1 is 

4.4 Examples of Approximate E~valuations of the Sizes of Tra nsitive Closure 

where 

1 
Pi = ·t -IIH(I - 9), 

J ll 

H!l - 111 = ~ _1_ 
11 ~ ·1-11'' 

J = lJ 

j = 1, ... ,n, 

77 

(4.18) 

and e is a parameter that represents the skewness of the distribution: () = 0 means the 

pure Zipf distribution andl 8 = 1 means the uniform distribution. 

4.4.2 Numerical Experiments on Zipf Distribution 

'X. 

Let us compute the transitive closure R+ = U R, such that 
•=1 

{ 

~(X, Y) = 7r{x .Y} ( R,_l(X, Y) l><l R(Y, Z)), 

Rt(X,Y) = R(X,Y). 

• 

We suppose that attributes X and Y have the same domain D of size d, and consider 

that the values in X and Y are generated by the Zipf distribution of 

1. () = 0, i.e., the pure Zipf distribution, and 

2. e = 1, i.e., the uniform distribution 

in Definition 4.2. For the domain of size d and the relation of size r, we compute the 

following two kind of values: 

1. The average size of transitive closures IR+ j, which is empirically observed by 

generating 30 relations randomly and by computing the true sizes of the transitive 

closures, and 

2. p+ of approximate formulas (4.15) and (4.16). 

Figure 4.1 shows the above results in case of d = 100 and Figure 4.2 shows the results 

in case of d = 400. For the Zipf distribution of () = 1 (i.e., uniform distribution), we 

also show the approximate value p+ obtained by the formula (3.28) in Chapter 3. for the 
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Figure 4.1: Sizes of transitive closures as a function of r (d = 100). 
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purpose of comparing the accuracies of two approximations propo:;ed in Chapter 3 and 

this chapter. 

lu these experiments. we first observe that the sizt•s of the transitive closures in case 

of 0 0 considerably differ from those in case of (} = 1, in both cases of d = 100 and 

d = 400. This implies that the size of a transitive closure is greatly influenced by the 

probability distribution of values in attributes of the relations. Therefore, the analysis 

that t ak<'s into account the probability distribution is indispensable and important. 

Our approximation appears fairly accurate even in the cast: of () = 0, as we can see 

that p is very close to the experimental values, although we employed rather rough 

approximations to obtain the formula. Furthermore, our approximation for()= 1 turned 

out to be more accurate than the approximation in Chapter 3. This is because we adopted 

tlw quadratic approximation of Taylor expansion in place of the linear approximation in 

solving thl' recursive equation ( 4.13). 

As exhibited in the above numerical results, our proposal appears to be sufficiently 

accurat(' in the two extreme cases of probability distributions with 0 = 0 and l. This 

indicates that the proposed formula may give us rather good approximations for a wide 

class of g<'neral distributions. 

4.5 Conclusion 

In this chapter, we firstly propose a new approximate met hod of estimating the computing 

cost of operations in relational algebra, when the values in attributes of the original rela

tions are independently generated according to general probability distributions. T hen, 

by using those results, we obtained an approximation formula for the sizes of transitive 

closures, by considering carefully the changes of probability distribution in each itera

tion from the original distribution. However, it appears impossible to know the exact 

probability distribution of values after each iteration, and we have to notice that there 

4.5 Conclusion 81 

is a tll<'oret ical limit if we try to extend our approach in t lwir ::>l' Ct ion in order to obtain 

bt•tter approximation formulas. To attain mort• accurac)'. t ht•n•fon' . we need to construct 

another completely different approach. 
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Chapter 5 

The Expected Size of Transitive 

Closure of a Random Digraplt 

5 .1 Introduction 

We present an approach to compute the expected size of transitive closures of relations 

in this chapter. This method is based on the theory of random graphs [Bol 85]. 

As we mentioned in Chapter 2, the transitive closures of relations are expressed and 

defined by directed graphs (or digraphs). Random directed graphs are usua.lly specified 

by two parameters, the number of vertices n and the probability p that there is an arc 

from one vert ex to another vertex. Although several kinds of studies have been made 

on random graphs, most of them are focused on random undirected graphs [Bol 82, 

Bol 85], and obtain very few results on random digraphs [P it 83, Wri 73, Wri 78]. The 

theories and discussions for random digraphs must be very different from those for random 

undirected graphs. 

For the purpose of estimating the expected size of transitive closures of random di

graphs, we show firstly that it is sufficient to know the probability that has at least one 

path from an arbitrary vertex s to a vertex t (# t). We call this probability the reacha-

83 
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bility from s to I. \\'e propose two methods for computing the exact reachability, after 

dcsc:rihing some properties about the reachability. 

Then, wt> modify one of the methods into those for computing the approximate reach-

abilities (•asily, and provide some experimental results to examine their performance. In 

addition tot his, by utilizing the exact reachability of the other method, we obtain simple 

low(~r and upper bounds on the reachabilities. Finally, we analyze the accuracy and the 

asymptotic performance of the upper bound on the reachability, the number of reachable 

vt•rtices from a given vertex and the size of transitive closure of a random digraph. 

5.2 Randon'l Graph and its Properties 

\V(• prest•nt some basic notations, definitions and properties of random graphs in this 

s<•ction. 

5.2.1 R andom Graph 

A random graph G is classified from the following two viewpoints; whether it is 

l. undirected, or 

2. directed, 

and whether it contains 

a. self loops, or 

b. no self loops. 

\\e denote a random graph G of these four types la, 1 b, 2a and 2b by lh, U, D L and 

/),respectively, i.e., as shown in the table below. 

Undirected Directed 

Without loops U(n,p) D(n,p) 

Wi th loops UL(n,p) D L(n,p) 
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In all these cases, we assume that the graphs ha:-> no multiplt' t>dges or arcs, according to 

( ht• COII\"ellt ions. 

In discussioning the properties of random graph:->, in gt•m•ral, there are two represen-

tative models of random graphs. \\t• use the following modt•l throughout this chapter. 

D c fiuitio n 5.1: A random graph G, which is madt> from ('ither ont' of the types of lh, 

U, D L or D, is defined by the number of vertin·s ll and tlw probability p of the presenc<> 

of an arc from any vertex s to any vert ex t. This probability is givt'n independently of 

the presence or the absence of an arc bet wet•n all the ot hN pairs of vertices s' and 11
• • 

If the type of a random graph is obvious from the context, we often eliminate it and 

simply denote the graph by G(n.p), and we also us<· it for (•xpn•s:;ing all type:; of random 

graphs. 

We show in Figure 5.1 these four random graphs(; of types ll, (/ L, D a11d DL(11,p ), 

with n = 4 and p = 1 (i.e., all possible edges (arcs) an' prest•nt) . 

Now, let N be the number of all the possible pairs of vertices where an edge or an 

arc can exist in a random graph G for each type, that i~, 

N= 

n(n- 1)/2 

n(n + 1)/2 

n(n- 1) 

(for U) 

(for U L) 

(for D) 

(for DL). 

On account of the independence of the probability p, the c>xpected number of edges or 

arcs m in a random graph G is considered to be m p \'. 

On the other hand, there is another usual definition of random graphs. In this modeL 

a random graph G is determined by the number (o:vv)ertices n and the number of edg(e~ o)r 

arcs m, denoted by G(n. m). Therefore, it has m events lo occur, and all the m 

possible graphs are supposed to be generated with the same probability 1/ ( ~). As a 
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u D 

Figure 5.1: Four types of graphs with all possible edges or arcs. 

result, the probability of having an edge or an arc between any two vertices eventually 

becomes 

p= 
(

N -1) 
m-1 

(:) 
m 
N 

T he past studies on random graphs were mainly addressed to the type U. However, 

to handle relations in databases as graph representation, in which tuples tu pies (a, b) and 

(b,a) must be distinguished, and tuples (a,a) may appear, we have to consider directed 

graphs with self-loops, i.e., the typeD£. 

Since we have noticed that we have to use random digraphs to represent relations, we 

focus only on the random graphs of types D and D L throughout the rest of this chapter. 
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5.2.2 R eachability 

We give some definitions regarding th~ r~lationship betwe~n two v~rtices in a random 

graph in this subsection. 

Definition 5.2: 

1. Let u and v be two vertices in a random graph G of type D or D L 

• If there is a directed arc from u to u, we say that u is adJacent to v, or v 1s 

adjacent from u, and denote it by u _, u. 

• Otherwise, we say that u is not adjacent to v, or v is not adjacent from tt, and 

denote it by u ~ v. 

2. Lets and t be two vertices in a random graph G of typ~ D or D£. 

• If there is a directed path from s to t with length more than or equal to 1, we 

say that s is reachable to t, or t is reachable from s, and denote it by s ~ t. 

• Otherwise, we say that s is unreachable (or not reachable) to t, or t is tmreachable 

from s, and denote it by s r t. • 
Example 5.1: In the digraph illustrated in Figure 5.2, s is adjacent to s, t2 and t4 ; s 

Figure 5.2: A digraph showing reachabilities and adjacencies. 

is not adjacent to t1 and t3; s is reachable to s, t2, t3 and t 4 ; and s is not reachable to 

t 1. Conversely, s, t 2 and t 4 are adjacent from s; t 1 and t3 are not adjacent from s; s, t2, 
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t3 and t1 arc reachable from s; and it is not reachablt• from:;. These relationships are 

• 
We refer to the arcs appearing in a path from -" to t as forward arcs from s to t. In a ran-

dom graph of types D or DL, we call the probability that:; is reachable (or unreachable) 

to t the reachabtlity (or unreachabtltty ) from s to t. Due to tlte symmetry of random 

graphs of the same type, the reachability from s to t ( i s) is independent of the choice 

of sand t. However, the reachability from s to s (itself) is different from the reachability 

from:; tot (# s). Thus, we give the following definition. 

Definition 5.3: In a random digraph C of types D(n,p) and DL(n,p), we denote the 

rPachability from s to s and from .s to t ( # s) as shown in the following table. 

S"'-'tt 

G of type D(n,p) 'Yn.1,(s,s) /,.1,(,o;,t) 

G' of type DL(n,p) 1n.p(s, s) ),.p(s, l) 

If there is no confusion and it is obvious from the context in use, we often do not indicate 

explicitly and omit some of the parameters of the above reachabilities, such as n, p and 

(s, s) or (s, t). Especially, we often use simply ')'11 •1, and 911 •1, instead of ')'11 ,1,(s, t) and 

) 11 •1,(s, 1), respectively, for notational convenience. • 
By the definition of reachabilities, we immediately have the following property. 

Property 5.4: For the reachabilities ')'11 .p(s, I) and ) 11 ,1,(s. t), 

holds. • 
This property is obvious because the reachability from s tot(# s) is irrelevant to whether 

there exist self loops :r, - x, or not. From this property, we often do not distinguish 

between / 11 ,1,(s, t) and ) 11 •1,(s, t), and denote them 'Yn.1,(s, t) or 'Yu .fl for short. 
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Lemma 5.5: For the reachability ),,1,(.-..~) and ,, ,. 1 ,1' ~.tL 

::Y, .p(s, s) = / 11 + l.p(s, t) 

holds. • 
Proof: Let us consider f',+t .1,(s, t). that is, tlw n•achability from s to t in G of type 

D(n + l,p). In considering the existence of paths from s to/, the arcs t - ;r
11 

x, - s 

I 
I 
I 
I 
1 
I 
\ 
\ 

/ 
/ 

I 

\ 
\ 

' ' ' .......... 

, 
I 

..... - .... 

' 

(a) Irrelevant arcs in D (n + 1, p) (b) New digraph DL ( 11. p ) 

Figure 5.3: Proof of Lemma 5.5. 

(for any i) and t - s (shown in Figure 5.3 (a)) arc irrelevant. Thus, by deleting these 

irrelevant arcs and by contracting t and s into one vertex, we can transform th(' original 

random digraph G of type D( n + 1, p) into the new random digraph G of type D L ( n, p) as 

shown in Figure 5.3 (b). Furthermore, adding self loops xt --. :r, for all i to the digraph 

does not change the reachability from s to t (# s). Notice that the arc s --. t with 

probability pinG of type D(n + l ,p) now becomes the self loops--. s with probability 

pinG of type DL(n,p). All the arcs among vertices x 1 , ... , x,_1 are preserved in the 



90 CHAPTER 5 THE SI ZE OF TRANSITIVE CLOSURE OF A RANDOM GRAPH 

same manner as Gin D(n+ l,p). Thus, the resulting digraph now is G of type DL(n,p). 

Therefore, the reachability 'Yn+l.p(s, t) is equal to the reachability from s tot(= s) in G 

of type DL(n,p), that is, 9n.1,(s, s). • 
5.2.3 Random Graph and Transitive Closure 

We discuss in this subsection, the relationship between the reachability and the expected 

size of the transitive closure in a random digraph G of typeD L(n,p), which is the average 

number of pairs of vertices (s, t) such that s 'Vj t in all the 2N possible events of G as type 

D£. More precisely, the reachabilities 9n.p(s, s) and 9n.p(s, t) can compute the expected 

size of the transitive closure from a vertex s, whose definition is given in Definition 2.4. 

The expected size of the transitive closure from one vertex then gives us the expected 

size of the transitive closure gt of a random digraph G of type D L· 

We now introduce the following notations. 

D efinition 5.6: In a random digraph G of type D £, we denote the expected number of 

reachable vertices s from s by RL(s, s) and the expected number of reachable vertices t 

(is) from s by RL(s, s). Also the expected number of reachable vertices (including s) 

from a vertex s is denoted by RL(s). Obviously, 

RL(s) = RL(s, s) + RL(s, s) 

holds by definition. • 
Lemma 5. 7: T he expected size of the transitive closure of a random digraph G of type 

DL(n,p), denoted by lg!(n,p)l (or lg!l), is computed by 

19! (n, p)l = n(n- lhn ,p(s, t) + n"f11 +l.p(s, t). 

• 
Proof: The reachability from s to a given vertex t (is) in a random digraph G of type 

D L ( n, p) is 9n.p( s, t), and the expected number of reachable vertices t ( f s) from s is 
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RL(s, s) = (n- 1)9n.p(s, t). 

Furthermore, the expected number of reachable vertices from s to s is the reachability 

9,.p(s, s) itself, that is, 

RL(s,s) = 9n.p(s,s). 

Therefore, the expected number RL(s) of the transitive closure of a vertex s is, 

RL(s) = RL(s, s) + RL(s, s) 

= (n- 1)911.1,(s, t) + 9n.p(s, s) 

= (n- l)'Y11 .p(s, t) + 'Yn+Lp(s, t) 

according to Property 5.4 and Lemma 5.5. 

(5.1) 

Finally, as formula ( 5.1) holds for any vertex s in a random digraph G of type D L ( n, p), 

the expected size of the transitive closure of a random digraph G of type D L ( n, p) becomes 

lgt(n,p)l = nRL(s) 

= n(n- lhn.p + n'Yn+l.p, 

where we use the simplified notations 'Yn.p and "f11 +l.p in place of 'Yn,p(s, t) and ·r,tt.p(s, t). 

Thus, the proof is completed. • 

This lemma asserts that the expected size of transitive closure of a random diigraph G of 

type DL(n,p) can be computed if we know the reachability 'Yn.p and "f11 +Lr in a random 

digraph D(n,p). Therefore, we have only to concentrate in the subsequent sections on 

how to compute the reachability 'Yn.p in a random digraph D(n,p). We introduce two 

methods in the following sections to compute "(11 •1, exactly. Those methods can eventually 

give us the expected size of the transitive closure of a random digraph of type DL· 
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5.3 Computing the Size of Transitive Closure : 1 

In this section, we describe the first approach to compute the rcachability 1u,p bu.p(~. t) ). 

which is ddined in a random digraph of type D(n,p). 

5.3.1 Basic Idea 

This method computes the expectE'cl number of reachable vertices (# s), denoted by 

R(s, s), from a sourc<> vertex s in a random digraph G of typt• D(n.p). It counts the 

number of V(•rtices rrachable from s by shortest paths of length i and stuns up their 

numbers from i = 1 to n - l. 

For this, let S, bt• the set of vt•rtices reachable from s by shortest paths of length i. 

where So { s}. Also Id 

I 

1~ =v- U S1 • 

) 0 

i.e., no v(•rtex in Tt is r<'achable by a shortest path of length i or less. Furthermore, we 

denote the number of vrrtices in <), by IS, . for which the following conditions obviously 

hold: 

1. 0< IS,I~n- 1 foralli. 
" I 

2. L IS,I ~ n, 
' I 

3. If IS11 I = 0, then IS12 I = 0 for all i2 >it. 

1ow, for a given vector 

>. (k t, . . . 'k, _ l ), 

we say that an instance of r a ndom digraphs G belongs to event >. if S,l k., i = 

1, ... , n 1, where (IS,I =) kt's satisfy the above three conditions . 

Let us see t he meaning of t hese notations by an example. 
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Figur<' 5.4: An instance of a random digraph(; of typt• D( IO.p). 

Example 5.2: Consider a random digraph G of typr f)( IO,p). a11 instance· of which is 

shown in Figure 5.4. Choosing a vertex as a source s, wt• determine its reachable wrt ices. 

F igure 5.5 illustrates the vert ict>s reachable from s by shortest paths, forw?trd arcs and 

sets S, and T, . The random digraph in Figure 5.4 is Oil(' of the inslatlC'('S classifi<'cl as 

>. = (2.3. 1,0,0,0,0,0.0). 

• 
Now, if we can compute the occurrencr probability of an event >. - (k 1 , ... , k, _1 ). 

denoted by P(>.), we can give the expected number R(s • .... ) of vertin•s r<'achable from :; 

R(s, s) = L (P().) 'i k,) . 
.X t I 

If we denote the conditional probability of 18,1 = k1 under the condition that (ISul 

ko = 1,) IStl = kt, ... , ISt tl = kt - 1 by?,(>.), the above J>().) can b(• expressed as 

" I 
P().) = II P,(A). 

I I 

W e then explain that the conditional probability Pt(>.) for a given >. = (k1 , ... , k 11 _!) is 
I 1 

determined by k1- t, k, and n L k1 . If 51 = k1 , j = l, ... , i- l , then IT, 1! = n-
J () 

t 1 

L kJ (i.e., the number of vertices unreachabiE' from s by shortest p<~.ths of length i- 1 
J=O 
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s, 
51 

So 53 5-t 

u 
(o' 

0 
0 0 
0 0 
0 0 

~ 
0 ro 
0 

~ ~ 00 ~ 
To T1 T2 T3 T4 

Figure 5.5: Reachable vertices by shortest paths. 

or less). First, the probability that a vertex tinT, 1 is reachable from no vertex inS, 1 

is ( 1 - p) k, 1 , and hence the probability that a vertex t in Ti 1 is reachable from at least 

one vertex in S, 1 is 1- (1- p)k, ·1 • Therefore, the probability that k, = IS,I vertices in 

T, 1 is reachable from S, 1, which we denote by P,(>.). becomes 

{ 

( 
T,_ d) { 1- (1- p)k• - 1} k, { (1- Pl•-1 } jT, _d k, 

P,(>.) = k, 

1 

(ka-1 > 0), 

(k,_1 = 0). 

Finally, we can compute the reachability "f,,,JI by 

'Yn.p =-- R(s, s)/(n- 1) 

{

n I 11 I }/ L rr P,(>.) L k, (n- 1). 
~ I I •-1 
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Example 5.3: For an event >. = (2, :~. 1, 0, 0. 0. 0. 0, 0) of Exampk il.2, W!! comput(' 
() 

P(..\) = fi P,(..\). The sizes k, and I'J~I an.· shown below, 
r=l 

7 4 3 3 

and we can compute 

PI(..\)= ('~~~) { 1 - {1- p)ko} AI { (1 - p)"o } lTol 1.1 

- (~) {1- (l-p)l}2 {< 1 -p)~r. 
Similarly, we have 

and 

p2 ( >.) = G) { 1 - ( 1 - p) 2} 3 {(I - p) 2 r . 
P3(.X)- G) { 1- (1- p)3r { (1- p)3} 3. 

p3 (.X) - ( ~) { 1 - ( 1 - p) I r { (1 p) I r . 

Ps(.X) -= · · · = P9(.A) = 1 (since k.1 = · · · = ks-= 0). 

Therefore, 

3 a 

P(.X) = ( ~) (1- ql )2(ql) 7 G) (1- q2)3(q2)4 G) (1- q3) I (q3 )3 ( ~) ( 1-- ql )()(ql )3' 

where q = 1 - p. • 
5.3.2 An Algorithm for Computing the Exact R eachability 

The idea in the previous subsection is easily implemented as an algorithm as shown 

in Program 5.1. where Q(i, .X) indicates the conditional probability P,(.A) in the above 
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]Procedure Strict-ReachabilityO 

Input. A random graph G of type D(n.p) 

Output: Reachability ~,,.1, 
begin 

2 for all possible vector .A= {1.-{l), ... ,k(n -1)) do 

3 P(.A) = l;S = l; 

·I b egin 
::, for i := l to n - 1 do 

G b egin 

7 P(.A) = P(.A) * Q(i, .A); 

s s s + k(i); 

V e nd 
111 s+ = s+ + P(.A) * S; 
11 e nd 

12 

13 

-y,,1,- s /(n- 1): 
end. 

Program 5.1: Procedure for computing reachability. 

explanations. As explained in the previous subsection, the conditional probability P,(.A) 

is dctcrmi ned only by k,_ 1, k, and JT,-tl· In other words, since P, (>.) depends only on 
I 1 

k, 1, J.:, and L k1 but not on all sizes k1 (j = 0, ... , i- 1), we can combine the .A's for 
J () 

t 1 

which k;_ 1, k, and L k1 are the same. This saves the computational time of the above 
J () 

initial procedure including the fundamental idea. 

In ordl•r to implement this idea as a procedure, we introduce the following notations: 

S(i) and T(i) imply the sizes of sets S, and T.. respectively; P(i,j, k) is the conditional 

probability that JS, = j and the sum of S1, ... , S, is k in the i th iteration; con(p, k) 

is the function that computes the probability that any vertex is reachable from at least 

one of k vert ices when the probability of the presence of an arc between any two vertices 

is p; bin(m,l,p) is the function that computes the probability of binary distrib u t ion; s+ 
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i:; the size of the transitin• dosun· of single \'ertex ·'· The resulting procedure which is 

implemented with this improvement is shown in Program 5.:2. 

Theore m 5.8: The procedure Strict-Reachahilitv I coml>utes the exact reachabilitv .... . .. ,, ,,J 

(s, t) in a random digraph G of type D(n,p). T his procl'dure works in O(n.J) time, when· 

n is the number of vertices in a random digraph. • 
We illustrate in F igure 5.6 the reachabiliti<.•s "tu.p with respect lo the in itial probability 

p for the presence of an arc between any I wo wrtkes, and in Figurl' 5. 7 the reachabilit ies 

"tu.1, with respect ton. Since this procedure requires much computational time, we pro · 

pose below two kinds of simplifications to compute approximate values of the reachability 

"fii.JI• 

Simplificatio n 1 

This idea firstly computes the expected size of 8 1 (first iteration) in the same manner 

as computing S1 by the procedure Strict Reahcbility 1. Then, in the second and after 

iterations, this procedure lets all the sizes ofT, for different k, ,_ JS,j be the same value 
t 

n- L JS,J irrelevant to the value k,. In computing JS,+ 1J, it considers k,+ 1 = 0, ... , 
J 1 

liSt+dJ as the occurrence of SH 1, and it sti ll uses the same value 1 - (1 - p )k·, as in the 

procedure Strict-R eachabi lityl for the probability that a vertex t in Tt is reachable from 

at least one vertex in S,. 

This idea is implemented as in Program 5.3, and it runs O(n2 ) time. 

Simplification 2 

This idea is more simplified and faster than the procedure Simplified-Reachability l , by 

using the expected sizes for S1 and T1 and by using all the expected sizes S1 , ... , S,, T1, 

... , T, for computing Si+1· In this time, the value 1-(1-p) s,• is used for the probability 

that a vertex tinT. is reachable from at least one vertex in St. This p rocedure is shown in 
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Procedure Strict-Reachability1 
Input: A random graph G' of type D(11,p) 

Output: Reachability lii.J' 

b egin 

2 P(O, 1, 1) := 1; 
3 for i := 1 to n - 1 do 

4 begin 
5 for j := i to n - 1 do 

G begin 
7 for k := 0 to n -- j do 

8 begin 
!l for l := 0 to n - j - k do 

10 

11 

12 

13 

H 

begin 

P(i,j + k,l) := P(i,j + k,l) 

+P(i- 1, j, k) • bin(n- j- k, l, con(p, k)); 

end 
S(i) := S(i) + P(i,j + k, l) • f; 

15 end 
IG end 
17 s+ = s+ + S(i); 

18 end 
l!l ,,,,p := s+ /(n- 1); 

20 end. 

function con(p, k) 

21 return(l- (1 - p)"'); 
function bin (m, l, p) 

22 return ( (7)p1(1 - p)m - t); 

Program 5.2: Procedure for computing the exact reachability. 
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Yn,p 

0.5 

0 T 

0.5 
----~----t---p 

1.0 

Figure 5.6: Exact reachability r 11 .JI with the initial probability p. 
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Yn,p 

1.0 -

0.05 

0.03 
0.02 
0.01 

0 I T n 

2 5 15 20 25 30 35 40 45 50 

Figure 5.7: Exact reachability -y,,_11 with the number of vertices n. 
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Procedure Simplified-Reachabilityl 

Input: A random graph G of typ<' D(n,p) 

Output: Approximate Reachability of /
11

•
1
, 

begin 
2 S(O) = 1, s+ = 1; 

3 for i := 1 to n - 1 do 
4 

6 

7 

8 

9 

begin 

for f := 0 to ln- S(i)J do 
begin 

S(i) = S(i) + bin(n- s t ,l',rvn(p. s-l )) * (.; 
end 

s+ = s+ + S(i); 
10 end 

11 'Yn.p = s+ /(n- 1); 
12 end. 

function con(p, k) 
13 return(1- (1-p)k); 

function bin(m, l,p) 

14 return( c;')pt(1 - p)m-t); 

P rogram 5.3: Simplified procedure I for computing reachability. 

Program 5.4, and the computational complexity of this procedure is O(n). Furthermore, 

the image of the difference among the ideas of these procedures is illustrated in Figure 

5.8. 

Now, we show the computational results of these two simplified procedures in Figure 

5.9. 
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So foJ 
@~r · 1.0 -+------~--~-----

Approximate 'Yso.p by Simplifiguion 2 

{a) Strict -Reachabllity I 

Exact rcachabil ity'Yso.p 

0.5 

{b) Simplified-Reachability I 

Q: Expected Values 

Approximate Yso,p by Simplification 1 

(c) Simplified-Reachability2 
0 I 

0.05 
---------r--• p 

0. 1 

Figure 5. : illustration of the three procedures. Figure 5.9: Performance of simplified procedures. 
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P ro c<'d ure Simplified-Reachabili ty2 

Input: A random graph G of type D(n.p) 

Output: Approximate Rea(·hability of '),,1, 

b egin 

2 S'(O) - l, T(O) = n- l, s t = l; 

3 

·1 

7 

X 

!) 

10 

for i := 1 to n - 1 d o 

b egin 

S(i) = {1- (1- p)S!• 11} * T(i- l ); 

T(i) = T(i- 1)- S(i); 
st = s+ +S(i); 

end 

-y, I' 
<'tHL 

s-t- /(n- 1); 

Progra111 5. 1: Simplified procedure 2 for computing reachability. 

5.4 Con1put ing t h e Size of 'l'ran sit ive C losu re: 2 

In this st•rtion, we introduce anothe1r method of computing the reachability /11,p(s, t) in 

a random digraph G of type D (n,p). It begins with "tz.1, and compute "fq> from /i-1.7> for 

3, ... unti l it finally computes "fn.p · 

Wt• first introduce the definition of the conditional reachability. 

D efin ition 5.9: In a random digraph G of type D(n,p), we denote the restricted reacha

bility from a source vertex s to a sink vertex t under the condition that there is a specified 

st>t of j vertices (other than s and t) which are known not to be reachable from s by 

-y~~./(:;, t). Especially, we set 

{ 

(-11) 
')n.p (s, t) = 1u.p(s, t), 

-y~,~! 1 (s,l) = 0 (j < 0), 

for conv<'nience. • 
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We often use 1~.~! 1 in::;tead of 1~1~! 1 (:;, t). similarly to the case of -y,_1,. for notational 

convenience when s and t are obvious from tlw contt·.xt. 

Lemma 5 .10: The reachability 1 11 •1, in a random digr<~ph G of type D(n,p) i:; givt>n hy 

the following formula: 

11 2 [ ( /n,p = 1 - {1 - p) 2: Jt 

1 () 

J I))] 
l.p 

I 

'p' IT (1 - ,~, 
1 () 

(n::;: 3). (5.2) 

• 
Proof: W hile '"·1' implies the reachability from,.; tot, l -')11 •1, is the unreachabilit.y front 

s tot, that is, formula (5 .2) is equivall•nt to 

(5.:n 

We explain this formula by using Figure 5.1 0. First of all, for I not to be reachable frolll 

Figure 5.10· Proof of Lemma 5.10. 

s, there must not exist an arc s-. l (with probabi lity I - p). Then, concerning with all 

then- 2 vertices in V- {s, t}, let us assumC' that there are i vertices x 1 , ... , x, which 
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do not have arcs tot; the remaining n- 2- i vertices ~ 1 +1, ... , Xn-2 do not have arcs 

( - ')) to t. The probability of such an evoent is n 
1 

- ( 1 - p )" 2 1 p1
• In this case, all the 

vertices XI, ... , X1 must not be reachable from s, because otherwise, s would be reachable 

to t. That is, the vertex XI is not reachable from s (with probability 1 - 'Yn - l.p), the 

vertex x2 is not reachable from s under the condition that x 1 is not reachable from s 

(with probability 1 - ')'~1- 1/J>), and the final vertex x, is not reachable from s under the 

condition that x1 +1, ... , Xn - 3 are not reachable from s (with probability 1 - 1';~-=:.\~;l). 

(Here, we can select vertices x 1 , ... , Xi in this order without loss of generality.) This 

argument leads to formula (5.3). • 
In order to compute -ytp') in formula (5.2), we have the following lemma. 

where q = 1 - p. • 
Before providing the proof of this lemma, we consider its meaning by a simple example. 

Example 5.4: Let us consider the conditional reachability 'Y~~/). This is computed as 

( ll (1- p)2 
{ (1- Ph3.p + p(1- 1'3.1~h~~Il} 

'1'-t,p = 
1 - ~r4.p 

by Lemma 5.11. This is the probability of the event 

Prob (s rf+ x11\ s "'-' t) 
Prob (s rf+ xl) 

(5.5) 

in Figure 5.11, where we assume that x 1 is a vertex unreachable from s. The probability 

that there is no path from s to x 1 (s rf+ xi) is 1- 'Y4.p by definition. Then, to satisfy the 

joint condition si-' x1 1\ s ""-+ t, there must not exist the arc s --+ x1 or t -+ XI (since 

otherwise there is a path from s to t). The probability for this is (1- p) 2. In addition 
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Figure 5.11: The conditional reachability 1'~~/l. 

to this condition, we have to consider two cases that there exists an arc from x2 to XI 

1. If there is no arc from Xz to XI (with probability 1 - p), the condition s "'-' t holds 

only by using some of the three vertices s, t and x2, and this probability is l3.p· 

2. If there is an arc from x2 to x1 (with probability p), there is no path from s to 

xz by condition s rf+ xz (this probability is 1 - 1'3.11). The probability of s "A t 

under the condition si-' x2 is ~~~>I). 

This leads to the conditional probability ~~~1) of formula (5.5). • 
Now, we can present the proof of Lemma 5.11. 

Proof of Lemma 5.11: We prove this lemma by using Figure 5.12. Let x 1 , ... , x 1 be 

the vertices unreacha.ble from s. The denominator 
J - 1 

(1 - )(1- ( - 1)) ... (1- u - 1))- IT (1- < k)) 
'Yn,p 'Yn,p 'Yn,p - fn ·1> ' 

/,;-() 

expresses the probability that j vertices x 1, ••• , x1 out of n- 2 vertices are not reachable 

from s, i.e., this is the product of the unreachabilities 1 - -y~1~pk) assuming that there are 

already k unreachable vertices. On the other hand, as explained below, the numerator 

expresses the reachability under the condition that there are J unreachable vertices. Since 
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Figure 5.12: Proof of Lemma 5.11. 

s is reachable to none of x1, ... , Xj, there are no arcs s-+ x1, . . . , s-+ Xj or t-+ x1, 

... , t -+ x1 , because it is assumed that there is a path s -v+ t. The probability for this 

condition is q2J. Then, we consider the probability of the existence of a path s -v+ t 

under the condition that i vertices among n- j- 2 vertices Xj + 1, ... , Xn - 2 are reachable 

to at least one of the vertices x 1 , .. .. , x1 . The number of choices of i vertices from 

n - j - 2 vertices is ( n - ~ - 2
) and the probability that exactly these i vertices are 

reachable to at least one of the j vertices x 1 , . .. , Xj is (qi)n - j - 2- i(1- qi)i. Then, all 

of these i vertices must not be reachable from s. This probability that the first vertex is 

unreachable from s, the second vertex is unreachable from sunder the condition that one 

vertex is unreachable from s, ... , and the i-th (final) vertex is unreachable from s under 
i-1 

the condition that i- 1 vertices are unreachable from s, is IT (1- 1'!L-=.~~1l) . Finally, t 
k=O 

must be reachable from s by using only n- j vertices s, t, and x1+1, ... , Xn-2 under the 

condition that the set of i vertices among Xj+ 1 , ... , Xn - 2 are not reachable from s . This 

b b•t• . ( -i) 
pro a 1 1ty 1S 'Yn-;.p· All of the above probabilities lead to the conditional reachability 

1t/ l of formula ( 5.4). • 
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Note that, in the formula (5.4) of Lemma 5.11, the conditional probability .,tp'1 can 

be computed from reachabilities 1',<,-~~P's and "Y;,~~~·l,s with j > 0 and k < j. For example. 

for n = 5, we have 

( - 1)- (1-p )2 
[ (1-p )21'4.p+ 2p(1-p )(1- 'T4.ph~.]ll 1+p:!( 1 -')'4.p)(l-')'~;1 ) h~~)2 >] 

'Ys.p - (1 ) , - 1'5.p 

(-2)_ (1- p)4 [(1- p)21'3.p + {1- (1- p) 2 }(1 -')'3.ph~./)] 
1'5.p- (-J) 

(-3) 
1'5,p 

( 1 - 1'5.p) ( 1 - 1'5,]! ) 

( 1 - p )61'2.p 

( ) ( 
(-1))( (-2) . 

1 - 'Ys.p 1 - 'Yf>.p 1 - 'Ys.p ) 

Now, Lemma 5.10 and 5.11 establish the procedure for computing the reachability "tn.p 

in Program 5.5, and the next theorem. In this program, ')'(k, j) denotes the probability 

"Yt;/
1
; the outermost loop of lines from 3 to 27 are iterated by k from k = 3 ton; linf's 

t 

from 4 to 11 compute 'Yk.p• where 1rt(i) denotes the product IT (1 - ')'t~.7,
11 ) and qi(k, 0) 

J=O 

denotes L ~ 2 
{1- p)''-2-ipi IT (1- 1'1.:::.~~~11 ) in formula (5.3); lines from 12 to k-2 [(k ) ., l 

t=O ; =0 

26 compute the conditional reachabilities 1'~~--~~P from j = 1 to k- 1 recursively using the 

conditional probabilities that are already computed by the (k- 1)-th iteration, where 
i-1 

1r2(i) denotes 1'!1-_1.p IT (1 -')'~~--~~1 )), 1r3(i) denotes the denominator in formula (5.4), 
k=O 

and q2(i) denotes the numerator in formula (5.4) without being multiplied by q2J. 

Theorem 5.12: The procedure Strict-Reachability2 computes the reachability 1'11 .p of a 

random graph G of type D(n,p). This procedure runs in O(n4 ) time. • 
Proof: T he correctness of this procedure is obvious from the previous discussions. Since 

the depth of the loops by n is 4, the time complexity of this procedure is O(n4 ). • 

Needless to say, the reachability computed by this procedure is the same as the one 

computed by the procedure Strict-Reachabilityl in Section 5.3. 
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5.5 Lower and Upper Bounds on the R eachability 

Procedure Strict-Reachahility2 
Input: A random graph G of type D(n,p) Since the formulas in Lemmas 5.10 and 5.11 are difficult to handle, we simplify thesr to 

Output: Reachability "fn.p 

begin 

2 1(2, 0) := p; 

3 for k := 3 to n do begin 

4 

6 

7 

8 

9 

l() 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

for i := 0 to k - 2 do b egin 

rrJ(i) := 1; q1(k,O) := 0; 

for j := 0 to i do, b egin 

7rt(i) := 7rt(i) * (1- -y(k- 1,j)) ; 

end 
ql(k,O) := qt(k,O) + (11 J:2)(1- p)~-2 1pi * rri(i); 

end 
-y(k,O) := 1- (1-- p) * q(k,O); 
for j := 1 to k- 1 do b egin 

for i := 0 to k - j - 2 do begin 

rr2(i) := 1; rr3(i) := 1; q2(k,O) := 0; 

for f. := 0 to i do begin 
rr2(i) := rr2(i) * (1 - -y(k- j,f.- 1)); 

end 
7r2(i) := 7r2(i) * -y(k- j, k- j- 2); 

q2(k, O) := q2(k, 0) 
+c~-~-2) (1 _ p)J( k-j-2-il(1 _ (1 _ p)i)t * rr2(i); 

for i := 0 to j - 1 do begin 
7r3(j- 1) := 7r3(j - 1) * (1- -y(k,i)); 

end 
-y(k,j) := (1- p)2J * q2(k,j)jrr3(j - 1); 

end 

end 
end 

end 
"fn.p := -y(n,O); 

end. 

Program 5.5: Another proc•edure for computing the exact reachability. 

obtain upper and lower bounds on the reachabilitv " . 
• tll.f' 

5.5.1 Preliminary Lemmas 

We firstly present two preliminary lemmas. 

Lemma 5.13: Between the reachabilities -v 
Ill l.p and "fn.p, the inequality 

'Y11-l.p S 'Yn.p 

holds for n = 3,4, .... • 
Proof: Consider to add a vertex x to a random graph G of type D( n- 1 , p) to construct 

a graph of type D(n,p), as illustrated in Figure 5.13. It is obvious that the inequality 

X 

Figure 5.13: Proof of Lemma 5.1 3. 

holds for any n (2: 3). • 
By using this lemma, we can lead a relationship between the reachabilities and the 

conditional reachabilities. 



112 C HAPTER 5 THE SIZE OF TRANSITIVE CLOSURE OF A RANDOM GRAPH 

Lemma 5.14: Between -y!l,pk) and "(11 k,p, the following inequalities 

( k) 
"111.]) s "111 - k,p 

hold for n = 3,4, ... , and k = 1, 2, .. . , n- 2. • 

Proof: In a random graph G of type D(n,p), consider the reachability -y~~~l from s to 

t ( ;6 s) under the assumption that k vertices x 1 , ... , x~; are unreachable from s. Let Si 

(i = 1, ... ) k) be the set of vertex Xt and those reachable to xt, and let s = u si· This 
t 

situation is illustrated in Figure 5.14. By assumption, no vertex in each S, and therefore 

Figure 5.14: Proof of Lemma 5.14. 

in S is reachable from s. Now, denote the probability of the occurrence of S by P(S). 

For this, we have 

P(S) · 'Yn-ISI.p 
S =U,S, 

( - k) _ S, CV - {., ,t} 
'Yn.p -

S =U,S, 
S, ~V - {.•.1} 

P(S) 
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2: P(S) · -y .. k,p 
S =U,S, 

< 
s.~v - {.•.1} 

2: P(S) 
S=u ,S, 

S, ~V- { .•,1} 

2: P(S) 
S =U,S, 

s, ~V- {s,t} 

= 'Yn - k ,p X L P(S) = 'Yn - k.p, 

S =U,S, 
s.~v - { .•.1} 

because the set S includes at least k vertices, and therefore -y11 ISI.JI S -y, - k ,p holds for 

all ISI such that ISI 2: k. • 
Summarizing the results of Lemmas 5.13 and 5.14, we always have 

( - k) < 
'Yn.p - 'Yn - k.p S 'Yn - k+ l 

for all n = 3, 4, ... , and k = 1, 2, ... , n - 2. 

5.5.2 An Upper Bound on the R eachability 

By using the above lemmas and Theorem 5.10, we can obtain a formula for computing 

an upper bound on the reachability 'Yn.p· 

Theorem 5.15: The 'Y~.p obtained by the recursive formula 

{ 
lf.p = p, 

"f~.p = 1- (1- p)(l- p · 'Y~- l.p) 11 -2 (n 2: 3) 

gives an upper bound on the reachability "(11 •1, in a random digraph G of type D(n,p), 

that is, 

"1~.1) 2: 'Yn.p 1 n = 2, 3, ... 

holds. • 
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Proof: First, rf.p(= p) 2: r2.p =pis obvious. For n 2: 3, according to Lemma 5.10 and 

Lemma 5.13, 

1- ru,p = (1- p) 'i [(n ~ ~~) (1- p)" - 2- 1P1 IT ( 1- "Y~1 -1l~p11)] 
, o r o 

2: (1- p) ~~ [ (n ~ ~) (1- p)n- 2- 'p'(l- "Yn - t.p)'] 

= (1- p){ (1- p) + pt(l- rn- Lp) r-2 

= (1- p){1- p. rn-l.]l)n-2 . 

Therefore, for any upper bound 1,~ Lp on 1 11 l,p, we have 

(1 u )"-2 < (1 )11-2 - P · fn - l,p - - P · l'n,p 

and hence 

Then we have 

U - 1 (1 )(1 U )n-2 '"·I'= - - p - p. f11-l.7J 

2: 1- (1 - p)(1- p. f11 - 1.p)"-
2 

namely, ~~~-P in the theorem statement is an upper bound on rn.p· • 

5.5.3 A Lower Bound on the Reachability 

Theorem 5.16: The rf:.1, obtained by the following recursive formula 

{ 

rfp = p, 

r!:.p = 1 - (1- p) { (1- r,f _1.r) + ,[;_1)1- p)'' - 2 } (n 2: 3) 

gives a lower bound on the exact reachability rn.p in a random digraph G of type D(n,p ), 

that is, 
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L 
fii.JI ~ fli.Jl• n = 2,3, ... 

holds. • 
Proof: First, rfp( = p) ~ r2.p = p is obvious. For n 2: 3, according to Theorem 5.10 and 

Lemma 5.13, 

1- ln,p = (1- p) 'f { (n ~ 2) (1- p)u-2-'p' IT ( l -I!, _Jl.pl)) } 
t=O J 0 

${1-p)[~{(n~ 2)(1-p)"_2_'p;(1-~, ,,,)}+1, 1,,(1-p)" '] 

= (1- p) [(1-1n-L1,) ~ { ( n ~ 2) (1- p )" '-'p'} + 1,- 1 ~(1-p)"-'] 
= (1- P){ (1- ln-1.1,) + 1'11 - l.p(l- p)" - 2}. 

Therefore, for any lower bound ,,f_t.1, on rn-l.p, by using the inequality 

L > L (1 )n - 2 
fn-l.p- Tn-l.p - P ' 

we have 

(1- ~~-l.p) + 1!:- 1.1,(1- p)'"-2 2: (1- T11-1,p) + ln-l,p{l- p)11
-

2 

and so 

T herefore, 

~~~-1J =: 1 - (1- p){ (1 - ~~~-1.7J + l,f_l.p{1- PY'-2} 

~ 1 - (1- p){ (1- f11 - l.7J) + fll-l.p(1- p)"- 2 } 

~ ln.p· 

We illustrate these upper and lower bounds for n =50 in Figure 5.15. 

• 
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0.5 

0 

u 
Upper Bound Yso,p 

L 
Lower Bound Yso,p 

------------~----------------r---P 

0.05 0.1 

Figure 5.15: The upper and lower bounds on 1'50.p· 
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5.6 Asymptotic Analysis of the Upper Bound 

In this section, we analyze the asymptotic behavior of the upper bound 1'~.11 on the 

reachability 1'11 •11 in a random digraph of type D(n,p). 

In particular, we are interested in the behavior of the reachabi lity where the initial 

probability p is given as a function of n, that is p,1 • Let us concentrate on the case of 

a 
Pn = - -

1
, 

n- ( 5.6) 

where a is a positive constant, that is, a random digraph G of type D (n, _a_). In 
n-1 

this case, the upper bound 'Yu _,_ is computed by the iterative computation in Theorem 
11 • n -1 

5.15, 

{ 

'Y~o.-"- a (no satisfies no ?: a+ 1) , 
"o-1 n-1 

u ( a ) ( a u )i 2 ')' · <> = 1- 1--- 1----y n 
t, ;;-::;: n - 2 n - 2 t - 1. ;;-::;: 

(5.7) 
( i = nu+ 1 , ... , n), 

where the initial probability pis modified to p110 = _a __ so that it satisfies the condition 
no- 1 

0 :S Pno :S 1. 

In order to analyze the behavior of the sequence { ')',~. ,,'2. 
1 

} directly, each 1'~. ;f) needs 

to be computed by the (n- no)-th iteration of the above recursive formula. To simplify 

this, we introduce another upper bound (u ...2.... on 1'~-'-' , which will become equal to 
n. u - 1 n-1 

'Y~ __g_ as n tends to infinity. ,,_1 

Lemma 5.17: The (,fP obtained by the recursive formula 

{ 

u a 
(n0 . - •• - = --- (no satisfies no ?: a+ 1), 

"o-1 no- 1 

( 
a ) ( a ) n - 2 ( u 0 = 1- 1--- 1---(u n 11,- 11 - 1 -

Jl-1 n-2 n-2 ·u - 2 

(5.8) 
(n >no) 

gives an upper bound on 1',~ _,_ in a random digraph G of type D (n, _a_), that is, 
·,.-1 n- 1 

(,~...2.... ?: 'Y~ ...2.... (n = 2, 3, ... ). 
n - 1 ,tl-1 

• 
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Proof: While 1,~.-"- is computed as 
Il-l 

beginning with the initial probability ~~ .~, (,~.-"- is computed as 
I) .,_ 1 "-1 

u rU (c (u 
(\ .., f\ , •, U ' H • Cu0 .;;o--T > 11o + L 1,.

0
+1l- 1 > ' 11- 1.~ "·;;--J 

In the computation of each (~ _n_, it is computed by using the final iteration of com-
7 . ,'-1 

. u 1 . putmg 1 1 -"-, t 1at ts, 11 
• u 1 - 1 

ful f> = 1 - 1 - -
0
- l - --~ I " 

( ) (

. Q- u )(111-1)- 1 

11 
• ;;-r::t n' - 1 n' - 1 n -1. ;;-r::t 

(5.9) 

and substitute(,~ - ! . 
1 

n in place of 1,~-1. " , that is, 
(u -1)-1 ;;-r::) 

u o- 0 u 
( ) ( ) 

(n1-1) - 1 

I <o = 1 - 1 - -- ll - --( I " 

(,, ·;;-r::t n'- 1 n'- 1 '' - 1·1,1-1)-l 
(5.10) 

In formulas (5.9) and {5.10), if (U, 1 .. > ~~'- 1. o holds, it is obvious from 
1l - ·(n1-t)-l - ;;-r::) 

formulas {5.7) and (5.8) that 

1- -- 1--- ul (> < ( 
a ) ( a )"

1

-2 
n'-1 n.1-1 ( 11 - l.;;r::-2 - ( 

0' ) ( 0' U )u'-2 1--- 1--- I 0 

n'-1 n'-1 111 -l.;=-r 

holds, and hence 

( u u 
,.,,~. t" 2::: Tn' .-"-. ;;-r::) , -) 

Initially, since we obviously have 

u 0' u ' u r ., = --- = "' o .> "' ,. '>11o.-- . 1 ,,,o.-- -- tno.-' 
"O I 710- no-1 11-l 

(~._!!_ becomes the upper bound on 7~.-"- by induction of n. 
n -I rt-1 • 

We illustrate in Figure 5.16 the beh:aviors and the relationships among / 11 .-"-, ~~-·-· 
u-1 ·,-1 

and(~.-"-· 
11 1 

Then, we have the following theorem. 

Theorem 5.18: When n tends to infinity, the upper bound (~.p,. defined by formula 

(5.8), converges to(~, which is the solution x2 of the equation 
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'Yn.-"-· 'Y~ ....u._. (~ ...Jl.- (<1- = 1.5) 
u-1 'n-J 'n--1 

0.9 .,----,---,---,---,----,---,-----.---,---, 

0.8 1u, ,".: 1 

0.7 

0.6 

·G-....... "O ........ o ..... . 

0 .... 0 ...... £) .......... 0 .. 

.......... ....,._. __ -·--+--... ··----+----·----··-·""• ·-r-···-··· ................... ..., ....... -· 

0.5 

0.4 

0.3 n 
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V (V In . .....!L1 ~ 'Yn .....!L ~ n _..!L_. 
'' - ~ u- 1 • n- I 

(a= 2.0) 

0.95 
~ 

q·. 
', (g 
\ .. t!J 
\ ·m 

\ ~.!!) \ . 

\, ··o ........ "£l .......... a .......... o .. 
~ ....... __ ------..... ...... ................ _ --------... ......... --~+----·--:~ ::. .. ::· .. · 

0.9 

0.85 

0.8 
.. 0 .. ·0· .. 
··----·--.. ·-+-- ----

0.75 

0.7 

0.65 

0.6 n 
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Figure 5.16: Behaviors of lu . ....!L, /u_,_. and (u " . 
tl-] ft.,) 71.~ 
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1- x- e-'" = 0, (5.11) 

satisfying 0 < x2 < 1 if a > 1, and :z:2 = 0 if 0 < a: $ 1. (Equation (5.11) has at most 

two solutions, one which is x 1 = 0 and the other solutions xz can be positive or negative, 

d<•pending on a.) • 
Proof: We examine the behavior of (,~p .. defined by 

(,~,,,,. - 1 - ( 1 - n ~ 2) ( 1 - n ~ 2 (,~ l.p,. l ) 

11 2 

(n >no). (5.12) 

First of all, each (~"" is bounded as follows: 

This can easily be verified by induction of n. 

Suppose that (~ 1.7,.,_ 1 
is in the range 0 $ 

Initially, 0 $ (~0 •1,,. 0 = p,0 $ 1 is obvious. 

for n > n 11 , it holds that 0 $ ( 1 - ;; ~ 
1 
(,~ 

therefore, 

,·U < 1. Since 0 < _a_ < 1 holds 
..,,1 1 1,. 1 - - n _ 1 -

~.,, 1 ) $ 1 and 0 $ ( 1 - n: 
1

) $ 1, and 

$1. 

Next, we show that the sequence { (,~·''"} becomes monotone for sufficiently large n . 

Consider the following two consecutive terms: 

( u - 1 - (1 - _ a _ ) (' 1 - _a_,u ) 11 1 = 1 - cU 1 
11 t l.Jiu+l - n- 1 \ n- 1 '>11.p,. - '>n+ .Jlu+ l ) 

( ) ( ) 

11 u a a u -1- 1--- 1---Cn.p., - n _ 2 n _ 2 C11-1.7,.,_1 

2 = 1 - ~~,Jln • 

First, we show that if C!/-l.p.,-1 2: c;~.p .. ) then it implies(~.,,., 2: (,~+l.Pn+l. To compare 

the size of two terms~~+ l.p.,+
1 

and ~~{p .. , we consider their ratio, that is, 

( a )( a u )'
1 

- 1--- 1- --( 
- n - 1 n- 1 "·71" 

n- 1 -a (n- 1 - a'u )n-l '>n.p,. =----
n-1 (n- 1)"- 1 

I ( 0 ) ( a u )"-2 
1 - n - 2 1 - n - 2 Cn-l.p .. -1 

n-2 (n- 2)n-2 

n- 2- a . (n- 2- a(u )'l-2 
ll l.Jln -I 
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n-1-a: 
= 

n-1 

n- 2 n-1-a:(u (n-1-o(u )" - 2 (n _ 2)n 2 
___ __..;.;.":.t:.·l'.::." u.p,. 

n-2-a:. n 1 · (n- 1)"- 2 · (n-2-o(u )11 2 
11 l.p., _l 

{ 
u } " •) (n-2)(n-l-o() -

. (n-l)(n-1-n(U 1"·1'") (5.13) 
'' ·Pt~-1 

n2-3n-on+?a:+2 n-1-a(l - - ~~~ 

- n 2 - 3n-an + a + 2 · n - I 

In formula (5.13), since 

n2 - 3n- an+ 2a + 2 

n 2 - 3n- an+ a+ 2 
a 

=1+ > 1 
n 2 - 3n - an+ a+ 2 - ' 

and the remaining term 

n- 1 - a(,~1J., { (n- 2)(n- 1 - a(!;'.p .. ) } " 
2 

n- 1 (n-l)(n-1-a(~ ~,1,, 1
) 

_ n - 1 - a(,~p .. 
n-1 

_ n - 1 - a(,~p .. 
n-1 

n- 1- a(u > n.p,. 

- n -1 

2 u 2 
= 1 + a (II.Jin 

n3 -4n2+5n- an2(u +2an(u -a(U -2 
11 .]Jn 11.Jin 11.Jin 

becomes greater than or equal to 1 (by a > 0 and ([{p., 2: 0 for n > n 0 ), we can conclude 

that 

holds for any n 2: no. This means cU > cU and therefore, we obtat·n ':.u+2.Jin+2 - ':.11+l.p,.+1 
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This says that once it holds that (,~+l.JI,.'+J ~ (~.11 ,., for any n' >no, then the sequence 

{ (.~.p .. } becomes non-increasing for all n > n'. On the other hand, if no n' > nu satisfies 

(~+ 1 P ~ (,~ , it means that { (,~P } is increasing. Consequently, the sequence 
11 

• u'+l 1 ·Pn' · " 

{ (.~.p..} becomes either non-increasing or increasing for sufficiently large n > n1
• 

Since the sequence {(~.p,} is bounded from below and from above, the above mono-

tonicity proves that it converges to a certain limit value. 

Now, let the limit value of the sequence { (~.p .. } be (J{. Then, it has to satisfy the 

following equation obtained from formula (5.12) by substituting (~.p .. = (,~- l.p,. _ 1 = x: 

X = 1 - 1 - -- 1 - _:._X 
( 

0' ) ( 0 , ) u-1 

n - 1 n --1 

When n tends to infinity, 

(l -~) -1 
n-1 

and 

1- _a_x - e-o:r . 
( )

n-1 

n-1 

Therefore, x = (J{ satisfies 

1- x - e ox= 0. (5.14) 

As shown in Figure 5.17, this equation has two solutions x 1 = 0 and x2 satisfying 

0 < x 2 < 1 if a > 1; one multiple solution x2 = 0 if a= 1; and two solutions x1 satisfying 

x 1 < 0 and x2 = 0 if 0 ~a< 1. We then assert that 

;U
'>n- X2. 

In the case of 0 ~a~ 1, it is obviow; that(~ = x2 (= 0) holds, because (J{ must be in 

the range 0 ~ (![ ~ 1 and the equation (5.14) has only one solution in that range. On 

the other hand, in the case of a> 1 (i.e., x2 > 0), we consider the following two possible 

cases: 
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Figure 5.17: Behavior of two functions 1- x and e-(I'.T. 

1. The sequence { (,~p .. } is increasing. 
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X 

In this case, since the initial probability (~ " is greater than 0 by a > 1, it o,rno 

never converges to 0. Therefore, (g = x2 must hold. 

2. The sequence { (,~P•} is non-increasing. 

We show that (~.p,. never be less than x2 > 0 by induction of n. Suppose (.~.1>,. 
( = t,) is greater than x2 for some n, that is, 

(For example, the initial no satisfies 1 - t710 < e-nt.,o if a (> 1) of tno = _a __ 
no - 1 



124 CHAPTER 5 T H E S IZE O F TRANSIT IVE C LOSUR E OF A RAN DOM GRAPH 

is sufficiently dose to 1 because if no = 3 

lim (1- ~) = ~ < lim (e-"2
12

) = 0.60653 · · ·, 
n· ~l 2 2 rt ·-1 

holds.) Then, the next (~+1.1,.,+ 1 (= l, +d satisfies 

lu-t 1 = 1 (
1- _a-) (t- -.Q t,)"-l 

n-1 n-1 

Since t 11 > t, +1 by the non-inc:reasingness of { (~pJ, it holds that 

1 - l 11 1 1 = ( 1 - n ~ l) ( 1 ) 

11-1 
_a-_t < e nl., < e - ttl n+l 

1 11 - ' n-

because (1 -~ ) and (1 -~ t1) 11 1 
are monotone increasing inn when 

n-l n-1 
a- > 1, and the latter converges to e nit. This implies that t, = (~.1,,. never 

becomes less than x2, which is a solution of the equation (5.14). 

This concludes the proof of this theorem. • 
Now, we may comment upon a relationship between two upper bounds l'~.p .. and 

(~.1,,.. Although we have not proved the convergence of the sequence { /'1~.1,,.} yet, we can 

present the following property. 

Property 5.19: If the sequence { I'~.JI .. } converges as n tends to infinity, it converges to 

the same solution x2 of equation (5 .14). • 
Proof: We have alrE-ady proved that (,~.p .. , which is computed by 

(,~.p,. = 1 - (1 - Pn- 1) (1 - Pn-· 1 · (~ 1.11,
1 1 r'-2

, 

becomes an upper bound on l'~.p .. and! converges to x2. Also note that the final iteration 

(5.7) of computing 1'~.1,., fori= n has a similar form: 

/',~·1'" = 1- ( l - n ~ 2) ( 1 - n: 21'~ l.t>u) n-2 (5.15) 

Therefore, we have only to show that 1'~-l.p, = 1'~.1,,. holds in the limit state. Now, since 

the convergence of sequence b~.p .. } implies that 1'~- 1.1,,. _ 1 = 1'~.1,.,, it suffices to show 
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/'~ l.p., 1 = 1'~- 1.1J., in the limit state, that is, the ratio 1'~'- t.p., /1~-1.71 .. _ 1 
becomes 1 as 

n tends to infinity. 

The formulas for computing ""
1
c
1
r and ..,.u a1·e 

1 l.t•u - 1 1 11-l.f'n < 

u 
l'u-l.JI,.-1 = 1 - {1- P11 - l ){ 1 - Pn - 1 '/'u - 2.p., 1 )" 3 

/'~ l.p., = 1 - (1 - p" )( 1 p,, . /'fl 2,]1.,) 11 -3 

~ 1 - (1- p,)(l - p, ·')', 2.7,, _1 )"-
3 (sinet' In '!.,p., 1 ~ /'11 - 2.1,.,) 

= "'C 
-I > 

respectively. Since the relation 

U > U >_ "'C 
1'11 - l.7>., - 1 - l'u-l.p., 1 

holds, we try to estimate the ratio 1'~-l.p.,_.fl'c instead of~~ 1,
1
,., ./1',~- J.p .. , and use 

t he ratio (1 -p,I_I)(1-p11-1'/'11 2.11., 1 )"-
3

/ (1-p 11 )(l p, ·l'n - 2.p, 
1
)'1 3 in ord('J' to 

evaluate 1'~-1.1J,_.fl'c. Thus, we have 

(1- p,_t)(1- P11 - 1 '/'11 -2.J>u-1 )" 
3 /(1- Pn ){1- p, '/'11 2.71., 1 )"-3 

= ( 1 - n : 2) ( 1 - n : 2 1" 2 .p., -I ) , f ( 1 - n ~ 1 ) ( 1 n : 1 ')',-2 ·Pn 1 ) 

11 3 

= n- 1 ( n - 1 . n- 2- Cl'')',-2,7'u-l )n-3 
n- 2 n- 2 n- 1 - 0'/'u - 2,7,, _

1 

and therefore, 

u 
l. l'n l.p,. -I 1 
1nl c = 

n-x /' 

holds. T his implies 1'~-l.p., 1 = ')',~ 1,1,,. and hence/'~ 11,, _
1 

= /'~1,, in the limit state. 

Now, by letting 

for n- oo and substituting these into (5.15), we obtain the stationary equation 

x = (1 - _a-) (1 - _o-x)" 2 

n-2 n-2 
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which converges, as n tends to infinity, to the solution of the same equation as (5.14): 

1 - x - e-r·a· = 0. 

• 
Since p, = -

0
- is the probability of an arc to be present between any two vertices, 

n-1 
a= p(n -1) can be regarded as the average out-degree of any vertex in G of type D(n,p ). 

Therefore, Theorem 5.18 states that if the out-degree a of a vertex is less than or equal 

to 1, the upper bound (~p .. of the reachability between any two vertices becomes 0, as n 

grows to infinity. On the other hand, if the out-degree a is greater than 1, (n.pn converges 

to(!; = xz (> 0). 

Now, we present some computati•onal results of Theorem 5.18. First, we show in 

Figure 5.18 the behavior of 'Yu n as a function of n for various a. This may indicate 
11. ;:-::} 

that the convergence speed of "fu_,._ is very fast. Figure 5.19 shows the relationship 
n. n 1 

between two upper bounds 'Y~.-"- and(,~-"- for four values of a. This confirms us that 
u-1 n-1 

(,~..JL is an upper bound of 'Y~.-"- andl is non-increasing, and furthermore, they converge 
u-1 n - 1 

to the same limit. 

Figure 5.20 shows (;: as a function of a. In this figure, the exact reachabilities "f11 .p,. 

in case of n = 10, 20, 50, 100 which are computed by the procedure presented in Section 

5.3 are also shown for comparison purpose. 

From Theorem 5.18, we immediately have the following corollary. 

Corolla r y 5.20: In a random digraph G of type D ( n, (n ~ 
1
)/3 ), the limit value (1~ of 

( u when n--+ oo becomes 11.]>., 

( u
fl -

1 ({3<1) 

xz ({3 = 1) 

0 ({3>1), 

where x2 is the solution of equation (~>.14), satisfying 0 ~ x2 < 1. • 
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Figure 5.18: Behavior of 'Y,~.-'-' as a function of n. 
rl - 1 

n 

Proof: This result comes from the behavior of the limit value of lim (1 + 1 J) '' 
n -oc (n- 1)1 

and Theorem 5.18. • 

This corollary says that if Pn in D(n,p,) is greater than O(n- 1), any vertex becomes 

reachable to all the vertices when n tends to infinity, while i[p11 is smaller than O(n- 1), 

it becomes reachable to no vertex. 
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5.7 On the Number ofReachable Vertices and the Size of '!'ran-

sitive Closure 

While "f•1.p denotes the reachability between any two vertices, (n - lhu.p denotes the 

number of reachable vertices from a given vertex, and n(n - 1)/',.p + 1l"fu + l.p denotes the 

expected size of the transitive closure by Theorem 5. 7. Therefore, we are also interested 

in the asymptotic behavior of those values or their upper bounds, when n tends to infinity . 

5.7.1 Asymptotic Behavior of the Number of R eachable Vertices 

According to the definition of the reachability 'Yn.p.,, (n - 1)/',, ,p., represents the expected 

number of reachable vertices from one vertex in a random graph of type D(n,p,,). In this 

subsection, we consider its appropriate upper bound and analyze the behavior in case n 

tends to infinity. Then, we have the following theorem. 

Theorem 5.21: The (n- 1)(,~1,., gives an upper bound on the expected number of 

reachable vertices from one vertex in a random digraph of type D(n,p.11 ), where the 

upper bound (.~.1,, on the reachability is computed by (5.8), that is, 

(,~Pn-1 = 1- (1- Pu- 1)(1- P11-l · (,~- 1.7111 - J )'' -
2

· 

Furthermore, if p11 = _a_' (n- l)(!;'P converges as follows: 
n -1 ·" 

lim (n- 1)(,~_,,_ =_a_, 
n-.oo ' n-1 1- er 

where a satisfies 0 :S a < 1. 

(5.16) 

• 
Proof: First of all, it is obvious that (n - l)(,~p .. is an upper bound on the expected 

number of the reachable vertices from one vertex, because (n - 1)/',,p., expresses the 

exact expected number of the reachable vertices from a given vertex, and (,~,7), is an 

upper bound on "fn.p.,, that is, 

(n- lhn.p, :S (n- l h,~.p,, :S (n- l)(~.p .. 
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holds. Now, define 

Y11 = (n- l)(~.p .. · 

Then, by substituting (,.JI,. = n ~ 
1 

and p, = n: 
1 

into formula (5.16), we have 

~=1 (1--a-)(1- a ·~)"-2 n-1 n-1 n 1 n-1 

( 
a ) ( n - 2 a-2 

( n - 2) ( n 3) 2 ) 
= 1 l - n- 1 1- a (n 1)2y,, 1 + 2 (n- 1)4 y,, _ l-... ' 

that is, 

( 
1 (n- 2) 2 (n- 2) 

y, = (n- l )- (n- 1) 1- a-;;--=-1- a (n _ 1)2 y,, _t +a (n _ l)3 Y11 -1 

a 2 (n- 2)(n- :3) 2 _ a 3 (n- 2)(n- 3) 2 _ .. ·) 

+ 2 (n- 1)4 y, 1 2 (n- 1)5 y, 1 

n-2 2 n·-2 
=a+ a--

1 
y,, 1- a -( --

1
)2 Yu 

n- n -· 

a 2 (n-2)(n- :3 ) 2 o-3 (n-2)(n-3) 2 
- 2 (n- 1)3 y, 1 + 2 (n- 1)4 y11 1 - ... · 

In this formula, sine<' all the terms after the second one become negligible when n tends 

to infinity, it becomes 

n- 2 ('y" 1) y, = a+a · -- ·Yu-1 +0 -- · 
n- 1 , n 

(5.17) 

Therefore, since 

lim (a-· n-
2

1 
· Y11 1) = ay,_.t, ,_"" n 

formula ( 5 .17) becomes 

y., =a+ ay" 1 

in the limit state of n _. oo. From this, we have 

y., - 1 : 0' = a ( Yu-1 - 1 : 0' ) , (5.18) 

and this implies that the sequence {y .. , - _a_} converges to 0 if a satisfies 0 .$ a < 1. 
1 -a 

In other words, for 0 .$ a < 1, 

5. 7 On the Number of R eachable Vertices and t he Size of Tra nsitive Closure 

y = lim y,, = lim (n- 1 )(~-"- = _ac_. 
1'1-~.::X. n-oc. 'u-1 1 - (} 

(Here, the recursive formula (5.18) is also satisfied by the condition that 

a 
Y2 = Y3 = · · · = --. 

1-a 
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But this cannot be realized in our case because, strictly speaking, y, includes higher 

terms of 0 (y'; 1
) in formula (5.17).) This concludes the proof of this theorem. • 

Now, we show some numerical results for the expected number of reachabl<> v<>t"lic<>s 

(n - l h,.-"- and its upper bound (n- l)(u - "- . The first figure in Figure 5.21 shows tlw 
" 1 n." -1 

limit value _ac_ of (n-1)(u_._, and the exact number of reachable vertices (n- 1 )t _,_, 
1- a "·, _, "···-• 

for some finite n's as a function of a (0 .$a.$ 0.9), and the second figure in Figure 5.21 

is its expansion in the range of 0 .$ ac .$ 0.5. In Figure 5.22, we illustrate the relationship 

among (n- 1)1'11 -!!.... 1 (n- l)(f,.-"- and the limit value 
0 

as functions of n, for 
, u-J u 1 1 - (\' 

a= 0.2, 0.5 and 0.8. 

All of these figures verify that {n- 1)(:[_,_ is an upper bound on (n- 1h,.-·-· , and 
~ "" 1 n - 1 

is converging to its limit value _a_. 
1 -a 

Now, we can present here a trivial property as a corollary, which is derived directly 

from the proof of Theorem 5.21. 

Corollary 5 .22: In a random d igraph G of type D ( n, (n 0' l )/
1

) , the limi t value yff of 

(n- 1)(~ .. when n _, oo becomes 
··~ 

00 ({3 < 1) 

u 00 ({3 = 1, Q > 1) 
Yt~ = Q 

({3 = 1 1 0 .$ Q < 1) 
1 -a 

0 ({3 > 1), 

according to the values of a and {3. • 
Proof: T his is mainly because the sequence {y,- _a-_} in formula (5. 18) diverges as 

1 - Q 

n tends to infinity when a > 1. • 
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n t: 
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F igure 5.22: Relationship among (n- 1hu.-"-• (n -1)(~_ .. _ and the limit value--. 

n-1 ·u - 1 1 - a 

5. 7.2 Asymptotic Behavior of the Size of Transitive C losure 

Along a similar line as in the discussion in t he previous subsection, we discuss in this 

subsection the asymptotic behavior of t he size of t he transitive closure of a random 

digraph. 

By Lemma 5.7, we follow the rule to denote the expected size of the transit ive closure 

of a random digraph of type DL(n,pu) by lgi(n,p,)l. It is computed by 

l9t {n,pn)l = n(n- 1hn.p., + /n+l.p.,, {5.19) 

when p is given by p,1 as a function of n. 

For the purpose of estimating an up per bound on 19 t ( n, p11 ) I, we extend t he definit ion 

of (~_11, to (,~+"'·Pn, in which n + n' is greater than n (n' 2:: 1), t hat is, 
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{ 

(~o-t-n'.p., 0 = l~o- "'·l'no ' 
(~+n'.p., = 1-{l -p,_I)( l-p,_l·(:;-t u'- Lt• .. ,)"-2 

(n >nu). 
(5.20) 

It is obvious that (,~+n'.p,. is an upper bound 0111~'4 ,._1
,,., and therefore, on the reachability 

Accord ing to this definition and formula (5. 19), we have the following theorem. 

T heorem 5.23: T he n2(~+l.t'" is an upper bound on the expected size of the transi 

a 
tive closure of a random digraph of type D L(n, p, ), and when p, is given as p11 = 

n2' 
2(U h · n u+l. n COnverges to a, t at IS, 

;;-! 

I. 2(U Jm n n " =a, 
fl-t:X.. ~~ 

where a satisfies a 2:: 0. • 
Proof: Since the expected size lg!(n,p,,)l of the transitive closure of a random digraph 

of type D L( n, Pn) is 

by Lemma 5.7 , it is bounded from above as 

< 2 u - n 'Yn+l.p,. 

T herefore, n2(~-rl.p,. is an upper bound on lgi(n,p,)l. Now, we examine the asymptotic 

behavior of n2(~·+-l.p,. . 

Define 

_ 2;U 
Zn+l = n .,11 + 1.p,.. 
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Then, by substituting(~ 1 = .::,~ 1 and p,, = a, into formul<1. (5.20). we have 
-r ·Pn n- n-

that is, 

_z,_,-t_l - 1- (1- ~) (1- ~. _ ... _~"~)" -2 
n2- n2 n2 (n-1)2 

( a) ( n- 2 o
2 
(n- 2)(n- 3) 2 ) 

= 1 - l -n2 1 - 0 n2(n-1)2z, +2 n·1(n-1)4 .::,-···' 

2 
Zntl -n 2 ( n - 2 a 2 

( n 2) ( n - 3) 2 ) 
(n -a) l-an<!(n-1)2z,+2 n"(n- 1)4 z~~- ··· 

( 
2 n 2 (n- 2) 2 (n- 2) 

n - 0'- 0' n2(n- 1)2z, + o n2(n- t)2z, 

o 2 n 2(n- 2)(n- 3) z2 _ a-3 n 2(n- 2)(n- 3) .,.2 _ .. ·) 

+ 2 n 4 (n- 1)4 " 2 n'1(n- 1)4 -u 

(n- 2) 2 (n- 2) 
=o+o(n-1)2zu-o n2(n-1)2z" 

o 2 (n- 2)(n ·- 3) 2 a-3 (n- 2)(n- 3) 2 
- 2 n 2(n- 1)4 z, + 2 n 1(n- 1) 1 zn- · · · · 

In this formula, since all the terms except the first one become 0 as n tends to infinity, 

we obtain 

for the initi<1.l probability p11 = C: (for a~ 0). 
n- • 

Here, we present some numerical results. Figure 5.23 shows the exact size n(n -

I h,... + 11/'11 H.::r of transitive closUJre and the limit value a for various n and a-. We 
;1' ll 

illustrate in Figure 5.2-1 the relationship among n(n- 1h, ~ + H'Yu+l.~, n2(~'-rl. o and ,, , ;-r 

o for o = 0.5 and 2.0 as a function of n. These justify the results of Theorem 5.23. 

Finally, we have a corollary similar to Corollary 5.22. 

Corollary 5.24: In a random digraph G of type D (n, ~~), the limit value z1~ of 

n2(u+ 1 " when n -+ oo becomes 
11 • :;iT 
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Figure 5.23: The exact size n(n - 1 h,,::l- + 11/'11 t 1.::1- of the transitive closure and its 
" fl 

limit value a. 

00 ({3 < 2) 

u = (/3 = 2) zl~ Q 

0 ({3 > 2), 

according to (3. • 
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5.8 Conclusion 

In this chapter, we illustrated that the expect(;'d size of the transitive closure of a random 

graph of type D(n,p) can be computed from the r<'achability )u.p· Then, we proposed 

two different methods of computing -y,,1, exactly. On<> is to count the number of reachable 

vertices by the length of their shortest paths from a source vertex, and the other is to 

uti lize the conditional reachabi lities. 

Since it takes much time to compute exact rcachability 'ru.11, we presented a convenient 

and fast way to obtain lower and upper bounds on the reachability, based on the second 

approach. Although the lower bound is rather rough, the upper bound is fairly clobe to 

the exact reachability. These bounds are useful to estimate lower and upper bounds of 

the cost for computing transitive closures of relations, as described in Chapters 3 and 4. 

T hen, we examined the asymptotic behavior of the upper bound (f,_Pn of the reacha

bility 'Y11 .p.,. The result shows that the limit value (.~ of (,~_1, .. depends on the out-degret' 

a of a vertex. If a is a constant, it approaches to the largest solution x2 of the equation 

1 - x - e ra = 0, and if a is a function of n, it approaches 0 or l. 

Furthermore, while 'Y11 .p., denotes the reachahility between any two vertices, (n -

l)-y,,11., denotes the number of reachable vertices from a given vertex, and n(n -1)-y,_11, + 

n-y11 +1.1111 denotes the number of all the pairs of reachable vertices, i.e., the size of th<.> 

transitive closure of a given random digraph. We also examined the behaviors of these 

values. Although we could investigate the asymptotic behaviors of upper bounds (n-

1)(~_71, and n2(~+l.p,. only, they seem to converge respectively to the exact values (n-

1)-yf,_1,, and n(n- 1hn.pn + n-y11 +1.11, in the limit state. 
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Chapter 6 

Complexity of the Optimum Join 

Order Problem 

6.1 Int r oduction 

Relational databases are not only used as the systems in the real world, but also used 

as subsystems of more complex systems, e.g., deductive database systems [Ban 86a, 

Bay 85b, Gard 89, Kif 86, Miy 89]. Optimization of processing database queries is also 

important in order to increase their applicability. 

As we viewed in Chapter 2, the process of handling database queries can be decom 

posed into basic operations of relational algebra [Gard 89, Ull 89bJ. Among the basic 

operations in relational algebra, joins [Gra 93, Ibara 84, Kim 80, Kri 86] are the most 

important in the sense that they consume most of the computational time. Therefore, 

a considerable number of recent studies have been made to minimize the computational 

cost associated with joins. However, most of them are based on empirical argument, and 

there is little theoretical work done in this area. 

Among the existing algorithms for computing many joins, the nested-iteration al

gorithm [Kim 80] is straightforward but it is not efficient. More efficient ones are the 

143 
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nested-loops algorithm (Gra 93, Ibara 84, Ki m 80, Kn 86] and the merge-scan algorithm 

(Gra 93, Kri 86] which are well-known. As the nested-loops algorithm, a polynomial time 

algorithm is known [Ibara 84] that finds an optimal nesting order of u joins in a given 

query Lree, which minimizes the cost of joins within the framework of nested-loops al

gorithm. For these works, some papers discussed the optimum order of joins executed 

by the nested loops algorithm [Ibara 84], however, the merge-scan algorithm has so far 

received limited attention [Kri 86] in the theoretical sense in spite of its efficiency in com

puting joins. (The results for the two a~lgorithms are not contradictory because they are 

based on different methods of computing joins, and the optimization is attempted only 

within the framework of each algorithm. The optimum costs with these two algorithms 

of computing joins may be different.) 

Therefore, in this chapter, we concentrate on the merge-scan algorithm and try to 

minimize the total size of intermediate relations generated in processing the whole joins. 

The total size is important and it is often adopted as a typical measure because it 

represents the memory space requirement of the entire computation. Moreover, it may 

be viewed as an approximate measure of the time complexity. 

For the purpose of formalizing our problem, we use the query graph (tree), which only 

focuses on the attributes and the selectivities of relations on which joins are executed. It 

will be shown in this chapter that determining a join order of the merge-scan algorithm 

that minimizes the above cost is equivalent to finding an optimum selection order of all 

edges in a query graph. Then we examine the computational complexity of the problem 

of finding an optimum selection order, and show that it is NP-hard [Gar 79] even if query 

graphs are restricted to be trees. T his fact suggests that no algorithm can compute the 

optimum join order in polynomial time. However, it is also found out that, if we further 

restrict query trees to certain special types, relatively efficient polynomial time algorithms 

exist. 
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6.2 Optim um Join Order Problen1 

6.2.1 J oin Algorithms 

We illustrate two typical algorithms for computing joins in this subsection, whose outlines 

are introduced in Chapter 2. That is, the Jtt•sted-loop:, algorithm and the merge scau 

algorithm, for computing a single join R1 IXl 1?2, where R, and R2 consist of r 1 tuples 
A1, Dv 

tu, ... , t,l'J and r2 tuples t21, ... , lz,.2 , respectively. 

Nest ed -Loo p Algorit h m 

The nested-loop algorithm to computeR= R1 IXl R.! is given in Program 6.1. Similar 
A1• 0 1 

Procedure Nested-Loop! 

Input: R1 , Rz 
Output: R = R1 IXl Rz 

Ap=D9 

begin 

2 R := </>; 

3 for i := 1 to r1 do 
4 b egin 

!i for j := 1 to r2 d o 
6 b egin 

7 if t1i .Ap = t21 .Bq then 
8 R := RU {(tt,t1 )}; 

9 e nd 

10 e nd 
11 e nd. 

Program 6.1: The nested-loop algorithm. 

to the definition of natural join between two relations, (111 t1 ) denotes the resulting tuple 

of the natural join of tuples t 1 and t1 instead of relations Rt and R2 between the specified 



146 CHAPTER 6 COMPLEXITY OF T HE OPTIMUM JOIN ORDER PROBLEM 

finds all the tuples in R2 whose values of component of attribute Bq coincides with the 

value of each component of attribute .1\ in Rt. 

This algorithm can be generalized to compute the joins among n relations. For this 

purpose, it is nested as shown in Program 6.2. The "nested-loop" is named for this reason. 

In this algorithm, we assume for simplicity that the join attribute in R~.: has appeared 

Procedure Nested Loop2 

Input: Rt, ... , R, 
Output: R = (((Rt t><1 R2) t><1 • • ·) t><1 R, _l) ~ R,, 

begin 

2 R := </>; 

3 for t 1 : - 1 to r1 do 

4 begin 
:; for i2 := 1 to r2 do 
G if (the value of join attribute in R2 matches 

the value of join attribute in Rt) then 

7 begin 

8 

9 

10 

ll 

12 

13 

14 

15 

end 

end 

end. 

for i,1 := 1 to 1·11 do 
if (the value of join attribute in R,, matches the value 

of join attribute either in Rt, ... , R, 1) then 

begin 
R := R U { (tt11 , ••• , t,,,. )}; 

end 

Program 6.2: The modified nested-loop algorithm. 

once either in the previous relations R 1 , •.. , R1.. 1 . Similar to the procedure Nested

Loop!. rh ... , r,. is the sizes of relations R1 , ... , R,, and (t11 1 ••••• tt1i,,) denotes the 

6.2 Optimum Join Order Problem 147 

resulting tuple of the natural join of tuples l1, 1 , ••• , t,, by the specified join attributes. 

Merge-Scan Algorithm 

The merge-scan algorithm for computing a single join is described in Program 6.3. This 

Procedure Merge-Scan! 

Input: R1, R2 
Output: R = Rt t><1 R2 

Ap - Dq 

1 begin 

2 R:= </>; 

3 Sort all the tuples in Rt on A11 in the increasing order; 

4 Sort all the tuples in R2 on Aq in the increasing order; 

5 i := 1; j := 1; 

G while (i 5 r 1 and j 5 r2) do 

7 begin 

8 if t,.Ap > t1 .Aq the n j := j + 1; 

9 else if t,.AP < t1 .Aq then i := i + 1; 

10 e lse do (ti.Ap = trBq) 

11 

12 

13 

14 

15 

lG 

17 

18 

19 

20 

21 

begin 

k := 0; 

while (j + k 5 r2 and t1 .AJI = t1+k.Aq) do 
begin 

R := RU {(t"t1 )}; 

k := k + 1; 

end 

i:=i+l; 
end 

e nd 

end. 

Program 6.3: The merge-scan algorithm. 

algorithm firstly sorts all the tuples in R1 and R2 by the join attributes A 11 and Bq, 

respectively, in the increasing order, and scans those sorted tuples in R1 and R2 simul-
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taneously in this order of values of components in Bq for each value of component in 

Ap· Then, it merges the tuple tt in R1 and t1 in R2, whose values in the join attributes 

coincide, into a new tuple (tt, t3 ). 

This algorithm can easily applied to compute the joins among n relations. Suppose 

there are m joins to compute among n relations. In other words, there are m pairs of two 

relations which have common join attributes each other. This algorithm can begin with 

computing one of these m pairs, and all the m joins one after another, in which all the m 

joins are computed by the merge-scan algorithm between two relations. The detail will 

be described in the subsequent subsections. 

6.2.2 Complexity of Computing Joins with Selectivities 

As we noticed in Chapter 2, we estimate the complexity of computing joins by the repre-

sentative two algorithms, the nested-loop algorithm and the merge-scan algorithm, and 

we define the computing costs of them. When considering the complexity of computing 

joins, there may be two measures to ,estimate it as we saw in Section 5 in C~apter 2. 

(That is, (1) the number of tuples accessed during the computation of the join, or (2) 

the number of tuples outputted explidtly as the result of the join.) 

By using these measures, we try to estimate the complexity of computing the join 

R1 IX1 R2 with their selectivity s12 by the nested-loop and the merge-scan algorithms. 
AI, = Bq 

Nested-Loop Algorithm 

1. Since it accesses rz tuples in inner loop for each of r1 tuples in outer loop, it 

requires O(r1rz) computationa.l time for accessing tuples. 

2. Since the resulting size of the join is s12r1rz, it requires O(s12r1r2) computational 

time for outputting tuples. 

Merge-Scan Algorithm 
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1. The computational complexity is O(r1 logr1 + rz logrz) to sort Rt and Rz, and 

O(r1 + rz) to merge R 1 and Rz. The total complexity is O(r1 log r1 + rz log rz + 

r1 + rz) to access tuples. 

2. It requires O(s1zr1rz) computational time for outputting tuples, similar to the 

nested-loop procedure. 

Since it is usually regarded that the unit time required for outputting the resulting 

relation explicitly costs more than that for accessing tuples, we decided to adopt the 

complexity O(s1zr1r2) as the cost of computing the join R 1 IX1 R2. Moreover, since 
AI, B,, 

we consider only merge-scan algorithm for computing joins in this chapter, the term 

O(s1zr1rz) is not only the size of the resulting relation but becomes dominant in the 

entire computation if r1 and rz are large. 

Consequently, we define that the cost c(R1, Rz) of joining R1 and Rz of sizes r1 and 

rz and the selectivity s12 between R 1 and R2 as 

As discussed above, this is the size of the resulting relation, which is invariant whatever 

kind of algorithms is used for computing the join. 

6.2.3 Joins among Many Relations by the M erge-Scan Algorithm 

The problem here is to compute all joins of u pairs of relations chosen from a set of 

v relations R1, R2, ...• ~.. There may be relations used more than once, which are 

executed over different or identical attributes. But we avoid to show the join attributes 

between each pair of two relations, for convenience. 

For the use of this purpose, we can modify the procedure Merge-Scan! into the 

procedure Merge-Scan2, and it is shown in P rogram 6.4. In this procedure, the notation 

R.i,• implies the resulting relation, in which the relation Rt, is joined, or a single relation 
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Procedure v1erge-Scan2 

Input: R1 , .. , R,., Joins of u pair~ E = { e1, ... , 1' 11 } of relations 

Output: The rC'sulting relati,::>n of computing all u joins 

b egin 

2 while f~ :/= <1> do 

3 begin 
·I Choose any pair e,::.... (R,1 .A,,,Rt2 .B,q) Ill E; 
[I Sort the relation R,.tt.; 
G Sort the relation R •. ,2 .; 

7 Compute R, 1 t><J R,2 ; 
A,,-8,

1 

s E- E\e,; 
!l end 

10 end. 

Program 6.4: The modified merge-scan algorithm. 

The merge-scan algorithm can begin at any pair ofrelations (any join) among u pairs, 

and output the result as an explicit tE•mporary relation. The subsequent joins are not 

necessarily executed on the pair of relations one of which is the temporary relation just 

computed in the previous selection of a. pair. In other words, the merge-scan algorithm 

may produce one or more temporary n~lations. 

Suppose that the merge scan algorithm firstly selects one pair of relations to join, 

say R, and R7 , and constructs the resulting relation R,1 of size s,7rir1 • As a result, we 

arc givl'l1 a list of (u L) joins. The ·original joins between some R1.: and either R, or 

R1 are then considered as joins betwe,en R~,- and R,1 . Then, a pair of relations among 

{ u- 1) pairs is again st•lected to execute a join. This procedure is repeated until all joins 

are computed. As we shall see later, the order of joins executed in the above process is 

crucial in determining the sum of intermediate relation sizes. 

It is noted here that selectivities are assumed to be invariant during the above process 
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of merging relations by joins. For example, selectivity s,,_ betwet•n R, and R1.: is assumed 

to give the selectivity between R,1 and R,. after joining R, and R,. In general, this 

invariance does not hold, since the probability distribution of values in an attribute Ap 

changes if a join is executed on A1,. Ho\\:cver, if we assume the equal probability of 

all values, as was assumed to obtain formula (2.7), it is easily shown that the rC'sulting 

attribute also has the equal probability for all values, and the invariance of selectivity is 

maintained. Another special case is when no two joins use the same attribute. In this 

case, if the values in each tuple of a table are generated independently, the invariance is 

preserved even for a more general case of formula (2.8). Thes<> special cases of pra\tical 

importance may justify our assumption on the selectivity invariance. 

6.2.4 Query Graph Representation of the M erge-Scan Algorithm 

When we are asked to compute a list of u joins on v relations R1 , R2 , ... , R,,, w<• can 

make a query graph G = (V, E), whose set of vertices V consists of v relations R 1, ... , 

Rt, and whose set of edges E consists of u pairs of joins between two relations R, and 

In this case, instead of giving join attributes between relations R, and R" we give the 

selectivity s,1 on each edge. We can regard that a query tree T (V, E) is the sJH'cial 

case of a query graph which consists of v vertices and u = v- J edges. 

Applying a join between Rt and R1 can be regarded as selecting the corresponding 

edge e = (R11 R1 ) and merging its end nodes into R,1 , whose size then becomes 

(6.1) 

The edge e = (R,, R1 ) is removed from the graph, hut other edges, including those adja

cent to R, or R1 , remain in the graph with the same selectivities. Therefore, determining 

the order of u joins is visualized as selecting successively u edges in G. Upon merging all 

edges, G becomes a graph consisting only of a single node. 
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E xample 6.1: Consider the situation that we have to answer the query 

where r, 's are EDBs and let r1 = 301:), r2 = 200, r3 = 100, r.t = 500 and r5 = 400. 

The resulting query tree with appropriate selectivities is shown in Figure 6.1. We have 

200 

100 

Figure 6. 1: An example query tree wi th selectivities. 

4! = 24 possible permutations of the orders to execute joins, because there are four edges 

happen to choose a permutation 

the computing cost c of the tota.l join iis derived as follows: 

c1 = c(e2) = 0.08 x 300 x 100 = 2400, 

C2 = c(e4 ) = 0 .04 X 500 X 400 = 8000. 

Since node r 3 is merged into r 1, and r !> into r 4 by t hese joins, we t hen have 

CJ = c(el) = 0.01 X 2400 X 20() = 4800, 

c4 = c(e3) = 0.02 X 4800 X 80()0 = 384000. 

Therefore, t he total cost c is 

C = Cl + C2 + CJ + C4 = 399200. 

• 
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6.2 .5 Problem OPTJOIN 

The above discussion leads to the problem of finding an optimal join order (i.e., finding an 

optimal order of selecting edges) for a giv<>n query tree. \\ e call this problem OPTJOI~. 

and it is formalized as followings. 

OPT JOIN 

Input: a query tree T =(V, E), V- {R1, R2, ... , R,}, E {l. 1, e2, ... , e 11 } (tt- v- L), 

the size r, of each node Rr, and the selectivity s,1 of each edge c = (R,, RJ). 

Output: a permutation 7r = (e,,, e,2 , ••• , e,.,) of all edges in E that minimizes the l>ize 

C(n), where 

( 6.2) 
k 

and c1f{ei1 ) is the size {6.1) of joining two end nodes of c,1 after having merged edges 

e,,, e,2 , ••• , e,1 _ 1 {i .e., the sizes of the nodes obtained by merging each e,J, j = 1, 2, ... , k -

1, have been updated by applying (6.1)) in this order. • 
From the discussion given so far (in particular t he assumption on selectivity invari

ance), it is evident that C(n) gives t he total size of intermediate relations generated 

duri ng executing u joins in t he order specified by n. 
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6 .3 NP-hardness of OPTJOil'~ 

6.3.1 Main Theorem 

This section shows the following main theorem. 

Theorem 6.1: OPTJOIN is NP-hard. • 
Since OPTJ OIN is an optimization problem, we show this result by proving that the 

following decision problem version JOIN is NP-hard. 

JOIN 

Input: a query tree T = (V, E), V= {Jlt, R2, ... , R.r.}, E = { e1, e2, ... , e11 } (u = v - 1), 

the size r, of each node R,, the selectivity s.1 of each edge e = (Ri, Rj), and a positive 

number c•. 

Output: yes if there is a permutation 11~ with C(1r) :::; c*; otherwise no. • 
To prove the NP-hardness [Gar 79] of JOIN, we have to (polynomially) reduce an NP

complete problem B to JOIN, i.e., 

B ~JOIN. 

Here, B ~ J OIN means that an arbitrary problem instance Q of B can be transformed 

into a problem instance P of JOIN in polynomial time in the size of Q, such that P and 

Q have the same answer. In our discussion, we employ 0-1 KNAPSACK [Gar 79] in the 

place of B, and show that 

0-1 KNAPSACK~ JOIN. 

0-1 KNAPSACK 

Input: positive integers ao, a 1 , ... , a11 (without loss of generality. we assume a0 ~ a,, i = 

1, ... , n). 
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Output: yes if there exist :r, E {0, 1 }, i = 1, ... , n, such that a0 + t a,.r1 = ~ + 1, where 
•=1 

11 

A= La,; otherwise no. • t=U 

6.3.2 Proof of Theorem 6.1 

For a given problem instance of 0-1 KNAPSACK (i.e., positive integers a0 , a 1 , ... , a,), 

we consider the problem instance of J OIN defined by the query tree as shown in Figure 

6.2, with (n + 1) paths of length 2 and one edge emanating from the center node. Call 

Ar 
an-I 2 --r-
A 

a, r -2 Ar 
A 

Kr 

K'r 

ar 

Figure 6.2: A 2-star query tree. 

Ar 

the edges incident to the center node 'inside', and the other edges 'outside'. The weights 

of nodes and edges are also indicated in the figure, where 
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au >a, (for all i). (6.3) 

(6.4) 

a, 
We denote the outside edge with selectivity -- by e, and its inside edge by u, {i = 

Ar2 

0, 1, ... , n). Furthermore, let constants c, r, K, K' and a satisfy 

c > 3Aaon, 

, 1 3nacA 
1\ > -

au 

KAau 

Finally, let c• be given by 

(6 .5) 

(6.6) 

(6.7) 

{6.8) 

{6.9) 

(6.10) 

Coefficients a, (i = 0, 1, ... , n) and care considered to be exact. However, to keep the 

input length polynomial in the input le1ngth of the original instance of 0-1 KNAPSACK , 

i.e., nand log A, we assume that a, cao, ca1 , ••• , c<'" are accurate only up to L bits, where 

L satisfies 

L > 2 + 2log nA. (6.11) 

This condition is necessary for estimating truncation errors in the later discussion. Note 

that c, r, K and K' can be exact as the -conditions on them are given only by inequalities. 

The transformation from a problem instance of 0-1 KNA PSACK to the above instance 

of J OIN is obviously done in polynomial time. 

Now, the proof proceeds in four stages from 1 to 4 by analyzing the cost of joins in 

the above instance of J OIN. Stage 1 discusses that one special edge e• must be joined 
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first in an optimal join order. After this join. t lw set of edges is classified in stage 2 into 

three parts, E-. IT- and J-parts. for a gin•n join order. In stage 3, a special edge e11 and 

the edges in IT-part are considered, and it is shown that the order of edges in IT-part is 

irrelevant to the discussion of optimum cost. From the discussion in stages from 1 to 

3, it becomes evident that the essential factor in determining an optimal order of joins 

is how to partition the set of some edges into n and ~ part. Jt is then shown in stage 

4 that computing an optimal partition is equivalent to solving thr given instance of 0-1 

KNAPSACK, completing the proof of NP hardness. 

Stage 1: The firs t edge e• to join 

Denote the inside edge with selectivity r-3 by e·. fhis is introduced to make the initial 

sizes of all nodes greater than 1. as they represent relational tables. The edge e• can h<> 

the first edge to join among all edges in the graph as shown below. If we join some of 

other inside edges first, then terms such as 

cno 2 cal 2 
-r ,-r , ... 
ao a1 

appear in the resulting cost, which are obviously greater than c"' by formulas {6.6) and 

(6.10). Similarly, if some of outside edges arc joined b<>fore e\ we consider a new order 

by changing e• to be the first edge to join. T his does not change the cost C(1r) of formula 

(6.2). Consequently, we can assume without loss of generality that e* is the first edge to 

join. Based on this, we consider C(1r) as the joining cost of all the edges excluding this 

edge e•, in the subsequent discussion. 

The query graph after having joined e~ is given in Figure 6.3. 

S tage 2: Classification of ed ges into E-, fl- a nd J-part 

The next join is executed either on an outside edge or an inside one. But, if we join more 

than one inside edge consecutively, a term such as 
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• 
• 

• 
• 

Ar 
o-Gn 2,-2 

A 

Ar 

Kr 
ea 11-1 

Ka~r-1 

Ar 

"'r ,r 
A 

ea, 
Kan 

Kr 

ao 2 r-
• A-o 
K'r Ar 

Figure 6.3: Query tree after joining one edge. 

appears in the resulting cost, implying that the total cost is greater than c*. Therefore, 

we must follow one of the next two rul<·s in order to keep it within c•. 

l. Before joining an inside edge, join the corresponding outside edge adjacent to it, 

or 

2. After joining an inside edge, join the adjacent outside edge immediately. 

We call the set of outside edges joined in the manner of ( 1) as E-part, the set of inside 

and outside edges in (2) as II part, and the rest of the inside edges as J -part. These parts 

are illustrated in Figure 6.4. The joining cost of each part determined by a join order 1r 

is denoted by C£(11'), C 11 (rr) or C1 (1r), relipectively. Therefore. the total cost of formula 
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• 0: n -part • 
• (': :E -part • • Others: J -part 

Figure 6.4: Partition of join edges. 

(6.2) ignoring the joining cost of e* is expressed by 

C(11') = CI:(1r) + Cn(11') + CJ(11') + E, (6.12) 

where E denotes the truncation error due to the inaccurate representation of coefficients 

a- and C11
' as discussed before formula (6.11). 

As to CE{1r), each edge e, in E part produces such a term as 

Ka,. (6.13) 

This cost is independent of the join order of the edges in TI-part and J -part. Therefore, 

by considering its definition, we can assume that J-part is executed after E part. But 

joins in J-part may be interlaced with some joins in IT-part. In any case, C 1(11') never 



160 CHAPTER 6 COMPLEXITY OF THE OPTIMUM JOIN ORDER PROBLEM 

exceeds 1 as shown below. Whenever two edges e; and u, for some i are joined (as an 

element of IT-part, or J part after ~>part), the size of center node (whose size is initially 

ar - 1) is multiplied by 

a c"• 
Ar · __.!.r-2 · Kr · =en, (> 2). 

A Ka, 

Therefore the size of center node is at most a· c"0 ca 1 • • • c"" · r-1 and we have 

CJ ('rr) Sa· C11
uC

111 
• • • c4

" • r- 1 
• (n + 1) 

K Aao A 1 
= 2cA '2 . c . 3nc3A/2 K A2. (n + 1) (by (6.6) and (6.9)) 

ao n + l 
=--·--<1. 

6cAA n 
(6.14) 

From this, it can be shown that the joins in J-part should be executed after finishing all 

joins in IT-part. For, if we join an inside edger, in J -part among the joins in H-part, all 

the intermediate terms in Cn(1r) (which will be given in formula (6.16)) are multiplied by 

c't, after joining ut. This apparently causes the resulting cost Cn(1r) to increase at least 

by 1, if we compare it with the case in which all edges in J -part are joined last. Although 

C1(rr) may decrease by joining J -part first, it always satisfies CJ(7r) < 1 by formula {6.14). 

Therefore, the cost decrease in J-part cannot compensate the cost increase in IT-part . 

Consequently, we have only to consider in the subsequent discussion how to partition 

the set of all outside edges into E- and IT-part (the inside edges adjacent to the edges 

in E-part constitute J -part), and the join order only in IT-part. We say that set {a0 , a1. 

... , a"} is partitioned into sets E and IT, by denoting a, E E (IT) if and only if an outside 

edge e, belongs to E· part (IT-part). For this partition, let 

X= L a,, Y = L a, (i.e., X + Y =A). (6.15) 
n,en 

Stage 3: Special edge eo and the joiln order in IT-part 

Let IT-part contain p outside edges and p inside edges, where p satisfies 0 S p S n + 1, 

and let the restriction of a join order 7r to set IT = {a, I , a,2, ... , a,p} be 
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Then the resulting cost Cn(1r) bt>come::; 

QC
0

'1 OC11
'1 C11

'2 • • • Cn,,, 
Cn(rr) = -- + ··· + -----

a;1 a,,, 

+ (ac"'J + · · · + ac"•t c"•2 · · · c''·,.). r 1 
( 6.1 G) 

(
cn'J c"•t c"•2 · · · c" ,. 1 ) ac)' 

=0' -+·"+ +--
a,l a,,. 1 a,,, 

+ a ( ca'l + · · · + C11
'J c"•2 ··.ea,,,) . r - 1 (CU7) 

<(n+1)·acy + I (6. 1 ') 

(6. J 9) 

where the sum of O(r - 1
) terms is less than 1 for the same rt.•ason as that of formula 

(6.14). 

Now, call the outside edge with selectivity au r 2 as e0 . If we include e0 in ~ part, 
A 

the cost of joining e0 is 

A ao - 2 K' , r · -r · r = K a0 A (6.20) 

according to formula (6 .8) . However, if edge e0 is in IT-part, the resulting cost of IT-part is 

bounded from above by formula (6. 19). This means that e0 must be included in 11 -part.. 

Furthermore, as will be shown in stage 4, X> ; (Y < ; L) is required in order 

that the total cost does not exceed c•. In this case of Y < ~ 1, Cn ( 1r) satisfies 

Cn(rr) < p · ocA 2
-

1 + p · acA 2 - 1r - 1 (by (6. 18)) 

KAau 
< (n + 1) · -- · cA/2 1 + 1 (by (6.9)) 

2cA/2 

< 3n. KAao . _ 1_ = f( (by (6.5)), 
2 3Aaon 2 (6.21) 

for any join order rr. If this is the case, it will also be shown in stage 4 that Cn ( 1r) never 

affects the decision on partitioning outside edges into E- and II part. Therefore, the join 

order of the edges in IT-part is irrelevant to the following discussion. In particular, we 
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can assume without loss of generality that e0 is the final edge to join in ll -part (in fact, 

we can show with some calculation that G'n('-) becomes smallt•st if cu is the last edge). 

and Cn ( 71') of formula (6.17) becomes 

Cl'C}'. QC! A - X) 
C'n(7T) =- + D(1T) = - + D(1T), 

ao au 
(6.22) 

oclA-X) 
where D( 71') denotes the sum of all terms other than in formula ( 6.17), because 

ao 
ne( A - X) 

- is obviously dominant. 
ao 

Stage 4: Partition into !::- and TI-part 

Finally, we consider the partition of { a 0 , a 1, ... , a,} into !:;. and ll-part. Let us rewrite 

the total join cost of formula (6.12) determined by a join order 71' by 

C'(7Ti X)= CE(-rr; X)+ C'n(-rr; X)+ C1(1T) +E. (6.23) 

In this formula, CE(7T,X) and Cn(-rr:X) is the join cost required in E-part and ll-part, 

respectively, where X is added to indicate their dependence on X of formula (6.15). By 

formula (6.13), we have 

To evalu at e F: of formula (6.23), recall that formula (6. 11 ) implies 

2L > 4n 2 A 2 > 4n2 Aao, 

and we have for Y ~ ~ the following UJPper bound on E + C1 ( 71'): 

lE+ C'J(7T) I< (n + 1) · o-cA/2 · 2. -L + 1 + C1(7T) 

(by (6.18) and the definition of accuracy L) 

KAao A/ ., 1 
< (n + 1) · 

2
cA 2 · c - · 

4112
Aau + 2 (by (6.9) and (6.25)) 

(6.24) 

(6.25) 

K K 
< - + 2 < - (as n > l and K > 16). (6.26) 

4n 4 
a-cl.4.-X) 

As noted after formula (6.22), the term is dominant in Cn(7T; X): and CE(7T; X) 
ao 

is linear in X. Purthermore, since o- of formula (6.9) is set so that 
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( 6.27) 

holds, C(rr; X) behaves as illustrated in Figure 6.!">. It takes its minimum for any join 

Cost 

cn(X) CALL(X) 
KA I-----

KA+Kr---------------2 
KA r----------
2 

0 

Figure 6.5: Behavior of cost functions. 

A 
order 1r at X = - + 1 as shown below. 

2 

C (-rr; ~) ~ CE (-rr; ~) +Cn (1r; ~) +C,(-rr) lE' 

KA KA K 
> 2 + 2 - 4 (by (6.26) and (6.27}} 

A 

KA 7K 
> -

2
- + 4 (A ~ 4 is assurn<'d wit.hout loss of generality), (6.28) 
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KA 7K 
< -+-2 4 . (6.29) 

(6.30) 

Now, recalling c .. = ~A+ 7~ as defined in formula (6.10), we see that C(?r;X) ~ c* 

A 
holds if and only if X = "2 + 1 holds. This means that. C(rr) ~ c* holds for C of 

formula (6.2), if and only if there exists a partition (E,ll) of {au,ai, ... ,a,,} such that 

X - A + 1 holds for X of formula (6.15). Then this condition can be realized if and 
2 

only if the corresponding instance of 0-1 KNAPSACK has a solution. Consequently, 0-1 

KNAPSACK is polynomially reduced to JOIN, proving that JOI!'\ and hence OPTJ OIN 

are NP hard even if query graphs are rPstricted to be trees. • 

Restricted Query Trees 

We observed that the problem OPTJOIN is NP-hard for arbitrary query trees in the 

previous sec-lion. Even if there is no polynomial time algorithm to compute the optimum 

join orders for arbitrary query trees, there may exist such algorithms for special query 

trees. For this purpose, we try to impose some restrictions on lhe shape of query trees. 

Some possible restrictions are; 

1. restrict the depth of a query treE' to be less than k from an appropriate root node, 

or 

2. restrict the degree of each node to be less than k. 

However, we can state the next corollary immediately. 

Corollary 6 .2: OPTJOIN with restriction (1) is NP-hard even if k ~ 2. • 
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This corollary is obvious, since the query trees used in the proof of :\P-hardness of 

OPT JOIN have depth k ~ 2. Therefore. restriction {l) does not make OPTJOI. easier. 

Moreover, when we consider restriction (2), the following theorem holds. 

Theorem 6.3: OPTJOIN with restriction (2) is NP hard t•ven if k = 3. • 
Proof: In order to consider restriction (2) with ~· 3. let us construct the 2-calerpillar 

as shown in Figure 6.6. In this case, assume that all the values a, (i- 0, l, ... ,n), A, c, 

r -1 • • • 

a 

ar 
r I <? 
a 

rl 

a ar 

Figure 6.6: A query tree with maximum degree 3. 

r, K and K' are equal to those used in Figure 6.2, except that a is given by 

KAao 
a= -A'?. 

4c . -

Kr 

Ar 

As we can see later, the total cost can be kept within 0(1) by using an appropriate 

order of joins. To attain this, the first edge to be joined is either one of the edges 
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which is incident to the leaf node with weight Ar, or one of the two outermost edges 

with selectivity r •2 in the trunk, where trunk implies the edges connecting two nodes of 

degree 3. 

In the latter case, the cost c1 of the edge is 

c1 = r - 2 
· r · ar =a. 

Therefore, if join operations are repeatedly applied to all the edges in the trunk from 

outside to inside, t.he total join cost cz for these edges is bounded from above by 

K 
c2 < na <-4' 

as proved in a manner similar to formula. (6.21). In this way, we can keep the cost within 

0(1). 

Since this cost c2 does not give any essential influence to the total cost, as we will 

see later, we can assume without loss of generality that all the edges connecting nodes of 

degree 3 are joined first. Then, the query tree resulting after such join operations tuns 

out to be the same as that of Figure 6.a. 

When we consider to execute join operations to the query tree of Figure 6.3, we have 

to pay attention to the following two values, i.e., the total sum of 0(1) terms in the cost 

of IT-part CJ in the case of Y ~ ~ - 1, and the total errors Eumx· But these values are 

bounded as follows. 

CJ < acA/2 1 . p < ~, 

A/'2- i - L l{ E 111ax < QC · 2 · n + 2 < ·3. 

So, the total value E of all those errors is bounded from above by 

K K K 
E < c2 + CJ + 2Emax < 4 + 4 + 2 · S < K. 

The amount of E is at most K, while the total cost for different value of Y differs at 

least by !(. Therefore, we can reduce all the cost functions en, cE and cALL to those of 
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6.5 

Section 6.3. According to Theorem 6.1, this means that finding the optimum join order 

afterwards is NP-hard. This proves that OPT JOIN to the query tree of Figure 6.6 is also 

NP-hard. • 

Query Trees Solvable in Polynomial Time 

6.5.1 Shapes of Query Trees 

We introduce the definitions of some special query trees used in the latter discussions in 

this subsection. 

'n-ee: A tree is a one-component graph in which there is no cycle. A k-tree is a tree 

which has k nodes. 

Chain: A chain is a tree in which every node has a degree less than or equal to 2. A 

k-chain is a chain which has k nodes. 

Star: A star is a tree which has the center node to which chains are connected. A k-star 

is a star for which all the chains emanating from its center are less than or equal to k in 

length. In particular, a 1-star stands for a star which has one center node to which all 

the other nodes are adjacent. 

Caterpillar: A caterpillar is a tree such that it contains one chain called the trunk, to 

which other chains are connected. A k-caterpillar is a caterpillar in which the length of 

each chain connected to the trunk is less than or equal to k. In other words, a k-caterpillar 

is considered to be a sequence of k-stars connected by a trunk. 

A 2-star and a 2-caterpillar are already seen for proving Theorem 6.1 and Theorem 

6.3, respectively, in the previous discussions. 
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6.5.2 Sta rs 

As a result of previous sections, it became dear that query trees must be severely re-

stricted to have polynomial time algorithms. Here, we give polynomial time algorithms 

to the following two kinds of query trees. 

Consider a star as shown in Figure 6.~7. Node weights r, and edge weights (selectivity) 

• 

Figure 6.7: A star. 

so, are also given in the figure, where t hey satisfy 0 < sui ~ 1 and r, ~ 1. 

Let M, = s0,r, (i = 1, 2, ... , m), and denote the edge with selectivity s0, by ei . 

Furthermore, suppose M, ~ M1 for i < j without loss of generality. Now consider an 

arbitrary join order rr: 

Here, if ia > ib holds in 1r, const ruct the corresponding join order 1r
1 obtained by ex-

changing e,. and e,. in rr: 

rr' = (e,1, ... , e,., ... , e,., ... , e,. ), 
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Then their costs c1r and c1r' beconw 

C - T()(i\-f +·. ·+ ~1 ... • \1 +·.·+M ... ~~ ... '\[ 1f - t1 J\o ll lq t1 • t , " 11. 

+. · ·+ M · · · J\f ···M ···M ) • IJ '• ... 16> I,. ' 

+···+M···M···M···M) lt tb la f, 

and obviously satisfy c1r' ~ c1r· This shows that joining the <'dgt•s in nondecrea.sing cml<>r 

of M, = s0,r, is optimum. We show this procedure in P rogram 6.5. The computational 

time to find such an optimum order is O(n log n), which is required for sorting .s0 ,r,, 1 = 
1,2, ... , n . 

Procedure Star 
Input: s{01), .. . , s(On), r{O), ... , r(n) 
Output : Optimum join order 1r 

begin 
2 Sort M(i) = s(Oi)r(i) by the increasing order 

into (s(Oit)r(it), ... , s(Oj1,)r(j,)); 
3 rr={e(jt), ... ,e(jll)); 

4 end. 

P rogram 6.5: P rocedure star. 

6.5.3 Cha ins 

Consider a chain as shown in Figure 6.8. In this case, we can apply the following algorithm 

based on dynamic programming. 

First of all, we define H,1 by 

J - 1 } 

H,1 = IT SH-+1 IT r,.., 0 ~ i < j ~ n. 
k=t k=t 
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'i1 rt r2 
0 - -o- ·-0-

Jot St2 

. . . r11 2 li1-t 

0 0 
.\'11-'211 -I .\'11 I 11 

Figure 6.8: A chain. 

r, 
0 

Each li,; d<'notes the weight of the node when R,, R, t 1, ..• , R1 are joined into one node. 

Th<>n, denoting the minimum cost of joining all nodes between R, to R1 , i < j, by c,;, 

the following rrcursion holds. 

C11 = 0, i = 1,2, ... ,n, 

(6.31) 

for all i,j such that 1 5 i < j 5 n. 

The above formulas express that the cost c,1 of joining a subchain from R. to R1 into 

o1w node is computed by regarding that the last edge to join is (r,+b r,+k+d· Since the 

hn·ak point. k is not known in advance, minimum is taken over all k. Finally, the optimal 

total cost c• fo1 computing joins of a chain of length n is given by 

\V(• summarize these procedures in P rog•ram 6.6, where b(i,j) denotes the optimum break 

point k b<'t wccn the interval ( i, j), the break( i, j) denotes the function that derive the 

optimum break point, and 1rR denotes the reverse order of one of the optimum join order 

Jr. This procNiure in Program 6.6 can b·~ executed by computing c,1 in the nondecreasing 

n(n- 1) 
order of lj - i . Since there are --- possible pairs of i ancl j, the computational 

2 
tinw of this algorithm is O(n3 ). 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Procedure Chain 

Input: s(01),s(l2), ... ,s(n -ln),r(O), ... ,r(n) 
Output: Optimum join order 1r and minimum cost c• 

b egin 
for i := 0 to n do begin 

c(i, i) := 0; H(i, i) := r(t); 

for j := i + 1 to n do b egin 
H (i,j) := H(i,j- l ) * s(j- l j) * r(j); 

e nd 

end 
for i:= 0 to n- 1 d o b egin 

for j := i + 1 to n - 1 do b egin 

c(i,j) := c(i,i) + c(1 + 1,j) + H(1,j); 
for k := 0 to j- i do b egin 

if c(i,j) > c(i, i+k)+c(i, 1+k)+c(i+k+ 1,J )+ H(i,j) then 
c(i,j) := c(i, i + k)+c(i, i + k)+c(i + k + 1,j)+ H(i,j); 

b(i,j) := k; 

e nd 
end 

17 end 
18 b egin 
19 break(O, n); 1r is the reverse order of 1rR; 

20 end. 

function break(i,j) 

21 begin 

22 while i < j do begin 
23 if j := i + 1 then begin 
24 1rR := append(1rR,e(i,i + 1)); break(i,i); 

25 

26 

27 

28 

29 

30 

end 
e lse do b egin 

1rR := append(1rR,e(b(i,j),b(i,j) + 1)); 
break(i,b(i.j)); break(b(i,J) + l,j); 

end 
end 

31 e nd. 

Program 6.6: P rocedure chain. 

17 1 
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6.6 Conclusion 

In this chapter, we introduced the problem OPT JOIN that finds the optimum join order 

that minimizes the sum of intermediate table sizes generated by the merge-scan algorithm, 

and showed that it is NP-hard for general query trees and that it can only be solved in 

polynomial time for some special query trees. These results are noteworthy because they 

exhibit the range, within which the exact optimization of join order can be carried out. 

The classification is shown in F igure 6.9. 

Since 0-1 KNA PSACK, which is known to be weakly NP-hard [Ibarr 75], is used in 

this paper to reduce it into J OIN, J OIN may be only weakly NP-hard. Therefore, there 

may exist polynomial time approximation schemes for OPTJ OIN, which are similar to 

those proposed for 0-1 KNAPSACK (e.g., [Ibarr 75J). This is a topic for future research. 

6.6 Conclusion 173 

0 solvable in polynomial time 

Figure 6.9: Classification of query trees. 
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Chapter 7 

Conclusion 

Throughout this thesis, we have developed means to optimize the cost of processing 

queries for relational or deductive databases. 

Our contribution to the field of query optimization in databas<' systems is; we defined 

the costs of operations in relational algebra in terms of the size of the relation assuming 

that queries in the relational data model are given in the form of datalog in general, and 

considering that the procedure of processing such queries is divided into a sequence of 

operations in relational algebra. Then we estimate the costs by deriving the formulas 

expressing the sizes of the resulting relations after applying such operations. Among 

those operations, we paid most of our attention to the operations of join and transitive 

closure, as they are recognized to be most expensive. 

Considering that the processing cost of queries strongly depends on the distributions 

of elements in the given relations, we proposed a new method that enables us to makt> 

cost evaluation for different distributions of data, while very few ideas that take into 

account the data skewness were seen before. 

Our achievements, especially those in Chapter 5, also contribute to the field of graph 

theory, the reliability of networks, and so on. Since there have b<>en very few work in the 

175 



176 C HAPTER 7 CONCLUSION 

theory of random 'directed' graphs, our results will have the po::.sibility to stimulate the 

research work in this field. 

In this thesis, we have focused on one corner of the field of optimization of query 

processing that had been paid relatively less attention before. Therefore, we believe that 

this thesis add some new results to the existing field, and at the same time we hope that 

our studies will shed light on an unexplored but important field. 
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