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Preface 

Disrret.r-time queues have IH'<'ll studied by many r<'SNH'Ch<'rs, one of th<' <'arlirst investiga

tions being made by Meisling [M<>is58]. Kobayashi and Kouheim [Koba77] have providrd 

surveys of applications of discr<'lr-timc qu<'ues to the pNfonnancc evaluation of <·ommuni

cat ion systems. Takagi [Taka93] has presented the analysis of many discrC't c-t imc queues 

including discrete-time quru<'s with vacations, discretr-t imr priority queurs, discr~te-time 

queues with finite buffer. BnliH'<'l and Kim [Brun93] have analyze<l many discrete- time 

queues including discretr-t imr qurues with servic<' intNruptions, and multipk servers. 

In most of the analyses, arrivals have been assunH'd to occur indepemknt.ly from one 

lime slot to another. Also, t.hr arrival and t.hr srrvice processes hav<' b0rn assunwd lo 

be i ndep<'ndcnt each ot.her. Si nee t hrse sim plifird assu 111 ptions arc not r<'al is tie in many 

situations, srveral mechanisms have brcn proposrd to bring correlations into the arrival 

and t hr s<'l'vice processrs. 

Thr main contribution of this dissertation is l hat thr drv0lopment of t h<' analytical 

mrt.hods for the various typrs of discrete-time 4UeiH'S with corrclatrd arrivals. Chaplrrs 

2 and 3 arr drvoted to the analysis of discretr-linl<' qll<'IIC'S with i\larkov modulation. In 

chaptrr 2, we consider d isnet.e- t.imr q ueucs wi Lh a p,cnNal izrd swi l chcd hat.rh Berno11lli 

arrival and a general srrvi<'e t imr processes. The arrival and the scrvire pron•sscs in this 

sysl <'Ill arc semi-1\ Iarkovia n in the sense that l hrir d istri hut ions deprnd not only 011 the 

stair of the alternating renewal process in the currrnt slot but also on th<' state in lhr 

nrxt slot. furthcrmor<', sojourn times in each statr arr grnerally distribut<'CI. In chaptrr 

3, wr considf'r DB MAP /D/1 / I< queurs. \Vc develop t.hr approximate forlllnlas for lhc 

loss probabilit.y. The accurl'lcy of the approximations arr c·xLcnsivcly exarnirl<'d through 

numrrical experiments. Thr results arc readily appli<'d to ca11 admission coni rol in high 

speed nrtworks. Chapters 4 and 5 arc devotrd to t.hr analysis of discrrte-tim<' queues with 

a gale. In chapter 4, wr considrr discrete-time BI3P/G/J qururs with a gal<', whrrr thr 

intrrvals bf't ween successive oprnings of the gatr arr gromrtrically dist rihut ed. On the 

other hand, in chapter 5, we consider discrete-time BBP /G /1 qucurs with a gate, where 

thr int.rrvals between succcssivr openings of the gatr arr hounded, and indrp<'ndcnt and 

identically distributed. In chapters 4 and 5, wr dc·rivr compirtf' sets of the analytical 



n•stdls for various prrformatH'<' mrasur<>s. 

The• author IH'Iirvrs that thr aualytiealmrthods drvcloped in this dissNLation posse~; 

t!H' high applicability t.o pNforma.nc<' rvaluat.ion of communication sysi.<'IIIS. Finally, the 

author would lik<' to hope that. llH' studi<>s in this dissNtation will b<' lH•Ipful for fulun· 

r<'S<'arch iu this fidel. 

~larch 199G 
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Chapter 1 

Introduction 

Discrete-lime q UC'I)('S have been ext <'!lsi vrly stud icd by many rrsrar-chrrs ( sre [Taka9:3], 

[Brun93] and rcfN<'llcrs therein). Thry have not only thC'ir t lworrt ical intl'rests but also 

their rich applicability, for examplr, to lh<' pNformance e\·aluation of communication sys

t<'rns which arc opcrat<'d based on a tinl('-slot basis. In most of the analyses, arrimls he\\'<' 

been assunH'd Lo occm indepencknt ly from one time slot to anot.h<'f. Also, the arrival 

and the servic<' processes have bern assumrd to be indrpendc11t. each other. flowev<'r, 

these simplifiPd assumptions arc not rralistir in many situations. For instance, in a com 

munication systr.m, the arrival process to tlJ<' system is in some' SC'llS<' ('01-relaf('(l because' 

data sourcrs usually genrrate data in a lm1·sty fashion, i.e., a soun·c• which is adiv<' in a 

gi,·en slot is likely to remain inactive for a large number of cons<'cut iv<' slots. Thus. t.lw 

arrivals occur hack to back. On tlw ot hN hand, in high-sp<'<'d local and mctropolitau 

area networks, modc'rn r<'S<'rvation protocols for the usc of transmission slots giv<' ris<' to 

customer collection. If W<' regard the colled.<•d customers as rt .'l11JW7'('?Lstomer, tlw s<'rVic<' 

Lime of a sup<'rcustom<'r dC'pends on t.hC' prrvious intcrarrival tim<'. Inde<'<l, if t.be previous 

intcrarrival tim<' of a supercustonl<'r is rdat ivcly long (short), th<'ll the sNvice time oft he 

su percustomcr is likely to be rclativ<'ly long (short) bee a us<' t 11<' sHpercustonH'r consists 

of relatiY<'ly many (few) customNs. Thus, there exists posit i V<' corr<'lat ion bet\\'<'<' II I he 

interarrival time and the service time. ln ord<'f to deal with lh<'S<' kinds of situations, 

discrete-time quruC's with correlnted ar-rivals arc required. In this chapter, a brief survC',Y 

of uiscrcte-Lime queues with corrclatC'<l arrivals is provid('(l. 

1.1 Discrete-Time Queues with Correlat ed Arrivals 

In the present dissNtation, we consider discrrte-timc qucu<'s wh<'l'<' tim<' axis is divided 

into intervals (callrd slot) which arc equal in length. Through th<' dissertation, it. is always 

ac;sumed that all events st.art and end only at slot boundari<'s. Thus, th<'ir durations arc 

integer mulLiplcs of a slot. For <'Xamplr, cust.omNs arc assumed to arrive to the syst<'lll 

1 



at lh<' h<'gi n 11 i ng of a slot.. Tlw scrvic<' t i rn<'s arc posit in· int <'g<'r mul t.i pl<'s of a slot. 1\ ny 

dc•parturc from the syst <'Ill is assHlli<'CI I o t ak<' plac·c a I the end of a slot. 

To bring corre>lations into I he arrival and I Jw service proc<'SS<'S, sevrral nH•chanisrns 

have> bc<'n proposcd. Among them, onc of thc most. wc>ll-known nH•chanisms is ~larkm: 

modulation, which gives a doubly stochastic process driv<'n by an undc•rlying ~larkov 

chain. The mechanism iurlnd<•s a switdt<'d hatch l3<'moulli process (S8I3P), a discrete•

! imc baLch ~larkovian arrival procc•ss (Dl3f\IAP) and their variants. Not<' that sojourn 

times in e<wh state of a f\Tarkov chain arc• geometrically distributed (wher<•as thc sojoum 

time in a state can IH' dctNministic and <'qual to Oil<' slot). An SBBP is definccl as a doubly 

stochastic hatch IJ<'rnoulli proc<'ss with hatch siz<' gov<'rncd by a two-stat<' f\ Iarkov chaitJt. 

It can ])(' vi<'we•d as thc disndc-time analogue of a switch<'d batch Poisson proccss. In 

other words, tlw batch siz<' arriving in a slot, which may take :wro, d<'pcnds on th<' stat<' 

of th<• und<•rlying ~[arkm· chain iu th<' current slot. Furthrrmor<', a g<'n<'raliz<'d switch<'d 

batch 13<'moulli procc•ss hal-l h<'<'n propos<'d. H can be vi<•wed as thr discrete time analogue• 

of a genern liz<'d switched batch Poisson process. Th<' term geneml1.zed means that the• 

sojou m ti lll<'S in cach st a I c is not ncc<'ssary to U<' g<'omct ric ally dist ribn t <'d. Thus, tlw 

arrival pron•ss is gov<'rnecl not by a two state t>.larkov drain but by an altNnating renewal 

process. On th0 otbN ha11d, a DBMAP is defined as a doubly st.ochast.ic batch B<>rnottlli 

proc<'ss with batch size govcrn<'d by a finite-stat<' ~larkov chain. It can be vi<'wcd as tit<' 

discr<'t<'-timr analogur of a batch i\larkovian arrival process (Bt>.IAP). In ot.hcr words, tiH' 

batch siz<' arriving in a slot, which may tak<' zero, dcp<'nds not only on the state of tit<• 

underlying Markov chain in thr curr<>nt. slot. hut also on th<• state in Lhe n<'xt. slot. 

Another type of thc m<'chanisms is gating, which giV<'s risr to customer coll<'d.ion. The 

system has two qu<'u<'s and a gate (sec Fig. 1.1). In this syst<'m, custom<'fS arriving at. 

tit<' syst<>m arc accommodated in the first qucu<' at th<' gate. When t be gat<' opens, a ll 

th<' custonwrs who arc wait.iug in the first qtl('\le mov<' to the second queu<' at t.he scrvc•r. 

The gat<' dos<'s imnwdial<'ly afLrr all tlw custom<'n; in the first qucu<' mov<' to the S<'cond 

qtt<'U<'. Th<' scrvrr sNvcs only th<' customers prcs<'nt in th<' second qucu<'. Hcr<'aftN, we• 

call th<' syst<>m (/1/eues with a gate. 

lu queues with a gat<', we can observ<' several types of correlation. It is Ntsy t.o ~·<'<' 

that, when a gate opening int Nval is ( r<'lat i vcly) long, ( r<'lati vcly) many cust omNs are 

lik<'ly to wait in the first qurur, while (rrlatively) few customers arr likely to wait in Lh<' 

s<•corHl qucue. Thus, th<' waiting times in t.he first qucu<' a.ncl the second queue would 

be negatiV<'ly correlated (i.e., a long waitiug in the first qu<'U<' l<'ads to a short waiting 

in th<' second queue). Also, if we considN th<' S<'cond queue as an isolal<'d system, t.lH• 

inlcrarrival tim<' of hatches arriving at the S<'coud qu<'ue (i.e., th<' gate opening int.<'rval) 

all([ the number of custolll<'rs in each ba.t.ch (i.<'., the numb<•r of cust.omNs who move to 

2 

Arrivals 

-}I] 
The first 
queue 

Gate 

- _, ~' ,...___.. o-
The second 
queue 

Server 

Figure• 1.1: QtH'IIc>s wit.h a Gat<' 

the sc•cond <JUCII<' at t l1r s"m" tJ.Jll<') ·t· 1 1 l '· J · ·" ,- ar<' pos1 n·e .v COIT<' al<'c . 1 <'t a not l<'r viC'\\' of this 

fcat,un• is that. t.hcr<' c•xists th<' corrrlation bdw<'cn thr iniNarrival time and the sc·rvin• 

time if each batch moving to th<' S<'cond quc'tl<' is considcn•d as a SU]Jf'r·custom(•r·. 

From a t h<'orrt ical \"iewpoi nl., q IH'ues with a gat<' falls iut o th<' cat <'gory of qucu<'s wit It 

g<'neralizcd vacations [Boxm89J, [Fuhr85]. l n th<' qu<'uc with g<>n<'ralizc•d vacations. a 

server takes vacations even wh<'n waiting cust.omNs arc pr<'scnt iu th<' sysl<'m. Note• that, 

in the q ueu<' wi t.h a gate, ther<' is a possi hili ty t bat a sNver becomes idle, whilr customers 

are waiting outside the gat<.>. ']'hus t.he idle p<'riods of the s<'rv<'r wh<'n waiting custom<>rs 

exist outsid<' th<' gate are considered as vacations of the serv<'r. It is w<'ll known that 

in t.h<> qu<'ue with gen<'ralized vacations, Lh<' quc•uc l<'ngtlr, the amount of work in t.be 

system and the waiting time under the FCFS disci pli nc• hav<' til<' so-called d<>composi t.ion 

properties ( se<' [Dosh90] and r<'fcr<'nccs t her<'i n). Not<' that t hr qll<'ll<' with g<'neraliz<'d 

vacations has b('<'ll slucli<'d mainly in t.h<' coni inuous-time 1node•l. IIowcvN, V<'ry si 111ilar 

dc'com position propN( ics IJOld for tltc clis<T<'t.('- t.i Ill(' CO \Ill terpart, t.oo. s('('' for ex a Ill piC'' 
[l3oxm88]. 

1.2 Previous Works 

Several typ<'s of discr<'le-time queues with corr<'lated arrivals hav<' b<'<'n studied. In this 

S<'ction, we will rrvicw t h<' pr<'vious works which conrNl!S with the r<'sttlts giv<'n in this 
dissertation. 

1.2.1 S13BP / G/ 1 Queues 

Hashida et al. [Ilash91] have propos<'d and analyzrd SI3BP as a modeling tool for a 

bursty and correlated input process to d iscrete-time• qu<'II<'S. Th<'.V have• assumed that. th<' 

service times of rustomcrs arc indcpc•nd<'nt. and idcnt.ically dist.ril>llt.(•d, and the batch siz<' 

3 



arriving in a slot d0pcnds only 011 the state of the underlying Markov chaill in the curreut 

slot. Th0y have deriv<'d the probability g<'nC'rat.ing functions (PGFs) for the numh<'r of 

customers in t h<' syst<'m, th<' amount of the stationary work in the system and the wait.illlg 

tim<' of a custom<'r. 

1.2.2 G en er a lized SBBP / D/1 Queu es 

Liao and Mason [Liao89] hav<' studi<>d generalized SBBP /D/ 1 queues. They have assumNl 

that t.he service times of customers arc detNminisLir aud equal to one slot, and th<' 

balch size dep<'nds only on the state of the tllld<'rlying alt.<'rnating renewal process in the 

curr<'nt slot.. Sojourn times in each state are generally distributed. The restriction th<'Y 

place on t.heir mathematical model is t.hat the PGFs of the sojourn time distributions 

arc rcpr<'scnt<'d as rational functions. They have derived t.he PGF for the number of 

cusLomers i 11 t.h<' sy~>l.<'nt. 

1.2.3 DI3MAP /D /1/K Queu es 

Blondia and Casals [Blon92]lHiVC' studied DBMAP /D/1/K queues by a matrix analytical 

method. Tb<'y have assumed that the service times of customers are deterministic and 

equal to one slot, and t.hc batch size depends not only on the state of the underlying 

Markov chain in the curreut slot but also on the state in the nexL slot . They have dcrivc::!cl 

the customC'r loss probability. 

Takinc ct al. [Taki95] have studied DBMAP /D/1/K queues. They have present~cd 

analysis for various loss characteristics such as Lhe loss probability, the consecutive loss 

probabiliLy and the distribution of the loss period length. Furthermore, they have pre

sented the onlput process analysis and derived expressions for various statistics of the 

output. procC'ss, iucluding the joinL distribution of the successive interdeparture times. 

1.2.4 I3BP + DB MAP / D /1 Queues 

Ta.kine ct. al. [Tnki94] have analyzed BBP + DDMAP /D/1 queues, where BBP denotes 

a batch Bernoulli process. They have assumed that DDMAP customers have priorilty 

over BBP customers, and the service times of both DBMAP and BBP customers arc 

deterministic and <'qual to one slot. Furthermore, they have a.c;snmed that the batch size 

of DBMAP customers depends not only on the state of the underlying Markov chain in 

tile current slot. but also on the state in t.hc next slot, and tile batch si?.e of DBP customers 

is independent and identically dislribntccl. They hav<' derived the PGFs for the waiting 

t imes of both cnst.om<'rs and t.lw numbers of bot.h custom<'rs in the system. 
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1.2.5 Queu es with a G a te 

Takaha.c;hi [Taka71J has studied continuous-time queues with a gat<' where the service 

times of customers arc <'xponcnLially distributed and the gat<' opening intervals arc de

terministic or exponenLially distributed. Borst et al. [I3ors92], [I3ors93] have studied t.hc 

continuous-time queue with exponential gate or><'ning intNvals wher<' the scrvic<' times of 

customers arc gruerally distributed. They were mainly concerned with the second queue, 

and discussed the effect of the correlation between t.hc intcrarrival time and the number 

of customers in a batch on the p0rformance of the second qucur. Boxma and Combe 

[Boxm93J have studied nn M/G/1 queue with a rath<'r grncral dependency between the 

intcrarrival t ime and the service time. Kawala [Kawa93J has studied a discrete-time 

queue with geometrically distributed gate opening intervals and derived the probability 

generating function (PGF) for the sojourn times of a supcrcuslomcr. 

1.3 Overview of the Dissertation 

The purpose of the preseut dissertation is t.o provide a complete set of the analytical 

results on various types of discrete-time queues with correlated arrivals. They have a 

rich applicability of t.he mathematical model to important fundamental queueing systems 

and the performance evaluation of commnnication sysLems. We also provide uumNical 

examples to show the computational feasibility of the aualyt.ical r<>stdt.s. In vi<>w of the 

performance evaluation, one of the most interesting subject is thC' dfccl of corrclat.ious 

on the performance. This subject will be observed rcp<'<tlcd ly tbrough the numerical 

examples. 

The organization of this disscrtat.ion is as follows. In thC' first. half of this dissNtatiou, 

we consider discrete-time' queues wit.h Markov modulation. In the lattC'r half of this 

dissertation, we consider discrete-time queues with a gate. 

In chapter 2, we consider a d iscrete-Lime queue with a generalized switched batch 

Dernoulli arrival and a general service time processes. The arrival and the service pro

cesses in this system arc semi-Markovian in LIH' sense that. thC'ir d istributions clC'pcud not 

on ly on t he state of the alternating renewal process in the currC'nt slot but also on the 

state in the next slot. VIe derive Lhe PGFs for t.he amount. of work in the system aud 

the waiting t ime of a customer under the FCFS (first-come, first-served) disciplinC'. We 

a lso provide numerical examples to show the computational f<'asibility of the analytical 

results. Furthermore, we show a rich applicability t.o important queuC'iug systems such as 

a d iscrete-time GIIXJ /G/1 queue and a discrete-time queue with service interruptions. 

In chapter 3, we study tl1e loss probability approximatio11 in DBMAP /D/1/K queue's . 

We propose the approximate formulas which are given in terms of t lw tail distribution of 
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1 he quctH' lrngt h in 1 h<• <·otTC'sponding infinit e-huffer queue. Tlw approximate formulas 

bC'come rxact for any i n<l<-prndent arri va 1 proc<•ss. \ Vc- provide JlltlllNica I experiments to 

show thr accuracy of I IH· approxima.t ion~>. 

In chapter tl, W<' cons ider discrd.e- time IH3P/G/l queu<'s with a gatr, where BBP 

d<•not C'S a batch BNnoull i procC'ss. In this modC'I, w<' assumC' that t.hr intervals betwC'c-n 

· · . f 1 It<' g"te arc gC'onwt ricallv dis tributed. \\'r providr a complete set Sll('('('SSI\'e OJH'Illll)!,S 0 n ' 

of the analytical rC'sults for various prrformanr<' measures. \\'r also show some numelical 

·,vJ1 .... 1.(' \\'<' discuss thr rff<'ct. of tlm•r kinds of corrrlat.ions in t hr mode-l on t.he C'Xamplc-s, , 

p<'l'fonnan<·C' JllNI.."ll r<'S. 

In chapt.rr G, w<' considN discretr-timr BBP /C/1 queues wit.h a gat.r. Contrary to the 

modrl consid<'rC'd in chapiN 4, we assume 1 hat thr intrrvals lH't.wr<'ll stHTCssivr oprnings 

of thr gatr ar<' bound<'d, and independent. and identically distributrd {i.i.d.). \\'e provide 

a complet<' sd oft hr analytical rrsulls for various performarH'<' Hwasurrs. \\'c also show 

11
umrrical examplrs and observe the df<•d oft he distribution of the gate opening intcrvab 

011 the pNfornHHl<'<' ntN\Surrs. 

Finally, in chapt.c•r G, we provide coududing rrmarks. 

The rrsulls disnrss<•d in chapter 2 is mainly I ak<'n from [lshi9:3a] ;utd [Jshi94c], chaptrr 

3 from [Ishi9lb] and [Ishi95b], chaptrr •l from [Ishi9G], chaptrr 5 from [lshi93b], [Ishi94a] 

and [Ishi95a]. 

G 

Chapter 2 

Generalized SBBP /G/1 Queues 

2.1 Introduction 

In this chaptrr, '''<' consider a discrrlc•- t im<' qurttc' with a g<'IINaliz<'d switched batch 

IJcrnoulli arrival and a general srrvicr timr procrsscs. In this s.vst <'Ill, customers arri V<' l o 

t.he system in hat chrs and the servic<' ti mrs of customrrs arc grnrra lly d is t ri bu ted. Th<' 

batch size and Lhr scrvicr time distri bu t.ions arc govcmcd by a d isnrl.c- t imc altern a I i ng 

rrnewal procrss with st.at.rs 1 and 2. TIH' arrival and t.hr srrvicr procrssrs in this s_yst<'lll 

arc semi-tdarkovian in the sensr that their distributions d<'prnd not. only ou thr stat<' of 

I he altrrnating rrnewal process in the current slot but also on the statr in the nrxt slot. 

Sojourn timrs in <'ach state are grnrrally dislributrd. The only restriction we placr on om 

mathematical mod<'! is that the probability g<'nrrating functions (PC:Fs) for the sojoum 

time arc rcprcsrutrd as rational fuudions. 

The purpose of th is chapter is two-fold. The first is Lo provid<• t.hr aualytical rc•sult.s 

in a fairly gcnNal assumption on discr('tr-tirnc que-ues with t.wo-stat.c Markov lllodula

tion. The analytical results arc readily applied to the pNfonnatH'<' <'valuation of various 

communication systc•ms [lshi93a]. Thr sc•rorHI is to show a rich applicability of the math

cmatical model to important qu<'u<'ing sysl<'ms such as a discTc'l<' timr GIIXljG/1 qucu<' 

and a disrr<'t<'-t.iiiH' queue with servic<' inl<'lTilplions. The disnrtc• tint<' GIIXIJG/1 qurtH' 

is a fundamental qurueing model and it has <'IH>nnous potrut.ialitirs to st.ndy qucuring 

phenomena in g<'ncral. On the other hand, queueing syst.c•ms with service interruptions 

have wide appli<'al.ions to manufacturing, <·omputrr and <·omntunicat ion systems whrrr 

the server is subj<'Cl I o breakdown. Using the- scmi-~Iarkovian nalur<' of the arrival and 

the sen·icr mrrhanisms in our modrl, our modrl can br r<'adily applird to analysis of 

those systems. 

The organization of this chaptrr is as follows. In srction 2.2, \\'<' d0scribr tlw mathemat

ical model of thr grrH•raliz<'d SBIJP/G/1 qurtu'. Note that., sine<' t.IH' hatch sizr and LIH' 
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service time distributions arc' semi- f\Iarkovian, we need four distinct notations to descwibr 

each of these distributions. In scctiou 2.3, we analy'l.c the generalized SBDP /G/1 qucuc 

and derive the PGFs for the amount of work in the system and the waiting time of a 

customer und<'r thr FCFS (first.-come, first.-serv<'d) discipline. \Ve also provide nmncrical 

examples to show th<' computational feasibility of l.hr analytical results. In sections 2.4 

2.6, wr show an application of the analytical results to important. queueing systems such 

a .. e;; a discr<'te-t.ime GliXljG/1 queue and a discrete-time queue with srrvicc int<'rruptions. 

2 .2 Model 

We consider th<' qucn<'ing modrl with the following characteristics: 

• Th<' system oprrat<'s in a random environment. defiu<'d by an alLernating renewal 

proc<'ss with state 1 and sta.te 2. Each stat<' starts from a slot boundary and ends 

immediately before a s lot boundary. We assume that. the alternating rciJCwaJ process 

is stationary. 

• Customers arriv<' to the system in a batch immediately before slot boundaries. The 

batch size may possibly b<' zero. The arrival and the service time processes arc 

semi-Markovian in the sense that the batch size and the service time distributions 

of customers arriving in a slot depend not only on the Btate of the al temating renewal 

proc<'ss in the current slot but also on the next state. 

• Th<'rc iB a single server and the service discipline is work-conserving. Namely, when 

the server finds some amount of work immediately a fter a slot boundary, he serves 

exactly one unit of work in the current slot. 

We now introduce random variables and noLaLionB to drscri be the above model. Let. Tn 

denote a random varinblc rcprcscuting the nth state transition epoch of the alternat.ing 

renewal process taking a integer value. Vve assume that the sequence {Yr~}~~-oo satisfieB 

· · · < T- 1 < To ::; 0 < T1 < T2 < · · · . (2.1) 

Let Pn denote a random variable representing the state of the alternating renewal process 

at time n. vVe define the inter-event sequence { Gn} ~~-oo as 

(2.2) 

Let Bn and Cn,m ( m = 1, ... , Bn) denote random variables representing the batch siz<' 

arriving at tim<' n, which may take zero, and th<' service t ime of mth customer within the 

batch, r<'spcctively. Also, let An drnot<' a random variable representing the anJountt of 
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work brought into the system by the batch (i.0., !.h<' sum of th<' S<'r\'icc times of customers 

who belongs to the batch). \'\'c dcfine the following PGFs: 

A;;(z) ~ E [zA"IP• = i, P,,+, = jl, B;,(z) ;:: E [zn",i', = i, P,,+, = jl, 
C;;(z) "- E [ z""·'" ,P,, = i, 1', H = j] (i, j = 1, 2). (2.3) 

We then have the following relationship: 

(i,j = 1, 2). (2.4) 

Sojourn times in state i (i = 1, 2) ar<' distribut<'d in accordance with a g<'neral distri

bution function. Let 9i(k) denote tlw probability mass function of sojouru times in state 

1, Le., 

91(k) = Pr { Gn = kl P;;, = i} (k = 1, 2, ... ,n #- O,i = 1,2). (2.5) 

We denote the PGF of t.h<' 9i(k) by G;(z) (i = 1, 2): 

00 

Gi(z) = L 9i(k)zk (i = 1,2). (2.6) 
k = l 

The overall traffic intensity p is then given by 

_ A~ 1 (l)(G~(l) - 1) + A~2 (L)(G~(1) - 1) + A~2 (1) + 11~ 1 (1) 
P- G~ (l) + G~(1) (2.7) 

In the above nnd following <'quations, W(' liS<' th<' symbol /'(1) and J"(l) t.o denot<' 

limz_, l df(z)/dz and limz- l d2 f(z)/dz2 for any funct.ion f(z), respect,iv<'ly. 

In the r<'maiudcr of this chapter, we asstunr t.hat p < 1 and tlw system is in equi librium. 

Furthermore, we aBsume that the PGF Gi(z) (i = 1, 2) is rcpreBcut.rd as a ratiorml function 

of z, which is the only restriction in our model. Namely, we a..'>sumc that G
1
(z) can br 

written as 

(i = 1, 2), 

where Gil (z) is given by a. polynomial: 

M, 

Git(z) = Lmi1z1
, 

l -= I 

and Giz(z) is given by the fraction of two polynomials: 

N, 

L nijZ1 

j = l Gi2(z) = _ __:;_ ___ _ 
/(; 

IT (1 - atkz) 111
'k 

k = l 
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(2.9) 

(2.] 0) 



The degree• of th<' uuuwrator of (2 .1 0) is not highN than thP. cl<'grc•c• of the denominator; 

howC've r, without loss of g<'ncrality, W<' assunw th;tt 

f(, 

L Wik- Ni· 
k I 

(2. 11 ) 

2.3 Analysis of G eneralized SBBP / G / 1 Queues 

In this sect ion, we analyze the gC'ncraliz('(l Sl313P/G/1 qucH<'S. For convenience of the 

analysis, we assign non-11cgativc in tcg<'r value'S k E {0, 1, 2, ... } sc•qtHmtially to individual 

slot bound<uic•s in each st.atc. Thr tim<' int.rrval [k - L, k) (k = 1, 2, ... ) iu state i (i = J, 2) 

is referred to as tlw kth slot of state i. In what follows, we refN to t.h<' amount. of work 

at the beginuiug of thP kth slot as that in the kth slot. \VC' first observe the amount. of 

work in the syslf'lll at t.h<' beginning of th<' (k + l )st slot and rrlatc• it with that a t the• 

brginning of t he• kt h slot. We then considN Llw amount of t hr stationary work in the 

sysl em. Finally we ronsidN the waiting I i Ill<' of a randomly dl()s('n rHstomer. 

2.3.1 Work in the First Slot of Each State 

In this su bsC'dion, \\'e first observe the amount of work in the systrm immediately aft C'r 

the beginning of the (k + l )st slot and rrlatr it with that immrdiatrly after the beginning 

of the kth slot. L<'l. U, denote a random variable r<'presrnting t hr amount of work in the 

system at timr 11. \Yr define Li(k,z) as t!H' PGF' for the amount of work in the system 

givrn that til<' alt.rrnat.ing rrnewal procC'SS is in thr (k + 1)st slot of stat<' i at time 0: 

I ( I. ) ~ ,,~ [ Uo I D - . rr - '·] -'i " ·• z - IJ z ro - 1,-1 o - 11 (i = 1, 2,k - 0, 1,2, ... ). (2.12) 

R<'lating Li(k. z) with D,(k- 1, z), W<' hav<' 

L,(k, z) = [ L,(k- 1' z): L,(k- 1' O) + L;(k- 1, o)] A,(z). (2.13) 

I3.v applying (2. L3) n•<·ursivcly, we obtain L,(k, z) in terms of Li(O, z) w!Jich denotes thr 

PGF for thr amount. of work at the brginning of s tate i: 

L,(k, ') ( . l,~(z) )' L,(O, z) + (z - l ) t. ( A,~z)) 1 

L, (k - j, 0). (2. L4 ) 

Since t.h<' syst<•m is in equilibrium, it is clrar that the PGFs Li(O, z) are given by 

(2.15) 

JO 

Substituting (2. J•l) into (2.15), W<' have• th<• following exprC'ssions for £,(0, z) (i = 1, 2): 

L ( ) A21(z) [ (A~2(z) ) (An(z) )] 
1 0, z - A2~(z) G2 z /.~2 (0, z) + (z- 1 )X 2 -z- , (2. 1 G) 

(2.17) 

where 
00 ('() 

X,(z) ~ L L L,(k,O)!li(k + m)zm (i= 1,2). (2.18) 
m = l k-O 

vVc solve (2.1G) and (2. 17) with resp<'ct to f.~i(O, z) (i = 1, 2) (lnd obtain 

L
1 
(O, z) = (z - I )[J1J2(z)A21 (z)G2(A22(z)jz) X 1 (Au (z)/z) -t A11 (z)A21 (z) X2(A 22(z)jz)] 

A11 (z)A22(z) A12(z)A21 (z)G 1 (A 11 (z)/z)G2(A22 (z)/z) 
(2.19) 

L
2
(o, z) = (z- 1 )[A,2(z)A21 (z)G 1 (A 11 (z )/ z) X 2 (A 22(z)/ z) + A 22 (z )A12 (z )X1 (Au (z)/ z )J 

A,. (z)A22(z) A 12(z), l21 (z)G1 (A1 1 (z)/ z)G2(A 22 (z)/z) · 
(2.20) 

Thus, once X1 (z) and X2 (z) ar<' known, t.lw L1(0, z)'s arr obt.ainNI. ln orciN to drtN 

mine Xi(z), W<' ll<'<'d the following lcmllla. 

Lemma 2.3. 1: Tlw unknown function X, (z) can be rewrittc•Jl as 

where 

!If, 

xi. (z) = :L: xi(j)zj, 
rt 

PROOF: Sr<' [Brun84j. 

N, 

~ ... ·"'*( ')~J ~···t J " 
x 12 ( z) - -:-=1'--. -_• __ _ 

f (, 

II ( 1 - O'jkZ f"•k 
k I 

(2.2 1) 

(i= l ,2) . (2.22) 

• 
From (2.22), it is dear that the unknown functions X 1 (z)'s contain only a finite numbt'r 

of unknown constants .c;(j)'s and ~t:;'(.j)'s wh<'n Gi(z) (i = 1, 2) is a rational function of 

z . Furthermore, Xi( z) (i = 1, 2) is a rational function of z, h;wing t.IH' same denominator 

as Gi(z) and a numrra.tor of degr<'c !II, -t JV,. This formal sim ilnrit.y between the G
1
(z) 

and the Xi(z) allows us to determine .X,(z) (se<' Appendix A and a lso App<'ndix D). 

2.3.2 Stationary Work 

In this sHbs<'ction, we consider the amount, of !h<' st,ationary work in t.hc system. \V<• 

define Ui(z) ( i = 1, 2) as t,he PG F for the a.mount. of work i 11 t.h<• syst.em in a random ly 
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chosen slot given t.ha t. the state of t bc a! tern at ing rcnewal process in the slot is i: 

(i=1,2). (2.23) 

\Vc also defiuc U(z) as thc PGF for thc amount of the stationary work in thc system: 

(2.24) 

\Vc then havc the follmving theorclll. 

TIIEOREM 2.3.1: The PGFs U1 (z) m1d U(z) ar·c given by 

U,(z) = c::( l ){ l _I A,,(z )/ z) [ 1~,(0, z) { l - G; ( A;~z))} 
+(z- l) { A;~z) .\, (1)- X ; ( A;~z))} l· (2.25) 

U(z) = 1r1U1(z) + 1r2U2(z), (2.26) 

respectively, whC'7"C' 1r, rs givC'n by 

(7=1,2). (:2.27) 

PROOF: \\"c first consider U,(z). Let p1(k) (i = 1, 2, k = 0, 1, 2, ... ) dcnote the condi

tional probability that a randomly chosen slot of statc i is the (k + 1 )st slot of state i, 

given that t.hr slot is in statC' i: 

p, ( k) ~ P r { -To = k I Po = i} (k=1,2, ... ,i 

\Vc then havC' IBurk75J 

1 00 

p,(k) = G'(
1

) L !Jt(n) (k = 0.1, 2, ... ). 
t n k f) 

By definition, wc havC' 

00 

Ui(z) = L Pi(k)L,(k, z) (i = 1, 2). 
k....,o 

From (2.14), (2. 18), (2.29) and (2.30), wr obtain (2.25). 
1ext we considrr U(z). Since 

) - . - G~(l) 
1 r{J>0 - 1}- G~(J)-'-+'--G'--T~-(1-) 

(2.26) immrdiat.rly follows. 
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(i=l,2), 

l, 2). (:2.28) 

(2.29) 

('2.30) 

(2.31) 

• 

2.3.3 W a it ing T hne 

l11 this su bscction, wr consider t hc waiting time of a randomly rhoscn customer. \Vr 

assume hcrc that thc scrvicc disciplinr is t.h<' FCFS and as for cust omrrs who arrivrd in 

thc same batch, the next customer for S<'rvicr is randomly sclccl<'d among thrm. 

Since our syst<'m is a single-server qurur with batch arrivals, a taggC'd custom<>r suffrrs 

from two componrnts of delay. One is t hc wailing time of t hc t agp,rd batch to which t.hr 

tagged customer brlongs. The other is t hr waiting time due lo scrvi<-r limrs of customers 

in the tagged batcb, who arc served b<'forc thc tagged custom<>r. fort hr form<'f, we d<>fin<' 

FiJ(z) as the PGF' for t.hr waiting t.inlC' of th<• tagged batch lo which a randomly chosen 

customer brlongs arriving in a slot given that the alternating rrnewal process is in stat<' 

i in the current slot and in state j in tlw nrx I slot. For the latt rr, \\'C' define D,1 ( z) as 

the PG F for a ti mr i nlrrval from thr bC'ginn i ng of the serYice of the first custom<'r in t hr 

lagged batch to the bC'ginning of thr srrvi<'C' of the custonH'r gi\'('11 that hr arrives to the 

system when thr alternating rene\\"al proccss is in state i in thr current slot and in stat<' J 

in the next slot. Furthrr, we definr l\"(z) as the PGF for the waiting time of a randomly 

chosen customer. \Ale thrn have the following theorem. 

THEOREM 2.3.2: The P G F n· ( z) is _qiv('n by 

2 2 

ll'(z) = L L 11,1 F,1 (z)D,1 (z), 
I I} I 

where 

v:i(l)(G:(J) - 1) 
~~~~~--~--~~ ~--~--------------
8~ 1 (I ) ( Cr''1 ( 1 ) - 1) + B~2 ( I ) ( (,'~ ( l) 1 ) + JJ~ 2 ( 1) f JJ~ 1 ( I ) 

n:1 ( t) 

'

,., () __ l_G~(l)U,(z) D,(O,z) 
n Z - 1 

Ati ( z) G\ ( L) - L 
(i- 1,2), 

F.•;·(z) = Lj(O, z) ( ..;. . . ) . () i 1 ;,t,j=1,2, 
Aii z 

D.·( ) _ 1- DiJ(C,3 (z)) 
t) z -

B~1 ( 1) ( 1 Cu ( z)) 
(i,j = 1, 2). 

(2.32) 

(i=j), 

(2.3:3) 

(i#j), 

(2.3 1) 

(2.35) 

(2.36) 

PROOF: Note that. tlij denotes the probability that the taggrd custonl<'r arrives when 

thr alternating rrnewal process is iu stat.c i in thr current slot. and in stale j in the next. 

slot. We then oht.ai!l t.he expression (2.32) for lV(z) . 
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\\'0 now ('Oilsider J·~1 (z). Hecall that we ohsrrve tlw amount of work in the system imme 

diat.<'ly aft.rr slot bonndnries, while customers arrin~ immediately before slot bonndari•t's. 

Thus, WC' have 

(i=l,2), (2.37) 

where• U,1 (z) (i = 1,2) clenote•s the• PGF for the amount of work Ill the system illl n 

randomly chosen slot of state• i gi,·cn that it is not the first sloL of stntc i. By definition, 

U/(z) is given by 

(i=1,2). (2.:38) 

Fro111 (2.37) and (2.38), w0 obtain (2.3tJ). According Loa similar reasoning, we> obtain 

(2.3!>). \Vr ll<'Xt consiclrr D,
1
(z). By using t.hc> rc>stdt.s in hatch arrivals [Burk75J, we have 

(2.36). • 

2.3.4 Numerical Example 

In this su b~wdion, we> providc a numerical exam pic in ord<'r to show thr com pu tat.ional 

fc•asibility of U10 analytical results. ln this example, W<' assunH' that the srrvice times 

of customers arr drtcrministic and equal t.o o11c slot n•gardless of tlw state, and the 

batch sizr follows a Poisson dist.ribut.ion. t\loreovcr we assume that A,2(z) = An(z) and 

A:.n (z) =- A 22(z). \Vr d<'Botc thr mean sojourn time in state i hy ri 1
. \Ve assume that 

7' 1 = 7'2 - r. The traffic intensities in states l and 2 are fixed lo 0.5 and 1.3, respectively, 

and the overall traffic intensity is gi,·cn by 0.9. Thus, thr arrival process consists of 

und<'rload JWriods (state• 1) and O\'erload periods (stale 2). 

Fig.2. 1 shows t.hat the mean waiting time of customers for two rases: t.he detcrmin is tic 

and the grometrir sojouru t imcs. The mean waiting lime is plott.ed as a function of' thr 

mean sojourn time 7' -
1. We first observe t.hat. lhe increase of the mran sojourn tim<' 

leads to the incrra.c;<' of t.be mean waiting time of customers rvcn when the overall traffic 

int<'nsi ty is fixed. The' second obserntLion is that the mean waiting time i u the case of the 

geometric sojourn times becomes longN than that in the case of the deterministic sojourn 

times. Thus not only th<' mean sojourn time but also tlw sojourn timr distribution affecls 

t.he mean \\'ailing tirnr. 

2.4 Discrete-Time GI[XljG/1 Queues 

In this section, wr show an application oft he analytical rrsults to a disCTetr-time GIIXI /G/1 

q ueuc. Thr discrete-time G J(XJ /G /1 queue has been ex l.<'nsi vcly analyz<'d in thr lit era 

turr (ser [Ackr80J, [~lura91J and rcfN<'n<'<'S th<'r<'in). Among thosr, t\lurata and t\liyahara 
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Figure 2.1: Mean sojourn time in rach st.a.l<' vs. mean waiting time 

[~ Iura9~J have studied the disrt:<'te-time GJIXljC/1 qH<'Il<' under the most g<'rl('ral assump

tiOn. \\e show that the qu<'uel!lg model considcrrd in jMura9Jj is a spc<·ial case of our 

~nodel.and the analytical rrsulls given in [~ fura91j arr readily obtaitH'd from the rc•sults 
Ill sectwn 2.3. 

2.4 .1 Analysis of Discrete-Time GIIXJ/G/1 Queues 

~ow we apJ~ly our model to adisncl<'-time GI(XJ/G/l quc•uc considrn•d in [Mura91J, which 

lS charactcnzed by the following PG Fs. Lcl G(z) dcnol<' th<' PC' r.' of tbn · 1 • 1 1 • 
)' . • 11· , Uhcrarn va ~lmc 

< tslnbu~.10u of batches of positive size. We assume 1H•re that. the PGP G(z) is represented 

as a rattonal function. Let B9 (z), C9 (z) and A.q(z) denote t.hc PGFs for the batch siz<' 
the · t' r ' service lm<' o a customer and th<' amount of work brought into tlH' system by a 

batch, n•spcctively. In order to analyze the above queueing model, we set the PGFs in 
our model in section 2.2 as follows: 

Gi(z) = G(z), Bii(z) = 1, lJ12(z) - B21 (z) = 13
9
(z), 

Cii(z) = 1, C12(z) = C21 (z) = C9 (z) (i = 1, 2), (2.39) 
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and therC'for0. A,.(z) = 1 and A 12 (z) = .th1(z) = A9(z). In other words, we consider thr 

model wh<'r<' hatches of positive size arrive only wh<'n th<' state transitions from stat<' 1 

to state 2 or from state 2 to state 1 occur and sojoum t.im<'s in C'ach state correspond to 

intcrarrival t im<•s of hatches of positive sizr. Br d<•finit ion. t.h<' traffic intensity is givrn 

by 
p9 = A~(l )jC/( I). (2 .40) 

In t hr following analysis, we assume that. (Jg < 1 and th<' syst<'lll is in equilibrium. 

W<• first consider t ll<' PGF L
9
(0, z) for the amouJtl of work in t.hr system immediately 

nft.<•r arrivals of bat.ches. Note that. L9 (0, z) <'orrrsponds to /.~,(0, z) in our original model. 

II. t.IH•n follows from (2.19) or (2.20) that. 

( ) 
_ (z- l)A 9(z)X9 (1/z) 

Lg O,z - 1 A
9
(z)G(l/z) ' 

(2.41) 

wh<•n• 
00 00 

X
9
(z) = L 'LL9 (k,O)_q(k t-m)zm, (2.42) 

m=l k 0 

and g(m) is the probability that an interarrival lime is rqual tom slots. Furthermore, 

from the normalizing rquation L9 (0.1) = 1, we have 

X9 (1) = (1 - p9 )G'(l). (2.43) 

11<•<·all that. X 9 (z) is rradily detenninrd as shown in srd.ion 2.3. 

Remm·k 2.4. 1: Note that if intcrarrival t.imrs of batches have a geometric distribution , 

we have t.hr following rquation: 

(2'.44) 

Thus t.h<• unknown function X
9
(z) is explicitly drtrrminrd when thr interarrival times are 

gC'ometrically d i~t ri bu ted. 

Nrxl, W<' ronsidrr the PGF U9 (z) for the amount of the stationary work in the system. 

Nolr that U9 (z) corresponds to U1(z) in t be original modcl in section 2.3. It then follows 

from (2.25) that 

U9 (z) = G'(l)(ll-l/z) [L9 (0,z) { 1- G (~)} + (z- 1) {~X9(1)- X 9 (~) }] • (2.45) 

Finally, wc consider the PGF Vl'9 (z) for the waiting time of a randomly chosen customer. 

From the results in section 2.3, we obtain 

(2.46) 

lG 

F (z) _ L9 (0, z) = (z- 1)X9 (1/z) 
9 A9 (z) 1- A9 (z)G(l/z) · 

(2.47) 

Rrmm·k 2.4.2: After some algebra with (2.45) and (2.lG), wc havr the following rela-

tionship bctwC'cn work in the system and t.Jw wailing timr in the GIIXljG/1 queue: 

( ) 
. 1 C9 (z) 

U9 z = 1- p9 + p9zll 9 (z) C~(l)(l _ z). (2.48) 

Note that. (2.tl8) can also be derived from the invariant rdat.ionship or the equality oft hr 

virtual delay and attained waiting Lime distribution (sec, for <'Xnmplr, [Miya83], [Miya92J, 

[Saka90], [Scng89]). 

2.5 Queues with Two Indep endent Inputs 

In this srdion, we consider an application of our modrl to a single-scr\'er queue with 

two indcpendcnl input streams: GIIXljG and rJI3P/G input streams. The analytical 

rrsulls arc directly applied to the performance cvaluat ion of ATi\1 multiplexers [~lura90]. 

Thc continuous-time single-server queue with indcp('Jldcnt GI/G (lnd f\1/G input streams 

has previously been studied in [IIook72], [0Lt.8·1J, [Ot.t.87] (s<'<' also rcfcrrnces therein). 

Those papers luwc shown that., roughly speaking, t.l!C' amount of work in the systrm 

is drcomposed into two independent componrnts, Oil<' of which is t.hc amount of t.hc 

stationary work in the M/G/1 queue. We show that. t.he ;unonnt.s of not only the stationary 

work but a.lso work immediately after arrivals of GJ[XI /G cust.omrrs is decomposed inlo 

two independent components, one of which is thr amount. of work in the BBP /G/ 1 queue'. 

Though the service times of GJ[XJ /G cust.OillNS arr i.i.d. in t.h<• 111odcl considered in this 

chapter, thr arrival proress of the G/G stream ueNI not he homogeneous in time and 

the servic<' timrs of the customers need not br indC'p<'nd<•nt (sec [Ott84]). In [Ishi95a], 

Ishi7.aki cl al. have considered a single-server <JIH'\10. wit.h two indrprndent inputs where' 

the intrrarrival times of GIIXljG customers and the srrvi('(• time of the customers are 

dcpc•ndent, and analytically shown that t.hC' amount of work in tlw system is decomposed 

into thC' two indrpcndcnt components. 

2.5 .1 Work in the System 

We considC'r work in a single-server queur with t.wo indC'pC'IHlent strrams: GJ[X) /G and 

13BP/G input. sl.rrams. For GIIXljG customers, lri G(z) denote the PGF for the intrr

arrival Liuw of lmt.ches of GJIXljG customers. We• assunl<' h<'rc that thC' PGF G(z) is 
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represented as a rational funC't.ion. Let 1311(z) and C9 (z) denote the PGFs for the balch 

size and the sNvice time, respectively, of GIIX] /G customNs. Thus we have the PG F 

A
11
(z) for thr amou11t of work brought into the system by a bat.ch of GIIXljG customNs: 

{2.'19) 

On the ot hN hand, we denote by Bb( z) and Cb( z) the PG F of the batch size and liH• 

service time, resprdively, of BBP /G cuslomc•rs. \Ve then have the PGF Ab(z) for the 

amount of work brought. into the syst<'m by BBP/G customrrs in a slot : 

{2.50) 

]n ordrr to anah-'Z<' th<> qu<>ucing syslrrn, \\'('set the PGFs in t.hc original model in 

section 2.2 as follows: 

An(z) = A 11(z), Btt(z) = JJ11(z), C11{z) = Cb(z), 

A 12(z)=A2 1(z)=Ab(z)A9 (z) (i = 1,2). {2.51) 

It is easy to s<'<' that. t.he resulting qururing model corrrsponds to the s inglc-servrr qucur 

with two indrprndrnt input streams drscribrd ahovc. In thr following analysis, we assumr 

that A~(l) + A~{l)/G'(1) < 1 and t.h<• system is in equilibrium. 

\Ve first <'onsidrr t h<• amount of work in the systrm immcdiat rly after arrivals of G II XI /G 

customers. Notr that this corresponds t.o t.h<' amount of work at t hr brginning of each state• 

in the original n10dc•l. Let L(O, z) denote t.hr PGF for the amount of work immediately 

after arrivals of GIIXljG customers. It. then follows from (2.19) or (2.20) that 

where 

( ) (z- l)A9(z)X(Ab(z)/z) 
L O, z = 1 - A

9
(z)G(Ab(z)/ z) ' 

00 

X(z) = L L L(k, O)g(k + m)zm, 
m. I k-0 

{2.S2) 

{2.53) 

and g(m) is the probability that an intrrarrival time of batches of GJ[XljG customers is 

equal tom slots. Not.r that (2.52) is rewritten to be 

L(O, z) Ub(z)L*(O, z), (2.5tl) 

where Ub(z) d<'notrs t.hr PGF for the amount of the stationary work in the BBP /G/1 

queue: 

(2.55) 
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whi<'h is obtained from (2.41), {2.43), (2..1•1) and {2.15), and U (0, z) is givrn by 

.( ) 1 z Ab(z) A9 (z)X(Ab(z)/z) 
L O, z = 1- A~(l) AJ.;") I - A

9
(z)G(A11(z)jz)' (2.5G) 

Next. wr cousid<'l' t.h<• PG F U ( z) for the amount of thr stationary work in the sysl<'lll. 

Note that C{z) coJT<'sponds to Ui(z) in our original modrl. It th<'n follows from (2.25) 

that 

U(z) - G'(1){1 ~ Ab(z)/z} [L(O,z) { 1- G ('lb;z))} 
+(z- 1) { A";z) X( I) - X ( Ab;z))} l 
Ub(z)U.(z), 

where U"(z) is given by 

U*(z) = 1 _!_ [(A9 (z) 1).X(Ab(z)/z) + ,\b(z) X(1)]. 
G'{l)(t- A~(l)) A11(z) 1 · A9(z)G(Ab(z)/z) z 

(2.57) 

(2.58) 

From (2.54) and (2.57), we see t.hat the an1ount of work immediat.0ly after arrivals of 

GI[XljG customNs and th<' amount of the• stat ionary work arr d<'('omposed into two indr

prndcnt componrnts, on<> of which is the amount of the statiouary work in the I3BP/G/t 

queue. In the next subsection, we rclatr lh<' othrr componrnts, rrprrsrntcd by L*{O, z) 

and U*(z), to thr amount of work immrdiatrl~· after arrivals and t hr amount of the 

stationary work, rcspcelivcly, in a special GJ[XljG/1 queue. 

2.5.2 Special GIIXJ /G /1 queue 

We consider a special G ]lXI /G /1 q uruc wi I h t.ltr samr iuterarri val t i Ill<' and the samr bat C'h 

size distributions as in thr GIIXljGl input st rram. \\'e now assumr that. the PGF C'9 (z) 

for the servirr timr of a special GIIXljG customer is given by 

{2.59) 

where G(z) denotes the PGF of the delayed busy period clist.rihut.ion in the BBP /C/1 

queue and G(z) sat. isfi0s 

G(z) = J\b(z(-)(z)). (2.60) 

1ote that (2.59) implies that the service times in the special C:I XljG/1 queue arc given 

by the delay cycle of BBP /G customers with the initial delay com'sponding to the service 

time of a GIIXljG customer. Setting w- z(-)(z), wr have 

zG(z) z0(z) w 
z = G(z) = J\b( z<-1(z)) = A11(w). 

(2.Gl) 
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Thus we obtain 
(2.62) 

We denote by ;\
9
(z) the PGF for thr amount of work brought into the system by a batch, 

namely, 
(2.63) 

It t.h<'n follows from (2.62) that 

(2.64) 

For the sprcial GIIXljG/1 queue, we first consider the PGF L(o, z) for the amount of 

work in th<' sysL<'m immediately after arrivals of batches. From (2.19) or (2.20), we obtain 

L(O,z): 
A ) (z- l)A9 (z) .rY(1/z) 
L(O, z = A ' 

1 - A9 (z)G(1/z) 
(2.65) 

where 
00 00 

X(z) = L L L(k, O)g(k + rn)zm, (2.66) 
1n= J k =O 

and g(m) is the probability that an interarrival time of batches is equal tom slots. 

Next, we consider the PGF U(z) for the amount of the stationary work in the system. 

From (2.25), we obtain U(z): 

U(z) = 1 [t(o, z) {1 - G (~) } + (z- 1) { ~X(l)- X (~) }] . (2.67) 
G'(1)(1 - 1/ z) z z z 

Substituting z = z/ Ab(z) in (2.65) and (2 .67), we have 

A ( z ) (z/ Ab(z) - 1 )A9 (z)X(Ab(z)/ z) (2.68) 
L O, Ab(z) = 1 - A

9
(z)G(Ab(z)/z) ' 

• ( z ) 1 _z [ A9 (z)X(Ab(z)/z) { 1 _ G ( Ab(z))} 
U Ab(z) = G'(1) Ab(z) 1- A9 (z)G(Ab(z)/z) z 

+ Ab;z) X(l)- X ( Ab;z) ) l· (2.69) 

We now dcfinr X(z) ~ (1- A/,(1))X(z) and rcwritr L(O,z/Ab(z)) and U(z/Ab(2:)) as 

follows: 

(2.70) 

(2.71) 

Note that, from (2.56), (2.58), (2.70) and (2.71), if X(z) is identical to X(z), then L*(O,z) 

and V*(z) are identical to L(o, zj Ab(z)) and U(z/ Ab(z)), respectively. Hence we shall show 

that X(z) is identical to X(z) in the n<'xt subsection. 
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2.5.3 R e lationship b e tween X(z) a nd X(z) 

Ticcall that X(z) is expr<'ssed by a linear combination of unknown values and a coefficient. 

of <'ach unknown value is determined only by the functiou G(z). Since X(z) in (2.66) 

has the same form as X(z) in (2.53), ..~Y(z) is also cxpress<'Cl by a linear combination 

of unknown values and a coefficient of each unknown is exactly the same as in X(z). 

Furthermore the unknown values in X(z) and ..~Y(z) can be obtained by examining the 

zeros in the denominator of V*(z) and U(z) resp<'ctively. 

Since both U*(z) and U(z) arc PGFs, the terms 

(A9 (z) - 1)X(Ab(z)/z) 
1 - A9(z)G(Ab(z)/z) 

and 
(A9(z)- 1) .. -Y(Ab(z)/z) 
1 - A9 (z)G(Ab(z)/z) 

(2.72) 

in V*(z) and U(z), respectively, have no poles inside the unit. disk. Note ll<'re that thc 

denominators in both tf'rnls arc identical. Thus, the numerators in these terms bE>comes 

zero at some value of z, at which the dE>uominators in both terms becomes zero. Hencr it. 

is clear that these conditions provide us with the same linear equations for the unknown 

constants in both terms. Furthermore, the normalizing equations U(l) = 1 and U(1) = 1 

provide us with the following equation: 

X(l) = JY(1) = G'(l)(l - A~(l)) - A~(l). (2.73) 

From these observations, we conclude that. X(z) is identical t.o ..~Y(z), so that L*(O, z) 

and V*(z) are identical to L(O, z/ Ab(z)) and U(z/ Ab(z)), respectively. Thus th<' other 

factors are related to the amount of work in the sp<'cial GJ[XJ/G/ 1 queue. Note that, with 

(2.54), (2.57), (2 .60) and (2 .61), the decomposition results (2.54) and (2.57) arc also given 

iu the following forms: 

L(O, zG(z)) = Ub(zG(z))L(o, z), U(z8(z)) = Ub(zG(z))U(z). (2.74) 

2.6 Queues with Service Interruptions 

In this section, we consider an application of our model to a discrete-time queueing sys

tem with service interruptions. Queues with service interruptions have been extensively 

studied in the literature (see [Brun84], [Seng90] and rcferrnccs therein). In thc context of 

the discrete-time queue, Bruneel [Brnn84] has studied queues with service interruptions 

where the arrivals of customers arc time-homogeneous and the service times of a customer 

arc deterministic (equal to one slot). The lengths of on-periods are assumed to have a 

general distribution whose PGF is represented a.'' a. rational function. He has derived 

the PGF for the amount of the stationary work in the system. The model considered in 
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seclion 2.2 enables us to have a more general model than the oue in [I3run84]. Towslcy 

[Tows80] has stndi<·d a brC'ak<lown model as a special case of queue with I wo-state l\Iarkov 

modulatcd input whrrc• rach statc is characteriz<'d h~ its own Bernoulli arrival proccss 

and indep<'ndcnt rrror pron•ss, and dNived the PGF for I h<' queue length distributio11. In 

his mode•l , on-pNiod lrngths have a f!pomctric dist.ribut.ion, while off-p<>riod IC'ngths lilav<' 

a gcrwral distribution. Huhin and Zhang [nuhi92] havr analyzed queurs wit.h determinis

tic ou- and oiT-pNiods to obtain thc JH'rformance mrasurcs in the TDl\lA scheme. Not<' 

that thcir mod<'l is a spccial casc of our model. In our modcl, we assume that the batch 

size' and thr scrvicc tinw clist ributions of customers which arrive to thr systcrn during, off

pNiocls 111 ay dif[er frorn t.hosr whrn thc sNvcr is working. Thcse phenomena ar<• naturally 

arising in rcal situations and a very similar model in continuous-time lws been studird 

h~, SC'np,upla [Scug90]. \\'c show that thc PGF for th<' amount of work in the systcm is 

readily oht.aincd from t hr n•sults in SC'rl ion 2.3, and tlu· analytic-al results include I hose 

in !Brun8tJ] as n spPcia l casc. Furth<'rmore, we c-harad.cri7.c the waiting lime distribution 

of customers und<'r t ltC' FC'FS discipline•. 

2.6.1 Mod el 

Wr considN a single-sNvcr qucuc in a random environment governcd by a discrete-tim<' 

al l<'rua.t.i ng renewal procrss. We call thc slates of tllP al L<'rnating rcucwal process stat.rs 1 

and 2. In state 1, lh<• srrvc•r works and thcrcfore the scrvc•r srrvcs exactly one unit of work 

in a slot. of state 1. Stat.c 2 denotes the breakdown of thc scrvcr. \\'e will also refer to st atcs 

1 and 2 as on- and off-p<'riods, rcsprctivcly. Let gi(n) (i- 1, 2, n = 0, 1, 2, ... ) denotc· thc 

prohn.hilily that limc spcnt in state i is <'qual ton. We denote by Gi(z) (i- 1, 2) the PGF 

oft hC' .rJt(n). We nssuuw here that thr on-period PGF G1 (z) is reprcs<>ntcd as a rati-onal 

function. llowevcr, W<' do not make any assumptions rcgarding thc form of the off-pcriod 

PGF C:2 (z). CustornNs arrive to thr systcm in batches. The batch si7.e and thc service 

time• distributions may differ among the two states. Let B1(z) and C1 (z) denote the PGFs 

for the hatch size and I he service timr of a customer arriving in a slot of state i ( i = 1, 2). 

Also, lcl A1(z) dcnol<' the PGF for the amount of work brought into the system in a slot 

of slatc i. In the following analysis, wc assume that ( G'1 ( t )A; (1) + G~( l ) A~ ( 1) )/G; (1) < 1 

and the system is in rquilibrium. 

2.6.2 Work in t h e Syst em 

\\'e first consider the imh<·dded workload process only during on-periods. \\'e excisr• all 

slots during off-periods, gather all arrivals during each off-period, aud put them in t.hc 

last slot. of the on-prriod preceding cach off-period. As a result, lhc imbedded proccss 
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behave's like the \Vorklond in the qtL<'ll<'ing system with two indcpcnde'nt input strra.ms: 

one is a I3I3P/G input strram with the batch size PGI' /3 1(z) and thc S<'f\'icc tirne PCF 

C1(z), and the oth<'l' is a GIIX /G input st.rcam with thC' intcrarri\'al tim<' PGF G1(z), thc 

batch size PGF G2(/J2(z)) and the h<'rvic<' tim<' PGF C'2(z). Note that we• ha,·e alrcady 

analyz<'d I he workload process in such a queue in srdion 2.5. 

Let ('I(z) he th<' stationary PGF for the amount of work in the• imhcddcd procC'ss. 

From I h<' results in t he• prc,·ious sect ion, \\'C obtain 

(2.75) 

"·hcrc 

('() 00 

X (z) L L L1 (k, 0)!/I (k + m )z111
• 

m - 1 k-O 

(2.76) 

i\ol<' that L 1(0,z) in (2.76) is identical to C0 (z) in [Brun81] if A1(z) = A2(z). 

Thr next step is to obtain the PGF for the amount of work in the systcm in a randomly 

chosen slot during off-pcriods. To do so, we excis<· all slot.s during on pNiods. Vve I hen 

not icc that. the resulting workload J>roccss is a purc hi rl h process excC'pt. a I some renC'wal 

epochs, where the distribution of tinw intervals bel\\'<'en succcssin' renewals has the PGF 

G2(z). Lct £ 2 (0, z) dc'nol<' the PGF of I h<• distribul ion of I he amount of work immcdiat<'I.Y 

after renewal epochs. It is easy to se•e• that £ 2(0, z) is <•quivaknt t.o t.h<' PGF of t.h<' 

clist.ribution of the arnount. of work imnH·diat<'ly aftcr arrivals of GIIXljG c-ust.orners. Thus, 

from (2.52), we obtain 

(2. 77) 

·whcrp X(z) is given by (2.76). Not.<' that. £2(0, z) in (2.77) is idPntical to D0 (z) in[l3run8tJ] 

if A1(z) = A2(z). Lrt £ 2 (/..-,z) dt>notc tiic PGF forth<' amount of work in the systPm 111 

the (k + l)st slot of stat e• 2. \\'e thr.n havc 

(2 .78) 

\Vr dcnote by U2 ( z) the PG F of the distri bulion of tltc amount of I lw stationary work 

during off JWriods. I3y definition, wc obtain 

(2.79) 
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whN<' p2(k) (k = 0, l,2, ... ) is th<' conditional probability that a randomly chosrn slot of 

stale' 2 is I h<' (k + I )st slot giV<'n I h<' slot is in statr 2 and givrn in (2.29). 

LPt U(z) drnote t hf' PGF for I he amount of work in I hr singl<'·SCf\'N queue with scrvicf! 

int.Nrupt.ions. We t.IH'Il hav<' 

U(z) = 1rlf1 (z) + 1r2U2(z) 
1 

7r I G; ( l ){ 1 A I ( z) I z} 

I (z- l) { A 1;z) X(l) 

[ { (
A1(z))} L 1 ( 0, z) 1 - G l -z-

wlwr<' the' 7ri's (i = I, 2) ;uc• givf'n in (2.27). 

2.6.3 Waiting Thne Distribution 

In this su hs<'cl ion, \\'C' consider t hr waiting time distribution of cust om<'rs 11 nder the FCFS 

discipline'. Before we· analyze t.h<' waiting time distribution. we characterize til<' amount 

of work in thr system in a slightly diffen•nt way from that in Lh<' previous subsection. 

W<• d<'nolc• by ~\(k, .r) (i = 1, 2, k = 0, 1, 2, ... , .7' = 0, 1, 2, ... ) tlu' conditional joint 

probability that. a randomly chosen customer arrivrs in thr (k + l)st slot of state i and 

the amount of work sren hy him upon arrival is equal to :r (inrluding that brought by 

those' customers scn·rd brfore him within the same balch) given that the tagged customer 

arrivrs in state i. Lrt. W;(k, z) drnotc the z-t.ransfonn of thr V't(k, :r) wilh rrspcct. to .r. It 

is drar that. 

W, (k, z) 1'' (k) [ D,(k, z): D, (k, O) + /-
1 
(k, o)] D

11 
(z), 

\ll2( k, z) =- P2(k )L2( k, z) D22( z ), (2.8I) 

whN<' Du(z) (i = 1, 2) is given in (2.36). By drfinit.ion, W<' havr 

00 

L w2(k, z) = U2(z)D22(z). (2.82) 
k=O 

In analyziug the waiting t imr dist ri bu tion of customers, w<' srparat<'ly treat two types of 

customers, those who arriv<' during 011 periods and thosr during off-periods. Let w.(yjk, x) 
(i = l, 2, k = 0, 1, 2, ... ) denot<' thr probability that the> waiting time of a customer is 

rqual to .tJ slots givrn that thr customer arrivrs in the (k + l)st slot of state i and the 

amount of work found by him upon arrival is :r (:r = 0, I , 2, ... ). C learly, the waiting 

timr of a customer who arri,·es during an on-prriod and finds :r units of work in front of 

him upon arrival is given by the• sum of J' slots and the total length of off-periods that 

occur before thr start of his service following the depkt.ion of x units of work. LcL N(k, x) 
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d<•note the 11UmbC'r of I hose• off-p<•riods hrforc th<' start of his scn·icr gin•n that thr tagg<'<l 

custornrr arrives in Uw (k + I)st. slot of stair l and fiuds :r units of work in front of him 

upon arri,·al. ?\ot<' that X(k, .r) is considrr<'d as a d<•lay<'d r<'IH'wal process whose first 

rc•newal tim<' is equal to 11 (11 = 0, I, 2, ... ) with probability !/l(n+k+ 1)/(I - 2::~. ~ 1 91(111)) 

and the suhse•quc•nt inl<'tT<'IH'wal time is <'qual to 11 with probabi lity g 1(n). \\'<' th<'ll havr 

t _!!}__]_~ . -1 - 2: g:(l ')Cn) t- 2: g,(m) 
r ('It l) .rJ { .rJ11 } 

J=OI-l:m=J!Il{m)rt L-1 m t 

(I ;::: 2), 

Pr{N{k,.r) = l} = ~ 91 (j l k + 1) {I ~ ( ) } 
L J. - Lfll 11 

j-O I - Lm 1 !)J ( m) n 1 

(l 1)' 

(I = 0), 1 
_ t .t11 (.j 4 k + I_) 

J ol-2::~. lg,(m) 
(2.83) 

wherr g;(k)(.r) (i = 1. 2) is the k-fold rou\·olution of g,(:z:) with itself. In I lw abo\·c and 

t.he following equations, th<· sulnmation t ak<'n in dcnc•a.siug ordN is ciC'fiucd to h<' Z<'ro. 

Using Pr{N(k,.r) = l}, we havc the following expression for wi(Yik,:r): 

{ 

0 
Y I I w kr - 1 1 (yl '· ) - L g;< )(y- .t) Pr{ N(k, .r) - /} 
I 0 

w2(Yik,.r) = { ~ . .r ( I ·) .t12(n I k + 1) 
L W1 .l/ - 11 0, .t k ( ) l ~ C.7·• 1n n -O L.-,, I . 4 

(y < .r), 

(.r ~ !I), 

(y < .r), 

{.z: < y). 

(2.~·1) 

(2.R5) 

I3y combining V'i(k, .r) introduced in thr beginniug of this suhsect iou with w~(yjk, .r), 

we obtain the waiting time distribution of a raudomly dtos<'ll rustonwr. Let \\'.- dcuol<' a 

random variable for the wailing time of a randomly chosen cust orner. V•k t.hcn IHlV<' 

2 ()() y 

Pr{\\'.- = y} = L1li L L lJ!i(k,.r)w,(yjk,.r), (2.86) 
1-l k ox 0 

where 7]t is gi\'<'11 by 

B~(l)C~(I) 
1li = -13-~ (-J-)G-.;~(1) + DHl)C:~(l) {i=l,2). {2.87) 

Fiually, wr considrr thr meau waiting time E[lVr]· Lrt w~ 1 )(k, .r) (i = J, 2) dc•notc the 

expectation of wt(ylk,.r). It. thrn follows from (2.84) that 

(2.88) 
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wh<'r<' m(k,.r.) = /~.; IX(k,:r)J. :\ole• that m(k,.r) is tlH• r<'n<'wal function of th<"· dC'Iayed 

renewal proc<'ss, whiC'h starts at ap;<' k. Furtll<'rmorc, from (2.85), WC' have 

00 

L n .Q2 ( n • k + 1) 
w~1 )(k. J:) = u·~ 1 >(o, .r) + n ° A- (2.89) 

1- L.lJ2(m) 
111 I 

Taking thc• C'Xpedation of both sid<'s of (2.8G), \\'<' have• 

2 'lO 00 

E[H'rJ = L 7]; L L V'i(k, .r)w~ 1 )(k, :t) 
i I k 0 r 0 

= So +171G~( J )S1 + 172G~(l)S2. (2.90) 

(2.91) 

00 ('() 00 00 

81 = L L VJ1 (k, .r)m(k, :.D), 82 = L L 1/!2(k, :1:)m(O, x). (2.92) 
A- 0 .r 0 k =Or 0 

2.7 Conclusion 

f n this chapter, we analyze the gc'nNalized SL3I3P /G j 1 queues, wher<' the arrival and 

the sNvicc• proccssc•s ar<' semi-tdarkovian in til<' scns<' that their distributions depend not 

only on the slate of the alternating r<'ncwal proc<'SS in t.h<' currC'nt. slot. but also on the 

statr in t.h<' next slot.. \Vc dcrivr t h<' PGFs for the amount of work in t.he systrm and 

Ill<' waiting time of a <'HstomN undrr the FCFS disciplin<'. \\'e also provide numNical 

<'X am plrs lo show I h<' com pulat ion a] fcasi hili ty of tlw analytical r<'stll t s. Furth<'rmore, 

we show an :tpplication of the auaJytical rrsult.s t.o important. queueing systems such as a 

discrrte-time GJ[X]/G/1 queue and a discrel<>-lime qu<'ue with servir<' interruptions. 

2G 

Chapter 3 

DB MAP /D /1 Queues with Finite 
and Infinite Buffers 

3.1 Introduction 

In this chapiN, we study t.hC' cuslomrr loss probability approximation in DBi\IAP /D/ 1 /K 
qu<'ues. Th<' approxir11aiC' formulas arr given in lrrms of t.hr t.ail distribution of t.hc 

q neue kngl h i 11 the corresponclinp; i 11 II ni te-bu fl'c•r queue. Though, as we• mentionrd in 

chapter 1, the formulas for thr e:rac/loss probabilil\• in 013:\IAP/D/1/K qtu•ur hav<' bN•n 

alr<'ady d<>rivNI (see, for rxamplr, [Blon92J, [Taki%J), tlH' r<'a.<>ons that W<' considN I lw 

appro:cimalr formula of the loss probahilit.y in this chapt.c•r arC' as follows. WIH•n the 

hnff<'l' size is large, th<' Ill I Ill ber of sl airs and lh<' si'l.r of t hP transit ion matrix r<>pr<'s<>nt i ng 

I he imbedd<'cl 1\Iarko\' <'hain to d<'snihc the dynamics oft he system h<'rollle prohibitivc•ly 

large. \~VhC'n t.hc loss probability is VNY small, wr havr sonH' diflicullics in it s computat.ion. 

Those facts make th<' co1n put ation of I he exact loss probability with enough accuracy vrry 

di ffkult, ev<'n if the <'X act analytiral fram<'work is <wailahlc•. Furl h<'rmon• such an c•xad 

computation is time COIISIIming. In application, we• arc 11winly int<'r<.'slc•d in tbosC' cas<'s 

[Ishi95b]. Thns an cfllcic•lllly co1nput.ahle y<'l. accmat.e approxirnatc formula of I h<' loss 

probability should b<' drvdopcd. 

The organization of this chaplrr is as follows. In section :3.2, we desnibe thC' mathe

matical model. In sect.io11 3.3, we propos<' simplr approximations to tlJ<• loss probability 

which arc gi vcn in terms of the tail cl islri hu tiou of the qu<'ll<' lrngt h i 11 llw correspouding 

infinite-buff<'r queue. Thr approximal<' formulas ar<' construrtrd in such a way that th<'y 

become exacl for any indrpeudent arrival proc<'ss. The accuracy of the approximations is 

cxLensi vcly examin<'d t.h rough numc•rical ex peri IIIC'll t.s. 
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3 .2 Mode l 

We consider the queueing moclrl wi t.h the following cha rad cristics: 

• Customers arrivP in a batch. The arrivals arc gov<'rncd by an underlying M -state 

Markov chain. This Markov chain changes its state on slot boundaries. The munbcr 

of customers arriving in a slot depends not only on the state of the underlying 

Markov chain in the current slot but also on the state in the next slot. 

• ThP service times of customers arc assumerl to be constant and equal to one s lot. 

ThP service of a customer starts at. tlH' beginning of a slot and ends at the end of the 

slot. (i.e., ou slot. bonndarics). Customers depart from the system at slot boundaries. 

• The queueing syst.rm has finite buffer and accommodates at most N customers 

including the one in service. Thus, when m (m 2: N- k + 1) customers arrive to 

find k customers (iucluding the one in service) in the system, only N- k customers 

arc accommodated in the system, and the remaining m- (N- k) customers are 

lost. 

As for timings of arrivals, two queuei11g models have been explored in the past: the early 

arrival model and the late arrival model (sec p.5 of [Taka93]). In the early arrival model, 

an arrival of a batch in the nth slot occurs immediately after the beginning of the nth 

slot. On thr othrr band, in the late arrival model, an arrival of a batch in the nth slot 

occurs immediately before the cud of the nth slot. In what follows, we consider both 

queueing models in parallel. 

Brfore proceeding to the analysis, we introduce some notations. The state transition 

matrix for the underlying Markov chain is denoted by U = {Uij} (i,j = 1, .. . , M), where 

we a.c;sume U is irreducible. Let Pn denote the state of the underlying Markov chain in 

the nth slot. Let 1r = ( 1rl, ... , 1r M) denote the stationary state vector of tbis Markov 

chain. Note that. 1r satisfies 1r = 1rU and 1re = 1, where e is an M x 1 vector with all 

clem<'nts equal to one. Let A,l denote the number of customers arriving in the nth slot 

(i.e., in this model, the amount of work brought in the system by a batch arriving in the 

nth slot). We assume that An+t depends on both ~1 and Pn+ l (see [Blon92], [T:aki94] 

and [Taki95]). We denote by aij(k) the probability of k (k ;:::: 0) customers arriving in the 

current. slot given that the underlying Markov chain wa.'3 in state i in the previous slot 

and is in state j in the current slot: 

(i,j = 1, ... ) /11, k = 0, 1, 2, . .. ). (3.1) 

Not.e that \>..'e assume a;j(k) is t.ime homogeneous and is independent of n . Also, let aij(k) 

denote the couditional probability for the following events: k customers arrive in the 
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(n + l)st slot, and the underlying i\larkov chain is in slate j iu the (n + l )st slot, givcn 

that the l\larkov chaiiJ was in statC' i in the nt11 slot. Namely, 

( i' j = 1 , ... ) /II). (3.2) 

Let A k and B k denote M x JU matrices whose (i,j)th clements are given by ii;J(k) and 

L:~=k ii;1 (m), respectively, where k ~ 0. Not.c that A k (r<'sp. B k) represents the transition 

matrix of the uudrrlying l'vlarkov chain when k customers ( rcsp. more than or equal to k 

customers) arrive to t.!tc system. By clefi.nit ion, B 0 = U, \Vhcrc U clc-11otes the transition 

probability matrix of the undcrlyiug Markov chain. Let. p denote the traffic intensity 

which is given by 
00 

P = 1r L kA ke. (3.3) 
k=l 

3.3 Loss Probability Approximation 

In this section, we propose simple approximate formulas for the loss probability in both 

the early and the late arrival models . First we consider the distribution of the num

ber of custorners in the system. Next we propose a heuristic approximation of the loss 

probability. F inally we examine the accuracy of the approxim::tt.ion through numerical 

experiments. 

3.3 .1 Distribution of the Number of Cus tomers in the Sys tem 

'vVc observe the system immediately after all possible events (i.e., a departure of a cus

tomer and customer arrivals) happeu around slot, boundaries. For convcnicucc of t.h<' 

analysis, we introduce sl ightly different definitions of the number of customers in the sys

tem for the early and the lat.e arrival modds. Let } ~~1') d<'tlOI.<' a random variable which 

represents the number of customers in the system immediately ;:t,[Ler the beginniug of nt.h 

slot in the early arrival model. On the other hand, let y~L) denote a random variable 

which represents the ttumber of customers in the system immediately after the end of the 

nth slot in t.he late arrival model. We note that both Y,~") and }~~l) include customers 

arriving and accommodated in the system in the nth slot. Then {}~~e), Pn; n = 0, 1, ... } 

and {Y~1>,Pn;n = 0,1, . .. } constitute the the bivariate Markov chains, whose transition 

matrices are givcu by (sec [Blon92] and [Taki95]): 
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The ra.rly ;urival rnodrl: 

A o AI A 2 AN- 2 AN- I B N 

Ao AI A 2 AN- 2 A N 1 B N 
0 Ao A 1 AN- 3 A N- 2 B N I 

0 0 Ao AN- 4 AN- 3 B N- 2 (3.4) 

0 0 0 A o AI B 2 
0 0 0 0 A o B) 

Thr late arrivaJ modrl: 

A o AI A2 Ai\· - 2 A N- I B N 
A o A t A 2 A N- 2 B N- 1 0 
0 A o A I A N-3 B N- 2 0 
0 0 A o AN- t! B N- 3 0 (3.5) 

0 0 0 A o B l 0 
0 0 0 0 B o 0 

L ( (') ( (I)) l ct. Yk rrsp. Yk c enolC' an 1 x AI vector whose jth clement represents the joint 

stationary probability of k customers in the system and the underlying Markov chain 

bring in state j in the early (resp. late) arrival model. Note that y~e) and y~l) satisfy the 

following equa.tions: 

The early arrival model: 

k+l 

- Y~e) Ak + L Y~e) A k+l-i 
i = l 

N 

Y~) = Y~c)BN + LY~e)B N!I-i· 

The late arrival model: 

(l) 
Y~: 

(l) 
YN- 1 

i= l 

k+l 
(t) A ~ (l) 

Yo k + ~ Yi A k-1 1- i 
i=l 

N 

- y~l)AN- 1 + LY~l)BN-i, 
i=l 

(0 .S k .S N- 1), (3.6) 

(3.7) 

(0 .S k ,S N - 2), (3.8) 

(3.9) 

1(3.10) 

The above rquations completely determine y (e) "Ild y (l) (0 < k < N) 'tl th 1· · . · k 0 ' k _ _ Wl 1 e norma. lZJng 

equations L:N y (e) e - 1 , d "'N (l) 1 · k=O k - an L...k=O Yk e = 1, w 1ere e denotes an M x 1 vector whose 
all clements arc equal to one As f · th 1 'tl I h · · or e a gon uns to so ve t e above equat.wns, re:adcrs 
arc refrrrcd to [LcBo91] and [Taki95]. 
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Let P1~}s (resp. ~~;5) denotr the loss probability iu thr rarly (rrsp. late) arrival model. 

It can be shown that the loss probabilitirs in the I wo models arC' given by (see [Taki95] 

as for the derivation): 

( (<') ) p(~') _ p - 1 - Yo e 
loss- p ' 

(I) 
p<l) _ p - (l - Yo e) 

loss - · 
p 

3.3.2 Heuristic Approximation of the Loss Probability 

(3.11) 

In this subsection, we propose approximate formulas of the loss probability which arc 

given in terms of the t.ail distribution in the corresponding infinite-bufi'cr queue. We first 

consider the distribution of the number of customers in Lh<' corresponding discrete-time 

queue with buffer of infinite capacity, which will be used t.o construct the approximate 

formu las. Let Xk denote an 1 x JU vector whose jth clC'mcnt represents the joint. sLat.ionary 

probability of k customers in the system and the underlying Markov chain being in state 

j in the corresponding discrete-time queue with infinit,e bufi'er. Note that both t.he ("arly 

and the late arrival models have the same distribution of tll<' number of customers in the 

system when the buffer has infinite capacity. The xk (k ~ 0) satisfies [Taki94] 

k+ l 
xk = xoAk + L XiAk ~ 1- i 

i = l 

(k ~ 0), 

wil.h the normalizing equation L:r:o xke = 1. We defin<' X (z) and A (z): 

00 

X (z) = L xk zk, 
k=O 

00 

A (z) = L A kzk. 
k=O 

We then have [Ta.ki94] 

X (z)[zi - A (z)] = (1- p)(z- J )gA(z), 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where g dC'not.es an 1 x A1 vector. Note that. x 0 = (1- p)g can be obtained by solving 

a set of 1\1 linear equations and xk (k ;;::: 1) can be rccmsivrly computed by t.he matrix 

analytic method (sec [Nent89] and [Taki94]). 

To construct the approximate formulas of t.he loss probability, we employ the following 

heuristic idea. We assume that the joint stationary probabilities Y ke) and Y kl) ar(' related 

to xk by truncating and renormalizing the Xk if the loss probability is very smalL We 

claim that if the Joss probability is very small, tbe traffic intensity p should be less thau 

1, so that the distribution of the number of customers in the system in the corresponding 
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infinitc-huffC'r qmmc is wrll drfin<'d. Thus, \\'<' suggC'sl a conditional approximation when 

tlw loss prohf!hility is wry small: 

Pr(} ·(I') k, p = j) ......., Pr(X = k,P j) 
(0 =5 k =5 N), (3.16) 

Pr(}'(f) :5 N) 
,....., 

Pr(X < N ) 

Pr()'(l)- k, P = j) Pr(X - k, P j) 
(0 $ k $ N - 1), (3.17) 

~ 
Pr(X < N I) Pr(}'(l) $ N- 1) 

w IH•t<' }'(r), } ·(I) and X drnote gcnNic random varia hlC's rrprcsrnt ing the number of ,cus

toltH'rs in t.ltC' systC'm in the rarly arriva l model, in the late arrival model and in t.he 

c·orr('SI><lllcli ng discrC'tC'-t.imc infinite-buffer CJIIC'IIe, resp<'d ive ly. J\lso P denotes a gen<'ric 

random variahl<' rqm•srnLing the stat.<' of the underlying .f\ larkov chain. The idea behind 

t lw ahovr approximat io11 is that the staLionary prohahil it irs in finit.r-buffrr queues would 

not hr afl'c•c·t ed so mudt by losses when t.h<' loss srlcloul ha pprns (i .<' ., the loss probability 

is l<'ss I han, say, 10 7 ). In other words, finitr-buffer qururs with a very small loss prob

ability IH'have aR if they would br the corrrsponding infinitr-huffrr queue given that the 

numbcr of custom<>rs in the system is not greatcr than thr buffer siz<'. 

Thr approximation implies that. y~") and y~> arc approximatcly <'Xpress<'d to be 

H (r) 
Yk ~ r x k (0 :5 k :::; N), 

y~> ~ c<l)xk (0 $ k $ N - 1 ), Y
(l) ......., (.(I),. B 
N ......., '-"0 N I 

whrrr r<r) and c;(l) arc given by 

which conu• from !.he normal izing equations. 

(3.18) 

(~U9) 

(~1. 20) 

Hrmm·k .'1 . .'1. 1: Similar conditional approximations hrtvc brcu studied by several rc

S<'archNs in tlw context of continuous-timr qucu<'s. firad<'!'s arc r<'fcrred to [Gouw94J, 

[~liya93J, [Saka93J. [Tijm92J and refcrcnc<'s therein. 

TIIEO!lEI\13.3.1: The approximation.<; givm1 m {:1.18} and (.'J.J9} brcome exact when the 

nttmbrr of tuslowers arrwmg to the system. in a slot ?.'> u. d. {twlr>penrlent and identically 

lh~tnbttll'd). 

P ROOF: S<'<' Appendix B. • 
From (3.18), (3.19) and (3.20), we have 

(.3 .21) 
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\\'r define tlw tail distribution 71,. (k ~ 0) as 

1}. = L Xme. (3.22) 
m kt-1 

r J>Cd I 1><0 I Jrt lo$.• anc loH < cnote thr approximatr loss prohabilit ic·s 111 til(' early and the latr 

arrival mod<• Is, rrspectivdy. Noting the rqualit ic•s I:~, 0 x 111 e Tk and x 0 e = 1 - p, 

and using th<' approximation (3.21) in (3.11 ), \\'<' havr 

j>(t·) = {I - p)T(\· 
io.•s p(l _ TN) 1 

n<l) - (I 
io.« - p( I 

P)('ff., 1 Xo B Ne) 
'j'N 1 I Xn B Ne) . 

(3.23) 

Remm·k .'J . .'l.2: \ Vhrn the lllllllher of custom<>rs arriving to tit<' systrm is i.i .d., thr above 

approximate formulas become exact. 

Rrmm·k :1 . .1 . .1: \\'h<'n the probability that thr lllllllbrr of rustomcrs arriving in a slot is 

gn•atcr t.han or rqual to the buffer siz<' 1Y is zNo, B v 0. In such a casr, (3.23) for t h(• 

lal<' arrival model is reduced to 

P,(l) _ (I p)J'\ 1 
lo.~.• - _(_I_ '[' ) • 

fJ - N I 

which is giv<'n on ly in terms of the tail distribution TN. 

Reuw1·k .'J .. '/.4: In any traffic condition, W<' have ~ ~~;,!.. < ~~:;.~, which coincid<'s wit.h 

intuition. T his in<'qualit.y can be shown by not ing the• fad t hat f(:r) = .r /( l - :r) is a n 

incrc>asing funct ion of .r (0 =5 x < 1) and 

N 

(TN , - xoB Ne)-TN= XNe XoB Ne LX,B N , 1 ,e>O, 
t I 

(3.25) 

where th<' second cq uali t.y can be verified by Hllllllll ing 11 p both sid<'s of (3.12) from k = 0 

toN - 1. 

3.3.3 Accuracy o f the Approximatio ns 

In this subsrct.ion, we provide the results of our numrriral cxp<'l'imrnts to show the ac

curacy of lh<' proposed approximations. In particular, wr focus on th<' impacts of thr. 

corr<'iation in t h<' arrival proc<"ss on the accuracy of t.hc approximations, since the formu

las bccolllr exac t for i. i.cl. arrival process<'s. For t. his pu rposr, wr usc the following sim plr 

arrival procrss in a ll numerical experi ments i 11 t.his su bsrct.ion. 
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W<' assum<' that tiH' arrival procPss is modnlatC'<I hy a two-slate 1\tlarkov chain with 

stale'S J and 2. whNC' the• state transition probabilitiC's ui} arC' giVC'Il by u,l = Un - n 

and {/12 u21 = I - (\ (0 < 0: < 1). Th<' conditional probabilit.i<'S al,](k) and a'l,](k) 

(J _ I, 2) for the siz<'s of t.h<' arrival hatdl<'S are giwn hy 

( 
(l+c)p )( (1--tc)p )k 

fii,J(k) = 1 - I t- ( L + c)p 1 j:"{1 + c)p ' 
(:3.26) 

( 
(1- c)p )( ( 1 - c)p )k 

ii2•1 (k) = 1 - · ) 1+( 1 -c)p 1+( 1- cp 
(:3.27) 

In ot.hN \vords, if tll<' l\larkov chain was in state 1 (r<'sp. stat<' 2) ill th<' curr<'ni slot, 

the• nun1bcr of customNs arriving iu the CIIITrnt slot is v,c•omctrically distributed with th<' 

nH'all (I+ c)p (r<'sp. ( J c)p). ~ot<' t.hat p denote's t.he• ov<'rall traffic intensity, and c 

(0 < (' < I) is a param<'tC'r. 

Through numNical <'xamples, W<' inv<'sligatc the impact. of t.he variation and t.ll<' cor

relation in arrivals. For our arrival uwd<'l, the squarC'<l coefficient. of variation C~ of t.he 

numhrr of customers arriving in a slot is found to I)(' 

(:3.28) 

For a fixed value of tlw t.rafiic inleusity p, Ute squar<'d CO<'flicient of variation c~ incr<'aS<'S 

as t h<' parameter c doC's. Also thr corr<'lat ion coC'fiici<'nt C'c( n) of the number of arrivals 

at lag 11 for our arri wd prorC'ss is found to he 

('2P 
Cc(n) =- ( 2) · (2n · lt. 

1 I 1 t- 2c p 
(:3.29) 

Note• that, by keeping p and c constant (which means kr<'ping C~, constant), the con·ela

lion codfidcnt Cc( n) drp<'nds only on t h<' trrm 2n - 1. \VhC'n a = 0.5, th<' arrival process 

is i.i.d., and by varying(\' from 0.5 to I, W<' achiE>ve varying degrees of non-negative corr<'

latious of arrivals. In lhC' rest of this subsection, tl1e tail dist,ributious in the approxiwat<' 

for111ulas arC' comJHltNI by the matrix-analytic method [Ncnt89J, [Taki94]. 

Tab[(''> 3.1, 3.2, and :3.3 show th<' loss probability obt aincd by the approximate for

mulas, the loss probability obtained hy thr exact analysis, and the r<'lative error of thr 

approximations to thr cxart results for various valu<'s of the buffer size N, where the t.hrr<' 

paramel crs p, c and (\' arC' fixed. It is quit<' interesting to observ<' that. the accuracy of 

lhe approximations is lC'ss srusitiv<' lo t.hr buffer siz<' N, especially in the range of 10 10 

to 10 5 of the loss probability. To confirm this observation, we providr Table 3.4, which 

shows the ranges of the rrlative error and the buffer sizr wh<'n the loss probability falls in 

the rang<' of 10- 10 t.o 10 5
, where' p = 0.2, 0.5, 0.8, c- 0.2, 0.5, 0.8 and n = 0.6, 0.8, 0.95. 
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This I <l biC' again leads I o I he ahov<' ohsNvat iou; I II<' IH'<"macy of t )I(' approximation 1s 

almost ins<'nsiti,·r to th<' buff<'r size• \\'h<'JI I he loss prohabilit~· is \'<'I'_\' small. 

\ r<' now i nv<'st igat <' I h<' impacts of I h<' corrclat ion in t IH' arrh·al proc<•ss on tlH' <H'<"II 

rae~· of I IH' approximations. \\"r also fix I h<' trafiir intc•nsity p to Oil<' of I he vahl<'S 0.2 

(Light.), 0.5 {l\fedinm) or 0.8 (Heavy). \\'r fix th<' lmfl'N siz<' N in such a way t.haL the loss 

probability falls in th<' rang<' of LO 10 to 10 5 , d<'p<'ll<ling on t.hr valu<' of p. Further, W<' 

fix the.• param<'ler ('to OIH' of th<' vahH'S 0.2 (Low). 0.5 (~ lod<'ratc) or 0.8 (IIigh ). Figun•s 

3.1 through 3.6 show the• loss probability ohtainC'd by both th<' approximate formulas 

(indicatC'd by a) and lh<' exact analysis (indicatC'd h~· r) as a function of param<'l<'r n. 

For examplr, Hl\lc• indicat.<'s LiH' loss probability obtaitwd by Lh<' <'Xacl analysis (<') in 

the cas<' of IH•avy traffic (ll: p = 0.8) and mod<'ral<' variation {l\1: c - ().;)). \\"c obs<'l'V<' 

that wh<'n lh<' corr<'lation in arri,·als is not so stronp, (i.e•., 0.::> < c < 0.7) . the approxi 

mations <H<' surprisinp,ly accurate'. \\'<'also obs<'rV<' that thr <'rror of th<' approximations 

bccom<'s larg<' according t.o the incr<'asc' of correlation . f~ven in thos<' case's, wr can us<' 

th<' approximations to c•stimatc llw ordN of magnitude• oft h<' loss probability. 

Remm·k .'J •• 'J.S: In all our nmnNical <'XpNimcnts, I h<' loss probability obtained by t he• 

approximate' formulas is conservative, i.e., the approximate results ar<' larger than I lu• 

exact. onrs. 

Rrmad.: .1 . .'1.6: SincC' th<' tail dislrilmtion has a simple• asymptotic <'XJ>r<'ssion in manv 

situations [Abat91] . [Falk9t], we cannsr lh<' asymptotic <'XIH'<'ssion of the• tail distribution 

in th<' approximation formulas. lshi7.aki et al. [Ishi95h] hav<' \onsiderC'd tlt<' loss probabilit.v 

approximation using t.IH' asymptotic <'X pression of Lite t.ai I dist.ri lm t.ion when t.hc arri va I 

proress comes from tIt<' supNpositioJt of many ind<'Jwnd<'nt somc<'s which ar<' particularly 

important in practic<'. Furthermore', in g<'ucral ea!-i<', I h<'y have shown an intuitive' aucl 

simple clNivatiou of the <'xad asymptotic formula, which would h<'lp uudNst andiug why 

such a simple formula \omes out. 

3.4 Conclusion 

In this chapter, we study the loss probability approxilllalion in DBMAP/D/1/K qn<'ttc's. 

We propose the approximate formulas which arr given in LNms of I hC' tail dist.ribul.ion 

of the queue' lE>ngth in t h<' corresponding infinite-huff<•r qii<'U<'. The approximate formu

las arC' constructed in such a way that th<'y becom<' c•xad for any indPjwndcnt arrival 

process. The accuracy or the approxilllations is extC'nsiv<•ly rxamin<'d through nnmNical 

experiments. \Ve ohsNV<' t bat when tit<' correlation iu arrivals is not so strong, t lH' approx-
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imations are surprisingly accmate. We also obs<'rvc that the error of the> approxima.tions 

becomes larg<' according to t!H' increase of correlation. Even in those cases, we can usc 

thC' approximations to estimate the order of magnitudc o( th(' loss probability. 
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N 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Table 3.1: Accuracy of Approximations (p = 0.2, r = 0.8, n = 0.95) 

Early arrival modC'l Lai<' arrival model 
exact approximate error(%) exact approximate error(%) 

3.176E-03 3.842E-03 20.98 7.507E-03 9.237E-03 23.05 
1.113E-03 1.347E-03 21.01 2.775E-03 3.385E-03 21.98 
3.904E-04 4.725E-04 21.03 1.012E-03 1.226E-03 21.19 
1.369E-04 1.657E-04 21.03 3.651E-04 4.404E-04 20.63 
4.803E-05 5.813E-05 21.04 l.308E-04 1.572E-04 20.22 
1.685E-05 2.039E-05 21.04 4.661E-05 5.589E-05 19.92 
5.911E-06 7.154E-06 21.04 1.654E-05 1.980E-05 19.69 
2.073E-06 2.510E-06 21.04 5.854E-06 6.997E-06 19.53 
7.274E-07 8.804E-07 21.04 2.067E-06 2.468E-06 19.41 
2.552E-07 3.088E-07 21.01 7.286E-07 8.694E-07 19.32 
8.951 E-08 1.083E-07 21.04 2.G65E-07 3.059E-07 19.25 
3.140E-08 3.801E-08 21.04 9.025E-08 1.076E-07 19.20 
l.l 02E-08 1.333E-08 21.04 3.172E-08 3.780E-08 19.16 
3.864E-09 4.677E-09 21.04 l.ll5E-08 1.328E-08 19.13 
1.356E-09 1.641E-09 21.04 3.915E-09 4.6638-09 19.11 
4.755E-10 5.756E-10 21.04 1.375E-09 1.637£-09 19.09 
1.668E-10 2.019E-10 21.04 4.825E-10 5.7468-10 19.08 
G.853E-11 7.084E-11 21.03 1.694E-10 2.0 l7E-10 19.06 
2.054E-ll 2.485E-11 21.01 5.946E-ll 7.077E-11 19.02 
7.209E-12 8.718E-12 20.94 2.088E-11 2.483E-11 18.93 
2.534E-12 3.059E-J 2 20.73 7.346E-12 8.711E- 12 18.62 
8.941E-13 1.074E-12 20.14 2.595E-12 3.058E-12 17.8G 
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N 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 

Tahk 3.2: Accuracy of Approximations (p = 0.5, (' = 0.5, n = 0.8) 

Earl 

<'X< ld 

2E-0:3 3.22 
1.2:31 1:.03 

2E-O I 
>E 04 
6E05 
4E-05 
6E-05 
8K06 

4.73' 
1.8Jf 
6.96 
2.67 
1.02 
:3.93 
J .511 E·06 

>I·~· 07 
GE-07 
3E-08 
9E-08 
8E-08 
OE-09 
1\ E 09 
4[~· 10 

5.80( 
2.22 

8.5'1 
3.27 
1.2G 
1.83 
1.85 
7.11 
2.73( >E· I 0 

81~· 10 
2G 11 
IE-11 
5E- 12 
GE-12 
1 r~-13 

1.0·1 
4.02 
1.5<1 
5.92 
2.27 
8.74 

y r~rrival model 
approximate error(%) 

:U167E-03 10.73 

1.366E-03 10.72 
f>.239E-04 10.71 

2.010E-04 10.71 

7.713E-05 10.71 

2.960E-05 10.71 

1.136£-05 10.71 

4.360£-06 10.71 
1.673£-06 10.71 
6.422E-07 10.71 
2.465£-07 10.71 

9.459E-08 10.71 

3.630£-08 10.71 
1.393£-08 10.71 
G.347E-09 10.71 
2.052E-09 10.71 
7.876E-10 I 0.71 
3.023E-10 10.71 
1.160E-10 10.71 
4. 152E-11 10.71 
1.709E-11 10.71 
6.559£-12 10.69 
2.518£-12 10.61 
9.667E-13 10.55 
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Late arrival model 

exact approximate rrror(%) 

5.308E-03 5.72GE-03 7.887 

2.039E-03 2.1998-03 7.854 

7.830E-04 8. 14 I E-011 7.841 

3.0068-04 3.242E-O 1 7.836 

1 .154E-04 1.24.)E-0·1 7.834 

4.130E-03 4.777E-05 7.833 

1.700E-05 1.833E-05 7.832 

6.G26E-06 7.037c;-06 7.832 

2.505£-06 2.701 E-06 7 .832 

9.613£-07 1.037E-06 7.832 

3.689E-07 3.978£<:-07 7.832 

1.~ 16E-07 l.527E 07 7.832 

5.431£-08 5.860E-08 7.832 

2.086£-08 2.249£-08 7.832 

8.004E-09 8.631E· 09 7.832 

3.072£-09 3.31:38-09 7.832 

1.179£-09 1.271 E-09 7.832 

4.525E-10 4.879E-10 7.831 

1.7:37£-10 1.87:3f~-1 () 7.829 

6.665£-11 7.187E-1l 7.823 

2.559E-11 2.758£-11 7.804 

9.824E-12 1.059£-11 7.760 

3.776E-12 4.063E- 12 7.605 

l.454E-12 1.5601~- 12 7.290 

~ 

25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 

Tabl<' 3.:3: Accuracy of .\pproximat ion~ (fl = 0.8, c = 0.8. n · 0.6) 

Early arri,·al model 

rxart approximatr error(%) 
7.945E-03 8.042£-03 ] .228 
4.106 1~-03 t1.156E-03 1.209 
2.138 1~-03 2.1638-03 1.200 
1.1 J 7E-03 1.1 30E-03 l.U)G 
5.8,WE-O I 5.919E-04 1.192 
3.065E-O I 3.102£-04 1.1!)1 
1 .607E-O I 1.626E-04 1.190 
8.431E-05 8.531E-05 1.190 
4.1238-05 I. t75E-05 1.190 
2.320E-05 2.348E-05 1.189 
1.217E-05 1.232E-05 1.189 
6.387E-06 6.463E-06 1.189 
3.351E-06 3.391E-06 1.189 
1.758£-06 ] .779E-06 1.189 
9.225E-07 9.335E-07 1.189 
4.8t10E-07 4.898£-07 1.189 
2.540E-07 2.570£-07 1.189 
1.332E-07 1.348£-07 1.189 
6.99 1E-08 7.074E-08 1.189 
3.6G8E-08 3.712E-08 1.189 
1.925E-08 1.947E-08 1.189 
l.OJOE 08 1.022E-08 1. L89 
5.298E-09 5.361E-09 1.190 
2.780E-09 2.813E-09 1.190 
l.458E-09 L.476E-09 1.190 
7.652E-10 7. 743E-10 1.191 
4 .015E- l 0 4.063E-10 1. 192 
2.106E- 10 2.132E-10 1 . 19tl 
1.105E-10 1.118E-10 1.199 
5.798E-ll 5.868E-11 L.209 

Latr arrival 

rxact 
9.096E-03 
11.6!)1 E-03 
2.4·10E-03 
1.274E-0:3 
6.669E-04 
3. l9ciE-O I 
1.832E-04 
9.610E-05 
5.0118-05 
2.645E-05 
1.388E-05 
7.280E-06 
3.820E-06 
2.001£-06 
1.051E-06 
3.517E-07 
2.895E-07 
1.Gl9E-07 
7.968E-08 
t1.181E-08 
2.194E-08 
1.151 E-08 
G.039E-09 
3.168£-09 
1.662£-09 
8.722E-10 
tl.577E-10 
2.402E-10 
l.260E-10 
6.61GE-11 

approxin tatr error(%) 
9.190 1~-

·1.7391•> 
2.'16t!E 
1.287E 
6.7:36E· 
3.S29E· 
1.851K 
9.70GF.r 
5.092E· 
2.671 E-
L.40 1 E-
7.3G:3E-
3.8G8E· 
2.02·11<:· 
1.062K 
5.572 1~-

2.92,1 1~-

1.53tt E· 
8.018 1~-

tJ.2231~-

2.216E-
J. 1621·~ 

G.099E· 
3.200E· 
1.6791~-

8.809 1~· 

'1.622 1~ 

2.ti25E-
1.2721'~· 

6.676 1~· 

03 1.037 
03 1.020 
03 1.011 
03 1.006 
04 1.003 
01 1.002 
<H 
05 
05 
05 
05 
06 
06 
06 
OG 
07 
07 
07 
08 
08 
08 
08 
09 
09 
09 
10 
10 

1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.001 
1.000 
1.000 
1.000 
0.999 
0.998 
0.995 
0.989 

1 () 0.977 
10 0.955 
11 0.910 



Tahl(' 3.4: Rilngcs of Buffrr Size and nrlat.ivC' Error 

n O.G 
~----~----~~--~~-- - --~----~----8arly arrival model Lat r arrival lllodrl 
~ - c- -;;;r-gc- of rrror rangC' o fl Hdfrr range of rrror raugc of buffer 

0.2 0.2 0.6 1'1-"' 0. 753 8 "' 1 I 0.400 "' 0.40 1 9 "' 15 

0.2 O.G 1.771 "' 1.807 9 "' 17 1.261rv 1.387 10"' 18 

0.2 O.R 2.:~20 "' 2.322 10 "' 19 2.078 "' 2.2G8 11 I"V 20 
1-

0.G 0.2 0.62R "'0.633 0.317 "-' 0.322 18 "' 35 

0.5 O.G 
0.5 0.8 

1-- 1-
0.8 0.2 
0.8 0.5 
0.8 0.8 

A (' 

0.2 0.2 
0.2 0.5 
0.2 0.8 
0.5 0.2 
0.5 0.5 
0.5 0.8 
1-·-

0.8 0.2 
0.8 0.5 
0.8 0.8 

A c 
0.2 0.2 
0.2 O.G 
0.2 0.8 
0.5 0.2 
0.5 O.G 
0.5 0.8 
0.8 0.2 
0.8 0.5 
0.8 0.8 

I. 9:~:1 "' I. 935 
2.G7G "' 2.578 
0.220 "'0.220 
0.851 "' 0.859 
l. 189 "' 1.199 

20 "' til 1.259 rv 1.276 

2G "' G I 2.216"' 2.223 
----+lf------------: 

tl7 "' 1018 0.114"' 0.120 
58 rv 123 
77 rv 163 

0.528 I"V 0.559 
0.948 I"V 1.0()1 

~ ----------------------~L------

n = 0.8 

21 "'42 
2G rv 52 

48 rv 102 
59 I"V 126 
78 I"V 166 

Early arrival modrl Latr arrival model 
~-4~----~~ ---------~ 

rat rgr of rrror raugr of buffer rangr of Nror rangr of buffer 

2.8 25 rv 3.299 8 "-' 15 1.833"' 1.848 97 rv 16 
7.2 75 rv 7.359 9 "-' 17 5.311 rv 5.689 tO I"V 18 

9.7 63rv9.768 )Jrv2() 8.776 rv 9.251 11 I"V 21 
-

:~.7 38"' 3.749 18"' 35 2.236 I"V 2.219 19 I"V 36 
10.7 12 "' 10.713 23"' 46 7.826 rv 7.832 24 I"V 47 

11. 11 "' 14.42 30 "'GO 12.81rv 12.82 31 I"V 61 

l.G 
-::-:-------------
06"' 1.513 '19 I"V 105 1.010 I"V 1.042 59 I"V 106 

G.2 78"' 5.283 70"' 150 3.945 rv 3.988 71 I"V 151 
6.7 82 "' G. 789 104 "' 221 5.961rv 5.97() 105 rv 225 

(\ = 0 95 
Early arrival modrl Lat <' arrival model 

rangr of error rang<' of hu ff<'r range of rrror range of buffer 

6.105 "' 6.946 8"' IS 4.082 rv 4.177 9"' 16 
lt1.94"' 15.08 9 I"V 18 11.19"' 11.79 LO"' 19 
21.04 "' 21.04 l()rv2l 19.06 "' 19.53 12 rv 22 
14.85 I"V 14.91 19 "'38 10.79 I"V 10.80 20 rv 39 
11.66 rv 41.67 28"' 57 33.91 I"V 33.92 29 rv 58 
61.23 I"V 61.24 42 I"V 88 56.44 I"V 56.45 4t1 I"V 90 
l 0.50 "' 10.52 59 I"V 129 9.542 rv 9.561 60 I"V 130 
25.39 rv 25.41 124 "' 272 22.32 rv 22.35 125 rv 273 
24.38 "' 24.38 211 "' 531 22.41 I"V 22.4 J 2t16 rv 535 
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Figur<' 3. L: Loss Probability Approximation ilS a Function of 0' 

(Early Arrival ~lod<'l, N = 12, p = 0.2) 
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Figure 3.2: Loss Probability Approximation as a Function of a 

(Early Arrival Model, N = 33, p = 0.5) 
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Figure 3.3: Loss Probabil ity Approximation as a Function of a 

(Early Arrival Model, N = 91, p = 0.8) 
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(Late Arrival Model, N = 12, p = 0.2) 
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Figure 3.5: Loss Probability Approximation as a Function of CY 
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Chapter 4 

Queues with a Gate - Geometrically 
Distributed Gate Opening Intervals 

4.1 Introduction 

In this chapt.C'r, we consid<'l' discret.r-time BBP/G/1 queues with a gal<', whrre BBP 

drnoles a batch I3ernoulli process. We assume that the intrrvals l)('t W<'<'ll successive• 

oprnings of til<' gate arr grometrically dist ribut<'CI. The purpose' of this ('hapter is to 

provide a com pl<'t.C set of t hr analytical results for various prrfonnance nwa:;u res. 

The organi~mt.ion of this chapter is as follows. In section 4.2, we• drscrihr t he• ma.tiH'lllat 

ical model. Our model is considered as a discrete-! illH' \·crsion of the mode•! of [Bors~J:3j. 
The model in this chapter, however, allows batch arrivals, while- [I3ors93J ronsiclers only 

si ngle arrivals. In the Il<'X t. three sections, we provide• various for111ulas of t.hc• prrfornHuH·e• 

nwasures of intrrc•st. In srction 4.3, we• study t he• nurnbN of custonH'rs in t hr syst<'lll. 

We first dNivc the joint PGF for t hr numbers of customers in t h<' first qu<'U<' and t h<' 

S<'cond queu<' immediately after depart.u res of customers. The' f>G F is gi vrn in terms of 

a function which is reprrscnted by an infinite produtt.. Next we ciNivc tlw joint. PGF for 

thr numbers of customers in the first queue and t h<' srcond queue at the> h<'ginning of a 

randomly chosrn slot. Notr that [Bors93J did not. provid<' any rrsnlts on t hP joint (!II<'IH' 

length distribution at a random point. in t.imc. Furthrrmorr, W<' anaJyt.ically show the de

composition properties for the totalnnmhcr of cusl<Hll<'rs in t he• systrm al drparturcs and 

at. a randomly chosen slot. In section tl.4, we analyze the amount of work in the system. 

Using the joint. distribution of the queue lmgths and the rrmaining servire t.ime, we first. 

derive the joint PGF for t.he amounts of work in the first queue and t.hc s<'cond queu<' at 

the beginning of a randomly chosen slot. ~ext we derive th<> PGF forth<' amount of total 

work in thr syst('m. Furthermore, W<' show thr clc•romposition property for the amount 
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of total work in tlH' svstC'HI. Not<' 1 hat 1 hC' PG F for I hC' amount of work in I he sysl C'm is 

id<•ntical to llH• PGF for th<• sojourn timC' of a supNcustomN [Kawa93J. In s<•ct.ion 4.5, we 

consider tlw waiting times of customNs. \\'e dcri\'C' the joint PGF for the waiting tilli<'S 

of individual custonH'rs in the first qu<'IH' and thr srrond f!IIC'IIC', and t hr PGF for lthr 

waiting t inw of a sUJ><'rcustornr.r. Also \W' analytically show tlu• drcomposit ion properly 

forlhC' total \vailing timr of individual customNs. Finally, in sC'ction 4.6, we proviclr som<' 

nun1rrical rxamplrs, whNc· WC' discuss t hrC'c kinds of corrrlations in tlw moclrl: the rff('(·t 

of the conc•lat ion bC'h\'C<'ll the iniC'rarrival timC' and the servic<' time of supercustomers 

on t IH' rnean waiLing tim<' of SIIJH'rcustomcrs, the dfrct of t.h<' corrrlation bC'tWC'<'Il th<· 

int.Prarrival t imC' of C'<Wh batch composC'cl of customNs who mov<' to thr second qurue at 

th<' sanw tim<' and t h<• nlllllh<'r of I he rust omers iu I hr batch on the mC'an waiting t.i Ill<' of 

i ncli vidual customNs in t.h<' second quC'ue, and t.hc corr<'lat ion between the waiting t imC's 

in t h<' first qtH'IH' aJI(I I hC' S<'COJHI queue'. 

4.2 Model 

W<' consiciN a disrrC'I<•-timc <JIH'II<'ing mod<'l with the following chara<'tNistics: 

• CustomNs arrive' at the system in a batch imm<:>diatcly bcforr slot boundaries. 

Th<' batch size's and the srrvice t.imes of individual customers arc indrpcndrn t and 

idC'nlically dist.ribut<'d. Customers arriving at tbe system arc arcommodatrd in t.lw 

first quC'ur at t hC' gal c. 

• Th<' gat c• oprns immC'diat.cly before slot boundaries. WlH'II the gate opens, all tlw 

custom<'rs waiting in the first queue move to the srcond queue at thr server. The 

trav<'l I ini<'S of customers to the sC'cond queue arc assumrd to h<' zero. \VC' assnmC' 

that cust omNs arriving in a slot. also move to I hC' second queue whru thC' gat.e opens 

in tlw slot, so that thP wailing limrs of such customers in the first queue brcom<' 

zrro. Tlu· v,at.c• dose's imnwdiatrly aflN all t.hC' customers ill the first. queue' movr 

to I hC' srcond <[UC'U<'. Th<' intervals bet.\\'CCII succcssivr openings of the gate arc 

gC'OillC'I ric ally dist ri but rd. 

• Thrrr is a sinv,IC' serv<'r who serves t h<' rustomNs only iu the srcond q ueu<'. vVIlC'u 

thr sNVN finds some amount of work in the S<'COIHI queur immediately after a slot 

boundar)', he SN\·rs rxact I v our unit of work in the current slot. \ Vc assumr that 

cuslomNs arr sNvC'd on an FCFS basis. Furthermore, as for customers who arrive 

in I he samr slot, t hC' nC'xt customer for service is randomly chosen among thos<' 
('II s I () lll NS. 

18 

\\'c now int rod ucc> random variahlc•s and not ·1 t ioii"' t 1 . . ··1 II 1 
< < ., o < rsc 11 >e 1c a >O\'<' modC'I. L<'l. 

n and ('denote random variahlc•s r<'f)l'C'SCII( ing t h<' 11 I I . f. I' . I I 
l Ill )('I 0 Ill< 1\'H Ita ('IISlOill<'rS who 

arrive at. the system in a slot and the SNvic<' timr of an · 1· .· 1 1 1 · IIH 1\ I< lla Clls OlllC'r, rrspC'ctlvC'Iy. 
Further, let A denote a raudom variable I'C'J>resC'nti11 g 1 hC' 1 f k 1 1 · · . amoun o wor >roug 1t. mt o 
the svstcm in a slot (i.e., t hr sum of thC' SC'n·ice timc•s of . ·t · · · 1 ) \\',.. - . <us <>111crs arn\'Jng 111 as ol . , 
dt>finc thr following PGFs: 

A(z ) ~ E [z"], 

By definition, we have' 

1l(z ) = JJ(C(z)) . ( 1.2) 

LC'l G dc•notc a random variablr reprrs<•nting tlw length of au inlrrval belw<'<'Il SIH'<'C'ssivc 

opC'nings of thr gatr. Let. !1(11) = Pr{G = n} (n ~ 1). \VC' t.bC'n hav<' for a paranl<'t<'r r 

(O~ r< l). 

\\'c• denote thc• PGF of thr g(11) by G(z): 

G(z ) = ~g(n)z11 = (l -')')z . 
II I I - "(Z 

(-J .tl) 

We assume that D, C and Gar<' indcpC'ndcnt, identically distributed random variahl<•s, 

and thosr are i ndrprndC'nl each othrr. Th roughoul this cha pt <'I', for any PG F J ( z ), 

WC' usc the symbol /'(1) to denotr liiii z~J df(z )/dz . FurlhNmorC', wr assume' Jl'(l) 
fl'(l)C'(J) < I and the sysl.rm is in C'quilibriulll. 

4.3 Number of Individual Customers 

In I his srcLion, w(' cousi<lc-r thC' numhNs of individual C'UstomNs in t.hr first. quc•uc• <1nd 

the second qllC'IlC. First. we ohs<•rvc nn imbPddPd Marko\' chain which is composed of 

two typc•s of imbedded points. ext. W<' d<'riV<' the PGF for the lllllllb<'l' of customers 

immediat<'ly flftrr drpartures of customC'rs. Finally, we obtain t hP PCF for the number of 

customers at th<> brginning of a randomly chosrn slot in INms of thr PGF for the 1111mhcr 

of customNs immrdiat.cly after departures of <·ust.OJners. 

4.3.1 Number of Customers Immediately after Departures 

In this subsection, we. derive' thC' formula for the number of customrrs imnH'diatC'ly aft<'l' 

departur<'s. To do so, we iutroducc an imbeddC'd 1\larkov chain \vhich is composed of two 

types of imbedded points: 
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• t.ypr J: irnmrcliat~l.v aftrr drpart urc•s of individual custonwrs, 

• t.ypr 2: intnwdiatcly after gate oprning instants during idle• pNiods. 

Lrt x<•> a11d x<2 l drnotf' random variahiPs rrprrsrnting thr numhrrs of individual cus 

tomers in t lw first qurue and thr second quc•uc, respectively, at a randomly chosen itnbed 

ded point. ~oiC' hNP that x<•> and X<2> are c!Pprndent. ~loreovN, lrt T, denote a random 

variable rrjm'sc•ut ing the type of a random!.\ chosen imbedded point, i.e., T, = i (i == 1, 2) 

whrn a randomly dwsen imbrcldrd point is of type i. We define• P(zt, z2) and Q(z2) as 

(tl.G) 

) 
6 .~ [ ,\ (2) ] Q(z2 - L z2 1 {1,=2} , (tl.6) 

whl"'rc l r dcnotc•s thC' indicator function of a sc•t T. I\ote here that X{l) = 0 if Tp = 2 

brcausc all t.lw customNs waiting in the first quru<' move to thr second queue when the 

gttl<' OJ>I"'IIS. 

Let X}~> and X~J> drnot.r random variables representing I hr numbers of individual 

ct tslom<'rs in tlw first. qu<'tte and t.hr SC'cond qurne, rrspc•ct ivr ly, immrcliatcly aftc·r the 

drpart.urc of a randomly chosen customrr. Note here that X~i> nnd X~j) arc depctHI<•nt. 

We d<'finr CJn(zt, z2) as lh<' joint PGF' associatrd with xg> and X~J>: 

Wr then have t.ltl"' following thcorrm. 

I z2 (' ('y 13 ( z 1 ) ) l Q D ( z I , Z2) = c ( 'Y n ( z t)) [ w ( Z2 ) - \lJ ( z I ) l 

-l [ C( ;{z,)) O(z1, z2) - C('J'IJ(z1))] 

C'(B(z2)) B(z2) l 
z2- C(B(z2)) 1 - -yl3(z2) \fl(z2)' 

\}J(z) = J>(z, 0) + Q(O) 
P(1.1) ' 

O(z1, z2) C'(-ylJ(zt)) + H(z1, z2 ) 

wt I h 

P ROOF: Sc'<' J\pp<'tl<lix C. L. 
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(4.7) 

(4.8) 

(tl.!)) 

(4.10) 

(4.11) 

• 

;\otC' that. (•1.8) is rcwritle11 to lw 

CJn(zt,z2) = z2- C(~/3(zt)) [c(TZJ(zJ)){Qo(z2,0) Qn(z.,O)} 

+ { C( ;(z,)) 0( z,, z2) - Ch l!( z1 )) } q n(z2 , z2)] 

The equal ion (•1.12) ma~· be usrful because i l can rrplace (J JJ ( z1, z2 ) by Q o( z
1

, O), Q 
0

( z
2

, O) 

and Qo(z2, z2). Indeed, we will usc ('1.12) in proofs. 

(4.8) sl10ws I hat Q J)(Zt, z2) is cxprrssc•d iu trnns of \}J(z) (z = z1, z2). \Ve shall t.hrr<'forr 

consiclc>r \V(z). D<'fi11c for lz11 ~ L: 

h(z1) l\ C(rlJ(z1 )), 

t {O)(- ) ~ _ 
0 '•I - "I· 

(i?: 1). 

(·1.13) 

('1.1•1) 

(·I. I G) 

Since the syst<'lll is stable, Qo(z1,z2) is houndrd and analytic for lzd ~ 1 and lz2 1 < 1. 

Thus, for z2 - h(zt), the lrft-hand sid<• of ('1.8) ])('comes z<>ro, so tltnt. the right-hand sidP 

of ( 4.8) must. IH'comr zrro, too. \\'r t.hr11 have 

To simplify notations, we introduce for lzd ~ 1, 

Then ( 4. LG) hN·ontes 

Using ( 4 .18), \\'C' haw lhe following I hrorC'm. 

THEOREM 4.3.2: W(z) = (P(z, 0) 1- Q(O))/ P(l, 1) zs givf'n by 

l JJ'(l)C'(l)(
1 

_ )n(z) 
W(z) = - U'( I) 'Y n·(l)' 

where for lz11 < 1, 

n(zt) rr <P(~{It)(zt)). 
It 0 

PROOF: Srr Appc•ndix C.2. 

Gl 

( I.IG) 

( I. I 7) 

(·1. 18) 

(4.19) 

( 1.20) 
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1'\C'xt wr pn's!'nt a corollary which inunrdiat<'ly follows from Th<•orc•m 1.3.1. Let X~,•) 
and x<;l} dPnot!' random \'ariabi<'S r<'pr<'S<'nting I he 1\lllllhNs of iudividuaJ CUStomrrs in 

thC' first quc'tH' and thC' sC'cond qtu•ue, rrsp<'cliv<'ly. at tlw bC'ginning of a randomly chosen 

slot. Note h<•rc that X~q and X~2) arr d<'prndc•nt. \\'<' dc·fhw Q;tbu~y(z,,z2) as the joinl 

PC:F for ti1C' ntunh<'rs of individual customrrs in thr first qurur and th<' second queue at 

t hr hrgi nn ing of a randomly chosrn slot gi vrn that t hr sNvrr is busy. Also, we dcfi ne 

Q 1111111,(z1) e~s the• PGF for the number of individual custornrrs in thr first queue at the 

h<'gin11ing of a randomly chosr11 slot. givrn thal th<' srrvrr is idle: 

wiH'J<' '/ :c; dc•nol ('S a random variable drfiucd as 

T ~ { 1 if th<' SNV<'r is busy, 
8 

- 0 if th<' S<'fVC'l' is idl<', 

at. a randoully dws<'ll slot. Note that, by definition, Q,11,dlr.(z) is given by 

1 - 1 P(z. 0) + Q(O) 
CJAi•dlt>(z) = 1 -1B(z) P(l,O) 1- Q(O)" 

(4.21) 

(4.22) 

(4.23) 

C'OI!OLLAR't' 4 . .'1.1: Thf> PGF Qn(z, z) jo1· thf' total numbe1· of customers in the system 

111L711('([wlrly a/fr1· drpnTlures is given by 

Qv(z, z) = Q Db(z)QIIItrll<'(z), (4.24) 

whrn• 

(l (z) = (1- B'(1)C'(l)) (z l)C(JJ(z)) B(z)- 1 
-? nb z - C ( B ( z)) /J' ( l) ( z - l) (4.2.5) 

awl q"l•lllr(z) IS gwrn 111 (4.2J). 

PHOOF: s('(' Appmdix C.4. • 
Rrmmk 4-.1.1: ~otc that Qnb(z) drnot<'s the PGF forth<' number of customers imm~
diat <•ly aft N d<'part urcs of customers corr<'sponding I313P /G /1 qurue without gates allid 

(J,\jullr.(z) d<•nol<'s t hr PGF for the numb<'r of individual customers in the system given 

that thr S<'rVN is idle. Thus, tlw total number of customers in the system immcdiatclly 

aftc•r d<'pa rt 11 rc•s are dC'com posed into the two indC'pC'udcnt factors. 
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4.3.2 N utnber of Customers in a Randotnly Chosen Slot 

Jn this subsection, we drri,·r the formula forth<' lllllllh<'r of rustonwrs at th<' b<'ginning of a 

randomly chosen slot. To do so. we first considN th<' numhrr of custom<'rs in the first quen<' 

and that in t.hr S<'cond queue at thr start oft hr sNvirr of a randomly ehosrn customer. Lrt. 

_x {l) and x<2) denote random variables repm·;cnting tlw numbers of indiYidual customers 

in the first queue and the second qu<'U<', l'C'SJ><'div!'l_y, at lh<' start of thr sNvic<' of a 

randomly chos<'n customer. \Ve define Q(z1, z2 ) as I h<' joint PGF for the numb<'rS of 

individual rust.omcrs in t.he first queur and l.h<' srco1HI qu<'U<' at I h<' start. of the s<'rvic<' of 

a randolllly rhos<' II cust omcr: 

We t h<'ll IHW<' t h<' following lemma. 

Lrmma 4 .. 1.1: 

\\' hNC' 

___ z_z- - { CJ IJ(z2 • 0) QIJ(Zt, 0)} 
z2 - C(l B(zt)) 

+ z2 ))S(z1,z2)Qn(z2,z2), 
C(B(zz 

z2 + ll (zt,:-2) C(JJ('~'z)) 
S ( z I ' z2) = z2 - C ('y 13 ( l I ) ) 

and /l(z1, z2) is giv<'n in (4 .11) . 

Pnoor: Sec Appendix C.5. 

Taking z1 =- z2 = z in ( 4.27) and not.ing 

S(z, z) = I , 

we can <'asily confirm that the following <'quation holds: 

( 1.26) 

(4.27) 

( 1.28) 

• 

(tl.29) 

Q(z,z) = C(;(z))CJn(z,z). ( 1.30) 

This equal ion im pli<'s that the number of rustontc'rs iII tlw syst <'Ill IC'ft hrh ind by a ran-
. 1 1 1 , · f customNs in t hr system at thr start of donlly clws<'n customer 1s cqua to t 1c mtm >( t <> • • • • 

· ) 1 1 · f <·ustomNs arriving to th<' systrm dunng his s('rvic<' (including hnnself plus t 1c num ><'I o · · 

his s<'rvirc time minus one (himself). . 
· b f t mNs in til<' first qu<'ll<' and that Ill the SC'nmd \ V<' now constder the num er o cus o · . . , , , 
· · 1 ·I. Jt \Vcclrfin<'Q 11 (z1,z2)astheJOlllt£ClF qurue at thr b<'gmmng of a random y < lOS<'I1 so·· 

. I "t ) , ,(1) d v(2). 
f\SSOCHI.L<'< WI I A 1\ an ..- \ A · 

6 , [ X~1 l X~2>] (4.3L) Q 11 ( z 1 , z2 ) = F1 z 1 Z2 · 



\\ <' t hc>n ha\'<' t.lw following Utc>orC'III. 

( 4.32) 

whr•?'(' 

( 4.33) 

1111fh 

( I ')') lJ ( Zz) [ fl ( Z2) 
C1(1)(!J(z2 )- ')'B (z,)) 1 

p HOOF: s('(' A pprndix C.G, which Lrmma 1.3.1 is usrd in. • 
\\'c• pn•sc·nt. a corollary whi('h immNiiatcly follows from Throrrm 4.3.2. 

CorWLLA HY 4.:1.2: The PGF QA (z, z) for the total ntLmbf'1' of rustomers at the beginning 

of a mwlmnly chosrn -;lot is given by 

wl wn~ 

QAb(z) = (1- B'(l)C'(L)) (z 
z 

nud CJAJIIIIc·(z) is gtvrn in (4.23}. 

PnooF: S<•tting z1 = z2 = z in (4.32), noting 

l)C(JJ(z)) 
C(JJ(z)) 

~ C(B(z)) · 1 
B(z, z) = C'(1)(13(z) 1)' 

and using Corollary 1.3.1, it follows that 

Q ,(z, z) =- B'(l )C'(l) z C(IJ(z))- 1 () (z z) 
C(B(z)) C'( I )( fl(z)- 1) ~~> ' 

+(1- B'( l )C'(1)) QD(z, z) 
Q f)b(z) 

B'( l )(z- 1) 
= fl( z)- 1 Q l)(z, z) 

(4.35) 

( 4.36) 

(4.37) 

- (z- 1)C(J3(z)) (I - B'(J )C'(l ))-1 -"' f>(z, 0) + Q(O) (4.38) 
z- C(B(z)) 1 "tlJ(z) P( L, 0) + Q(O)' 

from w h i<'h, ( t.:~::>) follows. • 

Rrmmk {.'1.2: 1\'otr that QAb(z) denote's th<• PGF for the numiJ<'r of custom<'rs at 

th<• b<'p,inning of a randomly dws<'n slot in the> cm-r<'SJHmding UUP/G/1 queur without 

gatrs. This dr('omposition result i<> a disnrl<•-tim<' <'Xample of the general rc>sult for the 

continuous t.imr qu<'ur given in [Fuhr85]. 

4.4 Work in the Syst em 

ln this sed ion, we consider the amounts of •..vork in t.h<' fi rsl q tl<'llr and the second qw'uc. 

To obtain t.he formula.'> for the amount. of work in I he syst <'Ill, W<' first derive the formula 

for I hr joint. PGF for the numbers of customrrs and t IH' r<'maining sC'l'vice timr at the 

hrgin n i ng of a randomly chosen slot.. 

Ld _:\-( 1) ( rcsp. _\'·(2)) denote a random varia hi<' r<'J>r<'s<•nt ing the number of indi \'id ual 

customers who arrive and remain in the first qtH'II<' (n•sp. arrive and move to the second 

qurue) during the backward rccurrencr tinw of t h<• s<•rvire lime of a customer who is 

served in a randomly chosen slot . Also, 1<'1 (• dC'nol<' a random variablr rrpresenting the 

forward rccurrcn('<' time of the scn·icr time of a <·ustomrr who is sen'c'd in a randomly 

chosen slot. \Yc define QAibusy(z1, z2, w) as the joiut PC:F for lh<' numbrrs of customrr:-; 

who arrivr and rrmain in the first queue and rustonwrs who arrive• and mo\'e to the 

S<'cond qttC'Il<' during t.hc backward rccurr<'IIC<' tim<' of the• sNvice t iniC' of a cusLom<'r who 

is sNvrd in a randomly chosrn slot, <1nd t.he forward r<'CIItT<'ll<'<' tinw oft he servic<' tint<' 

of t.h<' cust.ont<'r giv<'n t.h<tL the srn·er is busy: 

Q ( ) 1\ } ' [ ,\'(1) ,\ (1) (·,,,, 
AJbusy Zt, z2, w - ~ z l z2 111 s ( 1.39) 

\\ '<' t hrn h<~vr l h<' following lemma. 

~ Z2 
fJ(z1, z2 , w) C( !3 (zz)) QJ)(Zz, Zz) 

Z2 w( C( II') C(1 n ( Zj))) 
+-z

2
--C(T' IJ(z1)) C'(l)(111 "f /3 (zt)) 

·{Qn(z2,0) Qn(z,,O)}, (4.40) 

whrr<' 
(4 .'11) 
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with 

( l - 'Y) 13( z2 ) [D( z2)C( w) - wC(B( z2 )) ----------
C'(l)(!J(z2) -.,B(z1)) w B(z2) 

_ -yfl(z, )C( w)- u•C('YB(z, !1.] 
w -yB(z.) ' 

(4.42) 

P ROOF: Se•<' J\ppe•ttclix C'. 7. • 
WC' now consider th<' amount of work :-~t the IH'ginning of a randomly chose•u slot.. Let 

lf(') (n•sp. L'(2
)) d<'notc a random variable repres<'nting the amount of work in thr first 

quetH' (resp. t.h<' S<'cond <pte'llc) at. t.h<' lwgiuning of a randomly chosrn slot. Notr her<' 

that u<•> and lJ(Z) ar~ cl<'p<'nd<'nt. \\'<'define the joint PGf U(z1, z2 ) associated with U( 1) 

;wd u<2>: 

T '(~ ) Q I.' [ 1f(l) (J(2)] 
L "'', z2 r.- z, z2 . ( 1.'13} 

We• tlre•n Ire-we• t lr<' following t.it<'OfC'IIt. 

TI!EOH J·:f\1 <1.4.1: 1'hf' Jot1tl PGF U(z1, z2) is gwf'n by 

PROOF: s('(' App<'tHlix C.8, which Lemma 4.4.1 is usrd in. • 
~"(' prc•scnt (\ corollary which immrcliatrly followR from Theorem 4.1.1. Let u = u<•> + 

lJ( ) drnot.c t.h<' anwuut of tot.al k · t I · 
• < wor Ill · IC syst.ern lll n. randomly chosen slot and we 

definc l'(z) aR the PGF for l ·. . 

COROLLARY 4.4.1: The PGF U(z) is givm by 

wlter·e 

- (1- B'(l)C'(l)) (z- l)A(z) 
z- A(z) 

q Alidlt'( C( z)) 

l - 1 _ P(C(z), 0) ~ Q(O) 

1 - "fi\(z) J>( l, 0) -l Q(O) . 
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( 4.4)3) 

(<1.4!3) 

( 4.'17) 

PROOF: L'sing (C.33) in (4.41). it follows that 

l '(z) = U(z. :-) 

_ (z- l)A(z) (1 _ IJ'(L)C'(l)) - 1 _I_ P(C(z),O) + Q(O) 
z- A(z) 1 ').1(.::) P(l. 0) + Q(O) ' 

( 4.'18) 

fro111 which, (4.115) imm<'diatcly follows. • 
Rmnmk 4.4.1: 

1. 0-ol<' that L'(z) is id<'ntical to tlw PGF for the Rojourn tim<' of RUIH'tTustomNs and 

coincides wit It the' result in [l<awa93]. 

2. Ub(z) dcuotc•s th<' PGF for t.hr amount. of work Ill thr COJT<'sponding BBP/C/1 

queue• without gatrs, and {',dtt'( z) drnot<'s thr PGF for t.he amount of work in th<' 

first queue givrn that the SNver is idlr. Thus (tl.45) shows t.ha.t. thr amount of the• 

total work in the system is dccomposrcl into t lw two iudepcJulcnt fad orR. This is 

a disnctc-tintr cxalllple for t.hc work decomposition prop<'rly in the qucur with the 

genera lizcd vacations [Boxlll89j. 

:\ole that, with ( L45) and noting (P( I, O)+Q(O))/ /)( l. 1) = (1- ') )( 1- fl'( 1 )C'(l })/ B'( I} 

from Theorem 1.3.1, (4.'11) is rrwrittcn t.o he 

z2 "Y(z1 A(z1 )) z2 - L 
U(z 1,z2) =---(1- 'Y)U(z2) +- - --- U(z,). 

Z2 'Y A ( z 1) Z2 'Y A ( z I ) z 1 - I 
(4.'1!J) 

Th rquation ( 4.49) ma.y hr use•fnl brcausc it can rc•placr U(z 1 , z2) hy U(z,) and U(z2). 

Indc<•d, we will usr (4.49) in ordcr to drri\'<' thr PGFs for lh<' waiting time·s in t.hc II<'XI 

section. 

4.5 Waiting Times 

In this section, wr considN thr waiting t imrs of a supcrcust onl<'r and a.n individual cus

tomrr. \Vr first dcrivc thr PGF for thc •Nailing timr of a randomly d1osrn supcrcustomN 

in t.crrns of t.he PG F for t.hc amount of work in the system. N<'xt. wr obtain thr PGfs for 

thr waiting timcs of a randomly chosen individual <·ustonwr in terms of the• PCF for the• 

amount of work in the system. 

4.5.1 Waiting Time of a Supercustomer 

In this su bscrtion, wr consider the waiting t imr of a randomly chos<•n su prrcustom(•r. \\'c• 

definr a supcrcustomer as a batch cornposrcl of individual custonwrs moving t.o the srcond 

57 



q tH'lH' at. t h<' sa uw tim<' whf"n t hc> gat<' opens. Notr )J{'r<' that it is possible I hat t hrre is no 

individual custo1ner in t.he first <[H<'ll<' wh<>n thc> gal<' oprns. \\'r n•gard such a ca .. sr as an 

ani val of a supN< ustomN with zrro sNvic<> I imc at t hr srcond qurue. Lc•t Tr~ clcnotr a 

random variahl<> rrpresc•ntiug tlu• waiting Iiiii<' of a, randomly chos<'n supNcustomrr. We• 

d<>fine IV,(z) a~ thc> PC:f• for\\',. \YC' then have> the following theorrm. 

TtiEOREC\It1.5.1: Thr PGF lr.(z) 1.c; give11 by 

1-'Y z 1 
\\ '.~(z) = - U(z) + -(1 

z- 1 z-'Y 
B' ( I ) C' ( 1 ) ) , (4.50) 

whrrr U(7) rs .rJillr11 in (4.45}. 

P noor-: lt. follows that. 

W~(z) = U(l,z) - lf(l,O) t U(1,0). 
z 

( 4.51) 

U:-;ing, (tl.ID) in (tl. f>l), (1.GO) i1nnwdiat<'ly follows. • 

Rr1nar·k 4.5.1: AftN som<' alg<'bra with (4A9) and (4.50), we have the following rela

tionship bc•lwe<'n the work in th<' second quc>nr and th<' waiting timr and t.he sojourn time 
I 

of a Sllp<'l'C11SlOillN: 

u ( ' z) = , - A' ( t) + A' ( 1) z w~ ( z) - u ( z) 
' G'{l)A'( I )(1 - z) 

( 4.52) 

i':ot<' that. ('1.52) can also be dNived from t.hr equal ity of t.he virt.nal delay and attainrd 

waiting ti111c dist rihution (scr, for exam pi€', [Miya92, Saka90, Scng89]). 

4.5 .2 Waiting Tiine of a Customer 

In this suhs<'clion, we considN lh<' waiting time of a randomly chosen individual cns

lonH'r. Let II 'JI) (r<'sp. 11'?)) dcnotr a random variable representing the waiting time of 

a randomly chosc•11 custom<'r in the first quell<' (rcsp. the second queue). Note hrre that 

l' ·(t) l 11 '(2) l I · · 
r an< r arc< cprrH <'nt. \\ <' drfinc ll ('(z1, z2) as t.he joint PGF for WJ 1) and wp): 

II ' ( . ) ~ E-. [ w~l) ~wp>] 
r Z1 I Z2 - Z1 "'2 · (4.53) 

\Vr then have t II<' following thror<'m. 

(4.51J) 
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whcr·e U(z) 1s ,qwrn in (4.45}. 

PROOF: \\'r divide the waiting timr of a randomly d1ospn custolll<'l' into tin<'<' parts: 

(4.35) 

where p(l) (r<'sp. F(Z) ) drnolc•s a random \'ariablc> reprcs<'nting th<' waitinp, tim<' of thf" 

batch which i nd ndrs tiH' ra ndontly chosrn customer in t.hc first queue' ( r<'sp. in t.lt<' sc•cond 

queue), and D dC'Hot es a random varia hi<' rcprrscnt ing tlu· sum of t h<> S<'l'\·ic<' t imcs of 

cust omrrs who arri V<' iu tlw sanw balch as t lw randomly chos<'n customer and arc SNV<'d 

hefor<' Uw randomly chos<'n customer. 1ote herr that [•'(I) + F (2) and D an• indl"p<'rHIC'nt. 

Now we d<'finc t.h<' following PC:Fs: 

( L:>G) 

First wr consider F(z 1, z2). Let (; 11 denote a random variabl<' rc>pr<'SC'Illing th<' r<'nwininp, 

gate opening interval. Also, let \ \1~1 ) and 11 '~2 ) dcnot.r rnndorn variables r<'presrnting I he· 

amounts of work in th€' first qu<.'n<' and the second qtH'II<', rcsp<'ctiV('l.\·, immcdiat<.'l) before 

the arrival of a randomly chosen customrr. Not.r that t.hr joint. distribution of llw amount 

of work immcdiat<'ly before arrivals is id<'ntical to that at thr b<'p,inning of a randomly 

chosen slot., since customrrs arrive to th<• sysl.Pnl according t.o a hat.rh Bcrnonlli proc<'ss 

[Boxm88]. Thus. it. follows that 

k -On I m=n 
00 oc 00 

I L L L ( L - -rhtt- l zt 1 z; Pr{ uCJ) k, (j("l) = 711} 
k=O u1 0 n -m I I 

On t.hc oth<'l' hand, D(z) is giv<'ll by 

\Ve then have 

1 A(z) 
J)(z) = 13'(1){1 - C(z)) 

Using ( 4.49) in ( 4.59), ( IJ.5tl) immediately follows. 

(t1.57) 

( 1.58) 

{t1.59) 

• 
LC't H'c = tl'J1) + ll 'J2) d<'notr the> total waiting time of a randomly dws<'n cuslom<'r 

in th<' syst<'nt. \Vc then define ll'('(z), ll'r~(z) and ll'('2(z) as til<' PC:Fs for IVr, w;•) and 
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wp>, r<'SJW<'I i vt"ly. :\ow \\'<' pr<'s<'nt a corollary which im mrdia t rly follo\\'s from Theorem 

1.5.2. 

. 1 - "}' 
Hr~(z) = , 

1 - ~fZ 

(4.60) 

. 1 _ 'Y z [ 1 ,, l I A ( z_) _ 
\l,.:t(z)=-z---'Y-l - A-(z) U(z)-(1 - B(l)C (1)) J31(1)(1 C(z)) (4.61) 

\V,.(z) = 1\'b(z) lh,rk(z), ( 4.62) 

, ) '( )) z- l l ; \(z) 
\V1,(z) - (1- B (1 C 1 z _ A(z) · fl'(l)(l C'(z})' (4.63) 

1 - 'Y U(rz) 
lhurk( z) = 1 - ')'Z l- B'(l)C'(l) ' 

( 4.64) 

and U( z) 1s .€Jl11C'11 m (4-45}. 

PROOF: Lc•ttinp, Z:t = 1, z1 = 1 and z 1 = Z:t = z in (ti.G•l), W<' obtain ( !.60), (4.61) and 

( 4.62), rrsprrt ively. • 

1. \V1,(z) clc•not.c•s t.hr PGF for the waiLing times of cuslo111rrs in Lhc corresponding 

BB I'/G/ 1 qurur without. gates, and Ubnrk(z) cl<'not.es the PGF for the backward 

r<'<'IIIT<'Ilr<' t imc of the gate opening interval givcu I ha.t t.hc server is idl<'. This is 

a disrrrtc• I imc rxamplr of the waiting-tim<' dC'composit.ion propNty in the queue 

with gc•nc•rali?.rd vacations [Fuhr85]. 

2. Afl<'r some algPhra with (4.49) and (4.61), W<' hav<' the following relationship be

twrrn I hr work in the s<'cond queue and 1 h<' waiting ti Ill<' and the sojourn time of 

an individual customer in tll<' second queue: 

L'( l, z) = 1 - ..41(1) + A1(1)zll'r2(z) 
1 

C(z) 
C'1 ( 1 )( 1 z) 

(4.65) 

Notr t hal ( 1.65) can also be derived from t h<' equality of I he virlual delay and 

aLt.aincd waiting lime distribution (sec, for exam pi<•, [Miya92, Saka90, Seng89]) . 

GO 

4.6 Numerical Examples 

In this srct ion, \\'C prm·idc some munrrical cxamplrs. First ,,.<'regard the second queue as 

an isolal<'d system and obserYc til<' rffrd of tlw gatr. opening interval on the mean waiting 

time. i\lorr pn•ciscly, \\'e considN the gatr oprning intrrval in terms of the coYariaHc<'s 

and the <'OITPlat.ion cocflkients. In s<'dion ·1.1, \\'C' 111<'111 ioiH'd two types of correlations: 

• type 1: correlation between tlH' in I Narrival Lime (,' and the service t.imc Cs of each 

su pcrcustomer, 

• t.ypc 2: correlation belwern the int.crarrival t in1r (,' of Pach batch composed of 

cust.orncrs who move to the second quc•uc at t hr same t inu' and t.he number Be: of 

I lw cust omcrs. 

Then, th<' ('Ovarianc<'s and the correlation ('Ocflici<•nts for t.hc two t.ypcs of correlation arc 

given hy 

Cov[G.Cs] - ( 'Y ):l. \1(1), 
1 - 'Y 

C01'T('[ G. c = 'Y I 
[ 

( \I ( 1)) 2 ]I '2 
[ s] (l-'))(.\'(l)-t. \"(1))+{21-l)(A'(l))2 ' 

Cov[G, Be;] = (_r_ )2 /3'( I). 
1 -') 

[ 
1(131

( L)) 2 

conei[G,Br.] = (1- 'Y)( U1(l) 1 /3"( !)) 1 (2-y 
....,.....,.-,........,..,-.,.]' /2 
1){13'(1)):.! ' 

( LGG) 

( '1.68) 

( L69) 

rcspcc:livrly. Note h<'l'c that tlw corrrlation corflicic'nts ar<' itHT<•asi ng functions of t he' 

mean gate OJH'lli ng iHt.crval. 

Now we observe the effect of the gate opc'Jiinp, intNvn l on t he mean waiting lime' of 

supcrcust.omcrs. \ V<' show tlw formula for tire mran waiting lime of supercustonwrs in 

Appendix C.9. To compare the result, we also considPr a <"OrrPsponding Geo/G/1 queue 

whrrC' f he PGF for the service time of a customN is G'(A{z)) and 1 he PGF for the intrrar

rival time of customers is G(z). Fig. 4.1 shows thr mean waiting time of (super)custorn<'rs 

in tire second queue as a function of t.h<' param<'t<'l' -y in thC' following S<'ttings: (1) thr 

nunJ bcr of i ndi vidual customers arriving to the syst rm in a slot is geometrically distributed 

with mean 0.6, (2) the scn·ice tim<'s of individual customers arc deterministic and equal 

to onr slot. f\: ote here that the iucn•asC' of the para met rr 'Y implies the increase of the 

corrrlatiou cocfl1ci<'nt bclwccu the interarri,·al tirll<' and the S<'rVi<"<' t imc of each super

cust.om<'r. In fig. 4.1, we obsen·e that t.hr correlation, which is positive, l<'ads to t.hc 

reduction of lhc mean waiting lime of supNcustomcrs, whrrC'as t.hc mcau waiting time 

incr<'as<'s wit h th(' increase of t he corrrla.l ion corflicirnt. A sin1ilar observation has been 

shown in [Bors93]. 
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Ncxt, wc observe the~ c•ffN·t of the gatc opcning intcrval on the mran waiting time of 

individual <·ustomers in t.hc sccond queue. \Vc• show t.hc formula for t.hc lll<'an waiting 

tint<' of individual c·ustomcrs in Appcndix C.IO. To compare the rcsult, wc also consider 

a ('OIT<'Spond ing 1313 pIc: I I <J li<'IIC whcre I hc rc: F for I hc sen· icc t.inw of a rustomcr is 

C( z) and t hc PG F for I lu• hatch c; iz<> ( arri\·i ng to t.hc sccond quruc) is (1 - ') )G( 13( z)) + )'. 
Fig. 1.2 shows tlw mean waiting time of individunl customers in the sccond queue as a 

fund ion of thr para mC'I C'l' "Y in the same sc•t t i ngs as t hos<> in Fig. 4 .1. Not<' h<'re I hat the 

innrasc• of the parrunet.<·r "Y implirs lhr incrrnse of I he correlation codliciml IH'tween the 

inl<'rarrival tim<' of the hal<'hrs and the nuntbN of cust.om<'rS in each batch. In Fig. 4.2, we 

<tlso ohservr Lhat. thr posit ivc correlation leads l.o the reduction of I hr mean waiLing t ime 

of individual cust OliH'I'S in the sccond quruc, whNc•as I he mean waiting I ime increases 

with t he• incrcas<' of I he• cotT<'lat ion coefficirnt.. 

Finnllv wc ohscn·c• I he• ('()rrelat ion bctw<'en tbr waiting times of a randomly chosen indi

vidual customer in I he' first quettc' and in tlw sC'corJCI qucuc. Fig. 4.3 shows I he correlation 

coeflicirnls hct.we<>n I hr waiting times of a randomly chosen individual customer in the 

first. q urue and i 11 t.ltC' srcond q 11<'11<', wIt ich arr obtai nrd by using numerical d i f[erent.iation 

as a. function of the paratnrler 'Y in the following srt.tings: (1) the number of individual 

cusl omNs r~rriving to I hr sysl<'m in a slot is grornrl rically dist.ributcd with mean 0.4, 

0.6 and 0.8, (2) thc sNvicr lirnrs of individual C'ustomers arc deterministic and equal to 

orw slot. In Fig. 1.3. \\'<' obsrr\'e that, as rxpcded, I he correlation is ncga I i ve and the 

correlation coefficicnt dcrrrases with the incremw of lh<' parameter -y. Furthcr, we observe 

t Ita.!. the increase of t.he tr<dlic inl<'nsity !cads to I he• incrcasc of the corrclaJion codficient. 

4.7 Conclusion 

In this chapter, wc consider discrrtc-timc I313P IGI 1 queues with a gatc, whrr<> lhc inter

vals betwcru successivr oprnings of the gal<> arr gromctrically distribulcd. \\'r derive the 

following joint PG Fs: 

• joint PGF for Lhr lllltllbcrs of customrrs in thr first queue and the srcond q11eue at. 

the brginning of a randomly chosen slot. 

• joint PGF for I he amo11nts of work in the first queue and the second qucuc at the 

beginning of a randomly chosen slot 

• joint PGF for t hr waiting times of individual customers in the first queuc and the 

second queue 

\Vr also derivr the PGF for the sojourn timr and tltr waiting timc of a suprrcustomcr. 

Fmthrrmorc, we provid<• somr nu rncrical <>xam plrs and observe the cfl'C'ct. of the correla-
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t ions on t hc JH'rformance mcasurcs I h rough the numcrira I <'X a 111 pies. 
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Chapter 5 

Queues with a Gate - Bounded 
Gate Opening Intervals -

5.1 Introduction 

In this chapter, we consider discrete-time BBP/G/1 queut>s with a gate, where BBP de

notes a hatch Bernoulli process. Contrary to the model in the previous chapter, we assume 

that the intervals between successive openings of the gale are bounded, and independent 

and identically distributed (i.i.d.). 

The organi?.at.ion of the chapter is <U:i follows. In section 5.2, we describe t.hc mathemat

ical model. In section 5.3, we derive the joint PGF for the amounts of the stationary work 

in the first queue and t.hc s<'coml queue, and analytically show the work decomposition 

property for the amount of work in the system. In section 5.4, we first derive the PGFs 

for the sojouru time and the wait.ing time of a supercustomer, and analytically show the 

relationship among the PGFs for the amount of the work in the second queue, the sojourn 

tim0 and the waiting t.ime of a supcrcustomer. Next, we derive the joint PGF for the 

waiting times of an individual customer in the first queue and the second queue, and 

analytical ly show the decomposition property for the total waiting time. Furthermore, 

we show I he relationship between t.he PGFs for the amount of the work in the second 

queue and the waiting time in the second queue. In section 5.5, wt> discuss the number of 

individual customNs in the system. Using the results in section 5.4, we derive the PGF 

for the number of individual customers in the system, and analytically show the queue 

length decomposition property. In section 5.6, we provide numerical examples to show 

the computational feasibility of the analytical results. 

5.2 Model 

We consider the queueing model wit.h the following characteristics: 
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• Custouwrs arnve at the systrm in a batch immcdiatel.v before slot. boundari<:'s. 

Th<' batch sizes and thr service ti nH'S of individual rust omcrs arc i nd<:'pendenL and 

identically distributed. Customers arriving at the sysL<'m ar<' accommodated in the 

first queue at. the gate. 

• The gate opens immediately before the slot boundaries. When the gate opens, all 

the customers waiting in the first queue move t.o the second qut>ue at the servf'r. 

The travel times of customers to the scco11d queue arc assumed to be Z<'ro. We 

assume that custonwrs arriving in a slot also move to the second queue when t hr 

gate opens in the slot, so that the waiting times of such custolll<'rs in the first queue 

become zero. The gate close>s immediately <~fter all tlH' customers in the first queu<' 

move t.o the second queue. The iut.0n·als between successive openings of the gate 

arc i.i.d .. Vvc assume that the gating process is stationary. 

• There is a single server who S<'rves the customers only in the second qut>ue. \Vhen 

the server finds some amount of the work in the seco11d queue immediately after a 

slot boundary, he serves exactly one unit of th<" work in the current slot. We assume 

that customers arc servrd on an FCFS basis. Furthermore, as for customers who 

arrive in the same slot, the next cust.omrr for servicP is randomly cltos<'u amoug 

those customers. 

Note that when the gate opens in every slot. (i.<'., all the gaLe oprning intervals arc equal to 

one slot), the model described above is reduced to t.ht> ordinary BBP /G/1 qucu0 without. 

gates. 

We now introduce random variables and notat.ions to describe the above model. Lrt tl 
denote a random variable representing the nth gate openiJJg cpocb Laking a integer value. 

We assum0 that the sequence {Tn}t~-oo satisfies 

(5.1) 

vVe define the inter-event sequence { Gn} ~~-oo as 

(5.2) 

Let g(k) (k 2: 1) denote the probability that an interval between successive oprnings of 

the gate is equal to k slots: 

g(k) = Pr{Gn = k} (n =I= 0). (5.3) 

In what follows, we assume that the intervals betwren succrssivc openings of Lhe gate arc 

bounded by .M slots with g(/11) =f 0. Thus, we havr g(k) = 0 for k > M. We denote the 
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PGF of tiH' g(k) by c:(z): 
fll 

G(z) = L g(k)zk. (5.4) 
k I 

LC't 13 and C drnot 0 random variabks rrpr<'SC'nli np, t hC' nu mbrr of i ndi vidual customers 

\Vho a rri \'C' at the syst Pill in n slot and th<' sf'n·ic<' t i Ill<' of an individual rnstomrr, respec

t h·<•ly. Furl hN, kt A dC'not P n random varia hi<' rPprPSPIIting t lw amount. of work brought 

iuto tlw systC'm in a slot (i.r., tiH' sum of tlH' sNvin• li!IH'S of customers arriving in a slot). 

W<• d<•fi IH' t.hc followiup, PC: Fs: 

D(z) ~ E [z"], (5.5) 

By dl'finit ion, WC' ha,·c 

A(z) = B(C(z)). (5.6) 

Throughout the chapiN, for any PGF f(z), wr us<' t.hr symbol /'(1) to dc•notr limz- 1-

df(z)/dz. Further, wr asslllll<' tl'(l) < 1 and th0 systrHr is in equilibrium. 

5.3 Work in the System 

In this sC'cl ion, we considN t IIC' amount oft h<' work in t.hc system. For conv0nirncr of thr 

analysis, wr assign non-nrp,at ivC' integer values k E { 0, 1, 2, ... } sequentially to individual 

slot boundaries as 0 is assign<'d to tllC' slot. boundarirs immrdiately afl<>r thr gate closes. 

Tim0 iutcrval [k -l,k) (k 1,2, ... ) is refrrrcd to as the kth slot. First, wr drrive the 

PG F for the amount of (.he work i11 the second qurne immediately after th<• hrginning of 

the· (k + L)st. slot. Next., wr dNive t.hc PGF' for t.he alliOHnl. of the statiouary work in the 

sysi.C'm as wrll as in rach q II<'IIC'. 

5.3.1 W ork in the Second Que ue 

In this subsection, wr first observr th(' amount. of the work in the second quC'uC immedi

at.<'ly aftN the beginning of the (k + l )st slot and rrlate it with that. immrdiat.<'ly after 

Lhe b<•ginning of thC' kth slot.. lu what follows, we rd<'l' to the amount. of thr work im

mrdiatcly afLcr the brginning of the kth slot a~ that in the kth slot. Lrt. U~2) d<'note 

a random variable r<'t>rCS<'llling the amount of work in thC' second quC'U<' at time n. \-\fe 

d(•fine L(k, z) as the PGF for til<' amount of th<' work in the second queue in the (k + l)st 

!-ilot is C'qual to 11, giwn I hat the gate does not oprn in th<' kth slot: 

L(k, z) = E zuo - T0 = k 6. [ (2) I A l (i - 1, 2, k = 0, 1, 2, ... ). (5.7) 
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J1.clating L(k,z) with L(k - l,z), W<' hav<' 

1 z - 1 
qk,z) = - L(k - l,z) + - L(k- 1,0) 

z z 
(k I , 2, .. . ). 

By applying (G.8) rrcursi\·rly, we obtain 

(l)k k (1)1 l.,(k,z)= - L(O.z)+(z - I)L: 1-{k - j,o). 
z ) - 1 k 

Since th<' sysl<·m is in equilibrium, it is clc•ar that the PGF L(O, z) is giv<'n by 

i\1 

L(O, z) = L g(k)L(k. z)[1l(z)]k. 
k I 

Substituting (5.9) inlo (5.10). we baY<' thr following expression for L(O. z): 

£(0, z) G ('\~z)) L(O, z) + (z- I) t' L(k, O)zk . t g(j) (·\~z))
1 

k-0 1 k I I 

\Vc solve (5.11) with respect to L(O, z) and oht.ain 

where X (z. 111) is giv<'n by 

( )
_ (z- l )X(A(z)/z,z) 

L O, z - I G(A(z)/z) ' 

/If I /If 

(G.8) 

(5.!)) 

(:3.10) 

(S.ll) 

(G.I2) 

.~Y (z, w) - L L(k, 0) u/ L g(.i)z.l. (5.13) 
k 0 j = k I I 

\Vc then havC' lh<' !If unknown valuc•s L(k, 0) (k = 0, .. , 1\1 I) 111 (G.l3), whic-h ran hr 

determined (src Appendix D). Not(' hNl' that, from thC' normali~-:inp, condition L(O, l) ~ I 

in (5.11), WC' obtain 
.\ (1, 1) 

1 
- G'( 1 )(1 - A'(1)) 

The equation (5.14) is used whcu we det.rrminc the uuknown valurs. 

5.3.2 Stationary Work 

In this subsrrtion, we first considrr tl1r amount of the stationary work in rach C]U<'U<'. L<'l 

Ui1> denote a random variable rcprcs<•nting the amount of work in I hr first CJil<'U<' at time 

n. Note that. U,\1> and U~2> arc drpend<•nt. We define tlw joint PGF U(z1, z2) for t lr<· 

amounts of the stationary work in t.he first. queue and in thr sc•cmHI qu<'ur: 

(5.15) 
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We then hav<' tht' following th<'or<'m. 

THEOREM 5.3.1: The joint PGF U(z 1, z2 ) is given by 

(5.16) 

PnooF: Let p(k) d<'note whN<> p(k) <lf'not.rs the probability that a randomly chosen 

slot. is thr (k + l)st s lot.: 

/::,. A 

p( k) = P r {-To = k} (k = 0, 1, 2, ... , Af - 1) . (5. 1 7) 

WC' then have [Burk7G] 

] !If 

p(k) = G'(l) L g(n) 
n - k + l 

(k = 0.1, 2, ... 1 111 - 1). (5.18) 

By definition, w0 havt' 

M - 1 

U(z,, z2) = L 71(k)L(k, z2)(A(z1)t (5.19) 
k=O 

From (5.9), (5.13), (5.18) aud (5.19), (5.16) immediately follows. • 
Wr pr<'sent a corollary which immediately follows from Theorem 5.3.1. Let U = Ua 1

) + 
U~'L) denote the amount of the stationary total work in the system. We then define U1 (z), 
lf2(z) aucl U(z) as the PGFs for Ua 1

), Ua2
) and U, respectively. 

COIWLLAHY 5.3.1: The PGFs U, (z), U2 (z) and U(z) ar·e given by 

U (z) _ 1 - G(A(z)) 
1 

- G'(1)(1 - A(z))' (5.20) 

U2(z) = G'(1){1
1
_l/z} [L(O,z) { 1 - G (1)} + (z -1) {1x(1, 1) - X (l,z) }] , 

(5.21) 

U(z) = Ub(z)Gidte(A(z)), (5.22) 

respectively, whe1·e 
(z- 1)A(z) 

Ub(z) = (1 - A'(l)) 
z-A(z) ' (5.23) 

(;. z = X(1,z) _!If 
1 L(k,O) k 

tdte( ) (l - A'(l))G'(l) - ~ p(k) 1- 11'(1) z ' (5.24) 
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PnooF: Letting z2 = 1, z1 = 1 and z1 = z2 = z in (5.16) and using (5.13), we obtain 

(5.20), (5.21) and (5.22), resprct.iwly. • 

Remm·k 5.3.1: Ub(z) denotes the PGF for thr amount of the stationary work in the 

corresponding BBP /G/1 queue without gates, and Gidte(A(z)) denotes the PGF for the 

amount of the work in the first queue given that t.he server is idle. Thus (5.22) shows 

that the amount of the total work in the system is decomposed into the two independent 

factors. This is a discrete-time example for the work decomposition property in the queur 

with generalized vacations [Boxm89] . 

5.4 Waiting Times 

In this section, we first. consider f he "vaitiug time and tlw sojourn tim<' of a supcrcustomrr, 

where each batch of customers who move to the second qurue at t hr same time is called 

a supercustomcr. Next W<' consid0r the waiting time of an individual customer. 

5 .4 .1 W ait ing T ime of a Supercustomer 

In this subsection, we consider the waiting time and the sojourn Lime of asupercustomcr in 

the second queue. Note here Lhat iL is possible that there is no individnal customer in thr 

first. queue when the gate opens. V1/e regard such a case as an arrival of a supcrcustomcr 

with zero service time at the second queue. LcL H1., dcnot.0 a random variabk represrnting 

the waiting t.ime of a supcrcustorner. We define Ws(z) as the PGF for W .•. Wr then have 

the following theorem. 

THEOREM 5.11.1: The PGF !Vs(z) is given by 

lV5 (z) = G (1) L(O, z) + (z- l)X (l• z) . (5.25) 

PROOF': It is clear that 
M 

H~.(z) = L g(k)L(k, z) . (5.26) 
k==l 

From (5.9), (5.13) and (5.26), (5.25) immediately follows. • 
Next we consider the sojourn t ime of a snpercusLomcr. L0t. fl s dcnotr a random variable 

representing the sojourn Lime of a supercustomcr. We deJinc Rs(z) as the PGF for Rs· 

We then have the following theorem. 
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TIIEOfiEM 5.4.2: 

R_.(z) = qo, z). (5.27) 

Prwor: Ohscn·c that t h<' sojourn tim<' of a sup<'r-customcr is identical to I h<' amount 

of the work in t h<' first slot. ( 5. 27) immcdiat <'ly follows. • 

flf'mm·k 5.4.1: Notr ll<'r<' that R5 (z) is not givrn by th<' product of H ~~(z) and t.hc PGF 

(.'(A(z)) for tlw sNvin· I ittH'S of supncust.omrrs, since the waiting tim<'s and l.h<' service 

I i rrH's of su prrcnst.umNs <H<' drpc·rHl<'nt. 

/l(•uwr·k .5.4.2: Afl<'r somr algebra with (5.11), {5.21), {5.25) and {5.27), W<' have the 

following r<'lationship among I h<' amount of thr work in the second qll<'ll<', the waiting 

tinw and th<' sojouru tim<' of a supercustomrr: 

1 1 1\'.~(z) - n.~(z) 
1- A (l) +A (l)z Gl(l)J\1(1)(1- z) (5.28) 

Not<• I hat (5.28) can also h<' dNiv<'d from I h<• rquality of the virtual drlay and attained 

waiting t imc distribution (sc<', for example, l~liya92 , Saka90, S<'ng89]). 

5 .4.2 Wait ing Time of a Custom er 

111 this suhs<'ction, W<' coJisidN the waiting time of an individual custom<'l's. We first 

dNivc• t.hc PGF for the tot.al waiting t.ime of a randomly chosen individual customer in 

t h<' syst <'Ill. Let '"Ynk d<'notr t h<' joint probability that a randomly chosen ('liSt omcr b<'longs 

to I he· snp<'rcustomer who arrives to the second queue in t h<' kth slot (k = J, 2, ... , 1\1) and 

l><'longs to the batch which arrive's in the nth (11 - l , ... , k) slot. \\ie call this customer 

( rcsp. this supNcust onu•r) a t aggrd customer ( r<'sp. a I agged supercustomrr). It follows 

t.hat. 
g(k) 

'"YIIk- G'(l) (k=l, ... ,l\1,11=1, ... ,k). (5.29) 

\Vc define F(k, z) as the PGF for Lhr amount of the work in the second quctt<' sern by the 

tagg<•d sup<'rcustomN arriving in the kth slot (i.~ .• the waiting time of the supcrcustomer). 

ll follows that 

}'(k ) L(k -l,z)- L(k -1,0) ( 
, , z = + L k- 1, 0) = L(k, z) 

z (k = 1, ... '1\f). (5.30) 

Furthermore, W<' defin<' D(n, z) as the PGF for a t.imr interval from the lwginning of the 

service of the Ji.rst cust.ornrr of t.he tagged sup<'rcust.omrr arriving in the Hlr slot to the 
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beginning of t lw sNvic<' of the t agg<'d cust onl('r (who has a rri vrd i 11 lll<' 11th slot.)· B.\' 

using the r<'su lt.s iu batch a.rriva]s, wr have 

11 1 I - A(z) ) 
J) ( n, z) = (A ( z)) D1 ( 1 

)(l _ C ( z)) ( n = l, ... , k . (•>.:31) 

Let wp> (rcsp. \ rj2>) denote a random variable rrprcs<'nl ing th~ \\'ailing time of a ran 

domly chosen custom<'!' in the first qu<'ue {resp. in the srcond queu<'). 0Jote her<' that 

\V(I ) and W(2) ar<' d<'pendcnt. \V<' drfin<' H' (z1, z2) as t.hr joint PGF for t.hc waiting times 
c (' 

of a randomly chos<'n customer in t.hc• first queue and in t.h<' sc·c·orHl qurttr: 

6 [ II'( I) 11'(2
)] ll ' ( z 1 , z2 ) - E z 1 c Z2 c · (G.32) 

\\'e then hav<' th<' following theorem. 

THEORE~t 5.1.3: 

PROOF: It follows that 

M k 

\\ 'r(z 1,z2) = LL '"YukF(k,zz)D(11,Zz)z~-u 
k=ln-1 

From (5.9), (5.1 0), (::>.13) and (5.3 1), {5.:3:3) immrcliately follows. • 
We prcsrnt a corollary which i111mediatcly follows from TIH·or<'lll 5.4.3. Lcl W e 

lri/(1) + l V(2) cl<'llut.<' a random variahl<' H'(>r<'seu ting t hr LotaJ wai t.i ng t.i me of a mndomly 

ch~sen cu:LomN in Lhc system. We d<'finc W,.(z), Wcr (z) and I \'r2(z) as the PGFs for Wn 

H/( 1) and l\f (2) resp<'cl.ively. 
c r ' 

CoROLLARY 5.4.1: The PGFs Wc~ (z), w,.2(z) and HAz) (L1'(! _qivf'n by 

1 - G(z) 
G1 

( 1) ( 1 - z) ' 

Wrz(z) = G'(l)!JI(I)\1- C(z)) [ws(z)- /7.,(z)], 
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(5.35) 

(5.36) 



(5.37) 

r·espertivrly, where 

'( ) "( )) z- 1 1 - A(z) 
lV~>(z) = (1- B 1 C 1 z- A(z) B'(1)(1- C(z))' 

(5.38) 

and Gidte(z) is gwen in (5.24}. 

PROOF: LeUing z2 = 1, z1 = 1 and z1 = z2 = z in (5.34) and using (5.27) and (5.25), 

we obtain (5.35), (5.3G) and (5.37), respectively. • 

Remark 5.J,. 3: 

1. M'l,(z) denoLrs the PGF for t,hc waiting times of customers in the corresponding 

BDP /G/1 queue without gates, and Gidtr(z) denotes the PGF for the backward 

recurrence time of the gate opening interval given that the server is idle. This is 

a discrete-time example of the waiting-time decomposition property in the queue 

with generalized vacations !Fuhr85]. 

2. After some algebra with (5.28) and (5.36), we have the following relationship be

tween the amount of the work in the second queue and the waiting time of an 

individual customer in the second queue: 

5.5 

(5.39) 

Note that (5.39) can also be derived from the equality of the virtual delay and 

attained waiting time clistribulion (sec, for example, !Miya92, Saka90, Seng89]). 

Number of Individual Customers 

In this section, we consider the PGF for the number of individual customers in the system. 

We first consider the number of individual customers in the system immediately after 

departures. Let Qo(z) denote the PGF for the number of customers immediately after 

the departure of the tagged customer. Those customers arc classified into two types. One 

includes customers who arrive to the system in the same batch as the departing customer. 

The other includes customers who arrive to the system during the sojourn time of the 

departing customer. To obtain QD(z), we need the following lemma. Let Rc(z, w) denote 

the joint PGF for t.hc sojourn t.imc of a randomly chosen customer (we call this tagged 
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customer hereafter) and the numbPr of individual custonH'rs who arrive iu the same slot 

as the taggPd customer and arc served after the tagged customer. 

Lemma 5.5.1: The joil1t PGF Rc(z, w) is gi\·en by 

where 

R 1J(1u)- A(z) 
c(z, w) = R1 (z) B'(l)(w _ C(z)) C(z), 

R
1
(z) = z -1 X(1,z) 

z- A(z) G'(1) . 

(5.40) 

(5.41) 

PROOF: To obtain Rc(z, tv), we divide the sojourn time of the tagged customrr into 

three intervals: (1) the waitiug time of the batch of customers who arrin' to the system 

in the same slot as the tagged custowcr, (2) the service times of customers who arriv<' 

in the same slot as the tagged customer and arc served before the tagged customer, and 

(3) the service time of the tagged customer, whose PGF is given by C(z). Note here that 

those three intervals arc mutually independent. Also note that the sum of the first. two 

intervals is equivalent to the waiting time of the La,ggE>d customer, whose PGF is given in 

(5.37). It is easy to sec from (5.37) that the PGF R 1(z) for the first intNval is givc>n by 

Rt(z)= z-1 X(l,z) 
z- A(z) G'(J) ' 

since the PGF R2(z) for the second interval is given by 

1 - A(z) 
R2(z) = B'(1)(1 - C(z)). 

(5.42) 

(5.43) 

Now we are ready to derive Rc(z, w). Note that the length of t.hc second interval and thr 

number of customers who arrive in the same slot as the tagged customer and arc served 

after the tagged customer arc dependent. The joint PGF for the second interval and the 

number of such customers is given by 

B(w) - A(z) 
fl'(l)(w- C(z)) · 

Therefore we obtain (5.40) . 

Now we have the fol lowing theorem. 

THEOREM 5.5.1: The PGF Q0 (z) i.s given by 

1 - B(z) A 

Qo(z) = B'(1)(l _ z) Qb(z)Gidtr(B(z)), 
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(5.44) 

• 

(5.45) 



( 
_(1-A'( I))(z l)C'(IJ(z)) 

Q11 z)- z- C(IJ(z)) (5.46) 

rmrl C:uur(z) t.'i gwPrl m (5.24}. 

PHOOF: Noting QD(z) Ur(D(z), z) and Lemma 5.!1.1, (5.45) imnwdiatcly follows. • 

NC'xt W<' considC'r th<' PCF Q(z) forth~ numhN of custom<'rs in th<' sysl<'m. 

T1monEM 5.5.2: Thr• PGfi' Q(z) is given by 

(5.47) 

PHOOF: First W<' consider t.hc PGF QA(z) for the' lllllllb<'r of customers immediately 

h<'for<' arrivals. Note that QA(z) and QD(z) arc rrlat<'d by [Faki91] 

l - B(z) 
/3'(1)(1 - z) QA(z) QJ>(z). (5.48) 

Th<'rdor<' we• hav<' 

(5.49) 

Si II<'<' custornC'rs arrive' I o I h<' system according to I h<' batch Bernoulli proc<'ss, Q( z) IS 

idc'ntical to QA(z). ThNC'for<' W<' obtain (5.47). • 

R('111aTk 5.5.1: CJ11(z) <knotC's the PGF for the ntunbrr of customers in t.h<' corr<'sponding 

f3BP/G/1 queue wilhoHI. gate's and Gidte(B(z)) denotes th<' PGF for thr numbN of indi

vidual customers in th<' systC'm given that th<' SC'rvN is idle. This decomposition result 

is a disrr<'t<'-timc <'Xamplc• of the' general r<'stdt for t.h<' continuous-time' qu<'tl<' given in 

[Fuhr85J. 

5.6 Numerical Examples 

J n I his section, we provi<k some' numerical exam pl<'s of the analytical rC'SU Its. Fig. 5.1 

shows th<' mean waiting times of individual cuslonwrs for various distributions of the 

gal<' opening intervals as a function of the nwan numbN of arrivals in a slot in the 

following settings: (1) the nHmber of arrivals in a slot is geometrically distributed, (2) 

the service times of individ11al customers are dctcrmiiJistic and equal to one slot., and (3) 

t h<• mean gat<' opening intNval is cqnal to fiv<' slots. In t.hc deterministic dist.ribntion of 

the gate Op<'ning intnvals, W<' srt g(5) = 1, in the• binomial distribution, w<' set g(n) = 
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(8!/{(n- 1)!(9-n)!} )(0.5)8 for n = 1, ... , 9, in the uniform distribution,\\'<' set g(n)- 1/9 

for n = 1, ... , 9, and in the bimodal distribution, W<' set g( I) - g(9) - 0.5. In Fig. 5.1, t.h<• 

\'ariancc F of I lw gate opening i ntcrvals is also shown. \ \'r ohs<'n'c I hal the distribution 

of the gate opcni ng i nlcrvals affects t h<' mNlll waiting time of individual customNs and 

the mean waiting time increase's with t.hr incrC'ase of the' variance of the gate opening 

intcn·als. 

5.7 Conclusion 

In this chapt.cr, W<' consider discrete-tim<' l313P/G/1 qu<'ucs wit.h a gal<', where thr int<'I" 

vals betwC'cll succ·C'ssi vc openings of the gate arC' hou nd<'d, and i ndC'pcndC'nt and idcnt.ically 

distributNI. \ \ '<' d<'rivc the joint PGFs for l.h<' amounts of lh<' stationary work. a11d the• 

waiting time of an individual custonH'r in tlw first queuC' a11d I he S<'<'Oild queue. \Ye also 

derived the PGFs for the sojourn time and the waiting I im<' of a supercustomcr, and 

the number of individual customers in th<' system . FurthNmor<', W<' provide nnmNical 

examples and ohs<'rve the effect of the distribution of thr gal.<' oprning interval on the 

mean waiting I irnrs of a cnstomN. 
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Figure 5.1: Mean Waiting Times 
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Chapter 6 

Concluding Remarks 

6 .1 Summary of R esults 

In this dissertation, we extensively studied discrete-time queues with correlated arrivals. 

In particular, we considered two types of mechanisms to bring correlations in to the arrival 

and the service processes: Markov modulation and gating. For the former, the summary 

of the results is described below . 

1. We analyzed the generalized SBBP/G/1 queues. In the model, the arrival and the 

service processes were sem i-Markovian in the sense that th<'ir distributions depended 

not only on the state of the alternating reurwal process in t.he current slot but. also 

on the state in the next slot .. We derived the PGFs for the amount of work iu t.hr 

system and the waiting time of a customer. We also showed applications of the 

analytical results to important queueing systems. 

2. We considered the loss probability approximations in DBMAP /D/1/K qurucs. Wr 

proposed the approximate formulas which were given in terms of the tail distribu

tion of the queue length in the corresponding infinite-buffer queue. The approximate 

formulas were constructed in such a way that they became exact for any indepen

dent arrival process. Vve extensively examined the accuracy of the approximations 

through numerical experiments. We observed that, when the correlation in arrivals 

was not so strong, the approximations were surprisingly accurate. 

For t.he latter, the summary of the results is described below. 

1. We analyzed discrete-time BBP /G/1 queues with a gate, where the intervals be

tween successive openings of the gate were geometrically dist.ributrd. We derived 

the following joint PGFs: 

• joint PGF for t.he numbers of customers iu the first queue and the second queue 

at the beginning of a randomly chosen slot 
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• joint PGF for the amounts of work in tll<' first queue and the srrond queue at 

the brgiuning of a ralldornly rhoscn slot. 

• joint. PGF for lh<' waiting times of individual customers in the first queue and 

LIH' srcond queue 

We also derivrd th<' PGF for the sojourn timr and th<' waiting time of a super

custorn<'r. TIH' dff'ct of the corn•lat.ions ou the performance was discussed through 

numerical exampks. 

2. WC' nnalyzed disrrclc-timc DBP/G/1 queues with a gat<', where the int.crvals l>c

twcrn successive openings of the gate were boundrd, and indcpmclcnt and identically 

clistribut.rd. We derived the joint. PGFs for the amounts of the stationary work, and 

the waiting times of an individual customer in the first queue and the second queue. 

We also obtained the PGFs for the sojourn time and the waiting t ime of a super

customer, and the numbrr of individual customers in the system. We observed the 

ciT(,ct of th<' dist.ri bu Lion of the gate opening interval on the mean waiting times of 

a cust.omer through numerical examples. 

6.2 Future R esearch Topics 

In this dissertation, the author considered the two type's of specific mechanisms to bring 

correlation into thr arrival and the service processes, i. e., Markov modulation and gat

ing. Also, the studies of queues with correlated arrivals by other approaches should be 

r.onsidcred. T he author then suggests them as futmc research topics. 

1. Rrcrnt measur('mC'nt studies of the traffic data from networks and services such as 

ISDN packet networks, Ethemet LANs and Variable Bit Rate (VBR) video sources 

have indicated how complex t.he traffic patterns can be. The st.udics convincingly 

demonstrate the presence of features such as self similarity and fractal dimensions 

in the traffic patterns. For modeling the traffic which has those features, fracLal 

processes may be mor<' suitable than conventional stochast.ic processes. Thus, fractal 

queueing theory should b<' developed. 

2. Contrary to th<' framework in this dissertation, more grueral framework without 

specifying the mechanisms has been studi<'d. It. uses the clements of the more 

grneral methods of point processes. For example, Palm-martingale framework tries 

to givr a unified view when only very weak assumptions arc made on the input to 

a quf'ucing system. VIc n<'rd to show further usrfulncss of the framework. 
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Appendix A 

Determination of the Unknown 
Constants 

In order to determine t.he uuknowu constants x; (j) 's and xf* (j) 's, we focus our at.teution 

on (2.19) and (2.20). They contain the functions Gi(Ai1(z)/ z) and Xi(Aii(z)/ z). VIe shall 

derive expressions for these functions under the assumption that the Gi(z)'s arc rational 

functions. 

Using the formulas (2.9), (2.10) and (2.22), we obtain the following expressions for 

i = 1, 2: 

X; (An(z)) = fli(z)Xt(z) + z111·Xt"(z) 
z zM•fli(z) ' 

(A.l) 

where 
M; N, 

Pi(z) = 'L>nil{Aii(z)}1zM, - L, Qi(z) = L11ij{Aii(z)}izN. - j, (A.2) 
l = l j = l 

M; N, 

Xt(z) = L X:(l){Aii(z)} 1z111
i 

1 X ••( ) ~ "'"'(.){A ( )}j N, - j i z = L..t xi .7 . lt z z , (A.3) 
l=l j-1 

!(; 

rri(z) = IT {z - 0'ikAii(z)}W;k. (A.4) 
k= l 

Substituting (A.1) into (2.19), we obt.ain t.he following expression for £ 1 (0, z): 

L( )
_ LN1(z) 

1 0, z - - ' 
Lu(z) 

(A.S) 

where 

(z -1) [A,z(z)A21 (z){I1 2(z)P2 (z) + zM2Q2(z)}{l1 1 (z)X~(z) + zM•X~"(z)} 
+zM1 A II (z )A2J (z )ITt (z){D2(z )X;(z) + ZM

2 x;· (z)}] ) (A. G) 

Lo(z) zM 1 +M2 A11 ( z)A22(z)I1t (z)Dz(z) 

-A 12 (z)A21 (z){I1 1 (z)P1 (z) + zM•Q, (z)} {flz(z)P2(z) + ZM
2 Qz(z)}. (A.7) 
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These expressions C'nabiC' us to d<>t<>rmin<' the unknown constants .r;(j)'s and <"(j)'s 

in the functions X,•(z) and Xt•(z). Whenever the condition p < J (s<'c (2.7)) for the 

<'Xistcncc• of thc- stochastic equilibrium is satisfiC'd, th<' dC'nominator Lf)(z) has exactly 

1\f, ~ l\f2 -f N1 t N2 zNos iusid<' th<' unit disk oft he• c·ompl<'x plane•, Oil<' of which equals 

unity. This can h<' shown hy Rourhc''s theorem (S<'<' 1Ishi93a) aud AppC'ndix D.1). Due to 

th<' shottagc• of spar<', wC' omit the proof. Sine<' L 1(0,z) is a PGF, it has no pole's inside 

tltt> unit. diRk. Tints t.hc· Af1 -t 1\/2 + N 1 + N2 zrros of t.hC' denominator must be zeros of 

thr lllllll<'rator LN 1(z) fl.'i WC'll. This condition provid<'R liR with Af1 + .1\12 I N 1 + N2 - 1 

lirwa.r cq ua I. ions for t h<' llllkuowns :ci (j) 's and :r;* (.i)'s, (no cq u nt.ion is obtained for the 

zrro z- l ). Furtlt<'t'lltor<' wr havr lhe following equatiou from t.lte normaliziug equation 

L 1(0, I)- 1: 

(A.8) 

Thus, if th<· co<>ffici<'ut matrix associated with til<' Af1 + A/2 ._ N1 -f N2 equations for 

lh<' unknowns .r;(J)'s and .r;•(j)'s has rank .1\/1 + J\f2 + N 1 + N2 , t h<' unknown constants 

X:(j)'s and .r; ' (J)'s arC' d<'IC'rmined, and hence the X,(z)'s. It. is \'cry hard to show that. 

However, \\'<'claim that W<' can obtain the unknowns by solving i\11 + 1U2 + N 1 + N2 linear 

equations in most applications (Sec Appendix 0). 
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Appendix B 

PROOF OF THEOREM 3.3.1 

First. we <'<>nsidN th<' rarly arrival model. Stllllllling up th<' both sidrs of (3.6) ami (3.7), 

W<' obtain 

which implies 

N 
~ (r) 
L Yk 

N 
~ (c) 
L Yk U, 

k-0 k () 

N 
~ Y(r) = 7r 
L k • 
k 0 

(I3.1) 

(8.2) 

since L,f=o y~~'>e = 1. Thus (3.6) and (B.2) compl<'l<'ly d~t~rmine the Ykr>. Suppose' 

Ykr) = c<">xk (0 ~ k ~ N). Siner (3.6) and (:3.12) tak<' t h<' same form, y1") = c<r>xk 

sat isfirs (3.6). Whrn the number of <'ttstomNs arriving to t h<' syst<'m is i.i.d., Xk is 

expressed as xk = J'A- 7r with somr constant. 1'k· Thrn•fore y r> - c<r>xk satisfies (8.2), 

t.oo. As a rc•sn ll, y~c) = c<~'> xk (0 ~ k ~ N) brcont<'s c•xact. when ti1C' number of cuslomNs 

arriviug to lhe syslrm is i.i.d .. 

Next we consid<'f the lat.e arrival model. Summing up the both sidC's of (3.8), (3.9) and 

(3.10), we obtain 

whi<'h again implies 

N 
~ {I) 
L Yk 
k-0 

N 

(13.3) 

L Yr>- 7r , (BA) 
k=O 

since L,f 0 y r>e = 1. Thus (3.8), (3.10) and (B.4) c·o11tplctely dc•termine the y r>. Suppose 

y~>- c<l) x k (0 ~ k ~ N- 1). Since (3.8) and (3.12) takr tlw same form, y~> = c(l>xk 

salisfiC's (3.8). When the number of cuslomrrs arriving loth<' syst<'m is i.i.d., Xk (0 ~ k ~ 

N) is expressed as x k = xk1r with some constant. ·~'A-· Furth<'rmorr, for any independent 

arrival process, we have B N = BN U , where BN is sont<' constaul. Therefore we have 

(l3.G) 
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wh<'r<' W<' usc 1rU = 1r . As a n•sult, y~> cU>xk (0 < k :< N- I) aud y <)J cCl>xoB N 

become exact wlwn the ntunh<•r of customers arriving to the syst~m is i.i.d .. 
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Appendix C 

Proofs in Chapter 4 

C.l Proof of Theorem 4 .3 .1 

By definition, Qv(z1, z2 ) satisfies 

(C'.l ) 

Thus Qv(z1,z2 ) is obtained once W<' have P(z 11 z2 ). Using the lll<'moryl<'ss property of 

the gate opening intervals, W<' have 

(C.2) 

Let } '(I) denote a random variabl<' r<'pn•srnting the 1111 rn b<'r of iud i vidual cust omcrs who 

arrive and remain in th<' first queue during th<' scrvic<' tim<' of a ('llstomN whose sNvice 

starts immrdiat<'ly after the randomly chosen imbedded point.. Also, I <'I, } '(Z) d<'not.<' a 

random variable represrnting the ntunber of individual customers who arrivc and movr 

to the second quruc during tlH' service ti111c. Not<' her<' that)'(') and y(z) arr d<·pcndcnt. 

We define a random variablr Tc as 

T.· ~ { 1 if the gate opens at. least once during the sNvicc time, 
c. 0 if the gal<' docs not open during the servin• time. 

(C'.3) 

Note here that y(z) = 0 if Tc; 0. We define II (z 11 z2) as 

(C.4) 

To derive au expression for JJ (z1, z2), W<' suppose that the srrvicr tin1c of a randomly 

chosen customer is r (l ~ r < oo) and the gate last opens in thr ktb (1 ~ k ~ r) slot 

during the service time of thr customer. H follows that 

00 'T 

II(z~>z2) = 2: Pr{C = r} 2::(1 - 'Y)'/ 1(B(z,))k- 1(/J(z2)r k+l 

r=l k - l 

(l - 'Y)J3(z2 ) [r(B(zz))- C('YIJ(zt))]. 
B(z2) - 'YB(zl) 

(C'.5) 
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Furthr.rmorc, wc> defiru• O(z1, z2 ) a~ 

A. L' [ } '(1) }· (2) 
1 

] [ }" (I) }" (2) ] 0( z1, z2 ) D z1 z2 {1(: o} 4 E z , z2 1 {'/(; 1} 

C('YB(z1 )) I H(z,, z2). (C.6) 

To obtain P(z1,z2), wc> now con~idN three c•xdusivr c•vrnt.s: 

• Thr prrcC'ding imhC'ddcd point is of type• 1, thrrr rxists at lrast one customer in the 

sc•corul <(II<'IIC at. lhr prC'c·Nl i ng i m hc>ddcd point and the• gat.r cloc•s not. open during 

thr srrvin• tinw of the customer who is sNvrd immrdiat<'ly after thr imbrddcd 

. t . {T - J \ '(2l 0 7' - (l} J>OIIl I I.C., p , , \ > ' (;- , 

• '1 h<' pr<'<:<'ding imlwdd<'d point is of type 1, th<>r<' rxists at least on<' custom<'r in 

t.h<' ~<'COJI(I qii<'U(' at t h<' JH"<'C<'ding imb<'dded point and th<' gal<' OJ><'IIS during th<• 

sc>rvin• t.i Ill<' of t h<' customer who is sNvcd i m rncdiaL<'I.Y after the inr beddrd point, 

i.<'., {Tp = l, X(2l > o, T(: = l}, 

• The prcrrding irnbrdd<'d point is of Lypr 2 and t.ll<'r<' <>xists at. l<'ast on<' custonrrr in 

t.he S<'cond quruc, i.<'., {T, = 2, X(2
) > 0}. 

From the above obsNvation, wr obtain 

I'(z1, z2 ) - [ P (z1, z2 ) - P(z1, 0)] 2_C('y B(z1 )) 
Z2 

I [P(z2,z2)- P(z2,0)]2_ II (z,,z2 ) 1- [Q(z2) 
Z2 

Srt.ting z, = z2 in (C.7) and using (C.2), J! (z2, z2) = C(B(z2)) - C('YB(z2)) and O(z2 , z2) = 
C(B(z2 )), W<' have 

C(B(z2)) ( ) ( ) l)(z2, z2) = z
2 

C(B(z
2
)) G(B(z2))- 1 P (z2, 0) + Q(O) . (C.8) 

Using (4.4), (C.2) and (C'.8) in (C.7), W<' obtain 

[ z2 C('y JJ(zr))] P( z1, z2 ) - C('y B(z1)) [ P(z2 , 0) - P( z1, 0)] 

+ [ C ( ;( Z
2
)) 0 ( Z 1 , Z2) - C ( ~ 8 ( Z 1 ) ) l 

C(B(z2)) B(z2) - 1 [ ] 
. z2 - C(B(z2)) 1 - ~B(z2 ) P(z2 , O) 1 Q(O) ' (C.g) 

from which and (C.l), (4.8) immediately follows. 
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C.2 Proof of Theore m 4.3.2 

Iterating (4.18), we obtain for lzrl ~ l and ,\{ 2 0 

Ill 

w(zt) = II <t>(och>czl))'v(oc\l+l)(z,)). (C.lO) 
h-0 

\Vc now nc·rd the following l<•mma. 

Lemma C.2.1: 

1. The <'quation cS(z 1) = z1 (lzrl ~ 1) has a unique solution z; and z; is real. 

3. Ilf 0 ¢(cSC")(zJ)) con\·erg<'S for all z1 with lztl ~ l. 

The proof of Lemma C.2.1 is giv<>n in Appendix C.3. Let.tiug !If -too in (C.lO), th<•n 

Lemma C.2.1 leads to t.hr following expression for \fl (z1 ): 

00 

w(z,) =II 4>(b<")(zi))wCzn. (C.ll) 
h-0 

Thus (C. J 1) brcomrs 

(C.J2) 

Letting z 1 = l in (C. l2), \\'<'obtain 

w(z;) = -(1 
) w(J ). 

(\' ] 
(C.n) 

Substituting (C.13) into (C.12) l<•ads t.o 

w(zt) = (~~~~; w( 1 ). 

Also, letting z2 = l in (C.8), we have 

q,( ) = 1 - B'(J)C'(l)( _ ) 
1 lJ'(l) I ~ . (C. I G) 

(4.19) immediately follows from (C.l4) and (C.lG). 
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C.3 Proof of Lemma C.2.1 

Using (t1.13), wr then find that. b(z1 ) = z1 if and only if ~('YB(zt)) = ')'fl( zJ) and that 

~(1•>(--yB(z 1 )) = 'YJJ (cSU•l(z1)) (lzd::; l,h- 1,2, ... ), wiH'H' 

~(z) ~ ')'A(z), 

~(o)(z) ~ z, 

~<"l(z) ~ ~(~(h •>(z)) (h = l , 2, ... ). 

(C.16) 

(C.17) 

(C.l8) 

From lh<' r<'snlts in [Kawa93], we• know that thr equation ~(w) = w, lwl ::; 1 has a uniqu<' 

solution w", that 0::; ut::; 1 and that limM , 00 ~(Ml(w) = w· for all w with lwl::; 1. As 

II'/J(z1)1 ::; L for all z1 wit It lz.J < 1, we conclude that the <'quat ion 6(zt) Zt, lz.J ::; 1 
has a uniqtt<' solution z~ C(w'), z; is n•al, and that limi\1 .00 o<111>(zt) = z~ for all Zt 

with lztl ::; 1. 

Using ( 4.1 7), wr hav<' 

(C.19) 

Thus W<' obtain 

(C.20) 

From the throry of infinitr products, t be infinit.<' product. 

oo ( I - -y) B(o<h+ll(zt)) 
llo 13(o<h 1-l)(zt))- -yB (b(h)(z1)) 

(C.21) 

converge's if and only if the infiuite sum 

(C.22) 

converges. For some r<'al 0"1 (0 < u 1 ::; 1), we have 

lo<,. t t>(zt) - o<">(zt )I = lo<h)(zl) o<h t>(zt )llo'(O"J )I. (C.23) 

Since l6'(ut)l::; 16' (1)1 = -yl3' (1)C'(r), we obtain 

lb(lt+tl(zt)- o<11>(zt)l::; -yfl' (1)C'('Y)Io<h>(zt) - oUt 1)(z1)1. (C.24) 

Similarly, wr have for som<' real 0"2 (0 ::; rJ2 ::; 1), 

(C.25) 
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Sine<' IB'(0"2)I < 1, we oht ain 

I B(cS{IH 1l(zt )) B(b(lt)(z1 ))I < jcS<" 1 t)(z 1)- b(h)( :> 1 )1. (C.2G) 

From (C.26), it followl'i that 

I 
!3(6(/H l)(z.)) B(b(h)(z. )) I I /)(hll)(z.)- o(h)(z.) I 

fl (6U•-1 1l(z.))- r B (b(h)(z 1)) < B(cS<htt)(z1))- 'Y B(b<hl(z1)). 
(C.27) 

Vl<' define l'n as 

(C.2~) 

Using (C.24), we have 

l~l _ l6("' ')(zJ) _ o<,·>(zJ) IJ(o<">(zt)) _ " JJ (b< 11 1l(zJ)) I 
Xn o(n)(zt) l)(n l)(zt) B (b(IH l)(zt)) --r !3(6(utl)(zt)) 

< I B (tS(n-il)(zi))- ')'13(o<">(z1)) I 
B(o<n+2l(z1))- ')'13(8<111 1l(z1)) • 

(C.29) 

Since ')'B'(l)C'('Y) < 1 and 

hm = l. 
. I B(o<n+tl(z1))- 13(b<">(zt)) I 

n-oo /J(o<n~o2)(zt )) - B(o<n+•>(zt )) 
(C.30) 

the infinite sum 
oo I o<h Hl(zt) h{hl(zt) I 

1~ IJ (cS(h 1 1l(zt))- ')'B(b<11>(zt)) 
(c.:H) 

convNgcs, and thN<'forc• th<' infinite product 
00 

IT </>(b(hl(zt)) (C'.32) 
It 0 

also convrrges. 

C.4 Proof of Corollary 4.3.1 

Fi rsL we note l hat 

O(z, z) - C(JJ(z)). (C.:33) 

Furthermore, from (4.9) and (C.1G), we hav<' 

1'(1, 0) + Q(O) = 1 - B'(1)C'( l ) ( 
1 

_ ). 
1'(1, J) fl' ( l) ')' 

(C.3tl) 

Lett.ing z1 = z2 = z, and using (C.33) and (C.34) in ( t1.8) , W<' obtain 

Qo(z,z) = (z - l)C(fl(z))(1 B'(l )C'( l)) /3( z) - 1 
z- C(B(z)) B'(l )(z- I ) 

1 - 'Y P(z, 0) + Q(O) 
1 --yB(z) P (I,O) 1-Q(O)' 

(C.35) 

from which, (4.24) immrdiat<'ly follows. 
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C.5 Proof of Lemma 4 .3 .1 

We ohsrrv<' t.h<' imhC'duC'd point pr<'cC'ding t.hC' sNvice tim<' of a randomly rhos<'n customN. 

\ \'0 th<'n consider t.wo <'\'Cnt s: 

• Th<' imheddC'd point is of typ<' 1 and thNc 0xists at least one rustom<'f in th<' Sf'cond 

qu<'UC' at. tlH' imbC'dclrd point, i.<'., {'J'1, = I , X <2> > 0}, 

• The illlhC'clc!C'd point is of typr 2 and t h<'r<' <•xists at. l<•ast one custontrr in I he second 

quetu' at thC' imhC'ddrd point., i.C'., {7'J> = 2, X (2
) > 0}. 

From tlw above obsNvation and usinp, (4.12), (C. I). (C'.2) and (C.8), it follows that 

Q(z1,z2 ) - (P(z1,z2 )-P(z.,O)+Q(z2 )-Q(O)]/P(1.1) 

- [J>(z1, z2) + l'(z2. 0)- P(z1, 0) 

+ { G ( IJ ( z2 ) ) 1 }{ P ( z2 , 0) 1- Q ( 0) } ] / P ( 1 , 1 ) 

z2 [ O(z1,z2) } )] 
z

2 
_ C (r B ( z 

1
)) Q r> ( z2, 0) - Q f) ( z 1 , 0) + { G' ( B ( z

2
)) - 1 Q o ( z 2, z2 

-t _z2_Qn(zz z2) (C.3G) 
C ( 13 ( z2)) ' ' 

from which and (C.G), (4.27) imm<>diatcly follows. 

C.6 Proof of Theorem 4.3.3 

Since the S<'rvrr is busy with probability JJ'(1)C'(l), wr hav<' 

(C.37) 

We relate Qlllb1tsy(z 1, z2) with CJ(z1, z2) . To do so, we drfine G' and Gas random variables 

which rrprrsrnt thr backward rrcurrence time of the s0rvice time of an individual customer 

and that of I he gaL<' opC'IIing intrrval , resp<'ctiv<'ly. Wr then considN two events: 

• Th<> s0rver is husy and thC' gale• op<'n<'d at least once during the backward recurrence 

lime of the current servir<', i.e., {T.s- = 1, C > G}, 

• The SN\'Cr is busy and thr gatr did nol ope11 dmi11g thr backward rrcurrcnce time 

of Lhr current servir<', i.<'., {T.s = 1, G' ::; G'}. 

Let . ..Y·(t) denote a random variablr r<'J>resenLing t.he lllllllbrr of individual customers who 

arrive and r<'main in th<' first queue durinp, th<> backward rrrm-rcn<'<' timr of the service 

time of a cnstomN who is serv<'d in a nHldomlv rhosrn slot. Also, let ... R-<2) denote a 

90 

random ,·ariable rcpre'><'ntinp, I he lllllllbN of ind ivid ua I cust onH'r~ who arri\'(' and move 

to tit<' second queue duri11g t.hr ba<'kward n'ClllT<'IlC<' tim<> of th<' sNvi<'C' timr. 'vVr ddin<' 
fi( z1• z2 ) as 

(C.38) 

It thrn follows from an a.rgum<'nt similar to thr o11c for (C.5) that 

~ 00 l <'0 T I 

H(zl,zz) = L C'(l) L Pr{C = n} 2:::{1- rhk(JJ(zt))k(/3(z2)V k 

T I 71 T +I k=-0 
(C'.39) 

from which, we obtain ( 1.34). We then have 

Finally, using Corollary 4.3.1, L<'mi!Ja 4.3.2 and (4.30), we obtain 

from which, ( 4.32) follows. 

C.7 Proof of Lemma 4.4.1 

We define If(z1, z2 ,w) : 

(C.t12) 

From n,n argument. similar to t.h<' one for (C.5), it. follows I hat 

. ( ) ~ ~ ~ Pr{ C- n + 1} 11 r( ) k(IJ( ))k(B( ))r k 
Jl z1 , z2 , 'W = '~~ t:o C''(l) 'tU 1 - "( "( Zt Z'J. - , (CA3) 

which yields (4.42). By drfinilion and using (4.30), we hav<' 
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from which, (·1.40) imm('(liatcly follows. 

C.8 Proof of Theorem 4.4.1 

13y dcfiuition and usinp, (4.23) and L<•mma 1.4.1, ,,.<' hav<• 

l 
U(z1, zz) = B'( I )C''( I) C(z

2
) Q ,\llm.•y( C(z1 ), C(z2), z2) 

+(I - 13'(l)C'(1))Q,ql(111'(C(z1)) 

= B'( I )C''( I )C'(~2) [ Q( C(z2), C(z2)) fi ( C(z1 ), C(z2), z2) 

+ CJ ( C ( Z 
1 

) 
1 
(' ( Z

2
) ) Zz ( (' ( Z2) C ('Y A ( Z 1 ) ) ) l 

C'(l )( z2 - -y A( zl)) 

+( l _ D'(1)C''(1)) P(C(z1), 0) + Q(O) l - -y 
P( I, 0) + Q(O) l - -yA(zl) 

1 [ A = B' ( 1 ) C' ( l ) C ( z
2

) ll ( C ( z 1 ) , C ( z2), z2) 

z2 ( C ( z2 ) - C ('Y A ( z 1 ) ) ) l A 

+ C'( l )(z
2 

_ -yA(z,)) S(C(z1). C(z2)) Q((C'(z2), C(z2)) 

I Z2 + }] ( 1) \ ( ) { Q J) ( l ( Z2) , () ) - Q f) ( (' ( Z 1 ) , 0) } 
Z2- "'fl Zt 

+( I - 13'(1)C'( l ))Qo(C'(z,),C(zl)) 
Q IJb( C(zl)) 

= B' ( l )C'( I) C(~2 ) 0( C(z1 ), C(z2), z2)Q(( C(z2), C'(z2)) 

+ /J' ( l) __ z2A( ) {Qn (C(z2), 0)- Qo(C(zl), 0)} 
Z2- 'Y Z1 

+( l _ JJ' ( l )C''(l)) Qo(C(z1), C(z1)) (CAS) 
QIJb(C(z1)) • 

Note that 

(CA6) 

(4.44) immcdiately follows from the ahovr two equations. 
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C.9 Mean Waiting Time of Supercustomers 

We consider the mN\Il waiting time of supcrcustomcrs E[lt'5 ]. From ( 4.50), wc have 

E[l r .. ] - ~ ll's (z)l 
dz z=l 

- U'(L) - -
1 

A'(l) 
1 - )' 

Using Thcorcm 4.3.1, Corollary 4.4 and (C'.34), '''<' obtain 

U'(l) = 

Thus, we ha\'C 

\'( ) A"(l) 
I 

1 + 2(1- A'(1)) 

,
1 

no ¢'(6(n)(J))cS(n)'( L) 
I C (1) ];J ¢(o<n>(1)) I _'Y - 11'(1). 

1 'Y 

(CA7) 

(C. l8) 

E[ll'] = A"(l) + C'(1) f q'>'(o<n>(l))o<">' ( 1). (C.49) 
·• 2(1- A'( l )) n=O ¢(cS(n)( L)) 

C.lO Mean Waiting Times of Customers 

Y./e considcr th<' mran waiting t, imrs of individual cnst.omrrs E[IIY>J, E[lvp>] and E[IVr]· 

From ( 4.60), it follows that 

1 --y 
(C.50) 

From (4.61 ), we obtain 

- ~\Vc2(z)l dz z 

= A'~l ) U'(l) 
C"( L) 
2C''W - ~, 

(C.5 l ) 

where U'(l) is given in (C.48). r.1orcovcr, we have 

E[ll 'c] - E[W} 1>] + E[li'?>J 
1 C"(l ) 

- A'(l) U'(l)- 2C''(l) - 1. (C.52) 
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Appendix D 

Determination of the Unknown 
Values 

In ordn to cletcrminr th<' unknown valu<>s L(k, 0) (k = 0, 1, ... , "\1 - 1), \\'(' focus our 

attention on (5.12). \\'C' rrwril<' (5.12) as 

L 
0 

z = (z- I ) 2::~0 1 L(k, O)zk L,J' k 11 g(j)[A(z)]i zM j 

( ' ) z"'- L~~~ g(n)[A(z)]nzM -n 
(D.l) 

This <'Xprrssion enablr us to dPtcrminf' £(0,0), L(l,O), ... , L(A!- 1,0). \Vhcncvcr 

the condition A'(l) < 1 for thC' existence of the stochastic equilibrium is satisfied, the 

drnominator of (D.l) has cxactl.Y J\1 zeros inside thr unit disk of the compl<'X plane. one 

of which C'quals unity. Furthcrmorr, under somr additional condition, those zeros arE> all 

distinct. The proof is given in Appendix D.l. Since L(O, z) is a PGF, il has 110 poles inside 

LhC' unit disk. Thus M distinct zeros of the denominator must be 7.eros of t.hc numerator 

as W<'ll. This condition provid<•s us with M - 1 linear equations with resp<'cL to L(k, 0) 

( k - 0, 1, ... , !If - 1) (no equal ion is obtained for t hC' zero z = 1). Furl her more, we hav<' 

th<' Mlh rquation from lh<' normalizing condition (5.11), which yiE'lds 

,\[J 

L p(k)L(k, 0) = 1 - A'(l), (0.2) 
k 0 

where p(k) denotes thC' probability that a randomly chosen slot is the (k -t I )st slot and is 

giv<'n in (5.18). Note that. (0.2) implies that. t.he probability that. the server is idle (i.e., 

L:~1 
0

1 p(k)L(k, 0)) is gi\·en by 1 A'(J ). 

In a summary, the unknown constants L(k, 0) satisfy 

fo(zt) fl(z,) !At -1 (z,) L(O,O) 0 
fo(z2) !1 (z2) fM 1 (z2) !.~(1,0) 0 

(D.3) 
fu(zM - t) ft(ZM I) fr.t 1(zM 1) '-'(J\f - 2, 0) 0 

/o(l) f1 ( l) fM- 1(1) 1.~(1\1 - 1, 0) (' 
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where zi's (l = 1, ... , 11!- I) <knotr roots of th<' d<>nominntor of (D.l) which nrr not 

rqual to unity, c- G'(l){l- A;,(l) · A'(l)} and f~.:(z) (k- 0, ... , AI - 1) arc givrn by 

/II 

f~.:(z) = zk L g(n)A(ztzM- ". (D.'I) 
11 1.: +I 

It is very hard to show t hr uniqumrss oft hr solution L(k, 0) of (ILl), which can b<> accom

plished by showing I he drtrrminant of thr co<>flkient matrix in (D.3) is not rqual to zNo 

(see [Gail92]). lloW<'\'er, we can show the• lin<'ar independrncy of fk( z) (k = 0, ... , !If . 1), 

which implirs that. thr Lcbcsgur mrasurr oft hr sd. of 2rros oft hr d<>trrminanl oft he• co 

<'fficient matrix iu (D.3) is equal to 7-cro [Lr<·94] . ThE> proof of thr linrar ind<'prndrncy is 

given in Apprndix 0.2. Thus wr claim tlwt wr can obtain thr L{k,O) by sol\'ing (D.3) in 
most applications. 

D.l Zeros of the D enominator 

In this appendix, wr show that the drnolllinator of (0.1) i.~., 

S(z) ~ zi\1 
/If 

L g(n)[A(z)]" zi\1-" ( D.G) 
II I 

has exaclly ,\[ ZNOS inside thr 1111it disk oft he complex plan<', one• of which rquals unity 

when the inequality A'(l) < 1 holds. Thr proof is basrd on Bouche's th<>or<'m: If cl(z) 

and h(z) an• analytir functions of z msulf mul on a closfd cm1101a· C, and Jh(z)l < Jd(z)i 

on C, then d( z) and d ( z) - h( z) have t.he same rwmber· of zems iusi de• C. 

Let 

d(z) = ZM, 

AI 

h(z) = L g(n)(A(z))"zM n 

" I 

(O.G) 

(0.7) 

Then S(z) = cl(z) - h(z). Obviously, the functions d(z) and lt( z) are analytic iu a part 

of the complex plane. Let us rcwrit.<• h(z) as 

h(z) = z 111 G (A~z) ) , (0.8) 

by using (5.4). We srt z = ei0 (0 ~ 8 < 27r) for z on thr unit circlr. This yields 

Jd(z)l- 1, (0.9) 

ih(z)i = IG ((' jO A (fJ0))1 < 1 for all 0 # 0, (0.10) 
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because G(z) and A(z) arc PGFs. Hence, lh(z)l < ld(z)l for all z -:/= 1 on the unit circle. 

Let us choose the contour C so as to include z = 1 as an internal point, which is obviously 

a Zf'ro of S(z). In particular, we choose the contour Cas 

;::, 0 C = {z = ('J ;0 < (} < 27r} U limC~ , 
.<-•0 

(D.ll) 

where 

c f: ~ { z = 1 + £ej
00

; -~ < 11' < ~} (0.12) 

is a semicircle centered at. z = 1 with radius e: , outside the u11it circle. For z E C f; , let 

z = 1 + uJfl'. H follows t.hat. 

lh(z)l' ~ ~~ g(n){A(l + eei")}"(l + eei•)M-nl' 

- ~~ g(n){(l + A'(1)Hjo- + o(c:)t 

·{(1 + (M- n)c:ejo- + o(c:)}l
2 

11 + {M + G'(1)(A'(l) - l)}cejo + o(e:)l
2 

J + 2 { J\1 + G' (1) (A' ( 1) - 1)} E cos a + o( e:) (0.13) 

On the ot.her hand, we have 

ld(z)l2 = 1(1 + e:eic.)M 1
2 

= 11 + Me:ejet + o(c:)l
2 
= 1 + 2Mc: cos a+ o(e:) (D.14) 

Since we assume A'(l) < 1, we have lh(z)j2 < ld(z)l 2 (and therefore lh(z)l < id(z)i) on 

Cf: for a sufficiently small value of e:, and hence also on the entire contour C. 

Thus the functions d(z), h(z) and the contour C satisfy the conditions of Rouche's 

theorem. It follows that d(z) and d(z) - h(z) = S(z) have the same number of zeros 

inside C. Since Lhc function d(z) has M zeros in the unit disk, S(z) also has M zeros in 

Lhe unit. disk, one of which equals uniLy. 

When h(z) ltas no r.rros in Lhe unit disk, h(z)-h- is analytic. Under this assumption, we 

can show in a similar manner that 

Z - ('j21ri/ M h( Z) fi, (i = 1, ... , A1) (0.15) 

has exactly one r.cro zi in the unit disk, which is also th<> zero of S(z). Furthermore, those 

z/s (i = 1, ... , A1) ar<' all distiuct. To prove this, we assume otherwise. Then, without 

loss of generality, let u be a rnult.iplc zero that corresponds to i = i 1 and i = i 2 in (D.l5), 

where i 1 -:/= i2 . Since h(z) -:/= 0 in the unit disk, 

j2tri I I /11 I ( ) _!_ C I U M . 2 (. . )/ ,1 _ __ ...;.._;c......,- = eJ n 11 - t2 I• = 1 
ei2tri2/ M h ( 1L) ~~ 1 (0.16) 

which is a contradiction. Thus, S(z) has exactly M zeros, and when h(z) has no zeros in 

the unit disk, they arc all disLinct. 

9G 

D.2 Linear inde p e nde ncy of t he fk(z) 

In this appendix, we show the lincar independency of the fk( z) (k = 0, ... , M - 1), 

following an approach in [Lec94J. To do so, we assume t.hat fk( z) ar<' linearly dcpendc•nt, 

i.e., there exist complex numbers {30 , (31, ..• , f3M- l, not all 

/111 

L f3kfk(z) = 0, (0.17) 
k=O 

for all lzl :::; 1. vVc now rewrite (0.4) to be 

J\1 - 1 

fk(z) = L z1 Jk,;( z), (0.18) 
i=k 

where 

·h,i(z) = g(Af + k- i)A(z)M+k- i. (0.19) 

Substituting (0.18) into (0.17) and r<'arranging t<'rms yield 

Af- 1 M - l i 

L f3kfk(z) = L zi L f3k·h,i(z) = 0. (0.20) 
k=O i =O k= O 

First Wf' show /30 = 0. Substituting z = 0 into (0.20) yields 

M - t 

L f3kfk(O) = f3o.lo,o(O) = f3og(M)i).(0) 111 = 0. (0.21) 
k=O 

Note here that g(A1) > 0 (by Lhc assumption; sec section 5.2). Also, A(O) > 0, sine<' 

p < 1. These facts imply that /30 = 0. 

Next we consider /31• Su bstituLing (30 = 0 int.o (0.20), divid ing the r<'sulting cquaLion 

by z and letting z go to r.ero, we have 

(D.22) 

Thus we have /31 = 0. Substituting /31 = 0 and repeating the same argument recursively, 

we conclude that f3k = 0 for k = 0, ... , M- 1. This contradicts our assumption. HenC(' 

fk(z) (k = 0, .. . , M- 1) are linearly independent.. 
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