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Preface

Discrete-time queues have been studied by many researchers, one of the earliest investiga-
tions being made by Meisling [Meis58]. Kobayashi and Konheim [Koba77| have provided
surveys of applications of discrete-time queues to the performance evaluation of communi-
cation systems. Takagi [Taka93| has presented the analysis of many discrete-time queues
including discrete-time queues with vacations, discrete-time priority queues, discrete-time
queues with finite buffer. Bruneel and Kim [Brun93| have analyzed many discrete-time
queues including discrete-time queues with service interruptions, and multiple servers.
In most of the analyses, arrivals have been assumed to occur independently from one
time slot to another. Also, the arrival and the service processes have been assumed to
be independent each other. Since these simplified assumptions are not realistic in many
situations, several mechanisms have been proposed to bring correlations into the arrival
and the service processes.

The main contribution of this dissertation is that the development of the analytical
methods for the various types of discrete-time queues with correlated arrivals. Chapters
2 and 3 are devoted to the analysis of discrete-time queues with Markov modulation. In
chapter 2, we consider discrete-time quenes with a generalized switched batch Bernoulli
arrival and a general service time processes. The arrival and the service processes in this
system are semi-Markovian in the sense that their distributions depend not only on the
state of the alternating renewal process in the current slot but also on the state in the
next slot. Furthermore, sojourn times in each state are generally distributed. In chapter
3, we consider DBMAP/D/1/K quenes. We develop the approximate formulas for the
loss probability. The accuracy of the approximations are extensively examined through
numerical experiments. The results are readily applied to call admission control in high
speed networks. Chapters 4 and 5 are devoted to the analysis of discrete-time queunes with
a gate. In chapter 4, we consider discrete-time BBP/G/1 queues with a gate, where the
intervals between successive openings of the gate are geometrically distributed. On the
other hand, in chapter 5, we consider discrete-time BBP/G/1 queues with a gate, where
the intervals between successive openings of the gate are bounded, and independent and

identically distributed. In chapters 4 and 5, we derive complete sets of the analytical



results for various performance measures.
The author believes that the analytical methods developed in this dissertation posses
the high applicability to performance evaluation of communication systems. Finally, the

author would like to hope that the studies in this dissertation will be helpful for future

research in this field.

March 1996
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Chapter 1

Introduction

Discrete-time queues have been extensively studied by many researchers (see [Taka93],
[Brun93| and references therein). They have not only their theoretical interests but also
their rich applicability, for example, to the performance evaluation of communication sys-
tems which are operated based on a time-slot basis. In most of the analyses, arrivals have
been assumed to occur independently from one time slot to another. Also, the arrival
and the service processes have been assumed to be independent each other. However,
these simplified assumptions are not realistic in many situations. For instance, in a com-
munication system, the arrival process to the system is in some sense correlated because
data sources usually generate data in a bursty fashion, i.e., a source which is active in a
given slot is likely to remain inactive for a large number of consecutive slots. Thus, the
arrivals occur back to back. On the other hand, in high-speed local and metropolitan
area networks, modern reservation protocols for the use of transmission slots give rise to
customer collection. If we regard the collected customers as a supercustomer, the service
time of a supercustomer depends on the previous interarrival time. Indeed, if the previous
interarrival time of a supercustomer is relatively long (short), then the service time of the
supercustomer is likely to be relatively long (short) because the supercustomer consists
of relatively many (few) customers. Thus, there exists positive correlation between the
interarrival time and the service time. In order to deal with these kinds of situations,
discrete-time queues with correlated arrivals are required. In this chapter, a brief survey

of discrete-time queues with correlated arrivals is provided.

1.1 Discrete-Time Queues with Correlated Arrivals

In the present dissertation, we consider discrete-time queues where time axis is divided
into intervals (called slot) which are equal in length. Through the dissertation, it is always
assumed that all events start and end only at slot boundaries. Thus, their durations are

integer multiples of a slot. For example, customers are assumed to arrive to the system



at the beginning of a slot. The service times are positive integer multiples of a slot. Any
departure from the system is assumed to take place at the end of a slot.

To bring correlations into the arrival and the service processes, several mechanisms
have been proposed. Among them, one of the most well-known mechanisms is Markov
modulation, which gives a doubly stochastic process driven by an underlying Markov
chain. The mechanism includes a switched batch Bernoulli process (SBBP), a discrete-
time batch Markovian arrival process (DBMAP) and their variants. Note that sojourn
times in each state of a Markov chain are geometrically distributed (whereas the sojourn
time in a state can be deterministic and equal to one slot). An SBBP is defined as a doubly
stochastic batch Bernoulli process with batch size governed by a two-state Markov chain.
It can be viewed as the discrete-time analogue of a switched batch Poisson process. In
other words, the batch size arriving in a slot, which may take zero, depends on the state
of the underlying Markov chain in the current slot. Furthermore, a generalized switched
batch Bernoulli process has been proposed. It can be viewed as the discrete-time analogue
of a generalized switched batch Poisson process. The term generalized means that the
sojourn times in each state is not necessary to be geometrically distributed. Thus, the
arrival process is governed not by a two state Markov chain but by an alternating renewal
process. On the other haud, a DBMAP is defined as a doubly stochastic batch Bernoulli
process with batch size governed by a finite-state Markov chain. It can be viewed as the
discrete-time analogue of a batch Markovian arrival process (BMAP). In other words, the
batch size arriving in a slot, which may take zero, depends not only on the state of the
underlying Markov chain in the current slot but also on the state in the next slot.

Another type of the mechanisms is gating, which gives rise to customer collection. The
system has two queunes and a gate (see Fig. 1.1). In this system, customers arriving at
the system are accommodated in the first queue at the gate. When the gate opens, all
the customers who are waiting in the first queue move to the second queue at the server.
The gate closes immediately after all the customers in the first queue move to the second
queue. The server serves only the customers present in the second queue. Hereafter, we
call the system queues unth a gate.

In quenes with a gate, we can observe several types of correlation. It is easy to see
that, when a gate opening interval is (relatively) long, (relatively) many customers are
likely to wait in the first queue, while (relatively) few customers are likely to wait in the
second quene. Thus, the waiting times in the first queue and the second queue would
be negatively correlated (i.e., a long waiting in the first queue leads to a short waiting
in the second queue). Also, if we consider the second queue as an isolated system, the
interarrival time of batches arriving at the second queue (i.e., the gate opening interval)

and the number of customers in each batch (i.e., the number of customers who move to

Gate
Arrivals
— | ' — || —
The first The second Server
queue queue

Figure 1.1: Queues with a Gate

the second queue at the same time) are positively correlated. Yet another view of this
feature is that there exists the correlation between the interarrival time and the service
time if each batch moving to the second queue is considered as a supercustomer.

From a theoretical viewpoint, queues with a gate falls into the category of queues with
generalized vacations [Boxm89), [Fuhr85). In the queue with generalized vacations, a
server takes vacations even when waiting customers are present in the system. Note that,
in the queue with a gate, there is a possibility that a server becomes idle, while rust.omer#
are waiting outside the gate. Thus the idle periods of the server when waiting customers
exist outside the gate are considered as vacations of the server. It is well Rnuwn that
in the queue with generalized vacations, the queue length, the amount of work in the
system and the waiting time under the FCFS discipline have the so-called decomposition
properties (see [Dosh90] and references therein). Note that the queue with generalized
vacations has been studied mainly in the continuous-time model. However, very similar

1.2 Previous Works

Several types of discrete-time queues with correlated arrivals have been studied. In this

section, we will review the previous works which concerns with the results given in this
dissertation.

1.2.1 SBBP/G/1 Queues

Hashida et al. [Hash91| have proposed and analyzed SBBP as a modeling tool for a
bursty and correlated input process to discrete-time queues. They have assumed that the

ervice fimes of customers are independent and identically distributed, and the batch size



arriving in a slot depends only on the state of the underlying Markov chain in the current
slot. They have derived the probability generating functions (PGFs) for the number of

customers in the system, the amount of the stationary work in the system and the waiting

time of a customer.

1.2.2 Generalized SBBP/D/1 Queues

Liao and Mason [Liao89] have studied generalized SBBP/D/1 queues. They have assumed
that the service times of customers are deterministic and equal to one slot, and the
batch size depends only on the state of the underlying alternating renewal process in the
current slot. Sojourn times in each state are generally distributed. The restriction they
place on their mathematical model is that the PGFs of the sojourn time distributions

are represented as rational functions. They have derived the PGF for the number of

customers in the system.

1.2.3 DBMAP/D/1/K Queues

Blondia and Casals [Blon92] have studied DBMAP/D/1/K queues by a matrix analytical
method. They have assumed that the service times of customers are deterministic and
equal to one slot, and the batch size depends not only on the state of the underlying
Markov chain in the current slot but also on the state in the next slot. They have derived
the customer loss probability.

Takine et al. [Taki95] have studied DBMAP/D/1/K queues. They have presented
analysis for various loss characteristics such as the loss probability, the consecutive loss
probability and the distribution of the loss period length. Furthermore, they have pre-
sented the output process analysis and derived expressions for various statistics of the

output process, including the joint distribution of the successive interdeparture times.

1.2.4 BBP +DBMAP/D/1 Queues

Takine et al. [Taki94] have analyzed BBP + DBMAP/D/1 queues, where BBP denotes
a batch Bernoulli process. They have assumed that DBMAP customers have priority
over BBP customers, and the service times of both DBMAP and BBP customers are
deterministic and equal to one slot. Furthermore, they have assumed that the batch size
of DBMAP customers depends not only on the state of the underlying Markov chain in
the current slot but also on the state in the next slot, and the batch size of BBP customers
is independent and identically distributed. They have derived the PGFs for the waiting

times of both customers and the numbers of both customers in the system.

1.2.5 Queues with a Gate

Takahashi [Taka71] has studied continuous-time queunes with a gate where the service
times of customers are exponentially distributed and the gate opening intervals are de-
terministic or exponentially distributed. Borst et al. [Bors92], [Bors93] have studied the
continuous-time queue with exponential gate opening intervals where the service times of
customers are generally distributed. They were mainly concerned with the second queue,
and discussed the effect of the correlation between the interarrival time and the number
of customers in a batch on the performance of the second queue. Boxma and Combé
[Boxm93| have studied an M/G/1 queue with a rather general dependency between the
interarrival time and the service time. Kawata [Kawa93] has studied a discrete-time
queue with geometrically distributed gate opening intervals and derived the probability

generating function (PGF) for the sojourn times of a supercustomer.

1.3 Overview of the Dissertation

The purpose of the present dissertation is to provide a complete set of the analytical
results on various types of discrete-time queues with correlated arrivals. They have a
rich applicability of the mathematical model to important fundamental queneing systems
and the performance evaluation of communication systems. We also provide numerical
examples to show the computational feasibility of the analytical results. In view of the
performance evaluation, one of the most interesting subject is the effect of correlations
on the performance. This subject will be observed repeatedly through the numerical
examples.

The organization of this dissertation is as follows. In the first half of this dissertation,
we consider discrete-time queues with Markov modulation. In the latter half of this
dissertation, we consider discrete-time queues with a gate.

In chapter 2, we consider a discrete-time quene with a generalized switched batch
Bernoulli arrival and a general service time processes. The arrival and the service pro-
cesses in this system are semi-Markovian in the sense that their distributions depend not
only on the state of the alternating renewal process in the current slot but also on the
state in the next slot. We derive the PGFs for the amount of work in the system and
the waiting time of a customer under the FCFS (first-come, first-served) discipline. We
also provide numerical examples to show the computational feasibility of the analytical
results. Furthermore, we show a rich applicability to important queueing systems such as
a discrete-time GIXl/G/1 queue and a discrete-time quene with service interruptions.

In chapter 3, we study the loss probability approximation in DBMAP/D/1/K queues.

We propose the approximate formulas which are given in terms of the tail distribution of
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become exact for any independent arrival process. We prov ide numerical experiments to
show the accuracy of the approximations.
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In chapter 4, we consider discrete-time BBP/G/1 queues with a gate, where BBI
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denotes a batch Bernoulli process. In this model, we assume that the intervals betweer

successive openings of the gate are geometrically distributed. We provide a complete set

i s for various ‘e s. We also show some numerical
of the analytical results for various performance measures ¢

examples, where we discuss the effect of three kinds of correlations in the model on the
performance measures.
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In chapter 5, we consider discrete-time BBP/G/1 queues with a gate. Contrary to

\ssume that the intervals between successive openings
ed (i.i.d.). We provide

model considered in chapter 4, we :
of the gate are bounded, and independent and identically distribut
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analvtical results for various performance measures. We also show

numerical examples and observe the effect of the distribution of the gate opening intervals

a complete set of the

on the performance measures.
Finally, in chapter 6, we provide concluding remarks.
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The results discussed in chapter 2 is mainly taken from [Ishi93a) and [Ishi94c], chapter

3 from [Ishi94b] and [Ishi95b], chapter 4 from [I1shi96], chapter 5 from (Ishi93b], [Ishi94a]

and [Ishi95a].
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Chapter 2

Generalized SBBP /G /1 Queues

2.1 Introduction

In this chapter, we consider a discrete-time queue with a generalized switched batch
Bernoulli arrival and a general service time processes. In this system, customers arrive to
the system in batches and the service times of customers are generally distributed. The
batch size and the service time distributions are governed by a discrete-time alternating
renewal process with states 1 and 2. The arrival and the service processes in this system
are semi-Markovian in the sense that their distributions depend not only on the state of
the alternating renewal process in the current slot but also on the state in the next slot.
Sojourn times in each state are generally distributed. The only restriction we place on our
mathematical model is that the probability generating functions (PGFs) for the sojourn
time are represented as rational functions.

The purpose of this chapter is two-fold. The first is to provide the analytical results
in a fairly general assumption on discrete-time queues with two-state Markov modula-
tion. The analytical results are readily applied to the performance evaluation of various
communication systems [Ishi93a]. The second is to show a rich applicability of the math-
ematical model to important queuneing systems such as a discrete-time GIX /G/1 queue
and a discrete-time queune with service interruptions. The discrete-time GI™/G/1 queue
is a fundamental queueing model and it has enormous potentialities to study queuneing
phenomena in general. On the other hand, queueing systems with service interruptions
have wide applications to manufacturing, computer and communication systems where
the server is subject to breakdown. Using the semi-Markovian nature of the arrival and
the service mechanisms in our model, our model can be readily applied to analysis of
those systems.

The organization of this chapter is as follows. In section 2.2, we describe the mathemat-

ical model of the generalized SBBP/G/1 queue. Note that, since the batch size and the



service time distributions are semi-Markovian, we need four distinct notations to describe
cach of these distributions. In section 2.3, we analyze the generalized SBBP/G/1 queue
and derive the PGFs for the amount of work in the system and the waiting time of a
customer under the FCFS (first-come, first-served) discipline. We also provide numerical
examples to show the computational feasibility of the analytical results. In sections 2.4-
2.6, we show an application of the analytical results to important queueing systems such

as a discrete-time GI™/G/1 quene and a discrete-time queune with service interruptions.

2.2 Model

We consider the queueing model with the following characteristics:

e The system operates in a random environment defined by an alternating renewal
process with state 1 and state 2. Each state starts from a slot boundary and ends
immediately before a slot boundary. We assume that the alternating renewal process

is stationary.

e Customers arrive to the system in a batch immediately before slot boundaries. The
batch size may possibly be zero. The arrival and the service time processes are
semi-Markovian in the sense that the batch size and the service time distributions
of customers arriving in a slot depend not only on the state of the alternating renewal

process in the current slot but also on the next state.

e There is a single server and the service discipline is work-conserving. Namely, when
the server finds some amount of work immediately after a slot boundary, he serves

exactly one unit of work in the current slot.

We now introduce random variables and notations to describe the above model. Let T,
denote a random variable representing the nth state transition epoch of the alternating

renewal process taking a integer value. We assume that the sequence {7,,}> _ satisfies

Sl il e e i e (2.1)

Let P, denote a random variable representing the state of the alternating renewal process

at time n. We define the inter-event sequence {G,}}>  as

G =150 =10 (2.2)

Let B, and C;, (m = 1,..., B,) denote random variables representing the batch size
arriving at time n, which may take zero, and the service time of mth customer within the

batch, respectively. Also, let A, denote a random variable representing the amount of

8

work brought into the system by the batch (i.e., the sum of the service times of customers

who belongs to the batch). We define the following PGFs:

JAN

452 E [zﬂn

‘p‘n = 'ia F:r.-{»l = Jj' 1 ij(z) g E [Z“"

‘Pn == :‘;'1 JDH-H :}J 3

(1>

Cii(2) =8 [zf-‘u_.,k|p”_ =4 Payy = ;] (t.7=1,2). (2.3)

We then have the following relationship:

Ai;j(2z) = Bi;(Ci;(2)) (%=1,2). (2.4)

Sojourn times in state 7 (¢ = 1,2) are distributed in accordance with a general distri-
bution function. Let g;(k) denote the probability mass function of sojourn times in state
9 1.84

ff:(;") = Pr { (;)e = ,l‘l Rf',, = 3‘?}
We denote the PGF of the g;(k) by G;(z) (i = 1,2):

(k=1,2,...,0#0,i=1,2). (2.5)

Gi(z) = i gi(k)z* (E=1,2), (2.6)
k=1

The overall traffic intensity p is then given by

5= A ((GD) = 1) + A (1)(G(1) — 1) + Afy(1) + A (1)
Gh(1) + Gh(1) |

(2.7)

In the above and following equations, we use the symbol f/(1) and f”(1) to denote
lim,,, df(z)/dz and lim,_., d? f(2)/d2? for any function f(z), respectively.

In the remainder of this chapter, we assume that p < 1 and the system is in equilibrinm.
Furthermore, we assume that the PGF G;(2) (i = 1,2) is represented as a rational function
of z, which is the only restriction in our model. Namely, we assume that G;(z) can be

written as

Gi(z) = Gu(2) + Gip(2)  (i=1,2), (2.8)
where G (z) is given by a polynomial:
M;
Gii(z) = Zm,—,;z!, (2.9)
=i

and G(2) is given by the fraction of two polynomials:

Ny
> i’
j=1

K;

H (J — n«,-kz)"""'
k=1

9



The degree of the numerator of (2.10) is not higher than the degree of the denominator;

however, without loss of generality, we assume that

I,
> wi = N;. (2.11)
k=1

2.3 Analysis of Generalized SBBP/G/1 Queues

In this section, we analyze the generalized SBBP/G/1 queues. For convenience of the
analysis, we assign non-negative integer values k € {0,1,2,...} sequentially to individual
slot boundaries in each state. The time interval [k—1,k) (k= 1,2,...) instate i (i = 1,2)
is referred to as the kth slot of state 7. In what follows, we refer to the amount of work
at the beginning of the kth slot as that in the kth slot. We first observe the amount of
work in the system at the beginning of the (k + 1)st slot and relate it with that at the
beginuing of the kth slot. We then consider the amount of the stationary work in the

system. Finally we consider the waiting time of a randomly chosen customer.

2.3.1 Work in the First Slot of Each State

In this subsection, we first observe the amount of work in the system immediately after
the beginning of the (k + 1)st slot and relate it with that immediately after the beginning
of the kth slot. Let U, denote a random variable representing the amount of work in the
system at time n. We define L;(k, z) as the PGF for the amount of work in the system

given that the alternating renewal process is in the (k + 1)st slot of state i at time 0:

Li(k,2) 2 E [z“ﬂ

Py =1, —:ﬁ,:kl (i=1,2,k=0,1,2,...). (2.12)

Relating L;(k, z) with L;(k — 1, 2), we have

Li(k—1,z) - Li(k —1,0)

Z

Li(k, z) = [ T 1,0)] Aii(2). (2.13)

By applying (2.13) recursively, we obtain L;(k, z) in terms of L;(0, z) which denotes the
PGF for the amount of work at the beginning of state i:

B :
Aii E(Aa(2)Y’
Li(k, z) :( z(")) Li(0,2) + (2 — 1)2( z(z)) Li(k — j,0). (2.14)
J=1
Since the system is in equilibrium, it is clear that the PGFs L;(0, z) are given by
o0 Ag(2) . = Aja(2)

Li(0,2) = )  Ly(k, z)gs(k . Lgl0,z) ="  Lifk k)——. 2.15
02) = 3 Lk dn® S L0 =X Lk An®FE. (@19
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Substituting (2.14) into (2.15), we have the following expressions for L;(0, 2) (i = 1, 2):

151(2) [ Ags(2 Aga(2)\]
L,(U,z)=j1:;52§ Gz( a2l ))Lz(u,z)+(z—1).¥z(w) , (2.16)
Ap(2) [ Az A11(2) ]
Ly(0,2) = A:ffz; &4 ( "L( )) Li(0,2) + (2 — 1)X, (‘*“f")) & (2.17)
where - o -
Xi(2) £ 30 3 Li(k, 0)gi(k + m)2™ (i =1,2). (2.18)
m=1 k=0

We solve (2.16) and (2.17) with respect to L;(0, z) (i = 1,2) and obtain

(z = 1)[A12(2) Az1 (2)G2(A2(2)/2) X1 ( Ay (2)/2) + A (2)Azi(2) Xo(A2a(2)/2))
A11(2)Az2(2) — A1a(2) 451 (2)G1 (A1 (2)/2)Ga(Aza(2) ] 2) !
(2.19)

50, 2= (z = 1)[A12(2) A2 (2) G (A11(2)/2) Xa(Az(2)/2) + Az(2)A12(2) X1 (A1 (2)/2)]
A11(2)An(2) — A(2)A21(2)G1(A11(2)/2)Ga(Ag(2)/2) ‘

]JI (U, 2) —

(2.20)
Thus, once X(z) and X,(z) are known, the L;(0, z)’s are obtained. In order to deter-

mine X;(z), we need the following lemma.

Lemma 2.3.1:  The unknown function X;(2) can be rewritten as

.Y,‘(Z) = ;X.“(z) i X,--z(z) (E =01 2). (2.21)
where
N’ >
M | Y o' ()
Xi(2) = Z;s;(;‘)zJ, Xio(2) = K‘_J— (¢ =1,2) (2.22)
J=1 H(l —(lf,;szw'k
k=1
PROOF:  See [Brunsd|. "

From (2.22), it is clear that the unknown functions X;(z)’s contain only a finite number
of unknown constants z}(j)’s and z}*(j)’s when G;(z) (i = 1,2) is a rational function of
z. Furthermore, X;(z) (i = 1,2) is a rational function of z, having the same denominator
as Gi(z) and a numerator of degree M; + N,. This formal similarity between the Gi(2)
and the X;(z) allows us to determine X;(z) (see Appendix A and also Appendix D).

2.3.2 Stationary Work

In this subsection, we consider the amount of the stationary work in the system. We

define U;(z) (i = 1,2) as the PGF for the amount of work in the system in a randomly
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chosen slot given that the state of the alternating renewal process in the slot is i:

Uz) £ E [z’-”" Py = i] (2 =1,2). (2.23)

We also define U/(z) as the PGF for the amount of the stationary work in the system:
U(z) £ E [2%]. (2.24)
We then have the following theorem.

THEOREM 2.3.1: The PGFs Uij(z) and U(z) are giwen by

A1 > A:(2)]7) [L‘(U‘z) {I i (Aiiz(Z))}

o= Ay - x, (A4 o

U(z) = mU;(2) + mUs(2), (2.26)

U(z) =

respectively, where m; is given by
c()
Gi(1) + Ga(1)

PrROOF: We first consider U,(z). Let pi(k) (i = 1,2,k = 0,1,2,...) denote the condi-
tional probability that a randomly chosen slot of state 7 is the (k + 1)st slot of state 7,

given that the slot is in state z:

pi(k) £ Pr{ Ty = k| B=i} ((E=L2.gi=12) (2.28)
We then have [Burk75]
pi(k) = = gi(n) (k=0,1,2,...). (2.29)
GOR
By definition, we have
k=0
From (2.14), (2.18), (2.29) and (2.30), we obtain (2.25).
Next we consider U(z). Since
! Gi(1) )
2 =1} = — 170 18 2.31
lr{Pﬁ 1} G'(1)+G (1) (l » ) ( )
(2.26) immediately follows. "
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2.3.3 Waiting Time

In this subsection, we consider the waiting time of a randomly chosen customer. We
assume here that the service discipline is the FCFS and as for customers who arrived in
the same batch, the next customer for service is randomly selected among them.

Since our system is a single-server queue with batch arrivals, a tagged customer suffers
from two components of delay. One is the waiting time of the tagged batch to which the
tagged customer belongs. The other is the waiting time due to service times of customers
in the tagged batch, who are served before the tagged customer. For the former, we define
F;;(z) as the PGF for the waiting time of the tagged batch to which a randomly chosen
customer belongs arriving in a slot given that the alternating renewal process is in state
i in the current slot and in state j in the next slot. For the latter, we define D;;(2) as
the PGF for a time interval from the beginning of the service of the first customer in the
tagged batch to the beginning of the service of the customer given that he arrives to the
system when the alternating renewal process is in state 7 in the current slot and in state j
in the next slot. Further, we define W(z) as the PGF for the waiting time of a randomly

chosen customer. We then have the following theorem.

THEOREM 2.3.2: The PGF W (z) is given by

B
— z Zuullj(z)f)u (2), (2.32)
=lg=]
where
BL()(G(1) - 1) e
n(M(G(1) = 1) + Bip(1)(G5(1) = 1) + Biy(1) + By (1) i
s (2:33)
Zs() (i # 1)
W (D(G(1) = 1) + By (1)(G5(1) — 1) + Biy(1) + By (1) i
G’- U: — I5lU. 2 H
Fus) = o (=12) (234)
B e
Fie) =S5 A aii=12) (235)
Dyte) = gropric s Gi=12) (2.36)
PROOF:  Note that v;; denotes the probability that the tagged customer arrives when

the alternating renewal process is in state i in the current slot and in state j in the next
slot. We then obtain the expression (2.32) for W(z).

13



We now consider F;(z). Recall that we observe the amount of work in the system imme-
diately after slot boundaries, while customers arrive immediately before slot boundaries.
Thus, we have

Ut (2) = Fa(2)Aa(z)  (i=1,2), (2.37)

where U'(z) (i = 1,2) denotes the PGF for the amount of work in the system in a

randomly chosen slot of state 7 given that it is not the first slot of state i. By definition,
U(z) is given by

o ' PN e

Ut(z) = T— 200 Ilf’i(U) Lz-:l pi(k)Li(k, z) = Gi(l)%g&% _1;'(0* ?)

From (2.37) and (2.38), we obtain (2.34). According to a similar reasoning, we obtain

(2.35). We next consider D;;(z). By using the results in batch arrivals [Burk75], we have

(2.36). :

(i=1,2). (2:38)

2.3.4 Numerical Example

In this subsection, we provide a numerical example in order to show the computational
feasibility of the analytical results. In this example, we assume that the service times
of customers are deterministic and equal to one slot regardless of the state, and the
batch size follows a Poisson distribution. Moreover we assume that A;5(z) = Ay(2) and
Ay (2) = Agy(z). We denote the mean sojourn time in state i by r;'. We assume that
ry = 19 = r. The traffic intensities in states 1 and 2 are fixed to 0.5 and 1.3, respectively,
and the overall traffic intensity is given by 0.9. Thus, the arrival process consists of
underload periods (state 1) and overload periods (state 2).

Fig.2.1 shows that the mean waiting time of customers for two cases: the deterministic
and the geometric sojourn times. The mean waiting time is plotted as a function of the
mean sojourn time r~'. We first observe that the increase of the mean sojourn time
leads to the increase of the mean waiting time of customers even when the overall traffic
intensity is fixed. The second observation is that the mean waiting time in the case of the
geometric sojourn times becomes longer than that in the case of the deterministic sojourn
times. Thus not only the mean sojourn time but also the sojourn time distribution affects

the mean waiting time.

2.4 Discrete-Time GI*/G/1 Queues

In this section, we show an application of the analytical results to a discrete-time GI*l /G /1
queue. The discrete-time GI'*/G/1 queue has been extensively analyzed in the litera-

ture (see [Ackr80], [Mura91] and references therein). Among those, Murata and Miyahara
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igure 2.1: Mean sojourn time in each state vs. mean waiting time

[Mura91] have studied the discrete-time GI[x]/(}/l queue under the most general assump-
. r = . - - .
tion. We show that the queueing model considered in [Mura91] is a special case of our

.model and the analytical results given in [Mura91] are readily obtained from the results
In section 2.3,

2.4.1 Analysis of Discrete-Time GIXI /G/1 Queues

'Now we apply our model to a discrete-time GIXI/G/1 quene considered in [Mura91], which
is characterized by the following PGFs. Let G(z) denote the PGF of the interarrival time
distribution of batches of positive size. We assume here that the PGF G(z) is represented
as a rational function. Let B,(z), Cy(z) and Ay(2) denote the PGFs for the batch size
the service time of a customer and the amount of work brought into the system by z;

batch, respectively. In order to analyze the above queueing model, we set the PGFs in
our model in section 2.2 as follows:

Gi(2) = G(z), Bi(2) =1, Biy(z) = By (2) = B,(2),
Ci(z) =1, Cp(2) = Cai(2) = Cy(2) (i=1,2), (2.39)



and therefore A;(z) = 1 and Apy(2) = Ag(z) = Ag(2). In other words, we consider the
model where batches of positive size arrive only when the state transitions from state 1
to state 2 or from state 2 to state 1 occur and sojourn times in each state correspond to
interarrival times of batches of positive size. By definition, the traffic intensity is given
by
py = Ay(1)/G'(1). (2.40)
In the following analysis, we assume that p, < 1 and the system is in equilibrium.
We first consider the PGF L,(0, z) for the amount of work in the system immediately
after arrivals of batches. Note that L,(0, z) corresponds to L;(0, z) in our original model.

It then follows from (2.19) or (2.20) that

Ly(0,2) = (zl__lii"(’i;g{’;(/i/)z) (2.41)

where L
X,(2) = Y. 3 Ly(k,0)g(k + m)2", (2.42)

m=1 k=0

and g(m) is the probability that an interarrival time is equal to m slots. Furthermore,

from the normalizing equation L,(0,1) = 1, we have
X,(1) = (1— p,)G'(1). (2.43)

Recall that X,(z) is readily determined as shown in section 2.3.

Remark 2.4.1:  Note that if interarrival times of batches have a geometric distribution,

we have the following equation:
X4(2z) = X,(1)G(z)- (2.44)

Thus the unknown function Xy(z) is explicitly determined when the interarrival times are

geometrically distributed.

Next, we consider the PGF U,(z) for the amount of the stationary work in the system.
Note that U,(z) corresponds to U;(z) in the original model in section 2.3. It then follows
from (2.25) that

U (z) = ;,(1)(11_1/2) [Lg(O,z){l—G(é)} (2—1){§.\'9(1)~,¥g(2)}]. (2.45)

Finally, we consider the PGF W,(2) for the waiting time of a randomly chosen customer.

From the results in section 2.3, we obtain
Wy(2) = Fy(2)Dy(2), (2.46)
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where

- Ly(0,2) L (2 — 1)X;(1/2) il = 1 — Ay(2)
Ay(2) 11— Ay(2)G(1/z) - By(1)(1 — Cy(2))’

Fy(z) (2.47)

Remark 2.4.2:  After some algebra with (2.45) and (2.46), we have the following rela-

tionship between work in the system and the waiting time in the GI® /G /1 queue:

1—Cy(2)

U =1 W2\ ———da=t
9(2) =1 —p,+ p,z Q(P)C’;(I)(l-—z)

(2.48)
Note that (2.48) can also be derived from the invariant relationship or the equality of the
virtual delay and attained waiting time distribution (see, for example, [Miya83], [Miya92],
[Saka90], [Seng89]).

2.5 Queues with Two Independent Inputs

In this section, we consider an application of our model to a single-server queue with
two independent input streams: GIX!/G and BBP/G input streams. The analytical
results are directly applied to the performance evaluation of ATM multiplexers [Mura90|.
The continuous-time single-server quene with independent GI/G and M/G input streams
has previously been studied in [Hook72|, [Ott84], [Ott87] (see also references therein).
Those papers have shown that, roughly speaking, the amount of work in the system
is decomposed into two independent components, one of which is the amount of the
stationary work in the M/G/1 quene. We show that the amounts of not only the stationary
work but also work immediately after arrivals of GIIXI/G customers is decomposed into
two independent components, one of which is the amount of work in the BBP/G/1 quene.
Though the service times of GI*/G customers are i.i.d. in the model considered in this
chapter, the arrival process of the G/G stream need not be homogeneous in time and
the service times of the customers need not be independent (see [Ott84]). In [Ishi95a],
Ishizaki et al. have considered a single-server queue with two independent inputs where
the interarrival times of GI®//G customers and the service time of the customers are
dependent, and analytically shown that the amount of work in the system is decomposed

into the two independent components.

2.5.1 Work in the System

We consider work in a single-server queue with two independent streams: GIX/G and
BBP/G input streams. For GIXI/G customers, let G(z) denote the PGF for the inter-
arrival time of batches of GI®!/G customers. We assume here that the PGF G(z) is
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represented as a rational function. Let B,(z) and C,(z) denote the PGFs for the batch
size and the service time, respectively, of GI®I/G customers. Thus we have the PGF

Ay(z) for the amount of work brought into the system by a batch of GIX /G customers:

Ag(2) = By(Cy(2). (2.49)

On the other hand, we denote by By(z) and Cy(2) the PGF of the batch size and the
service time, respectively, of BBP/G customers. We then have the PGF A(z) for the

amount of work brought into the system by BBP/G customers in a slot:

Au(2) = By(Cy(2))- (2.50)

In order to analyze the queueing system, we set the PGI's in the original model in

section 2.2 as follows:

Aii(z) = Au(2), Bii(2) = By(2), Cii(2) = Ci(2),

AIQ(Z)=A2|(Z)=Ab(3)z4.9(z) (J = 1,2) (251)

It is easy to see that the resulting queueing model corresponds to the single-server queue
with two independent input streams described above. In the following analysis, we assume
that Ay(1) + A;(1)/G'(1) < 1 and the system is in equilibrium.

We first consider the amount of work in the system immediately after arrivals of GI¥/G
customers. Note that this corresponds to the amount of work at the beginning of each state
in the original model. Let L(0, z) denote the PGF for the amount of work immediately

after arrivals of GIX//G customers. It then follows from (2.19) or (2.20) that

(Z e I)Ag(z)‘\’("ib(z)/z) (2 r2)

LO.2) = A @6 4

where

X(z) = i f L(k,0)g(k +m)z", (2.53)

m=1 k=0
and g(m) is the probability that an interarrival time of batches of GIX/G customers is

equal to m slots. Note that (2.52) is rewritten to be
L(0,2) = Up(2)L*(0, 2), (2.54)

where Uy(z) denotes the PGF for the amount of the stationary work in the BBP/G/1

queue:
(z = 1)Au(2)

Ui(z) = (1 = A1) =12,

(2.55)
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which is obtained from (2.41), (2.43), (2.44) and (2.45), and L*(0, 2) is given by

. 1 2= A(2) Ay(2)X(As(2)/2)
1—AL(1) Ay(z) 1— Ay (2)G(As(2)/2)

L*(0, 2)

Next, we consider the PGF U(z) for the amount of the stationary work in the system.

Note that U(z) corresponds to U;(z) in our original model. It then follows from (2.25)

that
1 L As(2)
(1= A(2)/7) [[‘“”‘"’{I_(’( : )}

Hez=1) {i*'z("—)xu) =X (‘4"7(2)) H

Ul =

= GEUE) (25)
where U*(z) is given by
P 10,2 2 [(42) = DX (/) | Aa) g, ,
T = SR A | LA e @

From (2.54) and (2.57), we see that the amount of work immediately after arrivals of
GIXI/G customers and the amount of the stationary work are decomposed into two inde-
pendent components, one of which is the amount of the stationary work in the BBP/G/1
queue. In the next subsection, we relate the other components, represented by L*(0, z)
and U*(z), to the amount of work immediately after arrivals and the amount of-the

stationary work, respectively, in a special GIX/G/1 queue.

2.5.2 Special GI®/G/1 queue

We consider a special GIXI/G /1 quene with the same interarrival time and the same batch
size distributions as in the GIXI/GI input stream. We now assume that the PGF C,(2)

for the service time of a special GI'¥l /G customer is given by

Cy(2) = Cy(20(2)), (2.59)

where ©(2) denotes the PGF of the delayed busy period distribution in the BBP/G/1
queue and ©(z) satisfies

O(z) = Ay(20(2)). (2.60)

Note that (2.59) implies that the service times in the special GI®/G/1 queue are given
by the delay cycle of BBP/G customers with the initial delay corresponding to the service
time of a GIX /G customer. Setting w = 20(z), we have
_20(2) _ 20(2) _ w
6(z) ~ M(0()  Ayw)’

(2.61)
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Thus we obtain

“~ E N =ty (2.62)
G (A,,(z)) Cy(2)

We denote by .fi,,(z) the PGF for the amount of work brought into the system by a batch,

namely,

/'iy(z) :B!f(éﬂ(z))' (2.63)

It then follows from (2.62) that
i, (=] = A (2). (2.64)
Ag (A(,(-Z)) a(2)

For the special GIX!/G/1 queue, we first consider the PGF L(0, 2) for the amount of

work in the system immediately after arrivals of batches. From (2.19) or (2.20), we obtain

f;((), 2):

. (2= 1)A(2)X0/2) 2.65)
L2 = 1 ea/) (
where T
X(2)= Y Y L(k,0)g(k + m)z", (266)
m=1 k=0

and g(m) is the probability that an interarrival time of batches is equal to m slots.

Next, we consider the PGF U(z) for the amount of the stationary work in the system.

From (2.25), we obtain U(z):

S A | N O
Substituting z = z/Ab(z) in (2.65) and (2.67), we have

A z - (Z/Ag,(z) — ])A )((Ab /Z |
b (0, A;,(z)) = (2.68)

1- 4,(2)C(A(2)]z)
5 (L) w Wl 2 [Ag(z)X(Ab(z)/z) {1_ G(A"(z))}
4] ~ FO)AR) [1- 4,@6AR)/2)
A"ZE 2Ry - % (A”(z))]. (2.69)

Z
Z

&>

We now define X(z) £ (1 — A(1))X(2) and rewrite L(0, z/A(2)) and U(z/Ay(2)) as

follows:
F RN P W 27 FC PN RO A
(o) = oA RO oA 2™
Almg z [(4e) - 1)X(Ab(z)/z) M)z ] o
() = SO A A | LG e X @)
Note that, from (2.56), (2.58), (2.70) and (2.71), if X (2) is identical to X(z), then L*(0, z)
and U*(z) are identical to L(0, z/Ay(z)) and U(z/Ay(z)), respectively. Hence we shall show

that X (z) is identical to X(z) in the next subsection.
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2.5.3 Relationship between X(z) and X(z)

Recall that X (z) is expressed by a linear combination of unknown values and a coefficient
of each unknown value is determined only by the function G(z). Since X(z) in (2.66)
has the same form as X(z) in (2.53), X(2) is also expressed by a linear combination
of unknown values and a coefficient of each unknown is exactly the same as in X (2).
Furthermore the unknown values in X(z) and X(2) can be obtained by examining the
zeros in the denominator of U*(2) and U(z) respectively.

Since both U*(z) and U(z) are PGFs, the terms

(Ag(2) = DX(A(2)/2) o (Ag(z) — DX (A(2)/2) (2.72)
1— A,(2)G(A4(2)/2) 1 — Ag(2)G(A(2)/2) '

in U*(z) and U (2), respectively, have no poles inside the unit disk. Note here that the
denominators in both terms are identical. Thus, the numerators in these terms becomes
zero at some value of 2z, at which the denominators in both terms becomes zero. Hence it
is clear that these conditions provide us with the same linear equations for the unknown
constants in both terms. Furthermore, the normalizing equations U(1) = 1 and U(1) = 1

provide us with the following equation:

X(1) = X(1) = G'(1)(1 — Aj(1)) — AL(1). (2.73)

From these observations, we conclude that X (2) is identical to X(z), so that L*(0, 2)
and U*(z) are identical to L(0,z/A4(z)) and U(z/Ay(2)), respectively. Thus the other
factors are related to the amount of work in the special GI[X]/G/l queue. Note that, with
(2.54), (2.57), (2.60) and (2.61), the decomposition results (2.54) and (2.57) are also given

in the following forms:

L(0,20(z)) = Uy(20(2))L(0,2),  U(20(2)) = Uy(20(2))U(2). (2.74)

2.6 Queues with Service Interruptions

In this section, we consider an application of our model to a discrete-time queuneing sys-
tem with service interruptions. Queues with service interruptions have been extensively
studied in the literature (see [Brun84], [Seng90] and references therein). In the context of
the discrete-time queue, Bruneel [Brun84] has studied queues with service interruptions
where the arrivals of customers are time-homogeneous and the service times of a customer
are deterministic (equal to one slot). The lengths of on-periods are assumed to have a
general distribution whose PGF is represented as a rational function. He has derived

the PGF for the amount of the stationary work in the system. The model considered in
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section 2.2 enables us to have a more general model than the one in [Brung84|. Towsley
[Tows80] has studied a breakdown model as a special case of quene with two-state Markov
modulated input where each state is characterized by its own Bernoulli arrival process
and independent error process, and derived the PGF for the queue length distribution. In
his model, on-period lengths have a geometric distribution, while off-period lengths have
a general distribution. Rubin and Zhang [Rubi92] have analyzed queues with determinis-
tic on- and off-periods to obtain the performance measures in the TDMA scheme. Note
that their model is a special case of our model. In our model, we assume that the batch
size and the service time distributions of customers which arrive to the system during off-
periods may differ from those when the server is working. These phenomena are naturally
arising in real situations and a very similar model in continuous-time has been studied
by Sengupta [Seng90]. We show that the PGF for the amount of work in the system is
readily obtained from the results in section 2.3, and the analytical results include those
in [Brun84] as a special case. Furthermore, we characterize the waiting time distribution

of customers nnder the FCFS discipline.

2.6.1 Model

We consider a single-server queue in a random environment governed by a discrete-time
alternating renewal process. We call the states of the alternating renewal process states 1
and 2. In state 1, the server works and therefore the server serves exactly one unit of work
in a slot of state 1. State 2 denotes the breakdown of the server. We will also refer to states
1 and 2 as on- and off-periods, respectively. Let gi(n) (i = 1,2, n =0,1,2,...) denote the
probability that time spent in state i is equal to n. We denote by G;(z) (i = 1,2) the PGF
of the g;(n). We assume here that the on-period PGF G|(z) is represented as a rational
function. However, we do not make any assumptions regarding the form of the off-period
PGF G;(z). Customers arrive to the system in batches. The batch size and the service
time distributions may differ among the two states. Let B;(z) and C;(2) denote the PGFs
for the batch size and the service time of a customer arriving in a slot of state i (i = 1,2).
Also, let A;(z) denote the PGF for the amount of work brought into the system in a slot
of state i. In the following analysis, we assume that (G (1)A}(1)+G5(1)A5(1))/Gi(1) <

and the system is in equilibrium.

2.6.2 Work in the System

We first consider the imbedded workload process only during on-periods. We excise all
slots during off-periods, gather all arrivals during each off-period, and put them in the
last slot of the on-period preceding each off-period. As a result, the imbedded process
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behaves like the workload in the queueing system with two independent input streams:
one is a BBP/G input stream with the batch size PGF B,(z) and the service time PGF
Ci(z), and the other is a GI®I/G input stream with the interarrival time PGF G;(2), the
batch size PGF Gy(B;(2)) and the service time PGF Cy(z). Note that we have already
analyzed the workload process in such a queue in section 2.5.

Let U(z) be the stationary PGF for the amount of work in the imbedded Process.

From the results in the previous section, we obtain

PN 1 i(2)
T T (z)/z}[ i "”{ 2l )}
where

eonfl (). e
Lu(0,2) = G VGa(A) X (A(2)/2)

1= Ga(Ar(2))Gh (A (z)/z (&) =2 L (ki Ol + )z,
(2.76)

Note that L;(0,z) in (2.76) is identical to Cy(z) in [Brun84] if A,(z) = Ay(z).

The next step is to obtain the PGF for the amount of work in the system in a randomly
chosen slot during off-periods. To do so, we excise all slots during on-periods. We then
notice that the resulting workload process is a pure birth process except at some renewal
epochs, where the distribution of time intervals between successive renewals has the PGF
G3(2). Let Ly(0, z) denote the PGF of the distribution of the amount of work immediately
after renewal epochs. It is easy to see that L,(0,z) is equivalent to the PGF of the
distribution of the amount of work immediately after arrivals of GI'*1 /G customers. Thus,

from (2.52), we obtain
o E=)X(A))
L2 = @@’

where X (z) is given by (2.76). Note that Ly(0, z) in (2.77) is identical to Dy(z) in [Brun84]
if Aj(2) = Ay(2). Let Ly(k,2) denote the PGF for the amount of work in the system in
the (k + 1)st slot of state 2. We then have

(2.77)

Lo(k, z) = {A2(2)}* L3(0, 2). (2.78)

We denote by U,(z) the PGF of the distribution of the amount of the stationary work

during off periods. By definition, we obtain

1 — G(A2(2))
G5(1)(1 — Ax(2))

Up(z) = ipg(k)f_q(k, 2= L(0, 2), (2.79)
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where py(k) (k= 0,1,2,...) is the conditional probability that a randomly chosen slot of
state 2 is the (k + 1)st slot given the slot is in state 2 and given in (2.29).

Let U/(z) denote the PGF for the amount of work in the single-server queune with service

interruptions. We then have

Uz) = mU(z)+ wUy(2)

F | o (M)
= M- AG)/) ["”(”‘z’{l ("( : )}

+(z — 1){’1 C) xay-x (Az("))}] P S, L (L

72(1)(1 — Az(2))
where the 7;’s (i = 1,2) are given in (2.27).

L,(0, 2)2.80)

2.6.3 Waiting Time Distribution

In this subsection, we consider the waiting time distribution of customers under the FCFS
discipline. Before we analyze the waiting time distribution, we characterize the amount
of work in the system in a slightly different way from that in the previous subsection.
We denote by ¢;(k,z) i = 1,2, &k =0,1,2,..., ¢ = 0,1,2,..

probability that a randomly chosen customer arrives in the (k + 1)st slot of state i and

.) the conditional joint
the amount of work seen by him upon arrival is equal to z (including that brought by
those customers served before him within the same batch) given that the tagged customer
arrives in state 1. Let W;(k, z) denote the z-transform of the ;(k, ) with respect to x. It

is clear that

Vy(k,2) = pi(k) lLl(k’z)_Ll(k'U)”JIURU) Dy (2),

Z

Vylk,2) = pa(k)La(k, z)Dyy(2), (2.81)

where D;;(z) (i = 1,2) is given in (2.36). By definition, we have
= Ui(z) = 0,(0) - & ;
S0 (K, 2) = [—‘(—)—z—‘(—) * U,(U)] Du(2), 3 Wa(k,2) = Uy(2)Da(2). (2.82)
k=0 k=0

In analyzing the waiting time distribution of customers, we separately treat two types of
customers, those who arrive during on-periods and those during off-periods. Let w;(ylk, x)
(i=1,2k=0,1,2,...) denote the probability that the waiting time of a customer is
equal to y slots given that the customer arrives in the (k + 1)st slot of state i and the
amount of work found by him upon arrival is x (x = 0,1,2,...). Clearly, the waiting
time of a customer who arrives during an on-period and finds z units of work in front of
him upon arrival is given by the sum of z slots and the total length of off-periods that

occur before the start of his service following the depletion of z units of work. Let N (k,z)
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denote the number of those off-periods before the start of his service given that the tagged

customer arrives in the (k + 1)st slot of state 1 and finds @ units of work in front of him

upon arrival. Note that N(k,x) is considered as a delayed renewal process whose first
- . P k &

renewal time is equal to n (n = 0,1,2,...) with probability g;(n+k+1)/(1-¥5= gi(m))

and the subsequent interrenewal time is equal to n with probability gi(n). We then have

{l —H)in m[m)} (1 > 2),

m=1

i Ul(J"'k‘*‘l :E: l.“ 1)
l

Fehy m 1{“(”? n-I 1

Pr{N(k,z) =1} =

A

y L) {“Em(ﬂ)} (i=1),

=0 L= Zm:l .ql(?"') n=1

e ql(j+k+l) (t=p),

(2.83)
where g,-'(k](:r) (i = 1,2) is the k-fold convolution of gi(x) with itself, In the above and
the following equations, the summation taken in decreasing order is defined to be zero.

Using Pr{N(k,2) = I}, we have the following expression for w;(y|k, z):

0 (y < x),
wi(ylk,z) = li gy — ) Pr{N(k,z) =1} (z<y), @254
1=0
0 <z,
gpn+k+1) (2.85)

wy(ylk,z) = ¢ . .
wy (y — n|(},J) (z < y).
Eﬁ ; - Em 1 qz(”}')

By combining #;(k, z) introduced in the beginning of this subsection with wi(ylk, x),
- - - - . . - —_— . ol S ; 2
we obtain the waiting time distribution of a randomly chosen customer. Let W, denote a

random variable for the waiting time of a randomly chosen customer. We then have

ZU: (K, o)w;(ylk, ), (2.86)

HMB

2
Pr{W, =y} Z

where #; is given by

Bi(1)Gi(1)

. f= 123, 2.87
= BHGL(1) + By(1)G5(L) = 1o4) (2.87)

. 4 1 1 L L -3
Finally, we consider the mean waiting time E[W.]. Let wi"(k,x) (i = 1,2) denote the

expectation of w;(y|k,z). It then follows from (2.84) that

Wi (k, ) = = + Gy(1)m(k, z), (2.88)



Note that m(k,z) is the renewal function of the delayed

[(k, )]

renewal process, which starts at age k. Furthermore, from (2.85), we have

where m(k,z) = E

ang(n +k+1)

wy (k, ) = wy” (0, z) + =2 g (2.89)
L= ga(m)
me=1
Taking the expectation of both sides of (2.86), we have
2 oo oo
EW,] = Z Z ik r)m ( ko)
=1 k=02=0
= 8o+ mG3y(1)S) + 1G5(1)S,, (2.90)
where
. CTH( ) %
So = (U (1) + D}, (1) — 1 4 U,(0)) + mo( (U 5(1) + Djy(1) + e (l))' (2.91)
Z Zd! k,x)m(k,x), = Z Z ok, x)m(0, z). (2.92)
=0x=0 F=0 =0

2.7 Conclusion

In this chapter, we analyze the generalized SBBP/G/1 queues, where the arrival and
the service processes are semi-Markovian in the sense that their distributions depend not
only on the state of the alternating renewal process in the current slot but also on the
state in the next slot. We derive the PGFs for the amount of work in the system and
the waiting time of a customer under the FCFS discipline. We also provide numerical
examples to show the computational feasibility of the analytical results. Furthermore,
we show an application of the analytical results to important queuneing systems such as a

discrete-time GI™/G/1 queue and a discrete-time queue with service interruptions.
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Chapter 3

DBMAP/D/1 Queues with Finite
and Infinite Buffers

3.1 Introduction

In this chapter, we study the customer loss probability approximation in DBMAP/D/1/K
queues. The approximate formulas are given in terms of the tail distribution of the
queue length in the corresponding infinite-buffer quene. Though, as we mentioned in
chapter 1, the formulas for the ezact loss probability in DBMAP/D/1/K queue have been
the reasons that we consider the

When the

buffer size is large, the number of states and the size of the transition matrix representing

already derived (see, for example, [Blon92], [Taki95]),

approzwmalte formula of the loss probability in this chapter are as follows.

the imbedded Markov chain to describe the dynamics of the system become prohibitively
large. When the loss probability is very small, we have some difficulties in its computation.
Those facts make the computation of the exact loss probability with enough accuracy very
difficult, even if the exact analytical framework is available. Furthermore such an exact
computation is time consuming. In application, we are mainly interested in those cases

[Ishi95b).

probability should be developed.

Thus an efliciently computable yet accurate approximate formula of the loss

The organization of this chapter is as follows. In section 3.2, we describe the mathe-
matical model. In section 3.3, we propose simple approximations to the loss probability
which are given in terms of the tail distribution of the queue length in the corresponding
infinite-buffer queue. The approximate formulas are constructed in such a way that they
become exact for any independent arrival process. The accuracy of the approximations is

extensively examined through numerical experiments.
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3.2 Model

We consider the queneing model with the following characteristics:

e Customers arrive in a batch. The arrivals are governed by an underlying M -state
Markov chain. This Markov chain changes its state on slot boundaries. The number
of customers arriving in a slot depends not only on the state of the underlying

Markov chain in the current slot but also on the state in the next slot.

e The service times of customers are assumed to be constant and equal to one slot.
The service of a customer starts at the beginning of a slot and ends at the end of the

slot (i.e., on slot boundaries). Customers depart from the system at slot boundaries.

¢ The queucing system has finite buffer and accommodates at most N customers
including the one in service. Thus, when m (m > N — k + 1) customers arrive to
find k customers (including the one in service) in the system, only N — k customers
are accommodated in the system, and the remaining m — (N — k) customers are

lost.

As for timings of arrivals, two queueing models have been explored in the past: the early
arrival model and the late arrival model (see p.5 of [Taka93]). In the early arrival model,
an arrival of a batch in the nth slot occurs immediately after the beginning of the nth
slot. On the other hand, in the late arrival model, an arrival of a batch in the nth slot
occurs immediately before the end of the nth slot. In what follows, we consider both
queuneing models in parallel.

Before proceeding to the analysis, we introduce some notations. The state transition
matrix for the underlying Markov chain is denoted by U = {U;;} (1,7 =1,..., M), where
we assume U is irreducible. Let P, denote the state of the underlying Markov chain in
the nth slot. Let 7w = (m,...,my) denote the stationary state vector of this Markov
chain. Note that m satisfies # = wU and me = 1, where e is an M x 1 vector with all
elements equal to one. Let A, denote the number of customers arriving in the nth slot
(i.e., in this model, the amount of work brought in the system by a batch arriving in the
nth slot). We assume that A,., depends on both P, and P,,; (see [Blon92], [Taki94]
and [Taki95]). We denote by a;;(k) the probability of k (k > 0) customers arriving in the
current slot given that the underlying Markov chain was in state i in the previous slot

and is in state j in the current slot:
(k) =Pr{Anpi =k | Py =i, Papi =3}  (j=1,...,M, k=0,1,2,...). (3.1)

Note that we assume a;;(k) is time homogeneous and is independent of n. Also, let ai; (k)

denote the conditional probability for the following events: & customers arrive in the
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(n + 1)st slot, and the underlying Markov chain is in state j in the (n + 1)st slot, given

that the Markov chain was in state 7 in the nth slot. Namely,

aij(k) =Pr{dnyy =k, Papy =3 | Pa=1i} = a5(k)U;  (,5=1,...,M). (32)

Let Ax and By denote M x M matrices whose (i, j)th elements are given by a;;(k) and
Yo @ij(m), respectively, where k > 0. Note that Ay (resp. By ) represents the transition
matrix of the underlying Markov chain when k customers (resp. more than or equal to k
customers) arrive to the system. By definition, B, = U, where U denotes the transition
probability matrix of the underlying Markov chain. Let p denote the traffic intensity
which is given by

p=m)Y kAge. (3.3)
k=1

3.3 Loss Probability Approximation

In this section, we propose simple approximate formulas for the loss probability in both
the early and the late arrival models. First we consider the distribution of the num-
ber of customers in the system. Next we propose a heuristic approximation of the loss
probability. Finally we examine the accuracy of the approximation through numerical
experiments.

3.3.1 Distribution of the Number of Customers in the System

We observe the system immediately after all possible events (i.e., a departure of a cus-
tomer and customer arrivals) happen around slot boundaries. For convenience of the
analysis, we introduce slightly different definitions of the number of customers in the sys-
tem for the early and the late arrival models. Let Y,() denote a random variable which
represents the number of customers in the system immediately after the beginning of nth
slot in the early arrival model. On the other hand, let ¥,(!) denote a random variable
which represents the number of customers in the system immediately after the end of the
nth slot in the late arrival model. We note that both Y, and ¥!) include customers
arriving and accommodated in the system in the nth slot. Then {Y(9) P:n =0,1,...}
and {Y"), P,:n = 0,1,...} constitute the the bivariate Markov chains, whose transition

matrices are given by (see [Blon92] and [Taki95]):
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The early arrival model:

[ Ay Ay Ay --- Ay9 Ay, By ]
Ay, A, A, -+ Ay, Ay By
0 Ay Ay -+ Ay3 Ay_o By
0 0 Ay - Ay.y An3 By |, (3.4)
0 0 0 Ay A, B,
|l o @ b g An | B

The late arrival model:

[ A AI A'z AN-'). AN—l BN |
Ay Ay Ay -+ Ay o By, 0
0 Ay A -« Ay3 By, 0
0 0 Ay -+ Ay, By3 0O L (3_5)
0 0 9 = Ay B, 0
G D, e 0 B B

Let yi"] (resp. yi_”) denote an 1 x M vector whose jth element represents the joint
stationary probability of k customers in the system and the underlying Markov chain
being in state j in the early (resp. late) arrival model. Note that y,(:) and ys) satisfy the
following equations:

The early arrival model:

k+1

v = yPA+Y v O<k<N-1), (3.6)
T
(e) (¢) e
Yv = Yy By+ Zy;'e By derois (3.7)
3|
The late arrival model:
0 P T
Y = Yo A+ zys Ag i (0<k < N=2), (3.8)
=]
(r) (1) 2l (1)
Yn-1 = Yo An- +Zy,: By, (3.9)
i=1
l I
v = yPBy. (3.10)

The above equations completely determine yf;) and yS:] (0 < k < N) with the normalizing

‘ N -te) l
equations 3" ;y;'e = 1 and Z,?:[, yi)e = 1, where e denotes an M x 1 vector whose

all elements are equal to one. As for the algorithms to solve the above equations, readers
are referred to [LeBo91] and [Taki95].

(resp. Py

loss

Let P

loss

) denote the loss probability in the early (resp. late) arrival model.
It can be shown that the loss probabilities in the two models are given by (see [Taki95]

as for the derivation):

() ()
p(") _p_(l_y[l e) P(!') _J”'_(l"y(] e)‘ (3'11)

loss — 3 loss —

P P
3.3.2 Heuristic Approximation of the Loss Probability

In this subsection, we propose approximate formulas of the loss probability which are
given in terms of the tail distribution in the corresponding infinite-buffer queue. We first
consider the distribution of the number of customers in the corresponding discrete-time
queue with buffer of infinite capacity, which will be used to construct the approximate
formulas. Let @) denote an 1 x M vector whose jth element represents the joint stationary
probability of k customers in the system and the underlving Markov chain being in state
7 in the corresponding discrete-time queue with infinite buffer. Note that both the early
and the late arrival models have the same distribution of the number of customers in the
system when the buffer has infinite capacity. The xx (k > 0) satisfies [Taki94]
k41

Ty = Ty Ar + Z TiApyr—i

(k > 0), (3.12)

with the normalizing equation Y 3>, xre = 1. We define X (z) and A(z):

X(z) = i oz, (3.13)

k=0
Al2) = i Azt (3.14)

We then have [Taki94] it
X (2)[zI — A(z)] = (1 - p)(z — 1)gA(2), (3.15)

where g denotes an 1 x M vector. Note that @y, = (1 — p)g can be obtained by solving
a set of M linear equations and ;. (k > 1) can be recursively computed by the matrix
analytic method (see [Neut89] and [Taki94]).

To construct the approximate formulas of the loss probability, we employ the following
heuristic idea. We assume that the joint stationary probabilities yf) and ij) are related
to & by truncating and renormalizing the @ if the loss probability is very small. We
claim that if the loss probability is very small, the traffic intensity p should be less than

1, so that the distribution of the number of customers in the system in the corresponding
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infinite-buffer queue is well defined. Thus, we suggest a conditional approximation when

the loss probability is very small:

Pr(X =k, P = j)

Pr(Y®) =k, P = j} , (0 < k < N), (3.16)
Pr(Y(® < N) Pr(X < N)
Pr(Y® = k, P = j) Pr(X =k, P = j) (0< k< N-1), (3.17)
Pr(Y® < N -1) Pr( X <N-1)

where Y©, Y® and X denote generic random variables representing the number of cus-
tomers in the system in the early arrival model, in the late arrival model and in the
corresponding discrete-time infinite-buffer queue, respectively. Also P denotes a generic
random variable representing the state of the underlying Markov chain. The idea behind
the above approximation is that the stationary probabilities in finite-buffer queues would
not be affected so much by losses when the loss seldom happens (i.e., the loss probability
is less than, say, 107 7). In other words, finite-buffer queues with a very small loss prob-
ability behave as if they would be the corresponding infinite-buffer queue given that the
number of customers in the system is not greater than the buffer size.

" . ' < 1l .
The approximation implies that yi”} and yi) are approximately expressed to be

'~ Dz (0K k< N), (3.18)
)~ g (0<k<N-1), oy ~PzBy, (3.19)

where ¢ and ¢ are given by

N -1 N-1 =1
e = (Z mke) y D = (Z Tre + muBNe) ) (3.20)
k=0

k=0
which come from the normalizing equations.
Remark 3.3.1:

searchers in the context of continuous-time queues. Readers are referred to [Gouw94],
[Miya93|, [Saka93], [Tijm92] and references therein.

Similar conditional approximations have been studied by several re-

THEOREM 3.3.1:  The approzimations gwen in (3.18) and (3.19) become exact when the
number of customers arriving to the system in a slot is 1.i.d. (independent and identically
distributed).

PROOF:  See Appendix B. "

From (3.18), (3.19) and (3.20), we have

) D il () Tp€
W B —ar——y Yo €= Zj .
k=0 Tk€ Y k=0 Tre +xoBye

(3.21)
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We define the tail distribution Ty (k > 0) as

o0
=Y zue (3.22)
m=k41
f,n(f} and fi“) le } . Eamall | sy
Let Py, and P .. denote the approximate loss probabilities in the early and the late
arrival models, respectively. Noting the equalities ¥ _ ®,,e = 1 — T} and xge =1 — p,

and using the approximation (3.21) in (3.11), we have

f’,{(r] 3 (1—p)Tn pi _ (1 —=p)(Tn_y — x9Bye)
o8 p(1=Ty)’ fioad p(1 =Ty_1 +xyBye)

(3.23)

Remark 3.3.2: ~ When the number of customers arriving to the system is i.i.d., the above

approximate formulas become exact.

Remark 3.3.3:  When the probability that the number of customers arriving in a slot is
greater than or equal to the buffer size N is zero, By = 0. In such a case, (3.23) for the
late arrival model is reduced to

=@ _ (1=p)TN—1

055 I ' 32'1
05 p(1 = Ty-1) i

which is given only in terms of the tail distribution 7y.

() « pWO

088 — loss?

Remark 3.3.4:  In any traflic condition, we have f’, which coincides with
intuition. This inequality can be shown by noting the fact that f(z) = x/(1 — z) is an
increasing function of z (0 <z < 1) and
n’
(TN—I — :L'(].BNB) — TN =T yNE — ‘.Du.BNB = Za:,-BN_,‘.He 2 U. (325)

=1

where the second equality can be verified by summing up both sides of (3.12) from k = 0
to N —1.

3.3.3 Accuracy of the Approximations

In this subsection, we provide the results of our numerical experiments to show the ac-
curacy of the proposed approximations. In particular, we focus on the impacts of the
correlation in the arrival process on the accuracy of the approximations, since the formu-
las become exact for i.i.d. arrival processes. For this purpose, we use the following simple

arrival process in all numerical experiments in this subsection.
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We assume that the arrival process is modulated by a two-state Markov chain with
states 1 and 2, where the state transition probabilities U;; are given by Uy = Uy = o
and Upp = Usyy =1 —a (0 < a < 1). The conditional probabilities @, ;(k) and ay;(k)

(j = 1,2) for the sizes of the arrival batches are given by

y (1+c)p (14¢)p )k o
ay (k) = (1 ~ A +r;)p) (] S AEap) (13.26)
B (=cp \(_(1=cp ) |

Bty = ("'1+(1—e)p)(1+(1—r)p ' 31

In other words, if the Markov chain was in state 1 (resp. state 2) in the current slot,
the number of customers arriving in the current slot is geometrically distributed with the
mean (1 + ¢)p (vesp. (1 — ¢)p). Note that p denotes the overall traffic intensity, and ¢
(0 < ¢ < 1) is a parameter.

Through numerical examples, we investigate the impact of the variation and the cor-
relation in arrivals. For our arrival model, the squared coefficient of variation Cf, of the

number of customers arriving in a slot is found to be
Cl=1+4p"+2& (3.28)

For a fixed value of the traffic intensity p, the squared coefficient of variation C}, increases
as the parameter ¢ does. Also the correlation coefficient C'c(n) of the number of arrivals

at lag n for our arrival process is found to be

<)
Ce(n) = l_-k-_(li:}%)_p (200 —1)", (3.29)
Note that, by keeping p and ¢ constant (which means keeping CZ constant), the correla-
tion coefficient C;(n) depends only on the term 2c— 1. When « = 0.5, the arrival process
is i.1.d., and by varying « from 0.5 to 1, we achieve varying degrees of non-negative corre-
lations of arrivals. In the rest of this subsection, the tail distributions in the approximate
formulas are computed by the matrix-analytic method [Neut89], [Taki94].

Tables 3.1, 3.2, and 3.3 show the loss probability obtained by the approximate for-
mulas, the loss probability obtained by the exact analysis, and the relative error of the
approximations to the exact results for various values of the buffer size N, where the three
parameters p, ¢ and « are fixed. It is quite interesting to observe that the accuracy of
the approximations is less sensitive to the buffer size N, especially in the range of 107!
to 107° of the loss probability. To confirm this observation, we provide Table 3.4, which
shows the ranges of the relative error and the buffer size when the loss probability falls in
the range of 107" to 10-°, where p = 0.2,0.5,0.8, ¢ = 0.2,0.5,0.8 and a = 0.6, 0.8, 0.95.
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This table again leads to the above observation; the accuracy of the approximation is
almost insensitive to the buffer size when the loss probability is very small.

We now investigate the impacts of the correlation in the arrival process on the accu-
racy of the approximations. We also fix the traffic intensity p to one of the values 0.2
(Light), 0.5 (Medium) or 0.8 (Heavy). We fix the buffer size N in such a way that the loss
probability falls in the range of 107 to 107°, depending on the value of p. Further, we
fix the parameter ¢ to one of the values 0.2 (Low), 0.5 (Moderate) or 0.8 (High). Figures
3.1 through 3.6 show the loss probability obtained by both the approximate formulas
(indicated by a) and the exact analysis (indicated by e) as a function of parameter o.
For example, HMe indicates the loss probability obtained by the exact analysis (e) in
the case of heavy traffic (H: p = 0.8) and moderate variation (M: ¢ = 0.5). We observe
that when the correlation in arrivals is not so strong (i.e., 0.5 < ¢ < 0.7), the approxi-
mations are surprisingly accurate. We also observe that the error of the approximations
becomes large according to the increase of correlation. Even in those cases, we can use

the approximations to estimate the order of magnitude of the loss probability.

Remark 3.3.5:  In all our numerical experiments, the loss probability obtained by the
approximate formulas is conservative, i.e., the approximate results are larger than the

exact ones.

Remark 3.5.6:  Since the tail distribution has a simple asymptotic expression in many
situations [Abat94], [Falk94], we can use the asymptotic expression of the tail distribution
in the approximation formulas. Ishizaki et al. [Ishi95b] have considered the loss probability
approximation using the asymptotic expression of the tail distribution when the arrival
process comes from the superposition of many independent sources which are particularly
important in practice. Furthermore, in general case, they have shown an intuitive and
simple derivation of the exact asymptotic formula, which would help understanding why

such a simple formula comes out.

3.4 Conclusion

In this chapter, we study the loss probability approximation in DBMAP/D/1/K queues.
We propose the approximate formulas which are given in terms of the tail distribution
of the queue length in the corresponding infinite-buffer queue. The approximate formu-
las are constructed in such a way that they become exact for any independent arrival
process. The accuracy of the approximations is extensively examined through numerical

experiments. We observe that when the correlation in arrivals is not so strong, the approx-



imations are surprisingly accurate. We also observe that the error of the approximations
becomes large according to the increase of correlation. Even in those cases, we can use

the approximations to estimate the order of magnitude of the loss probability.
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Table 3.1: Accuracy of Approximations (p = 0.2, ¢ = 0.8, a = 0.95)

Early arrival model

Late arrival model

N exact approximate | error(%) exact approximate | error(%)
5 || 3.176E-03 | 3.842E-03 20.98 7.507E-03 | 9.237E-03 23.05
6| 1.113E-03 | 1.347E-03 21.01 2.775E-03 | 3.385E-03 21.98
7 || 3.904E-04 | 4.725E-04 21.03 1.012E-03 | 1.226E-03 21.19
8 || 1.369E-04 | 1.657TE-04 21.03 3.651E-04 | 4.404E-04 20.63
9 || 4.803E-05 | 5.813E-05 21.04 1.308E-04 | 1.572E-04 20.22

10 || 1.685E-05 | 2.039E-05 21.04 4.661E-05 | 5.589E-05 19.92

11 |[ 5.911E-06 | 7.154E-06 21.04 1.654E-05 | 1.980E-05 19.69

12 || 2.073E-06 | 2.510E-06 21.04 5.854E-06 | 6.99TE-06 19.53
13 || 7.274E-07 | 8.804E-07 21.04 2.067E-06 | 2.468E-06 19.41
14 || 2.552E-07 | 3.088E-07 21.04 7.286E-07 | 8.694E-07 19.32
15 || 8.951E-08 | 1.083E-07 21.04 2.565E-07 | 3.059E-07 19.25
16 || 3.140E-08 | 3.801E-08 21.04 9.025E-08 | 1.076E-07 19.20
17 || 1.102E-08 | 1.333E-08 21.04 3.172E-08 | 3.780E-08 19.16
18 || 3.864E-09 | 4.677TE-09 21.04 L.115E-08 | 1.328E-08 19.13
19 || 1.356E-09 | 1.641E-09 21.04 3.915E-09 | 4.663E-09 19:11
20 || 4.755E-10 | 5.756E-10 21.04 1.375E-09 | 1.637E-09 19.09
21 || 1.668E-10 | 2.019E-10 21.04 4.825E-10 | 5.746E-10 19.08
22 || 5.853E-11 | 7.084E-11 21.03 1.694E-10 | 2.017E-10 19.06
23 | 2.054E-11 2.485E-11 21.01 5.946E-11 | T7.077E-11 19.02
24 | 7.209E-12 | 8.718E-12 20.94 2.088E-11 | 2.483E-11 18.93
25 || 2.534E-12 | 3.059E-12 20.73 7.346E-12 | 8.714E-12 18.62
26 || 8.941E-13 | 1.0T4E-12 20.14 2.595E-12 | 3.058E-12 17.85
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Table 3.2: Accuracy of Approximations (p=05,c=0.

o

, a=0.38)

Table 3.3: Accuracy of Approximations (p = 0.8, ¢ = 0.8, a = 0.6)

Early arrival model

Late arrival model

Early arrival model

Late arrival model

N exact | approximate | error(%) exact | approximate | error(%)
10 || 3.222E-03 | 3.567E-03 10.73 5.308E-03 | 5.726E-03 7.887
12 || 1.234E-03 1.366E-03 10.72 2.039E-03 | 2.199E-03 7.854
14 || 4.732E-04 | 5.239E-04 10.71 7.830E-04 R.444E-04 7.841
16 | 1.815E-04 | 2.010E-04 10.71 3.006E-04 | 3.242E-04 7.836
18 || 6.966E-05 | 7.713E-05 10.71 1.154E-04 | 1.245E-04 7.834
20 || 2.674E-05 | 2.960E-05 10.71 4.430E-05 4. 777E-05 7.833
22 || 1.026E-05 | 1.136E-05 10.71 1.700E-05 | 1.833E-05 7.832
24 || 3.938E-06 | 4.360E-06 10.71 6.526E8-06 | 7.037E-06 7.832
26 || 1.511E-06 | 1.673E-06 10.71 2.505E-06 | 2.701E-06 7.832
28 || 5.800E-07 | 6.422E-07 10.71 9.613E-07 | 1.037E-06 7.832
30 || 2.226E-07 | 2.465E-07 10.71 3.689E-07 | 3.978E-07 7.832
32 || 8.543E-08 | 9.459E-08 10.71 1.416E-07 | 1.527E-07 7.832
34 || 3.279E-08 | 3.630E-08 10.71 5.434E-08 | 5.860E-08 7.832
36 || 1.268E-08 | 1.393E-08 10.71 2.086E-08 | 2.249E-08 7.832
38 || 4.830E-09 | 5.347E-09 10.71 8.004E-09 | 8.631E-09 7.832
40 || 1.854E-09 | 2.052E-09 10.71 3.072E-09 | 3.313E-09 7.832
42 || 7.114E-10 | 7.876E-10 10.71 1.179E-09 | 1.271E-09 7.832
44 || 2.730E-10 | 3.023E-10 10.71 4.525E-10 | 4.879E-10 7.831
46 || 1.048E-10 1.160E-10 10.71 1.737E-10 1.873E-10 7.829
48 || 4.022F-11 4.452E-11 10.71 6.665E-11 7.187E-11 7.823
50 (| 1.544E-11 1.7T09E-11 10.71 2.559E-11 | 2.758E-11 7.804
52 || 5.925E-12 | 6.559E-12 10.69 9.824E-12 1.059E-11 7.760
54 || 2.276E-12 | 2.518E-12 10.64 3.776E-12 | 4.063E-12 7.605
56 || 8.744E-13 | 9.667E-13 10.55 1.454E-12 | 1.560E-12 7.290
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N exact, approximate | error(%) exact approximate | error(%)
25 || 7.945E-03 | 8.042E-03 1.228 9.096E-03 | 9.190E-03 1.037
30 || 4.106E-03 | 4.156E-03 1.209 4.691E-03 | 4.7391-03 1.020
35 || 2.138E-03 | 2.163E-03 1.200 2.440E-03 | 2.464E-03 1.011
40 || 1.117E-03 | 1.130E-03 1.1956 1.274E-03 | 1.287E-03 1.006
45 || 5.849E-04 | 5.919E-04 1.192 6.669E-04 | 6.736E-04 1.003
50 || 3.065E-04 | 3.102E-04 1.191 3.494E-04 | 3.529E-04 1.002
55 || 1.607TE-04 | 1.626E-04 1.190 1.832E-04 | 1.851E-04 1,001
60 || 8.431E-05 | 8.531E-05 1.190 9.610E-05 | 9.706E-05 1.001
65 || 4.423E-05 | 4.475E-05 1.190 5.041E-05 | 5.092E-05 1.001
70 || 2.320E-05 | 2.348E-05 1.189 2.645E-05 | 2.671E-05 1.001
75 || 1.217TE-05 | 1.232E-05 1.189 1.388E-05 | 1.401E-05 1.001
80 || 6.387E-06 | 6.463E-06 1.189 7.280E-06 | T7.353E-06 1.001
85 || 3.351E-06 | 3.391E-06 1.189 3.820E-06 | 3.8581-06 1.001
90 || 1.758E-06 | 1.779E-06 1.189 2.004E-06 | 2.024E-06 1.001
95 || 9.225E-07 | 9.335E-07 1.189 1.051E-06 | 1.062E-06 1.001

100 || 4.840E-07 | 4.898E-07 1.189 5.517TE-07 | 5.572E-07 1.001
105 || 2.540E-07 | 2.5T0E-07 1.189 2.895E-07 | 2.924E-07 1.001
110 || 1.332E-07 | 1.348E-07 1.189 1.519E-07 | 1.5341-07 1.001
115 || 6.991E-08 | 7.074E-08 1.189 7.968E-08 | 8.048E-08 1.001
120 || 3.668E-08 | 3.712E-08 1.189 4.181E-08 | 4.223E-08 1.001
125 || 1.925E-08 | 1.947E-08 1.189 2.194E-08 | 2.216E-08 1.000
130 || 1.010E-08 | 1.022E-08 1.189 1.151E-08 | 1.162E-08 1.000
135 || 5.298E-09 | 5.361E-09 1.190 6.039E-09 |  6.099E-09 1.000
140 | 2.780E-09 | 2.813E-09 1.190 3.168E-09 | 3.200E-09 0.999
145 || 1.458E-09 | 1.476E-09 1.190 1.662E-09 | 1.679E-09 0.998
150 || 7.652E-10 | 7.743E-10 1.191 8.722E-10 | 8.809E-10 0.995
155 || 4.015E-10 | 4.063E-10 1.192 4.57T7TE-10 | 4.622E-10 0.989
160 || 2.10615-10 | 2.132E-10 1.194 2.402E-10 | 2.425E-10 0.977
165 || 1.105E-10 | 1.118E-10 1.199 1.260E-10 | 1.272E-10 0.955
170 || 5.798E-11 | 5.868E-11 1.209 6.616E-11 | 6.676E-11 0.910
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Table 3.4: Ranges of Buffer Size and Relative Error

a=0.6

Early arrival model

Late arrival model

N | ¢ | range of error range of buffer || range of error range of buffer
0.2 ] 0.2 || 0.644 ~ 0.753 8~ 14 0.400 ~ 0.404 9~ 15
0.2 0.5 | 1.774 ~ 1.807 9~ 17 1.261 ~ 1.387 10 ~ 18
0.2 ] 0.8 | 2.320 ~ 2.322 10 ~ 19 2.078 ~ 2.268 11 ~ 20
0.5 0.2 | 0.628 ~ 0.633 17 ~ 34 0.317 ~ 0.322 18 ~ 35
0.5 ] 0.5 |f 1.933 ~ 1.935 20 ~ 41 1.259 ~ 1.276 21 ~ 42
0.5 ] 0.8 || 2.575 ~ 2.578 25 ~ 51 2.216 ~ 2.223 26 ~ 52
0.8 0.2 |f 0.220 ~ 0.220 47 ~ 1018 0.114 ~ 0.120 48 ~ 102
0.8 | 0.5 || 0.854 ~ (.859 58 ~ 125 0.528 ~ 0.559 59 ~ 126
08108 1.189 ~ 1.199 77 ~ 165 0.948 ~ 1.001 78 ~ 166

o =038
Early arrival model Late arrival model
Al range of error  range of buffer || range of error range of buffer
20 02 2.825 ~ 3.299 8~ 15 1.833 ~ 1.848 97 ~ 16
0.2 05| 7.275~ 7.359 9~ 17 5.311 ~ 5.689 10 ~ 18
0.2 08| 9.763 ~ 9.768 11 ~ 20 8.776 ~ 9.254 11 ~ 21
05[02| 3.738 ~ 3.749 18 ~ 35 2.236 ~ 2.249 19 ~ 36
0.5 |05 |[ 10.712 ~ 10.713 23 ~ 46 7.826 ~ 7.832 24 ~ 47
0.5 | 0.8 14.41 ~ 14.42 30 ~ 60 12.81 ~ 12.82 31 ~ 61
0.8 0.2 1.506~ 1513 49 ~ 105 1.010 ~ 1.042 59 ~ 106
08105 | 5278 ~ 5.283 70 ~ 150 3.945 ~ 3.988 71 ~ 151
0.8 |08 6.782 ~ 6.789 104 ~ 224 5.961 ~ 5.976 105 ~ 225
a = 0.95
Early arrival model Late arrival model

A | ¢ | range of error range of buffer || range of error range of buffer
0.2 | 0.2 || 6.105 ~ 6.946 8~ 15 4.082 ~ 4.177 9~ 16
0.2 | 0.5 || 14.94 ~ 15.08 9~ 18 11.19 ~ 11.79 10 ~ 19
0.2 0.8 | 21.04 ~ 21.04 10 ~ 21 19.06 ~ 19.53 12 ~ 22
0.5 (0.2 14.85 ~ 14,91 19 ~ 38 10.79 ~ 10.80 20 ~ 39
0.5 | 0.5 || 41.66 ~ 41.67 28 ~ 57 33.91 ~ 33.92 29 ~ 58
0.5 0.8 || 61.23 ~ 61.24 42 ~ 88 56.44 ~ 56.45 44 ~ 90
0.8 0.2 || 10.50 ~ 10.52 59 ~ 129 9.542 ~ 9.561 60 ~ 130
0.8 | 0.5 || 25.39 ~ 25.41 124 ~ 272 22.32 ~ 22.35 125 ~ 273
0.8 | 0.8 || 24.38 ~ 24.38 244 ~ 534 22.41 ~ 2241 246 ~ 535
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Chapter 4

Queues with a Gate - Geometrically
Distributed Gate Opening Intervals

4.1 Introduction

In this chapter, we consider discrete-time BBP/G/1 queues with a gate, where BBP
denotes a batch Bernoulli process. We assume that the intervals between successive
openings of the gate are geometrically distributed. The purpose of this chapter is to
provide a complete set of the analytical results for various performance measures.

The organization of this chapter is as follows. In section 4.2, we describe the mathemat-
ical model. Our model is considered as a discrete-time version of the model of [Bors93].
The model in this chapter, however, allows batch arrivals, while [Bors93] considers only
single arrivals. In the next three sections, we provide various formulas of the performance
measures of interest. In section 4.3, we study the number of customers in the system.
We first derive the joint PGF for the numbers of customers in the first queue and the
second queue immediately after departures of customers. The PGF is given in terms of
a function which is represented by an infinite produet. Next we derive the joint PGF for
the numbers of customers in the first queue and the second queue at the beginning of a
randomly chosen slot. Note that [Bors93] did not provide any results on the joint queue
length distribution at a random point in time. Furthermore, we analytically show the de-
composition properties for the total number of customers in the system at departures and
at a randomly chosen slot. In section 4.4, we analyze the amount of work in the system.
Using the joint distribution of the queue lengths and the remaining service time, we first
derive the joint PGF for the amounts of work in the first queue and the second queue at
the beginning of a randomly chosen slot. Next we derive the PGF for the amount of total

work in the system. Furthermore, we show the decomposition property for the amount
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of total work in the system. Note that the PGF for the amount of work in the system is
identical to the PGF for the sojourn time of a supercustomer [Kawa93]. In section 4.5, we
consider the waiting times of customers. We derive the joint PGF for the waiting times
of individual customers in the first queue and the second queue, and the PGF for the
waiting time of a supercustomer. Also we analytically show the decomposition property
for the total waiting time of individual customers. Finally, in section 4.6, we provide some
numerical examples, where we discuss three kinds of correlations in the model: the effect
of the correlation between the interarrival time and the service time of supercustomers
on the mean waiting time of supercustomers, the effect of the correlation between the
interarrival time of each batch composed of customers who move to the second queue at
the same time and the number of the customers in the batch on the mean waiting time of

individual customers in the second queue, and the correlation between the waiting times

in the first quene and the second queue.

4.2 Model

We consider a discrete-time queneing model with the following characteristics:

e Customers arrive at the system in a batch immediately before slot boundaries.
The batch sizes and the service times of individual customers are independent and
identically distributed. Customers arriving at the system are accommodated in the

first queune at the gate.

e The gate opens immediately before slot boundaries. When the gate opens, all the
customers waiting in the first queune move to the second queue at the server. The
travel times of customers to the second queue are assumed to be zero. We assume
that customers arriving in a slot also move to the second queue when the gate opens
in the slot, so that the waiting times of such customers in the first queue become
zero. The gate closes immediately after all the customers in the first queue move
to the second queue. The intervals between successive openings of the gate are

geometrically distributed.

e There is a single server who serves the customers only in the second quene. When
the server finds some amount of work in the second queue immediately after a slot
boundary, he serves exactly one unit of work in the current slot. We assume that
customers are served on an FCFS basis. Furthermore, as for customers who arrive

in the same slot, the next customer for service is randomly chosen among those

customers.
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We now introduce random variables and notations to describe the above model. Let
B and C denote random variables representing the number of individual customers who
arrive at the system in a slot and the service time of an individual customer, respectively.
Further, let A denote a random variable representing the amount of work brought itlI.;t)
the system in a slot (i.e., the sum of the service times of customers arriving in a slot). We
define the following PGFs: :

AR 2 E[4], B@z)4 E[®], co@)2E [9]. (4.1)

By definition, we have
A(z) = B(C(2)). (4.2)

Let G denote a random variable representing the length of an interval between successive

openings of the gate. Let g(n) = Pr{G =n} (n > 1). We then have for a parameter 7y
gn)=10—y""' (0<y<1). (4.3)

We denote the PGF of the g(n) by G(z):

G(2) =) g(n)" = %_—'YE (4.4)
n=1 o

We assume that B, ' and G' are independent, identically distributed random variables,
and those are independent each other. Throughout this chapter, for any PGF f(z),
we use the symbol f'(1) to denote lim, ., df(z)/dz. Furthermore, we assume A'(1) =
B(1)C'(1) < 1 and the system is in equilibrium.

4.3 Number of Individual Customers

In this section, we consider the numbers of individual customers in the first queue and
the second quete. First we observe an imbedded Markov chain which is composed of
two types of imbedded points. Next we derive the PGF for the number of customers
immediately after departures of customers. Finally, we obtain the PGF for the number of
customers at the beginning of a randomly chosen slot in terms of the PGF for the number

of customers immediately after departures of customers.

4.3.1 Number of Customers Immediately after Departures

In this subsection, we derive the formula for the number of customers immediately after
departures, To do so, we introduce an imbedded Markov chain which is composed of two

types of imbedded points:
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e type 1: immediately after departures of individual customers,
e type 2: immediately after gate opening instants during idle periods.

Let XM and X denote random variables representing the numbers of individual cus-
tomers in the first queue and the second quene, respectively, at a randomly chosen imbed-
ded point. Note here that X() and X® are dependent. Moreover, let Tp denote a random
variable representing the type of a randomly chosen imbedded point, i.e., Tp =2 (i = 1,2)

when a randomly chosen imbedded point is of type i. We define (2, 2;) and Q(22) as
Plz,2) & B[4 1mp=y) (4.5)

Q%)= E [mel{'rp:z}] ; (4.6)

where 14 denotes the indicator function of a set 7. Note here that XD =0if Tp =2
because all the customers waiting in the first queue move to the second queue when the
gate opens.

Let Xfr,” and X2 denote random variables representing the numbers of individual
customers in the first queue and the second queue, respectively, immediately after the
departure of a randomly chosen customer. Note here that Xﬁl and X{f’ are dependent.

We define Qp(z, 25) as the joint PGF associated with ,\'8} and X}f}:

Qo) 2 B[ 7). (4.7
We then have the following theorem.
THEOREM 4.3.1:  Qp(zy,22) satisfies
[22 = C(yB(21))]@b(21,22) = C(vB(z1))[¥(2) — ¥(z)]
2
+ [mﬁ(q, 22) - (‘(‘YB(Z| ))
_C(B(n) B(z)-1
% C(BE)1-1B(m) 2 U8
where
_ P(z,0) + Q(0)
¥(z) = _}_’(_1,1—)-_' (4.9)
(21, 23) = C(vB(21)) + H(z, 2) (4.10)
with (
oy _L—=7)B(z) . _
(e 2) = gy =BGy [C(B () — COyB()) (4.11)
PROOF:  See Appendix C.1. =
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Note that (4.8) is rewritten to be

1
Qp(z1,22) = 22— CB(ar)) [C('yB(zi)){Qu(zz‘{}) — Qp(21,0)}
+ {—-———C(;FZQ))G(E]. 23) — C(yB(z ))} Qp(zs, Z:g):l ! (4.12)

The equation (4.12) may be useful because it can replace @n(21,22) by Qn(21,0), Qp(z2,0)
and @p(z2,22). Indeed, we will use (4.12) in proofs.

(4.8) shows that Qp (2, 25) is expressed in terms of W(z) (2 = 2y, 23). We shall therefore
consider W(2). Define for |z| < 1:

8(21) £ C(vB(z)), (4.13)
80(z) £ 2, (4.14)
§9(z) £ 680 N(z))  (i>1). (4.15)

Since the system is stable, Qp(z;,2,) is bounded and analytic for [21] < 1 and |z| < 1.
Thus, for 2, = 6(2;), the left-hand side of (4.8) becomes zero, so that the right-hand side

of (4.8) must become zero, too. We then have

) s e O CI L=l 511])
T (B(8(z1)) — vB(21))(1 — vB(6(21)))

To simplify notations, we introduce for |z| < 1,

(1 —v)B(6(2))(1 —vB(z))

W(b(z))- (4.16)

A
2) = i 4.17
o) = BGen) — 1Bl (T — B 2
Then (4.16) becomes
‘I’(ZI) = d)(z;)\]'!(r’i(zl)). (418)
Using (4.18), we have the following theorem.
THEOREM 4.3.2:  ¥(z) = (P(z,0) + Q(0))/P(1,1) s given by
_1=B1)c 1), oz :
¥(z) = B() (1 7’)0(1)’ (4.19)
where for |z| < 1,
a(z) = [] 6(6™(2)). (4.20)
h=0
PROOF:  See Appendix C.2. "
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- - - L3 A !(l)
Next we present a corollary which immediately follows from Theorem 4.3.1. Let X
and X‘E‘?) denote random variables representing the numbers of individual customers in
the first quene and the second queue, respectively, at the beginning of a randomly chosen
1 (2 , \ -

slot. Note here that ,’{f‘} and ,\f,’ are dependent. We define Q Ajbusy (21, 22) as the joint
PGF for the numbers of individual customers in the first queue and the second queue at
the beginning of a randomly chosen slot given that the server is busy. Also, we define
Q aliate(21) as the PGF for the number of individual customers in the first queue at the

beginning of a randomly chosen slot given that the server is idle:

. A el 25
T‘.‘\' — 1] 3 (Jm.,'d;t.(zl) =5 Z A 75‘ =i} 3 (4.21)

1) -(2)
25 o5 X X
(JAlblmy(z]szZ) =K [2] ! ) .

where T denotes a random variable defined as

o & ) 1 if the server is busy,
48 = { 0 if the server is idle, (4.22)
at a randomly chosen slot. Note that, by definition, Q zjige(2) is given by
1—9 P(z,0)+4+Q(0
Qajidte(2) = (2,0) + Q(0) (4.23)

1 —4B(z) P(1,0) + Q(0)

COROLLARY 4.3.1:  The PGF Qp(z,z) for the total number of customers in the system
unmediately after departures 1s given by

Qp(2,2) = Qps(2)Q Ajiate(2), (4.24)
where
Quul(z) = (1 - B’(I)C’(l))(zz__l()?fl(}?z()?) B ) (4.25)
and Q ziate(2) 15 given in (4.23).
PRroo¥r:  See Appendix C.4. .

Remark 4.3.1:  Note that Qpy(2) denotes the PGF for the number of customers imme-
diately after departures of customers corresponding BBP/G/1 queue without gates and
Q ajiate(2) denotes the PGF for the number of individual customers in the system given
that the server is idle. Thus, the total number of customers in the system immediately
after departures are decomposed into the two independent factors,

4.3.2 Number of Customers in a Randomly Chosen Slot

In this subsection, we derive the formula for the number of customers at the beginning of a
randomly chosen slot. To do so, we first consider the number of customers in the first quene
and that in the second queue at the start of the service of a randomly chosen customer. Let
XM and X® denote random variables representing the numbers of individual customers
in the first queue and the second queue, respectively, at the start of the service of a
randomly chosen customer. We define Q(z, 2) as the joint PGF for the numbers of
individual customers in the first queue and the second queue at the start of the service of

a randomly chosen customer:
o) 2 B[] (4.20)
We then have the following lemma.

Lemma 4.5.1: Q(z,,zg) is given by

Qz1,22) = e CzB(zl)){Q“(zz’U) - Qp(21,0)}
e 29)Qp( 22, 22), 4.27)
+ el S 2,2 (.27
‘here .
where ahs e 2o + H(z1,23) — C(B(22)) (4.28)

29 — C(vB(2z))
and H(zy, zy) is given in (4.11).

ProOF:  See Appendix C.5. L]
Taking z, = z = 2 in (4.27) and noting
S(z,2)=1, (4.29)
we can easily confirm that the following equation holds:
Q(z,2) = = Qp(2:2): (4.30)

C(B(2))
This equation implies that the number of customers in the syste

domly chosen customer is equal to the number of customers in the system at the s
rs arriving to the system during

m left behind by a ran-
tart of

his service (including himself) plus the number of custome

his service time minus one (himself).

We now consider the number of customers in the first queue .
chosen slot. We define Q4(21, z2) as the joint PGF

and that in the second

queue at the beginning of a randomly
associated with Xf:) and Xff):

X x®
Qua(z1,2) S E [21 Az ] (4.31)
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We then have the following theorem.
THEOREM 4.3.3:  Qa(2,22) ts given by

Q,\(-?v'hzz) — & [3’(1)(""(]) (ZI “2 ('(}3( 2) Q”( _,Zz)
29 1 — ('(‘71’3(21))

+B'()C () —cr ) A - 1B(z))
1] o Q I\ ~11 21)
1@z 0) — Qu(an, 0} + (1 - B B2
where COB()
0(z21,22) = H(z1,22) + c*(1)(1 - -;«B(lzl )S(zl,zg)
with
(1 - v)B(2) B(z) — C(B(z)) vB(z1) — C(yB(z1))
H(Z|, 22

~ C(1)(B( ) - 7B(2)) 1 - B(2) 1 —yB(z)

PrOOF:  See Appendix C.6, which Lemma 4.3.1 is used in.

We present a corollary which immediately follows from Theorem 4.3.2.

(4.32)

(4.33)

. (4.34)

COROLLARY 4.3.2:  The PGF Q(z, z) for the total number of customers at the beginning

of a randomly chosen slot is given by

QRal(z,2) = Qan(2)Q ajidte(2),

where
Y f (z LN 1)0(8(‘2))

and Q ajiae(2) s given in (4.23).

Proo¥:  Setting z; = z; = z in (4.32), noting
C(B(z)) -1
C'(1)(B(z) - 1)’
and using Corollary 4.3.1, it follows that
z C(B(z)) —1 Qb2 2)
Y, Z,
C(B(=) C'(1)(B(z) - 1) ***

4] — B (1)(':'(1))‘3"(" »2)

B'(1)( ) <
"()(z—1
= T[;)_—_l_Q“(z‘z)

(z - 1)C(B(2))

é(z,z) =

QA(Z, z) —- Bf(l)cf(l)

(1= B1)c'(1))——2_ P2 0) +Q(0)

— C(B(2)) L = yB(z) P(1,0) + Q(0)’

H

(4.35)

(4.36)

(4.37)

(4.38)

from which, (4.35) follows. -

Remark 4.3.2:  Note that Qs(z) denotes the PGF for the number of customers at
the beginning of a randomly chosen slot in the corresponding BBP/G/1 queue without
gates. This decomposition result is a discrete-time example of the general result for the

continuous-time queue given in [Fuhr85].

4.4 Work in the System

In this section, we consider the amounts of work in the first quene and the second queue.
To obtain the formulas for the amount of work in the system, we first derive the formula
for the joint PGF for the numbers of customers and the remaining service time at the
beginning of a randomly chosen slot.

Let XM (resp. .\-"{2)) denote a random variable representing the number of individual
customers who arrive and remain in the first queue (resp. arrive and move to the second
queue) during the backward recurrence time of the service time of a customer who is
served in a randomly chosen slot. Also, let C' denote a random variable representing the
forward recurrence time of the service time of a customer who is served in a randomly
chosen slot. We define Q ajpusy(21, 22, w) as the joint PGF for the numbers of customers
who arrive and remain in the first queue and customers who arrive and move to the
second queue during the backward recurrence time of the service time of a customer who
is served in a randomly chosen slot, and the forward recurrence time of the service time

of the customer given that the server is busy:

X ‘9‘[!) f‘_'

QAHmsy(zl 3 22, TU) = F [ Z u

Ts = l]. (4.39)

We then have the following lemma.

Lemma 4.4.1: The joint PGF Q pjpusy(21, 22, w) is given by

Q:ﬂbusy(zlv""Z:wJ = é(zhz?‘w ( (B( 2))Qn( 2:22)

& 22 w(C(w) — C(yB(z)))
z— C(yB(z)) C'(1)(w—~B(z))
{@b(z2,0) — Qolz1,0)}, (4.40)
Wi w(C(w) — C(yB(2)))

(4.41)

9(21,32:"") = (2114,2,?”) -+- 5(21,32) (1) (w — ’YB(ZI))

o
<



with

l;f(zl,z;,,w) =

(1 —7)B(z) [B(zg)C'['m) — wC(B(2))
OB - BE) | w-Ble)
_vﬂ&ncuw—wMNwBunq

w — yB(z) i

(4.42)

and S(z, z,) is given in (4.28).

PROOF:  See Appendix C.7. s

We now consider the amount of work at the beginning of a randomly chosen slot. Let
1 : : : .
U™ (resp. U®) denote a random variable representing the amount of work in the first
queue (resp. the second queue) at the beginning of a randomly chosen slot. Note here

that UM and U® are dependent. We define the Joint PGF U(z;, 23) associated with /()
and U®);

U(z,2,) 2E [zrngmJ . (4.43)

We then have the following theorem.

THEOREM 4.4.1:  The joint PGF U(zy, zy) is given by

U(z1,22) = (1-B'(1)C l))z"’(”‘ %) = 1) 2 — 7A(z) Qp(C(2), C(22))
zi aeto ((32) 2y — yA(21) an(C‘(zg))
ot Z]) C(Z ))
+(1 - B'(1)c’(1)) O (CG) )’

+B (1)__————[Qu (C(22),0) = Qp(C(21),0)}. (4.44)

22

3 ~. * 1 .
PROOF:  See Appendix C.8, which Lemma 4.4.1 is used in. u

We present a corollary which immediately follows from Theorem 4.4.1. Let U=UW4
U® denote the amount of total work in the system in
define U(z) as the PGF for U.

a randomly chosen slot and we

COROLLARY 4.4.1: The PGF U (2) 1s given by

U(2) = Up(2)Uiare(2), (4.45)

where

thiz) = ! ! (Z & ])A(Z)
b(2) (.1 B(I)C(l))—z—_‘m—, (4.46)
Ul'dh'(zj = Q;l!id!t(cj(z))

- _1=7 P(C(2),0)+Q(0)
L—vA(z) P(1,0)+ Q(0) (4:47)
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ProOF:  Using (C.35) in (4.44), it follows that

U(z) = U(z2)
(-’-'— 1)A(z)
- A(2)

from which, (4.45) immediately follows. W

-y P(C(2),0) + Q(0)

-13(1)6"(1))1_7,_1(3] P(1,0) 4+ Q(0) °

(4.48)

Remark 4.4.1:

I. Note that U(z) is identical to the PGF for the sojourn time of supercustomers and

coincides with the result in [Kawa93|.

2. Uy(z) denotes the PGF for the amount of work in the corresponding BBP/G/1
queue without gates, and Ug.(2) denotes the PGF for the amount of work in the
first queue given that the server is idle. Thus (4.45) shows that the amount of the
total work in the system is decomposed into the two independent factors. This is
a discrete-time example for the work decomposition property in the queue with the

generalized vacations [Boxm89|.

Note that, with (4.45) and noting (P(1,0)+Q(0))/P(1,1) = (1—)(1=B'(1)C'(1))/B'(1)
from Theorem 4.3.1, (4.44) is rewritten to be

¥(zy — A(z))) 22 — 1
z3 —YA(z) 2z =1

—— AR
2o — YA(2))

U(z1,2) = (1 =7)U(2) + U(z). (4.49)

Th equation (4.49) may be useful because it can replace U(zy,2;) by U(z) and U(zy).

Indeed, we will use (4.49) in order to derive the PGFs for the waiting times in the next

section.

4.5 Waiting Times

In this section, we consider the waiting times of a supercustomer and an individual cus-
tomer. We first derive the PGF for the waiting time of a randomly chosen supercustomer
" 4 ny BTl N

in terms of the PGF for the amount of work in the system. Next we obtain the PGF's for

the waiting times of a randomly chosen individual customer in terms of the PGF for the

amount of work in the system.

4.5.1 Waiting Time of a Supercustomer

In this subsection, we consider the waiting time of a randomly chosen supercustomer. We

118 s ing to the seconc
define a supercustomer as a batch composed of individual customers moving to the second
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queue at the same time when the gate opens. Note here that it is possible that there is no
individual customer in the first queue when the gate opens. We regard such a case as an
arrival of a supercustomer with zero service time at the second queue. Let W, denote a
random variable representing the waiting time of a randomly chosen supercustomer. We

define W,(z) as the PGF for W,. We then have the following theorem.

THEOREM 4.5.1:  The PGF W,(z) 1s given by
-1

(1 - B (e, (4.50)

W,(z) = : ::U(;) =

where U(z) 1s gwen in (4.45).

Proor: 1t follows that

U(l,z)—U(1,0)

W,(z) = +U(1,0). (4.51)

Using (4.49) in (4.51), (4.50) immediately follows. =

Remark 4.5.1:  After some algebra with (4.49) and (4.50), we have the following rela-
tionship between the work in the second queue and the waiting time and the sojourn tin%o
of a supercustomer:
7 —
U(1,2)=1— A1)+ A’(l)zG,‘:l“)if(l)g(f)z) (4.52)
Note that (4.52) can also be derived from the equality of the virtnal delay and attained
waiting time distribution (see, for example, [Miya92, Saka90, Seng89]).

4.5.2 Waiting Time of a Customer

In this subsection, we consider the waiting time of a randomly chosen individual cus-
tomer. Let W (resp. W) denote a random variable representing the waiting time of
a randomly chosen customer in the first quene (resp. the second queue). Note here that
W and W are dependent. We define W,(z,, z,) as the joint PGF for WM and W,

1) g !
H,(z,,zg)—E[ W' “m]. (4.53)

We then have the following theorem.

THEOREM 4.5.2:  The joint PGF W,(z,, z,) is given by

i - l—v 1
1 — A(2p)
B'(1)(1 = C(zy))’ (4.54)

where U(z) 15 quven in (4.45).

PrOOF:  We divide the waiting time of a randomly chosen customer into three parts:
H-"‘!” = Ftl)‘ W (2) — (2 1) (4.55)

where F) (resp. F(2) ) denotes a random variable representing the waiting time of the
batch which includes the randomly chosen customer in the first queue (resp. in the second
queue), and D denotes a random variable representing the sum of the service times of
customers who arrive in the same batch as the randomly chosen customer and are served
before the randomly chosen customer. Note here that F() 4 F2) and D are independent.

Now we define the following PGFs:
F(a,2) S E[:F"47], DE2E ["]. (4.56)

First we consider F'(z,,2,). Let G4 denote a random variable representing the remaining
gate opening interval. Also, let I-Vf,” and ”_,}(12) denote random variables representing the
amounts of work in the first queue and the second queue, respectively, immediately before
the arrival of a randomly chosen customer. Note that the joint distribution of the amount
of work immediately before arrivals is identical to that at the beginning of a randomly
chosen slot, since customers arrive to the system according to a batch Bernoulli process
[Boxm88|. Thus, it follows that

Ga W wiD Gy BE

o
F(z,z2) = E [7-1' B W d 1{“.-121?( ] + E[ A2y 1|t1-'f‘<(;4}
oo (s 4] o0

— Z Z Z (} v '}’)Tﬂ_lz;l_iz.’;l—m_]_(”_” [_)r{U(l) - k‘Uw} = ,m}

k=0n=1m=n
o0

sy

k=0m=0n=m+1

n 1 ﬂ 1 J'rr)r[U{” —& b’(z) "’TH}

= LY (U z) ~ Ulen )} + U, v21) (4.57)
Z — Y2 — 75
On the other hand, D(z) is given by
1— A(2)
2 . (4.58)
D) = By - e
We then have

We(z1,22) = F(21,22) D(22). (4.59)
Using (4.49) in (4.59), (4.54) immediately follows. "
Let W. = W) 4+ W denote the total waiting time of a randomly chosen customer

in the system. We then define W,(z), Wei(z) and W (2) as the PGFs for W,, W) and
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W@, respectively. Now we present a corollary which immediately follows from Theorem

4.5.2.

COROLLARY 4.5.1:  The PGFs W (2),We(z) and We(2) are given by

Wai(z) = 11__;2, (4.60)
. l—y 1=z T 1 — A(2) 48
Wea(z) = S i Al) U(z) — (1 - B'(1)C’(1)) B - C(2)) (4.61)
W.(2) = Wi(2)Uback(2), (4.62)
respectwely, where
z—1 1-A
Wi(z) = (1- B'(])C."(l))z —AG) B _(2(2)), (4.63)
[fhm_k(z) - 1 — Y b'(,.),.?.) (461:)

1 —+z1- B'(1)C'(1)’

and U(z) 1s given i (4.45).

PROOF: Letting 2z, = 1, z; = 1 and 2, = 2z, = z in (4.54), we obtain (4.60), (4.61) and
(4.62), respectively. u

Remark 4.5.2:

1. Wy(z) denotes the PGF for the waiting times of customers in the corresponding
BBP/G/1 queue without gates, and Up,k(2) denotes the PGF for the backward
recurrence time of the gate opening interval given that the server is idle. This is
a discrete-time example of the waiting-time decomposition property in the queue

with generalized vacations [Fuhr85).

2. After some algebra with (4.49) and (4.61), we have the following relationship be-
tween the work in the second queue and the waiting time and the sojourn time of

an individual customer in the second quene:

1 - C(2)

U(l‘ Z) =1-— ff(l) s AJ(})ZH’-,Q(Z)E“)(—l'?)*

(4.65)

Note that (4.65) can also be derived from the equality of the virtual delay and
attained waiting time distribution (see, for example, [Miya92, Saka90, Seng89)).
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4.6 Numerical Examples

In this section, we provide some numerical examples. First we regard the second queue as
an isolated system and observe the effect of the gate opening interval on the mean waiting
time. More precisely, we consider the gate opening interval in terms of the covariances

and the correlation coefficients. In section 4.1, we mentioned two types of correlations:

e type 1: correlation between the interarrival time G and the service time Cs of each

supercustomer,

e type 2: correlation between the interarrival time G of each batch composed of
customers who move to the second queue at the same time and the number Bg of

the customers.

Then, the covariances and the correlation coefficients for the two types of correlation are

given by

Cov|G,Cs] = ﬁ‘d’(l], (4.66)

i A1) w ;
s e [u (D) + AT(D) + 27— 1)(;4'(1))'2] e
Cov|G, Bg| = ﬁn'(l), (4.68)

- T ,_Y(B!(]))Z 1/2 (
(Z()?TCE[G,B(;] = [(1 —"_{)(B"(l)—|— B"(])J n (27_ I)(B’(]))‘!] 3 (46))

respectively. Note here that the correlation coeflicients are increasing functions of the
mean gate opening interval.

Now we observe the effect of the gate opening interval on the mean waiting time of
supercustomers. We show the formula for the mean waiting time of supercustomers in
Appendix C.9. To compare the result, we also consider a corresponding Geo/G/1 queue
where the PGF for the service time of a customer is G(A(z)) and the PGF for the interar-
rival time of customers is G(z). Fig. 4.1 shows the mean waiting time of (super)customers
in the second queue as a function of the parameter v in the following settings: (1) the
number of individual customers arriving to the system in a slot is geometrically distributed
with mean 0.6, (2) the service times of individual customers are deterministic and equal
to one slot. Note here that the increase of the parameter v implies the increase of the
correlation coefficient between the interarrival time and the service time of each super-
customer. In Fig. 4.1, we observe that the correlation, which is positive, leads to the
reduction of the mean waiting time of supercustomers, whereas the mean waiting time

increases with the increase of the correlation coeflicient. A similar observation has been

shown in [Bors93].
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Next, we observe the effect of the gate opening interval on the mean waiting time of
individual customers in the second queue. We show the formula for the mean waiting
time of individual customers in Appendix C.10. To compare the result, we also consider
a corresponding BBP/G/1 queue where the PGF for the service time of a customer is
C(z) and the PGF for the batch size (arriving to the second queue) is (1 —v)G(B(2))+7.
Fig. 4.2 shows the mean waiting time of individual customers in the second queue as a
function of the parameter v in the same settings as those in Fig. 4.1. Note here that the
increase of the parameter v implies the increase of the correlation coefficient between the
interarrival time of the batches and the number of customers in each batch. In Fig. 4.2, we
also observe that the positive correlation leads to the reduction of the mean waiting time
of individual customers in the second queune, whereas the mean waiting time increases
with the increase of the correlation coefficient.

Finally we observe the correlation between the waiting times of a randomly chosen indi-
vidual customer in the first queue and in the second quene. Fig. 4.3 shows the correlation
coefficients between the waiting times of a randomly chosen individual customer in the
first quene and in the second queune, which are obtained by using numerical differentiation
as a function of the parameter «y in the following settings: (1) the number of individual
customers arriving to the system in a slot is geometrically distributed with mean 0.4,
0.6 and 0.8, (2) the service times of individual customers are deterministic and equal to
one slot. In Fig. 4.3, we observe that, as expected, the correlation is negative and the
correlation coefficient decreases with the increase of the parameter 4. Further, we observe

that the increase of the traffic intensity leads to the increase of the correlation coefficient.

4.7 Conclusion

In this chapter, we consider discrete-time BBP/G/1 queues with a gate, where the inter-
vals between successive openings of the gate are geometrically distributed. We derive the

following joint PGFs:

e joint PGF for the numbers of customers in the first queue and the second queue at

the beginning of a randomly chosen slot

e joint PGF for the amounts of work in the first queue and the second queue at the

beginning of a randomly chosen slot

e joint PGF for the waiting times of individual customers in the first quene and the

second queue

We also derive the PGF for the sojourn time and the waiting time of a supercustomer,

Furthermore, we provide some numerical examples and observe the effect of the correla-
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tions on the performance measures through the numerical examples.
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Figure 4.1: Effect of correlation (1)
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Chapter 5

Queues with a Gate - Bounded
Gate Opening Intervals -

5.1 Introduction

In this chapter, we consider discrete-time BBP/G/1 quenes with a gate, where BBP de-
notes a batch Bernoulli process. Contrary to the model in the previous chapter, we assume
that the intervals between successive openings of the gate are bounded, and independent
and identically distributed (i.i.d.).

The organization of the chapter is as follows. In section 5.2, we describe the mathemat-
ical model. In section 5.3, we derive the joint PGF for the amounts of the stationary work
in the first quene and the second queue, and analytically show the work decomposition
property for the amount of work in the system. In section 5.4, we first derive the PGFs
for the sojourn time and the waiting time of a supercustomer, and analytically show the
relationship among the PGFs for the amount of the work in the second queue, the sojourn
time and the waiting time of a supercustomer. Next, we derive the joint PGF for the
waiting times of an individual customer in the first queue and the second queue, and
analytically show the decomposition property for the total waiting time. Furthermore,
we show the relationship between the PGFs for the amount of the work in the second
queue and the waiting time in the second queue. In section 5.5, we discuss the number of
individual customers in the system. Using the results in section 5.4, we derive the PGF
for the number of individual customers in the system, and analytically show the queue
length decomposition property. In section 5.6, we provide numerical examples to show

the computational feasibility of the analytical results.

5.2 Model

We consider the queneing model with the following characteristics:
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e Customers arrive at the system in a batch immediately before slot boundaries.
The batch sizes and the service times of individual customers are independent and
identically distributed. Customers arriving at the system are accommodated in the

first quene at the gate.

e The gate opens immediately before the slot boundaries. When the gate opens, all
the customers waiting in the first queue move to the second queue at the server.
The travel times of customers to the second queue are assumed to be zero. We
assume that customers arriving in a slot also move to the second queue when the
gate opens in the slot, so that the waiting times of such customers in the first queue
become zero. The gate closes immediately after all the customers in the first quene
move to the second queue. The infervals between successive openings of the gate

are i.i.d.. We assume that the gating process is stationary.

e There is a single server who serves the customers only in the second queue. When
the server finds some amount of the work in the second quene immediately after a
slot boundary, he serves exactly one unit of the work in the current slot. We assume
that customers are served on an FCFS basis. Furthermore, as for customers who
arrive in the same slot, the next customer for service is randomly chosen among

those customers.

Note that when the gate opens in every slot (i.e., all the gate opening intervals are equal to
one slot), the model described above is reduced to the ordinary BBP/G/1 quene without

gates.
We now introduce random variables and notations to describe the above model. Let T,

denote a random variable representing the nth gate opening epoch taking a integer value.

We assume that the sequence {7,,},2°  satisfies

awe Py B2 Tl < (5.1)
We define the inter-event sequence {G,}12°  as

C"n i Hrt-{-l =1 fwﬂ_ (52)

Let g(k) (k > 1) denote the probability that an interval between successive openings of

the gate is equal to k slots:
glk)=PelG, =k} (ni£0). (5.3)

In what follows, we assume that the intervals between successive openings of the gate are

bounded by M slots with g(M) # 0. Thus, we have g(k) = 0 for £ > M. We denote the
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PGF of the g(k) by G(2):
M

G(z) = Y a(k)e" (5.4)

k=1
Let B and C denote random variables representing the number of individual customers
who arrive at the system in a slot and the service time of an individual customer, respec-
tively. Further, let A denote a random variable representing the amount of work brought
into the system in a slot (i.e., the sum of the service times of customers arriving in a slot).

We define the following PGIs:
AR 2E[], B@EE["], c@2E[]. (5.5)

By definition, we have
A(z) = B(C(2)). (5.6)

Throughout the chapter, for any PGF f(z), we use the symbol f'(1) to denote lim, .,

df(z)/dz. Further, we assume A’(1) < 1 and the system is in equilibrium.

5.3 Work in the System

In this section, we consider the amount of the work in the system. For convenience of the
analysis, we assign non-negative integer values k € {0, 1,2, ...} sequentially to individual
slot boundaries as 0 is assigned to the slot boundaries immediately after the gate closes.
Time iuterval [k — 1,k) (k = 1,2,...) is referred to as the kth slot. First, we derive the
PGF for the amount of the work in the second quene immediately after the beginning of
the (k+ 1)st slot. Next, we derive the PGF for the amount of the stationary work in the

system as well as in each queue.

5.3.1 Work in the Second Queue

In this subsection, we first observe the amount of the work in the second queue immedi-
ately after the beginning of the (k + 1)st slot and relate it with that immediately after
the beginning of the kth slot. In what follows, we refer to the amount of the work im-
mediately after the beginning of the kth slot as that in the kth slot. Let U denote
a random variable representing the amount of work in the second queue at time n. We
define L(k, z) as the PGF for the amount of the work in the second queue in the (k+ 1)st

slot is equal to n, given that the gate does not open in the kth slot:

vl

L(k, z) 2% [z 0

qj”o:k] (i=1,2k=9,1.2...) (5.7)
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Relating L(k, z) with L(k — 1, 2), we have

| -1
L(k,2) = ~L(k —1,2) + T L(k-1,00  (k=1,2,...). (5.8)
By applying (5.8) recursively, we obtain
Ly* k1! _
Iitk. 2} = (;) LO,2) + (2= 1)} (-) Lik=4.10). (5.9)
= Il
Since the system is in equilibrium, it is clear that the PGF L(0, z) is given by
M
L(0,2) = Y g(k)L(k, 2)[A(2)]". (5.10)
k=1

Substituting (5.9) into (5.10), we have the following expression for L(0, 2):

" .»l(:-:) M-1 A M . .4(2) 1 Lot
L(U,z)*:(r( )L(O,z)%—(z—l)ZL(k,O)z D g(})( 5 ) . (5.11)

% k=0 j=k+1
We solve (5.11) with respect to L(0, z) and obtain

(z = 1)X(A(2)/2,2) (5.12)

0] = .
US:2)= =&z
where X (z,w) is given by
M1 M _
X(z,w)= Y_ L(k,0)w* Y g(3)7’. (5.13)
k=0 J=k+1

We then have the M unknown values L(k,0) (k = 0,..,M — 1) in (5.13), which can be
determined (see Appendix D). Note here that, from the normalizing condition L(0, 1) = 1

in (5.11), we obtain
X(1,1)

Q- AQ)

The equation (5.14) is used when we determine the unknown valies.

1 (5.14)

5.3.2 Stationary Work

In this subsection, we first consider the amount of the stationary work in each queue. Let
ULY denote a random variable representing the amount of work in the first queue at time
n. Note that U{" and U are dependent. We define the joint PGF U(z;,2,) for the

amounts of the stationary work in the first queue and in the second queue:

—_—
{51}
et
T

—

A [ oW p®
U(z1,22) = E [Zlu " |-
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We then have the following theorem.

THEOREM 5.3.1: The joint PGF U(z,, z3) is qiven by

b 1 T _ A(z)
U(z1,23) = {1 = A(z1)/z) [L(U«.bz){l C( 5 )}
+(z — 1) {A(zl)_,\’(l, A(z)) — X ( = ,32) ” : (5.16)

Z2

Proor:  Let p(k) denote where p(k) denotes the probability that a randomly chosen

slot is the (k + 1)st slot:
p(k) 2 Pr{-Ty =k} (k=0,1,2,...,M —1). (5.17)

We then have [Burk75]

] M
p(k) = (}"(1)',.;.'0(”) (k =10,1,2; .M —1). (5.18)

By definition, we have

M—1

Uz, 22) Zp(x Lk, 22)(A(21))". (5.19)

From (5.9), (5.13), (5.18) and (5.19), (5.16) immediately follows. w

We present a corollary which immediately follows from Theorem 5.3.1. Let U = Uél) W
Ué'!) denote the amount of the stationary total work in the system. We then define U,(2),
Up(2) and U(2) as the PGFs for US", U and U, respectively.

COROLLARY 5.5.1:  The PGFs U,(2), Uy(z) and U(z) are given by

_ G(A(2))
i) = A=)’

(5.20)

9= gt 0 -0 (- iran-x (L))

(5.21)
U(z) = Uy(2)Giate(A(2)), (5.22)

respectively, where
Uslz) = %—_—)‘i—?—(;—) 1— A'(1)), (5.23)

4\(1 ;. M—1 L(.‘i‘ )
T A1) Z})P (1) (5.24)

Gidie(2) =
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PROOF:  Letting 2z, = 1, z; = 1 and 2; = 2z, = 2 in (5.16) and using (5.13), we obtain
(5.20), (5.21) and (5.22), respectively. ]

Remark 5.3.1:  Uy(z) denotes the PGF for the amount of the stationary work in the
corresponding BBP/G/1 queue without gates, and C;‘”u‘._(fl(z)) denotes the PGF for the
amount of the work in the first queue given that the server is idle. Thus (5.22) shows
that the amount of the total work in the system is decomposed into the two independent
factors. This is a discrete-time example for the work decomposition property in the queue

with generalized vacations [Boxm89].

5.4 Waiting Times

In this section, we first consider the waiting time and the sojourn time of a supercustomer,
where each batch of customers who move to the second queune at the same time is called

a supercustomer. Next we consider the waiting time of an individual customer.

5.4.1 Waiting Time of a Supercustomer

In this subsection, we consider the waiting time and the sojourn time of a supercustomer in
the second queune. Note here that it is possible that there is no individual customer in the
first quene when the gate opens. We regard such a case as an arrival of a supercustomer
with zero service time at the second queue. Let W, denote a random variable representing
the waiting time of a supercustomer. We define W(z) as the PGF for W,. We then have

the following theorem.

THEOREM 5.4.1: The PGF W(z) 1s given by

1
Wi(2) =G (1) L0,2)+ (z—1)X (;, z) : (5.25)
z
PRrRoOOF: It is clear that X
W(z) = D g(k)L(k, 2). (5.26)
k=1
From (5.9), (5.13) and (5.26), (5.25) immediately follows. .

Next we consider the sojourn time of a supercustomer. Let % denote a random variable
representing the sojourn time of a supercustomer. We define R,(z) as the PGF for R,.

We then have the following theorem.
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THEOREM 5.4.2: The PGF Ry(z) is given by

R;(2) = L(0, 2). (5.27)

PrOOF:  Observe that the sojourn time of a supercustomer is identical to the amount

of the work in the first slot. (5.27) immediately follows. =

Remark 5.4.1:  Note here that Iy(2) is not given by the product of W(z) and the PGF
(/(A(z)) for the service times of supercustomers, since the waiting times and the service

times of supercustomers are dependent.

Remark 5.4.2:  After some algebra with (5.14), (5.21), (5.25) and (5.27), we have the
following relationship among the amount of the work in the second queue, the waiting
time and the sojourn time of a supercustomer:

W,(2) — Ry(2)
G'(1)A(1)(1 — z)

Uyz)=1-A'(1)+ A'(1)z (5.28)

Note that (5.28) can also be derived from the equality of the virtual delay and attained
waiting time distribution (see, for example, [Miya92, Saka90, Seng89]).

5.4.2 Waiting Time of a Customer

In this subsection, we consider the waiting time of an individual customers. We first
derive the PGF for the total waiting time of a randomly chosen individual customer in
the system. Let v,x denote the joint probability that a randomly chosen customer belongs
to the supercustomer who arrives to the second queue in the kth slot (k = 1,2,..., M) and
belongs to the batch which arrives in the nth (n = 1,... k) slot. We call this customer

(resp. this supercustomer) a tagged customer (resp. a tagged supercustomer). It follows

that :

qg(k
Tnk = J( )

Gr(1)

We define F(k, z) as the PGF for the amount of the work in the second queue seen by the

tagged supercustomer arriving in the kth slot (i.e., the waiting time of the supercustomer).

It follows that

L(k—1,2z) — L(k—1,0)

z

(k=1,...,Mn=1,....k). (5.29)

F(k,z) = +L(k—-1,0)= L(k,2z)  (k=1,...,M). (5.30)

Furthermore, we define D(n, z) as the PGF for a time interval from the beginning of the

service of the first customer of the tagged supercustomer arriving in the kth slot to the
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beginning of the service of the tagged customer (who has arrived in the nth slot). By
using the results in batch arrivals, we have

1 — A(2)
B'(1)(1 - C(z))

D(n,z) = (A(z))*! (n=1,....%) (5.31)

Let W (resp. W) denote a random variable representing the waiting time of a ran-
domly chosen customer in the first queue (resp. in the second queue). Note here that
WM and W are dependent. We define W (z;, 2;) as the joint PGF for the waiting times

of a randomly chosen customer in the first queue and in the second quene:
A w Wi e o
Wiz, ) 2 B [zl S (5.32)

We then have the following theorem.

THEOREM 5.4.3: The joint PGF W (2, z2) is given by

WikEtay = G'(I)B’(n(ll: cf't(:)))(z, iy (20 {e(2)-1}
Fap—=1)X (ﬂ,ZQ)]. (5.33)

27

Proor: It follows that

Mk
We(z1,22) = ZZ'y,,kF(k,zz)D(Tf.,z2)zf"‘

k=in=l
1 — A(z)
G'(1)B'(1)(1 = C(22))(21 — A(22))
M
y iy(k)b(k.zz}zf ~ Y g(k)L(k, 22)[A(22)]" |- (5.34)
=1 k=1
From (5.9), (5.10), (5.13) and (5.34), (5.33) immediately follows. -

We present a corollary which immediately follows from Theorem 5.4.3. Let W, =
W) 4 W@ denote a random variable representing the total waiting time of a randomly
c ¥
chosen customer in the system. We define W,(z), Wei(2) and Wey(2) as the PGF's for W,

W) and W, respectively.
COROLLARY 5.4.1:  The PGFs Wy (2), We(2) and We(2) are given by

r ey L=S0B) 5.35
Wal2) = Gy -2)” i)

1] L — R.(2)], .36
wﬂ(z)—G,(I)B,(l)(l_C(z))[ws(z) Ry(2)] (5.36)
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W.(2) = Wi(2)Giare(2), (5.37)

respectively, where

z—1 1 — A(z)

"Vn(_z) = (I = BJ(I)C'I(I))Z % A(Z) : B’(l)(l s C(z)]’ (5'38)

and (;",-d,c(z) s given in (5.24).

PROOF: Letting zy = 1, z; = 1 and 2z; = 2, = z in (5.34) and using (5.27) and (5.25),

we obtain (5.35), (5.36) and (5.37), respectively. ]

Remark 5.4.3:

1. Wy(z) denotes the PGF for the waiting times of customers in the corresponding
BBP/G/1 quene without gates, and Giae(z) denotes the PGF for the backward
recurrence time of the gate opening interval given that the server is idle. This is
a discrete-time example of the waiting-time decomposition property in the queue

with generalized vacations [Fuhr85].

2. After some algebra with (5.28) and (5.36), we have the following relationship be-
tween the amount of the work in the second queue and the waiting time of an
individual customer in the second queue:

1-C(2)

o (5.39)

U(l,2) = 1— A'(1) + A'(1)2W,y(2)
Note that (5.39) can also be derived from the equality of the virtual delay and

attained waiting time distribution (see, for example, [Miya92, Saka90, Seng89)]).

5.5 Number of Individual Customers

In this section, we consider the PGF for the number of individual customers in the system.
We first consider the number of individual customers in the system immediately after
departures. Let QQp(z) denote the PGF for the number of customers immediately after
the departure of the tagged customer. Those customers are classified into two types. One
includes customers who arrive to the system in the same batch as the departing customer.
The other includes customers who arrive to the system during the sojourn time of the
departing customer. To obtain @ ;(2), we need the following lemma. Let R,(z,w) denote

the joint PGF for the sojourn time of a randomly chosen customer (we call this tagged
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customer hereafter) and the number of individual customers who arrive in the same slot

as the tagged customer and are served after the tagged customer.
Lemma 5.5.1:  The joint PGF R,(z,w) is given by

B(w) — A(z)

Sl =El2) B'(1)(w — C(2))

C(z), (5.40)

where

z—-1 X(1,z)
z— A(2) G'(1)

Ri(z) = (5.41)

PROOF:  To obtain R.(z,w), we divide the sojourn time of the tagged customer into
three intervals: (1) the waiting time of the batch of customers who arrive to the system
in the same slot as the tagged customer, (2) the service times of customers who arrive
in the same slot as the tagged customer and are served before the tagged customer, and
(3) the service time of the tagged customer, whose PGF is given by C(z). Note here that
those three intervals are mutually independent. Also note that the sum of the first two
intervals is equivalent to the waiting time of the tagged customer, whose PGF is given in

(5.37). It is easy to see from (5.37) that the PGF R(z) for the first interval is given by

=l Xl

Rilz)= 3
?I(z) > — ‘4(2) G"(]) ¥ (O 42)
since the PGF R,(z) for the second interval is given by
1-A
Ry(2) (2) (5.43)

B -C()

Now we are ready to derive R.(z,w). Note that the length of the second interval and the
number of customers who arrive in the same slot as the tagged customer and are served
after the tagged customer are dependent. The joint PGFE for the second interval and the

number of such customers is given by

B(w) — A(z)

g 5.44
B(1)(w—C(2)) (ad4)
Therefore we obtain (5.40). "
Now we have the following theorem.
THEOREM 5.5.1:  The PGF Qp(z) is given by
1- B(z A :
QD(Z) = ( ) Qb(z)('litﬂﬂ(fj(z)); (545)

— B'(1)(1 - 2)
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where

(1 — A'(1))(z = DC(B(2))

i) = L= (5.46)

and Giq,.(2) 1s given in (5.24).

Proor: Noting Qp(z) = R.(B(z),z) and Lemma 5.5.1, (5.45) immediately follows. =
Next we consider the PGF Q(z) for the number of customers in the system.

THEOREM 5.5.2; The PGF Q(z) is given by

Q(2) = Qu(2)Giaie(B(2)). (5.47)

PRrROOF:  First we consider the PGE Q4(z) for the number of customers immediately

before arrivals. Note that Q.(z) and Qp(z) are related by [Faki9l]

1 — B(2)

WQA(Z) = Qp(2). (5.48)

Therefore we have
Qa(z) = Qu(2)Giare(B(2)). (5.49)

Since customers arrive to the system according to the batch Bernoulli process, Q(z) is

identical to Q4(z). Therefore we obtain (5.47). 8

Remark 5.5.1:  Q4(2) denotes the PGF for the number of customers in the corresponding
BBP/G/1 queue without gates and éfﬂe(B(Z)) denotes the PGF for the number of indi-
vidual customers in the system given that the server is idle. This decomposition result

is a discrete-time example of the general result for the continuous-time queue given in
[Fuhr85].

5.6 Numerical Examples

In this section, we provide some numerical examples of the analytical results. Fig. 5.1
shows the mean waiting times of individual customers for various distributions of the
gate opening intervals as a function of the mean number of arrivals in a slot in the
following settings: (1) the number of arrivals in a slot is geometrically distributed, (2)
the service times of individual customers are deterministic and equal to one slot, and (3)
the mean gate opening interval is equal to five slots. In the deterministic distribution of

the gate opening intervals, we set g(5) = 1, in the binomial distribution, we set g(n) =
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(8!/{(n—1)!(9—-n)!})(0.5)* forn = 1,...,9, in the uniform distribution, we set g(n) = 1/9
forn = 1,...,9, and in the bimodal distribution, we set g(1) = ¢(9) = 0.5. In Fig. 5.1, the
variance V' of the gate opening intervals is also shown. We observe that the distribution
of the gate opening intervals affects the mean waiting time of individual customers and
the mean waiting time increases with the increase of the variance of the gate opening

intervals.

5.7 Conclusion

In this chapter, we consider discrete-time BBP/G/1 queues with a gate, where the inter-
vals between successive openings of the gate are bounded, and independent and identically
distributed. We derive the joint PGFs for the amounts of the stationary work, and the
waiting time of an individual customer in the first queue and the second queue. We also
derived the PGFs for the sojourn time and the waiting time of a supercustomer, and
the number of individual customers in the system. Furthermore, we provide numerical
examples and observe the effect of the distribution of the gate opening interval on the

mean waiting times of a customer.
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mean waiting time (slot)

20 T T T T

deterministic (V =0.0) —
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Figure 5.1: Mean Waiting Times
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Chapter 6

Concluding Remarks

Summary of Results

In this dissertation, we extensively studied discrete-time quenes with correlated arrivals.
In particular, we considered two types of mechanisms to bring correlations into the arrival
and the service processes: Markov modulation and gating. For the former, the summary

of the results is described below.

1. We analyzed the generalized SBBP/G/1 queues. In the model, the arrival and the

service processes were semi-Markovian in the sense that their distributions depended
not only on the state of the alternating renewal process in the current slot but also
on the state in the next slot. We derived the PGFs for the amount of work in the
system and the waiting time of a customer, We also showed applications of the

analytical results to important queueing systems.

. We considered the loss probability approximations in DBMAP/D/1/K queues. We

proposed the approximate formulas which were given in terms of the tail distribu-
tion of the queue length in the corresponding infinite-buffer queue. The approximate
formulas were constructed in such a way that they became exact for any indepen-
dent arrival process. We extensively examined the accuracy of the approximations
through numerical experiments. We observed that, when the correlation in arrivals

was not so strong, the approximations were surprisingly accurate.

For the latter, the summary of the results is described below.

1. We analyzed discrete-time BBP/G/1 quenes with a gate, where the intervals be-

tween successive openings of the gate were geometrically distributed. We derived

the following joint PGF's:

e joint PGF for the numbers of customers in the first queue and the second queune

at the beginning of a randomly chosen slot
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e joint PGF for the amounts of work in the first queue and the second queue at

the beginning of a randomly chosen slot

e joint PGF for the waiting times of individual customers in the first queue and

the second queue

We also derived the PGF for the sojourn time and the waiting time of a super-
customer. The effect of the correlations on the performance was discussed through

numerical examples.

2. We analyzed discrete-time BBP/G/1 queues with a gate, where the intervals be-
tween successive openings of the gate were bounded, and independent and identically
distributed. We derived the joint PGFs for the amounts of the stationary work, and
the waiting times of an individual customer in the first quene and the second queue.
We also obtained the PGFs for the sojourn time and the waiting time of a super-
customer, and the number of individual customers in the system. We observed the
effect of the distribution of the gate opening interval on the mean waiting times of

a customer through numerical examples.

6.2 Future Research Topics

In this dissertation, the author considered the two types of specific mechanisms to bring
correlation into the arrival and the service processes, i.e., Markov modulation and gat-
ing. Also, the studies of queues with correlated arrivals by other approaches should be

considered. The author then suggests them as future research topics.

1. Recent measurement studies of the traffic data from networks and services such as
ISDN packet networks, Ethernet LANs and Variable Bit Rate (VBR) video sources
have indicated how complex the traffic patterns can be. The studies convincingly
demonstrate the presence of features such as self similarity and fractal dimensions
in the traffic patterns. For modeling the traffic which has those features, fractal
processes may be more suitable than conventional stochastic processes. Thus, fractal

queuneing theory should be developed.

2. Contrary to the framework in this dissertation, more general framework without
specifying the mechanisms has been studied. It uses the elements of the more
general methods of point processes. For example, Palm-martingale framework tries
to give a unified view when only very weak assumptions are made on the input to

a queueing system. We need to show further usefulness of the framework.

80

Appendix A

Determination of the Unknown
Constants

In order to determine the unknown constants x}(7)’s and 27*(j)’s, we focus our attention
on (2.19) and (2.20). They contain the functions G;(A;i(2z)/z) and X;(A;i(z)/z). We shall
derive expressions for these functions under the assumption that the G;(z)’s are rational
functions.

Using the formulas (2.9), (2.10) and (2.22), we obtain the following expressions for
= 1,2

G. (Aﬁ(z)) C IL;(2)Py(2) + 2 Q;(2) X. (A,-,-(z)) " T(2) X2 (2) + 2M X (2)

2 2MiT;(2) z 2Mi11,(2)
(A.1)
where i %
Pi(2) =Y ma{Au(z)} 2™, Qi(2) = Z ni;{ Au(2) Y 2N, (A.2)
(=1 j=1
M; N, g
Xi(2) = 2 ai({Aa(2)}' ", X (2) = D 27" () {Aul2) 2N, (A.3)
=1 =1
K
I-L'(Z) = H{Z — {kikA,‘,'(Z)}w"k. (1\4)
k=1
Substituting (A.1) into (2.19), we obtain the following expression for L,(0, z):
_Im() e
£:(0,2) = AT (A.5)
where
Lni(z2) = (z—=1) [A12(3)A2] (2M{I1a(2) Pa(2) + 22 Qs (2) H{I11 (2) X[ (2) + 2™ X }*(2)}
+2M A (2) A ()T (2){TT(2) X3 (2) + 2M2 X3 (2)}] , (A.6)

Lp(z) = 2MHM24,(2)Agp(2)(2)I1y(2)
—A12(2) A (2){TLi (2) Pi(2) + 2" Qi (2) HIL(2) Pa(2) + 22@u(2)}. (A7)

81



These expressions enable us to determine the unknown constants x}(j)'s and z*(j)’s
in the functions X;(z) and X*(z). Whenever the condition p < 1 (see (2.7)) for the
existence of the stochastic equilibrium is satisfied, the denominator L”(Z) has exactly
M, + My + Ny + N, zeros inside the unit disk of the complex plane, one of which equals
unity. This can be shown by Rouché’s theorem (See [Ishi93a] and Appendix D.1). Due to
the shortage of space, we omit the proof. Since L;(0,z) is a PGF, it has no poles inside
the unit disk. Thus the My + M, + N; + N zeros of the denominator must be zeros of
the numerator f;m(z) as well. This condition provides us with M; + My + Ny + N, — 1
linear equations for the unknowns 7 (j)'s and z}*(j)'s, (no equation is obtained for the
zero z = 1). Furthermore we have the following equation from the normalizing equation
Li(0,1) = 1:

Xi(1) + Xa(1) = (1 = p)(G}(1) + Gi(1)). (A8)

Thus, if the coefficient matrix associated with the M, + M, + N, + N, equations for
the unknowns x}(j)’s and 2*(j)’s has rank M; + M, + N, + N,, the unknown constants
z;(j)'s and x}*(j)’s are determined, and hence the X;(z)’s. It is very hard to show that.
However, we claim that we can obtain the unknowns by solving M, + My + N, + N, linear

equations in most applications (See Appendix D).
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Appendix B
PROOF OF THEOREM 3.3.1

First we consider the early arrival model. Summing up the both sides of (3.6) and (3.7),

we obtain

N N
>4 = Yy, (B.1)
k=0 k=0
which implies
N
Z yf} =, (B.2)
k=0

since YN, yr)e = 1. Thus (3.6) and (B.2) completely determine the yi"). Suppose
yi"] = c®z; (0 < k < N). Since (3.6) and (3.12) take the same form, yi”) = ¢z,
satisfies (3.6). When the number of customers arriving to the system is iid., @y is
expressed as xx = xpm with some constant zx. Therefore i = c(®z) satisfies (B.2),
too. As a result, ij"} = @, (0 < k < N) becomes exact when the number of customers
arriving to the system is i.i.d..

Next we consider the late arrival model. Summing np the both sides of (3.8), (3.9) and

(3.10), we obtain

A l i (1)
Y =Y U, (B.3)
k=0 k=0
which again implies
f\f
Y.u =, (B.4)
k=0

since Y0, yi”e = 1. Thus (3.8), (3.10) and (B.4) completely determine the yg}. Suppose
yi” = ¢z, (0 < k < N —1). Since (3.8) and (3.12) take the same form, yf’ = Dz,
satisfies (3.8). When the number of customers arriving to the system is i.i.d., 2, (0 < k <
N) is expressed as @ = xxm with some constant wj. Furthermore, for any independent

arrival process, we have By = ByU, where By is some constant. Therefore we have

N N-1
> yi” = ¢ (Z Tk + :trnﬁN) T =T, (B.5)
k=0

k=0

83



where we use wU = m. As a result, yi_” =g, (0< k< N-1)and yf.{',) = gyBy

become exact when the number of customers arriving to the system is i.i.d..
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Appendix C

Proofs in Chapter 4

C.1 Proof of Theorem 4.3.1

By definition, Qp(z;, 2;) satisfies

s P(th?)

Qp(z1,22) = P(,1) (C.1)

Thus Qp(z),2,) is obtained once we have P(z;,z;). Using the memoryless property of

the gate opening intervals, we have
Qz2) = G(B(){P(22,0) + Q(O0)}. (C:2)

Let Y denote a random variable representing the number of individual customers who
arrive and remain in the first queue during the service time of a customer whose service
starts immediately after the randomly chosen imbedded point. Also, let Y2 denote a
random variable representing the number of individual customers who arrive and move
to the second queue during the service time. Note here that Y™ and Y?) are dependent.

We define a random variable T; as
7.4 1 if the gate opens at least once during the service time, (C.3)
L 0 if the gate does not open during the service time.
Note here that Y = 0if T = 0. We define H(z,, z3) as

y(1) y(2)

[{(2],22] é E [Z] 2o 1{-]'(..:”] . ((:4)

To derive an expression for H(z, z), we suppose that the service time of a randomly
chosen customer is 7 (1 < 7 < oo) and the gate last opens in the kth (1 < k < 7) slot

during the service time of the customer. It follows that

H(z,m) = 3 PH{C =7} 3 (1 -1/ (B(2))* (B(z)) !
r=1 k=1

(1 —7)B(2) = . -
B(ea) = 7B(en) [ B ~ COBGa)] (C.5)



Furthermore, we define 6(z;, z3) as

y (1) } {2)

>

E [Zl}"”z;.ﬂll{']"ﬂ-:n}] - E [ 1{]( -[}]
C(vB(21)) + H(21,22)- (C.6)

0(z1, z2)

Il

To obtain P(z, z3), we now consider three exclusive events:

e The preceding imbedded point is of type 1, there exists at least one customer in the
second quene at the preceding imbedded point and the gate does not open during

the service time of the customer who is served immediately after the imbedded
point, i.e., {Tp =1, X > 0, Tg=0}

o The preceding imbedded point is of type 1, there exists at least one customer in
the second queue at the preceding imbedded point and the gate opens during the
service time of the customer who is served immediately after the imbedded point,
Lo {Tp =1, X% >0.95=1},

e The preceding imbedded point is of type 2 and there exists at least one customer in

the second queue, i.e., {Tp =2, X > 0}.
From the above observation, we obtain
P(z1,2z3) = [P(anz) = P('?:‘U)]‘LC(‘YB(%'I))
+[P(22,22) - 1’(z2,())] H(z1,22) + [Qz2) — Q Q(0)] zlze(z,, 2). (C:T)
Setting z; = z, in (C.7) and using (C.2), H(zy, 23) = C(B(23))—C(vB(22)) and (2, 23) =
C'(B(z;)), we have

C(B(z))

B (6B 1] [P0 + Q)] (©3)

P(z,25) =
Using (4.4), (C.2) and (C.8) in (C.7), we obtain

22 = COB(21))| P21, 22) B(zl))[f’(zz,n) ~ P(21,0)]

+[ (B( ))9(21,22) B(z.))]

_C(B(z)) B(z)-
22 — C(B(22)) 1 — vB(z

[P(z,,,O) +Q(0)], (C.9)

from which and (C.1), (4.8) immediately follows.
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C.2 Proof of Theorem 4.3.2

[terating (4.18), we obtain for |z;| <1 and M > 0

M
U(z;) = [ (6™ (1)) (6MH1)(2y)). (C.10)

h=0

We now need the following lemma.

Lemma C.2.1:
1. The equation é(z;) = 2; (21| < 1) has a unique solution 2} and 2] is real.
2. limpgoo 6™M)(2y) = 27 for all z; with |z| < 1.
3. TI2, 6(6™)(2,)) converges for all z; with || < 1.

The proof of Lemma C.2.1 is given in Appendix C.3. Letting M — oo in (C.10), then
Lemma C.2.1 leads to the following expression for W(z;):

U(z1) = [ S ())0()). (c.11)
h=0

Thus (C.11) becomes
W(z) = afz)¥(z]). (C.12)

Letting 2; = 1 in (C.12), we obtain

W(z)) = mﬂ'(]) (C.13)
Substituting (C.13) into (C.12) leads to
¥(a) = S 20e(). (C19)

Also, letting 2z, = 1 in (C.8), we have

1 - B'(1)C'(1)
B'(1)

(1) = (1- 7). (C.15)

(4.19) immediately follows from (C.14) and (C.15).
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C.3 Proof of Lemma C.2.1

Using (4.13), we then find that &(z) = z; if and only if £(yB(z1)) = ¥B(z) and that

EM(yB(z;)) = vyB(6M)(z;)) (|z1] £ 1,h=1,2,...), where
£(z) £ 7A(2),

£9(z) £ 2,
EM(2) £ 6™ V(2)) (h=1,2,..).

(C.16)

(C.17)
(C.18)

From the results in [Kawa93], we know that the equation &(w) = w, |w| < 1 has a unique
solution w*, that 0 < w* < 1 and that limys_,o €M (w) = w* for all w with |w| < 1. As
|¥B(z;)| < 1 for all z; with |z| < 1, we conclude that the equation 6(2)) = 21, |1 < 1

has a unique solution zf = C(w*), 2} is real, and that limp .o 6*)(2;) = 2} for all 2

with |z| < 1.
Using (4.17), we have

I 6™ = —=28&)__

h=0

(1 —7)B(6"*")(21))
73(6(“”) 31) H B b“""l)(?_])) —’}‘B(ﬁ“‘)(zl))'

Thus we obtain

IT o6y = L= 1B21) 7 (1 —7)B(6"1(z,))
116%™ = 756 I 5o, —BemE)

From the theory of infinite products, the infinite product

ﬁ (1 = 7)B@E"D(z1))
o B8 (21)) — vB(6™)(21))

converges if and only if the infinite sum

[ (0 -1BE*) ]h & BE™D(z)) — B(6®M(z))
BEWD (=) —yBEM ()]~ i BEET(z1) — vBE (1))

converges. For some real oy (0 < a; < 1), we have

(6% (z1) — 6™ (z)| = |6®(21) — 63-D(z,)

8'())|-
Since [8'(0y)| < |8'(1)| = vB'(1)C'(«), we obtain
[6%+0(z1) — 6% (@)| < YB'(1)C()|5M(z1) — 60 (z1)|
Similarly, we have for some real oy (0 < 0y < 1),
|B(6"40(2)) — B(s™ (2 )| = |68+ (z) — 60 (2,)||B'(a2)].
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(C.19)

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

Since |B'(0,)] < 1, we obtain
B (1)) — B8 (z))] < [+ 9(z1) — 6™ (21))|-
From (C.26), it follows that

B (z)) — B(6™(21))
|B(é('=+'l( ) — 1B(E® (z,))

We define z,, as

M (z) — 6% (2)
B(6"+1)(21)) — yB(6™(21)) |

o & 80 — 60 z)
= B () — 1B (1)

Using (C.24), we have

Tnp
Iy

80 (21) — 6™ (z1) B(6™(21)) — yB(6" V(1))
6(M(z1) — 6=1)(zy) B(8(+1)(z1)) — yB(60*+1)(21))

B(67 1 (z1)) — yB(8™)(21))
B(6+2)(zy)) — yB(6M+1)(z))
Since vB'(1)C’'(y) < 1 and

lim B(6)(21)) — B(6™)(2)) =1
5| BT () - B ()|
the infinite sum
= 8+ () — 68 (%) |
imol B(8®+D(z1)) — yB(8™(21))
converges, and therefore the infinite product
IT (6™ (1))
h=0
also converges.
C.4 Proof of Corollary 4.3.1
First we note that
0(z,2z) = C(B(z)).
Furthermore, from (4.9) and (C.15), we have

Pa,1) B'(1)
Letting 2, = 2z, = 2, and using (C.33) and (C.34) in (4.8), we obtain

(z - 1)C(B(2)) B(z) - 1
Qp(z,2) = == C(B(2) (1= B(1)c( ))m

1—v P(z,0)+Q(0)
1—+B(z) P(1,0) + Q(0)’

from which, (4.24) immediately follows.
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(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)



C.5 Proof of Lemma 4.3.1

We observe the imbedded point preceding the service time of a randomly chosen customer.

We then consider two events:

e The imbedded point is of type 1 and there exists at least one customer in the second

queue at the imbedded point, i.e., {Tp = 1, X@ > 0},

o The imbedded point is of type 2 and there exists at least one customer in the second

queue at the imbedded point, i.e., {Tp=12, X > 0}.

From the above observation and using (4.12), (C.1), (C.2) and (C.8), it follows that

Q(Eh z;) = [PfZ!-ZzJ — P(2,,0) + Q(z) — Q(U)]/P(L 1)
= [P(z1,22) + P(2,0) = P(2,0)
+{G(B(22)) — 1H{P(2,0) + Q(0)}] /P(1,1)

i Z9 _ o y (21, 22) "
= T GnBE) [QI)(Zz,U) Q@p(z1,0) + {C(B{ ) —1}Qn(22; 22)

Rp(22, 22), (C.36)

T C(B(w)

from which and (C.6), (4.27) immediately follows.

C.6 Proof of Theorem 4.3.3

Since the server is busy with probability B'(1)C’(1), we have

Qa(21,22) = B'(1)C'(1)Q appusy (21, 22) + (1 — B'(1)C"(1))Q ajiate(21)- (C.37)

We relate Q ajpusy(21, 22) with Q(z1, 22). To do so, we define C and G as random variables
which represent the backward recurrence time of the service time of an individual customer

and that of the gate opening interval, respectively. We then consider two events:

e The server is busy and the gate opened at least once during the backward recurrence

time of the current service, i.e., {Ts =1,C > G},

e The server is busy and the gate did not open during the backward recurrence time
of the current service, i.e., {Ts =1,C < G}.

Let X denote a random variable representing the number of individual customers who
arrive and remain in the first quene during the backward recurrence time of the service

time of a customer who is served in a randomly chosen slot. Also, let X denote a
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random variable representing the number of individual customers who arrive and move

to the second queune during the backward recurrence time of the service time. We define
H(z,,2;) as

H(z,2) 2 E [ x> "ml{p)(}

Ts = 1] (C.38)

It then follows from an argument similar to the one for (C.5) that

J'(]r(?:lw?'.!) i

~ (1) > P"{C_”}ZU F(B(2)"(B(z) %, (C.39)

n=r+1

from which, we obtain (4.34). We then have

1 - C(yB(21)

Qapusy(21, 22) = Q(22, 22) H(z1, 22) + Q(21, Zz)c,(])(l ==k (C.40)
Finally, using Corollary 4.3.1, Lemma 4.3.2 and (4.30), we obtain
Qalz1,22) = B'(1)C'(1)Qapusy(21,22) + (1 — B'(1)C'(1))Q apiaie (1)
— / ' 3 1 ‘_C(TB(EI)) =
= B (I)C (]) I{(ZI, 22) 7 (—.,(1)(1 - '}'B(Z]))S(zh "2)
Cr( ( ))Qﬂ(z?! 22)
B'(1)C'(1 23 1 "C('YB(ZI))
B e BE) W —7B()
{Qn(22,0) — Qp(z1,0)} + (1 - B’(I)C'(I))Q—-”(Z"z')‘ (C.41)
Qm.(zl)
from which, (4.32) follows.
C.7 Proof of Lemma 4.4.1
We define I?(z, y 22, W):
H(z, 23, w) 2E zf(]jzfin’ll}él{(}){;} To= 1] ; (C.42)

From an argument similar to the one for (C.5), it follows that

n r-1p =n
Ao aw) =33 %" r{cc,(13+ Lurr A BE) B, (€49
n=07=1 k=0

which yields (4.42). By definition and using (4.30), we have

X A 1 ~w(C(w) — C(yB
Qapusy(21, 22, w) = Q(22,22) H(21, 22, w) + Q(zl.zz)“ E’_,-f{(;;)z",- - 233(533))
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. w(C(w) — C(vB(z1)))
= |H(z1,2,w)+ S(21,22) C'(1)(w —vB(z))
' 5 w(C(w) — C(yB(z1)))

A= ShEE) O (D(w ~7B(=1)
{Qn(22,0) — @p(21,0)},

from which, (4.40) immediately follows.

C.8 Proof of Theorem 4.4.1

By definition and using (4.23) and Lemma 4.4.1, we have

U(z,,zg) = B’(l)("( )( (1 )(,')Ar;,,”y(( (Z]) ( ZZ 22)
+(1 = B'(1)C"(1))Q apidte(C(21))

= B’(l)f‘-"(l)(.(‘zz)[Q(C(zz),c‘(zz))f?(c(zl),C(zg)1zz)
+Q(C(21), ("(22))322(:((:;)22 . S{?Z)l)ml

P(C(21),0) +Q(0) 1-7
P(1,0)+Q(0) 1-7A(z)

[ 1(C(21),C(22), 22)

+(1 = B'(1)C'(1))

= ()C()

(?(22,

Zg)

(C.44)

L 2(C(z) - C(’rA(z:)))S(C(zl),C(ZQ))]Q((C(Q),C(‘Z;))

C'(1)(z9 —vA(21))
+B'(1)T{QJ)( (22),0) — Qp(C(21),0)}

(1-B'(1)C (1))an(‘)(;£?gi-:§;1))

= B’(I)C'(I)Eﬁé(c(?—':)aC(Zz),Zz)Q((C(ZzJ»C(Zz))

+uf(1)z—%m{czn(c(zz), 0) — Qp(C(z1),0)}

ety @0(C(21), C(21))
— B'(1)C ;
S ey
Note that
1 29 29 = ’}".4(22)

é(C(Zl ), C(z'),)| 22) =

G(1) 72 — Alea) 22 — 1Amy) 2 ~ Gz}

(4.44) immediately follows from the above two equations,
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(C.45)

(C.46)

C.9 Mean Waiting Time of Supercustomers

We consider the mean waiting time of supercustomers E[W;]. From (4.50), we have

r ff - 4
EW,] = —W(z)

z=1

~ (1) - ﬁxx'(n (C.A7)

Using Theorem 4.3.1, Corollary 4.4 and (C.34), we obtain

(l) = A (1) + ——(%
o X PUIPIANEN(Y .y, ‘
+0O (I)E‘ HE)) = 744 (1). (C.48)
Thus, we have
) A"(1) ¢(8(1))8 (1) ;
EW,| = W+C (1)2 SEOM) (C.49)

C.10 Mean Waiting Times of Customers

We consider the mean waiting times of individual customers E[W "], E[W )] and E[W,].
From (4.60), it follows that

W = Lw.(s
E[W. Y dzwd( )wl

= 2= (C.50)

=3

From (4.61), we obtain
v = L]
=]
56

n i = C.51
A'(])U() 2C'(1)  1-—7' (C5)

where U’(1) is given in (C.48). Moreover, we have
EW] = L‘[W{”] + B[W?)

i S ;
= A’(I)U(l)—m 1. (C.52)
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Appendix D

Determination of the Unknown
Values

In order to determine the unknown values L(k,0) (k = 0,1,...,M — 1), we focus our

attention on (5.12). We rewrite (5.12) as

(z2—1) Z:LYJ] L(k.{))z“' ;ik+-| y(j)[A(ZJ]jzu_j (D.l}
M — Tl g(n)A(z)]r2Mn

This expression enable us to determine L(0,0), L(1,0), ..., L(M — 1,0). Whenever

the condition A’(1) < 1 for the existence of the stochastic equilibrium is satisfied, the

denominator of (D.1) has exactly M zeros inside the unit disk of the complex plane, one

L(0,2z) =

of which equals unity. Furthermore, under some additional condition, those zeros are all
distinct. The proof is given in Appendix D.1. Since L(0, z) is a PGF, it has no poles inside
the unit disk. Thus M distinct zeros of the denominator must be zeros of the numerator
as well. This condition provides us with M — 1 linear equations with respect to L(k,0)
(k=0,1,...,M — 1) (no equation is obtained for the zero z = 1). Furthermore, we have

the Mth equation from the normalizing condition (5.14), which yields

MZI p(k)L(k,0) =1—- A'(1), (D.2)
k=0
where p(k) denotes the probability that a randomly chosen slot is the (k+ 1)st slot and is
given in (5.18). Note that (D.2) implies that the probability that the server is idle (i.e.,
S p(k)L(k,0)) is given by 1 — A'(1).
In a summary, the unknown constants L(k,0) satisfy

fo(21) ) o fua(z) L(0,0) 0
fo(22) fi(z2) o fa-a(22) L(1,0) 0
: : : : : =1 i1, (D.3)
Jo(za-1) filzm—1) <o+ fara(zmy) L(M —2,0) 0
fo(1) f@@) e fu-a(1) L(M —1,0) ¢
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where 2’s (i = 1,...,M — 1) denote roots of the denominator of (D.1) which are not

equal to unity, ¢ = G'(1){1 — Aj(1) — A'(1)} and fi(z) (k=0,...,M — 1) are given by

A
fi(z)=2" i g(n)A(z)" M, (D.4)
n=k+1

It is very hard to show the uniqueness of the solution L(k,0) of (D.3), which can be accom-
plished by showing the determinant of the coefficient matrix in (D.3) is not equal to zero
(see [Gail92]). However, we can show the linear independency of fi(2) (k=0,..., M —1),
which implies that the Lebesgue measure of the set of zeros of the determinant of the co-
efficient matrix in (D.3) is equal to zero [Lee94]. The proof of the linear independency is
given in Appendix D.2. Thus we claim that we can obtain the L(k,0) by solving (D.3) in

most applications.

D.1 Zeros of the Denominator

In this appendix, we show that the denominator of (D.1) i.e.,

» M
S(z) = zM = Z g(n)[A(z)]" M (D.5)

has exactly M zeros inside the unit disk of the complex plane, one of which equals unity
when the inequality A'(1) < 1 holds. The proof is based on Rouché’s theorem: If d(z)
and h(z) are analytic functions of z inside and on a closed contour C', and [h(2)| < [d(2)]
on C, then d(z) and d(z) — h(z) have the same number of zeros inside C.

Let

d(z) = 2M, (D.6)
M
h(z) = Z g(n)(A(z))" =M. (D.7)

Then S(z) = d(2) — h(z). Obviously, the functions d(z) and h(z) are analytic in a part

of the complex plane. Let us rewrite h(z) as

h(z) = 2MG (A—("’l) : (D.8)

z

by using (5.4). We set z = ¢ (0 < 6 < 27) for z on the unit circle. This yields

ld(z)| = 1, (D.9)
h(2)| = |G (e7°A ()| <1 forall 640, (D.10)
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because G(z) and A(z) are PGFs. Hence, |h(2)| < |d(2)| for all z # 1 on the unit circle.
Let us choose the contour C so as to include z = 1 as an internal point, which is obviously

a zero of S(z). In particular, we choose the contour C' as

CE{z=e%0<0<2r}UlimC,, (D.11)
where P »
Qs {z =1 +ee®; i <a< E} (D.12)

is a semicircle centered at z = 1 with radius £, outside the unit circle. For z € C,, let

z=1+4ee?®. It follows that

M 2

Z g(n){A(1 + Eﬁj'i)}"(l =112 Eeiﬂf)M—n

fia=]

M

3 g(n){(1 + A'(1)ee’ + o(e)}"

n=1

hE)P =

A1+ (M = n)ee™ + o(e)}|]
|1+ (M + G'a)(A'(1) = 1)}ee” +o(e)|
= 142{M+G'(1)(A'(1) — 1)}ecosa + o(e) (D.13)

On the other hand, we have
. . 2 N
|d(2)|*> = l(l + fsr:*”")“'i'|2 = |l + Mee’™ + 0(!:‘)| =1+ 2Mecosa+ o(e) (D.14)

Since we assume A'(1) < 1, we have |[h(z)|* < |d(2)|* (and therefore |h(2)| < |d(2)|) on
C. for a sufficiently small value of £, and hence also on the entire contour C.

Thus the functions d(z), h(z) and the contour C satisfy the conditions of Rouché’s
theorem. It follows that d(z) and d(z) — h(z) = S(z) have the same number of zeros
inside C. Since the function d(z) has M zeros in the unit disk, S(z) also has M zeros in
the unit disk, one of which equals unity.

When h(z) has no zeros in the unit disk, h(z)3 is analytic. Under this assumption, we

can show in a similar manner that
2w 1 ;
z — MM p () (o= Ly M) (D.15)

has exactly one zero z; in the unit disk, which is also the zero of S(z). Furthermore, those
zi's (i =1,..., M) are all distinct. To prove this, we assume otherwise. Then, without
loss of generality, let « be a multiple zero that corresponds to i = 4; and 7 = 4, in (D.15),
where iy # 15. Since h(z) # 0 in the unit disk,

2riy [M 00 Y e
bl ) L A

e32mia/M Jy () % : {215}

which is a contradiction. Thus, S(z) has exactly M zeros, and when h(z) has no zeros in

the unit disk, they are all distinct.
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D.2 Linear independency of the f;(z)

In this appendix, we show the linear independency of the fi(z) (k = 0,...,M — 1),

following an approach in [Lee94]. To do so, we assume that fi(z) are linearly dependent,

i.e., there exist complex numbers Gy, £, ..., Bar_1, not all
M-1 _ _
Y Bfi(z) =0, (D.17)
k=0

for all |z| < 1. We now rewrite (D.4) to be

M—1 |
fk(z) = Z z’.fk'i(z), (D_lg.)
i=k
where
Jii(2) = g(M + k — 1) A(z) M+, (D.19)

Substituting (D.18) into (D.17) and rearranging terms yield

M1 7 T
Y Befe(z) = Y 2 ) Brdii(2) = 0. (D.20)
k=0 i=0 k=0
First we show f; = 0. Substituting z = 0 into (D.20) yields
M1
Z B fi(0) = ﬁnvfn,n(ﬂ) = ﬂ(}!l(n.f)A(n)ﬁ'f =0. (D.21)
k=0

Note here that g(M) > 0 (by the assumption; see section 5.2). Also, A(0) > 0, since
p < 1. These facts imply that Gy = 0.
Next we consider 4;. Substituting f; = 0 into (D.20), dividing the resulting equation
by z and letting z go to zero, we have
A = o
£1_T‘f‘1); Z ﬁkfk(z) = f -]1,1(0) = 519(114),1,‘((})“ IA(O)M =0. (D.22)
k=1

Thus we have f#; = 0. Substituting #; = 0 and repeating the same argument recursively,
we conclude that fx = 0 for k = 0,..., M — 1. This contradicts our assumption. Hence
fi(2) (k=0,..., M — 1) are linearly independent.
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