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Preface

In the last fifteen years, the variational inequality problem has been used to study and
formulate various equilibrium problems arising in engineering, economics, operations
research, transportation and regional sciences. The variational inequality problem was
originally introduced by G. Stampacchia in the middle of 1960’s to formulate and
study partial differential equations, and hence, the early work was mainly focused on
infinite-dimensional variational inequality problems.

Studies on finite-dimensional variational inequality problems started in 1979, when
M. J. Smith formulated an equilibrium condition for traffic assignment problem in
the form of variational inequalities. Since then, study of the variational inequality
problem has become active and large progress has been made from both theoretical
and practical point of views.

Among various research subjects, it is important to construct solution methods
for the variational inequality problem. It is well known that the variational inequal-
ity problem is a generalization of a system of nonlinear equations and the nonlinear
complementarity problem. So it is natural that various iterative algorithms, such as

projection methods, linearized Jacobi method, successive over-relaxation method and
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Newton’s method have been developed as generalizations of iterative algorithms for
nonlinear equations and nonlinear complementarity problems, and their convergence
theorems have been established.

On the other hand, another approach for solving variational inequality problems
has recently attracted much attention. This approach exploits various merit functions
for the variational inequality problem. The purpose of introducing a merit function is
to formulate a variational inequality problem as an equivalent optimization problem,
and hence, many descent methods proposed for nonlinear programming problems are
applicable.

Our studies focuses on the optimization formulation of the variational inequality
problem. One of the main aims of this thesis is to develop both theoretically and
practically efficient algorithms for the variational inequality problem, which is based
on an equivalent optimization formulation. Another aim of this thesis is to construct
a new merit function, which is particularly useful to deal with variational inequality
problems with general nonlinear constraints.

Importance of the optimization formulation approach to the variational inequality
problem is now being recognized. The author hopes that the results obtained in this

thesis will help further improve the study in this field.

Kouichi Taji
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Notation

We provide nonations that will be frequently used in this thesis. For other mathemat-
ical concepts and definitions, see Appendix.

We denote by R" the real n-dimensional Euclidian space. Throughout the thesis,
every vector is a column vector, i.e. & € R" represents the n-dimensional column vector

T

8
[

e

For a mapping F : " — R", F(z) is also considered an n-dimensional column vector
whose i-th component F;(z), where F; is a function from R" into R. The transpose
of an m x n matrix A and a vector z is denoted by A and z', respectively. We often
write # > 0if x; > 0 for all i = 1,---,n. The nonnegative orthant of R™, denoted by
R", is the set of vectors * € R" such that z > 0. We denote by e; the i-th unit vector
such that the i-th element of e; is 1 and the other elements are zero. E; represents the
] X% J identity matrix.

The symbol (-,:) denotes the inner product in R™ defined by

(z,9) = ) xiyi.

i=1

Xiii



|| - || denotes the Euclidean norm in R™ defined by
lz]l= (@, 2)3.
We often use the G-norm in R", defined by
l2llo= (2, Ga)7, (0.1)

for an n x n symmetric positive definite matrix GG. The norm of an n x n matrix A,

also denoted by || A ||, is defined by

|4z
4= 288 "=

The gradient of a function ¢ : R* — Ratz€ R" is defined to be the column vector

(=
EN
Vé(z) = .
dolz
Lo
where olz) denotes a partial derivative. The Hessian of ¢ at € R", denoted by
z;

9%¢(x)

V2¢(z), is the n x n symmetric matrix whose (i,7)-th component is G20z The

Jacobian of the mapping F : R* — R™ at z € R", denoted by VF(z), is the n x n

matrix defined by
VF(z) = (VFi(z),...,VFn(z)).

: . : k
Generally 2* denotes a solution to the problem under consideration and {z"} de-
notes a sequence generated by algorithms, where the superscript k represents the k-th

iterate. In particular, z° denotes an initial iterate.

Chapter 1

Introduction

1.1 Historical background on study for the variational
inequality problem

In the last fifteen years, the variational inequality problem has been widely used to
formulate and study various equilibrium models arising in engineering, economics and
operations research. The finite dimensional variational inequality problem is to find a

vector z* € S such that
(F(z*),z —2*) >0 forall z€ S, (L.1)

where the set S is a nonempty closed convex subset of B" and the mapping F is a
continuous mapping from R" into R".

The history of the variational inequality problem dates back to the work of Stam-
pacchia et al. [HaS66, LiS67], who formulated partial differential equations as varia-
tional inequality problems. As the early studies were tied with boundary value prob-
lems, Stepfan problem and fluid dynamics, the attention was mainly paid to infinite

dimensional variational inequality problems, i.e., the set S in (1.1) is replaced by a

1



2 CHAPTER 1

closed convex subset of a Hilbert space V and F represents the mapping from V into
its dual. The book of Kinderlehrer and Stampacchia [KiS80] provides many references
and applications concerning infinite dimensional variational inequality problems.

On the other hand, the finite dimensional variational inequality problem may be
viewed as a generalization of systems of nonlinear equations, convex programming
problems and complementarity problems. Marcino and Stampacchia [MaS72] inves-
tigated the relation between finite dimensional variational inequality problems and
convex programming problems. They also developed a computational method for solv-
ing finite dimensional variational inequality problems. Karamardian [Kar71, Kar72]
showed that the variational inequality problem includes complementarity problems
which arise in various fields such as quadratic programming, game theory and eco-
nomic equilibria [l(arﬁga, Kar69b|. He derived some existence results for the nonlinear
complementarity problem from those for the variational inequality problem [Kar71].
Before the 1980’s, in spite of these, studies on the finite dimensional variational in-
equality problem were not so active, compared with those for convex programming and
complementarity problems.

In the 1980’°s, the study on the variational inequality problem in a finite dimen-
sional space became more popular and attracted much attention in connection with
various equilibrium problems arising in engineering, economic and operations research.
In 1979, Smith [Smi79)] presented a formulation of an equilibrium condition for the
traffic equilibrium problem. Dafermos [Daf80] first pointed out that Smith's for-

mulation is a finite dimensional variational inequality problem. In the same paper,

Introduction 3

Dafermos also presented a solution method, which belongs to the class of projection
methods, for the variational inequality problem. Since then, finite dimensional vari-
ational inequality problems have been used to formulate and study various equilib-
rium problems, such as traffic assignment problems [AaM82, BeG82, Nag93], spa-
tial price equilibrium problems [Har84, NaA88, Tob88], Walrasian equilibrium prob-
lems [Mat87], Nash-Cournot production problems [MSS82], Nash price equilibrium
problems [CDH90] and other equilibrium problems [Flo89, Nag87, NaA89). Also,
many important results on algorithms [Daf83, HaP90, PaC82], sensitivity analysis
[Daf88, DaN84, Kyp87, Kyp90, QiM89, Tob86]| and generalizations of the problem
[ChP82, FaP82, Fuk85] have been investigated.

Throughout this thesis, we focus on the finite dimensional variational inequality

problem: hence we shall simply call it the variational inequality problem.
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1.2 Merit functions for the variational inequality prob-
lem

The variational inequality problem can be regarded as a generalization of a system of
nonlinear equations and the nonlinear complementarity problem. So it is natural to
generalize various iterative algorithms developed for a system of nonlinear equations
and the nonlinear complementarity problem to the variational inequality problem.
Such generalized algorithms include projection methods [Aus76, BeG82, Fuk86], lin-
earized Jacobi method [PaC82], nonlinear Jacobi method [FIS82, PaC82], successive
over-relaxation method [Pan85], Newton’s method [Jos79a, PaC82], a quasi-Newton
method [Jos79b] and generalized descent methods [HaM87, IFI88, Smi84]. Iterative
algorithms and their convergence properties are summarized in [Daf83, HaP90, PaC82].

Recently, another approach that, by introducing a merit function, reformulates
the variational inequality problem as an optimization problem has attracted much
attention. The function ¢ : Q — RU{+oc0}, where Q is subset of R" such that S C ,
is said to be a merit function for the variational inequality problem (1.1) when ¢ has

the following property:

(a) ¢(x) > 0 for all z€ Q.

(b) @(x) =0 if and only if z is a solution of (1.1).

A merit function enable us to formulate an equivalent optimization problem for a

variational inequality problem:

Introduction 5
minimize e(x)
subject to z € £l

One of the advantages of introducing a merit function is that many descent methods
proposed for nonlinear programming problems become applicable.

Various merit functions for the variational inequality problem have been proposed
and studied. In 1976, Auslender [Aus76] introduced the so-called gap function g: S —

R U {+0cc} for the variational inequality problem, defined by

g(z) =51;P{(F(I),'-B+y) |y € S}. (1.2)

(The name ‘gap function’ was first used by Hearn [Hea82] in studying the duality gap
of convex programming problems.) It can be seen that the gap function has the above
properties (a) and (b) with 2 = S. So by using the gap function, the variational

inequality problem can be formulated as an optimization problem:
minimize g(z) subject to z € S. (1.3)

Note that the function g may be infinite-valued when the set S is unbounded. Auslen-
der [Aus76] showed that, when the constraint set is bounded and strongly convex, the
gap function is everywhere differentiable. Moreover he proposed a descent method
which uses the derivatives of the gap function. But the assumption of strong convex-
ity is too restrictive and, for example, excludes the case in which the constraint set
is a polyhedral convex set. Hearn, Lawphongpanich and Nguyen [HLN84] discussed
the convexity of the gap function. Based on the gap function, Marcotte [Mar85] pro-

posed another descent method for monotone variational inequality problems, and Mar-
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cotte and Dussault [MaD87| proposed a globally convergent modification of Newton’s
method.
For monotone variational inequality problems, Hearn and Nguyen [HeN82| intro-

duced the dual gap function §: S — RU {+0oc}, defined by

§(x) = max{(F(y),x —y) |y € 5} (1.4)

Since the dual gap function is defined as the pointwise maximum of a set of linear func-
tions, the dual gap function leads to an equivalent convez minimization problem. Based
on this formulation, Nguyen and Dupuis [NgD84| proposed a solution method which
is closely related to the cutting plane algorithm in nonlinear programming [Zan69).
The gap function and the dual gap function are in general non-differentiable. It
has been well known that, under the symmetry assumption, an equivalent differen-
tiable optimization formulation of the variational inequality problem exists [HaP90].
Whether or not there exists an equivalent differentiable optimization formulation for
general asymmetric variational inequality problems had been open for a long time.
Recently by introducing the regularized gap function, Fukushima [Fuk92] solved this

question affirmatively. The regularized gap function is defined by

fs(e) = max { ~(F(e),y ~ 2) = 5 v~ 2.Gly — )| ve S}, (1.5

where G is an n x n symmetric positive definite matrix. Fukushima [Fuk92] showed
that the regularized gap function has properties (a) and (b) with 2 = S and that
the regularized gap function is differentiable whenever the mapping involved in the

variational inequality problem is differentiable. Based on the regularized gap function,

Introduction

-1

Fukushima [Fuk92| also proposed a descent method for solving monotone variational
inequality problems. The regularized gap function was also used in a globally conver-
gent modification of Newton’s method by Taji, Fukushima and Ibaraki [TFI193].

By replacing the quadratic term % (y —a.G(y—=x)) in (1.5) with a general strongly
convex function ®(y —x), Wu, Florian and Marcotte [WFM93| generalized the regular-
ized gap function and proposed a general descent framework for monotone variational
inequality problems. Zhu and Marcotte [ZhM93] also proposed a similar generaliza-
tion of the regularized gap function. By using their merit function, Zhu and Marcotte
[ZhM93] proposed descent methods and globally convergent modifications of Newton’s
method and nonlinear Jacobi method [MaZ95]. Independently of Fukushima, Auch-
muty [Auc89] proposed a class of merit functions, which includes the gap function,
dual gap function and Fukushima’s regularized gap function. Larsson and Patriksson
[LaP94] generalized Auchmuty’s class of merit functions.

More recently, Peng [Pen95] introduced the D-gap function for variational inequal-
ity problems. The D-gap function is defined on R™ as the difference of two regularized
gap functions. Peng [Pen95] showed that the D-gap function is nonnegative on R"
and its zero points coincide with solutions to the variational inequality problem, and
hence the D-gap function leads to an unconstrained optimization reformulation of the
variational inequality problem. Various interesting properties of the D-gap function
was investigated by Yamashita, Taji and Fukushima [YTF95].

Pang [Pan90] proposed another equivalent optimization formulation for variational

inequality problems, which is based on B-differentiable equations, and developed a
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damped Newton method for variational inequality problems [PaG93]. Xiao and Harker
[XiH94a, XiH94b] considered a similar B-differentiable optimization formulation, and
proposed a globally convergent Newton method for solving variational inequality prob-
lems.

Recent developments of merit functions and related algorithms for variational in-
equality problems and complementarity problems are summarized in a survey paper
by Fukushima [Fuk96]

In this thesis, we study optimization reformulations for the variational inequality
problem and develop practically efficient algorithms. In particular, we show that the
regularized gap function and its modification are useful in designing globally convergent

Newton method.

Introduction 9

1.3 Research objective and outline of the thesis

One of the main aims of the thesis is to develop efficient algorithms, based on equivalent
optimization reformations, for solving the variational inequality problem and to exam-
ine their convergence properties. Another aim of this thesis is to construct a new merit
function which enables us to deal effectively with variational inequality problems in-
volving general nonlinear constraints. Furthermore, we shall demonstrate the practical

usefulness of optimization reformulations of the variational inequality problem.

Chapter 2 introduces the definition of the variational inequality problem and related
concepts and notations which will be necessary for the development of subsequent

chapters.

In Chapter 3, we propose a globally convergent Newton method for solving varia-
tional inequality problems [TFI93]. We first consider the differentiable merit function
introduced by Fukushima [Fuk92| to formulate the variational inequality problem as
an optimization problem, and show some properties of the merit function. Using this
function, we propose to modify Newton’s method for variational inequality problems.
The purpose of introducing this merit function is to provide some measure of the dis-
crepancy between the solution of the variational inequality problem and the current
iterate. It is shown that, under the strong monotonicity assumption, the method is
globally convergent and, under some additional assumptions, the rate of convergence

is quadratic.

The nonlinear complementarity problem is a special case of the variational in-
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equality problem, and has also been used to study and formulate various equilibrium
problems [Aas79, Flo89, FTSH83, Kar69a, Kar69b, Lem65, Mat87, Tob88]. In Chap-
ter 4, we propose globally convergent methods for solving nonlinear complementarity
problems [TaF94], based on a differentiable optimization reformulation of the nonlinear
complementarity problem. These are applications of the methods proposed in [Fuk92]
and in Chapter 3 for solving variational inequality problems, but they take full advan-
tage of the special structure of the nonlinear complementarity problem. We establish
global convergence of the proposed methods. Some computational experience indicates
that the proposed methods are practically efficient.

In Chapter 5, we propose a new merit function for the variational inequality prob-
lem with general convex constraints [TaF96]. The proposed function is defined as an
optimal value of a quadratic programming problem whose constraints consists of a
linear approximation of the given nonlinear constraints. We show that the set of con-
strained minima of the proposed merit function coincides with the set of solutions to
the variational inequality problem. We also show that this function is directionally
differentiable in all directions and, under suitable assumptions, any stationary point
of the function over the constraint set actually solves the variational inequality prob-
lem. Furthermore, we propose a descent method for solving the variational inequality
problem and prove its global convergence.

In Chapter 6, we propose a new globally convergent Newton method for solv-
ing variational inequality problems with general inequality constraints [TaF95]. The

method solves at each iteration an affine variational inequality problem, in which not

Introduction 11

only the mapping of the problem but also the constraints are linearized. The algo-
rithm has the property that a subproblem can be solved finitely at each iteration even
if the constraints of the given problem are nonlinear. To establish global convergence,
we make use of the merit function proposed in Chapter 5. We show that, when the
mapping involved in the given problem is strongly monotone, the method is globally
convergent to the solution, and that, under some additional assumptions, the rate of
convergence is superlinear.

Finally, in Chapter 7, we summarize the results obtained in the thesis.
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CHAPTER 1

Chapter 2

Problem Definitions and Basic
Concepts

2.1 Variational inequality problem and its applications

In this section, we define the variational inequality problem and state its relation to
nonlinear equations, optimization problems and complementarity problems. We also

present its applications to economic equilibrium problems.

Definition 2.1 Let S be a nonempty closed convex subset of R" and let F' be a
continuous mapping from R" into R™. The variational inequality problem is to find a

vector 2% € S such that

(F(2*),z —2*) >0 forall z€ S. (2.1)

In geometric terms, inequality (2.1) states that the vector F'(z*) is normal to the
set S at the point z*. Figure 2.1 illustrates a variational inequality problem in R?
graphically. In the figure, the shaded region represents the set S. The mapping F' can

be thought as a vector field. At a solution z*, the vector F'(z*) is inward normal to

13
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Figure 2.1: Tllustration of a variational inequality problem in R?

Problem Definitions and Basic Concepts 15

the boundary of S, while at the point ' which is not a solution, there is a y € S such
that the vector y — z' is at an obtuse angle to F(z').

If the set S is defined by a system of inequalities and equalities of the form
S={z€R"|ci(z) <0, i=1,...,m, hj(z)=0, j=1,...,1} (2.2)

where ¢; : R* — R are continuously differentiable convex functions and h; : R* — R
are affine functions, the following proposition holds under Slater’s constrained qualifi-

cation: there exists an £ € R™ such that
ci(2)<0fori=1,...,mand h;j(2)=0, forj=1,...,L (2.3)
For the proof of the proposition, see [Tob86].

Proposition 2.1 Suppose that ¢; : R* — R, i = 1,...,m are continuously differen-
tiable convex functions, hj : R* — R, j = 1,...,l, are affine functions and S is defined
by (2.2). Suppose also that Slater’s constrained qualification (2.3) holds. Then z* 15 a
solution to (2.1) if and only if there exist Lagrange multipliers A}, i = 1,...,m, and

?r;-', j=1,...,1, such that the vector (2*, A*,n*) satisfies the following conditions:

m l
F(z*)+ ) X Vei(z*) + Y 7 Vhj(z*) =0,
1=1 i=]

ci(z*) <0, A >0, Aei(z*) =0, i=1,...,m, (2.4)

hi(z*) =0, j=1,...,L
The condition (2.4) corresponds to the Karush-Kuhn-Tucker condition in an opti-

mization problem (cf. Appendix A.3.2) and is useful for the analyses in Chapters 5

and 6.
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Various mathematical problems can be formulated as variational inequality prob-
lems. In the following, we explain how these problems relate variational inequality

problems.

Nonlinear equation

The simplest example of a variational inequality problem is a system of nonlinear

equations.

Proposition 2.2 Let S = R™ and let F be a continuous mapping from R™ into R™.
Then the variational inequality problem (2.1) 1s equivalent to the system of nonlinear

equations:
F(z*) =0. (2.5)

Proof. If F(z*) = 0, then inequality (2.1) holds with equality for all z € R". Con-

versely, if z* satisfies (2.1), then, by setting = z* — F(z2*), we have
(F(z*),—F(z")) = - || F(z")|*> 0,

and hence, F(z*) = 0. 0O

Optimization problem

The second example of a variational inequality problem arises from an optimization
problem. Let us consider the optimization problem:

minimize pl(x) (2.6)
subject to z €S, .

Problem Definitions and Basic Concepts 17

where ¢ : R" — R is a continuously differentiable function and S is a closed convex

subset of R".

Definition 2.2 A vector z* is a stationary point of the optimization problem (2.6) if

z*e€ S and

(Veo(z"),z —2*) >0 forall z€ S. (2.7)

In the optimization theory, inequality (2.7) is often called the first order necessary opti-
mality condition for problem (2.6). We note that inequality (2.7) is just the variational
inequality problem (2.1) with F = V.

The following two propositions clarify the relationship an optimization problem

and a variational inequality problem.

Proposition 2.3 Let 2* be a solution to the optimization problem (2.6), i.e., p(zx) >

p(z*) for all € S. Then z* solves the variational inequality problem (2.7).
Proof. Since S is convex, 2* + t(x — 2*) € S for any 2€ S and 0 < t < 1. Then we
have that ¢(z* + t(z — 2*)) > ¢(z*). Hence,

gz +t{z — 2°)) — ¢(2%)
L

(Vg(a*),z —2*) = lim >0

holds for any z € S. O

Proposition 2.4 If the function ¢ is pseudo-convex on S, then a vector z* satisfying

(2.7) 1s a solution of (2.6).
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Proof. Since z* satisfies (2.7), it follows from the definition of pseudo-convexity (cf.

Appendix A.2) that

p(z) > ¢(z*) for all z € S,
and hence, 2* is a solution to the optimization problem (2.6) O
Complementarity problem

An important special case of the variational inequality problem (2.1) is the comple-

mentarity problem.

Definition 2.3 Let F' be the mapping from R" into itself. The complementarity

problem is to find a vector 2* € R™ such that
z* > 0,F(z") > 0 and (z*, F(z*)) = 0. (2.8)
When the mapping F is affine, problem (2.8) is called a linear complementarity
problem. When F is a general nonlinear mapping, problem (2.8) is called a nonlin-

ear complementarity problem. The following proposition illustrates the relationship

between a complementarity problem (2.8) and a variational inequality problem (2.1).

Proposition 2.5 The vector z* is a solution to the complementarity problem (2.8) if

and only if * € R", 1is a solution of the variational inequality problem:
(F(2*),z —z*) >0 forall z€ RY. (2.9)

Proof. Suppose that x* is a solution of (2.8). Then for all z€ R, we have
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0=(z*,F(z*)) < (z, F(z*)),
that is
(F(z%),z —2%) >0 forall z€ R%.

Therefore, 2* is a solution of (2.9).
Conversely, suppose that z* is a solution of (2.9). Substituting & = z* + ¢; into
(2.9), we have that (F(2*),e;) = Fi(z*) >0 foralli=1,...,n, and hence, F(z*) > 0.

Substituting ¢ = 2z* into (2.9), we have

(F(z%),z*) > 0. (2.10)
We also have
(Flz'),—=") =0 (2.11)

by substituting = = 0 into (2.9). From (2.10) and (2.11), we have (z*, F(z*)) =0. O

Economic equilibrium problems

Variational inequality problems are used to formulate and study various economic
equilibrium problems. Here, we briefly explain how the Nash equilibrium problem and
the traffic assignment problem can be formulated as variational inequality problems.
For detailed expositions and for other economic equilibrium problems, the reader may
refer to the book of Nagurney [Nag93].

The first example is a Nash equilibrium in an oligopolistic market [MSS82, Har84].

Let there be n firms which supply a homogeneous product in a noncooperative fashion.
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Let the function p(g) represent the price at which the consumers will demand a quantity
g and let z; denote the i-th firm’s supply. Finally, let s;(x;) denote the i-th firm'’s total

cost of supplying x; units. Then a Nash equilibrium solution for the market is a vector

a* = (z}....,2})" such that z} is a solution to the following optimization problem for
all t=1,...;n:

maximize zip(x; + ¢ ) — si(z;)

subject to z; > 0,

where g7 = Z xj. Harker [Har84] shows that, when s;(z;) is continuously differentiable
J#Fi
and convex forall i = 1,...,n, p(-) is strictly decreasing and continuously differentiable

and gp(g) is concave with respect to ¢, then ¢* is a Nash equilibrium solution if and

only if 2* is a solution to the variational inequality problem
(F(z*),z—2%) 20 forall z€ RT,

n n
where Fi(z) = si(xz;) — p (Z xj) —zip (Z .!:j) . Note that it follows from Proposi-
g==1 ye=1

tion 2.5 that this problem can be reformulated to the complementarity problem:
n n
zf >0, si(z})—p (Z :c‘;) —ap (Z .r:;) >0
j=1 J=1
n n
and z} (s;(x;') —p (Z .r;) —zip (Z r;)) =0
j=1 y2=1

foralli=1,...,n.

The next example is a traffic assignment problem [Aas79, BeG82, Daf80, Smi79].
Consider a network consisting of a set of nodes N and a set of directed links £ together

with a set W of node pairs referred to as origin-destination (O/D) pairs. For each O/D
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pair w € W, Py, denotes a set of simple directed paths joining w. We denote by z,, the
flow on the path p. Then the feasible path flow vectors + whose components are z,,

p € Py, w € W, is given by

X={:c

where d,, > 0 is a given demand for an O/D pair w. For each link [ € L, the link flow

Y zp=dy, 2,20, forallpe Py, weW }, (2.12)
Pepw

yi is defined as the sum of all the path flows on the paths p containing the link [, that
is,

W= Z 6!;:3:»

PEPw , weW
where &), = 1 if link [ is contained in path p and &, = 0 otherwise.

Let ¢; denote the user cost associated with traversing link I, and C, the user cost
associated with traversing the path p. For example, the value of ¢; represents the travel
time in traversing link [. We have

Cp = Z ipCa,
lel
which may be viewed as the total travel time of path p. We assume that the cost

associated with a link depends on the entire link flow pattern, that is,
ca = Caly),

where y is a vector whose components are y;, | € L.
Then the traffic equilibrium problem is to find a vector # € X such that for each

path p € P, and every O/D pair w
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Z (2.13)

o[ =r i e
s # 2

where )\, is an indicator, whose value is not known a priori. This condition is based

e W

0
0,

on the user optimization principle in which no user may decrease one’s travel time by
changing one's route unilaterally. In fact, the condition (2.13) asserts that only those
paths connecting an O/D pair that have minimal user costs are used.

Let C' be a mapping with components C, and let A = (&) be a matrix. It can
be shown [Daf80, Smi79] that the equilibrium condition (2.13) is equivalent to the

variational inequality problem
(F(z*),z—z°) 20 forall z€ X,

where F(z) = A'C(Az).
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2.2 Monotone mapping and projection

We first introduce the notion of monotonicity.

Definition 2.4 A mapping F : R™ — R" is said to be

(a) monotone on S if

(F(z) = F(y),z —y) >0 forall ,y€ S, (2.14)
(b) strictly monotone on S if

(F(z) - F(y).,x—y)>0 forall 2z,y€S, = #y, (2.15)
(c) strongly monotone with modulus g > 0 on S if

(F(z) = F(y),a—y)2pllz—y|?* forall z,y€S. (2:16)

In the one-dimensional case, F is monotone if and only if F' is nondecreasing and
strictly monotone if and only if strictly increasing. Moreover, suppose that F = Vg
where ¢ : R" — R is a differentiable function. Then F'is monotone if ¢ is convex; F is
strictly monotone if ¢ is strict convex; and F' is strongly monotone if ¢ is strongly con-
vex. For definitions of convexity, strict convexity and strong convexity, see Appendix

A2

Next proposition shows the relationship between the mapping F and its Jacobian

VF(z).

Proposition 2.6 [OrR70, Chapter 5.4] Suppose the mapping F 1s differentiable. Then
F 1s strictly monotone on S if the Jacobian matriz VF(z) 1s positive definite for all

€ S, and F 1s strongly monotone on S if and only if VF(x) satisfies
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(¢ —y,VF(z)(xz—y)) > pllz —y|* forall z,y€ S. (2.17)

The variational inequality problem (2.1) does not necessarily have a solution. But
when the solution set of (2.1) is actually nonempty, it is convex if F is monotone, and
it is a singleton if F' is strictly monotone. Furthermore, if F is strongly monotone,
then problem (2.1) is guaranteed to have a unique solution [HaP90, Corollary 3.2].

Next we define the projection under the G-norm.

Definition 2.5 Let G be an nxn symmetric positive definite matrix. The projection
under the GG-norm of a vector x € R" onto the set S, denoted by Projg (), is defined

as the unique solution y to the following optimization problem:
minimize ||y —z ||¢ subject to y€ S.

We note that, when G = E,, Projs g(z) reduces to the orthogonal projection. Figure
2.2 illustrates the difference between Projg ;(z) and the orthogonal projection. In the
figure, dotted ellipses represent contours of the function ¢(y) =|| y — « ||4. Figure 2.2
illustrates that Projg () is a minimum of ¢(y) over S and is different from orthogonal
projection z'.

Using this notation, we define a mapping Hg: R" — R" as
Hg(z) = Projs'a(z—(}_lF(.r)). (2.18)

The next proposition characterizes a solution of the variational inequality problem as

a fixed point of the mapping Hs.
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Figure 2.2: Illustration of the projection under the G-norm

Proposition 2.7 [BeT89, page 267 Let G be an nxn symmetric positive definite

matriz. Then z* solves problem (2.1) if and only if
T = Projs q(x" — G~ 'F(z*)),
t.€., of and only if z* is a fivred point of the mapping Hs.
Figure 2.3 illustrates Hs with G = E,. In the case, Projs ;(z) reduces to the

orthogonal projection. At the solution z*, the vector F(a*) is inward normal to the

boundary, and hence, z* = Hs(z*) holds.
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X*=F(x%) x-F(x)

Figure 2.3: Illustration of a mapping Hgs with G = E,

It is known [BeT89, page 217] that the projection operator Projgs () is nonexpan-

sive, l.e.,
| Projs (z) — Projsc(y) le <z —yllc forall z,ye R".

Hence, if the mapping F' is continuous, so is the mapping Hs defined by (2.18).

Problem Definitions and Basic Concepts 27

2.3 Newton’s method

Newton’s method is a classical but useful method for solving nonlinear equations and
unconstrained minimization problems. For example, Newton’s method for solving
nonlinear equations (2.5) generates a sequence {;rk}, where %1 is determined to be

a solution to the linearized equations:
F(z*) 4+ VF(z*) (2 — 2*) = 0. (2.19)

It was shown [DeS83, Theorem 5.2.1] that the sequence {2*} converges quadratically
if VF(z*) is nonsingular and an initial iterate z” is chosen to be sufficiently close to
g

An early attempt to generalize Newton’s method to solve variational inequality

problems was made by Josephy [Jos79a]. We describe the basic Newton method for

the variational inequality problem.
The basic Newton method for the variational inequality problem

Choose an initial iterate 2° € S and determine z**! to be a solution of
the variational inequality problem obtained by linearizing F' at the current

iterate z*, i.e., 2¥*1€ S and
<F’(.r") + VF(z*)(z**! = z*),z - x“”) >0 forall z€ 8. (2.20)

The basic Newton method was originally proposed by Josephy [Jos79a] for the

problem of generalized equations, which was introduced by Robinson [Rob79, Rob80,
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Rob83] and known to contain the variational inequality problem as a special case.
But Josephy only considered the generalized equation equivalent to the variational
inequality problem.

By the same argument of Proposition 2.2, it is easy to see that (2.20) reduces to
(2.19) when S = R", so this Newton method is a natural generalization of Newton'’s
method for nonlinear equations. The next Theorem establishes local and quadratic

convergence of the basic Newton method for the variational inequality problem.

Theorem 2.1 [Jos79a, PaC82] Let S be a nonempty closed conver subset of R", F
be a continuous mapping from R™ into R", and x* be a solution to the variational
inequality problem (2.1). Suppose that F' is continuously differentiable with VF(z*)
being positive definite and that VF is Lipschitz continuous in some neighborhood of
z*. Then there exists a neighborhood of * such that, if the initial iterate 2° is chosen

there, the sequence {x*} generated by the basic Newton method converges to the solution

z* quadratically, 1.e., there exists a constant ( > 0 such that
l=**! —a* | < ¢ 2 = 2t F (2.21)

Proposition 2.5 says that, if S = R, the variational inequality problem (2.1) is
equivalent to the nonlinear complementarity problem (2.8). The same proposition
also says that inequality (2.20) can be written as a linear complementarity problem.
Thus the above Newton method can be naturally transmitted to the complementarity

problem.
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The basic Newton method for the complementarity problem

Choose an initial iterate 2 > 0 and determine z¥*! to be a solution # of

the linearized complementarity problem:

x>0, F(zF) + VF(z*)!(z - z%) > 0
and (f,F(z*) + VF(z*) (z - :ck)> =,

An analogue to Theorem 2.1 holds for the above Newton method for nonlinear
complementarity problems, that is, under the assumptions that VF(z*) is positive
definite and VF is Lipschitz continuous, then the sequence generated by the above
algorithm quadratically converges to the solution z* of the complementarity problem

(2.8), provided that an initial iterate z° > 0 is chosen sufficiently close to z*.
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Chapter 3

A Globally Convergent Newton
Method for Solving Strongly
Monotone Variational Inequality
Problems

3.1 Introduction

In this chapter, we consider the variational inequality problem:
(F(z*),z —2*) >0 forall z€ S (3.1)

where S denotes a nonempty closed convex subset of R" and F' denotes a continuous
mapping from R" into R" (cf. Definition 2.1).

By incorporating a line search strategy, Marcotte and Dussault [MaD87] have mod-
ified the basic Newton method (2.20) to obtain a globally convergent algorithm. Their
method is based on the use of the gap function g : R" — R U {+0o0} defined by (1.2).
When F is monotone, the method of Marcotte and Dussault [MaD87] is shown to

converge globally to a solution of problem (3.1) and, under suitable assumptions, the

31
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rate of convergence is quadratic. It is noted that the set S is assumed to be compact
in order that the function g is well-defined. Moreover, global convergence has been
proved with the exact line search to the gap function (1.2) [MaD87].

In this chapter we propose another modification of Newton's method. The method
makes use of the regularized gap function defined by (1.5). It is shown that, when
F is strongly monotone, the algorithm is globally convergent to a solution of problem
(3.1), and, under some additional assumptions, the rate of convergence is quadratic. In
particular, the method allows inezact line search and does not rely upon the compact-
ness assumption on the set S. Limited computational experience indicates that the

proposed method is well comparable to the method of Marcotte and Dussault [MaD87].
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3.2 Regularized gap function

In this section, we introduce the regularized gap function for variational inequality

problem (3.1) and present some of its properties.

Definition 3.1 For an arbitrarily chosen positive definite symmetric nxn matrix G,
we define the regularized gap function fg: R" — R for a variational inequality problem

(3.1) by

fs(z)

Il

max { —(F(z),y—z)— —;- (y —z,Gly— x)) | yE 9} (3.2)

= —(F(z),Hg(z) — z) (Hs(z) — z,G(Hg(a) — z)), (3.3)

o
2
where the mapping Hg: R™ — R" is defined by (2.18).
Note that, by the positive definiteness of G, the maximum in (3.2) is always

uniquely attained by y = Hs(z). Using the regularized gap function, an equivalent

optimization problem can be obtained for any variational inequality problem.

Proposition 3.1 [Fuk92] Let fs be the reqularized gap function defined by (3.2). Then
fe(z) > 0 for all € S, and fs(x) = 0 if and only if z solves (3.1). Hence x solves
(3.1) if and only if it solves the following optimization problem and its optimal value

Is zero:
minimize fg(z) subject to x€ S. (3.4)

Remark 3.1 When problem (3.1) has no solution, the optimization problem (3.4)

may have a minimizer which does not zero the function fg. For example, consider the
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case where F : R — R, F(z) = -1 and S = {¢ € R|z > 0}. The corresponding
variational inequality problem is to find an * > 0 such that 2* > x holds for all z > 0.
But the existence of such a number is impossible and hence the variational inequality
problem has no solution. The function fs associated with G = 1 is fs(z) = -;— for all

r > 0, s0 any x > 0 is a global minimizer of problem (3.4).

It can be shown that, for any closed convex set S, the regularized gap function is

continuously differentiable whenever so is the mapping F.

Proposition 3.2 [Fuk92] If a mapping F': R* — R" is continuous, then the function
fs defined by 3.2 is also continuous. Furthermore, if F is continuously differentiable,

then fs is also continuously differentiable and its gradient is given by
Vfs(z) = F(z) - [VF(z) - G](Hs(z) — z). (3:5)

The regularized gap function has an interesting property that, when VF(z) is
positive definite for all x € S, any stationary point of problem (3.4) is a global optimal

solution of problem (3.4). The function fg is in general not convex.

Proposition 3.3 [Fuk92] Assume that a mapping F: R® — R" is continuously differ-
entiable and its Jacobian VF(x) is positive definite for all € S. If x is a stationary

point of problem (3.4), t.e.,
(Vfs(z),y—x) >0 forall y€ S, (3.6)

then x is a global optimal solution of problem (3.4), and hence it solves the variational

inequality problem (3.1).
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This proposition indicates that the regularized gap function can used to construct a
descent method for solving monotone variational inequality problems. Moreover, when

the mapping F' is strongly monotone on S, the following result holds. Note that this

result does not require the differentiability of F.

Proposition 3.4 Letz* be a solution to (3.1). If F is strongly monotone with modulus

poon S, then the regularized gap function fs satisfies the inequality
it ' i

fs(z) > (pn— 3 |G|l ) ||z —a*||* forall z€ S. (3.7)

In particular, if the matriz G is chosen sufficiently small to satisfy |G| < 2pu, then
li (z) = ;

G L i
Proof. Since z* is a solution to (3.1), we have

(F(z*),z —2*) >0 forany z€ S.
From this inequality and the definition of strong monotonicity (2.16), we obtain

(F(z),z —2*) > p|| z —2*||* for any z€ S. (3.8)
Since (z* — 2,G(z* —z)) <||G|| || z* = z ||?, it follows from (3.2) and (3.8) that

. 1, . .
fs(z) > —(F(z),2" —z) - §{x -z,G(z* — z))

L] l ¥ *
> pllz =22 =3 1G] =~ 2" |

1 |12
(=061 ) he=z12.

The last half of the proposition then follows immediately. O
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3.3 Globally convergent Newton method

In this section we present a globally convergent Newton method for solving the vari-
ational inequality problem (3.1). which incorporates a line search strategy of Armijo-
type to the basic Newton method (2.20). Throughout this section we assume that the
mapping F' is continuously differentiable and strongly monotone with modulus p (cf.
(2.16)).

We first define the global convergence formally.

Definition 3.2 Consider the optimization problem:

minimize plz) (3.9)

subject to z €,
where ¢ : R" — R U {400} is a function and 2 is a subset of R". Then an algorithm
A is said to be globally convergent if, for any initial iterate 2 € 2, every accumulation
point of the sequence {z*} generated by A is a solution z* to problem (3.9), i.e.

lim 2* = 2* for some subsequence {z*}icx.
k—oo, 2 K

For given x € S, we consider the following linearized variational inequality problem
which is to find £ € S such that

(F:;) + VF(2)(% —2),y — 1—) >0 forall ye S. (3.10)

The strong monotonicity of F' ensures that the linearized problem (3.10) always has a
unique solution & in S. The linearized problem (3.10) is usunally easier to solve than

the original problem (3.1). In particular, if the set S is polyhedral convex, problem
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(3.10) can be rewritten as a linear complementarity problem, which can be solved in a
finite number of steps using Lemke's complementary pivoting method [Eav78].
In the remainder of this chapter, the linearized problem (3.10) is called LVI(z) and

its unique solution is denoted N(z).

Now we explicitly describe the algorithm.

Algorithm 3.1

Step 0 Choose 2° € $,0< < 1,0<y<1,0<o0 <1, anda symmetric positive

definite matrix (. Let k := 0.
Step 1 Find the unique solution N (z*) € S that solves LVI(z*), i.e.,
(F(:r") + VF(*) (N (z*) — 2*),2 — N(:,-’*)) >0 for all z€ S.
Let d* := N(z*) — z*.

Step 2 If fs(z* + d*) < vfs(z*), then set ay := 1 and go to Step 3.

Otherwise set ay := 3'* where [} is the smallest nonnegative integer ! such that
Is(@*) = fs(a* + B'd*) > —oB' (V fs(a*).d*).
Step 3 Set z**1:= a* + apd*. Let k := k+ 1. Return to Step 1.

The next result shows that the Newton direction d* = N(z*) — z* obtained by
solving LVI(z*) is a feasible descent direction for f¢ at z*. This in particular implies

that the step size ay, can be found in a finite number of steps at each iteration of the

algorithm.
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Theorem 3.1 Let S be a nonempty closed conver subset of R", F be a mapping from
R" into itself, G be an nxn symmetric positive definite matriz and fs : R® — R be
a function defined by (3.2). Suppose that F is continuously differentiable and strongly
monotone with modulus p on S. If z* is not a solution to (3.1), then the vector

d* = N(z*) — z* satisfies the inequality

(Vrstah)d) <= (=3 161 ) a2, (3.11)

In particular, if the matriz G is chosen sufficiently small to satisfy || G || < 2u, then d*

is a feasible descent direction of fs at z*.

Proof. For simplicity of presentation, we omit the superscript k in z* and d*. Since
d = N(z) - z, it follows from (3.5) that
(Vfs(x),d) = (F(z),N(z)—z) - ((VF(z)' - G)(N(z) - z), Hs(z) — z)
= (F(z) + VF(2)'(N(2) - 2),N(z) — z)
~(N(z) — 2, VP(z)'(N(z) — z))
+(F(2) + VF(z)"(N(z) — z),2 — Hs(z))
~(F(z),2 — Hs(z)) = (G(N(z) — z),z — Hs(x))
= —(F(z) + VF(2)'(N(z) — z), Hs(z) — N(z))
+{(P@), Hs(w) - 2) + 5(Hs(z) - 2,G(Hs(x) - )}

~(d, VF(@)d) + 3(d,Gd) ~ 5 | N(2) - Hs(z) % (3.12)
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Since N(z) is a solution to LVI(z), the first term of (3.12) is nonpositive. From (3.3),
the second term of (3.12) is equal to — fg(x), which is strictly negative since r is not a

solution to (3.1) (see Proposition 3.1). Hence, we have
1
(Vfs(a),d) < —(d, VF(z)d) + E(d’ Gd).

But since strong monotonicity of F implies (d, VF(x)d) > p ||d||* and since

(d,Gd) < |G| ||d]|?, we have the inequality

(Vistahd) < = (=3 161 ) NaIP.

The last half of the theorem then follows immediately. m}
The following theorem is the main result of this section.

Theorem 3.2 (global convergence) Let S be a nonempty closed convex subset of
R", F be a mapping from R™ into itself, G be an n xn symmetric positive definite
matriz and fg: R — R be a function defined by (3.2). Suppose that the mapping F' 1s
continuously differentiable and strongly monotone with modulus p on S. If the matriz
G s chosen sufficiently small to satisfy | G || < 2u, then the sequence {z*} generated

by Algorithm 3.1 is globally convergent.
Before proving the theorem, we show the following lemma.

Lemma 3.1 If F is continuously differentiable and strongly monotone on S, then the
mapping N : 8§ — 8 is continuous on S. Furthermore, x is the solution of problem

(3.1) if and only if ® satisfies x = N(x).
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Proof. The first half of the proposition follows from [HaP90, Theorem 5.4]. To prove

the second half, suppose first that @ = N («). Then it follows from (3.10) that
(F(z),y—=z) 20 forall ye S.

Thus, x is the solution to (3.1). Conversely, suppose that = solves (3.1). Then, since

N(z)e S, it follows from (3.1) that
(F(z),N(z) —z) 2 0.

Also it follows from (3.10) that
(F(z)+ VF(z)(N(z)—xz),z — N(z)) > 0.

Adding the last two inequalities and rearranging terms, we obtain
(N(z) =z, VF(z)(N(z) = z)) <0.

But since the strong monotonicity of F' ensures that VF(z) is positive definite (see

Proposition 2.6), it follows that = = N(z). m|

Proof of Theorem 3.2. Since ¥ and 2* +d* both belong to S, and since 0 < ay < 1,
it follows from the convexity of S that the sequence {z*} is contained in S. Moreover,
by Theorem 3.1 and the line search rule of the algorithm, the sequence {fs(:r:")} is
nonincreasing. This, together with Proposition 3.4, implies that the sequence {z*} is
bounded, and hence has at least one accumulation point.

If fs(z* + d*) < vfs(2*) holds infinitely often, then limj_.., fs(2¥) = 0. Since fs

is continuous by Proposition 3.2, we have fs(z) = 0 for any accumulation point & of
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{.r"}. Moreover, by Proposition 3.1, & is a solution of (3.1). Since (3.1) has a unique
solution by the strong monotonicity of F [HaP90, Corollary 3.2|, it then follows that
the whole sequence {2*} necessarily converges to the unique solution of problem (3.1).

Next we consider the case where fs(z*+d*) < +fs(2*) holds for only finitely many
k. Let {z¥}1c x be any convergent subsequence of {z*} and let Z€ S be its limit point.
Since d* = N(z*) — 2* and since N () is continuous by Lemma 3.1, {d*},. x converges
to the vector d = N(&) — #. Therefore, by Lemma 3.1, to prove that Z is a solution of

(3.1), it is sufficient to show that

Assume the contrary. Then there exist ¢ > 0 and an index k such that

|d*||>¢ forall ke K, k > k.
Thus it follows from (3.11) that

(Vfs(a),d*) < — (p < % |iG||) e? forall ke K, k>F, (3.13)
from which we obtain

(Vfs(z),d) < - (.u - % IIGII) e <0. (3.14)
On the other hand, it follows from the line search rule that

fs(@*) — fs(@**) > —oan (Vfs(a*),d*) (3.15)

and
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Ok

fs(a®) — fs(z* +Zkd*) < —o 3

5 (Vis(ah),d*) (3.16)

for all k € K sufficiently large. Since, by Proposition 3.1, the sequence {fs(z*)} is

nonnegative and since {fs(a:")} is monotonically decreasing, (3.15) implies
ok (st{a:"),d*) — 0.

Hence, from (3.13), we have
{onbier 0.

Then, dividing both sides of (3.16) by a /3 and taking limit, we obtain
—(V1s(2),d) < —o (Vfs(2),d).

Since a < 1, this implies
(Vfs(2),d) >0,

which contradicts (3.14).

Consequently, we have d =0, i.e., ¥ is a solution of (3.1). Thus, it follows from
Lemma 3.1 that any accumulation point of {z*} is a solution to (3.1). Moreover, since
strong monotonicity of F ensures that problem (3.1) has a unique solution, we can

conclude that the entire sequence converges to the unique solution of (3.1). O

Remark 3.2 Marcotte and Dussault [MaD87] have obtained a globally convergent
Newton method that uses the gap function g defined by (1.2) as a merit function. In
their method, F' is assumed monotone but not necessary strongly monotone. To obtain

global convergence, however, the method assumes the following exact line search rule:
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Step 2° If g(z* +d*) < ')%g(:rk). then set ay := 1 and go to Step 3.

Otherwise find aj such that
@) € arg min,g (o g(z* + adb).

Remark 3.3 In Algorithm 3.1, the inexact line search rule may be replaced by the
exact rule of Marcotte and Dussault’s algorithm [MaD87]. Under the same assumption
of Theorem 3.2, global convergence of the algorithm with exact line search can be
proved in a way similar to [MaD87]. Moreover, the analysis of the rate of convergence
[MaD87] to be given in the next section also remains in force for the algorithm with

exact line search.
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3.4 Rate of convergence

In this section, we show that, under suitable assumptions, Algorithm 3.1 proposed in
the previous section is locally quadratically convergent. We show the quadratic rate
of convergence only for the case that S is polyhedral convex. For a general convex set
S, whether or not Algorithm 3.1 is quadratically convergent is unknown.

To obtain a rate of convergence result, we need the following strict complementarity

condition [MaD87].

Definition 3.3 Suppose that S is polyhedral and that problem (3.1) has a unique
solution a*. Let S* denote the minimal face of S containing z*. Then we say that the
geometric strict complementarity holds at z* if z € § and (F(z*),z — 2*) = 0 imply

re S*.

Figure 3.1 illustrates the geometric strict complementarity condition. In the figure,
zr* denotes the unique solution. Then S* is denoted by the bold line of (a). In (b),
the geometric strict complementarity condition holds. On the other hand, in (¢) the
vector F(z*) is normal to the face So, and hence, the geometric strict complementarity
condition does not hold.

When the set S is defined by (2.2), a solution z* satisfies the condition (2.4) with
vectors A* and 7*. Then the geometric strict complementarity condition holds if ¢;,
i=1,...,m, are all affine and ci(z*) = 0 implies A} >0 foralli=1,...,m.

Now we can establish the following result of the rate of convergence.
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Figure 3.1: Tllustration of the geometric strict complementarity condition
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Theorem 3.3 (quadratic convergence) Let S be a nonempty closed convex subset
of R", F be a mapping from R™ winto itself, G be an n xn symmetric positive definite
matriz and fs : R" — R be a function defined by (3.2). Suppose that F is continu-
ously differentiable and strongly monotone with modulus p on S and that the matrix
G satisfies |G ||< 2p. In addition, suppose that the set S is polyhedral convez, VF 1s
Lipschitz continuous on a neighborhood X* of the unigue solution x* of problem (3.1)
and the geometric strict complementarity condition holds at @*. Then there exists an
integer k such that ap = 1 for all k > k, and the sequence {z*} generated by the

algorithm converges quadratically to the solution z*.

Proof. By Theorem 3.2, the generated sequence {z*} converges to z*. It is sufficient
to prove that fg(N(z*)) < vfs(z*) holds for all k large enough.
Under the given assumptions, it is not difficult to show that Vfs is Lipschitz

continuous on the neighborhood X* of z*, i.e., there exists a constant L > 0 such that
IVfs(z) = Vfs(y)| £ Lllz —y| forall z,y€ X" (3.17)
It follows from (3.17) that, for any z,y € X*,

1
fs(@) - fs(y) = fo (Vis(y+ sz —y)),z —y)ds

1
= <st(y}..r—y>+f0 (Visly + sz —y)) — Vis(y).z — y) ds

IA

il
(Vis(y),z —y) +[J Ls ||z —y|*ds

Il

2

(Vfsw)he—y) + =L |l —gl?. (3.18)
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Since fs(x*) = 0 by Proposition 3.1, and since V fs(z*) = F(z*) by (3.5) and Propo-

sition 2.7, it follows from (3.18) that
* - 1 »
fs(z) < (F(z2),z — 2") + §L||.r—:r 1|2 (3.19)

holds for all z € SN X*.

ke

Since z"* — a*, it follows from Theorem 2.1 that

[N(@*) —z* || < ¢ || z* —2*|? (3.20)

for some ¢ > 0, whenever k is sufficiently large. Moreover, under given assumptions,

it follows from [MaD89, Proposition 1] that
(F(z*),N(z*) —2*) =0 (3.21)

for all k sufficiently large. It then follows from (3.19), (3.20), (3.21) and (3.7) that for

any k sufficiently large

fs(N@H) < SLINGE |

1
< LE |2k -2t

ch k_ _*2 ke
< g et =t fs(eh)

Therefore, fs(N(z*)) < vfs(z*) holds for all k large enough to satisfy

L¢? k

L ST S B
2= G| I

The quadratic rate of convergence follows from the fact that the convergence rate of

the basic Newton iteration z¥*! = N(z*) is quadratic (see Theorem 2.1). a
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3.5 Computational results

In this section, we report numerical results of Algorithm 3.1. All computer programs
were coded in FORTRAN and run in double precision on a personal computer called
Fujitsu FMR-70.

Throughout the computational experiments, the parameters used in the algorithm
were set as 3 = 0.5, ¥ = 0.5 and ¢ = 0.01. The symmetric positive definite matrix
G was chosen to be the identity matrix multiplied by 0.01. The convergence criterion

was
fs(z*) <1078,

For comparison purposes, we also coded the basic Newton method (cf. (2.20))
and the algorithm GNEW of Marcotte and Dussault [MaD87]. It is noted that we
implemented the latter method with an inexact line search of Armijo-type, though
its global convergence has been proved in [MaD87] only with exact line search rule
(cf. Remark 3.2). In all test examples, the constraint sets S are polyhedral convex
sets specified by linear inequalities. In solving the linearized subproblem LVI(z*) at
each iteration of the above-mentioned algorithms, we first transformed it into a linear
complementarity problem, and then applied Lemke's complementary pivoting method
to the latter problem [Lem65].

Example 3.1 is a modification of the test problem used by Marcotte and Dussault
[MaD87]. In this problem, the constraint set S and the mapping F are taken respec-

tively as
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Table 3.1: Data for Example 3.1

(0726 —0.949 0266 —1.193 —0.504 \ [ z;
1.645 0.678 0.333 —0217 —1.443 z3
F(z)=| -1.016 —0.225 0.769 0.934  1.007 a3
1.063 0.567 —1.144 0.550 —0.548 z4
\ —0.259 1.453 -1.073 0.509 1.026 /) \ a5 /
[ arctan(z; — 2) \ ( 5.308 \

arctan(zs — 2) 0.008
+p | arctan(zz —2) |+ | —0.938
arctan(xq — 2) 1.024

\ arctan(zs —2) / \ -1.312 )

Solution z* = (2.0,2.0,2.0,2.0,2.0)!

S = {.rE R®

5
Y =10, 2; 20, i=1,...,5}

i=1

and
F(z) = Pz + p®(z) + q,

where P is a 5x5 asymmetric positive definite matrix and ®(z) is a nonlinear mapping
with components ®;(x) = arctan(z; —2),7 = 1,...,5. The parameter p is used to vary
the degree of asymmetry and nonlinearity. The data of Example 3.1 are given in Table
3.1. Numerical results for this example are shown in Tables 3.2 ~ 3.5. It is noted that,

since algorithm GNEW requires the set S to be compact, we had to include the extra
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Table 3.2: Results for Example 3.1 (p = 10)

Initial Iterate Algorithm #lterations
Newton 12
(25,0,0,0,0) GNEW 5
Algorithm 3.1 5
Newton 10
(10,0,10,0,10) GNEW 7
Algorithm 3.1 6
Newton 12
(10,0,0,0,0) GNEW 5
Algorithm 3.1 5
Newton 5
(0,2.5,2.5,2.5,2.5) GNEW 4
Algorithm 3.1 4

5
constraint Z z; < 50 when the problem was solved by this algorithm.

=1
Example 3.2 consists of several test problems of various sizes, whose data are ran-

domly generated. Specifically, in each problem, the constraint set S takes the form
S={ze R"|Az <b, >0},

and the mapping F is given by
F(z) = Pz + ¥(z) + ¢,

where P is an nxn asymmetric positive definite matrix and W(z) is a nonlinear mapping

with components W;(z) = piz!, where p; are positive constants. The data of the
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Table 3.3: Results for Example 3.1 (p = 20)

Initial Iterate Algorithm #Iterations

Newton failed
(25,0,0,0,0) GNEW 6
Algorithm 3.1 6

Newton failed
(10,0,10,0,10) GNEW 7
Algorithm 3.1 6

Newton failed
(10,0,0,0,0) GNEW 6
Algorithm 3.1 6
Newton 9
(0,2.5,2.5,2.5,2.5) GNEW 1
Algorithm 3.1 4

smallest problem are given in Table 3.6. Numerical results of this example are shown
in Table 3.7. We note that the both mappings of Examples 3.1 and 3.2 is strongly

monotone on S.

In Example 3.1, the behavior of the basic Newton method is rather unstable (see
Table 3.2 and 3.3). When the parameter p is so large that the mapping F' is highly
nonlinear, the Newton’s method has failed for several initial iterates as shown in Table
3.3 though the mapping is strongly monotone. The same table also shows that the
algorithms using line search strategies are always convergent, even if the initial iterates

are chosen far from the solution. Moreover, Tables 3.2 and 3.3 show that, even when
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Table 3.4: Result for Example 3.1 (p = 10)

CHAPTER 3

: Algorithm 3.1

Iteration fs(z*) |l2* —2*|| ag T To T3 x4 Ty

0 88721 23.345 25.000 0.0000 0.0000 0.0000 0.0000
1 13078 4.4570 1.0 0.0000 5.1395 2.6209 4.3643 1.8197
2 7492.9 3.9010 1.0 4.4516 0.0000 2.7069 0.0000 2.8416
3 71.933 0.5011 0.5 2.2258 2.2829 2.0183 1.8215 1.7034
4 1.0540 0.0211 1.0 1.9930 1.9894 1.9969 2.0050 2.0157
5 0.0000 0.0000 1.0 2.0000 2.0000 2.0000 2.0000 2.0000

Table 3.5: Result for Example 3.1 (p = 20): Algorithm 3.1

Iteration fs(z*) | z* —2*| au T ) z3 x4 zs

0 96697 8.9443 10.000 0.0000 0.0000 0.0000 0.0000
1 42955 5.6054 1.0 0.0000 5.7212 3.4167 5.1752 3.2181
2 31025 4.4870 1.0 5.4586 0.0000 2.1595 0.0000 2.3820
3 99.815 1.0188 0.5 2.7293 2.6397 1.9501 2.3001 1.9335
4 43.972 0.1708 1.0 1.8725 1.9510 2.0489 2.0637 2.0639
5 0.0342 0.0013 1.0 2.0011 1.9998 1.9998 1.9996 1.9997
6 0.0000 0.0000 1.0 2.0000 2.0000 2.0000 2.0000 2.0000
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Table 3.6: Data for Example 3.2 (n = 5)

30 -40 -16.0 —150 -4.0 T, 0.004z%
40 1.0 -50 -10.0 -11.0 T2 0.007z3

F(z)=| 160 50 20 -11.0 -7.0 z3 | +| 0.005z3
15.0 10.0 11.0 3.0 -10.0 z4 0.009z3

40 11.0 70 100 1.0 Ts 0.008z}

00 00 -05 00 =20 -10

e -20 -20 00 -0.5 -2.0 _| -1

20 20 -40 20 -3.0 13

-50 30 =20 0.0 20 18

Solution z* = (9.08, 4.84,0.00,0.00, 5.00)*
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Table 3.7: Results for Example 3.2

Initial Iterate Algorithm #lterations

Newton 14

n=>5 | (0,0,100,0,0) GNEW 13
Algorithm 3.1 13

Newton 14

n =10 | (100,0,0,...,0) GNEW 13
Algorithm 3.1 13

Newton 12

n=15 | (100,0,0,...,0) GNEW 12
Algorithm 3.1 12

Newton 12

n =20 | (100,0,0,...,0) GNEW 12
Algorithm 3.1 12

Newton 17

n = 25 | (100,0,0,...,0) GNEW 13
Algorithm 3.1 13

CHAPTER 3
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the basic Newton method converges, it can happen that the number of iterations of
Algorithm 3.1 is less than that of the basic Newton method. It can be observed from
Tables 3.4 and 3.5 that Algorithm 3.1 converges quadratically to the solution. Note
that, in this example, the unit step size is chosen at all but one iterations. On the other
hand, Table 3.7 shows that the three versions of Newton’s method all converge to the
solution for each test problem of Example 3.2. However it is observed that the number
of iterations is less than or equal to that of the basic Newton method. Note also that,
in this example, the number of iterations is almost independent of the problem size,
at least up to n = 25.

Finally, we may conclude that, as far as our limited computational experience is
concerned, Algorithm 3.1 is well comparable to the algorithm GNEW of Marcotte and

Dussault [MaD87].
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CHAPTER 3

Chapter 4

Optimization Based Globally
Convergent Methods for the
Nonlinear Complementarity

Problem

4.1 Introduction

In this chapter we consider the nonlinear complementarity problem, which is to fined

a vector x € R" such that
z* > 0,F(z*) >0 and {(z*, F(z")) =0, (4.1)

where F' is a continuous mapping from R" into itself. To solve the nonlinear comple-
mentarity problem (4.1), various iterative algorithms, such as fixed point algorithms,
projection methods, nonlinear Jacobi method, successive over-relaxation methods and
Newton’s method, have been proposed [GaZ81, HaP90, PaC82|. Many of these meth-
ods are generalizations of classical methods for systems of nonlinear equations. Their
convergence results have also been studied extensively [HaP90, PaC82].

57
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Assuming the monotonicity of mapping F, Fukushima [Fuk92] has recently pro-
posed a differentiable optimization formulation for variational inequality problem (cf.
Section 3.2) and proposed a decent algorithm to solve variational inequality problem
[Fuk92]. Based on this optimization formulation, we have proposed in Chapter 3 a
modification of Newton’s method for solving the variational inequality problem, and
proved that, under the strong monotonicity assumption, the method is globally and
quadratically convergent.

In this chapter, we apply the methods of Fukushima [Fuk92] and Algorithm 3.1
proposed in Chapter 3 to the nonlinear complementarity problem. We show that those
methods can take full advantage of the special structure of problem (4.1), thereby
yielding new algorithms for solving strongly monotone complementarity problems. We
establish global convergence of the proposed methods. which are refinements of the
results obtained for the variational inequality counterparts in several respects. In this
chapter we show that the compactness assumption made in [Fuk92] can be removed
for the strongly monotone complementarity problem. Moreover, some computational
results shows that the proposed methods are practically efficient for solving mono-
tone complementarity problems, though the convergence of the proposed methods is

theoretically proved only under the strong monotonicity assumption.
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4.2 Equivalent optimization problem

In this section, we introduce a merit function for the nonlinear complementarity prob-
lem (4.1) and present some of its properties.
Choose positive parameters & > 0, ¢ = 1,....n and define function fe : R" — R

by

fo(@)=Y 2% {Fs(a')z — (max(0, Fi(x) - 6;::1-})2} : (4.2)

This function is a special case of the regularized gap function (3.2) originally introduced
by Fukushima [Fuk92] for variational inequality problem (see Definition 3.1). Although
some of its properties can be immediately derived from the results of [Fuk92|, we give
here simple and direct proofs for these properties, which utilize a special structure of
problem (4.1).

For convenience, we define

1

fe@) = 55

{Fi@)? - (max(0, Fi(a) - 6:2:))*}. (4.3)

hence fc is written as fc(z) = Zfé(;r}. We denote by D the diagonal matrix such
i=1
that

8 0
D= : (4.4)
0 Bl

We also denote

He(z) = max (0.:!' = D-’F(r}) | (4.5)
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where the max operator is taken component-wise, i.e.,
(He)i(z) = max (U..r,- - 6'-_1F,-{;r)) .
Using these notations, we have the following result.

Lemma 4.1 Let the mapping He : R* — R, be defined by (4.5). Then 2* solves (4.1)

if and only if 2* = He(2*).
Proof. Suppose that z* is a solution to (4.1). Then either
z; =0 z; >0
or
Fi(z") 2 0 Fj=z*)=0
holds for each 1 = 1,...,n. Since §; > 0, we have
2} = 0= (Ho)i(2*) = max(0,—8; 'Fi()) = 0,
and
Fi(z*) = 0 = (H¢)i(z®) = max(0,2]) = ;.

Thus (Hc)i(z*) = =] for all 1.
Conversely, suppose that z* satisfies 2* = Hg(2*). Then, for each i, either
z¥= z} =z} — 6 Fi(z*)
_ or
zt — 6 'Fi(z*) <0 z} — 6 Fi(z*) >0
holds. Hence, it follows from §; > 0 that either #] = 0 and Fi(z*) > 0, or ] > 0 and

Fi(z*) = 0 holds for each i. Thus z* solves (4.1). 0

Using the function (4.2), an equivalent optimization problem is obtained for the

complementarity problem (4.1).
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Proposition 4.1 Let the function fo : R" — R be defined by (4.2). Then fe(z) > 0
forallz > 0, and fc(2*) = 0 of and only if 2* solves (4.1). Hence, x solves (4.1) iof
and only if it i1s a solution to the following optimization problem and its optimal value

18 z€ro:
minimize fo(z) subject to x > 0. (4.6)

Proof. We first show that fi(z) > 0 for all z > 0, so that fo(z) > 0 for all z >
0. If Fij(z) — b;2; < 0, then f}';(x) = (26;) " 'Fi(z)?> > 0. So we consider the case

Fi(z) — 8;x; > 0. Since 6; > 0, z; > 0 and F;(x) > b;x; hold, we see from (4.3) that

; 1
fo(2) = 5= {F@)? - (File) - 8i)*}
= iFe) - Sal
6{ 2
2 53;‘
e

Therefore, fe:(2) > 0 holds for all > 0.

Next, suppose fo(z*) = 0. Then fi(z*) = 0 must hold for all 7. Hence, as shown
in the above, either F;(z*) = 0 and F;(z*) — §;z] <0, or ] = 0 and F;(z*) — é;z; >0
holds for each i. Therefore, * is a solution of (4.1).

Conversely, suppose that 2* solves (4.1). Then either F(z]) = 0 or ] = 0 holds

for all ¢. If F(z!) = 0, then from (4.3) we have

. 1
fe(z*) = "”2"5:(“13’((01_‘51'1;))2 = 0.
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Also if z7 = 0, then we have

fola) = 55 {Ra)? = (max(0, Fie*)))*}
1 2] - -
= 55 (R - Fita)?)
=]
Therefore, we have fo(z*) = 0. ]

Remark 4.1 When problem (4.1) has no solution, the optimization problem (4.6) may
have a minimizer which does not zero the function fe. For example, let us consider the
case of R! and F'(z) = —z — 1. Clearly, the complementarity problem has no solution.

However, given 6 > 0, the corresponding optimization problem (4.6) is formulated as

1
minimize E(z +1)? subject to z > 0.

The unique optimal solution to this problem is # = 0, at which the function value is
1

s
%

It can be shown that the function f is continuously differentiable whenever so is

the mapping F.

Proposition 4.2 If the mapping F 1s continuously differentiable, then so 1s the func-

tion feo defined by (4.2), and the gradient of fc s given by

V/e(z) = F(z) — (VF(z) — D)(Hc(z) — z). (4.7)
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Proof. We first note that, if a function ¢ : R — R is continuously differentiable and

®(z) = (max(0, o(z)))?, then ® is continuously differentiable and the gradient of ® is

given by
Vé(z) = 2max(0,¢(2))Ve(zx).
Hence, we have from (4.3) that
V() = 5 (Fi(e) ~ max(0, Fi(x) ~ ) VFi(a)
+ max(0, Fi(z) — é;x;)e;. (4.8)
Since

max(0, Fi(z) — b;zi) = Fi(x) — biz; + 6; max(0,z; — 6] ' F;(z))

Fi(z) — éizi + 6;(Hc)i(x)
holds, we have from (4.8) that

: 1
Viclz) = +(Fi(z) - max(0, Fi(z) — 8;2))VFi(z) + max(0, F;(z) — biz;)e;
= (zi — (H¢)i(z))VFi(z) + (Fi(z) — 8;zi + 6i(He )i(x))e;. (4.9)
Therefore, we have from (4.9) that

Vic(z) = 3 Vfi(e)
fis]

= Y {(2i = (Hc)i(2))VFi(z) + (Fi(z) - ;z; + 6;(He)i(z))ei}
=1

= F(z) - (VF(z) — D)(H¢(z) — z).
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This completes the proof. [}

Proposition 4.1 says that finding a global optimal solution to (4.6) amounts to
solving the complementarity problem (4.1). However, in general, optimization algo-
rithms may only find a stationary point of the problem. Thus it is desirable to clarify
conditions under which any stationary point of problem (4.6) actually solves problem

(4.1). The next proposition answers for this question.

Proposition 4.3 Suppose that VF(x) is positive definite for all z 2 0. If2> 0% 8

stationary point of problem (4.6), 1.e.,
(Vfc(a),y—2) >0 forall y>0, (4.10)

then z is a global optimal solution of problem (4.6), and hence it solves the nonlinear

complementarity problem (4.1).

Proof. Suppose that = satisfies (4.10). Then from (4.7) we have

(Vfc(z),He(z) — a)
= ((F(z) — Dz + DH¢(z)) — VF(z)(He(z) — z), He — )
= (F(z) - Dz + DHc(z), He(x) — x)
— (He(z) — 2,VF(z)(Hc(z) — 2)) . (4.11)

It is easy to see that

(F(z) = Dz + DH¢(z),He(z) — )
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{6i(max(0, 2 — 87 Fi()) — 2:)* + (max(0, 2; — & ' Fi(2)) - z:) Fi(x) }

1

< 0. (4.12)
Since z satisfies (4.10), it follows from (4.11) and (4.12) that
(He(z) — 2, VF(z)(Hc(z) —2)) < 0.

However, since VF(x) is positive definite, we have @ = M(z). Therefore, it follows

from Lemma 4.1 that z is a solution to (4.1). O

According to Definition 2.4, we call the mapping F a strongly monotone on R, if

there exists a positive constant g > 0 such that
(F(z) - F(y)yz—y) > plle—y|? forall 2,y>0. (4.13)

When F' is strongly monotone, we have the following result which establishes an asymp-
totic behavior of the function fo. Note that similar results have not been obtained for

the general variational inequality problem.
Proposition 4.4 If F' is strongly monotone with modulus p on R}, then

lim r) = 4+ oo.
o B fol#)

Proof. Let {*} be a sequence such that z*¥ > 0 and || z* || — oc. Taking a subsequence
if necessary, we may suppose that there exists a set I C {1,...,n} such that :r:-‘ — 400
for i € I and {z*} is bounded for i ¢ I. From {z*}, we define another sequence {y*}

such that y* = 0if i € I and y¥ = 2¥ if i € I. From (4.13) and the definition of y*, we

have
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S (Fi(z*) - Fi@@*)zf 2 n) (=252 (4.14)

el el

By Schwartz inequality we have

1

(Z(Fi(.r") - E{yk))z) 2 (Z(z!‘)z)s > Y (Fi(z*) — Fi(y"))=f. (4.15)

el icl il
It then follows from (4.14) and (4.15) that

ST(Fi(=*) — Fi(y")? 2 u® Y (=5)% (4.16)

icl icl
Since {y*} is bounded by definition, {F:(y*)} is also bounded. Therefore, since zF —
400 for all i € I, (4.16) implies
Y Fi(a*)* — oo.
el
- 1
As shown at the beginning of the proof of Proposition 4.1, fila®) = E{_Fi(z")z >0
1

if Fi(z*) — 6;z* <0, and fi(z*) > %i(xf )2 if Fi(z*) — ;=% > 0. Therefore we have

fe(z®y = Y fi(=®)
=1
> Y fel=*)
icl
P s k\2 (g ky2
> Zz—éimm (Ff(i' )%, (6izy) )
iel
Since xf — 400 for all i € I and Z Fi(2*)? — oo, it follows that fc(z*) — +00. O

iel
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4.3 Algorithms

In this section, we propose two globally convergent methods for solving the comple-
mentarity problem (4.1). One is based on the method of Fukushima [Fuk92] and the
other Algorithm 3.1 of Chapter 3, both of which were originally proposed for the vari-
ational inequality problem. Throughout this section, we suppose that the mapping F

is strongly monotone on R" with modulus g > 0 (see (4.13)).

4.3.1 Descent method
The first method uses the vector
d = He(z) -«
= max (0,z - D7'F(z)) -z (4.17)

as a search direction at z. When the mapping F is strongly monotone, it can be shown

that the vector d given by (4.17) is a descent direction.

Lemma 4.2 If F s strongly monotone with modulus p, then the vector d given by

(4.17) satisfies the devcent condition
(Vfc(z),d) < —p||d|.
Proof: Brom (4.11) and (412); we have
(Vfc(z),Hc(z) —z) < —(He(z) — 2, VF(z)(He(x) — 2)) . (4.18)

It follows from Proposition 2.6 that, when F is differentiable and strongly monotone

on R}, VF satisfies
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(y —z,VF(z)(y—=z)) > plly— =) forall 2,y > 0.
Therefore, from (4.18) we have

(Vfe(z),d) < —p||d]?. o

Thus the direction d can be used to determine the next iterate by using the following
Armijo-type line search rule: Let o := B!, where I is the smallest nonnegative integer

I such that
fel(z) = folz + 8'd) > o' ||d]?,

where 0 < 3 < 1 and & > 0. Note that, in the descent method originally proposed by
Fukushima [Fuk92] for the variational inequality problem, the line search only allows
step sizes shorter than unity. Here, we propose the algorithm that allows longer step

sizes at each iteration.
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Algorithm 4.1

Step 0 Choose z° >0, 8, > 1,0 < 3 < 1, 0 > 0, and a positive diagonal matrix D.

Let k := 0.

Step 1 Set d* := max(0,2* — D~'F(2*)) —2* and & := max{s|2*+sd* > 0, s > 0}.

Let [ := 0.

Step 2a If fo(z*) — fo(z* +d*) > o || d*||?, then set ay := ﬁi" where [, is the largest

nonnegative integer [ such that

Bt < @, folz*)— folz* +BLd*) > ap! | d* |2

and fc(z* + giF1d%) > fo(2* + Bld*).

Go to Step 3.

Step 2b Otherwise set aj := ﬁé“ where [} is the smallest nonnegative integer [ such

that
fo(*) = fe(=* + pyd*) > opy || d* .
Step 3 Set z**! := z* 4 apd*. Let k := k+ 1. Return to Step 1.

Note that the vector He(z**!) = max(0,z**! — D~1F(z**!)) has already been
found at the previous iteration as a by-product of evaluating fo. Therefore one need

not compute again the search direction d* at the beginning of each iteration.
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Theorem 4.1 Let F be the mapping from R™ into itself. Suppose that F is continu-
ously differentiable and strongly monotone with modulus p on R . Suppose also that
VF is Lipschitz continuous on any bounded subset of R",. Then, Algorithm 4.1 is
globally convergent if the positive constant o s chosen to be sufficiently small such that

o< K.

Proof. By Proposition 4.4, the level set B = {z| fe(z) < fc(z°)} is bounded. Hence
VF is Lipschitz continuous on B. Since F is continuously differentiable, it is easy
to show that F' is also Lipschitz continuous on B. Under these conditions, it is not
difficult to show that V fe is Lipschitz continuous on B, i.e., there exists a constant

L > 0 such that

| Vic(z) = Ve l|< L|z—yl foral z,y€S.

Therefore, as shown in the proof of [Fuk92, Theorem 4.2], any accumulation point
of {:L'"} satisfies z = He¢(x), and hence solves (4.1) by Lemma 4.1. Since strong
monotonicity of F' ensures that problem (4.1) has a unique solution, we can conclude

that the entire sequence converges to the unique solution of (4.1). O

Remark 4.2 In Fukushima [Fuk92], the global convergence theorem assumes not only
the strong monotonicity of mapping F but the compactness of the constraint set,
which is not the case for the nonlinear complementarity problem. Theorem 4.1 above

establishes global convergence under the strong monotonicity of F only.
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4.3.2 Modification of Newton’s method

The second method to solve the complementarity problem is a modification of Newton’s
method, which incorporates a line search strategy. The basic Newton method for
solving the nonlinear complementarity problem (4.1) generates a sequence {z:"} such
that 2z° > 0 and z**! is determined as z**! := %, where 7 is a solution to the following

linearized complementarity problem (see Section 2.3):

x>0, F(z*) + VF(z*)(z — z%) > 0
(4.19)
and <x, F(z*) + VF(z*)!(x - :zk)> =

It can be shown that, when F is monotone, the Newton direction d* := # — z* obtained

by solving the linearized complementarity problem (4.19) is a feasible descent direction

of fc.

Lemma 4.8 When the mapping F is strongly monotone with modulus i, the vector
d* := & —z* obtained by solving the linearized complementarity problem (4.19) satisfies

the inequality
1
(VIoh)dt) < = (u=7 1D1) N2

Therefore, d* is actually a feasible descent direction of fc at z*, if the matriz D is

chosen to satisfy || D ||= max(§;) < 4pu.
3

Proof. For simplicity of presentation, we omit the superscript k in z* and d*. Since

d:= T — z, it follows from (4.7) that

(Vic(z),d) = (F(z),z —z)+ ((VF(z) - D)(z — He(z)), & — 2)
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Il

<F(?ﬂ) + VF(2)'(z— ), — $> = <=f’ —z,VF(z)(z - ‘L'}> Hence, we have from (4.20) and (4.21) that

=+ <F(13) + VF(:F}t(:"J e 1‘,),:}: == HC(T)> (Vfc(l‘),d} c = <d,VF(I)td> 4 % (d,Dd) 4

—(F(z),z — Ho(z)) — (2 — 2, D(z - He())) However, since strong monotonicity of F implies {(d, VF(z)d) > p ||d|[* and since

= - (F(x) + VF(z)'(z2 - z),Ho(z) — :c) (d,Dd) <||D||||d||?, we have
; < : 1
+(F(z), Ho(z) —z) +(Z — =z, D(Hc(z) — x)) (Vfc(z),d) < — (# == ”D”) ”d||2 _
= HE — 4.2
(I Zs VEAEI (R m}>' S The last half of the proposition then follows immediately. O
Since Z is a solution to (4.19) and He(z) > 0, the first term of (4.20) is nonpositive. Using this result, we can construct a modified Newton method for solving the
From (4.12), we have nonlinear complementarity problem (4.1).

(F(z),Hc(z) —2) < — (He(z) —z,D(He(z) — 2)) -
Then it follows from the second term of (4.20) that
(F(x),He(z) — z) + (z — 2, D(He(z) — 7))
< (z-2,D(Hc(z) - 2)) — (He(z) — 2z, D(He(z) - 2))

= 36 {(@— =) ((Ho)(@) — 20) — (He)ila) — 2:))
1

(@~ 20) — (Ho)i(e) — 2:)* = (& — (Ho)il@)) }

If
{ia g
|

IA

™ 1
A

| &>

i
il

‘ {(fi =)= %(i‘i i -‘ﬂf)2}

.(fi — z;)?

Il
M=
= o>

) = U
Il
-

= —(z—2,D(Z—z)). (4.21)

1=
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Algorithm 4.2

Step 0 Choose z° >0,0<3<1,0<0< %, and a positive diagonal matrix D. Let

kie=0.
Step 1 Find the unique solution z* that satisfies
7k > 0, F(z*) + VF(z*)!(z* — z¥) > 0,
and (:—:k, (F(a*) + VF(z*)!(z* - rk))> = 0.
Let d* := ¢ — z*.

Step 2 Set aj := A% where I is the smallest nonnegative integer [ such that
fo(a¥) = fola* + B'd*) > —oB' (Vic(a*),d*).
Step 3 Set 2*+1 .= 2k 4 apd®. Let k := k+ 1. Return to Step 1.

When the mapping F is strongly monotone, we can establish the global convergence

of Algorithm 4.2.

Theorem 4.2 Let F be a mapping from R™ into itself and D be a positive definite
matriz defined by (4.4). Suppose that the mapping F 1s continuously differentiable
and strongly monotone with modulus p. If the matriz D s chosen such that || D || =

max(8;) < 4y, then, Algorithm 4.2 is globally convergent.

1

Proof. By Theorem 4.3 and the Armijo line search rule, the sequence {fe(@®)} is

nonincreasing. It then follows from Proposition 4.4 that the sequence {2*} is bounded,
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and hence it contains at least one accumulation point. As shown in the proof of
Theorem 3.2, any accumulation point of {z*} is a solution of (4.1). Since strong
monotonicity of F' ensures that problem (4.1) has a unique solution, we can conclude

that the entire sequence converges to the unique solution of (4.1). O

We can also show that the rate of convergence of Algorithm 4.2 is quadratic if
Fe C?, that is, all F;, i =1,...,n are twice continuously differentiable, and the strict

complementarity condition holds at the unique solution z* of (4.1).

Theorem 4.3 Let F be a mapping from R™ into itself. Suppose that the sequence {z*}
generated by Algorithm 4.2 converges to the solution x* to the nonlinear complemen-
tarity problem (4.1). Suppose also that the mapping F belongs to class C*, VF(z*) is
positive definite and V2F is Lipschitz continuous on some neighborhood of z*. If the
strict complementarity condition holds at z*, 1.e., 27 = 0 implies Fi(z*) > 0 for all
i=1,...,n, then there exists an integer k such that the unit step size is accepted for

all k > k. Therefore, the sequence {x*} converges quadratically to the solution z*.

Before proving Theorem 4.3, we show the following lemma.

Lemma 4.4 Let «* be a solution to problem (4.1). If F € C? and the strict com-
plementarity condition holds at =*, then fé. s twice continuously differentiable on a

neighborhood of #*, and the gradient and the Hessian of fi are given by

(2;VFi(z) + Fi(x)e;) — b;ze; if 1€ I (4.22a)

Vfé =
e { 5 Fi(e)VEi(2) if i€ I* (4.22b)
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and
Sl 2;V2Fi(z) + 2V F;(x)e! — b;e;e! if 1€l (4.23a)
Vifelz) = 145 2 , e e
5 (Fi(z)VeFi(z) + VF;(z)VFi(z)!) if iel®, (4.23b)

respectively, where I* = {i|z} =0} and = {i|z? >0}.

Proof. We have from the strict complementarity and é; > 0 that

Fi(z*) — bzt >0 if il
Fi(z*) — 6z <0 if i€l

Hence the continuity of F ensure that there is a neighborhood X* of z* such that

F;(z) — éix; >0 if 1el”
¥ (4.24)
Fi(z) = 6ixi <0 if ielrl*
holds for all z € X*. Hence, we have from (4.3)
. ziFi(z) — %2} if iel” (4.25a)
olp g T
z—ﬁF.-(:r) if 1e1I*. (4.25b)

Therefore, by differentiating (4.25a) and (4.25b) directly, we have (4.22a), (4.22b) and

(4.23a), (4.23b). .
Proof of Theorem 4.3 It is sufficient to show that
fola*) - fo(a*) > —o (Vic(ak), % - =)

holds for a sufficiently large k. For simplicity, we consider the case of §; = -+ = b =
§ > 0, i.e., the diagonal matrix D is the identity matrix multiplied by 8 > 0. It is not
difficult to extend the result to the general case. Without loss of generality, we assume

I'={j,j+1,...,n}, where1 < j<n, and denote
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xpe Fr«(x Vi Fpe « Fr.
Iz( ) F(z)=( G i A B
eSO “r.(.‘r) V;.F]-(I) VI'FI'(JT)
Since the strict complementarity holds at z*, there is an integer K, such that z*

satisfies

Fi(z*) -6z >0 ifier (4.26a)
Fi(z*) — 62k <0 ifiel” (4.26b)

for all k > K;. Under the given assumptions, Newton’s method (4.19) is locally
quadratically convergent to the solution z* [PaC82]. Hence, it follows from the strict

complementarity and the continuity of F' and VF, that there is an integer K5 such

that
=0 and Fi(a*)+ (VF(c*),z* —2*) >0 if il (4.27a)
>0 and Fi(a*)+ (VF}(::").:E"‘ % x’f) =0 if iel* (4.27b)
for all £ > Ks.

Now suppose k > max(K,, K3). For simplicity of presentation, we omit superscript

k in z* and #*. For each i € I*, we have
félz) = f6(2) + 0 (V fi(2),2 — z)

(;;F.'(:r.] - gx,z) = (i”.'Fi(f} = gff)

I

+o (z:.-VF,-(a:} &l Fg(z:)e,- — bxie;, T — 2.')

6 o
= aii(z) - 52i+o (z: (VFi(x), % — 2) — 2:Fi(z) + 827)

v

]
z; Fi(x) — -2-:&12 +o (—2:c,>F,-(:r) + 6::?)

= (1-20) (a:,—F;(::) = %z?)
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> (-1- —a) é.r?
= 2

(% = cr) 5(2; — 2:)?, (4.28)

Il

where the first equality follows from (4.22a) and (4.25a), the second equality and the
first inequality follow from (4.27a), the second inequality follows from (4.26a) and the
last equality follows from (4.27a).

On the other hand, since
' : : " N i AN
15(8) - fol@) = (Vfb(@),2 — 2} + 5 (5 -2, VL)@ - 2))
hold for some £ in line segment of  and & by the mean value theorem, we have

fie) — fo(@) + o (Vfi(a), 5 ~ =)

= (6-1) (vﬁ;(a,-),::s = :n) - -12—<:? —z, V2 fE(6)(z - w))
= (0= 1)(Veila) 2 —2) ~ 3 (2- 2, Vi) (@ - 2))
1 (22 (VA0 - V1EO) (B =), (429

Then for each 1 € I*, we have

(o0 —1) <Vfé.{:r),.i: —z) - % (z -2,V fb ()@~ 1:)>

- 2 L Fi(2) (VEi(z), & — =)

-21_6 <:E —z, (Fi{lf)szi(:c) - VFI'(W)VF;'{:B)!) tr= :c)>

(5-0) (VFG@) @ =20 - G5Re) (-2, VPREE-2), (450

O =
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where the first equality follows from (4.22b) and (4.23b), and the second equality

follows from (4.27b). Hence, we have from (4.28) and (4.30) that

fé(2) - fe@) + o (Ve(2),3 - 2)

z — e, (V2 fele) - V2fE6)) (2~ 2))

5 Fi(z)

— o) (VE("), 2~ 2))? ~ o)

=
: i —z,ViF(z)(2

= (2 - 2,V?F(=)(z - =)

(2 -2, (Vi) — V2fE(0)) (2 — o))

(— - o) {(VF;(:B),E —2)% — (VF,(z*),% — :.:)2}.

When V2F is Lipschitz continuous and is bounded on some neighborhood of ¢*, it is
not difficult to show that szé. and VF; are also Lipschitz continuous. Moreover, for

i € I* we have Fj(z) — 0 if # — 2*. Hence,

fe(@) - (@) + o (Ve (a),2 —x)
1/1 - » 5 4
> $(3-0) (VRG).z- ) +0(lz - "] + |z -2l =< [® (43)
holds on some neighborhood of z*.

Therefore, it follows from (4.28) and (4.31) that

fe(z) = fe(@)+ 0 (Vic(x), 2 —z)

2 8(3-2) D@-al+z(3-9) S (VE(s),2- )Y
1< s

icl*

+O(le =" | + 112~ z|) |2~ =|
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O |
= 3(3-0) @-aJ@-aN+0oUe—a"l +lz-2l) lz-=l?, (@32)

where J is a matrix such that

pg 52E; 0 [0 VrFRE) 0 0
0 0 0 V.Fp.(z%) Vi Fr(a*)t V. Fr.(z*)

t
b S8E; Vi-Fp.(x*) SE; VpeFp.(z*)
0 V;. 1[.(;1?‘) 0 Vf. FI.(-T?‘]
Clearly J is positive semi-definite. Moreover, since VF(z*) is positive definite by

assumption, the matrix V. Fy. (%) is also positive definite. Hence, matrix
8B Vi Fr.(a*)

0 V5@Fp(z*)
Therefore, (4.32) is strictly positive provided that x is sufficiently close to x*. O

is nonsingular, and hence J is positive definite.

Remark 4.3 In Chapter 3, we have obtained a globally convergent Newton method,
Algorithm 3.1, for the variational inequality problem. In Algorithm 3.1, to obtain

quadratic convergence, the following line search procedure was used:
Step2 Let0< < 1,0<y<1ande€ (0,1).
If fo(zk + d*) < ~fc(a*), then set ax := 1 and go to Step 3.

Otherwise set aj := (' where I} is the smallest nonnegative integer [ such that
fe(@*) = fola* + 8'd*) > —ap! (Ve (a*),d*).

Note that this line search procedure, which is similar to the one used by Marcotte and
Dussault [MaD89], first checks if the unit step size is acceptable. On the other hand,

Algorithm 4.2 employs the Armijo rule in a more direct manner.
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4.4 Computational results I

In the following two sections, we report some numerical results for Algorithms 4.1 and
4.2 discussed in the previous sections. In this section, we present the results for a
strongly monotone problem. All computer programs were coded in FORTRAN and
the runs in this section were made in double precision on a personal computer called
Fujitsu FMR-70.

Throughout the computational experiments, the parameters used in the algorithms
were set to ) = 2, B = 0.5, v = 0.5 and o = 0.0001. The positive diagonal matrix
D was chosen to be the identity matrix multiplied by a positive parameter § > 0.

Therefore the merit function (4.2) can be written simply as
I .
fo(@) = 55 3 {Fi(@)* — (max(0, Fi(x) - 62:))°} . (4.33)
i=1
The search direction of Algorithm 4.1 can also be written as
k b Lo k

d* :=max (0,2 —EF(;r )] = z".
The convergence criterion was

| min(z;, Fi(z))| < 107° for all i = Tt

For comparison purposes, we also tested two popular methods for solving the non-
linear complementarity problem, the projection method [Daf80] and the basic Newton
method (cf. Section 2.3). The projection method generates a sequence {z*} such that

2% > 0 and z**! is determined from z* by
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o**1 .= max ((.},:.r:jr - %F(:rk)) : (4.34)

for all k. Note that this method may be considered a fixed step-size variant of Algo-
rithm 4.1. When the mapping F is strongly monotone and Lipschitz continuous with
constants g and L, respectively, this method is globally convergent if & is chosen large
enough to satisfy & > L?/2u (see [PaC82, Corollary 2.11.)).

The mappings tested in this section are of the form
F(z) = Baz + p(V = VY2 + ¥(z) +4q, (4.35)

where E, is the nxn identity matrix, V is an nxn matrix such that each row contains
only one nonzero element, and ¥(z) is a nonlinear monotone mapping with components
V;(z;) = piz}, where p; are positive constants. Elements of matrix V' and vector ¢
as well as coefficients p; are randomly generated from uniform distributions such that
—5<V;;<5,-256<¢; <25 and 0.001 < p; < 0.006. The results are shown in Tables
4.1 ~ 4.4. All initial iterates were chosen to be (0,0,...,0). In the tables, #fc is the
total number of evaluating the merit function fo. All CPU times are in seconds and
exclude input/output times. The parameter p in (4.35) is used to change the degree
of asymmetry of F; namely F' deviates from symmetry as p becomes large. Since the
matrix E, 4+ p(V — V') is positive definite for any p and ¥;(z;) are monotonically

increasing for ; > 0, the mapping F defined by (4.35) is strongly monotone on R'.
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4.4.1 Comparison of Algorithm 4.1 and the projection method

First we compare Algorithms 4.1 and the projection method (4.34) by using a 10-

dimensional example, in which mapping F' is given by

(

19" 06 0 09 5o 0\ 2y )
01 -10 0 00 00 o 2
DY 1062 0% 00 @ z3
66 012 =50 00 0 24
Pla) = 00" 22 1 G0 o0 B x5
006 05 0 10 -50 0 @
00 -30 0 01 00 0 7
=50 00 0 506 10 3 zg
00 a0 O 00 01 —4 zg
\ 60 00 0 DO -84 1)\e0)
[ 0.004z% ) 2\
0.004z4 10
0.003z% 2
0.003z3 9
A 0.006z3 " -15
0.006z3 12
0.004z3 —9
0.004z% 5
0.00423 7
\ 0.002z%, /] \ -17 |

The results for this problem are shown in Table 4.1.

In general, the projection method is guaranteed to converge only if the parameter 8

is chosen sufficiently large. In fact, Table 4.1 shows that when 6 is large, the projection
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Table 4.1: Comparison of Algorithm 4.1 and the projection method (n =10, p=1)

Algorithm 4.1
#lterations #f- CPU

projection method*

#lterations CPU

0.1
0.5

[ SR | I SN S R ]

6.2
6.3
6.5

1000

1380 9683 18.45
307 1527  3.04
328 1305  2.63
338 1009 2.13
353 951  2.04
342 685 1.55
256 511 1.16
a5l 701. 1.72
337 674  1.66
37T 754 1.91
376 752 1.93
385 770 2.07
337 676 1.98
270 542 1.59
242 487 1.41
232 468 1.36
239 488 141
254 636 1.72
229 920 217
229 1149 2.63
239 1385 3.0
239 1674  3.59
372 2605  5.55

9118 13.94
1594 243
610  0.93
338  0.51
271 043
244 0.36
229 0.34
239 0.35
272 041
549  0.79
1036 1.47
2008  2.88
5007  7.08
9998 14.18

*The projection method failed to converge for the value of & up to 6.2.
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method is always convergent, but as § becomes small, the behavior of the method found
to be unstable and eventually it fails to converge.

Table 4.1 also shows that Algorithm 4.1 is always convergent even if & is chosen
small, since the line search determines an adequate step size at each iteration. In
Algorithm 4.1, the number of iterations is almost constant. This is because we may
choose a larger step size when the magnitude of vector d* is small, i.e. & is large.

Algorithm 4.1 spends more CPU times per iteration than the projection method,
because the former algorithm requires overheads of evaluating the merit function fe.
But, when & becomes large, Algorithm 4.1 tends to spend less CPU time than the

projection method, because the number of iterations of Algorithm 4.1 increases mildly.
4.4.2 Comparison of Algorithm 4.2 and Newton’s method

Next we compare Algorithm 4.2 and the basic Newton method. For each of the problem
sizes n = 30,50 and 90, we randomly generated five test problems. The parameters p
and & were set to p = 1 and § = 1. The initial iterate was chosen to be z = 0. In solving
the linearized subproblem at each iteration of Algorithm 4.2 and Newton’s method, we
used Lemke’s complementarity pivoting method [Lem65] coded by Fukushima [TbF91].
All parameters and initial iterates were set to the default values used in [IbF91]. The
results are given in Table 4.2. All numbers shown in Table 4.2 are the averages of the
results for five test problems, each case and #Lemke is the total number of pivotings

in Lemke’s method.

Table 4.2 shows that the number of iterations of Newton’s method is consistently
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larger than that of Algorithm 4.2 as far as the test problems used in the experiments
are concerned. Therefore, since it is time consuming to solve a linear subproblem
at each iteration, Algorithm 4.2 required less CPU time than Newton's method in
spite of the overheads in line search. Finally we note that Newton’s method (4.19) is
not guaranteed to be globally convergent, although it actually converged for all test

problems reported in Table 4.2.

Table 4.2: Comparison of Algorithm 4.2 and Newton’s method (p = 1)

Algorithm 4.2 Newton’s method
n | #lterations #fc F#Lemke CPU | #lIterations #Lemke CpPU
30 5.6 7.6 80.6 4.294 8 115.2 5.840
50 5.6 7.6 156.0  19.880 8 216.4  26.142
90 6.0 8.0 275.2 105.400 8 358.8 135.690
4.4.3 Comparison of Algorithms 4.1 and 4.2

Finally we compare Algorithms 4.1 and 4.2. Test problems are the same as ones
in the previous section. To see how these algorithms behave for different degrees of
asymmetry of the mapping F', we have tested several values of p between 0.1 and 2.0.
The initial iterates was always chosen to be = 0. The results are given in Table 4.3.
All numbers shown in Table 4.3 are the averages of the results for five test problems.

Table 4.3 shows that when the mapping F is close to symmetry, Algorithm 4.1
converges very quickly, and when the mapping becomes asymmetric, the number of

iterations and CPU time of Algorithm 4.1 increase rapidly. On the other hand, in
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Table 4.3: Comparison of Algorithms 4.1 and 4.2
Algorithm 4.1 Algorithm 4.2

g | w | #ite* #fc CPU | #lte* #fc #Lemke CPU LEMKE
30 31.6 96.0 0.672 6.0 8.4 87.4 4.956 4.094

0.1 | 50 28.4 84.6 0.966 6.0 &2 148.0  19.050 17.989
90 38.2 114.0 2.322 6.2 8.2 259.0  99.156 96.721

30 40.0 119.6 0.838 6.2 8.2 92.6 4.872 4.340

0.2 | 50 37.6 110.0 1.264 6.4 8.8 162.6  20.888 19.633
90 40.4 120.4 2.448 6.6 8.6 277.2 106.672  103.201

30 33.8 99.2 0.690 fi.4 8.4 90.8 4.812 4.258

0.3 | 50 39.2 112.2 1.292 6.2 8.6 157.8  20.270 19.055
90 41.4 119.6 2.408 6.6 8.6 275.2 105.890 102.253

30 45.8 127.0 0.892 6.0 8.2 88.2 4.662 4.128

0.5 | 50 58.6 161.8 1.848 6.0 8.0 157.8  20.242 19.134
90 | 110.8 273.8 5.780 6.6 8.6 281.4 108.260 105.073

30 | 152.8 322.0 2.436 5.8 7.8 84.4 4.474 3.956

0.8 |50 | 290.4 586.4 7.450 6.0 8.0 160.4  20.476 19.368
90 | 780.2 1557.4  33.960 6.0 8.0 269.4 103.266  100.296

30 | 394.2 792.4 5.270 5.6 7.6 80.6 4.294 3.784

1.0 | 50 | 519.6 1077.6  11.068 5.6 7.6 156.0  19.880 18.833
90 | 866.0 2129.6 35.880 6.0 8.0 275.2 105.400 102.107

30 | 1197.0 3793.2  21.518 5.4 74 80.0 4.266 3.752

1.5 | 50 | 1604.0  4927.4  45.280 5.2 7.2 145.8  18.648 17.607
90 | 2928.0 9777.8 158.162 6.0 8.0 275.6 105.492 102.606

30 | 3195.2 12694.8  69.636 5.2 T2 79.0 4.168 3.712

2.0 | 50 | 3842.6 15929.0 141.944 5.2 7.2 145.2  18.494 17.336
90 | 4957.6 20905.0 332.510 5.8 7.8 279.0 106.514 103.618

*#1te. denotes the total number of iterations.




88 CHAPTER 4

Algorithm 4.2, while the total number of pivotings of Lemke’s method increases in
proportion to problem size n, the number of iterations stays constant even when the
problem size and the degree of asymmetry of F are varied. Hence. when the degree
of asymmetry of F is relatively small, that is, when p is smaller than 1.0 in our test
problems, Algorithm 4.1 requires less CPU time than Algorithm 4.2.

Note that, since the mapping F used in our computational experience is sparse,
complexity of each iteration in Algorithm 4.1 is small. On the other hand, the code
[IbF91] of Lemke’'s method used in Algorithm 4.2 to solve a linear subproblem does
not make use of sparsity. Moreover, since the code of Lemke’s method is restrictive
in the choice of initial iterates, we must restart from a priori fixed initial iterate at
each iteration even when the iterate becomes close to a solution. Therefore, it may
require a significant amount of CPU time at each iteration for large problems. (In
Table 4.3, LEMKE is the total CPU time to solve subproblems by Lemke’s method.)
If a method that can make use of sparsity and can start from arbitrary point is avail-
able to solve a linear subproblem, CPU time of Algorithm 4.2 may decrease. The
projected Gauss-Seidel method [CPS92, page 397] for solving the linear complemen-
tarity problem is one of such methods. In Table 4.4, results of Algorithm 4.2 using
the projected Gauss-Seidel method in place of Lemke’s method are given. Table 4.4
shows that, if the mapping F' is almost symmetric, Algorithm 4.2 converges very fast.
We note that the projected Gauss-Seidel method is not guaranteed to be convergent
when a problem is not symmetric. Algorithm 4.2 fails to converge when the degree of

asymmetry increased, because the projected Gauss-Seidel method failed to solve linear
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Table 4.4: Results for Algorithm 4.2 (Gauss-Seidel version)

Algorithm 4.2

P n | #lterations #fo #Gauss CPU
30 6.0 8.4 39.2 0.274

0.1 50 6.0 9.2 39.6 0.466
90 6.2 8.2 48.0 0.916
30 3 of 5 failed

0.2 50 3 of 5 failed
90 failed
30

0.3 ~2.0 50 failed

90

subproblems.
Figure 4.1 illustrates how Algorithms 4.1 and 4.2 converged for two typical test

problems with n = 30 and 50. In the figure, the vertical axis represents the accuracy

of a generated iterate to the solution, which is evaluated by
ACC = max {| min(z;, F;(2))| | i = 1,...,n}.

Figure 4.1 indicates that Algorithm 4.2 is quadratically convergent when the iterates
come near the solution. Figure 4.1 also indicates that Algorithm 4.1 is linearly con-

vergent though it has not been proved theoretically.
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Figure 4.1: Behavior of Algorithms 4.1 and 4.2
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4.5 Computational results II

In this section, we present the results of applying Algorithms 4.1 and 4.2 to some
examples which arise from an optimization problem, a spatial price equilibrium prob-
lem, a noncooperative game and a traffic assignment problem. The algorithms were
implemented in FORTRAN and run on a SUN-4 workstation. The parameters in the
algorithms were set in the same manner as in Section 4.4. The positive diagonal matrix
D was also chosen to be the identity matrix multiplied by § > 0, and hence the merit

function (4.33) was used. The convergence criterion was
| min(z;, Fi(z))| < CC foralli=1,...,n,

where CC is a parameter used to change accuracy of algorithms. In solving the lin-
earized subproblem of Algorithm 4.2, we used Lemke’s complementarity pivoting al-
gorithm coded by Fukushima [IbF91]. The results are shown in Tables 4.5 ~ 4.11.
Some mappings F used in the experiments were only monotone but not strongly
monotone. Others were not even monotone, though they could be considered almost
monotone. Thus all the problems do not satisfy the convergence conditions of our al-
gorithms. However, for most of the tested case, both Algorithms 4.1 and 4.2 converged

and produced satisfactory solutions.
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Example 4.1 This is the following 4-variable complementarity problem from Josephy
[Jos79a], whose mapping is given by

31‘% + 2x120 + 21‘% + 23+ 324 — 6

Flz) = 2¢% + &y + a3 + 3wz + 224 — 2
3$? + z122 + ‘22‘% + 225 + 34 — 1
x? + 323 + 223+ 324 — 3

The results are shown in Table 4.5. Since the mapping is co-positive but not monotone,
Algorithm 4.2 failed when the initial iterates (0,...,0) and (10,...,10) were chosen,
because the linearized subproblem at (0, ...,0) has no solution and the search direction

at (10,...,10) is not a descent direction. On the other hand, Algorithm 4.1 converged

for all of those initial iterates.

Table 4.5: Results for Example 4.1

Algorithm 4.1 Algorithm 4.2
CC | Initial Tterate | #Iterations #fc CPU | #lterations #fc #Lemke CPU
192 () 20 62  0.00 failed
1 B 1) 21 63  0.00 4 5 8 0.00
(5,...,5) 21 63  0.00 5 6 10 0.00
(10,....10) 21 63 0.00 failed

Example 4.2 This is a 10-variable complementarity problem arising from the Nash-
Cournot production problem appeared in Harker [Har88]. In this example, for any
z > 0, the Jacobian VF(z) of the mapping is a P-matrix, ie., for any = # 0, there
exists an index i € {1,...,n} such that 2;(VF(z)z); > 0, but the mapping F is not

monotone. Table 4.6 shows that both Algorithms 4.1 and 4.2 converged to the solution
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quickly.
Table 4.6: Results for Example 4.2
Algorithm 4.1 Algorithm 4.2
CC | Initial Iterate | #Iterations +#fc CPU | #lterations #fr #Lemke CPU
103 (1500 44 88  0.08 8 10 89 0.08
(10, 10) 43 86  0.08 6 T 60  0.05

Example 4.3 This example is the following convex programming problem:

minimize (1 — 10)* + 5(2g — 12)? + 24 + 3(x4 — 11)% + 1022

+T:t:§ + Qw? — dagr7 — 102g — By

subject to 2:1:‘1'a + 3.?:% + 3+ 4:.:3 + 5zs < 100
Tz1 + 3z + 1022 + 24 — 25 < 200
20z, + x5 + 623 — 87 < 150

4m¥+m%—3rlm2+2zg+515— Ilzz <0
131’20;3'213---s7:

which is formulated as an 11-variable complementarity problem. Since the objective
function is convex, the mapping is monotone, but not strongly monotone on R".. Table
4.7 shows that Algorithms 4.1 and 4.2 converged for both initial iterates (0,...,0) and

(10,...,10).

Example 4.4 This example is a 15-variable traffic assignment problem from Bertsekas
and Gafni [BeG82]. This problem consists of a traffic network with 25 nodes, 40 arcs,
5 O/D pairs and 10 paths. The mapping is monotone but not strongly monotone. The
results are shown in Table 4.8. In this example, Algorithm 4.1 failed to find a descent

direction because the mapping is not strongly monotone. But Algorithm 4.2 converged
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in 4 iterations for both initial iterates.

Table 4.7: Results for Example 4.3

CHAPTER 4

Algorithm 4.1 Algorithm 4.2
CC | Initial Iterate | #Iterations #fc CPU | #lterations #fo #Lemke CPU
103 (0,...,0) 263 840 0.13 5 10 30  0.03
(10,....10) 1213 4504  0.64 9 10 75  0.08
10°% (0,...,0) 375 1119 0.19 6 11 36 0.04
(10, i3as 10) 1308 4752 0.67 10 11 81 0.08

Table 4.8: Results for Example 4.4

Algorithm 4.1 Algorithm 4.2
CC | Initial Iterate | #Iterations #fc CPU | #lterations #fc #Lemke CPU
1073 (0,...,0) 17181 failed 4 5 62  0.09
(Mgesadl) 16608 failed 4 5 64 0.10
10°° (0,...,0) 17181 failed 1 5 62  0.09
(3,:.-=1) 16608 failed 4 5 64 0.10
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Example 4.5 This example is the following convex programming problem:

minimize

subject to

.7:1“’ + x% + 2120 — 142 — 1629 + (23 — 10)?
+4(24 — 5)* + (25 — 3)? + 2(x6 — 1) + 522
+7(xg — 11)2 + 2(2g — 10)2 + (210 — 7)% + 45

4x) + 59 — 327 + Y25
102y — 85 — 1727 + 228
-8z + 2x9 + Szg — 2219

3(zy —2)% + 4(z2 — 3)% + 222 — Ty

52% + 8z + (z3 — 6)2 — 224

(21— 8)2+ 2(xy — 4)% + 322 — x4

23 + 2(x2 — 2)% — 22129 + 1425 — 626

—3x; + 6z2 + 12(zg — 8)% — 210

z; >0,i=1,...,10,

< 105
0

which is formulated as an 18-variable complementarity problem. The results are shown

in Table 4.9. The mapping is monotone but not strongly monotone. Algorithm 4.1

converged slowly and eventually failed to find a descent direction as the iterate be-

come very close to a solution. On the other hand, Algorithm 4.2 converged in several

iterations for both initial iterates.

Table 4.9: Results for Example 4.5

Algorithm 4.1

Algorithm 4.2

CC | Initial Iterate | #lterations #fc  CPU | #lterations #fc #Lemke CPU
1073 (0,...,0) 31616 414381 71.98 4 5 68 0.14
(10,....10) 31238 411704 72,43 6 7 97 0.19
10=9 (0,...,0) 72050 failed 5 6 84 0.17
(10,....10) 75257 failed 6 7 97 0.19
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Example 4.6 This example is a traffic assignment problem. This is a 40-variable
complementarity problem which is Example 6.2 in Aashtiani [Aas79]. The results are
shown in Table 4.10. The mapping is monotone but not strongly monotone. For this
example, Algorithm 4.1 converged slowly and could not attain the strict convergence
criterion CC = 107°, On the other hand, Algorithm 4.2 failed because the linear

subproblem became unsolvable after 2 or 3 iterations.

Table 4.10: Results for Example 4.6
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Example 4.7 This example is a spatial price equilibrium problem from Tobin [Tob88]
which is formulated as a 42-variable complementarity problem. The mapping is not
monotone but is close to be monotone. The results are shown in Table 4.11.

In this example, Algorithms 4.1 and 4.2 converged for all initial iterates chosen in
our experiment. Note that the mapping of Example 4.7 is similar to the form (4.35)
used in the experiments of Section 4.5, and hence, the mapping is sparse. For the

example, Algorithm 4.1 converged mush faster than Algorithm 4.2.

Table 4.11: Results for Example 4.7

Algorithm 4.1 Algorithm 4.2
CC | Initial Tterate | #Iterations #fc CPU | #lterations #fc #Lemke CPU
1073 (05 0) 2907 24925 13.25 2 failed
(10,....10) 2981 25797 13.74 3 failed
105 [0 e O 4218 failed 2 failed
(1054 10) 4166 failed 3 failed

Algorithm 4.1 Algorithm 4.2

CC | Initial Iterate | #lterations #fe CPU | #lterations #fc #Lemke CPU
15 (6, ; Q) 63 148 0.09 6 11 130 1.34
[iiacs ) 66 155  0.09 7 10 131 137

(19}...~19) 63 149 0.10 7 8 157 1.60

10~ (O 0 84 199 0.12 7 12 148 1.53
(Lssms:1) 89 209 0.12 7 10 131 1:37
(10,....10) 83 197 0.12 7 8 157  1.60
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4.6 Concluding remarks

When the mapping is strongly monotone with modulus g, the solution z* to (4.1)

satisfies the inequality
- l nl
=" < = | F(0)]| .
I

Hence, we may reformulate problem (4.1) as a variational inequality problem with

bounded constraint by adding an extra constraint
| z|le< UB,

where UB is a sufficiently large positive number. Then we may apply the methods of
Fukushima [Fuk92] or Algorithm 3.1 directly. In this case, however, the subproblem
becomes a linear variational inequality problem with a bound constraint, which is in
general more difficult to solve than a linear complementarity problem of the proposed
algorithms.

Since the modulus p is generally a priori unknown, the matrix D may not satisfy
| D || < 4y, implies that Algorithm 4.2 may fail because the search direction is not
guaranteed to be a descent direction. When we do not know the exact value of u
for the strongly monotone mapping F, we may start Algorithm 4.2 with an arbitrary
positive diagonal matrix D, and, if it fails, continue by halving D until convergence is
obtained. Eventually we will have || D || < 4u and hence Algorithm 4.2 converges by

Theorem 4.2.

Chapter 5

A New Merit Function and A
Successive Quadratic
Programming Algorithm for
Variational Inequality Problems

5.1 Introduction

In this chapter, we return to the variational inequality problem of finding a vector

x* € S such that
(F(x*),2 —x*) >0 forall € S, {5.1)

where S is a nonempty closed convex subset of R” and F is a continuous mapping
from R" into R".

Recently, various merit functions for variational inequality problems have been pro-
posed and their properties have been studied (see Section 1.2). Among them, the gap
function g defined by (1.2) first introduced by Auslender [Aus76], has the property

that its minima on S coincide with the solutions to the variational inequality problem.

99
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Hence problem (5.1) can be reformulated as the optimization problem (1.3). Based on
the gap function, Marcotte [Mar85] proposed a descent algorithm for monotone varia-
tional inequality problems, and Marcotte and Dussault [MaD87| presented a globally
convergent modification of Newton’s method.

Using the regularized gap function fs defined by (1.5), Fukushima [Fuk92] has
proposed another optimization formulation of the variational inequality problem. The
function fs is shown to be differentiable whenever so is F, while the gap function
g defined by (1.2) is generally nondifferentiable. Fukushima [Fuk92] has proposed a
descent method for solving the variational inequality problem using regularized gap
function fg. The function fg has also been used in a globally convergent modification
of Newton’s method in Chapter 3. Independently, Auchmuty [Auc89] has proposed
a class of merit functions which includes the gap function g and the regularized gap
function fs. Larsson and Patriksson [LaP94] have developed and generalized Auch-
muty’s class of merit functions. Wu, Florian and Marcotte [WFM93] have proposed
a general descent framework for the variational inequality problem by using a class
of gap functions. Unfortunately, however, all of these merit functions are not easy to
evaluate unless the constraints of the problem have a relatively simple structure.

In this chapter, we propose a new merit function, which is defined by (1.5) with
the set S replaced by its polyhedral outer approximation. The proposed function has
the advantage over the function fg that, even when S is a general convex set specified
by nonlinear convex inequalities, we can estimate the value of the function by solving

a linearly constrained quadratic programming problem. We show that the proposed
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merit function has a property that its minimum on S coincides with a solution to
(5.1). So the proposed function leads to another equivalent optimization problem of the
variational inequality problem. We also show that the proposed function is directionally
differentiable in all directions and, under suitable assumptions, any stationary point of
the equivalent optimization problem actually solves the original variational inequality
problem. We propose a descent method for solving the variational inequality problem
and establish its convergence. We note that the method is closely related to a successive

quadratic programming method for solving nonlinear programming problems.
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5.2 A new merit function

In this section, we introduce a new merit function for the variational inequality prob-
lem (5.1) which is a relaxed version of the regularized gap function introduced by
Fukushima [Fuk92]. In the remainder of this chapter, we suppose that the set S of

(5.1) is defined by a system of inequalities of the form
S={ze R"|c(z) <0, i=1,...,m}, (5.2)

where ¢; : R" — R are continuously differentiable convex functions, and Slater’s

constraint qualification holds; i.e., there exists an £ € R" such that
ci(t) <0 forall i=1,...,m. (5.3)

Under these assumptions, it follows from Proposition 2.1 that z* is a solution to (5.1)
if and only if there exist Lagrange multipliers A7, 7 = 1,...,m, for which the following

conditions hold:

F(z")+ ) AiVe(a*) =0,
i=1 (5.4)

ci(z®) €0, AT > 0, Afci(z")=0,1=1,...,m.

For each » € R", we define the set T'(z) as
T(z) = {y € R" | ¢(z) + (Veci(z),y =) <0, i =1,...,m}. (5.5)

Note that, for all # € R™, the set T'(x) is a polyhedral convex set which always contains
3,

Using T'(x), we define a function fr by
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fr(@) = max { ~(F(a),y~2) ~ 3 (4~ 2,Gly - o) | veT@)1}, (5.6)

where (7 is an n x n symmetric positive definite matrix. Note that the positive defi-
niteness of (& and the convexity of 7'(2) guarantee that the maximum in (5.6) is always

unique, Thus we can rewrite (5.6) as
1
Jr(z) = —(F(z), Hp(z) — a) — 5 (Hr(z) — 2,G(Hp(z) — 1)), (5.7)
where Hyp(z) is the unique solution y to the quadratic programming problem

QP(z) : minimize, %(y—.r_.G(y—.r)) +(F(x),y — z)
(5.8)
subject to y€ T(x).

Note that it follows from Proposition 2.3 and 2.4 that Hy(x) is the unique solution to

the following variational inequality problem
(F(x) + G(Hr(x) —2),y — Hr(x)) > 0 for all y€ T(x). (5.9)

The next Lemma characterizes a solution of problem (5.1) as a fixed point of the

mapping Hyp.
Lemma 5.1 The vector  is a solution to (5.1) if and only if Hy(x) = .

Proof. Let z* solve (5.1). It is known [BaS76, page 143] that if Slater’s constraint

qualification (5.3) holds, then z* also satisfies the inequality
(F(z*),y—2*) >0 forall ye T(z*). (5.10)

Since Hp(x*) solves QP(z*), Hy(x*) satisfies
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(F(z*)+ G(Hp(z*) — %),y — Hp(z*)) > 0 for all ye T'(z*). (5.11)
Since Hr(z*) € T(x*). it follows from (5.10) that

(F(z*),Hr(z") — 2*) 2 0, (5.12)
while, since * € S C T'(2*), (5.11) implies

(F(z*) + G(Hp(2*) — 2°),2" — Hr(z")) 2 0. (5.13)
Adding (5.12) and (5.13), we have

(G(Hp(z*) — =*),Hr(2*) — 2*) <0.

Hence, we must have z* = Hp(2*) because of the positive definiteness of Gi.

Conversely, suppose z° = Hp(z*). Then we have from (5.9) that
(F(z*),y—x*) >0 for all ye T(z*),
which implies
(F(z"),y—2") >0 forall y€ S,

because S C T(x*). Therefore, to prove that z* solves (5.1), we only need to show
that 2* € S. Since Hy(z*) € T(z") and z* = Hp(z*), it follows from the definition

(5.5) of T(x) that ¢;(z*) <0 for all i = 1,...,m. This completes the proof. 8
Now let us consider the optimization problem:

minimize fr(z) subject to z€ S, (5.14)
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where the function fr is defined by (5.6). The next theorem establishes the equivalence

between variational inequality problem (5.1) and optimization problem (5.14).

Theorem 5.1 Let F of (5.1) be a continuous mapping from R" into itself and S be a
conver subset of R" defined by (5.2). Let fr: R® — R be a function defined by (5.6).
Then fr(x) 2 0 for all x€ S. Moreover, fr(z) = 0 with x € S holds if and only i
solves variational inequality problem (5.1). Hence x solves (5.1) if and only if it solves
optumazation problem (5.14) and satisfies fr(x) = 0.
Proof. Recall that 2 € T'(x) whenever z€ S. So it follows from (5.6) that

Jr(z) > —(F(z),z — ) — ~12- (z —z,G(x —x))

=4h:

for any # € S. We shall show that fp(z) = 0 with 2 € S holds if and only if Hy(z) = .
This along with Lemma 5.1 proves the rest of the theorem. First suppose that z € §

and fr(z) = 0. Since z€ T(z), (5.9) implies

(F(z) + G(Hr(z) — z),z — Hr(z)) > 0,
namely

—(F(z), Hr(z) — z) > (Hr(x) — 2,G(Hy(z) — z)). (5.15)
Hence, it follows from (5.7) and (5.15) that

f2(@) 2 5 (Ha(2) 2, G(Hr(x) - ).



106 CHAPTER 5

But since G is positive definite and fp(z) = 0, we have Hp(z) = ». Next suppose that
Hp(z) = z. Then, it follows from (5.7) that fy(z) = 0. Moreover, by the feasibility of

Hy(z) to problem (5.8), we have
ci(z) + (Vei(z),Hp(z) —2) <0, i=1,....,m.
Thus Hy(z) = x implies z € S. This completes the proof. O

Remark 5.1 This theorem also says that, if optimization problem (5.14) has a global
minimizer which does not zero the function fr, then problem (5.1) has no solution.
On the other hand, even if problem (5.1) does not have a solution, problem (5.14)
may have a global minimum » with fp(z) > 0. For example, consider the case in
which F': R — R, F(z) = -1 and § = { € R|z > 0}. Clearly, the corresponding
variational inequality problem has no solution. The function f7 associated with G =1
is fr(z) = % for all > 0; hence any « > 0 is a global minimizer of problem (5.14).

The same remark also holds for the regularized gap function fs (See Remark 3.1).
Next we consider the continuity and differentiability of fp.

Definition 5.1 [Hog73b] Let Z be a point-to-set-mapping from X into 2%, where X

is a subset of R".

1. Z is open at a point # if, for any sequence {z*} such that 2¥ — Z, § € Z(3)

7 k_, -
implies that there exists a sequence {y*} such that y* € Z(z*) and y* — 3.

A P ke
2. Z is closed at a point  if, for any sequence {x*} such that 2* — &, y* € Z(z%)

and y* — g imply § € Z(z).
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3. Z is continuous at a point ¥ if it is both open and closed at &. Z is continuous

on X if it is continuous at any point in X.

Proposition 5.1 Lete;,i=1.....m. be continuously differentiable and satisfy Slater’s

constraint quahfication (5.3). Then the point-to-set mapping T defined by (5.5) is con-

titnuous on R",

Proof. Since ¢;(z) + (Vei(z),y — x) is continuous with respect to (a,y) for each 1, it
follows from [Hog73b, Theorem 10] that 7 is closed at each z. By Slater’s constraint
qualification (5.3), there is an & such that ¢i(f) < 0 for all ¢ = 1,...,m. Moreover
from the convexity of ¢;, we have ¢;(z) + (Vei(z), & — ) < ¢i(&) < 0. Hence, it follows
from [Hog73b, Theorem 12] that T is open at each z. Therefore, 7" is continuous on

H, O

Lemma 5.2 Suppose that a mapping F of (5.1) is continuous. If the Slater’s con-

straint qualification (5.3) holds, then the mapping Hy defined by (5.9) is bounded on

any bounded set.

Proof. Suppose that Hr is not bounded on some bounded set B. Then there is a
sequence {z*} in B such that | Hr(z*) ||— oo. Since sequence {F(x*)} is bounded on
B by the continuity of F, it follows from (5.7) and the positive definiteness of GG that

fr(z*) — —oo. On the other hand, since &€ T'(z*) for all k, we have
1
fr(z*) = max { ~(F(a"),y —2*) = 5 (y - 24, G(y - 2*)) { ye th*)}

> —(F(z*),z - 2" - é- ( — z*,G(z — z*)),
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which is bounded below since {z*} and {F(z*)} are both bounded. This is a contra-

diction. O
Given 2 € R" and A € R™, we define matrix M (z,\) by

M(z,)) = VF(z) + ) A V2ci(). (5.16)

i=1

The next theorem demonstrates the directional differentiability of fp.

Theorem 5.2 Suppose that the mapping I : R* — R" of (5.1) is continuous and the
convex functions ¢; : R — R, i = 1,...,m, of (5.2) are continuously differentiable.
Suppose also that Slater’s constraint qualification (5.3) holds. Then function fr defined
by (5.7) s continuous on R". Moreover, if F is continuously differentiable and c;,
i =1,...,m, are twice continuously differentiable, then fr s directionally differentiable

i any direction d € R™, and its directional derwative fi(x;d) s gwen by

fi(z;d) = min (F(z) - [M(2,) - G](Hr(2) - ), d), (5.17)

AEA(z)

where Ax) 15 defined by

m
F(z)+ G(Hp(z) — )+ Y_AiVei(z) =0,
= m e \ (5.18)
MR =VAER L feile) + (Vei(a), Hr (@) — 2)] = 0,
Av =0 1 = Loy
Proof. To prove the first half, it is sufficient to show that mapping Hy(z) is con-

tinuous. Under the given assumptions, the point-to-set mapping 7 is continuous by

Proposition 5.1 and the objective function of (5.8) is continuous with respect to (z,y).

New Merit Function 109

Therefore, by [Hog73h, Theorem 8], mapping Hz is closed. However, since Hy is ey-
erywhere defined and single-valued, Hr must be continuous for any z. The second half

follows from [Hog73a, Theorem 2|. o

Remark 5.2 If the set A(z) is a singleton, fy is differentiable at z and the gradient

is given by
Vir(z) = F(z) - [M(z,A) - G|(Hr(z) - 2).

A sufficient condition [FiM90, Theorem 6] for A(z) to be a singleton is that the vectors
Vei(z),i € I(z), are linearly independent, where I(z) = {i | ci(z) + (Vei(z), Hy(z) -
z) = 0}, and the strict complementarity condition holds; i.e., A; = 0 implies ci(z) +

(Vei(z), Hr(z) — z) < 0.

Remark 5.3 The regularized gap function fs defined by (1.5) also has the property
that the set of zeros of fs on S coincides with the set of solutions to problem (5.1).
Moreover, fs is continuously differentiable when so is mapping F. It is easy to see
that fr(x) > fs(x) because T'(x) contains S for all 2. In particular, when ¢; are all

linear, (1.5) coincides with (5.6).

To obtain a solution to (5.1) by solving problem (5.14), we need to find a global
minimizer of fp on S. It is therefore desirable to know conditions under which a
stationary point of (5.14) is a global optimal solution, because most optimization al-
gorithms only find a stationary point of the problem. The next theorem answers this

question.
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Theorem 5.3 Let F of (5.1) be a continuously differentiable mapping from R" into
itself, ¢;, it = 1,...,m, of (5.2) be twice continuously differentiable convez functions
from : R™ into R and fr be a function defined by (5.7). Suppose that VF is positive

definite and Slater’s constraint qualification (5.3) is satisfied. If x € S and
fr(lziy—2) >0 forallye S, (5.19)

then x s a solution to (5.1).

Before proving the theorem, we show the next lemma, which will also be used to

derive a descent condition in the next section.

Lemma 5.3 Let mapping F of (5.1) be continuously differentiable and convez func-
tions ci, i = 1,...,m, of (5.2) be twice continuously differentiable. If d = Hp(z) — =z,

then we have

fr(z;d) < —(d,VF(z)d) + Jmin (Z dici(x) ) , (5.20)

iel

where [, = {i|c;(z) > 0}.

Proof. Since d = Hy(z) — z, it follows from the Karush-Kuhn-Tucker conditions for

problem (5.8) that d together with a Lagrange multiplier vector A satisfies

F(z) + Gd+ Y _A\iVei(z) =0, (5.21a)
=3
C,'(.’-':) -+ {VC,‘(I), d) _<_ 0, /\,‘ 2 0, (521b)

Ailei(z) + (Vei(z),d)] =0,  i=1,...,m. (5.21¢)
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From (5.16), (5.17), (5.21a) and (5.21c), we have

fr(z;d)

Ag}\i[g) <F(:r) —[VF(z) - Gld— ) A\V3ci(a)d, d >

Ag}\i&}{ (d, VF(z)d) — <d Z,\ Ve ¢)> — <d,§,\ivzq(r)d>}

i=1

= min {—{d‘ VE(z)d) + ) Aici(z) = Y Aild, Vgc,-(.r)d)} ‘ (5.22)

AEA(z) 1=1] =1
Since the convexity of ¢; ensures that V2¢;(x) is positive semi-definite. i.e.,

(d, Vc?(z)d) > 0, and since Z Aici(z) < 0, we have from (5.22) that
iel,

fr(zid) < —(d,VF(z)d) + min (Z A c,(.r))

AEA(z)

This completes the proof. -

Proof of Theorem 5.3. Suppose that x € S satisfies (5.19). First note that. under

Slater’s constraint qualification, we have
T(z)Czx+cl{r(y—=z)|y €St >0}, (5.23)

where cl denotes closure of a set [BaS76, page 143]. Thus, from (5.19), (5.23) and the

positive homogeneity of f1.(z;::) (see Appendix A.1.3), we can deduce that
friziy—=z) >0 forall y € T(z). (5.24)

Since = € S implies I, = ¢, it follows from Lemma 5.3 that
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fr(x; Hr(z) — ¢) < —=(Hr(z) — 2, VF(x)(Hy(z) — ). (5.25)
Since Hp(z) € T'(x), we have from (5.24) and (5.25) that
(Hp(z) — «,VF(z)(Hr(z) — 2)) < 0.

But since VF(z) is positive definite, we have # = Hp(a2). Therefore, it follows from

Lemma 5.1 that x is a solution to (5.1). 0O
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5.3 Successive quadratic programming algorithm

In this section, we present a successive quadratic programming algorithm for solving
the variational inequality problem (5.1) and prove its convergence.

First, we show that the vector
d=Hyp(z) -2 (5.26)
is a descent direction of the penalty function 6, : R®™ — R defined by

6:(z) = fr(z) +r Y max(0,ci(z)). (5.27)

i=1

where r is a sufficiently large positive parameter (cf. Appendix A.3.3).

Theorem 5.4 Let F' of (5.1) be a mapping from R™ into itself, ¢;, i = 1,...,m, of
(5.2) be conver functions from R™ into R, Hr be a mapping defined by (5.9) and 8, be
a penalty function defined by (5.27) with penalty parameter r > 0. Suppose that F is
continuously differentiable and ¢;, 1 = 1,...,m, are twice continuously differentiable.

If VF(z) 15 positive definite and
| Al forall X € A(z),

then the vector d = Hy(z) — = satisfies the descent condition
0. (z;d) < 0,

whenever d # 0.

Proof. Let I, = {i|c;(z) > 0} and Iy = {i|ci(z) = 0}. By Theorem 5.2 and [Han77,

Lemma 3.1], @, is directionally differentiable and the directional derivative is given by
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O, (z;d) = fr(z;d) +r Y (Vei(z),d) + 7Y max(0,(Vei(z), d)). (5.28)

el i€lg

First note that d = Hp(x) — x together with a Lagrange multiplier vector A satisfies

F(z) + Gd+ ) M\Vei(z) =0, (5.29a)
i=1

)+ (Veilz),d) <0, X >0, (5.29b)

Ailci(z) + (Vei(z),d)] =0, D=0 e (5.29¢)

Then (5.29b) yields
Y max(0,(Vei(z),d)) = 0. (5.30)
1€l

By Lemma 5.3, we have

fr(a;d) < —(d, VF(z)d) + min (Z Aici(z ) . (5.31)

A€A(z)

Hence, it follows from (5.28), (5.29b), (5.30) and (5.31) that

'-J'; l'*.f'.

Ol(z;d) < —(d,VF(z)d) + mm (Z X c,(r)) +r Z(Vc.(:: d)

1A

—(d,VF(z)d) + E}\m (‘Z{A _T)CI(I))
<z

because, by assumption, VF(z) is positive definite and || A ||oo< 7 for all A € A(x).

The proof is complete. O

Next we describe a successive quadratic programming algorithm for solving the

variational inequality problem (5.1). The proposed algorithm uses the vector d defined
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by (5.26) as a search direction and incorporates the exact line search to the penalty
function 6, defined by (5.27). Note that, since Hp(x) is the unique solution to the
quadratic programming problem (5.8), the search direction d = Hy(z) — « is obtained

by solving a convex quadratic programming problem.
Algorithm 5.1
Step 0 Choose #” € R", r > 0 and a symmetric positive definite matrix G. Let k :=0

Step 1 Find the unique solution d* of the quadratic programming problem:
minimize %(d, Gd) + (F(z*),d)
subject to c.,-(rk} - (Vc;{mk},d) Silra=1.2 . ..

Step 2 Find an oy such that
0.(z* + ard*) = min 6,(z* + ad").
0<a<l

Step 3 Set zf*! .= gk 4 ard®. Let k := k + 1. Return to Step 1.
The next theorem establishes the global convergence of this algorithm.

Theorem 5.5 Let F' of (5.1) be a continuously differentiable mapping from R™ into
itself, ¢;, i =1,...,m, of (5.2) be continuously differentiable convex functions from R"
into R, Hy be a mapping defined by (5.9) and 6, be a penalty function defined by (5.27)
with penalty parameter r > 0. Suppose that VF(x) ts positive definite on R". Suppose

also that v is chosen sufficiently large. If the sequence {x*} generated by Algorithm
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5.1 is bounded, then {x*} converges to the unique solution to the variational inequality

problem (5.1).

Proof. To prove the global convergence, we shall use Zangwill’s global convergence
Theorem A [Zan69, page 91]. We denote by A an algorithmic map defined by Algorithm
5.1, i.e., "1 = A(z*). Since {z*} is bounded, it follows from [Han77, Lemma 3.3
that there exists a positive number 7 such that || A* || < 7 for all k, where Ak is an
arbitrary optimal Lagrange multiplier vector of the quadratic program solved in Step
1 at iteration k. Assuming that » > 7, we have from Theorem 5.4 that d* satisfies the
descent condition @/ (z*; d*) < 0, whenever 2¥ is not a solution to (5.1). Moreover, since
the map d = Hy(z) —x and the function @, are continuous with respect to z, and, since
the exact line search strategy on a bounded interval is closed (cf. Definition 5.1) the
overall algorithmic map A is closed. Therefore, Zangwill’s global convergence Theorem
A [Zan69, page 91] guarantees that any accumulation point of {z*} is a solution to
(5.1). Since problem (5.1) has at most one solution by the positive definiteness of

VF(z), we conclude that the entire sequence converges to the solution to (5.1). O

Remark 5.4 When F is a gradient of some differentiable convex function g, problem
(5.1) corresponds to a necessary and sufficient optimality condition for the convex

programming problem

minimiz x
e e(x) (5.32)
subject to cile) €0, F=1,...y M

We may therefore apply Algorithm 5.1 to (5.32) with the identification F = V. Then

the subproblem solved in Step 1 becomes the same as that of the standard successive
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quadratic programming problem [Han77]. But the merit function used in the line

search is quite different from [Han77].
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5.4 Computational results

In this section, we report some numerical results for Algorithm 5.1. All computer pro-
grams were coded in FORTRAN and run in double precision on a SUN SuperSPARC
Station.

Throughout the computational experiments, the positive definite matrix GG was

chosen to be the identity matrix. The convergence criterion was
fr(z*) <107% and ci(2¥) <1078 fori=1,...,m.

For each example, we tested three values of the penalty parameter: » = 1,10 and
100. It is noted that, though the global convergence was proved only with the exact

line search, we implemented with an inexact line search rule of Armijo-type:

Step 2’ Set aj = 3% where li. is the smallest nonnegative integer [ such that

1 0.0001 .
0,(z*) — 0, (.r." + gd*) =i d*|? . (5.33)

Example 5.1 This example is a two dimensional variational inequality problem, where

the mapping F' is given by

+ 223 +7
F(z) = i =
-2z +x92+ 5

and the set S is given by

=1(2)

::§+:r§‘_<9}-
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This problem has the unique solution z* = (—0.533144, —2.952246)". The results for
Example 5.1 are shown in Tables 5.1~5.3.

Tables 5.1~5.3 show that Algorithm 5.1 converges to the solution for all cases.
From the tables, we see that the generated sequence converged from outside the set
S. The same tables also show that Algorithm 5.1 does not necessarily decrease the
value of the merit function fp, while the value of the penalty function 8, decreases
monotonically. In Figure 5.1, we plot the iterates {z*} for the cases r = 1 and r = 10

in the two dimensional plane.

‘able 5.1: Result for Example 5.1 (r = 1)
[teration T 29 fr(z) o(x) 0.(z)
0 0.000000 0.000000  37.000000 —9.000000 37.000000
1 —1.750000 —1.250000 15.295186 —4.375000 15.295186
2 -0.913851 -—3.295608 —0.342954  2.696157  2.353203
3 —0.171937 -3.296810 —0.624539 1.898517  1.273978
4
5
6

—-0.284299 —3.003017 0.064855 0.098939  0.163794
—0.514843 —2.972955 -0.053349 0.103524  0.050175
—0.521524 —2.954387 0.000087 0.000389  0.000476
—-0.533386 —2.952260 —0.000179 0.000340  0.000161
—-0.532789 -2.952310 0.000000 0.000000  0.000000

o |

oo
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Table 5.2: Result for Example 5.1 (r = 10)

CHAPTER 5

Iteration T o fr(z) c(x) 0. (z)
0 0.000000 0.000000 37.000000 —9.000000 37.000000
1 —1.750000 —1.250000 15.295186 —4.375000 15.295186
2 —0.913851 —3.295608 —0.342954 2.696157 13.137831
3 0.569977 —3.298011 0.375274 2.201753 11.384041
4 —0.526062 —3.153634 —0.521104 1.222148  5.589636
5 —0.186360 —3.016532 0.147328 0.134194  0.818300
6 —0.501974 —2.985912 —0.085023 0.167647  0.753212
7T —0.515694 —2.955532 0.000069 0.001111  0.005625
8 —0.533415 —2.952346 —0.000464 0.000880  0.003935
9 —0.532599 —2.952345 0.000000 0.000001  0.000004

Table 5.3: Result for Example 5.1 (r = 100)

Iteration 2 a9y fr(z) c(x) f,.(x)
0 0.000000 0.000000  37.000000 —9.000000 37.000000
1 —1.750000 —1.250000 15.295186 —4.375000 15.295186
2 —1.331926 —2.272804 3.508426 —2.060336  3.508426
3 -0.672712 -—2.885751 0.158826 —0.219901  0.158826
4 —0.558027 —2.931536 0.051589 —0.094702  0.051589
5 -0.546346 —2.941836 0.025286 —0.047108  0.025286
6 —0.539727 —2.947068 0.012494 —0.023483  0.012494
7 —0.533148 —2.952257 —0.000037 0.000070  0.006984
8 —0.533120 —2.952250 0.000000 0.000000  0.000000
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Examples 5.2~5.4 are convex programming problems which are formulated as vari-
ational inequality problems. The results for Examples 5.2~5.4 are shown in Tables
5.4~5.6, respectively. In the tables, #fr denotes the total number of evaluations of
the merit function fp.

Example 5.2 This example is the following convex programming problem:

minimize %x"f — 122 + ;r% —Tzy — Tao
subject to 4z% + 23 <25, 21 >0, 22 > 0,

which is formulated as a variational inequality problem (5.1) with

ry— Tz — 7
F(z) =
—ry+2x0—T

()

The results for Example 5.2 are shown in Table 5.4. In this example, the objective

and

422 + 22 <25, 1 > 0, :230}.

function is quadratic convex and hence VF(z) is positive definite for all x. Table
5.4 shows that Algorithm 5.1 converged for all cases, but when r = 1, the number of

iterations is extremely large.

Table 5.4: Results for Example 5.2

Initial Iterate r  #lterations #fr
1 149 298

(0,...,0) 10 12 27
100 14 35
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Example 5.3 This example is the convex programming problem given in Example 4.3

which is formulated as a variational inequality problem (5.1) where

[ oz =30 )
10zs — 120
4x§
F(z) = 64 — 66

1023

ldzg — 427 — 10

\ 4x7 — 4z — 8 )

and

. {zl \ \
xy || 22f+ 323 + a3 + 423 + 5z; < 100
T3 ?’1-1+3.r.2+101'§+1'4— x5 < 200

S=¢1 24 || 20z, + 23 + 622 — 827 < 150 f

a5 42%+I§—3$1$2+2$§+5I5— llzz <0
Tg e e R

SEL )

The results for Example 5.3 are shown in Table 5.5. Since the mapping F is

monotone but not strongly monotone on R”, VF(z) is not necessarily positive definite

Table 5.5: Results for Example 5.3
Initial Iterate r #lterations #fr

1 failed
(0;:4:450) 10 378 1988
100 302 1627
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Chapter 6

A Globally Convergent Newton
Method for Solving Variational
Inequality Problems with
Inequality Constraints

6.1 Introduction
We consider the variational inequality problem of finding «* € S such that
(F(z*),z—2x") >0 forall z€ S, (6.1)

where S is a nonempty closed convex subset of R and F is a continuously differentiable
Pt) )

mapping from R" into R". In this chapter, we suppose that the set S is specified by
S={z2€ R"|ci(z) <0, i=1,.-., m}, (6.2)

where ¢; : R" — R are twice continuously differentiable convex functions. Throughout
this chapter, we assume that Slater’s constraint qualification holds: i.e., there exists an

z € R" such that
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¢i(¢) <0 forall i=1,...,m. (6.3)

Many iterative methods, such as Newton’s method, projection methods, the lin-
earized Jacobi method and the successive over-relaxation methods, have been proposed
to solve the variational inequality problem (6.1). Among them, Newton's method gen-
erates a sequence {z*}, where 2¥*! is a solution to the linearized variational inequality

problem
(F(:r:k) + VF(z5)! (2"t — k), 2 — .c’*“) >0 forall z€S. (6.4)

It can be shown that, under suitable assumptions, Newton's method converges quadrat-
ically to a solution z*, provided that an initial point z" is chosen sufficiently close to
z* (see Theorem 2.1).

For the variational inequality problem (6.1), various merit functions have been pro-
posed and has been used to globalize Newton’s method (6.4). Marcotte and Dussault
[MaD87] obtained a globally convergent Newton method by incorporating an exact
line search strategy for the gap function g defined by (1.2). Another modification is
Algorithm 3.1 proposed in Chapter 3, which makes use of Armijo line search for the
regularized gap function fs defined by (1.5).

Note that the above methods tacitly assume that the constraint set S has a rel-
atively simple structure. For example, when S is a polyhedral convex set, that is,
functions ¢; are all affine, the variational inequality subproblem (6.4) of Newton’s
method becomes an affine variational inequality problem and the functions g and fs

can be evaluated by solving linear and quadratic programming problems, respectively.
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However, when S is a general convex set defined by nonlinear convex functions, solving
the linearized subproblem (6.4) and evaluating g(z) and fs(z) should be considered
difficult tasks.

In this chapter we propose a new globally convergent Newton method for solving
variational inequality problems with general inequality constraints. The method solves
at each iteration an affine variational inequality subproblem, in which not only the
mapping F* but also the constraint functions ¢; are linearized. Moreover it makes use of
the merit function fr introduced in the previous chapter to obtain global convergence.
The proposed method has a clear advantage over the method of Marcotte and Dussault
[MaD87] and Algorithm 3.1 that solve subproblems (6.4) and use the gap function
and the regularized gap function respectively, in that each step of the algorithm is
a finite computation even if the set S is specified by nonlinear inequalities. It is
shown that, when the mapping F* of (6.1) is strongly monotone, the method converges
globally to the solution, and that, under some additional assumptions, the rate of
convergence is superlinear. The proposed method is closely related to a successive

quadratic programming method for solving nonlinear programming problems.
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6.2 Globally convergent Newton method

In this section, we present a globally convergent Newton method for the variational
inequality problem (6.1), which incorporates an Armijo line search procedure for the

penalty function @, : R™ — R defined by

0.(2) = fo(@) + 1 3 max(0, ei(@)) (6.5)

i=1

where fr is defined by (5.6) and r is a sufficiently large positive parameter. By Theo-
rem 5.2 and [Han77, Lemma 3.1], 6, is directionally differentiable and the directional

derivative is given by

0L(x;d) = fplzid)+r Y (Vei(e),d) +r ) max(0,(Vei(z).d)), (6.6)
ey i€ly
where I, = {i|ci(z) > 0} and Iy = {i|ci(z) = 0}. Throughout this section, we

assume that the mapping F is continuously differentiable and strongly monotone with

modulus g (cf. (2.16)), so that VF satisfies
(d,VF(z)d) > p||d||* forall z,d€ R" (6.7)

(see Proposition 2.6). Note that, since the convexity of ¢; guarantees that VZ¢;(z) is

positive semi-definite, (6.7) implies that the matrix M(z,A) defined by (5.16) satisfies
(d,M(z,\)d) > p||d||* forall z,d € R", (6.8)

whenever A > 0.
Now we state the algorithm, The proposed algorithm uses a search direction ob-
tained by solving a linearized variational inequality problem and determines the next

iterate by performing the Armijo line search for the penalty function 6,.
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Algorithm 6.1

Step 0 Choose z° € R", » > 0,0 < 8 < 1,0 <o <1, and a symmetric positive

definite matrix GG. Let k := 0

Step 1 Find the unique solution #* € T'(2*) of the linearized variational inequality

problem
(F(a.-“) + M(z*, 3 (a* - 2%),z %) > 0 forall ze T(a*), (6.9)

where A is an arbitrary vector in A(z*). Let d* := z* — 2%,

Step 2 Set ay := 3'*, where [}, is the smallest nonnegative integer [ such that
0.(z*) — 0,(z* + B'd*) > —op'0.(2*; d). (6.10)
Step 8 Set 2**!:= 2% + apd*. Let k := k+ 1. Return to Step 1.

Note that in Step 1 we need an optimal Lagrange multiplier vector A* for the
quadratic programming problem QP(z*) (cf. (5.8)). However, this has already been
obtained in the previous iteration as a by-product of evaluating the function value
fr(z*). Note also that, by the positive definiteness of M, the linearized problem
(6.9) always has a unique solution. Moreover problem (6.9) can be rewritten as a
linear complementary problem, which can be solved in a finite number of steps using
Lemke’s complementarity pivoting algorithm [Lem65]. The following theorem shows

that the vector d* generated by Algorithm 6.1 is a descent direction of 8, at z*.



132 CHAPTER 6

Theorem 6.1 Suppose that the mapping F : R* — R™ of (6.1) is continuously dif-
ferentiable and strongly monotone on R™ with modulus p, that the convex functions
it R — R, i =1,...,m, of (6.2) are twice continuously differentiable and that
Slater’s constraint qualification (6.3) holds. Let 8, be a penalty function defined by

(6.5) where r > 0 1s a penalty parameter. If
[MlwS *  for all X € A(z*),

where A(z*) is defined by (5.18), then the vector d* = #* — z* obtained by Step 1 of

Algorithm 6.1 satisfies the mequality
1
hiasadt) < = (=5 1G1) 1d*1P (6.11)

where G is an n X n positive definite matriz of (5.7). In particular, if G is chosen

sufficiently small to satisfy |G || < 2u, then d* is a descent direction of 0, at k.
Before proving the theorem, we give the following lemma.

Lemma 6.1 For any z€ R", we have

(Hr(z) — z,G(Hr(z) — 2)) — ) Aici()

i=1

b | —

Jr(z) = -

v

m
=Y Aici(x)
i=1
for any A € Alx), where Hp(z) 1s the unique solution to a quadratic programming

problem (5.8). In particular, if x € S, then

f1(2) 2 5(Hr(z) - ,G(Hr(x) - 2)).
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Proof. Since Hy(z) solves (5.8), it follows from the definition (5.18) of A(z) that each

vector A € A(z) satisfies

F(z)+ G(Hp(z) — z) + i,\fvci(x) =0,

c,-(::) s (VC,'(:C),HT(&E) = I) S. 01 ’\i 2 0!

Ailci(z) + (Vei(z), Hp(z) — z)] = 0, X DURE R
Hence, we have from (5.7) that

fr(e) = ~(F(@), Hy(@) - 2) — 5(Hr(2) — 2, G(Hzr(z) - 2))
= (G(Hp(z) - 2), Hr(e) = o) + @wﬁu),mz) - z>
~5(Hr(2) - 2,G(Hz(2) - 2)
(Hr(z) — z,G(Hy(z) — z)) + <i AiVei(z), Hr(z) — 3-‘)

=1

= 3 (Hr(2) — ,G(Hr(z) ~ 2)) = 3 Niei(z)

=1

v

—if\iCi(I),
i=1

where the last inequality follows from the positive definiteness of G. Since \; > 0 and
ci(z) <0,1=1,...,m, for all z € S, the last part of the lemma follows immediately.
|5

Proof of Theorem 6.1. For simplicity of notation, we omit the superscript & in

z*, #* and d*. Let I, = {i|ci(z) > 0} and Iy = {i|ci(z) = 0}. Note that d = & — =
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together with some Lagrange multiplier vector X > 0 satisfies

F(z) + M@ \)'d+ Y AiVai(z) =0, (6.12a)
i=1

clz) + (Veilz),d) £0, (6.12b)

Ailei(z) + (Vei(z), d)] =0, i=1,...,m. (6.12¢)

Then (6.12b) yields

Y max(0, (Ve;(x),d)) = 0. (6.13)

1cly

Since d = z — «,

that

fr(z;d)

I

and since M(z,\) = VF(z) + »_ AiV?ci(z), it follows from (5.17)

i=1

Ag}fg} (F(z) - [M(z,A) = G](Hr(2) —2),2 — T)

(F(z) - [M(2,)) - G)(Hr(2) - 2),2 — z)

(F(2),2 —z) — (Hr(z) — &, M(2,)!(% - z:))

+(G(Hp(z) —2),Z — )

(F(z) + M(z,0)!(z —2), 2 - ;r) . (M(x.:\)'(f —2),7 —z)
~(F() + M(2,%)(z — ), Hr(z) - z)

+ (F(z), Hy(z) — z) + (G(Hp(z) — ),% — 2)

— (F(2) + M(z,2)"(z — ), Hr(x) - z)

+{(P@), Hr(@) —2) + (H2(a) - .G Hr(z) - o)

— (d, M(2, )d) + 3(d, Gd) — %{5- _ Hy(2).G(z - Hp(z))), (6.14)
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where the last equality follows from the equality
2(z - z,G(Hr(z) —2)) = (Hr(z) —2,G(Hp(z) —2)) + (z — z,G(z - z))
—(z — Hr(z),G(% — Hy(x))).

Since Z is a solution to (6.9), the first term of (6.14) is nonpositive. From (5.7), the

second term of (6.14) equals — fr(z). The last term is nonpositive by the positive

definiteness of G. Hence, we have
p — |
fr(z;d) < —fr(z) — (d, M(x,\)d) + 5(d,Gd).
Moreover, since XA € A(x), it follows from Lemma 6.1 that

fr(z;d) < —(d, M(z,\)d) + %(d,G’d) + i:\;c;(x). (6.15)

i=1

Hence, we have

Ou(wsd) < —(d M2, 1'd) + 3(d, Gl + Y i) 41 3 (Veale), d)

i=1 icly

< —(d, M(z,\)'d) + %(d.(:d) + 3 (A —r)ei(z)

iely
<~ (u=3161) a2,
where the first inequality follows from (6.6). (6.13) and (6.15), the second inequality
follows from (6.12b) together with the fact that X; > 0 for all i and ¢;(z) < 0 fori & I,

and the third inequality follows from (6.8) and ||A||,< » for all A € A(z). This proves

(6.11). The last part of the theorem follows immediately. 0O

Next we show the global convergence of Algorithm 6.1.
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Theorem 6.2 Suppose that the mapping F : R* — R" of (6.1) is continuously
differentiable and strongly monotone on R™ with modulus p, that convex functions
¢t R* = R, 1 = 1,...,m, of (6.2) are twice continuously differentiable and that
Slater’s constraint qualification (6.3) holds. Suppose also that the parameter v of Algo-
rithm 6.1 is chosen sufficiently large and that the matriz G of Algorithm 6.1 is chosen
to satisfy || G|| < 2u. If the sequence {z*} generated by Algorithm 6.1 is bounded, then

{a*} converges to the unique solution to the variational inequality problem (6.1).

Proof. Since the sequence {z*} is bounded, it follows from [Han77, Lemma 3.3] that
there exists a positive number # > 0 such that || M || < 7 for all k, where AF is any
vector in A(z¥). Assuming that r > 7, we have from Theorem 6.1 that d* satisfies
the descent condition (6.11), whenever z* is not a solution to (6.1). Hence, by the
line search rule (6.10), the sequence {f,(z*)} is decreasing. This together with the
boundedness of {«*} implies that there is at least an accumulation point. In a way
similar to the proof of Theorem 3.2, it can be shown that any accumulation point is a
solution to (6.1). Moreover, under the strong monotonicity assumption, problem (6.1)
must have a unique solution. Therefore we conclude that the entire sequence {z*}

converges to the unique solution to (6.1). O

Next we examine the asymptotic rate of convergence of Algorithm 6.1. To this end,
we consider the iterates (z*, \¥) generated by Newton’s method directly applied to the

mixed nonlinear complementarity problem (5.4), namely
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F(2*) + M(2* X%)! (2% — 2%) + Y A (2f) = 0,

i=1

ci(z*) + (Vei(ah), 2441 - 24 < o, g, (%)
) i [c‘-(z") + (Vc;(:r:“),r"“ - :r"‘)] =0, i=1,...,m.

It can be shown [GaMT76] that, if VF(z*) is positive definite, the strict complementar-
ity holds at z*, i.e., ¢;(2*) = 0 implies \* > 0, and if the linear independence of the
active constraints hold (cf. Appendix A.3.2), then the sequence generated by Newton’s
method (6.16) is quadratically convergent, provided that the starting point is chosen
sufficiently close to the solution. (Note that [GaM76] deals with the nonlinear pro-
gramming problem, which corresponds to a special case of problem (6.1) where F is a

gradient mapping of some scalar function, so that F is symmetric. But the symmetry

assumption is not used in the proof of the theorem in [GaM76).)

Note that a solution z¥*! to (6.16) is a solution of the variational inequality problem
(F(x*) + M(z* A6t (2% — 2%) 2z - z’”‘) >0 forall z€ T(z), (6.17)

which is the same problem as (6.9) solved in Step 1 of Algorithm 6.1, except for the
choice of A¥. Therefore, if || M (z*, A¥) — M(z*,\¥) || tends to zero as z* — z*, then

the sequence {z*} generated by solving the linearized variational inequality problem
<F(:r.") 4 M(z*, 2*)t(z*+ — 2k) 2 — z"‘“> >0 forall z€ T(z*)

with an arbitrary A* € A(z*), is locally superlinearly convergent.
Since the vector A* belongs to A(z*) defined by (5.18), and A* in (6.17) is deter-

mined in the previous Newton iteration (6.16), both A* and A\* approach the set A(z*)
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whenever z¥ converges to 2*. In particular, if A(z*) consists of the unique vector A*,
then both A¥ and A\* converge to A*, and hence we have || M (z*, \¥) — M (z*, A*) ||— 0.
Note that the uniqueness of the Lagrange multiplier vector A* is ensured by the linear
independence of the active constraints.

These observations are summarized in the following theorem.

Theorem 6.3 Let the assumptions of Theorem 6.2 be satisfied. In addition, suppose
that the strict complementarity and the linear independence of the actwe constraints
hold at the solution z*. If there is an integer k > 0 such that the unit step size is
accepted in Step 2 of Algorithm 6.1 for all k > k, then the sequence {z*} generated by

Algorithm 6.1 converges superlinearly to the solution z*.
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6.3 Computational results

In this section, we report some numerical results for Algorithm 6.1. All computer pro-
grams were coded in FORTRAN and run in double precision on a SUN SuperSPARC
Station.

Throughout the computational experiments, the positive definite matrix G was

chosen to be the identity matrix multiplied by 0.1. The convergence criterion was
fr(z*) <1079 and ¢;(2*) €107° for i = |

In solving the linearized subproblem (6.9), we first transformed it into a linear com-
plementarity problem, and then applied Lemke’s complementarity pivoting method
[Lem65] coded by Fukushima [IbF91].

For each example, we tested three values of the penalty parameter: r = 1,10 and
100. It is noted that, though the convergence of Algorithm 6.1 was proved only with
the Armijo line search rule (6.10), we implemented with the simpler line search rule
(5.33).

All examples in this chapter are convex programming problems which are formu-
lated as variational inequality problems. The results are shown in Tables 6.1~6.3. In

the tables, # fr denotes the total number of evaluations of the merit function fr.

Example 6.1 This example is the two dimensional convex programming problem given
in Example 5.2. The results for Example 6.1 are shown in Table 6.1. In this example,

the objective function is quadratic convex and hence F is strongly monotone on R%.
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Table 6.1 shows that Algorithm 6.1 converged for all cases.

Table 6.1: Results for Example 6.1

Initial Iterate r #lterations #fr
1 7 9

(0,...,0) 10 5 9
100 9 19

Example 6.2 This example is the 7-dimensional convex programming problem given
in Example 4.3 which is formulated as a variational inequality problem (cf. Example
5.3). The results for Example 6.2 are shown in Table 6.2. It is noted that the mapping
F is monotone but not strongly monotone on R’. Table 6.2 shows that Algorithm

6.1 converged when the penalty parameter was » = 10 and 100. But when r = 1,

Algorithm 6.1 stalled because the search direction d* failed to be a descent direction

of the penalty function @, at 9th iteration.

Table 6.2: Results for Example 6.2

Initial Iterate r #tlterations #fr
1 failed

(0,...,0) 10 11 21

100 12 25

Example 6.3 This example is the 10-dimensional convex programming problem given

in Example 4.3 which is formulated as a variational inequality problem (cf. Example
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Table 6.3: Results for Example 6.3
Initial Tterate r Ftlterations #fp

1 5 6
(0,...,0) 10 5 6
100 5 6

5.4). The results for Example 6.3 are shown in Table 6.3. Table 6.3 shows that

Algorithm 6.1 converged for all cases.
Figures 6.1~6.3 illustrate how Algorithm 6.1 converged for Examples 6.1~6.3, re-

spectively. In the figures, the vertical axis represents the distance from a generated

iterate to the solution, i.e.,
DIST =||z* — 2*| .

From Figures 6.1~6.3, it is observed that, for all test problems in this section, the rate

of convergence is superlinear when Algorithm 6.1 converges to the solution.
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Figure 6.1: Results for Example 6.1
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Figure 6.3: Results for Example 6.3
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6.4 Concluding remarks

We have proposed a Newton's method for solving the variational inequality problem,
and shown that, under the strong monotonicity assumption, the method is globally
convergent and that, under some additional assumptions, the rate of convergence is
superlinear.

When F' is a gradient mapping of some differentiable convex function ¢, problem
(6.1) corresponds to a necessary and sufficient optimality condition for the convex
programming problem

minimize wlx) (6.18)
subject to edz) 2 0; v=100um,

Therefore we may apply our method to (6.18) with the identification ' = V. In this
case, the matrix M defined by (5.16) is rewritten as
m
M(z,\) = Vip(a) + 3 NiV2e(x),
i=1
which is the Hessian of the Lagrangian of problem (6.18). Moreover, since M is sym-
metric, the subproblem (6.9) solved in Step 1 can be rewritten as
minimize % (d, M (z*, i*)d) + (F(x"},d)
subject to ci(z*) + (Vei(z*),d) <0 i=1,...,m.
Thus Algorithm 6.1 reduces to a successive quadratic programming (SQP) method.
A major difference from other SQP methods is that Algorithm 6.1 makes use of the
function fr as a merit function to globalize the convergence, instead of using a penalty

function associated with problem (6.18).
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In the last two chapters, we have assumed that the set S is specified by a system
of inequalities (cf. (6.2)). In general, the convex set S may be defined by a system of

inequalities and equalities of the form
S={z€R"|ei(z) <0, i=1,...;m, hi(z)=0, j=1,...,0}, (6.19)
where h; : R" — R are affine functions. In this case, by replacing T with

ci(z) + (Vei(z),y—2) <0, i=1,...,m, } (6.20)

Tlx) = {y € R"
we can define the merit function fr. Under Slater’s constraint qualification for (6.19),

i.e.. there exists an # € R" such that
ci(#) <0 fori=1,...,mand hj(¢) =0, for j=1,...,1,

it is not difficult to show that Theorems 5.1 and 5.2 hold for fr with T' defined by
(6.20). We can also apply Algorithms 5.1 and 6.1 to the variational inequality problem

with S defined by (6.19) and establish their global convergence.

Chapter 7

Conclusion

In this thesis, we have developed efficient algorithms for solving the variational in-
equality problem based on its optimization reformulations.

In Chapter 3, for the variational inequality problem with general convex constraints,
we proposed a globally convergent modification of Newton’s method by incorporating
a line search strategy to minimize the regularized gap function. In Chapter 4, this
method was specialized to solve the nonlinear complementarity problem. In the same
chapter, we also proposed a descent method for solving the nonlinear complementarity
problem and proved its global convergence. Through some computational experiments,
these algorithms were shown to be practically efficient.

In Chapters 5 and 6, we considered the variational inequality problem in which
the feasible set was specified by nonlinear convex inequalities. We proposed a new
merit function which was a modification of the regularized gap function and had
a property that the value of the function could be evaluated by solving a convex

quadratic programming problem. Based on the new merit function, we proposed a

147
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successive quadratic programming algorithm for solving variational inequality prob-
lem and proved its global convergence. The proposed merit function was also used
to construct another globally convergent modification of Newton's method. In this
method, not only the mapping of the problem but also the constraints were linearized,
while in the method proposed in Chapter 3, linearization was performed only for the
mapping of the problem.

In this thesis, among various merit functions which lead to an optimization formu-
lation of the variational inequality problem, we have only focused on the regularized
gap function and its modification. But we believe that the results of this thesis have
revealed that such an optimization formulation serves as a promising vehicle for solving
the variational inequality problem from both theoretical and practical points of view.
In particular, the results obtained in Chapters 5 and 6 contribute to constructing novel
efficient algorithms for variational inequality problems with general convex constraints.

We hope that this thesis contributes toward the progress of the field of variational

inequality problems.

Appendix A

A.1 Mathematical review

In this section, we provide some mathematical concepts and definitions used in this

thesis. For detailed expositions, one should refer [Berg63, OrR70].

A.1.1 Vectors and Matrices

Inner Product

(2 &) “
T'he inner product of two vectors z and y in R" is defined by (z,y) = Z:c;y,-. If the

_ i=1
inner product of two vectors is zero, then the two vectors are said to be orthogonal.

The Euclidean norm

The Euclhidean norm of a vector z in R" is defined by ||z ||= (;r,a:):lT. The Euclidean
norm || - || has the following properties:

(a) [[2]|= 0 for all 2€ R™ and ||z ||= 0 if and only if = = 0.

(b) For any scalar o > 0, we have that laz||= |a| ||z]|.

(¢) For any two vectors &,y € R", we have that le+yll <llz|l + ||yl

149



150 Appendix

Schwartz inequality

Let z and y be vectors in R". Then the following inequality, referred as the Schwartz

inequality, holds:

(y) <llz|lllyll -

Transposition

Let A be an m x n matrix. The transpose of A, denoted by A', is an n X m matrix

whose (i, j)-element is aj;. An n X n matrix A is said to be symmetric if At = 4.

Norm of matrix

The norm of an n x n matrix A, denoted by || A ||, is defined by

_ . 4=
”A"—E‘;}}W‘

where || Az || and || 2 || are the Euclidean norms of the corresponding vectors. It follows

from the definition that, for any vector z€ R", || Az ||<||All|| =]

Positive definite matrix

An n x n matrix A is said to be positive semidefinite if, for any vector x € R", the
inequality

(z,Az) > 0
holds. We say that A is positive definite if the above inequality holds strictly whenever

z #0.
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A.1.2 Sets and sequences

For a vector x € R" and a scalar ¢ > 0, we denote the open sphere centered at z with

radius € by B,(z), i.e.,

B(z)={y|lly—=l<e}

Accumulation point

Consider a sequence {z*} in R". A vector #€ R" is said to be an accumulation point
of the sequence {z*} if there is a subsequence {¢¥}i-x of {z*} such that {a*}ick
converges to #. Equivalently # is an accumulation point of {z*} if, for any ¢ > 0,

B.(z) contains infinitely many point of {z*}.

Open, closed and compact sets

A subset X of R" is said to be open if for every vector # € X there is an ¢ > 0 such
that B.(z) C X. If X is open and if € X, then X is sometimes called a neighborhood
of 2. A set X is closed if and only if its complement in R" is open. Equivalently X is
closed if and only if every convergent sequence {z¥} in X converges to a point which
belongs to X. A subset X of R" is said to be bounded if there is a number L > 0 such
that ||z || < L for all z € X. A set X is compact if and only if it is both closed and
bounded. It is well known that every sequence {z*} in a compact set X have at least

one accumulation point in X.



152 Appendix

A.1.3 Functions and Mappings
Continuous functions and mappings

A function ¢ : R" — R is said to be continuous at x € R" if ¢(a*) — ¢(z) whenever
t¥ — . Equivalently ¢ is continuous at z if, for any ¢ > 0, there is a & > 0 such
that ||y — z || < & implies |p(y) — ¢(2)| < €. The function ¢ is said to be continuous
on R™ if it is continuous at every point * € R". A mapping F : R" — R" is said to

be continuous at x € R™ if all component functions F;, ¢ = 1,...,n, are continuous at

r€ R". Also F is continuous on R" if it is continuous at every point € R".

Differentiable functions and mappings

A function ¢ : R* — R is said to be continuously differentiable if the partial derivatives
delx)/0zy, ..., 0p¢(x)/0z, exist for each 2 € R™ and are continuous functions of z over
R". A gradient of a function ¢ at a point * € R" is defined to be a column vector

dp(x)/0xy
Ve(z) = :
dp(z) /0y,

If the second partial derivatives 32@(1)/63;8Ij exist for all 7,7 and are continuous,
then we call ¢ twice continuously differentiable. The Hessian of ¢ is defined to be an
n x n symmetric matrix whose (i, j)-th component is 8*p(z)/dx;0z;.

A mapping F : " — R" is continuously differentiable if all components F;, i =
1,...,n, are continuously differentiable and F is twice continuously differentiable if all

F; are twice continuously differentiable.
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Directional derivative

Let ¢ be a function from R" into [—o00,+00], and let # be a point where  is finite.
We say that o is directionally differentiable at z in the direction d if the limit

L pla+Td) - p(a)
r—0,7>0 T

(A.1)
exists, and we call the limit the directional derivative and denote it by ¢'(z:d). It is
known that a directional derivative is positively homogeneous, i.e., ¢'(x; ad) = ay/(z;d)
holds for any d€ R™ and a > 0.

Lipschitz continuous

Let X be a subset of R". A mapping F : R" — R" is Lipschitz continuous on X if

there is a constant L > 0 such that
| Flz) = F(y) IS L|lz—y]| foralzye X.

The Lipschitz continuity of a Jacobian VF is also defined as
| VE(z) = VF(y) [< L|z—y] forallzye€ X,

where the norm of the left hand side represents a matrix norm.

Mean value theorems and Taylor series expansion

Let a function ¢ : R" — R be continuously differentiable. Then, for any z,y € R",

there exists an a with 0 < o < 1 such that

p(y) = o) + (Vo(z + aly — z)),y — z).
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If, in addition, ¢ is twice continuously differentiable, there exists an @ with 0 < a <1

such that

p(y) = p(z) + (Ve(z),y — z) + ; (y — 2, Vip(z+aly—2))(y— :!T)>.

b | -

Let ¢ be a continuously differentiable function from R" into R. The first-order Taylor

series expansion of ¢ around z is given by the equation

1
oY) = plz) + fﬁ (Violy+ (@ —4));z — ) dr.
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A.2 Convex sets and convex functions

This section summarizes some concepts of convexity. For more details, see [HiL93,

Roc70].
Convex sets

A subset S of R" is convez if, for any z,y € S and any 0 < a < 1, the vector
az+ (1 —a)y is contained in S. An important special case of convex set is a polyhedral

set. A polyhedral set S of R" is defined by
§ ={a€ R"|Az <b},

where A is an m x n matrix and b is a vector in R™. Every polyhedral set is closed

and convex. A simple example of polyhedral convex is R".

Convex functions

Let S be a convex subset of R". A function ¢ : R® — R is said to be convez on S if,

for all z,y€ S and all 0 < a < 1, the inequality

ap(z) + (1 — a)p(y) > plax + (1 — a)y)

holds. We say that ¢ is strictly convez if the above inequality holds strictly whenever
x # y. A function ¢ is said to be strongly conver with modulus p if there exist a u > 0

such that

1 :
ap(z) + (1 - a)p(y) 2 plaz + (1 —a)y) + spa(l - a) |z - yl?
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holds for all x,y€ § and 0 < a < 1. A function ¢ : R" — R is said to be concave
(strictly or strongly concave) if —¢ is convex (strictly or strongly convex). A differen-
tiable function ¢ is pseudo convez if (V(z),y — ) > 0 implies ¢(y) > @(z) for all
x,y € R".

When a convex function ¢ is continuously differentiable on the convex set S, we

have the following proposition (cf. [HiL93, page 183]).

Proposition A.1 Let a function ¢ : R" — R be differentiable on the convex subset S

of R". Then

(a) ¢ is convex on S if and only if
o(y) — ¢(z) 2 (Vo(z),y — )
holds for all z,y€ S,
(b) ¢ 1s strictly convex if and only if the above inequality holds strictly whenever
rF Y,
(¢) ¢ is strongly convezr with modulus p on S if and only 1f
oY)~ #l2) 2 (Vp(a),y—2) + 3p llz -y
holds for all z,y€ S.
Affine functions and mappings

A function ¢ : R" — R is said to be affine if ¢ is both convex and concave. Each

affine function ¢ can be represented as ¢(z) = (a,z) + b where a is a vector in R" and
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bis a scalar (cf. [Roc70, Section 4]). An affine function is convex and pseudo-convex
but neither strictly nor strongly convex. A mapping F' : R® — R" is affine if all

components F;, i = 1,...,n, are affine.
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A.3 Nonlinear programming

In this section, we collect some concepts of the nonlinear programming problem which
have been frequently appeared in this thesis. For details and many other results, see

[BaS76, BSS93, Lue84].

A.3.1 Descent method

Consider the following mathematical programming problem:
minimize ¢(z) subject to x € R", (A.2)

where ¢ is a continuously differentiable function from R™ into R. Most typical iterative

algorithms for solving (A.2) generates a sequence {z*} determined to be
*t = ¢ 4 agpd®, (A.3)

where d* is a search direction at z* and ay is a positive step size parameter. An
iterative algorithm (A.3) is said to be a descent method if the generated sequence {z*}
satisfies p(z**1) < p(a*) for all k. We often call (A.3) a descent gradient method (or
simply a gradient method) if the search direction d* satisfies (Vi (2*), d*) < 0 whenever
Ve(z*) # 0.

A line search is a procedure which determines a step size aj of (A.3). Among
various line search rule, we introduce two rules which are often used in theory and

practice:

(a) Exact hine search: oy is chosen so that
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p(z* + apd*) = min p(z* + ad*).
0<a<l

(b) Armijo rule: Parameters 0 < 3 < 1 and 0 < o < -;- are selected. We set

ap = 3%, where li. is the smallest nonnegative integer [ such that
c,o(:rk) — w(r" - (3Id"} > ——a;?l(V(p(rk),dk).

A.3.2 Karush-Kuhn-Tucker condition

Consider the following mathematical programming problem:
minimize w(x)
subject to ele) S0, =1 .. (A4)
hi(z) =0, j=1,...,1,
where each f, ¢; fori=1,...,m, and hj for j =1,...,1, is continuously differentiable
function from R™ into R. Let z* be a solution to problem (A.4). Then, under suitable
constraint qualification, there exist Lagrange multipliers A t=Y, 0005 m, and 7}, j =

1,...,l, such that the vector (z*, \*, n*) satisfies the Karush-Kuhn-Tucker condition:

m I
Vo(*) + 3 A Vei(2*) + ) miVhj(z*) =0,

e(2*) <0, A2 20, Mei(2*) =0, i=1,....m,

hi(z*) =0, j=1,...,1.

Followings are the list of constraint qualifications useful in practice.

(a) Linear imdependence constraint qualification; The vectors Vei(z®) for i€ [

and Vh;(z*) for j = 1,...,/ are linearly independent, where I = filei(z®) =

0}.
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(b) Slater’s constraint qualification: The functions ¢;, 7 = 1,...,m, are all con-
vex and hj, j = 1....,1 are all affine. Furthermore, there exists an & € R"

such that
ci(@) <Ofori=1,...,mand hj(2) =0 for j =1,...,L
A.3.3 Penalty function

A penalty function is used to transform a constrained optimization problem into a
single unconstrained optimization problem. Consider the following mathematical pro-
gramming problem:

minimize T
w(z) (A.5)
subject to z€ X,

where f is continuous function from R"™ into R and X is a subset of R". A penalty

function associated with problem (A.5) is defined by
plz) +rd(z),

where a parameter » > 0 is said to be a penalty parameter and ® is a continuous
function from R" into A which has a property that ®(xz) > 0 for all x € R" and
$(x) =0 if and only if z€ X.

Suppose that X is defined as
X ={zcR"|ez) <0 i=1,...,m},

The following functions are the examples of penalty functions:

(a) l; penalty function:
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p(@) + 1Y max(0, ci(z).
i=1

(b) Quadratic penalty function:

plz) + %max((), c;(;r.})z.

The quadratic penalty function is differentiable. On the other hand, the [, penalty

function is not differentiable but is known to be ezact [Bert75].
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