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Preface 

In the last fifteen years, the variational inequality problem has been used to study and 

formulate various equilibrium problems arising in engineering, economics, operations 

research, transportation and regional sciences. The variational inequality problem was 

originally introduced by G. Stampacchia in the middle of 1960's to formulate and 

study partial differential equations, and hence, the early work was mainly focused on 

infinite-dimensional variational inequality problems. 

Studies on finite-dimensional variational inequality problems started in 1979, when 

M. J. Smith formulated an equilibrium condition for traffic assignment problem in 

the form of variational inequalities. Since then , study of the variational inequality 

problem has become active and large progress has been made from both theoretical 

and practical point of views. 

Among various research subjects , it is important to construct solution methods 

for the variational inequality problem. It is well known that the variational inequal­

ity problem is a generalization of a system of nonlinear equations and the nonlinear 

complementarity problem. So it is natural that various iterative algorithms, such as 

projection methods, linearized Jacobi method, successive over-relaxation method and 
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Newton's method havt> been developed as generalizations of iterative algorithms for 

nonlinear equations and nonlinear complementarity problems, and their convergence 

theorems have been established. 

On the other hand, another approach for solving variational inequality problems 

has recently attracted much attention. This approach <>xploits various merit functions 

for the variational inequality problem. The purpose of introducing a merit function is 

to formulate a variational inequality problem as an equivalent optimization problem, 

and hence, many descent methods proposed for nonlinear programming problems are 

applicable. 

Our studies focuses on the optimization formulation of the variational inequality 

problt>m. Ont> of the main aims of this thesis is to develop both theoretically and 

practically efficient algorithms for the variational inequality problem, which is based 

on an equivalent optimization formulation. Another aim of this thesis is to construct 

a new merit function, which is particularly useful to deal with variational inequality 

problems with general nonlinear constraints. 

Importanct> of the optimization formulation approach to the variational inequality 

problem is now being recognized. The author hopes that the results obtained in this 

thesis will help further improve the study in this field. 

Kouichi Taji 
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XII 

Notation 

We provide nonations that will be frequently used in this thesis. For other mathemat-

ical concepts and definitions, see Appendix. 

\Ve denote by Rn the real n-dimensional Euclidian space. Throughout the thesis, 

every vector is a column vector, i.e. x E Rn represents then-dimensional column vector 

x= 

For a mapping F : Rn - Rn. F(x) is also considered an n-dimensional column vector 

whose i-th component Fi(x), where F1 is a function from Rn into R. The transpose 

of an m x n mat.rix A and a vector J' is denoted by At and xt, respectively. We often 

write x ~ 0 if X; ~ 0 for all i = 1, · · ·, n. The nonnegative orthant of Rn , denoted by 

R~, is the set of vectors x E Rn such that :r ~ 0. We denote by e; the i-th unit vector 

such that the i-th element of e, is 1 and the other elements are zero. E1 represents the 

j x j identity matrix. 

The symbol C ·) denotes the innc1· product in Rn defined by 

1l 

{x, y) = L XiYi· 
i 1 

xiii 



x.iv 

II . II denotes the Euchdean norm in Rn defined by 

I 

ll.rll= (x,.r)2. 

We often use the G -norm in Rn, defined by 

I 

llxllc= (:t,Gx)2", (0.1) 

for an n x n symmetric positive definite matrix G. The norm of an n x n matrix A, 

also denoted by II A II, is defined by 

The gradtent of a function <P : Rn ~ Rat x E Rn is defined to be the column vector 

where B¢>(x) denotes a partial derivative. The 
8xi 

Hessian of </> at .r E Rn, denoted by 

. 82¢>(x) 
\72¢>(x), is t.he n x n symmetric matrix whose (i,j)-th component IS Bxiaxi · The 

Jacobtan of the mapping F : Rn -+ Rn at x E Rn, denoted by \7 F(x), is the n x n 

matrix defined by 

'VF(x)- (Y'Ft(x), ... , 'VFn(x)). 

Generally x• denotes a solution to the problem under consideration and { xk} de­

notes a sequence generated by algorithms, where the superscri pt k represents the k-th 

iterate. In particular, x 0 denotes an initial iterate. 

Chapter 1 

Introduction 

1.1 Historical background on study for the variational 
inequality problem 

In the last fifteen years, the variational inequality problem has been widely used to 

formulate and study various equilibrium models arising in engineering, economics and 

operations research. The finite dimensional variational inequality problem is to find a 

vector x* E S such that 

(F(x*),x- x*) 2:0 for all xES, (1.1) 

where the set S is a nonempty closed convex subset of Rn and the mapping F is a 

continuous mapping from Rn into Rn. 

The history of the variational inequality problem dates back to the work of Starn-

pacchia et al. [HaS66, LiS67J, who formulated partial differential equations as varia-

tional inequality problems. As the early studies were tied with boundary value prob-

lems, Stepfan problem and fluid dynamics, the attention was mainly paid to infinite 

dimensional variational inequality problems, i.e., the set S in (1.1) is replaced by a 

1 
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closed convex subset of a Hilbert space V and F represents the mapping from V into 

its dual. The book of Kinderlehrer and Stampacchia [KiS80] provides many references 

and applications concerning infinite dimensional variational inequality problems. 

On the other hand , the finite dimensional variational inequality problem may be 

viewed as a generalization of systems of nonlinear equations , convex programming 

problems and complementarity problems. Marcino and Stampacchia [MaS72] inves­

tigated the relation between finite dimensional variational inequality problems and 

convex programming problems. They also developed a computational method for solv­

ing finite dimensional variational inequality problems. Karamardian [Kar71, Kar72] 

showed that the variational inequality problem includes complementarity problems 

which arise in various fields such as quadratic programming, game theory and eco­

nomic equilibria [I<ar69a, Kar69b]. He derived some existence results for the nonlinear 

complementarity problem from those for the variational inequality problem [Kar71]. 

Before the 1980's, in spite of these , studies on the finite dimensional variational in­

equality problem were not so active, compared with those for convex programming and 

complementarity problems. 

In the 1980's, the study on the variational inequality problem in a finite dimen­

sional space became more popular and attracted much attention in connection with 

various equilibrium problems arising in engineering, economic and operations research. 

In 1979, Smith [Srni79] presented a formulation of an equilibrium condition for the 

traffic equilibrium problem. Dafermos [Daf80] first pointed out that Smith's for­

mulation is a finite dimensional variational inequality problem. In the same paper, 

Introduction 3 

Dafermos also presented a solution method , which belongs to the class of projection 

methods, for the variational inequality problem. Since then , finite dimensional van­

ational inequality problems have been used to formulate and study various equilib­

rium problems, such as traffic assignment problems [Aal\182 , BeG82, Nag93]. spa­

tial price equilibrium problems [IIar84, NaA88, Tob88], Walrasian equilibrium prob­

lems [Mat87], Nash-Cournot production problems [MSS82] , Nash price equilibrium 

problems [CDH90] and other equilibrium problems [Flo89, ~ag87 , NaA89]. Also1 

many important results on algorithms [Da£83, HaP90, PaC82], sensitivity analysis 

[Daf88, DaN84, Kyp87, Kyp90 , QiM89, Tob86] and generalizations of the problem 

[ChP82, FaP82, Fuk85] have been investigated. 

Throughout this thesis, we focus on the finite dimensional variational inequality 

problem: hence we shall simply call it the variational inequality problem. 
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1.2 M erit functions for the variational inequality prob­
lem 

The variational inequality problem can be regarded as a generalization of a system of 

nonlinear equations and the nonlinear complementarity problem. So it is natural to 

generalize various iterative algorithms developed for a system of nonlinear equations 

and the nonlinear complementarity problem to the variational inequality problem. 

Such generalized algorithms include projection methods [Aus76, BeG82, Fuk86), lin-

earized Jacobi method [PaC82], nonlinear Jacobi method [F1S82, PaC82], successive 

over-relaxation method [Pan85], Newton's method !Jos79a, PaC82], a quasi-Newton 

method [J os79b] and generalized descent methods (HaM87, IFI88, Smi84]. Iterative 

algorithms and their convergence properties are summarized in [Daf83, HaP90, PaC82]. 

Recently, another approach that, by introducing a merit function, reformulates 

the variational inequality problem as an optimization problem has attracted much 

attention. The function cp : 0 --+ R U { + oo}, where 0 is subset of Rn such that S ~ 0, 

is said to be a merit function for the variational inequality problem (1.1) when <p has 

the following property: 

(a) cp(x) > 0 for all X E 0. 

{b) cp(x) = 0 if and only if xis a solution of (1.1). 

A merit function enable us to formulate an equivalent optimization problem for a 

variational inequality problem: 

Introduction 5 

minimize cp(x ) 

subject to x E 0. 

One of the advantages of introducing a merit function is that many descent methods 

proposed for nonlinear programming problems become applicable. 

Various merit functions for the variational inequality problem have been proposed 

and studied. In 1976, Auslender [Aus76] introduced the so-called gap function g : S -. 

R U { +oo} for the variational inequality problem, defined by 

g(x) =sup{ (F(x), x- y) I y E S}. 
y 

(1.2) 

(The name 'gap function ' was first used by Hearn (Hea82] in studying the duality gap 

of convex programming problems.) It can be seen that the gap function has the above 

properties (a) and (b) with 0 = S. So by using the gap function, the variational 

inequality problem can be formulated as an optimization problem: 

minimize g(x) subject to x E S. (1.3) 

Note that the function g may be infinite-valued when the setS is unbounded. Auslen-

der [Aus76] showed that, when the constraint set is bounded and strongly convex, the 

gap function is everywhere differentiable. Moreover he proposed a descent method 

which uses the derivatives of the gap function. But the assumption of strong convex-

ity is too restrictive and , for example, excludes the case in which the constraint set 

is a polyhedral convex set. Hearn , Lawphongpanich and Nguyen [HLN84] discussed 

the convexity of the gap function. Based on the gap function , Marcotte [Mar85] pro-

posed another descent method for monotone variational inequali ty problems, and Mar-
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cotte and Dussault. [MaD87J proposed a globally convergent modification of Newton's rukushima [Fuk92J also proposed a desc<'nt method for solving monotone variational 

method. inequality problems. The regularized gap function was also usc.>d iu a globally convcr-

For monotone variational inequality problc.>ms, Hearn and ~guyen [lleN82J intro- gent modification of .:\ewton's method by Taji. Fukushima and Jbaraki [TFI93J. 

duced the dual gap functwn g : S - R U { +oo}, defined by By replacing the.> quadratic term~ (y .cG(y- .r)) in (1.5) with a general strongly 

g ( x) = max { ( P ( y), x - y} I y E S} . 
y 

(1.4) convex function <f> (y-x), Wu, florian and l\Iarcotte [WFM93J gclH'ralizcd the regular-

ized gap fuuction and proposed a gcn<'ral descent framework for monotone variational 
Since the dual gap function is defined as the.> point wise.> maximum of a set of linear func-

inequality problems. Zhu and J\Iarcottc [Zh~l93J also proposc.>d a similar generaliza-
tions, the dual gap function leads to an equivalc.>nt cont•cx minimization problc.>m. Based 

tion of the regularized gap function. By using their merit function. Zhu and ~Iarcotte 
on this formulation, 0iguyen and Dupuis [Ng081J proposed a solution method which 

[ZhM93J proposc.>d descent methods and globally convergent modifications of l'ewton 's 
is closely related to the cutting plane algorithm in nonlinear programming [Zan69J. 

method and nonlinear Jacobi method [MaZ95J. Independently of Fukushima, Auch-
The gap function and the dual gap function are in general non-differentiable. It 

muty [Auc89J proposed a class of merit functions , which includes the gap function , 
has been well known that, under the symmetry assumption. an equivalent differen-

dual gap function and Fukushima·s regular·ized gap function. Lar·sson and Patriksson 
tiable optimization formulation of the variational inequality problem exists [HaP90]. 

[LaP94J gcneraliz<'d Auchmuty's class of mc.>rit functions. 
Whether or not ther<' exists an equivalent differentiable optimization formulation for 

i\lore recently, Peng [Pen95J introduced th<' D-gap funclton for variational inequal-
general asymmetric variational inequality problems had been open for a long time. 

ity problems. The D-gap function is df'fined on Rn as the difference of two regularized 
Recently by introducing the regularized gap function, Fukushima [Fuk92] solved this 

gap functions. Peng [Pen95J showed that the D-gap function is nonnegative on Rn 
question affirmatively. The regularized gap function is defined by 

and its zero points coincide with solutions to the variational inequality problem. and 

fs(x)=m;x{ (F(.r).y-.r}-~(y-.r.G(y-x))l yES}. (1.5} 
hence the 0-gap function leads to an uncon.<:lmined optimization reformulation of the 

where G is an n x n symmetric positive definite matrix. Fukushima [Fuk92J showed variational inequality problem. \ 'arious intc.>resting properties of the D-gap function 

that the regularized gap function has properties (a) and (b) with n - s and that was investigated by Yamashita, Taji and Fukushima [YTF95J. 

the regularized gap function is differenllablc whenever the mapping involved in the Pang [Pan90J proposed another equivalent optimization formulation for variational 

variational inequality problem is differentiable. Basc.>d on the regularized gap function, inequality problems. which is bas<'d on B-diffcrentiable equations. and developed a 
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damped Newton method for variational inequality problems [PaG93]. Xiao and Harker 

[XiH94a, XiH94b] considered a similar B-differentiable optimization formulation, and 

proposed a globally convergent ewton method for solving variational inequality prob­

lems. 

Recent developments of merit functions and related algorithms for variational in­

equality problems and complementarity problems are summarized in a survey paper 

by Fukushima [Fuk96] 

In this thesis, we study optimization reformulations for the variational inequality 

problem and develop practically efficient algorithms. In particular, we show that the 

regularized gap function and its modification are useful in designing globally convergent 

Newton method. 

Introduction 9 

1.3 Research objective and outline of the thesis 

One of the main aims of the thesis is to develop efficient algorithms , based on equivalent 

optimization reformations, for solving the variational inequality problem and to exam­

ine their convergence properties. Another aim of this thesis is to construct a new merit 

function which enables us to deal effectively with variational inequality problems in­

volving general nonlinear constraints. Furthermore, we shall demonstrate the practical 

usefulness of optimization reformulations of the variational inequality problem. 

Chapter 2 introduces the definition of the variational inequality problem and related 

concepts and notations which will be necessary for the development of subsequent 

chapters. 

In Chapter 3, we propose a globally convergent Newton method for solving varia­

tional inequality problems [TFI93]. We first consider the differentiable merit function 

introduced by Fukushima [Fuk92) to formulate the variational inequality problem as 

an optimization problem, and show some properties of the merit function. Using this 

function, we propose to modify Newton 's method for variational inequality problems. 

The purpose of introducing this merit function is to provide some measure of the dis­

crepancy between the solution of the variational inequality problem and the current 

iterate. It is shown that, under the strong monotonicity assumption, the method is 

globally convergent and, under some additional assumptions, the rate of convergence 

is quadratic. 

The nonlinear complementarity problem is a special case of the variational m-
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equality problem, and has also been used to study and formulate various equilibrium 

problems [Aas79, Flo89, FTSH83, Kar69a, Kar69b, Lem65, Mat87, Tob88]. In Chap­

ter 4, we propose globally convergent methods for solving nonlinear complementarity 

problems [TaF94], based on a differentiable optimization reformulation of the nonlinear 

complementarity problem. These are applications of the methods proposed in [Fuk92] 

and in Chapter 3 for solving variational inequality problems, but they take full advan­

tage of the special structure of t he nonlinear complementarity problem. We establish 

global convergence of the proposed methods. Some computational experience indicates 

that the proposed methods are practically efficient. 

In Chapter 5, we propose a new merit function for the variational inequality prob­

lem with general convex constraints [TaF96]. The proposed function is defined as an 

optimal value of a quadratic programming problem whose constraints consists of a 

linear approximation of the given nonlinear constraints. We show that the set of con­

strained minima of the proposed merit function coincides with the set of solutions to 

the variational inequality problem. We also show that this function is directionally 

differentiable in all directions and, under suitable assumptions, any stationary point 

of the function over the constraint set actually solves the variational inequality prob­

lem. Furthermore, we propose a descent method for solving the variational inequality 

problem and prove its global convergence. 

In Chapter 6, we propose a new globally convergent Newton method for solv­

ing variational inequality problems with general inequality constraints [TaF95]. The 

method solves at each iteration an affine variational inequality problem, in which not 

Introduction 11 

only the mapping of the problem but also the constraints are linearized. The algo­

rithm has the property that a subproblem can be solved finitely at each iteration even 

if the constraints of the given problem are nonlinear. To establish global convergence, 

we make use of the merit function proposed in Chapter 5. We show that., when the 

mapping involved in the given problem is strongly monotone, the method is globally 

convergent to the solution, and that, under some additional assumptions, the rate of 

convergence is superlinear. 

Finally, in Chapter 7, we summarize the results obtained in the thesis. 
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Chapter 2 

Problem Definitions and Basic 
Concepts 

2.1 Variational inequality problem and its applications 

In this section, we define the variational inequality problem and state its relation to 

nonlinear equations, optimization problems and complementarity problems. We also 

present its applications to economic equilibrium problems. 

Definition 2.1 Let S be a nonempty closed convex subset of Rn and let F be a 

continuous mapping from Rn into Rn. The variational inequality problem is to find a 

vector x* E S such that 

(F(x*), x- x*) ~ 0 for all x E S. (2.1) 

In geometric terms, inequality (2.1) states that the vector F(x*) is normal to the 

set S at the point x*. Figure 2.1 illustrates a variational inequality problem in R2 

graphically. In the figure, the shaded region represents the set S. The mapping F can 

be thought as a vector field. At a solution x*, the vector F(x*) is inward normal to 

13 



14 CHAPTER 2 Problem Definitions and Basic Concepts 15 

the boundary of S, while at the point x' which is not a solution , there is ayES such 

that the vector y- x' is at an obtuse angle to F(x'). 

If the set S is defined by a system of iMqualities and equalities of the form 

S = {x ERn I Ci(X)::; 0, i = 1, ... ,m, hj(X) = 0, j - l, ... ,l}, (2.2) 

s 
where Ci : Rn -+ R are continuously differentiable convex functions and h; : Rn --+ R 

are affine functions, the following proposition holds under Slater's constrained qualifi-

cation: there exists an x E Rn such that 

c,(x) < 0 fori= 1, ... , m and h1 (x) = 0, for j = 1, ... ,l. (2.3) 

For the proof of the proposition , see [Tob86]. 

X 

F(x') Proposition 2.1 Suppose that ci : Rn - R, i = 1, ... , m are continuously differen-

ttable convex functions. hj : Rn - R, j = 1, ... , I, arc affine functions and S is defined 

by (2.2). Suppose also that Slater's constramed qualificatzon (2.3) holds. Then x* ts a 

solution to (2.1) if and only if there exist Lagmng(. multipliers Ai, i = 1, ... , m, and 

\ 
/ 

-rrj, j = 1, ... , l , such that the vector { x*,). • , 1r*) sal1sfics the following conditions: 

m I 

F(x*) + L ).i\7c;(x"') + L -rrj\7hj(x*) = 0, 
i = 1 i=l 

(2.4) 

Figure 2.1: illustration of a variational inequality problem in R2 

The condition (2.4} corresponds to the Karush-Kuhn-Tucker condition in an opti-

rnization problem (cf. Appendix A.3.2) and is useful for the analyses in Chapters 5 

and 6. 
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Various mathematical problems can be formulated as variational inequality prob-

lems. In the following, we explain how these problems relate variational inequality 

problems. 

Nonlinear equation 

The simplest example of a variational inequality problem is a system of nonlinear 

equations. 

Proposit io n 2.2 LetS= Rn and let F be a contmuous mapping from Rn mlo Rn. 

Then the vanatwnal wequality problem (2.1) ~s equwalent to the system of nonlinea1· 

equations: 

F(x*) = 0. (2.5) 

P roof. If F(x• ) = 0, then inequality (2.1) holds with equality for all x E Rn. Con-

versely, if x* satisfies (2.1), then, by setting x = x*- F(x*), we have 

(F(x* ), -F(x. )) = - II F(x*) 11
2 2: 0, 

and hence, F(x*) = 0. 0 

Optimization problem 

The second example of a variational inequality problem arises from an optimization 

problem. Let us consider the optimization problem: 

minimize 

subject to 

<p(x) 

XEs. 
(2.6) 
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where <p : R 71 
- R is a continuously differentiable function and S is a closed convex 

subset of R11
• 

Definit ion 2.2 A vector x* is a slatwnary potnl of the optimization problem (2.6) if 

x* E Sand 

(2.7) 

In the optimization theory, inequality (2.7) is often called the first order necessary optt-

mality condtlwn for problem (2.6). We note that inequality (2.7) is just the variational 

inequality problem (2.1) with F = \l<p. 

The following two propositions clarify the relationship an optimization problem 

and a variational inequality problem. 

Proposit ion 2.3 Let x* be a solutwn to the optimization problem (2.6), t.e., tp(x) 2: 

<p(x*) for all xES. Then x• solves the vanatwnal inequaltty problem (2.7). 

Proof. Since S is convex, x* + t(x- x*) E S for any x E S and 0 ~ t ~ 1. Then we 

have that <p(x• + t(x- x*)) 2: <p(x*). Hence, 

(
'r"7 ( *) *) 

1
. <p(x• + t(x - x*))- tp(x*) > 

0 v <p X , X - X = 1m _ 
1--<0+ t 

holds for any x E S. 0 

Proposition 2.4 If the function <p is pseudo-convex on S, then a vector x* satisfying 

(2.7) is a solutwn of (2.6). 
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Proof. Since x• satisfies (2.7), it follows from the definition of pseudo-convexity (cf. 

Appendix A.2} that 

'P(x ) ~ <p(x*) for all .r E S, 

and hence, x* is a solution to the optimization problem (2.6) 

Complementarity problem 

0 

An important special case of the variational inequality problem (2.1) is the comple­

mentanty problem. 

Definition 2.3 Let F be the mapping from Rn into itself. The complementarity 

problem is to find a vector x• E Rn such that 

(2.8) 

When the mapping F is affine. problem (2.8) is called a linear complementarity 

problem. When F is a general nonlinear mapping, problem (2.8) is called a nonlin­

ear complementarity problem. The following proposition illustrates the relationship 

between a complementarity problem (2.8) and a variational inequality problem (2.1). 

Proposition 2.5 The vector x• is a solution to the complementarity problem (2.8) if 

and only if x* E R~ is a solution of the variational inequality problem: 

(F(x*), x - x* } ~ 0 for all x E R~ . (2.9) 

Proof. Suppose that .r• is a solution of (2.8). Then for all x E R~, we have 
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that is 

(F(x* ), x - .r*) ~ 0 for all .r E R~ . 

Therefore, x* is a solution of (2.9). 

Conversely, suppose that x* is a solution of (2.9). Substituting x = x* + e, into 

(2.9), we have that (F (x* ), ei) = Fi(.r*) ~ 0 for all i = 1. . .. , n, and hence , F (x* ) ~ 0. 

Substituting x = 2x* into (2.9) , we have 

{2.10} 

We also have 

(F(x*), - x*) ~ 0 (2.11) 

by substituting .r = 0 into (2.9). From (2.10) and (2.11 ), we have (x\F(x *)) = 0. 0 

Economic equilibrium problem s 

Variational inequality problems are used to formulate and study various economk 

equilibrium problems. Here, we briefly explain how the Nash equilibrium problem and 

the traffic assignment problem can be formulated as variational inequality problems. 

For detailed expositions and for other economic equilibrium problems, the reader may 

refer to the book of 'agurney [Nag93]. 

The first example is a Nash equilibrium in an oligopolistic market [MSS82, Har84]. 

Let there be n firms which supply a homogeneous product in a noncooperative fashion. 
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Let the function p(q) represent the price at which the consumers will demand a quantity 

q and let x. denote the i-th firm's supply. Finally, let s,(xi) denote the i-th firm's total 

cost of supplying .ri units. Then a Nash equilibrium solution for the market is a vector 

x• = (xi, ... , x~) 1 such that xi is a solution to the following optimization problem for 

all i = 1, ... , n: 

maximize 

subject to 

Xip(xi + qi)- si(xi) 

Xi ;:::: 0, 

where qi = L:x;. Harker [Har84] shows that, when si(xi) is continuously clifferentiable 
j-:f;i 

and convex for all i = 1, ... , n, p( ·) is strictly decreasing and continuously differentiable 

and qp(q) is concave with respect to q, then l'• is a Nash equilibrium solution if and 

only if x* is a solution to the variational inequality problem 

(F(x•), x- x•} ;:::: 0 for all x E R~, 

where Fi(x) = s~(xi) - p (t Xj) - XiP
1 (t Xj). Note that it follows from Proposi-

J=l J I 

tion 2.5 that this problem can be reformulated to the complementarity problem: 

for all i = 1, ... , n. 

The next example is a traffic assignment problem [Aas79, BeG82, Daf80, Smi79]. 

Consider a network consisting of a set of nodes Nand a set of directed links C together 

with a set W of node pairs referred to as origin-destination (0 / D) pairs. For each 0 / D 
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pair wE W, 'Pw denotes a set of simple directed paths joining w. We denote by Xp the 

flow on the path p. Then the feasible path flow vectors x whose components are Xp, 

p E Pw, wE W, is given by 

L Xp = dw, Xp;:::: 0, for all p E 'Pw, wE W}, 
p E'Pw 

(2.12) 

where dw > 0 is a given demand for an 0/D pair w. For each link l E £,the link flow 

Yt is defined as the sum of all the path flows on the paths p containing the link l, that 

is, 

Yt = L 6tpXp, 
pC'P ... ,wE:W 

wherE' 6tp = l if link lis contained in path p and 61P = 0 otherwise. 

Let Ct dE-note the user cost associated with traversing link l, and Cp the user cost 

associated with traversing the path p. For example, the value of Ct represents the travel 

time in traversing link l. We have 

which may be viewed as the total travel time of path p. We assume that the cost 

associated with a link depends on the entire link flow pattern, that is, 

Ca = Ca(y), 

where y is a vector whose components are Yt, l E £. 

Then the traffic equilibrium problem is to find a vector x E X such that for each 

path p E P w and every 0 / D pair w 
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if 

if 

x• > 0 p 

x; = 0, 

CHAPTER 2 

(2.13) 

where Aw is an indicator, whose value is not known a priori. This condition is based 

on t ht' user optimization principle in which no user may decrease one's travel time by 

changing one's route unilaterally. In fact, the condition (2.13) asserts that only those 

paths connecting an 0 j D pair that have minimal user costs are used. 

Let C bt> a mapping with components Cp and let 6. = (btp) be a matrix. It can 

be shown [Daf80, Srni79) that the equilibrium condition (2.13) is equivalent to the 

variational inequality problem 

(F(x·),.r- x *) 2:0 for all xE X, 

where F(x) = t:.LC(D.x). 
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2 .2 Monotone mapping and projection 

We first introduce the notion of monotonicity. 

D efinition 2 .4 A mapping F : Rn ---.. Rn is said to be 

(a) monotone on S if 

(P(x)-F(y),x-y)2:0 forall x,yES, (2.14) 

(b) stnctly monotone on S if 

(F(x) - F(y), x - y) > 0 for all x, y E S, .r '# y, (2.15) 

(c) strongly monotone with modulus JL > 0 on S if 

(F(.r)- F(y),x- y) 2: JL II x- y 11
2 for all x.y E S. (2.16) 

In the one-dimensional case, F is monotone if and only if F is nondecreasing and 

strictly monotone if and only if strictly increasing. Moreover, suppose that F = '\lv; 

where v; : Rn ---.. R is a differentiable function. Then F is monotone if v; is convex; F is 

strictly monotone if v; is strict convex; and F is strongly monotone if v; is strongly con-

vex. For definitions of convexity, stri ct convexity and st rong convexity, see Appendix 

A.2. 

ext proposition shows the relationship between the mapping F and its Jacobian 

'VF(l·). 

Proposit ion 2.6 [OrR70, Chapter 5.4) Suppose the mappmg F zs differentiable. Then 

F ts stnctly monotone on S if the Jacobtan matrzx \1 F(x) ts posttive defimte for all 

.r E S, and F ts strongly monotone on S tf and only tf ~ F ( x) satzsfies 
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(.r- y, 'VF(x)(x- y)} 2: JLIIx- Yll 2 for all x,yE S. (2 .17) 

The variational inequality problem (2.1) does not necessarily have a solution. But 

when the solution set of (2.1) is actually nonempty, it is convex ifF is monotone, and 

it is a singleton if F is strictly monotone. Furthermore, if F is strongly monotone, 

then problem (2.1) is guaranteed to have a unique solution [HaP90, Corollary 3.2]. 

Next we define the projection under the G-norm. 

Definit ion 2.5 Let G be an n x n symmetric positive definite matrix. The proJection 

under the C-norm of a vector x E R" onto the setS, denoted by Proj5 ,0 (x), is defined 

as the unique solution y to the following optimization problem: 

minimize II y - x lie subject to y E S. 

We note that. when G =En. Projs,c(x) reduces to the orthogonal projection. Figure 

2.2 illustrates the differencc betwecn Proj5 c(x) and the orthogonal projection. In the 
' 

figure, dotted ellipses represent contours of the function cp(y) =II y- x II~· Figure 2.2 

illustrates that Proj5 ,c(x) is a minimum of cp(y) overS and is different from orthogonal 

projection :r'. 

Using this notation, wc define a mapping H s: Rn ~ Rn as 

Hs(x) = Proh,c(x- c -1F(x)). (2.18) 

The next proposition characterizes a solution of the variational inequality problem as 

a fixed point of the mapping Hs. 
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Figure 2.2: lllustration of the projection under the G-norm 
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Proposition 2. 7 [BeT89, page 267} Let G be an n x n symmelnc posttwe defimte 

matrix. Then x"' solves problem (2. 1) tf and only if 

z.e., if and only tf x* ts a fixed point of the mappmg J/5 . 

Figure 2.3 illustrates Hs with G = En. In the case, Projs,c(x) reduces to the 

orthogonal projection. At the solution x*, the vector F(x* ) is inward normal to the 

boundary, and hence, :r• = H s(x*) holds. 
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x*-F(x*) x - F(x) 

Figure 2.3: Illustration of a mapping Hs with G =En 

It is known [BeT89, page 217J that the projection operator Proh,eO is nonexpan-

sive. i.e., 

II Proj 5,e(x)- Proh,e(Y) lie~ II x- y lie for all x,yE R". 

Hence, if the mapping F is continuous, so is the mapping H s defined by {2.18). 
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2.3 N ewton's m ethod 

:'-iewton 's m<'thod is a classical but useful method for solving nonlin<'ar equations and 

unconstrained minimization problems. For example, :\ewton's nwthod for solving 

nonlinear equations (2.5) generates a sequence { xk}, where xk+ 1 is determined to be 

a solution to the linearized equations: 

(2.19) 

It was shown [DeS83, Theorem 5.2.1J that the sequence {.rk} conv<'rg<'s quadratically 

if '\1 F(x*) is nonsingular and an initial iterate x0 is chosen to b<' sufficiently close to 

x* . 

An early attempt to generalize Newton's method to solve variational inequality 

problems was made by Josephy [Jos79aJ. We describe the basic ~<'wton method for 

the variational inequality problem. 

The b asic Newton method for the variational inequa lity p r oble m 

Choose an initial iterate x 0 E S and determine xk+ 1 to be a solution of 

the variational inequality problem obtained by linearizing F at the current 

iterate xk, i.e .. xk-tl E Sand 

{2.20) 

The basic Newton method was originally proposed by Josephy [Jos79aJ for the 

problem of g<'neralized equations. which was introduced by Robinson [Rob79, Rob80, 
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Rob83J and known to contain the variational inequality problem as a special case. 

But Josephy only considered the generalized equation equivalent to the variational 

inequality problem. 

By the same argument of Proposition 2.2, it is easy to see that {2.20) reduces to 

(2.19) when S = Rn, so this Newton method is a natural generalization of Newton's 

method for nonlinear equations. The next Theorem establishes local and quadratic 

convergence of the basic Newton method for the variational inequality problem. 

Theor em 2.1 [Jos79a. PaC82J Let S be a nonempty closed convex subset of Rn, F 

be a continuous mapping from Rn into Rn, and x* be a solution to the variational 

mequahty problem (2.1). Suppose that F ts contmuously dtfferentwble with \7 F(x*) 

being positive definite and that \7 F is Lipschitz continuous in some neighborhood of 

.r·. Then there e.nsts a neighborhood of x · such that. if the mttial iterate x 0 is chosen 

there, I he sequence { a·k} generated by the basic Newton method converges to the solution 

.r · quadratically, z. e .. there e.x1sts a constant ( > 0 such that 

{2.21) 

Proposition 2.5 says that, if S = R+, the variational inequali ty problem {2. 1) is 

equivalent to the nonlinear complementarity problem (2.8). The same proposition 

also says that inequality (2.20) can be written as a linear complementarity problem. 

Thus the above ~ewton method can be naturally transmitted to the complementarity 

problem. 
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T he basic Newton m ethod for the compleme ntarity p roble m 

Choose an initial iterate x 0 ~ 0 and determine .rk + l to be a solution x of 

the linearized complementarity problem: 

x ~ 0. F(xk) + \7 F(xk)t(x- xk) ~ 0 

and (.r,F(xk) + \7F(xk)1(x- xk)) = 0. 

29 

An analogue to Theorem 2.1 holds for the above Newton method for nonlinear 

complementarity problems, that is, under the assumptions that \7 F(x*) is positive 

definite and 'il F is Lipschitz continuous, then the sequence generated by the above 

algorithm quadratically converges to the solution x* of the complementarity problem 

(2.8), provided that an initial iterate x 0 ~ 0 is chosen sufficiently close to x• . 
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Chapter 3 

A Globally Convergent Newton 
Method for Solving Strongly 
Monotone Variational Inequality 
Problems 

3.1 Introduction 

In this chapter, we consider the variational inequality problem: 

(F(x•),x- x*} 2': 0 for all x E S (3.1 } 

where S denotes a nonempty closed convex subset of Rn and F denotes a continuous 

mapping from R" into R" (cf. Definition 2.1 ). 

By incorporating a line search strategy, Marcotte and Dussault [MaD87] have mod-

ified the basic Newton method (2.20) to obtain a globally convergent algorithm. Their 

method is based on the use of the gap function g : R" - R U { +oo} defined by (1.2}. 

When F is monotone , the method of Marcotte and Dussault [~laD87J is shown to 

converge globally to a solution of problem (3.1) and , under ·suitable assumptions, the 

31 
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rate of convergence is quadratic. It is noted that the setS is assumed to be compact 

in order that the function g is well-defined. l\loreover, global convergence has been 

proved with the exact line search to the gap function (1.2) [r..IaD87J. 

In this chapter we propose another modification of Newton's method. The method 

makes use of the regularized gap function defined by (1.5 ). It is shown that, when 

F is strongly monotone, the algorithm is globally convergent to a solution of problem 

(3.1), and, under some additional assumptions, the rate of convergence is quadratic. In 

particular, the method allows mexact line search and does not rely upon the compact-

ness assumption on the set S. Limited computational experience indicates that the 

proposed method is well comparable to the method of Marcotte and Dussault [MaD87J. 
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3 .2 R egularize d gap function 

In this section. we introduce the regularized gap function for variational inequality 

problem (3.1) and present some of its properties. 

D efinit ion 3.1 For an arbitrarily chosen positive definite symmetric nxn matrix G, 

we define the regularized gap function f s: nn ----+ R for a variational inequality problem 

(3.1} by 

fs(.r) = max{-(F(x).y-.r)-~(y x,G(y-x)}l yES'} (3.2) 

= 
1 

(F(x), Hs(x)- .r)-
2 

(F/s(x) x,G(Hs(:r) .r)), (3.3) 

where the mapping lis : Rn -. Rn is defined by (2.18). 

:\ote that. by the positive definitcn<.>ss of G. the maximum tn (3.2) is always 

uniquely attained by y = Hs(.r). t'sing the regularized gap function, an equivalent 

optimization problem can be obtained for any variational inequality problem. 

P roposit ion 3. 1 [Fuk92] Let f s be lhc rcgtdar·ized gap function defined by (3.2). Then 

fs(x) 2: 0 for all .rES, and fs(x) = 0 tf and only tf x solves (3.1 ). Hence x solves 

(3 .1 ) if and only zf 1l solvf.s the followzng optinuzatwn problem and its opltmal value 

ts :::ero: 

minimize f s(x) subject to .rES. {3.4) 

R emar k 3. 1 When problem (3.1) has no solution, the optimization problem (3.4) 

may have a minimizer which does not zero the function fs. For example, consider the 
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cas<' where F: R ___. R, F(a·) = - 1 and S = {x E Hlx ~ 0}. The corresponcling 

variational in<'quality problem is to find an x• ~ 0 such that x• ~ .r holds for all x ~ 0. 

But the existence of such a number is impossible and hence the variational inequality 

1 
problem has no solution. The function f s associated with G = 1 b fs(x) = 2 for all 

x ~ 0, so any :r > 0 is a global minimizer of problem (3.4). 

It can be shown that, for any closed convex set S, the regularized gap function is 

continuously differentiable whenever so is the mapping F. 

Pro position 3.2 [Fuk92] If a mapping F: Rn -. Rn 1s continuous, then the function 

f s defined by J. f2 is also continuous. Furthermore, t/ F zs contmuously differenttable, 

then f s is also continuously differentiable and its gradient is given by 

\lfs(x) = F(x)- [V'F(x)- G](Hs(x)- x). (3.5) 

The regularized gap function has an interesting property that, when V' F(x) is 

positive definite for all x E S, any stationary point of problem (3.4) is a global optimal 

solution of problem (3.4). The function Is is in gen<'ral not convex. 

P ropos ition 3 .3 [Fuk92] Assume that a mapping F: Rn -. R" ts continuously differ-

enttable and tls Jacobian V' P(x) is posittve definite fo1' all xES. If x is a stationary 

poznt of problem (3.4), i.e., 

(V' /s(x), y - x) ~ 0 for all yES, (3.6) 

then x is a global optimal solutwn of problem (3.4), and hena it solves the t•ariational 

inequality problem (3.1). 
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This proposition indicates that th<' regulariz<'d gap function can used to construct a 

desc<'nt method for solving monotone variational inequality problems. ).1or<'over. when 

the mapping F is strongly monotone on S, the following result holds. Note that this 

result does not require the differentiability of F. 

Proposit ion 3.4 Leta·• be a solut10n to (3.1). IfF is strongly monotone wtth modulus 

J.L on S, then the regulan.::.ed gap function fs satisfies the Inequality 

(3.7) 

In partzcular, if the matn.:r G IS chosen sufficiently small to satisfy I(; I < 2J.L. then 

lim /s(.r) = + <x>. 
.r.;;S, ll .c l -oo 

Proof. Since x• is a solution to (3.1). we have 

(F(a:• ), x- x*) ~ 0 for any x E S. 

From this inequality and the definition of strong monotonicity (2.16). we obtain 

(F(x),:r -l· .. ) ~ J.Lii x- x*ll 2 for any xES. 

Since (x* · x,G(x• - x)} ::=; IGI I x·- x 12 , it follows from (3.2) and (3.8) that 

/s(.r) > -(F(:t),:t·*- x) ~ (x*- x.G(x* - .r) ) 

> J.L II X - x*ll2 
- ~ II G II X - x*ll2 

= (J.L ~ II G II) ll:t· :r* 11 2 
. 

The last half of the proposition then follows immediately. 

(3.8) 

0 
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3.3 Globally convergent N ewton 1nethod 

In this section W<' present a globally convergent 7'-lcwton method for solving the vari-

ational inequality problem (3.1}, which incorporat<'s a line search strategy of Armijo-

type to the basic 1\ewton method (2.20). Throughout this section we assume that the 

mapping F is continuously differentiable and strongly monotone with mod ulus J.L (cf. 

(2.16) ). 

We first define the global convergen<·<' formally. 

D efinit ion 3.2 Consider the optimization problem: 

minimize ~;?(.r) 

x En. 
(3.9) 

subject to 

where ..p : R" - R U { +oo} is a function and n is a ~ubset of R". Then an algorithm 

A is said to b<' globally conl'crgent if, for any initial iterate .t·0 En, cvC'ry accumulation 

point of the s<'quence {.rk} generat<'d by A is a solution x · to problem (3.9). i.e. 

lim ;rk = x· for som<' subsequence {.rk}kt:K· 
k - ·oo . .r ... K 

For given .r f S, we consider the following linearized Yariational inequality problem 

which is to find :r E S such that 

( F(.r ) + \7F(x)t (x- J.'),y- x) ~ 0 for all yES. (3.10) 

The strong monotonicity ofF ensures that the lin<.'ariz<.'d probl<'m (3.10) always has a 

unique solution x inS. The linearized problem (3.10) is usually easier to solve than 

the original problem (3.1 ). In particular, if the set S is polyhedral convex, problem 
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(3 .10} ran be rewritten as a linear complementarity problem, wltich can be solved in a 

finite number of steps using Lemke's complementary pivoting method [Eav78]. 

In the remainder of this chapter, the linearized problem (3.10} is called LVI{x) and 

its unique solution is denoted ,V(.r). 

Now we explicitly describe the algorithm. 

Algorithm 3.1 

Step 0 Choose .r0 E S, 0 < {3 < 1, 0 < 'Y < 1, 0 <a< 1, and a symmetric positive 

defin ite matrix G. Let k := 0. 

St e p 1 Find the unique solution N(xk) E S that solves LVI(.rk), i.e., 

St ep 2 If f s(xk + dk) $ -yfs(xk), then set a;k := 1 and go to Step 3. 

Ot hNwise set frk := {3 1~t where lk is the smallest nonnegative integer l such that 

Step 3 Set xk+ 1 := xk + a;kdk. Let k := k + l. Return to Step 1. 

The next result shows that the ;o.;ewton direction dk = ,V (xk) - xk obtain ed by 

solving LVJ(xk) is a feasible descent direction for fs at xk. This in particular implies 

that the step size frk can be found in a finite number of steps at each iteration of the 

algorithm. 
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T h eorem 3 .1 Let 8 be a nonempty closed cont'eX subset of R". F b( a mapping from 

R 11 into itself, G be an n x n symmetric posttwc definite matrix and fs : R" ~ R be 

a functwn defined by (3.2). Suppose that F 1s contmuously dtffcrcnl7able and strongly 

monolont wtlh modulus J.L on 8. If xk zs not a solulwn to (3.1), then the vector 

dk = N(.ck) a·k satisfies the inequality 

(3.11) 

In p£trltcula1', tf the matnx G is chosen suffictently small to saltsfy II G II ~ 2J.L, then dk 

is a fcastblc dcscc nt directwn off s at xk. 

Proof. For simplicity of pr<'sentation, W<' omit the superscript 1.: in xk and dk. Since 

d- .V(:r)- l', it follows from (3.5) that 

(\7/s(:r),d) = (F(x),N(x)- x)- ((\lF(x)t- G)(N(.r)- .r), Hs(x)- x) 

= (F(:r) + \1 F(x)t(N(x)- x), N(x)- x) 

-(N(x)- x, \lF(x)t(N(x)- x)} 

+(F(x) + \1F(x)1(N(x)- x),x lls(x)) 

-(F(x),x- Hs(x))- (G(N(:r)- x).x fl s(x)) 

= -(F(x) + \7 F(x) 1(1Y(x)- x). Hs(x)- N(x)) 

+ { (F(x), Hs(x)- x) + ~(Hs(x)- x,G(Hs(x)- x))} 

1 1 2 
-(d, \1 F(x)d) + 2(d,Gd)- '2 II N(x)- Hs(x) lie. (3. 12) 

Globally Convergent Newton Method 39 

Since .V(l·) is a solution to LVI(x). the first term of (3.12) is nonpositive. From (3.3). 

th<' S<'cond t<'rm of (3.12) is equal to -fs(x), which is strictly negativ<' since xis not a 

solution to (3.1) (see Proposition 3.1). Hence, we have 

('\l f s(:r), d) < - (d, \1 F(x )d) + ~ (d, Gd). 

But since strong mono tonicity ofF implies (d, \1 F(:t )d) > I' II d 11 2 and since 

(d, Gd) <II G 1111 d 11 2
, we have the inequality 

The last half oft he theorem th<'n follows immediately. 0 

Th<' following theorem is the main result of this section. 

Theore m 3 .2 (global conv ergence) Let S be a nononpty closed convex subset of 

nn' F be a mapping from Rn into itself, G be an n X 71 symmctrtc positive definite 

matrtx and f s : R" -. R be a function defined by (3.2). Suppose that the mapping F is 

continuously differentiable and strongly monotone with modulus JL on S. If the matrix 

G is chosen sufficiently small to satisfy II G II < 2Jt, then the sequence { xk} generated 

by Algorithm 3.1 is globally convergent. 

Before proving the theorem, we show the following lemma. 

Le mma 3.1 IfF zs continuously differentiable and strongly monoto11e on S, then the 

mappmg .\': S -. S zs continuous on S. Furthermore x 1s the solution of problem 

(3.1) if and only l/x satisfies x = X(x). 
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Proof. fhe first half of the proposition follows from [HaP90, Theorem 5.4]. To prove 

the second half, suppose first that x = N(x). Then it follows from (3 .10) that 

F(x).y-x ) 2:0 forall yES. 

Thus, .r is the solution to (3.1). Conversely, suppose that .r solves (3.1). Then, since 

N(x)E S, it follows from (3.1) that 

\ F (.r ). S(x)- .r) 2: 0. 

Also it follows from (3.10) that 

(F(.r) + V'F(.r) 1(N(.r) - x),x- N(.r)) 2:0. 

Adding the last two inequalities and rearranging terms, we obtain 

(N(x) · x, VF(.r)(N(x)- x)) ~ 0. 

But since the strong monotonicity ofF ensures that V' F(.r) is positive definite (see 

Proposition 2.6), it follows that x = N(x·). 0 

Proof of Theorem 3.2. Since xk and .:r·k +elk both belong to S. and since 0 < Ok ~ l, 

it follows from the convexity of S that the sequence {xk} is contained inS. ~1oreover, 

by Theorem 3.1 and the line search rule of the algorithm, the sequence {fs(xk)} is 

nonincrcasing. This, together with Proposition 3.4, implies that the sequence {xk} is 

bounded, and hence has at least one accumulation point. 

If fs(xk + dk) ~ lfs(xk) holds infinitely often, then limk- ·oo fs(xk) = 0. Since Is 

is continuous by Proposition 3.2, we have fs(x) = 0 for any accumulation point x of 
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{.1·1'"}. Moreover, by Proposition 3.1, xis a solution of (3.1). Since (3.1) has a unique 

solut.ion by the strong monotonicity ofF [HaP90, Corollary 3.2], it then follows that 

the whole sequence {.rk} necessarily converges to the unique solution of problem (3.1). 

~ext we consider the case where fs(xk+dk) ~ -;fs(xk) holds for only finitely many 

k. Let {l.·k}keK be any convergent subsequence of {xk} and let i:E S be its Limit point. 

Since dk = N(xk)- xk and since N(·) is continuous by Lemma 3.1, {dk}kE: K converges 

to the vector d = .V(i)- x. Therefore, by Lemma 3.1, to prove that xis a solution of 

(3.1), it is sufficient to show that 

d = 0. 

Assume the contrary. Then there exist c > 0 and an index k such that 

II dk 112: E for all k E I<, k 2: k. 

Thus it follows from (3.11) that 

(Vfs(xk),dk) < - (JL- ~II Gil) e 2 for all kE I<, k 2: k, (3.13) 

from which we obtain 

(V fs(x).d) ~ (JL- ~II Gil) e2 < o. (3.14) 

On the other hand , it follows from the line search rule that 

(3.15) 

and 



42 CHAPTER 3 Globally Convergent Newton .\Iethod 43 

f ( k) f ( k a k dk ) a-k In f ( k ) dk ) 
S l' - S X + 73 < -o-73 \ v S X , (3.16) Step 2' If g(:rk + dk) < "Y~g(xk), then set nk := 1 and go to Step 3. 

for all J.· E K sufficiently large. Since, by Proposition 3.1, the sequence {fs(:rk)} is Otherwise find ak such that 

nonnegative and since {/s(:rk)} is monotonically decreasing, (3.15) implies 
. ( k dk) Ct'k E arg tlUnaf (O,l] g :z· +a . 

Remark 3.3 In Algorithm 3.1, the inexact line search rule may be replaced by the 
Hence, from (3.13), we have 

exact rule of Marcotte and Dussault's algorithm [).1aD87]. l:nder the same assumption 

of Theorem :3.2, global convergence of the algorithm with exact line search can be 

Then, dividing both sides of (3.16) by ak/{3 and taking limit, we obtain proved in a way similar to [MaD87]. Moreover, the analysis of the rate of convergence 

- ( \1 f s ( x ) , d) ~ - o- ( \1 f s ( x) , J) . 
[MaD87] to be given in the next section also remains in force for the algorithm with 

exact line s<>arch. 

Since o- < 1, this implies 

which contradicts (3.14). 

Consequently, we have J = 0, i.e., i: is a solution of (3.1). Thus, it follows from 

Lemma 3.1 that any accumulation point of {xk} is a solution to (3.1). Moreover, since 

strong monotonicity of F ensures that problem (3.1) has a unique solution, we can 

conclude that th<> E'ntire sequence converges to the unique solution of (3.1). 0 

Remark 3.2 Mar\otte and Dussault [MaD87] have obtained a globally convergent 

Newton method that uses the gap function g defined by (1.2) as a merit function. In 

their method, F is assumed monotone but not necessary strongly monotone. To obtain 

global \Onvergence, however, the method assumes the foUowing exact line search rule: 



44 CHAPTER 3 

3 .4 R ate of convergence 

In this section, we show that, under suitable assumptions, Algorithm 3.1 proposed in 

the previous section is locally quadratically convergent. We show the quadratic rate 

of convergence only for the case that S is polyhedral convex. For a general convex set 

S, whether or not Algorithm 3.1 is quadratically convergent is unknown. 

To obtain a rate of convergence result, we need the following strict complementarity 

condition [MaD87]. 

Definition 3.3 Suppose that S is polyhedral and that problem (3 .1) has a unique 

solution x•. Let S* denote the minimal face of S containing x*. Then we say that the 

geometric ~;tnct complementarity holds at x• if x E S and (F(.r*), x - x* ) = 0 imply 

xE 8*. 

Figure 3.1 illustrates the geometric strict complementarity condition. In the figure, 

x • denotes the unique solution. Then s· is denoted by the bold line of (a). In (b), 

the geometric strict complementarity condition holds. On the other hand, in (c) the 

vector F(x•) is normal to the face S2, and hence , the geometric strict complementarity 

condition does not hold. 

When the setS is defined by (2.2), a solution x* satisfies the condition (2.4) with 

vectors >. • and 1r*. Then the geometric strict complementarity condition holds if Ci, 

i = 1, ... , m, are all affine and c;(x* ) = 0 implies.>.; > 0 for all i = 1, ... , m. 

Now we can establish the following result of the rate of convergence. 
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(a) 

F(x*) 
F(x*) 

x* x* 
(b) (c) 

Figure 3.1: illustration of the geometric strict complementarity condition 
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T heorem 3.3 (q uadr atic conver gence) Let S be a nonempty closed convex subset 

of R 11
, F be a mappmg from Rn into tlself, G be ann x n symmetric positive definite 

matriJ: and f s : Rn - R be a functwn defined by (3.2). Suppose that F is contmu-

ously differ<. ntwble and strongly monotone with modulus J.L on S and that the matrix 

G satLsjies II G II< 2J.L. In addttwn, suppose that the set S is polyhedral convex, \1 F is 

Ltpschilz contznuous on a neighborhood X* of the unique solutwn x" of problem (3.1) 

and the geometric strtct complementarity condition holds at x•. Then there exists an 

mtegu k such that Ok = 1 for all k ~ k, and the sequence {xk} generated by the 

algorithm converges quadrattcally to the solution x*. 

P roof. By Theorem 3.2, the generated sequence { xk} converges to x*. It is sufficient 

to prove that fs(N(xk)) $ 'Yfs(xk) holds for all k large enough. 

l'nder the given assumptions, it is not difficult to show that \1 fs is Lipschitz 

continuous on the neighborhood X* of x*, i.e., there exists a constant L > 0 such that 

11\lfs(x)-\lfs(y)ll $ Lllx-yll for all x,yEX*. (3 .17) 

It follows from (3.17) that, for any X' y E x·' 

fs(x) fs(y) - fo1 
(\1 fs(y + s(x- y)), x- y} d.; 

= (\1 fs(y), x- y) + fo 1 

(\1 !s(y + s(x- y))- \1 fs(y), x- y} ds 

~ (\1 fs(y),x- y} + fo1 

Ls llx- vll 2 ds 

1 ? 
= (\1fs(y),x-y}+2LIIx-yll-. (3 .18) 
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Since fs(x*) = 0 by Proposition 3.1, and since \1 fs(x") - P(x*) by (3.5) and Propo-

sition 2.7, it follows from (3.18) that 

(3.19) 

holds for all X E s n x·. 

Since xk -... .r*. it follows from Theorem 2.1 Lhat 

(3.20) 

for some ( > 0, whenever k is sufficiently large. Moreover, under given assumptions, 

it follows from [J\1aD89, Proposition 1] that 

(P(x*), N(x·k) - x*) = 0 (3.21) 

for all k sufficiently large. It then follows from (3.19), {3.20), (3.21) and (3.7) that for 

any k sufficiently large 

fs(N(xk)) < ~ L II N(xk)- x*ll 2 

< ~ £(2 II xk - x* 114 
2 

< £(
2 

II k * 11 2 I ( k) 2J.L- II G II X - X s X • 

Therefore, fs(N(xk)) $ "ffs(xk) holds for all k large enough to satisfy 

L(2 II k *112 < 
2~t-IIGII x -x _(· 

The quadratic rate of convergence follows from the fact that the convergence rate of 

the basic Newton iteration xk+l - N(xk) is quadratic (see Theorem 2.1). 0 
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3.5 Computational results 

In this section, we report numerical results of Algorithm 3.1. All computer programs 

were coded in FORTRAN and run in double precision on a personal computer called 

Fujitsu FMR-70. 

Throughout the computational experiments, the parameters used in the algorithm 

were set as J = 0.5, 1 = 0.5 and u = 0.01. The symmetric positive definite matrix 

G was chosen to be the identity matrix multiplied by 0.01. The convergence criterion 

was 

For comparison purposes, we also coded the basic :\ewton method (cf. (2.20)) 

and the algorithm GNEW of Marcotte and Dussault [MaD87]. It is noted t hat we 

implemented the latter method with an inexact line search of Armijo-type, though 

its global convergence has been proved in [MaD87] only with exact line search rule 

(cf. Remark 3.2). In all test examples, the constraint sets S are polyhedral convex 

sets specified by linear inequalities. In solving the linearized subproblem LVI(xk) at 

each iteration of the above-mentioned algorithms, we first transformed it into a linear 

complementarity problem, and then applied Lemke's complementary pivoting method 

to the latter problem [Lem65]. 

Example 3.1 is a modification of the test problem used by M:arcotte and Dussault 

[MaD87]. In this problem, the constraint set S and the mapping F are taken respec-

tively as 

Globally Convergent Newton Metlwd 49 

Table 3.1: Data for Example 3.1 

0.726 -0.949 0.266 -1.193 -0.504 XJ 

1.645 0.678 0.333 -0.217 -1.443 X2 

F(x) = -1.016 -0.225 0.769 0.934 1.007 XJ 

1.063 0.567 - 1.144 0.550 -0.548 2'4 

0.259 1.453 -1.073 0.509 1.026 .rs 

arctan(x1 - 2} 5.308 

arctan(x2 - 2) 0.008 

+p arctan(x3 - 2) + -0.938 

arctan(x4 - 2) 1.024 

arctan(:rs - 2) -1.312 

Solution x• = (2.0, 2.0, 2.0, 2.0, 2.0)1 

S = { xE R5
1 ~Xi~ 10, Xi~ 0, i = 1, ... ,5 } 

and 

F(x) = Px + p<l>(x) + q, 

where Pis a 5x5 asymmetric positive definite matrix and ~(x) is a nonlinear mapping 

with components <l>i(x) = arctan(xi 2), i = 1, ... , 5. The parameter pis used to vary 

the degree of asymmetry and nonlinearity. The data of Example 3.1 are given in Table 

3.1. Numerical results for this example are shown in Tables 3.2"' 3.5. It is noted that, 

since algori thm GNEW requires the set S to be compact, we had to include the extra 
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Table 3.2: Results for Example 3.1 (p = 10) Table 3.3: Results for Example 3 .I (p = 20) 

Initial It erate Algorithm #Iterations Initial Iterate Algorithm #Iterations 

Newton 12 'ewton failed 

(25,0,0,0,0) GNEW 5 (25,0,0,0,0) GNEW 6 

Algorithm 3.1 5 Algorithm 3.1 6 

Newton 10 Newton failed 

(10,0,10.0,10) GNE\V 7 (10,0,10,0, 10) GNEW 7 

Algorithm 3.1 6 Algorithm 3.1 6 

Newton 12 Newton failed 

(10,0,0,0,0) GNEW 5 (10,0,0,0,0) GNEW 6 

Algorithm 3.1 5 Algorithm 3.1 6 

Newton 5 Newton 9 

(0, 2.5, 2.5, 2.5. 2.5) GNEW 4 (0. 2.5, 2.5, 2.5, 2.5) GNE\V 4 

Algorithm 3.1 4 Algorithm 3.1 4 

5 

constraint '2:: x; ::; 50 when the problem was solved by this algorithm. smallest problem are given in Table 3.6. Numerical results of this example are shown 
t=l 

Example 3.2 consists of several test problems of various sizes, whose data are ran- in Table 3.7. We note that the both mappings of Examples 3.1 and 3.2 is strong!.} 

domly generated. Specifically, in each problem, the constraint set S takes the form monotone on S. 

S = { x E R 11 I Ax ::; b, x ~ 0}, In Example 3.1, the behavior of the basic Newton method is rather unstable (see 

and the mapping F is given by 
Table 3.2 and 3.3). When the parameter p is so large that the mapping F is highly 

nonlinear, the Newton's method has failed for several initial iterates as shown in Table 

F(x) = Pr + 'll(x) + q, 
3.3 though the mapping is strongly monotone. The same table also shows that the 

where Pis an nxn asymmetric positive definite matrix and 'll(x) is a nonlinear mapping algorithms using line search strategies are always convergent, even if the initial iterates 

with components wt(x) = Pix1, where Pi are positive constants. The data of the are chosen far from the solution. Yloreover, Tables 3.2 and 3.3 show that, even when 



52 CHAPTER 3 Globally Convergent Newton Method 53 

Table 3.4: Result for Example 3.1 (p = 10): Algorithm 3.1 

Iteration f s (xk ) ll xk - x* ll frk XI X2 XJ X4 xs 

0 88721 23.345 25.000 0.0000 0.0000 0.0000 0.0000 

1 13078 4.4570 1.0 0.0000 5.1395 2.6209 4.3643 1.8197 

2 7492.9 3.9010 1.0 4.4516 0.0000 2.7069 0.0000 2.8416 

3 71 .933 0.5011 0.5 2.2258 2.2829 2.0183 1.8215 1. 7034 Table 3.6: Data for Example 3.2 (n = 5) 

4 1.0540 0.0211 1.0 1.9930 1.9894 1.9969 2.0050 2.0157 

5 0.0000 0.0000 1.0 2.0000 2.0000 2.0000 2.0000 2.0000 3.0 -4.0 - 16.0 - 15.0 - 4.0 XJ 0.004xf - 15 

4.0 1.0 - 5.0 - 10.0 - 11.0 xz 0.007x~ 10 
F (x ) = 16.0 5.0 2.0 - 11.0 - 7.0 X J + 0.005x; + - 50 

15.0 10.0 11.0 3.0 - 10.0 X4 0.009x! - 30 

4.0 11.0 7.0 10.0 1.0 Xs 0.008x~ - 25 

0.0 0.0 - 0.5 0.0 -2.0 - 10 

A = 
- 2.0 -2.0 0.0 - 0.5 - 2.0 

b = 
- 10 

Table 3.5: Result for Example 3.1 (p = 20): Algorithm 3.1 
2.0 2.0 - 4.0 2.0 - 3.0 13 

Iteration f s(xk ) II xk - x• I - 5.0 3.0 - 2.0 0.0 2.0 18 
frk X } X2 X3 X4 xs 

0 96697 8.9443 10.000 0.0000 0.0000 0.0000 0.0000 
Solution x· = (9.08, 4.84, 0.00, 0.00, 5.00) 1 

1 42955 5.6054 1.0 0.0000 5.7212 3.4167 5.1752 3.2181 

2 31025 4.4870 1.0 5.4586 0.0000 2.1595 0.0000 2.3820 

3 99.815 1.0188 0.5 2.7293 2.6397 1.9501 2.3001 1.9335 

4 4.3.972 0.1708 1.0 1.8725 1.9510 2.0489 2.0637 2.0639 

5 0.0342 0.0013 1.0 2.0011 1.9998 1.9998 1.9996 1.9997 

6 0.0000 0.0000 1.0 2.0000 2.0000 2.0000 2.0000 2.0000 
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the basic Newton method converges, it can happen that the number of iterations of 

Algorithm 3.1 is less than that of the basic Newton method. It can be observed from 

Tables 3.4 and 3.5 that Algorithm 3.1 converges quadratically to the solution. Note 

that, in this example, the unit step size is chosen at all but one iterations. On the other 

Table 3 7· Results for Example 3.2 .. 
hand, Table 3.7 shows that the three versions of rewton 's method all converge to the 

Initial Iterate Algorithm # Iterations solution for each test problem of Example 3.2. However it is observed that the number 

Newt.on 14 of iterations is less than or equal to that of the basic Newton method. Not.e also that, 
n=5 {0,0,100,0,0) Gl\'EW 13 

Algorithm 3.1 13 
in this example, the number of iterations is almost independent of the problem size, 

Newton 14 at least up to n = 25. 

n = 10 (100,0,0, ... ,0) GNEW 13 Finally, we may conclude that, as far as our limited computational experience is 
Algorithm 3.1 13 

Newton 12 
concerned, Algorithm 3.1 is well comparable to the algorithm GNEW of Marcotte and 

n = 15 (100,0,0, ... ,0) GNEW 12 Dussault [Ma087J. 

Algorithm 3.1 12 

Newton 12 

n = 20 (100, 0, 0, ... , 0) G TEW 12 

Algorithm 3.1 12 

Newton 17 

n = 25 (100,0,0, ... ,0) GNEW 13 

Algorithm 3.1 13 
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Chapter 4 

Optimization Based Globally 
Convergent Methods for the 
Nonlinear Complementarity 
Problem 

4.1 Introduction 

In this chapter we consider the nonlinear complementarity problem, which is to fined 

a vector x E Rn such that 

x* 2:: 0, F(x*) 2:: 0 and (x* , F(x*) ) = 0, (4.1) 

where F is a continuous mapping from Rn into itself. To solve the nonlinear comple-

mentarity problem (4.1) , various iterative algorithms, such as fixed point algorithms, 

projection methods, nonlinear Jacobi method, successive over-relaxation methods and 

Newton's method, have been proposed [GaZ81 , HaP90, PaC82]. Many of these meth-

ods are generalizations of classical methods for systems of nonlinear equations. Their 

convergence results have also been studied extensively [HaP90, PaC82]. 

57 



58 CHAPTER 4 

As!:>uming tlw monotonicity of mapping F, Fukushima (Fuk92] has recently pro-

pos<'d a diff<·n·ntiable optimization formulation for variational in<'quality problem (cf. 

Section 3.2) and proposed a decent algorithm to solve variational inequality problem 

[Fuk92]. Bas<'d on this optimization formulation, W<' hav<' proposed in Chapter 3 a 

modification of Newton's method for solving the variational itwquality problem, and 

proved that, und<'r the strong monotonicity assumption, the m<•thod is globally and 

quadratically convergent. 

In this chapt<'r, W<' apply the methods of Fukushima [Fuk92J and Algorithm 3.1 

proposNI in Chapter 3 to the nonlinear complementarity problem. We show that those 

methods can take full advantage of the special structure of problem (4.1), thereby 

yielding new algorithms for solving strongly monotone complementarity problems. \Ve 

establish global coiW<'rgence of the proposed methods, which are refinements of the 

results obtained for the variational inequality counterparts in several respects. In this 

chapter we show that the compactness assumption made in [Fuk92] can be removed 

for the strongly monotone complementarity p roblem. Moreover, some computational 

resu lts shows that t he proposed methods a re practically efficient for solving mono-

tone complcm<'ntarity problems, though the convergence of the proposed methods is 

theoretically proved only under the strong monotonirity assumption. 
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4.2 Equivalent optimization proble tu 

In this section, \\e introduce a merit function for tht• nonlin<'ar compl<'mentarity prob-

I em ( 4.1) and pr<'s<'nt some of its properti<'s. 

C'hoos<' positive parameters 6i > 0, i = 1, ... , 11 and defin<' function fc : Rn - R 

by 

(4.2) 

This function is a special case of the regularizt.>d gap function (3.2) originally introduced 

by Fukushima [Fuk92] for variational inequality problem (st>e Definition 3.1). Although 

som<' of its properties can be immediately deriv<'d from th<' r<'sults of [Fuk92]. we give 

here simple and direct proofs for these properties. which utilize a special structure of 

problem (4.1). 

For convenience, we define 

(4.3) 

n 

hence fc is written as fc(x) = L f~(:r). We denote by [) the diagonal matrix such 
i=l 

that 

( 4.4) 

We also denot(' 

Ilc(x.) =max ( 0, J'- o- 1 F(x)). (4.5) 
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where the max operator is taken component-wise, i.e., 

Using these notations, we have the following result. 

Lemma 4.1 Let the mappmg H e : R11
......., R~ be defined by {4.5). Then .r* solves (4.1) 

if and only ifx*- llc(.r*). 

Proof. Suppose that :r• is a solution to ( 4.1). Then either 

holds for each i- 1, ... , n. Since hi> 0, we have 

and 

Fi(x*) = 0 => (lie )i(x*) = max(O, x;) =xi. 

Thus (He )i(x*) =xi for all i. 

Conversely, suppose that x* satisfies x* = llc(.r*). Then, for each i, either 

{ 
x: = 0 { xi= J.'i h, 

1
Pi(.r*) 

xi- h
1 

1 F.(.r·) :S 0 or xi- 61 
1 Fi(.r• );::: 0 

holds. Hence, it follows from 61 > 0 that either xi = 0 and Fi(x*) 2 0, or .r; 2 0 and 

fii(x*) = 0 holds for each i. Thus x* solves (4.1}. 0 

Using the function (4.2). an equivalent optimization problem is obtained for the 

complementarity problem (4.1). 
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Propos ition 4 .1 Let the function fc: R11 
__, R be defined by (4.2). Then fc(x);::: 0 

for all x ;::: 0, and f c(x*) = 0 tf and only tf x* solves {4.1). Hence, x solves {4.1) if 

and only tf tt ts a solutwn to the followmg optimi::atwn problem and tis opttmal value 

ts zero: 

minimize f c(x) subject to x;::: 0. {4.6) 

Proof. We first show that fb(x) ;::: 0 for all x ;::: 0, so that / c(.r.) 2 0 for all x 2 

0. If Fi(x} - hi.r.1 :::; 0, then f b(x) = (2hi) 1 Fi{.r.)2 ;::: 0. So we consider the case 

Fi(x)- hiXi > 0. Since hi > 0, x, ;::: 0 and Fi(x) > hixi hold, we see from (4.3) that 

. l { 2 fC(x) = 
261 

Fi(x) - (Fi(x) 

hi 2 = x·F:(x)- -x· t t 2 t 

> 0. 

Therefore, fc(x) ;::: 0 holds for all x;::: 0. 

Next, suppose fc(x*) = 0. Then fb(:r*) = 0 must hold for all i. Hence, as shown 

holds for each i. Therefore, x• is a solution of (4.1). 

Conversely, suppose that x* solves (4.1). Then either F(xi) - 0 or x; = 0 holds 

for all i. If F(xi) = 0, then from (4.3) we have 
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Also if x; = 0, then we have 

J(;(x•) = 2~i {Fi(x*)2
- (max(O, Fi(x*)))2

} 

= 2~i { Fi(x.)
2

- Fi(x*)
2

} 

= 0. 

Therefore, we have fc(.r•) = 0. 

CHAPTER 4 

0 

Remark 4.1 When problem (4.1) has no solution, the optimization problem (4.6) may 

have a minimizer which does not zero the function fc. For example, let us consider the 

case of R1 and F(x) = x- 1. Clearly, the complementarity problem has no solution. 

However, given 6 > 0, the corresponding optimization problem (4.6) is formulated as 

1 
minimize 

26 
(x + 1)2 subject to x 2:: 0. 

The unique optimal solution to this problem is x = 0, at which the function value is 

1 
26 > o. 

It can be shown that the function f is continuously differentiable whenever so is 

the mapping F. 

Proposition 4 .2 If the mappmg F is continuously dif]erenttable, then so is the June-

lion fc defined by {4.2), and the gradunt of fc is g!l'en by 

V' fc(x) = F(x) - (V' F(x) - D)(llc(x) · x). (4.7} 
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Proof. We first note that, if a function <p: R" ~ R is continuously differentiable and 

<I>(.r) = (max(O,<p(.r))}2
, then <l> is continuously differentiable and the gradient of <I> is 

given by 

V'<I>(x) = 2 max(O, <p(x))V'<p(x). 

Hence, we have from (4.3) that 

Since 

holds, we have from (4.8) that 

Therefore, we have from ( 4.9) that 

71 

V' fc(.r) = LV' Jb(x) 
i - 1 

n 

L {(x, - (Hc)i(x))\lFi(x) + (Fi(x) - 6,xi + 6i(Hc),(x))et} 
i 1 

F(x) - ('\' F(x) - D)(Hc(x)- x). 

(4.8) 

(4.9) 
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This completes the proof. 0 

Proposition 4.1 says that finding a global optimal solution to (4.6) amounts to 

solving the complementarity problem (4.1). However, in general, optimization algo-

rithms may only find a stationary point of the problem. Thus it is desirable to clarify 

conditions under which any stationary point of problem (4.6) actually solves problem 

(4.1}. The next proposition answers for this question. 

P roposit ion 4.3 Suppose that "'V F(x) IS postlwe dE/intle for all x ~ 0. If x ~ 0 is a 

statwnary point of problem (4.6), i.e., 

("'V fc(x), y- x} > 0 for all y ~ 0, (4.10) 

then x is a global optzmal solutwn of problEm {4.6}, and hence zt soitlfS the nonlinear 

complementarity problem (4.1). 

P roof. Suppose that x satisfies (4.10). Then from (4.7) we have 

("'V fc(x), Hc(x) - x} 

= ((F(x)- D:r + DHc(x))- "'V F(x)(Hc(x)- x), He-x) 

= {F(x)- D:r + DHc(:r). Hc(:r) - x) 

- (Hc(x)- :r. "'V P(x)(Hc(x)- x)). (4.11) 

It is easy to see l hat 

{F(x)- Dx + DHc(:r).Hc(x)- x} 
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1l 

= I: { 6;(max(O, Xi- 6i1 F;(x))- xi)2 + (max(O, x;- 6i 1 Fi(x))- xi)Fi(x)} 
i - 1 

~ 0. (4.12) 

Since x satisfies (4.10), it follows from (4.11) and (4.12) that 

(Hc(x)- x, "'VF(x)(Hc(x)- x)} ~ 0. 

However, since "'V F(x) is positive definite, we have x = M(x). Therefore, it follows 

from Lemma 4.1 that x is a solution to {4.1). 0 

According to Definition 2.4, we call the mapping Fa strongly monotone on R~, if 

there exists a positive constant J.L > 0 such that 

(F(x)- P(y),x- y} ~ J.L II x- y 11 2 for all x,y ~ 0. (4.13) 

When F is strongly monotone, we have the following result which establishes an asymp-

totic behavior of the function fc. Xote that similar results have not been obtained for 

the general variational inequality problem. 

P r opositio n 4.4 IfF ts strongly monotone with modulus J.L on R4, then 

lim fc(x) = + oo. 
z~O. liz I •oo 

Proof. Let { xk} be a sequence such that xk ~ 0 and II xk II--. oo. Taking a subsequence 

if necessary, we may suppose that there exists a set I C {1, ... , n} such that xf -+ +oo 

for i E I and { xf} is bounded for i ¢ J. From { xk}, we define another sequence {yk} 

such that yf = 0 if i E I and yf = xf if i ¢I. From (4.13) and the definition of yk, we 

have 
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'2)F,(.rk)- F;(/)).r~ > 11- 2)xf)2. (4.14) 4.3 Algorithms 
iE/ iE/ 

By Schwartz inequality we have In this section, we propose two globally convergent m<'t.hods for solving the comple-

I I 

( 2)F;(.rk)- .fi(/))2) 2 (?=(xf)2) 2 > ?=(Fi(xk)- F;(yk))xf. 
t(/ tE/ tEl 

(4.15) 

It then follows from (4.14) and (4.15) that 

(4.16) 

Since {yk} is bounded by dt>finition, { Fi(Yk)} is also bounded. Therefore, since xf --+ 

+oo for all i E I, (4.16) implies 

L F;(xk)2- oo. 
i E / 

As shown at the beginning of the proof of Proposition 4.1, Jb(xk) = 2~i F;(xk)2 ~ 0 

6· 
if F;(xk) 6;xf :::; 0, and f~(:rk) ~ ; (xf) 2 if F;(xk)- Dixf > 0. Therefore we have 

n 

fc(xk) = L fb(:rk) 
i=l 

Since xf --+ +oo for all i E I and L Fi(xk)2 
--+ oo, it follows that fc(xk) -1 +oo. 0 

i E / 

mentarity problem (4.1). One is based on the method of Fukushima [Fuk92] and the 

other Algorithm 3.1 of Chapter 3, both of which were originally proposed for the vari-

ational inequality problem. Throughout this section, we suppose that the mapping F 

is strongly monotone on R~ with modulus Jl > 0 (see (4.13)). 

4 .3.1 Descent method 

The first method uses the vector 

d = Hc(x)- .r 

= max ( 0, x - D 1 F ( x)) - x {4.17) 

as a search direction at .r. When the mapping F is strongly monotone, it can be shown 

that the vector d given by ( 4.17) is a descent direction. 

Lemma 4.2 IfF is strongly monotone with modulus Jl, then the vector d given by 

( 4.17) satisfies the descent condition 

Proof. From (4.11) and (4.12), we have 

(V' fc(x), Hc(x) - x):::;- (Hc(:r) x, V' F(x)(Hc(:r)- x)). (4.18) 

It follows from Proposition 2.6 that, when F is differentiable and strongly monotone 

on Rf., V' F satisfies 
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(y- :r, ~ F(:r)(y- x)} 2: J.L I y- xll 2 for all x.y 2:0. 

Therefore, from (4.18) we have 

(V /c(:r), d} S -J.L II d 11
2

. 
D 

Thus the direction d can be used to determine the next iterate by using the following 

Armijo- type line search rule: Let 0' := {31, where [is the smallest nonnegative integer 

l such that 

where 0 < p < 1 and u > 0. ::\ote that. in the descent method originally proposed by 

Fukushima lfuk92] for the variational inequality problem, the line search only allows 

step sizes shorter than unity. Here, we propose the algorithm that allows longer step 

sizes at each iteration. 
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Algorithm 4.1 

Step 0 Choose :r0 2: 0. {31 > 1, 0 < fh < 1, u > 0, and a positive diagonal matrix D. 

Let k := 0. 

Step 1 Set dk := max(O,xk - D - 1F(xk))-xk and iik := max{slxk+sdk 2:0, s 2: 0}. 

Let l := 0. 

Step 2a If f c(xk)- fc(xk + dk) 2: u II dk 11 2 , then set ll'k := .Bi~t where lk is the largest 

nonnegative integer l such that 

f3i $ilk. fc(xk)- fc(xk + f3idk) 2: uB{ II dk 112 

and fc(xk + {3~~ 1 dk) > fc(xk + f3i dk). 

Go to Step 3. 

Step 2b Otherwise set ll'k := (3~k where lk is the smallest nonnegative integer l such 

that 

Step 3 Set xk+l := xk + O'kdk. Let k := k + 1. Return to Step 1. 

~ote that the vector Hc(xk-'-l) = max(O, xk+i D 1 F(xk+l )) has already been 

found at the previous iteration as a by-product of evaluating f c. Therefore one need 

not compute again the search direction dk at the beginning of each iteration. 
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T heorem 4.1 Let F be the mapping from Rn into ttsclf. Suppose that F ts continu-

ously d1fjerentiable and strongly monotone with modulus p, on R+. Suppose also that 

\7 F is Lipschztz contmuous on any bounded subset of R+. Then, Algorithm 4.1 is 

globally convergent tf the postlwe constant a ts chosen to be suffictently small such that 

a < p,. 

P roof. By Proposition 4.4, the level set B ={xI fc(x) ~ fc(x0 )} is bounded. Hence 

\7 F is Lipschitz continuous on B. Since F is continuously differentiable, it is easy 

to show that. F is also Lipschitz continuous on B. Under these conditions, it is not 

difficult to show that \7 fc is Lipschitz continuous on B, i.e., there exists a constant 

L > 0 such that 

II \lfc(x)- \lfc(y) II~ L llx- Yll for all x,y E S. 

Therefore, as shown in the proof of [Fuk92, Theorem 4.2], any accumulation point 

of {xk} satisfies x = J/c(x), and hence solves (4.1) by Lemma 4.1. Since strong 

monotonicity ofF ensures that problem (4.1) has a unique solution, we can conclude 

that the entire sequence converges to the unique solution of (4.1). 0 

Rema rk 4.2 In Fukushima [Fuk92], the global convergence theorem assumes not only 

the strong monotonicity of mapping F but the compactness of the constraint set, 

which is not the case for the nonlinear complementarity problem. Theorem 4.1 above 

establishes global convergence under the strong monotonicity ofF only. 
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4 .3 .2 Modification of Newton 's m ethod 

The second method to solve the complementarity problem is a modification of Newton's 

method, which incorporates a line search strategy. The basic :"Jewton method for 

solving the nonlinear complementarity problem (4.1) generates a scqut>nce {xk} such 

that x
0 2: 0 and xk+l is determined as xk+ 1 := x, wh<'re xis a solution to the following 

linearized complementarity problem (see Section 2.3): 

x 2: 0, F(xk) + \7 F(xk)t (x- xk) 2: 0 

and ( x, F(xk) + \7 F(xk) 1(x- xk)) = 0. 
(4.19) 

It can be shown that, when F is monotone, the Newton direction dk := x- xk obtained 

by solving the Linearized complementarity problem (4.19) is a feasiblt> descent direction 

of fc. 

Le mma 4.3 When the mapping F is strongly monotone with modulus p,, the vector 

dk := x- xk obtamed by solving the linearized complementarity problem ( 4.19) sattsfics 

the inequality 

Therefore, dk is actually a feastble descent direction of fc at xk, tf the matrix D ts 

chosen to satisfy II D II= m?-x{6i) < 4p,. 
1 

Proof. For simplicity of presentation, we omit tht> superscript k in xk and dk. Since 

d := x- x, it follows from ( 4. 7) that 

(\7 fc(x), d) = (F(x), x- x) + ((\7 F(x)- D)(x- Hc(x)), x- x) 
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= (F(x) + VF(x) 1(x- x),x- x)- (x- x, VF(x) 1(x- x)) 

+ ( F(x) + '\7 F(x) 1(x- x), x- Hc(x)) 

- (F(x), x- Hc(x)}- (x- x, D(x- Hc(x))} 

= - (F(x) + \7F(x)1(x - x),Hc(x)- x) 

+ (F(x), Hc(x) - x) + (x- x,D(Hc(x)- x)} 

{4.20) 

Since x is a solution to (4.19) and Hc(x) ~ 0, the first term of (4.20) is nonpositive. 

From {4.12), we have 

(F(x), Hc(x)- x) :S - (Hc(x) - x, D(Hc(x)- x)). 

Then it follows from t.he second term of {4.20) that 

(F(x),Hc(x)- x) + (x- x,D(Hc(x)- x)) 

< (x- x, D(Hc(x) - x)}- (Hc(x)- x, D(Hc(x) - x)) 

n 

L 6i {(xi - xi)((Hc )i(x)- Xi) -((He )i(x)- Xi)
2

} 

i=l 

~6i{- )2 1(_ )2} < ~ 2 (Xi- Xi - 2 Xi- Xi 
t = l 

1 
= 4(x-x,D(x-x)}. (4.21) 
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Hence, we have from ( 4.20) and ( 4.21) that 

However, since strong monotonicity ofF implies (d, \7F(x)d) ~ J.L lldll2 and since 

(d, Dd} :S II D II II d 11 2
, we have 

The last half of the proposition then follows immediately. 0 

Using this result, we can construct a modified Newton method for solving the 

nonlinear complementarity problem ( 4.1). 
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Algorithm 4.2 

Step 0 Choose x 0 2: 0, 0 < {3 < 1, 0 < a< ~~and a positive diagonal matrix D. Let 

k := 0. 

Step 1 Find the unique solution ;xk that satisfies 

;xk 2: 0, F(xk) + \1 F(xk)t(xk- xk) 2: 0, 

and (xk,(F(xk) + \!F(xk)t(xk- xk))) = 0. 

Step 2 Set Cl!k := {31k where lk is the smallest nonnegative integer l such that 

St ep 3 Set xk+l := xk + Cl!kdk. Let k := k + 1. Return to Step 1. 

When the mapping F is strongly monotone, we can establish the global convergence 

of Algorithm 4.2. 

Theorem 4 .2 Let F be a mapping from Rn into itself and D be a positive definite 

matrix defined by ( 4.4). Suppose that the mapping F is continuously differentiable 

and strongly monotone with modulus f-L· If the matrix D is chosen such that II D II = 

m~x(6i) < 4J..L, then, Algorithm 4.2 is globally convergent. 
~ 

P roof. By Theorem 4.3 and the Armijo line search rule, the sequence {fc(xk)} is 

nonincreasing. It then follows from Proposition 4.4 that the sequence { xk} is bounded, 
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and hence it contains at least one accumulation point. As shown in the proof of 

Theorem 3.2, any accumulation point of {xk} is a solution of (4.1). Since strong 

monotonicity ofF ensures that problem (4.1) has a unique solution, we can conclude 

that the entire sequence converges to the unique solution of (4.1). 0 

We can also show that the rate of convergence of Algorithm 4.2 is quadratic if 

FE C2 , that is, all Fi, i = 1, ... , n are twice continuously differentiable, and the strict 

complementarity condition holds at the unique solution x" of (4.1). 

Theore m · 4 .3 Let F be a mapping from Rn into itself. Suppose that the sequence { xk} 

generated by Algorithm 4-2 converges to the solution x* to the nonlinear complemen-

tarity problem ( 4.1). Suppose also that the mapping F belongs to class C2 , \1 F ( x*) is 

positive definite and \72 F is Lipschitz continuous on some neighborhood of x•. If the 

strict complementarity condition holds at x*, i.e., x; = 0 implies Fi(x*) > 0 for all 

i = 1, . . . , n, then there exists an integer k such that the unit step size is accepted for 

all k 2: k. Therefore, the sequence {xk} converges quadratically to the solution x*. 

Before proving Theorem 4.3, we show the following lemma. 

Lemma 4.4 Let x* be a solution to problem { 4.1). If F E C2 and the strict com-

plementarity condition holds at x", then fb is twice continuously differentiable on a 

neighborhood of x*, and the gradient and the Hessian of fb are given by 

\lff::(x) = { (xi\!Fi(x) +Fi{x)ei)- DiXiei if i E ~· 
-l;Fi(x)\1 Fi(x) if i E I* 

( 4.22a) 

(4.22b) 
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and 

respectively, where r - { i I xi = 0} and J• = { i I xi > 0} · 

if i E r 
if i E J•, 

Proof. We have from the strict complementarity and 6; > 0 that 

if i E r 
if i E J• 

CHAPTER 4 

(4.23a) 

(4.23b) 

Hence the continuity ofF ensure that there is a neighborhood x· of x· such that 

if i E r 
if i E J• 

holds for all X Ex·. Hence , we have from (4.3) 

; { XiF;(x)- ~XJ 
f c(x) = 1 r:>.( )2 u,r 1 X 

if i E r 
if i E J•. 

(4.24) 

{4.25a) 

(4.25b) 

Therefore, by differentiating (4.25a) and {4.25b) directly, we have {4.22a), (4.22b) and 

(4.23a), {4.23b). 0 

Proof of Theorem 4.3 It is sufficient to show that 

holds for a sufficiently large k. For simplicity, we consider the case of 61 = · · · = Dn = 

6 > 0, i.e., the diagonal matrix D is the identity matrix multiplied by 6 > 0. It is not 

difficult to extend the result to the general case. Without loss of generality, we assume 

J• = {j,j + 1, ... , n}, where 1 :::;; j:::;; n, and denote 
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Since the strict complementarity holds at x•, there is an integer K 1 such that xk 

satisfies 

ifi E r 
if i E J• 

( 4.26a) 

{4.26b) 

for all k ~ Kt. Under the given assumptions, Newton's method (4.19) is locally 

quadratically convergent to the solution x• [PaC82]. Hence, it follows from the strict 

complementarity and the continuity of F and '\l F, that there is an integer K2 such 

that 

{ 

xf = 0 and F;(xk) + (v F;(xk), xk- xk) > 0 if i E I* 

xf > 0 and F;(xk) + ( vF;(xk),xk - xk) = 0 if i E J• 

for all k > K2. 

( 4.27a) 

(4.27b) 

:"Jow suppose k ~ max(K1 , K2). For simplicity of presentation, we omjt superscript 

k in xk and ;ck. For each i E I*, we have 

~~ (X) fb (X) + a ( \7 fb (X), X - X) 

= ( x,Fi(x)- ~xi) - (t\Fi(x) ~xi) 

= x;Fi(x)- ~x; + (J (Xi (\7 Fi(.c), X- x)- x;Fi(x) +ox;) 

> x;F;(x)- ~xi+ a ( - 2x;l'i(x) + oxt) 

= (1 - 2a) ( x;F;(x)- ~xi) 
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> (~-a) 6x~ 2 t 

= (~-a) 6(x·- x·)2 
2 t t ' 

(4.28) 

where the first equality follows from (4.22a) and (4.25a), the second equality and the 

first inequality follow from (4.27a), the second inequality follows from (4 .26a) and the 

last equality follows from {4.27a). 

On the other hand, since 

hold for some ( in line segment of x and x by the mean value theorem, we have 

Jb(x)- Jb(x) +a (v Jb(x), x- x) 

= (a-1)(Vfb(x),x-x)-~(x-x,'V2fb(()(x-x)) 

= (a - 1) ( V fb (X), X - X) - ~ (X - X, 'V2 fb (X) (X - X)) 

+~ (x- x, (V2 fb(x)- 'V2 fb(O) (x- x)). 

Then for each i E J•, we have 

(a - 1) ( \l fb (X), X - X) - ~ (X - X, 'V2 fb (X) (X - X)) 
a-1 

= -
6
-Fi(x) (V Fi(x), x- x) 

-
2
1

6 
( x- x, (Fi(x)'V2 Fi(x) + 'V Fi(x)'V Fi(x)t) (x- x)) 

(4.29) 

= ~ (~ - a) (V Fi(x), (x- x)) 2
-

2

1

6
Fi(x) ( x- x, 'V2 Fi(x)(x- x)), (4.30) 

6 2 . 
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where the first equality follows from (4.22b) and (4.23b), and the second equality 

follows from (4.27b). Hence, we have from (4.28) and (4.30) that 

fb (X) - fb (X) + a ( \l fb (X), X - X) 

~ (~ - a) ('V Fi(x), (x- x)) 2
-

2
1
6 

Fi(x) ( x- x, 'V2 Fi(x)(x- x)) 

+ ~ (X - X, ( 'V2 fb (X) - 'V2 fb ( (}) (X - X)) 

~(~-a) ('V Fi(x*),x- x)) 2
- F~~) ( x- x, 'V2 Fi(x)(x- x)) 

+~ ( x- x, ( 'V2 Jb(x) - 'V2 Jb(O) (x- x)) 

+~ (~-a) { ('V Fi(x), x- x)
2

- ('V Fi(x*), x- x)
2

} . 

When 'V2 F is Lipschitz continuous and is bounded on some neighborhood of x*, it is 

not difficult to show that 'V2 Jb and 'V Fi are also Lipschitz continuous. Moreover, for 

i E J• we have Fi(x)-; 0 if x -; x*. Hence, 

fb (X) - fb (X) + a ( \l fb (X), X - X) 

;::: ~(~-a) ('VFi(x*),x - x)) 2 + 0 (llx- x* II+ llx- xll) llx- xll 2 (4.31) 

holds on some neighborhood of x*. 

Therefore, it follows from (4.28) and (4.31) that 

fc(x)- fc(x) +a ('V fc(x) , x- x) 

> 6(~-cr) :L(xi-xi)2 +~(~ - a) ~ (VFi(x),x-x))2 

tEf• i E J· 

+0 (II x- x*ll + II x- x II) II x- x 11 2 
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= 1 (~ - a) (x - :r, J(x-:r))+ O( II x - :r* ll + ll x - xll) ll x-x ll2 , (4.32) 

where J is a matrix such that 

( 62£- 0) + ( 0 'hfi[ . (,·•) ) ( 0 0 ) J = ] 

0 0 0 \11.F1. (x* ) \1I.FJ. (x* )1 \11.FJ. (x* )1 

= ( 
6Ei V 1· F1. (•:) ) ( DE; VJ-FJ.(x:) )' 

0 \l,.F1.(x) 0 \l!.Ft.(X ) 

Clearly J is positive semi-definite. i\loreover, since \1 F (x* ) is positive definite by 

assumption, the matrix '\1 1• F1• (x*) is also positive definite. Hence, matrix 

( 
6E1 \11.F1• (x*) ) 

• is nonsingular, and hence J is positive definite. 
0 'V1.F1. (x ) 

Therefore , ( 4.32) is strictly positive provided that x is sufficiently dose to x • . 0 

R emark 4.3 In Chapter 3, we have obtained a globally convergent Newton method, 

Algorithm 3.1 , for the variational inequality problem. In Algorithm 3.1, to obtain 

quadratic convergence, the following line search procedure was used: 

Step 2 Let 0 < {3 < 1. 0 < 1 < 1 and a E (0.1 ). 

Otherwise set O:k := J1~< where lk is the smallest nonnegative integer l such that 

Note that this line search procedure, which is similar to the one used by Marcotte and 

Dussault [MaD89], first checks if the unit step size is acceptable. On the other hand, 

Algorithm 4.2 employs th£" Armijo rule in a more direct manner. 
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4.4 Computational results I 

In the following two sections, we report some numerical results for Algorithms 4.1 and 

4.2 discussed in the previous sections. In this section , we present the results for a 

strongly monotone problem. All computer programs were coded in FORTRA:-.; and 

the runs in this section were made in double precision on a personal computer called 

Fujitsu FMR-70. 

Throughout the computational experiments, the parameters used in the algorithms 

were set to 81 = 2, fJ2 = 0.5 , "f - 0.5 and a = 0.0001. The positive diagonal matrix 

D was chosen to be the identity matrix multiplied by a positive parameter 6 > 0. 

Therefore the merit function ( 4.2) can be written simply as 

(4.33} 

The search direction of Algorithm 4.1 can also be written as 

The convergence criterion was 

I ntin(xi , Fi(x)) l ~ 10- 5 for all i = 1, ... , n. 

For comparison purposes, we also tested two popular methods for solving the non-

linear complementarity problem, the projection method [Daf80) and the basic Newton 

method (cf. Section 2.3 ). The projection m£"thod generates a sequence {xk} such that 

x 0 ;::: 0 and xk+ l is determined from xk by 
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(4.34) 

for all k. Note that this method may be considered a fixed step-size variant of Algo-

rithm 4.1. When the mapping F is strongly monotone and Lipschitz continuous with 

constants J.L and L, respectively, this method is globally convergent if 8 is chosen large 

enough to satisfy 8 > £ 2 /2J.L (see [PaC82, Corollary 2.11.]). 

The mappings tested in this section are of the form 

F(x) = Enx + p(V- vt)x + 'l!(x) + q, (4.35) 

where En is the nxn identity matrix, V is an nxn matrix such that each row contains 

only one nonzero element, and 'l'(x) is a nonlinear monotone mapping with components 

Wi(xi) = Pixt, where Pi are positive constants. Elements of matrix V and vector q 

as well as coefficients Pi are randomly generated from uniform distributions such that 

-5 ::;; Vii ::;; 5, -25 ::;; qi ::;; 25 and 0.001 ::;; Pi ::;; 0.006. The results are shown in Tables 

4.1 "' 4.4. All initial iterates were chosen to be (0, 0, ... , 0). In the tables, # f c is the 

total number of evaluating the merit function f c. All CPU times are in seconds and 

exclude input/output times. The parameter pin (4.35) is used to change the degree 

of asymmetry of F; namely F deviates from symmetry as p becomes large. Since the 

matrix En + p(V - Vt) is positive definite for any p and Wi(Xi) are monotonically 

increasing for Xi ~ 0, the mapping F defined by (4.35) is strongly monotone on R~ . 
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4.4.1 Comparison of Algorithm 4.1 and the projection method 

First we compare Algorithms 4.1 and the projection method (4.34) by using a 10-

dimensional example, in which mapping F is given by 

1 0 0 0 0 0 0 5 0 0 Xi 

0 1 -1 0 0 0 0 0 0 0 X2 

0 1 1 0 -2 0 3 0 0 0 X3 

0 0 0 1 -2 -5 0 0 0 0 X4 

F(x) 
0 0 2 2 1 0 0 0 0 0 xs 

= 
0 0 0 5 0 1 0 -5 0 0 X6 

0 0 -3 0 0 0 1 0 0 0 X7 

-5 0 0 0 0 5 0 1 0 5 Xg 

0 0 0 0 0 0 0 0 1 -4 Xg 

0 0 0 0 0 0 0 -5 4 1 XlQ 

0.004x1 2 

0.004x~ 10 

0.003x3 2 

0.003x! 9 

0.006xg -15 
+ + 

0.006x~ 12 

0.004xj -9 

0.004x~ 5 

0.004x~ 7 

0.002x10 -17 

The results for this problem are shown in Table 4.1. 

In general, the projection method is guaranteed to converge only if the parameter 8 

is chosen sufficiently large. In fact, Table 4.1 shows that when 6 is large, the projection 
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method is always convergent , but as 6 becomes small, the behavior oft he method found 

Table 4.1 : Comparison of Algorithm 4.1 and the projection method (n = 10, p = 1) 

Algorithm 4.1 projection method* 
to be unstable and eventually it fails to converge. 

6 #Iterations #fc CP U #Iterations CPU Table 4.1 also shows that Algorithm 4.1 is always convergent even if 6 is chosen 

0.1 1380 9683 18.45 - - small, since the line search determines an adequate step size at each iteration. In 
0.5 307 1527 3.04 - -

1 328 1305 2.63 - - Algorithm 4.1, the number of it.erations is almost constant. This is because we may 

2 338 1009 2.13 - - choose a larger step size when the magnitude of vector dk is smalL i.e. 6 is large. 

3 353 951 2.04 - -
4 342 685 1.55 - -

Algorithm 4.1 spends more CPU times per iteration than the projection method , 

5 256 511 1.16 - -
because the former algorithm requires overheads of evaluating the merit function f c. 

6 351 701 1.72 - - But, when 6 becomes large , Algorithm 4.1 tends to spend less CPU time than the 

6.2 337 674 1.66 - -

6.3 377 754 1.91 9118 13.94 
projection method, because the number of iterations of Algorithm 4.1 increases mildly. 

6.5 376 752 1.93 1594 2.43 4.4.2 Comparison of Algorithm 4.2 a nd New ton 's m ethod 
7 385 770 2.07 610 0.93 

8 337 676 1.98 338 0.51 Next we compare Algorithm 4.2 and the basic Newton method. For each of the problem 

9 270 542 1.59 271 0.43 

10 242 487 1.41 244 0.36 
sizes n - 30,50 and 90, we randomly generated five test problems. The parameters p 

12 232 468 1.36 229 0.34 and 6 were set top = 1 and 6 = 1. The initial iterate was chosen to be x = 0. In solving 

15 239 188 1.41 239 0.35 the linE'arized subproblem at each iteration of Algorithm 4.2 and Newton 's method, we 

20 254 636 1.72 272 0.41 

50 229 920 2.17 549 0.79 
usE'd Lemke's complementarity pivoting method [Lem65] coded by Fukushima [IbF91]. 

100 229 1149 2.63 1036 1.47 All parameters and initial iterates were set lo the default values used in [IbF91]. The 

200 239 1385 3.05 2008 2.88 results are given in Table 4.2. All numbers shown in Table 4.2 are the averages of the 

500 239 1674 3.59 5007 7.08 

1000 372 2605 5.55 9998 14.18 
resul ts for five test problems, each case and #Lemke is the total number of pivotings 

*The proJectiOn method fatled to converge for the value of 6 up to 6.2. in Lemke's method. 

Table 4.2 shows that the number of iterations of 'ewton's method is consistently 
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larger than that of Algorithm 4.2 as far as the test problems used in the experiments 
Table 4 3: Comparison of Algorithms 4 1 and 4 2 

are concerned. Therefore , since it is time consuming to solve a linear subproblem Algorithm 4.1 Algorithm 4.2 

at each iteration, Algorithm 4.2 required less CPU time than Newton's method in p n #Ite.* #!c CPU #lte.* #fc #Lemke CPU LEMKE 

spite of the overheads in line search. Finally we note that Newton's method (4.19) is 
30 31.6 96.0 0.672 6.0 8.4 87.4 4.956 4.094 

0.1 50 28.4 84.6 0.966 6.0 9.2 148.0 19.050 17.989 

not guaranteed to be globally convergent, although it actually converged for all test 90 38.2 114.0 2.322 6.2 8.2 259.0 99.156 96.721 

problems reported in Table 4.2. 30 40.0 119.6 0.838 6.2 8.2 92.6 4.872 4.340 

0.2 50 37.6 110.0 1.264 6.4 8.8 162.6 20.888 19.633 

Table 4.2: Comparison of Algorithm 4 2 and Newton's method (p = 1) 
90 40.4 120.4 2.448 6.6 8.6 277.2 106.672 103.201 

Algorithm 4.2 Newton 's method 30 33.8 99.2 0.690 6.4 8.4 90.8 4.812 4.258 

n #Iterations #fc #Lemke CPU #Iterations #Lemke CPU 0.3 50 39.2 112.2 1.292 6.2 8.6 157.8 20.270 19.055 

30 5.6 7.6 80.6 4.294 8 115.2 5.840 90 41.4 119.6 2.408 6.6 8.6 275.2 105.890 102.253 

50 5.6 7.6 156.0 19.880 8 216.4 26.142 30 45.8 127.0 0.892 6.0 8.2 88.2 4.662 4.128 

90 6.0 8.0 275.2 105.400 8 358.8 135.690 0.5 50 58.6 161.8 1.848 6.0 8.0 157.8 20.242 19.134 

90 110.8 273.8 5.780 6.6 8.6 281.4 108.260 105.073 

30 152.8 322.0 2.436 5.8 7.8 84.4 4.474 3.956 

4.4.3 Comparison of Algorithms 4.1 and 4.2 
0.8 50 290.4 586.4 7.450 6.0 8.0 160.4 20.476 19.368 

90 780.2 1557.4 33.960 6.0 8.0 269.4 103.266 100.296 

Finally we compare Algorithms 4.1 and 4.2. Test problems are the same as ones 30 394.2 792.4 5.270 5.6 7.6 80.6 4.294 3.784 

in the previous section. To see how these algorithms behave for different degrees of 1.0 50 519.6 1077.6 11.068 5.6 7.6 156.0 19.880 18.833 

90 866.0 2129.6 35.880 6.0 8.0 275.2 105.400 102.107 
asymmetry of the mapping F, we have tested several values of p between 0.1 and 2.0. 

30 1197.0 3793.2 21.518 5.4 7.4 80.0 4.266 3.752 

The initial iterates was always chosen to be x = 0. The results are given in Table 4.3. 1.5 50 1604.0 4927.4 45.280 5.2 7.2 145.8 18.648 17.607 

All numbers shown in Table 4.3 are the averages of the results for five test problems. 90 2928.0 9777.8 158.162 6.0 8.0 275.6 105.492 102.606 

30 3195.2 12694.8 69.636 5.2 7.2 79.0 4.168 3.712 
Table 4.3 shows that when the mapping F is close to symmetry, Algorithm 4.1 

2.0 50 3842.6 15929.0 141.944 5.2 7.2 145.2 18.494 17.336 

converges very quickly, and when the mapping becomes asymmetric, the number of 90 4957.6 20905.0 332.510 5.8 7.8 279.0 106.514 103.618 

iterations and CPU time of Algorithm 4.1 increase rapidly. On the other hand, in 
* #Ite. denotes the total number of 1teratwns. 
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Algorithm l.2, while the total number of pivotings of Lemke's method increases in 

pro port ion to problem size n, the number of iterations stays constant even when the 
Table 4.4: Results for Algorithm 4.2 (Gauss-Seidel version) 

Algorithm 4.2 

problem size and the degree of asymmetry of F are varied. Hence, when the degree p n #Iterations #!c #Gauss CPU 
-

of asymmetry ofF is relatively small, that is, when p is smaller than 1.0 in our test 30 6.0 8.4 39.2 0.271 

problems, Algorithm 4.1 requires less CPU time than Algorithm 4.2. 
0.1 50 6.0 9.2 39.6 0.466 

90 6.2 8.2 48.0 0.9] 6 
-Note that , since the mapping F used in our computational experience is sparse, 30 3 of 5 failed 

complexit) of each iteration in Algorithm 4.1 is small. On the other hand, the code 0.2 50 3 of 5 failed 

90 failed 
[IbF91] of Lemke's method used in Algorithm 4.2 to solve a linear subproblem does 

30 

not make use of sparsity. Moreover, since the code of Lemk<''s method is restrictive 0.3 '"V 2.0 50 failed 

in the choice of initial iterates. we must restart from a priori fixed initial iterate at 90 

each iteration even when the iterate becomes close to a solution. Therefore, it may 

require a significant amount of CPU time at each iteration for large problems. (In subproblems. 

Table 1.3. LE~1KE is the total CPU time to solve subproblems by Lemke 's method.) Figure 4.1 illustrates how Algorithms 4.1 and 4.2 converged for two typical test 

If a method that can make use of sparsity and can start from arbitrary point is avail- problems with n - 30 and 50. In the figure, the vertical axis represents the accuracy 

able to solve a linear subproblem, CPU time of Algorithm 4.2 may decrease. The of a generated iterate to the solution, which is evaluated by 

projected Gauss-Seidel method [CPS92, page 397] for solving the linear cornplemen-
ACC =max {I m.in(xi, Fi(x))ll i = 1, ... , n}. 

I 

tarity problem is one of such methods. In Table 4.4, results of Algorithm 4.2 using 

the projected Gauss-Seidel method in place of Lemke's method are given. Table 4.4 
Figure 4.1 indicates that Algorithm 4.2 is quadratically convergent when the iterates 

shows that, if the mapping F is almost symmetric, Algorithm 4.2 converges very fast. 
come near the solution. Figure 4 .I also indicates that Algorithm iJ. L is linearly con-

We note that the projected Gauss-Seidel method is not guaranteed to be convergent 
vergent though it has not been proved theoretically. 

when a problem is not symmetric. Algorithm 4.2 fails to converge when the degree of 

asymmetry increased, because the projected Gauss-Seidel method failed to solve linear 
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Figure 4.1: Behavior of Algorithms 4.1 and 4.2 
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4.5 Computational results II 

In this section, we present the results of applying Algorithms 4.1 and 4.2 to some 

examples which arise from an optimization problem, a spatial price equilibrium prob-

lem, a noncooperative game and a traffic assignment problem. The algorithms were 

implemented in FORTRAN and run on a SUN-4 workstation. The parameters in the 

algorithms were set in the same manner as in Section 4.4. T he positive diagonal matrix 

D was also chosen to be the identity matrix multiplied by 6 > 0, and hence the merit 

function ( 4.33) was used. The convergence criterion was 

I min(xi, Fi(x)) l ~ CC for all i = 1, . .. , n, 

where CC is a parameter used to change accuracy of algorithms. In solving the lin-

earized subproblem of Algorithm 4.2, we used Lemke's complementarity pivoting al-

gorithm coded by Fukushima [IbF91]. The results are shown in Tables 4.5 "'4.11. 

Some mappings F used in the experiments were only monotone but not strongly 

monotone. Others were not even monotone, though they could be considered almost 

monotone. Thus all the problems do not satisfy t he convergence conditions of our al-

gorithms. However, for most of the tested case, both Algorithms 4.1 and 4.2 converged 

and produced satisfactory solutions. 
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Example 4.1 This is the following 4-variable complementarity problem from Josephy 

[Jos79a], whose mapping is given by 

F(x) = 

3xi + 2x1x2 + 2x~ + xs + 3x4- 6 

2xi + x1 + x~ + 3xs + 2x4- 2 

3xi + x1x2 + 2x~ + 2xs + 3x4- 1 

xi + 3x~ + 2xs + 3x4 - 3 

The results are shown in Table 4.5. Since the mapping is co-positive but not monotone, 

Algorithm 4.2 failed when the initial iterates (0, ... , 0) and (10, ... , 10) were chosen, 

because the linearized subproblem at (0, ... , 0) has no solution and the search direction 

at (10, ... , 10) is not a descent direction. On the other hand, Algorithm 4.1 converged 

for all of those initial iterates. 

Table 4 5· Results for Example 4 1 .. 
Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke CPU 

10-5 (0, ... ,0) 20 62 0.00 failed 

( 1' ... '1) 21 63 0.00 4 5 8 0.00 

(5, ... ,5) 21 63 0.00 5 6 10 0.00 

(10, .... 10) 21 63 0.00 failed 

Example 4.2 This is a 10-variable complementarity problem arising from the . ash-

Cournot production problem appeared in Harker [Har88]. In this example, for any 

x > 0, the Jacobian '\1 F(x) of the mapping is a P-matrix, i.e., for any x =I 0, there 

exists an index i E {1, ... ,n} such that Xi("VF(x)x)i > 0, but the mapping F is not 

monotone. Table 4.6 shows that both Algorithms 4.1 and 4.2 converged to the solution 
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quickly. 

Table 4 6· Results for Example 4 2 .. 
Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke 

10- 5 (1, ... ,1) 44 88 0.08 8 10 89 

(10, .... 10) 43 86 0.08 6 7 60 

Example 4.3 This example is the following convex programming problem: 

minimize (xi - 10)2 + 5(x2- 12)2 + x3 + 3(x4- 11)2 +lOx~ 

+ 7x~ + 2x~ - 4x6X7 - 10x6 - 8x1 

subject to 2xi + 3x~ + X3 + 4x~ + 5xs 

7xl + 3x2 +lOx~+ x 4 - xs 

20x1 + x~ + 6x~ - 8x1 

:::; 100 

:::; 200 

:::; 150 

4x~ + x~- 3xlx2 + 2x~ + 5x6- llx7 :::; 0 

Xi ~ 0, i = 1 , ... , 7, 

93 

CPU 

0.08 

0.05 

which is formulated as an 11-variable complementarity problem. Since the objective 

function is convex, the mapping is monotone, but not strongly monotone on Rf.. Table 

4.7 shows that Algorithms 4.1 and 4.2 converged for both initial iterates (0, ... , 0) and 

(10, ... ) 10). 

Example 4.4 This example is a 15-variable traffic assignment problem from Bertsekas 

and Gafni [BeG82]. This problem consists of a traffic network with 25 nodes, 40 arcs, 

5 0 /D pairs and 10 paths. The mapping is monotone but not strongly monotone. The 

results are shown in Table 4.8. In this example, Algorithm 4.1 failed to find a descent 

direction because the mapping is not strongly monotone. But Algorithm 4.2 converged 
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in 4 iterations for both initial iterates. 

Table 4 7· Results for Example 4 3 .. 
Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke CPU 

10 3 (0, ... '0) 263 840 0.13 5 10 30 0.03 

(10, .... 10) 1213 4504 0.64 9 10 75 0.08 

10 5 (0 •... , 0) 375 1119 0.19 6 11 36 0.04 

(10 •.... 10) 1308 4752 0.67 10 11 81 0.08 

Table 4 8· Results for Example 4 4 .. 
Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #Jc #Lemke CPU 

10 3 (0 •... '0) 17181 failed 4 5 62 0.09 

( 1' .... 1) 16608 failed 4 5 64 0.10 

10- 5 (0, ... , 0) 17181 failed 4 5 62 0.09 

( 1, .... 1) 16608 failed 4 5 64 0.10 

Nonlinear Complemeutarity Problem 

Example 4.5 This example is the following convex programming problem: 

minimize x? + x~ + x1:z·2- 14x1 - 16x2 + (x3- 10)2 

+4{x4- 5)2 + {xs- 3)2 + 2(x6- 1)2 + 5x? 

+7(xa- 11 )2 + 2{xg- 10)2 + (x1o- 7) 2 + 45 

subject to 4xl + Sx2- 3x1 + 9xs < 105 

10xl - 8x2 - 17x7 + 2xs 

-8x1 + 2x2 + 5xg- 2x10 

3(.:rl - 2)2 + 4(x2- 3)2 + 2x~- 'l.:r4 

5xi + 8x2 + (.:r3- 6)2 - 2x4 

!(.:rl - 8)2 + 2(x2- 4)2 + 3.r~- x6 

< O 

$ 12 

< 120 

$40 

< 30 

xi+ 2(x2 - 2)2 - 2x1x2 + 14xs- 6.:r6 < 0 

-3xl + 6x2 + 12(xg- 8)2 - 7xl0 < 0 

Xi :2: 0, i = 1, ... , 10, 

95 

which is formulated as an 18-variable complementarity problem. The results are shown 

in Table 4.9. The mapping is monotone but not strongly monotone. Algorithm 4.1 

converged slowly and eventually failed to find a descent direction as the iterate be-

come very dose to a solution. On the other hand, Algorithm 4.2 converged in several 

iterations for both initial iterates. 

Table 4.9: Results for Example 4.5 

Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke CPU 
10 3 (0, ...• 0) 31616 414381 71.98 4 5 68 0.14 

(10 ..... 10) 31238 411704 72.43 6 7 97 0.19 
10-5 {0, ... , 0) 72050 failed 5 6 84 0.17 

(10, .... 10) 75257 failed 6 7 97 0.19 
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Example 4.6 This example is a traffic assignment problem. This is a 40-variable Example 4. 7 This example is a spatial price equilibrium problem from Tobin [Tob88] 

complementarity problem which is Example 6.2 in Aashtiani [Aas79]. The results are which is formulated as a 42-variable complementarity problem. The mapping is not 

shown in Table 4.10. The mapping is monotone but not strongly monotone. For this monotone but is close to be monotone. The results are shown in Table 4.11. 

example, Algorithm 4.1 converged slowly and could not attain the strict convergence In this example, Algorithms 4.1 and 4.2 converged for all initial iterates chosen in 

criterion CC = 10- 5 . On the other hand, Algorithm 4.2 failed because the linear our experiment. Note that the mapping of Example 4.7 is similar to the form (4.35) 

subproblem became unsolvable after 2 or 3 iterations. used in the experiments of Section 4.5, and hence, the mapping is sparse. For the 

example, Algorithm 4.1 converged mush faster than Algorithm 4.2. 

Table 4 10· Results for Example 4.6 

Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke CPU 

10- 3 (0, ... , 0) 2907 24925 13.25 2 failed 

(10, .... 10) 2981 25797 13.74 3 failed 

10- 5 (0, ... '0) 4218 failed 2 failed 

(10, . . .. 10) 4166 failed 3 failed 

Table 4.11: Results for Example 4.7 

Algorithm 4.1 Algorithm 4.2 

cc Initial Iterate #Iterations #fc CPU #Iterations #fc #Lemke CPU 
10- 3 (0, ... '0) 63 148 0.09 6 11 130 1.34 

( 1, ... , 1) 66 155 0.09 7 10 131 1.37 

(10, .... 10) 63 149 0.10 7 8 157 1.60 
10- 5 (0, ... ' 0) 84 199 0.12 7 12 148 1.53 

( 1' ... , 1) 89 209 0.12 7 10 131 1.37 

(10, .... 10) 83 197 0.12 7 8 157 1.60 
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4.6 Concluding remarks 

When the mapping is strongly monotone with modulus JL, the solution ;r• to {4.1) 

satisfies the inequality 

II x* II ~ ~ II F(O) II . 
J.L 

Hence, we may reformulate problem (4.1) as a variational inequality problem with 

bounded constraint by adding an extra constraint 

II x lloo~ UB, 

where UB is a sufficiently large positive number. Then we may apply the methods of 

Fukushima [Fuk92] or Algorithm 3.1 directly. In this case, however, the subproblem 

becomes a linear variational inequality problem with a bound constraint, which is in 

general more difficult to solve than a linear complementarity problem of the proposed 

algorithms. 

Since the modulus J.L is generally a priori unknown, the matrix D may not satisfy 

II D II < 4J.L, implies that Algorithm 4.2 may fail because the search direction is not 

guaranteed to be a descent direction. When we do not know the exact value of J.L 

for the strongly monotone mapping F, we may start Algorithm 4.2 with an arbitrary 

positive diagonal matrix D, and, if it fails, continue hy halving D until convergence is 

obtained. Eventually we will have II D II< 4ft and hence Algorithm 4.2 converges by 

Theorem 4.2. 

Chapter 5 

A New Merit Function and A 
Successive Quadratic 
Programming Algorithm for 
Variational Inequality Problems 

5.1 Introduction 

In this chapt<>r, we return to the variational inequality problem of finding a wctor 

x* E 8 such that 

(F(.r•), J"- x*) 2: 0 for all x E S, {5.1) 

where S is a nonempty closed convex subset of R" and F is a continuous mapping 

from R" into R". 

Recently, various merit functions for variational inequality problems have been pro-

posed and their properties have bern studied (see Section 1.2). Among them, the gap 

function g defined by {1.2) first introduced by Auslend<'f [A us76J, has the property 

that its minima on S coincide with the solutions to the variational inequality problem. 

99 
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Hence problem (5 .1) can be reformulated as the optimization problem {1.3). Based on 

tlw gap function, ~larcotte [:\Iar85] proposed a descent algorithm for monotone varia­

tional inequality problems. and ~larcotte and Dussault [:\laD87] presented a globally 

convergent modification of Newton's method. 

Using the regularized gap function Is defined by ( L.5), Fukushima [Fuk92] has 

proposed another optimization formulation of the variational inequality problem. The 

function Is is shown to be differentiable whenever so is F , while the gap function 

9 defined by (1.2) is generally nondifferentiable. Fukushima [Fuk92] has proposed a 

descent method for solving the variational inequality problem using regularized gap 

function Is· The function Is has also been used in a globally convergent modification 

of Newton's method in Chapter 3. Independently, Auchmuty [Auc89] has proposed 

a class of merit functions which includes the gap function 9 and th<' regularized gap 

function Is· Larsson and Patriksson [LaP94] have developed and generalized Auch­

muty's class of merit functions. Wu, Florian and :\larcotte [WFM93] have proposed 

a general d<'scent framework for the variational inequality problem by using a class 

of gap functions. Unfortunately, however, all of these merit functions are not easy to 

evaluate unless the constraints of the probl<'m hav<' a relatively simple structure. 

In this chapter. we propose a new merit function, which is defined by (1.5) with 

the set S replaced by its polyhedral outer approximation. The proposed function has 

the advantage over the function Is that, even when S is a general convex set specified 

by nonlinear convex inequalities, we can estimate the value of the function by solving 

a linearly constrained quadratic programming problem. We show that the proposed 
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merit function has a property that its minimum on S coincides with a solution to 

(5.1 ). So the proposed function leads to another equivalent optimization problem of the 

variational inequality problem. We also show that the proposed function is directionally 

differentiablt> in all directions and, under suitable assumptions, any stationary point of 

the equivalent optimization problem actually solves the original variational inequality 

problem. We propose a descent method for solving the variational inequality problem 

and establish its convergence. We note that the method is closely related to a successive 

quadratic programming method for solving nonlinear programming problems. 
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5 .2 A ne w m erit function fr(x) = max { (F(x),y .r)- ~ (y - J: ,G(y - .r.)) I yE T(:r)}, (5.6) 

In this section, we introduc<' a new merit function for the variational inequality prob- wher<' C: is an 11 x n symmetric positive definite matrix. :'\ote that the positive dt'fi-

lem (5.1) which is a relaxed version of the regulariz<'d gap fund ion introduced by ni teness of G and the convexity ofT( :r) guarantee that t ht' maximum in ( 5.6) is always 

Fukushima !Fuk92]. In the remainder of this chapter, we suppos<' that the set 8 of unique. Thus we can rewrite (5.6) as 

(5.1) is defined by a system of inequalities of the form 1 !r ( x) = - ( F ( x ) , H r ( x) - .r) - 2 ( H r ( :r) :r , G ( Hr ( J') - x)) , (5.7) 

8 = { .r E R" I C1 ( x) :S 0, i = 1, ... , m} , (5.2) 
where IIr(x) is the unique solution y to the quadratic programming problem 

where c; : R'1 
_. R are continuously differentiable convex functions, and Slater's 

QP(:r): nunim.izey ~(y-x,G(y-x))+(F(.l~).y-:r) 
constrrnnt qualtficatwn holds; i.e., there exists an i: E R" such that (.1.8) 

subject to y E T(x). 

c;(x)< O forall i=l, ... ,m. (5.3) 
ote that it foUows from Proposition 2.3 and 2A that llr(.r) is the unique solution to 

Under these assumptions, it follows from Proposition 2.1 that x · is a solution to (5.1) the following variational inequality problem 

if and only if there exist Lagrange multipliers Xi, i = 1, ... , m, for which the fo llowing 
( F ( x) + G ( H r ( x) - x), y II r ( x)) ~ 0 for aU y E T ( J'). ( 5.9) 

conditions hold: 

m 

F(x*) + :L .XiV' c; (x·) = 0, 
i 1 

The next Lemma characterizes a solution of problem (5.1) as a fixed point of th<' 

(5.4) mapping H'J'. 

c;(x*) :::; 0, .Xi ~ 0, .Xjc1 (x* ) = 0, i = 1 , ... , m. 

For each J' E R", we define the set T{ x) as 
L emm a 5.1 The l'Cctor x lS a ;;o/utwn to (5.1) if and only 1/ Hr(:r:)-= :r:. 

T(x) = {y E R" I c.(:r:) + (V'ci(:r),y- x} :S 0, i = 1, ... ,m}. (5.5) 
Proof. Let x* solve (5.1}. It is known [BaS76, page 143] that if Slater's constraint 

qualification {5.3) holds. then .l' · also satisfies the inequality 

Note that, for all .r E R", the set T(x) is a polyhedral convex set which always contains 

s. 
(F(x•),y - x*) ~ 0 for all yE T(x•). (5.10} 

Using T(.r}, we define a function fr by Since llr (x" ) solves QP(:r"), Hr(J.· · ) satisfies 
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(F(x*) + C(Hr(x*)- x*),y- Hr(x*));::: 0 for all yE T(.r*). (5.11) 

Since Hr(x•) E T(x * ), it follows from (5.10) that 

(F(x*). I!r(x*)- .r*) ;::: 0, (5.12) 

while, since .r* E S C T(x*), (5.11) implies 

(F(x· ) + C:(Hr(x*)- x*). x* - Hr(.r"));::: 0. (5.13) 

Adding (5.12) and (5.13), we have 

Hence, we must have x* = llr(x* ) because of the positive definiteness of G. 

Conversely, suppose x · = Hr(x*). Then we have from (5.9) that 

(F(x*), y .r*} ;::: 0 for all y E T(.r*), 

which implies 

(F(x• ). y x*) ;::: 0 for all yE S. 

because S C T(x*). Therefore, to prove that x• solves (5.1), we only need to show 

that x* E S. Since Hr(l·* ) E T(x * ) and x• = Hr(x* ), it follows from the definition 

(5.5) of T(x) that ci(x*) ~ 0 for all i = 1, .... m. This completes the proof. 0 

Now let us consider the optimization problem: 

minimize h(x) subject to xES, (5.14) 
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where the function his defined by (5.6). The next theorem establishes the equivalence 

between variational inequality problem (5.1) and optimization problem (5.14). 

Theor em 5.1 Let F of {5.1) be a continuous mapping from R11 into ztsclf and S be a 

convex subset of R11 defined by (5.2). Let h: Rn - R b( a function defined by (5.6). 

Then h(x) ;::: 0 for all xES. Moreover, h(x) = 0 wtlh xES holds zf and only if x 

solves uarzational mequality problem (5.1). Hence x solt·cs (5.1) zf and only if it solves 

optzmtzatwn problem (5.14) and satisfies fT(x) = 0. 

Proof. Recall that .r E T(x) whenever x E S. So it follows from (5.6) that 

1 
h(x) > -(F(x), x- x)- 2 (x- x, G(x- x)) 

0, 

for any x E S . We shall show that h(x) = 0 with x E S holds if and only if Hr(x) = x. 

This along with Lemma 5.1 proves the rest of the theorem. First suppose that x E S 

and fr(x) = 0. Since x E T(x), (5.9) implies 

(F(x) + G(Hr(x)- x),x Hr(x));::: 0, 

namely 

-(F(x),Hr(x)- x);::: (Hr(x)- x,G(Hr(x)- x)). (5.15) 

Hence, it fo llows from (5.7) and (5.15) that 

1 
h(x) 2: 2 (Hr(x)- x, G(Jh(x)- x)). 
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But since G is positive definite and fr(x) = 0, we have IJT(J.') = .r. Next suppose that 

Hr(.r.) = x. Then, it follows from (5.7) that fr(x) - 0. Moreover, by th<' feasibility of 

Hr(.r) to problem (5.8), we have 

Cj(x) + (V'ci(.r), Hr(x)- x) ~ 0, i = 1, ... , m. 

Thus Hr(x) = x implies x E S. This completes the proof. 0 

R emark 5 .1 This theorem also says that, if optimization probl<'m (5.14) has a global 

minimizer which does not zero the function fr, then problem (5.1) has no solution. 

On the other hand, even if problem {5.1) does not have a solution, problem (5.14) 

may have a global minimum J.' with fr(a:) > 0. For example, consider the case in 

which F : R -. R, F(x) = - l and S = {x E R I J.' 2: 0}. Clearly, the corresponding 

variational inequality problem has no solution. The function fr associated with G = 1 

is fr(.r) = ~ for all x 2: 0; hence any x 2: 0 is a global minimizer of problem {5.14). 

The same remark also holds for the regularized gap function Is (See Remark 3. l ). 

Next we consider the continuity and differentiability of Jr. 

D e finit ion 5.1 [Hog73bJ Let Z be a point-to-set-mapping from X into 2x, where X 

is a subset of R.n. 

l. Z is open at a point .r if, for any sequence {.rk} such that xk - x, y E Z(x) 

implies that there exists a sequence {yk} such that l E Z(.rk) and yk- fl. 

2. Z is closed at a point .r if, for any sequence {xk} such that xk- x, yk E Z(xk) 

and yk - y imply y E Z(x). 
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3. Z is conlmuotts at a point x if it is both open and closed at .r. Z is continuous 

on X if it is continuous at any point in X. 

P rop osit io n 5.1 Let c,, i = L .... m. be continuously diffu-cntzablc and ~alliijy Slater's 

constramt qttaltfication (5.3). Then the pomt-lo-set mappmg T defined by (5.5) Iii con-

tmuotts on Rn. 

Proof. Since ct(x) + (V'ci(:r),y- x) is continuous with respect to (x,y) for each i, it 

follows from [Hog73b, Theorem 10J that Tis closed at each J.'. By Slater's constraint 

qualification (5.3). there is an .i- such that c,(x) < 0 for all i = 1. ... , m. Mor<'over 

from the convexity of c;, we have Ci(:r) + (V'ci(x), x x) ~ c;(i·) < 0. Hence, it follows 

from [Hog73b, Theorem 12J that T is open at each J.'. Therdore, T is continuous on 

R". 0 

Lemma 5.2 Suppose that a mappmg F of (5.1) i~ cont111uous. If the Slater's con-

strainl qualification (5.3) holds, then the mapping lh· defined by (5.9) 1s bounded on 

any bounded set. 

Proof. Suppose that Ilr is not bounded on some bound<'d set B. Then there is a 

sequence {xk} in 8 such that I Hr(.rA·) II- oo. Since sequence {F(.rk)} is bounded on 

B by the continuity ofF, it follows from (5.7) and the positive definiteness of G that 

fr(xk)- -oo. On the other hand, since x E T(xk) for all k, we have 

fr(xk) = max { (F(xk).y- .rk)- ~ (y- xk,G(y- :rk)) I yE T(xk)} 

> -(F(xk), x- .rk}- i (x- xk, G(.i-- .rk)}, 
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which is bounded below since {xk} and {F(xk)} are both bounded. This is a contra-

diction. 

Given .r E R11 and .X E R111
, we define matrix M(.r, .X) by 

ttl 

M (X) A) - V7 F (X) + L A I V7 2 
Ct (X). 

i 1 

The next theorem demonstrates the directional differentiability of Jr. 

0 

(5.16) 

Theorem 5.2 Suppose that the mappmg F: Rn- R'1 of (5.1) is continuous and the 

cont·ex funcltons c1 : Rn - R, i = 1, ... , m, of (5.2) are continuously differenltable. 

Suppose also that Slater's constraint quahfication { 5.3) holds. Thut function fr defined 

by (5.7) is contznuous on R". Moreover, ifF is contmuously dtfferentiable and Ci, 

i = l .... ,m, arc twice contmuously dtfjcrcntzable, then fr 1s directiOnally dtfferenl!able 

in any directiOn dE Rn, and Its directional derivat1ve fr(x; d) is given by 

fr(x; d)- min (F(.r)- [.\I(.r,.X)- G]{Hr(.r)- .r), d). 
~· t\(;e) 

wh<re A(x) IS defined by 

A(x) = A E Rm 

m 

F(.r) + G(Hr(x)- x) + LA,V7ci(x) = 0, 
i 1 

Ai[ci(x) + (V7ci(x),Hr(x)- x)] = 0, 

A1 > 0, i = 1, .... m 

( 5 .17) 

{5.18) 

Proof. To prove the first half, it is sufficient to show that mapping Hr(x) is con-

tinuous. Vnder the given assumptions, the point-to-set mapping T is continuous by 

Proposition 5.1 and the objective function of (5.8) is continuous with respect to (x, y). 
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Therefore, by [Hog73b, Theorem 8], mapping Hr is closed. However, since Hr is ev-

erywhere defined and single-valued, Hr must be continuous for any .r. The second half 

follows from [Hog73a, Theorem 2]. 0 

R emark 5.2 If the set A{x) is a singleton, fr is differentiable at x and the gradient 

is given by 

V7 fr(x) = F(x)- [M(x, A)- G](Hr(x) - x). 

A sufficient condition [FiM90, Theorem 6] for A(x) to be a singleton is that the vectors 

V1q(x),i E I(x), are linearly independent, where I(x) = {i I c,(x) + (V7ci(x),Hr(.r)-

x) = 0}, and the strict complementarity condition holds; i.e., Ai = 0 implies Ci(x) + 

(V7ci(x), Hr(x) - x) < 0. 

R emark 5.3 The regularized gap function fs defined by (1.5) also has the property 

that the set of zeros of fs on S coincides with the set of solutions to problem {5.1}. 

Moreover, fs is continuously differentiable when so is mapping F. It is easy to see 

that fr(x) :::: fs(x) because T(x) contains S for aU x. In particular, when Ci are all 

linear, (1.5) coincides with (5.6). 

To obtain a solution to (5.1) by solving problem (5.14), we need to find a global 

minimizer of fr on S. It is therefore desirable to know conditions under which a 

stationary point of (5.14) is a global optimal solution, because most optimization al-

gorithms only find a stationary point of the problem. The next theorem answers this 

question. 
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T h eorem 5.3 Let F of (5.1) be a continuously dijje1·cntiable mapping from R" into 

it~elf, c;, i = l. ... , m, of (5.2) be twice continuously dzfferentzable convex functwns 

fr·om: Rn into R and fr be a function defined by {5.7}. Suppos( that \7 F is positive 

definite and Slater's constmznl qualification (5.3) is satzsfied. If .r E S and 

fr(x;y - x);::: 0 for ally E S, {5.19) 

then :t· is a solutwn to (5.1). 

Before proving the theorem, we show the next lemma, which will also be used to 

derive a descent condition in the next section. 

Le mma 5.3 Lct mapping P of (5.1) be continuously differentiable and convex June-

twns c;, i = l. ... , m, of (5.2) be twzce continuously dzfferenttable. If d = Hr(x)- x, 

then we have 

fr(x; d) <; -(d, \7 F(.r)d) + min ( L .\;c;(x)) , 
AEA(:r} '([+ 

where I+= {ilci(x) > 0}. 

(5.20) 

Proo f. Since d- Hr(x)- x, it follows from the Karush-Kuhn-Tucker conditions for 

problem (5.8) that d together with a Lagrange multiplier vector ,\ satisfies 

m 

F(x) + Gd + 2:-X;\7c;(x) = 0, (5.21a) 
i=l 

c,(:c) + (\7c;(x), d)~ 0, (5.2lb) 

.\i[c,(:t·) + (\7c;(x), d)]= 0, i = 1' ... '171. (5.2lc) 

New Merit Function 

From {5.16}, (5.17), (5.2la) and (5.2lc}, we have 

fr(x; d) 

= min (F(:r)-[\7F(.r)-GJd- f:.x,\7 2c;(.r)d,d) 
AEA(z) i 

1 

Since the convexity of c; ensures that \72c1(:r) is positive semi-definite, i.e., 

(d, \7c~(x)d) ;::: 0, and since L .\,c,(x) ~ 0, we have from (5.22) that 
i~l+ 

JT{x; d)~ -(d, \7 F(x)d) + m.in ( L .\,c,(x)) . 
At A(:r} ·- r 

ll:' + 

T his completes the proof. 

111 

(5.22) 

0 

Proof o f Theore m 5.3. Suppose that x E S satisfies (5.19). First note that, under 

Slater's constraint qualification, we have 

T(x) C x +cl{r(y- x) I y E S,r > 0}, (5.23) 

where cl denotes closure of a set [BaS76, page 143]. Thus, from (5.19), (5.23) and the 

positive homogeneity of fr(x; ·) (see Appendix A.1.3), we can deduce that 

fr(x; y- x);::: 0 for ally E T(x). ( 5.24) 

Since x E S implies I+ = </>, it follows from Lemma 5.3 that 
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ffr(x; Hr(x) x) ~ -(Hr(x)- x, \7 F(.r)(Jir(x)- x)). (5.25) 5 .3 Successive quadratic programming algorithm 

Since Hr(x) E T(.r), we have from (5.24) and (5.25) that In this section, we present a successive quadratic programming algorithm for solving 

(Hr(x)- .r, \7 F(.r)(Hr(x)- x)) ~ 0. 
the variational inequality problem {5.1) and prove its convergence. 

F irst, we show that the vector 

But since \7 F(x) is positive definite, we have x = Hr(x). Therefore, i t follows from 
d = Hr(x)- x {5.26) 

Lemma 5.1 that xis a solution to {5.1). 0 

is a descent direction of the penalty function Br : Rn --+ R defined by 

m 

Br(x) = fr(x) + r L:max{O,ci(x)}, {5.27) 
i=l 

where r is a sufficiently large positive parameter {cf. Appendix A.3.3). 

Theore m 5.4 Let F of {5.1) be a mapping from Rn into itself, Ci, i = 1, ... , m, of 

{5.2) be convex functions from Rn mto R, Hr be a mapping defined by {5.9) and Br be 

a penalty functzon defined by {5.27) wzth penalty parameter r > 0. Suppose that F zs 

continuously dzfferentiable and ci, i = 1, ... , m, are twice contmuously differentiable. 

If \7 F { x} is positive definite and 

II A lloo~ 1' for all A E A{x), 

then the vector d = Hr(x)- x satisfies the descent condition 

O~(x; d) < 0, 

whenever d =/; 0. 

P roof. Let I+= {i I Ci(x) > 0} and Io = {i I ci(x) = 0}. By Theorem 5.2 and [Han77, 

Lemma 3.1J, Br is directionally differentiable and the direct ional derivative is given by 
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0~ (x; d) = ffr(x; d) + r L {V' Ci(X), d) + ,. L max{O, (V' <'1 (.r), d)). {5.28} 
iUo 

First note that d = Hr(x)- .r together with a Lagrange multiplier vector..\ satisfies 

m 

F(.r) + Gd + L..\1 V'c,(.r) = 0. 
·-I 

Then {5.29b) yields 

L max(O, (V' c;(x), d)) = 0. 
iUo 

By Lemma 5.3, we have 

i = 1, ... ,m. 

ffr(x; d) ::; -(d, \l F(x)d) + min ( L AiCi(x)) . 
>- EA{:r) iE/+ 

Hence, it follows from (5.28). (5.29b), (5.30) and (5.31) that 

B~(x; d) $ -{d, V' F(x)d) + min ( L ..\ic;(x)) + r L {V'c;(x), d) 
>- E h(:t') i(/+ iE/+ 

< -(d,V'F(x)d)+ min (L (..\;-r)c;(x)) 
-\E h(z) . I 

" t 

< 0. 

{5.29a) 

(5.29b} 

{5.29c) 

(5.30) 

(5.31) 

because , by assumption, V' F(x) is positive definite and II..\ lloo$ r for all ..\ E A(x). 

The proof is complete. 0 

Next we describe a successive quadratic programming algorithm for solving the 

variational inequality problem (5.1). The proposed algorithm uses the vector d defined 
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by (5.26) as a search direction and incorporates tht> t>xact line search to the penalty 

function Br defined by {5.27). Note that, since //T(l') is the uniqu<> solution to the 

quadratic programming problem (5.8), the search direction d = Hr(x) xis obtained 

by solving a convex quadratic programming problem. 

Algorithm 5.1 

Step 0 Choose x0 E Rn, r > 0 and a symmetric positive definite matrix G. Let k := 0 

Step 1 Find the unique solution dk of the quadratic programming problem: 

minimize 

subject to 

Step 2 Find an ak such that 

The next theorem establishes the global convergence of tlus algorithm. 

Theorem 5.5 Let F of (5.1) be a contmuously d1fj<.rentwble mappmg from Rn mto 

itself, c;, i = 1, ... , m, of (5.2) be continuously differentiable convex functions from R" 

tnto R, Hr be a mappmg defined by (5.9) and Br be a penalty funct1on defined by (5.27) 

wtth penalty parameter 1' > 0. Suppos€ that V' F(x) is positiv€ defimte on Rn. Suppose 

also that r is chosen sufficiently large. If the sequence {xk} generated by Algorithm 
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5.1 zs bounded, then {.rk} converges to the unique solution to the variationalmequality 

problem (5.1). 

Proof. To prove the global convergence, we shall use Zangwill's global convergence 

Theorem A [Zan69, page 91]. We denote by A an algorithmic map defined by Algorithm 

5.1, i.e., xkf 1 = A(xk). Since {xk} is bounded, it follows from [Han77, Lemma 3.3] 

that there exists a positive number f such that II _xk lloo~ f for aU k, where >.k is an 

arbitrary optimal Lagrange multiplier vector of the quadratic program solved in Step 

l at iteration k. Assuming that r 2: f, we have from Theorem 5.4 that dk satisfies the 

descent condHion B~(xk; dk) < 0, whenever xk is not a solution to (5.1). Moreover, since 

the map d = Hr(x)-.r and the function Br are continuous with respect to x, and, since 

the exact line search strategy on a bounded interval is closed (cf. Definition 5.1) the 

overall algorithmic map A is closed. Therefore, Zangwill's global convergence Theorem 

A [Zan69, page 91] guarantees that any accumulation point of {xk} is a solution to 

(5.1). Since problem (5.1) has at most one solution by the positive definiteness of 

V'F(x), we conclude that the entire sequence converges to the solution to (5.1). 0 

Remark 5.4 When F is a gradient of some differentiable convex function cp, problem 

(5.1) corresponds to a necessary and sufficient optimality condition for the convex 

programming problem 

minimize cp(x) 
(5.32) 

subject to Ci(:r) ~ 0, i = 1, ... , m. 

We may therefore apply Algorithm 5.1 to (5.32) with the identification F = \lcp. Then 

the subproblem solved in Step 1 becomes the same as that of the standard successive 

New Merit Function 117 

quadratic programming problem [Han77]. But the merit function used m the line 

search is quite different from [Han77]. 
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5 .4 Computational results This problem has the unique solution x* = ( - 0.533144, 2.952246)1 . The results for 

Example 5.1 are shown in Tables 5.1"'5.3. 
In this section, we report some numerical results for Algorithm 5.1. All computer pro-

Tables 5.1""'5.3 show that Algorithm 5.1 converges to the solution for all cases. 
grams were coded in FORTRA ' and run in double precision on a SUN SuperSPARC 

From the tables, we see that the generated sequence converged from outside the set 
Station. 

S. The same tables also show that Algorithm 5.1 does not necessarily decrease th<' 
Throughout the computational experiments, the positive definite matrix G was 

value of the merit function Jr, while the value of the penalty function Br decreases 
chosen to be the identity matrix. The convergence criterion was 

monotonically. In Figure 5.1, we plot the iterates {xk} for the cases r - l and r = 10 

in the two dimensional plane. 

For each example, we tested three values of the penalty parameter: r = 1,10 and 
Table 5.1: Result for Example 5.1 (1· - l) 

100. It is noted that, though the global convergence was proved only with the exact Iteration XJ X2 fr(x) c(x) Or (X) 

line search, we implemented with an inexact line search rule of Armijo-type: 0 0.000000 0.000000 37.000000 - 9.000000 37.000000 

1 - 1.750000 - 1.250000 15.295186 - 4.375000 15.295186 

Step 2' Set ak := {31k, where l~. is the smallest nonnegative integer l such that 2 - 0.913851 - 3.295608 - 0.342954 2.696157 2.353203 

3 - 0.171937 - 3.296810 - 0.624539 1.898517 1.273978 

(5.33) 
4 - 0.284299 3.003017 0.064855 0.098939 0.163794 

5 - 0.514843 - 2.972955 - 0.053349 0.103524 0.050175 

6 - 0.521524 - 2.954387 0.000087 0.000389 0.000476 
Example 5.1 This example is a two dimensional variational inequality problem, where 

7 - 0.533386 2.952260 - 0.000179 0.000340 0.000161 

the mapping F is given by 8 - 0.532789 - 2.952310 0.000000 0.000000 0.000000 

F(x) = 
( 

..c1+2x2+7 ) 

- 2x1+x2 +5 

and the set S is given by 

S = { ( :: ) xJ + xl $ 9} . 
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or = I ......... 
0.5 ' 

Table 5.2: Result for Example 5.1 (r = 10) or=IO o--

Iteration X] X2 fr(x) c(x) Br (X) 0 --- ---------------------- -- - -... -------
0 0.000000 0.000000 37.000000 - 9.000000 37.000000 

/ o ,. ,. 0 
,/ 

1 - 1.750000 - 1.250000 15.295186 - 4.375000 15.295186 -0.5 
,.,·"' 

;' ,. 
- 0.913851 -3.295608 2.696157 

;' 

2 -0.342954 13.137831 ;' .... 
-1 

_,·"' 
3 0.569977 - 3.298011 0.375274 2.201753 11.384041 

/ </; 
4 - 0.526062 - 3.153634 -0.521104 1.222148 5.589636 \ X2 -1.5 \ 

5 - 0.186360 - 3.016532 0.147328 0.134194 0.818300 
\ 

\ 
\ 

6 - 0.501974 - 2.985912 -0.085023 0.167647 0.753212 -2 
\ 
\ 
\ 

7 - 0.515694 -2.955532 0.000069 0.001111 0.005625 \ 
\ 

8 - 0.533415 - 2.952346 -0.000464 0.000880 0.003935 -2.5 \ 
\ 
\ 

9 - 0.532599 -2.952345 0.000000 0.000001 0.000004 \ 
-3 \ 

Table 5.3: Result for Example 5.1 (r = 100) 
\·-·-·-~~:=:~:::;:::::::::::""-+ 

-3.5 

Iteration XJ X2 fT(x) c(x) 8r(x) -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 

0 0.000000 0.000000 37.000000 - 9.000000 37.000000 X! 

1 - 1.750000 -1.250000 15.295186 -4.375000 15.295186 

2 - 1.331926 - 2.272804 3.508426 -2.060336 3.508426 
Figure 5.1: Behavior of Algorithms 5.1 

3 0.672712 -2.885751 0.158826 - 0.219901 0.158826 

4 - 0.558027 - 2.931536 0.051589 - 0.094702 0.051589 

5 - 0.546346 -2.941836 0.025286 -0.047108 0.025286 

6 - 0.539727 -2.947068 0.012494 -00023483 0.012494 

7 - 0.533148 -2.952257 -0.000037 0.000070 0.006984 

8 - 0.533120 - 2.952250 0.000000 0.000000 0.000000 
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Examples 5.2......,5.4 are convex programming problems which are formulated as vari-

ational inequality problems. The results for Examples 5.2......,5.4 are shown in Tables 

5.4......,5.6, respt>ctively. In tht> tables, #Jr denotes the total number of evaluations of 

the merit function Jr. 

Example 5.2 This example is the following convex programming problem: 

nunuruze !xi- x1.r2 + x~- 7xl - 7x2 

subject to 4xi + x~ ~ 25, x1 ~ 0, x2 ~ 0 , 

which is formulated as a variational inequality problem (5.1) with 

and 

S = { ( :: ) 4xj + xl $ 25, x, <: 0, x, <: 0} . 

The results for Example 5.2 are shown in Table 5.4. In this example, the objective 

function is quadratic convex and hence 'il F(x) is positive definite for all x. Table 

5.4 shows that Algorithm 5.1 converged for all cases, but when r = 1, the number of 

iterations is extremely large. 

T II 54 R a)e .. esu ts f E or I 5 2 xamp1e 

Initial Iterate ,. #Iterations #h 
l 149 298 

(0, ... ) 0) 10 12 27 

100 14 35 
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Example 5.3 This example is the convex programming problem given in Example 4.3 

which is formulatt>d as a variational inequality problem {5.1) where 

F(x) = 

and 

S= 

2xl - 20 

10.r2- 120 

4x~ 

6x4 - 66 

40x~ 

14xs - 4x7- 10 

4x7 - 4xs- 8 

X] 

X2 2xi + 3l·~ + X3 + 4x~ + 5x5 

XJ 7:rl + 3.r2 + lOx~+ X4- Xs 

X4 20xl + x~ + 6x~ - 8x1 

xs 4x2 + x2 
1 2 Jx1x2 + 2x~ + 5xs- ll:r7 

xs Xi ~ 0, i = 1, ... , 7, 

X7 

~ 100 

~ 200 

~ 150 

~0 

The results for Example 5.3 are shown in Table 5.5. Since the mapping F is 

monotone but not strongly monotone on R7
, 'il F(.r) is not necessarily positive definite 

Table 5.5: Results for Example 5 3 

Initial Iterate ,. #Iterations #Jr 
1 failed 

(0, ... ' 0) 10 378 1988 

100 302 1627 
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Chapter 6 

A Globally Convergent Newton 
Method for Solving Variational 
Inequality Problems with 
Inequality Constraints 

6 .1 Introduction 

We consider the variational inequality problem of finding .r• E S such that 

(F(x• ),x- x•) ~ 0 for all .l'E S, (6.1) 

where Sis a nonempty dosed convex subset of Rn and F is a continuously differentiablE' 

mapping from Rn into Rn. In this chapter, we suppose that the set Sis specified by 

S={xERnlci(x)~O, i=l, ... ,m}, (6.2) 

where Ci : Rn --+ Rare twice continuously differentiable convex functions. Throughout 

this chapter, we assumE' that Slat£-r's constramt qualification holds; i.E'., there exists an 

:i: E Rn such that 

127 
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c,(x)<O forall i=L ... ,m. (6.3) 

Many iterative methods, such as Newton's method, projection methods, the lin­

earized Jacobi method and the successive over-relaxation methods, have been proposed 

to solve the variational inequality problem (6.1). Among them, ::\ewton 's method gen­

erates a sequence {xk}, where xk+1 is a solution to the linearized variational inequality 

problem 

( 6.4) 

It can be shown that, under suitable assumptions, Newton's method converges quadrat­

ically to a solution x*, provided that an initial point .r 0 is chosen sufficiently close to 

:r• (see Theorem 2.1). 

For the variational inequality problem (6. L ). various merit functions have been pro­

posed and has been used to globalize Newton's method (6.4). Marcotte and Dussault 

[MaD87] obtained a globally convergent .0:ewton method by incorporating an exact 

lin<' search strat<'gy for the gap function g defined by ( 1.2). Another modification is 

Algorithm 3.1 proposed in Chapter 3, which makes use of Armijo line search for the 

regularized gap function Is defined by (1.5). 

Note that the above methods tacitly assume that the constraint set S has a rel­

atively simple structure. For example. wht>n S is a polyhedral convex set, that is. 

functions Ci are all affine, the variational inequality subproblem (6.4) of Newton's 

method becomes an affine variational inequality problem and the functions g and Is 

can be evaluated by solving linear and quadratic programming problems, respectively. 
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However, when Sis a general convex set defined by nonlinear convex functions, solving 

the linearized subproblem (6.4) and evaluating g(x) and l s( :r) should be considered 

difficult tasks. 

In this chapter we propose a new globally convergent Newton method for solving 

variational inequality problems with general inequality constraints. The method solves 

at each iteration an affine variational inequality subproblem, in which not only the 

mapping F but also the constraint functions c, are linearized. Moreover it makes use of 

the merit function fr introduced in the previous chapter to obtain global convergence. 

The proposed method has a clear advantage over the method of Marcotte and Dussault 

[MaD87] and Algorithm 3.1 that solve subproblems (6.4) and use the gap function 

and the regularized gap function respectively, in that each step of the algorithm is 

a finite computation even if the set S is specified by nonlinear inequalities. It is 

shown that, when the mapping F of (6.1) is strongly monotone, the method converges 

globally to the solution, and that, under some additional assumptions, the rate of 

convergence is superlinear. The proposed method is closely related to a successive 

quadratic programming method for solving nonlinear programming problems. 
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6.2 Globally convergent N ewton m ethod Algorithm 6.1 

In this section , we present a globally convergent Newton method for the variational Step 0 Choose .r0 E Rn, 7' > 0, 0 < (3 < 1, 0 < a < 1, and a symmetric positive 

inequality problem (6.1) , which incorporates an Armijo line search procedure for the definite matrix G. Let k :- 0 

penalty function Br : Rn --. R defined by 
Step 1 Find the unique solution xk E T(xk) of the linearized variational inequality 

m 

Br(x) = fr(.r) + r L max(O, Ci(x)) , (6.5) problem 
i=l 

where fT is defined by (5.6) and r is a sufficiently large positive parameter. By Theo-

rem 5.2 and [Han77, Lemma 3.1] , B.,. is directionally differentiable and the directional 
(6.9) 

derivative is given by where ,Xk is an arbitrary vector in A(x.l..·) . Let dk := ;rk - xk. 

B~(x; d) = fr(x; d)+ r L (Vc;(x), d) + 7' L max(O, (V c;(x), d)), 
iEl + i E lo 

(6.6) 
Step 2 Set Otk := {31

k , where lk is the smallest nonnegative integer l such that 

where I -t- = {i lc; (x) > 0} and Io = {i lc;(x ) = 0} . Throughout this section , we 

assume that thE' mapping F is continuously differentiable and strongly monotone with (6.10) 

modulus J.L (cf. (2.16)) , so that V F satisfiE's Step 3 Set xk+ 1 := xk + akdk. Let k := 1.· + 1. Return to Step 1. 

(d , VF (x) d)~ J.L il d ll 2 forall x ,d E Rn (6.7) 

NotE' that in Step 1 we need an optimal Lagrange multiplier vE'ctor ,Xk for the 

(see P roposition 2.6). Note that , since the convexity of Ci guarantees that V2c;(x) is 
quadratic programming problem QP(.rk) (cf. (5.8)) . However, this has already been 

positive semi-definite, (6.7) implies that the matrix M (x , >.) defined by (5.16) satisfies 
obtained in the previous iteration as a by-product of evaluating the function value 

(d, M(x, >.)d) ~ J.L II d 11
2 for all x, d E Rn, {6.8) 

fr(xk). Note also that , by the positive definiteness of M , the linearized problem 

whenever >. ~ 0. (6.9) always has a unique solution. Moreover problem (6.9 ) can be rewritten as a 

Now we state the algorithm. The proposed algorithm uses a search direction ob- linear complementary problem, which can be solved in a finite number of steps using 

tained by solving a linearized variational inequality problem and determines the next Lemke's complementarity pivoting algorithm [Lem65]. The following theorem shows 

iterate by performing the Armijo line search for the penalty function 0.,. . that the vector dk generated by Algorithm 6.1 is a descent direction of Br at xk. 
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Theorem 6.1 Suppose that th£ mapping F : Rn --. R" of (6.1 ) zs continuously dif-

ferentiable and strongly monotone on R" with modulus J.L, that the conue.r functwns 

c; : R 11 _, R, i - 1, ... , m., of ( 6.2) a1·e twice continuously differentiable and that 

Slater's constraint qualificatzon (6.3) holds. Let ()~ be a penalty functwn defined by 

(6.5) where r > 0 ts a penalty parameter. If 

where A(xk) is defined by (5.18), then the uector dk = ;rk - xk obtamed by Step 1 of 

Algortlhm 6.1 satisfies the incquahty 

(6.11) 

where G zs an n x n posztn·e definite malrzx of ( 5. 7). In paritcular, if G is chosen 

suffictently small to satisfy II G II< 2J.L, then dk is a descent directwn of().,. at xk. 

Before proving the theorem, we give the following l<'mma. 

Lemm a 6.1 For any x E R", we have 

fT(x) 
1 m 

= -;-(HT(x)- x,G(HT(x)- .r)}- LA,c;(x) 
2 i=l 

m 

> - L A; c;(x) 
I I 

for any ). E A(.r), where HT(x) is the umque solutwn to a quadraltc programmtng 

problem (5.8). In particular, if :r E S, then 

1 
fr(x) ~ 2(HT(x)- x,G(HT(x)- x)}. 
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P roof. Since Hr(x) solves (5.8), it follows from the definition (5.18) of A(x) that each 

vector ). E A(x) satisfies 

m 

F(x) + G(Hr(x)- x) + ~:::);Vc;(x) = 0, 
t 1 

i = 1, ... ,m. 

Hence, we have from (5.7) that 

fr(x) 
1 

= -(F(:r), Hr(x)- x}- 2(Hr(.r)- x,G( Hr(x)- x)} 

= (G( Hr(x) - x), Hr(x)- x} + (~ ).iVci(x), HT(x) - x) 
1 

- 2(Hr(x)- x, G(Hr(x)- x)) 

~(Hr(x)- x,G(HT(x)- x)) + (~).,Vci(x),HT(x)- x) 

1 m 
= 2(HT(x) - x, G(HT(x)- x)} - L AiCi(x) 

i 1 

m 

where the last inequality follows from the positive definiteness of G. Since Ai ~ 0 and 

c,(x) ~ 0, i = 1, . .. , m, for all xES, the last part of the lemma follows immediately. 

0 

Proof of Theore m 6.1. For simplicity of notation , we omit the superscript kin 

xk, xk and dk. Let/+ = {i I Ci(x) > 0} and Io = {i I c;(x) = 0}. Note that d = x- x 
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together with some Lagrange multiplier vector >. 2: 0 satisfies 

m 

F(x) + Jf(.r, 5.) 1d + L)t V'ci{x) - 0, (6.12a) 
i I 

(6.12b} 

i = l, ... ,m. (6.12c) 

Then (6.12b) yields 

L max(O, {V' ci(x), d)) = 0. (6.13) 

iElo 

m 

Since d = x- x, and since M(x, >.) = V' F(x) + L >.t V'2ci(x), it follows from (5.17) 

that 

f~(x;d) 

i 1 

= min (F(x)- [M(x, J..)- G](Hr(x)- x), x- x} 
.AEA(.r) 

< (F(x)- [M(x,5.)- G](Hr(x)- x),x- x) 

= (F(x), x- x) - ( Hr(x) - x, M(x, 5.)1(x- x)) 

+ {G(Hr(x)- x), x- x) 

= (F(x) + M(:r,5.)1(x -2·),x- x) (M(x,5.)1(x- x),x- x) 

( F(x) + M (x, 5.) 1(x- x), Hr(x) - x) 

+ (F(x), Hr(x)- x) + (G(Hr(:r)- x), x- x) 

( F(x) + M(x, 5.) 1(x- x), Hr(x) - x) 

+ { (F(x)Jlr(x)- x} + ~(Hr(x)- x,G(Hr(x)- x)}} 

- (d, }vf(x. 5.)d) + ~(d, Gd)- ~(:F- Hr(x), G(x- Hr(x))). (6.14) 
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where the last equality follows from the equality 

2{:F x,G(llr(J:)- x)} = (Hr(x)- x,G(Hr(J:)- .r)) + (.r- x,C:(.r- x)} 

-(x- llr(x),G(x- Hr(:r))). 

Since x is a solution to (6.9), the first term of (6.14) is nonpositive. From (5.7), the 

second term of (6.14) equals - fr(x). The last term is nonpositive by the positive 

definiteness of G. Hence, we have 

1 - 1 
fr(x; d) ~ - fr(x) - (d, Af (.r, J..)d) + 

2 
{d. Gd}. 

Moreover, since>. E A(x), it follows from Lemma 6.1 that 

1 - 1 ~-fr(x; d) :S -{d, M(x, J..)d} + -{d, Gd} + L..., A1C1 (x). 
2 

i=l 

(6.15) 

Hence, we have 

B~(x; d) < -(d, M (x, 5.)1d} + ~(d, Gd) + f .Xic;(x) + r L (V'ci(:r), d) 
2 . I . I 1 tt ... 

where the first inequality follows from (6.6), (6.13) and (6.1 5), the second inequality 

follows from (6.12b) together with the fact that 5.1 2: 0 for all i and Ci(x) ~ 0 fori¢ L, 

and the third inequality follows from (6.8) and JIJ..IIoo~ 7' for all). E A{x). This proves 

(6.11). The last part of the theorem follows immediately. 0 

Next we show the global convergence of Algorithm 6.1. 
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Theorem 6.2 Suppose thai the mapping F : Rn - Rn of {6.1) is continuously 

diffaentwble and strongly monotone on Rn wtth modulus J.L, that conuex funcltons 

Ci : R" --+ R. i = l, ... , m, of (6.2} are twice contmuously differentiable and that 

Slater's constraint qualtficatzon (6.3} holds. Suppose also that the parameter r of Algo-

rithm 6.1 is chosen sufficiently large and that the matnx G of A lgonthm 6.1 is chosen 

to sattsfy II Gil< 2J.L. If the sequence {xk} generated by Algorithm 6.1 ts bounded, then 

{xk} conuerges to the umquc solutwn to the uariatwnal znequaltty problem (6.1}. 

P roof. Since the sequence {xk} is bounded, it follows from [Han77, Lemma 3.3] that 

there exists a positive number r > 0 such that II.Ak lloo~ r Cor all k, where ,xk is any 

vector in A(xk). Assuming that r 2: f, we have from Theorem 6.1 that dk satisfies 

the descent condition (6.11), whenever xk is not a solution to (6.1). Hence, by the 

line search rule (6.10), the sequence {O,(.rk)} is decr<'asing. This together with the 

bounded ness of { .rk} implies that there is at least an accumulation point. In a way 

similar to the proof of Theorem 3.2, it can be shown that any accumulation point is a 

solution to (6.1). Moreover, under the strong monotonicity assumption, problem (6.1) 

must have a unique solution. Therefore we conclude that the entire sequence {xk} 

converges to the unique solution to (6.1). 0 

Next we examine the asymptotic rate of convergence of Algorithm 6.1. To this end, 

we consider the iterates (xk, .Ak) generated by Newton's method directly applied to the 

mixed nonlinear complementarity problem (5.4), namely 
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m 

F(xk) + M(.rk,.Ak)t(xk+l- xk) + I>71-1V'ci(xk) = 0, 
i I 

Ci(xk) + (Y'ci(xk), xk+ 1 - xk) ~ 0, 

..x7+1 [ci(xk) + (Y'Ci(xk),xk+ 1 - xk)] -0, 

..x~·l>o 
l - ' 

i = 1, ... ,m. 

137 

(6.16} 

It can be shown [GaM76] that, if V' F(x*) is positive definite, the strict complementar-

ity holds at x • , i.e., c,(x*) = 0 implies .A*> 0, and if the linear independence of the 

active constraints hold (cf. Appendix A.3.2), then the sequence generated by Newton's 

method (6.16) is quadratically convergent, provided that the starting point is chosen 

sufficiently close to the solution. (Note that [Gal\176] deals with the nonlinear pro-

gramming problem, which corresponds to a special case of problem (6.1) where F is a 

gradient mapping of some scalar function, so that F is symmetric. But the symmetry 

assumption is not used in the proof of the theorem in [GaM76].) 

Note that a solution xk+l to (6.16) is a solution of the variational inequality problem 

(6.17} 

whlch is the same problem as (6.9) solved in Step 1 of Algorithm 6.1, except fo r the 

choice of .Ak. Therefore, if II M(xk,,Xk)- M(xk,.Ak) II tends to zero as xk-+ x-, then 

the sequence {xk} generated by solving the linearized variational inequality problem 

with an arbitrary ).k E A(xk), is locally superlinearly convergent. 

Since the vector J.k belongs to A(xk) defined by (5.18}, and ,xk in (6.17) is deter-

mined in the previous Newton iteration (6.16}, both ,Xk and ,xk approach the set A(x• ) 
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whenever xk converges to :r*. In particular, if A(x*) consists of the unique vector A•, 

then both ).k and Ak converge to A•, and hence we have II A1(xk, ).k)- M(xk, Ak) II- 0. 

Note that the uniqueness of the Lagrange multiplier vector A* is ensured by the linear 

independence of the active constraints. 

These observations are summarized in the following theorem. 

Theorem 6.3 Let the assumptiOns of Theorem 6.2 be satzsfied. In addition, suppose 

that the strict complementanty and the linear independence of the active constraints 

hold at the solutwn x*. If there is an integer k > 0 such that the unit step size is 

accepted in Step 2 of Algonthm 6.1 for all k ~ k, then the sequence {xk} generated by 

Algorithm 6.1 converges super/in early to the solution x • . 
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6.3 Comput ational r esults 

In this section, wr report some numerical results for Algorithm 6.1. All computer pro­

grams were coded in FORTRAN and run in double precision on a SUN SuperSPAR(' 

Station. 

Throughout the computational experiments, the positive definite matrix G was 

chosen to be the identity matrix multiplied by 0.1. The convergence criterion was 

In solving the linearized subproblem (6 .9), we first transformed it into a linear com­

plementarity problem, and then applied Lemke's complementarity pivoting method 

[Lem65] coded by Fukushima [IbF91]. 

For each example, we tested three values of the penalty parameter: r = 1, 10 and 

100. It is noted that , though the convergence of Algorithm 6.1 was proved only with 

the Armijo line search rule (6.10). we implemented with the simpler line search rule 

(5.33). 

All examples in this chapter are convex programming problems which are formu­

lated as variational inequality problems. The results are shown in Tables 6.1"'6.3. In 

the tables, #IT denotes the total number of evaluations of the merit function fT· 

E xample 6. 1 This example is the two dimensional convex programming problem given 

in Example 5.2. The results for Example 6.1 are shown in Table 6.1. In this example, 

the objective function is quadratic convex and hence F is strongly monotone on R 2 . 
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Table 6.1 shows that Algorithm 6.1 converged for all cases. 

Table 6.1: Results for Example 6.1 

Initial Iterate r # lt£>rations # h 
1 7 9 

(0 , ... ' 0) 10 5 9 

100 9 19 

Example 6.2 This example is the 7-dimcnsional convex programming problem given 

in Example 4.3 which is formulated as a variational inequality problem (cf. Example 

5.3 ). The results for Example 6.2 are shown in Table 6.2. It is noted that the mapping 

F is monotone but not strongly monotone on R7
. Table 6.2 shows that Algorithm 

6.1 convcrg£>d when th£' penalty paramet£'r was r = 10 and 100. But when r = 1, 

Algorithm 6.1 stalled b£>cause the search direction dk failed to b£> a descent direction 

of the p£>nalty function Or at 9th iteration. 

Table 6 2· Results for Example 6 2 .. 

Initial Iterate r #Iterations #fr 
1 failed 

(0, ... ' 0) 10 11 21 

100 12 25 

Example 6.3 This example is the 10-dimensional convex programming problem given 

in Example 4.3 which is formulated as a variational inequality problem (cf. Example 
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Table 6 3· Results for Example 6 3 .. 
Initial Iterate r #Iterations #h 

l 5 6 

(0 , ... ' 0) 10 5 6 

100 5 6 

5.4 ). The results for Exampl£> 6.3 are shown in Tabl£> 6.3. Tabl<> 6.3 shows that 

Algorithm 6.1 converged for all cas£>s. 

Figures 6.1 rv6.3 illustrate how Algorithm 6.1 converged for Exampl<>s 6.1"'6.3, re­

spectively. In the figures , the vertical axis represents the distance from a generated 

il£>rate to th£> solution, i.e. , 

DIST = ii.rk - x · II. 

From Figures 6.l rv6.3, it is observ£>d that. for all test problems in this section, the rate 

of convergence is sup£>rlinear when Algorithm 6.1 conv£>rges to the solution. 
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6.4 C oncluding remarks 

\Ve have proposed a Tewton 's method for solving the variational inequality problem, 

and shown that, under the strong monotonicity assumption, th<' method is globally 

convergent and that, under some additional assumptions, the rate of convergence is 

superlinear. 

When F is a gradient mapping of some differentiable convex function cp, problem 

(6.1) corresponds to a necessary and sufficient optimality condition for the convex 

programming problem 

cp(x) mmmuze 
(6.18) 

subject to c;(x) ~ 0, i = 1, ... ,m. 

Therefore we may apply our method to (6.18) with the identification F = \lcp. In this 

case, the matrix M defined by (5.16) is rewritten as 

m 

M(x,.X) = \l2cp(x) + L.Xt\l2ci(x), 
i = l 

which is the Hessian of the Lagrangian of problem (6.18). Mort>over, since M is sym-

metric , the subproblem (6.9) solved in Step 1 can be rewritten as 

minimized ~ (d,M(xk),k)d) + (F(xk),d ) 

subjt>ct to ci(xk) + (\lc;(xk),d} ~ 0 i = 1, ... , m. 

Thus Algorithm 6.1 reduces to a successive quadratic programming (SQP) method. 

A major differ<'nce from other SQP methods is that Algorithm 6.1 makes use of the 

function fT as a merit function to globalize the convergence, instead of using a penalty 

function associated with problem (6.18). 
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In the last two chapters, we have assumed that the set S is specified by a system 

of inequalities (cf. (6.2)). In general, the convex set S may be defined by a system of 

inequalities and equalities of the form 

S = {x E R11 lci(x)::; 0, i = 1, ... ,m, hj(x) = 0, j = 1, .. . ,1}, (6 .19) 

where hj : Rn --+ R are affine functions. In this case, by replacing T with 

T(x) = { y E R" 
ci(x) + ('9ci(x), y- x) ::; 0, i.: 1, . .. , m, } , 

hi(y)=O, J-1, ... ,1 
(6.20) 

we can define the merit function Jr. Under Slater's constraint qualification for (6.19), 

i.e., there exists an x E R11 such that 

ci(x) < 0 fori= 1, ... ,m and hj(x) = 0, for j = 1, ... ,l, 

it is not difficult to show that Theorems 5.1 and 5.2 hold for h with T defined by 

(6.20). We can also apply Algorithms 5.1 and 6.1 to the variational inequality problem 

with S defined by (6.19) and establish their global convergence. 

Chapter 7 

Conclusion 

In t his thesis, we have developed efficient algorithms for solving the variational in-

equality problem based on its optimization reformulations. 

In Chapter 3, for the variational inequality problem with general convex constraints, 

we proposed a globally convergent modification of Newton's method by incorporating 

a line search strategy to minimize the regularized gap function. In Chapter 4, this 

method was specialized to solve the nonlinear complementarity problem. In the same 

chapter, we also proposed a descent method for solving the nonlinear complementarity 

problem and proved its global convergence. Through some computational experiments, 

these algorithms were shown to be practically efficient. 

In Chapters 5 and 6, we considered the variational inequality problem in which 

the feasible set was specified by nonlinear convex inequalities. We proposed a new 

merit function which was a modification of the regularized gap function and had 

a property that the value of the function could be evaluated by solving a convex 

quadratic programming problem. Based on the new merit function, we proposed a 

147 
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successive quadratic programming algorithm for solving variat ional inequality prob-

lem and proved its global conv<'rgence. The proposed merit function was also used 

to construct another globally convergent modification of Newton's method. In this 

method, not only the mapping of the problem but also the constraints were linearized, 

while in the method proposed in Chapter 3, linearization was performed only for the 

mapping of the problem. 

In this thesis, among various merit functions which lead to an optimization formu-

lation of the variational inequality problem, we have only focused on the regularized 

gap function and its modification. But we believe that the results of this thesis have 

re\'ealed that such an optimization formulation serves as a promising vehicle for solving 

the variational inequality problem from both theoretical and practical points of view. 

In particular, the results obtained in Chapters 5 and 6 contribute to constructing novel 

efficient algorithms for variational inequality problems with general convex constraints. 

We hope that this thesis contributes toward the progress of the field of variational 

inequality problems. 

Appendix A 

A. I Mathematical review 

l n this section, we provide some mathematical concepts and definitions used in this 

thesis. For detailed expositions, one should refer [Berg63, OrR70]. 

A.l.l Vectors and Matrices 

Inner Product 

The mner product oft wo vectors J.' and y in Rn is defined by (.r, y) = t XiYi· If the 

. i = l 
tnner product of two vectors is zero, then the two vectors are said to be orthogonal. 

The Euclidean norm 

The Euclidean norm of a vector x in Rn is defined by 11 x II= (.r, x) L The Euclidean 

norm II · II has the following properties: 

{a) ll.rll2: 0 for all xE Rn and llxll= 0 if and only if x = 0. 

(b) For any scalar a- > 0, we have that II ax II= Ia-III x 11. 

(c) For any two vectors x, y E Rn , we have that II x + y II ~II x II + II y 11. 

149 
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Schwartz inequa lity 

Let :randy be vectors in Rn. Then the following inequality, referred as the Schwartz 

mcqualtty. holds: 

(x,y) ~ llxiiiiYII· 

Tra nspos ition 

Let A be an m x n matrix. The tmnspose of A, denoted by .41, is an n x m matrix 

whose (i,j)-element is aji· Ann x n matrix A is said to be symmctnc if A1 =A. 

N orm of matrix 

The norm of ann x n matrix A, denoted by II A II, is defined by 

. IIAxll 
IIAII=~J~~· 

where II Ax II and II x II are the Euclidean norms of the corresponding vectors. It follows 

from the definition that, for any vector xE R11
, IIAxii~IIAIIIIxll. 

Posit ive definite m a trix 

An n x n matrix A is said to be positive semidefinite if, fo r any vector x E R 11
, the 

inequality 

(.r, Ax) > 0 

holds. We say that A is posttwe definite if the above inequality holds strictly whenever 

X ;i 0. 
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A .1.2 Set s and seque n ces 

For a vector .r E Rn and a scalar t: > 0. we denote the open sphere centered at :r with 

radius c by Bc(x), i.e., 

Bc(x) = {y IllY- x II< c}. 

A ccumulat ion point 

Consider a sequence { xk} in R 11
• A vector x E Rn is said to be an accumulation point 

of the sequence {xk} if there is a subsequence {xk}k K of {:rk} such that {xk}k ... K 

converges to f. Equivalently f is an accumulation point of { xk} if, for any c > 0, 

Bc(x) contains infinitely many point of { xk} . 

Open , closed a nd compact sets 

A subset X of R11 is said to be open if for every vector :r E X there is an c > 0 such 

that Bc(x) C X. If X is open and if .rEX, then X is sometimes called a neighborhood 

of x. A set X is closed if and only if its complement in Rn is open. Equivalently X is 

closed if and only if every convergent sequence { xk} in X converges to a point which 

belongs to X. A subset X of Rn is said to be bounded if there is a number L > 0 such 

that II :r II~ L for all :r E X. A set X is compact if and only if it is both closed and 

bounded. It is well known that every sequence {.rk} in a compact set X have at least 

one accumulation point in X. 
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A .1.3 Functions and Mappings Directiona l de rivat ive 

Continuous functions and m appings Let <p be a function from R'1 into [-oo, +ooJ, and let .r be a point where v; is finite. 

A function ..p: R'1 
- R is said to be contwuous at .r E H11 if <p(.rk)- .y(x) whenever 

We say that v; is dtrectionally differentiable at x in the direction d if the limit 

.r~· - .r. Equivalently <p is continuous at .r if, for any c > 0, there is a 15 > 0 such 
<p(x + rd)- <p(.r) 

T 
(A.l) 

that II y - l'll < 6 implies lv;(y)- <p(x)l < c. The function <pis said to be continuous 
exists, and we call the limit the d1rectional derivative and denote it by <p1(x; d). It is 

on R" if it is continuous at every point .r E R 11
• A mapping F : R" - Rn is said to 

known that a directional derivative is positwely homogeneous, i.e., <p1(.r; ad)= a<p'(.r; d) 

be continuous at J.' E Rn if all component functions Fi, i = 1, ... , n, are continuou!> at 
holds for any dE R 11 and a> 0 . 

.r E R". Also F is continuous on R" if it is continuous at every point :r E Rn. 

Lipschitz cont inuous 

D iffer e ntiable functions a nd m a ppings 
Let X be a subset of R11

• A mapping F : Rn - Rn is Ltpschitz contmuous on X if 

A function.,:; : R" _, R is said to be continuously differentiable if the partial derivatives 
there is a constant L > 0 such that 

8..p(.r) I Dx 1, . .. , av;(.r) I 8xn exist for each x E Rn and are continuous functions of x over 
II F(x) - F(y) II$ L II x- y II for all x, y E X. 

R". A gradzenl of a function .pat a point .r E Rn is defined to be a column vector 

( 

8<p(x~lfh1 ) 

\7.p(x) = : . 
8.p(x)18.rn 

The Lipschitz continuity of a Jacobian \7 F is also defined as 

II \7F(x) - \7F(y) II$ L llx - y II fo r all x,y EX, 

If the second partial derivatives 82<p(x)f8:riOXj exist for all i,j and are continuous, where the norm of the left hand side represents a matrix norm. 

then we call <p lwtcc continuously differentiable. The JJcssian of <p is defined to be an 
M ean value theor e ms a nd Tay lor series exp a nsion 

n x n symmetric matrix whose (i.j)-th component is 82<p(x)j8x/)x1 . 

A mapping F : Rn - R11 is continuously d ifferent iable if all components Fi, i = 
Let a function <p : R11 

- R be continuously differentiable. Then, for any x, y E Rn, 

1, .... n, are continuously differentiable and F is twice conti nuously differentiable if all 
there exists an a with 0 < a < 1 such that 

F1 are twice con tinuously differentiable. cp(y) = <p(x) + (V'<p(x + a(y- x)),y- x). 
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If, in addition, cp is twice continuously differentiable, there exists an Cl' with 0 < Cl' < 1 A.2 C onvex set s a nd convex functions 

such that 
Tllis section summarizes some concepts of convexity. For more details, see [HiL93, 

cp(y) = cp(x) + (V'cp(x), y- x) + ~ (y- x, V'2cp(x + <l'(y - x))(y- x)). Roc70]. 

Let cp be a continuously differentiable function from Rn into R. The first-order Taylor Convex set s 

series expansion of cp around x is given by the equation 
A subset S of Rn is convex if, for any x, y E S and any 0 :::; a :::; 1, the vector 

cp(y) = cp(x) + 11 

('Vcp(y + r(x- y)), x- y) dr. CI'X + (1- <l')y is contained inS. An important special case of convex set is a polyhedral 

set. A polyhedral set S of Rn is defined by 

where A is an m x n matrix and b is a vector in Rm. Every polyhedral set is closed 

and convex. A simple example of polyhedral convex is R+. 

Convex functions 

Let S be a convex subset of Rn. A function cp : Rn --. R is said to be convex on S if, 

for all x,yE Sand all 0 < Cl' < 1, the inequality 

Cl'cp(x) + (1- Cl')cp(y) 2: cp(ax + (1- a)y) 

holds. We say that cp is strictly convex if the above inequality holds strictly whenever 

x =I= y. A function cp is said to be strongly convex with modulus J.t if there exist a J.t > 0 

such that 

1 
acp(x) + (1- a)cp(y) 2: cp(<l'x + (1- <l')y) + 2J.ta(l - Cl') II x- y 11

2 
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holds for all J:, y E S and 0 < a < l. A function .p : R 11 
--+ R is said to b<' concave 

(strictly or strongly concave) if -.p is conv<'x (strictly or strongly convex). A differen-

tiabl<' function <.pis pseudo convex if ("V<p(x),y- .r) 2:: 0 implies <p(y) 2:: <p(x) for aU 

When a convex function <.p is continuously cliffer<'nt iable on th<' convex set S, we 

have the following proposition (cf. [Hi193, page 183]). 

Proposition A.l Let a funcllon <p : Rn -. R be differentiable on the convex subset S 

of R". Then 

(a) <p lS convex on S if and only tf 

..p(y)- .p(.r);::: (V9(x),y - .r) 

holds for all x,yE S, 

(b) y 1s stnctly conl•e.r if and only zf the above zncquality holds strzctly whenever 

J.' :f: y' 

(c) .p zs strongly convex with modulus J1 on S if and only zf 

1 
<.p(y)- <p(x) 2:: ("V<p(x), y - .r) + 2J-LII x - y 11 2 

holds for all x, y E S'. 

Affine functions and mappings 

A function y : R11 
- R is said to be affine if <p is both convex and concave. Each 

affine function <p can be represented as <p(x) =(a, x) + b where a is a vector in R" and 
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b is a scalar ( cf. [Roc70, Section 4]). An affine function is convex and pseudo-conv<'x 

but neither strictly nor strongly convex. A mapping F : R 11 --. R 11 is affinE' if all 

compon<'nts Fi, i = 1, ... ,n, ar<' affine. 
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A.3 Nonlinear programming 

In this section, we collect some concepts of the nonlinear programming problem which 

have been frequently appeared in this thesis. For details and many other results, see 

[BaS76, BSS93, Lue84]. 

A.3.1 Descent method 

Consider the following mathematical programming problem: 

minimize cp(x) subject to .r·E Rn, (A.2) 

where <p is a continuously differentiable function from Rn into R. Most typical iterative 

algorithms for solving (A.2) generates a sequence {xk} deoterm.ined to be 

(A.3) 

where dk is a search direction at xk and O:k is a positive step size parameter. An 

iterative algorithm (A.3) is said to be a descent method if the generated sequence {.rk} 

satisfies cp(xk+l) < cp(.rk) for all k. We often call (A.3) a descent gradient method (or 

simply a gradunt method) if the search direction dk satisfies (Vcp(xk), dk } < 0 whenever 

A line search is a procedure which determines a step size O:k of (A .3). Among 

various line search rule, we introduce two rules which are often used in theory and 

practice: 

(a) E.racl line search: O:k is chosen so that 
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(b) Armijo rule: Parameters 0 < /3 < 1 and 0 < u < ~ are sell:'cted. We- set 

O:k = /3 1~<, where lk is the smallest nonnegative integer l such that 

A .3.2 Karush-Kuhn-Tucker condit ion 

Consider the following mathematical programming problem: 

minimize .p(x) 

subject to ci(x) ~ 0, i = 1, ... , m , (A.4) 

hj (X) = 0, j = 1, . .. , / , 

where each/, Ci fori = 1, ... , m, and hi for j = l, ... , l, is continuously differentiable 

function from Rn into R. Let .r* be a solution to problem (A.4). Then, under suitable 

constmint qualification, there exist Lagmnge multiplter5 >.; , i = 1, ... , m, and 1rj. j = 

1, ... , l, such that the vector (x•, >. •, 1r"') satisfies the /( arush-I<uhn- Tuck-er condztton: 

m I 

Vcp(x*) + L >.iVq(x*) + L 1rjVh;(x•) = 0, 
i = l i = l 

hj(x*) = 0, j = 1, ... , l. 

Followings are the list of constraint qualifications useful in practice. 

(a) Ltnear independence constramt qualtfication: The vectors Vci(x*) fori E I 

and Vhj(x* ) for j = 1, ... ,I are linearly independent. where I = {i1ci(.r• ) = 

0}. 
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m 
(b) Slater's constram/ qualification: The functions c;, i = 1, ... , m, are all con- <p(x) + r L:max(O, ci(x)). 

i = l 
vex and hj, j - L ... ,L are all affine. Furthermore, there exists an x E Rn 

(b) Quadrattc penalty functwn: 

such that 

Ci ( x) < 0 for i = l , ... , m and h 1 ( x) = 0 for j = 1, ... , l. 

A.3.3 P enalty function 
The quadratic penalty function is differentiable. On the other hand, the t1 penalty 

function is not differentiable but is known to be exact [Bert75]. 
A penalty functwn is used to transform a constrained optimization problem into a 

si ngle unconstrained optinuzation problem. Consider the following mathematical pro-

gramming problem: 

rninimize <p( .r) 
(A.5) 

subject to .rEX, 

where f is continuous function from Rn into R and X is a subset of R11
• A penalty 

functwn associated with problem (A.5) is defined by 

.p(.r) + r~(.r ), 

where a parameter r > 0 is said to be a penalty parameter and ~ is a continuous 

function from R 11 into R which has a property that ~(x) 2: 0 for all x E R11 and 

<l> (.r) = 0 if and only if xE X. 

Suppose that X is defined as 

X ={xERnlc;(x)$ 0, i=l, ... ,m}. 

The following functions are the examples of penalty functions: 

(a) /1 penalty functwn: 
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