
)

Studies on Flexible Workflow Model

with Database Technologies

Takeo K unishima

December 1996

Abstract

Workflow management system (WFMS), one of the groupware support

ing asynchronous distributed interaction, becomes remarkable not only

in practical business area but also in research area.

WFMSs mainly support well-structured collaborative works using ex

plicitly defined flows of works (workflows). They controls the invocation

order in workflows automatically, and manages several resources of the

work.

As a number of workflows run concurrently using shared resources of

organizations, transaction management with concurrency control is an

important technology for WFMSs. In this sense database technologies

are indispensable for the infrastructure of WFMSs, and many researchers

have studied about transaction management in WFMSs.

Data management is another important role of database technolo

gies in WFMSs. As WFMSs must manage many data such as workflow

descriptions, status of progress, activity environments, and activity prod

ucts, WFMS products use DBMSs in their backends. However, the role of

DBMSs in WFMSs is no more than as repositories. There is no standard

data model for workfl.ows even in the research level.

In this thesis we propose a flexible framework of workflow manage

ment suitable for database technologies, workflow base. In this model,

1

2 Abstract

• A workflow is defined as a set of objects (activity objects) , each

of which corresponds with the unit of work in workfiows. Two

kinds of flows , horizontal flows and vertical flows, are defined. Both

flows are treated as constraints among activity objects, hence they

are created dynamically from the definitions of activity objects.

This makes database management of work.flows to be easier than

ordinary workflow models.

• Integrity constraints over workfiows are defined on a set of activity

objects in database. They can be checked in a similar way with

ordinary integrity check on database management systems.

• The concept of workflow instantiation is also defined based on gen

eralization/specialization hierarchies of workfiows. This makes re

lationships among work.fiows clearer, and workfiows more reusable.

• Execution model of workflow base is defined based on production

systems. This model deals with dynamic dispatch of subworks as

well as ordinary static flows in the same manner.

Database features of workflow base are discussed from the various

viewpoints. Loopback flows are defined using ECA rules, a basic concept

of active databases; extensions on workflow base dealing with time con

straints and resource constraints are introduced; database operations over

work.flows based on relational algebra are also introduced, which realize

general purpose view functions and query functions in workflow man

agement systems; agents as an executer of the units of work are defined

formally as a problem solver in a heterogeneous distributed environment.

Finally we give a system architecture of workflow base.

Acknowledgment

First I would like to thank deeply my supervisor, Professor Yab.iko Kam

bayashi at Kyoto University. He gave me the opportunity to study

databases and workflow management systems, and continuously sug

gested many helpful ideas since then. He also extensively reviewed this

thesis and suggested many improvements.

I would also express my thanks to Professor Katsumasa Watanabe at

Nara Institute of Science and Technology (NAIST). He continuously sup-
-

ported my study in Kyoto university and gave me the best environment

for my doctoral research.

I would like to thank Professor Shuzo Yajima at Kyoto University.

I had studied with him at master course of Kyoto University. He also

introduced me to Professor Kambayashi for carrying out my wishes to

begin researches about databases.

Associate Professor Kazumasa Yokota at Kyoto University discussed

about almost all part of this thesis and gave many helpful perspectives to

me about formalization of workflow model. Workflow model in Chapter

3 would not be constructed without the discussions with him. I would

like to acknowledge his contribution.

Associate Professor Sb.inji Kimura, Mr. Kazuyoshi Takagi, and the

members of Watanabe Laboratory at NAIST, cooperated to give me a

3

4 Acknowledgment

good environment for my study.

There are many other people I would like to thank. I discussed many

ideas with Associate Professor Hiroshi Nunokawa at Miyagi University

of Education and the members of his research group, especially Mr.

Masahiro Hiji and Mr. Norihisa Segawa. They have the similar research

directions with me in the area of computer-supported cooperative work,

information media, and databases. Mr. Segawa now studies with me at

NAIST. Associate Professor Tsuneo Ajisaka at Kyoto University, Dr. Hi

royuki Tarumi at NEC Corp. , and Mr. Isao Kojima at Electrotechnical

Laboratory (ETL) suggested many useful comments from the viewpoints

of software engineering, groupware, and active database systems, respec

tively. Dr. Hiroki Ta.kakura at N AIST has helped me both in Kambayashi

Laboratory and in NAIST. Associate Professor Masatoshi Arikawa (now

at Hiroshima City University), Ms. Masako Watanabe (Kyoto Univer

sity), Mr. Shintaro Meki (now at Okayama Prefectural University), Mr.

Hideyuki Takada (now at Mitsubishi Electric Corp.) also helped me when

I was in Kambayashi Laboratory. The members of Kambayashi Labora

tory offered the computer environments to me every time I go to Kyoto

University.

Finally, I would like to thank all people to help me, especially my

family and my friends in Choir Hamoru KOBE.

Contents

Abstract

Acknowledgment

1 Introduction

1.1 Background

1.2 Outline of the Thesis

2 Preliminaries

2.1 Workflow Management Systems

2.1.1 Basic Concepts ...

2.1.2 Previous Researches

2.1.3 Benefits for Workflow Management by Using Da-

1

3

9

9

13

17

17

17

20

tabase Technologies 22

2.2 Definite Clauses, Production Rules , and ECA Rules 22

2.2.1 Definite Clauses and Logic Programming

2.2.2 Production Rules

2.2.3 ECA Rules . .

2.3 Agent as an Executer .

5

23

24

24

25

6 Contents Contents 7

3 A Workflow Model with Database Technologies 29 5.4 Operations on Activity Objects With Plugins 67
3.1 Workflow Model . 30 5.5 Examples on Applying Operations . 68
3.2 Execution Model 33 5.5.1 Retrievals ••••• 0 • 68
3.3 Workflow Instance 37 5.5.2 Updates of Workflows 69
3.4 Workflow Base 39 5.6 Summary •• 0 •• • 0 ••• 0 70
3.5 Summary 0 •• 0 • 40

6 Agents Reconsidered 71
4 Extensions on Workflow Base 43 6.1 Logic-Oriented Definition . 72

4.1 Loopback Flows ... 44 6.2 Agent-Based Definition .. 73
4.2 Time Constraints . . 46 6.2.1 Agents and Environments 74

4.2.1 Time Plugin . 48 6.2.2 Coordination among Agents 77
4.2.2 Time Constraints over Flows . 50 6.2.3 Relations between Workflow Base and Agent Def-
4.2.3 Scheduling 51 initions. 79
4.2.4 Time Adjustment . 52 6.3 Summary 80 .. .

4.3 Resource Constraints . . . 53

4.3.1 Resource Sum Constraints 55 7 System Architecture of Workflow Base 81

4.3.2 Resource Reallocation .. 56 7.1 The Interface Between Applications and Workflow Base . 81

4.4 Horizontal Flows qy Exclusive Locks 57 7.2 The System Architecture of Workflow Base . 82

4.5 Summary • • • • 0 ••••• 0 .. 0 0 • 57 7.3 Summary 0 • 0 •••••• 0 •• •••• 84

5 Database Operations on Workflow Base 59 8 Comparisons with Related Researches 87

5.1 Query Operations 61 8.1 Groupware Approach . . 87

5.1.1 Selection 61 8.1.1 OM-1 88

5.1.2 Operations on Has-a Hierarchies . 63 8.1.2 Action Workflow 88

5.1.3 Operations on Specialization Hierarchies 64 8.1.3 Regatta 89
5.2 Operations Handling WFTs 64 8.1.4 MEGUMI 90

5.2.1 Grouping, Ungrouping 64 8.1.5 Work Web 90
5.2.2 Split, Concatenation 65 8.2 Process Modeling Approach 91

5.3 Operations Handling Activity Objects 66 8.2.1 Activity Management System 91

8

8.2.2 Statechart .

8.2.3 KyotoDB .

8.3 Database Approach

8.3.1 C&Co

8.3.2 Event-Condition-Message Rules

9 Conclusions

References

List of PublicatioD.S'·by the Author

Contents

92

93

93

93

94

95

97

109

Chapter 1

Introduction

1.1 Background

During the recent two or three years, computer networks permeate into

several areas of our-everyday life.

The Internet started just as a computer wide area network among

the computer research sections of universities, companies, and some pub

lic organizations. At that time, the users of the Internet communicate

each other through the Internet by electronic mails, network news, or

character-based realtime applications such as electronic phones. These

are only the usages of the Internet.

However, this situation around the Internet has been drastically

changing as several technologies are progressed in the areas of computer

and digital networks. Now the Internet is no longer an experimental ob

ject for computer researchers; it is an infrastructure of several business

activities, including personal activities. Applications on the Internet has

also changed from character based to multimedia based. World Wide

Web (WWW), a multimedia hypertext over the Internet, is an example

9

10 Chapter 1. Introduction

of hot multimedia based applications among the Internet users.

Groupware is another hot application over the Internet. It is a gen

eral term for the technologies supporting human communications or co

operative work over the computer networks, such as electric meetings,

cooperative writing, etc. Ellis [EGR91] defined the term "groupware"

as:

Computer-based systems that support groups of people en

gaged in a common task (or goal) and that provide an inter

face to a shared environment.

Although the concept of groupware is proposed in 1978 (JLJL82] , it had

not been practical until the recent years because of the lack of its infras

tructures, such as computer powers and the network bandwidth. As this

problem has been gradually solved, many researches and developments

of groupware are carried out.

Ellis categorizes groupware into four types from notions of time and

space [EGR91]. They are:

• Face-to face interaction. This type supports cooperation in the

same place and the same time. Electric meeting room system

[SFB+87, SBF+87] can be shown as its example.

• Asynchronous interaction. This type supports cooperation in the

same place but in the different times.

• Synchronous distributed interaction. This type supports coopera

tion in the same time but in the different places. Group editor

[FS86] and distributed electric meeting system [CMB+90] are some

of the examples.

• Asynchronous distributed interaction. This type supports coop

eration in the different times and the different place. These are

1.1. Background 11

the examples: task coordination systems [WF86, FGHW88], in

formation filtering systems [MGL - 87), office procedure systems

[1091, Suc83, CL84], and hypertexts [CB88].

Workflow management system (WFMS) [GHS95) is one of the re

markable groupware not only in practical business area but also in

research area. WFMSs, belonging into the groupware supporting

asynchronous distributed interaction according to Ellis's categorization,

mainly support structured collaborative works using explicitly defined

flows of works (workflows). They controls the invocation order in the

workflows and manages several resources of the work automatically.

As a number of workflows run concurrently using shared resources of

organizations, transaction management with concurrency control is an

important technology for WFMSs. In this sense database technologies

are indispensable for the infrastructure of WFMSs, and many researchers

have studied about transaction management in WFMSs [GH94, RS94,

KS95, AAA +96).

Another contribution of database technologies for WFMSs is data

management. As WFMSs must manage many data such as workflow de

scriptions, status of progress, activity environments, and activity prod

ucts, WFMS products use DBMSs in their backends. However the role

of DBMSs in WFMSs is no more than as repositories. There is no stan

dard data model for workflows even in the research level, though some

researchers pointed out the importance of data sharing in computer sup

ported cooperative work (GS87] and workflow data models (AS96).

If DBMSs support WFMSs more closely in their data management,

WFMSs can provide more useful and powerful functions. This is our

standpoint[KK95, KY96, YKN96, YKN97]. DBMSs' supports bring the

following advantages into WFMSs:

12 Chapter 1. Introduction

• By managing all workflow descriptions in one DBMS, it is easy to

resolve duplications or conflicts among the workflows. This leads

to efficient workflow management.

• Management of workflow hierarchies makes reuse of workflows pos

sible.

• Powerful view functions can be provided. For example, private

schedule can be obtained as a view of workflows.

• Workflows can be easily updated, changed, or reorganized even if

they are in progress.

• An integrated work environment can be provided by managing both

product data and process data.

As real offices are open [Hew86], groupware should support office works

flexibly, even in the procedural works. Hence these advantages are useful

for flexible workflow management systems.

In this thesis we propose a flexible framework of workflow manage

ment suitable for database technologies, workflow base. The features of

this model and the merits are as follows:

1. A workflow is defined as a set of objects (activity objects), each

of which corresponds with the unit of work in workflows. This

makes database management of workflows to be easier than ordi

nary work::fl.ow models.

2. Two kinds of flows, horizontal flows and vertical flows, are defined.

Ordinary workfiows can be described by using these flows. Both

flows are treated as constraints among activity objects, hence they

are derived dynamically from the definitions of activity objects.

3. The concept of generalization/specialization workflow hierarchies is

introduced. This makes relationships among work:flows clearer, and

1.2. Outline of the Thesis 13

workflows more reusable. The concept of workflow instantiation is

also defined based on these hierarchies.

4. A rule-based execution model of workflow is defined. This model

deals with dynamic dispatch of subworks as well as ordinary static

flows in the same manner.

5. Integrity constraints over workfiows are defined. As they are de

fined on a set of activity objects in database, they can be checked

in a similar way with ordinary integrity check on database man

agement systems.

We also discuss several database features of workflow base from the

various viewpoints. Loopback flows are defined using ECA rules, a basic

concept of active databases; extensions on work::fl.ow base to deal with

time constraints and resource constraints are defined; database opera

tions over workflows based on relational algebra are introduced, which

realize general purpose view functions and query functions in workflow

management systems; agents as an executer of the units of work are

defined formally as a problem solver in a heterogeneous distributed envi

ronment. And finally, we discuss about system architecture of work::fl.ow

base.

1.2 Outline of the Thesis

The remainder of this thesis is as follows. In Chapter 2, preliminaries for

the discussions of the latter chapters are provided. First we explain the

basic concepts of workflow management systems and the requirements

to work::fl.ow management systems are discussed. Secondly, brief expla

nations about definite clauses, logic programming, production rules, and

ECA (Event-Condition-Action) rules are shown. We utilize these con-

14 Chapter 1. Introduction

cepts in the definition of workflow base and its extensions. Finally, we

explain the concept of agent as a heterogeneous distributed cooperative

problem solver. The term "agent" is used in several contexts of dis

tributed cooperative environment. We use "agent" as an executer of the

units of work in workfl.ows. The concept of agent is defined from this

context. This definition is utilized in Chapter 6.

Workflow base, a formal model of workflow database, is proposed in

Chapter 3. This is the core model of this thesis. Its basic idea is that

a workflow is represented as a set of units of work and the constraints

among the units. This idea makes workfl.ow management using database

technologies to be easier than other workfl.ow models. Section 3.1 defines

the structure of work:flows in workfl.ow base. Activity objects represent

ing the units of work in workfl.ows, two kind of flows based on message

passing between activity objects and on part-of hierarchy over activity

objects, and several constraints on workflow templates are defined in this

section. Section 3.2 gives an execution model of workflow templates based

on production system. In Section 3.3 instantiation concept of workflow

templates is defined using specialization hierarchies of workflows. Based

on the preceding discussions, workflow base is defined in Section 3.4.

Some extensions on workfl.ow base are discussed in Chapter 4. Al

though workfl.ow base defined in Chapter 3 supports basic functions in

dispensable for workflows, some extended features such as loopbacks,

time constraints, resources constraints, etc., are necessary for workflows.

We discuss these extensions: loopback flows based on ECA rules are

defined in Section 4.1; time constraints and some applications on them

such as scheduling are shown in Section 4.2; the constraints of resources

on workflows are discussed in Section 4.3. We also discuss a method for

resource reallocation in the time of violations in resource constraints in

1.2. Outline of the Thesis 15

this section. And finally, we show that exclusive lock mechanism causes

horizontal flows dynamically in Section 4.4.

Chapter 5 describes about database operations on workflow base. If

the operations on workflows are provided, workflow management will

be more flexible and powerful: View functions on workflows, dynamic

change on workflows with keeping integrity constraints, etc. As workflow

base manages workfiows in a style suitable for database management,

the operations on workflows can be easily provided. In this chapter, an

operation set based on relational algebra is proposed.

Chapter 6 is devoted into reconsiderations about agents. In the previ

ous chapters, we consider agents as an executer of the units of work. We

give another definition of agents in workflow base, as a problem solver

enclosed in a capsule. As workflow base is organized in heterogeneous dis

tributed environment, agents are essentially also heterogeneous. Hence in

workflow base, mechanisms that heterogeneous agents must coordinate

each other. We show such a mechanism by providing an environment for

message-passing between agents.

We discuss about how to implement workflow base, mainly from sys

tem architecture point of view in Chapter 7. Though workflow base is

closely related to database systems, it has various features not found in

traditional database systems, such as an execution model based on pro

duction systems. We first investigate system requirements to implement

workflow base, and then show a system architecture of workflow base.

Related researches are shown in Chapter 8, with comparisons to work

flow base. There are many researches about workflow management sys

tems. Moreover, there are also similar concepts as workfl.ows in various

research areas, such as groupware, process modeling, database, and soft

ware process engineering. In this chapter, we pick up several related

16 Chapter 1. Introduction

researches from three research areas - groupware, process modeling,

and database - and compare them with workflow base especially from

the workflow model point of view.

We conclude with discussions of future work in Chapter 9.

Chapter 2

Preliminaries

2.1 Workflow Management Systems

2 .1.1 B asic Concepts

Workflow is a concept for automating or reengineering business processes

in an organization [AS94, GHS95, Sch96). However, there is little agree

ment for the features a workflow management system must provide.

This is because the term "workflow" uses in various situations: busi

ness process specification, business process automation, business process

reengineering, etc. Moreover, in the domain of workflow management,

products are developed earlier than researches with strict definitions or

theorems. Here are a few examples of workflow products [GHS95): Lo

tus Notes from Lotus Development Corp. , FloWare from Recognition

International, Staffware from Staffware Corp., DocuFLOW from Inven

tor Inc., WorkMAN from Reach Software Corp. , ActionWorkfiow from

Action Technologies, TeamLinks for Pathworks from Digital Equipment

Corp., etc.

17

18 Chapter 2. Preliminaries

In 1996, Workflow Management Coalition [wfC], international orga

nization for standardization of workflow software technology, published a

document about workflow software terminology [Wor96]. This document

explains almost all important concepts of workflow model.

A workflow defines a collection of process instances organized to ac

complish some business processes, the order of process instances to be

invoked, and several conditions under process instances invocations. In

[Wor96] there are five kinds of the invocation order:

• AND-Split. A single thread of control splits into two or more par

allel processes.

• AND-Join. Two or more parallel executing processes converge into

a single common thread of control.

• OR-Split. A single thread of control makes a decision upon which

branch to take when encountered with multiple alternative work

flow branches.

• OR-Join. Two or more alternative processes workflow branches re

converge to a single common process as the next step within the

workflow.

• Iteration . The repetitive execution of one or more workflow pro

cesses until a condition is met.

Each process instance is performed by human, by a team of humans,

or by soft wares. Moreover, each process instance may have subprocess

instances. Therefore workflows can be constructed hierarchically.

A workflow is often described as a directed graph whose nodes and

arcs represent business tasks and their invocation order respectively.

Note that the graph may have cycles because business tasks sometimes

repeats until their aims are attained. Figure 2.1 shows an example of

2.1. Workflow Management Systems

Distribute
Papers

/

. ·
.. ········

Review 1

Review 2

Review 3

Combine
Reviews

.....__ ___ __,·

Delegation ······ ...
·.
~

Subreview 1
Subreview 2

\.. /

Forward
Reviews

Figure 2.1: Workflow Example: Paper Review Workflow

19

workflow. In this workflow, the processes "Review 1", "Review 2", and

"Review 3" are executed concurrently. Hence, the invocation order from

"Distribute Papers" to "Review 1", "Review 2", and "Review3" should

be "AND-Split"; the order from "Review 1", "Review 2", "Review 3" to

"Combine Reviews" should be ~AND-Join".

Workflow management is a technology to support automation or

reengineering using workflows. It mainly organized from these four pro

cedures:

1. defining workflows by analyzing the business processes to be man

aged.

2. instantiating workfiows by assigning several variables with real in-

20 Chapter 2. Preliminaries

stances - for example, organization role name with human name.

3. executing instantiated workflows. It is similar with the execution

of finite automaton. First an initial task (state) is set, and when

receiving transition events, tate transitions are invoked with some

actions such as sending E-mail for notifications.

4. restructuring workflows for optimization of business processes.

These procedures are invoked at the endless order; that is, restructur

ing workflows results into defining new workflows, and starting a new

procedure sequence.

A work.fl.ow management system consists of software components to

store and interpret process definitions, to create and manage work.fl.ow

instances to execute them, and to control the interactions with users. In

order to store process definitions and to manage execution status of work

flows, databases are indispensable component of work.fl.ow management

systems.

2.1.2 Previous Researches

Workflow management systems provide methodologies to support

(GHS95]:

1. business process modeling to capture business processes as work.fl.ow

specifications.

2. business process reengineering to optimize specified processes.

3. workflow automation to generate workflow implementations from

workflow specifications.

In addition, workflow management systems support asynchronous dis

tributed cooperative work whose structure is well-defined in most cases.

2.1. Workflow Management Systems 21

Another methodology of workflow management systems is transaction

management. That is, cooperative work supported by workflow manage

ment systems is routine work, and many numbers of transactions, some

of these sharing office resources, run concurrently during workflow man

agement.

Hence, in the workflow area, researches and developments had been

advanced from these three directions:

• Process modeling approach. This approach mainly focuses on

business process modeling, business process automation, busi

ness process reengineering including dynamic change mechanism,

etc. Many formal models of business process have been pro

posed based on this approach: Petri-net based (Ish86, 1091,

BN95, EKR95], state transition diagram based [HK89, HLN+90,

SAM91, JMR92, Swe93, INMS96J, distributed knowledge-base

based (TLA91, JMR92, Ple95, MCC95, Rob96), etc.

• Groupware approach, [SMK90, KCM91, MMWFF92, Mah93,

TTY95] for example. This approach views work.fl.ow management

system as a kind of groupware supporting cooperative activities of

human beings in a distributed environment. It mainly focuses on

communication theory [WF86, Mah93], flexible support for human

communications [ML84, BTKdlT93, BN95, IHH96], system archi

tecture including GUI [KCM91], toolkits for implementing WFMSs

(FKB95], etc.

• Database approach, [GH94, RS94, KS95, AAA +96] for example.

This approach mainly views from transaction management from

database point of view, such as transaction model supporting trans

action hierarchies and concurrency control,

22 Chapter 2. Preliminaries

2.1.3 Be n efits for Workflow Management by Using

Da t abase Technologies

As described in the previous section, databases bring some benefits into

workflow management systems, especially in transaction management

area. Transaction management in databases are useful when workflow

management systems become very large, for example involving thousand

of users in wide area networks.

However, as mentioned in [AS96], applying database technologies to

workflow management bring several benefits other than transaction man

agement, such as interoperability among several workflow management

systems. Interoperability is one of the very serious problems in workflow

management area, because workflow management technologies have been

leaded by commercial products, no interoperability in each other.

Database technologies will be helpful for resolving interoperability

problem in workflow management by providing general purpose workflow

manipulation languages, like SQL in data management. Therefore data

base technologies can provide the infrastructure for managing workflows

in more general and flexible way than in conventional WFMSs technolo

gies.

2.2 Definite Clauses, Production Rules,

and ECA Rules

In this thesis, we use definite clause based logic programming such as

pure Prolog, production rules, and ECA (Event-Control-Action) rules to

control workfl.ows. We assume that the readers are familiar with them.

Here we introduce their basic concepts, definitions, and behaviors.

2.2. Definite Clauses, Production Rules, and EGA Rules 23

2.2 .1 D efinite Clauses and Logic Programming

Any closed formula in the first order logic can be transformed into a set

of clauses, each of which is in the following form:

where Pi, q; (0 ~ i ~ n, 0 ~ j ~ m) are atomic formulas (atoms).

A clause with at most one positive atom is called a clause, written as

follows:

p f-.

where p is a positive atom and Qi is a negative atom. The first and

the second clauses are called definite clauses, a set of which is called a

program or a database. The third clause is called a goal. Without loss

of generality, we can assume that the second clause does not have any

variables as in extensional databases of deductive databases. The second ,
one is called a fact, and the first one is called a rule. The left hand side

of +- is a head and the right hand side of +- is a body.

As usual we can define three kinds of formal semantics: declarative ,
semantics as the minimum Herbrand model, procedure semantics such

as SLD resolution, and least fixpoint semantics. Here we focus on the

procedure semantics. Given a query ? -q to a program P, query processing

is represented as the following sequence of pairs of a set of goals and a

set of substitutions:

where Go = {q}, and if p f- P11P2, · · · ,pm E P, q E Gi, and p8 = q(),

24

then

Chapter 2. Preliminaries

Gi+l = Gi U {p10,p20, · · · ,pmB}

si+l = si u o
To control workfiows, we treat an atom corresponding to a work: 1.e.,

a rule p ~ P1,p2, · · · ,pn means that works Pt,P2, · · · ,pn should be done

to complete a work p. In other word, if pis activated by and receives

inputs in some arguments as a result of unification, p activates subgoals

Pb P2 1 • • • , Pn and sends inputs to- them as a substitution. If subgoals

are executed successfully, they retrnn outputs as new substitution. If a

subgoal is defined by another rule, it activates the corresponding rule.

2.2.2 Production Rules

A production rule is a basic component of an expert system and defined

as

if condition-part, then action-part,

where the condition-part consists of multiple conditions. Here, we denote

a production rule as w <= wb w2, · · ·, Wn. In this thesis, we consider each

condition as the completion of its corresponding work, and an action as

a newly activated work.

Differently from definite clauses, we evaluate production rules for

wardly as one way information passing from condition-part to action-part

as usual.

2 .2.3 ECA Rules

We introduce an ECA (event-control-action) as an extension of a pro

duction rule for efficient processing. The semantics of a ECA rule is that

2.3. Agent as an Executer 25

if an event E occrns, then a condition C is evaluated, and if C is satisfied,

then an action A is executed.

Comparative with a production rule, an ECA rule has some advan-

tages for om application, workflow:

• In workflow, it is easier to model events such as feedback and ana

lyze of failure.

• We can classify rules according to kinds of events and optimize

them.

• An event corresponds to the timing of evaluation, while conditions

correspond to the contents of evaluation.

Recently ECA rules are used in the context of active databases [MD89],

while we use them to classify kinds of flows among works.

2.3 Agent as an Executer

A workflow defines a set of works and their structured flows, where each

work may be executed either automatically by a program, or by a person :

i.e., simply speaking, the executer of work can be abstracted as a problem

solver or an agent. In this thesis, we use a problem solver as a general

term for a database system, a knowledge-base system, a constraint solver,

an expert system, an application program, and a person, and we employ

a concept agent, proposed by a heterogeneous distributed cooperative

problem solver, Helios[YA94 , AYT95], as an abstracted problem solver

with the same protocoL

A basic concept (in Helios) is an agent, defined as follows:

agent (capsule, problem-solver)

(capsule, environment, { agent11 · · ·, agentn})

26 Chapter 2. Preliminaries

user (environment)

t

environment
------~~ ~~--~--agent) (agent

Figure 2.2: Basic Model of Agent

A simple agent is defined as a pair of a capsule and a problem solver:

intuitively, a problem solver is wrapped with a capsule as in Figure 2.2.

A complex agent is defined as a triple of a capsule, an environment, and

a set of agents (agent1 , · · ·,agentn), where an environment is a field where

agent11• • ·,agentn can exist and communicate with each other. Intuitively,

as a pair of an environment and a set of agents can be considered also

as a problem solver, a new agent can be defined by wrapping them by a

capsule. That is, an agent can be also hierarchically organized. Figure

2.2 shows such structures.

A capsule and an environment are defined as follows:

capsule

environment

(agent-name, methods, self-model,

translation-rules, nego tiation-strategy)

(agent-names, common-type-system,

negotiation-protocol, ontology)

An agent name in a capsule is an identifier of the corresponding agent,

and agent names in an environment specify what agents exist in the

environment. Methods in a capsule define import and export method pro-

tocols of the corresponding agent. An agent with only import methods

2.3. Agent as an Executer 27

is called passive and an agent with both methods is called active: that

is, only an agent which sends new messages through export methods

can negotiate with other agents. A common type system in an envi

ronment enforces all agents under the environment to type all messages

strongly. A self model in a capsule defines what the agent can do. An

environment extracts necessary information from self models in agents

to dispatch messages among agents. Under a negotiation protocol in an

environment, each agent defines a negotiation strategy to communicate

with other agents. An ontology defines the transformation of the contents

of messages among agents, while a capsule converts the syntax and type

of messages between the common type system and the intrinsic type sys

tem of the corresponding problem solver. These information is defined

in CAPL (CAPsule Language) and ENVL (ENVironment Language).

Although various information is defined in each environment and each

agent, a message among agents is in the form of a global communication

protocol consisting of the message identifier, the identifier of a sender

agent, the identifier of a receiver agent, a transaction identifier, and a

message. A message identifier is common in a query message and answer

messages. A transaction identifier is used to identify a negotiation process

as a transaction, which can be nested.

A user can play three roles in Helios: an end user, an outermost

environment, and a problem solver if he keep the above same protocol.

For communication between a user and an agent, a user can give

his user model, which corresponds to a common type system and data

structures defined in an outermost capsule. Given a user model to an

agent, its capsule transforms all messages between the user and the agent .

A user is defined as the outermost environment where there is only one

(simple or complex) agent. If an internal agent cannot solve a problem,

28

u
s
E
R

Chapter 2. Preliminaries

Figure 2.3: User as an Environment and an Agent

the problem is thrown out in the outer environment. Hence, a user

receives unsolvable problems finally. If the user returns the answer to

the agent, the agent continues to process the suspended message.

Furthermore, a user may be defined also as an agent, that is, a user

can process a message sent by its capsule and return its result to the

capsule. This feature helps not only prototyping a system, but also

constructing a groupware environment, if multiple users are defined as

agents. In this thesis, we use such features of an agent as an executer of

a work. Such models make prototyping multi-agent programming in our

model easier.

Relations among users and agents are shown in Figure 2.3.

Chapter 3

A Workflow Model with

Database Technologies

In this chapter a formal workflow data model is proposed. This model

represents a workflow as a workflow template (WFT), a set of activity

objects. Each activity object corresponds to each office work units of

the workflow. An activity object is regarded as a transformation func

tion of message objects, executed by an agent or by sub activity objects

as subroutines. Two kinds of flows, horizontal flows and vertical flows,

are derived from input-output relationships and part-of relationships be

tween activity objects, respectively. An execution model of a WFT is

defined as a production system which treats horizontal flows and vertical

flows as production rules and definite clauses, respectively.

We also propose an instantiation mechanism of workflows in a formal

way. A partial ordering of WFTs is defined based on Smyth orderings

of its components. Instantiation of a WFT is treated as an assignment

over this ordering.

Based on these formal models, a workflow database, workflow base,

29

30 Chapter 3. A Workflow Model with Database Technologies

is formerly defined. We also discuss about its integrity constraints.

3.1 Workflow Model

An activity object, which corresponds to a unit of work, is recursively

defined as follows:

a = (I ,O,P,S) where I= {ib" · ,in} (n ~ 1)

0 = { 01, .. · , Om} (m ~ 1)
P =string

S=WFT

where I is a set of inputs of a, 0 is a set of outputs of a, P is an agent

who is responsible for the execution of a, and S is a WFT (defined in

the following) of a, which executes subworks of a. Intuitively, a receives

I , P executes its necessary work, and a sends 0. During the execution,

if necessary, a divides I, dispatches them to S , monitors their execution

processes, and composes 0 from their results.

Strictly speaking, an activity object is defined as a quintet

(a, I , 0 , P, S) , whose identifier is a. In this paper, for simplicity, we

denote simply a or a = (I, 0 , P, S). Further, when I , 0 , and P are

singletons, {}is omitted, if there is no misunderstanding.

A workflow template (WFT) W is defined as a set, { a1 , • • · , an}, of

activity objects a11 .. · , an (n ~ 0). Exactly, it is (W,{ab· .. ,an}), the

identifier of which is W. For simplicity, we denote W = { a1, · · · , an}, as

in an activity object.

Now we can define workfiows. There are two kinds of flows in a WFT

as follows:

3.1. Work.tlow Model 31

1. horizontal flow ''===}"

a1 ==:} a2 dE (01 ;:2 I2)
n n

{all a2, ... 'an}==:} a d.=f (L oi ;:2 I) 1\ '1/j -,(u oi- oj 2 I)
i=l i = 1

The second definition specifies the minimality of inputs.

2. vertical flow "---+"

a ---7 a, d~ ai E S where a= (I,O,P,S)

Consider an example. There are four activity objects, a1 , a2, a3, and

a, such that 0 1 = {o1,o2},02 = {o2,o3}, 03 = {o3,o1}, I= {o1,o2,o3}.

The possible workfiows are defined as follows:

On the other hand, { a1, a2, a3} ==:}a is not a workflow because it violates

the minimality condition.

To define various classes of workfiows from a WFT, we define several

restrictions:

1. closed WFT:

Consider any activity object a = (I , 0 , P, S) in a WFT W. If

ai E W for any a i E S, then W is called closed.

2. acycle WFT:

We define transitive closures of==:} and ---7:

32 Chapter 3. A Workflow Model with Database Technologies

If \fa E W. •(a ~ a), then W is called acyclic in =::;., and if

\fa E W. •(a ---4 a), then W is called acyclic in ---t. Note that a

cyclic workflow corresponds to a feedback of a work.

3. redundant WFT:

For any a = (I, 0, P, S), if 0 ~ I, then a is called redundant. A

WFT containing redundant activity objects is called a redundant

WFT. Note that, even if two activity objects a1 = (11 , 0 11 P1 , S1)

and a2 = (12, 02, P2, S2) have relations of I 1 ~ I 2 /\ 0 2 ~ 0~, we

consider they are not redundant if P1 =/: P2 .

4. triangle of WFT:

Let "-'+=d;. U -.±.t. Then if 3a.(a1 ==:} a2 V a 1 ---t a2) /\ a1 ~
a/\ a"'-'+ a2 , then there exists two ways between a1 and a2. A WFT

containing a1 and a2 with such a relation is called triangle.

Workflow is defined as a WFT W satisfying these restrictions:

and W constitutes a connected graph.

This definition is easily extended into a set of workflows. Consider a

set, S, of workfl.ows, each of which is connected to another workflow in

S: that is,

Vw1 E S,3w2 E S.

((wi =a"-'+ a'/\ w2 = a'"-'+a11
) V (w2 =a"-'+ a'/\ w1 = a'~a")),

and S constitutes a single graph. We extend the above definition and

call such a set of worldlows a worlffiow generally. The above definitions,

3.2. Execution Model 33

closedness, acyclicity, and redundancy, are also considered in this defi

nition of a workflow. In the case of triangle restriction, it is extended

as follows: S ===? a /\ 3S' ~ S. S' "'-'+ a' /\ a' "'-'+ a. Remark that we can

consider a set of workfiows also as a set of activity objects because flows

are represented only implicitly.

Consider two workflows, S1 and S2. Ordering between S1 and S2 is

defined by subset relation: i.e., sl ~ s2· In this order, a maximal set in

a WFT called a maximal workflow. In a maximal workflow, an activity

object without any parents is simply called a parent. Generally, a WFT

defines multiple workfl.ows in the sense of this definition .

A closed WFT guarantees Gt.t least one definition of a closed workflow,

which corresponds to the unit of a complete work: On the other hand, an

unclosed workflow includes a definition of a work, lacking some activity

objects to which a work might be submitted.

3.2 Execution Model

To execute a WFT for a work, we must define its execution model. The

execution model of a WFT consists of two models, P-box and C-box, each

of which corresponds to horizontal and vertical flows, respectively.

A horizontal flow defines the following production rules:

If a1 ==:} a2,

If a 1 ==:} a3 and a2 ==:} a3,

If a 1 =::;. a2 and a1 ==:} a3,

If a 1 ,

then a2 {= a1

then a3 {= a1. a2

then a2 <¢= a 1 and a3 <¢= a1

then a 1 {=.

The right hand side of -<= is a set of conditions, while the left hand side

is an action . This rule is evaluated forwardly as in ordinary production

34 Chapter 3. A Workflow Model with Database Technologies

rules. That is, by receiving all end conditions of the corresponding activ

ity objects, the corresponding activity object to the action is activated.

An activity object itself is represented as a fact.

A production system, as a set of such production rules, is stored in

P-box in the WFT.

On the other hand, a vertical flow represents a set of definite clauses

as in logic programming such as Prolog. That is, when an activity object

a generates children a 1, a2 , • · · , an, the execution model is represented as

follows:

Intuitively, constraints and binding information are propagated from a

to a1, a2, ···,an, and if all .children. objects end successfully, then a ends

its execution successfully. That is, these rules are evaluated backwardly

as in Prolog.

Such a set of definite clauses is stored in a C-box in the WFT. As

dynamically generated child objects are also activity objects, they are

stored in P-box, not in C-box.

Consider an example (Figure 3.1). Such a process is defined as a WFT

in Figure 3.2. In a real review process, we must instantiate "submitted

paper", "chair", "secretary", "PC-member", and so on. We will intro

duce the instantiation concept of workflow in the next section. Remark

that multiple instances of a child object, ''review", must be dynamically

generated, after "chair" received "all-submitted-papers".

The corresponding execution model is shown in Figure 3.3.

First, three production rules, "receive", "dispatch-1", and "send ¢:::

dispatch-1" are generated in P-box. After activating "dispatch-1", n

activity objects, "dispatch-21,, "dispatch-22", · • ·, "dispatch-2n" are gen

erated as instances of "dispatch-2". Such activity objects are gener-

3.2. Execution Model 35

all
submitted

papers

review-process

receive

dispatch-1

dispatch-2

review

send

~=*received-
...___r_e_c_ei_v_e _ _,r- letter

all- ~. . d review-F==* rev1ew- sen 1 tt ,...._,..--,_,....,,.--,,..--,,_, reports e er

Figure 3.1: Review Process

{receive, dispatch-1, dispatch-2, review, send}

(all-submitted-papers, received-letter,

secretary, {})

(all-submitted-papers, all-review-reports,

chair, { dispatch-2})

= (selected-submitted-papers,

selected-review-reports,

PC-member, {review})

= (submitted-paper, review-report, reviewer,

{})
(all-review-reports, review-letter, secretary,

{})

Figure 3.2: WFT of a Review Process

36 Chapter 3 . .4. Workflow Model with Database Technologies

P-box: receive

dispatch-1

send ¢=dispatch-!

dispatch-21

dispatch-22

dispatch-2n

Dynamically generated

activity objects

C-box: dispatch-1 f-dispatch-211dispatch-22,· · ·,dispatch-2n·

dispatch-21 f- review11,review12,· · ·,review11

dispatch-22 f- review 21 ,review 12, · · ·,review 2m

dispatch-2n f-review nl ,review n2' ... ,review nk

Figure 3.3: Execution Model of a Review Process

3.3. Workflow Instance 37

ated in P-box and its corresponding rule (definite clause), "dispatch-1

f- dispatch-21, dispatch-22 , · · · , dispatch-2n", which controls their exe

cution, is generated in C-box. After each activity object "dispatch-2/' is

activated, its corresponding activity objects, ''reviewi1" ,· · ·, "reviewir",

for "review" and its rule, "dispatch-2i f-reviewi11· · ·,reviewir", is stored

in P-box and C-box, respectively.

Activity objects, generated and inserted into P-box during execution,

do not cause any conflict to existing activity objects, because they are

newly generated. Therefore, dynamic update of P-box is an conservative

extension and does not change its semantics and does not cause new

conflicts.

3.3 Workflow Instance

To apply WFTs defined in the previous sections to real works, we must

instantiate inputs, outputs, agents, and so on. Such instantiated WFTs

are called workflow instances (WFI). Although a WFI is an instance of

a WFT, they are essentially the same. Here we use a WFI as a WFT to

execute a real work.

First we define ordering between objects and, as the results, ordering

between WFTs. Consider a domain M of message objects consisting

of inputs and outputs, and a domain P of agents. An activity object

a = (I, 0, P, S) is basically a function from I to 0, defined as follows:

1. I E 2M, 0 E 2M

2. P E 21'

3. a E A, S ~ A, where A is a set of activity objects, defined as

38 Chapter 3. A Workflow Model with Database Technologies

follows:

Although P can be defined as a function on M, we take another

domain P, because we consider that two activity objects with the same

inputs and the same outputs, but the different agents should be defined
as different objects.

For an activity object a = (I, 0, P, S), we consider assignment (J of

I to I' = {i1,i2,···,in}, 0 to 0' = {o11 ~,···,om}, and P toP'=

{p1,P2, · · · ,pk}. M, P are assumed to be partially ordered sets by CM

and ~P, respectively. We usually omit the subscripts of~' for simplicity.

The assignment is denoted as follows:

which corresponds to specialization with the following relations:

I' ~s 1 {:} 'Vi E I, 3i' E I'. i' C i

0' Cs 0 {:} 'Vo E 0, 3o' E 0'. o' C o

P' Cs P {:} Vp E P, 3p' E P'. p' ~ p

That is, Cs is Smyth ordering, which is necessary and sufficient condition
of being assignment.

The orderings between two activity objects a = (h, 0 1, P1 , S1) and

a'= (/2, 02, P2, S2) is defined as follows:

a C a' d~ I1 Cs I2 1\ 01 ~s 02

1\ P1 ~s P2 1\ S1 Cs S2.

where the orderings of sl and s2 is defined as:

sl ={at, ... ,an} Cs s2 = SI(J d;j {aiO, ... ,anO}.

3.4. Workflow Base 39

A partial assignment into Sis also defined as follows:

a'~a {:} {a'}US~s{a}US

An assignment() to a WFT W is defined as W() = {a18, · · · ,amB}. As

WFTs and WFis are the same, we can define ordering among them by

using assignment.

Consider the previous example (Figure 3.1). To instantiate "review-

process" into "CODAS-review', we define the following assignment:

all-submitted-papers/ {paper11paper2; · · ,papern}

chair /Kambayashi

PC-members/ {Masunaga, Uemura, Makinouchi, Tanaka, · · ·}

secretary/{Takada}

Using this assignment, a WFT ''review-process" is instantiated into

"CODAS-review". Such instantiation can be denoted as follows:

review-process/ COD AS-review

We can activate a WFI by such instantiation.

3.4 Workflow Base

Various information defined in the previous sections are stored in a work

flow database, that is, workflow base (WFB). For simplicity, we as

sume that identifiers of WFT /WFI, activity objects, message objects

and agents are global in a workflow base.

A workflow base is defined by a set of WFTs (including WFis) and

(M, CM), (P, Cp) . Now we generalize the definitions of WFTs in Sec

tion 3.1 to include the identifier of the upper WFT and assignment. That

is, each WFT W (= W' B) is defined as follows:

40 Chapter 3. A Workflow Model witb Database Technologies

definition: W = (W', fJ , { a1 , · · · , am})

a1 = (!11 01, P1, S1)

D.n = (In, On, Pn, Sn)

execution model: P-box:

C-box: .. · ·

Note that the execution model can be generated from the definition ini

tially, however dynamically generated activity objects and rules are not

stored initially.

As for a workflow base, there is an integrity constraint:

• Specialization hierarchy of WFTs: Ordering among WFTs are con

sistently defined by (M, ~M) and (P, Cp).

Furthermore, we can impose various integrity constraints defined in Sec

tion 3.1, according to applications' requirements.

3.5 Summary

In this chapter a formal workflow data model, workflow base was pro

posed. This model represents a workflow as a workflow template (WFT),

a set of activity objects. Each activity object corresponds to each of

fice work units of the workflow, executed by an agent or by sub activity

objects as subroutines.

Two kinds of flows, horizontal flows and vertical flows, are derived

from input-output relationships and part-of relationships between activ

ity objects, respectively. An execution model of a WFT is defined as

a production system which treats horizontal flows and vertical flows as

production rules and definite clauses, respectively. This execution model

3.5. Summary 41

deals with both static flow control and dynamic dispatching of subworks

in the same matter.

We also proposed an instantiation mechanism of workflows in a formal

way. A partial ordering of "WFTs is defined based on Smyth orderings

of its components. Instantiation of a WFT is treated as an assignment

over this ordering.

Based on these formal models, a workflow database, workflow base,

was formerly defined. We also discussed about its integrity constraints.

42 Cbapter 3. A Workflow Model with Database Technologies

Chapter 4

Extensions on Workflow Base

In Chapter 3, a workflow is modeled as a set of activity objects, each of

which consists from its inputs and outputs, the responsible agents, and

subworks. This simple modeling is useful to give formal and powerful

frameworks into WFMSs.

On the other hand, real office works are more complex than this

modeling. First they might have feedback loops in most cases; that

is, when the results of some works in workflows do not satisfied the

previously defined requirements, the works or a sequence of the works

will be redone until the requirements are satisfied. However, the workflow

model in Chapter 3 cannot support feedback flows.

Second weakness of the workflow model in Chapter 3 is about the

constraints of office works. There are several constraints about the re

sources of the organizations, such as deadlines, funds, materials, persons,

etc. These constraints affect the workflow structures and the instanti

ation process of workfiows. These affections are occurred dynamically

even in the execution phase of workflows. Moreover, the constraints in

terfere each other. For -example, the agent responsible with some work

43

44 Chapter 4. Extensions on Workflow Base

is also responsible with its subworks whose responsible agents are not

defined.

In this Chapter, we discuss some extensions to workflow base to deal

with more complex office works. ~irst we show the way to realize loop

back flows into workflow base, using ECA rules, in Section 4.1. In Section

4.2 and Section 4.3 extensions for dealing with time constraints and re

source constraints are discussed, respectively. In Section 4.2, after intro

ducing time plugin for extending activity objects with time attributes , we

discuss interferences between time constraints and flows in workflow base,

scheduling problem on workflow base, and time adjustment. In Section

4.3, two resource constraints, resource sum equality and resource sum

inequality are introduced, and the way for resource reallocation which is

done when the resource constraints are violated is discussed. And finally,

we show in Section 4.4 dynamic horizontal flows caused by exclusive lock

mechanism.

4 .1 Loopback Flows

In order to deal with feedback flows of workflows, we must provide condi

tional flow control mechanisms. Some conditions for occurring feedback

are evaluated at the source node of feedback flows, and feedback is oc

curred when and only when the conditions are satisfied. If the conditions

are not satisfied, feedback is not occurred and ordinary flows are acti

vated. In this sense, flow branch mechanism should be provided at the

source node.

We use Event-Condition-Action {EGA} rules [MD89) to realize feed

back flows in WFB. ECA rule is a basic concept of active database sys

tems, DBMSs that allows users to specify actions to be taken automat-

4.1. Loopback Flows 45

ically when certain conditions arise. An ECA rule has three attributes:

event, condition, and action. Intuitively, semantics of the rule is simple:

when the event occurs, evaluate the condition; and if the condition is

satisfied, execute t he action.

For two activity objects a1 , a2 E W.a1 ~ a2 where W is a WFT, a

feedback horizontal flow from a2 t o a1 is defined as a special horizontal

flow such as:

where E is a set of feedback events. Intuitively, this flow means that

the outputs of a2 are sent to a1 when and only when all the feedback

events in E is occurred. Similarly, for activity objects a11 ···an, a E

W.{ a11 ··· , an} ~ a, a feedback horizontal flow from a to {all ··· , an}

is defined as:

Note that we do not deal with feedback vertical flows in this thesis.

From the definitions in Chapter 3, vertical flows are defined from the

inclusion relationships among activity objects. Hence feedback vertical

flows, i.e. loop of the partial orderings defined on inclusion relationships,

are beyond from the conventional set theory.

The semantics of feedback horizontal flow is defined using ECA rules:

If E, a2 => a11 then a1 ¢:: E(a2) .

If E, a=> { a 1, ··· , an}, then a1 ¢:: E(a) , · · · , ~ ¢:: E(a) .

The left hand side of ¢:: is an action; while the right hand side of ¢::

includes a set of events as well as a set of conditions. E(a) means a

set of events, with message objects passed into the sink activity object

of the feedback horizontal flow. When the event set E is occurred, the

rules that include E in its right hand side are activated, then the activity

46 Chapter 4. Extensions on Workflow Base

object in its left hand side is activated. Remark that any production

rules without event part is not activated in this case. This means that

any ordinary horizontal flows are activated when a feedback horizontal

flows is activated, and vice versa.

The rules corresponding with feedback horizontal flows are stored in

P-box of the WFT, as same as ordinary horizontal flows. No extension

is needed into the semantics of the production system of P-box.

In order to implement facilities to evaluate some conditions when E

is occurred, it is very simple: just put conditions c1 , · · ·, Cm into the left

hand side of a feedback horizontal flows, as follows:

This flow defines the ECA rule

a1 {= E(a2),c1,·· ·,en.

Intuitively the semantics of this rule corresponds to that of the ordinary

ECA rules: When the events E are occurred, the conditions c1 , • • · , en are

evaluated; all conditions are evaluated as true, then the activity object a 1

is activated. This extension enables multiple branch of flows, as follows:

E, c1, a2 ===?a

E , c2, a2 ===? a'

The first flow occurs when c1 is true, while the second flow occurs when

c2 is true. That is, flows will branch by the evaluation results of the

conditions c1 and c2.

4.2 Time Constraints

In general, several constraints about time can be considered on workfiows

such as:

4.2. Time Constraints 47

• startline constraints. When the process can be started from.

• deadline constraints. When the process must be finished by.

• duration constraints. Constraints about time duration among pro-

cesses.

• prediction constraints. Constraints about estimation time of the

process.

We show some examples of each constraint:

• startline constraints.

Consider again the workflow example in Figure 3.1. Review report

format is distributed to the reviewers by ftp, but the preparation

of ftp service was not in time for dispatch of submitted papers. In

such a case, the reviewers must wait for writing review reports until

ftp service is available.

In this example, startline constraint plays an role of implicit

flows. The workflow in Figure 3.1 does not explicitly describe re

view report sheets as message objects through vertical flows from

"dispatch-!" to "dispatch-2", or from "dispatch-2" to "review".

• deadline constraints.

In Figure 3.1, as deadline of the process "send" is fixed at the stage

of call-for-papers, each unit of work in the workflow has a deadline

determining backwardly from the deadline of "send" .

• duration constraints.

"Receive" process in Figure 3.1 must be started at least one day

after, for example, from receiving a submitted paper.

48 Chapter 4. Extensions on Workflow Base

In some cases, processes in workflow must be executed simulta

neously. For example, "send-review-letters" process in Figure 3.1

must be started at the same time for all authors of the submitted

papers. This kind of simultaneity can be considered as a duration

constraint of no duration.

• prediction constraints.

When a reviewer receives submitted papers, he estimates the time

to be required for the reviews, and then decides whether to un

dertake reviewing. If he decides to undertake reviewing but he is

too busy to review all papers by himself, he may redistribute the

papers to those who are working under him. In such a case, he

estimates how long each staff takes to review a paper.

In order to deal with these constraints, we propose time constraints

on workflow-base.

4.2.1 Time Plugin

First, time plugin for an activity object plugT is defined as follows:

l def (p ugT = s, e, d,p)

where s is the time a must be started; e is the time a must be finished

by; d is the duration period which a must be done; p is the prediction

period of a. An activity object can be plugged in with time plugin plugT

such as:

ar =(I, 0, P, S, s, e, d,p)

where a= (I,O,P,S) is an activity object. A WFT consisting from

activity objects with time plugin is called a WFT with time plugin.

To execute ar successfully, ar must satisfy these two inequalities:

4.2. Time Constraints 49

1. e - s 2: d (duration inequality). Because ar must be executed in

the time period d, ar cannot satisfy either s or e if ar does not

satisfy this inequality.

2. d 2: p (estimation inequality). As ar must be executed in the time

period d, the estimate time of ar must be less than d.

To apply WFTs with time plugin to real works, they are instantiated

in the similar way with instantiation of WFTs without time plugin in

Section 3.3. Consider a domain 7 of time and a domain V of time period,

with partial orderings c 7 , ~v , respectively. For an activity object with

time plugin ar = (I , O,P,S,s,e,d,p), we consider assignment 8 of s to

s', e toe', d to d', and p top', where s' ~~ s, e' ~~ e, d' ~v d,p' Cv p,

respectively, in addition to the ordinary assignment into activity objects.

Instantiation of ar is defined by an assignment() to ar, denoted as arfJ.
An assignment() to a WFT with time plugin WT is defined as Wr8 =
{ ar18, ... 'arn8}.

If no assignment of s is included in 8, it is assumed that an assignment

s J c is omitted, where c is the current time on the agent P'.

An assignment() including either efe' or d/d' is called a correct as

signment on time plugin. In a correct assignment on time plugin,

• it is assumed that an assignment efs' + d' is omitted if efe' is not

included;

• it is assumed that an assignment d/ e' - s' is omitted if d/ cl is not

included.

If pfp' is not included in a correct assignment on time plugin, it is as

sumed that pfd' is omitted.

50 Chapter 4. Extensions on Workflow Base

4 .2.2 Time Constraints over Flows

Time constraints of activity objects which connect by horizontal or verti

cal flows interfere each other. In this section, relationships between time

constraints and the flows in workflow base are discussed.

First consider horizontal flows. For activity objects with time plugin

a1 and a2 that have a horizontal flow a1 ===} a 2 , these inequalities must
be satisfied:

1. s1 + P1 $ s2

2. e1 + P2 $ e2

3. e1 $ s2

Similarly, for a horizontal flow { a 1 , · · · , an} ==? a, these inequalities must
be satisfied:

1. ma.x{si + Pb · · ·, Sn + Pn) $ S2

2. max(e1 + p, · · · , en + p) :::; e

3. max(e1, · · ·,en) :::; s

These are obvious from the definition of horizontal flows.

For a vertical flow a---t ~' these inequalities must be satisfied:

1. S < Si

2. e > ei

3. d > di

4. P >Pi

Note that p may not be larger than :Ef=IPi because some of the sub

activity objects may be executed concurrently.

4.2. Time Constraints 51

4.2.3 Scheduling

An agent generally has a number of to-do works at the same time. In

such a case, the agent must do scheduling among the works to put to-do

priorities to them. In this section, we discuss scheduling problems using

the time constraints defined in the previous section.

To simplify the discussions, we first consider scheduling between two

activity objects. Let

a1 - (Ill 0 1 , P, 0, sb e~, d~,pl)

a2 (!2, 02, P, 0, s2, e2, d2,p2)

be activity objects with time plugin. These two activity objects are both

responsible by an agent P because both have empty set of sub activity

objects. From the time constraints point of view, we can categorize

relationships between a1 and a2 into two cases: { s1 $ s2) 1\ (e1 $ e2) and

(s1 < s2) 1\ (e2 $ e1). Scheduling of a1 and a2 is as follows:

• In case of {s1 :::; s2) 1\ (e1 :::; e2),

Pl1lP2,PI2 if e2 $ s1 + P1 + P2 $ e1

P1,P2
fail

and if PI can be divided into subworks

if s 1 + Pt + P2 :::; e2

if s1 + P1 + P2 > e1

"fail" means that scheduling of these two activity objects is failed. In

this case, the agent P must negotiate with another agents to make the

52 Chapter 4. Extensions on Workflow Base

time constraints of the activity objects more loose. We do not discuss

the negotiation process in this thesis.

Scheduling problem among more than three activity objects is much

more difficult than that of two activity objects. In actual, the problem

is treated as an linear programming problem. The detailed discussions

from this point of view is beyond this thesis.

4.2.4 Time Adjustment

In the discussions above, we assume that all agents share one global clock.

However, this assumption is too strict under distributed environment:

each agent in general have the different clock, and there are time lags

among them. In this section, we extend the time constraints on workflow

base by loosening this assumption.

First we extend time plugin as follows:

def (plugr = c, s, e, d,p)

and an activity object with time plugin 01r is extended as:

def (01r = I , 0, P, S, c, s, e, d,p)

where c is the current time of the clock which P has.

Consider a situation that the agent P dispatches ar to the agent P'.

In this case, P' adjusts time plugin of 01r as follows:

s := s - a-t; e := e- a- t;

where a = c - d; t is the transmission time from P to P'.

4.3. Resource Constraints 53

4.3 Resource Constraints

In this section, we give a workflow of publishing process as another ex

ample of workflow which have more severe constraints about resources

than the reviewing process.

Figure 4.1 shows an illustrative example of publishing process of mag

azine1. The process is defined as a sequence of two units: producing

posters and producing magazine. Each unit consists from some subpro

cesses. In "planning" process, an outline of the printing matter such as

its design, funds, total pages and contents in case of magazine, etc., is

determined. Then the requests of producing contents are sent to authors.

In case of producing magazine, all the contents are gathered for editing.

Finally, camera readies are sent to the printing house for printing. We

assume that posters and magazines use the same logo; hence a horizontal

flow from "poster printing" to "magazine printing" is put to this work

flow because the logo is first designed in ((poster printing" process, then

sent to "magazine printing" process.

There are many constraints about resources in the workflow in Figure

4.1. For example, the sum of the costs for two printing processes is

determined beforehand; the number of total pages for the magazines is

also determined in the "planning" process. Agent determines the costs of

the subprocesses, or the number of pages for each articles, with satisfying

the resource constraints. In the next section we formalize this kind of

resource constraints about its sum.

11n Figure 4.1, horizontal flows and vertical flows are represented as thick arcs and

thin arcs, respectively.

54 Chapter 4. Extensions on Workflow Base

Figure 4.1: Workflow Example: Publishing Process

4.3. Resource Constraints 55

4.3.1 Resource Sum Constraints

Let amountR allocation amount of a resource R. Resource plugin plugR

on a resource R is defined as

That is, plugR is a tuple with only one attribute. For an activity object

a = (I , 0, P , S), an activity object with resource plugin a R is defined as

de f () aR = I , O,P,S , amountR.

For a WFT W = { a1 , · • · , an}, a WFT with resource plugin W R is defined

as WR = {a1R, · · · , anR}·

All resource plugins and time plugin are compatible with each other.

For example, an activity object with time plugin can be plugged in with

a resource plugin, and vice versa.

For a WFT with resource plugin W R (I , O, P,S , amountR) , we

define the resource sum equality on R as:

Va E WR A S =I= 0. amountR = L a'.amountR
a'E S

Intuitively, this equality means that the sum of the resources for subpro

cesses must be equal to ·the allocation amount of the parent process.

Note that some of the resources does not satisfy resource sum equal

ity. Total costs in the workflow of Figure 4.1 is an example because some

costs must be used in "poster printing" process or "magazine printing"

themselves. Hence we consider another resource constraints, called re

source sum inequality:

Va E WR AS=/= 0. amountR ~ L a'.amountR
a' ES

56 Chapter 4. Extensions on Workflow Base

As all resources in subprocesses are what the parent process allocated

for the subprocesses, resource sum inequality must be satisfied in all

resources. Resource sum equality and resource sum inequality are called

generally as resource constmints.

4.3.2 Resource Reallocation

If one of the subprocesses can not satisfy the resource constraints deter

mined by the agent of the parent process, the resource constraints of the

parent process are also not satisfied.

See again the example in Figure 4.1. Consider a situation that an

author writes his article of less pages than that of previously determined.

This causes constraint violation about total pages. Hence the publisher

must resolve the violation by some means: by requesting the author to

write more pages, by requesting another author to write more pages, or

by changing total pages of the magazine.

If an activity object with resource plugin aR in WFT does not satisfy

resource constraints, the agent of aR sends a message "fail allocation

in R" to the agents who are responsible with activity objects which aR

belongs. When an agent receives the message "fail allocation in R", it

tries to reallocate resource R into sub activity objects. If the reallocation

succeeds, the agent sends the reallocation results to the sub activity

objects. If it fails, the agent sends "fail allocation in R" to parent activity

objects again. We do not discuss about negotiations among agents during

the reallocation process.

4.4. Horizontal Flows by Exclusive Locks 57

4.4 Horizontal Flows by Exclusive Locks

Under the situation that data is shared among agents in the same co

operative work, it is important to provide lock mechanisms for keeping

integrities of data. Lock mechanisms previously proposed can be classi

fied into two categories: exclusive locks and shared locks. Exclusive locks

permit only one user to access locked data; on the other hand, shared

locks permit a number of users to access locked data while locking. In

workflow base, data sharing method is not included in its definitions,

hence any lock mechanisms can be used.

When exclusive locks are used for data sharing, time constraints

among activity objects are newly created. Consider an example that

two activity objects a 1 and a2 in the same WFT share a file f using

exclusive lock. If a 1 uses f with exclusive lock, a2 must wait until the

lock is released. Therefore a time constraint e1 < s2 is newly created.

This phenomenon can be treated in a uniform way on workflow base.

When a1 begins to use f with exclusive lock, a special message object

"release notification" is added into 0 of a1 and I of a2 . When a 1 releases

the lock, "release notification" is sent to the WFT from a 1 , and a2 catches

it as an input. Note that a horizontal flow a 1 => a 2 is newly created

when ''release notification" is added. According to the discussions in

Section 4.2, a time constraint e1 < s2 is also created automatically.

4.5 Summary

In this Chapter, we discussed four extensions to workflow base. First

we showed the way to realize loopback flows into workflow base, using

ECA rules. Next we discussed about two kinds of constraints, time con-

58 Chapter 4. Extensions on Workflow Base

straints and resource constraints, and about various properties among

them: interferences of these constraints with flows in workflows and their

solutions; applications such as scheduling. And finally, we showed that

exclusive lock mechanism causes horizontal flows dynamically.

In order to apply workflow base to real cooperative works, some ex

tensions discussed in this chapter must be needed. However, workflow

base is so suitable for database technologies that extensions can be easily

done using database technologies. In other words, these extensions prove

high affinities of workflow base with databases.

Chapter 5

Database Operations on

Workflow Base

As mentioned in Section 2.1, conventional workflow management systems

have no standard data manipulation language. This causes several prob

lems into WFMSs: the lack of interoperability among WFMSs, as pointed

out in 2.1; poor functions for reorganizing workflows such as workflow

reuse, view functions including the creation of to-do lists, workflow opti

mization in business process reengineering, etc.

Data manipulation language is what database technologies make the

greatest contribution to workflow management, because data manipula

tion of general purpose is one of the most essential facilities in DBMSs,

and therefore many technologies such as SQL are developed.

Workflow base provides a formal model of workflows, which is suitable

for data manipulation of database technologies. In this chapter, we give

several operations manipulating workflows on workflow base.

They are defined as an extension of ordinary relational algebra. That

is, these operations get a set of WFTs or a set of activity objects from

59

60 Chapter 5. Database Operations on Workflow Ba.se

WFTs in WFB. The operations are classified into three categories:

• Query operations.

A new set of WFTs (or of activity objects) is obtained from the

previously defined workfiows No effects over the original WFTs (or

activity objects).

• Operations handling WFTs.

Though some effects may cause over other WFTs, they keep WFTs

as workflows to be consistent.

• Operations handling activity objects directly.

Any effects may cause over WFTs. Sometimes the effects make

WFTs no more than workflows.

As some of them do not always keep the closure property of relational

algebra, an operation for keeping closure property is also provided. The

combination of this operation with others makes the closure property to

be kept.

When using these operations, users can organize new workflows from

the worldlows in WFB. For example, the following functions are available

using the operations:

• Views over workflows, such as to-do lists.

• Investigation of progr.e.ss.

• Workflow reorganization.

• Reuse of workflows.

Note that any ordinary set operators or operations in relational al

gebra can be used for manipulating WFTs or activity objects. And

also note that the components of an activity object are accessible using

5.1. Query Operations 61

dot notations. That is, a.! means I of a. Hence the notations such a.s

a.I := a.! U {kunishima} can be available. We do not discuss these

points further in this thesis.

5.1 Query Operations

5.1.1 Selection

Two selection operations on a WFB can be considered: selection for a

set of activity objects, and selection for a set of WFTs.

Selection of activity objects, aezpr W , gets a set of activity objects sat

isfying an AO-expression expr from a specified WFT W . AO-expressions

are recursively defined as follows:

• pEP is an AO-expression, where p E 'P.

• mE I is an AO-expression, where mE M.

• mE 0 is an AD-expression, where mE M.

• ancestor(a) is an AD-expression, where a E W.

• descendant(a) is an AO-expression, where a E W.

• If both expl and exp2 are AD-expressions, expl op exp2 is also an

AD-expression, where op is a conventional logical operator.

IfW is omitted, a WFT of all activity objects in a WFB, Wo11, is assumed

as W. This assumption is all applicable on other operations. Evaluation

value of an AD-expression expr, eval(expr) is defined as follows. For an

62 Chapter 5. Database Operations on Workflow Base

activity object a'= (I , 0, P, S) E W ,

eval(p E P) = true iff p E P.

eval{m E I)= true iff mE I .

eval(m E 0) = trueiffm E 0.

eval(ancestor(a)) = true iff a ---7 a', a' E W.

eval(descendant(a)) = true iff a' ---1 a, a' E W.

eval(expl op exp2) = eval(expl) op eval(exp2)

Selection of WFTs, u' ezpr W , on the other hand, gets a set of WFTs

satisfying a WFT-expression expr from a specified WFT W. WFT

expressions are recursively defined as follows:

• wft(W') is a WFT-expression, where W' is a WFT.

• wfi(W') is a WFT-expression, where W' is a WFT.

• general(W') is a WFT-expression, where W' is a WFT.

• special(W') is a WFT-expression, where W' is a WFT.

• If both expl and exp2 are WFT -expressions, expl op exp2 is also a

WFT-expression, where op is a conventional logical operator.

Evaluation value of a WFT-expression expr, eval(expr) is defined as

follows. For a WFT W",

eval(wft(W')) = trueiffW' ~ W", -dW1 .W' ~ W 1 ~ W".

eval(wfi.(W')) =true iff W" ~ W' , -,3W1 .W" ~ W1 C W'.

eval(general(W')) = trueiffW' C W".

eval(special(W')) = trueiffW" ~ W'.

eval(explop exp2) = eval(expl) opeval(exp2)

Both selection operations are similar with selection operator in re

lational algebra. However, there is a difference between those two: the

result of u is not always a closed WFT, meanwhile the result of u' is

5.1. Query Operations 63

always closed. That is, when u is applied on a workflow, the result is not

always a workflow.

Now we provide an operation to get a workflow from a set of ac

tivity objects, get workflow operation, noted as "7. Its syntax is TJw a or

TJw{a1 , ···,an}). It gets a maximal workflow including an activity object

a or activity objects {a1 , ···,an} respectively, from a specified WFT W.

By using TJ, a workflow can be obtained from the result of u.

5.1.2 Operations on Has-a Hierarchies

In general, a WFT organizes hierarchically by vertical flows. Hence there

exists a requirement to hide some sub activity objects from a WFT to

look at an overview of work. In order to satisfy the requirement, we

provide operations hide and show as the reverse operator of hide.

Hide operation, noted as 1/J(Wt, W 2), returns a WFT W1 - W2 where

W1 is a WFT, W2 is a closed WFT, and W2 ~ W1. Intuitively, this

operator hides all the descendants of the activity objects in w2. In other

words, 1/J works as an abstraction operation on a WFT. The obtained

WFT does not always satisfy closed property.

Show operation, denoted as '11 Wb is the reverse operation of 1/;. For

a WFT W1 , this operation returns a WFT

wl u u descendant(a).
aEW1

W1 may not be closed. On the other hand, the obtained WFT is always

closed. Intuitively this operation shows all the descendants of W1 . In

other words, '11 works as a detailing operation on a WFT.

64 Chapter 5. Database Operations on Workf:low Base

5.1.3 Operations on Specialization Hierarchies

Specialization hierarcllies ofWFTs are useful for retrieving WFTs from

their instantiation relationships. For example, by using specialization

hierarchies, we can retrieve all the instances of the same parent. This

manipulation is frequently used in investigating the progress status of

work.

General operation, noted as 1?(W, 0) is defined as

1?(W, 9) d~ {W'IW'9 = W}.

This operation obtains a set of WFTs each of which is a parent of W

over the partial ordering ~·

Special operation, noted as e (W, 0), is defined as

e (W,9) d~ {W' IW' = WO} .

This operation obtains a set of WFTs each of which is a child of a WFT

W over the partial ordering ~.

We also define the transitive closure of{} and 0 , noted as {}+ and

e+, respectively. These operation obtain all the ancestors and all the

descendants on the specialization hierarchies, respectively.

5.2 Operations Handling WFTs

5.2.1 Grouping, U n grouping

First we define an operation for grouping multiple activity objects into

one activity object, and its reverse operation.

5.2. Operations Handling WFTs 65

For a closed WFT W = {all · · · , an}, grouping operation, noted as

w W , returns an activity object

n n n n n

a' = (U Ii- u oi, u oi- u Ii , u Pi, W),
i = l i=l i=l i=l

and lets W' = (W' - W) U {a} for all vVFTs W'. W ~ W'. Intuitively

this is a "grouping" operation. It regards a WFT W as a sequence of

one work, and creates an activity object including W as subworks.

Next the reverse operation of grouping, flattening operation, noted as

n a, is defined. Let a1 = (I1, 0 1, P1, S1). For all activity objects a1 where

a= (I, O,P, S) E S1, this operation lets S1 = S1 US- {a} if S -:f 0. If

S = 0, it does nothing.

5 .2.2 Split, Concatenation

Split operations, noted as /(a, W), is defined as follows. For an ac

tivity object a = (I , 0 , P , S) and a closed and consistent WFT W =

{ab ··· , an} where W ~ S, this operation returns a WFT W' ={a~, a~}

where:
n n n n

(U Ii- U Oi, U Oi- U Ii, P, W)
i=l i=l i=l i=l

a~ - ((I - I~) U 0~ , (0- 0~) U I~ , P, S - W)

Intuitively this operation splits a WFT S from a specified WFT W .

In general, the obtained WFT W' is not always acyclic in ===>. That

is, two horizontal flows, a~ ===> ~ and a~ ===> a~ , hold simultaneously.

To make W' to be acyclic in ===>, one of these two conditions must be

satisfied: I~ - 0~ ~ I or 0~ - I~ ~ 0.

Concatenation operation, noted as r(a11 a2), is closely related with

split operation. If neither a1 ===> a2 nor a2 ===> a1 are satisfied, this

66 Chapter 5. Database Operations on Workflow Base

operation lets I 2 = I 2 U 0 1 . If one of the two conditions are satisfied, this

operation does nothing.

Intuitively it connects two activity objects ab a2 by a horizontal flow.

From the definition of horizontal flow, the outputs of a 1 must be added

to the inputs of a2 when no horizontal flow is found between a 1 and a2.

5.3 Operations Handling Activity Objects

Some kinds of changes on WFTs, such as changing flows or adding new

activity objects, need operations on activity objects in the WFTs directly.

Moreover, operations handling WFTs shown in the previous section are

implemented using operations on activity objects. For these reasons,

operations handling activity objects directly are necessary for WFB.

In addition to the conventional set operations or the operations in

relational algebra, we provide these operations listed below for handling

activity objects:

• new(a, I ,O, P , S)

It creates a new activity object.

• destroy(a)

It destroys a. specified activity object a.

• foreach a in s do Operator

It executes an operation WFT Operator for each activity object a

in a. sets. Operator can be any operator on an activity object. This

operator is useful when the maintainer wants to do the same oper

ations on the nuinber of a.Ctivity objects. For example, if yokota.'s

works are all transferred to kunishima, the maintainer will do the

5.4. Operations on Activity Objects With Plugins 67

following operation:

foreach a in u Walt do a.P := {kunishima};
yokotaEP

However , these operations may cause integrity violations of WFTs.

For example, if the operation destroy(dispatch-1) is applied on the work

flow "review-process" in Figure 3.2, "review-process" will be no more

than a workflow because it is not closed and not connected. Hence the

operations shown in this section are mainly for the maintainers of work

flow base.

5.4 Operations on Activity Objects W ith

Plugins

Plug-in operation, lXI-, is provided for adding plugins such as time plugin

or resource plugin to activity objects. It is defined as:

a lXI+ L d~ a lXI L

where a is an activity object and Lis a plugin. As shown in this definition,

plug-in operation on an activity object is in actual same a.s natural join

operations in relational algebra1
.

Plug-in operation [XI+ on a WFT is defined as:

W 1><1+ L = { a1 1><1+ L, · · · , an 1><1+ L}

where W = {all··· ,an}·

as:

Plug-out operation, 7r+, is defined a.s a. reverse operator of 1><1+ such

1r+ a 1 d~ (I , 0, P , S)
L

1The notations of the operators in relat ional algebra are based on IU1188].

68 Chapter 5. Database Operations on Workflow Base

where a 1 = (I, 0, P, S, L). Plug-out operation is a special case of projec

tion operation in relational algebra.

Plug-out operation on a WFT can be defined as same as the plug-in

operator on a WFT:

1r+ W = {1r+ a · · · 1!'+ a }
L L b ' L n

where w = {al, ... 'an}·

Plug-in operation and plug-out operation can be applied into activity

objects already plugged in by another plugins, with no modification of

the definitions above.

5.5 Examples on Applying Operations

We show some examples of applying the operations on workflow-base.

5.5.1 R etrievals

Consider a situation doing a review process based on the workflow in

Figure 3.2. The chair wants to investigate the progress of the review

process of a submitted paper "A100". He gets the workflow of the process

by applying this operation:

Then he finds the review process is delayed at reviewer Taro. He

wants to know all the works Taro is doing. Taro's all activity objects can

be obtained by applying the following:

5.5. Examples on Applying Operations

registration-process -

registration -

send-registration

{registration, send-registration}

(entry-sheet, participant-name, secretary,

{register into the participants list.})

(participant-name, acceptance-sheet,

secretary, {})

Figure 5.1: WFT of a Registration Process

The precise of each worldlows can be obtained by:

WtaroPrecise := W Wtaro ;

69

Consider another query. A committee member jiro wants to investi

gate that other committee members have asked taro to review submitted

papers. Because review11, • • · , reviewnj., in Figure 3.3 are children of a

WFT "review" over the partial ordering !;;;;, this query is described as the

following:

u u' Wa11;
taroEP wfi(review)

5 .5.2 U pdates of Workflows

Figure 5.1 shows a workflow of a registration process of the same confer-

ence.

"send-registration" in Figure 5.1 and "send" in Figure 3.2 are almost

the same process in the sense that a secretary sends something to some

one. For this reason, these two -processes can be joined into one process

70 Chapter 5. Database Operations on Workflow Base

"send-object" by applying the following operations:

new(send-object, address, objects, secretary,{});

'Y(W1 , {send-review-report});

'Y(W2 , {send-registration});

1?({send},

{address/ participants-name, objects/ acceptance-sheet});

19({send-registration},

{address/ all-review-reports, objects / review-letter});

5.6 Summary

Operations to a WFB are defined as an extension of ordinary relational

algebra. These operations get a set of WFTs or a set of activity objects

from WFTs in WFB. They do not always keep the closure property of

relational algebra. Some operations are provided in order to let a set of

activity objects into a WFT. The combination of these operations with

others makes the closure property to be kept.

When using these operations, users can organize new worldlows from

the workflows in WFB. For example, the following functions are available

using the operations: views over workflows, such as to-do lists; investi

gation of progress; workflow reorganization; reuse of workflows.

The operations are classified into three categories: query operations,

operations handling WFTs, and operations handling activity objects.

Chapter 6

Agents Reconsidered

To make a collaborative work possible, related programs and persons

should have a common protocol, which resolve each heterogeneity with

some protocol. We call these entities related with the collaborative work

such as database systems, knowledge-base systems, constraint solvers,

application programs, persons, and so on, as a problem solver. There

fore agents, wrapping problem solvers by a common protocol, should be

considered in a collaborative work.

Considering a big problem such as workflow, we can find many appli

cations which require multiple heterogeneous problem solvers:

• Modeling Heterogeneity
The complexity of a giveu_problem requires a combination of mul-

tiple heterogeneous problem solvers,

• Spatial Heterogeneity:
Spatially distributed problem solvers are required to process a given

problem.

• Temporal Heterogeneity:

71

72 Chapter 6. Agents Reconsidered

For a new problem, a new problem solver is not necessarily devel

oped: that is, multiple existing problem solvers must be reused for

a new problem.

There have been some approaches: an arithmetic calculator in Prolog and

a constraint logic programming language with a single constraint solver.

Such a restricted approach seems to be neither flexible nor promising for

most applications.

Further, considering the spread of distributed environments, there

might be similar sources, each of which does not have complete informa

tion. In such an environment, we can frequently get better results by

accessing and merging multiple information sources or multiple problem

solvers. In other words, cooperation among distributed sources are fre

quently required. Considering such applications and environments, het

erogeneous, distributed, cooperative problem solvers will become more

important and can play a role of a very large knowledge-base. The situ

ation is almost the same, because there might be many agents who can

possibly solve a given problem. A coordinator agent can select and judge

an agent for the work.

From workflow and workflow base points of view, in a unit of workflow

definition, all agents should have the same protocol, for which we use an

environment concept as in Hellos. In this chapter, we discuss how to

define such environments for workflow management.

6.1 Logic-Oriented Definition

In the previous chapters, we consider a workflow as a set of activity

objects by corresponding an activity object to a work. An agent which

(or who) is responsible for a work is embedded in its activity object.

6.2. Agent-Based Definition i3

However, as an agent usually has multiple kinds of works, we consider

another definition of an agent:

af[w(I) = 0) ¢:: SIC

where a is an agent identity, w is an work identity, I is a set of inputs, 0 is

a set of outputs, S is a set of sub-agents, which are called by a , and C is a

set of constraints which are delivered from a to S. As in deductive object

oriented languages such as F-logic[KL89], we can correspond the rule to

conventional object-orientation concepts: a work identity corresponds to

a method identifier, I is a set of input values, 0 is a set of return values,

and SIC is its implementation.

or

As an agent do many -kinds -Qf works, it is defined as follows:

aj[w1(I1) = OI) ¢:: S1IC1

aj[w2(I2) = 02] ¢:: S2IC2

aj[w1 (Il) = 01, w2(I2) = 02, · .. Wn(In) = On]
¢:: S1 u S2 U · · · U SniCt u C2 U · · · U Cn

In this definition, we introduce concurrency in a easily because each work

does not share variables with other works, however it is very difficult to

control it. Further, as each agent is not encapsulated, it is difficult to

correspond an agent to a person who is responsible for its work.

6.2 Agent-Based Definition

Considering autonomous agents who execute various works, we had bet

ter introduce a concept of an agent, which can be defined independently

74 Chapter 6. Agents Reconsidered

from definitions of workflows. Each agent can estimate workload and

schedule a set of works. In this subsection, we define an agent in the

sense of Helios and discuss an agent as a person.

6.2.1 Agents and Environments

As mentioned in Section 2.4, an agent is defined as follows:

agent (capsule, problem-solver) I
(capsule, environment, {agent1 , ... , agentn})

where a capsule is a module which contains a translator, and each

problem-solver is enclosed in a capsule. An encapsulated problem solver

is called an agent, and a problem-solver is called a substance.

A simple agent is defined as a pair of a capsule and a problem-solver:

conceptually, the problem-solver is encapsulated in the capsule.

A complex agent is defined as a triple of a capsule, an environment,

and a set of agents (agent1 , ... ,agentn), where an environment is a field

where agent1 , ... ,agentn can exist and communicate mutually. Conceptu

ally, a pair of an environment and a set of agents can be considered as a

problem-solver; a new agent can be defined by encapsulating them. That

is, an agent can be hierarchically organized. We show such structure in

Figure 2.2. Since an encapsulated problem-solver or an environment can

be considered as an agent and the outside of an agent is an environment,

the user can be considered as an environment.

A common space for agents is-called an environment. An environment

takes care of message-passing between agents in it , and manages global

information for those agents. Each agent has its own logical name that

is unique in the environment.

A capsule and an environment is defined as follows:

6.2. Agent-Based Definition

capsule

environment

(agent-name, methods, self-model,

translation-rules, negotiation-strategy)

(agent-names, common-type-system,

negotiation-protocol, ontology)

75

In a capsule, an agent-name is an identifier of the agent . Each agent

has its own agent-name that is unique in the environment. A method is

a definition of import ·methods and export methods. An import method

defines a method by which the agent is called, and an export method

defines a method that the agent can call. An agent with only import

methods is called passive and an agent with both methods is called active:

only an agent which sends new messages through export methods can

negotiate with other agents. A self model defines what the agent can do

in terms of the name of functions provided by the agent. An environment

extracts the necessary information from self models in agents to dispatch

messages between agents. Translation-rules define translation between

internal representation of the agent and common representation given by

its environment in the initialization of the problem solving system.

In an environment, agent names state which agents are in the envi

ronment. A common type system defines a type system used to type all

messages in the environment. A negotiation protocol defines the protocol

used by all agents in the environment. Under a negotiation protocol in

an environment, each agent defines a negotiation strategy to communi

cate with other agents. An ontology defines the transformation of the

contents of messages between agents, while a capsule converts the syntax

and type of messages between the common type system and the intrinsic

type system of the corresponding problem-solver.

To define this information, we introduce a capsule description lan

guage CAP L (CAPsule description Language) , and an environment de-

76 Chapter 6. Agents Reconsidered

scription language ENVL (ENVironment description Language). Pro

grams written in those languages are processed by their corresponding

compilers.

Although various information is defined locally in each environment

and each agent, a message between agents is in the form of a global

communication protocol consisting of the following:

• Message identifier

An identifier used for identifying a message. This field is unique

within an environment.

• Message type

As described above, a message is either a method invocation or

an answer. The former message is called a query message, and

the latter message is called a reply message. This field is used to

distinguish a query message from a reply message.

• Sender agent identifier

This field contains tbe agent name of the agent that sends this

message.

• Designation of destination agents

The methods of designating destination agents in a query message

are described below. In a reply message, this field contains the

agent name of the agent that is the sender of the corresponding

query message.

• 'fransaction identifier

If the update of the content of a destination problem-solver is atten

dant on the invocation of a message, then a transaction identifier

is required to control it. This field contains a transaction identi

fier. For nested transactions, a transaction identifier with a nested

structure is used.

6.2. Agent-Based Definition 77

• Status

This field contains information on the status of invoked methods

for error handling.

• Message content

In a query message, this field contains a method invocation, and in

a reply message, this field contains the answer to the invocation.

In the previous subsection, we consider some difficulties in logic

oriented approach. On the other hand, in this agent-oriented approach,

as each agent is autonomous, concurrency control can be done by a cap

sule or a substance, and correspondence with a person is made possible

by wrapping by a capsule.

6.2.2 Coordination among Agents

In our workflow model, (I , 0, P, S), an agent P controls a set, S =
{ a 1, a2 , ···,am}, of activity objects. It can be written as a complex agent

as follows:

P = (c,e, {a1,a2,···, an})

In Helios, messages are dispatched as follows:

• Initialization
First, during the initialization of agent processes in the environ

ment the environment constructs a map of a logical agent name
'

and a physical process address (or IP address). Secondly, the envi-

ronment gathers method information and function information in

self models from each agent and constructs two kinds of maps: a

method and an agent name; a function name and an agent name.

Such maps work for dispatching messages among agents.

78 Chapter 6. Agents Reconsidered

• Dispatching:

As a method or a function does not necessarily corresponds to an

agent uniquely, a message is possibly sent to multiple agents. Tbis

mechanism is useful for the followings:

- It is unnecessary to specify an agent name in problem solvers

explicitly.

- It is possible to- -send simultaneously a message to possible

agents.

An environment decides to send a message sequentially or in par

allel to candidates listed by the maps, and processes answers se

quentially or by grouping as a set. In the case of set grouping,

aggregation functions can be specified in an environment. Such a

mode can be selected in a query message.

As already mentioned, differently from Helios, P is responsible for

dispatcbing works (messages) to agents and coordinating their execution.

In the sense, P provides the capsule c and includes the functions of an

environment e.

A message is analyzed and its corresponcling processing plan is con

structed as a dependency graph by a parent agent as in a query in con

ventional distributed databases. Synchronization information between

sub-messages is attached to each sub-message and controlled by the cap

sule of each agent: i.e.,if necessary, cbild agents can communicate with

each other. The coordination protocol between a parent agent and cbild

agents is rather simple:

• success/failure:

An cbild agent sends a success or failure message to the parent

6.2. Agent-Based Definition 79

agent. The parent agent redispatches the work to another cbild

agent or cancels all works dispatched to all cbild agents related to

the work. There might be various reasons of failures: unsatisfaction

of time constraints, lack of resources, and so on.

• resource requirements:

A cbild agent can request some resources necessary for executing its

own work to the parent agent. The parent agent sends additional

resources to the cbild agent if the parent has enough resources. If

the parent does not have necessary resources, it requests them to

other cbild agents. If a cbild agent has enough ones, it sends them

to the parent.

We assume that a person involved in some workflow has an appropri

ate interface to the capsule of the corresponding agent. As a person can

do many works, he is connected to many capsules. In tbis thesis, we do

not discuss the topic.

6.2.3 Relations between Workflow Base and Agent

Definitions

We have two kinds of definitions about a workflow: a workflow defini

tion and a agent definition. As mention in Section 3.5, a workflow base

consists of a workflow definition and its execution model. A workflow

definition corresponds to a static aspect of workflow, wbile an execu

tion model corresponds to its dynamic aspect, where activity objects

are dynamically generated and activated in P-box and their relations

are defined in C-box in the form of definite clauses. A definite clause,

p f- q1, q2 , · • ·, qn , is a disj:>atcb.iitg plan, wbich corresponds to an activity

80 Chapter 6. Agents Reconsidered

object p, which is also in P-box. That is, an isolated activity object in

P-box just corresponds to an agent definition.

6.3 Summary

Considering a big problem such as workflow, we can find many applica

tions which require multiple heterogeneous problem solvers. To make a

collaborative work possible, related programs and persons should have a

common protocol, which resolve each heterogeneity with some protocol.

There have been some approaches: an arithmetic calculator in Pro

log and a constraint logic programming language with a single constraint

solver. Such a restricted approach seems to be neither flexible nor promis

ing for most applications.

From workflow and workflow base points of view, in a unit of workflow

definition, all agents should have the same protocol, for which we use an

environment concept as in Helios. In this chapter, we discussed how to

define such environments for workflow management.

A problem solver, a generic term of database systems, knowledge-base

systems, constraint solvers, application programs, persons, and so on, is

called an agent by wrapped by a common protocol.

Considering such applications and environments, heterogeneous, dis

tributed, cooperative problem solvers will become more important and

can play a role of a very large knowledge-base. The situation is almost

the same, because there might be many agents who can possibly solve

a given problem. A coordinator agent can select and judge an agent for

the work.

Chapter 7

System Architecture of

Workflow Base

In this chapter, we discuss about how to implement workflow base, mainly

from system architecture point of view. Though workflow base is closely

related to database systems, it has various features not found in tradi

tional database systems, such as an execution model based on production

systems. First we show a system interface between workflow base and

application programs. After that, overall of the architecture and each

functional components are described.

7.1 The Interface Between Applications

and Workflow Base

Workflow base has two roles for its application programs, called workflow

clients: as a workflow database and as a workflow server. That is, work

flow base is more than a workflow repository in workflow management

81

82 Chapter 7. System Architecture of Workflow Base

systems; it can behave as a server of workflow management systems itself

because it provides an execution model of each workfiows.

Therefore workflow base has two modules in its interface: interface

to t he workflow database and interface to the workflow server.

The former provides database operations described in Chapter 5.

Workflow clients uses this interface as querying workflow base, such as

retrieving, reorganizing workflows, etc.

Meanwhile the latter provides the protocol between the capsule and

the problem solver mentioned in Chapter 6. In the coordination system

point of view, all agents related with a collaborative work of workflows

are implemented in the workflow server and coordinate each other in the

style of Chapter 6. A workflow client is denoted as a problem solver in

this structure.

7.2 The System Architecture of Workflow

Base

Workflow base organizes from four functional components: Database,

WFT organizer, WFT interpreter, and Query processor. An overview of

the system architecture is shown in Figure 7.1.

Database stores all information about WFTs such as their defini

tions, all activity objects, all P-box and C-box components, assignments,

progress status, etc. Remark that this is no need for object-oriented da

tabase, though we use the term "objects" in workflow base. Activity

object is not encapsulated because it has no concepts of methods. Hence

it is more similar to tuple in relational database than object in object

oriented database.

7.2. The System Architecture of Workflow Base 83

Worldlow Client

WFT parts WFT parts

Figure 7.1: System Architecture of Workflow Base

84 Chapter 7. System Architecture of Workflow Base

WFT organizer constructs WFTs from the information in Database,

and decomposes WFTs in data who belongs to the schema in Database.

In other words, WFT organizer translates "WFTs and schema of Database

each other. It plays a role of hiding database implementation - relational

database, object-oriented database, etc. - from other components of

workflow base.

WFT interpreter interprets and executes WFTs based on its exe

cution model proposed in Section 3.2. It must keep the current status

of all WFTs currently on work. Hence, in implementation level, it is

newly invoked every time a WFT is available. That is, WFTs now on

work and WFT interpreters currently running are related with one-to

one correspondence. Integrity constraints on WFTs are checked by WFT

interpreter.

Query processor is an interpreter of workflow operations shown in

Chapter 5. It mainly manages queries on workflow base and the oper

ations which changes WFTs or activity objects directly. On the other

hand, WFT interpreter manages operations on WFTs in the frame of the

execution model of WFT.

Agents in real world - humans in most cases - use workflow clients

to communicate with workflow base. In this sense, a client-server system

consisting from WFT clients and WFT interpreters corresponds with

traditional workflow management system.

7.3 Summary

In this chapter system architecture of workflow base is discussed. Though

the roles of each software components are briefly mentioned, more dis

cussions about the architectures of them should be needed. In especial,

7.3. Summary 85

these two points must be discussed: interpretation procedure for the ex

ecution model WFT interpreter should have, and database schema for

modeling WFTs.

86 Chapter 7. System Architecture of Workflow Base

Chapter 8

Comparisons with Related

Researches

Many researches about workflow management systems have been done

from the various aspects. Moreover, there are also similar concepts as

workfiows in various research areas, such as groupware, process modeling,

and software process engineering. In this chapter, we pick up several

related researches from various research areas, and compare them with

our model especially from the workflow model point of view.

8 .1 Groupware Approach

Automation of office work has been one of the hot topics in the re

search area of groupware [EN80], and many similar concepts as workflow

management systems had been proposed before the term "workflow" are

widely known.

87

88 Chapter 8. Comparisons with Related Researches

8.1.1 OM-1

OM-1 [Ish86, 1091), categorized as an office procedure mode~ represents

knowledge of well-structured cooperative work both in control flow and

in office structures, such as data structures and organization structures,

using object-oriented modeling. Three objects - data, activity, and

agent - are provided as basic office objects. Office procedure is repre

sented as a graph whose nodes are basic office objects. Links between

office objects represent-various relationships between office objects, such

as control flow, responsibility, belonging, and operations on data. Four

styles of connections for control flows are provided: AND join, AND fork,

XOR join, and XOR fork.

OM-1 has the ability to represent control flow and office structures in

a uniform style. However, this ability makes office procedures to be much

complex. Our workflow model manages control flows and office structures

in a separate way but with relationships. This makes workflows to be

simple. Moreover, our model has a formal execution model which OM-1

does not provide.

8.1.2 Action Workflow

Action Workflow (MMWFF92) is a workflow model based on conversa

tion act theory (WF86). It represents all cooperative works as an action

workflow loop, a loop of four processes: proposal, agreement, perfor

mance, and satisfaction. Each process in an action workflow loop can

be an action workflow loop. Hence an action workflow is organized hier

archically in general. This paper also gives an architecture of workflow

management systems based on action workflow model. The Workflow

Management Server, a core system of the workflow management system,

8.1. Groupware Approach 89

manages both the definitions of workflows and the progress of workflows

using databases.

Action Workflow is a model suitable for ill-structured cooperative

work. However, processes provided in Action Workflow are too primitive

to represent well-structured cooperative work in a simple way. Moreover,

the execution semantics of the workflows in Action Workflow is not clear.

Data models of the workflows in the Workflow Management Server is not

discussed.

8.1.3 Regatta

The Regatta project, formed in 1991 to develop software to support

workgroups and to aid in reengineering work processes, proposes a

model for collaborative work and a graphical language to support this

model [Swe93). In this model, work process is modeled as a network

of tasks, each of which represents a task request, commitment, or ques

tion. Though this modeling concept is similar with Action Workflow, the

model provides more functions than Action Workflow such as dynamic

modification of flows, incremental automation, etc.

The workflow model of the Regatta project has the similar concepts

as WFT /WFI. Before workflow instances are executed, they are created

from workflow templates by assigning real-world entities into variables.

The features such as hierarchical workflows, dynamic changes, view func

tions as private to-do lists, etc. , are also similar as those of our models.

However, formal semantics is not given in these models. Moreover, the

view functions in these models are somewhat ad-hoc, not based on formal

operations.

90 Chapter 8. Comparisons with Related Researches

8.1.4 MEGUMI

Tarumi et at. proposed and developed a workflow management system

based on MEGUMI, rule based e-mail system [TTY95, YTT95]. In this

system, workflows are realized by the formed e-mail circulation with the

rule-based control in MEGUMI. Hence this system does not assume a

central workflow server. The rules realizing workflows are described as

ECA rules by HyperScheme, a programming language extending Scheme.

They also discussed about databases for workflow management (YTT95).

Problem of the system is the capability of HyperScheme from the

workflow definition point of view. As HyperScheme is a programming

language for general purpose, it can represent illegal workflows. Though

GUI based workflow definition tool is provided in order to restrict the

ranges of workflows to be defined, there still remains possibilities users

define illegal workfl.ows by customizing rules not using the workflow def

inition tool.

8.1.5 WorkWeb

WorkWeb (TIAT95, TIT+96} is much different from other workflow man

agement systems. It deals with some constraints about the common re

sources of the organizations - objects, persons, and money. Agents are

provided for each person, each resources, each shared data, and each

workfl.ows, and they negotiates each other to resolve conflicts of these

constraints. The negotiation is done over a number of work processes

running in parallel at one organization.

WorkWeb can treat more wider constraints than our workflow model

shown in Chapter 4. However, the way for managing each workflow

process is not discussed in WorkWeb. This means the constraint man-

8.2. Process Modeling Approach 91

agement in WorkWeb can be compatible with our workflow model.

8.2 Process Modeling Approach

Process modeling is a research area closely related with workfl.ows. It

has been studied mainly in software process modeling, in modeling of

reactive systems, and in office information systems. In recent years,

the similarities between process modeling and workflows are pointed out

[Rob96), and researches of applying process modeling into workflows have

been studied.

8.2.1 Activity Management System

Activity Management System (AMS) (TLA91} is a knowledge-based

system which supports the representation and execution of procedural

knowledge, which is expressed like as workflows. In this system, the

architecture of AMS can be stratified into three layers: a control struc

ture to handle the interruption, resumption, and cancelation of tasks; a

mechanism to schedule tasks that are in progress; a mechanism to han

dle missing information. This system also provides some office operators

such as send, request, acknowledge, and answer. Concatenating these op

erators, it organizes procedural knowledge which is similar with speech

act model [WF86). The operators are implemented based on Petri nets.

Though AMS can express cooperative works flexibly, there is no dis

cussion about agents as executors of the units of work.

92 Chapter 8. Comparisons with Related Researches

8.2.2 Statechart

Statechart [Har87} is a hierarchical finite automaton with concurrent ex

ecution and broadcast mechanisms for communications between them.

Its semantics is formerly defined like finite automaton using transitions

between sets of exclusive states, called configurations. Based on state

chart, a computerized environment for the development of reactive sys

tems, called STATEMATE [HLN+90}, is proposed. STATEMATE has a

design database of statechart with general query language, which have

an expressive power almost same as that of the conjunctive query in

relational databases. Though STATEMATE is proposed for modeling

reactive systems, it is also suitable for process modeling. From this view

point, we can find some papers applying statecharts into software process

modeling [KH89, HK89].

Many similarities can be found between our workflow model and stat

echart/STATEMATE. First, both are based on finite automaton with

some extensions like hierarchy, concurrent execution, synchronization,

etc. Secondly, both give formal semantics of the models. Thirdly, both

systems use database for process data management. And finally, both

systems provide general query languages based on relational algebra. The

query language of STATEMATE can express queries on a set of states as

well as on a set of statecharts, although few discussions about the data

model of statecharts are found in [HLN+9o].

In spite of the similarities with our model, statecharts lacks some fea

tures which are important for workflow management. Statechart provides

no function to change its own execution dynamically; there is no discus

sion about agents as executors of work, instantiation like WFT JWFI,

integrity constraints of the model, etc.

8.3. Database Approach 93

8.2.3 KyotoDB

KyotoDB [MA90] is a software project database based on an object

model. In this system, both process programs and data are encapsu

lated into objects, and stored into one database. Work process, called

unit workload in KyotoDB, is modeled as a sequence of work slice, a di

rected graph of work process nodes, validation nodes, and communication

nodes with other unit workloads.

KyotoDB treats:.the -units ot. work as an object in a strict sense; each

object permits to be accessed only via its own methods. When the user

wants to access objects based on set operations, he has to use general

query languages on OODBMS such as OQL.

8.3 Database Approach

As mentioned in Section 2.1, almost all researches about workflows from

the database point of view treat transaction management among pro

cesses. We found few papers discussing work:flows from the data model

point of view.

8.3.1 C&Co

C&Co [FKB95] is a programming language with some coordination ex

tension features in C. Concurrent execution of processes, dependencies

between processes, transactions with retrying or compensating options,

synchronization, etc. are newly introduced in C.

In order to implement workflow management systems with database

technology, programming language should have these features newly in

troduced in C&Co. However, in the workflow language point of view,

94 Chapter 8. Comparisons with Related Researches

C&Co does not provide sufficient capabilities for representing work.fl.ows;

that is, the functions C&Co provide for workflow management are too

primitive to represent workflows.

8.3.2 Event-Condition-Message R ules

M. Rusinkiewicz et al. propose a rule-based workflow model closely re

lated with database technologies [JCR96]. In this model, a workflow is

represented as a set of Event-Condition-Message (ECM) rules, whose se

mantics is "When event E occurs, evaluate condition C. If it evaluates

to true, send message M". Tasks are implicitly related to each other

through ECM rules; that is, when a task is finished, an event of "finish

ing" is sent to a workflow and the corresponding ECM rules are fired and

evaluated. If a condition evaluates to true, a message is sent to a set of

tasks to be invoked. A workflow in this model is depicted as a hierar

chical state transition diagram. They also discusses database schema to

store workflow definitions and worldlow instances, query languages, and

system architecture of prototype.

Their standpoints are quite similar as ours: they use database man

agement systems to store the static specification of workflows, as well as

their run-time information; they provide a method for querying the data

base to get several information about work.fl.ows. However, work.fl.ows are

stored as a directed graph in their model. This makes editing a workflow

specification by database query languages to be difficult, as they pointed

out in [JCR96].

Chapter 9

Conclusions

In this thesis we proposed a flexible framework of workflow management

suitable for database technologies, workflow base.

In this model, a workflow is defined as a set of objects (activity

objects), each of which corresponds with the units of work in work

flows. Two kinds of flows in workflow base, horizontal flows and ver

tical flows, are treated as constraints among activity objects, hence they

are created dynamically from the definitions of activity objects. We

provide important features of workflow management systems as applica

tions of database technologies: workflow instantiation based on general

ization/specialization hierarchy of workflows; execution model based on

production systems; loopback flows are defined using ECA rules; view

functions and query functions as a set of database operations; various

constraints on work.fl.ows as integrity constraints; agent as a problem

solver under heterogeneous distributed environment.

Workflow base has an important contribution into workflow researches

other than these original features.

When a number of agents cooperate each other, they share some

95

96 Chapter 9. Conclusions

data in almost all cases. In this sense, data sharing is essential activity

in cooperative work, as noted in [GS87], and database will surely be an

infrastructure of groupware technology. However, it is not in today's

groupware. Why?

I think one of the reasons is a gap between groupware from database

point of view and database from groupware point of view. From data

base point of view, groupware is software on a distributed environment
I

sometimes executed automatically; from groupware point of view, on the

other hand, database is software to make capabilities of human beings to

be higher. Both viewpoints are true; database technologies supporting

cooperative work should satisfy the requirements from both viewpoints.

Workflow base supports well-structured cooperative work from both

viewpoints: to provide a formal but simple workflow model with concrete

execution semantics from database point of view; to provide general and

powerful query language on workflows from groupware point of view.

In this sense, research of query languages on workflow base is the

most important future work. Though an operation set on workflow base

proposed in Chapter 5 is based on relational algebra, it is quite exhaus

tive. From the algebraic point of view, relational algebra has many good

properties: equality with relational calculus, relationships with Datalog,

etc. Refinement of the operation set to establish "workflow algebra"

would give powerful and easy-to-use workflow management systems, as

relational database did in the database area.

References

[AS94)

[AS96)

[AYT95)

G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath,

R. Giinthor, and C. Mohan. Advanced transaction moldels

in workflow contexts. In Proceedings of the 12nd Interna

tional Conference of Data Engineering, February 1996.

Kenneth R. Abbott and Sunil K. Sarin. Experience with

workflow management: Issues for the next generation. In

Proceedings of the Conference on Computer-Supported Co

operative Work, pages 113-120. ACM Press, October 1994.

Gustavo Alonso and Hans-Jorg Schek. Research issues in

large workflow management systems. In Proceedings of

NSF Workshop on Workflow and Process Automation in

Information Science, pages 126-132, May 1996.

Akira Aiba, Kazumasa Yokota, and Hiroshi Tsuda. Het

erogeneous distributed cooperative problem solving sys

tem Hellos and its cooperation mechanisms. International

Journal of Cooperative Information Systems, 4(4):369-385,

December 1995.

97

98

(BN95)

References

Richard Blumenthal and Gary J. Nutt. Supporting un

structured workflow activities in the Bramble ICN sys

tem. In Proceedings of ACM Conference on Organizational

Computing Systems, pages 13Q-137, August 1995.

[BTKdlT93) Douglas P. Bogia, William J. Tolone, Simon M. Kaplan,

and Eric de la Tribouille. Supporting dynamic interdepen

dencies among collaborative activities. In Proceedings of

A CM Conference on Organizational Computing Systems,

pages 108-118, November 1993.

[CB88] Jeff Conklin and Michael L. Begeman. giBIS: A hyper

text tool for exploratory policy discussion. A CM Transac

tions on Office Information Systems, 6(4):303-331, Octo

ber 1988.

(CL84] W. Bruce Croft and Lawrence S. Lefkowitz. Task support

in an office system. A CM Transactions on Office Informa

tion Systems, 2(3):197-212, 1984.

[CMB+90] Terrence Crowley, Paul Milazzo, Ellie Baker, Harry Fors

dick, and Raymond Tomlinson. MM Conf: An infrastruc

ture for building shared multimedia applications. In Pro

ceedings of the Conference on Computer-Supported Coop

erative Work, October 1990.

[EGR91] Clarence Ellis, Simon Gibbs, and Gail Rein. Group

ware: Some issues and experiences. Communications of

the ACM, 34(1):38-58, January 1991.

References 99

[EKR95] Clarence Ellis, Karim Keddara, and Grzegorz Rozenberg.

[EN80)

Dynamic change within workflow systems. In Proceedings

of A CM Conference on Organizational Computing Sys

tems, pages 10- 21, August 1995.

Clarence A. Ellis and Gary J. Nutt. Office information

systems and computer science. A CM Computing Surveys,

12(1):27-60, March 1980.

[FGHW88] Fernando Flores, Michael Graves, Brad Hartfield, and

Terry Winograd. Computer systems and the design of

organizational interaction. A CM Transactions on Office

Information Systems, 6(2):153-172, Apri11988.

[FKB95] Alexander Forst, Eva Kiihn, and Omran Bukhres. General

purpose work flow languages. Journal of Distributed and

Parallel Databases, 3(2):187-218, April 1995.

[FS86] Gregg Foster and Mark Stefik. Cognoter, theory and prac

tice of a collaborative tool. In Proceedings of the Con

ference on Computer-Supported Cooperative Work, pages

7-15, 1986.

[GH94] D. Georgakopoulos and M. Hornick. A framework for en

forceable specification of extended transaction models and

transactional workfiows. International Journal of Intelli

gent and Cooperative Information Systems, 3(3), Septem

ber 1994.

[GHS95] Dimitrios Georgakopoulos, Mark Hornick, and Amit

Sheth. An overview of workflow management: From

100

[GS87)

[Har87)

[Hew86)

[HK89)

[HLN+9o)

[IHH96)

References

process modeling to workflow automation infrastructure.

Journal of Distributed and Parallel Dataabases, 3(2):119-

153, April 1995.

Irene Greif and Sunil Sarin. Data sharing in group

work. A CM Transactions on Office Information Systems,

5(2):187-211, April 1987.

David Harel. Statecharts: A visual formalism for complex

systems. Science of Computer Programming, 8:231- 274,

1987.

Carl Hewitt. Offices are open systems. A CM Transactions

on Office Information Systems, 4(3):271-287, July 1986.

Watts S. Humphrey and Marc I. Kellner. Software process

modeling: Principles of entity process models. In Pro

ceedings of the 11th International Conference on Software

Engineering, pages 331-342, 1989.

David Harel, Hagi Lachover, Amnon Naamad, Amir

Pnuell, Michael Politi, Rivi Sherman, Aharon Shtull

'Irauring, and Mark 'Irakhtenbrot. STATEMATE: A work

ing environment for the development of complex reactive

systems. IEEE Transactions on Software Engineering,

16(4):403-414, April1990.

Kyoko Iiduka, Hiroak:i Higaki, and Yutaka Hirakawa.

TORES: Task order evolution system. Technical Report

GW18-6, IPSJ Special Interest Group on Groupware, June

1996. in Japanese.

References

[INMS96)

[I091)

[Ish86)

[JCR96)

[JLJL82]

[JMR92]

101

Motoki Isaka, Hiroshi Nunokawa, Masatoshi Miyazaki, and

Norio Shiratori. Metalevel description in workflow manage

ment system. Technical Report GW15-21, IPSJ Special

Interest Group on Groupware, January 1996. in Japanese.

Hiroshi Ishii and Masaak:i Ohkubo. Message-driven group

ware design based on an office procedure model, OM-1.

Journal of Information Processing, 14(2):184- 191, 1991.

Hiroshi Ishii. Office work specification by office model OM-

1. Technical Report OS86-24, IPSJ Special Interest Group

on Office Systems, September 1986.

Dominique Jean, Andrzej Cichocki, and Marek

Rusinkiewicz. A database environment for workflow

specification and execution. In Proceedings of Interna

tional Symposium on Cooperative Database Systems for

Advanced Applications, volume 2, pages 491- 500, Kyoto,

December 1996.

Peter Johnson-Lentz and Trudy Johnson-Lentz. Group

ware: The process and impacts of design choices. In E. B.

Kerr and S. R. Hiltz, editors, Computer-Mediated Com

mmunication Systems: Status and Evaluation. Academic

Press, 1982.

Matthias J arke, Carlos Maltzahn, and Thomas Rose. Shar

ing processes: Team coordination in design repositories.

International Journal of Intelligent and Cooperative Infor

mation Systems, 1(1):143-167, March 1992.

102

[KCM91]

[KH89]

[KK95)

[KL89)

[KS95]

[KY96)

R eferences

Simon M. Kaplan, Alan M. Carroll, and Kenneth J . Mac

Gregor. Supporting collaborative processes with Conver

sationBuilder. In Proceedings of ACM Conference on Or

ganizational Computing Systems, pages 69-79, November

1991.

Marc I. Kellner and Gregory A. Hansen. Software process

modeling: A case study. In Proceedings of the 22nd An

nual Hawaii International Conference on System Science,

volume II, pages 175- 188. IEEE, 1989.

Takeo Kunishima and Yahiko Kambayashi. Workflow

model on a workflow management system WorkFlowBase.

Technical Report DBS104-41, IPSJ Special Interest Group

on Database Systems, July 1995. in Japanese.

M. Kifer and G. Lausen. F-Logic - a higher order

language for reasoning about objects, inheritance, and

schema. In Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 134-146, Port

land, June 1989.

Narayanan Krishnakumar and Amit Sheth. Managing het

erogeneous multi-system task to support enterprise-wide

operations. Journal of Distributed and Parallel Databases,

3(2):155- 186, April 1995.

Takeo Kunishima and Kazumasa Yokota. Flexible work

flow frameworks for supporting collaborative work. In Pro

ceedings of International Symposium on Cooperative Da-

R eferences 103

tabase Systems for Advance Applications, volume 2, pages

501-508, Kyoto, December 1996.

[MA90] Y oshihiro Matsumoto and Tsuneo Ajisaka. A data model

in the software project database KyotoDB. Advances in

Software Science and Technology, 2:103- 121, 1990.

{Mah93] Dirk E. Mahling. Enactment theory as a paradigm for

enabling flexible workfiows. In Proceedings of A CM Con

ference on Organizational Computing Systems, pages 202-

209, November 1993.

[MCC95] Dirk E. Mahling, Noel Craven, and W. Bruce Croft. From

office automation to intelligent workflow systems. IEEE

Expert, 10(3):41-47, June 1995.

(MD89]

[MGL+87]

(ML84)

Dennis R. McCarthy and Umeshwar Dayal. The architec

ture of an active data base management system. In Pro

ceedings of ACM SIGMOD International Conference on

Management of Data, pages 215- 224, June 1989.

Thomas W . Malone, Kenneth R. Grant, Kum-Yew Lai,

Ramana Rao, and David A. Rosenblitt. Semi-structured

messages are surprisingly useful for computer supported

cooperative work. A CM Transactions on Office Informa

tion Systems, 5(2):115-131, April 1987.

Murray S. Mazer and Frederick H. Lochovsky. Logical

routing specification in office information systems. ACM

Transactions on Office Information Systems, 2(4):303- 330,

October 1984.

104 References

[MMWFF92) RaUl Medina-Mora, Terry Winograd, Rodrigo Flores, and

Fernando Flores. The Action Workflow approach to work

flow management technology. In Proceedings of the Con

ference on Computer-Supported Cooperative Work, pages

281- 288, November 1992.

[Ple95)

[Rob96]

[RS94)

(SAM91)

[SBF+87)

Dimitris Plexousakis. Simulation and analysis of business

processes using GOLOG. In Proceedings of ACM Con

ference on Organizational Computing Systems, pages 311-

322, August 1995.

William N. Robinson. Goal-oriented workflow analysis

and infrastructure. In Proceedings of NSF Workshop on

Workflow and Process Automation in Information Science,

pages 31-37, May 1996.

Marek Rusinkiewicz and Amit Sheth. Transactional work

flow management in distributed systems. In Proceedings

of International Workshop on Advances in Databases and

Informations Systems, pages 18- 33, May 1994.

Sunil K. Sarin, Kenneth R. Abbott, and Dennis R. Mc

Carthy. A process model and system for supporting collab

orative work. In Proceedings of ACM Conference on Orga

nizational Computing Systems, pages 213- 224, November

1991.

M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and

D. Tartar. WYSIWIS revised: Early experiences with mul

tiuser interfaces. A CM Transactions on Office Information

Systems, 5(2):147- 186, April 1987.

References

[Sch96)

[SFB+87)

[SMK90)

(Suc83)

[Swe93]

[TIAT95)

105

Thomas Scha.l. Workflow Management Systems for Process

Organisations. Number 1096 in Lecture Notes in Computer

Science. Springer-Verlag, 1996.

M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning,

and L. Suchman. Beyond the chalkboard: Computer sup

port for collaboration and problem solving in meetings.

Communications of the ACM, 30(1):32-47, 1987.

Allan Shepherd, Niels Mayer, and Allan Kuchinsky.

Strudel - an extensible electronic conversation toolkit.

In Proceedings of the Conference on Computer-Supported

Cooperative Work, pages 93- 104, October 1990.

Lucy A. Such.man. Office procedure as practical action:

Models of work and system design. A CM Transactions on

Office Information Systems, 1(4):32Q-328, 1983.

Keith D. Swenson. Visual support for reengineering work

processes. In Proceedings of A CM Conference on Orga

nizational Computing Systems, pages 13Q-141, November

1993.

Hiroyuki Tarumi, Yoshihide Ishiguro, Takayoshi Asakura,

and Atsushi Tabuchi. Beyond workflow: A proposal of

work web system. Technical Report GW12-10, IPSJ Spe

cial Interest Group on Groupware, June 1995. in Japanese.

Hiroyuki Ta.rumi, Y oshihide Ishiguro, Atsushi Tabuchi,

Kenji Yoshifu, Koji Kida, and Takayoshi Asakura. An

106

[TLA91]

[TTY95)

[Ull88]

[WF86]

[wfC)

[Wor96]

[YA94]

References

implementation of the WorkWeb system. Technical Re

port GW15-22, IPSJ Special Interest Group on Group

ware, January 1996. in Japanese.

Michel Theni, Jianzhong Li, and James Ang. Knowledge

based office automation and CSCW. Studies in Computer

Supported Cooperative Work, pages 183- 194, 1991.

Hiroyuki Tarumi, Atsushi Tabuchi, and Kenji Yoshifu.

Workflow implementation with rule-based e-mail. Trans

actions of Information Processing Society of Japan,

36(6):1322- 1331, June 1995. in Japanese.

Jeffrey D. Ullman. Priciples of Database and Knowledge

Base Systems, volume 1. Computer Science Press, 1988.

Terry Winograd and Fernando Flores. Understanding

Computers and Cognition. Addison-Wesley Publishing

Company Inc., 1986.

Workflow Management Coalition homepage.

http:/ f www.aiai.ed.ac.uk/WfMC/ .

Workflow Management Coalition. Workflow management

coalition terminology & glossary, issue 2.0. available from

http:/ fwww.aiai.ed.ac.uk/WfMC/, June 1996. Document

Number WFMC-TC-1011.

Kazumasa Yokota and Akira Aiba. A new framework of

very large knowledge bases. InK. FUchi and T. Yokoi, ed

itors, Knowledge Building and Knowledge Sharing, pages

192- 199. Ohmsha and lOS Press, 1994.

References

[YKN96]

[YKN97]

[YTT95]

107

Kazumasa Yokota, Takeo Kunishima, and Hideyuki

Nakanishi. Hypothetical query processing for workflow

managemen. In Proceedings of the Seminar on Logi

cal Databases and the Meaning of Change, pages 44-49,

Dagstuhl, September 1996. UPMAIL Technical Report

No. 129, Uppsala University.

Kazumasa Yokota, Takeo Kunishima, and Hideyuki

Nakanishi. A framework of query processing for workflow

management. Lecture Notes in Artificial Intelligence, 1997.

to appear.

Kenji Yoshifu, Atsushi Tabuchi, and Hiroyuki Tarumi. Co

action of a workflow system and a database. Technical Re

port GW9-23, IPSJ Special Interest Group on Groupware,

January 1995. in Japanese.

108 References

List of Publications by the

Author

B ooks

1. Y. Ka.mbayashi, M. Arikawa, T. Kunishima, S. Konom.i, H. Takada,

andY. Miyauchi. Distributed and Cooperative Media Series 4 -

Hypermedia and Objectbase. Published from Kyoritsu Pub. Co.

Ltd. Nov. 1995 (in Japanese).

Major Publications

1. T. Naruse, T. Saito, and T. Kunishima. On an Algorithm Obtain

ing an Approximated Minimum Ball Containing n Balls. Trans.

IEICE, D-II, Vol. J73-D-II, No. 10, pp. 1792-1795, Oct. 1990 (in

Japanese).

2. Y. Ka.mbayashi, Q. Chen, and T. Kunishima. Coordination Man

ager: A Mechanism to Support Cooperative Work on Database

Systems. Proc. 2nd Far-East Workshop on Future Database Sys

tems, pp. 176-183, Apr. 1992.

109

110 List of Publications by the Author

3. T. Kunishima and K. Yokota. Flexible Workflow Framework for

Supporting Collaborative Works. Proc. International Symposium

on Cooperative Database Systems for Advanced Applications. pp.

501-508, Dec. 1996.

4. K. Yokota, T. Kunishima, and H. Nakanishi. A Framework of

Query Processing for Workflow Management. Lecture Notes in

Artificial Intelligence, 1997 (to appear).

5. T. Kunishima and K. Yokota. Workflow Base: A Flexible Workflow

Model with Database Technologies. Under submission in Trans.

IPSJ (in Japanese).

Technical Reports

1. T. Kunishima, S. Matsumoto, H. Ogino, H. Hiraishi, and S. Ya

jima. Computer-Aided Design using Multi Screen Graphic MCMS

System. Proc. IPSJ Graphics and CAD Symposium, pp. 227-236,

Nov. 1989 (in Japanese).

2. T. Naruse, T. Kunishima, and T. Saito. Consideration on Setting

up Bounding Volumes. IEICE Special Interest Group on Pattern

Recognition and Understandings, Technical Report No. PRU89-65,

1989 (in Japanese).

3. E. Oomoto, K. Tanaka, H. Nunokawa, T. Kunishima, M. Yoshi

kawa, and Y. Masunaga. An Experiment of Collaborative Elec

tronic Publishing- Design and Implementation of Database Work

book - . IPSJ Special Interest Group on Database Systems, Tech

nical Report No. DBS99-17, July 1994 (in Japanese).

List of Publications by the Author 111

4. T. Kunishima andY. Kambayashi. Workflow Model on a Workflow

Management System WorkFlowBase. IPSJ Special Interest Group

on Database Systems, Technical Report No. DBS104-41, July 1995

(in Japanese).

5. S. Uemura, J. Adachi, M. Arikawa, Y. Kiyoki, S. Shimojo, T. Kato,

I. Kojima, K. Saisho. and T. Kunishima. Researches on Multime

dia Information-base Technology. IPSJ Special Interest Group on

Database Systems, Technical Report No. DBS106-21, Jan. 1996

(in Japanese).

6. K. Yokota, T. Kunishima, and H. Nakanishi. Hypothetical Query

Processing for Workflow Management. Proceedings of the Seminar

on Logical Databqses and the Meaning of Change (UPMAIL Tech

nical Report No. 129, Uppsala University), pp. 44-49, Dagstuhl,

Germany, Sep. 1996.

Convention Records

1. T. Kunishima and Y. Kambayashi. Applying a Logical Language

HILOG-R to CAD Databases. 43th National Convention Record

of IPSJ, Vol. 4, pp. 158-159, Oct. 1991 (in Japanese).

2. T. Kunishima, T. Furukawa, andY. Kambayashi. Interactive Sup

port for Designing Object-Oriented Databases. 44th National Con

vention Record of IPSJ, Vol. 4, pp. 169-170, Mar. 1992 (in Japa

nese).

3. T. Kunishima and Y. Kambayashi. Schedule Management in a

Computer-Supported Cooperative Work Environment based on Da-

112 List of Publications by the Author

tabase Systems. 45th National Convention Record of IPSJ, Vol. 6,

pp. 281-282, Oct. 1992 (in Japanese).

4. T . Kunishima, T . Shimada, andY. Kambayashi. Implementation

and Applications of Generalized Trigger Mechanisms for VirtualOf

fice. 46th National Convention Record of IPSJ, Vol. 6, pp. 247-248,

Mar. 1993 (in Japanese).

5. T. Kunishima andY. Kambayashi. A Description Method for Co

operative Activities using Dynamic Finite Automata. 46th Na

tional Convention Record of IPSJ, Vol. 6, pp. 249-250, Mar. 1993

(in Japanese).

6. T. Kunishima and Y. Kambayashi . An Inheritance Mechanism

on Aggregation Hierarchies of Cooperative Works. 47th National

Convention Record of IPSJ, Vol. 6, pp. 283-284, Oct. 1993 (in Ja

panese).

7. T. Kunishima and Y. Kambayashi. An Execution Method for

Workflows Based on Activity Objects. 48th National Convention

Record of IPSJ, Vol. 6, pp. 241-242, Mar. 1994 (in Japanese).

8. T. Kunishi.ma andY. Kambayashi. A View Function on Workflow

Model. 49th National Convention Record of IPSJ, Vol. 6, pp. 247-

248, Sept. 1994 (in Japanese).

9. T. Kunishima andY. Kambayashi. Implementation of A Prototype

for A WorkFlow Management System "WorkFlowBase". 50th Na

tional Convention Record of IPSJ, Vol. 6, pp. 183-184, Mar. 1995

(in Japanese).

List of Publications by the Author 113

10. T. Kunishima andY. Kambayashi. A Study for Openness of Work

flow Management Systems. 51th National Convention Record of

IPSJ, Vol. 6, pp. 179-180, Sept. 1995 (in Japanese).

11. N. Segawa, M. Hiji, T. Kunishima, and K. Watanabe. Description

in the Frame of Dynamism of Human Communications. 51th Na

tional Convention Record of IPSJ, Vol. 6, pp. 187-188, Sept. 1995

(in Japanese).

	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062

