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General introduction 

General introduction 

Fragile X mental is one of the most common human genetic diseases and 

the most common cause of hereditary mental retardation, affecting 

approximately 1 in 1200 males and 1 in 2500 females (Sutherland et at., 1985; 

Nussbaum and Ledbetter, 1986; Richards and Sutherland, 1992; Oostra and 

Verkerk, 1992; Caskey et at., 1992). The clinical features include variable but 

generally severe mental retardation, resulting in IQ. of 20-60, a typical facial 

appearance, and enlarged testicles in adult males. The fragile X syndrome is 

strongly associated with a chromosomal fragile site, a segmental gap of poorly 

staining chromatin at Xq27.3 (Sutherland, 1977; Tommerup, 1989), that can be 

induced to appear in - 50% of mctaphases from affected males if cells arc starved 

for precursors of DNA synthesis during the preceding S phase. The genetics of 

this X-linked disorder are unusual: Approximately 30% of carrier females exhibit 

mental deficiency while 20% of males with the fragi le X chromosome are non

penetrant, phenotypically normal individuals (Sherman et al., 1984; Sherman et 

at., 1985). These males in turn will transmit the chromosome to daughters, who 

are consistently unaffected, and they may have affected grandsons. This 

phenomenon of anticipation, with the risk of mental impairment in fragi le X 

pedigrees appearing to be contingent upon the position of individuals in the 

pedigrees, has commonly been referred to as the "Sherman paradox". 

Fragile X syndrome is caused by the amplification of a simple trinucleotide 

repeat (CGG)n located within the 5' untranslated region of the fragile X mental 

retardation gene, FM R 1 (Verkerk et al., 1991). Two classes of mutations have 

been described (Oberle et at., 1991; Fu et at., 1991; Rousseau et at. , 1991): 

premutation are characterized by moderate expansions of the trinucleotide 

repeat (n=54-200) and do not cause mental retardation. They are found in 

normal transmitting males and in normal female carriers (including all daughters 

of normal transmitting males); full mutations are present in affected males or 

females patients and arc characterized by larger expansions (n>250) associated 

with an abnormal methylation of the CpG island which includes the CGG repeat 

(Oberle et at., 1991; Hansen et at., 1992). The transition from premutation to full 

mutations occurs only by transmission through a female carrier at a frequency 
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General introductiOn 

which depends on the size of the premutation (Fu et al., 1991; Yu et al. 1992; 

Heitz et al., 1992). 

There is strong evidence that defects in FM R I play a central role in the 

clinical syndrome. First, amplification of the trinucleotide repeat is associated 

with hypermethylation of the CpG island 5' to FM Rl (Bell eta!., 1991; Heitz et 

at., 1991; Oberle et at., 1991; Vincent et at., 1991) and a marked decrease or 

extinction of steady-state levels of FM Rl mRNA (Picretti et al., 1991; Verheij et 

al., 1993). Additional evidence for a direct role of FMR1 is that three patients 

with a partial or complete deletion of FM R 1 exhibit fragile X syndrome in the 

absence of the fragile site (Gedeon et at., 1992; Wohrle et at., 1992; Meijer et al., 

1994). The finding of a single point mutation in the open reading frame of FM Rl 

in a patient with very severe fragile X syndrome, but without cytogenetic 

expression of the fragile site (De Boulle et al., 1993), also suggests that FMRJ is 

directly responsible for fragile X syndrome. Recently, fmrl knockout mice have 

been reported. These knockout mice lack normal FM Rl RNA and protein and 

show enlarged testes, impaired cognitive function, and aberrant behavior. This 

animal model might serve as a valuable tool in the elucidation of the physiological 

role of FMR 1 and the mechanisms involved in macroorchidism, abnormal 

behavior, and mental retardation (The Dutch-Belgian Fragile X Consortium, 

J 994). 
Although its apparently ubiquitous expression and extraordinary cross

species conservation (Verkerk et al., 1991) suggest that it may have a 

'housekeeping' role, the normal function of FMR1 is not known. The predicted 

amino acid sequence of the FM Rl gene product has been published (Verkerk et 

al., 1991), as no homology to proteins characterized previously has been 

reported. FM Rl expression is widespread as shown by northern blot analysis on 

human tissues and by in situ hybridization in mouse, and appears strong in brain 

and testis which are involved in the clinical phenotype (Hinds et al., 1993). 

To characterize the FMRl protein, the predicted amino acid sequence of 

FMRl is examined. In Chapter 1, it is shown that the predicted amino acid 

sequence of FM R 1 contains two RNA binding motifs that strongly suggest that 

it is an RNA-binding protein: the K homology (KH) domain (Siomi et al., 1993; 

Gibson et al., 1993b; Ashley et al., 1993a) and an RGG box (Kiledjian and 

Dreyfuss, 1992), and FMR1 docs indeed bind to RNA (Ashley et al., 1993). The 
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identification of the KH domains in FMR 1 provides a framework for thinking 

about the nature of the Ile304 to Asn missense mutation in a patient wtth severe 

fragile X syndrome (De Boulle et at., 1993). Ile304 at one of the most conserved 

residues of the KH domain (Siomi et at., 1993; Gibson et at., 1993a), indtcating 

that the conserved residues of the KH domains are required for normal function 

of f'MRl. In Chapter 2, it is demonstrated that KH domains of FMR 1 protein 

play a role in RNA binding and is shown that the RNA binding activity of the 

human FMRl Ile304 to Asn mutant found in the severely retarded fragile X 

patient is strongly impaired. 

The diagnosis of the fragile X syndrome was confirmed initially by finding 

50% expression of the fragile site in transformed lymphoblastoid cells 

(Sutherland et al., 1985; Nussbaum and Ledbetter, 1986; Richerds and 

Sutherland, 1992) and later by Southern blot analysis of the FM R I region 

(Kremer et a!., 1991; Yu et a!., 1991; Rousseau et at., 1991 ). In Chapter 3, the 

production of antibodies to FMRt is described. The Western blotting results 

using the antibodies show that the patients of the fragile X syndrome have absent 

or markedly reduced levels of FMR1 protein (Devys ct at., 1993; Verheij et at., 

1993). The antibodies to FMRl will offer a specific and sensitive diagnosis tool 

for fragile X syndrome. 

To better understand the function and evolution of the FM R I gene 

product, FMRI eDNA is cloned from Xenopus laevis. In the course of the 

experiment, a novel gene, termed FXRJ, that is highly homologous by amino acid 

sequence to FMRI is discovered. FXRl, like FMR1, contains two KH domains 

and an RGG box and is a cytoplasmic RNA-binding protein. These findings 

indicate that FM R I is not a one-of-a-kind gene but rather is a member of a gene 

family. The antibodies to X. laevis FMRl and FXRl are raised and show that 

these proteins are expressed in X. laevis oocytes, indicating that the FMRI and 

FXRJ mRNAs could be maternal. In Chapter 4, all about Xenopus laevis FMRI 

and FX R 1 are described. FX R 1 eDNA is also isolated from human and 

completely sequenced, which is described in Chapter 5. Interestingly, cells of a 

fragile X patient that do not have any detectable FMR 1 express normal levels of 

FXRI. Unlike FMRI, FXRJ is not located on the X chromosome: rather it is an 

autosomal gene located at 12ql3. Moreover, unlike FM Rl, there is no COG 

repeats in the 5' UTR of the FXRJ mRNA. Instead, FXRJ mRNA has a most 
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General introduction 

unusual feature; both X, laevis and human F X R 1 mRNAs contain an 

approximately 90 nucleotide perfect inverted repeat in the 5' and 3' UTRs. It 

suggests that F X R 1 expression is subject to particular post-transcriptional 

regulation or that the FXRI mRNA has an unusual function. 
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Chapter 1 

The protein product of the fragile X gene, FMRJ, 
has characteristics of an RNA-binding protein 

1-1 Introduction 

Chapter 1 

Although the gene, FM R1, which causes fragile X syndrome has been 

recently cloned and sequenced (Figure 1-1), the normal function of FMR1 

protein product is not still known. The expression of the protein is apparently 

ubiquitous in living cells and extraordinary cross-species conserved (Verkerk et 

al., 1991), which suggest that it may have a 'housekeeping' role. The amino acid 

sequence of the FM R 1 gene product can be predicted from the DNA sequence 

of the gene (Verkerk et al., 1991), but its protein product has not yet been 

identified and there are no biological parameters to assess the activity of FMRl. 

To give a clue to study the function of FMR1, the homology search for the 

peptide sequence is carried out. It is found that the predicted amino acid 

sequence of the FM R 1 gene product contains two motifs that strongly suggest 

that it is an RNA binding protein, one of which is the K homology (KH) domain 

(Siomi et al., 1993; Gibson et al., 1993b; Ashley et al., 1993a) and the another one 

is an RGG box (Kiledjian and Dreyfuss, 1992; Ashley et al., 1993a). In this 

chapter, it is demonstrated that FMRl does indeed bind to RNA in vitro. This 

observation suggests possible functions for FMRl in RNA metabolism or in 

RNA-containing cellular structures and focuses on the role of defective FMRl 

function in the pathogenesis of this disorder. 

1-2 Experimental Procedures 

eDNA cloning and construction of expression plasmids for the FMRI proteins 

FMRI eDNA fragment was isolated by polymerase chain reaction (PCR). 

Two PCR oligodeoxynucleotide primers were synthesized; one in a 5' to 3' 

direction within the FMRI coding regions (27XM7:1272-1301) and one in a 3' to 

5' direction within the FMR1 3' noncoding region (27X31:2L24-2156; the 

coordinates are based on the numbering used in Verkerk et al., 1991). 2mg of 

oligo (dT)-selected HeLa RNA was reverse transcribed using the primer 27X31 

according to the manufacturer's suggested conditions (Perkin Elmer Cetus). 
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Chapter 1 

1 OACQGAOOCOCCCO'~ooeooeoocooc:ooooc~oocoocoocoo.AOOC 
•01 ~~OCCICCCOCAOCCCA~OOCOCTAOC-o\OOOC'f'GM.GAQMO A'f'O 

• 
199 GAO GAO CTO 0T0 01"0 G.M 01'0 COO 00C T'CC MT OC»e OCT 'M'C 'fAC M(J OCA nT OTA. MO OAT OTT CAT 0AA GAT 

I I t. Y Y I V R 0 I If 0 A P Y Ill A F V Ill D V M I 0 :6 

2?.4 TCA ATA ACA O'M' OCA 1"'M' OM MC AAC '1"00 CAO CCT OAT AGO CAO A'M' CCA 'I"TT CA'f GAT OTC AOA 'M'C CCA CCT 
I I T Y A P I N N W 0 P D R. 0 I , P M 0 V R. r P P ... 1 

l49 CCT OTA OOT TAT MT AAA OAT A":'A MT G.M N:r. GAT ClAA OT'T Q.AO O'tO TA1' TCC MiA OCA MT GM. AA.A GAG CCT 
P Y 0 T tr lit D J lf I I D I Y a V Y I a, A N I J. I P 'Jt. 

42:4 ~ TOT 'r'O(; ~ '!"fA OC'I' AU 0TG A00 A'I'O AOA MG O<n' GAO '1"1'1' TAT 0T0 A'TA 0.V. TAT 0CA 0CA 'TO"%' CA!' QCA 
C C " W t. A K Y a It t K 0 I P T Y J I T A A C %> A 101 

U9 ACT ":At; M!' GAA A'n 01'(' ACA ATr Q.M COT CT.\ A~ 7'CT OTT AAT eec .ue AM C'C.'T 0CC ltCA MA GA,. ACf' ~ 
T T K a J V ? l a a t. a I V • P lf a f A T K D T P 116 

S 7 4 CA.'? AAO A1"C AA0 CTO GAT 0T0 CC:.A 0AA OAC' n'A COO ¢.u Af'G TG1" OCC" AU CIAO acG OCA CA.':' AAO GAT T'TT A..AA 
• I. I ll L I) 'f' P I I) L • 0 lf C A I. I A A & lit %> P & lU 

6 • 9 AAC oc:..a. o:"'T OO'f 0CC ~ 'tc:1' flrA ACf TA~ QAT CCA. GM. .MT TAT CAQ CTT OTe ATT n'O T'C'C ATC M7 GAA cr."C 
K A Y 0 A r I Y T T D P I M 1' 0 L V t L I l M I V 176 

'12 ACC TCA MG COA CCA CA.t' A1'0 C'!'O An OAC ATO c:AC 7'Tr COO AOT (TO C:0C ACT M0 'f'TO TCT CTO ATA A1'0 AGA 
T I & a A N • t. l D M • P a I ~ a T ~ "' I L I M A 201 

~ ' MT GAA GM OCT MIT AAO C40 CT0 GAO AO'I' 'f'C:A AOO CA0 CTr OCC 1'CO A<lA ?M" CAT a.M. CAD 'l"1"r ATC OTA AGA 
I I A I ~ 0 L I I I ~ 0 L A I a P M I 0 P I V R. 22b 

fJ 1' OM OA'r C1'0 A1'0 OGT CTA OCT A'M' oaT ACT CAT 001' OCT MT ATT CAO CM OCT AOA AAA OTA CCT 000 01'C AC"f 
I D L N 0 L A I 0 1 M 0 A M l 0 0 A a It V P 0 V T 2 ':d 

94 OCT A'M" OAT CTA OAT OM OAT ACC TOe ACA TT'1' CAT A'!'T TAT OQ.A GAO GA1' CAO QAT OC:A 0"1'0 AAA MA OCT AOA 
A t D t. D I D T C 1' P H I T 0 I D 0 0 A V J. J. A a 216 

l ' AOC 1"M' CTC OAA T'M' OC"r OA.A OAT O'fo\ ATA CM cwt' CCA AOO MC TTA OTA O'!'A ATA OCA AAA MT OCA AAO CT0 
a p L Z P A I D Y l Q V P J. M t. V V l Q It M 0 lit L )~1 

lOtJ ATT CAG GAO ATT C1'0 0AC .U0 TCA 0GA OTT 0T0 A00 0!'0 A.OO A'M' CIAO OC"'f G.M Mf OAG AAA M,. 01'T CCA eM 
t 0 I t V D I. I 0 V V a V a I I A I N I It H V P Q )2:6 

11 ,.. C.U. GAG GM. A'M ATO CCA l"CA. M1' 1'CC CTT CC'T tcC MT AA'T TC.\ AOO GOT 004 CC'T .U. ': OCC CCA OAA O..V. MA 
I a I r • P P • I L P I • lf I a 0 0 P .. A P I I K 1~1 

1249 AAA CA.':" T:'A QAT ATA MQ 0..V. AA~ 40C 1oJX (A~ ~ TC'T C:.U. CC":' AN: AO't A'"'A M.A ~ CAO AOO oaT o\'1'0 G':'A 
K 8 L 0 I It a • I T 8 P I 0 P • I T K Y 0 a Q • V ]76 

1)2<1 CCA '!"t'T O'!'T 'M":' 0'1'0 OGA ACA A..\0 QAC NJtC A'K OC"'f AAT OCC: ACT OTT CTT 'M"' OAT TAT CAt: CT0 MC TAT" r,A 
P P V P V 0 1' K D I I A W A 'f Y t. t. D T R L lt T L 4 1 

1) 9 AAO 0..V. OTA G.M" CA.O ftC C01' 'rrG GAO A.o.A '!"fA CM A'M' GAT GAO CAO f"TQ CQA CAO ATT OOA OCT AGT 1"CT AGA 
& I V b 0 L a L 1J a L Q r D I Q ~ a 0 1 0 A I 8 a 4 26 

J4 H CCA CCA CCA MT COT ACA Q,o\1' M0 GM AAA A.OC TAT 0'!'0 ACf OA'r OA'P 00'1" CM. 00A A'I'O GOT C0A OOT AOT AGA 
P P P tr A T D K IJ It I T V T D tt 0 0 0 • 0 • 0 8 • c t.,J 

I ~ 49 CC!' TAC /tt..C.A MT AGO 000 CAC 00C AQ.A COC OOT CCT OOA TA1' ACT' 7CA 00A AC't MT 'r"C'r OM OCA TCA M T OC1' 
P T A tr a 0 R a • A 0 P a T T I 0 T • I I A I H A 4 'J(; 

H1 C TC'T OAA M;A QAA. 1'C"f ClAC CAC AOA Q.AC Q.M C1'C o\G't OAT 1"CQ 'J'CA T:'A OCT CCA ACA GAO OM GA.O AOO GAO AtJC 
I • T a I D K a 0 I L I D W I L A P T a I a a I S ~01 

1! !19 T1'C CTO COC AW.. OOA OAC OOA COO COO COT OCA OCiO OQ.A OCA o\C.A OQ.A eM OGA OQ.A ACA OCA CCT OOA OOA OOC 
P t. • a o o o a a a o o a o a o o o o a o a o o o .. 2, 

l'tH 1"1"C AM. OGA A.Ar OA.I.. GAT CAC 'I'CC CQA ltCA OA1' MT C\n CCA CO'I' MT C'CA A:». c.MI OC:':' MA oc.A A.GA ACA ACA 
r J. 0 M D D a I a T D N a P a N P A I A ~ C a T T SSl 

1141 QA":' GCA TCC C'T'T CAD AAT Aec: !« AO'f QAA OOT A1rt CGQ C':"' COC ACO ClOT AAA OA1' COT ~ eM MO ll./II.A OAC 
0 0 I L 0 • T I I a 0 I a L A 1' 0 It D lt. W 0 ~ & a 51' 

1'9:"4 M3 CCA GAC AOC OTO OAT QO'T CA0 CAA C'CA CTC 0T0 AAT 00A tr.A eee 'fAA ACTOe'ATMl"r'CTGAAOTTATAT'M"C'CTATA.C 
K f D I 'f' D 0 0 0 P L V • 0 V P • 

10 7 CA1":"'''C'C'TM'M'C'M'A'M'CC.A":'AT1'~ADOCCAAA~TACTA.OOCMOATOOCACAOOCK"A1'GAAATO.MCAc.A..UTTATOC"'l'A 
1107 ~'M"T"'"M'A1"T'TT'M''OTA~TM04.;AACAA'f'"M":'C_o\CA~QATACC'f'TMAA~A.'M'OC'1"T"'"'MAACTAC'M'AGC 
, ..,01 ACTTCAGQOCAOA'M"T'l"ACT'Pr'rA'PT"f'1"!MMAO'f'ACTQAC.CAO'TCATATT'C1"M'CTTM'I"rTTOA':c.\TTT"TC'C"TTCATT0001'0A'l"CA"''1'CACCAOTA 
.._ } • CA"t'TC'TC.AG'l"TT"rfCn'MTATATAIS'' A1'1'TAT'OOTMTCATA'n'~'1'C'TCO'I'ATA.OMCTC'M'CA"f''.A.MTOCTAT<n'CA'f"T":"C.A 
1·... TOTC~A'I'OT"T"t"'T''1'CAOTAT"':'M'AOTOOA.CCCTC.A.AAT'O'T4TOTOAT01'0ACA~TCATTTTCATT~0 
2" TTOTATGA"l'C1''TTCCT'TA1'ATC'T1'00C"AOOTAOOMTATTATATT':'OQATOCAOAOT1'CAO(;Q.A.AQ.ATMOT'I'OCA.MCACTMA1'CTTAM.W.T 
l 0TA0CAAACCCT'01'C.MACAftAOTAC'T"M'A.TA.OMOMT'OCATOC'M"1"CCA.TATT"M'T"M'CC"M'ACATA.MCA.1'CAOO'M'A.OOCAOTATAMGMTA00 
2 ACT'rO'M"T'M'Q'M"'"M"M'M"1'1'0'1"f'AC"J''MO"'"'f'1"1ATMATAO'rO'M'AT1'GAGAG.AG.ATO'I'O'I'M'M"''"'M"C''ATAOACAGG.AOAAQ.UJ.GMCTAT 
2 C'M'C.A1'CTCAGAGAOOCTAMA'f'OT1'1'1"CAOC"tAOQ.AACMA"l"C1"'J"CCTCGA.MGffAO'!'A.OQA.TA.'f'OCC"'''CTC'1'1"'l''QCC'tGA'f'CACCAA1"M'TA 
1 ACTTAQ.AGCi I I 2 J J I 1 I iAATT'TTO~'M"M"T'CATAT'M"!'M'M"'l"CAAOC'I'TA~OAOATAOQ.MGO'fCA'I'T1'CC 
J ATGTATOCATM.,MTC'C'TOCA.MOTACAOOTACTTT'OTCTMOMACA'M'OOAAOCAOO'M'MATO'i'T'r1"''fMAC'rrr<JAAATATAT"'GTCTAAT01"1' 
) TA.A.~O.V.TT'C)C..V..M0ACTM0AT'COOTTAACW.TAACit.ACiillilllCiiilltiC~lllt011lit1 
) 4At;iCJ ill 1 iII llMOTC.V.A'!"M'A~TA"Z'G"''Ir.U.OOACCT1"CA.C'TMOA.TOT'I'ATATT'T'M'C"M'/It.II.JIJ.A<JTMC1'CC'l'AOTAOOGO 
l T~'ICTC'tACAGAOCC'OT~'t01'A1""J""M'1"G, 1101 I .Ci1 NM1"M'TCA7"M'TACAO'M'A.C'M"T'J'CC1' 
J 4 1 TOCATA.CAAACAA.OCATAT.U..Uf'QOC~CA.'i'OA.'M"l'CACA.MTA,.,.~IIJI.AJIJJrA'f"'f''C'C,MAC'M'M1"0T"''G.AT'M'C 
)~Ol TAOTTATTTA'M"C'T""...oc;.AAT0TATA01A'I"TTT~ • • ·C~'- •• ·TTOOT~Te.\TC"'f'''!'AAX'TO~AAA.ATAJ::'t(ITMJ.ATMTT 
)1, ~Ot:n.-..GMTCAeC':'TOTAAT'OT~TAT'1C'i'C'TGTAC.\TATT~~1"1'0Q.A.'f"T":'TA'I'O'TTGA.CA~ 
}1 1 TATAO'TGCMTATA":'TTTOTAT'Ot~":'WCTT":''AiCitCCIC.OCtA.CC'O 

Figure 1-1. The DNA sequence and the predicted amino acid sequence 
of human FMRl. (Verkerk et al., 1991) 
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PCR reactions were done on 50ul of eDNA solution with the pnmers 27XM7 

and 27X31 according to the manufacturer's suggested condttions (Perkin Elmer 

Cetus). The amplified fragment was digested with Kpnl and cloned into 

pGEM7Z (Promega) cut with Kpni-Smal to create pFXl Human FMRI full 

length eDNA was obtained by screenmg of a Agt11 HeLa cell eDNA library with 

the RT-PCR fragment (pFXI) as a probe. A eDNA was digested with EcoRI

Kpnl and cloned into pFXI cut with EcoRI-KpnJ to create pF27X. The 

nucleotide sequence of the msert was verified by D'\IA sequencing. The insert 

contains a fragment of FM R I eDNA corresponding to the codmg region of 

FM R I (nucleotides 197-2132, based on the numbering used in Verkerk et al., 

1991). Sequencing the pF27X revealed an insertion of 6 bases, GCAAAG, 

positioned between 881 and 882. This change added Gly-Lys codons. The correct 

amino acid sequence including these two amino acid residues is hsted m Figure 1-

2B The fragment EcoRI-Nstl of pF27X was then inserted into the EcoRI and 

Nsi I cut pllllSI, under transcnptional control of the T7 promoter, to create 

plasmtd pHHSI-F27X. The p HHSI plasmid was derived from pcDNAJ 

(Invitrogen) by insertion of a 72-base pair BstXI fragment encodmg a nine amino 

acid cpitope from the inOucnza virus hemaglutinin protein IIA 1 (Wilson et al., 

1984) with an initiator methionine followed by Smal, Sail and EcoRI restriction 

sites. 

In vitro transcription and translation 

pHHSI F27X was linearized with Nsil to generate template for in vitro 

RNA synthesis of the full length of FMRJ with T7 RNA polymerase. To 

generate C-tcrminal truncated mutants of FMRl, the plasmid was linealized with 

either Accl or Sspl, followed by in vitro RNA systhesis with T7 RNA 

polymerase. The resultant RNAs were translated in rabbit reticulocyte lysate in 

the presence of [35S] methionine (Amersham) according to the manufacturer's 

suggested conditions (Promega Biotech). 

R NA binding assays 

Binding of in vitro produced proteins to ribohomopolymers was carried 

out essentially as described in Swanson and Dreyfuss (1988) with minor 

modifications. Briefly, ribonucleotide homopolymer (Pharmacia or Sigma) 
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binding reactions were carried out with an equivalent of 105 counts per min 

(c.p.m) of trichloroacetic acid (TCA)-precipitablc protein in a total of O.Sml of 

binding buffer [IOmM Tris HCl(pH7.4), 2.5mM MgCh, 0.5% Triton X-100, 

2mg/ml Pepstatin, 2mg/ml Leupeptin, 0.5% Aprotinin] with the stated NaCl 

concentration for 10 min on a rocking platform at 4oc. The beads were pelleted 

with a brief spin in a microfuge and washed five times with binding buffer prior to 

resuspension in 50 ul of SDS-PAGE loading buffer. Bound protein was eluted 

from the nucleic acid by boiling, resolved on a 12.5% SDS-PAGE gel and 

visualized by fluorography. 

Expression and purification of fusion protein 

The expression vector pET15 F2 was constructed by cleaving pHHST 

F27X with Xhol and BamHl and inserting a Xhol-BamHI fragment [nucleotide 

845-1855, based on the numbering used in (Verkerk et al., 1991)] of FMRl into 

the Xhol and BamHI sites of the plasmid pETISb-HA. The pET15b-HA was 

derived by insertion of a duplex DNA linker containing the codons for the nine 

amino acid HA epitope with 5' Ndel and 3' Xhol overhangs into the Ndel and 

Xhol Sttes of pETlSb vector (Novagen). For production of the His-HA-FMR1 

fusion protein, the plasmid pET15 F2 was introduced into BL21{DE3)pLysE 
bacteria and induced with isopropyl-~-D-thiogalactopyranoside(IPTG) as 

described (Studier et al., 1990; Rosenberg et al., 1987). Cells expressing 

reasonable amounts of the fusion protein were screened by using anti-HA mouse 

monoclonal 12CA5. For purification of the fusion protein, bacterial sonicate was 

incubated at 40C with lx packed volume of DEAE-Sephacel {Pharmacia). The 

resulttng supernatant solution was applied to a 2.5-ml His·Bind™Resin 

(Novagen) column, washed and eluted as described by the manufacturer. 

Northwestern blotting assay 

Poly(G) was 5' end labeled with T4 polynucleotide kinase. Blots 

immobilizing the overexprcssed and purified His-IJA-FMRl fusion peptide were 

treated for lh at room temperature m binding buffer [lOmM Tris-HCl(pH7.4). 

SOmM NaCl, lmM EDTA, I x Denhardt's solution). The blots were then probed 

at room temperature for 1 h with 32P-labeled poly(G)RNA (100,000 cpm per 

lane) tn binding buffer containing 20mg of E. coli tRNA (Boehringer Mannheim 
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Biochemicals) and 1 mg of heparin (porcine intestinal mucosa) per mi. Blots were 

washed three times for 15 minutes each with binding buffer, air dncd, and 

exposed to X-ra} film for autoradiography. 

1-3 Results 

FMRJ has sequence motifs characteristic of RNA binding proteins 

In examining the predicted sequence of FMRl (Verkerk et al., 1991), it 

has been noticed that it contams sequence motifs characteristic of RNA-binding 

proteins. First, several RNA binding proteins have recently been found to 

contain an arginine and glycine-rich domain that contains a cluster of the 

tripeptide repeat (Arg-Gly-GI)) called the RGG box (Kilcdjian and Dreyfuss. 

1992). Thts motif has been found in a considerable number of nuclear and 

nucleolar RNA-binding proteins and has been demonstrated to have RNA

binding activity (Kiledjian and Dreyfuss, 1992; Dreyfuss et al., 1993). Figure 1-2A 

shows the sequence of an RGG box near the carboxyl end of FMRl. This RGG 

box bears particularly striking similarity to those found in two other proteins, 

fibrillarin (Aris and Blobel, 1991) and pre-mRNA binding (hnRNP) A1 (Buvoli 

et al., 1988), both of which are RNA-binding proteins (Tyc and Steitz, 1989; 

Cobianchi et al., 1988; Nadler ct al., 1991 ). Second, amino acids 286-321 and 347-

382 (Figure 1-2B) arc two internal repeats. These repeats have significant 

stmilarity to each other (39~o similarity) but they bear even stronger similarity to 

a sequence motif, the K homology {KH) domain, that has been recently 

described in the hnRNP K protein (Siomi et al., 1993) (Figure 1-2B). It consists 

of the h1ghl} conserved I/LIV-1-G-Xz-G-Xz-1 sequence and regularly spaced 

hydrophobic residues. This sequence mottf, which extends over -40 amino acids, 

was originally found in the hn RNP K protein (Siomi et a!., 1993; Matunis et al., 

1992; Dreyfuss et at., 1993) and in several other proteins including the 

archeabactcrial ribosomal protein S3 (Spiridonova ct al., 1989) and th e yeast 

meiosis-specific splicing regulator MER-1 (Engcbrecht and Roeder, 1990; 

Engebrecht et al., 1991) We found that KH domains are also present in several 

additional proteins, including the GAP-associated tyrosine phosphoprotein p62 

(Wong ct at., 1992), a differentiation-associated protein, vigilin (Schmidt et al., 

1992) and a glycine rich putative hnRNP protein, GRP33 (Cruz-Alvarc7 and 
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HhaS3 •2 0 I V L K A E K P G H V I G K G G K N I .R K I T T 0 l E E R 
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HX (2) 156 El lV PVKFHGS LIG PH G TY RN R l OE K Y N VF 
HX (3) 227 VINV PAEHVPR IIGKHG O HIN O I RAEYGVE 
HX (4) 38• T I O I PAERKGA LIG PG G I VR RO L ESEF N I N 

GAPAp62 165 KO Y PK f N F Y GK ILG PO GNTIKRl OEETGA K 
GRP33 82 O Q f PK Y NF lG KllG PG G S TMK OLOOET K T K 

cVig (1) 152 T V A I PKEHHRF VIGKNG EK l OO L ELIITAT K 
cVIg (2) 297 A V E VKK SOH K Y VlG RK GN S L OE J lE K TGVS 
cVIg(J) 366 s v s A PS W LHRF IIG L FG O NLAKI TOO M P K I 
cVIg (4) •37 E I N V DH K fHR NLIG K NGAHlN R IK OlYKYS 
cV1g (S) 509 0 l I I EO K FHR TIIG O KG tR I RE l RE K FPEV 

583 s v p I F K OFH KNJIG KG GANIKK! REES N T K I 0 cVig(6) 
cVig (7) 656 E V S I PS K LH N S LIGAKG RF I RS IM EECGGVH I H 
cVig (I) 730 
cVig (9) 976 
cVIg (10) 1057 
cVlg (11 ) 1132 

CONSE ~SUS: 

c 

O l R AK P( Y H K F L!GK G G G NI R KV RO N TG A R 
E V E V PfOLHR YIIG O KG SG I R KH11 0Ef EYN 
T Y T V OPK Y HPK IIG R KG A VI TO I RTEHEY N 
O V T l O H R V HAR ilGA R GKAI R KIK OEFKVO 

I I K 
LIGKK(t lR 
y v 

0 0 
E E 

~--------~11--~11~--------~~~--~r--
(CGG)n KH domains RGGbox 

l I 
I 0 
I 0 
I R 

Figure 1-2. Primary structure of the FMRl protein and its sequence similarity 
with RNA-binding proteins. 

(A) Comparison of the RGG box in the FMR 1 protein to similar domains 
in other RNA-binding proteins. 
(B) The KH domains in the protein show similarity to a number of known 
and putative RNA-proteins. 
(C) Schematic representation of structural motifd identified in the FMRl 
protein. The open bar indicates the coding region. 
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Pellicer, 1987) (Figure 1-2B). Because several of the proteins that contain KH 

domains bind RNA, it appears very likely that this domain is involved in RNA 

binding. It is of interest that a single mutation in FMR 1, T367N [based on the 

numbering used in (Verkerk et at., 1991)), which changes one of the most highly 

conserved residues of the KH motif to asparagine, can cause fragile X syndrome 

(De Boulle et at., 1993), (Figure 1-2B). The finding that a highly conserved 

residue within the KH domain is required for normal function of FMR 1 supports 

the view that the KH domain is of functional significance. The FMR 1 KHl 

domain is most similar to KH3 of the human and Xenopus laevis hnRNP K 

protein (14 identities and 18 similarities over 36 amino acids), and FMRl KH2 is 

most similar to KH4 of chicken vigilin (14 identities and 17 similarities over 36 

amino acids) and to KH domains in hnRNP K, archaebacterial ribosomal 

protein S3 and polynucleotide phosphorylase (11 identities each). Taken 

together, these sequence features strongly suggest that FMRl is an RNA binding 

protein. The position of these motifs in FMR1 is indicated in Figure l-2C. 

FMRJ binds RNA in vitro 

To test the possibility that FMRl is an RNA-binding protein directly, we 

cloned FM Rl [predicted open reading frame beginning with methionine 66 

(Caskey et al., 1992): based on the numbering used in (Verkerk et al., 1991)] into 

an expression vector that contains a T7 RNA polymerase promoter for in vitro 

transcription as a fusion protein with the influenza hemaglutinin peptide (HA) as 

an epitope tag starting at the putative initiator methionine. The transcription 

product was translated in vitro and the protein product was assayed for RNA 

binding activity using RNA homopolymers immobilized on agarose beads, an 

assay that has been useful to assess RNA binding for many other RNA-binding 

proteins (Kiledjian and Dreyfuss, 1992; Swanson and Dreyfuss, 1988). The 

translation product of FMRl had an apparent molecular weight by SDS-PAGE 

of 85K daltons, larger than expected from the predicted amino acid sequence 

(Figure 1-3A). This discrepancy between molecular mass and mobility in SDS

PAGE is frequently observed for proteins that contain stretches rich in acidic 

amino acids such as hnRNP Cl/C2 (Swanson et al., 1987) and the yeast 

transcriptional activator GCN4 (Hope and Struhl, 1986). FMRl contains several 

clusters of acidic amino acids (e.g. immediately amino terminal to the RGG box) 
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FMR 1 hnRNP C1 
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~ ·~ 
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Figure 1-3. RNA binding properties of FMR 1 protein. 

(A) Binding of the FMRl protein to ribinucleotide homopolymers. An amount 
equivarent to 20% of the materiual used for each binding reaction is shown in the 
lanes marked "Transition". In vitroproduced proteins were bound to the 
indicated ribonucleotide homopolymers at lOOmM NaCI. The position of 
molecular weight markers arc indicated on the left. 

12 

Chapter I 

and this may explain its slower mobility in SDS-PAGE. The FMRl polypeptide 

showed strong binding to poly{G), a little weaker but significant bindtng to 

poly(U), and very little binding to poly{A) and poly{C). The failure of the major 

SOkD translation by-product to bind to the RNA homopolymers further verifies 

the RNA-binding activity of the FMR1 protein. The hnRNP Cl protein, a 

tenacious RNA binding protein used as a control in the same experiment. 

showed binding to poly(U), less to poly{G) and very little binding to poly{A) and 

poly{C), as previously demonstrated (Swanson and Dreyfuss, 1988). The binding 

of FMRl to poly{G) and poly{U) was stable in NaCI concentrations up to 0.25M 

(Figure 1-38). Both FMR1 and Cl showed stronger binding to 

ribohomopolymers than to ssDNA {data not shown), and preferential binding to 

some ribohomopolymers. This binding profile is characteristic of RNA binding 

proteins (Pifiol-Roma et al., 1988). 

To assess the role of the conserved sequence motifs described above in 

RNA binding, we produced translation products of truncated transcripts 

generated by digestion of the FMRJ eDNA with Accl and Sspl (Figure l-3C) 

and compared the RNA binding ability with the full length FMRl. Whereas the 

full length protein bound well to poly{G) and poly{U) at O.lM NaCI, the 

truncated protcms showed little or no binding to either. The polypeptide 

produced from the Accl-truncated construct is of particu lar interest as it is 

missing the RGG box but still contains the KH domains and it docs not bind 

RNA, supporting the possibility that the RGG box is essential for RNA binding. 

The RNA binding activity of FMRl and its fragments was also confirmed 

by Northwestern blotting. With this approach, the proteins, immobilized on 

nitrocellulose membrane after SDS-PAGE, are probed with radioactively-labeled 

RNA and visualized by autoradiography. For this experiment, a fragment of 

FMRl, which contains all the KH motifs and the RG G box, was fused at the 

carboxyl terminus to Il is6-II A. This permitted rapid purification from E. coli 

extracts on a nickel column (Hochuli et al., 1987; Smith et al., 1988) and afforded 

detection with anti-H A antibodies. Repeated attempts to produce the full length 

protein in E. coli were unsuccessful. The purified material contained three bands, 

the largest of which (ca. SOK), corresponded to the desired polypeptide, and the 

two smaller ones corresponded to carboxyl terminal deletions as determined b} 

their reactivity with anti-HA antibody {data not shown). Figure 1-4 shows that 
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(B) FMRl binds poly(G) and poly (U) in a salt resistant manner. In vitro 
translated FMR 1 protein was bound to the indicated ribonucleotide 
homopolymers at the indicated salt concentrations. 
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(C) The ribonucleotide homopolymer binding domain is located at the C
terminal end of the FMR I protein. wt, Ace! and Ssp I represent for the full 
length FMR 1, the truncated FMR 1 by Accl and Ssp I site respectively. The 
structure of the C-terminal deletion mutants is shown below, the stippled boxed 
representing the KH domains, and the cross-hatched box, the RGG box of the 
FMRl. In vitro produced proteins were bound to the indicated ribonucleotide 
homopolymers at 200mM NaCI concentration. 
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Figure 1-4. RNA binds to immobilized FMR I fusion protein in a heparine
resistant manner. 

(A) Pr?duction of FMRI fusion protci_n .. E. coh strain BL2J(DE3)pLysE (lane; no induction) 
~arbonng _the plasm•d pET15 I-'2 conta•_nmg a portion of the FMRI coding sequence was 
mdu~cd wuh IPTG (ian~: IPTG mducuon) and lysed. The IPTG-induccd cell lysate was then 
punf1cd by metal chelat1on chromatography (lane; "purified FMRI "). Protein size markers arc 
shown (lane "MW"'). 
(B) North we~ tern blot analySIS 2mg of purified recombinant FMR 1 protein and 2mg of each 
of protem s1ze markers were subjected to SDS gel electrophoresis and transfered to 
mtrocellulose membrane. The filter was incubated with 32p.[abeled poly(G) in 50mM NaCI 
plus 1 mg of heparin (porcine intestinal muscosa) per ml and autoradiographcd. 
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the full length product, but not the smaller fragments, bound [12P]-poly(G) at 

50mM NaCI in the presence of 1 mg/ml heparin. The heparin-resistant binding 

(Swanson and Dreyfuss, 1988; Pifiol Roma et al., 1988) and the lack of binding to 

the proteins in the molecular weight marker lane (lysozyme, carbonic anhydrase. 

ovalbumin, bovine serum albumin, phosphorylase b and ~ galactosidase) 

demonstrate the stringency and spccif1c1ty of the bmding of f \lfRt to RNA 

Based on these experiments, It is concluded that FMRI IS an RNA binding 

protein in v1tro and thus has the capacity to bind RNA also in vivo. 

1-4 Discussion 

FMRl plays a central role in the pathogenesis of fragile X syndrome. 

Sequence similarity between fMRl and other RNA bind1ng proteins was 

described and it was demonstrated that the FMR I protein can bind RNA 

directly m vttro. This focuses the wvestigation of the function of this protein on 

1ts RNA bmding activity and, ultimate!), on the role of defective FMRI function 

in the pathogenesis of this disorder. The RNA-binding activtty of FMR1 was also 

demonstrated by Ashlay et al. (Ashlay et al., 1993a), in which it was shown that 

FMR 1 selectively bind not only to 4% by mass of the human fetal brain message, 

but also to sense (Kd=5.7nM in this case) or antisense FMRJ own RNA. These 

data confi rmed my results. 

RNA binding proteins can be involved in a wide range of cellular 

processes in the nucleus and the cytoplasm (Dreyfuss et al., 1988; Frankel et al., 

1991) and they can regulate gene expression post-transcriptionally, including 

regulation of pre-mRNA splicing, mRNA stability, translation efficiency, and 

possibly the transport of RNAs between the nucleus and the cytoplasm. Several 

RNA binding proteins can also function as DNA binding proteins (e.g. TFIIIA) 

and regulate transcription of specific genes (Honda and Roeder, 1980; Pelham 

and Brown, 1980; Murray et al., 1992). A role for RNA binding proteins as 

developmental regulators has also been previously noted (Bandztulis et al., 1989), 

and several RNA binding proteins that affect development of the nervous system 

in Drosophila, particularly elav (Robinow et al., 1988), have been described. To 

determine the function of FMRl it will be necessary to determine which cellular 

RNA(s) it interacts with and its subcellular localization. Additional information 
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obtained from the study of proteins that contain similar structural features such 

as hnRNP K (contaming KH domains) and fibrillarin (containing RGG box) 

should also yteld valuable information about the structure and mechanism of 

action of FMR l. The argmine residues in the RGG box of several proteins such 

as ftbrillarin and hnRNP A 1 have been found to be methylated to 

dimethylarginmes (Christensen and Fuxa, 1988; Lischwe et al., 1985; Riva et al., 

1986). It will be of interest to determine if FMR 1 is also methylated and if so, to 

determine the effect of this posttranslational modification on the activity of this 

protein. 

Both the KH domain and the RGG box are strong predictors of RNA 

binding activity. It is of interest that fragile X syndrome can result not only from 

lack of expression of the protein but also from expression of a mutant FMR l 

protein with point mutation (IIe 367 to Asn) in the KH domain (De Boulle et al., 

1993). lie 367 is one of the most highly conserved residues of the KH domain (see 

Figure 1-28). and this suggests that the highly conserved residues of the KH 

domain have important function. It will be important to determine if the point 

mutation lie 367 to Asn in FMRl which causes fragile X syndrome has a reduced 

RNA binding activity. Although it is premature to speculate on the specific 

functton of FMRl, the fact that the protein is not essential for viability raises 

various interesting possibilities such as that it may somehow regulate the 

expression (e.g.: at the level of spltcing or mRNA stability) of specific mRNAs in 

the nervous system. 

t-5 Summary 

Fragile X syndrome is one of the most common human genetic diseases 

and the most common cause of hereditary mental retardation. The gene that 

causes fragile X syndrome, FM R I, was recently identified and sequenced and 

found to encode a putative protein of unknown function. In this chapter it has 

been reported that FMR 1 contains two types of sequence motifs recently found 

in RNA binding proteins. an RGG box and two hnRNP K homology (KH) 

domains and demonstrated that FMR 1 binds to RNA in vitro. The RNA-binding 

activity of FMRl opens the way to understanding the function of FMRL 
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Essential role for the KH domains of FMRt in RNA binding 

2-1 Introduction 

The vast ma;ority of patients with fragile X syndrome show a folate 

sensitive fragile site at Xq27.3 (FRAXA) at the cytogenetic level, and both 

amplification of the (CGG)n repeat and hypermethylation of the CpG island in 

the FM RI at the molecular level. The FM RJ gene of a pattent with the fragile X 

phenotype but without cytogenetic expression of FRAXA, a (CGG)n repeat of 

normal length and an unmethylated CpG island has been studied and it was 

found that aT to A single point mutatton in FMRI resulted m an lie 304 (based 

on the numbering used in (Caskey et at., 1992)) Asn substitution (De Boullc et al. 

1993). Thts de novo mutation was absent in the patients' family and in 130 control 

X chromosomes, suggestmg that the mutation causes the c!Jntcal abnormalities 

In other words, the mutations m FM RJ are directly responsible for fragile X 

syndrome. irrespective of possible secondary effects caused by FRAXA 

Ile304 is at one of the most highly conserved residues of the KH domain 

(Figure 2-1 ). which was originally described in the pre-mRNA-binding (hnRNP) 

K protein, contains approximately 50 amino acids and was found in a diverse 

group of proteins many, if not all of which, are RNA-binding protetns These 

include the archaebacterial ribosomal protein S3, the yeast meiosis-specific 

splicing regulator MERl , the E.coli antiterminator NusA and the human GAP

associated p62 phosphoprotein (Siomi et al., 1993; Gibson et al.. 1993a). A 

common feature to these proteins with KH domains is physical or functional 

association with RNA molecules, implying that the KH domain is both involved 

in RNA binding and participates in regulating RNA metabolism (Siomi et at.. 

1993; Gtbson et at., 1993a). However experimental evidence for a function of the 

KH domain is still lacking. 

It is expected that Ile304, or the KH domain which contains the residue is 

required for the normal functton of FMRl, possibly for RNA binding. Smce the 

residue was changed, the Ilc304 to Asn, FMRl mutant would not bind to RNA. 

To confirm that, the Ile304 to Asn mutant and also the analogous mutant in the 
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first KH domain of FMRl (IIe241 to Asn) are constructed and tested to sec 

whether those mutants bind to RNA in vitro. It is known that the FMRI protem 

shows strong binding to poly(G) and poly(U) in an RNA homopolymer binding 

assay (Chapter 1). Here it is demonstrated that KH domains play a role in RNA 

binding and are showed that the RNA binding of the FMRl lle304 to Asn 

mutant is strongly impaired. 

2-2 Experimental Procedures 

Construction of FMRJ mutants 

The template DNA for mutagenesis was prepared by inserting the eDNA 

encoding human FMRl from pHHSI-27X (Chapter 1) with Saii and Sacl to 

pALTERl, which is a vector for the Altered Sites in vitro Mutagenesis System 

(Promega). The mutants of FMRl were generated by deoxyoligonucleotide

directed mutagenesis by following the manuscript of the system. Two 

deoxyoligonucleotidcs (ml primer and m2 primer) that introduced the desired 

amino acid changes, which were made by DNA synthesizer, were as follows. 

ml primer (for Ile241 to Asn; nucleic acid# 908-926, antisense) 

5'-GCITGCfG.ATIAITAGCAC-3' 

m2 primer (for Ile304 to Asn; nucleic acid #1086-1103, antisense) 

5' -ACAA TCfCCfGA TTCAGCTTTCCA TIT-3' 

After the mutagenesis all mutants were confirmed by DNA sequencing (Sanger 

et al., 1977). When the eDNA encoding human FMRl was inserted in pALTER! 

with Sail and Sacl, the DNA fragment encoding a nine amino acid epitope IIA 

was left in plll1Sl-27X. Thus, an alternative short DNA fragment with Xhol and 

Sail encoding the nine amino acid epitope HA with an additional methionine, 

was reintroduced in the constructs . 

In vitro transcription and translation 

Wild -type and its mutants DNAs were linearized with C lal and 

transcribed with T3 RNA polymerae (Promega), followed by translation of the 

resultant RNA in rabbit reticulocyte lysate (Promega) in the presence of 

[35S]methionine (Amersham). 
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RNA Binding assay 

Binding assay of in vitro produced proteins was carried out as described 

in Chapter 1. Briefly, ribonucleotide homopolymer (Pharmacia) binding 

rcact1ons were carried out with an equivalent of 100,000 cpm of trichloroacetic 

acid-precipitable protein m a total of O.Sml of binding buffer (lOmM Tris-HCI 

(pH7 4]. 2 SmM MgCI2 0.5% Triton X-100, 0.2% Pepstatin, 0.2% Leupeptin, 

0 S% Aprotinin) Wtth a salt concentration of either lOOmM or 250mM for 10 min 

on a rocking platform at 4 C. The beads were pelleted with a brief spin in a micro 

centrifuge and washed five times with binding buffer prior to resuspension in 

SOul of SDS-PAGE loading buffer. Bound proteins were eluted from the nucleic 

acid by boiling, resolved on a SDS-polyacrylamide (12.5%) gel, and visualized by 

fluorograpy. An amount equivalent to 20% of the material used for each binding 

reaction was used to show in the lanes marked "T" standing for Translation 

(Figure 2-2). 

2-3 Results 

It is known that one male patient who shows a severe phenotype of fragile 

X syndrome but expressing FMR! gene has a missense mutation (Ile304 to Asn) 

in it. The discovery raised a question to ask if the corresponding li e to Asn 

missense mutation in FM Rl has an effect on its binding to RNA. To address to 

it, the Ile304 to Asn mutant (m2) and also the equivalent mutant in the first KH 

domain of FMRl (Ile241 to Asn: ml) were constructed (Figure 2-2). The natural 

Rl\iA substrate of FMRl is not yet known, but wild-type FMRl binds well to 

poly(G) and poly (U) but not to poly(C) and poly(A) (Chapter 1). To asses the 

effect of these mutat1ons on RNA binding, poly(G) and poly(U) binding assays 

were performed using both wild-type and mutants of FMRl products 

synthesized in reticulocyte lysates. The binding to poly( G) of both mutants (m 1 

and m2), was only slight!)' reduced at 250mM compared with the wild-type 

f MR 1. Hov.ever, in contrast with wtld-type FMR 1, neither of the two mutants 

bound to poly (U) at a salt concentration of 250 mM. These data demonstrate 

that the point mutation Ile304 to Asn in FMR 1 that causes fragile X syndrome 

(De Boulle et al., 1993) results in a protein with impaired RNA binding, 

establishing a connection between the RNA binding-activity of the 
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Figure 2-2. Mutation in each of the KH domains of FMRl abolish poly(U) 
binding in vitro. 

(A) In vitro translated wild-type and mutant FMRl proteins (ml, lie 241 to Asn; 
m2, Ile304 to Asn) were bound to the indicated ribonucleotide homopolymers at 
the indicated salt concentrations. The largest molecular mass band corresponds 
to the full-length FMRl (indicated by arrow) and the smaller ones probably 
result from internal initiations, premature terminations of translation in the in 
vitro system, or both. 
(B) Schematic representation of the FMRl protein and structure of mutants in 
the KH domains. Two KH domains (stippled) and an RGG box (closed) are 
shown. The Ile304 to Asn point mutation was found in a patient with very severe 
fragile X syndrome(De Boulle et al., 1993). 
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protein and the disease phenotype. 

2-4 D iscussion 

From this experiment, it was shown that the mutation llc304 to Asn affects 

the RNA-bindmg properties of FMRl. Changing this lie residue in either the 

first or second KH domains of FMRl to Asn abolished poly(U) binding, 

suggesting that the two KH domains constitute a bipartite RNA binding surface. 

Alternatively, since Ile304 residue is in a region of the protein that is predicted to 

have a strong propensity to form an a-helix (Gibson et al., 1993b), an Asn 

substitution (hydrophobic to hydrophilic) could impair the stability of the folded 

domain. In addition to the two KH domains, FMRl contains an RGG box near 

the C-terminus. The preliminary domain mapping experiments of FMRl, which 

has been demonstrated in Chapter 1, showed that one C-termmal deletion 

mutant which is missing the RGG box but still contains the KH domains, docs 

not bind either poly(G) and poly(U). It appears that poly(U) binding is a more 

sensitive indicator of defective FMRl binding to RNA and that it rcqu1res both 

KH domains and the RGG box. 

The same experiment has been done with hnRNP K protein, in which the 

KH domain had been originally described. The lie to Asn mutation was 

introduced in each of three KH domains of human hnRNP K and RNA binding 

assay was done with those mutants. The experimental data also showed that the 

RNA-binding activities of the mutants were abolished, namely the conserved 

amino acid was essential in RNA binding (Siomi et al., 1994). 

KH domains can be located anywhere in proteins and occur singly or in 

several copies (Siomi et al., 1993; Gibson et al., 1993a). The findings here suggest 

that KH domains function collectively rather than independently. Therefore, it 

will be interesting to determine how proteins containing a single KH domain, 

such as MER 1 and S3, interact with RNA. 

The Jle 304 to Asn mutation in the KH domain of FMR 1 in a patient with 

severe fragile X syndrome (De Boulle et al., 1993) provided a framework for a 

better understanding of the role of the FM RI gene. The tissue specificity of 

FM R l gene expression is consist with involvement in the fragile X phenotype; in 

situ hybridization and immunostaining reveal widespread but not ubiquitous 
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expression of FM R I, with particularly high level in neuronal cells in the brain and 

in the testis (Hinds et al., 1993: Devys et al., 1993: Abitbol et al., 1993; Bachner et 

al., 1993). In the vast majority of fragile X patients, the syndrome results from 

loss of expressiOn of the l M R I gene Therefore, it is likely that lack of F\1 R I or 

disturbance of FMR I functiOn in these tissues is the cause of their cltmcal 

manifestation. It appears that the normal role of FMRl is to regulate gene 

expre<;sion posttranscnptionally in these developing tissues. The impaired RNA 

binding that results from the lie 304 to Asn change in FMR I (Figure 2 2) may 

explain how this can lead to fragile X syndrome, namely, by interfering with the 

proper interaction of FMR I with its cognate RNA(s). It would be of particular 

inerest to identify the cellular RNA(s) with which FMRl interacts. This would 

permit the identification of relevant RNA-binding sites for FMR 1 and facilitate a 

more direct analysis of the functiOn of FMRl. The observation that another 

mutant, lie 241 to Asn, is also impaired in RNA binding predicts that such a 

mutation and many others that may affect the RNA binding act1v1ty of 1-MR I 

would also result in fragile X syndrome. Together, these findings reduce at least 

one aspect of mtclhgence to a molecular issue of protein-RNA interaction 

2-5 Summary 

While fragile X syndrome is usually caused bj lack of expressiOn of 

F'W. RI, a severely retarded fragile X patient has been reported who expresses 

FM R 1 that has a mutatiOn in a highly conserved residue of one of it's two KII 

domains (llc304 to Asn). The hnRNP K homology (KH) domain is a highly 

conserved ca 50 amino acid sequence motif present in many RNA-associated 

proteins from widely divergent organisms including eukaryotes, eubacteria and 

archaebactcria. Several proteins have been described which contain from one to 

fourteen Kll domains. Although FMR 1 and several other KH domain proteins 

have been shown to bind RNA, the function of KH domains is unknown. To 

assess the role of KII domains in RNA-binding of FMRl. mutagenesis of the KH 

domains was earned out and examined their effects on RNA-bindmg. It was 

found that the RNA binding of this mutant is severely impaired These results 

demonstrate that KH domains have an essential role for FMRI in RNA bmdmg. 
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Furthermore, they strengthen the connection between fragi le X mental 

retardation and loss of the RNA-binding activity of FMR 1. 
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Production of antibodies for FMRl protein and the application 
to the diagnosis for the fragile X syndrome 

3-1 Introduction 

Chapter 3 

In Chapter 1 and 2, it was shown that FMRl protein contains two RNA

binding motifs, one of whtch is the KH domain (S10mi et al., 1993; Gibson et al., 

1993b) and the another is an RGG box (Kiledjian and Dreyfuss, 1992), and 

demonstrated that it indeed binds to RNA in vitro. When the point mutation that 

had been fou nd in FMRl protein of one fragile X male patient with a severe 

phenotype (De Boulle et al , 1993) was introduced into FMR1 protein by site

directed mutagenesis, the RNA-binding was impaired in a specific manner. This 

was the first biological parameter to assess the activity of FM RJ gene product 

since the gene of FMRI had been identified and sequenced in 1991. However, its 

protein product has not been identified yet. Moreover, the real substrates to be 

hound and the physiological function of FMRl in vivo are still not known. 

In this chapter, the production of antibody to FMRl protein is described. 

It would not be only the best way to address the questions mentioned above, but 

also very useful to study the expression of FMR l in cells at the protein level. The 

observation that the anti-FMRl antibodies can detect the majority of the fragile 

X cases has considerable potential for improved diagnosis of the fragile X 

syndrome. 

3-2 Experimental procedures 

Expression and purification of fusion protein 

T he expression and purification of F MR l partial peptide fused with His

HA has been described in Chapter 1. 

Raising Antibodies to His-HA-FMRJ fusion protein 

Antisera to FMR l protein were raised in BALB/c mice injected with the 

purified recombinant His-HA-FMRl fusion protein produced in E. coli. About 

l OOug of the fusion protein in phosphate-buffered sal ine (PBS) was used to 
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immunize a mouse per injection. The interval between injections was 2 weeks. 

Totally 4 times injections were done for a mouse. 

Cell Lines 

Blood samples were obtained from Family FX06 with informed consent. 

The lymphoblastoid cell lines were established by Epstein-Barr virus 

transformation of peripheral B lymphocytes by previous!) published techniques 
(Wilson et al., 1983). 

Western B lot Analysis 

Cells were grown to subconfluence, lysed in SDS-PAGE sample buffer, 

sonicated, and then heated at 95°C for 5 min. Proteins were resolved on a 12.5% 

SDS-PAGE gel and transferred to nitrocellulose using a Bio Trans Model B 

transblot apparatus (Gelman Sciences) according to the manufacturer's 

instructions. Filters were incubated in blotting solution (phosphate-buffered 

saline, 5% non-fat dr) milk) for at least 30 min at room temperature and then 

incubated with primary antibody for 1 hr at room temperature. Filters were 

washed three times in phosphate-buffered saline/ 0.05% Tween 20, and bound 

antibody was detected using the iodinated polyclonal anti-mouse IgG. Western 

blots were incubated with polysera at a 1:200 dilution. 

Immunofluorescence on 1/eLa cells 

HeLa cells were grown on cover glasses to subconfluence, fixed with 2% 

formaldehyde in PBS and permtahzed with cold acetone. After washing with cold 

PBS, cells were incubated with polysera diluted at 1:200 by 3% BSA in PBS for 1 

hr at room temperature, followed by washing with PBS extensively. FITC

conjugated anti-mouse IgG secondary antibody was diluted with 3% BSA in 

PBS, applied on cells and incubated for 1 hr at room temperature. The 

localtzation of FM R I gene product in HeLa cells were detected and their 

pictures were taken under microscope. 
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3-3 Results 

Production of antibodies to FMRJ: Expression in divergent organisms 

To examine the expression of the predicted FM R 1 protein, antibodies 

were produced by immunizing mice with the His-HA-FMR1 fusion protein. 

Immunoblotting of the fusion protein produced in E. coli (data not shown) and 

of He La total cell matenal (Figure 3-1) demonstrated that the polyclonal 

antibodies produced against the FMRl fusion protein also recognized a protein 

of the expected molecular weight (based on the in vitro transcription/translation 

described in Chapter 1) in HeLa cells (Figure 3-1). This serum was then used to 

detect the protein by probing immunoblots of cell lysates from evolutionarily 

divergent organisms (Figure 3-1 ). Southern blotting has previously shown cross

hybridtzing DNA fragments in several organisms from human to S. cerevisiae. 

but no hybridization was detected in Drosophila melanogaster (Yerkerk et al., 

1991 ). In agreement with these findings, the anti-FMR I antibodies detected 

cross reactive proteins in monkey, mice, bovine, X. lacvis and S. cerevisiae but 

not in D. melanogaster (Figure 3-1). T he size of the proteins in other mammals 

appears similar to that in humans, but the S. cerevisiae protein is considerably 

sma ller (ca. 55K). 

Expression of FMRJ in patients with fragile X syndrome 

It was of particular interest to probe cell lysatcs from fragile X patients 

with the anti-FMR1 antibodies. Lymphoblastoid (LBL) cell lines were 

established from all members of fami ly FX06 by standard procedures (Wilson et 

al., 1983). A partial pedigree of family FX06 is shown on Figure 3-2A. All 

members of the family were examined by D r. Robert L. Nussbaum. FX06-06, 

FX06-07, FX06-25, FX06-21 arc all affected males; they are moderate ly to 

severely retarded, arc in special education classes, and live at home. The 

diagnosis of fragile X syndrome was confirmed initially by finding 50% 

expression of the fragile site in transformed LBL cells (Sutherland et al., 1985; 

Nussbaum and Ledbetter, 1986; Richa rds and Sutherland. 1992) and later by 

Southern blot analysis of the FMRl region (Kremer et al., 1991; Yu e t al., 1991; 

Rousseau e t al. , 1991). All show absent or markedly reduced levels of FMR l 

prote in (Figure 3-2). Of interest, FX06-07, who shows the most protein of all 
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Figure 3-1. Identification of the protein product of the FM RJ gene in divergent 
organisms. 

Total cellular proteins from the indicated organisms were resolved by SDS
PAGE, transferred to nitrocellulose membrane, and probed with the anti-serum. 
Total cellular proteins were obtained from the following: human HeLa cell, 
monkey COSl cell, mouse NIH3T3 cell, Madin-Darby bovine kidney cell, 
Xenopus laevis kidney epithelial cell, Drosophila melanogaster Schneider's cell , 
Saccharomyces cerevisiae and wheat germ. Molecular weight markers are 
indicated on the left. 
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Figure 3-2. Analysis of fragile X family. 

(A) In this family (FX06) the grandmother was a carrier female, her two daughters were also 
carriers and her son was a transmitting male. Squares represent males; circles represent 
females. 
(B) Total cellular proteins from lymphoblastoid cell lines of the fragile X family were resolved 
by SDS-PAGE, trasferred to nitrocellulose membrane, and probed with the anti-FMRl 
serum. Lane numbers correspond to individuals in pedigree. The lower panel (C) shows the 
same membrane probed with an anti-hnRNP Cl antibody 4F4 (Choi and Dreyfuss, 1984). The 
position of molecular weight markers are indicated. 
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the affected males, has a 47, XXY karyotype due to paternal nondisjunction as 

determined by linkage analysis. Males FX06-13, FX06-15, FX06-24, and FX06-20 

were all clinically unaffected and had <30 copies of the CGG repeat (data not 

shown) as determined by polymerase chain reaction amplification across the 

fragile site region (Verkerk et al., 1991; Fu et al., 1991). Individual FX06-12 is a 

transmitting male who expressed the fragile site in 5% of his lymphoblasts but did 

not exhibit signs of the fragile X syndrome. He shows decreased but readily 

detectable expression of FMR I protein. FX06-05 and FX06-08 are spouse 

controls. The western blotting results (Figure 3-2) show excellent 

correspondence to the clinical picture. They also further confirm that the 

antibodies are specific for FMRl. Although the available anti-FMRl antibodies 

may not be able to detect these rare point mutations, they can readily detect the 

majority of the fragile X cases. It can thus be anticipated that antibodies to 

FMRl will offer a specific and sensitive diagnostic tool for fragile X syndrome. 

This should augment and complement cytologic and DNA-based methods for 

the detection and study of this disorder. 

Cellular Localization of FMRJ protein in living cells 

The cellular localization of the endogenous gene product was studied by 

immunofluorescence on HeLa cells and showed the cytoplasmic localization with 

no significant staining over the nucleus (Figure 3-3). No significant staining was 

observed when cells were treated with sera from mice without immunization 

(data not shown). The cellular localization of FMR1 protein was confirmed in 

COSl cells transfected with FMRl expression vector pHHSI-F27X (Chapter 1). 

In cells transfected with the complete protein coding sequence, the anti HA 

monoclonal antibody detected the overexpressed FMRl protein with a nine 

amino acid epitope (HA) as cytoplasmic localization (data not shown). 

3-4 Discussion 

The production in E.coli of His-tagged fusion proteins containing the C 

terminal half of the FMR1 protein coding sequence allowed to obtain polyclonal 

antibodies, which could detect the endogenous protein in human cells by either 
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Figure 3-3. Cellular localization of FMR1 protein in HeLa. 

Immunofluorescence were performed using anti-FMRl antibodies on HeLa. 
Cells were incubated at a 1:400 dilutions. 
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western blot or immunofluorescence. In western blot analysis of cell lysate from 

evolutionarily divergent organisms, the anti-FMR 1 antibodies detected cross

reactive proteins in monke}, mice, bovine, X. laevis and S. ccrevtstae but not 1n 

D. melanogaster {Chapter 1 ). This result confirmed the data of the southern 

blotting analysis showing cross-hybridizing DNA fragments in many organisms 

from human to S. cerevisiae with the exception of D. melanogastcr (Yerkerk et 

al., 1991 ). The F M R I gene and the protein product expression arc highly 

conserved through evolution. The isolation and sequencing of the homologous 

clones from other organisms may reveal conserved protein domains within 

FMR 1, indicating regions of functional importance. Also such homologies may 

allow experimental approaches in other organisms to unravel the function of 
FMRl. 

Immunoblotting experiments on the lymphoblastoid cell lines presented 

here using antibodies to FMRl protein extend the conclusions made at th e 

mRNA level (Picrctti et al., 1991) to the actual expression of the FMRI protein 

and demonstrate that the defect in fragile X syndrome results from the lack of 

expression of FMR 1 {Figure 3-2). Until recently, laboratory diagnosis of fragile 

X syndrome was carried out by cytogenetic analysis utiltzing specialized growth 

media conditions (Jack} et al., 1991, Dewald et al., 1992). When the gutdelincs for 

fragile site induction arc carefully followed, the sensitivity for detection of 

FRAXA in affected males is quite high. Cytogenetic studies, however, arc 

generally insensitive for detection of premutation carriers. In addition, the 

presence of three other fragile sites in distal Xq (FRAXD, FRAXE, and 

FRAXF) (Flynn ct al, 1993; Hirst et al., 1993) which might not be distinguishable 

cytogenetically from FRAXA, indicates a positive cytogenetic finding may not be 

specific for fragile X syndrome and requires confirmation by direct molecular 

testing. For these reasons, cytogenetic diagnosis is rapidly becoming obsolete and 

is being replaced by molecular diagnosis of FRAXA. The fundamental molecular 

assay for the fragile X syndrome is the measurement of the length of the (CGG)n 

repeat in the F M R I gene by either Southern blots or PCR (reviewed in 

Nussbaum and Ledbetter, 1986). Because of its ease and speed, the PCR method 

has obvious advantage over Southern blotting for assessing the size of the 

trinucleotide repeat in the FM RJ gene. Unfortunately, the PCR method has 

been very difftcult to usc to detect the full mutation because of technical 
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difficulties in performing a PCR across hundreds of tandemly repeated CGG 

tnplets (Fu et al.. 1991). though progress adapting PCR for detecting the full 

fragtle X mutation is continuing to be made (Pergoltzzi et al .. 1 992) The 

experimental data shown in this chapter indicate that antibodtes to fo'MRI would 

be particularly valuable for the dtagnosis of fragile X syndrome, might he a better 

way than both cytogenetic method and DNA-based method. 

It had been suggested previous!} that the FMRI could be a nuclear 

protein, as it contains a short lysine rich sequence (KKEK) in the C-tcrminal 

region which could constitute a nuclear localization signal (Verkcrk et al., 1991 ). 

However, it was shown that FMR 1 protein locates predominantly in the 

cytoplasm as determined by the immunocytofluorcscence and 

immunohistochemical studtes with anti-FMR1 antibodies in !leLa cells and in 

transfccted COS! cells (Devys et al., 1993; Verheij et al., 1993). The findings from 

the experiment described in this chapter confirmed those observations A 

surprising observation, however, has been reported that the N-terminal half of 

FMRI, \Vhen overexpressed in COS1 cells, had a predominant!> nuclear 

locah7ation, which rna} suggest that under some physiological condttions. rMR 1 

or derivatives of it rna}' have a function in the nucleus (Devys et al., 1993) 

With Rl'.A binding assay results shown in Chapter 1 and 2, FMRI could 

have a function such as translational regulation. The availability of antibodies 

should allow the mvcstigatton of its precise intracellular localization, of possible 

specific Interactions with other cellular materials, or post translational 

modificattons under physiological and pathological conditions. 

3-5 Summary 

Using antibodies to FMR 1, its expression is detected in divergent 

organisms and in cells of unaffected humans, but little or no in fragile X-affccted 

patients. These findings demonstrate that FMRl expression is directly correlated 

with the fragile X syndrome and suggest that anti-FM R 1 antibodies will be 

important for diagnosis of fragile X syndrome. The immunocytofluorescencc 

study show clearly that rMR I protein has cytoplasmic localtzation on He La 

cells. Though its function still remains unclear, it is suggested that FMRI protein 

could have a function such as regulation of gene expression posttranscriptinally 
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Chapter 4 

eDNA cloning and characterization of FMRl 
and its homolog, FXRl from Xenopus laevis 

Chapter 4 

mRNA in situ hybridizatton studies and northern blot analysis were 

performed in mouse and human, respectively to demonstrate the normal gene 

expression patterns of FM Rl (Hinds et al., 1993). In mice strong expression of 

F"vf Rl was located in several regions of the brain and tubules of the testes, which 

are the major organs affected in fragile X syndrome. Universal and very strong 

expression was observed in early mouse embryos, with differentially decreasing 

expression during subsequent stages of embryonic development. 

It is of interest to follow the expression of FMRl throughout oogenesis in 

order to understand its function. When Western blotting using antisera raised 

against the human FMR 1 protein was carried out, the homologous protein was 

detected in Xenopus laevis cells as well as mammalian organisms (Chapter 3). 

Because Xenopus laevis is a useful system for studying oogenesis, a eDNA 

encoding FMR1 was obtained from Xenopus laevis. 

A novel eDNA, designated FXRJ (for EMRJ ~reacting relative), was 

obtained when the X. laevis eDNA was screened with the human FMRJ eDNA. 

In the case of human F M R 1, extensive alternative splicing has been 

demonstrated at the mRNA level (Verkerk et al., 1993; Eichler et al., 1993). 

Nonetheless a novel clone like FXRJ that is highly homologous to FMRJ has not 

been reported yet. These findings indicate that FMRJ is a member of a gene 

family. Studying FXR1 in addition to FMRl may yield some clues to better 

understand the function of FMR 1 and the correlation between FMRl and 

fragile X syndrome. 

4-2 Experimental procedures 

Isolation of eDNA clones, in vivo excision and sequencing 

The full length human FM Rl eDNA was used as a probe to screen a 

A.ZAPII Xenopus ovary eDNA library. Six clones reacting with the probe were 
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obtained from 106 plaques, and all of them were purified by further screemng. In 

vivo excision was done for three of those positive clones according to the 

manufacturer's instruction (Stratagen), creating pXF1-61, pXF1-43 and pXFl-

45. Nucleotide sequencing was performed according to the didcoxy chain 

termination method of Sanger et al. (1977). DNA sequence was determined on 

both strands of those clones. 

RNA Binding Assay 
Binding of in vitro-produced proteins to ribonucleotide homopolymers 

was carried out as described above (Chapter 1). The NaCI concentration of the 

binding buffer was 250mM. 

Expression and purification of fusion peptide and production of antisera 
against X. laevis FMRJ and FXRJ 

PCR was done to create a Ndel stte in the middle and a BamHI site at the 

3' end of the X. laevis FMRJ open reading frame. The PCR product was digested 

with Ndel and BamHI and inserted into pET15b (Novagene) to construct the 

expressiOn vector pEXFMRl. To raise antisera specifically to X. laevis FXR1, 

pXFl-45 was digested with BamHl and the 600bp fragment encoding just the C 

terminal region was inserted into pET15b to create the expression vector 

pEXFXRl. For production of the His-FMR1 peptide and His-FXR 1 peptide, 

the plasmids pEXFMRl and pEXFXR1 were introduced into BL2l(DE3) 

bacteria and induced with isopropyl-~-D-thiogalactopyranoside as described 

(Studier et al., 1990; Rosenberg et al., 1987). For purification of the fusion 

peptides, bacterial sonicates were applied to 2ml His-Bind resin (Novagen) 

columns, washed and eluted as described by the manufacturer. 

Antisera against X. laevis FMRl and FXR1 were raised in BALB/c mice injected 

with the purified recombinant His-FMR1 and His-FXRl fusion peptides 

respectively. Western blots were incubated at a 1:400 dilution. 

Western Blot analysis 
SDS-PAGE sample preparation and Western blotting procedures were 

described in Chapter 1. 
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Immunof/orescence on Xenopus laevis cells 

Xenopus laevts cells were grown on cover glasses to subconfluence, fixed 

with 2°1o folmaldehyde m PBS and permeabilized with cold acetone. After 

washmg with cold PBS, cells were incubated with polysera etther for Xenopus 

FMR1 or FXRl diluted at 1:400 with 3% BSA in PBS for 1hr at room 

temparture, followed b} washing with PBS extensively. FITC-conjugated anti

mouse IgG secondary antibody was diluted with 3% BSA in PBS, applied to the 

cells and incubated for lhr at room temparature. The localization of FM Rl and 

FXRl gene products in Xenopus Jaevis cells were detected and pictures were 
taken under the microscope. 

Biological materials 

Mature female Xenopus Jaevis were purchased from ISCO. Oocytes were 

separated manually into six stages according to Dumont (1972). Forty oocytes 

from each stage (stage I and II were not separated) were ground in 50mM Tris

HCJ pH7.5 with 0.05% PMFS, followed by spinning down. About 80ul of protein 

solution were obtained from each stage and mixed with 1 volume of SDS-PAGE 
loading buffer. 

4-3 Results 

Isolation and characterization of a eDNA specific for Xenopus FMRJ and a 
related eDNA, FXRI 

The human FMRJ eDNA was used as a probe to screen a Xenopus ovary 
eDNA library constructed in A.ZAPII. Six clones were isolated and DNA 

sequences of three of them were determined from both strands using T7 and T3 

primers (Sanger et al., 1977) after in vivo excision. pXFl-61 was 1.2kbp long but 

incomplete, lacking the 5' terminus. The DNA sequence of pXFl-43 (2.1kbp) 

was identical to pXFl-61 but was complete. The deduced amino acid sequence of 

pXFl-43 showed that it encodes Xenopus FMR1 (564 amino acids with a 

predicted molecular weight of 64kD)(Figure 4-lA). It was found that Xenopus 

FMR 1 lacks 45 amino acids just after the two KH domains as compared with 

human FMR 1 (amino acids 331-375)(Figure 4-2). The segment containing amino 

acids 331-375 of human FMRI corresponds exactly to exon 11 of th e 
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MEELAVEVRG SNCAPYKA!'M KDVHEDSITV Tf'~~NWOQER QIPf'HDVRfP PPSGYNKDIN ER0£VEVYSR ANEKEPCCWW LAKVRMIKGE FYVIEYAACD 
:::::::::: :: ::::::: :::::::: :::::::::: ::: ::: :::: :::::::::: 

MEELVVEVRG SNGAFYKAFV KDVHEDSITV AF~~OPDR QIPf'HDVRFP PPVGYNKDIN ESDEVEVYSR ANEKEPCCWW LAKVRMIKCE f'YVIEYAACD 
::::::: :: ........ ::: :: ::: :::::::::: 

XFXR1 1 MEDMTVEVRC SNCAFYKGFV KDVHEDSLTV Vf'~~~PER QVPf'DEVRMP PLPDIKKEIT EGDEVEVYSR ANDOEPCGWN LAKARKMKCE FYVIEYAACD 

XFMR1 101 ATYNEIVTIE RLRSVNPNKP ATKSSFHKVK LDVPEDLRQM CAKDSAHKDf' KKAVGAf'SVS YDSENYQLVI LSVNEVSIKR ASMLSDMHFR SLRTKLSLML 
:::::::::: :::::::::: .. . ..... . 

HFMR1 101 ATYNEIVTIE RLRSVNPNKP ATKOTFHK!K LDVPEDLROM CAKEAAHKDF KKAVGAFSVT YDPENYQLVI LSINEVTSKR AHMLIDMHFR SLRTKLSLIM 
:::::::: ::: :: :: 

Xf'XR1 101 ATYNEIVTFE RLRPVNQNKT VTKNSFFKCT VDVPEDLRFS CSNENVHKEf KKAVGACRVY FHAETNQLII LSACESTVKR VNILSDMHLR SIRTKLMLMS 

XFMR1 201 RNEEASKQLE SSRQLASRFH Ect!VREDLM GLA!GTHGAN lOQARKVPGV TAIDLDEDTC 
:: ::: ::::: :::::::::: ::1:::::::: :::::::::: :::::::::: :::::::::: 

HFMR1 201 RNEEASKQLE SSRQLASRfH EcF IVREDLM CLAICTHGAN 
::::: :: 

XFXR1 201 RNEEATKHLE CTKQLASRf'H E 

XfMR1 301 GKLIQEIVDK SCVVRVR!EA 
:::::::::: :::::::::: 

DOE AVKKARTYLE r>;LVGKVIGKN 
:::::::::: 

DOD AVKKARSFLE NLVGKVIGKN 
::::::: :: 

SAE AVKKARSYLE NLVGKVIGKN 

- ---·CIVPF Vf'VGTKDSIT NATVLLDYHL 
::: ::::::::: :::::::::: 

HFMR1 301 GKLIQEIVDK SGVVRVR!EA ENEKNV EIMPPNSLPS ~~SRGGPNAP EEKKHLDIKE NSTHFSQPNS TKVQRCMVPF VFVGTKDSIA NATVLLDYHL 
:: ::::::: ::::::: 

XFXRl 301 GKVIOEIVDK SRVVRVRIEG ·---···-·· ··• · ·CMVPF VFVGTKENIG NVQVLLEYHl 

XFMR1 356 NYLKEVDQLR LERLOIDEQL RHIGASSRPP PNR-PDKEKC YLSEDCSCTV ·RCSRPYSNR GRSRRCTCYA S-·CTNSEAS NASETESDHR DELSDWSLAP 
:::::::::: ········ :::::::::: :::::::::: 

HFMR1 401 NYLKEVDQLR LERLQIDEQL RQIGASSRPP PNR·TDKEKS YVTDDCQGMG -RCSRPYRNR GHGRRGPGYT S--GTNSEAS ~ASETESDHR DELSDWSLAP 
::::: ::: 

XfXR1 356 AYLKEVEQLR MERLQIDEQL RQIGMGFRPS SSRGTEKEKC YATDESTASS VRCSRSYSCR GRGRRGPNYT SGYGTNSELS NPSETESERK EELS~NSLA 

XFMR1 452 AEDDRDNY DDQP RPDNRQRNSR ETKARTSDGS LQIRLDC~E RSVHTKTLQN ASVDGSRLRT CKDRVQKKEK 
::: :: :: ::: :::: ::::: 

HF~l 497 TEE£RESPt~ Rr.DGRRRGGG GRGQGGRGRG GGPK~DDHS RTDNRPRNPR EAKGRTTDGS LQ!RVNC~E RSVHTKTLQN TSSFCSRLRT GKDRNQKKEK 
: :::: : : ::: :: :: : : : : : 

XFXRl 455 CEDFRESRQO R·DSRRRPGG RGRSGSA-G RG-RG·G-·S B-Gr.KSSISS VLKDPDSN·P YSLLDNTESD QTADTDASES HHNTNRR-RR SR·RRRTDED 

XFMR1 550 TDGVDGPQVV VNGVP • 

HFMR1 597 PDSVDGQQPL VNGVP • 

XFXR1 544 SSLMDGMTEL DNASVNENGL VTTADYISRA ESQSRQRNLP KETLAKGKKE KVKDVlEEHG PSEKVINCPR ASSDKASNHR PHPQKETKQA VKMEVNKKP• 

Figure 4-2. Amino acid sequence alignment of Xenopus laevis FMRl and FXRl with human FMRl. 
The amino acid sequences of X.laevis FMRl and FXRl were aligned with human FMRl (Verkerk et al., 1991). 
The numbering of human FMRl are based on the numbering used in Verkerk et al. (1993). Gaps are introduced 
for optimal alignment. The KH domains and the RGG box are boxed with black line and gray line respectively. 
The RGG box of X. laevis FXR 1 is underlined. 
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FMRJ gene (Verkerk et al., 1993; Eichler et al., 1993). pXFl-45 was 2.4kbp long 

and did contained an entire open reading frame encoding a protein of 649 amino 

acids with a predicted molecular weight of 73kD. Interestingly, the DNA 

sequences of pXFl-43 and pXFl-4'\ were not identical and the similarity was less 

than 70~o . pXFl-45 ts similar to FMRJ but is a novel clone. It was therefore 

designated FXRJ, for EMRJ crossreacting relative clone 1. The predicted amino 

acid sequence of FXRl (Figure 4-lB) showed that it also has the 45 amino acid 

deletiOn as seen in Xenopus FMR 1. The carboxy terminus of the protein was 

unique compared to that of Xenopus FMR 1, which was shown in Figure 4-2. 

The amino acid sequence identity of the region between Xenopus FMR 1 and 

FXRl was only 8%, although the identity of the other regions was 87%. Both 

Xenopus FMRl and FXRl have two KH domains, which are highly conserved 

with human FMRl. An RGG box was also found m both Xenopus FMR1 and 

FXRl. However the RGG box between human FMRl and Xenopus FMRl is 

more similar than between human FMRl and Xenopus FXR 1 (Figure 4-2). The 

CGG repeats in the 5 ' untranslated region of the mRNA, a characteristic of 

human FMRJ, were not seen in either Xenopus FMRJ or FXRJ. It is known 

that mice contain a much smaller number of triplets in the same region of the 

5'UTR as do humans (Ashley et al., 1993). It thus appears that nucleotide triplet 

repeats may be a mammalian phenomenon. 

Both Xenopus FMRJ and FXRl have similar RNA-binding profile to human 
FMRJ 

To examine whether Xenopus FMRl and FXRl also bind to RNA in 

vitro as human FMRI does, these cDNAs were transcribed with T7 RNA 

polymerase and the transcripts were translated in vitro. The protein products 

were assayed for RNA binding activity using RNA homopolymers immobilized 

on agarose beads, an assay that has been used for human FMRl protein product 

and other RNA-binding proteins (Kiledjian and Dreyfuss, 1992; Swanson and 

Dreyfuss, 1988). As human FMRl protein showed strong binding to poly(G), 

weaker but significant binding to poly(U) and very little binding to poly(A) and 

poly(C) (Chapter 1), Xenopus FMRl and FXRl also showed a similar RNA

binding profile to human FMRl, binding at 250mM NaCI to poly(G) and 

poly(U) (Figure 4-3). 
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Figure 4-3. Xenopus FMRl and FXRl show similar RNA-binding profile to 
human FMRl. 

Xenopus FMR 1 and FXR l were produced by in vitro transcription-translation 
of pXFl-43 and pXFl-45 truncated outside the.co?ing region.(Clal). HA-taggcd 
human FMRl was produced by in vitro transcnptton-translatton of pHHSI
F27X truncated outoside the coding region (Nsil). The in vitro transcribed 
RNAs were translated in reticulocyte lysate in the presence of [35Sjmethinine. 
An amount equivalent to 20% of the materials used for each binding reaction is 
shown in the lane marked "T". In vitro produced proteins were bound to 30ul of 
the indicated ribinucleotide homopolymers at 250mM NaCI and analyzed by 
SDS-PAGE as described (Kilcdjian anf Dreyfuss, 1992; Swanson and Dreyfuss. 
1988). The positions of molecular mass markers are indicated on the left. 
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Production of antibodies to Xenopus FMRJ and FXRJ: Expression in 
divergent organisms 

The carboxy half of Xenopus FMR1 and the carboxy terminus of 

Xenopus FXR1, which is a unique region, were overexpressed in E coli as fusion 

proteins with 6 His amino acids and purified on nickel columns (Hochuli et al., 

1987; Smith et al., 1988). To examine the expression of Xenopus FMR l and 

FXR 1 proteins, specific antibodies to those proteins were produced by 

immunizing mice with the fusion proteins. lmmunoblolting of the fusion proteins 

produced in E.coli (data not shown) and Xenopus total cell materialc; 

demonstrated that the polyclonal antibodies produced against the FMR 1 and 

FXRl fusion proteins also recognized proteins of the expected molecular mass 

(based on the in vitro transcription and translation described above) in Xenopus 

cells (Figure 4-4 for FXRl; for FMR1 data not shown). The antisera against 

Xenopus FXRl was then used to detect the protein by probing immunoblots of 

cell lysates from evolutionarily divergent organisms (Figure 4-4). The anti-FXR 1 

antibodies detected cross-reactive proteins in human, monkey, chicken, and D. 
mclanogaster. Both Southern blotting and Western blotting have shown that no 

cross-reactive genes and proteins of FMR l were detected in D. melanogaster 

(Chapter 3; Verkerk et al., 1991). T herefore, it is very in teresti ng that D. 

mclanogaster does contain some cross-reactive proteins to FXRl, although the 

size of the protein is smaller ( -50kD) than of other organisms. 

Cellular localization of FMRJ and FXRJ proteins in living Xenopus laevis 

cells 

The cellular localization of the endogenous gene products of FM R 1 and 

FX R I were studied by immunofluorescence on Xenopus laevis cells using 

antibodies specific for them and showed the cytoplasmic localization for both 

with no significant staining in the nucleus (Figure 4-5). It has already been known 

that human FMR 1 has cytoplasmic localization (Chapter 3; Devys et at., 1993). 

The data obtained from the experiment with X. laevis were consist with these 

results. 
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Figure 4-4. Identi fication of the protein product of the FXRJ gene in divergent 
organisms. 

Total cellular proteins from the indicated organisms were resolved by SDS
PAGE, tranferred to nitrocellulose membrane, and probed with the anti
Xenopus FXRl antibodies. Total cellular proteins were obtained from the 
following: human HeLa cell, monkey COSl cell, Xenopus laevis kidney epithelial 
cell , chicken MSB cell, and D. melanogaster Schneider's cell. Molecular mass is 
indicated on the left. 
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A 

8 

Figure 4-5. Cellular localization of FMRl and FXRl proteins in X. laevis cells. 

Immunofluorescence was performed using (A) anti-X. laevis FMRl antibodies 
and (B) anti-X. laevis FXRl antibodies on Xenopus cells. Cells were incubated 
at 1:400 dilutions. 
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Expression of FMRJ and FXRJ during oogenesis 

The expression of FMR 1 and FXRl was followed by probing 

immunoblots of Xenopus oocytes from various stages with anti-FMRl and anti

FXRl antibodies (Figure 4-6). It was shown that both FMRl and FXRl are 

expressed at very early stages, demonstrating that mRNAs of FMRJ and FXRJ 

are maternal, and suggesting that those proteins may have important roles in 

oogenesis. 

4-4 Discussion 

In situ studies of the mouse homolog of FM R 1 showed strong, if not 

universal, expression of the gene during early stages of development, suggesting 

an important functinal role in embryonic development (Hinds et al., 1993). 

However, the expression of FM Rl and/or the protein product through oogenesis 

had not been studied. The result of Western blot analysis which has been shown 

in Chapter 3 demonstrated that a cross-reactive protein to human FMRl is 

present in Xenopus laevis, which is a useful system to study oogenesis. 

Therefore, a eDNA for Xenopus laevis FM Rl was isolated. Mice have a much 

smaller number of CGG triplets in the same region of the S'UTR than humans do 

(Ashley et a!., 1993). The Xenopus FM RJ mRNA did not have any repeats in the 

same region of 5'UTR. It seems likely that the exsistence and the length of the 

CGG tripe ts in this region are related to evolution. The overall organization of 

the FMRl protein is essentially the same in human and X. laevis including two 

Kll domains and an RGG box. A 45 amino acid sequence immediately after the 

second KH domain is deleted in Xenopus FMRl. In the case of human FM R 1 I 

extensive alternative splicing has been demonstrated at the mRNA level 

(Yerkerk et all 1993; Eichler et al., 1993) and it is known that the segment 

encodi ng the 45 amino acid region corresponds to exon 11 in human FMRJ gene. 

It is likely that this 45 amino acid region is not essential in the function of FMR1, 

and may have developed into the human exon. 

FXRJ, a novel gene that is highly homologous to FMRJ, was obtained 

from Xenopus. It also contains two conserved KH domains and an RGG box. 

The RNA binding assay showed that Xenopus FXRl binds to RNA in vitro in 

the same pattern as human FMR 1 I which is a reasonable observation in terms of 
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Figure 4-6. Analysis of Xenopus FMRl and FXRl expression in oogenesis. 

Total oocyte proteins from the indicated stages were resolved by SDS-PAGE, 
transferred to nitrocellulose membrane, and probed with the anti-Xenopus 
FXRl or the anti-Xenopus FXRl antibodies. 
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the high conservation of the KH domains between FMR l and FXR 1. 

Immunofluorescence microscopy demonstrated that Xenopus PMRl and FXR I 

arc localized in the cytoplasm, like human FMR 1. Taken together, FMR 1 and 

FXR 1 may have very similar functions in cells, although the cognate RNA 

targets of FMR l and FXRl and their precise functions have not been elucidated 

yet. In contrast to the conserved N terminal regions, the C-tcrminal regions of 

FXR 1, begmnmg with the reg10n containing the RGG box. differ markedly both 

in s11c and sequence from FMRl. Thts suggests that they may have specific 

regulatory functions such as protein-protein interactions. The Western blot 

analysis showed that humans also express a cross-reactive protein to FXRl. It 

would be very interesting to isolate and characterize the human eDNA. 

The Western blot analysis using Xenopus laevis oocytes demonstrated 

that both f MRl and FXR 1 are expressed throughout oogenesis even at very 

early stages, revealing that those mRNAs are maternal and suggesting that these 

proteins potentially have important functions in oogenests. 

4-5 Summary 

To better understand the function and evolution of the F M R 1 gene 

product, a eDNA encoding Xenopus FM Rl has been isolated and sequenced. In 

the course of the experiment, in addition to the X. laevis FM R 1, a novel gene, 

termed FXRI, that is highly homologous by amino acid sequence to FMR1, was 

also isolated and sequenced. Xenopus FMRl and FXR1, like human FMRl, are 

cytoplasmic RNA-binding proteins. FXRl, like FMRl. is highly conserved 

through evolution. Unlike FMR 1, though, FXRl is present in Drosophila 

mclanogastcr. mR NAs of both FM R I and FXR 1 arc maternal, implying that 

these proteins may have important functions in oogenesis. 
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Chapter 5 

Human FXRl: eD NA cloning and cha racterization 

5-l Introduction 

As discussed in Chapter 4, FXRl is a protein highly homologous to 

FMR 1 first found in Xenopus laevis. Using an antiserum raised against Xenopus 

FXR1, a cross-reactive protein was detected in HeLa cells (Figure 4-4 in Chapter 

4). A eDNA encoding human FXRl was isolated from HeLa eDNA library and 

sequenced. The deduced amino acid sequence revealed that it also contains two 

KH domains and an RGG box like human FMRl, Xenopus FMRl and FXRl. 

The amino acid sequence identity of FXRl between X. laevis and human is 

about 80%. An alternatively spliced isoform of FXRJ, which has a different, 

shorter carboxy terminus, was also obtained. To determine the expression of 

FXR/ mRNA in different tissues, RT-PCR was performed. FXRJ mRNAs were 

detected in all ttssues tested and different size bands were observed in vanous 

tissues as expected. Interestingly, cells of a patient with fragile X syndrome that 

do not have any detectable FMRl express normal levels of FXR 1. F X R 1 is 

located on human autosomal chromosome 12 at 12ql3. The mRNA of FXRJ 

does not contain CGG repeats, a characteristic of FM Rl, but it docs have an 

unusual and striking sequence. There is an approximately 90 nucleotide perfect 

inverted repeat sequence in the 5' and 3' untranslated region of the mRNA. The 

inverted repeat sequence of human and Xenopus are 90% identical, more highly 

conserved than the protein coding sequence. This is the first such mRNA 

inverted repeat found in animal cells, and it is likely to have an important 

regulatory function. 

5-2 Experimental procedures 

Isolation of eDNA clones and sequencing 

The parttal Xenopus FXRJ eDNA was used as a probe to screen a A.gtll 

HeLa eDNA library. The probe was made using the FXR/-specific region to 

avoid isolating other FMRl-like clones. Ten clones reacting with the probe were 
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obtained from 1 Q6 plaques, and all of them were purified by further screening. 

PCR was done on the positive phage DNAs using primers hybndizing to A. arms 

according to conditions suggested by the manufacturer (Perkin Elmer Cetus). 

The amplified fragments were cloned into the pCRII vector (Invitrogen). The 

amino terminal half of human FXRI eDNA was obtained by rcscreentng the 

same library using the longest eDNA from the first screening as a probe, whtch 

contained the carboxy-terminal half of human FXRJ. RT-PCR was done on 

HeLa poly (A)+RNA to obtain the full length eDNA as one fragment using 

primers hybridizing to the 5' and 3' UTRs. The RT-PCR fragment was cloned 

into the pCRII vector. Nucleotide sequencing was performed by the dideoxy 

cha in termination method of Sanger et at. (1977). DNA sequence was 

determined on both strands of those clones. 

Chromosome mapping of FXRJ 
Somatic cell hybrid panel #2 was purchased from the Coriell Institute Cell 

Repository. This panel consists of DNA isolated from 24 human/rodent somatic 

cell hybrids. All but two of the hybrids retain a single intact chromosome. 

Primers were designed to generate a PCR product of 145 bp from a portion of 

the carboxy terminal end of the FXRJ open reading frame derived from a eDNA 

clone isolated from a HeLa eDNA library. The primer sequences are 

Forward-S': GATGACATrfCfAAGCfACAGC-3' (1870-1892) 

Reverse-S': TGT ACAAGCACT A TIGTAAATG-3' (1993-2015) 

The numbers in the parenthesis of the primers above were based on the 

numbering in Figure 5-l. PCR reactions were performed according to conditions 

suggested by the manufacturer (Perkin-Elmer Cetus). 

RT-PCR on poly(A)+ RNAs from BeLa, human organs and the 

lymphoblastoid cell lines 
Poly(A)+RNA of human heart, brain, kidney, and test is were purchased 

from C lontech. Poly(A)+RNA of HeLa and the lymphoblastoid cell lines were 

manually prepared using DYNABEADS mR NA DIRECT KIT (DYNAL). The 

RNAs (lOOng) were reverse transcribed using the oligo(dT) primer according to 

condit ions suggested by the manufacturer (Stratagen). PCR reactions were done 

on Sui of eDNA solution with the primers specifically bound to FM Rl or FXRJ, 
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namely 27XM7 and 27X31 for FMRJ {27XM7, 1272-1301; 27X31, 2124-2156, the 

coordinates arc based on the numbering used in Verkerk et al., 1991) or Xf-E 

and XF-Bl for FXRJ (XF-E, 1328-1348; XF-Bl, 2009-2033, the coordmatcs arc 

based on the numbenng used in Ftgure 5-l) according to conditions suggested by 

the manufacturer (Perkin-Elmer Cetus). In order to confirm the existence of the 

inverted repeat<; in the 5 and 3' UTRs of FXR1 eDNA, poly{A)+RNA (IOOng) 

from HeLa cells was reverse transcribed using the cDNAprimerl for 5'UTR 

repeat and the oligo(dT) primer (=cDNAprimer2) for 3'UTR repeat. PCR 

reactions were done on Sui of eDNA solution with the 5'PCRprimcrl and 

3'PCRprimer1 for 5'UTR repeat and 5'PCRprimer2 and 3'PCR primcr2 for 

3'UTR repeat (5'PCRprimerl, 1-25; 3'PCRprimer1, 612-627; 5'PCR primcr2, 

1328-1248; 3'PCRprimer2, 2168-2192, the coordinates arc based on the 

numbering used in Figure 5-l). The DNA sequence of 3'PCR primcr2 is as same 

as 5'PCRprimcrl. The amplified fragments were resolved on a 1.2% agarose gel 

and visualized with EtBr. 

Cell lines 

The preparation of the lymphoblastoid cell lines was described in Chapter 

1. 

Western blot analysis 

Western blot analysis was carried out using the cell lines established from 

FX06-24 (as a normal) and FX06-25 (as a fragile X patient) (Chapter 3) and 

HeLa cells. The analysis was done essentially as described in Chapter 1 with 

minor modifications using either anti-human FMRI antibodies (Chapter 3) or 

anti-Xenopus FXR 1 antibodies (Chapter 4). Bound primary antibodies were 

detected using the peroxidase-conjugated goat anti-mouse immunogloblin G + M 

and ECL reagent (Amersham). Western blots were incubated at 1:400 dilutions. 

5-3 Results 

Isolation and characterization of human FXRJ eDNA 

The X. laevis FXR1 eDNA was used in hybridization screening to isolate 

the human fXR1 eDNA from a HeLa eDNA library. T he clones were isolated 
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and DNA sequences of all clones were determined from both strands after 

cloning into pCRJI vector. None of the clones contained the entire open readmg 

frame encoding FXRl, therefore the same library was rescreened using the 

eDNA encoding more amino terminal region of FXRl as a probe One cD'IA 

encoding the amino terminal end of FXRl was obtained, however \\as missing 

the carboxy terminal region. In order to obtain the full length eDNA of f X R I as 

one fragment, RT-PCR was done on HeLa poly(A)+RNA using two primers for 

5' and 3' untranslated regions of F X R 1. The nucleotide sequence and the 

predicted amino acid sequence of the human FXR 1 are shown in Figure 5-l. 

FXRl has 86% amino acid sequence identity to human FMR 1 in the region 

containing the KII domains (Siomi ct al., 1993; Burd and Dreyfuss, 1994) and is 

very similar to FMRl over the amino terminal domain (70% identity), but 

human FMR1 and FXR1 have entirely different carboxy domains (8% 

identity)(Figure 5-2A and B). The same phenomenon was seen between X. lacvis 

FM R 1 and FXR l. Sequencing of several eDNA revealed that there arc 

alternative spliced forms of fXR 1 that differ in a miniexon in the carboxyl 

portion of the protein The shorter form diverges from the longer form {sho\\<n in 

Figure 5-2A) beginning with amino acid 535, and contains instead the sequence 

GKRCD as its carboxy terminus. 

The FXRJ gene is located on human chromosome locus 12ql3 

Mapping of FXRJ was carried out to determine the chromosomal location 

of F X R 1. Reaction conditions allowed specific amplification of the human gene 

in a background of rodent DNAs. In the mapping panel (Figure 5-3), the cell line 

containing chromosome 12 contained an amplified fragment of the correct size, 

145bp, whereas none of the other samples contained the amplified fragment of 

in terest. Therefore, FX R 1 was tentatively assigned to human chromosome 12. 

The cell line containing ch romosome 21 also showed a very faint amplified 

fragment at the same size, which may be due to another member of FM R I gene 

family. 

Recently, further chromosome mapping of FX R I was carried out by 

fluorescence in situ hybridization (FISH). First, the same set of primers was used 

to screen pools of yeast artificial chromosome (Y ACs) from the Washington 

University CGM with the same conditions described for the mapping panel Two 
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Fifure S-2. (A )Ammo acid alignment of human FMR I, human FXRI. X. laevis FMRl and X.laevis FX.R l. 

Identical positons are highlighted and gaps are introduced for optimal alignment. The KH domains and 
the RGG box are boxed with black lines and gray li nes respectively. 
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KH domains RGG Box 
Human FMR1 t:IZI 

I 

Human FXR1 ~ 
70% 86% 72% I 8% 

Figure 5-2. (B) The structure of human FMR1 and FXR1 are schematically 
shown, the stippled boxes representing the KH domains and 
the cross-hatched box representing the RGG box. The identity 
of amino acid sequence of human FXR1 is expressed as percent 
relative to human FMR1 amino acid sequence. 
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A 1 2 3 4 5 6 7 8 C 9 1 0 1112 13 14 1516 G 17 18 19 20 21 22 X Y A C G T • H M • H a • T 

Figure 5-~. Chromosome mapping of human FXRJ . 

Hybrids 1 to 22, X and Y were screened for the presence of genomic fragment of 
human FXRJ by PCR. PCR was done using two 32P-labeled primers specific for 
human FXRJ. The 145bp PCR products are seen in the lane 12 and H (human), 
indicating that FXRJ locates on human chromosome 12. Lane Ha (hamster) and 
M (mouse) do not show any PCR products, suggesting that the primers are 
specific for human FXR1 and are not cross-reacting to rodent genomic DNA. 
Lane A, C, G, and Tare molecular markers."-" indicates lanes unprogrammed. 
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Y AC clones containing FX RJ were identified. Fluorescent in situ hybridization 

using these two Y ACs revealed the localization of FXRJ to chromosome 12q13 

(data not shown). 

Tissue distribution of FXRJ expression 

To determine the expression of FXRJ mRNA in different human tissues, 

RT-PCR was performed using specific primers to FXRJ on poly(A)+RNA from 

heart, kidney, brain, testis, and HeLa cells. As control, an equivalent experiment 

was done using two primers specific to FMRJ eDNA. FXRI mRNA was 

detected in all tissues tested, but different size bands were observed in various 

tissues (Figure 5-4). For example, while HeLa cells contain only one variant 

FXRJ mRNA, at least two forms can be detected in brain and testis, and in heart 

there is an additional large form. The major smaller HeLa band and the longer 

testis band were cloned and sequenced and their sequences corresponded to the 

FXRJ shorter eDNA form and the FXRJ longer eDNA form respectively 

described above. These findings suggest that there is considerable tissue-specific 

alternative splicing of F X R 1 pre-mRNA at least for the carboxy part and 

immediate 3'UTR of the mRNA. A similar complex tissue-specific pattern of 

expression has been reported for FMRJ (Eichler et al., 1993), although multiple 

forms of FMRJ were not observed by RT-PCR with the primers used in this 

experiment. 

Expression of FXRJ in fragile X syndrome patients 

Most fragile X syndrome patients do not express FM R 1 mRNA or the 

protein product. It was, therefore, of particular interest to determine if the 

expression of the related protein, FXRl, is also affected in these patients. To do 

so, RT-PCR were (Figure 5-5A) and immunoblotting (Figure 5-5B) carried out 

on lymphoblastoid cells of a fragile X patient and his normal sibling (Chapter 3). 

By RT-PCR, both the normal sibling and the patient express FXRJ mRNA, 

while the patient, as expected, does not express FMRJ mRNA. The same is seen 

for the protein products of FXRJ and FMRJ, respectively. Because of inherent 

limitations of RT-PCR it is not possible to draw quantitative conclusions from 

this experiment. It does, however, appear from the immunoblotting experiments 

that the amount of FXRl produced in the patient cells is not reduced compared 
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FMR1 FXR1 
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ro c: t:: Q) en c: ~ Q) en 
c: ~ ro .._ 
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FX-E 27X31 

FX-82 

Figure S-4. FX R I gene expression in various human tissues. 

RT-PCR was performed on poly(A)+RNAs from human brain, testis, kidney, 
heart and HeLa cells using the primers specific to human FMRJ or FXRJ. 
The schematic drawing of FMR 1 and FXRl mRNAs are ~hown below the 
agarose gel. The closed boxes and the stippled box indicate the KH domains and 
the RGG box respectively. The bars indicate the primers used for PCR. M, 
lOObp ladder molecular markers. 
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A FMR1 FXR1 
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- -

Figure 5-5. Expression of FM Rl and FXRJ mR NAs and the protein products 
in a fragile X syndrome patient and his normal sibling. 

(A) RT-PCR was performed on poly(A)+RNAs from HeLa cells and 
lymphoblastoid cell lines of a fragile X patient and his normal sibling. 
(_B) Western blot. Total cellular proteins from HeLa cells and lymphoblastoid cell 
lines of the fragile X patient and his normal sibli ng were resolved by SDS-PAGE, 
transferred to nitrocellulose membrane, and probed with either the anti-FMRI 
or anti-FXR l antibodies. 
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to normal. Thus, FXRl expression is not drastically affected by the lack of 

expression of FMRI, and therefore, FXRI gene expression docs not appear to 

be linked to that of the FMRJ gene. 

Inverted repeat in the S'UTR and 3'UTR of FXRJ mRNA 

Examination of the nucleotide sequence of the X. laevts fXRJ eDNA and 

the human FXRJ eDNA revealed a striking and unu"ual mRNA structure 

FXRJ mRNA from both organisms contains a sequence of approximately 90 

nucleotides that is present as a perfect inverted repeat in the 5'UTR and 3'UTR 

(Figure 5-6). The orientation of the repeats and their distance from the open 

reading frame are shown in Figure 5-6. The repeats in human and X. laevis arc 

not idcnttcal but they arc much more highly conserved than in the nucleotide 

sequence of the coding regions. This suggested that the repeats have an 

important and specific functiOn To confirm that the repeats were not the result 

of some artifact introduced m the course of the constructton, propagatton or 

handling of the eDNA libraries, an RT-PCR experiment was carried out. First of 

all, poly(A)+RNA from HcLa was reverse transcribed using the oligo(dT) 

primer ( cDNAprimcr2), followed by PCR with either 5'PCRprimerl and 

3'PC'Rprimcrl, or 5'PCRprimcr2 and 3'PCRprimer2. With the latter set of 

primers, one fragment of the correct size, 864bp, was amplified (lane3, Figure 5-

6C). With the first set of pnmers, a 627bp fragment was amplified as expected 

(data not shown). The identical fragment was obtained by another RT-PCR 

using the same set of PCR primers after RNAs were reverse transcribed using 

cDNAprimerl instead of the oligo(dT) primer (Janel, Figure 5-6C). In this case, 

the cDNAs contain only the amino terminal region of FX Rl gene, so that the 

RT-PC'R product was not from the region containing the 3'UTR repeat, 

confirming that 5'UTR docs contains its own repeat. All PCR products were 

cloned into pCRJI vector and the DNA sequences were verified. 

5-4 Discussion 

A novel gene, FXRI, that is highly homologous to the fragile X mental 

retardation gene, FM RJ, found in Xenopus laevis originally (Chapter 4), was 

isolated from human and sequenced. Like Xenopus FXR I, the amino acid 
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A 

FXR1cDNA 
5' • -- !ZJ • 3' 

8 

Human FXR1 

Xenopus FXR1 GTAUCU TC.TCAAGGCACATCTtlAJGATGTATTT ACI.UCACAGTAGGUTCAAllTATGTTTAACATGTG • 

········································································· rA.~ATG..At AGAGITCCGTGU.CACUCUCATMA· TCT GTGTCATCCATAGt• ,U,UCAAATlGUC.AC 

Figure 5-6. Inverted repeat sequence in the 5' and 3' untranslated regions of the transcript of FXRJ. 

(A) Schematic drawing of the transcript of FXRJ. The open reading frame and the inverted repeat 
sequence are indicated by a open box and arrows respectively. The black and the stippled boxes 
represent the KH domains and the RGG box respectively. 
(B) The inverted repeat sequence of FXRJ arc aligned between 5' and 3' UTRs and between human 
and X. laevis. 
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M 2 3 4 

--
-- ----

POL Y(A)+RNA + + 
RT eDNA primer 1 eDNA primer 2 

PCR 5' PCR primer 1 5' PCR pnmer 2 
+ + 

3' PCR primer 1 3' PCR primer 2 

5' PCR primer 1 5' PCR primer 2 

--~·~~==================r' ~•~--------~ 
3' PCR primer 1 eDNA primer1 3' PCR primer 2 

(=5' PCR pnmer 1) 
eDNA primer 2 
(oligodT) 

Figure 5-6. Inverted repeat sequence in the 5' and 3' untranslated regions of 
the transcript of FXRI. 

(C) RT-PCR was performed on poly(A)+RNA from HeLa cells with the primers 
indicated below the agarose gel. Lane2 and 4: no poly(A)+RNA as negative 
controls. The human FXRI mRNA is shown schematically. eDNA primers, 
5'PCR primers, and 3'PCR primers a~e indicated by bars. The inverted. repeat. is 
indicated by soild arrows on the drawmg. The bars below the schematic drawmg 
of FXRJ mRNA indicates the RT-PCR products. 
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sequence of human FXR I is very similar to FMR I over the amino terminal 

region containing the KH domains. The carboxy portion of human FXRI is quite 

different from that of human FMR 1, though the region has high similarity 

between human and X. laevis (78% identity). Like FMR1, FXR1 is expressed in 

many human tissues. While FM R 1 mRNA and the protein product are not 

expressed in cells of a patient with fragile X syndrome, FXR1 is found at 

apparently normal levels in these cells. In Chapter 4, it was speculated that 

FMRl and FXRl may have very similar functions because of the experimental 

data from RNA-binding assays and immunofluorescence microscopy. However, 

it seems that FXR 1 protein can not compliment the lack of FMR t protein 

function in fragile X patients. This may be because FMRl and FXR 1 have 

specific regulatory functions such as protein-protein interactions, since these 

proteins contain quite different carboxy terminal regions. Alternatively, they may 

have to interact with each other or at least exist in the same complex to perform 

the correct functions. It would be of interest to see what kind of proteins and/or 

other factors are associated with FMRl and/or FXRl proteins. 

The gene encoding FXR1 is located on autosomal chromosome 12 at 

12q13, while the gene encoding FMRl is located on X chromosome at Xq27.3. It 

is not yet known if there are mental retardation genes in this vicinity. FXRJ gene 

knockout mice should help to elucidate the physiological function of FXRl. 

The mRNA of FXRJ does not contain the COG repeats in the 5' UTR 

that is a charactenstic of F M R 1. Instead, F X R 1 has an unusual structure, 

approximately 90 nucleotide inverted repeats in the 5' and the 3'UTRs in its 

mRNA. The inverted repeats are capable of forming a perfect duplex. The 

inverted repeats of F X R I are the first such structures found in animal cells. 

There are some examples in plants, such as zein mRNAs from Zea mays 

(Larkins et al., 1984), A-gliadin mRNA(Anderson e t al., 1984), phaseolin 

mRNA(Slightom et al., 1983), patatin mRNA(Mignery et al., 1984), soybean 

actin mRNA(Shah et al., 1982), and wheat histon H4 mRNA(Tabata et al., 1983). 

In the case of zein mRNAs, the inverted repeats are also found in the 5' and the 

3'UTRs (Spena et al., 1982). However, the size of the inverted repeats are much 

smaller th an FXRJ and contain some gaps. The secondary structure of the zein 

mRNAs affect its translational potential and the translational block is released 

after deletion of the 3' inverted repeat (Spena et al., 1985). It was concluded that 
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the tlanslational block is caused by hybrid formation between the two inverted 

repeats. Moreover, the translational efficiency of zein mRNAs ts affected b} 

varying the length or the primary structure of the 5' untranslated region (Spena 

et al , 1985). It must now be determined if the predicted secondary structure 

actually forms in the FXR1 mRNA. If so, it is most likely that the secondary 

structure of I·XRJ mRNA also affect its translational potential. It will be of great 

interest to determine the function of the inverted repeats, although an obvious 

thought is that the mRNA serves some structural role and regulates the 

translation of the FXRJ mRNA. 

5-5 Summary 

A eDNA encoding FXRl, that is a highly homologous protein to FMR 1, 

found in Xenopus laevis originally, has been isolated from BeLa cells and 

sequenced. like FM Rl, FXRI mRNAs are expressed in many human tissues 

and tissue-specific alternative splicing of FXRJ pre-mRNA was found at least for 

the carboxy part and immediate 3'UTR of the mRNA Cells of a patient with 

fragile X syndrome that do not have any detectable FMR 1 express normal levels 

of FXRl, suggesti ng that FMRl and FXRl may have specific regulatory 

functions such as protein-protein interactions. FX R I is located on human 

autosomal chromosome 12 at 12q13. The mRNA of FXRJ has an approximately 

90 nucleotide perfect inverted repeat sequence in the 5' and 3' UTRs. It is likely 

to have an important regulatory function such as a translational regulation. 
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