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General Introduction 

Abscisic acid [ ( l'S)-( +)-ABA (1 ), Fig. 1] is a plant hormone which was identified as a growth 

inhibitor, a dormancy factor and an abscission accelerator in the 1960's. 1 It has been proven ubiquitous in 

higher plants.l-3 ABA is involved in the regulation of many physiological processes which arc unique and 

cannot be substituted by the other plant hormones, ranging from the suppression of growth and 

germination, to the enhancement of adaptation to various stresses such as reduced transpiration b) stomatal 

closure, induced freezing tolerance, and the activation of defense-related genes after mechanie<tl damage to 

plant tissue.1•3 

Recent topics of ABA research have included the pathway of biosynthesis, signal transduction, 

ABA-responsive genes, and behavior as a stress hormonc.3 There has been debate as to whether the 

biosynthesis of ABA proceeds via a direct sesquiterpenoid (C15) pathway or via an indirect carotenoid 

(C40) pathway, but investigators now tend to favor the latter.4-6 The carotenoid pathway proceeds as 

follows: all-trci!Ls-violaxanthin, 9'-cis-neoxanthin, xanthoxin, ABA-aldehyde, ABA ABA stimulates 

changes in the concentration of cytosolic free calcium ions in the guard cells and other tissues.7,8 There 

may be a calcium-based signal transduction pathway through interaction with phosphoinositide metabolism 

that regulates stomatal closure and other physiological responses, as in animal cells. Several ABA

responsive genes and their gene products have been identificd.9,IO Dehydrin is expressed during the late 

stage of embryogenesis, and it could protect the embryo from desiccation.11,12 Proteinase inhibitor I! is 

involved in the defense mechanism against wounding and infection in tomato and potato plants.l3 It has 

been suggested that endogenous ABA induces the production of these proteins. TI1e ABA-rcsponsive gene 

ABll of Arabidopsis dtaliatta has been cloned by two groups, who showed that the A BTl gene encodes a 

ea2+ -dependent phosphatase. 14·15 The control of the phosphorylation state of cell signaling components 

by the phosphatase could mediate pleiotropic hormonal responses. Biophysical studies of ABA have 

suggested that it is the only plant hormone that can act as a stress messenger t11at is ideally distributed and 

redistributed according to pH-shifts in stressed and non-stressed plant tissues. 16 ABA can transduce 

environmental stresses such as desiccation, freezing and wounding into defensive responses at the 

molecular, cellular and whole plant levels.3 

0 
3' 7' 

(I'S)-( +)-1 

Fig. I. Structural formula of (I '.\)-(+)-ABA ( l) showing conventional numbering system (left) 
and crystal form 164 165 of the molecule (right) 
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In contrast to the above areas, studies on the binding proteins including the ABA receptor and 

metabolic enzymes have not progressed as fnr. Few efforts have been made to identify and charactcri7c the 

ABA receptor, and l<>elli7.ation at the cellular level remains unclear (sec Chapter ILl). Understanding of 

the metabolic cnz) mes associated with ABA has not made much progress since 1976 (sec Chapter T.l ). 

The application of ABA to agricultural production has not been studied in detail. The role of ABA as 

a stress hormone would permit a great contribution to agriculture if its application to plants in the fields can 

effect the same responses as endogenous ABA. However, the commercial applications of ABA remain 

minimalP The most critical obstruction to agricultural application is the short-li\'ed acti' ity of applied 

ABA. 17 This is a serious drawback to its usc as a practical plant growth regulator. 

The short-life of ADA is attributed to photoisomerization in the environment and its rapid metabolic 

inactivation after incorporation into plants. 17 One approach to enhance the effectiveness of applied ABA 

would be to supply it in the form of an analogue with an extended half-life through reduced 

photoisomcrization and metabolism, or extremely high affinity for the active site on the receptor. 

ll1c author has designed and synthesized ten highly potent analogues of ABA from the following two 

standpoints: resistance to metabolic inactivation and increased affinity for the receptor. Figure 2 

summarizes the synthcsi7cd analogues with classification based on the design concept. The one hundred 

or so ABA analogues synthesized so far have suggested that any modification would reduce the activity, L8 

but it should be highlighted that there arc few analogues that were specifically designed to strengthen the 

activity. Investigation of their biological activity and metabolism should not only provide the means for the 

practical usc of AOA but also give important information about the properties of the ABA receptor and 

metabolic enzymes. 

Long-lasting Analogues Resistrult to 1\!etabolism 
(Chapter I) 

Analogues resistant to hydroxylation 
(Chapter I 2) 

Analogues res1stant to eycliLation 

Block of nucleophilic attack 
(Chapter I 3) 

I 
Res1stant to electrophillc attack 

(Chapter I 4) 

Elucidation of Role of I '-OH and 8'-01 I 
(Chaper II) 

Elucidation of the Active Confomwtion 
(Chaper III) 

Fig. 2. New ten analogues of ABA synthes11.ed 1n this study 
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Chapter I 

Long-Lasting Analogues of Abscisic Acid Resistant to Metabolism 

·n1c inactivation pathway of ABA is illustrated in Fig. 3, und the structural part of the ABA molecule 

rc<;ponsiblc is summarized in Fig. 4. According to the type of inactivation, long-lasting, resistant 

analogues of ABA can he classified as follows: type 1, resistant to photoisomcrization; type 2, resistant to 

metabolic inactivation by conjugation and type 3, resistant to metabolic inactivation by oxidation. This 

chapter considers the design of highly potent, long-lasting analogues of these three types, and describes 

four analogues of type 3. 

I.l Introduction 

Pho toiso merizatio n 

Photoisomcrizntion of ABA to the (2£)-isomcr is caused by natural sunlight and by UY irradiation to 

give a I: I mixture of the (2Z)- and (2E}isomcrs. 19-2I Cis-trans isomerization of the C-C double bond by 

light is caused by the n-n• transition,20 so raising the energy level of the Jt-Jt* transition state at t11e 2-

douhle bond of ABA may protect against isomerization to the (2£)-configuration. Another way would be 

to increase the relative stability of the (2Z)-isomcr, or decrease that of the (2£)-isomcr at equilibrium. If 

the (2Z)-isomer is thermodynamically more stable than the (2£)-isomcr, then its conversion to the (2£)

io,omcr would be reduced independently of the energy level of the Jt-Jt* transition stale. No analogue 

dc.,igncd in either manner has been reported. Fixing the (2Z)-conliguration by covalent bonds is the more 

reliable way to prevent isomerization. Compound 25 and its derivatives that possess a benzene ring in the 

side chain were synthesized based on this stratcgy.22 However, these compounds showed ABA-Iikc 

activity only at high concentration, probably because of the stcric effect of the benzene ring. Compound 

26 that possesses a y-lactonc in the side chain was inactive, also probably due to the absence of the free 

acid. 2.'\ 

Photoisomcrization is an equilibrium reaction of the mutual conversion between isomers. The 

equilibrium mtio of ABA is I: 1, and the (2£)-isomcr can return to the (2Z)-isomcr. Photoisomcrization 

would cause only a little decrease in the concentration of the active (2Z)-isomcr. Therefore, 

photoisomcrization seems to be relatively a small problem and type l analogues resistant to 

photoisomcrization would have the small effect on increasing in the activity. 

0 
25 

4 

xh 
o~R2 to2R, 

13: R1 = Glc, R2 = H 

14: R1 =li,R2 =Gic 

!~ 

[<tWa"] ((±) 0 
H 16 

-
0 

22: R1 

23: R 1 

Fig. 3. Inactivation pathway of(+)-ABA ( I) (Gie: P-o-glucosc). 

C02R 1 

Glc, R2 = I I 

I I,R2 = Glc 

photo-isomcritat ion 

hydroxylation 
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/ 

cyclization ""' 

0 

I 
conjugation 

Fig. 4. Structural parts of ABA responsible for the short-life 
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Metabolic Inactivation b) Conjugation 

/\8/\ is conjugated at the !-carboxyl and !'-hydroxyl groups with glucose in plants, to give the 1-0-

glucosyl ester (/\13/\-GE, J 3) and the 1'-0-glucosidc (A BA-GS, 14 ). 

;\ glucos) !transferase which cataly7cs the transfer of glucose from UDP-glucosc to ABA with 

formation of /\13/\-GL has been purificd.24 The pH optimum of this enzyme was 5.0, so the formation of 

/\13/\-GE may be catalyzed in the vucuolc. This is supported by the findings of Lehmann and Gluncl, who 

located the conjugated metabolites only in the vacuolcs.25 The conjugation would mean irreversible 

compartmcntation into the vacuoles of plant cclls.25 The nature of the glucosyltransferasc gi' ing ABA-GS 

is not known. 

Resistance to conjugating to 1\DA-GE may be achieved by esterification of the C-1 e<rrboxyl group. 

llowcver, the absence of ;\[3;\ methyl ester activity in the stomatal assays26 suggests that the free acid is 

required for activity, so esterification would not strengthen activity. Methyl, ethyl and phenyl esters of 

1\B/\ had comparable activity to that of AB/\ only in long-term assays,27-29 suggesting that these activities 

were caused by the release of free ABA. 

The chemical reactivity of the !'-hydroxyl group is very poor; it cannot be acetylated under any 

reaction conditions attempted to datc30,3t and can only trimethylsilylatcd using bis(trimcthylsilyl) 

acctamide.J2,:n It has been assumed that the stcric30 or clcctronic31 effects prevent reactions of the 1'

hydroxyl group; the stcric effect would be attributed to the 1'-sidc chain, 2'-mcthyl (C-7') and 6'-mcthyls 

(C W and C-9'), while the electronic effect may derive from its position being activated electronically by 

both the cnone and dienoic acid.34 Therefore, protection of the !'-hydroxyl group is difficult, and 

analogues rc.c;istant to conjugation at C-1' have not been reported. As described later, the 1'-hydroxyl 

group is a significant group for activity, so its protection, as well as the !-carboxyl, would be inefficient for 

an increase in activity. 

Resistance to these conjugations without a loss of activity may be afforded by modification of sites 

other than the carboxyl and hydroxyl group, to inhibit the enzymatic catalysis. Design of this analogue 

requires knowledge of the substrate specificity of the glucosylating enzymes. This is unknown, although 

the specificity c;cems to be less strict than that of the 8'-hydroxylase. 

A different mtio between the conjugations at C-1 and at C-1' has been found in the different plants 

anu tissucs."~5 lhe conjugation pathway to /\0/\-GE and Al3A-GS seems to be a non-specific removal 

mechanism for unwanted acids.3fi Therefore, type 2 analogues resistant to the conjugation may not be 

applied to variouc; plants. 

The oxidi7ed metabolites of ABA can also be conjugated (Fig. 3, 20-24), but this is not related to 

regulation of the activity except for the conjugates 20 and 2 1. Conjugates 20 and 21 arc metabolites 

spccilic to Robiuia pscudacacia and arc not found in the other plants.37 

Metabolic Inact ivat ion by Oxidation 

The metabolic oxiuation of ADA in plants is initiated by hydroxylation at C-8' to produce 8'-HOABA 

( 15), ~J6 as shO\\ n in Fig. 3. Gillard and Walton in 1976. found 8'-hydroxylating activity with high-
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substrate specificity for (+)-ABA in the particulate portion of a cell-free enzyme system from the liquid 

endosperm of immature frui ts of the Eastern Wild cucumbcr.38 This required NADPII and ()z, and was 

inhibited by CO, so it was considered to be a microsomal cytochrome P-450 monooxygenase. 39 This was 

supported by the finding that one atom of l8o is incorporated into the 8'-oxygen of PA in leaves and roots 
of Xan tlrium strumarium incubated in 180z. 40,41 

The 8'-hydroxylase of ABA is believed to be induced by ABA itsclf,42 but it has not yet been 

isolated and its detailed characteristics including the substrate specificity have remained unclear. Some 

investigations of ABA metabolism in cell free systems, cell cultures and tissues have revealed that (:)-ABA 

is partly metabolized to 7'-hydroxy-ABA (7'-HOABA, 27 ),43,44 (-)-ABA to (-)-7'- 110ABA,45-47 (+)

ABA to (+)-7'-IJ OABA,47.48 and (-)-ABA to (+)-PA.38·47.49•50 Furthermore, (+)-7'- IIOABA has been 

isolated as an endogenous compound in leaves of Vicia Java. 51 When (-)-7'-HOABA was identified as a 

metabolite of feeding unnatural (-)-ABA to Xauthium strumarium in 1986,46 this finding was mtionali;ed 

by the fact that ABA is pseudo-symmetrical about the plane that intersects C-1'-C-4' and contains the side 

chain; C-7' of (-)-ABA can occupy the space occupied by C-8' of (+)-Al3A when the ring adopts the less 

favored half-chair with the side chain being pseudo-equatorial (the conformation of AOA described in 

Chapter IIl). It seemed that there is no specific enzyme catalyzing the hydroxylation at C-7' of unnatural 

(-)-ABA in plants, so one enzyme oxidizes both C-8' of (+)-ABA and C-7' of (-)-ABA. Tile stcric 

specificity of this enzyme is also involved in the conformationa l change of Al3A to the less favored fonn in 
b" d" t · 52 H 111 mg o protems. owever, conversions to the minor metabolites were much inlluenced by the tested 

tissues and cells, so it is unlikely that only 8'-hydroxylase oxidizes all of C-8' and C-7' in (+)-ABA and C-

7' and C-8' in (-)-ABA. ln 1994, further detailed investigations in maize suspension-cultured cells by 

Balsevich et a/. 53 showed that (+)-ABA is oxidized to (-)-PA inside the cell, whereas (-)-ABA is converted 

to (-)-7'-HOABA at the cell surface, suggesting that the 7'-hydroxylase of (-)-ABA is not the same as the 

8'-hydroxylasc of (+)-ABA. These fi ndings suggest that the four hydroxylations arc cal<llyzcd by two or 

more enzymes. The exact specificity of the 8'-hydroxylase must be investigated using purified and 
isolated enzymes. 

The first metabolite 8'-IIOABA is extremely unstable. Ever since Milborrow identified 8'-IIOABA 

as "Metabolite C" in tomato plants supplied with (::)-[2- 14C]-ABA in 1968,54 it has not been isolated from 

plant extracts because it spontaneously cyclizcs in vitro to P A. 36 The existence of this unstable 

intermediate in the metabolic pathway was indirectly confirmed by detection of acctylatcd32 and 

trimethylsilylated compounds,55 and by isolating the conjugate with 13-hydroxy-13-mcthylglutaric acid (20 , 

2 1) from immature seeds of Robinia pseullacacia, 3? and that with glucose from sunllowcr leaves fed with 

the methyl ester of ABA.52 In 1995, Zou et a/. reported that 8'-HOAOA can be isolated as a borate 

complex by heating PA and boric acid in glacial acetic acid, and suggested that 8'-IIOABA is active in lipid 
and oleos in biosynthesis. 56 
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The cvclization of R' 1 rOABA to PAis an intramolecular Michael addition which is initiated with the 

nucleophilic, addition of the R'-oxygen to the electron-deficient 2'-carbon and completed by subsequent 

protonation at C-3' in the intermediate enolatc 16 . This protonation in vivo occurs stereospecifically from 

the c.r.-face of the cyclohcxanone ring (the si-face of C-3' in 16), so the cyclization to PA is believed to 

proceed cnzy matically i11 1'11'0. 57 PA is inactive in many bioassay systems. 
PA in l'ii'O is reduced at the 4'-carbonyl group to give further inactive dihydrophascic acid (DPA, 

18) and cpi-DPA (19).2,36 PA-rcducing activity has been found in the soluble portion of a cell-free 

enzyme o;ystem.18 The inactivation of ABA to PA and DPA is inhibited by plant growth retardants of the 

tetcyclacis and triazolc type which arc inhibitors of cytochrome P-450.58·59 The further metabolism of 

ABA is unknown, although the side chain seems to be degraded. 
Thi'> oxidation pathway causes the intrinsic inactivation of ABA and it is common among higher 

plants.2 •l,fi,36 Type 3 analogues resistant to this metabolism would be more effective in various plants 

than the types 1 and 2. Thus, the author selected type 3 as the target for long-lasting analogues of ABA. 

Since R'-IIOABA probably remains active, the analogues should not be metabolized to PA. Therefore, the 

type 3 analogues were designed using two strategies based on the above mechanism of oxidative 

inactivation. One was the blockage of 8'-hydroxylation and the other was the cyclization of 8'-HOABA to 

PI\. 111ere arc two ways to design the latter type: one is by lowering the nucleophilicity of the 8'-oxygcn 

and the other is by lowering the clcctrophilicity of the 2'-carbon. 

1.2 8 ' ,8 ' -Difluoro- and 8',8 ' ,8 ' -Trifluoroabscisic Acids as the 8' 
Hydroxylation-Resistant Analogues 

Des ign Concept 

Jlydroxylation at C-8' by cytochrome P-450 would include hydrogen abstraction by the activated 

mygen and recombination of the resulting carbon and hydroxyl radicals.60 The most effective chemical 

modific:ltion that can confer resistance to this radical oxidation is the introduction of fluorine atoms at C-8' · 

The physical properties of fluorine and fluorocarbons arc shown along with those of hydrogen and 

o\ygen in Table 1.6t 111c strength of the C-F bond is higher than that of the C-H bond, meaning that the 

c-r bond is more stable to mdical cleavage than the C-11 bond. The resu lting C-F radical tends to act as an 

clectrophilic radical because of the strong clcctronegativity of fluorine, so it has low reactivity with the 

hyuro\y rauical, which is electrophilic. Additionally, its compactness is another reason for using fluorine. 

lhe van der Waals radius of fluorine is the shortest next to that of hydrogen (1 .13-fold of that of 

hnlrogcn). and except for monofluorocarbons, the length of the C-F bond is about 1.2-fold that of the C-H 

bon<.!. Thi'> means thnt introducing fluorincs induces resistance to metabolic oxidation without much 

influence on the steric si7c of the molecule; that is, it retains affinity for the receptor. 

The introduction of fluorines into many bioactive molecules6:!·68 and various methods of 

fluorinationfi9 7 1 have been reported . Rose eta/., 72 have synthesized 7', 7'-difluoro-ABA (28), but it did 

not strengthen the nctivity of parent molecule because as described above, C-7' is the site of oxidation of 
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Table 1. Physicochemical Properties of H, F and 0 

a) Electronegativity and Vander Waals Radius of II, F and 0 

----------------------~H~-------~F ______ ~0~--
Electroncgativity 2.1 4.0 3.5 

van der Waals radius (A) 1.2 1.35 1.4 

b) Bond Strength (kcal mol-1) of R-H, R-F 

and R-0 

c) Bond Length (A) of R-H, R-F and R-0 

R H F 0 R H F 0 - --- ----
108 92 CH3 1.09 1.83 1.43 

CH2F 1.33 

CF3 1.10 

131 Cll2=Cll 1.07 1.32 

unnatural (1'R)-(-)-ABA and is the minor site for that of natural (l'S)-(+)-A13A.43-S3 Replacing 

hydrogens with fluorincs at C-8' which is the major site of oxidation, can block hydroxylation at C-8' 

without reducing affinity for the active site on the uptake carrier and receptor. This renders lasting acti\ ity. 

Therefore, 8',8'-difluoro-ABA (2) and 8',8',8'-trifluoro-ADA (3) were designed as analogues that can 

resist 8'-hydroxylation. 

Results and Discussion 

Synthesis and identification 

Difluoro-ABAs were synthesized by a modification of the method reported for the synthesis of(:)

methyl phaseate73 (Fig. 5). Hydroxymethylation of2,6-dimcthyl-l-cyclohexanonc (29) by the method of 

Grieco and Hiroi74 gave hydroxymethyl ketone 3 0 . Oxidation of 3 0 gave the formyl ketone 3 1. 

Compound 31 was fluorinated using diethylaminosulphur trifluoride (DAST) to give the difluoromcthyl 

ketone 32 in a 45% yield. The reaction of 32 with alkynyllithium gave the tetrahydropyranyl (THP) ether 

33. Deprotcction of 33 gave the acetylcnic diol 34, which was then acetylatcd to afford the acctylcnic 

acetate 35. Dehydration of 35 gave the enyne acetate 36. Reduction of 36 gave the dicnol 37, which 

was then oxidized yielding the dicnone 38 . A Wittig reaction with 38 gave the methyl ester 3 9 as a 

mixture of (2Z)- and (2E)-isomcrs. Bromination of 39 and then dehydrobromination formed the 

didehydro compound 40 , which on photosensitized oxygenation and subsequent treatment with basic 

alumina gave the methyl esters of difluoro-ABAs: four stereoisomers resulting from the 2Zf2E isomerism 

and from the cis or trans relationship of the 6'-difluoromcthyl group to the 1 '-hydroxyl group. llydrolysis 

of these methyl esters gave an isomeric mixture of (:t:)-8',8'-difluoro-ABA (2) and its (:)-(2£)-isomcr 

(4 1), and of (±)-9',9'-difluoro-ABA (42) and its (:t:)-(2E.}-isomer (43) (m 1:2:4:8, as determined b) 

HPLC). This mixture was separated into its components by HPLC with an ODS column. 

Trifluoro-ABAs were synthesized from compound 44 prepared by the method reponed for the 

synthesis of 16, 16, 16-trifluororctinal75 (Fig. 6). In the same manner as for 3 9 , compound 44 gave an 
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Fig. 6. s, nlhcs1s and optical resolution of 3 and ~7 

For "<I) - '"' 1 ). see legends of Fig. S 
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xii) 
xiiir 
xiv) 
xv) 

isomeric mixture of (:t:)-8',8',8'-trifluoro-ABA (3) and its (:!:)-(2E)-isomer (46), and of (:t:)-9',9',9'

trifluoro-ABA (4 7) and its (:t:)-(2E)-isomer (48) (ca 1:2:4:8, as determined by HPLC). This mixture was 

separated into its components by HPLC with an ODS column. 

The ratio of the C-8' fluorinated analogue to C-9' fluorinated analogue in difluoro- and trifluoro

ABAs was 1:4, which was brought about during the photosensitized oxygenation of the didehydro 

compounds (40 and 45). This ratio of 1:4 is believed to result from the stercoselective addition of a 

singlet oxygen from the stcrically or electrically less-hindered site, that is, the opposite side of the di- and 

trifluoromethyl groups. 

ldentification of difluoro- and trifluoro-ABAs was accomplished by analysis of 11-1 NMR and 13c 

NMR spectral data. In the 1H NMR spectra, the 6'-methyl groups of (:t:)-2 and -3 (& 1.10 and 1.26) 

appeared in a higher field than those of (±)-42 and -4 7 (& 1.18 and 1.33), respectively. The 9'-protons of 

ABA (& 1.01) appeared at higher field than the 8'-protons (& 1.11),76 so the spectra of (:t:)-2 and -3 both 

lacked a methyl singlet corresponding to the 8'-protons of ABA, and those of (:t:)-42 and -4 7 lacked a 

methyl singlet corresponding to the 9'-protons. Analogues (:!:)-2 and -42 both showed a triplet signal of 

one proton at & 6.03 and 5.92, respectively, which were assigned to the proton at C-8' and at C-9', 

respectively, bonded to two fluorine atoms. These findings showed that (:!:)-2 was (:t:)-8',8'-difluoro

ABA and (:!::)-3 was (:!::)-8',8',8'-trifluoro-ABA, and that (:!:)-42 was (:!:)-9',9'-difluoro-AOA and (:!:)-47 

was (:!:)-9',9',9'-trifluoro-ABA. The 13C NMR spectra confirmed the above identification. The ~ignals 
of C-8' of (:t:)-2 and C-9' of (±)-42 appeared as triplets at o 119.9 and 119.2, respectively, by coupling 

with two fluorine atoms, and the 13C signals of C-8' of (±)-3 and C-9' of (±)-4 7 appeared as quartets at o 
130.3 and 129.1, respectively, by coupling with three fluorine atoms. 

(±)-Difluoro- and (:!:)-trifluoro-ABAs were optically resolved by llPLC with a Chiralccl 00 column 

to afford the ( + )- and (-)-enantiomers with an optical purity of more than 99%. The CD spectra of the ( + )

enantiomers showed the same positive first and negative second Cotton effects, i.e. the positive exciton 

chirality, as those of (S)-( +)-ABA. 77 Therefore, the absolute configuration at C-1' of ( + )-difluoro- and 

( + )-trifluoro-ABAs is R, while that at C-6'is S for ( + )-2 and -3, and R for ( + )-42 and -4 7. 

Biological activity 

The optically active analogues were compared with the (+)- and (-)-ABAs and (-)-PA for their 

inhibitory activity in four bioassays: lettuce seed germination 78; elongation of the second leaf sheath of 

rice seedlings 79; a-amylase induction by gibberellin A3 in barley half-seeds without embryos8°; and 

stomatal opening of the epidermal strips of spiderwort.81 Values for the concentmtion giving half-maximal 

inhibition (lCso) from the assays arc summarized in Table 2. (2£)-isomers of rc~ccmic 2, 3, 42 and 47 

were inactive in the assays (data not shown). 

In the rice elongation assay, the C-8' trifluorinated analogue ( + )-3 was extremely powerful; its lCso 

value was only 0.082 J.I.M, while that for (+)-ABA was 2.6 J.I.M, meaning (+)-3 was more than 30 times as 

effective as (+)-ABA. ln the lettuce germination assay, (+)-3 caused 50% inhibition of germination at a 

concentration of 1.9 J.I.M, while (+)-ABA caused the same degree of inhibition at 5 J.I.M; i.e. the activity of 

(+ )-3 was 2.6 times that of (+)-ABA. The C-8' difluorinated analogue ( + )-2 also showed strong activity 

in the elongation and germination assays; ca six and two times those of ABA, respectively. Investigation 
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Table 2. 111c ICso Values for Optically Active AB/\, 2, 3, 42 and 4 7 
--- == -----

__ ICso in ass~ __ 

Compound Rice seedling Lettuce seed Barley a-amylase Spiderwort 

elongation germination induction stomatal opening 

{llM) {!J.M) {!J.M) (nM) 

(+)-1\BA 2.6 5.0 2.9 5.0 

(+ )-2 0.45 2.3 3.3 5.8 

(+ )-3 0.082 1.9 2.0 4.6 

(+ )-42 1.5 5.7 4.0 4.3 

( + )·4 7 2.4 7.9 6.4 4.2 

(·)-ABA 3.5 9.7 7.3 67 

(-)-2 4.0 10 7.5 68 

(-)-3 2.8 11 24 330 

(-)-42 12 12 26 62 

(-)-4 7 27 7.9 20 60 

B-PA >300 >300 9.2 >1000 

5 2fi 
A B , 

20 

....... ~-...,.. 
-4 I fi ..... ._. 

~ 2 
u 10 -

() r=t== : : ~ 5 

() 

5 11 7 8 9 2 3 , fi 

Day of assay Day of assay 

Fig. 7. Changes\\ 1th tune in the mhib1tory activ1ty of ( + )-1, -2, and -3 in the rice seedlings 
elongation (A) and the lettuce seed germination (B) 
• . ( )· 1 . • . ( )-2, .... ( !)-3 

of the changes with time in the effects of ( + )-2 and -3 in these two assays showed that ( + )-2 and -3 were 

superior in stability to ( t )-AB/\ (Fig. 7); as time passed, the ratio of the activity of ( + )-2 and -3 to that of 

( + )-Al3/\ increased, becoming 6/1 on day 5 and I 0/1 on day 9 for ( + )-2, and 25/l on day 5 and 40/1 on 

day 9 for ( + )-3 in the elongation assays, and 2/l on d<~y 2 and 4/1 on day 5 for both analogues in the 

gcnnination assay. These re-;ults suggest that the high activity of ( + )·2 and -3 observed in these two 

assa) c; resulted from a dela) ed inacth at ion, as e:-.pcctcd. The result that the long-lasting effect by the 8'

fluorination was more remarkable in the rice assay than in the lettuce assay may be explained by the 
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demonstration of Orlandini et al. that the major metabolic pathway in lettuce seeds is the conjugation to 

ABA-GE, not the oxidation to PA.82 

ln the a-amylase and stomata assays, the activities of ( + )-2 and -3 were as effective as those of ( +)

ABA. In the a-amylase assay which takes place over a mthcr long period (2 days), (-)-PA showed activity 

ca l/3 that of (+)·ABA. This result agrees with those reported by Lin and Ho. 83 This finding implies that 

blockage of conversion to (-)-PA via 8'-HOABA docs not contribute to the enhancement of the activity, 

thus explaining the lower activity of ( + )-2 and -3 in the a-amylase assay than in the elongation assays. In 

the stomata assay which is a short-term assay (3 hr), the activity of a test compound will be unaffected by 

the speed of its metabolism.84 In this assay, therefore, blockage of metabolic inactivation will have little or 

no influence on the activity. Consequently, the results obtained in these four assays suggests that (+)-2 

and -3 act as longer-lasting analogues, as designed, although metabolism of ( + )-2 anti -3 wm. not 

examined in this study. The difluoromethyl group can act as a functional group that inactivates the 

cytochrome P-450 cnzyme,85 so the difluorinatcd analogue (+)-2 can act as a suicide inhibitor of the 8'· 

hydroxylase. However, the ourward appearance of tested plants suggested that(+ )-2 as well as ( + )-3 and 

(+)-ABA was non-toxic. 

The activities of the C-9' difluorinated analogue ( + )-42 and the C-9' trifluorinatcd analogue ( + )-4 7 

were almost equal to that of (+)-ABA in all the bioassays. This result suggests that di- and trifluorination 

of C-9' of (+)·ABA did not influence the affinity for the active site on the receptor and had no effect on 

inhibiting the approach or action of the 8'-hydroxylation enzyme. 

The effect of (-)-ABA varied according to the assays tested. In the rice elongation assay, (·)-ABA 

was effective almost equally with (+)-ABA There has been no report about the effects of the isolated (-)

ABA on the rice elongation assay so far, and (-)-ABA was believed to be inactive based on that (+)·ABA 

was twice as effective as (~)-ABA.86 This study found firstly that (·)-ABA is potent in the rice assay. In 

the lettuce and a-amylase assays, (-)·ABA showed about 1/2 activity of (+)-ABA, while the effect of(·)

ABA on the stomatal assay was 1/10 that of (+)·ABA. This indicates that (-)·ABA is more potent in the 

assays affected more largely by metabolic stability of a tested compound. (-)-AI3A may have a smaller 

affinity for the active site on the receptor than(+ )-ABA docs, but delay of metabolic inactivation87-90 seems 

to contribute to the high activity in the long-term assays, as ( + )-2 and -3. The (-)-cnantiomers of the di

and triOuoro analogues showed activity which was the same as or less than that of(-)-ABA; compound (-)· 

2 was equivalent to (-)-ABA in all the assays, (-)-3 was less active in the a-amylase and stomata assays, 

and (-)-42 and -47 were less effective in the elongation and a-amylase assays. The cyclohexcnonc ring of 

ABA is pseudo-symmetrical, so (-)-ABA is considered to bind to the same site thut (+)-ABA bindsY1 In 

this case, C-8' or C-9' of (-)-ABA occupies the site normally filled by C-7' of (+)-ABA9t which is 

essential for activity.92•93 The van dcr Waals radius of fluorine is a little larger than thut of hydrogen 

(Table 1). The slightly bulkier C-8' or C-9' of the (-)-enantiomcrs of the long-lasting analogues would 

cause a weakening of the affinity for the active site and hence reduced activity as observed. This implies 

that the steric requirement around C-2' is much stricter than that around C-6'. The differences in the 

effects of the individual (-)-enantiomers among the four assays suggests that steric tolerance of the binding 

site for the equatorial direction and for the axial direction at C-2' on the B-facc of the ring differs with 

species or tissues. 
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Experim enta l 

Gl'nl'ral procedures 

Itt NMR and nc NMR spectra were recorded with TMS as the internal standard using a Jeol 

GX400 (400 Mllz), Jeol GSX270J (270 MHz) and JNM GSX-500 (500 MHz). For clarity, the 

conventional /\8/\ numbering system is used in the assignment of peaks in the 1 H NMR and 13C NMR 

spectra. Mass spectra were obtained with a Jeol JMS-DX300/D/\5(Xl0 mass spectrometer. GC-MS was 

conducted with a I% OV-17 column (1m x 2.6 mm) in the El mode. CD spectra and opticnl rotation were 

recorded with Jasco J-600 spectropolarimeter and DIP-4 or OlP-370 digital polarimeter, respectively. 

(::.)-2-/ Irdm.\ rmct/ryl-2,6-dimethyl-1 cyclolrexanone (30 f 3 

To a solution of diisopropylamine (35.4 g) in THF (100 ml) m -75·c was added n-butyl lithium (n

Bul i) (a 1.6 M solution in hexane, 218 ml). After 20 min, 2,6-dimethyl-1-cyclohexanone (29 , 40 g) was 

added dropwise. The reaction mixture was warmed to -25·c, and gaseous forma ldehyde, which was 

generated from paraformaldehyde (60 g) by heating the mixture at 170-190·c, was passed into the reaction 

rnb.ture in a stream of nitrogen. ·n1e reaction mixture was stirred for 60 min at -25 to -15•c and then 

warmed to mom temperature. After being quenched with saturated N l l4CI, the mixture was extracted with 

ether 'Jl1e organic layer was washed with H20, dried over Na2S04, and evaporated. The residual oil 

wac; chrnmatographed on silia1 gel with hcxane-EtOAc (9:1-7:3) to afford 31.5 g (64% yield) of 3 0 as a 

mixture of two diastereomcrs (59:41, determined by GC analysis). IJ I NMR (400 MHz, CDCI3): 0 0.99 

(JI I, d, .I 6.4 liz, Me-6), 1.03 (3 11 , d, J = 6.4 Hz, Me-6), 1.09 (3 11 , s, Me-2), 1.20 (3 11 , s, Me-2), 

1.28-2.10 (1211 , m, 1!-3, ll-4, 1! -5), 2.63 (t il , m, H-6), 2.65 (11 1, m, H-6), 3.44 (li-1, d, .I= 11.6 liz, 

OCII2), 3.5 1 ( Ill , d, ./ = 11.6 11z, OCII2) 3.58 (lH, d,J = 10.7 llz, OCI-12), 3 .92 (lfl , d, .I = 10.7 liz, 

OCII2); GC-MS m/z (rei. int.): 156!MJ+ (3), 138 (23), 126 (1 8), 111 (14), 95 (22), 83 (100), 69 (46). 

(:!:) 2-Formy/ 2,6-dimetlryl-1-cyclolre.xanone (3 1) 

A mixture of 30 (66 g) and pyridinium chlorochromate (110 g) in C H2CI2 (200 ml) was stirred at 

room temperature for 2 hr. The suspension was filtered, and the !iltmte was then concentrated. The 

rcsitlual oil was chromatogmphed on silica gel with hexane-EtOAc (9: I) to give 3 I (33 g, 51% yield) as a 

mixture of two diastereomers. 1 I l NM R ( 400 MHz, CDCI3): o 1.03 (3/211, d, J = 6. 7 Hz, Me-6), 1.06 

(J/211 , d, ./- 6.4 117 , Me-6), 1.2 1 (3/211, s, Me-2), 1.35 (3/2H, s, Me-2), 1.35-2.46 (6 H, m, H-3, 11 -4, 

andll-5), 2.52 (1/2 11, m, 11-6), 2.Ci5 (1/211, m, H-6), 9.45 (l/211, d, J = 0.6 Hz, CHO), 9.72 (l/2 11 , s, 

Cl iO); GC-MS m/z (rei. int.): 154!MJ+ (4), 139 (4), 126 (57), 111 (35), 97 (34), 84 (32), 71 (100). 

(±)-2 Difluoromcthyl-2,6-dimetlry/-l-c\'clolrexanone (32) 

Compound 31 (33 g) v. as added dropwise to a solution of 0/\ST (57 .4 g) in C ll2Ch (300 ml) 

cooled to -78•c under N2. ll1e mixture was then warmed to room temperature and stirred for 4 hr. /\fter 

being quenched with satumted Na i!C01 and 11:?.0, the mixture was extracted with CH2CI2. 1ne organic 

layer was washed with H20, dried over Na2S04 and concentratetl. The residual oil was chromatographed 

on silica gel with hexane-EtOAc (97:3) to give 32 (17 .1 g, 45% yield) as a mixture of two diastereomers. 
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1
H NMR (400 MHz, CDCb): 0 1.01 (3/2H, d, J = 6.4 Hz, Me-6), 1.07 (3/2H, d, J:: 6.4 liz, Me-6), 

1.13 (3/2H, t, 
4
1t1F =1.2 Hz, Me-2), 1.29 (3/2H, t, 4Jur =1.2 Hz, Me-2), 1.34-2.27 (6H, m, 11-3, H-4, 

and 11-5), 2.58 (112H, m, H-6), 2.61 (l/2H, m, H-6), 5.98 (1 '211, t, 2Jur = 56.2 Ht:, Cllf2), 6.03 

(112H, t, 
2
Jm, = 55.5 Hz, CHF2); GC-MS m/z (rei. inL): 176 IMJ+ (30), 128 (11), 113 (8), 109 (8), 98 

(37), 86 (25), 81 (11 ), 73 (17), 69 ( 1 00). 

(±)-4-( 1'-llydroxy -2'-difluorom ethy/-2' ,6'-dimethy/cyc/oltexyl)-but-3-yn-2-ol-TH p ether (33) 

A 1.6 M solution of n-BuLi in hexane (100 ml) was added dropwise to a stirred solution of I

methyl-2-propynyl THP ether (24 g) in T HF (1 00 ml) over 30 min at -78•c under N2. After being stirred 

for 1 hr, the reaction mi.xture was warmed to -25•, and 32 (17 .1 g) in Tl!F (50 ml) was added dropv. be 10 

the stirred mixture. The mixture was stirred for 2 hr at -25 to -10·c and then warmed to room temperature. 

After being quenched with 0.1 M NH4CI (250 ml), the mixture was extracted with Et20, and the organic 

layer was successively washed with 0.1 M NH4CI and I-120, dried over Na2S04, and concentrated. The 

residual o il was chromatographed on silica gel with hexane-EtOAc (5:1) 10 give 33 (24.6 g, 77% yield) as 

a mixture of d iastereomers. 11-1 NMR (400 MHz, CDCb) of the major diastereomer: o L.06 (J JJ , d, J = 

6.4 Hz, Me-6'), 1.18 (3H , s, Me-2'), 1.48 (3H , d, J = 6.7 Hz, 11-1), 1.51-2.11 (12H, m, 11-3', 11-4', 11 -

5', H-2", Il-3", and H-4"), 4.62 (1 H, q, J = 6.7 Hz, H-2), 4.94 ( lll, dd, J =4.3 and 2.7 Hz, 11 -1 "), 6.06 

(l H, t, 
2
J m:= 56.2 Hz, CHF2); ElMS m/z (rei. int.): 330 [M]+ (3), 246 (21), 228 (30), 210 (31), 177 

(15), 159 (48), 139 (23), 121 (66), 109 (4 1), 91 (43), 84 (100). 

( ± )-4-(1'-Hydroxy-2'-difluoromethy /-2', 6'-dimethy/cyclo!texy/)-but-3-yn -2-o/. (3 4) 

To a Stirred solution of 33 (24.6 g) in EtOH (400 ml) was added pyridinium p-to luencsulfonate (2 

g), and the mixture was stirred at ss·c fo r 5 hr. The solution was concentrated and the residue was diluted 

with Et20 ( 1 li tre), successively washed with saturated NaHC03 and I 120, dried over NazS04, and 

concentrated. Chromatography of the residual oil on silica gel with hexane-EtOAc (5:1) gave 34 ( 17.8 g, 

97% yield) as a mixture of diastereomers. 1 H NMR (400 MHz, CDCI3) of the major diastereomcr: b 1.05 

(3H, d,J = 6.4 Hz, Me-6'), 1.13 (31-1 , s, Me-2'), 1.22-2.10 (61-1 , m, H-3', H-4', and II-5'), 1.49 (311 , d, 

J = 6.7 liz, H-1), 4.61 (l H, q, J:: 6.7 Hz, H-2), 6.07 (l H, t, 2J1n' = 56.2 Hz, CHF2); ElMS m/z (rei. 

int.): 246 [M ]+ (60), 228 (4), 213 (7), 193 (8), 177 (6), 166 (28), 149 (15), 139 (81), 121 (100), 109 

(80). 

( ± )-3-(1'-Hy droxy -2 '-difluorom ethyl-2 ', 6'-dimethy lcyclolrexyl)-1-m ethy/-2-propyny / acetate (3 5 ) 

A solution of 34 (17.8 g) and AC20 (40 ml) in pyridine (1 00 ml) was stirred at room temperature for 

13 hr. The solution was poured into icc-cooled H20 and extracted with Et20. The organic layer was 

successively washed with 0.1 N HCI, saturated NaHC03 and H20, dried over Na2so4, anti concentrated. 

The residual oil was chromatographed on silica gel with hexane-EtOAc (9:1) to give 35 (17.8 g, 85% 

yield) as a mixture of diastereomers. 1II NMR (400 MHz, CDCI3) of the major diastereomer: b I.O..J 

(3H, d, J = 6.4 Hz, Me-6'), 1.09-1.95 (6 11, m, H-3', H -4 ', and ll -5'), l.J 2 (3 11 , s, Me-2'), 1.52 (3 11 , d, 

1 = 6.7 Hz, Me-l), 2 .07 (3H, s, OAc), 5.45 (l H, q, J = 6.7 Hz, 11 -1), 6.06 (l H, t, 2J 11F::; 57.2 liz, 
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CHFz); l;IMSm/z (rei. int.): 2R8[MJ+ (L3), 270(3), 246 (11), 228 (63), 213 (13), 193 (11), 177 (16), 

166 (21 ), 135 (35), 121 (29), 109 (37), 93 (18), 80 (100). 

( x )-3-(2 -Difluoromc>tltyl-2', 6' -dunerltyl-1 '-cyc/oltexell-1 '-yl)-l-metlty/-2-propyllrl acetate (3 6 ) 

To a '>tirrcd solution of 35 (17.3 g) in pyridine (150 ml), a mixture of POCI1 (37.3 ml) and pyridine 

(40 ml) wnc; added dropwic;e at o·c, and the solution was then heated at IOO"C for 23 hr. lne solution was 

poured into icc-cooled 1120, and extracted with EtzO. The organic layer was washed with 1120, dried 

over "Ja2so4 • and concentrated. The residual oil was chromatographed on silica gel with hexane-EtOAc 

(19: 1) to give 3 6 (5 R g. 30% yield) as a mixture of two diastereomers. 1 II NMR ( 400 Ml:lz, CDCb): 0 

t.t6 (3/211, t, 4.t111 1.21lz, Me-2'), 1.17 (3/2lf, t, 4Jm = 1.2 Hz, Me-2'), 1.37-2.14 (61l, m, H-3', H-

4', amlll-5'), 1.52 (311, d,J = 6.7 liz, Me-1), 1.90 (3H, s, Me-6'), 2.07 (3 11 , s, OAc), 5.57 (lll, q, 1 = 

6.7 liz, 11-1), 5.84 (1/211, t, 2J111 = 57.1 Ilz, CHF2), 5.87 (l/2H, t, ~hn· = 57.1 liz, CILFz); ElMS m/z 

(rei. int.): 270 [MI+ ( 10), 242 (19), 226 (21), 213 (85), 203 (66), 185 (33), 175 (54), 159 (78), 149 (40), 

142(46), 129(55), 11 5(75), 105(61),91(100). 

(x)-(E)-4-(2'-Diflrmromerhyl-2',6'-dimerhy/-1'-cyclohexell-1 '-y/)-3-butell-2-ol (3 7) 

To a stirred solution of 36 (4.9 g) in THF (50 ml), a mixture of Red-AI (3.4 M in toluene, 60 ml) 

and TIIF (40 ml) was added dropwise at o·c over 40 min under N2. The solution was refluxed for 3 hr. 

A salllratcd Nl 14ct solution was added to quench the reaction, and the mixture was filtered and extracted 

with [t~O The orgnnic layer wac; washed with H20, dried over NazS04, and concentrated. lne residual 

oil wnc; chromatographed on silica gel with hexane-EtOAc (19:1-9:1) to give 37 (3.4 g, 81% yield) as a 

mi\ture of t"o diastercomerc;. I ll NMR (400 MHz, CDCI)): 0 1.09 (3/211, s, Mc-2'), 1.09 (3/2H, s, 

Me-2'), 1.31 (3/211, d, 4.t111= 6.4 Hz, H-1), 1.31 (3/2H, d, 4JuF 6.4 Hz, H-1), 1.40-2.12 (6H, m, H-3', 

11-4', and 11-5'), 1.71 (311, s, Me-6'), 4.37 (lH, dq, J = 6.4 and 6.4 Hz, 11-2), 5.52 (111, dd, J = 16.2 

and 6.4 Hz, 11 -3), 5.66 (1/211, t, 2Jur = 56.8 Hz, CHF2), 5.66 (1/2H, t, 2Jm = 56.8 liz, CIIF2), 5.99 

( 1 H, d, J = 16.2 liz, 11-4); ElMS m/z (rei. int.): 230 [M]+ (3), 212 ( 43), 197 ( 12), 172 (34), 161 (81), 

145 (10), 133 (15), 121 (100), 105 (46). 

( ± )-(E)-4-( 6'-Diflrwromethy/-2', 6' -dimerhyl-1 '-cyclohexeiL-1'-yl)-3-buten-2-one (3 8) 

A mixture of active Mn02 (27 g) and 37 (3.3 g) was stirred in Cl I2Ch (130 ml) at room temperature 

for 4 hr. 111e suspension was filtered, and the resulting cake of Mn02 was washed with CII2CI2. Nter 

being concentrated, the residual oil was chromatographed on silica gel with hexane-EtOAc ( 19:1) to give 

38 (2.9 g, 88% yield). IJI NMR (400 MHz, CDCI)): 0 1.16 (311, s, Me-6'), 1.45-2.16 (6II, m, H-3 ', 

11-4', and 11 -5'), 1.80 (311, s, Me-2'), 2.30 (3H, s, H-1), 5.68 (lH, t, 2./ur = 56.8 liz, CHF2), 6.07 

(1 11, d, J"' 16.2 liz. 11-3), 7.17 (1H, d, J = 16.2 Hz, H-4); ElMS m/z (rei. int.): 228[Mj+ (4), 213 

(100),199(6), 185(5), 177(5), 162(4), 159(5), 135(2). 

(x)-(2l,4E and 2E .4E)-Meth~·l 5-(6'-difluorometlty/-2' ,6'-dimetltyl-1'-cyclohexen-1 '-yl)-3-methyl-2,4-

pcmadienoare (3 9) 
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A mixture of 3 8 (2.9 g) and methyl (triphenylphosphoranylidenc)acctate ( 10 g) was stirred at 175"C 

for 2 hr, and then dissolved in EtOAc (50 ml). The solution was chromatogmphed on silicn gel with 

hexane-EtOAc (49:1) to give 39 (3.1 g, 87% yield) as a mixture of two geometrical isomers (2Z:2E = 

45:55, detennined by integrating the 6'-methyl singlets in the IH NMR spectrum). Ill NMR (400 MHz, 

CDCI3): 0 1.12 (3ll, s, Me-6'-E), 1.16 (3H, s, Me-6'-Z), 1.44-2.28 (1211, m, H-3, 11-4', and H-5'), 

1.73 (3H, d, 1 = 0.6 Hz, Me-2'-E), 1.81 (3H, s, Me-2'-Z), 2.04 (3H, d, J = 1.2 Ilz, 11 -6-Z), 2.32 (3H, 

d,J= 1.2 Hz, H-6-E), 3.69 (3H, s, C02Me-Z), 3.72 (3H, s, C02Me-£), 5.64 (11 1, 1, 2Jw = 56.8 Hz, 

CHF2-E), 5.68 (IH, s, H-2-Z), 5.73 (lH, t, 2luF= 56.8 Hz, CHF2-Z), 5.76 (Ill, s, 11-2-E), 6.08 (1H, 

d, 1 = 15.9 Hz, H-4-E), 6.46 (1 11, d, J"' 15.9 Hz, H-5-E), 6.50 (1 H, d, J = 16.5 liz, H-5-Z), 7.61 (HI, 

d, 1"' 16.5 Hz, 11-4-Z); ElMS m/z (rei. int.): 284 [M]+ (100), 269 (4), 225 (56), 209 (52), 183 (12), 173 

(21), 159 (81), 145 (16), 131 (20), 119 (58), 105 (33). 

(x)-8',8'-DifTuoro-ABA (2), its (2E)-isomer (41 ), 9',9'-difluoro-ABA (42), and its (2E)-isomer (43) 

N-bromosuccinimide (NBS) (2.5 g) and benzoyl peroxide (BPO) (26 mg) were added to a solution 

of3 9 (3.1 g) in CCI4 (20 ml), and the mixture was then refluxed for 2.5 hr under N2. After cooling the 

mixture to room temperature, it was filtered, and quinoline (8 ml) was added to the filtrate. ·me mixture 

was concentrated, and the residue was heated at 100·c for 1 hr under N2. After being cooled to room 

temperature, the reaction mixture was poured into 1% H2S04 (400 ml) and extracted with Et20. '11tc 

organic layer was successively washed with saturated NaHC03 <md 1-120, dried over Na2so
4

, and 

concentrated. The residual oil was chromatographed on silica gel with hexane-EtOAc (99: l-49: 1) to give 

the didehydro compound (40 , 1.31 g) as a crude oil. A solution of -tO (1.3 g) and rose bengal (0.2 g) in 

MeOH (200 ml) was stirred under Oz while being irradiated with a fluorescent lamp at 25"C for 15 hr. 

After being concentrated, the residue was dissolved in MeOH (20 ml), and alumina (active basic, 15 g) was 

added to the solution. After evaporating the MeOH, hexane (15 ml) was added to the mixture, and the 

suspension was stirred at room temperature for 2.5 hr before being chromatographed on alumina. Elution 

with 40-100% EtOAc in hexane afforded a crude ester as an oil. The crude ester was purified by 

chromatography on silica gel with hexane-EtOAc (17:3) to give 600 mg ( 42% yield) of a mixture of four 

isomers. To a solution of this mixture (600 mg) in MeOH was added 1 N NaOH ( 10 ml). The mixture 

was stirred at room temperature for 6 hr, then diluted with H20 ( 150 ml) and washed with hexane. The 

organic layer was discnrded, and the saturated layer was acidified with 1 N IICI and extracted with EtOAc. 

The organic layer was washed with H20, dried over NazS04, and concentrated. The residue was 

separated by HPLC on ~-tBondasphere 5 1-t C18-100A (150 x 19 mm, Waters; solvent, 52% MeOII in 1% 

AcOH; flow rate, 4.8 ml min-1; detection, 254 run) to give as amorphous powders 39 mg of (x)-2, 57 mg 

of(x)-41 , 156 mg of (±)-42 , and 243 mg of (x)-43 . (x)-2. 1H NMR (400 Mllz, CDJOD): o 1.10 

(3H, s, H-9'), 1.93 (3H, d, 1 = 1.5 Hz, H-7'), 2.04 (3H, d, J = 1.2 Hz, fl -6), 2.46 (lll, d, J _ 17.7 Hz, 

H-5'-pro-R), 2.64 (1 H, d, J = 17.7 Hz, H-5'-pro-S), 5.78 (lH, s, H-2), 5.94 ( 111, s, 11 -3'), 6.03 ( 111 t 
') ' I 

-lnF = 56.2 Hz, H-8'), 6.17 (1H, d, J = 15.9 Hz, H-5), 7.79 (111, d, J = 15.9 liz, 11-4); IJC NMR 

(67.5 MHz, CDJOD): & 17.5 (C-9'), 19.3 (C-7'), 21.2 (C-6), 41.7 (C-5'), 78.4 (C-1'), 119.9 (t, let = 

244.2Hz, C-8'), 120.6 (C-2), 128.0 (C-3'), 129.9 (C-4), 136.7 (C-5), 150.2 (C-3), 165.2 (C-2'), 169 7 

(C-1), 198.6 (C-4'); UV "-max (MeOH) run (E): 249.5 (18,600); IR of the methyl ester v111 a'< (CIICI3) 
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cm·l: 3580, 3000, 2950, 1700, 1665, 1630, 1600, 1433, 1373, 1240, 1160, 1127, 1090, 1050; ElMS 

m/z (rei. int.): 300 [M]+ (2), 282 (11), 241 (25), 231 (12), 2l3 (5), 203 (37), 190 (100), 175 (13), 162 

(58), 147(21), 134 (83), 119 (23), 111 (84); HR-E1MS: (M]+ atm/z 300.1165 (CtsHt804F2 requires 

300.1173). (±)-42. 111 NMR (400 MHz, CD30D): o 1.18 (3H, d, 4Jnr = 1.0 Hz, H-8'), 1.92 (3H, d, 

J = 1.5 Hz, 11-7'), 2.03 (3H, d, J = 1.0 Hz, H-6), 2.28 (1H, dd, J = 17.1 and 1.0 Hz, H-5'-pro-R), 2.79 

(Ill , d, J = 17.1 Hz, 1£-5'-pro-S), 5.76 (HI, s, H-2), 5.92 (1H, t, 2Jnr- = 56.2 Hz, H-9'), 5.95 (1H, s, 

H-3'), 6.23 (lll, dd, J = 15.9 Hz and 4.JnF = 4.9 Hz, H-5), 7.79 (1H, d, J = 15.9 Hz, H-4); 13C NMR 

(67.5 Mllz, CD30D): o 16.3 (C-8'), 19.1 (C-7'), 21.5 (C-6), 41.6 (C-5'), 50.6 (C-6') 78.8 (C-1'), 

119.2 (t, l cF = 244.1 Hz, C-9'), 120.4 (C-2), 127.6 (C-3'), 129.6 (C-4), 136.7 (C-5), 151.1 (C-3), 

HiS.] (C-2'), 169.8 (C-1), 198.6 (C-4'); UV A.max (MeOH) nm (e): 245.0 (20,200); IR of the methyl 

estervmax (CIICb) cm-1: 3580, 3000, 2940, 1700, 1665, 1630, 1600, 1433, 1373, 1238, 1160, 1120, 

1085, 1050; ElMS m/z (rei. int.): 300 [M j+ (1), 282 (6), 241 (19), 231 (9), 203 (54), 190 (100), 175 

(13), 162(54), 147(18), 134(77), 119(22), 111(93); HR-EIMS: [M]+ atm/z 300.1163 (C!sH1804F2 

requires 300.1 173). (±)-4 J . 1 H NMR (400 MHz, CD30D): o 1.08 (3H, s, H-9'), 1.91 (3H, d, 1 = 1.5 

liz, 11 -7'), 2.27 (3 11 , d,.! = 1.2 Hz, H-6), 2.48 (1 H, d,.! = 17.7 Hz, H-5'-pro-R), 2.67 (1H, d, J = 17.7 

I !z, 11 -5'-pro-S), 5.87 (1 H, s, H-2), 5.93 (1 H, br s, H-3'), 6.02 (lH, t, ~lnF = 56.5 Hz, H-8'), 6.20 

(Ill, d,.! = 15.9 liz, H-5), 6.49 (1H, d,.! = 15.9 Hz, H-4); UV A.max (MeOH) nm (E): 248.5 (19,700); 

IR of the methyl ester Ymax (CHC13) cm-1: 3590, 3000, 2950, 1710, 1667, 1630, 1613, 1433, 1358, 

1256, 1162,1090, 1055; EIMSm/z(rel. int.): 300 [Mj+ (3), 282(11), 241 (25), 231 (12), 213 (4), 203 

(17), 190 (1(10), 175 (1 1), 162 (55), 147 (20), 134 (83), 119 (21), 111 (50); HR-EIMS: [Ml+ at m/z 

300.1171 (C!Siii804F2fequircs300.1173). (±)-43 . 1HNMR(400MHz,CD30D): Ol.l7(3H,s, H

R'), 1.89 (31-1, d,.l = 1.211z, II-7'), 2.26 (3H, d,.!= 1.2 Hz, H-6), 2.31 (1H, dd, J = 17.1 and 1.2 Hz, 

11-5'-pro-R), 2.83 (lll, d, ./ = 17.1 liz, ll-5'-pro-S), 5.85 (11-!, s, H-2), 5.89 (lH, t, 2:/nr = 55.9 Hz, H-

9'), 5.94 (lH, qd, J = 1.2 and 1.2 Hz, H-3'), 6.26 (1H, dd, .I = 15.6 Hz and 4.1Hr = 4.0 Hz, H-5), 6.50 

(Ill, d, J = 15.6 I lz, I 1-4); UV A.111ax (MeOH) nm (e): 246.0 (21,300); fR of the methyl ester Ymax 

(CIICl3) cm·1: 3590,3000,2950, 1710, 1670,1632, 1613, 1433, 1358, 1255, 1162, 1120, 1085, 1053; 

ElMS m/z (rei. int.): 300 ]Mj+ (4), 282 (10), 241 (27), 231 (12), 213 (4), 203 (17), 190 (100), 175 (11), 

162 (55), 147 (20), 134 (83), 119 (21), 111 (50); HR-EIMS: [M]+ at m/z 300.1178 (CtsHt804F2 

requires 300.1173). 

(±)-8',8',8'-Trifluoro-ABA (3), its (2E)-isomer (46), 9',9',9'-trijluoro-ABA (47), and its (2E)-isomer 

(48) 

In the S."'mc manner as for 39, (±)-(22,4£ and 2£,4£)-methyl 5-(6'-difluoromethyl-2',6'-dimethyl-

1'-cyclohexen-1'-yl)-3-methyl-2,4-pentadienoate (215 mg, 44) gave didehydro compound 45 (75 mg) as a 

crutle oil. ln the same manner as for 40 , the didehydro compound 45 (74 mg) gave 0.5 mg of (±)-3 as 

an amorphous powder, l.l mg of (±)-46 as an oil, 2.1 mg of (±)-4 7 as an oil, and 3.4 mg of (±)-48 as an 

oil. (±)-3. 1ll NMR (400 Mllz, CD30D): 0 1.26 (31!, s, H-9'), 1.95 (6H, d, .I= 1.2 Hz, H-6 and H-

7'). 2.67 (111, d, J = 19.6 Hz, H-5'-pro-R), 2.72 (l H, d, .I= 19.6 Hz, H-5'-pro-S), 5.85 (lH, s, H-2), 

5.92 (lH, br s, 11-3'), 5.98 (I H, d, .I= 15.9 llz, H-5), 7.69 (1 H, d, J = 15.9 Hz, H-4); 13C NMR (125 

MHz, CD30D): o 19.1 (C-9'), 20.1 (C-7'), 21.4 (C-6), 45.1 (C-5'), 79.2 (C- 1 '), 118.5 (C-2). 128.2 (C-
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3'), 129.1 (C-4), 130.3 (q, .!cF = 276.3Hz, C-8'), 133.1 (C-5), 167.3 (C-2'), 169.8 (C-1), 198.2 (C-4'); 

UV Amax (MeOH) nm (E): 242.5 (22,800); ElMS of the methyl ester m/z (rei. int.): 332 [M]+ (3), 314 

(4), 301 (6), 300 (5), 272 (3), 259 (7), 203 (2), 190 (35), 162 (16), 149 (6), 134 (26), 125 (100), 112 

(26); HR-EIMS of the methyl ester: [M]+ at m/z 332.1221 (Ci6HJ90-tF3 requires 332.1236). (±)-47. 
1
H NMR (400 MHz, C030D): o 1.33 (3H, s, H-8'), 1.90 (3H, s, H-7'), 1.94 (3H, d, J = 1.2 Hz, H-6), 

2.38 (1H, dd, J = 16.8 and 0.9 Hz, H-5'-pro-R), 2.91 (1H, d, J = 16.8 Hz, H-5'-pro-S), 5.86 (lH, s, 11 -

2), 5.94 (lH, br s, H-3'), 6.02 (1H, dq, J = 16.2 Hz and 4.!nF = 2.8 liz, H-5), 7.58 (1H, d, J = 16.2 Hz, 

H-4); 
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C NMR (67.5 MHz, CD300): o 16.5 (C-8'), 19.1 (C-7'), 21.0 (C-6), 42.8 (C-5'), 52.2 (C-6'), 

78.5 (C-1'), 122.0 (C-2), 127.2 (C-3'), 129.1 (q, .lcr = 284.0 Hz, C-9'), 129.5 (C-4), 135.0 (C-5), 

148.7 (C-3), 164.9 (C-2'), 196.7 (C-4'); UV A.max (MeOH) nm (E): 239.5 (24,400); ElMS of the methyl 

ester m/z (rei. int.): 332 [M]+ (6), 314 (4), 301 (13), 300 (17), 273 (6), 272 (6), 259 (20), 203 (4), 190 

(67), 162 (48), 149 (17), 134 (52), 125 (100), 112 (17); HR-EIMS of the methyl ester: [M]+ at m/z 

332.1208 (C16Ht904F3 requires 332.1236). (±)-46. 1H NMR (400 MHz, CD30D): o 1.24 (3H, s, H-

9'), 1.92 (3H, d, 1 = 1.2 Hz, H-7'), 2.23 (3H, s, H-6), 2.73 (2H, s, H-5'), 5.90 (1 H, s, H-2), 5.94 (111, 

br s, H-3'), 6.17 (lH, d, J = 15.6 Hz, H-5), 6.53 (1H, d, J = 15.6 Hz, H-4); UV A.max (MeOH) nm (E): 

242.5 (23,200); ElMS of the methyl ester m/z (rei. int.): 332 [M]+ (6), 314 (4), 301 (13), 300 (13), 273 

(6), 272 (6), 259 (20), 203 (5), 190 (75), 162 (35), 149 (10), 134 (51), 125 (100), 112 (21); rn~-EfMS 

of the methyl ester: [MJ+ at m/z 332.1197 (C16Ht904F3 requires 332.1236). (±)-48 . IH NMR (400 

MHz, C030D): 01.34 (3H, s, H-8'), 1.92 (3H, d,.! = 1.2 Hz, H-7'), 2.25 (3H, d, J = 1.2 Hz, H-6), 

2.44 (1H, dd,J= 17.1 and 1.2 Hz, H-5'-pro-R), 2.94 (lH, d,J= 17.1 Hz, II-5'-pro-S), 5.86 (Lil, s, 11 -

2), 5.97 (1H, dq, 1 = 1.2 and 1.2 Hz, H-3'), 6.31 (HI, dq, J = 15.6 Hz and 4.f11F = 1.4 Hz, H-5), 6.49 

(1H, d, J = 15.6 Hz, H-4); UV Amax (MeOH) nm (E): 241.5 (21,800); ElMS of the methyl ester m/z 

(rel. int.): 332 [M]+ (6), 314 (4), 301 (14), 300 (14), 273 (6), 272 (5), 259 (20), 203 (4), 190 (70), 162 

(35), 149 (14), 134 (52), 125 (100), 112 (21); HR-EfMS of the methyl ester: [M]+ nt m/z 332.1180 

(Ct6HJ904F3 requires 332.1236). 

Opticalresolutionof(±)-2, -42,-3,-47 and -ABA 

Racemic mixtures of 2 and 42 were separated into enantiomers by HPLC on Chiralpak OD (250 x 

4.6 mm, Daicel; solvent, 13% isopropanol in hexane contajning 0.1% TFA; flow rate, 0.7 ml mi11·l; 

detection, 254 nm). The materials at tR 10.6 and 17.2 min of2 (26 mg) were collected to give(+)- and(-)-

2 (12.3 and 13.2 mg) with optical purity of 99.6%, and the materials at tR 9.4 and 17.4 min of 42 (57 mg) 

were collected to give (+)- and (-)-42 (28.0 and 28.2 mg) with optical purity of 99.9 and 99.8%, 

respectively. (+)-2: [o.]~7 +236.6• (MeOH; c 0.410); CD Aext (MeOH) nm (~E): 229 (-11.7), 263 

(+13.0), 320 (-1.5). (-)-2: [o.]~7 -240.9• (MeOH; c 0.440); CD A.ext (MeOH) nm (~e): 225 (+12.2), 

255 (-11.9), 317 (+1.6). (+)-42: [o.)~7 +336.4• (MeOH; c 0.933); CD A.ext (McOif) nm (~e): 226 (-

15.8),262(+17.4),319(-2.3). (-)-42: (o.]~7 -343.6.(Me0H; c0.940); CDA.cxt(MeOH)nm(~e): 225 

(+ 16.0), 258 (-16.7), 317 (+2.2). Racemic mixtures of 3 and 47 were separated into enanliomers by 

HPLC on Chiralpak OD (soLvent, 11% and 8% isopropanol, respectively, in hexane containing 0.1% TFA; 

flow rate, 1.0 ml min·1; detection, 254 nm). The materials at lR 8.0 and 15.7 min of 3 (0.5 mg) were 

collected to give(+)- and (-)-3 (0.2 and 0.2 mg) with optical purity of 99.8 and 99.7%, respectively, anti 
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the mnterials at tu 11.1 and 16.3 min of 4 7 (2 mg) were collected to give ( + )- and (-)-4 7 (0. 9 and 0. 9 mg) 

with optical purity of 99.6 and 99.7%, respectively. (+)-3: [a]g +283.3" (MeOII; c 0.012); CD A.e~ 
(MeOII) nm (L\E): 227 (-17.5), 257 (+ 18.9), 317 (-1.7). (-)-3: [a]~7 -290.0" (MeOH; c 0.020); CD 

Acxt (MeOH) nm (t.E): 228 ( t 15.7), 259 (-18.1), 321 ( +2.5). ( + )-47: (n]g +390.6" (MeOH; c 0.064); 

CD i.cxt (MeOII) nm (l\E): 229 (-19.9), 258 (+22.3), 315 (-2.1). (-)-47: [n)g -39IS (MeOH; c 

0.071); CD~c~t (MeOII) nm (M): 227 (+20.9), 256 (-20.4), 322 (+2.3). A commercially available 

ncemic mixture of ABA was separated into its enantiomcrs by HPLC on a Chiralcel OD (solvent, 15% 

isopropanol in hexane containing 0.1% TFA; flow rate, 0.5 ml min· I; detection, 254 nm). The materials 

at t(l JIA nnd 16.0 min of(+) ABA (10 mg) ~·ere collected to give (+j;, and (-)~ABA (4.7 and 4.6 mg) 

with optical purity of 99.9 and 99.6%, rcspecttvely. (+)-ABA: [a]D +492.9 (c 0.071, CHCIJ) and 

t4·H 9 (c 0.071, MeOII); CD A.cxt (MeOH) nm (M): 227 (-3·l.9), 260 (+42.7), 320 (-2.5); CD Acxt 

(CIICh) nm (1\f): 231 (-23.4), 265 (+38.7), 323 (-2.4). (-)-ADA: [a)~ -481.3" (c 0. 141, CHCl3) and 

-·l42.2• (c O.lll, MeOII); CD Acxt (MeOH) nm (t.E): 229 (+34.1), 259 (-41.1), 323 (+2.2); CD Acxt 

(MeOII} nm (i\C): 228 (+27.5), 263 (-36.2), 321 (+3.7). 

(-)-PA .. 
()-PA was prepared by hydrolysis of the ~-hydroxy-13-methylglutaryl ester of 8'-hydroxyabsclSIC 

acid.:n 

Lcttun• germination assay 78 

Fifty seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) were placed on two sheets of Toyo No. 

2 filter paper (5.5 em in diameter) soaked in 3 ml of a test solution and allowed to germinate under 

illumination (3000 lux) at 25"C. After 48 hr, the inhibition ratio was calculated. The inhibition ratio is 

defined as [(.1 8 )I A J x 100, where A -the number (47) of seeds that germinated when water was used, 

and 8 = the number of seeds that germinated when a test compound was used. All tests were conducted at 

least twice. 

Rice C'longation assay79 

Seeds of rice (Orvza safi\'(1 L. cv. Nihonbarc) were soaked in EtOil for 5 min, sterilized with 1% 

antiformin (NaCIO.t) for 1 lu, and washed with running tap water for 3 hr. TI1c sterilized seeds were 

allowed to germinate in water for two days at 30"C. The resulting seedlings were placed in a glass tube 

containing 2 ml of a test solution, and grown with the tube scaled by a sheet of polyethylene film under 

continuous illumination at 30"C. The length of the second leaf sheath was measured after se,·cn days, and 

the inhibition rntio was C.'llculatcd. lnc inhibition ratio is defined as ((A - B )I A l x 100, where A = the 

mean length (28 mm) of the second leaf sheath when water was used, and 8 = the mean length of the 

second leaf sheath when a test compound was used. All tests were conducted at least twice. 

«-Amvlasc a..Hay80 

Barley (llordctml mlRart• L. cv. Himalaya) seeds were sterilized in 4% antiform in for 3 hr and then 

rinsed with sterilized distilled water. ntc seeds were next soaked in sterilized distilled water at 5"C for 20 
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hr and cut in half. Two of the halves without embryos were placed in a 30-ml screw-capped vial 

containing 1 ml of a test solution. Each vial contained streptomycin (0.5 mg), GA3 (l0-7 M), the 

appropriate amount of a test compound, and water to a total volume of 1 mi. The scaled vials were placed 

in an incubator at 30"C for 48 hr in the dark. Distilled water (9 ml) was then added to each \ ial, and 50 ml 

of the resulting solution was assayed for its absorbance at 660 nm by the Somogyi-Nelson methtxt94 to 

calculate the inhibition ratio. lne inhibition mtio is defined as I(A - C)/ ( . .J - 8)J x 100, where .I = the 

absorbance (1.1) when 10·7 M GA:> was used, B = the absorbance (0.07) when water was used, and C = 

the absorbance when a test compound was used. All tests were conducted at least twice. 

Stomata assayBl 

Fully expanded leaves of spiderwort (Tradescantia rejlexa Rafin) were cut and floated on water in the 

dark for 5 hr before usc to ensure that the stomata were closed at the beginning of incubation. Strips of the 

epidermis about 5 mm square were detached from the abaxial leaf surfaces under dim light. To 3.9 ml of a 

10·2 M citrate buffer (pH 5.5) in a 10-ml vial, a test compound in 100 ml of MeOH was added. Three 

strips were floated on the solution and incubated at 25•c. Tllumination was provided by a tungsten lamp 

(500 W) with a light intensity of approximately 12 klux. After 3 hr, the widths of the apertures of 10 

stomata on each strip were measured under a microscope. The stomatal aperture ratio is defined as (B 1 A) 

x 100, where A =the mean aperture (9.6 mm) when the buffer was used, and B - the mean aperture when 

a test compound was used. All tests were conducted at least twice. 

I.3 8 '-M eth oxyabscisic Acid as the Cycliza tion-Resis ta nt Ana logue 

Design Co ncept 

As described in Chapter 1.1, an approach that confers resistance to the cyclization of 8'-HOA BA to 

PA is lowering the nuclcophilicity of the 8'-oxygen. The simplest way is to protect the 8'-hydroxyl group 

with a chemically stable moiety. Esterification is not suitable because the conjugate 20 of 8'-1 fOABJ\ had 

low activity due to easy decomposition to inactive PA by hydrolysis.37 The author selected the methyl 

etherification of the 8'-hydroxyl group and designed 8'-mcthoxy-ABA ( 4) as the first analogue resistant to 

the cyclization. 

Results and Discu ssion 

Synthesis and optical resolution 

8'-Methoxy-ABA (4 ) were synthesized along with 9'-methoxy-ABA (62 ) by a mtxliftcation of the 

method reported for the synthesis of (±)-methyl phaseatc73 (Fig. 8). After acetylating the hydroxymethyl 

ketone 30 to give 49 , the carbonyl group of 49 was protected, and subsequent hydrol)sis gave 

hydroxymethyl ketal SO. Methylation of SO gave mcthoxymethyl ketal 5 1, which was then acid-treated to 

give methoxymcthyl ketone 52 . The reaction of 52 with alkynyllithium gave TII P ether 53 . Oeprotec-

21 



ec~ 
30 R C H Oil 50 
49 R CH20Ae 51 

Me¥OAc . Me(X0 7 IX) -.;:: OH 
I __,.. I 

56 57 

Me~ 
lJ(-..:: 'CHC02Me 

59 

Me~ 
~ lj(-.;:: 0 

58 

Me~ 
0

-;:j "CHC07Me 
0 /. 

xv) MeM-..:: 
-~ .. - OH xvi) o ..-: C02H 

Me~ -..:: "-': CO;>H 
+ ..-: OH 

0 

(±)-4a and -6 1a 6Ja (±)-4 and -62 

t xvii) 

R~ 
o~H -bo2H 

(+)-4 R1=CIT20Me, R2=CII 1 

(+)-62 R'-Cll 1• R2 Cll20Me 

Fig. 8. Synthesis and opt1cal resolution of4 and 62. 

(±)-61 and -63 

1) Ac20, pvtidinc ii) a) ethvlene glycol,p-TsOII b) NaOil iii) NaH, Mel iv) HCI 

v) Lt00THP \I) py11dtniump-TsOil ,ji) Ac20. pyndtne viii) POCI1, pyridine 

1x ) Rcd-AI x) Mn02 x1) Ph 1P CIIC02Me xii) a) NBS, BPO b) quinoline xiii) rose 

bengal. 0 2 hv xi') baSIC alumina X\) NaOH X\ i) ODS HPLC xvii) l!PLC with 

Cluralcel OD 

lion of 53 ga'e aCCt) lcnic diol 54, which was then acetylated to afford acetylcnic acetate 55 . Dehydration 

of 55 with phosphoruc; o.\ychloride in pyridine gave enyne acetate 56 in a low yield (16%). The 

recovered 55 arter this step was dehydrated again with thionyl chloride in pyridine to afford 56 in a 58% 

'icld Reduction of 56 gave dienol 57, which was oxidized to give dicnone 58 . The Wittig reaction of 

58 ga'e methyl ester 59 as a mixture of (2Z)- and (2£)-isomcrs. Bromination of 59 and then 

dehydrobromination gave dehydro compound 60 . Photosensitized oxygenation of 60 and subsequent 

treatment "ith basic alumina gave the meth) I esters of methoxy-ABAs (Me methoxy-AI3As): four 

stereoic;omers resulting from the 2Z 2£ ic;omerism and from the cis or trans relationship of the 6'

methoxymethyl group to the 1 '-hydroxyl group (cis:tram = about 1:3, measured hy HPLC of the free 
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acids). This ratio of 1:3 resulted from the stercoselectivc addition of a singlet oxygen from the Jess

hindered site on the opposite side of the 6'-mcthoxymethyl group. Hydrolysis of the methyl esters gave an 

isomeric mixture of (:!:)-8'-methoxy-ABA (4) and its (:!:)-(:!E)-isomer (61 ), and of (:!:)-9'-methoxy-ABA 

(62) and its (:!:)-(2£)-isomer (63) (about 1:2:3:6, measured by HPLC). This mixture was separated into 

its components by HPLC with an ODS column. 

Compounds (:!:)-4, -61 , -62 and -63 were identified by 1H NMR spectral data of corresponding 

methyl esters (:!:)-4a , -6la, -62a and -63a, respectively. The chemical shift of the 4-prmon led to 

assigning the configuration of2Z to (±)-4a (6 7.87) and (:!:)-62a (o 7.93), and the configuration of 2£ to 

(±)-61a (6 6.52) and (:!:)-63a (6 6.56). Table 3(a) shows 11-1 NMR spectral data in COCI3 for (:!:)-4a and 

(:!:)-62a . The 6'-mcthyl group of (:!:)-4a (6 1.15) appeared in a higher field than that of (:!:)-62a (b 1.25). 

The 9'-protons of the methyl ester of (:!:)-ABA (la) appear in a higher field than the 8'-protons, 76 so the 

spectrum of (:!:)-4a lacked the signal arising from the 8'-protons of (:!:)- J a , and that of (±)-7 4a lacked the 

signal arising from the 9'-protons. These findings suggested that (:!:)-4a was the methyl ester of (:!:)-H'

methoxy-ABA and that (:!:)-62a was the methyl ester of (:!:)-9'-methoxy-ABA. ·n1c chemical shifts of the 

methylene protons of the methoxymcthyl group, the 1'-hydroxyl group and the C-5 proton were evidence 

for this conclusion. The methylene protons of (:!:)-4a appeared in fields lower than the fields of (:!:)-62a . 

This downficld shift was interpreted as due to the dcshiclding effect of the 4'- au bony! group, which was 

closer to C-8' than to C-9'. The I '-hydroxyl group of (:)-4a appeared in a lower field than that of (:t.) 

62a. This downfield shift was attributed to hydrogen bonding with the oxygen of the 8'-methoxyl group, 

which is cis to the hydroxyl group. The 5-proton of (:!:)-62a was in a lower field than that of (:!:)-·h , antl 

this finding suggested that the 5-proton of (:!:)-62a was dcshieldcd by the oxygen of the 9'-mcthoxyl 

group, which is cis to the 5-proton. These results showed that (±)-4a was the methyl ester of (:!:)-8'

mcthoxy-ABA, and that (:!:)-62a was the methyl ester of (:!:)-9'-mcthoxy-ADA; (:!:)-4 was (:!:)-8'

mcthoxy-ABA and (:!:)-62 was (±)-9'-methoxy-ABA. 'TI1c relative configurations at C-6' of the (2E)

isomers were identified in the same way as that for the (2Z)-isomers: (±)-61 was (:!:)-(2£)-8'-methoxy

ABA, and (:!:)-63 was (:!:)-(2£)-9'-methoxy-ABA. 

(:!:)-4 and -62 were optically resolved by HPLC in a Chiralpak AD column to afford the(+)- and(-)

enantiomers with an optical purity of more than 99%. The CO spectra of the ( + )-cnantiomcrs showed the 

same positive first and negative second Cotton effects as those of (+)-ABA. 77 Therefore, the absolute 

configuration at C-1' of both ( + )-4 and -62 is R, while that at C-6'is S for ( + )-4 and R for ( -t )-62 . 

Biological activity 

The optically active analogs were compared with the ( + )- and (-)-enantiomcrs of ABA for inhibitory 

activity by means of the four bioassays described in Chapter 1.2. The ICso values arc summari~ed in Table 

4. The (±)-(2£)-isomers were inactive (data not shown). 

The activity of (+)-4 was 4.5 times higher than that of (+)-ABA in the rice assay in terms of ICso 

values, whereas it was similar in the lettuce and o.-amylasc assays and weaker in the stomata assay. 111c 

effect of ( + )-4 was longer lasting in the rice, than in the lettuce assay (Fig. 9). These arc analogous to the 

activities of ( + )-2 and -3 , so the highly inhibitory effect of ( + )-4 on the elongation of the rice seed I ings was 

also considered to result from delayed metabolism. On the other hand, the ICso value of ( t )-62 was 0.4 

23 



Table 3. 1 H NM R Data for (:!: )- la , -4a and -62a 

~)CDCI3 

H [±)-1 a 76 (:!:)-4a (•)-62a 

2 5.753 m (0.44, 0.26) 5.73 br s 5.75 br s 

4 7.871 dd (15.36, 0.26) 7.87 dd (15.9, 0.9) 7.93 d (15.9) 

5 6.152 dd (15.3(), 0.23) 6.01 d (15.9) 6.15 d (15.9) 

6 2.009 d (0.44) 2.00 d (1.2) 2.01 d (1.2) 

3' 5.942 m (1.46, 0.37) 5.96 qd (1.2, 1.2) 5.89 qd (1.2, 1.2) 

5'-proR 2.288 dd (15.71, 0.37) 2.22 dd (17.7, 1.2) 2.08 dd (17.1, 1.2) 

5'-proS 2.478 dd (15.71, 0.27) 2.45 d (17.7) 2.29 d (17.1) 

7' 1.923 d (0.47) 1.97 d (1.2) 1.90 d (1.2) 

8' 1.110 d (0.27) 3.24 d (9.5) 1.25 br s 
3.80 d (9.5) 

9' 1.014 s 1.15 s 3.10 d (9.2) 

3.45 d (9.2) 

1'-0H 4.97 s 4.02s 

OMe 3.35 s 3.33 s 

C02Me 3.706 s 3.70 s 3.71 s 

(b) ('1):~00 

H _(::)- I a ( ... )-4a (:!:)-62a 

2 5.7<ihrs 5.77 br s 5.76 br s 

4 7.79 dd (16.2, 0.9) 7.79 dd (16.2, 0.9) 7.86 dd (15.9, 0.9) 

5 6.27 dd (16.2, 0.6) 6.22 dd (16.2, 0.6) 6.32 dd (15.9, 0.6) 

6 2.04 d (1.2) 2.04 d (1.2) 2.04 d ( 1.2) 

3' 5.94 qd (1.2, 1.2) 5.95 qd (1.2, 1.2) 5.90 qd (1.2, 1.2) 

5'-proR 2.19dd(l7.1, 1.2) 2.49dd(l7.1, 1.2) 2.16 dd (17.1, 1.2) 

5'-proS 2.53 d (17.1) 2.37 d (17.1) 2.60 d (17.1) 

7' 1.93 d (1.2) 1.93 d (1.2) 1.90 d (1.2) 

8' 1.07 s 3.44s 1.13 br d (0.9) 

9' 1.02 s 1.06 s 3.29 dd (9.2, 1.8) 

3.36 d (9.2) 

OMe 3.29 s 3.29 s 

C02Mc 3.66 s 3.71 s 3.67 s 

Values for the chemical shifts arc in o (ppm), and those for the coupling constants in parentheses 
arc in .I (117). Abbreviations: s, singlet; d, doublet; q, quartet; br, broad. 

~tM in the lettuce germination assay, in which its activity was 7 times higher and longer-lasting than that of 

(+)-ABA (ICso = 2.8 ~M) (Fig. 9). In the other assays, (+)-62 had the slightly stronger or weaker 

acti\it~ than (+)-ABA A<!. described in Chapter 1.2, conjugation is the major metabolic pathway in lettuce 
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Fig. 9. Changes wtth time in the inhibitory acti\ ity of (+)- 1, --' , and -62 in the nee seedltngs 
elongation (A) and the lettuce seed germination (B). 
• • (+)-1 ; • • (+)-4; • . {l-)-62 

seeds. Therefore, one explanation of the high and long-lasting activity of (+)-62 in the lettuce assay may 

be the high resistance to the conjugation that results from a steric or electronic effect of the 9'-methoxy 

group. Another may be the high affinity for the active site on the receptor in lettuce seeds owing to the 9'

methoxy group or the conformation of the molecule. 

The activity of the (-)-enantiomer of 4 and 62 was weak in all the assays; it was 1.0 to 10% that of 

(+)-ABA and weaker than (-)-ABA. This is similar to the activity of (-)-2 and -3, so the decreased 

activities of (-)-4 and -62 can be explained by the stcric or electronic effect of the 8'- and 9'-methoxy group 

corresponding to the C-2' side of (+)-ABA, where the stcric requirement for activity is strict,93 as arc those 
of(-)-2 and-3 . 

Factors affecting activity of (+)-62 

As described above, conformation may explain high activity of (+)-62 in the lettuce assay. To 

verify this notion, the favored conformation of 62 along with 4 in solution was examined by NM R. The 
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Fig. I 0. r avo red c.onformat1ons of 1 a, 4a and 62a 
Ia R1 rzl Me, 4a R 1 CII20Mc R2 Me. 62a R1 \.1e, R2=CIL20~Ie 
Arrows represent the observed NOI~s. 

favored conformation of ABA in solution is a half-chair with the side chain pseudo-axial. However, the 

active conformation has not been clarified. If 62 adopts a different conformation from ABA, then it may 

be the active state for inhibit ion of lettuce seed germination. 

In the nuclear Ovcrhauser effect (NOE) difference spectra and by NOE spectroscopy (NOESY) in a 

( DCh solution , ( ~) 62a had NOP_c; between the 5-proton and the down field 5'-proton (the pro-S proton 

which is cis to the side chain). between the 9'-protons and both 5'-protons and between the 8'-protons and 

the upficld 5'-pmton (thcpro-R proton which is cis to C-8') (Fig. 10). In 1H NMR in a CDCI3 solution, 

(r)-(,2a showed the long-range coupling of theW-type between the 3'- and 5'-pro-R protons. These data 

completely agreed with !hose of the methyl ester of ADA ( la), 76 and (±)-4a gave the same result. In a 

< DC!:~ solution, therefore, the favored conformation of (±)-62a and -4a is equal to that of ABA; it is a 

half-chair with the side chain pseudo-axial. (±)-62a gave the same result in a CD30D solution, whereas 

(±)-4a afforded a strange result. In CD30D, (±)-62a and - la showed W-type coupling with the 3'

proton in the upficld proton of the 5'-protons, whereas (±)-4a showed it in the downfield proton. TI1e 5'

proton possessing the NOE with the 5-proton was the downfield proton for (±)- l a and -62a , and the 

upfield proton for ( .. )-4a . This means that chemical shifts of the 5'-protons of (±)-4a arc inverted despite 

favoring the same conformal ion as ( ± )-1 a and -62a. It is unclear what effect causes such a inversion of 

the chemical shifts of 5'-protons. These results suggest that the high effect of ( + )-6 2 cannot be attributed 

to its conformation. 
Thus ( + )-62 may have high resistance to the conjugation or high affinity for the receptor which 

results from a steric or electronic effect of the 9'-mcthoxy group itself. To examine which of the steric and 

electronic effects affects the activity, ( + )-9'-rncthyl- and cthyl-ABAs were tested in the lettuce assay.95 

Both sho"' cd longe1 -lasting activity compared with (+)-ABA, but less that of ( + )-62 , so the high activity of 

(+ )-62 may be caused by both the steric and electronic effects of the methoxyl group. 

In conclusion, methyl e1herific1tion of the 8'-hydroxyl group of 8'-IIOABA c1used high and long

lasting acti,ity as designed. probahly owing to the delayed metabolism caused by resistance to cyclization 

to PA or blockage of hydroxylation at C -8' to give a hemiacetal, which can con\·ert into aldehyde or PA

Iikc acetal. However, its effect was smaller than that in the di- and trifluorinations. The cytochrome P-
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450 enzyme can catalyze the oxidative dealkylation of the ether, 60 so ( + )-4 may be inactivated via 

dcmcthylation of the 8'-methoxy group, as well as conjugation to ABA-GE. 

Experimental 

General procedures 
1 H NMR spectra were recorded with TMS as the internal standard by Hitachi R-22 (90 Mz) and Jcol 

GX400 (400 Mz) apparatus, using CDCI3 or CD30D as the solvent. For clarity, the conventional ABA 

numbering system is used in the assignment of peaks in the 1 H NMR spectra. NOESY was perfom1ed on 

Jeol GSX270J (270 Mz) apparatus, and mass spectra were obtained with a Jcol JMS-DX300/DA5000 

mass spectrometer. GC-MS was conducted with a 1% OY-17 column (2.6 mm x 1 m) in the El mode. 

CD spectra were recorded with a Jasco J-600 spectropolarimeter. 

(± )-2-Acetoxymethyl -2,6-dimethyl-1-cyclohexanone ( 4 9) 

A mixture of 3 0 (63 g) and AC20 (130 g) in pyridine ( 120 ml) was stirred at room temperature for 21 

hr. The mixture was poured into ice-cooled 1120 and extracted with ether. The organic layer was 

successively washed with 0.1 N HCI and saturated Na!IC03, and dried over Na2SO.t. The solvent was 

evaporated, and the residual oil was chromatographed on silica gel with hcxanc-EtOAc (9: 1) as the eluent to 

afford 76 g (95% yield) of 49 as a mixture of two diastereomers (52:48, determined by integrating the 2-

methyl singlets in the lH NMR spectrum). IH NMR (400 MHz, CDC(J): o 1.01 (3 11 , d,J = 6.41lz, Mc-

6), 1.02 (3H, d, J = 6.4 Hz, Me-6), 1.10 (3H, s, Me-2), 1.21 (3H, s, Mc-2), 1.34-2.10 (121!, m, H-3, 

H-4, H-5), 2.03 (3H, s, OAc), 2.05 (3H, s, OAc), 2.66 (11!, m, H-6), 2.66 (111, m, H-6), 4.02 (1 11 , d , 

1= 11.0 liz, OCH2), 4.03 (l H, d,J= 11.0 Hz, OCHz), 4.17 (1 H, d,J= 11.0 Hz, OCI!z), 4.50 (IH, d, 

J = 11.0 Hz, OCH2); GC-MS m/z (rei. int.): 198 [M]+ (11), 155 (6), 138 (35), 124 (28), 110 (72), 95 

(73), 81 (57), 68 (100). 

(± )-2-Hydroxymethyl-2,6-dimethyl-1-cyclohexanone ethylene ketal (50) 

A mixture of 4 9 (71 g), ethylene glycol (26.7 g) and p-toluencsulfonic acid monohydrate ( 1.1 g) in 

benzene (200 ml) was rcfluxed for 6 hr, the H20 produced being separated by a Soxhlet extractor packed 

with Drierite. The reaction mixture was washed with saturated NaHC03 and extracted with ether. 'l11c 

organic layer was washed with H20 and evaporated to afford a crude residual oil (79 g). To a solution of 

this crude product in MeOH (200 ml) was added 1 N NaOI I ( 400 ml). 1ne mixture was stirred at room 

temperature for 1 hr, after which it was diluted with H20 (400 ml) and extracted with ether. The organic 

layer was washed with H20, dried over Na2S04 and then evaporated. Chromatography of the residual oil 

on silica gel with hexane-EtOAc (17:3-7:3) afforded 27.6 g (39% yield) of 50 as a mixture of two 

diastcrcomers (about 1:1, determined by TLC analysis). l JI NMR (400 Mllz, CDCb): b 0.84 (311, d , .1 

= 6.4 Hz, Me-6), 0.97 (3H, s, Mc-2), 0.99 (311 , d, J = 6.4 Hz, Mc-6) 1.20 (3H, s, Me-2), 1.28-1.62 

(12H, m, H-3, H-4, H-5), 2.07 (2H, m, H-6), 3.27 (lH, d, J = 11.3 Hz, OCII2), 3.43 ( 111 , d , J = 11.6 

Hz, OCH2), 3.50 (1 H, d, J = 11.6 Hz, OCH2), 4.05 (8H, m, OC!i2CH20), 4.13 ( 1 H, d, J = 11.3 liz, 

OCH2); GC-MS m/z (rei. int.): 200 [M]+ (8), 183 (2), 169 (10), 130 (5), 113 (100), 100 (9), 69 ( 12). 
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(:r_)-2-Met/wxynwthy/ 2,6 dinwthyl-1-cyc/ohe.xanone ethylene ketal (S I ) 

To a ~tirred solution of SO (50.9 g) and methyl iodide (184.6 g) in TIIF (JOO ml) wa<; added NaH 

(r10% in oil. 35 g) in Till (150 ml). The mixture was stirred at room temperature for 16 hr, and after 

being quenched with 11 20, the mixture was extracted with ether. The organic layer were washed with 

11:;0. dried over '\a:;S04, and evaporated. The residual oil was chromatographed on silica gel with 

hexane-I .tOAc (9 1) to afford 50 g (92% yield) of 51 as a mixture of two diastereomer<; (59:41, detennined 

by integrating the 2-methyl singlets in the IH NMR spectrum). ll[ NMR (400 M11z, C'OCI3): 0 0.81 

(JII, d, .I 6.4 liz, \ile-6), 0.81 (31£, d, J = 6.7 Hz, Me-6), 0.88 (3II, s, Me-2), 1.07 (311, s, Me-2), 

1.29-1.74 {1211, m, 11-1, 11-4, H-5), 1.90 {l H, m, H-6), 1.99 (111, m, H-6), 3.14 (111, d,.! = 8.2 Hz, 

OCII:!). 3.23 (Ill, d, .I 8.2 liz, OCHz), 3.24 (Hi, d,.! = 9.0 liz, OCIIz), 3.34 (3 11 , s, OMe), 3.62 

(1 H, d, ./ - 9.0 liz, OCII 2), 4.03 (4 1!, m, OCIIzCHzO), 4.03 (41l, m, OCHzCllzO); GC-MS m/z (rei. 

int.): 214I M]+ (10), 199 (4), 183 (7), 169 (12), 143 (2), 127 (4), 113 (100), 100 (9), 87 (3), 69 (10). 

( t;)-2·Metlwxymethyl 2,6-dimethyl- l-cyclohexanone (5 2) 

A mixture of 5 1 (49.8 g) and 2% methanolic HCI (500 ml) was stirred at room temperature for 39 hr 

and then extracted with ether. The organic layer was successively washed with saturated NaHC03 and 

1120. dried over Nn2S04, and evaporated. The residual oil was chromatographed on silica gel with 

he\ane-1 tOAc (9: I I: I) to afford 38.4 g (97% yield) of 52 as a mixture of t\vO diastereomers (52:48, 

detennined by integmting the 2-methyl singlets in the IH NMR spectrum). I If NMR (400 MHz, CDCI3): 

b 1.00 (311, d, J 6. 7 liz, Me-6), 1.02 {JH , d, J = 6.4 Hz, Me-6), 1.08 (3H, s, Me-2), I.L 7 (3 H, s, Me-

2), l.JJ-2.07 (1211, m, 11-3, 11-4, H-5), 2.62 {11-1, m, H-6), 2.63 (l H , m, ll -6), 3.26 (Hi , d, 1 = 9.2 

liz, OC!Iz), 3.30 (3 11 , s, OMe), 3.31 (1 11, d, J = 8.9 Hz, OCH2), 3.35 (J H, s, OMe), 3.47 ( 1H, d, J = 

9.2 Hz, OC1I2). 3.68 (Il l , d, .I= 8.9 llz, OCH2); GC-MS m/z (rei. int.): 170 IMJ+ (6), 155 (3), 138 

(35), 125(8), 110(16),101 (13),95(21),88(100),83(45),68(23),54(17). 

(±)-4-( I'-1/ydroxy 2'-mcthoxymethyl-2' ,6'-dimethy/cyclohe.xyl)-but-3-yn-2-ol-Til P ether (53) 

To a sti rred solution of 1-methyl-2-propynyl THP ether(77 g) in T11F (100 ml) was added dropwise 

n-I3uLi (a l.(i M solution in hexane, 310 ml) during 50 min at -75•c under nitrogen. After being stirred 

for I hr, the reaction mixture was wanned to -25·c, and 52 (38.4 g) in TIIF (100 ml) was added dropwise 

to the stirred mixture. '!11e mixture was stirred for 2 hr at -25 to - Hl"C and then warmed to room 

temperature. After being quenched with 0.1 M NH4CI (300 ml), the mixture was extracted with ether, and 

the organic layer was successively washed with 0.1 M NH4CI and 1120, dried over Na2S04, and 

evaporated. The re~idual oil wns chromatographed on silica gel with hexane-EtOAc (4:1) to afford 43 .1 g 

(59% yield) of 53 as a mhture of diastereomers. A portion of the mixture was chromatographed on silica 

gel "ith he\ane-LtOAc (40:1-9:1) to obtain one major diastereomer. IH NMR: (90 Mllz, CDCb): o 
1.04 (311, d, .I 6.1 117, Mc-6). 1.23 (3 11 , s, Me-2), 1.46 (3H, d,J = 6.0 Hz, H-1), 1.27-2.03 {15H, m, 

H-3 ', 11-4', H-5', 11-6', 11 -2", H-3", ll -4", H-5"), 3.27 (1H, d,J = 9.0 Hz, OCII2), 3.33 (31-1, s, OMe), 

3.89 (l H, d, J- 9.0 liz, OCII2), 4.69 (111. q,J = 6.0 Hz. H-2), 4.94 (lH, m, 11-1"); ElMS m!z (rei. 
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int.): 324 [M]+ (1), 292 (5), 237 (8), 223 (40), 208 (42), 191 (83), 190 (92), 175 (70), 161 (50), 148 

(84), 133 (64), 119 (73), 105 (80), 85 (100), 54 (26). 

(± )-4-(1 '-Hydroxy-2'-methoxymethy/-2', 6'-dimethy/cyclohe.xy/)-but-3-yn-2-o/ (5 4) 

To a stirred solution of 53 (43.1 g) in EtOH (500 ml) was added pyridinium fHOiuenesulfonate {4 

g), and the mixture was stirred at 55•c for 6.5 hr. The solution was concentrated and the residue was 

diluted with ether (l liter), successively washed with saturated NaHC03 and 1120, dried over Na2so4, and 

evaporated. Chromatography of the residual oil on silica gel with hexane-EtOAc (5: l-1 3:7) afforded 27.4 

g (86% yield) of 54 as a mixture of diastereomers. A portion of the mixture was chromatographcd on 

silica gel with hexane-EtOAc (9:1-7:3) to obtain one major diastercomer. IH NMR (90 Mllz, CDCIJ): b 

1.00 (3H, d, J = 6.0 liz, Me-6), 1.13 (3H, s, Me-2), 1.02-2.06 (61l, m, 11 -3', 11-4', 11-5'), 1.47 (3H, d, 

1= 6.4 Hz, H-1), 2.31 (111, m, 11 -6'), 3.09 {lH, d,J = 8.6 Hz, H-8'), 3.37 (311, s, OMc), 4.05 (11-1, d, 

1 = 8.6 Hz, H-8'), 4.47 (lr£, q, J = 6.4 Hz, H-2); ElMS m/z (rei. int.): 240 IMJ1 (I), 222 (4), 207 

(6), 190 (20), 175 (55), L63 (25), 148 (48), 133 (32), 126 (41), 105 (47), 93 (58), 82 (100), 69 (52), 54 
(15). 

( ± )-3-(1'-Hydroxy-6'-methoxymethy/-2', 6' -dimethylcyclohe.xy/)-1-methy/-2-propyny/ acewte (55) 

A mixture of 54 (27.4 g) and AczO (87 g) in pyridine (200 ml) was stirred at room temperature for 

13 hr. The mixture was poured into icc-cooled H20 and extracted with ether. ll1e organic layer was 

successively washed with 0.1 N HCI, saturated NaHC03 and 1120, dried over Na2S04, and evaporated. 

The residual oil was chromatographed on silica gel with hexane-EtOAc (7:3) to afford 29.3 g (91% yield) 

of 55 as a mixture of diastereomers. A portion of the mixture was chromatographed on silica gel with 

hexane-EtOAc (20:1-4:1) to obtain a mixture of two major diastereomers {50:50, detennined by integrating 

the 2-methyl singlets in the 1H NMR spectrum). lH NMR (400 MHz, CDCb): b 1.03 (3 11, d, J = 6.1 

Hz, Me-6'), 1.05 (3H, d, J = 6.4 Hz, Me-6'), 1.27-1.93 (12H, m, 11 -3', 11 -4', 11 -5'), 1.22 (3 11 , s, Me-

2'), 1.23 (3H, s, Me-2'), 1.48 (31-1, d, J = 6.7 Hz, Me-l), 1.50 (3H, d, J = 6.7 liz, Me-l), 2.06 (12 11 , s, 

OAc), 2.07 (3H, s, OAc), 3.27 (lH, d, J = 9.2 Hz, OCH2), 3.28 (lH, dd,.! = 9.8, 0.3 li z, OCI t2), 3.35 

(3H, s, OMe), 3.35 (31l, s, OMe), 3.54 (11-1, d, J = 9.8 Hz, OCII2), 3.92 (11 1, d, ./ = 9.2 liz, OCII:!), 

5.45 (lH, q, J = 6.7 Hz), 5.49 (lH, q, J = 6.7 Hz); ElMS m/z (rei. int.): 222 IM-AcOII] t (3), 208 

(33), 190 (22), 165 (23), 148 ( 47), 147 ( 42), 121 (38), 105 ( 44), 93 ( 45), 82 (85), 74 (I 00), 54 (35). 

(%)-3-(2'-Methoxymethy/-2', 6'-dimethyl- 1'-cyclohe.xen-1'-yl)-1-methyl-2-propyny/ acetate (56) 

To a stirred solution of 55 (29.3 g) in pyridine (200 ml), a mixture of POCIJ ( 144 g) and pyridine 

(180 ml) was added dropwise at 5•c during 1 hr, and the mixture was then heated at 105•c for 6 hr. The 

mixture was cooled, poured into icc-cooled H20 , and extracted with ether. The organic layer was washed 

with H20, dried over Na2S04, and evaporated. The residual oil was chromatographed on silica gel with 

hexane-EtOAc (19:1) to afford 4.3 g {16% yield) of enyne acetate 56. Further elution with hexane-EtOAc 

(13:7) allowed the recovery of unrcacted 55 {20.9 g). To a stirred solution of 55 (18 g) in pyridine (150 

ml), SOCI2 (9.5 g) was added dropwise at -w·c during 20 min. 'fne mixture was stirred at room 

temperature for 1 hr, and after being quenched with H20 (200 ml), was extracted with FtOAc. The 
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organic layer was successively washed with 0.1 N HCI, saturated NaHC03 and H20 in that order, and 

evaporated. The residual oil was chromatographed on silica gel with hexane-EtOAc (40:1) to afford 9.8 g 

(58% yicld)of56. IH NMR(90MHz,CDCI3): ol.Ol(3H,s, Me-6'), 1.08-2.21 (6H, m, H-3 ', H-4', 

H-5'), 1.51 (3H, d, J = 6.2 Hz, ll-4), 1.88 (3H, s, Me-2'), 2.05 (3H, s, OAc), 3.16 (lH, d,.! = 8.4 Hz, 

OCI!z), 3.32 (3ll, s, OMe), 3.40 (1H, d, J = 8.4 Hz, OCHz), 5.59 (1H, q, J = 6.2 Hz, H-1); ElMS m/z 

(rei. int.): 204 [M -AcO!!]+ (40), 189 (24), 177 (28), 159 (100), 144 (80), 117 (65), 105 (94), 77 (55), 66 

( 42), 56 ( 48). 

(:;)-(E)-4 -(6'-Met/wxymethy /-2', 6' -dimethyl-1'-cyc/ohexen-1'-y/)-3-buten-2-ol (5 7). 

To a stirred solution of 56 (14 g) in THF (200 ml), a mixture of Red-A! (3.4 Min toluene, 160 ml) 

and Til F ( 40 ml) was added dropwise at OoC during 40 min under nitrogen. The solution was refluxed for 

4.5 hr. A saturated NI 14C1 solution was added to quench the reaction, and the mixture was filtered and 

extracted with ether. The organic layer was washed with H20, dried over Na2S04, and evaporated. The 

residual oil was chromatographed on silica gel with hexane-EtOAc (4:1) to afford 6. 7 g (64% yield) of 57. 

111 NMR (90 Mllz, CDC(]): 6 0.94 (311, s, Me-6'), 1.06-2.12 (6H, m, H-3', H-4', H-5'), 1.31 (3H, d, 

.1 = 6.4 liz, 11-1), 1.67 (31J, s, Me-2'), 3.03 (lH, d, J = 9.4 Hz, OCH2), 3.29 (1H, d, 1 = 9.4 Hz, 

OC!Iz), 3.29 (311, s, OMe), 4.33 (111, qd, J = 6.4, 6.1 Hz, H-2), 5.45 (1H, dd, 1 = 15.4, 6.1 Hz, H-3), 

5 .99 (1H, br d, J = 15.4 llz, ll-4); ElMS m/z (rel. int.): 224 [MJ+ (1), 206 (8), 179 (100), 161 (31), 

147 (4), 135 (11), 121 (73), 119 (29), 105 (27), 93 (38), 91 (23), 79 (18), 71 (14), 54 (4). 

( :r )-4-(6'-Methoxymethy/-2' , G'-dimethyl-l'-cyclohexen-1'-yl)-3-buten-2-one (58) 

A mixture of active Mn02 (54 g) and 57 (6.6 g) was stirred in CH2Cl2 (200 ml) at room temperature 

for 4 hr. The reaction mixture was filtered, and the resulting cake of Mn02 was washed with CH2C12. 

After being concentrated, the residual oil was chromatographed on silica gel with hexane-EtOAc (19:1) to 

afford 5.2 g (78% yield) of 58. IH NMR (400 MHz, CDCI3): & 1.04 (3H, s, Me-6'), 1.33-1.86 (6H, 

m, ll-3', ll-4', 11-5'), 1.77 (3H, d, J = 0.9 Hz, Me-2'), 2.30 (3H, s, H-1), 3.10 (1H, d, 1 = 9.2 Hz, 

OCII2), 3.30 (3H, s, OMe), 3.32 (1 H, d, J = 9.2 Hz, OCI-12), 6.08 (HI, d, .T = 16.2 Hz, H-3), 7.23 (lH, 

dd, J = 16.2, 0.9 Hz, I!-4); ElMS m/z (rei. int.): 222 [MJ+ (14), 177 (100), 159 (50), 145 (13), 135 

(34), 119 (33), 115 (25), 105 (31), 91 (34), 77 (26), 71 (27), 63 (17). 

(:;)-(2Z,4E and 2E,4E)-methyl 5-(6'-methoxymethy/-2' ,6'-dimethyl-1'-cyclohexen-1'-y!)-3-methyl-2,4-

pentadienoate (59) 

A mixture of 58 (5.1 g) and methoxy-carbonyl-methylene-triphenyl-phosphorane (18 g) was stirred 

at 174•c for 3 hr, before being dissolved in EtOAc (50 ml). To the resulting solution was added hexane 

(200 ml) to precipitate the triphenylphosphine. The suspension was filtered, and the filtrate was 

evaporated. The residual oil was chromatographcd on silica gel with hexane-EtOAc (99:1-97:3) to afford 

3.3 g (52% yield) of 59 as a mixture of two geometrical isomers (2Z:2E = 32:68, determined by integrating 

lhe6'-mcthyl singlets in the IH NMR spectrum). IH NMR (400 MHz, CDCI3): o 0.99 (3H, s, Me-6'-

2E), 1.03 (3H, s , Me-6'-22), 1.30-2.18 (12H, m, H-3' , H-4', H-5'), 1.70 (3H, d, 1 = 0.9 Hz, Me-2'-

2£). 1.78 (3H, d,.! = 0.9 Hz, Me-2'-22), 2.05 (3H, d, .I= 1.2 Hz, H-6-22), 2.33 (3H, d, .T = 1.2 Hz, H-
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6-2E), 3.06 (1H, d, .T = 8.9 Hz, OCH2-2E), 3.10 (1H, d, J = 8.9 Hz, OCHz-2Z), 3.28 (1H, d, J = 8.9 

Hz, OCH2-2E), 3.30 (3H, s, 0Me-2E), 3.31 (3H, s , 0Me-2Z), 3.35 (lH, d, .I = 8.9 Hz, OCH2-2Z), 

3.71 (3H, s, C02Me-2Z), 3.71 (3H, s, CQzMe-2E), 5.69 (lH, br s, H-2-22), 5.74 (11I, br s , H-2-2£), 

6.08 (lH, d, J = 16.2 Hz, H-4-2E), 6.51 (lH, br d, J = 16.2 Hz, H-5-2E), 6.55 (lH, br d, J = 16.2 Hz, 

H-5-22), 7.58 (1H, d, 1 = 16.2 Hz, H-4-22); ElMS m/z (rei. int.): 278 [MJ+ (6), 246 (12), 233 (90), 

201 (27), 173 (100), 159 ( 45), 119 (59), 105 (31), 91 (33). 

(:; )-(2Z,4E and 2E,4E)-methyl 5-( 6'-methoxymethyl-2', 6'-dimethyl-3', 4' -dehydro-1 '-cycloltexe11e-l'-y l)-

3-methyl-2,4-pentadienoate (60) 

To a solution of 59 (3.2 g) in CCI4 (20 ml) were added NBS (2.9 g) and BPO (34 mg). The 

mixture was refluxed for 2.3 hr under nitrogen. After cooling the mixture to room temperature, it was 

filtered, and quinoline (9 ml) was added to the filtrate. The mixture was concentrated, and the residue was 

heated at 100oC for 1.5 hr under nitrogen. After being cooled to room temperature, the reaction mixture 

was poured into 1% H2S04 (500 ml) and extracted with ether. The organic layer was successively 

washed with a saturated NaHC03 solution and H20, dried over NazSO-t, and evaporated. The residual oil 

was chromatographed on silica gel with hexane-EtOAc (39:1) to afford 1.56 g (49% yield) of 60 as a 

mixture of two geometrical isomers (2Z:2£ = 33:67, determined by integrating the 6'-methy l singlets in the 
1H NMR spectrum). lH NMR (400 MHz, CDCI3): & 1.02 (3H, s, Me-6'-2£), 1.06 (31-l, s, Me-6'-22), 

1.86 (3H, s, Me-2'-2E), 1.94 (3H, s, Me-2'-22), 1.99 (3H, d, J = 1.2 Hz, H-6-2Z), 2.06 (41-l, m, H-5'), 

2.35 (3H, d, 1 = 1.2 Hz, H-6-2E), 3.11 (1H, d, J = 9.1 Hz, OCH2-2E), 3.13 (lH, d, .I= 8.6 Hz, OCH2-

2Z), 3.30 (HI, d, 1 = 9.1 Hz, OCHz-2E), 3.30 (6H, s, OMe), 3.39 (lH, d, J = 8.6 Hz, OCH2-22) , 3.70 

(3H, s, C02Me-2Z), 3.72 (3H, s, COzMe-2E), 5.66 (lH, br s, H-2-2Z), 5.77 (lH, br s, H-2-2E), 5.82 

(4H, m, H-3', H-4'), 6.22 (lH, d, .T = 15.9 Hz, H-4-2E), 6.58 (1H, d, J = 15.9 Hz, H-5-2E), 6.62 (lH, 

d, J = 15.9 Hz, H-5-22), 7.75 (lH, d, J = 15.9 Hz, H-4-2Z); ETMS m/z (rei. int.): 276 [M]+ (6), 261 

(9), 247 (20), 213 (31), 187 (40), 173 (49), 159 (70), 145 (51), 135 (48), 125 (55), 105 (59), 91 (100), 

77 (76), 69 (67), 54 (78). 

(-!:)-8'-Metltoxy-ABA (4) and its (2E)-isomer (61), and 9'-methoxy-ABA (62) and its (2E)-isomer (63) 

A solution of 60 (1.55 g) and rose bengal (0.23 g) in MeOH (200 ml) was stirred under oxygen 

while being irradiated with a fluorescent lamp at 24SC for 16 hr. The solvent in the reaction mixture was 

evaporated, the residue was dissolved in MeOH (20 ml), and alumina (active basic, 20 g) was added to 1he 

solution. After evaporating the MeOH, hexane (20 ml) was added to the mixture, and the suspension was 

stirred at room temperature for 2.5 hr before being chromatographed on alumina. Elution with hexane

EtOAc (3:2-1 :4) afforded a mixture of starting compound 60 and a crude ester as an oil. The crude ester 

was purified by chromatography on silica gel with hexane-EtOAc (17:3) to afford 549 mg (32% yield) of a 

mixture of four isomers. To a solution of this mixture (549 mg) in MeOH was added 1 N NaOII (10 ml). 

The mixture was stirred at room temperature for 3.5 hr, then diluted with H20 (100 ml) and washed with 

hexane. The organic layer was discarded, and the saturated layer was acidified with 1 N HCI and extracted 

with EtOAc. The organic layer was washed with H20, dried over Na2S04, and evaporated. The residue 

was separated in an ODS HPLC column (19 x 150 mm) by eluting with 40% MeOH in 1% AcOII (10 

31 



ml/min) to give colorlec;s oils of 45 mg of (±)-4, 87 mg of (±)-61, 134 mg of (±)-62, and 170 mg of(±)-

63 , a portion of each being methylated again with ethereal CI-12N2 to gi\'e the corresponding methyl esters. 

(±)-4a. IR Vmax (CIICh) cm·1: 3400, 3040-2800, 1704, 1664, 1630, 1604; UV Amax (MeOH) nm {E): 

265(21,500); IIMSm/z (rei. int.): 308 [M]+ (2), 290 (3), 276 (8), 263 (3), 245 (17), 190 (100), 161 

(50), 134 (40), 125 (li6), 91 (41), 69 (47); HR-EIMS: [M]+ at m/z 308.1620 (C17H2405 requires 

308.1624); Ill NI\1R, sec Table 3. (•)-6 l a. IJi NMR (400 MHz, CDCb): o 1.13 (311, s, 11-9'), 1.93 

(311. d, J -1.5 liz, 11-7'), 2.20 (lli, d, J = 17.7 Hz, H-5'). 2.27 (111, d, J = 1.2 liz, 11-6), 2.45 (1H, d, 

J = 17.7 liz, ll-5'), 3.23 (111, d, .I= 9.5 Hz, H-8'), 3.36 (3H, s, OMc), 3.72 (3H, s, C02Me), 3.81 

(Ill, d, .1- 9.5 liz, 11 -R'), 5.04 (I H, s, OH), 5.85 (1H, br s, 11-2), 5.92 (111, br s, H-3 '), 6.01 (lH, d, 1 

= 15.6 liz, 11-5), 6. 52 (Ill, d, ./- 15.6 liz, 11-4); IR vmax (CHCI3) cm·1: 3400, 3040-2800, 1708, 1660, 

1628, lo12; UV A.milx (McOII) nm (r): 265 (23,300); ElMS m/z (rei. int.): 308 [M]+ (12), 290 (18), 

27o (35), 26J ( 12), 245 (64 ), 190 ( 100), 171 (72), 161 (99), 134 (70), 125 (88), 91 (52), 69 (53); H R

J:IMS: [M]t atm/z 308.1634 (C'17li2405 requires 308.1624). (±)-62a. lR Vmax (CHCb) cm·1: 3460, 

3040 2800, 1708, 1664, I o32, HiCX>; UV A.max (McOH) nm (E): 268 (23,000); ElMS m/z (rei. int.): 

308 [MJ-+ (2), 290 (2), 276 (6), 263 (3), 245 (11), 190 (85), 161 (36), 134 (34), 125 (100), 91 (26), 69 

(26); IIR-EIMS: [M]~ nl m/z 308.1046 (C171f2405 requires 308.1624); 1H NMR, sec Table 3. (±)-

63a. 111 NMR (400 MIL>:, C'DCb): 6 1.24 (3H, s, H-8'), 1.86 (3H, d, .I= 1.2 liz, ll -7'), 2.09 (lH, 

dd,./- 17.1, 0.911z, 11-S'), 2.29 (Ill, d,./ = 17.1 Hz, H-5'), 2.29 (11 1, d,./ = 1.2 Hz, 11-6), 3.09 (IH, 

d, J- 9.2 liz, II 9'), J.J2 (311, s, OMc), 3.46 (1H, d, J = 9.2 Hz, ll-9'), 3.73 (311, s, COzMe), 4.02 

(lll,s, 011),5.87(111, brs, 11-2), 5.87(1H, brs, H-3'), 6.18(1H,d,J = 15.3 11 z, 11-5), 6.56 (1H, d, 

.I= 15.3 liz, 11 4); IR Vnul\ (CIICI:l) cm·1: 3450, 3040-2800, 1710, 1660, 1625, 1610; UV A.max 

(McOII) nm (E): 268 (22,800); ElMS m/z (rei. int.): 308[M]+ (1), 290 (1), 276 (6), 263 (2), 245 (10), 

190 (100), 161 (46), 134 (60), 125 (80), 91 (48), 69 (40); HR-EIMS: [M]+ at m/z 308.1609 (C17H2405 

requires 308.1624). 

Optical re.~olutirm of ( + )-4 and -6 2 

Racemic mixtutes of 4 and 6 2 were separated into enantiomcrs in a Chiralpak AD IIPLC column 

with isopropanol-hexane l(±)-4, 10:90; (±)-62 , 6:94] containing 0.1% TFA as Lhc eluent at a flow rate of 

1.0 ml min 1. The peaks attn 11.6 and 14.4 min of (±)-4 (16 mg) were collected to give(+)- and (-)-4 

(7.5 nnd 7.7 mg) with optical purity of 99.9 and 99.5%, respectively, and the peaks at tu 16.6 and 21.2 

min of (:t)-6 2 ( 19 mg) were collected to give (+)-and (-)-62 (8.2 and 9.5 mg) with optical purity of 99.9 

and 99.8%, rcspccti\'cly. ( ~ )-4 : [n]~)6 +353.4" (c 0.374, CHCI3); CD Acxt (McOII) nm (t.E): 227 (-

28.6), 25R (+26.5), 322 (-1.7); CD A.c.xt (CHCI3) nm (t.E): 232(-26.1), 267 (+27.9), 319 (-1.0). (-)-4 : 

[aj~)6 -J55.7" (c 0.3H5, CIICh); CD A.cxt (McOH) run (6E): 229 (+22.0), 259 (-25.5), 320 (+1.9); CD 

A.c,t (CHCI~) nm (6E): 233 (+22.8), 264 (-25.4), 321 (+3.1). (+)-62 : [a):; +417.6° (c 0.408, CHCI3) 

and +411.4• (c 0.408, MeOII); CD A.c'l;t (McOH) run (6E): 227 (-22.9), 263 (+28.0), 321 (-2.6); CD A.cxt 

(C'HC'h) nm ('\f): 2.11 (-35.5), 265 (+42.9), 318 (-2.1). (-)-6 2 : [a]~>6 -418.7• (c 0.473, CHCI3) and 

-409.5° (c 0 4 7 J, McOII); C'D A.c"~:t ('vi cOli) nm (l\E): 225 ( + 17.1 ), 264 ( -25.5), 319 ( +2.4 ); CD "-ext 

(CHCIJ) nm (l\E): 233 (+25.8), 262 (-35.0). 321 (+4.2). 
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Bioassays 

See Chapter 1.2. 

1.4 3 ' -F luor oa bsci sic Acid as the Cycliza tion-Resis tant Ana logue 

Design Con cept 

The other way to confer resistance to 8'-HOABA cyclization is to lower the clectrophilicity m C-2'. 
To do this, Lhc energy level of LUMO of Lhc 2'-carbon must be increased. 

One approach is saturaling Lhc 2'-double bond. This analogue, (:t:)-2',3'-dihydro-ABA (64) has 

been synthesized by Oritani and Yamashita,% and its oplically pure isomers (65, 66) have been 

synthesized by Lamb and Abrams,97•98 but these compounds were not more effective than ABA. 

Investigation of Lhe metabolism of 65 and 66 has revealed Lhat their 8'-hydroxylated compounds cyclizc to 

the hemiketals by means of nucleophilic addition of the 8'-oxygen to the 4'-carbonyl carbon.99 That 

would explain why Lhc dihydro analogues were not strengthened despite blocking the cyclization to PA. 

Another approach is increasing Lhe n-clectron density at C-2'. This can be performed by reuucing 

Lhe 4'-carbonyl to alcohol and alkane, or by introducing the electron-donating group at C-3'. 1',-1'-Dioi

ABAs (67 and 68 , Fig. 15, p. 47)100 and 4'-deoxy-ABA (69)101 was less effective lhan ABA, suggesting 

Lhat Lhe 4'-carbonyl is necessary for aclivity, indicating Lhat introduction of Lhc clcclron-donating group 1o 
C-3' is preferable to Lhe modification at C-4' . 

Fluorine is a strong electronegative atom, but Lhe fluorine on sp2-hybridizcd carbons pushes rr

electrons by repulsing the n-clcctron and Lhe electrons of Lhe outermost shell of the fluorine atom to increase 

Lhc n-cleclron dcnsily of lhc (3-carbon. The substitulion of fluorine for 1he 3'-hydrogcn of ABA would 

increase Lhe n-clcctron density of C-2' by pushing Lhe n-elcctron at C-3' toward C-2' (Fig. 11 ), so the 

author designed 3'-fluoro-ABA (5). This modification should confer resistance to the nucleophilic addition 

of Lhe 8'-oxygen wilh minimal stcric change without removing the functional groups essential for activity. 

~OH o~H · ~ 2 ~OH o~H ~ 2 

64 65 

69 
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Results and Discussion 

Sy11thcsis 

Optically pure ( + )-5 was synthesized from ( l'S)-( +)-ABA (Fig. 12). The methyl ester 70a was 

synthesized stereospecifically by two methods. First, epoxidation of (+)-ABA with alkaline hydrogen 

pcroxidet 02 afforded only the oxirane 70, which was converted to the corresponding methyl ester (70a). 

Second, treating the mclhyl ester of ABA with hydrogen peroxide and tetrabutylammonium fluoridel03 

gave 70a with the same configuration at C-2' and C-3' as that of the 70a synthesized first. In the NOESY 

of 70a, there was an NOE between the 5- nnd 7'-protons. This finding suggested that C-7' in 70a was 

cis to the side chain; 70a was the a-oxirane. This stereoselective epoxidation may be caused by adding 

hydrogen peroxide from the lese; hindered o.-face, that is, the opposite side of the side chain (Fig. 12). 

lnc renction of 70a with a complex of hydrogen fluoride and N-ethyldiisopropylamine10-l afforded the 

fluoro-olefin Sa, probably via the fluorohydrin 7 1. Hydrolysis of Sa with alkali gave the free acid ( + )-5. 

( )-\B\( I ) i) or ii~ 

iv) 

0 
F 

e·)-s 

Fif!. 12. Svnthcsis of(+)-5 

1) a) 11 ~0~. '\aOH b) C 112 2 ii ) a) Cll2 '\ 2 b) II20 2 • Du41\F iii) £t(1-Prh' (HFh 
'') NaOil 
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The existence of a fluorine at C-3' in (+)-5 was proven by the disappearance of the 3'-proton in lH 

NMR and the appearance of 19F signal and 13C signals split by coupling with fluorine. The optical purity 

of ( + )-5 was confirmed by HPLC with a chiral column that gave only one peak under the conditions that 

give two separate peaks for the mcemic 5. The absolute configuration at C-1 ' in ( + )-5 was detem1ined to 

be S, as it had the same Cotton effects in the CD spectrum as (+)-ABA. 77 

The 13C signal of the 2'-carbon in (+)-5 appeared in a field higher by 24.7 ppm than that of (:t)

ABA.105 The 13C chemical shifts correlates to electron density in a carbon atom, !06 so this result showed 

that the electron density of C-2' in (+)-5 is higher than that in ABA as expected. In contrast to c-:~·. C-3' 

in (+)-5 shifted toward a low field by 23.9 ppm compared to that in ABA by repubion of the rr-dectron 

and the electrons of the outermost shell of fluorine atom. 

Biological activity 

The inhibitory activities of ( + )-5 in the lettuce seed germination and the elongation of the second leaf 

sheath of rice seedling were tested (Table 5). The activity of analogue (+)-5 was slightly higher than that 

of (+)-ABA in the lettuce seeds, and was almost equal to that of (+)-ABA in the rice seedlings. If the 

metabolism was suppressed, then the activity should be strengthened. Therefore, this result suggested that 

( + )-5 was metabolized in a manner similar to ABA. 

Metabolism in bean shoots 

To understand how ( + )-5 is metabolized, it was fed to bean shoots through the cut ends via 

transpiration stream for three days. The plant extmct was partitioned under acidic conditions to give EtOAc 

and aqueous extracts. 

Identification of 3'-fluoro-DPAs in the EtOAc extract. The EtOAc extmct was treated with 

diazomethane to methylate the free metabolites. This methylated extract exhibited three major peaks by 

gas-liquid chromatography (GLC) using a XE-60 column and an electron-capture detector with high 

selectivity and sensitivity for ABA and its metabolites.107 The retention time of the major peak agreed with 

that of Sa in GLC analyses using not only XE-60 but also OY-17 and SE-30. Therefore, the compound 

corresponding to this peak was identified as Sa derived from unmetabolized ( + )-5. Compounds giving the 

other two peaks were purified by column chromatography on silica gel followed by ODS. Finally, rwo 

compounds were isolated by HPLC. The more polar compound (75a) corresponded to the peak with the 

longer retention time in GLC with XE-60, whereas the less polar compound (76a) corresponded to the 

peak with the shorter retention time. Compounds 7Sa and 76a showed a molecular ion at m/z 314. In 

Table 5 . TheiCsoValuesfor(+)-ABA~d(+)-5 in Bioassays _ 

Compound 

(+)-ABA 

(+ )-5 

ICso in assay __ __ 

Rice seedling elongation Lettuce seed germination 

((.lM) (.l~--
2.1 5.0 

1.9 2.0 

35 



5.!111' = 40Hz ('H 

F 

HO OH 

7Sa 76a 

Fig. 13. Stntctures of 75a and 76a and the long-range 1 H- 19r couplings in 1H NMR. 

the 'If NMR analysis, they showed similar signals to the methyl ester of DP/\, except for those of the 3'

protons, which nppcarcd at a field lower by about 2 ppm than those of the methyl ester of DPA 108 and 

which were split by large couplings over 50 liz (Table 6). The presence of the fluorine at C-3' in each 

compound was confirmed by a 19F signal which appeared as a double doublet split by couplings with the 

.V- and 4'-protons (Table 7). These findings suggested that these compounds were the methyl ester of 3'

nuoro-DP/\s which were epimeric at C-3'. The absolute configuration at C-3' was determined on the 

tw.is of the long-range 'll-t9r couplings in 111 NM R. Compound 75a possessed the S'pro-R-proton 

with large long-range 111 19F coupling (8.1 liz), which depends on U1c W-arrangemcnt that can occur only 

when the 1' fluorine is in the equatorial a-position (Fig. 13). These findings showed that 75a was the 

methyl e'iter ol J'o.-nuoro-DPA (75). Compound 76a had a 5-proton exhibiting the 1H- 19F coupling 

(·1.0 liz) although it was separated hy five a-bonds, indicating that the 5-proton is spatially close to the 3'

lluorinc. 'I his type of relationship between the 5-proton and the 3'-fluorine is formed when the 3'-fluorine 

is in the axial ~-position (Fig. 13), so 76a was the methyl ester of 3'~-fluoro-OP/\ (76). Considering 

that the configuration at C -1' in the precursor ( -t )-5 is the same as that of natural ( + )-1\B/\, the absolute 

configuration of all the <t'iymmetric carbons in 75a was elucidated as ( l 'S ,2'S ,3'R,4' S ,6'R), while that of 

76a as (1 'S,2'S,3'S,4'S,6' R). 

Identification am/ properties of 3'-fluoro-8'-IIOABA and 3'-fluoro-PAs in the EtOAc extract. The 

presence of 75 and 76 suggested that 3'o.- and 3'B-fluoro-P/\s (73 and 74) which arc the immediate 

precursors of 75 and 76, respectively, must be in the EtO/\c extract. These compounds seemed to be 

minor peat..s in GLC with XE-60. In order to investigate the presence of the methyl esters 73a and 74a in 

the methylated EtO/\c e:-.tract, 73a and 74a as the standard samples were prepared from 75a and 76a , 

respectiYel\, b) Jones O:\idation.Hl9 These structures were ascertained by MS and 1H and 19F NMR data 

(Tables 6, 7). Immediately after purification, these compounds gave single peaks in HPLC and single 

spots in Tl.C When 73a was left for scvcml hours at 25•c, however, half of it was converted into two 

compounds. 'The minor compound was identified as 74a from the retention time in HPLC and its RJ in 

TLC. 111e major one 72a exhibited a peak with a retention time intennediate between 73a and 74a in 

IIPLC and a spot with the lowest fR among three compounds in TLC. Isolated 72a gave no signal 

corresponding to the 1'-proton of 7 3a, and showed a signal for the 7'-protons at a field lower by 0.51 ppm 

than that of 7 3a in 'II NMR (fable 7). ln 19p NMR, a singlet signal was observed at -134.8 ppm (fable 
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Table 6 . 1H HMR Data for 72a-76a in C'DCb 
- ---

H 72a * 73a** 74a** 75a** 76a** 

2 5.78 (br s) 5.85 (br s) 5.78 (bo) 5.79 (br s) 5.75 (hr s) 

3 7.90 (d, 16.0) 8.24 (d, 16.0) 8.09 (d, 15.8) 8.10 (d, 16.0) 8.00 (d, 16.0) 

5 6.00 (d, 16.0) 6.20 (d, 16.0) 6.30 (dd, 15.8, 6.13 {d, 16.0) 6.52 {dd, 16.0, 

SJIIf:3.2) ~JIU.-·l.O) 

6 2.02 (d, 1.3) 2.04 (d, 1.2) 1.99 (d, 1.3) 2.03 (d, 1.1) 2.0-1 (d, 1.2) 

3' 4.77 (d, 2J11p=46.8) 4.31 {dd, 1.1 , 4.33 (dd, 7.7, 4.55 (ddd, -1.6, I. 2, 

2Jut=-18.0) 2]11¥=50.0) 2Jut=51.5) 

4' 4.23 (m) 4.22 (m) 

5'-proR 2.45 (dd, 17 .5, 2.52 (dd, 17.4, 2.53 (dd, 19.0, 1.1) 1.98 (ddd, 13.8,4.7, 1.95 (ddd, 14 .1,4.0, 

4JuF=I.5) 41u~5.2) 4JII~8J) 1.2) 

5'-proS 2.54 (dd, 17.5, 2.60 (dd, 17.4, 2.6) 2.66 (ddd, 19.0,2.3, 1.62 (ddd, 13.8, 1.70 (ddd, 1-1.1, 

4Jup=3.9) 4Jup=0.6) 11.0, 2.4) 11.0, 1.9) 

7' 1.91 (d, 4111t=3.6) 1.40 (d, 4111p=L8) 1.37 (d, 411n=2.6) 1.29 (d, 41m=2.0) 1.34 (d, 4./m-1.0) 

8' 3.62 (dd, 11.2, 5.0) 3.72 (d, 8,2, Hs) 3.71 (d, 7.7, Hs) 3.75 (d, ItO, Hs) 3.68 (d, 8. 7. Hs) 

3.99 {dd, 11.2, 5.0) 3.98 (dd, 8.2, 2.6, 4.06 (ddd, 7.7, 2.3, 3.88 (dd, 8.0, 2.4, 3.86 (ddd, 8.7, 1.9, 

HR) SJ,u,=l.9, HR) IIR) SJIII·=-1.0, IIR) 

9' 1.13 (s) 1.08 (s) 1.04 (s) 0.99 (s) 0.96 (s) 

1'-0H 4.59 (s) 2.20 (s) 2.15 (s) 2.01 (s) 1.93 (s) 

4'-0H 2.25 (d, 3.5) 1.83 (dd, 3.2, 

•Jm- 10.1) 

8'-0H 2.34 (dd, 5.0, 5.0) 

C02 Me 3.71 {s} 3.74 {s} 3.73 {s) 3. 73 {s} 3.72 {s) 

* 300 MHz. ** 500 MHz. Values for the chemical shifts arc o (ppm). Multiplicity of signals and 
coupling constants (Hz) arc shown in parentheses. 

Table 7. 19F NMR (282 MHz) !Jata of(+)-5 in .J\cetone-</6 and 72a-76a in CDCh = 

_ C_o_m_,_po_u_n_d ___ ....;.;.,;..;..,;.;,;~,;_;;;_...;,;_ __ .;...;...;...;...;..~::.:.:.::.:..:...L _____ Coupling constants 

(+ )-5 

72a 

73a 

74a 

75a 

76a 

2J At = 46.8 Hz 
21 At = 48.0 Hz 
2Int = 50.0 Hz, 3Jm = 22.4 liz 
2]J"1 = 51.5 Hz, 3.Jm = 25.8 Hz 

Values for the chemical shifts are shown by ppm from CCI3F as the intcmal standard. 
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6). MS revealed that the molecular weight was 312, which agreed with those of 73a and 74a. These 

data c;(mwcd that 72a v.as the methyl ester of 3'-fluoro-8'-llOADA (72). Some of compound 72a was 

spontaneously and easily converted to 73a and 74a, while 74a wac; relatively stable and con' crtcd \'cry 

slowly to 72a and 73a. Each compound wac; converted finally into an equilibrium mixture of 72a, 73a 

and 74a at 2s•c in the ratio of 7:6:1, as determined by HPLC (Fig. 14). This would be caused by the 

weakened elcctrophilicity of C-2' by the effect of fluorine as expected. Such spontaneous back

isomerization of the cyclizcd metabolite c.1nnot be observed between 8'-I!OABA and (-)-PA. 

'l11c stability of 74a compared with 72a and 73a suggests that the energy barrier against the 

conversion of74a to other isomers i'> higher than that of 72a and 73a . The small proportion of 74a in 

equilibrium and the high energy barrier against the conversion indic.1ted that the isomerization to 74a is 

unfan>rahle both thermcxlynamically and kinetically. The thermodynamic instability of 74a would be 

e<ruo,ed by I ,1-diaxial stcric rcpulc;ion between the fluorine and the side chain. The 72an4a and 73an4a 

ratios in equilibrium suggest that 74a is less stable by 1 kcal mol 1 than 72a and 73a. The transition state 

for enoli;;ltion-kctonization between 74a and the enol 77a would be less stable than that between 73a and 

77 a . This is bcc.1usc there is less CJ-Jt interaction between the o-clcctron at the 3'-proton and the :n:

electron at the •1'-carbonyl when the entering or leaving proton has an equatorial orientation as opposed to 

an alternative a\ial oricntation. 110 This would cause a high energy barrier against the isomerization of 

74a . 

Compounds 72a, 73a and 74a afforded extremely broad peaks in GLC with XE-60, probably 

because of the fast intcrconvcrsion at high temperature and the inappropriate liquid phase or support. 

Detection of these compounds in the meth) latcd EtOAc extract was thus difficult in GLC with XE-60. 

/\picwn Grease L® gave better separation than silicon. GLC of 72a , 73a and 74a using Apiczon Grease 

L® gave the same chromatograms, which consisted of four peaks in the ra tio of about 6:1:1:6, although 

they were still broad and overlapping. All four peaks gave the ion at m/z 312 in GC-MS analysis, 

suggesting that they were not degradation products but isomers converted by the high temperature. The 

two high peaks among the four in GLC will correspond to 72a and 73a although it is unknown which is 

which. One of the two small peaks\\ ill correspond to 74a , and the other small one may correspond to the 

enol 77a . The lack of the enol 77a in IIPLC using a mixture of MeOII and water as the solvent can be 

C\plaincd by its instability in polar solvents. Enols forming intramolecular hydrogen bonds arc stabilized 

in apolar solvents especially in the gas phase, but they arc labile in polar solvents such as McOI I and 

chlorofo1m. 111 The enol77a, which can form intramolecular hydrogen bonding between the 4'-hydroxyl 

and J'-fluoro groups, may have these features. Metabolites 72-74 would also be intcrconvcrted via 77 i11 

,·il·o (Fig. 14). 

G l .C of the mcth) Ia ted l::tOAc e\tract with Apiezon Grease L ® confirmed the equilibrium mixture of 

72a, 73a and 74a . HPLC of the fractionc; purified from the extract revealed peaks with the same 

retention time as the standard samples of 72a and 73a . After isolation, these compounds were identified 

with 72a and 73a from the spectral data. A peak corresponding to 72a was not found due to the small 

amount and masking by overlapping peaks, but it must also be in the extract. l11c ratio among 

unmetaboli7cd (+)-5, metabolites 72-74, mctalx>litc 75 , and mctalx>lite 76 in the EtOAccxtract was 
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Fig. 14. Supposed oxidation pathway in the metabolism of ( + )-5 in bean shoots. 
"E" means the step catalyzed by an enzyme Percentages in the parentheses arc the 
compositions of methyl esters 72a, 73a and 74a in the final equilibrium in methanol 

estimated to be 1:2:1:1 from the contents of their methyl esters determined by GLC analyses using XE-60 

and Apiezon Grease L® (fable 8). 

The slight increase of biological activity of ( + )-5 in the lettuce seeds may be caused by the stability of 

78 which would maintain the activity, or else by the higher affinity of ( 1 )-5 for the receptor involved in the 

inhibitory activity in lettuce seed germination than ABA. However, the stability of 72 is not enough to 

give (+)-5 prominently high activity since 72 could be metabolized to 73 and 74 , and then to 75 and 76. 

Involvement of enzymes in the cyclizing step. The ratio between metabolites 7 5 and 7 6 , 1: 1, was 

inconsistent with the 73aJ74a ratio (6:1) in equilibrium. If the cycliurtion of 7-t occurs nonenzymatically, 

the ratio of 75 to 76 must be 6:1. This discrepancy supports the participation of the cyclization cru:yme in 

this convcrsion57; metabolite 72 would be enzymatically converted to 7 4 , which then may be isomerized 

to 72 and 73 owing to equilibrium before being reduced to 76, or some of 72 may be isomerized 

depending upon equilibrium to 73 before being enzymatically cyclizcd (Fig. 14). The tendency of the 4'-
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Table 8. I11e Recov_£!)'~-5 and its Metabolites 72-76 from Bean Shoots 

Released by J.rydrolysis of the conjugate fraction with 

Compound ___ In the EtOAc.::.:ex::..;.t::..::rn:..:.ct:.__ ____ alkali B-glucosidase 

( + )-5 

72 -74 

75 

76 

0.6 mg 

1.2 

0.6 

0.6 

(13) 

(7) 

{7} 

0.3 mg (3) 0.3 mg (3) 

0.2 (2) 0.2 (2) 

trace trace 

trace trace 

Compounds were analyzed as the methyl ester and their weights were detem1ined in GLC with l% 
XE-oO and 1% Apiczon Grease L® columns. The ratios of conversion of the applied ( + )-5 (9 mg) 
into each metabolite were presented in percentage in the parentheses. 

carbonyl to accept nuclcophilcs would be enhanced more intensely by the 3'-axial, than by the equatorial 

fluorine, !'lCc<1uc;c the former can ha' e a o-n interaction with the Jt bond of the carbonyl more effcctivcl) 

than the !alter. Therefore, the 4'-carbon in 7 4 may be allackcd by hydride ions more easily than that in 

73, that is, 74 may be metabolized more quickly than 73. Alternatively, 74 may have higher affinity for 

the acti\'e site of a reductase than 7 3. These might contribute to the increase of 7 6 . 

flydrolysis of the mnjugates. The conjugate fraction from the aqueous extract was hydrolyzed with 

alkali or f\ glucosidase before being extracted with EtOAc under acidic conditions and methylated for GLC 

analyc;is w .. ing XF-60 and Apiezon Grease L® columns. These extracts yielded similar results. 

Compounds Sa and 72a-74a were found in the ratio of 3:2, and the 75~• and 76a levels were low (fable 

H). This suggested that most of the conjugated metabolites arc C-1-glucosyl esters, not C-L'- or C-8'· 

glucosides. Tne total amount of the conjugated metabolites was less than that of the free metabolites, 

indicating th<lt the oxidation pathway mostly concerns ( + )-5 in bean shoots. 

In conclusion, the introduction of fluorine at C-3' in ABA increased the electron density at C-2' so 

much that the methyl esters of 3'-nuoro-8'-IIOJ\BA and 3'-nuoro-PJ\s coexisted at equilibrium by the 

partial resistance of C-3' to attack by the 8'-hydroxyl group because of the effect the fluorine atom at C-3' 

ha-; on C-2'. This finding shows that introducing an electron donating group at C-3' is effective to reduce 

the nucleophilic addition of the 8'-hydroxyl group. 

E:\ pcrimental 

Gr11eral proc<'dures 

ll1e t II and De NMR spectra were recorded with TMS as an internal standard at 300 or 500 Mllz 

for t11 andl25 MH7 for 11C using Bruker ARX500 and ACJOO instruments. For clarity, the atoms of all 

the compounds with the cmbon skeleton of AI3J\ were numbered as in ABA in the assignment of peaks. 

ltJF NMR spectra were recorded at 282 MHz on a Bruker J\C300. t9p chemical shifts were reported in 

ppm from CCbF as an internal reference and the higher field resonance from the CCbF signal wac; 

assigned as negati\'c. Mass spectra were recorded at 70 eY with a Jeol JMS-DX300/DJ\5000 mass 
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spectrometer. CD spectra were recorded with a Jasco J -720w spectropolarimeter. Optical rot at ions were 

measured with a Jasco DIP-1000 digital polarimeter. 

2'o.,3'o.-Dihydro-2'o.,3'o.-epoxyabscisic acid (70) 

To a stirred solution of (+)-ABA (200 mg, 0.76 mmol) in MeOH (20 ml) were added 30% H202 

(0.2 ml) and 6 N NaOH (0.6 ml) at o·c. The mixture was stirred for 8 hr at o·c and made up to 40 ml 

with H20. After lowering the pH to 2 with 3 N HCl, the mixture was e.\tracted with EIOAc (30 ml x 3). 

The organic layer was washed with 1120, dried over Na2S04 and concentrated under reduced pressure. 

The residue was purified by chromatography on silica gel (12 g) with hexane-EtOJ\c-AcOII (80:20:3) to 

afford 70 (114 mg, 54% yield) as a colorless oil. 1H NMR (500 MILl, CDCb): b 0.9-l (311, s, H3-9'), 

0.99 (3H, s, H3-8'), 1.39 (3H, s, 1[3-7'), 1.83 (1H, d, J = 14.7 liz, 11-5'), 2.07 (JH, s, ll 3-6), 2.67 

( LH, s, OH), 2.84 (1 H, d,J = 14.7 Hz, H-5'), 3.30 (1H, s, H-3'), 5.79 (1H, s, 11-2), 6.11 (I 1!, d, ./ -

15.8 Hz, 11-5), 8.03 (111, d, J = 15.8 Hz, 11-4); UV Ama'( (MeOII) nm (E): 253 (15,700); (o.]~)6 +6" 

(MeOH, c 0.41 ); ElMS m/z (rei. int.): 280 fM]+ (6), 2621 M - f·bO]+ ( 4), 251 (22), 206 ( ll ), 196 (25), 

178 (33), 151 (50), 135 (20), 121 (42), 111 (76), 94 (26), 85 (100); IIR-EIMS: IMJ+ atm/z 280.1307 

(CtsHzoOs requires 280.1311). 

Methyl 2'o.,3' o.-dihydro-2 'o. ,3' a.-epoxyabscisate (70a) 

Method i). Ethereal CHL.N2 was added to 70 (100 mg, 0.36 mmol) in MeOH (3 ml) at r<X)m 

temperature until a yellow color persisted. The mixture was left for 1 hr at room temperature, and 

concentrated under reduced pressure to give 70a ( 105 mg, quantitative yield) as a colorless oil. 

Method ii). l03 The methyl ester of (+)-ABA was prepared from ( t )-ABA by the same method as 

method i). To a stirred mixture of the methyl ester of (+)-ABA (100 mg, 0.36 mmol) in dimethyl 

sulfoxide and 30% 11202 (180 ml) was added dropwise, tetrabutylammonium fluoride (1.0 M 

tetrahydrofuran solution, 2.36 ml, 2.36 mmol) at room temperature under nitrogen. The mixture was 

stirred at the same temperature for 5 hr. H20 (30 ml) was added and the product was extructed with 

EtOAc (20 ml x 3). The organic layer was washed with 1120, dried over Na2S04 and concentrated under 

reduced pressure. The residue was purified by chromatogruphy on silica gel (2 g) with hcxane-EtOJ\c 

(8:2) to give 70a (44 mg, 41% yield). 1H NMR (500 Mllz, CDCb): b 0.93 (311, s, H3-9'), 0.99 (311, 

s, H3-8'), 1.39 (3H, s, H3-7'), 1.83 (1H, dd, J = 14.6 and 0.7 Hz, 11 -5'), 2.03 (3 11 , d, J = 1.1 liz, 113-

6), 2.83 (1H, d, J = 14.6 Hz, H-5'), 2.87 (UI, d, J = 0.7 liz, OH), 3.29 (UI, br s, H-3'), 3.34 (3 H, s, 

OMe), 5.77 (lH, br s, H-2), 6.06 (1 H, d, J = 15.8 Hz, ll-5), 8.07 (111, d, J = 15.8 liz, H-4); ElMS m/z 

(rei. int.): 294 [M]+ (5), 276 fM - 1120]+ (2), 265 (15), 238 (12), 210 (17), 206 ( 17), 195 (27), 178 ( 41 ), 

165 (17), 151 (56), 135 (23), 125 (100); IIR-EIMS: IMJ+ at m/z 294.1464 (Ct6H220s requires 

294.1467). 

Methyl 3'-fluoroabscisate (Sa) 

A stirred solution of 70a (21 mg, 0.071 mmol) in N-ethyldiisopropylamine (0.5 ml) and N

ethyldiisopropylamine tris(hydrofluoride)t04 (40 ml) was heated at 145"C for 4 hr. The solution was 

poured into 3N HCl (20 ml) and extracted with EtOAc (20 ml x 3). 111e organic layer was washed with 
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saturated aqueous 1 al !CO~ and H20, dried O\ er !'.a2S04, and concentrated under reduced pressure. The 

residue was purified hy chromatography on silie<1 gcl (2 g) to give Sa (6 mg, 28% yield) as a colorless oil. 

Ill 1\MR (500 Mllz, CDCIJ): o 1.04 (311, s. 11 '3-9'), 1.14 (3H, s. l13-8'), l.R7 (3H, d, 
4
Jnr = 3.5 Hz, 

1 IJ-7'), 2.02 (311, d, .I = 1. I liz, H3-6), 2.11 (ill, s, Oil), 2.43 (111, dd,.! = 11).9 and 4./m: = 4.4 liz, H

S'pm R), 2.49 (111, d . .! = 16.9 Hz, ll-5'pro-S), 3.71 (311, s, OMc), 5.78 (1 H, br s, 11 -2), 6.09 (HI, d, 

.1 16.1 117, 11 -5), 7.88 (I II, d,J = 16.1 Hz, 11-4); UV Amax (MeOII) nm (E): 262 (23,100); IR Vma~ 

(CIICI3) em 1: 3500, 2950, 1690, 1650, 1630, 1600; ElMS m/z (rei. int.): 296 [M]+ (4), 278 [M

ll zOI+ (S), 264 (6), 246 (4), 223 (6), 208 (70), 183 (46), 180 (50), 165 (15), 152 (55), 125 (100); HR

IIMS: IMI+ atm/z 296.1440 (Ct6H2t04F requires 296.1424). 

(+)-3'- lluoroahscisic acid (5) 

To a solution of Sa (42 mg, 0.14 mmol) in McOII (1 ml) was added IN NaOII (0.8 ml). The 

mixture was stirred at room temperature for 3 hr, then H20 (30 ml) was added. After lowering the pH to 2 

with 3N I! CI, the mixture was extracted with EtO/\c (20 ml x 3). The organic layer was washed with 

11 20, dried ove1 Na2S04, anc.l conccntrntcd under reduced pressure. The residue was chromatographed on 

silica gel ( 16 g) under pressure to afford (±)-S (38 mg, 95% yic\d) as a white amorphous solid. 
111 NMR 

('iOO Milt, acctone-<16): o 1.07 (3Il, s, 113-9'), 1.11 (3H, s, ~13-8' ), 1.85 (311, d, 4JuF = 3.5 liz, 11 3-7'), 

2.07 (.111 , d , .1 = 1.0 Hz, 1!3 6), 2.33 (111, br d, J = 16.8, 11-5'), 2.63 (1H, d, .J = 16.8 liz, H-5'), 5.78 

(Ill. brs, 11 -2), 6.39 (1 11 , d,./ = 16.0 Hz, H-5), 7.93 (HI, d,.J= 16.0 Hz, H-4); 13C NMR (125 MH7 , 

acctone-..16): o 10.4 (d, 3./Cf· = 4.7 liz , C-7'), 21.0 (C-6), 23.2 (C-8'), 24.3 (C-9'), 42.1 (C-6'), 49.3 (d, 

~lu- 4.0 117 , C-5'), 79.5 (d, 3Jcr = 5.1 Hz, C-1'), 118.7 (C-2), 128.8 (C-4), 137.4 (d, 4Jcr· = 2.5 Hz, 

C-S). IJ8.3 (d, "2Ju -= 6.4 liz, C-2'), 150.7 (C-3), 151.0 (d, 1Jcr= 258.4llz, C-3'), 167.0 (C-1), 189.0 

(d, 2.Jcr 20.5 liz, C-4'), : [a]g +264" (MeOil, c 0.32); CD Acxt (MeOII) nm (t.E): 327 (-1.5), 260 

( r27.2), 231 (-21.6); UV Ama:<(McOII) nm (E): 247 (24,300); ElMS m/z (rei. int.): 282 fM]+ (6), 264 

IM .. 1120]+ (22), 249 (15), 239 (15), 223 (13), 208 (100), 183 (85), 180 (68), 165 (22), 152 (66), 124 

(17), Ill (48); IIR-EI MS: [M]+ at m/z 282.1263 (Cisll!90..tF requires 282.1267). The 111, 13C and 

1\lf NMR data arc listed in Tables 6 and 7. 

(:!:)-3'-Fiumoa/Jsci.\/C acid 1(!-)-S J aii(///PLC analysis with a cltiral column 

In the same manner as (t)-S, (:!:)·5 was synthesized from (±)-ABA The racemate (:!:)-S gave two 

scparnte peaks with retention times of 8.2 and 9.4 min in HPLC with a Chiralcel 00 column (4.6 x 250 

mm, Daiccl; soh ent, 11% i PrOH in hexane containing 0.1% TF/\; flow rate, 1.0 ml min-1; detection, 

25·1 nm). Optically active ( t- )-5 afforded only one peak attn 8.2 min under the same conditions. 

Plantmatc1 ial ami application of ( + )-5 112 

lkan plants (Phaseolus I'll/garis L. cv. Kentucky Wonder) were grown in a greenhouse for 20 days 

until the primar) lea' es were mature and the first trifoliate leaf half expanded. The temperature in the 

greenhouse was maintained hclow 23•c during the day, and above 15"C during the night. To introduce 

compounds "ia the transpiration stream, the stems were cut at 0.5 em above root apex under degassed 

water For appliC<ttion to bean shoots, an acetone (0.6 ml) solution of ( + )-S (9 mg) was mixed with about 
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50 mJ of Tween 20 and filled up to 150 ml with H20. 1nirty shoots were placed in the solution for three 

days under continuous light (5000 lux) at 25"C. The vessel was covered with a sheet of black 

polyethylene to prevent photo-isomerization. 11 PLC analysb of the solutions after the application showed 

that 8.5 mg of ( + )-S was incorporated into the shoots. 

Extraction from bean shoots 

Plant samples (66 g, fresh weight) that incorporated (+)-S were frozen in liquid nitrogen, pulverized 

and extracted with MeOH (400 ml) containing 10 mg mJ·1 2,6-di-tert-butyl-4-mcthylphenol for three days. 

After filtration, the tissue residue was washed several times with methanol. ll1e combined filtrates were 

concentrated to a small volume and were brought to 250 ml with H20. After lowering the pH to 2 with 3 

N HCl, the solution was extracted with EtOAc. The organic layer was washed with H20 and concentrated 

under reduced pressure to give the EtOAc extmct (334 mg). The aqueous layer, after adjusting the pH to 

5, was concentrated under reduced pressure to give the aqueous extmct (38 mg). 

lsolatiOII of metabolites from the EtOAc extract 

To a solution of the BOAc extract (310 mg) in BOAc (2 ml) was added ethereal CH2N2 until a 

yellow color persisted. The mixture was left for 0.5 hr at room temperature, then the solvent was 

removed. The residue was appl ied to a column packed with silica gel (15 g) and eluted with 10, 20, 30, 

40, 60 and 80% in toluene. The 40 and 60% BOAc fractions were combined and concentrated under 

reduced pressure. The residue was purified further by chromatography using ODS (AM 120-SSO, YMC, 

16g) with 60% MeOH in 1120 to give 2 mg of a crude oil. The crude oil (2 mg) wa!> injected into an 

I IPLC column (mBondasphcre 5m C18-100A, 19 x 150 mm, Waters; solvent, 55% McOII; flow rate, 10 

ml min·1; detection, 254 nm). The materials with tR 8.2 and 13.9 min were collected to give 7Sa (0.3 

mg) and 76a (0.3 mg) as colorless oils, respectively. The eluate containing other materials was injected 

into the HPLC column again. The material with tR 9.8 min was collected to give 72a (0.1 mg) as a 

colorless oil. The 30% EtOAc fraction was concentrated, suspended in MeOI!-1120 (9: I), then 

chromatographed in portions over Scp-Pak® C18 (original type, Millipore) using 30, 60 and 80% McOIL 

The 60% MeOH fraction was injected into a HPLC column (AQ 3 11, 6 x 100 mm, YMC; solvent, 55% 

MeOH; flow rate, 2 ml min· 1; detection, 254 nm). The material with tR 2.7 min was collected to give 

73a (0.1 mg) as a colorless oil. 75a: [a]g -80" (MeOIJ, c 0.014); UV Amax (MeOII) nm (e): 264 

(22,000); ElMS m/z (rei. int.): 314[M]+ (12), 296[M - 1120]+ (16), 282 (5), 264 (6), 237 (15), 221 (6), 

195 (7), 177 (14), 163 (21), 154 (34), 135 (30), 122 (100); IIR-EIMS: [M]+ at m/z 314.1522 

(C16H2305F requires 314.1529). 76a: [aJ11 
-197" (MeO!l, c 0.0158); UV Amax (MeOII) nm (e): 267 

(22,000); ElMS m/z (rei. int.): 314[M]+ (8), 296 [M- H20]+ (17), 282 (6), 264 (6), 237 (8) , 219 (5), 

195 (10), 177 (14), 163 (24), 154 (29), 135 (31), 125 (100); HR-EIMS: [Mj+ at m/z 314.1502 

(Ct6H230sF requires 314.1529). 72a: UV Amax (MeOl-l) nm (E): 263 (24,000); FIMS mlz (rei. int.): 

312 [M]+ (6), 294 [M - H20]+ (13), 280 (14), 264 (24), 249 (10), 239 (15), 221 (10), 208 (30), 199 

(18), 179 (23), 163 (14), 152 (29), 125 (100); HR-EIMS: [Mj+ at m/z 312.1376 (Ct61lzt0sF requires 

312.1373). 73a: UV Amax (MeOH) nm (E): 263 (18,500); E!MSm/z (rei. int.): 312[MI+ (34), 294 [M 

- H20]+ (5), 292 (3), 280 (14), 264 (8), 249 (5), 239 (10), 221 (10), 208 (14), 177 (24), 163 (31), 154 

43 



(32}, 135 (3g), 125 (100); liR-EIMS: [MI+ at m/z 312.1366 (Ctoll2t0sF requires 312.1373). The 1H 

and 19£ N\1R o;pectral data arc lic;tcd in Tables 6 and 7. The value of the optical rotation of 72a and 73 a 

was too small to be measured. 

1/vdroly.\H of the conjugate fraction with alkali and fi-glucosidase 

' I11c aqueous extract (38 mg) was roughly purified by chromatography on ODS (16 g). The first 

fraction that eluted with H20 was discarded, and the second McOII fraction was concentrated to give the 

conjugate fraction (34 mg). To the conjugate fraction (15 mg) was added 1 N NaOH (45 ml), and the 

mixture was left at room temperature for 6 hr. The conjugate fraction (15 mg) was made up in 0.05 M 

citratc-o;<xlium citrate buffer (pll 5.0, 30 ml), and B-glucosidasc (EC 3.2.1.21, Sigma G0395. 235 units) 

wac; added. The mixture was incubated for 6 hr at 37"C. The residual conjugate fraction (4 mg) was not 

hydrolyzed. After lowering the pi I to 2 with 3 N HCI, these solutions were extracted with EtOAc, 

respectively. The organic layers were washed with saturated aqueous NaCI, dried over NazS04 and 

concentrated to give 13, 12 and 3 mg of crude oils, respectively, which were treated with ethereal C II2N2 

before analysis by GLC. free compounds [(+)-5 and 72-76] were not detected in the organic layer of 

non-hydrolyzed-conjugate fraction. 

Preparatirm of methyl 3' a fluomplwsc•ate (7 3a) and methyl 3' fi-fluorophaseate (7 4a) 

l'o a stirred solution of 75a (0.1 mg) in acetone (0.5 ml) was added Jones rcagent 109 (25 ml) at 5"C. 

'Inc mixture was stirred for 0.5 hr at 5"C. I 120 (5 ml) was added to the mixture, and the solution was 

extracted with EtOAc. The organic layer was washed with I 120, dried over NazS04 and concentrated 

untie! reduced pressure. 1l1c residual oil was purified by chromatography on silica gel (0.8 g) with 

hcxanc-EtOAc (7:3) to afford 0.1 mg of 73a quantitatively as a colorless oil. In the same manner, 76a 

(O.Jmg)gavc 7 4a (0.1 mg)asacolorlcssoil. 74a : UVAmax(McOII)nm(E): 264(18,000); EIMSm/z 

(rei. int.): 312 [MJ+ (28), 294[M- H20]+ (4), 292 (4), 280 (15), 264 (5), 251 (5), 233 (12), 208 (10), 

191 (12), 177 (24), 163 (29), 154 (31), 135 (34), 125 (100); II R-EIMS: (M]+ at m/z 312.1367 

(Ct6112t OsF requires 312.1373). The 111 and l9f NMR spectral data arc listed in Tables 6 and 7. The 

other data for 73 a arc described above. The values of the optical rotation of 74a were too small to be 

measured. 

Gas liquid chromatography (GLC) and nc 
GLC proceeded using 1% XE-60 (support, Chromosorb W) column (3.2 mm x 2m) at 210"C or I% 

Apie10n Grew.;e L® (c;upport, Shimalitc Q®) column (3.2 mm x 0.5 m) at 190"C at a nitrogen flow of 60 ml 

min 1, with an electron-c<tpturc detector. The retention times of Sa , 7Sa and 76a in XE-60 were 5.8, 8.1, 

and 4.(i min, respectively and those in Apienm Grease L® were 6.0, 9.4, and 8.0 min, respectively. The 

retention times of the four peaks of 72a, 7 Ja and 7 4a in Apiczon Grease L ®, respectively, were 6.0, 7 .8, 

10.2 and 12.1 min. Contents of the metabolites in extracts were determined on the basis of e<tch peak area 

considering the difference in the sensitivity of the electron-capture detector which was calculated from the 

analysis of standard samples (sec Table 8). Metabolites were analyzed by silica gel TLC using Kicselgcl 
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60 F254 (thickness, 0.2 mm, Merck) in a solution of hcxanc-EtOAc (1:1). The Rf values of 72a, 73a, 

74a, 75a and 76a were 0.50, 0.61, 0.73, 0.22 and 0.28, respccti\'CI). 

GC-MS 

GC-MS was conducted with 1% Apiczon Grease L® column (2.6 mm x 0.1 m) and a helium now of 

150 ml min· 1
. The temperature was maintained at 2oo·c for initial 10 min, then raised from 200 to 22o·c 

ataratcof2"Cmin·1. The ions observed in all the four peaks (retention time 8.2, 11.6, 14.4, and 16.4 

min) of a mixture of 72a , 73 a and 7 4a at equilibrium, m/z (rei. int. of peaks in the mtio of 6:1:1:6, 

respectively): 312 [M]+ (8, 8, 10, 10), 294 (3, 8, 5, 6), 280 (9, 8, 7, 7), 264 (9, 17, 17, 12), 249 (6, H, 

14, 10), 233 (12, 12, 14, 16), 221 (10, 22, 20, 16), 208 (10, 20, 14, 10), 191 (12, 25, 20, 18), 177 (17, 

21, 22, 20), 163 (30, 21, 33, 22), 154 (20, 25, 33, 17), 135 (32, 32, 32, 29), 125 (100, 100, 100, 100). 

Bioassays 

Sec Chapter I.2 . 
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Chapter II 

The Role of the Hydroxyl Groups for Abscisic Acid Activity 

A potential analogue with high affinity for the ABA receptor would show universally strong activity. 

Design of highly potent analogues with strong affinit) for the ABA receptor requires precise structures for 

binding. This may he directly investigated by analyzing a complex of ABA and the receptor. However, 

no ADA-binding protcinc; including the receptor and carrier, have been isolated owing to their low 

ahund;mcc, which is a common obstacle to purifying plant proteins, tt:l so the structural requirements for 

ABA activity arc supposed only by comparing the activities of active and inactive analogues. In this 

chapter, the author considers the status of structure-activity investigations, dc'icribcs the design of two 

mononumo analogues with which to probe the role of the hydroxyl groups which have not been 

investigated in detail so far, und discusses the role bused on the activity of the synthesized analogues. 

11. 1 In t roduction 

Recep to r and Up ta ke Carrier 

The only report on AHA-binding proteins was published by Hombcrg and Weiler in 1984. 114 They 

demonstwted that AB/\ photoinductivcly cross-links with guard cell protoplasts in proteins located at the 

outward facing plasma membrane. This suggested that ABA is detected by outward-facing plasma 

membrane receptors. In 1994, however, there were connicting reports about the site perceiving ABA. 

When ABA was microinjccted directly into guard cells, it caused stomatal closure accordi ng to Allan et 

a/. tiS and Schwartz. ct at.lt6 whereas Anderson et af.ll1 found that it docs not inhibit stomatal opening. 

To harmonize these connicting results, it has been speculated that the effects of ABA on stomatal closure 

arc mediated by an intracellular receptor while those on opening arc mediated by an extracellular 

receptor.llR In barley aleurone protoplasts, ABA microinjcctcd into the cytoplasm had no effect on a-

amylase gene expression and secretory activity, suggesting that ABA is detected at the external face of the 

plw;ma mcmbrane.119 At present it remains unclear whether the ABA receptor is located in the cytoplasm, 

at the external face of the plasma membrane, or in both. Second attempt at photoaffinity labeling the ABA 

receptor has not yet been reported, al though in 1993, Wi llows and Mi lborrow synthesized 1-azido-AB/\ 

(7 8) as a photoaffinit) probe. t8 and in 1995 Cornelusscn er a/. reported the UV-induccd cross-linking of 

f h. d' . 2t ABA through its cnone chromophorc to anti-AOA antibodies as models o ABA- m mg protems. 

Another approach to in\'c.c;tigating the ABA receptor may be the usc of anti-idiotypic antib<xlics as 

receptor probcs.l~O I lowe\ cr. Hitc ct a/. doubt the feasibili ty of using anti-idiotypic antibodies produced 

through the usc of 4'-substitutcd AB/\ to isolate the ABA receptor, because substitution of hydrazones for 

the 4'-carbonylof ABA renders it inacti,·e in the stomatal assay .t21 

If the ABA receptor exists inside cellc;, the uptake of ABA into cells by the c.arrier would be 

signific<~nt for exhibiting biological activity. It has been reported that the carrier-mediated ABA uptake by 

tissues t:Z-1:!.5 and cultured cells t:6 tlt occurs in addition to the non-mediated diffusive uptake of 

undissociated ABA "hich is lipid-soluble. The uptake carrier is cono;idcred to act as an ABA"fH+ symport 
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Fig .IS. Binding of the diastereomeric diols (67, 68) and ABA to the uptake can ier based on 
the Mi lborrow's speculation91 

(ABA-: the dissociated species of ABA), l26 which is specific for (l 'S)-( +)-ABA, K m =ca. 1.0 11M. The 

detailed stereospecificity of the uptake has been investigated in root segments124 and in cultured cclts127 of 

bean (Phaseolus coccineus L.) and (±)-(2£)-ABA (12), (l'R)-(-)-ABA and (±)-1',4'-mms-diol-ABA (68) 

did not reduce the uptake of (±)-[2-14C]-ABA, whereas (l'R)-( + )-1'-deoxy-ABA (79), (:)-1',4'-cis-diol

ABA (67), the methyl ester of (l'S)-(+)-ABA (Ia) and a- and 1~-ionones (80 and 81) specifically 

inhibited it. The highly inhibitory effect of 79 suggested that the !'-hydroxyl group is not necessary for 

ABA to bind to the carrier. Moreover, since 67 inhibited the uptake of ABA more effectively than 68 , 

Milborrow and Rubery have presented the notion that the geometry of the 4'-hydroxyl group innuenccs 

ligand-carrier interaction (Fig. 15). 124 This is assuming that the 4'-hydroxyl on the B-face (upper face) of 

the ring of 68 sterically inhibits binding to the active site on the carrier; that is, ABA interacts on t11c B-face 

of the ring with the carrier su rface. This manner of binding means that the e<trricr surface must be convex 

if ABA binds to the carrier in the favored half-chair with the pseudo-axial side chain (conformation of ABA 

is referred later). Therefore, Milborrow speculates that ABA binds to lhe carrier in the disfavored half

chair with the pseudo-equatorial side chain; that is, the binding manner that allows the e<trricr to assume a 

flat surface. 91 The high affinity of 81 to the carrier supports this speculation because the side chain of 8 1 

is frozen in the equatorial dircction.l27 

! lowever, in carrot suspension cultured cells Windsor et a/. 130 obtained results different from those 

of Milborrow and Rubery in bean root segments. The inhibitory effects of the 1',4'-diols 67 and 68 on 

(1'S)-(+)-[2-14C)-ABA uptake were similar and smaller than that of (l'S)-(+)-A13A. Milborrow's 

speculation about the binding of ABA to the carrier may have a narrow application. Also, ( 1 'R) (-)-ABA 

competed equally with (l'S)-(+)-ABA at a docking site on the carrier of carrot suspension culture cells, but 
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it was taken into the cells more slowly than (l'S)-(-)-ABA, suggesting that the c.1rricr-mcdiatcd ABA 

uptake is biphasic. (2/~)-AJ3A, the methyl ester of optically active ABA, PA and 4-acetylenic analogues 

(82) were less effective than ( J'S)-( +)-and (l'R)-(-)-ABAs, while biologically inactive 7'-hydroxy-ABAs 

(27). biologically active (I'S,2'S)-2',3'-dihydro-ABA (65) and inactive (l'S,2'R)-2',3'-dihydro-ABA 

(66) were ;~s equally effective as (l'S)-(+)- and (l'R)-(-)-ABAs, suggesting that the structural 

requirements for binding to the carrier differ from those for biological activity. ABA uptake into cells may 

be of little significance for the biological activities, suggesting that the receptor responsible for expression 

of the activity exists at the plasma membrane Therefore, in designing highly active analogues, affinity for 

the uptake carrier may be disregarded. 

Structure-Activity Relations hips 

111c activity is ;~ffected by several factors including chemical stability, permeability, affinity for the 

binding proteins and metabolism. The activities of many ABA analogues have been examined using 

different assays undc1 various conditions,84 so it is difficult to precisely quantify the structure-activity 

relationships of AI3A. Considering this, the qualitative structural requirements for ABA-activity is shown 
in fig. t 0.72.84,92,<n,95 t0t,t2t,t:\2-150 

Structural factors of Al3A involved in the expression of the activity arc (1) methyl groups at C-6, C-

7', C-8' and C-9', (2) C-C double bonds at C-2, C-4 and C-2'. (3) oxidi7cd 1-carbo\yl, !'-hydroxyl and 

4'-carhon) I groups, as well as the 8'-hydroxyl group introduced metabolicall) and (4) conformations of the 

si\-membered ring and side chain. The absence of any one functional group reduces the activity, although 

to 'arious degree" rhis mc,ms that all the functional groups play a role in binding to the acth·e site on the 

receptor. Inc meth~ I groups, C-6 and C-7'. seem to be recognized spccificall) b) the receptor, whereas 
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Fig. 16. Structural requirements for ABA activity supposed by the activity of'known analogues 

C-8' and C-9' arc considered to increase the hydrophobicity of the molecule with higher permeability to the 

lipid bilayer or stronger affinity to the hydrophobic region in the active site. 'Inc C-C double bonds of the 

side chain may give the appropriate geometry to anchor C-6 and the !-carboxyl to the right binding site, 

while the 2'-double bond may fix C-7' in the right direction. The !-carboxyl, !'-hydroxyl am14'-carbonyl 

groups arc assumed to bind to polar residues of the active sites by hydrogen bonding or by other 

electrostatic interactions, but details of the role of the oxidized groups of ABA arc unknown. lnc active 

conformation is described in detail in Chapter III. 

Modifying the hydrophobic sites of the ABA molecule would have little effect on increasing affinity 

for the receptor, because the hydrophobic interaction cannot be strengthened without significantly 

increasing the steric bulkiness that stcrically hinders binding to the active site. On the other hand, the 

hydrogen bond and electrostatic interactions through the oxidized groups of ABA can be strengthened by 

replacement with another electronegative atom or its introduction to the neighboring groups with an 

alteration in the elcctronegativity and dipole moment without changing the steric bulkiness. Replacement 

of the oxygen of ABA with another electronegative atom can not only reveal the binding manner of the 

oxidized groups but also increase the binding energy. 

The requirement for the 1'-hydroxyl group for activity has been probed only with l'-dcoxy

ABA132·151 which can be converted to ABA in plants, 152·153 so this remains unclear. 8'-I IOABA is too 

unstable to examine its activity, so how the 8'-hydroxyl group is involved in the expression of the activity 

remains unknown, although the borate complex of 8'-HOABA is active. 56 Therefore, the author designed 

new analogues with which to probe the binding manner of the 1'-hydroxyl and b' hydroxyl groups and 

which may have high affinity for the binding proteins. 
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11.2 J '-Deoxy-1 '-Fiuoro- and 8'-Fiuoroabscis ic Acids as Probes fo r t he 
Ro le of the Hydroxyl Groups 

Design Concept 

l·luorination of biologically active compounds is useful not only for designing metabolically stable 

analogues ns <.lcsctihe<.l above, but al<oo for studying interactions of the hydroxyl groups in compounds with 

binding molecules including a carrier, a receptor and a metabolic enzyme.65 The C-F group of monofluoro 

alkane is c.,terie<llly and electronically similar to the C-OH group. 154 The di<>tinct difference between 

fluorine and hydroxyl groups is the capability for hydrogen bonding. TI1e hydroxyl group can be both a 

donor and an acceptor, where<1s fluorine can act only as an acceptor. 154 These properties of fluorine make 

the monofluorinated analogue a valuable probe with which to investigate the role of the hydroxyl group in 

hintling to the active sites. Additionally, the monofluoro group as a mimic of the hydroxyl group can 

irreversibly hind to the binding proteins, and cause a fatal effect on the bioorganism.65 

Thus, the author designed 1'-deoxy-1'-fluoro-ABA (6) and 8'-fluoro-AUA (7) as monofluoro 

analogue<, of AI3A and H'-IIOABA which can help to identify the function of the hydroxyl groups in 

intemetions with the binding molecules involved in the expression of the activity. TI1e activity of 7 would 

also give that of H'-1 IOABA. If these analogues have strong affinity for the receptor or bind irreversibly to 

the metabolic enzymes, they can be used as labeling compounds with which to isolate the binding proteins. 

Resu lts and Discu ss io n 

Svnthesis nnd identification 

Racemic 6 v. as synthesized by the direct replacement of the C-1' hydroxyl group with fluorine (Fig. 

17). 1ne methyl e.<;ter of (±)-ADA ( La) was fluorinated using OAST to afford compound 6a. 

Saponification of 6a with alkali resulted in several unidentified compounds, which were probably formed 

by the eliminntion of the fluorine. Hydrolysis with porcine liver esterase ISS yielded (:!:)-6. The presence 

of fluorine at C-l' was revealed by the spectral data. In the 1 Hand IJc NMR spectra, the Itt signal of the 

C-5 proton and the 11(' signal of C-1' showed vicinal 1H-F and IJC-F coupling, respectively. TheIR 

spectrum showed no absorption peak corresponding to the hydroxyl group at ca 3600 cm· l. 

lt has been reported that the fluorinating reactions using DAST proceed through an SNl or SN2 

mechanism.156 1 SR To examine the mechanism of this reaction in the case of the methyl ester of ABA, the 

ester of (S)-( I )-AOA was fluorinated with OAST, followed by hydrolysis. Analysis of the product by 

IIPLC on a chiml column re' ealcd that the R!S ratio of the product at C-1' was 1:4 (optical resolution of 

(+)-6 and detem1ination of configuration at the C-1' of each enantiomer arc described below). The result 

indicated that the reaction proceeded mainly with the retention of the C-1' configuration, probably through 

the S\'i mechanism, hec.1use the steric effect in the S,v1 mechanism, or neighboring-group participation in 

the S,v2 mechani-.m, would not occur. 159 In Fig. 17 are shown the supposed intermediate formed 

between the methyl ester of AOA and DAST in the SNi reaction. 
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Racemic 7 was synthesized by a modification of the method reported for the synthesis of (±)-methyl 

phaseate 
73 

(Fig. 18). Each cliastereomer of 2-hydroxymethyl-2,6-dimethyl-1-cyclohexanonc (trans- and 

cis-30) was fluorinated using DAST. The fraiiS-3 0 gave the fluorinated compound tram-83 in 27% yield, 

whereas the cis-3 0 afforded cis-83 in only 2% yield. This difference may be e<tuscd by the intmmolccular 

hydrogen bond, which cis-30 would form more easily than trmLS-3 0 , bcC<.Iuse the hydroxymethyl group of 

cis-30 located at the equatorial position is closer to the carbonyl group than that of tram-30 located at the 

axial position. llowever the effect of the intmmolecular hydrogen bond on the reaction remains unknown. 

The reaction of a mixture of trans- and cis-83 with alkynyl lithium gave the TIIP ether 84, which on 

deprotection to give the acetylenic diol 85, which was then acetylated to afford the acctylenic acetate 86. 

Dehydration of 86 gave the enyne acetate 87 , which was then reduced to the dienol 88, which was 

oxidized to obtain the dienone 89 . Wittig reaction of 89 gave the methyl ester 90 as a mixture of (2Z)

and (2£)-isomers. Oromination of 90 , then dehydrobromination, formed the didehydro compound 91 , 

which On photosensitized oxygenation and subsequent adsorption with basic alumina afforded the methyl 

esters as an isomeric mixture. Saponification of this mixture with alkali gave 5'ct,8'- and 5'B,9'

cycloabscisic acids (10 and J 1) by the elimination of fluorine to form the cyclopropyl group. Jlydrolysis 

with porcine liver esterase gave the free acids as an isomeric mixture of mcemic 7 and its (2£)-isomer (92), 

and of racemic 9'-fluoroabscisic acid (9 3) and its (2£)-isomer (9 4) in a mtio of m l :2:2:4, as dete11n incd 

by HPLC on a siliCA.~ gel column. This mixture was separated into i1s components by chromatography on 

silica gel and on Sephadex LII-20. The presence of fluorine at C-8' of (:!:)-7 and C-9' of (+)-93 was 

ascertained by the chemical shifts and the 1H-F and 13C-F couplings. In the 'II NMR spectra, the signal 

of each proton of the fluoromethyl group appeared as a double doublet split by the gcminal Itt - F coupling 

besides the geminal 1H-1II coupling at b 4.2-4.5 in both (:!:)-7 and -93. In the 11c ~'v1R spectra, lhe 

signals of C-8' of (:!:)-7 and C-9' of (:!:)-92 appeared as doublets at o !s8.1 and SH 0, re!-.pcctivcly, accord-
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ing to Dc-F coupling. The distinction between 8'- and 9'-fluoroabscisic acids was made by the chemical 

shift and t11-F coupling of the 5-proton. When the favored conformation is the half-chair IICt with the 

side chain pseudo-axial, C-9' is :-patially closer to the 5-proton than C-8', so the influence of the 9'

fluorine on the 5-proton must be greater than that of the 8'-fluorine. The signal of the 5-proton of (±)-93 

appc<~rcd at o 6.:!4 as a double doublet split b) 1 H-F coupling as well as vicinal coupling with the 4-proton. 

'lnatof(:t)-7 \\aS observed at o 6.:!0 as a doublet split only by the vicinal coupling. indicating that the 5-

proton was too far away from the fluorine for coupling. This finding showed that (±)-7 was (±)-8'

fluoroah:-.ci!.ic acid and (±)-93 was (±)-9'-fluoroabscisic acid. 

As described above, this synthetic route resulted in a (±)-7 /(±)-93 ratio of 1:2. This diac;tereomcric 

ratio was brought about during the photosensitized oxygenation of 91 , and hence showed that the 

O\ygcnation of 6'-monofluoromcthyl-didehydro compound had lower diastcrcosclcctivity than that of 6'-
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di- and trifluoromcthyl-didehydro compounds (8':9' = 1:4, sec Chapter I.2) and that of the 6'

methoxymcthyl-didehydro compound (8':9' = 1:3, see Chapter 1.3). This finding meant that the hindrance 

effect of the monofluoromethyl group on the approach of a singlet oxygen was the smallest in these four 

groups. 

Racemic 79 was also synthesized to compare its activity with that of 6. This analogue has been 

synthesized by rwo groups, 132·15 t but its biological activity has not been precisely cxumined. 'lh: methyl 

ester 79a was synthesized from a-ionone (80) I 5I (Fig. 19). Saponification of 79a with alkali resulted in 

a mixture of 36 and some unidentified compounds which were formed probably through dcprotonation at 

C-1' by the base. Therefore, the methyl ester 79a was hydrolyzed by the esterase to afford (±)-7 9 . 

Racemic 6, 79, 7 , and 93 were optically resolved by HPLC on chiral columns to afford the ( -t )- and 

(-)-cnantiomers. The Cotton effects in the CD spectra of the (+)-enantiomers of 6, 79, 7 and 93 were 

similar to those of (+)-ABA,77 so their absolute configurations at C-1' were ussumcd to be the same as that 

of (+)-ADA. The CD spectra of the respective (-)-cnantiomcrs were also found to be similar to that of(-)

ABA. Thus the absolute con figural ion at C-1' is S for ( + )-6 , whereas it is R for ( + )-7 9 , ( t-)-7 and ( -t )-

9 3. 'Inc notation for the configura! ion at C-6' for ( + )-7 is S and for ( + )-9 3 is R. 

Biological activity 

The biological activities of optically active ABA, 6, 79, 7, and 93 were evaluated in the four assay~ 

described in Chapter I.2. The IC5o values were summarized in Table 9. (2£)-lsomcrs of racemic 6 , 7 

and 93 were inactive in the assays (data not shown). 

The activity of ( + )-6 was 1/10 to 1/20 that of (+)-ABA in all the assays and was almost equal to that 

of ( + )-79 except in the lettuce assay. This suggested that the fluorine could not act as a mimic of the 

hydroxyl group. If the value of l/L0-1/20 is assumed to correspond to the ratio (K) between the 

dissociation constant of(+ )-ABA in binding with the receptor and that of ( + )-6 or ( + )-79 , the difference 

(.:1G•) in the free energy of their binding to the receptor can be estimated to be 1.4-1.8 kC<JI mol I at 300K 

(27"C), an average temperature for the assays, by using the equation L1G• = -RTlnK.I60 This implied that 

the contribution of the 1 '-hydroxyl group to the binding energy between ABA and the receptor v. a~ about 

1.4-1.8 kcal mol-1, which agreed with the contribution of an uncharged hydrogen bond (0.5 l.H kc<tl 

mo1· 1). 161 Thus the 1'-hydroxyl group of ABA may interact with the receptor by means of an unchmgcd 

hydrogen bond. The lower activity of ( + )-6 compared to (+)-ABA suggests that the role of the !'

hydroxyl group in this interaction is that of a hydrogen donor. Only in the lettuce assay, ( +) 79 showed 

relatively high activity, which was half that of (+)-ABA, whereas(+ )-6 exhibited very low acti' ity a~ in the 
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Table 9. The ICso Values for Qptically_Active ABA, 6 , 79, 7 and 93 i.!!_ rour Bioassays 
=- = -=--- - -

______lfso in as~ _ _ 

Rice seedling Lettuce seed Barley n-amylasc Spidcr>vort 

Compound elongation germination induction stomatal opening 

(JIM) (JlM) (JtM) (nM) 
--

(+)ABA 2.0 4.2 3.1 2.6 

(+) (j 48 50 62 33 

(+)-79 1R 9.0 35 32 

(+)-7 2.5 4.0 9.0 3.0 

(+)-93 1.9 8.3 9.0 3.3 

(-)-ABA 2.4 12 8.9 35 

(-)-6 50 58 80 120 

(-)-79 18 25 68 48 

(-)-7 2.5 13 36 24 

(-)-93 12 12 36 38 

other assays. This difference may result from the difference in the rate of permeation or uptake, or in the 

metabolic processing. The compound (+)-79 might be converted more slowly than (+)-6 to the glucose 

ester, which is the major metabolite in lettuce seed,82 owing to the lack of the hydrogen acceptor at C-1'. 

rlte altemntive explan~tion is metabolic conversion to ABA with oxidation at C-1'. However, the ability to 

oxidize the 1'-carhon has been different according to plnnts, 152·153•162 and it has not been examined 

whether there is the ability in lettuce seeds. 

11te ( + )-cnantiomcrs of 7 and 93 were as effective as, or slightly less effective than (+)-ABA in all 

the assays. 11te finding that ( 1 )-7, -2, and -3 (sec Chapter 1.2) is active equally with (+)-ABA in the 

stomata assay suggests that the 8'-hydroxyl group of 8'-IIOABA is independent of both strengthen a~d 
weaken the activity. Therefore, 8'-IIOAIJA is probably active as a mimic of ABA, not as an essent1al 

substance for the ABA ncti\'ity. This agrees with the recent demonstration of Zou et a/. that the biological 

acth·ity of a borate complex of 8'-llOAIJA is comparable to that of ABA. 56 The activity of ( + )-9 3 

suggests that the 9'-fluoro group also is little influence on exhibiting the activity. 

Furthermore, the effect of ( ~ )-6, -7 and -93 on the outward appearance of the seed I ings, seeds and 

tiso;uec; tested were vet\' similar to that of (+)-ABA, that is, reversible and nontoxic as far as we observed 

during the nssays. If ~hese compounds had hound to the receptor or metabolic enzymes then they would 

be e'\pccted to be more potent than (+)-ABA. Their usual or low activity and nontoxicity suggested that 

these analogueo; neither had a strong affinity for the receptor nor act as the fatal inhibitor of the 

monoo,ygcnase and cvclase. The analogue (+)-7 may be metabolized to 8'-fluoro-PA or to PA after the 

rclca.o;e of nuorinc, without binding irreversiblv to the catalytic site of the enzymes. 

The relative intensit\ of the activitie<; of the (-)-enantiomers of 6, 79, 7 and 93 to (-)-ABA in the 

four ao;savs was similar to.that of the (+)-enantiomcro; to (+)-ABA. This finding was consistent with the 

hypothesis that ( + )- and (-)-AI3As bind the same receptor due to their relatively symmetrical structure. 
91 
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In conclusion, the present results show that the 1'-hydroxyl group as the proton donor is essential 

for high activity and the hydrogen bond and electrostatic interactions at C-8' is unnecessary for activit), -.o 

it may be difficult to strengthen the affinity for the active site on U1e receptor by modifying the 1'-hydroxyl 

and 8'-hydroxyl groups. 

Experim enta l 

General procedures 

IH and 13c NMR spectra were recorded with TMS as the internal standard using a Jeol GX400 (400 

M!Iz) and a Brukcr ARXSOO (500 MHz). For clarity, the atoms of all the compounds with the cmbon 

skeleton of ABA are numbered as in ABA in the assignment of peaks in the 1 H and De NMR spectra. 

Mass spectra were obtained with a Jeol JMS-DX300/DA5000 mass spectrometer. GC-MS was conducted 

with a 1% OV- L 7 column (1 m x 2.6 mm) in the EI mode. 

(±)-1'-Deoxy-1'-fluoroabscisic acid (6) 

DAST (120 mg) was added to a stirred solution of the methyl ester of (±)-ABA (75 mg) in Et:!O (5 

ml) cooled to -78•c under N2. The mixture was then warmed to room temperature and stirred for 3 hr. 

After quenching with H20, the mixture was extracted with Et20. The organic layer was washed with 

saturated NaJIC03 and H20, dried over Na2S04 and concentrated. The residual oil wa~> 

chromatographed on silica gel (2 g) with hexane-EtOAc (9:1) to give the methyl ester 6a (43 mg, 57% 

yield). The methyl ester 6a (13 mg) was dissolved in MeOH (0.~ ml) and potassium phosphate buffer 

(0.1 M, pll 8.0, 3 ml), and porcine liver esterase (EC 3.l.l.l, Sigma E-3128, 1270 units in 0.5 ml of 3.:! 

M (Nil4)2S04, pll 8) was added. The solution was left at 30•c overnight, then diluted with 11:!0 (40 ml), 

acidified with 1 N HCI and extracted with EtOAc. The organic layer was washed with saturated NaC'I, 

dried over Na2S04, and concentrated. The residue was chromatographed on silica gel ( 4.5 g) with 

hexane-EtOAc-AcOH (90:10:1) to give 6 (10 mg, 81% yield) as a colorless oil. 1II NMR (400 Mil.:, 

CD30D): & 1.07 (3H, s, H-9') , 1.13 (3H, d, 41t~r=1.2 liz, 11-8'), 1.94 (3II, dd, J =1.5 liz and 4./m-

2. L Hz, H-7'), 2.04 (3H, d,.! = 1.2 Hz, 11-6), 2.25 (111, ddd, J = 17.1 and 1.2 liz, and 4./m =5.2 liz, 

H-5'-pro-R), 2.60 (1H, d, J = 17.1 11z, 11-5'-pro-S), 5.80 (1 ll, br s, H-2), 5.94 (Ill, dq, .I = 1 5 and l.:! 

Hz, H-3'), 6.23 (lH, ddd,J = 16.2and0.6 llz, and 3./w:= 19.2 Hz, H-5), 7.85 (111, d,./ = 16.2 IlL, 11-

4); De NMR (125 MHz, acctone-d6): & 16.8 (d, 3Jc1· = 6.4 Hz, C-7'), 20.1 (C-6), 22.1 (d, 3JcF 6.3 

Hz, C-8'), 23.5 (C-9'), 40.7 (d, 2Jn = 21.5 Hz, C-6'), 49.0 (d, 3./CF = 6.2 Ilz, C-5'), 99.8 (d, 1Jc1 = 

184.4 Hz, C-1'), 118.9 (C-2), 127.1 (d, 3.tcr = 5.0 liz, C-3'), 128.5 (d, 3Jn = 12.1 Hz, C-4), 132.2 (d, 

2Jcr = 23.6 Hz, C-5), 149.4 (C-3), 157.5 (d, 2Jc1' = 24.0 Hz, C-2'), 166.2 (C-1), 205.3 (d, 4./n = 39.2 

Hz, C-4'); UV Amax (MeOH) nm (E): 238 (21,000); UV of the methyl ester Arnax (MeOJI) nm (t): 263.5 

(26,400); IR of the methyl estcrvmax (CIICI3) cm-1: 3000,2950, 1710, 1660, 1630, 1600, 1450, 1380, 

1240, 1160; ElMS (probe), m/z (rei. int.): 266 (MJ+ (I), 246 (4), 210 (4), 192 (30), 161 (100), 156 

(48), 136 (21), 111 (34); HR-EIMS: (M J+ at m/z 266.1349 (CtsHJ903f· requires 266.1319). 

The reaction mechanism of DAST with (+)-ABA 
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/\. methyl ester of (+)-1\.BA (50 mg) which was provided by Kyowa Hakko Kogyo Co., Ltd., 

Tokyo, Japan was nuorinated with D/\.ST (80 mg) and then hydrolyzed by the same method as that for (±)-

6. The enantiomeric composition of the product 1'-deoxy-1'-0uoroabscisic acid was analyzed by IIPLC 

on a Chiralccl OF column as well as (±)-6 as described in the Optical resolution. 

( ± )-2-Fiuoromcthy/-2,6-dimethyl-1-cyclohe.xanone (trans- and cis-83) 

Chromatography of30 (25 g) on silica gel (970 g) with hexane-EtO/\.c (17:3-4:1) gave the trans-30 

(11.1 g) and cis-30 (13.5 g). Isomer trai!S-30 (0.25 g) in Et20 (5 ml) was treated with DAST (0.52 g) in 

Et20 (7 ml) in the same manner as that described for 6. The product was chromatographed on silica gel (6 

g) with hexane-Et0/\.c(24:1) to give trans-83 (67 mg, 27% yield). 1H NMR (400 MHz, CDCb): 0 1.04 

(311, cl, .r = 6.4 liz, Me-6), 1.11 (311, d, 4.r111 = 1.2 Hz, Me-2), 1.35-2.14 (6H, m, H-3, H-4, and H-5), 

2.62 (111, 111 , 11-6), 4.41 (Ill, dd, .I= 9.2 Hz and 21m'= 47.3 Hz, CH2F), 4.58 ( 1 II, dd, 1 = 9.2 Hz and 

21m= 47.9 £lz, CH2F); GC-MS 70 eV, m/z (rei. int.): 158 [M]+ (30), 100 (20), 95 (14), 82 (43), 74 

(IR), 69 (100). In the same manner as trans-30, cis-30 (0.5 g) gave cis-83 (10.2 mg, 2% yield). 
1
H 

NMR (400 MHz, CDCI3): o 1.01 (3 11 , d, .I= 6.4 Hz, Me-6), 1.21 (3H, d, 41nF = 1.8 Hz, Me-2), 1.29-

2.10 (6II, m, ll-3, H-4, and 11-5), 2.63 (1 H, m, H-6), 4.30 (1H, dd,.! = 9.2 Hz and 2JnF = 47.6 Hz, 

CII2F), 4.52 (Ill, dd, .I= 9.2 Hz and 2J11r = 47.6 Hz, CH2F); GC-MS m/z (rei. int.): 158 [M]+ ( 44), 

110 (24), 100 (42), 83 (32), 82 (64), 81 (40), 70 (55), 69 (100). The mixture of trans- and cis-30 (240 

g) was added dropwise to a solution of DAST (180 g) in Et20 (500 ml) cooled to -78•c under N2. The 

mixture was then wam1ed to room temperature and stirred for 20 hr. After quenching with H20, the 

mixtu1e was extracted with Et20. T11e organic layer was washed with saturated NaHC03 and H20, dried 

over Na2S04 and concentrated. Vacuum distillation of the residual oil gave a mixture of trans- and cis-83 

(44.6 g, 18% yield) as a colorless oil, bp 80-88. (13 mmHg). 

( ± )-4-(1'-Hydroxy-2' -fluoromethyl-2', 6' -dimethylcyclohexyl)-but -3-yn-2-o/-TH P (84) 

A 1.6 M solution of 11-BuLi in hexane (350 ml) was added dropwise to a stirred solution of 1-

methyl-2-propynyl TIIP ether (90 g) in THF (300 ml) over 1 hr at -7s·c under N2. After stirring for 1 hr, 

the reaction mixture was warmed to -25·c, and a mixture of trailS- and cis-83 (30 g) in THF (50 ml) was 

added dropwise. The mixture was stirred for 2 hr at -25 to -1o·c, then warmed to room temperature. 

After quenching with 0.1 M NH4CI (700 ml), the mixture was extracted with Et20, and the organic layer 

was successively washed with 0.1 M NH4CI and H20, dried over Na2S04, and concentrated to give a 

crude oil. Purification by chromatography on silica gel (1.2 kg) with hexane-EtOAc (7:3) to give 84 (49 

g. 83% yield) us a mixture of diastereomers. 11 I NMR (500 MHz, CDCI3) of the major diastereomer: o 
1.05 (Jil, d,./= o.711z, Me-6'), l.l8 (3H, s, Me-2'), 1.22-1.90 (12H, m, H-3', H-4', H-5', H-2", If-

3", and H-4"), 1.49 (3H, d, J = 6.7 Hz, H-1 ), 3.53 (2H, 111, H-5"), 4.49 (11-J, dd,.! =9.2 Hz and 21tw = 

47.7 liz. Cll:;F), 4.70 (111, tid, .I= 9.2 Hz and 21uF = 47.9 Hz, Cl-hF), 4.58 (lH, m, H-2), 4.92 (1 H, 

m, H-1"); EIMSm/z (rei. int.): 312 [MJ+ (1), 228 (3), 210 (9), 190 (10), 175 (12), 147 (13), 133 (15), 

121 (26), 109 (27), 93 (29), 85 (100). 

(:t.)-4-( l '-1/ydroxy-2'-fluoromethyl-2' ,6' -dimethylcyc/ohexyl)-but-3-yn-2-ol. (85) 
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To a stirred solution of 84 (49 g) in EtOH (600 ml) was added pyridinium p-toluenesulfonate (4 g), 

and the mixture was stirred at 55•c for 4 hr. The solution was concentrated and the residue was diluted 

with Et20 (1 litre), successively washed with saturated NaHC03 and H20, dried over Na2S04, and 

concentrated. Chromatography of the residual oil on silica gel (900 g) with hexane-EtOAc (7:3) gave 85 

(30 g, 84% yield) as a mixture of diastereomers. 1 H NMR (500 MHz, CDCl3) of the major diastereomcr: 

01.04 (3H, d,.! = 6.5 Hz, Me-6'), 1.19 (3H, s, Me-2'), 1.25-1.90 (6H, m, H-3', H-4', and ll-5'), 1.49 

(3H, d, J = 6.5 Hz, H-1), 4.52 (1H, dd,.! =9.2 Hz and 2J1w = 47.8 Hz, CI-hF), 4.62 (1 H, q, .1 = 6.5 Hz, 

H-2), 4.69 (1H, dd, 1 = 9.2 Hz and 2J1w = 47.9 Hz, CH2F); ElMS m/z (rei. int.): 228 [Mj+ (16), 196 

(25), 175 (29), 148 (30), 139 (58), 121 (100), 111 (38). 

( ± )-3-(1'-Hydroxy-2'-fluoromethy/-2', 6' -dimethylcyc!ohe.xyl)-1-methyl-2-propyllyf acetate (8 6) 

A solution of 85 (30 g) and AC20 (110 ml) in pyridine (200 ml) was stirred at room temperature for 

15 hr. The solution was poured into icc-cooled H20 and extracted with Et20. The organic layer was 

successively washed with 0.1 N HCJ, saturated NaHC03 and H20, dried over NazS04, and concentrated. 

The residual oil was chromatographed on silica gel (900 g) with hexane-EtOAc (9: 1) to give 8 6 (33 g, 93% 

yield) as a mixture of diastereomers. 1 H NMR (500 Mllz, CDCl3) of the major diastereomer: o 1.02 

(3H, d, J = 6.4 Hz, Me-6'), 1.17 (3H, s, Me-2'), 1.24-1.90 (6H, m, H-3', H-4', and H-5'), 1.51 (3H, d, 

1= 6.7 Hz, Me-l), 2.07 (3H, s, OAc), 4.49 (1H, dd,J =9.2 Hz and 211U: = 47.7 Hz, CH2F), 4.69 (III, 

dd, J =9.2 Hz and 
2
./af = 47.9 Hz, CH2F), 5.47 (lH, q, .J = 6.7 Hz, H-1); ElMS m/z (rei. int.): 270 

(M]+ (1), 208 (14), 190 (7), 175 (10), 147 (11), 121 (20), 109 (24), 91 (25), 80 (100). 

( ± )-3-(2'-F/uoromethy/-2 ', 6' -dimethyl-1'-cyclohexen-1'-y/)-1-methy/-2-propynyl acetate (8 7 ) 

To a stirred solution of 86 (56 g) in pyridine (200 ml), a mixture of POCb (115 ml) and pyridine 

(200 ml) was added dropwise at o·c, then the solution was heated at 10o·c for 3 hr. The solution was 

poured into icc-cooled H20, and extracted with Et20. The organic layer was washed with I 120, dried 

over Na2S04, and concentrated to give a crude oil. Purification by chromatography on silica gel (330 g) 

with hexanc-EtOAc (97:3) to give 87 (11 g, 21% yield) as a mixture of two diastereomers. 111 NMR (500 

MHz, CDCI3): 0 1.08 (3/2H, d, 4./uf = 5.6 Hz, Me-2'), 1.09 (3/2H, d, 41m' = 5.6 Hz, Me-2'), 1.37-2.06 

(6H, m, H-3 ', H-4', and H-5'), 1.52 (3H, d, 1 = 6.6 Hz, Me-l), 1.89 (311, s, Me-6'), 2.07 (3H, s, 

OAc), 4.18 (1/2H, dd, J =5.7 Hz and 2J1w = 47.7 Hz, CH2F), 4.23 (1/2H, dd, J =5.7 Hz and 2111 r = 47.7 

Hz, CH2F), 4.37 (1/2H, dd,.! =8.9 Hz and 21Hf = 48.3 Hz, CHzF), 4.40 (1/21:-1, dd,.! =8.9 Hz and 2J11F 

= 48.3 Hz, CH2F), 5.59 (lH, q, 1 = 6.6 Hz, H-1); ElMS m/z (rei. int.): 252 [M]+ (11), 208 (22), 185 

(26), 175 (39), 159 (55), 137 (47), 115 (54), 105 (75), 91 (100). 

(±)-(E)-4-(2'-Fiuorometltyl-2',6'-dimetltyl-1 '-cyclohe.xen-1'-yl)-3-buten-2-o/ (88) 

To a stirred solution of 87 (4.5 g) in THF (80 ml), a mixture of Red-A! (3.4 M in toluene, 85 ml) 

and THF (60 ml) was added dropwise at o·c over 30 min under N2. The solution was renuxed for 2 hr. 

Saturated NH4Cl was added to quench the reaction, and the mixture was filtered and extracted with Et20. 

The organic layer was washed with H20, dried over NazS04, and concentrated. The residual oil was 

chromatographed on silica gel (120 g) with hexane-EtOAc (19:1) to give 88 (3.3 g, 87% yield) as a 
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mixture of two diastereomers. I H NMR (500 MHz, CDCh): () 1.01 (3H, d. 4Jm' = 2.1 Hz, Me-2'), 1.31 

(311, d, .1 - 6.'1 liz, TI-l), 1.35-2.03 (611, m, 11-3', H-4', and H-5 '), 1.69 (3H, s, Me -6'), 4.08 (1/211, 

dd, J =5 () Ilz and 2Jw - 4 7 .R liz, CH2F), 4.10 (1/2H, dd, .I =5.6 Ilz and 2.Jnr = 4 7.8 liz, CH2F), 4.29 

(1 / 211, dd, .I R.9 Hz and 2.1111 = 48.4 liz, CHzF), 4.29 (1/2H, dd, J . 8.9 Hz and 2J111 = 48.4 liz, 

Cll~f). 117 (Ill, dy,.l"' (>.5 and 6.41£7, 11 -2), 5.50 (111, dd,.f= 15.9 and 6.5 liz, 11 -3), 6.01 (Ill, d. 

.I 15.9 liz, 11-4); ElMS m/z (rei. int.): 212 [M]+ (4), 194 (21), 179 (30), 161 (53), 154 (24), 121 

(100), 105 (34). 

( + )·(F)-4 ·( 6' Fluorometltyl-2', 6' -dimetlzyl-1'-cycloltexen-1'-yl)-3-buten-2-one (89) 

A mixture of active MnOz (30 g) and 88 (3.3 g) was stirred in CII2CI2 (200 ml) at room temperature 

for ·I hr. 'I11e suspension was filtered, and the resulting c<Jke of MnOz was washed with Cl I2CI2. After 

being concentrated, the residual oil wa<; purified by chromatography on silica gel (80 g) with hexane-EtOAc 

(19:1) to give 89 (3.1 g, 93% yield). 1II NMR (500 Mllz, CDCI3): () 1.09 (3H, d, 4Jur = 2.0 Hz, Me-

6'), 1.39-2.13 (oil, m, 11 -3', 11-4', and 11-5'), 1.79 (3H, s, Me-2'), 2.30 (3H, s, H-1), 4.16 (1H, dd, J 

9.0 117 and 2./tu - 47.6 liz, C'II2F), 4.31 (11£, dd, .I =9.0 liz and 2.Jm, = 48.1 Hz, C II2F), 6.09 (111, d, 

.I 1(;.4 ll:r., 11 -3), 7.22 (Ill, d, J = 16.4 liz, H-4); ElMS m/z (rei. int.): 210 [M]+ (5), 195 (73), 181 

(II), 149 (8), 13 I (17), 105 (15), 91 (21 ), 77 (15), 69 (100). 

( •·)-(2Z,4 E and 2E,4E)-Metlzyl 5-(6'-fluoromethy/-2' ,6'-dimetlzy/-1 '-cyclohexen-l '-yl)-3-metlzyi-2,4-

JX'ntculienoate (9 0) 

A mixture of 89 (J.I g) and methyl (triphenylphosphoranylidene)acctate (J 0.5 g) was stirred at 

175"C for 2 hr, then dissolved in EtOAc (50 ml). The solution was concentrated and the residue was 

chromatographed on silica gel (80 g) with hexane-EtOAc (99:1) to give 90 (2.7 g. 69% yield) as a mixture 

of two geometrical isomers (22:2£ = 3:7, detennined by integrating the C-6' methyl singlets in the trr 

NMR spectrum). 1H NMR (500 MHz, CDCI3): () 1.04 (3H, d, 4J 11r = 2.1 Hz, Me-6'-2£), 1.09 (3H, d, 
4.tm = 2.0 li z, Me-6'-22), 1.37-2.10 (1211 , 111, H-3', 1£-4', and H-5'), 1.72 (3H, s, Me-2'-2£), 1.80 

(311, s, Me-2'-22), 2.04 (31 1, cl, .I= 1.2 liz, II-6-2Z), 2.33 (3H, d, J- 1.1 Hz, H-6-2£), 3.69 (311, s, 

f'OzMe-:!Z), 3.71 (3H, s, COzMe-2£), 4.10 ( Hi, dd, J =8.9 Hz and 2.Jur = 47.7 Hz, CHzF-2£), 4.15 

(Ill, dd, .I =B.9 Hz aml2./111 = 47.7 Hz, Cllzf'-2Z), 4.29 (111, dd, J =8.9 liz and ~/m: = 48.3 Hz, C II2F-

2£), 4.35 (I ll , dd, .I =8.9 liz and 2J111' = 48.4 liz, CH2F-22), 5.67 (111, s, H-2-2Z), 5.75 (11-I, s, 11-2-

2F), 6.08 ( 111, d. J = 16.1 11 7. H-4-2£), 6.50 (1 H, d, .I= 16.1 Hz, H-5-2£), 6.53 ( 1 H, d, J = 16.4 llz, 

11-5-22), 7.61 (Ill, d, J = 16.1 Hz, 11-4-22); EIMSm/z (rei. int.): 266 [M]+ (56), 251 (7), 234 (17), 

219 (4), 207 (I B), 199 (21), 187 (12), 17R (38), 159 (45), 145 (34), 133 (47), 125 (82), 119 (100), 112 

()0), 105 (36). 

( + )·(2Z.4 F and 2F ,4 E)-methvl 5-( 6' -fluommetlryl-2', 6'-dimethy/-3 ',4' -didehydro-1'-cyc/olrexene-1 '-yl)

J-mC'thyl-2,4-pclltadicnoate (91 ) 

NBS (4.2 g) and BPO (40 mg) were added to a solution of 90 (3.7 g) in CCI4 (40 ml), and the 

mixture was then refluxed for 2 hr under N;?.. After cooling the mixture to room temperature, it was 

filtered, and quinoline (l3.5 ml) was added to the filtrate. The mixture "'as concentrated, and the residue 
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was heated at lOO"C for 1 hr under N2. After cooling to room temperature, the reaction mixture was 

~ured into l% HzS04 (400 ml) and extracted with EtzO. The organic layer was successi\'cly washed 

WJth saturated NaHC~_J and H20, dried over NazS04, and concentrated. The residual oil was purified by 

chromatography on SJitca gel (60 g) with hexane-EtOAc (39: l) to give the dideh)·dro compound 91 (.., 0 , 
55% . ) I -· g, 

~> y1eld . H NMR (500 Mllz, CDCI3): () 1.11 (3II, d, 4Jm = 1.5 liz, Me-6'-2£), 1.15 (3H, d, 4./
111 

= l.5 Hz, Me-6'-2Z), 1.87 (3H, s, Me-2'-2£), 1.95 (311, s, Me-2'-2Z), 2.06 (3H, d, J = 1.1 Hz, H 6-

2Z), 2.26-2.42 (4H, m, H-5'), 2.34 (31!, d, ./ = 1.0 Hz, £1-6-2£), 3.70 (311, s, C0:?.Me-2Z), 3.72 (JH, s, 

COzMe-2£), 4.14 (1H, dd, J =8.8 Hz and 2Jm = 47.8 Hz, ClhF-2£), 4.17 (HI, dd, .1 -8.7 Hz and 2.1111 
= 47.8 Hz, CH2F-2Z), 4.32 (lH, dd, J =8.8 Hz and 2J111 = 47.8 Hz, Cllzr-2£), 4.35 ( 1 H, dd, .1 =X. 7 
liz and 

2
JHr= 47.8 Hz, CHzF-2Z), 5.69 (111, s, H-2-2Z), 5.78 (lH, s, 11-2-2£), 5.79-5.90 (411 m 11 

3' and H-4'), 6.21 (lH, d, J = 16.2 Hz, 11-4-2£), 6.52 (Ill, d, J = 16.2 Hz, 11 -5-2£), 6.55 (II!: d, '.I _ 

16.5 Hz, H-5-2Z), 7.76 (1 H, d, J = 16.5 Hz, H-4-2Z); ElMS m/z (rei. int.): 26-l [MJ+ (63), 249 (1 7), 

231 (15), 205 ( 4 2), 199 (100), ] 85 (22), 171 (56), 157 (52), 143 (32), 119 (56). 

(±)-8'-Fiuoroabscisic acid (7), its (2E)-isomer (92), (±)-9'-jluoroabscisic acid (93 ), and its (2E)-isomet 
(94 ) 

A solution of 91 (2.0 g) and rose bengal (0.35 g) in MeOH (250 rnl) was stirred under az under 

fluorescent irr~diatio~ at30"~ for 12 hr. After being concentrated, lhe residue was dissolved in MeOI 1 (20 

ml), and alum111a (active bas1c, 15 g) was added to lhe solution. After evaporating the MeOII, hexane (l s 
ml) was added to the mixture, and the suspension was stirred at room temperature for ~ hr before being 

chromatographed on alumina (80 g). Elution with 10-100% BOAc in hexane afforded the crude ester ,
1
., 

a~ oil. The crude ester was purified by chromatography on silica gel (40 g) with hcxane-EtOAc (4: 1) to 

g1ve 790 mg (~5% yield) of a mixture of four isomers. This mixture (300 mg) was dissolved in MeOII (S 

ml) and potassium phosphate buffer (0.1 M, pi I 8.0, 25 ml), and porcine liver esterase (J 2400 units in 4. 9 

ml) was added. 'llle solution was left at 30" over night, then diluted with tlzO (200 ml), acidified with 1 N 

IICI and extracted with EtOAc. The organic layer was washed with satuwted NaCI dried over Na.,SO 
' ".... 4, 

and concentrated. The residue was chromatographed on silica gel (30 g) with 4% AcOJ 1 in Cl bCh 10 
give 106 mg of a mixture of (2£)-isomers and 115 mg of a mixture of (2l)-isomers. ·n1e (~2)-i:on~ers 
(70 mg) were separated again by chromatography on silica gel (30 g) with 1% TFA in C llzCh to give 42 

mg of (±)-7 and 22 mg of (±)-93 as white amorphous powders. (2£)-lsorncrs (100 mg) were separated 

by ~hromatography on Sephadex Ll 1-20 (25 g) with 4% AcOII in CHzC!z to give 6.1 mg of (=)-92 as a 

white amorphous powder~ 8.4 mg of (±)-94 as a white amorphous powder. (±)-7. IJI NMR (500 Mllz. 

CD30D): () 1.07 (3H, d, .!m = 1.4 Hz, H-9'), I .92 (3 H, d, J :... 1.3 Hz, 11-7'), 2.05 (311, tl, J = O.R liz, 

11 -6), 2.44 (11I, dd, J = 17.4 and 1.4 Hz, 11 -5'-pro-R), 2.51 (lH, d, .1 = 17.4 rrz, 11 -5'-pro-S), 4.38 

(111, dd, .I =9.4 llz and 
2
1111' = 48.0 Hz, CH2F), 4.55 (llf, dd, J = 9.4 Hz and 2J111 = 48.2 Jlz ClhF) 

5.78 (lH, br s, 11-2), 5.97 (111, br s, H-3'), 6.20 (lH, d, J = 16.2 Hz H-5) 7.76 (111 d 1 = 'l6? -II ·' 
. 13 ' ' ' ' ' ·- I, 

!1-4), C NMR (125 MHz, CD30D): () 19.1 (d, 3.JcF = 4.3 liz, C-9'), 19.4 (C'-7'), 21.2 (C-6), 44.4 (d, 

'.fer= 5.1 Hz, C-5'), 46.9 (d, 2./CJ. = 15.5 liz, C-6'), 79.2 (C-1 '), 88.1 (d, 1Jn = 170.B liz, C-8'), 

~~~.1 (C-2), 128.3 (C-3'), 129.8 (C-4), 136.9 (C-5), 150.(; (C-3), 165.7 (C'-2'), 169.6 (C'-1), 199.6 (C' 

), UV "-max (MeOH) nm {E): 244 (19,100); UV of lhe methyl ester 1..01,1, (MeOII) 11111 (E): 2o-l 
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(19,300); IR of the methyl estervma\ (CHCh) cm-1: 3560,3000, 2950, 1700, 1660, 1630, 1600, 1430, 

1375, 1235, 1160; EI\IfSm/z (rei. int.): 282(M]+ (4), 204 (10), 231 (11), 223 (22), 203 (7), 190 (100), 

172 (22), Hi2 (54), 147 (Hi), 134 (60), 119 (15), 111 (49); HR-EIMS: (M]+ at m/z 282.1255 

(Ctc;llt90-tfrequires282.126B). (:)-93. 1H NMR (500 Mllz, CD30D): o 1.06 (3H, d, 4J111 = 2.1 

111, 11-R'), I .93 (311, d, .I= 1.3 liz, 11-7'), 2.02 (3H, d, 1 = 1.0 liz, 11-6), 2.27 (1 H, d, .I = 16.9 liz, 11-

5'-pro U), 2. 75 (I H, d, .I = 16.9 liz, 11-5'-pro-S), 4.22 (I H, dd,.! -9.5 liz and 2:[Ju: = 47.8 l iz, CHzF), 

4.53 (Ill, dd, J = 9.5 Hz and 2.f111 - 48.0 Hz, CllzF), 5.74 ( 1 H, br s, 11-2), 5.96 (Ill, br s, 11-3'), 6.24 

(Ill, dd, .1 16.0 liz and 5.Jur 1 3 lfz, rr-5), 7.75 (II-I, d, .I= 16.0 liz, H-4); 13c NMR (125 MHz, 

CD101J)· b 17.9 (d, 3.Jn = 6.1 Hz, C-8'), 19.1 (C-7'), 21.2 (C-6), 44.9 (d, 3Jcr = 4.0 Hz, C-5'), 47.3 

(d, ~lc1 15.3 liz, C-6'), 79.1 (C-1'), 88.0 (d, 1JcF = 173.0 liz, C-9'), 119.5 (C-2), 127.5 (C-3'), 

129.0 (C-•1), 137.2 (C-5), 151.2 (C-3), 165.4 (C-2'), 169.4 (C-1), 199.9 (C-4'); UV Amax (MeOH) nm 

(r): 244 (20,800); UV of the methyl ester Amax (MeOH) nm (E): 264 (19,200); IR of the methyl ester 

V111a, (CIICh) cm-1: 35()0, 3000,2950, 1700, 1660, 1630, 1600, 1430, 1375, 1235, 1160; ElMS m/z 

(rei. int.): 2R2[ M J+ (3), 264 (13), 23 1 (10), 223 (20), 203 (6), 190 ( 100), 172 (12), 162 (58), 147 (17), 

134 (04), 119(16), 111 (60); II R-EIMS: (M]+ at m/z 282.12()3 (CJsHt904f requ ires 282.1268). (±)-

92. 111 NMR (500 Mllz, CD30D): o 1.06 (3 H, d, 4./ur = 1.4 liz, 11 -9'), 1.90 (3H, d, .I= 1.3 Hz, H-

7'), 2.27 (311, d,./ = 0.7 Hz, 11 -t1), 2.47 (1 11 , dd, J = 17.4 and 1.3 Hz, H-5'-pro-R), 2.54 (lf l , d, .I= 

17 t li z, 11-5'-pro-S). 4.37 (HI, dd, 1 =9.3 llz and 2Jm = 48.0 llz, CH2F), 4.54 (lH, dd, .I= 9.3 liz 

ami 'Jm 48.1 liz, CH2F), 5.86 (11 1, br s, H-2), 5.95 (HI , br s, ll-3'), 6.22 (l H, d, J = 15.7 Hz, H-

5), 6.45 (I ll , d, J = 15.7 liz, l l-4); UV "-max (MeOH) nm (E): 246 (22, 100); UV of the methyl ester 

Arnax (McOil) nm (E): 264 (23, I 00); lR of the methyl ester Vm:~x (CHCI3) cm-1: 3560, 3000, 2950, 

1705, 1(1(10, 1630, 1610, 1430, 1350, 1230, 1160; ElMS m/z (rei. int.): 282 [M]+ (4), 264 (7), 231 

(10), 223 (18), 208 (7), 190 (100), 172 (12), 162 (48), 147 (14), 134 (61), 119 (14), 111 (27); 1-lR

H MS: [MJ+ atm/z 282.126() (CJsliJ904F requires 282.1268). (±)-94 . 1H NMR (500 M Hz, CD30D): 

& 1.06 (311, d, 4.Jm = 2.0 li z, 11 -8'), 1.90 (3 11 , d, J = 1.2 Hz, 11 -7'), 2.25 (3 H, d, J = 1.1 liz, H-6), 

2.30 (I ll , dd, J = 17.1 and 0.7 Hz, H-5'-pro-R). 2.77 (1 H, d, .I= 17. 1 Hz, H-5'-pro-S), 4.21 (lH, dd, J 

9.5 liz and 2./tu = 47.8 Hz, Cll2F), 4.49 (l H, dd, J = 9.5 Hz and 2.Jur = 48.0 Hz, CH2F). 5.83 ( 111, br 

s, H 2), 5.94 (I ll , br s, H-3'), 6.27 (Ill, dd, J = 15.7 liz and 5Jur = 2.9 Hz, H -5), 6.45 ( Ill , d, .I= 

15.7 l iz, 11-4); UV Amax (MeOII) nm (E): 246 (23,500); UV of the methyl ester "-max (MeO II) nm (E): 

26·-l (2 1,800); lR of the methyl ester Vmax (CllCb) cm·1: 3560, 3000, 2950, 1705, 1660, 1630, 1610, 

1430, 1360, 1230, 1160; ElMS m/z (rei. int.): 282 [M]+ (5), 264 (8), 231 (9), 223 (18), 208 (7), 190 

(100), 172 (14), 162 (41), 147 (12), 134 (59), 119 (12), 111 (25); IIR-EIMS : [M]+ at m/z 282.1265 

(Ctsll t904F requires 282.1268). 

(-t)-/' DC'orynbscisic acid (7 9) and tts (2F)-isomer (95 ) 

Inc mixture of (±)-methyl 1'-deoxyabscisate (79a) and its (2E)-isomcr (95a ) was prepared as 

rcpt)Jted b) Roberts eta/. 151 This mixture (300 mg) was hydrolyzed by porcine liver estera<;c (2530 units 

in I ml) in the same manner ns that of (±)-6 . The hydrolysate was chromatographcd on si lica gel (5.6 g) 

with I 0-25% FtO/\c in hexane containing L% 1\cOH to give a mixture of (±)-79 and -95 (20 mg, 35% 

) iclu). me mixture (20 mg) \\'il'i scpamtcd b) HPLC on a silica gel column (YMC A023, 250 x 10 mm; 
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solvent, 1% AcOH in CHCI); flow rate, 3.0 ml min-1; detection, 254 nm) to gi\'e 10.4 mg of ("=)-79 and 

7.5 mg of (±)-95 as colorless oils. (±)-79. 1H C\MR (500 Mllz, CDC()): o 0.99 (3H, s, H-9 ). 1.07 

(3H, s, 11 -8'), 1.93 (3H, d, J =0.7 liz, li-7'), 2.04 (3H, d, J =- 0.7 liz, H-6), 2.16 (lH, d, .1 = 16.9 Hz, 

H-5'), 2.38 (1 H, d, J = 16.9 Hz, 11-5'), 2.75 (1 H, d, 1 = 9.6 liz, 11-1'), 5.74 (1 H, s, H-2), 5.95 (HI, s, 

ll-3'), 5.98 (lH, dd, J = 15.7 and 9.6 Hz, H-5), 7.70 (lH, d, .I= 15.7 liz, H-4); UV Ama\ (MeOII) nm 

(loge): 264 (21,400); UV of the methyl ester Amax (McOII) nm (loge): 266 (18,600); IR of the rneth)l 

ester Vmax (Cl!Cb) cm-
1
: 3000, 2950, 1710, 1660, 1625, 1610, 1·130; ElMS of the methyl ester m/z 

(rei. int.): 262 [M]+ (2), 247 (1), 231 (7), 215 (4), 189 (4), 174 (40), 146 (100), 125 (> 100), 119 (24), 

~ 12 (19); l lR-EIMS of the methyl ester: [M]+ at m/z 262.1559 (Ct61 12203 requires 2()2.1569). (. )-95. 

H NMR (500 MHz, CDCb): b 0.98 (3H, s, H-9'), 1.07 (3H, ~. 11-8'), 1.90 (3H, d, J =0.9 liz, 11-7'). 

2.14 (Ill, d, J = 16.8 Hz, H-5'), 2.29 (3H, s, H-6), 2.36 ( 1 H, d, J = 16.8 Hz, H-5'), 2.67 (Ill, d, J = 

9.5 Hz, H-1'), 5.81 (lH, s, H-2), 5.96 (1 1-I, s, H-3'), 6.02 (I ll , dd, J = 15.5 and 9.4 Hz, 11-5), 6.25 

(UI, d, 1 = 15.5 Hz, H-4); UV Amax (MeOI-·1) nrn (E): 257 (29,500); UV of the methyl ester Anw, 

(MeOf l) nm (E): 266 (28,200); IR of the methyl ester vmax (CII CI3) cm-1: 3000, 2950, 1710, 1660, 

1625, 1610, 1430; ElMS of the methyl ester m/z (rei. int.): 262 IM J+ (3), 231 (7), 206 (14), IH9 (4), 

174(63), 146(100), 125(93), 119(21), 112(15); HR-EIMSofthe methyl ester: (M]+ at m/z 262.1571 
(Ct6llzz0:3 requires 262.1569). 

Optical resolution 

When the solutions collected from the columns in this section were concentrated, toluene was aducd 

to evaporate TFA as <m azeatropc. Racemic 6 (7 mg) was injected into a Chiralcel OF llPLC' column (250 

x 10 mm, Daiccl; solvent, 8% isopropanol in hexane containing 0.1% TFA; flow rate, 3.5 ml min I; 

detection, 254 nm). The materials at tR 16.4 and 18.2 min were collected to give(-)- and (+)-6 (I.H and 

3.2 mg) w
1
i;h an optical purity of99.9 and 99.2%, respectively, measured by IIPLC on the same column. 

(-)-6 : [a)D -358"(Mc0H; c0.379); CD Aexl (MeOH) nm (.1E): 223 (+13.3), 257 (-18.2), 319 {+1.8). 

(+)-6 : [a)~
5 

+357° (MeOH; c 0.212); CD Acxt (McOH) nm (6E): 222 (-17.2), 254 (+ 19.5), 315 (-1.6). 

~acemic 7 (21 mg) was injected into a Chiralcel OD HPLC column (250 x 4.6 mm, Daicel; solvent, 11% 

ISOpropanol in hexane containing 0.1% TFA; flow rate, 1.2 ml min I; detection, 254 nm). 'Inc matcriab 

at fR 8.0 and 15.0 min were collected to give(+)- and (-)-7 (10.2 and 10.3 mg) with an optical purity of 

99.9 and 99.3%, respectively, measured by HPLC on the same column. Racemic 93 ( 15 mg) was 

injected into a Chiralcel OD column under the same condit ions as described for (±)-7 , and the mate! ials at 

tR 8.0 and 16.0 min were collected to give(+)- and (-)-93 (7.4 and 7.4 mg) with optical purity ol 99.9 and 

99.5%, respectively, measured by II PLC on the same column. (+)-7: fa]~8 +351° (MeOil, c 0.667); 

CD Acxt (MeOH) nrn (6E): 229 (-26.8), 260 (+33.5), 319 (-3.7). (-)-7 : [a]~8 -345° (MeOI 1; c 0.667); 

CD Acxt (MeOH) nm (6E): 229 (+27.5), 260 (-34.3), 319 (+2.5). (+)-93 : [a]~8 +368" (MeOII, c 

0.493); CD Aext (MeO H) nrn (.1E): 230 (-27.8), 261 (+34.5), 323 (-2.9). (-)-93 : [a);)8 -375• (McOII; c 

0.493); CD Acxt (MeOH) nrn (6E): 228 (+28.1), 260 (-35.0), 322 (+2.9). Racemic 79 (9.4 mg) was 

iJ)jectcd into a Chiralcel OD HPLC column (solvent, 8% isopropanol in hexane containing 0.1% TFA; 

flow rate, 1.0 ml min-
1
; detection, 254 nm). The materials at fR 11.4 and 14.4 min were collected to giv~: 

(+)-and (-)-79 (4.8 and 2.0 mg) with an optical purity of 93 and 97%, respectively, measured h) IIPLC' 
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on the same column. (+)-79 : [o.]~ +344• (McOH; c 0.2); CD "-ext (McOH) nm (L.\e): 216 (-11.4), 265 

(+23.7), 313 ( 2.3). (-)-79 : [cc.):; -334• (McOH; c 0.2); CD A-ext (McOH) run (1\e): 216 (+11.7), 264 (-

24.2), 316 ( t2.4). 

Dioassays 

Sec Chapter I.2. 
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Chapter m 
The Active Conformation of Abscisic Acid 

As described in Chapter Il.l, conformation is one significant factor in the structure-activity 

relationships of ABA. 1l1c analogues that adopt the active conformation of ABA would exhibit high 

actlvtty. However, conformational requirement for activity is unknOYdl and analogue probes ha\e not 

been reported in detail. This chapter describes investigation of the active conformation of ABA using new 

analogues as probes. 

III. l Introduction 

Ring Conformation o f Abscisic Acid 

The ring of ABA is the 1-hydroxy-2,6,6-trimcthylcyclohcx-2-cn-4-onc with the side chain at C-1. 

The idealized conformations of the ring in ABA arc represented using the torsion angle nowtion163 in Fig. 

20. 

In the crystal (Fig. 1),164•165 ABA adopts a slightly distorted sofa, close to the sofaS 1, which has 

the non-distorted enonc and pseudo-axial side chain. 1l1e preferred form in solution, revealed by 

NMR76,I66 and CD77,I67 analyses is the half-chair HC 1 with the pseudo-axial side chain. The negative 

Cotton effect derived from the n-1t* transition of the cnonc at 320 nm in the CD spectrum results from 

distortion of the cnonc, 168-171 and the value of L.\e ( -2.34) 77 indicates that the torsion angle of C -3'-C--t' 

bond is about 10-20•, 169 which almost equals the torsion angle (15•) of the most stable half-chair form ol 

cyclohcxenonc.172 This suggests that the favored conformation in solution is not the sofa S 1 but the half

chair IIC 1. However, the ring of ABA is not constrained, so ABA would exist as an equilibrium mixture 

of some conformers, probably two, the most stable half-chair IIC t and its inverted form IIC2 with the 

pseudo-equatorial side chain. 

According to computer-aided conformational analysis,l66 the energy difference between II C 1 and 

IIC2 is 3 kcal mot·1, meaning that the IIC t !IIC z mtio in conformational equilibrium ut 300 K is about 

99.4:0.6 from the Gibbs equation, L\G• = -RTinK. 173 The energy barrier to the ring inversion between 

two half-chairs has not been examined. In the NMR studies of ABA by Willows and Milborrow, l66 the 

spectrum at 368 K was the same as that at 300 K, so the til signals at 300 K must already be those 

averaging H Ct and H C2 owing to the low energy barrier to interconversion. A decrease in temperature 

will lead to a separation of the averaged signal into individuul signuls.174 ABA ha'> not been <malyzed b) 

low temperature NMR.I75 

Other forms, the sofas S t -4, 1,3-diplanars DP I-4 and boats B t -2, are probably lransient, short

lived conformations in the course of inverting between ri C 1 and II Cz. Considering the low barrier to 

intcrconversion and the thermodynamic stabiliwtion in binding to the active site on the receptor, not only 

half-chair forms but also these short-lived forms can be the active conformation of ABA. 
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sign of torsion ~~~t(R 
angle* ,d 1 ~ OH .. 0~ ........... 

side·\ ie'' t 
R ~ L::=d 0 R 

0 OH OH 
R ~ R R 0,_ R O=y OH O= OH o~r< >H "~OH 

name half-cha1r half-cha1r sofa sofa sofa sofa 
II(, IIC2 s, s2 SJ s4 

SldC·Chain pseudo- pseudo- pseudo- pseudo-
biSeCIIOnal bisectional oricntationt axial equatorial axial equatorial 

( .<)' 
equato11al axial equatorial axial pseudo- pseudo-

on en tat •ont equatorial axial 

name I, ~-dipl;mar 1,3-diplanar I ,3-diplanar 1,3-diplanar boat boat 
I>P1 DP2 DP3 OP4 B, Bz 

side-chain axial equatorial pseudo- pseudo- a.x1al equatonal 
onent;ltion! ax1al equatorial 

C-9' equatorial a.\.ial bisectional bisectional pseudo- pseudo-
oricntat1ont equatorial axial 

Fig. 20. Representation of 1dealized conformations of the cyclohexenone nng in (+)-ABA using the 
torswn an de notation and orientaions of the side chain and C-9' (R side chain) 
• clock\' 1sc torsion in the sequences taken clockwise, counterclockwise torsion, and 

0 zcto torsion 
1 pe1spcct•ve rcprescntaion at the level of the plane formed by C-1 ', C-2', C-J' and C -4', C-7' 

not shown 
l o11entattons to the plane including the C-2'-C-3' double bond, perpendiculm to the plane 

formed by the side chain 

Ring Confo rma tion-Activity Relationships 

The allenic analogue (96) ha'i been designed and synthesized by Abrams and Milborrow176 based on 

Milborrow's speculation that ABA adopts the less favored half-chair IIC2 in binding to the uptake carrier 

(rig. 21) 91 If this speculati\c mechanism is also necessary for binding to the receptor, then the analogue 

favoring the conformation with the side chain pseudo-equatorial must be more potent than or, at least as 

effecti' c as ABA. !lowe' cr. 96 ""ith the side chain equatorial was inactive although it showed activity 

after conversion to ABA. 177 Churchill eta/. reported that the ( 1 'S, 2' S)-2' ,3'-dihydro-ABA (65) is active, 
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96 65 66 17 (P \) 

Fig. 21. Steric structures of 96, 65, 66 and 17 

whereas (l'S,2' R)-2',3'-dihydro-ABA (66) is inactivc.98 There were neither the conformational analyses 

of these analogues nor a discussion based on their conformations in that paper, but the two dihydro-AB/\s 

65 and 66 would adopt a chair form with the side chain axial and equatorial, respectively, due to the steric 

repulsion between the 1,3-diaxial methyl groups, 7' and 9', and 7' and 8', respectively. These three 

examples indicate that the active conformation does not have an equatorial, but rather an axial side chain. 

However, PA seems to be contrary to this suggestion because PAis inactive in almost all assays&.! although 

its cyclohexanonc ring is constrained to the chair form where the side chain is fixed in axial position owing 

to the bridged bicyclic system. Perhaps the side chain orientation in the active conformation of ABA is 
neither axial nor equatorial. 

Other analogues that yield significant understanding of the conformational requirement for activity 

have not been reported, and a serious approach to probe it has not yet been taken. 'l11e author investigated 

the active conformation of ABA with new cyclopropane analogues having a unique property. 

III.2 The Cyclopropan e Analogues as Probes for the Active Con form a tion 

Design Concept 

Conformational changes of ABA are almost certainly represented by the orientation of the side chain 

and 6'-methyl groups (C-8' and C-9') which arc the bulky. Thus, investigating the orientations of these 

groups required for activity should be helpful in defining the active conformation. As probes, the author 

introduced a cyclopropane group into the ring of the ABA molecule and des igned four cyclopropane 
analogues 8-11 (Fig. 22). 

The physical and chemical properties of cyclopropane arc similar to those of olefins, becctuse of the 

increase in the p-orbital nature of the C-C bonds, 178,179 whereas its stcric size is larger than that of olefins. 

In bicyclo[4.l.O]hcptan-2-onc, the cyclopropyl ring is constrained essentially in an axial-like orientation to 

the plane of the cyclohcxanonc ring.ISO,I8l Therefore, replacing the 2'-double bond of ABA with 

cyclopropane (8 and 9) would introduce 1,3-diaxial steric repulsion between the cyclopropyl ring and the 

6'-mcthyl group in one conformer, to pull conformational equilibrium towards the other, without losing the 

cyclohcxenonc-likc conformation of the six-membered ring. Compound 8 can prefer the h;.tlf-chair with 

the pseudo-equatorial side chain similar to the disfavored conformer HC2 of ABA, \.\hile 9 cc111 prefer that 

with the side chain pseudo-axial similar to the favored conformer II C1 (fig. 22). Analogues 10 and 11 
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half-chair half-chair 
(sHic chain axial) (side chum C\)ll<tlnrial) 

/, / vl, R 

o7oH --- o~R f~ C02H 

.........-
OH 

0 ··,,ft. (_; 
8 I, l-diax .. tl stcric repulsion 

),1-di.tXI: stem. repulsion 

"'<::::: 

o~4zC o,., ~-R --C02H ---- ""J bH 0 

9 

boat planar boat 
(stdc chain equatorial) (side chain hiscctionnl) (stdc cham ax tal) 

0 ~-~-~ 
10 

R 

\... _,1 . 
~ 

Fi~. 22. Poss1ble nng conformations of 8- 11 (R stde chain) 

where the C-5'-C-6' single bond is replaced with cyclopropane can adopt a cyclohexadienone-like planar or 

boat conformation. 182 184 The lx>ett-boat inversion potential of 1,4-cyclohexadicne is shallow, IR3 so 10 

and II can convert the orientation of the side chain into that of the active form of 1\BI\ without a great loss 

of energy. In contrast to the free orientation of the side chain, orientations of the 6'-substituents can be 

restricted owing to the cyclopropyl ring. Compound I 0 always possesses the axial-like 6'o.- and 

equatorial-like (>'~-suhstituents, while 11 always possesses the equatorial-like 6'a- and axial-like 6'~

substituents (f-ig. 22). Therefore, a comparison between the activities of I 0 and 11 can afford significant 

understanding, not only about the steric environment around C-6' required for activity, but also the active 

confomu1tion of ABA in which the orientation of the geminal methyl groups is closely related to the 

confonnational change of the ring. 

Resu lts and Disc uss ion 

.~nttllesis 

Racemic 8 and 9 "ere c;ynthcsizcd from the oxoisophorone ethylene ketal 97 (Fig. 23). Compound 

97 wac; treated with trimcthyloxnc;ulfonium iodide and sodium hydride to give the cyclopropanoid 97 .185 
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o~~R 
8a ru1d 9a R Me 
(±)-8 and -9 R II 

vi it) .. 

minor 

\~n v u OH 

iii) iv) v) 

0 

major 

101 and 102 R Cll201 I 
103 and 104 R CliO 
lOS and 106 R C02Me 

0 

VI} Vii) 

(I R)-( t )-8 

0 
(I ',\)-(+)-9 ( I'R)-(-)-9 

Fig. 23. Synthesis and optical resolution of 8 and 9. 

i) Me1SOI , Nail ii) n-BuLi , ~H20H iii) Red-AIO< iv) Mn0
2 

v) Mn02, NaCN, AcOII, MeOII vi) IICI vii) NaOJJ viii) I !PLC with Chiralcel OD 

.... 

The following synthetic route was as described by Mayer eta/. tB6 Coupling reaction of alkynyl lithium 

and 98 gave a mixture of two diastereomers in the ratio of about 1:10. The relative configuration<; of the 

diastcreomcrs were determined on the basis of the NOE of the end products (:!;) 8 and -9 dcsctibcd Iuter; 

the minor diastereomer was 99 where the cyclopropane is tram to the side chain, and the major 

diastereomcr was 100 where the cyclopropane is cis to the side chain. The favored confo1mation of 98 

must be a pseudo-chair form, in which the 6-methyl group cis to the cyclopropane ring is in the equatorial 

orientation mther than the axial, which induces l ,J-diaxial-like stcric repulsion to the cyclopropane ring, so 

a nucleophilc, alkynyl lithium, seemed to prefer to attack the carbonyl carbon from the le'is hindered side, 

that is, the same side as the cyclopropane to muinl) give 100 . Reduction of a mixture of 9 9 and 1 00 gave 
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a mixture of I 0 I and I 02, which was oxidized to a mixture of 103 and 104 , followed by a Corey 

oxidation1R7 to the esters I OS and 106. Acidic treatment of I 05 and 106 separate!) gave Sa and 9a. 

respectively. 'The hasic hydrol)sis of Sa and 9a) iclded (:!:)-2'(.t,3'a-dihydro-2'a,3'ct-methano-ABA (8) 

and ('•·) 2'1~.3'[~-dihydro-2'~,3'1\-methano-ABA (9), respectively, which were optically resolved hy 

IIPLC with a chirnl column. The Cotton effects in the CD spectra revealed that the absolute configuration 

at C-1' of (-)-8 and (+)-9 was equal to natural (l'S)-(+)-AI3A, while that of (+)-8 and (-)-9 was equal to 

unnatural (I'R)-(-)-ABA.77 Therefore, the absolute configurations of all the asymmetric carbons were 

elucidated as (l'S,2'R,3'S) for (-)-8, (l'S,2'S,3'R) for (+)-9, (1'R,2'R,3'S) for (+)-8, and 

(I 'R,2'S,3'R) for (-)-9 . 

Racemic 10 and 11 were prepared by alkaline treatment of (::)-7 and -93, respectively (Fig. 24). 

This reaction would proceed from the nucleophilic addition of the carbanion at C-5' produced under basic 

conditions to the electron-deficient R'- or 9'-carbon attached to the fluorine, followed by elimination of the 

nuoride ion to form the cyclopropane ring. In 1 II NM R, (±)-1 0 and -11 showed signals of three coupled 

p1otons in the field higher than 6 2.0, proving the presence of a cyclopropyl ring. Racemic I 0 and II 

were optically resolved by HPLC on a chiral column and (+)-1 0 agreed with the compound yielded by the 

ba-.ic treatment of ( l'R)-( + )-8'-nuoro-ABA, while (+ )-11 agreed with that from (1 'R)-( + )-9'-nuoro-ABA 

(sec Chapter 11.2). Thus (+)- 10 nnd (+)- ll were identilicd as (l'S)-(+)-5'a,8'-cyclo-ABA and (l'S)

( + )-5'[\,9' cyclo-ABA, respectively. Similarly, the (-)-enantiomers of I 0 and 11 were identified as 

(I R )·( ) S'n,R'-cyclo-ABA and ( l 'R)-(-)-5'~,9'-cyclo-ABA, respectively. The absolute configurations 

of all the asymmetric carbons, therefore, were elucidated as (l'S,5'R,6'S) for (+)- 1 0, (1'S,5'S,6'R) for 

( 1 )- I I , (I' R ,s' R ,6'S) for(- )- 1 0 , and ( l' R ,5' S, 6'R) for(-)- II. 

l·or comparison with analogue.<; I 0 and 11 , the achiml cyclohexadienone analogue 1 0 9 was 

synthesized according to Lei et a/149 except for the final step containing hydrolysis of methyl ester and 

dcketalation at C-4' (Fig. 25). The alkaline hydrolysis of the precursor 107 and subsequent deketalation 

according to the reported procedure, gave the epoxy compound I 08 in a 34% yield and the desired free 

acid 109 in an extremely low yield (6 %), which was 1/10 of the reported yield (63%). The epoxide l 08 

would have been yielded from the dekctalated compound by Michael addition of the 1'-oxygen to the 2'- or 

6'-carbon. This reaction must have been accelerated when the deketalated compound was left under basic 

conditions, suggesting that in adding I !Cito the basic solution, the temporary, local acidic environment that 

allows dcketalation, may occur in the basic solution. The deketalation of I 07 followed by hydrolysis with 

c.c;terase in phosphate buffer at pi l 8 instead of in alkali, gave I 09 in a 40% yield from 1 07. It has been 

rcpollcd that 1 09 is very sensitive to dilute base and so unstable in solution that its biological activity could 

not be tcsted.l49 In our experiments, although 109 was unstable under strongly basic conditions, it was 

rclath ely '>table in the phosphate buffer <ll pH 8 and in water under our assay conditions. When aqueous 

I 09 wa<; exposed to continuous light at 3o•c for 7 days, 54% of the initial amount remained. The 

rcm.tining ratio of ABA under the same conditions was 87%. Therefore, the biological acti' ity of the free 

acid 109 was confirmed here for the first time. We cannot explain why our results differed from those of 
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Fig. 25. Preparation of 109 

i) a) NaOII b) IICI ii) HCI iii) csternse. 

Conformational afllllysis based on NOEs 

109 (6%) 

The favored conformations of analogues 8-11 and 109 in solution at 300 K were examined on the 

basis of NOEs observed in the NOE difference spectra and NOESY in methanol-d4 (Fig. 26). ·n1e 5-

proton of 8 exhibited NOEs to the 7'- and 9'-protons, and the S'pro R-proton showed an NOE to the 

downfield 2',3'-methano proton (pro-R). Additionally, there were NOEs between the 8'-protons and both 

the 5'pro-S- andpro-R-protons, as well as between the 9'-protons and the 5'pro-S-proton. These results 

suggest that the favored ring conformation of 8 is a half-chair with the pseudo-equatorial side chain, similar 
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Fi~. 26. I a\-orcd conformations of(I'S)-8- 11 and 109, and obscrYcd NOEs (arrows) 

to the less favored confonncr II C2 of ABA. Analogue 9 showed NOE..c; among the 5-proton, S'pro-S

proton and downficld 2',3'-mcthano proton (pro-S), between the 8'-protons and the S'pro-R-proton, and 

between the 9'-protons and both the S'pro-S- and pro-R-protons. These NOEs must be observed only 

when 9 adopts a half chair with the side chain pseudo-axial similar to the favored confonner HCt of ABA. 

These conformational preferences were as we predicted (Fig. 22). 

Analogue I 0 exhibited NOEs between both the 4- and 5-protons and the 7'-protons, and between the 

5-proton and the 9'-protons. Analogues II and 109 exhibited NOEs between both the 4- and 5-protons 

and both the 7'- and R'-protons. These findings suggest that the favored ring confonnation of ru1alogues 

I 0, ll and l 09 is the planar ring with a biscctional side chain. However, intcrconversion to the boat 

forms may be easy (Fig. 22). 

Biologicnl nctil•ity 

llle biological acti' itics of optically active cyclopropane analogues 8-11 and the achiral 

cvclohe"adicnone analogue 109 were tested in the four bioassays described in Chapter 1.2. The activities 

of test compound\ were tlctennined b~ the ICso values. which, with the ring confonnation and steric cnvi-

70 

oq-
l/) 

N o888 ONC'>O 88§g §8 01 8 8~-- C'>NC'l -7..1\1\1\ OC'l N C') C') 

A A A. 1\ 1\ 
100 

?Z ~ % ~ ~ ~ ~ ~ ~ 80 ~ ~ ~ 
Cll ~ ~ ~ >- ~ ~ ~ ~ 
Cll ~ ~ Cll 60 ~ c:s ~ ~ 0 ~ :0 ~ ~ ~ c 

40 ~ ~ ~ 0 ~ tO-"' ~ ~ 
~ ~ ............ (X)' ~ ?Z N- ~ ~ ~ I ~ 

2: I ~ I N ~ ~ CXl NC'>Olll> ~ .·.· .~ OCXJOO ~ ~ C'lll>r-N f/ C'l-C'>O ~ f~ ~ ~ • i ~ ~ ~f~· .& ~ ~ '// '/, ~ 
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Ring pseudo- pseudo- pseudo- planar plan;u planar lixed conformation chair chair chair charr 
Side chain pseudo- pseudo- pseudo- b. . . fixed orientation axial equatorial . 1 rsectronal brsectronal biscctronal axra axral 
axial C-2'P * + 
axial C-6'P * + + 

f<ig.27. T?e lCso of(I',~)-ABA ( I ), analogues (I'S)-8-11 , 109 and (·)-PA ( 17) rnlt)UI 
broassays stomatal opening of the epidermal stnps of sprderwort (n \ 1) • kttuce 
seed g~:rrnrnatron (~t~l), ". , a-amylase induction by GA 1 rn baric} half-~ccds 
(~t \ 1), . elongation of the second leaf sheath of r icc scedlrngs (p \1) and the 
rrng conformauon and steric environments around the nng 

• l~he plus srgn represents existence of the substituent, and the mr11us srgn docs 11011-
exrstencc 

ronmcnt around the ring arc summarized in Fig. 27, which also shows the activity of PA ( 17) (sec Chapter 
I.2). 

In the stomata assay, ru1alogucs (1 'S)-8 and (l'S)-11 were not active at all, whereas the activity of 

(l'S)-1 0 was equivalent to that of (l'S)-ABA and those of (l'S)-9 and I 09 were 1/40 Hnd 1/8 that of 

(l'S)-ABA, respectively. In assays other than the rice assay, similar results were obtained. '11tc ( I'R)

cnantiomers were inactive in all the assays except for (l'R)-1 0 , which was similar to ( l'R)-ABA, l/2 to 
1/10 of (l'S)-ABA (data not shown). PA was inactive except for the a-amylase assay _I&~ 

Key infonnation for the ring confonnational requirement can be drawn from a comparison of active 

(l'S)-1 0 , inactive (l'S)-11 and relatively active 109. As mentioned above, analogues ( l'S)-1 0, ( l'S)

ll ru1d 109 possess similar, planar ring confonnations, but different orientations of the 6'-substitucnts 

(Fig. 26); (l'S)-1 0 always has the axial-like 6'a-substitucnt and the equatorial-like 6'1\-substitucnt, ( l'S)-

11 always has the equatorial-like 6'a-substituent ru1d the axial-like 6'~-substituent, and 109 has only one 

equatorial-like 6'-methyl group. Thus the difference in the activity can be attributed to the steric environ-
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ment at C-6' . Inactivity of (l 'S)-11 should be caused by the axial-like 6' 13-substituent rather than the 

absence of the axial-like (, 'a -substituent because 109 with no such substituent at C-6' was active. This 

means that the axial-like 6' 13 -substituents prevent the activity, so the ring conformation of (l'S)-ABA 

rc4uired for activity must be a form in which C-9' is not in the axial-like orientation between axial and 

bisectional. The side chain in such conformations of ABA will be essentially restricted to between axial 

and biscctional (Fig. 20). As the absence of the 6'-methyl groups is not fatal to the activity,92•133 

inactiv:~tion causeu by the axial-like 6'13-methyl would depend on stcric hindrance against binding to the 

receptor, suggesting that the receptor fits into the plane of the 13-side of the ring. This mode of binding to 

the receptor is similar in one aspect but different in another, to that of binding to the uptake carrier as 

speculated by Milborrow91. TI1e similarity is that the 13-face of the ring is recognized, while the difference 

is that the ring conformation in binding cannot be the less favored half-chair HC2 with the side chain 

pseudo-equntorial as Milborrow speculated, because the half-chair HC2 essentially possesses the axial6'!3-

methyl (C-9') that is fatal to activity. The fatal, stcric effect of the axial C-9' on activity indicates that the 

axial side chain can also have the same effect. If it docs, PA inactivity can be explained by the side chain 

fixed in the axial position. The lack of a 2',3'-doublc bond and the presence of the ether oxygen at C-2'a 

would have little effect on the decrease of the activity, because the dihydro analogue 65 is active,98 and 

( l ' R)-ABJ\ and ( l'R)-1 0 which possess the axial methyl group and cyclopropyl ring which is more bulky 

than oxygen at the site corresponding to C-2'a of (l'S)-ABA, is relatively active. This also suggests that 

the reason why PA is ineffective, is simply the constrained conformation with the side chain axial. In 

binding to the active site on the receptor, ABA probably tilts the side chain to the outside of the ring, that is, 

to the bisectional orientation with C-9' equatorial although we cannot define the exact degree of the tilt. 

The active conformation of ABA may be a medium between the idealized conformations HC t or St and 

SJ which can be adopted with a little increase of potential energy from the favored conformation. 

The activity of the other ( l'S)-analogues 8 and 9, all the (l'R)-analogucs can be unequivocally 

explained by the stcric effect of the axial-like substitucnts at the I)-side of the ring. Lnactive (l'S)-8 

possesses the axial 6' ()-mcthyl in its favored conformation. Although (l'S)-8 possesses the axial 2'a

substitucnt, cyclopropane ring, it would be little responsible for the inactivity because (l'R)-10, which 

possesses the same axial substituent at the site corresponding to C-2'a based on the pseudo-symmetric 

hypothesis of the ADA molccule,91,9S was relatively active. Analogue (l 'S)-9 that showed low activity 

possesses an a.xial-like cyclopropyl ring at the fj-sidc of the ring. According to the pseudo-symmetric 

hypothesis, the inactive (l 'R)-analogucs, 8, 9 and ll , possess substituents corresponding to either the 

axial 6 ' ~- or 2 ' f\-substitucnt in ( l'S)-ABA, while active (l 'R)-1 0 docs possesses neither. The activity of 

the allenic analogue 96 and dihydro analogues 65 and 66 also can be explained by our supposed ring 
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conformational requirement. The side chain in inactive 96 is constrained to the equatorial and cannot 

change into the bisectional. Although the side chain in active 65 is axial, it can tilt to biscctional like ABA, 

because it is not fixed. Slightly tilting the axial bulky group to bisectional would necessitate only a little 

energy, so 65 can adopt a conformation similar to the active conformation of ABA with a little increase of 

energy. On the other hand, 66 which is inactive, must adopt the high energy form possessing the 1,3-

diaxial methyl groups to site C-9' in the equatorial orientation. 

In the rice assay, (l'S)-8 and (l'S)-11 were as inactive as they were in the other assays, but (l 'S)-

9, (l 'S)-1 0 and 109 were more potent than (l'S)-ABA. Particularly, the 30-fold higher activity of (l'S)-

1 0 compared to (l'S)-ABA was equivalent to the activity of (l'R)-( + )-8',8',8'-trifluoro-ABA which is the 

most active analogue so far (see Chapter 1.2). These high activities seem to depend on slow metabolism; 

the weakened clcctrophilicity at C-2' for (1 'S)-9 and the fixed C-8' for ( l 'S)-J 0 would resist the 

cyclization to inactive PA, and the lack of the axial 6'a-methyl for 109 would not afford a 8'-hydroxy

derivative to cyclizc. It is of interest how (l'S)- t 0 and 109 were metabolized. Stereostructurcs around 

C-6' of these analogues are almost fixed, so investigation of their sites oxidized may clarify the 

conformational change of ABA in binding to the active site on the 8'-hydroxylasc (sec Chapter 1.1 ). 

Analogue (l'S)-8 seems to resist cyclization like (l'S)-9, but the activity of (l'S)-8 and its 8'

hydroxylated compound would be so low that they cannot show the increase in the activity that would be 

caused by the delayed metabolism since (l'S)-8 has an axial substituent at C-6'() which is fatal to 

exhibiting the activity as described above. 

Interaction of the a-face of the ring of ABA with the binding site has been suggested by the strict 

steric tolerance in the axial direction at C-2'a95 and the role of the 1'-bydroxyl group as the hydrogen 

bonding donor (sec Chapter IL2). The active site on the receptor probably recognizes both sides on the 

ABA ring. This information will provide important guidelines along which to develop active analogues 
and photoaffinity probes. 

Experimental 

General procedures 

The 1 H NMR spectra were recorded with TMS as an internal standard at 300 or 500 MHz using 

Brukcr AC300 or ARX500 instrument. For clarity, the atoms of all the compounds with the carbon 

skeleton of ABA were numbered as in ABA in the assignment of peaks. Mass spectra were recorded at 70 

eV with a Jcol JMS-DX300/DA5000 mass spectrometer. CD spectra were recorded with a Jasco J-720w 

spectropolarimeter. Optical rotations were measured with a Jasco DIP-1000 digital polarimeter. 

(± )-4,4-Ethylenedioxy-2,3-dihydro-2,3-metlumo-2,6, 6-trimethy/cyclohexan-1-one (9 8) 185 

To a stirred solution of NaH (60% in oil, 2.9 g, 72.5 mmol) in dry DMSO (50 ml) was added 

trimethyloxosulforuum iodide (16 g, 72.3 mmol) at o·c. The mixture was stirred for 15 min at o·c. A 

solution of 4,4-cthylenedioxy-2,6,6-trimcthylcyclohexan-1-one (97)186 (11 g, 56.1 mmol) in dry DMSO 

(50 ml) was added with stirring and the reaction mixture was stirred at room temperature for 15 min and 

then at so·c for 1 hr. After cooling and adding H20, the mixture was extracted with ether (200 ml x 3), 
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and the organic layer was washed with 1-120, dried over Na2S04, and concentrated. The residual oil was 

purified by column chromatography on silica gel (150 g) with hexane-EtOAc (9:1) to give 98 (11.8 g) as a 

colorless oil. 11-1 NMR (500 M!Tz, CDCI3): 0 1.02 (lH, dd, J = 8.0 and 5.9 Hz, 2-CH2-3), 1.09, 1.19 

and 1.26 (each 311, s , I-13-7, H3-8 and H3-9), 1.26 (1H, dd, J = 5.9 and 5.4 llz, 2-CH2-3), 1.63 (1H, 

ddd, .I= 8.0, 5.4 and 2.1 liz, H-3), 1.66 (1 H, dd, .I= 14.7 and 2.1 Hz, H-5), 1.81 (1H, d, J = 14.7 Hz, 

11-5), 4.05 (41£, m, OCH2CH20); GC-MS m/z (rei. int.): 210 [MJ+ (11), 195 (4), 181 (5), 169 (5), 154 

(18), 141 (9), 126(100). 

( ±)-(2Z)-5-( 4 ',4'-Ethylenedioxy-2' ,3'-dihydro-2' ,3' -methano-2' ,6' ,6'-trimethylcyclohex-2'-enyl)-3-

met!tylpent-2-en-4-yn- I -o/ (99 and 100) 

To a stirred solution of cis 3-mcthylpcnt-2-en-4-yn-1-ol (5.8 g, 60 mmol) in dry THF (50 ml) was 

added dropwise 11-BuLi (1.6 M hexane solution, 75 ml, 120 mmol) over 30 min at -78•c under nitrogen. 

11. solution of 98 in dry Tl lf (lOO ml) was added dropwise over 30 min at room temperature and the 

reaction mixture was stirred for 2 hr. After cooling and adding H20, the mixture was extracted with ether 

(200 ml x 3), and the organic layer was washed with 1-120, dried over Na2S04, and concentrated. The 

residual oil was purified by column chromatography on silica gel (180 g) with hexane-EtOAc (6:4) to give a 

mixture of 99 and 100 (4.1 g, 28.1% yield) as a colorless oil in U1e diastereomeric ratio of 1:10, 

determined by integrating the signals of the upfic\d 2',3'-methano proton in 1 H NMR spectrum. 1 H NMR 

(500 MHz, CDCI3): the signals of 99: o 0.60 (1 H, dd, J = 9.7 and 5.3 Hz, 2'-Cfh-3'), 1.01 (1H, dd, J 

= 5.9 and 5.3 Hz, 2'-Ci h-3'), 1.03 (3H, s, J·b-8'), 1.13 (3H, s, H3-9'), 1.14 (1H, ddd, J = 9.7, 5.9 and 

1.6 llz, 11-3'), 1.24 (1H, dd, J = 14.5 and 1.6 Hz, H-5'), 1.30 (3H, s, H3-7'), 1.70 (11-I, d, J = 14.5 Hz, 

11-5'), 1.91 (3H,d,.f= 1.111z, 113-6), 3.90-4.08 (4H, m, OCH2CH20), 4.34 (2H, d,J = 6.3 Hz, H2-

l) , 5.87 (lH, m, H-2); the signals of 100 : o 0.76 (1H, dd, J = 9.3 and 5.9 Hz, 2'-CH2-3'), 0.93 (lH, 

del, J = 5.9 and 5.5 Hz, 2'-CH2-3'), 1.10 (3H, s, H3-9'), 1.13 (3H, s, H3-8'), 1.18 (1H, ddd, J = 9.3, 

5.5 and 1.4 Hz, H-3'), 1.24 (3H, s, l·b-7'), 1.49 (1H, dd, J = 14.8 and 1.4 Hz, H-5'), 1.59 (1H, d, J = 

14.8 liz, 11-5'), 1.89 (311, d, J = 1.0 Hz, H3-6), 2 .75 (lH, s, OH), 3.90-4.08 (4H, m, OCJ-12Cllz0), 

4.31 (2II, d, J = 6.6 liz, H2-1), 5.86 (I II, m, H-2); ElMS m/z (rei. int.): 306 [M]+ (2), 289 (32), 273 

(29), 261 (11), 245 (19), 219 (25), 204 (35), 189 (61), 173 (55), 119 (100); I-IR-ElMS: [M]+ at mlz 

306.1848 (Ct81!2604 requires 306.1831). 

( ± )-(2Z,4 E)-5-( 4' ,4'-Etlrylenedioxy-2', 3'-dihydro-2', 3'-methano-2', 6', 6' -trimethylcyclohex-2' -eny/)-3-

metlrylpenta-2,4-dien-J-ol (1 01 and 1 02) 

To a stirred solution of a mixture of 9 9 and 100 (3. 7 g, 12.1 mmol) in dry THF (50 m 1) was added 

dropwise Red-AI® (3.4 M toluene solution, 12 ml, 40.8 mmol) in dry THF (20 ml) over 30 min at -15•c 

under nitrogen. The reaction mixture was stirred at room temperature for 3 hr. After cooling and adding 

HzO, the mixture wns extracted with ether (150 ml x 3), and the organic layer was washed with H20, dried 

over NazS04, and concentrated. The residual oil was purified by column chromatography on silica gel (40 

g) with hexane-EtOAc (11:9) to give a mixture of 101 and 102 (2.8 g, 75.2% yield) as an oil in the 

diastcrcomeric ratio of 1: ll, determined by integrating tile signals of the upfield 2',3'-methano proton in 
11-1 NMR spectrum. 1H NMR (500 MHz, CDCb): the signals of 101 : o 0.52 (lH, dd, J = 9.5 and 5.0 
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Hz, 2'-Cl-12-3'), 0.75 (3H, s, H3-8'), 1.01 (21-1, m, 1-1-3' and 2'-CHz-3'), 1.06 (61-1, s, H3-7' and 1-13-9'), 

1.20 (11-1, d, J = 14.3 Hz, H-5'), 1.77 (1H, d, J = 14.3 Hz, H-5'), 1.91 (3H, s, ll3-6), 3.95-4.10 (4H, 

m, OCH2CH20), 4.33 (2H, m, H2-1), 5.57 (IH, m, H-2), 6.13 (lH, d, J = 15.6 Hz, H-5), 6.79 (111, d, 

J = 15.6 Hz, H-4); tile signals of 102 : 6 0.66 (1H, m, 2'-CHz-3'), 0.96 (6H, s, l-13-8' and 1-13-9'), 1.06 

(31-1, s, H3-7'), 1.10 (21-1, m, H-3' and 2'-Cl-12-3'), 1.53 (I H, d, .I= 14.8 Hz, H-5'), 1.65 (IH, d, J = 

14.8 Hz, H-5'), 1.89 (31-1, s, l-13-6), 3.41 (11-1, s, OH), 3.95-4.10 (4I-1, m, OCH2CHzO), 4.35 (2H, m, 

l-12-1), 5 .54 (1H, m, H-2), 5.79 (1H, d, J = 15.5 Hz, H-5), 6.72 (1H, d, J = 15.5 Hz, H-4); ElMS m/z 

(rei. int.): 308 [MJ+ (8), 290 [M-H20]+ (6), 252 (6), 234 (20), 221 (5), 207 (5), 183 (13), 161 (14), 145 

(21), 135 (15), 127 (25), 107 (23), 99 (90), 91 (25), 86 (100); IIR-EIMS: [M]+ at m/z 308.1986 

(Ct8H2804 requires 308.1987). 

( ± )-(2Z,4E)-5-( 4',4'-Et/ry/enedioxy-2' ,3'-dihydro-2' ,3'-methano-2' ,6', 6'-trimethylcyclohex-2'-enyl)-3-

methy/penta-2, 4-dien-1-a/ ( 1 0 3 and 10 4) 

To a solution of a mixture of 101 and 102 (2.7 g, 8.77 mmol) in acetone (200 ml) was added MnOz 

(15 g, 172 mmol) at room temperature. The suspension was stirred at room temperature for 1 hr and 

filtered, and the filtrate concentrated. The residual oil was purified by column chromatography on silica 

gel (25 g) with hexane-EtOAc (7:3) to give a mixture of 103 and 104 (2.3 g, 85.7% yield) as an oil in the 

diastereomeric ratio of 1:11, determined by integrating the signals of the 4-1 1 in 1 H N MR spectru 111 • 'H 

NMR (500 MHz, CDCI3): the s ignals of 103 : 0 0.56 (11-1, dd, J = 9.6 and 4.9 Hz, 2'-Cl-12-3'), 0.78 

(3H, s, H3-8'), 1.08 (31-1, s, H3-9'), 1.09 (3 1-1 , s, 1-13-7'), 1.13 (2H, m, H-3' and 2'-Cl-12-3'), 1.23 (1 H, 

d,J= 14.3 Hz, H-5'), 1.77 (HI, d,J= 14.3 Hz, H-5'), 2.13 (3H, d,J= 1.2 Hz, H3-6), 3.96-4.12 (411, 

m, OCH2CH20), 5.89 (1H, d, J = 8.9 Hz, H-2), 6.55 (lH, d, 1 = 15.5 Hz, H-5), 7.49 (1H, d, .1 = 15.5 

Hz, H-4), 10.25 (11-1, d, J = 8.9 Hz, CHO); the signals of 104 : 6 0.70 (ll-i, dd, J = 9.5 nnd 7.5 Hz, 2'

CH2-3'), 0.98 (3H, s, 1-13-9'), 1.00 (3H, s, l-13-8'), 1.08 (31-1, s, 1-13-7'), 1.13 (21-1, m, H-3' and 2'-Clh-

3'), 1.55 (lH, d,J = 14.8 Hz, H-5'), 1.66 (1H, dd, J = 14.8 and 1.5 Hz, H-5'), 2.11 (3H, d, .1 = l.O 

Hz, H3-6), 3.57 (lH, d, J = 1.4 Hz, OH), 3.96-4.12 (4H, m,OCH2CH20), 5.86 ( 111, cl, J = 8.3 liz, 11-

2), 6.20 (1 H, dd, J = 15.4 and 1.4 Hz, H-5), 7.40 (1 H, d, .I= 15.4 Hz, H-4), 10.28 (1 H, d, J = 8.3 Ilz, 

CHO); EfMSm/z (rei. int.): 306lM]+ (2), 288 [M-H20]+ (1), 250 (5), 235 (4), 205 (5), 177 (5), 161 

(12), 127 (24), 107 (11), 99 (70), 86 (100); HR-EIMS: [MJ + at m/z 306.1830 (C18H260-l requires 

306.1831). 

(±)-Methyl (2Z,4E)-5-( 4',4'-ethy/enedioxy-2', 3'-dihydro-2' ,3'-methano-2', 6', 6'-trimethylcyclohex-2'-

enyl)-3-methylpenta-2,4-dienoate (105 and 106) 

To a solution of a mixture of 103 and 104 (2.3 g, 7.5 mmol) in MeOH (100 ml) was added MnOz 

(10.4 g, 119 mmol), NaCN (875 mg, 17.9 mmol) and AcOH (0.44 ml, 7.6 mmol) at room temperature. 

TI1e suspension was stirred at room temperature for 4.5 hr and filtered, and the filtrate was concentrated to 

a small volume and partitioned between ether and HzO. The organic layer was washed with 1 IzO, dried 

over NazS04, and concentrated. The residual oil was purified by column chromatography on silica gel (35 

g) with hcxane-EtOAc (4:1- 7:3) to give 105 (0.21 g, 8.3% yield) and 106 (1.76 g, 69.6% yield) as 

colorless oils. 105 : 1H NMR (500 MHz, CDCb): o 0.52 (lH, dd, J = 9.5 and 5.1 liz, 2'-CHz-3'), 
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0.77 (JH, s, ll3-8'), 1.04 (2H, m, H-3' and 2'-CH2-3'), 1.06 (3H, s, H3-9'), 1.07 (3H, s, H3-?'), 1.19 

(1H, dd,.J = 14.4 and 1.2 liz, 11-5'), 1.80 (lH, d, J = 14.4 Hz, H-5') , 2.05 (311, d, J = 0.7 Hz, H3-6), 

2.29 (111, s, OH), 3.71 (3H , s, OMe), 3.89-4.09 (4H, m, OCH2CH20), 5.70 (1H, br s, H-2), 6.50 (1H, 

d, .I = 16.0 Hz, H-5), 7.86 (1 H, d, J = 16.0 Hz, 11-4); ElMS m!z (rei. int.): 336 [M]+ (4), 280 (5), 248 

(3), 204 (9), 186 (6), 159 (12), 135 (9), 127 (15), 99 (76), 86 (100); HR-ElMS: [M]+ at m/z 336.1947 

(CI9112805 requires 336.1937). 106: 1H NMR (500 MHz, CDCb): o 0.68 (1H, dd, 1 = 7.8 and 5.6 

Hz, 2'-CH2-3'), 0.96 (311, s, 113-9'), 1.01 (31-l, s, H3-8'), 1.09 (3H, s, H3-?'), 1.10 (2H, m, H-3' and 

2'-C112-3'), 1.52 (1 H, d, .J = 14.7 Hz, H-5'), 1.67 (1H, dd, J = 14.7 and 0.5 Hz, H-5'), 2.03 (3H, s, 

113-6), 3.29 (111, s, OH), 3.71 (3H, s, OMe), 3.94-4.11 (41-I, m, OCH2CH20), 5.68 (1H, s, H-2),6.14 

(Ill , d, J = 16.0 liz, H-5), 7.80 (HI, d, J = 16.0 Hz, H-4); EfMSm/z (rei. int.): 336 [M]+ (5), 280 (7), 

248 (4), 221 (5), 204 (8), 186 (I 0), 159 (15), 127 (17), 107 (24), 99 (82), 86 (100); HR-EIMS: [MJ+ at 

mlz 336.1915 (CI9112805 requires 336.1937). 

(±)-Methyl 2'a,3'a-dihydro-2'a,3'a-metlumoabscisate (Sa) and (±)-methyl 2'~,3'~-dihydro-2'~,3'~

mctlwnoabscisate (9a) 

To a solution of 1 OS (0.12 g, 0.357 mmol) in acetone (15 ml) was added p-toluenesulfonate (10 mg) 

at room temperature. The mixture was stirred for 4 hr and concentrated to a small volume before being 

addeu saturated aqueous NaHC03 and extracted with EtOAc (100 ml x 3). The organic layer was washed 

with I 120 , dried over Na2S04, and concentrated. The residual oil was purified by column 

chromatography on silica gel (5 g) to give Sa (100 mg, 95.9% yield) as a white solid. In the similar 

manner to 1 OS, 106 (1.85 g, 5.5 mmol) gave 9a (1.52 g, 94.5% yield) as a colorless oil. Sa : 1 H NMR 

(500 Mllz, CDCI3): o 0.86 (3H, s, H3-8'), 1.00 (1 H, dd, .I= 8.9 and 3.8 Hz, 2'-CI-12-3'), 1.01 (3H, s, 

H3-9'), 1.15 (311, s, H3-?'), 1.66 ( lH , dd, .I= 14.7 and 1.0 Hz, H-5'), 1.74 (2H, m, H-3' and 2'-CH2-

3'), 1.74 (1 H, s, 0 11),2.06 (3ll, d, .J = 1.0 Hz, I-[3-6), 2.66 (1H, d, J = 14.7 Hz, H-5'), 3.72 (3H, s, 

OMe), 5.76 (lH, br s, H-2), 6.45 (1H, d, .I = 16.0 Hz, H-5), 7.94 (lH, d, .I= 16.0 Hz, H-4); IR Yma.~ 

(MeOH) cm-1: 3600, 3500, 2950, 1690, 1635, 1600; ElMS mlz (rei. int.): 292 [M]+ (4), 274 [M-1-hO]+ 

(5), 260 [M-MeOHJ+ (7), 236 (11), 204 (31), 194 (6), 177 (40), 161 (30), 149 (38), 135 (100), 125 (36); 

IIR-EIMS: [M]+ atm/z 292.1685 (C17H2404 requires 292.1675). 9a: 1H NMR (500 MHz, CDCI3): 0 

0.94 (311, s, ll3-9'), 1.05 (3H, s, 1!3-8'), 1.09 (lH, dd, 1 = 9.6 and 5.8 Hz, 2'-CH2-3'), 1.16 (3 H, s, 

113-7'), 1.39 (1H, dd,.! = 5.8 and 4.5 llz, 2'-CH2-3'), 1.79 (1H, dd, J = 9.6 and 4.5 Hz, H-3'), 1.81 

(111, s, OH), 2.04 (1H, d, J = 15.8 Hz, H-5'), 2.07 (3H, s, H3-6), 2.29 (1 H, d, .I = 15.8 Hz, H-5'), 

3.72 (3ll, s, OMe), 5.76 ( l H, br s, 11 -2), 6.38 (1 H, d, J = 16.0 Hz, H-5), 7.93 (1 H, d, J = 16.0 Hz, H-

4); IR V111ax (MeOl!) cm-1: 3600, 3450, 2950, 1690, 1635, 1600; E lMS m/z (rei. int.): 292 [M]+ (5), 

274 [M-H20]+ (5), 260 fM-MeOJ-q+ (10), 236 (12), 204 (36), 194 (6), 177 (47), 161 (33), 149 (47), 135 

(100), 125 (57); HR-EIMS: fM J+ at m/z 292. 1668 (Ct7H240 4 requires 292.1675). 

(±)-2'a,3' a-Oihydro-2'o.,3'a-methano-ABA (S) and ( :t)-2'13,3' 13-dihydro-2' 13, 3'13-methano-ABA (9) 

To a solution of Sa (52 mg, 0.178 mmol) in MeOH (1 ml) was added IN NaOH (3 ml), and the 

mixture was stirred at room temperature for 2.5 hr and H20 (30 ml) was added. The solution was 

extracted with hexane and the aqueous layer was lowered its pH to 2 with 1N HCI, and extracted with 
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EtOAc (30 ml x 3). The organic layer was washed with H20, dried over Na2S0-1, and concentrated. The 

residual oil was chromatographed on silica gel (5 g) with hexane-EtOAc-AcOII (28: 12:1) to give (:t)-8 

(46.6 mg, 94.1% yield) as a white amorphous solid. In the similar manner to Sa , 9a (820 mg, 2.8 mmol) 

gave (:t)-9 (675 mg, 86.5% yield) as a colorless oil. (±)-8: 1H NMR (500 MHz, CD30D): & 0.84 (3H, 

s, H3-8'), 0.97 (3H, s, H3-9'), 1.06 (1H, dd, 1 = 9.6 and 4.8 Hz, 2'-Cih-3'), 1.18 (3H, s, H3-7'), 1.55 

(1H, dd, 1 = 14.5 and 1.5 Hz, H-S'pro-S), 1.70 (1 H, ddd, J = 9.6, 5.2 and 1.5 Hz, H-3'), 1.76 (III, dd, 

J = 5.2 and 4.8 Hz, 2'-CH2-3'), 2.07 (3H, d, J = 1.2 Hz, H3-6), 2.69 (1 H, d, J = 14.5 Hz, H-5 'pro

R), 5.74 (lH, br s, H-2), 6.52 (lH, d, .I= 15.9 Hz, H-5), 7.91 (lH, d, J = 15.9 Hz, H-4); UV A.max 

(MeOH) nrn (e): 256 (19,500); El MS m/z (rei. int.): 278 [MJ+ (3), 260 [M-H20]+ (20), 245 (4), 222 

(15), 204 (26), 194 (10), 177 (29), 161 (26), 149 (26), 135 (100), 121 (62); HR-EIMS: JM]+ at m/z 
278.1518 (Ct6 H2204 requires 278.1518). (:t.:)-9 : 1H NMR (500 MHz, CD30D): o 0.92 (3H, s, lf3-9'), 

0.99 (3H, s, H3-8'), 1.09 (1H, dd, J = 9.5 and 5.7 Hz, 2'-CH2-3'), 1.15 (3H, s, H3-?'), 1.57 (Ill, dd, J 

= 5.7 and 4.4 Hz, 2'-CH2-3'), 1.71 (1 H, ddd, J = 9.5, 4.4 and 1.0 Hz, H-3'), 1.85 (HI, del, 1 = 15.7 

and 1.0 Hz, H-5'pro-R), 2.08 (3H, d, 1 = 1.1 Hz, H3-6), 2.52 (lH, d, J = 15.7 Ilz, H-5'pro-S), 5.73 

(1H, br s, H-2), 6.53 (1H, d, .I = 15.9 Hz, H-5), 7.87 (1H, d,.! = 15.9 Hz, H-4); UV Amax (MeOI L) nm 

(E): 257 (18,000); ElMS m/z (rei. int.): 278 [MJ+ (2), 260 [M-H20]+ (16), 245 (5), 222 (12), 204 (24), 

194 (11), 176 (38), 161 (35), 149 (36), 135 (100), 121 (79); HR-E!MS: [MJ+ at m/z 278.1504 

(C16H220 4 requires 278 .1518). 

(±)-5'a,8'-Cyclo-ABA (10) and (±)-5'13,9'-Cyclo-ABA (11) 

To a solution of (±)-7 (see Chapter ll.2) (50 mg, 0.169 mmol) in MeOII (5 ml) was added IN 

NaOH (5 ml), and the mixture was stirred at room temperature for 3 hr and lhO (40 ml) was auded. TI1e 

solution was extracted with hexane (40 ml) and the aqueous layer was acidified with IN IICI to pll 2, and 

extracted with EtOAc (30 ml x 3). The organic layer was washed with H20, dried over Na2S04, and 

concentrated. The residual oil was chrornatographed on silica gel (33 g) with CJ-f2CI2-acetone-Ac011 

(100:10:1- 100:25:1) to give (±)-10 (47.3 mg) as a white amorphous so lid. ln the same manner as (±)-7 , 

(±)-93 (120 mg) gave (:t.:)-11 (110.2 mg) as a white amorphous solid. (:t.:)-10 : ' H NMR (500 Mllz, 

acetone-d6): 0 1.08 (1H, dd, 1 = 8.7 and 4.3 Hz, H-8'), 1.23 (3H, s, H3-9'), 1.24 (HI, dd, J = 4.3 and 

4.3 Hz, H-8'), 1.75 (1 H, ddd, 1 = 8.7, 4.3 and 1.6 Hz, H-5'), 1.84 (ll-1, d, .I= 1.2 Hz, 113-7'), 2.03 

(3H, d, J = 1.0 Hz, H3-6), 5.52 (1 H, m, H-3'), 5.76 (1 H, br s, H-2), 6.02 (lH, d, 1 = 15.8 Hz, H-5), 

8.03 (1H, d, .! = 15.8 Hz, H-4); UV Amax (MeOH) nm (E): 269 (17,100), 240 (15,400); IR of the methyl 

ester vrnax (CHC)J) cm-1
: 3550, 3000, 1700, 1660, 1600; ElMS of the methyl ester m/z (rei. int.): 276 

(M]+ (5), 260 (7), 244 (46), 229 (35), 216 (30), 201 (44), 189 (36), 175 (56), 161 (45), 145 (39), 135 

(64), 125 (100); HR-EIMS of the methyl ester: fM]+ at m/z 276.1356 (Ct611 200-I requires 276.1362). 

(±)-11 : 
1
H NMR (500 MHz, CD30D): 0 1.20 (2H, m, I-12-9'), 1.21 (3H, s, l-1 3-8'), 1.85 (1 H, m, H-

5'), 1.86 (1 H, d, J = 1.2 Hz, H3-?'), 2.06 (3H, d, J = 0.9 Hz, H3-6), 5.69 (1 H, m, 1-1-3'), 5.76 (II 1, br 

s, H-2), 6.13 (1 H, d, J = 16.0 Hz, H-5), 7.99 (l H, d, .I= 16.0 Hz, H-4); UV Amax (MeOJ-1) nm (E): 246 

(24,500); IR of the methyl ester Ymax (CHCI3) cm·1: 3550, 3000, 1700, 1660, 1600; ElMS of the methyl 

ester m/z (rei. int.): 276 [M]+ (1), 260 (3), 244 (14), 229 (6), 199 (7), 189 (11 ), 175 (7), 161 ( 11 ), 145 
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(6), 135 (15), 125 (100); HR-EIMS of the methyl ester: JM]+ at m/z 276.1373 (C16H2o04 requires 

276.1362). 

(2Z,4E)-5-(2',6'-Dimethy l-l '-hydroxy-4'-oxocyclohxa-2' ,5' -dieny l)-3-methy lpellt-2,4-dielloic acid (1 09) 

The methyl ester 1 09a was synthesized from 107 according to the method reported by Lei et a/. 149 

To a solution of I09a (40 mg, 0.15 mmol) in a mixture of MeOH (0.7 ml) and 0.1 M KI·I2P04-K2HP04 

buffer (pll 8.0, 3.4 ml) was added porcine liver esterase (EC 3.1.1.1, Sigma E-3128, 0.53 ml, 1500 

units). The mixture was shaken at 30oC for 16 hr, then filled up to 50 ml with I-{20, acidified with 1 N 

I ICI to pH 2 and extracted with EtOAc (30 ml x 3). The organic layer was washed with H20, dried over 

Na2S04, and concentrated. The residue was chromatographed on silica gel ( 4.5 g) with CH2CI2-acetone

AcOII (70:30:1 - 60:40:1) to give 109 (26 mg, 69% yield, 40% yield from 107) as a white amorphous 

powder. The spectral data of I 09 agreed with those reported. 

The conversion of 107 (40 mg) by the reported method gave 11 mg of 108 (34% yield) and 1.8 mg 

of 109(6%yield). 108: 1IINMR(500MHz,CDC13): &1.41(3H,s, H3-7'), 1.99(3H,d,J=1.1 Hz, 

1!3-8'), 2.04 (3H, d, J = 1.5 Hz, H3-6), 2.87 (lH, d, J = 16.3 Hz, H-3'), 2.99 (ll-1, del, J = 16.3 and 0.6 

liz, 1!-3'), 5.73 (lH, br s, H-2), 6.18 (1H, d, J = 16.4 Hz, H-5), 6.58 (111, m, H-5'), 7.55 (lH, d, 1 = 

16.4 liz, H-4); UV Amax (MeOH) nm (€): 244 (21,300); FAB-MS (matrix, 3-nitrobcnzyl alcohol) m/z: 

249I M+Hj+. 

Stability of 109 

The aqueous solutions (3 x 10-4 M) of 109 and ABA were left for 7 days under the same conditions 

as the rice assay. The solutions were analyzed by HPLC with an ODS column (AQ 311, 6 x 100 mm, 

YMC; solvent, 50% MeOH containing 0.1% AcOI£; flow rate, 1.0 ml min-1; detection, 254 nm). The 

recoveries of 109 and ABA were calculated to be 54 and 87%, respectively, by being compared with the 

peak-heights of the standard samples. 

Optical resolution of 8-11 

Racemic 8 (22 mg) was injected into a Chiralcel OD HPLC column (250 x 4.6 mm, Daicel; solvent, 

7% isopropanol in hexane containing 0.1 % TFA; flow rate, 1.0 ml min-1; detection, 254 nm). The 

materials at the retention times of 10.2 and 16.8 min were collected to give (-)- and ( + )-8 (10.1 and 10.1 

mg) as white amorphous powders with an optical purity of 99.7 and 99.2%, respectively, measured by 

HPLC on the same column. (-)-8: ja]~ -21.4° (MeOH, c 0.673); CD Acxt (MeOH) nm (~€): 283.4 (-

0.9), 255.4 (+3.3), 207.6 (-13.5). (+)-8: taJ~ +19.8° (MeOH, c 0.667); CD Acxt (MeOH) nm (~€): 
284.6 (+l.l), 258.3 (-3.2), 205.6 (+14.5). Racemic 9 (14 mg) was injected into a Chiralcel 00 HPLC 

column (solvent, 8% isopropanol in hexane containing 0.1% TFA; flow rate, 1.0 ml min·l; detection, 254 

nm). The materials at the retention times of 12.6 and 18.4 min were collected to give(-)- and (+)-9 (6.7 

and 6.6 mg) as white amorphous powders with an optical purity of 99.9 and 99.2%, respectively, 

measured by HPLC on the same column. (-)-9: [a]~ -68.0° (MeOH, c 0.447); CD Aext (MeOH) nm 

(~E): 247.0 (-3.7), 212.7 (+3.3). (+)-9: [a)~~ +67.3° (MeOH, c 0.440); CD Aext (MeOH) nm (~€): 

248.4 (+3.8), 214.0 (-2.5). Racemic 10 (10 mg) was injected into a Chiralpak AD HPLC column (250 x 
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4.6 mm, Daicel; solvent, 8% isopropanol in hexane containing 0.1% TFA; flow rate, 1.5 ml min· I; 

detection, 254 nm). The materials at the retention times of 13.0 and 16.6 min were collected to give(+)

and (-)-10 (5.0 and 5.0 mg) as white amorphous powders with an optical purity of 99.8 and 99.7%, 

respectively, measured by HPLC on the same column. (+)-10 : [a]~ +527.5" (CHCb, c 0.333); CD Aext 

(MeOH) nm (~E): 329.6 (+3.2), 270.7 (+32.3), 218.5 (-19.2). (-)-10: [a]~ -528.4° (CHCb, c 0.333); 

CD Aext (MeOH) nm (~€): 329.2 (-3.5), 270.5 (-31.4), 217.2 (+19.1). Racemic 11 (15 mg) was 

injected into a Chiralpak AD HPLC column (solvent, 6% isopropanol in hexane containing 0.1% TFA; 

flow rate, 1.5 m1 min-1; detection, 254 nm). The materials at the retention times of 14.8 and 17.6 min 

were collected to give ( + )- and (-)-11 ( 6. 7 and 6.4 mg) as white amorphous powders with an optical purity 

of 99.9 and 99.8%, respectively, measured by HPLC on the same column. (+)-11 : taJ~ +200.::!" 

(CHCb, c 0.213), +224.6° (MeOH, c 0.213); CD Aext (MeOH) nm (~E): 313.2 (+5.4), 269.2 (-5.1), 
27 

239.4 (+16.5), 214.0 (-6.9). (-)-11 : [a)o -210.9° (CHCI3, c 0.223), -207.3° (MeOH, c 0.223); CD 

Aext (MeOH) nm (~€): 313.1 (-5.1), 269.0 (+4.8), 239.2 (-15.5), 213.1 (+7.3). 

Preparation of optically active 10 and 11 from optically active 7 and 93 

To a solution of ( + )-7 (100 !!g) in MeOH (20 ml) was added 1N NaOH (50 !!1). The mixture was 

left for 1 hr at room temperature, acidified with IN HCI to pH 2 and extracted with EtOAc (0.2 ml x 5). 

The organic layer was concentrated to give the bicyclic compound, which gave the same retention time as 

(-)-1 0 under the same HPLC condition that racemic 10 was optically resolved. In the same manner as 

(+)-7, (-)-7 gave (+)-10, (+)-93 did (+)-11 and (-)-93 did (-)-11. 

Bioassays 

See Chapter I.2. 
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Summary 

lllc plant hormone ABA has not been applied to agriculture be~1usc of drawbacks including its rapid 

metabolism to inactive PAvia 8'-IIOABA. This apparently indi~1ted that a metabolically stable analogue 

can overcome the short half-life of ABA to enhance its activity. llowcvcr, no analogue modified at C-8' 

that is hydroxylated at the first stage of the major metabolic pathway, has yet been synthesized. Two ways 

conferred resistance to metabolic inactivation; one was lhe blockage of hydroxylation to 8'-IIOABA, and 

the other was cyclization to inactive PA. 

lllc synthesized analoguc.c; 8',8'-difluoro and 8',8',8'-trifluoro-ADAs (2 and 3) were resistant to the 

B'-hydroxylation (Chapter 1.2). The metabolism of 2 and 3 was not investigated, but the fact that they 

\howed the higher and longer-lasting activity in a long-term rice assay, suggested that the half-life was 

extended ns n rc.sult of resistance to the 8'-hydroxylation. The 8'-trifluoro analogue 3 was over 30-fold 

more potent than ABA in inhibiting rice seedling elongation is the most potent analogue of ABA to date. 

Analogues that can resist cyclization to PA were designed from two standpoints; a decrease in the 

nucleophilicity of the 8'-oxygen, and a decrease in lhe clcctrophilicity of the 2'-carbon. 8'-Methoxy-ABA 

(4) blocked lhc nucleophilic addition of the 8'-oxygen to the 2'-carbon, and its activity was lasted longer in 

the rice ac;say (Chapter 1.3). 3'-Fiuoro-ABA (5) blocked the clcctrophilic addition of lhe 2'-carbon to the 

8'-o,ygcn due to the higher :n:-clectron density at C-2' induced by the electron-donating effect of the 3'

fluorine (Chapter 1.4). This analogue did not strengthen lhc activity, but the metabolite 3'-fluoro-8'

IIOABA (72) wac; isolated as the methyl c.stcr 72a along with the methyl esters of 3'-fluoro-PAs (73a and 

74a) and 3'-fluoro-DPAs (75a and 76a) when 5 was applied to bean shoots. At room temperature, 72a-

74a converted into an equilibrium mixture consisting of 72a, 73a and 74a at a ratio of 7:6:1. This 

showed that the introduction of electron-donating group at C-3' in ABA causes resistance to cyclization, 

although with fluorine, the rc.c;istancc was partial. 

An alternative approach to development of highly active analogues of ABA is to design a high affinity 

analogue for the receptor based upon understanding of the structure-activity relationships. The author 

investigated the role of the 1 '-hydroxyl group of ABA and the 8'-hydroxyl group of 8'-HOABA using 1'

deoxy-1'-fluoro-ADA (6) and 8'-fluoro-ABA (7) (Chapter 11). The activity of 6 was 1/10- 1/20 that of 

ABA and similar to lhat of 1'-dcoxy-ABA (79), meaning that the 1 '-hydroxyl group of ABA cannot be 

mimicked by the fluorine atom. This suggested that the 1'-hydroxyl group of ABA interacts with the 

receptor as the hydrogen-bonding donor. The activity of 7 was similar to that of ABA, suggesting that the 

8'-hydro,yl group is not involved in activity. 

The ring conformational requirement of ABA for activity was probed using Lhc cyclopropane 

analogues 8-11 (Chapter Ill). Analogues 8, 9 and 11 which possess the axial substituent at C-6' or C-2' 

on the f\-side of the ring showed no or very low activity, whereas 10, which docs not possess these 

substituents, exhibited the acti\ ity compamhlc to that of ABA. This suggested that the active conformation 

of ABA is close to the favored half-chair with a pseudo-axial side chain and an equatorial C-9' mther than 

the less favored half-chair with the former pseudo-equatorial and the latter axial. These findings wilt be 

useful in developing highly potent analoguc.c; and photoaffinity probes with which to search for the ABA 

receptor. Also, analogue 1 0 showed high activity in the rice assay, equal to that of 3. 
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The author developed lhc first highly potent, long-lasting analogues of ABA. These analogues will 

be useful not only as plant growth regulators but also as probes with which to investigate the mechanbm of 
ABA action. 
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