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ABSTRACT 
 
 

This study was performed to develop a methodology for water utilities in Japan to make tradeoffs 

between meeting consumer expectations with respect to water quality and reducing energy use. With 

significant degradation in raw water quality as a result of climate change, and given that advanced water 

treatments are typically more energy intensive, utilities will be forced to make a choice between meeting 

the consumer expectations for water quality and curtailing energy use in a bid to mitigate the impacts of 

climate change. Because it is difficult to achieve both targets, the challenge for utilities, thus, is to arrive 

at an optimal tradeoff between the water quality and energy consumption.  

 

The first objective of the study was to develop a Performance Indicator (PI) system, which can be used to 

evaluate models under different scenarios of climate change. This is important because the current PI 

system has 137 items, which are too many in number to be incorporated as evaluation parameters. The 

study used Principal Component Analysis, a statistical technique, to reduce the number of indicators to a 

more manageable set. In doing so, a new PI system called 9-component Performance Indicator System (9-

cPIS) was developed. The components of the 9-cPIS have been called — Economic Value of Water, 

Employee Productivity, Financial Sustainability, Adaptive Management, Private Investment, Green Water 

Supply, Consumer Satisfaction for Water Quality, Emergency Response Index, and Earthquake Resistant 

Water Supply. The 9-cPIS contains only 33 items, which is not only useful for modeling studies but also 

useful for small water utilities in Japan, which do not have the resources to evaluate all the 137 originally 

recommended items. Apart from its use in modeling studies, the applications of the 9-cPIS in evaluating 

business models and implementing the PDCA cycle have also been illustrated. 

 

The second objective of the study was to introduce a concept called “Public Interest (PINT)” in the PI 

system. PINT identifies those areas of the supply system in which the public has interest, thereby providing 

an insight into consumer’ expectations. The PINT was estimated by conducting a questionnaire survey in 

the Kansai region of Japan, and it was quantified by using Factor Analysis. Eight variables were used in 

the questionnaire survey to estimate the PINT – Trust in water utility, Good quality water, R&D in water 

utility, equity of distribution, price of water, employee productivity in water utility, financial state of 

water utility, customer service. Of these, the first five variables formed the PINT factor, meaning the 

consumers are interested in these variables only. The next two variables in the list, along with R&D, made 

up the Public Disinterest factor – items that do not arouse public interest. Further, relationships were 

derived between PINT and each component of the 9-cPIS to understand the strength of association between 

the two. Only the Consumer Satisfaction of Water Quality showed a strong positive relationship with the 

PINT, suggesting that good tap water quality is the most important PI from the consumers’ point of view. A 

multiple regression equation between the PINT and all components of the 9-cPIS together was also 



developed to help in evaluating tradeoffs between the consumer expectations and reductions in GHG 

emissions. 

 

The third objective of the study was to develop numerical models between certain variables for a selected 

water utility – Kobe City Waterworks – and evaluate the models under various conditions of climate 

change, in order to design the tradeoff between meeting consumer expectations of water quality and 

reduction in energy use. Two conditions of climate change were considered – Increase in raw water 

turbidity and Decrease in GHG emissions. Based on these six models were developed: Raw water 

turbidity – Power consumption model, GHG emissions – Water production volume model, Power 

consumption – Water production volume model, Water production volume – Financial Sustainability 

model, Water production volume – Economic Value of Water model, and Water production volume – 

Green Water Supply model. Using numerical modeling, via Monte Carlo simulations, the models were 

evaluated for 5, 10, 15, 20 and 25% reduction in GHG emissions from 2010 levels, and 5, 10, 15, 20, 50, 

100, 150%, and max (100 Degrees) increase in turbidity from 2010 values. Further, selected components 

of the 9-cPIS and the PINT were also evaluated under the same scenarios to see how the system will 

behave in context of climate change. The tradeoff analysis suggested that the optimal reduction in GHG 

emissions was in the range 10.5 – 14.5% for the various scenarios of increase in raw water turbidity. The 

study also investigated practical scenarios for the Kobe City Waterworks for the years 2015, 2020 and 

2025. After establishing a minimum per capita water demand, and following the population growth trend, 

the target power consumption for established for each year, under the various conditions of climate 

change. The results suggest for all the three years, only up to 15% reduction in GHG emissions, under up 

to 50% increase in raw water turbidity, is possible by only reducing the production volume. Any further 

reduction in production volume will result in per capita water consumption below the established 

minimum value, which is not acceptable. To achieve higher GHG emission reduction targets (20 and 

25%), while providing the minimum per capita demand, the Kobe City Waterworks will need to consider 

the usage of renewable energy (solar or wind). 

 

The study has both theoretical and practical implications. On the theoretical front, the concept of Public 

Interest in PI systems has been introduced, which can be further refined to address other pertinent issues 

of water management. On a practical front, first, the 9-cPIS has been developed. This simple indicator 

system evaluates most of the current and future concerns for Japanese water utilities, and is much easier to 

manage because of its condensed nature – 33 items as opposed to 137 items recommended by the JWWA. 

Second, a general methodology has been developed to estimate the tradeoff between meeting consumer 

expectations of water quality and reduction in energy use. Further, actual tangible solutions, with data, 

have been provided to help the Kobe Waterworks utility to meet the GHG emission targets under various 

scenarios of climate change.  
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CHAPTER I 
 

INTRODUCTION 
!
 

1.1 General 

 

Water is increasingly becoming a stressed natural resource. Exploding population, indiscriminate 

withdrawal, and wasteful attitudes have all been factors for the state of water that it is in today. 

Additionally, climate change effects on water resources further compound the problem. As management 

and control of water resources has grown as a political and economic force in most parts of the world, 

understanding the potential impacts of current and future climate conditions on hydrologic processes and 

water supplies has become even more critical. The Fourth Assessment Report, “Climate Change 2007”, of 

The Inter Governmental Panel on Climate Change (IPCC, 2007) has eliminated many aspersions that 

previously shrouded both scientific and policy discussions about climate change. There is an increasing 

consensus among the scientific community that climate change will surely have an adverse effect on 

water resources (Cromwell et al., 2010; Bates et al., 2008; Xu et al., 2007 etc.). Arnel and Delaney (2006) 

have very aptly summarized the potential impacts of climate change on water supply systems as follows 

 

• It may alter the reliability of raw water sources by changing the magnitude and frequency of 

flows 

• It may alter the reliability of supply infrastructure, e.g. dams, reservoirs 

• It may alter the raw water quality and thereby the ability to treat raw water to potable standards 

• It may alter the demand of water, and the ability to meet these demands, particularly at times of 

peak demand. 

 

In light of the aforementioned, the challenge of providing safe and reliable water supply to consumers 

becomes even more pronounced for water utilities worldwide. At a water utility level, while a number of 

studies have focused on suggesting remedial measures for addressing the water quantity aspect in 

response to climate change (e.g. Bakker and van Schaik, 2010; Smith, 2010; van der Berg et al., 2010 

etc.), very few studies have been conducted on dealing with change in water quality. There is a dire need 

for doing so, especially in developed countries, where the consumers’ expectations of the water quality is 

very high. The type of finished water quality depends upon the type of treatment applied, and more 

advanced treatments are typically more energy intensive. Thus, by adopting advanced levels of water 

treatment in order to meet consumer expectations, the utilities will indirectly contribute to the 

phenomenon of climate change, thereby exacerbating the already disconsolate situation.  
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With significant degradation expected in raw water quality, as a result of climate change, there is a strong 

possibility that utilities may have to change or modify the treatment technology, to ensure consumer 

satisfaction. In all likelihood this will involve more use of energy, thus forcing the utilities to make a 

choice between meeting the consumer expectations with respect to water quality and curtailing energy use 

in a bid to mitigate the impacts of climate change. Given that it will be difficult to achieve both targets, 

the challenge for utilities, thus, is to arrive at an optimal tradeoff between the water quality and energy 

consumption. 

 

1.2 Statement of the problem 

 

1.2.1 Need for reduction in Green House Gases (GHG) emissions 

The IPCC recognizes that climate change will exacerbate the current stress on water resources. Global 

warming causes climate change, which in turn is directly proportional to the amount of GHG in the 

atmosphere. Increased levels of GHG thus lead to a more rapid change in the climate regimes. Figure 1.1 

shows the GHG emissions of the top ten countries in the year 2008.  

 

As seen in Figure1.1, Japan ranks fifth among the individual countries that produce the maximum CO2 

emissions. Under the Kyoto Protocol that Japan ratified in June 2002, the GHG subject to the quantified 

reduction commitments are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydro 

fluorocarbons (HFCs), per fluorocarbons (PFCs), and sulfur hexafluoride (SF6).  

 

 

 
Figure 1.1: Top 10 countries by GHG emissions in 2008 (Million tons of CO2) Source: United Nations 

Statistics Division 
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These quantified reduction commitments have been established for each country. During the first 

commitment period, from 2008 to 2012, Japan committed to reducing these greenhouse gases by 6% from 

the base year’s emissions (1990 for CO2, CH4, and N2O, while 1995 for HFCs, PFCs, and SF6).  

 

In order to monitor the GHG emission targets, and achievements, of each member country, The United 

Nations Framework on Climate Change (UNFCC) maintains a database of annual GHG emissions. Based 

on this UNFCC data, as seen in Figure 1.2, Japan’s GHG emissions increased by almost 6% from the base 

year in 2005 representing a 12.2% gap from the target (UNFCC, 2012a). 

 

 
Figure 1.2: Trend for Japan’s total GHG emissions in C02 equivalent (Source: UNFCC, 2012a) 

 

However, significant reductions in GHG emissions were achieved in the years 2008 and 2009, and at the 

end of 2009 the reduction was at 5% from the base year. The government of Japan is committed to reduce 

GHG emissions by 25% by 2020 and 60-80% by 2050, compared to the base year of 1990. Such an 

initiative will require all sectors to contribute collectively to the GHG reduction vision. This endeavor 

becomes even more challenging in light of the recent nuclear disaster in Sendai since a major criteria for 

achieving the GHG reductions was based on increasing the nuclear energy output. Given the public outcry 

and protests from environmentalists, it may be difficult to meet the emission targets. Although the water 

sector in Japan is not a major contributor of GHG emissions (less than 1% of the total emissions), in light 

of the above, it is very important for the water sector in Japan to first, develop feasible strategies to adapt 

to the changes that will be brought about by climate change (adaptation), and second it is important for 

the sector to make contributions in whatever way possible to mitigate the impacts that climate change will 

bring (mitigation). 
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1.2.2 Water quality concerns 

On the other hand, the consumer expectations of water quality in Japan have been rising over the years. 

The traditional forms of water treatment, which use significant residual chlorine is no longer acceptable to 

the consumers because of the unpleasant taste and odor. With progress in technology and ease in 

obtaining information, consumers are becoming more sensitive to the type and nature of treatment 

processes used by the utilities. They are, hence, more likely to reject the tap water which does not meet 

their expectations, especially since other easy options like bottled water are easily available. Figure 1.3 

shows the annual trend of number of customer complaints about taste and odor for Osaka City in Japan.  

 

 
Figure 1.3: Customer complaints regarding taste and odor of drinking water in Osaka City (Source: Itoh et 

al. 2007) 

 

The tap water quality provided by the Osaka Waterworks Bureau is among the best in Japan but in spite 

of that there have been a rising number of complaints regarding the taste and odor of water. Ironically, the 

number of complaints rose dramatically after the year 2000, when the Waterworks Bureau adopted 

advanced water treatment consisting of ozonation and Granular Activated Carbon (GAC), apart from the 

traditional set up.  

 

To examine the consumer behavior with regards to water quality in Japan, Itoh et al. (2007) performed a 

survey in Osaka City. One of their findings revealed that less than 25% of the respondents directly 

consumed tap water, indicating a general dissatisfaction with the quality of tap water. By using casual 

models, and covariance structure analysis, they established that consumer behavior, and thereby 

satisfaction, was governed by three main constructs: Odor, taste and health concern. Hence, hard 
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measures like ‘technological input’ or soft measures like ‘information availability’, which have the ability 

to reduce the taste, odor and health concerns have the potential to improve customer satisfaction.  

 

In view of the rising number of water quality complaints, some recent studies have been conducted on 

meeting the consumer expectations. Ishimoto and Itoh have proposed a target Threshold Odor Number 

(TON) value of 4 for finished water, in order to reduce taste and odor concerns. This value was 

established based on three phases on consumer behavior when presented with an offensive water sample. 

The first phase is the ‘detection’ phase where consumers are just able to notice the unpleasant taste or 

odor. This is followed by the ‘emotion’ phase, where consumers start feeling uncomfortable with the taste 

or odor. The last stage is the ‘action’ stage when the consumers decide to reject the water because of its 

unpleasant odor and taste. The target TON of 4 lies within the ‘emotion’ phase. In another related study, 

Echigo et al. (2012), proposed a new treatment process for the Osaka Waterworks Bureau, to minimize 

the chlorinous odor. The new process excludes the GAC unit from the original treatment system and 

includes the use of Advanced Oxidation Process (AOP) coupled with Ultra Violet treatment, and an Ion 

Exchange unit.  

 

Achieving a target TON of 4 is quite challenging in the existing situation, and is likely to be more 

difficult in future with expected degradation in raw water quality because of climate change.  Not only are 

the advanced treatment technologies energy intensive, they are also significantly more expensive 

compared to the traditional forms of treatment. In such a situation, it is very unlikely that the utilities will 

be able to meet both the GHG emission targets as well as the consumer expectations for water quality. 

Hence, the pressing need of the hour is to design a method to arrive at an optimal tradeoff between the 

two. 

 

1.3 Objectives and scope of the study 

 

The overall objective of the study is to develop a methodology for water utilities in Japan to design the 

tradeoff between meeting consumer expectations with respect to water quality and reducing the energy 

use. 

 
The sub objectives (thematic objectives) are highlighted as under 
 

• Revise the existing Performance Indicator (PI) system for water supply utilities in Japan to test 

numerical models required for tradeoff between water quality and reduction in energy use 

 
• Introduce the concept of ‘Public Interest’ in water supply to understand and quantify consumer 

expectations  
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• Using numerical modeling, to develop a methodology for tradeoff between consumer 

expectations of water quality and reduction in GHG emissions for a selected utility — Kobe City 

Waterworks, Japan. 

 

Figure 1.4 shows the integrated research model that encompasses the three thematic objectives. 

Accordingly, the first objective culminates into the development of a new revised PI system called the “9-

component Performance Indicator system (9-cPIS)”, to evaluate the performance of the system for 

different scenarios of climate change.  

 

 

 

 
 

 
 
 
 
 

 
 

 
 Figure 1.4: Integrated research model  
 
 
The second objective evaluates the “Public Interest PINT”, and identifies areas of the supply system in 

which the public are interested. This is a novel concept, introduced in this research, which tries to address 

the consumer’s point of view by accounting for the consumer expectations, especially in context of water 

quality. 

 

The third objective focuses on developing regression models for Kobe City Waterworks between the 

explanatory variables of the 9-cPIS and certain independent variables that are likely to be affected by 

climate change. The models have been evaluated, under different scenarios of change, and the 

performances have been studied by using selected components of the 9-cPIS. Based on the evaluation 

results, a methodology for tradeoff between consumer expectations of water quality and reduction in 

energy use has been developed. 

9-cPIS PINT 

Link between consumers’  

and utility point of views 

Numerical  
Modeling 

Scenario  
Testing 

Tradeoff between 
water quality & 
reduction of GHG 
emissions 

Objective 1 Objective 2 

Objective 3 
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1.4 Structure of thesis 

 

The current chapter (Chapter 1) of this dissertation has provided a background and rationale for 

conducting the study. The statement of the problem has been introduced based on which the objectives 

and sub objectives (thematic objectives) of the study have been defined. An integrated research model 

explaining the flow and linkage of activities across the three sub objectives has been explained further.  

 

In Chapter 2 of the dissertation, a Performance Indicator system (9-cPIS) has been developed considering 

the current and future concerns for water utilities in Japan. There is currently an existing PI system in 

place recommended by the Japan Waterworks Association (JWWA) but this system has far too many 

items (137), which are difficult to monitor for most water utilities. Further, it would be virtually 

impossible to test the regression models proposed in this study against all these indicators. Hence, 

Principal Component Analysis was used to reduce the dimensionality of the original set, while at the same 

time maintaining the maximum variance from the original set, resulting in the development of the 9-cPIS. 

 

In Chapter 3, a concept ‘Public Interest PINT’ has been introduced. While the 9-cPIS has been developed 

from the utility point of view, PINT identifies the aspects of the supply system, which naturally interest the 

public. Having this knowledge will help in understanding the consumer expectations, which is crucial in 

deciding feasible options for GHG emissions reduction.  The PINT has been evaluated through a 

questionnaire survey, and then quantified by performing a confirmatory Factor Analysis. Regression 

equations have been further developed to relate the PINT with the components of 9-cPIS. 

 

Chapter 4 deals exclusively with developing regression models between the explanatory variables of 

selected components of the 9-cPIS and two key variables that are expected to be affected by climate 

change – Raw water turbidity and GHG emissions. The rationale for choosing these variables is that the 

utilities must be prepared to address changes in consumer expectations because of degrading raw water 

quality caused by climate change, while at the same time contribute to the nation’s emission targets in the 

form of reducing GHG emissions. The models were developed for a selected water utility – Kobe City 

Waterworks, Japan. 

 

Chapter 5 evaluates the models developed in Chapter 4 against different scenarios of climate change –

increasing levels of raw water turbidity, and decreasing levels of GHG emissions. Using Monte Carlo 

simulations, the power consumption under different scenarios has been calculated from which the water 

supply volume has been estimated. The trend of selected components of the 9-cPIs under different 

scenarios has been developed, from which the PINT has been evaluated for the various scenarios. Based on 
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the results of the analysis, a methodology for tradeoff between the consumer expectations of water quality 

and reduction in energy use has been proposed. 

 

Chapter 6, the last chapter, summarizes the scope and extent of the entire research work, and key findings 

of the study have been presented. Recommendations and suggestions for utilities in Japan, especially the 

Kobe City Waterworks, have been provided, and scope for further study has been defined. 
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CHAPTER II 
 

DEVELOPING THE 9-COMPONENT PERFORMANCE INDICATOR SYSTEM  
(9-cPIS) 

 

 

2.1 Introduction 

  

2.1.1 Performance Indicators (PIs) 

The reliable supply of safe and good tasting water is the primary objective of any water supply utility. To 

evaluate and monitor the rate of success, or failure, in meeting this objective, water supply utilities 

employ a set of Performance Indicators (PIs), which reflect on the various components of the water 

supply system. The ultimate goal of a PI is not just statistical evaluation but also to provide information 

for decision-making. Hence, the usefulness of PIs does not only pertain to water supply undertakings but 

also to regional/national planning bodies, regulatory agencies, funding bodies etc. (Algere 2002). 

 

Various international organizations, such as the International Water Association (IWA)  (Algere et al., 

2006), World Bank (WB) (WB 1999), World Health Organization (WHO) (WHO 2000) and International 

Benchmarking Network for Water and Sanitation Utilities (IBNET 2005) etc. have proposed different 

terminologies of PIs but the main objectives are alike. The IWA, one of the leading research agencies in 

the water sector, recommends six themes of performance indicators, namely, water resources, personnel, 

physical, operational, quality of service and economic & financial indicators. Table 2.1 presents the 

summary of the main components of PIs as described by various organizations.  

 

Table 2.1: Performance Indicator themes recommended by various international organizations 

IWA (2006) IBNET (2005)         WHO (2000)       WB (1999) 

• Water Resources 
• Personnel 
• Physical 
• Operational 
• Quality of Service 
• Economic and Financial 

• Service Coverage 
• Water Consumption 

and Production 
• Non Revenue Water 
• Metering Practices 
• Pipe Network 

Performance 
• Cost and Staffing 
• Quality of Service 
• Billing and Collection 
• Financial Performance 
• Assets 
• Affordability  
• Process Indicators 

• User 
Satisfaction 

• Community 
Management 

• Financial 
• Level of 

Service 
• Materials 
• Personnel 
• Equipment 
• Work Control 

• Coverage 
• Water Consumption 

and Production 
• Unaccounted-for 

Water 
• Metering Practices 
• Pipe Network 

Performance 
• Cost & Staffing 
• Quality of Service 
• Billing & 

Collection 
• Financial 

performance 
• Capital Investment 
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From Table 2.1, the fundamental difference in approach for developing the themes of PIs by the various 

organizations is that the ADB, WHO and WB have recommended themes for developing countries, where 

the major concerns for water supply utilities are inefficient services and cost recovery. The IWA themes, 

on the other hand, cover a wider range of indicators to evaluate every aspect of the system. The PIs 

developed by the IWA are considered a major reference in the water industry. The main criticism of the 

PIs developed by the IWA are that there are too many indicators (130), too complicated to use and too 

general. However, the IWA maintains that the IWA system is no more complicated than any other PI 

system and that the choice of selecting the most appropriate PIs is entirely up to the user  (Algere et al., 

2006). 

 

Although commendable, it is difficult to agree on a universal set of indicators and their detailed 

definitions since the different operating environment each faces can influence comparison between 

countries. The usefulness of an indicator, and its likelihood to be monitored, varies across countries. Even 

within the same country, the information sought for in PIs varies across different sectors. Policy makers 

look for highly aggregated information while utility managers want to see detailed activity costs.  It can 

be thus drawn that PIs need to be site specific, addressing the needs and concerns of the locality that it 

serves. 

  

2.1.2 Sustainability Indicators for water supply 

As is common knowledge, the water resources worldwide are increasingly becoming stressed. Moreover, 

persistent concerns about climate change are most likely to aggravate the problem. A pressing issue for 

water supply utilities, therefore, is to incorporate these concerns in their planning process. However, there 

are very few organizations that focus on environmental issues that cause these concerns.   Notable among 

these, is the National Water and Wastewater Benchmarking Initiative of Canada, whose theme areas 

encompass the following: sufficient capacity, reliable service and infrastructure, economic sufficiency, 

customer satisfaction, public health, environmental protection and employee safety (National Water and 

Wastewater Benchmarking Initiative 2009).  

 

The Vewin Benchmark report of the Netherlands focuses on four themes, namely, water quality (drinking 

water quality and non compliance with norms), customer service (customer’s report card and availability 

by telephone), environment (use of energy, dehydration, residue and nature management) and finance & 

efficiency (financial analysis at company and process level) (Vewin 2006).  

 

Water UK, which includes water utilities in England, Wales, Scotland and Northern Ireland, has initiated 

a benchmarking exercise with special focus on sustainability indicators. The PIs measures cover five 

broad aspects, namely, customer experience, climate change and energy, natural resource protection, 
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sustainable consumption & production and corporate governance, management & performance  (Water 

UK 2009).  

 

The German Association of Energy and Water Industries (Bundeverband der Energie – und 

Wasserwirtschaft e. V., Berlin and Brussels – BDEW), compare PIs of major water industries in Germany, 

whose thematic focus is on long-term security of supply, high water quality, high customer satisfaction, 

sustainable utilization of water resources and economic efficiency (BDEW 2010). 

 

It is evident from the information provided in the previous two sections that there is a vast difference in 

thematic areas of benchmarking in developing and developed countries. While the water supply utilities in 

the developing countries still employ the traditional framework for PIs with a stronger emphasis on 

financial, operational and personnel indicators, there is increasing focus on environment and sustainability 

in the developed countries. 

 

2.2 Background 

 

2.2.1 General  

Japan is an archipelago, made from four large islands and many other small islands, and around 400 

islands are inhabited. Since Japan covers a wide range of latitude, the climate varies from cold zone 

(northern area), temperate monsoon zone (central area), to subtropical zone (southern area). The average 

temperatures in the northern, central and southern areas are 8, 15 and 22 °C respectively. This diverse 

climate range results in rich natural environment and ecosystem. Also, because of the diverse climate and 

topology, every region has different water environment. The average precipitation in Japan is 1,718 

mm/year, higher than the world average (880 mm/year). Precipitations in the three areas are 1,029, 1,322, 

and 2,816 mm/year, respectively. Recently, local heavy rain and torrential showers have been occurring 

frequently. 

 

After the introduction of the Waterworks Act in 1957, the water supply system in Japan has expanded 

rapidly, with the population coverage reaching 96.8% in 2008 from 30% in 1957. In doing so, 

approximately 789 multipurpose dams and 1878 single purpose dams were constructed. As a result, a 

steady supply of approximately 17.8 billion m3/year has been established for domestic and industrial use. 

The domestic and industrial sector demand amounts to around 19% and 15% of the total demand 

respectively, while the rest of the demand is taken up by the agricultural sector.  As of 2005, the combined 

demand for domestic and industrial use was 28.3 billion m3, of which 75% is extracted from rivers and 

dams (Ministry of Land, Infrastructure, Transport and Tourism, MLITT, 2010). Lakes and groundwater 

contribute to fulfilling the rest of the demand. Although there are five government ministries associated 
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with water resources in Japan, the Ministry of Health, Labor and Welfare (MHLW) is in charge of water 

supply for domestic use.  

 

According to the Japan Waterworks Association (JWWA, 2008), as of 2007, there were 16,978 

waterworks in Japan, and 93.8% of these had a service population of less than 5,000. According to the 

waterworks law, ‘waterworks’ are defined as water supply systems designed to supply more than 100 

people with potable water through equipment such as pipes. However in the recent past, there has been an 

integration of small-scale water supply utilities for better productivity. The water utilities are classified as 

water supply businesses (managed by municipalities), bulk water supply businesses (managed by 

prefectures or a group of municipalities), private water supply and private water supply facilities, both of 

which are small scale suppliers. Japan boasts of excellent tap water quality. The treatment of water varies 

according to the quality of the source. Approximately 76% of the utilities use rapid sand filtration, while 

around 22% used disinfection without filtration. Since 1995, 22% of the utilities have adopted advanced 

treatment processes, which include ozone-GAC treatment coupled with membrane filtration. The average 

leakage rate for water supply utilities in Japan is around 8%, which suggests a well-monitored and 

efficient network (JWWA, 2008) 

 

2.2.2 Future concerns for water supply utilities in Japan 

2.2.2.1 Decreasing population trend 

Although Japan has a well-developed and efficient water supply system, there are some concerns about 

the sustainable nature of the systems. Primary among these is the demographic trend of the Japanese 

population. As observed in Figure 2.1(a), the population in Japan has been on a decreasing trend since the 

early 2000’s with a negative growth rate, and is expected to continue to decrease in the future (Statistics 

Bureau, 2007). With population decrease it is unlikely that Japan will experience water shortage in the 

future, especially given the nature and quality of the existing facilities. However, the facility utilization 

rate is likely to reduce, leading to precious financial funds being utilized for unnecessary purposes. Oki 

and Musiake (2009) point out that it will not be easy to maintain the current facilities under decreasing 

population.  

 

The problem is compounded when the population of Japan is classified in different age groups. As seen in 

Figure 2.1(b), approximately 28% of the population in 2006 was above the age of 60, which is expected to 

increase to 39% and 47% in 2030 and 2055 respectively. A rapidly aging population could lead to lower 

employee productivity in water utilities, and influx of foreign workers to address the shortfall. This is 

likely to increase the financial strain on companies to ensure that the demand is met, and maintain and 

operate their systems efficiently.  
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Figure 2.1(a): Current and projected population statistics of Japan 

(Data Source: Statistics Bureau, Ministry of Public Management, Home Affairs, Post and Telecommunication, 

2007) 

 

 

 

 

 

 

 

 

 

 

Figure 2.1(b): Current and projected population of Japan divided in age groups 

(Data Source: Statistics Bureau, Ministry of Public Management, Home Affairs, Post and Telecommunication, 

2007) 

!
2.2.2.2 Small water utilities 

More than 90% of the water utilities in Japan have a service population of less than 50,000, as observed in 

Figure 2.2. Owing to insufficient revenue collection and increasing depreciation cost, most of them are 
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incapable of financially sustaining themselves. Additionally, increasing rehabilitation costs for upgrading 

old facilities further aggravate the problem. Tachikawa (2004) pointed out that the ratio of the amount 

available for investment to the amount required for rehabilitation is on an increasing trend, and is 

expected to reach 1 by 2025 

 
 

 
Figure 2.2: Service population of water supply utilities in Japan (Data Source: JWWA, 2004) 

 

2.2.2.3 Climate change 

Climate change is also expected to adversely impact water supply systems in Japan. The Ministry of Land, 

Infrastructure, Transport and Tourism (MLITT) have made estimates of the effects of climate change on 

the volume of precipitation. Based on the GCM20 (A1B) scenarios, an average increase in rainfall by a 

factor of 1.1 is expected across Japan in 2080-2089, compared to 1979-1998. Additionally, due to 

premature snowmelt, changes in the river flow regimes are a strong possibility. For most parts of the year, 

the future flow will be more than the current flow, suggesting periods of floods.  However, during the 

crucial period between April and July, when larger amount of irrigation water is required for surface 

puddling of paddy crops, there will be a drastic reduction of flow in rivers (MLITT, 2010). To ensure 

food security, it is not unrealistic to assume high competition among water users during this season, 

possibly leading to unreliable water supply.  

 

2.2.2.4 Increasing number of tap water quality complaints 

From the water quality point of view, the current concerns are mainly governed by taste and odor issues. 

Complaints about chlorinous odor and taste in drinking water are on the rise with consumers becoming 

more sensitive to changes in water quality. Figure 2.3 shows the results of a survey carried out in Osaka 

by Itoh et al. (2007). The survey revealed that a majority of the respondents were hesitant in consuming 
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water directly from the tap. Only around 22% of the male respondents and approximately 10% of the 

female respondents indicated their willingness to consume tap water directly.  

 

 
Figure 2.3: Drinking water habits for survey respondents in Osaka (Source: Itoh et al., 2007) 

 

Most of the respondents (32% males and 34% females) preferred to use some kind of home purification 

system before consuming water while a significant number (24% males and 25% females) were in favor 

of using bottled water. This is a matter of grave concern because Osaka city has of one of the best tap 

water qualities in the entire country, which is still not enough to meet the consumer expectations. 

 

2.3 Thematic objective and need of the study 

 

A feasible way to investigate the impacts of climate and socioeconomic change on the operations of water 

supply utilities is to develop numerical models, which would be tested against a set of PIs under different 

scenarios of change. The selection of PIs for this purpose can be a delicate aspect for two reasons. First, 

most water utilities have a large number of PIs (e.g. 137 PIs for Japanese water utilities), and the inclusion 

of all of these into the evaluation models is an onerous task.  Hence, there is a need to identify or develop 

key PIs, which can account for as much information as possible. Second, the PIs should be able to 

monitor not only the performance of the present supply system, but also evaluate potential future concerns 

(as explained in the previous section). A robust set of PIs is, therefore, required to make a rational 

evaluation of water supply systems in light of anticipated changes.  

 

With a sound and effective performance indicator system in place, water supply utilities can dynamically 

work towards attaining high efficiency and the desired quality of service (Algere et al., 2006). The 
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information elucidated from the evaluated PIs should ultimately help in decision making, thereby playing 

an important role in the planning and management of water supply utilities. However as seen in Figure 2.4, 

almost 25% of the utilities in Japan taking part in the benchmarking exercise carried in 2007, with the 137 

PIs, had more than 50 missing entries. Only 4% of the utilities could provide information for all PIs, 

suggesting that evaluating and monitoring the current PIs is merely a statistical exercise, with no relevant 

contribution to planning and management.   

 

 
Figure 2.4: Trend for water supply utilities with incomplete information on PIs 

 

The theme of this study is, thus, to revise the PI system and arrive at a reduced, relevant and practical 

structure that accounts for enough information required to rationally evaluate water supply systems in 

Japan for different scenarios of change. The study acknowledges that although difficult to evaluate, due to 

resource and financial constraints, the original indicators have been thoroughly developed with detailed 

consideration for all aspects of the supply system. Hence, instead of developing a new PI system, this 

study focuses on reducing the dimensionality in the existing system by selecting the more relevant and 

significant variables. To be able to be universally accepted, the choice of indicators should be based on 

scientific methods and techniques that are beyond debate. Hence, this study uses Principal Component 

Analysis (PCA), a dimension reduction statistical technique, to reduce the PI data set and classify it into 

smaller, manageable sets, whose suitability is then investigated in context of current and anticipated 

concerns that need to be addressed by the water utilities in Japan. Since PCA attempts to also extract the 

maximum variation from the original data set, the reduced set of indicators respects the original indicator 

system by retaining as much information as possible from it. 
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2.4 Principal Component Analysis (PCA) 

 

PCA is a statistical technique that seeks to cluster intercorrelated variables into groups, in which each 

group exhibits a common trait. More specifically the goal of PCA is to “reduce the dimensionality of the 

original space and to give interpretation to the new space, spanned by a reduced number of new 

dimensions which are supposed to underlie the old ones” (Rietveld & Van Hout, 1993:254), or to “explain 

the variance in the observed variables in terms of underlying latent factors” (Habing, 2003:2) 

 

2.4.1 Theory of PCA 

PCA starts with the correlation/covariance matrix of the variables where the intercorrelation between 

variables is studied. Clustering together variables that have some ‘commonness’ can reduce the 

dimensionality of this matrix. Each cluster is called a ‘component’. The factors extracted can be 

visualized as axes along which the variables can be plotted. The clustering is performed by means of 

eigenvalue decomposition of the correlation/covariance matrix. The number of positive eigenvalues 

determines the number of dimensions needed to represent a set of scores without any loss of information. 

It also provides information about the amount of variance that is accounted for by the respective 

components. The eigenvectors corresponding to each eigenvalue are used as weighted coefficients to 

estimate the magnitude of the factors. 

 

The steps in Principal Component Analysis are 

 

• Calculate the mean and standard deviation of the variables in the data set 

 

• Calculate the correlation or covariance between the variables 

          r = 
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n  

 

  Where Xi,Yi = raw variables 

  X and Y = the means of the variables 
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  n = sample size of the variables 

 

• Calculate the eigenvalues and the eigenvectors of the correlation/covariance matrix 

!I ! A[ ]Ev

! "!
= 0  

Where ! = Eigenvalue 

    I = Identity matrix 

  A= Correlation/covariance matrix 

  Ev

! "!
= Eigenvector 

 

• The Principal components/factors are given by the equation 

Zn = 
E
!"
viXi

i=1

n

!
 

Where Zn = Magnitude of the Principal Component 

         Evi

! "!
= Eigenvector  

  Xi = Variables 

 

• The component corresponding to the largest eigenvalue is the first Principal component, which 

also extracts the maximum variance from the data. Similarly, the second largest eigenvalue forms 

the second component, and so on. 

 

2.4.2 PCA Glossary 

Component/Factor loading: is the correlation between the variables and the extracted components/factors. 

Loading reflects only the relative importance of the variable within a component/factor and does not 

reflect the importance of the component itself (Davis, 1986). 

 

Communality: of a variable is the variance in that variable which has been extracted by the components. 

Thus, if the communality of a variable is high, the extracted components/factors account for a bigger 

proportion of the variable’s variance suggesting that the variable is reflected well in the analysis. 

 

Component/Factor scores: are the scores of each case (exemplar) on the components/factors and is 

calculated by 

 

! Standardized score for the case x corresponding component/factor loading of the variable 
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Scree plot: is a graph of each eigenvalue (ordinate) against the component/factor with which it is 

associated (abscissa) 

 

Rotation: is a process of rearranging the pattern of component/factor loadings along the numerous 

factors/components so that component/factor interpretation becomes easier. Rotation does not alter the 

variance in the data but merely spreads it out more for easier interpretation. There are two basic types of 

rotation – orthogonal and oblique. Orthogonal rotation is when a factor is rotated through an angle of 90° 

suggesting there is no correlation between the factors/components. In oblique rotation there is no such 

constraint.  

 

Component transformation matrix: describes the specific rotation used to arrive at a final solution. 

Thus,  

Component/factor loading matrix X component/factor transformation matrix = Rotated 

component/factor matrix 

 

Bartlet’s Sphericity test: 

This a test performed to check the hypothesis that the variables used are uncorrelated in the population. In 

other words, the hypothesis suggests that the population correlation matrix is an identity matrix 

suggesting that each variable is perfectly correlated to itself but has no correlation with the other variables. 

The test is performed as follows 

 

• Calculate the determinant (S) of the matrix of products and cross products from which the 

intercorrelation matrix is derived 

 

• The determinant S is converted to chi-squared statistic and tested for significance. 
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 Where n = number of variables 

  p = number of components/factors 

  Ij = jth eigenvalue of S 

  df = degrees of freedom = (p-1)(p-2)/2 

The significance level should be less than 0.005, to ensure that PCA/FA would be appropriate, for 95% 

confidence. 
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Keiser Meyer Olkin (KMO) measure of sampling adequacy: 

This is an index to test whether there is enough data required to perform PCA satisfactorily. The equation 

to describe the KMO static is depicted below 

 

KMO = ( rij
2 ) / ( rij

2 + ( aij
2 )!!!!!!  

 

Where rij
2 = coefficient of determination between two variables 

           aij
2  = partial correlation of the two variables 

 

KMO values in the 0.90s are considered marvelous; in the 0.80s as meritorious; in the 0.70s as middling; 

in the 0.60s as mediocre; in the 0.50s as miserable and below 0.50 as unacceptable (Field, 2005). The 

value indicates the proportion of variance that is common variance. 

 

2.5 Data Collection 

 

For the purpose of this study, the PIs of major water utilities in Japan were considered for analysis. In 

2005, guidelines for the management and assessment of a drinking water supply services were developed 

by the Japan Water Research Center (JWRC), which included a set of performance indicators. Referring 

to the PIs recommended by various international organizations already mentioned earlier, and discussions 

with water utility managers, 137 PIs were developed. The PIs are categorized into five themes, namely, 

safety, stability, sustainability, environment and global cooperation (JWWA 2005). PI data was collected 

from the JWWA, which collects PI information from utilities all over Japan, for the years 2004 through 

2007, which was available for 177 water utilities from 2004 to 2006 and 199 utilities in 2007. Appendix 1 

presents the entire range of PIs and explanatory variables, as recommended by the JWRC.  

 

2.6 Research methodology 

 

To reduce the data set with minimum loss of information and identify the more important variables that 

measure a common trait, this study employed PCA. PCA is a multivariate statistical technique that 

reduces the dimensionality of a data set containing interrelated variables, while retaining as much as 

possible of the variation present in the data set. PCA uses eigenvalue decomposition of the 

correlation/covariance matrix of the data set and transforms the data into a new set of fewer variables, 

called Principal Components, which are uncorrelated, and which are ordered so that the first few retain 

most of the variation present in all of the original data (Jollife, 2002; Kline, 1994). 
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In developing a performance indicator system, practical studies have pointed out the fact that it is better to 

consider fewer crucial variables, instead of including all variables since doing so may influence the 

phenomenon being characterized (Coulibaly and Rodriguez, 2004; Ioris et al., 2008). To reduce the data 

set with minimum loss of information and identify the more important variables that measure a common 

trait, this study employed PCA, which is a statistical technique that seeks to account for patterns of co-

linearity in the data set. The analysis was performed with IBM SPSS Statistics base 18.0. The 

methodology used for the analysis is depicted as a flow diagram in Figure 2.5 

 

For the purpose of this study, the PIs of major water utilities in Japan were considered for analysis. PI 

data was collected from the JWWA for the years 2004 through 2007, which was available for 177 water 

utilities from 2004 to 2006, and 199 utilities in 2007. The initial sample size of the data set included 730 

water utilities (called cases henceforth), over a 4-year period, and 137 PIs (called variables henceforth). 

However, as pointed out before, there were numerous missing entries. Very few utilities provided 

information pertaining to certain PIs suggesting that these PIs are either difficult to measure or redundant 

in the opinion of the managers of those utilities. Similarly some utilities failed to provide information 

corresponding to most of the PIs implying lack of resources/desire of the utilities to perform the exercise.   

After omitting the missing data, the number of cases and variables was brought down to 132 and 113 

respectively. Since the foundation of this study is based on extracting the maximum variance from the 

original PIs, efforts were taken to omit as few variables as possible, in the process rendering a small 

sample size and case to variable ratio.   

 

There is no definite rule to ascertain the minimum sample size required to perform PCA and the numerous 

recommendations made by researchers vary. E.g. some suggest a minimum sample size of 100 (Gorsuch, 

1983; Kline, 1979), or a case to variable ratio ranging from 10:1 (Velicer and Fawa, 1998) to 2:1 (Kline, 

1979). Costello and Osborne (2005) surveyed two year's PsychINFO articles and reported that 14.7% of 

the studies used a case to variable ratio of 2:1 or less.  Favorable results were obtained with case to 

variable ratio as less as 1.2:1 (Barret and Kline, 1981). 

 

To check whether the smaller sample size affected the results, the PCA was carried out in two stages. First, 

a preliminary exploratory analysis was performed with all the variables and cases (full-set), and the 

components were extracted. The KMO value was checked for sampling adequacy. If this value was above 

0.5, the data set was considered satisfactory for the analysis. Similarly, only if the Bartlett’s statistics (chi-

squared) was less than the significance level (0.005 for 95% confidence), further analysis was performed. 

Outliers were detected from the sample set, and removed because their presence can affect the correlation 

coefficients significantly. The method used for detecting outliers has already been described in Figure 2.5.  
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Figure 2.5: Schematic of research methodology to develop 9-component performance indicator system 

 

Data Preparation 

• Exclude PI’s and water utilities with missing 
data such that at least 100 water utilities are 
considered for analysis 

• 113 PI’s (Variables) 
• 132 water utilities (Cases) 

Preconditions used for  
Principal Component Factor Analysis 

• Number of cases > 50 
• Ratio of cases to variables preferably 5:1 
• Correlation matrix contains 2 or more 

correlations of at least 0.3 

Full set Groups 

• Supply of safe and tasty drinking water  
• Reliability of water supply  
• Risk Management 
• Operational infrastructure characteristics  
• Capacity building and consumer service 
• Environmental considerations 
• Business Management 

Variables       Cases /Variables  
• 19  5.26 
• 15  6.67 
• 14  7.14 
• 27  3.70 
• 16  6.25 
• 6  16.67 
• 21  4.76 

PCFA for individual 
groups 

Identify important 
variables in each group 

Combine all the important variables 
and re-perform PCFA 

A 

B 
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Figure 2.5: Schematic of research methodology to develop 9-component performance indicator system 

continued… 

Compare 

Criteria used for PCA  

• Correlation matrix 
• Eigen value > 1 
• Rotations 

! Varimax 
! Promax 
! Oblimin 

 

Criteria used for variable 
reduction/elimination  

• Variables with extracted communality < 0.4 removed 
• None of the variables have loading of 0.4 or higher on 

more than 1 component 
• None of the components have only 1 variable loading 

 

Test for sampling 
adequacy  

• Kaiser-Meyer-Olkin measure of sampling 
adequacy > 0.5 

• Bartlett’s statistic < 0.005 
 

B A 

Results from A  Results from B 

Selection of appropriate components and variables  

Outlier detection 
and removal  

• Calculate mean and standard deviation for each 
variable 

• Find absolute deviation of each case from the mean 
• If abs deviation > 3 SD, it is an outlier 

 

Regression Equation Modeling  Using component scores 
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A detailed study was then conducted on the variables contributing to each component to identify 

commonness of information elucidated. During the analysis, variables with extracted communality less 

than 0.4 were removed, since such variables will struggle to load on any component. To avoid cross 

loading, the variables with loadings of 0.5 or higher on more than 1 component were discarded. High 

loading variables are understandably crucial but if a variable loads highly on two or more components 

(cross loading), interpretation of the components becomes difficult and hence these variables should not 

be included in the analysis, especially if there are other variables loading strongly onto the components 

(Costello and Osborne, 2005).  

 

In this study, a variable with loading of more than 0.5 was considered to make a significant contribution 

to the components. Rule of thumb recommends this value to be 0.32 (Tabachnick and Fidell, 2001). 

However, this study used a higher value since the analysis had many strong loading variables. 

Components with fewer than three variables were not considered since they are usually weak and unstable 

(Costello and Osborne, 2005).  The commonly used Kaiser eigenvalue rule (Kaiser, 1960) was used to 

select the number of principal components for further analysis. According to this rule, only factors with 

eigenvalues greater than one are to be retained for further analysis.  

 

To have a better understanding of the information elucidated by the components, varimax rotation was 

performed. The goal of rotation is to simplify and clarify the data structure. Rotation cannot improve the 

basic aspects of the analysis, such as the variance extracted from the items, but merely rearranges the data 

structure by increasing the loading of variables on one component and reducing it on others. Among the 

different rotation techniques, varimax rotation is the commonest (Costello and Osborne, 2005). Since 

varimax rotation is orthogonal in nature where the components are not correlated, promax rotation was 

performed to explore the relationship between components, if any. This is significant in the interpretation 

of components and can provide useful insight into identifying whether or not there are common features 

that contribute to the components.  

 

Alternately, a separate confirmatory analysis was performed with contributing variables of two 

components at a time (group-sets) (8-10) and 5-8 discarded variables (65), in a cyclic pattern. The aim 

was to ensure that the case to variable ratio stayed above 5, and to check if, due to the small sample size, 

any discarded variables that could have contributed to the components were missed out. The results from 

the ‘full-set’ and ‘group-set’ analyses were compared, based on which the appropriate components and 

variables were finalized. 

 

Finally, regression equations for each component were developed using the component scores. The 

internal consistency of variables contributing to a component was examined by estimating the inter-
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correlation between contributing variables and developing scatter plots of components versus contributing 

variables.  

 

2.7 Results and Discussion 

 

2.7.1 Extraction of Principal Components  

Results of the PCA with the ‘full-set analysis’ and ‘group-sets analysis’, using varimax rotation, are 

presented in Tables 2.2 and 2.3. Varimax is the most commonly used rotation technique, which 

maximizes the sum of the variances of the squared coefficients within each eigenvector, and the rotated 

axes remain orthogonal. As the angle of 90° between the axes directly corresponds to the uncorrelatedness 

of the factors, this implies that the rotated components are uncorrelated as well.  

 

As mentioned earlier, the ‘full-set analysis’ is the analysis using all the variables and cases at the same 

time. The ‘group-set’ analysis is the analysis in stages where the variables of 2-3 components (obtained 

from the full set analysis) are tested along with 5-8 randomly picked variables. The group-set analysis was 

performed to cross check the results of the full-set analysis because the case to variable ratio in the full set 

analysis was below 5. 

 

 Upon comparing Tables 2.2 and 2.3, it can be observed that in both cases the same variables load on to 

the respective components, although the magnitude of loadings vary. More importantly, the pattern of 

loadings (negative and positive) is similar in both cases. This indicates that even with a low case to 

variable ration in the full-set analysis, reliable results are obtained. Hence, it can be suggested that the 

results are identical in both cases. Since the ‘full-set analysis’ is easier to perform, because the analysis is 

performed only once, all further work was been carried out with the ‘full-set’ data. 

 

Further analysis with promax and oblimin rotations was performed using the pattern and structure 

modules to check for any differences.  Both promax and oblimin are oblique rotation techniques which 

allow for some correlation between the components. The structure matrix holds the correlations between 

each variable and each factor, while the pattern matrix holds the beta weights to reproduce variable scores 

from factor scores. Tables 2.4 through 2.7 present the results of the analyses. The results obtained from 

promax and oblimin rotations in Tables 2.4 through 2.7 are identical to the ones obtained with varimax 

rotation – the same 9 components are extracted, and the same variables load onto the components with 

promax rotation as with those of varimax rotation albeit with different component scores, suggesting 

consistency in results. Hence, the outcome of ‘full-set’ with varimax rotation has been considered as the 

final result and subsequent analysis has been based on this result. 
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Table 2.2: ‘Full-set analysis’, with varimax rotation 

Component Variables Loading 

1 

Water supply revenue 0.931 

Price for households using up to 20m3 water  0.913 

Water production cost 0.898 

Price for households using up to 10m3 water  0.742 

2 

Staff salary as ratio of total revenue -0.877 

Water revenue per employee 0.833 

Amount of water supplied per unit staff 0.819 

Meters per unit staff 0.801 

Average work experience ratio -0.744 

3 

Current account balance ratio 0.935 

Total balance ratio 0.920 

Revenue to cost ratio of water supply 0.879 

Operating balance ratio 0.806 

4 

Number of international collaborations 0.950 

Development expense ratio 0.871 

Requests for information made by consumers 0.845 

5 

Percentage of outstanding revenue bonds 0.928 

Rate of interest for revenue bonds  0.908 

Net worth to capital  -0.696 

Redemption rate of revenue bonds 0.615 

6 

Greenhouse gases emissions  -0.879 

Power consumption -0.843 

Energy consumption -0.841 

7 

TOC concentration as ratio of permissible TOC -0.810 

THM concentration as ratio of permissible THM -0.779 

Water without chlorinous odor 0.738 

Water without musty odor 0.607 

8 

Water vehicles ratio 0.907 

Pipeline rehabilitation rate 0.760 

Drinking water storage per capita in event of emergency 0.717 

9 

Distribution reservoir seismic facility rate 0.887 

  Water treatment plant seismic facility rate 0.842 

Pump station seismic facility rate 0.669 
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Table 2.3: ‘Group-set analysis’ with varimax rotation 

 

  Percentage of outstanding revenue bonds              0.876 

 

 

 

 

Component  Variables Loading 

1 

TOC concentration as ratio of permissible TOC 0.846 

Trihelomethane concentration as ratio of permissible THM 0.841 

Water without chlorinous odor  

Water without musty odor 

-0.824 

-0.796 

2 

Distribution reservoir seismic facility rate 0.441 

Water treatment plant seismic rate 

Pump station seismic facility rate 

0.423 

      0.368 

3 

Current account balance ratio 0.951 

Total balance ratio 0.938 

Revenue to cost ratio of water 0.887 

Operating balance ratio 0.873 

4 

Price for households using up to 20m3 water  0.958 

Water supply revenue 0.927 

Water production cost 0.900 

Price for households using up to 10m3 water  0.829 

5 

Water revenue per employee 0.960 

Staff salary as ratio of total revenue  

Amount of water supplied per unit staff 

Meters per unit staff 

-0.883 

0.803 

0.756 

6 Development expense ratio 0.843 

 
Number of international collaborations 0.820 

 
Requests for information made by consumers 0.780 

7 

Water vehicles ratio 0.867 

Pipeline rehabilitation rate 

Drinking water storage in event of emergency 

0.725 

0.698 

8 

Greenhouse gases emissions  -0.824 

Energy consumption 

Power consumption 

-0.815 

-0.800 

9 

Net worth to capital -0.812 

Rate of interest for revenue bonds 0.789 

Redemption rate of revenue bonds -0.675 
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Table 2.4: PCA with promax pattern rotation 

Component  Variables Loading 

1 

Water supply revenue .989 

Water production cost .963 

Price for households using up to 10m3 water  .668 

Price for households using up to 20m3 water  .925 

 

 

2 

 

 

Water revenue per employee .899 

Staff salary as ratio of total revenue -.917 

Average work experience ratio -.705 

Amount of water supplied per unit staff .796 

Meters per unit staff .795 

3 

Operating balance ratio .778 

Current account balance ratio .966 

Total balance ratio .953 

Revenue to cost ratio of water .859 

4 

Development expense ratio .909 

Information disclosure .886 

Number of international relations .999 

5 

Corporate bond interest rate of return for water supply .919 

Percentage of outstanding revenue bonds .964 

Net worth to capital ratio -.678 

6 

Power consumption .878 

Energy consumption .873 

Greenhouse gases emissions  .955 

7 

Achievement of water in terms of musty odor -.607 

Achievement of water in terms of chlorinous odor -.739 

THM concentration as ratio of permissible THM .787 

TOC concentration as ratio of permissible TOC .862 

8 

Drinking water storage per capita in event of disaster .718 

Pipeline rehabilitation rate .782 

Water vehicles ratio .915 

9 

Water facilities seismic rate .863 

Pump station seismic facility rate .651 

Distribution reservoir seismic facility rate .899 
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Table 2.5: PCA with promax structure rotation 

Component  Variables Loading 

1 

Water supply revenue .947 

Water production cost .897 

Price for households using up to 10m3 water  .807 

Price for households using up to 20m3 water  .942 

2 

Water revenue per employee .810 

Staff salary as ratio of total revenue -.869 

Average work experience ratio -.768 

Amount of water supplied per unit staff .840 

Meters per unit staff .810 

3 

Operating balance ratio .841 

Current account balance ratio .938 

Total balance ratio .919 

Revenue to cost ratio of water .886 

4 

Development expense ratio .872 

Information disclosure .851 

Number of international relations .945 

5 

Corporate bond interest rate of return for water supply .941 

Redemption rate of revenue bonds .639 

Percentage of outstanding revenue bonds .948 

Net worth to capital ratio -.745 

6 

Power consumption .926 

Energy consumption .921 

Greenhouse gases emissions  .915 

7 

Achievement of water in terms of musty odor -.634 

Achievement of water in terms of chlorinous odor -.780 

THM concentration as ratio of permissible THM .800 

TOC concentration as ratio of permissible TOC .802 

8 

Drinking water storage per capita in event of disaster .734 

Pipeline rehabilitation rate .748 

Water vehicles ratio .914 

9 

Water facilities seismic rate .840 

Pump station seismic facility rate .695 

Distribution reservoir seismic facility rate .907 
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Table 2.6: PCA with oblimin pattern rotation 

Component  Variables Loading 

1 

Corporate bond interest rate of return for water supply -.908 

Redemption rate of revenue bonds -.600 

Percentage of outstanding revenue bonds -.941 

Net worth to capital ratio .687 

2 

Operating balance ratio .772 

Current account balance ratio .944 

Total balance ratio .930 

Revenue to cost ratio of water .844 

3 

Water revenue per employee .874 

Staff salary as ratio of total revenue -.901 

Average work experience ratio -.692 

Amount of water supplied per unit staff .776 

  Meters per unit staff .765 

4 

Water supply revenue .937 

Water production cost .915 

Price for households using up to 10m3 water  .646 

Price for households using up to 20m3 water  .880 

5 

Development expense ratio .871 

Information disclosure .848 

Number of international relations .957 

6 

Drinking water storage per capita in event of disaster .721 

Pipeline rehabilitation rate .761 

Water vehicles ratio .899 

7 

Water facilities seismic rate .820 

Pump station seismic facility rate .650 

Distribution reservoir seismic facility rate .865 

8 

Achievement of water in terms of musty odor .622 

Achievement of water in terms of chlorinous odor .724 

THM concentration as ratio of permissible THM -.747 

TOC concentration as ratio of permissible TOC -.804 

9 

Power consumption .871 

Energy consumption .869 

Greenhouse gases emissions  .923 
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Table 2.7: PCA with oblimin structure rotation 

Component  Variables Loading 

1 

Corporate bond interest rate of return for water supply -.945 

Redemption rate of revenue bonds -.653 

Percentage of outstanding revenue bonds -.948 

Net worth to capital ratio .722 

2 

Operating balance ratio .820 

Current account balance ratio .953 

Total balance ratio .938 

Revenue to cost ratio of water .889 

3 

Water revenue per employee .847 

Staff salary as ratio of total revenue -.890 

Average work experience ratio -.728 

Amount of water supplied per unit staff .822 

  Meters per unit staff .803 

4 

Water supply revenue .949 

Water production cost .908 

Price for households using up to 10m3 water  .766 

Price for households using up to 20m3 water  .930 

5 

Development expense ratio .885 

Information disclosure .860 

Number of international relations .958 

6 

Drinking water storage per capita in event of disaster .716 

Pipeline rehabilitation rate .765 

Water vehicles ratio .915 

7 

Water facilities seismic rate .850 

Pump station seismic facility rate .695 

Distribution reservoir seismic facility rate .911 

8 

Achievement of water in terms of musty odor .638 

Achievement of water in terms of chlorinous odor .766 

THM concentration as ratio of permissible THM -.797 

TOC concentration as ratio of permissible TOC -.812 

9 

Power consumption .944 

Energy consumption .935 

Greenhouse gases emissions  .928 
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2.7.2 Inspecting orthogonality of components 

Orthogonal components indicate that the components are independent of each other. The objective of the 

study is to develop a Performance Indicator system, which can evaluate and monitor different aspects of 

the supply system. Overlap of information is not desirable as that could lead to ambiguity and could result 

in biased weightage of certain variables.  

 

To check the orthogonality of components, the correlation between components using promax rotation 

was calculated, since promax rotation allows components to be correlated and thus non-orthogonal. Table 

2.8 presents the correlations of the components extracted by promax pattern rotation. The relevant 

analysis has already been presented in Table 2.4 

 

Table 2.8: Component correlations using promax pattern rotation for PI analysis 

Component 1 2 3 4 5 6 7 8 9 

1 1 -0.05 0.14 -0.14 0.11 0.12 -0.20 -0.08 0.10 

2  1 0.03 -0.07 -0.12 -0.06 0 0.02 0 

3   1 0.06 0.13 0.21 -0.09 -0.09 0.03 

4    1 -0.26 -0.07 0.08 -0.13 0.01 

5     1 0.04 -0.19 0.04 0.05 

6      1 0.14 -0.01 -0.11 

7       1 -0.02 -0.01 

8        1 -0.02 

9         1 

 

 

As observed in Table 2.8, there is very little to negligible correlation between the components suggesting 

that the components are orthogonal in nature with no overlap of information. This indicates that the 9 

components extracted are independent of each other. Hence, the results with varimax rotation have been 

considered for further analysis.  

 

2.7.3 Component Interpretation 

As seen in the previous section, the PCA results do not vary much across the different sets (full-set and 

group-sets) and rotations (varimax and promax). Also as mentioned before, the outcome of ‘full-set’ with 

varimax rotation has been considered as the final result. Table 2.9 presents the relevant components, 

identified from the PCA, which are proposed as pertinent PIs to evaluate the performance of small water 

supply systems in Japan. The components were extracted based on the current and future concerns that the 

water supply utilities in Japan are likely to face, discussed in the subsequent section. The PCA reduced 
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the original set of 113 variables to 9 components consisting of 33 contributing variables (9-component 

performance indicator system). All contributing variables load strongly onto the respective components, 

and have high values of extracted communality, thereby mitigating the concerns caused by the small 

sample size. Also presented in Table 2.9 is the variance of the original data set extracted by each of the 9 

components, indicating a total of 64.9% variance extracted by the 9 components together. The 

explanatory notes describing the quantification of the contributing variable can be revisited in Appendix 1. 

 

The PCA results, as seen in Table 2.9, yielded 9 components and hence this system has been called a “9-

Component Performance Indicator System (9-cPIS)”. Details of each component are hereafter 

discussed in this section. 

 

(1) The first component has been called “Economic Value of Water”, which supports the notion outlined 

in Dublin Principle 4 (UNCED, 1992) that “water has an economic value in all it’s competing uses and 

should be recognized as an economic good”. Water supplied by public agencies is usually priced at its 

average delivery cost rather than its value to producers. As a result water is rarely priced at its marginal 

value (Young, 2005). A fair Economic Value of Water leads to making informed choices about the use, 

conservation and allocation of water. Water having an appropriate price will give a clear signal to the 

users that water is indeed a scarce good that should be used sparingly (Zaag and Savenije, 2006). The 

‘water supply revenue’ and ‘water production cost’ are two variables that understandably have a large 

bearing on the Economic Value of Water.  Since Japan has a stepped water tariff system, in which the unit 

price for higher consumption is more than that for lower consumption, it can thus be inferred that the 

‘water price stipulated for households using up to 20m3/month’ is more likely to enhance Economic Value 

of Water than the ‘water price for households using up to 10m3/month’, as seen by the variable loadings in 

Table 2.9.  With variation in the amount and pattern of rainfall in the future, the water production cost is 

very likely to increase, thereby affecting the other contributing variables, and hence making Economic 

Value of Water an important PI to assess the performance of the system.  

 

(2) The second component “Employee Productivity” is an important PI in context of Japan’s 

demographical pattern. Japan has a rapidly aging population with 20.1% of the population above the age 

of 65 as of 2005, which is expected to increase to 31.8% by 2030. Moreover, the overall population shows 

a decreasing trend and is projected to decrease to under 100 Million in 2046 from the current 127.3 

Million (Kaneko et al., 2007). Given that the strength of the work force is likely to decrease, it will be 

important for utilities to arrive at an acceptable level of work output from its employees  (‘water revenue 

per employee’, ‘amount of water supplied per unit staff’ and ‘meters per unit staff’), without 

compromising on the efficiency of supply.  
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Table 2.9: Results of Principal Component Analysis using varimax rotation 

Variable  

code 

Contributing Variables Loading Extracted 

Comm. 

Comp 

Score 

Component  

Name 

EV1 Water supply revenue 0.931 0.961 0.264 
Economic 

Value  

of Water 

EV2 Water fee for HH using up to 20m3 per month 0.913 0.940 0.241 

EV3 Water production cost 0.898 0.954 0.253 

EV4 Water fee for HH using up to 10m3 per month 0.742 0.863 0.152 

EP1 Staff salary as ratio of total revenue -0.877 0.947 -0.256 

Employee  

Productivity 

EP 2 Water revenue per employee 0.833 0.933 0.244 

EP 3 Amount of water supplied per unit staff 0.819 0.929 0.206 

EP 4 Meters per unit staff 0.801 0.863 0.201 

EP 1 Average work experience ratio -0.744 0.885 -0.187 

FS 1 Current account balance ratio 0.935 0.955 0.280 
Financial  

Sustainability 
FS 2 Total balance ratio 0.920 0.951 0.275 

FS 3 Revenue to cost ratio of water supply 0.879 0.916 0.232 

FS 4 Operating balance ratio 0.806 0.947 0.207  

AM1 Number of international collaborations 0.950 0.942 0.285 
Adaptive  

Management 
AM 2 Development expense ratio 0.871 0.817 0.252 

AM 3 Requests for information made by consumers 0.845 0.773 0.247 

PIN1 Percentage of outstanding revenue bonds 0.928 0.943 0.341 

Private  

Investment 

PIN 2 Rate of interest for revenue bonds 0.908 0.946 0.313 

PIN 3 Net worth to total capital -0.696 0.871 -0.232 

PIN 4 Redemption rate of revenue bonds 0.615 0.674 0.199 

GWS1 Greenhouse gases emissions -0.879 0.899 -0.366 
Green Water  

Supply 
GWS 2 Power consumption -0.843 0.969 -0.319 

GWS 3 Energy consumption -0.841 0.943 -0.323 

CSWQ1 TOC as ratio of permissible TOC -0.810 0.795 -0.315 Consumer  

Satisfaction 

for  

Water Quality 

CSWQ 2 THM as ratio of permissible THM -0.779 0.787 -0.281 

CSWQ 3 Water without chlorinous odor 0.738 0.791 0.288 

CSWQ 4 Water without musty odor 0.607 0.640 0.263 

ERI1 Water vehicles ratio 0.907 0.890 0.335 Emergency  

Response 

Index 

ERI 2 Pipeline rehabilitation rate 0.760 0.641 0.284 

ERI 3 Drinking water storage in event of emergency 0.717 0.843 0.286 

ERS1 

ERS 2 

ERS 3 

Distribution reservoir seismic facility rate 0.887 0.937 0.351 Earthquake 

Resistant 

Water 

Supply 

Water treatment plant seismic facility rate 0.842 0.894 0.334 

Pump station seismic facility rate 0.669 0.797 0.271 

HH=Households; TOC =Total Organic Carbon; THM =Trihalomethanes 
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Additionally, a reduced work force may result in increased salaries and hiring of foreign personnel, which 

usually results in a higher proportion of the revenue spent on remuneration, thereby causing the Employee 

Productivity to drop (‘staff salary as ratio of total revenue’), as indicated by the negative loading in Table 

2.9. An aging population would result in older employees with more number of years as work experience

(‘average work experience ratio’). Since the salaries in Japan are usually based on seniority, it follows 

that that more revenue will be spent on salaries, resulting in reduced Employee Productivity (Negative 

loading of this variable in Table 2.9).  

 

 (3) The third component “Financial Sustainability” of a project, as defined by the ADB (1997), refers 

to a condition that “the project will have sufficient funds to meet all its resource and financing obligations, 

whether these funds come from user charges or budget sources; will provide sufficient incentive to 

maintain the participation of all project participants; and will be able to respond to adverse changes in 

financial conditions”. Hence, to achieve Financial Sustainability, this essentially means that the unit price 

of supplied water should exceed the unit production cost (‘revenue to cost ratio of water supply’). Further 

the revenues generated should be more than the cost incurred. For a typical water supply utility in Japan, 

there are three components of revenue and corresponding costs – operating revenue (revenue obtained 

through water bills only), non-operating revenue (revenues generated from sales of bonds etc.) and 

acquisition revenue (revenues generated by sales of land or assets). Accordingly, to ensure Financial 

Sustainability, it is important for utilities to maximize the ‘operating balance’, ‘current account balance’ 

and ‘total balance ratios’, respectively. The uncertain nature of water availability and quality in the future 

are likely to have profound implications on Financial Sustainability of water supply utilities, in particular 

small-scale utilities. 

 

(4) The fourth component has been named “Adaptive Management”. For water supply utilities, change 

is inevitable - which could be in the form of water availability, water quality, consumer perception, policy 

formulation etc.  However, it is the uncertainty of change that is a major concern for planners. To cope 

with uncertainty, there is a need for water supply utilities to continuously monitor these changes and 

arrive at feasible alternatives to counter potential ill effects brought about by the changes. Adaptive 

Management is an approach that seeks to provide flexible and responsive management approaches over 

time (Gregory et al., 2006). For Adaptive Management to succeed there must be an awareness of the 

problem which can be comprehended from ‘requests for information made by consumers’, mechanisms 

and funds for research to address the problem (‘development expense ratio’) and exchange of scientific 

ideas and experiences with like-minded partners (‘number of international collaborations’). 

 

(5) The fifth component “Private Investment” in water supply utilities seeks to address the involvement 

of the private sector in water supply. A toned down form of the ‘Public-Private-Partnership (PPP)’, 



!
                                                              Developing the 9-component Performance Indicator System (9-cPIS) 

! &+!

Private Investment not only serves as an additional source of income for the utilities but also projects a 

confident and reliable look to the stakeholders.  Since private investors invariably look for high rate of 

returns, this will encourage the water supply utilities to have efficient systems and better management, 

capable of delivering quality product. This indicator is of particular significance for small-scale utilities in 

Japan to improve on the debilitated state of existing finances. The amount of private investment made in a 

franchise can be gauged by monitoring the ‘percentage of outstanding revenue bonds’ and the 

‘redemption rate of revenue bonds’. The ‘rate of interest of revenue bonds’ will serve as an incitement for 

private investors.  The ‘net worth to total capital’ measures the indigenous equity stake of the water 

supply utility, and varies inversely with the amount of Private Investment, and thus has a negative loading 

in Table 2.9.  

 

(6) The sixth component is a very important indicator in light of the current situation and has been called 

“Green Water Supply”. In context of climate change, developing a Green Water Supply system is an 

important objective for water supply utilities, especially so in Japan which has committed to reducing the 

Greenhouse gases (GHG) emissions by 25% in 2020 from the 1990 base year.  Although the water sector 

contributes to less than 1% of the nation’s total GHG emissions, reduced ‘power and energy 

consumption’, thereby leading to reduced ‘GHG emissions’, will go a long way in establishing Green 

Water Supply in Japan.    

 

(7) The seventh component evaluates the water quality aspect from the consumer’s point of view and has 

been called “Consumer Satisfaction for Water Quality”. The Intergovernmental Panel on Climate 

Change (IPCC) forecast warmer and wetter days for Japan in the future (Bates et al., 2008). This has a 

direct repercussion on the water quality in terms of microbial growth, pollutant concentration etc., which 

could well entail a change in the treatment technology. Although the quality of drinking water in Japan is 

comparable with the best in the world, complaints due to disinfection by products (Trihalomethanes-

THM), Cryptosporidium, chlorinous odor etc. are still rampant (Itoh et al., 2006). Hence as indicated by 

the PCA results, to ensure Consumer Satisfaction for Water Quality in Japan, the ‘THM’ and ‘total 

organic carbon (TOC) concentrations as ratios of standard levels’ will have to be minimum, as indicated 

by the negative loadings of these variables in Table 2.9, while water relatively ‘free of chlorinous and 

musty odors’ enhance the Consumer Satisfaction for Water Quality. 

 

(8) The eighth component has been named “Emergency Response Index”: As highlighted before, with 

an expected increase in the variability of precipitation pattern, the occurrences of flood and droughts 

become more pronounced. Hence, an effective Emergency Response Index will be required to ensure safe 

and equitable distribution of treated water.  ‘Drinking water storage in event of disaster’ and ‘emergency 

water vehicles ratio’ are among the important variables contributing to this PI component. Oki and 
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Musaike (2009) point out that as of 2005, close to 11,000 km of the existing pipelines were installed more 

than 40 years ago. Hence having a satisfactory ‘pipeline rehabilitation rate’ would improve the efficiency 

of the supply systems, which could prove very useful in periods of droughts.  

 

(9) The last component of the 9-cPIS is the “Earthquake Resistant Supply”: Japan is situated on the 

Pacific ring of fire, at the juncture of three tectonic plates, where earthquakes are a common phenomenon, 

hence highlighting the importance of having an “Earthquake Resistant Water Supply Network”.  The PCA 

indicates that ‘distribution reservoir, treatment plant and pump stations seismic facilities rates’ are the 

more crucial variables affecting this component. Although not relevant from a climate/ socioeconomic 

change point of view, this component is significant in Japan’s context, reinforcing the notion mentioned 

earlier that the PI system needs to be site specific. 

 

2.7.4 Regression equations for components  

The regression equations for each component are developed using the component scores. Hence the 

magnitude of each component can be mathematically calculated as  

 

PCi i=1to9
= CSkXk

1

k

!  

  Where 

  PC = Magnitude of Principal Component 

  CS = Component Score 

  X = Magnitude of contributing variable 

  k = Number of contributing variables 

 

Equations 2.1 through 2.9 describe the regression equations developed for each of the 9 components of 

the 9-cPIS. The coefficients in the equations correspond to the component scores resulting from the PCA, 

as indicated previously in Table 2.9 

 

EV = (0.264 EV1) + (0.241 EV2) + (0.253 EV3) + (0.152EV4)……………..………………………(2.1) 

EP = (-0.256  EP1) + (0.244 EP2) + (0.206 EP3)  + (0.201 EP4) + (-0187 EP5)……………...(2.2) 

FS = (0.280 FS1) + (0.275 FS2) + (0.232 FS3) + (0.207 FS4)…………………………….………..(2.3) 

AM = (0.285 AM1) + (0.252 AM2) + (0.247 AM3)…………………………………………………...(2.4) 

PIN = (0.341 PIN1) + (0.313 PIN2) + (-0.232 PIN3) + (0.199 PIN4)……………..……………....(2.5) 

GWS = (-0.366 GWS1) + (-0.319 GWS2) + (-0.323 GWS3)………………………………………....(2.6) 

CSWQ = (-0.315 CSWQ1) + (-0.281 CSWQ2) + (0.288 CSWQ3) + (0.263 CSWQ4)……………(2.7) 

ERI = (0.335 ERI1) + (0.284 ERI2) + (0.286 X ERI3)……………………………………..………..(2.8) 
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ERS = (0.351 ERS1) + (0.334 ERS2) + (0.271 ERS3)………………………………………………..(2.9)  

 

where, 

EV: Economic Value of Water; EP: Employee Productivity; FS: Financial Sustainability; AM: Adaptive 

Management; PIN: Private Investment; GWS: Green Water Supply; CSWQ: Consumer Satisfaction for 

Water Quality; ERI: Emergency Response Index 
Note: Refer indicator codes in Table 2.9 for details of variables     

 

2.8 Additional applications of the 9-cPIS 

 

2.8.1 Benchmarking 

An important aspect of PIs is that it can be used for benchmarking. The main advantage of benchmarking 

is that it helps to compare the performance of different water supply utilities, within or across countries, 

thereby encouraging healthy competition among companies to provide efficient and reliable services, 

which are financially beneficial. As a result, the indicators used for benchmarking traditionally have a 

strong emphasis on the financial state of utilities.  

 

Benchmarking with the appropriate indicators is even more crucial in context of Japanese water utilities 

since as seen previously in Figure 2.4, very few utilities actually participate in the benchmarking exercise. 

The 9-cPIS is a condensed set of indicators, which is easier to manage and evaluate. Not only does it 

monitor various aspects of the supply system, it also takes into consideration the current and future areas 

of concerns for water supply utilities in Japan. The equations 2.1 through 2.9 result in an index for each 

component whose magnitudes are proposed for benchmarking. Such an index is particularly useful in 

encouraging the participation of those utilities that are reluctant in divulging details of financial, 

operational or personnel information, which is usually required in traditional benchmarking.  Since only 

the indices of different utilities would be compared, there is a strong possibility of broader participation. 

Figure 2.6 demonstrates the application of the 9-cPIS in benchmarking for selected water utilities in Japan.  

 

It is important to note that, for convenience sake, the magnitudes of each of the components have been 

standardized between the range 0 and 1, so that all components can be represented on the same figure. 

The typical standardization formula used is described in equation 2.10. 

 

Standard Value = (Original value – Minimum value     …………………………………..……(2.10) 

               (Maximum value – Minimum value) 
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                           Figure 2.6: Trend of 9-cPIS for selected water utilities in 2007 

 

As observed in Figure 2.6, there are nine indices corresponding to the 9 components of the indicator 

system, which are compared for four utilities in Japan – Tokyo, Nagoya, Kagoshima and Sakaide. Among 

these, the Tokyo and Nagoya water utilities are large-scale utilities with service population above 1 

million, the Kagoshima utility is a medium sized utility with service population of 579,000, and while the 

Sakaide utility has a service population of 56,000. It is distinctly seen that the Tokyo water utility 

overshadows the others in terms of Financial sustainability, Employee productivity and Adaptive 

Management, suggesting a profitable business. Similarly the Sakaide water utility appears to score highly 

on the Emergency Response Index. By comparing the indices of the 9-cPIS, water utilities in Japan can 

gauge their relative positions with respect to other similar utilities, and make efforts to stay competitive, if 

required.   

 

Apart from benchmarking their performances against other utilities of similar scale of supply, utilities can 

also monitor the trend of their own performances over the years, and address areas of concerns, if any. 

Figure 2.7 shows the trend of the 9-cPIS for the Nagoya water utility for the years 2004 through 2007. 

Accordingly it can be seen that there has been a general improvement in performance with respect to all 

nine components, over the years, with a pronounced improvement in the Earthquake Resistance Supply 

component. These observations are very significant because when comparing the performance of Nagoya 

with other water utilities in Figure 2.6, although the Nagoya water utility compares poorly with the others 

in the areas of Employee productivity, Financial sustainability and Economic value of water, there has 

been marked progress over the years, suggesting that the utility is heading in the right direction. Hence, in 

this case although external benchmarking suggests a problem, internal benchmarking makes the picture 

clearer.   
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Figure 2.7: Trend of 9-cPIS for Nagoya 

 

As mentioned earlier, the 9-cPIS is a condensed set of only 33 variables, which the water utilities will find 

easier to evaluate and manage. It was shown earlier in Figure 2.4 that less than 5% of the utilities which 

took part in the benchmarking exercise in 2007 could provide information for all the 137 original PIs. In 

contrast, based on the data collected from the JWWA, for the same year, Figure 2.8 shows the number of 

utilities that have provided data corresponding to the 9 components of the 9-cPIS.  

 
Figure 2.8: Data availability for the components of the 9-cPIS in 2007 (Source: JWWA, 2008) 

 

Accordingly it is seen that more than 63% of the utilities, which took part in the benchmarking exercise in 

2007 provided data for all the components of the 9-cPIS. For the Earthquake Resistant Water Supply, data 

availability was the least, with 63% of the utilities providing the relevant data. For Financial 

Sustainability, data availability was maximum with 73% of the utilities providing the relevant data. It can 
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be thus seen that, there is more data available for the 9-cPIS components compared to the original 137 

indicators, suggesting that the use of the 9-cPIS in benchmarking will be more effective and useful. 

 

2.8.2 Evaluating business models 

There is no generally accepted definition of a business model. Shafer et al. (2005) performed an 

exhaustive literature review on the definitions of business models and arrived at four common 

components of business models as defined by various researchers – strategic choices, creating value, 

capturing value and the value network. A business model for water supply would be slightly different 

from a regular business model because water supply is not a purely financial business but entails a social 

element as well, especially in context of the Japanese water supply, which is under government control. 

Hence, apart from ensuring financial security, water utilities in Japan have to address social obligations 

too. Figure 2.9 shows a prospective business model canvas proposed for Japanese water supply utilities. 

The aim of this section is not to develop a new business model but rather show the application of the 9-

cPIS in evaluating the model. Hence, the model proposed for this study uses the basic framework 

developed by Osterwalder and Pigneur (2010). The study has tried to adapt this model for water supply 

utilities. The various elements of the model, and the application of the 9-cPIS in evaluating each element 

are described hereafter.  

 

The business model canvass entails 8 elements. The ‘key partners’ element refers to the stakeholders 

involved in the water supply business. Since over 95% of the water utilities in Japan are under the public 

sector, prefectural governments are the major partners. Private investors and members of the community 

are the other partners. The Private Investment component of the 9-cPIS can evaluate this aspect of the 

business model. 

 

The ‘key activities’ for a typical water supply utility in Japan includes intake, treatment, distribution and 

effluent. The intake and distribution activities are mainly concerned with the quantity of water available 

for supply. Since the current penetration rate is above 97%, water shortage is presently not a concern 

(JWWA, 2008). Given the nature of Japan’s supply system and decreasing population trend, it is unlikely 

that water shortage will be a problem in the future. Hence the more pertinent indicators with respect to 

this element of the business model can be limited to Consumer Satisfaction for Water Quality and 

Employee Productivity. 

 

For any water supply utility, water, employees and assets form the core of the ‘key resources’. In light of 

changing climate and socioeconomic conditions, these resources are likely to be the Drivers of Change,  

which would affect water supply systems and the subsequent management of water supply. The Employee 

Productivity and Financial Sustainability components address this element of the business model.  
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   I – Intake, T – Treatment, D – Distribution, E-Effluent, DoC – Drivers of Change 

EV: Economic Value of Water;  EP: Employee Productivity; FS: Financial Sustainability 

AM: Adaptive Management; PIN: Private Investment; GWS: Green Water Supply 

CSWQ: Consumer Satisfaction for Water Quality; ERI: Emergency Response Index 

ERS: Earthquake Resistant Supply            

Figure 2.9: Evaluating business models of Japanese water supply utilities with 9-cPIS 

 

The ‘value proposition’ element of the business model refers to the appeal of the product and its special 

characteristics. Reliable supply of good quality water and an environmentally friendly supply system add 

to the appeal of produced water. The Green Water Supply and Consumer Satisfaction for Water Quality 

components can evaluate the value proposition component of the business model. Further, having a sound 

Earthquake Resistant Supply will enhance the reputation of the water supply utility and garner more trust 

from consumers. 

 

The ‘customer relationship’ element is the interaction of the customers with the water supply utilities. 

These interactions could be in the form of meetings, questionnaires, forums etc. However, in this context 
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the customer relationship that directly leads to problem solving has been considered as customer 

relationship.  This can be gauged by the Adaptive Management component, which takes into account 

customer-utility interaction to dynamically solve problems. The ‘cost structure’ and ‘revenue streams’ 

elements form the financial array of the business model. While operation, redemption and acquisition 

contribute to the expenses, water fees, asset liquidity and investment make up the revenue. The Financial 

Sustainability and Economic Value components of the 9-cPIS are capable of evaluating these elements of 

the business model.  

 

It is thus apparent that the 9-cPIS is diverse enough in nature, and capable of monitoring different aspects 

and activities of a typical business model for water supply. 

 

2.8.3 Operating the PDCA cycle for planning and management  

The 9-cPIS developed in this study is a condensed set of 33 variables, which is easier for water supply 

utilities to monitor, and subsequently use for planning and managing the supply. This section endeavors to 

explain the potential application of the 9-cPIS in the PDCA (Plan-Do-Check-Act) cycle, developed by 

Deming (1986),  for water supply utilities in Japan.  

 

The PDCA cycle is an iterative, four-step problem solving/planning process used in business process 

improvement. The components of the PDCA cycle are  

 

• Plan: To plan for improvement, first there needs to be an awareness of the problem. A thorough 

awareness of the problem is essential to develop a proper understanding of how the system will behave 

under the anticipated problem. The ‘Plan’ stage of the cycle seeks to investigate not only the problem, 

but also possible solutions to the problem.  There are a number of methods used in this stage, notable 

among these are – customer/supplier mapping, pareto analysis, solution/fault tree, evaluation matrix, 

flow charting, cause and effect diagram etc. Based on the understanding of how the problem impacts 

the system, potential solutions are drawn up for possible evaluation, which are then tested in the next 

stage of the cycle.  

 

• Do: The potential solutions developed in the ‘Plan’ stage are then tested in real time scenarios. 

Depending upon the complexity of the system and severity of the problem, the solutions are tested at 

different scales.  Ideally, the solution should be tested on a small-scale basis to ensure that the 

experiment does not affect the entire line of operations. In some cases, especially where the system is 

quite complex, simulation models can be used to test the potential solutions. Thus, the aim of the ‘Do’ 

stage is to discover how the system responds to the possible solutions. 
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• Check: This stage involves gauging the effect of the possible solutions against a set of indicators. The 

choice of indicators is particularly important. The indicators will need to evaluate the performance of 

the system in context of the problems that the system faces. Moreover, the indicators should 

encompass the areas of future concerns to ensure proper management of the system. If the possible 

solutions perform well on the set of established standards, then the solution can be implemented on a 

larger scale. If not, further modifications should be made to the proposed solutions to achieve the 

required targets. 

 

• Act: This is the final stage of the cycle where the feasible solutions, which perform well against the 

performance indicators, are implemented. It must be noted that the PDCA cycle is iterative and the 

process does not end with the ‘Act’ stage. Rather, new potential problems are identified over a period 

of time and corrective measures suggested, making it a dynamic solution cycle.  

 

The 9-cPIS is primarily concerned with the ‘Check’ stage of the PDCA cycle, and addresses the current 

and future concerns that water supply utilities in Japan are likely to face. The Emergency Response Index 

indicator evaluates the ability of the system to cope with expected changes in water quantity (floods and 

draughts). Consumer Satisfaction for Water Quality evaluates the quality of supplied water in terms of 

consumer satisfaction (effects of increased turbidity, pollutant concentration, microbial growth etc.) while 

the Adaptive Management indicator throws light on the ability of the utility to dynamically cope up with 

concerns (Research and Development). Green Water Supply monitors the environmentally friendly aspect 

of the system (GHG emissions, energy consumption etc.). Financial Sustainability, Economic Value of 

Water and Private Investment monitor the financial aspects of the utilities. The Employee Productivity 

and Private Investment indicators monitor the effect of decreasing service population.  

 

Figure 2.10 explains the potential application of the 9-cPIS in the PDCA cycle. Accordingly, the cycle 

can be implemented in two broad stages – planning and implementation. In the planning stage, after 

identifying current and potential concerns, target objectives and feasible solutions are explored (Plan). 

Further, scenario models are developed which integrate the drivers of change along with the operational 

features of the supply system (Do). The 9-cPIS is, then, used to evaluate the scenario models (Check). 

Based on how the models perform against the indicator system, modifications and revamping of the 

supply system is proposed and project approval procured (Act). In the implementation stage, after 

arranging for the necessary finances, infrastructure and personnel (Plan), the feasible solutions are 

implemented in real time situations on, preferably, a small scale basis (Do). The system is then monitored 

against the 9-cPIS to check how well the modeled solutions perform in real time (Check). Depending on 

the system response, against the indicator system, further fine-tuning of the system is explored (Act).  
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Figure 2.10: Application of the 9-cPIS in PDCA cycle'
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concentrations of THMs, TOC, residual chlorine, Geosmin and 2-MIB in finished water.  However, all 

these items are already included in the Japanese Water Standards via the revised Water Supply Act of 

2003, which makes it mandatory for utilities to make this information available to the public at all times. 

Currently, only the larger utilities have the facilities and equipment to test the various parameters of 

drinking water. The small water utilities collect water samples and send them to the Water Quality 

Monitoring Centers of the nearest large utility, for a stipulated fee. Hence, the small water utilities will 

not incur any additional cost on account of this component of the 9-cPIS. For the remaining components 

of the 9-cPIS, collecting the information pertaining to the corresponding PIs merely involves good 

bookkeeping and maintaining records of operation activities, which is not financially taxing 

 

2.9 Summary 

 

The objective of this thematic study was to develop a practical and relevant PI system to evaluate water 

supply utilities in Japan for various scenarios of climate change. PCA was employed to identify the 

pertinent PIs, derived from an existing set, to help gauge the performance of water supply systems to be 

modeled for future scenarios. The results of the analysis suggest that out of 138 PIs, only 9 components 

consisting of 33 variables (9-cPIS) are relevant in evaluating the performance of potential water supply 

systems. The components comprise of Economic Value of Water, Employee Productivity, Financial 

Sustainability, Adaptive Management, Private Investment, Green Water Supply, Consumer Satisfaction 

for Water Quality, Emergency Response Index and Earthquake Resistant Water Supply.  

 

The findings of this study propose a set of key PIs that are easier and more convenient to manage, 

especially for small-scale utilities, while at the same time address the current and future concerns that the 

water supply utilities in Japan can expect. Further, the use of the 9-cPIS will make subsequent modeling 

studies with different scenarios of climate conditions less onerous, without compromising the reliability 

of interpreted results. It must be mentioned that the key PIs developed in this study are not an exhaustive 

list but are primarily meant for modeling studies, which is data driven. Hence, some relevant variables for 

which data is currently not available or which are likely to impact water supply systems in future could 

not be included in the study.  

 

Additionally, the study presents the potential application of the 9-cPIS in evaluating business models, and 

the PDCA cycle for water utilities in Japan. By providing the utilities with a reduced set of relevant 

indicators, the study can make a significant contribution in the planning and management of the water 

supply. By developing scenarios of anticipated changes in water availability and quality, and observing 

the effect on the aforementioned components, water supply utilities can make informed and rational 

decisions to ensure the sustainable supply of safe and good quality water in Japan. 
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CHAPTER III 
 

INTRODUCING “PUBLIC INTEREST” IN WATER SUPPLY 
 
 
3.1 Background 

 

Developing PIs in the water industry is usually considered a technical endeavor, which has been 

traditionally carried out by experts, academicians and practitioners with very little to no involvement of 

the consumers. Most PI systems developed worldwide are utility-centered, meant to gauge the 

performance of different aspects of the supply system in an effort to foster improvement. The 9-cPIS 

developed in the previous chapter is no different. Each component of the 9-cPIS focuses on monitoring 

and evaluating the performance of the various facets of the water supply utilities in Japan. However, in 

the recent past there has been an increasing emphasis on involving consumers in water supply decisions. 

Water companies are now confronted with the challenge to make the shift from just being a water supplier 

towards becoming a customer-oriented service provider with a high sustainability profile and a “license to 

deliver” (Hegger et al., 2011). Meeting consumer expectations, and accounting for it in utility 

management plans, is now becoming a norm rather than the exception. With progress in technology and 

ease in obtaining information, consumers are becoming more knowledgeable, and have begun to take a 

keen interest in the water supply systems. Advances in medical science has now brought to fore the 

presence of various carcinogenic compounds present in water, which were hitherto undetected. With 

improved knowledge about these compounds and their effects, consumer expectations of water quality are 

becoming more demanding, especially in developed countries.  

 

The need to understand consumer expectations becomes even more pronounced in light of climate 

change, where water supply utilities will have to take crucial decisions to address the demands of 

multiple users.!!
!
An understanding of the consumer expectations from water supply will essentially require interaction with 

the consumers in the form of interviews, questionnaires, forums, or can be indirectly gauged from the 

nature and number of customer complaints. The understanding of expectations increases with broader 

public participation. Literature is abundant with case studies of consumer participation or involvement in 

water supply, but has been generally confined to the following areas  

 

• Customer satisfaction  

A number of studies have been carried out to evaluate the consumer satisfaction in relation to water 

quality, taste, service etc. The usual method for gathering this vital piece of information is by 
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disseminating questionnaires, and then using statistical techniques to quantify the consumer satisfaction. 

Perceptions about consumer satisfaction for drinking water quality may vary across countries. In a study 

conducted in Taiwan (Lou et al., 2007), it was found that the consumer satisfaction was primarily 

governed by absence of unpleasant odors, whereas in UK and Portugal (Doria et al., 2009) and Canada 

(Turgeon et al., 2004; Levallois et al., 1999), the estimation of water quality was mostly influenced by 

satisfaction with organoleptic properties (especially flavor). Doria (2010) comprehensively identifies the 

factors influencing public perception of drinking water quality. According to him, although the perception 

of water quality results from a complex interaction of diverse factors, the sensorial information 

(organoleptics) has the greatest influence. Among the other factors are: risk perception, attitude of the 

public towards the chemicals used in water treatment, contextual cues provided by the supply system, 

familiarity with specific water properties, trust in suppliers, past problems attributed to water quality and 

information provided by the mass media and interpersonal sources. Apart from water quality, consumer 

satisfaction is also affected by water supply service, where continuity of water supply is the major 

concern. Water supply utilities in many Asian cities like Delhi, Karachi, UlanBator, Vientienne, Gaza 

strip etc. are good examples that fail to deliver consumer satisfaction for continuity of service (ADB, 

2004; Al-Ghuriaz and Enshassi, 2005).  

 

• Willingness to pay (WTP) 

A popular area of consumer participation is in evaluating the public’s Willingness to Pay for water and 

water related services. The literature, mostly centered on developing countries like South Africa 

(Goldblatt, 1999), China (Wang et al., 2010), Zambia (Ntengwe, 2004), Nigeria (Whittington et al., 

1991), Palestine (Al-Ghuriaz and Enshassi, 2005) etc. indicate that consumers are likely to pay more for 

improved water supply services (increased reliability) than any other water related service. A notable 

exception is a case study in India (Raje et al., 2002) where it was found that satisfaction level of the 

consumer does not affect the WTP, affordability to pay does. The magnitude of WTP varies according to 

geographical and social profiles. Studies reveal that while consumers in Mexico (Vasquez et al., 2009) 

indicate their WTP as much as 78% (median value) more than the current water prices, in China (Wang et 

al., 2010) the WTP is low at 12% more than the present water prices.  

 

• Consumer acceptance of recycled water  

Because of increasing water scarcity, population explosion leading to increased water demand, and 

changing climate regimes, many water utilities and countries have been encouraging the usage of recycled 

and reused water. Recycled water is mainly being used for non-consumptive purposes and consumer 

involvement has been emphasized on gauging the acceptance of recycled water. The various studies 

carried out emphasize that acceptance of recycled water is governed by awareness of the need for 

recycling, perceptions of recycled water and knowledge of the recycling process (Dolnicar et al., 2011). 
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Acknowledging and accepting the fact that the water demand cannot be met in any other way, and public 

interest towards environmental protection also increases the acceptance level of consumers towards 

recycled water (Menegaki et al., 2007). Although generally there is widespread acceptance of recycled 

water, concerns about the quality of recycled water are still present (Higgins et al., 2002).  

 

• Water regulation 

Perhaps the most popular example of public involvement in water services regulation is the ‘WaterVoice’ 

(customer service committees) in the UK established by the Ofwat (Water services regulation authority of 

UK) to ensure that the interests of the customers and potential customers are effectively represented 

(Franceys and Gerlach, 2011). Zambia has a number of Water Watch Groups (WWGs), which serve as a 

formal link between the regulators and customers and provide valuable feedback on services delivered by 

the regulated companies. 

 

Apart from the aforementioned fields, studies on consumer involvement have also been noted in 

understanding consumer behavior towards conservation, household water use, hygiene and risk perception 

(Hurlimann et al., 2011; Peter, 2010; Jorgensen et al., 2009; Itoh et al., 2006 etc.), and rural development 

(Nare et al., 2011; Prokopy et al., 2005 etc.) 

 

All the studies citied above have tried to address the consumers’ point of view. This study goes beyond 

just that. Apart from evaluating the “public’s interest” (PINT) in water supply, which is from a 

consumers’ point of view, this study attempts to relate this to the 9-cPIs which has been developed from 

the utility’s point of view. Hence, an effort has been made to elucidate the nexus between the two points 

of view.  

 

3.2 Rationale of the study 

 

“Public Interest in the context of this study is defined as those aspects of the water supply system in 

which the consumers are naturally interested, and place high importance.” 

 

Since the PIs usually cover the entire range of water supply operations and services, understanding the 

public’s interest will highlight those PIs, which are important for the consumers. Hence, consumer 

expectations can be identified, which has three distinct benefits.  

 

(a) By understanding the areas of the supply in which the public is interested, the utilities can 

highlight and present to the consumers their achievements and efforts in those areas. This will 
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help them establish a good relationship with the consumers, thereby earning their support, which 

will be very useful when adaptation measures for climate change are to be implemented.  

 

(b) By knowing consumer expectations, water utilities will be able to market their product in a better 

way, catering to consumer interest. For example, if consumers indicate their interest in the ‘Green 

Water Supply’ PI, utilities can focus on the environmentally friendly aspect of their product while 

presenting it to consumers. This will, hopefully, wean away the consumers from other 

environmentally unfriendly sources such as bottled water.  

 

(c) Having knowledge of consumer expectations will help the utilities to identify certain PIs that are 

sensitive to consumer choice. This knowledge becomes particularly useful for decision-making in 

testing times when various tradeoffs may have to be considered. For example, if consumers 

prioritize the ‘Water Quality’ PI over the ‘Water Price’ PI, in scenarios of degraded raw water 

quality this would provide a sound rationale to the utilities for increasing water prices, within 

reason, to maintain adequate quality. Utility managers may consider changing the type of water 

treatment, with a reasonable increase in water price, in order to maintain the quality the 

consumers require.  

 

3.3 Thematic objectives and scope of study 

 

The thematic objectives of this study are 

 

• To evaluate and quantify Public Interest (PINT) in water supply 

 

A questionnaire survey with randomly selected consumers was performed to evaluate and further quantify 

PINT. The questionnaires were only disseminated in the Kansai region of Japan, to limit the geographical 

boundaries of the study, and achieve greater control.  

 

• To develop a relationship between the PINT and each component of the 9-cPIS. 

 

Selected water utilities were evaluated for PINT. The nine components of the 9-cPIS were estimated for 

each of the selected utilities, which were used to establish a mathematical relationship with the PINT in 

order to understand the relationship between the consumers’ and utility’s points of view. This relationship 

was further used in the study to develop a tradeoff between meeting consumer expectations of water 

quality and reducing energy use. 
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3.4 Research Methodology 

 

3.4.1 Schematic of activities 

Figures 3.1 presents the schematic of the sequence of activities and events carried out to evaluate and 

quantify the PINT, while Figure 3.2 depicts the flowchart for establishing the relationship between the PINT 

and each component of the 9-cPIS. 
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Figure 3.1: Schematic for quantifying Public Interest (PINT) 
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Figure 3.2: Schematic for establishing relationship between Public Interest (PINT) and 9-cPIS 

 

 

 

Divide questionnaire responses according  
to service areas 

Identify at least 10 service areas based on  
responses received 

Calculate PINT for each response, from each service area  
using the regression equation already developed 

Plot probability distribution of  
PINT for each service area  

Calculate PINT central tendency (mean, 
median or mode) of distribution, based on 
shape of distribution curve   

Count  

PINT  Calculate magnitude of each component  
of 9-cPIS for each service area  

Plot PINT central tendency of each service 
area against magnitude of each component 
of 9-cPIS, for each service area    

One at a time 
for ‘N’ service 
areas Establish relationship between PINT and  

each component of 9-cPIS  

!

!

i=1
9 9! cPIS



!                    Introducing “Public Interest” in Water Supply 

! &*!

3.4.2 Background preparation to evaluate PINT 

Understanding the nature of PINT requires an insight into what consumers really want or expect from their 

water utilities. There are certain aspects of the supply system, which have a direct repercussion on 

consumer interest and concerns. These aspects will, in all likelihood, vary from place to place. Consumers 

in developing countries may aspire for reliability and continuity of service from their providers, whereas 

in developed countries the focus may be on the quality aspect of water. Further, consumer expectations 

may also vary across cultures, age, professions and social status — the affluent educated individuals may 

like to see their utilities more environmentally friendly, the older consumers may be more concerned with 

water prices, for women with children the water quality may assume top priority etc. This section seeks to 

identify, from various case studies in literature, consumer needs and wants, which will be helpful in 

designing the questionnaires for this study.  

 

A common concern for consumers, in developing and developed countries alike, is reliability of service 

(e.g. Zerah, 2000; Koss and Khwaja, 2001). Howe et al. (1994) point out that while out of pocket losses 

appear small, water customers place high value on reliability. A survey conducted by Mori Consulting 

(2002) in UK ranked reliable and continuous service as the most highly rated service aspect, followed by 

water pressure and appearance. Apart from reliability, in the same survey, respondents indicated their 

willingness to pay more for improved safety, taste and smell. A number of other studies also point out that 

taste, odor and smell of water are top priorities for consumers (Lou at al., 2007; Doria et al., 2009; 

Turgeon et al., 2004; Levallois et al., 1999 etc.). It can, thus, be ascertained that good water quality 

figures high on consumer expectations.   

 

Having a reasonable price structure is another aspect that is given high importance by consumers. Raje et 

al., (2002), in a study carried out in India, reported that in the economically challenged group even though 

consumers were aware that improved water services would lead to significant benefits, there was 

absolutely no Willingness to Pay more because the consumers simply could not afford increased costs. 

Similar findings were reported by Wang et al. (2010) in China, where it was found that as the income 

level of consumers increased, the WTP more for improved services also increased. However, the poorest 

consumers refused to accept any price hike. 

 

Drinking water is essentially the most basic and crucial service. Consumers place their trust in the utilities 

to provide them with safe drinking water, which is a huge responsibility for the utilities. This is 

particularly significant with respect to the presence of harmful elements in the water that cannot be 

detected by smell, taste or odor. In a questionnaire study carried out in Japan, Itoh et al. (2006) reported 

that people judge tap water as harmless and reduce their concern on its quality when their trust in the 
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waterworks system increases. Hence, trust in water supply utilities is another aspect of the water supply 

system, which is crucial from a consumer’s point of view. 

 

As society becomes more progressive, consumers expect more transparency and access to information 

regarding the supply system. In a study conducted in Japan, Hirayama (2004) showed that information 

that increases controllability about the risk of drinking water quality can reduce citizens’ concern in that 

respect. Providing the information consumers want is a part of the customer services operations, which 

makes customer service an important aspect contributing to PINT. 

 

Based on the information above, although difficult to generalize, it is apparent that water quality, 

reliability of service, trust in water utilities, price of water are among the areas that are important from the 

consumer’s point of view. 

 

3.4.3 Questionnaire design 

 

3.4.3.1 Contents of questionnaire 

An Internet based questionnaire survey was carried out in the Kansai region of Japan to evaluate the PINT.  

The first section of the questionnaire contained questions pertaining to socio demographic attributes – 

gender, age, household income and geographic location.  

   

Eight questions (items) were included in the questionnaire to evaluate and quantify PINT in the second 

section of the questionnaire. Each of the eight items was chosen on the basis of two criteria. First, their 

inclusion should be supported by literature and past studies. Second, each item should be related to the 9-

cPIS, so that an empirical relationship between the PINT and 9-cPIS could be established.  Based on the 

literature review in section 3.4.2, four potential items were identified which were thought to influence 

PINT – Water quality, Price of water, Customer service and Trust in water utilities. A notable exception 

here is reliability of service. This was not considered in the design because Japan has an efficient supply 

system, with over 97% of the population receiving continuous water supply (JWWA, 2008). The contents 

of the questionnaire survey also included four aspects that were thought not very important from the 

viewpoint of consumers – Employee productivity in utilities, Financial state of utilities, Research and 

Development in utilities and Equity of distribution. None of these items figured in any literature or 

previous studies on consumer wants or customer satisfaction, suggesting that they are exclusively utility-

centered, and thus were thought to collectively influence the ‘Public Disinterest (PDIN)’ trait.  The 

inclusion of these aspects was to facilitate the extraction of two distinct factors — PINT and PDIN — from 

the Factor Analysis carried out subsequently. Each of the eight items of the questionnaire and the traits 

that they are expected to measure are presented in Table 3.1 
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                  Table 3.1: Questionnaire items used in the survey 

Questionnaire item              Expected contributors to 

Water quality 

Price of water 

Customer service 

Trust in water utilities 

Employee productivity in utilities 

Financial state of utilities 

Research and Development 

Equity of distribution 

Public Interest 

Public Disinterest 

 

A copy of a sample questionnaire, both in English and Japanese, used in the study can be found in 

Appendix B.  

 

3.4.3.2 Measurement scale of responses 

A five point Likert scale was used to evaluate the responses received for the second section of the 

questionnaire. The Likert scale is the most widely used scale to measure people’s attitudes, preferences, 

opinions, conceptions etc. in general (Wu, 2007; Gob et al., 2007 etc.). Likert (1932) developed the 

principle of measuring attitudes by asking people to respond to a series of statements about a topic, in 

terms of the extent to which they agreed, thereby tapping into the cognitive and affective components of 

attitudes. An added advantage of the scale is that it provides the respondents with the option “Undecided” 

or “Don’t know”. This ensures that the respondents are not forced into making a choice when they are 

unsure about a certain item, thus providing additional reliability to the results.  

 

In this study, respondents were given a range of choices to indicate how important to them were the 

questionnaire items listed in Table 3.1. The range of choices and corresponding scores are presented in 

Table 3.2 

 

       Table 3.2: Likert scale range and scores used in the study 

Degree of agreement  Score 

Very Important 

Important 

Undecided 

Slightly Important 

Not important 

5 

4 

3 

2 

1 
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3.4.3.3 Dissemination area and sample size 

The Kansai region of Japan was selected as the study area, where questionnaires were disseminated to 

stratified, randomly selected subjects. Kansai region was selected for logistics – It is closer to the author’s 

laboratory, and it is more convenient to connect with water utilities in the region. The Kansai region is 

made up of six prefectures – Osaka, Kyoto, Nara, Hyogo, Wakayama and Shiga. Of these, Osaka is the 

largest, both in area and population, while Wakayama is the smallest. Figure 3.3 depicts the geographic 

location of the Kansai region with Japan, with the constituent prefectures. It was endeavored to have equal 

number of male and female respondents to investigate the PINT in the gender context.  

!
Having an adequate sample size is essential for results to be statistically significant. A sample is a subset 

of cases selected from a population. Small sample sizes have a greater margin of error, casting doubts on 

the credibility of results. With an increase in the sample size the reliability initially increases very steeply, 

but as the sample size grows there are diminishing returns in terms of reliability from any further 

increases in sample size (Wangcharoen et al., 2005). The sample size calculations for experimental 

designs take into consideration the population size, acceptable sampling error and desired confidence 

level. Generally, a confidence level of 95%, with sampling errors ranging from 3% to 5% is considered 

for sample size determination.  

!

Figure 3.3: Geographic location of the Kansai region within Japan and its constituent prefectures 
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Apart from targeting a confidence level of 95% with acceptable sampling error of 3%, a governing factor 

to determine the sample size for this study was with respect to the requirements of Factor Analysis, 

because the results of the questionnaire would be further used in Factor Analysis. Given that there are 

eight questions in the questionnaire, and considering a case to variable ratio of 10 as recommended by 

Bryant and Yarnold (1995), a minimum sample size of 80 is required for each service area. Further, since 

it was proposed to divide the questionnaire responses into at least ten service areas so that a relation 

between the PINT and 9-sPIS could be developed, the total minimum size amounted to 800. To be safe, a 

sample size of 1500 was thus targeted.  

 

3.4.3.4 Mode of dissemination 

A web based questionnaire survey was used for this study. Market researchers have long recognized the 

advantages of Internet-based surveys, the most important of these being lower costs and faster response 

time (e.g., Ilieva et al., 2002; Duetskens et al., 2004 etc.). Unlike traditional forms of surveys, it is easier 

to have access to a unique population through web-based surveys (Wright, 2005). Further, data can be 

collected continuously, regardless of time of day and day of week, and without geographical limitation 

(Madge, 2006). In spite of the numerous advantages of web-based surveys, there are some drawbacks 

associated with it.  

 

Currently the biggest concern with Internet based surveys is coverage bias, arising due to sampled people 

not having Internet or choosing not to access the Internet (Alvarez and VanBeselaere, 2005; Wright 2005 

etc.). Despite expediential growth of the Internet there are still large numbers of people who do not have 

access and/or choose not to use the Internet.  

 

However, as of the end of 2010, there were 94.62 million Internet users in Japan, accounting for 

approximately 79% of the population (Statistic Bureau, 2011). Additionally as seen in Figure 3.4, the rate 

of Internet use has been on the rise from 34% in 2000 to over 90% in 2008. Although data for the year 

2011, in which this study was conducted, is not available, it can be speculated that the rate of Internet use 

must have increased. Given the development in telecommunications in Japan over the last few years, and 

people’s dependence on the Internet for various purposes, it is highly unlikely that the Internet use has 

gone down.   

 

Further, as observed in Figure 3.5, the rate of Internet use appears more or less the same across genders, 

indicating no bias in this regard. Expectedly, the younger generation exhibits a greater predilection 

towards Internet related activities, compared to the older citizens.  Hence, it appears that coverage bias 

does not seem to be a limiting factor in this study. 
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Figure 3.4: Trend of Internet use in Japanese households 

(Data Source: Global ICT Strategy Bureau, Ministry of Internal Affairs and Communications) 
 

 

  
 Figure 3.5: Trend of Internet use in Japanese households based on gender in 2006 

(Data Source: Global ICT Strategy Bureau, Ministry of Internal Affairs and Communications) 

 

Studies also point out to the fact that it is difficult to ascertain the response rate and response origins with 

web based questionnaires (Wright, 2005). The response rate was not a very significant aspect in this study 

since a minimum sample size was established. The analysis was performed only after the required 

responses were received. To address the concerns regarding response origins, respondents were asked to 

mention their geographic locations in the first section of the questionnaire, as mentioned previously in 

Section 3.4.3.1. Another widespread concern with Internet based surveys is that users may treat the survey 

as spam if not presented properly. To ensure that the questionnaire was not mistaken as spam and treated 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

2000 2005 2006 2007 2008 

R
at

e 
of

 in
te

rn
et

 u
se

 b
y 

ho
us

eh
ol

d 
(%

) 

0 

20 

40 

60 

80 

100 

15
-2

4 

25
-3

4 

35
-4

4 

45
-5

4 

55
-6

4 

65
-7

4 

75
 a

bo
ve

 

Pe
re

ce
ta

ge
 o

f i
nt

er
ne

t u
se

rs
 

Age groups 

Men Women 



!                    Introducing “Public Interest” in Water Supply 

! &%!

with respect, an official foreword, endorsed by the university at which the author is, was placed before the 

first section of the questionnaire. 

 

The questionnaire survey for this study was conducted using the services of Macromill Inc., a Tokyo 

based leading online research company in Japan. All questions were translated into Japanese, since that is 

the primary mode of communication, both written and verbal, in Japan. The survey was conducted 

between December 26, 2011 and Dec 28, 2011. First, requests were sent to approximately ten thousand 

subjects (10,000) on December 26 to inquire of their availability for the survey. After that, the responses 

were segregated based on geographic location and gender because the survey required an equal number of 

male and female respondents from the Kansai region only. The full questionnaires were then sent to these 

selected respondents. 

 

3.4.4 Factor Analysis (FA) 

Factor Analysis (FA) was performed to quantify PINT. FA is a statistical technique that seeks to account 

for patterns of collinearity among multiple metric variables. The basic assumption in FA is that if 

variables are correlated to each other, it is because they are measuring the same “trait”. FA is very similar 

to PCA, and both will lead to similar substantive conclusions. The main difference between these types of 

analyses lies in the way the communalities are used. In PCA it is assumed that the communalities are 

initially 1. In other words, PCA assumes that the total variance of the variables can be accounted for by 

means of its components (or factors), and hence that there is no error variance. On the other hand, FA 

assumes error variance. This is reflected in the fact that in FA the communalities have to be estimated, 

which makes FA more complicated than PCA, but also more conservative (Byrant and Arnold, 1995).  

 

The terminology used in FA is very similar to that used in PCA, with exactly the same steps being 

performed in both cases. Detailed information about the terms and definitions can be revisited in Section 

2.4.2.  

 

3.4.5 Check for internal consistency 

The consistency of the results obtained from FA was tested with the commonly used index – Cronbach’s 

Alpha. The purpose of performing this check is to verify whether or not the variables contributing to a 

factor have a close relation. Cronbach’s alpha is test of reliability, which measures how closely related the 

variables contributing to a factor are (Cronbach, 1951). Cronbach’s alpha takes a value between 0 and 1, 

and high values are used as evidence that the items measure an underlying (or latent) construct.  

 

Cronbach’s alpha can be conceptually represented by equation 3.1 
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                      !!!!!!!!!!!! ! !!!
!! !!! !!  ...…………………………………..………..………(3.1) 

 

 Where 

 N = Number of items/variables contributing to the factor 

 !  = Average inter-variable covariance 

 !  = Average variance 

 

George and Mallery (2003) provide the following rules of thumb:  

 

“ > 0.9 – Excellent, > 0.8 – Good, > 0.7 – Acceptable, >0.6 – Questionable, > 0.5 – Poor, and < .5 – 

Unacceptable”  

 

3.5 Results and Discussion 

 

1648 responses were received during the period December 26, 2011 and December 28, 2011. It must be 

pointed out that these are the responses after the segregation phase. The segregation of responses were 

done to fulfill two criteria. First, to ensure that there were equal number of male and female respondents. 

Second, the respondents were limited to the Kansai region of Japan, made up of the Osaka, Kyoto, Nara, 

Hyogo, Wakayama and Shiga.   

 

3.5.1 Response classification 

3.5.1.1 According to gender 

Males – 50% 

Females – 50 % 

 

3.5.1.2 According to Prefectures 

Figure 3.6 describes the response classification according to the prefectures in the Kansai region of Japan. 

Out of 1648, the maximum responses (775) were received from the Osaka prefecture, accounting for 47% 

of the total responses. This is understandable because the population in the Osaka prefecture is the largest 

among all the prefectures located in the Kansai region of Japan. Also, the maximum questionnaires were 

sent out to respondents in the Osaka prefecture. 26 and 12% responses were received from the Hyogo and 

Kyoto prefectures respectively. The least responses were received from Wakayama prefectures, which 

made up only 3% of the total responses. Responses from Nara and Shiga, each 6% of the total responses, 

made up the remaining portion of responses.  
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Figure 3.6: Response classification of questionnaire survey according to prefectures 

 

3.5.1.3 According to age groups 

Figure 3.7 depicts the responses received from the questionnaires based on different age groups.  

 

 
Figure 3.7 Response classification of questionnaire survey according to age groups 

 

The maximum responses were received from the group whose age varied from 40 to 49 years, followed 

by the group with ages in the range 30 to 39 years. These two groups contributed towards more than half 

(56%) of the responses, indicating the activeness of middle-aged respondents in the survey. 
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The younger respondents (age group: 19 and below, and between 20 and 29) formed a mere 15% of the 

total responses, indicating the lack of interest of youngsters in aspects pertaining to water supply. This is 

particularly significant since as presented out earlier in Figure 3.5, over 80% of the population in these 

groups have access to the Internet. This suggests that although the maximum number of questionnaire 

requests was sent to this group, minimum responses were received from them. Conversely, the combined 

response rate of senior citizens (age group 50-59, and 60 and above) was higher at 27%, in spite of this 

group having limited access to the Internet (less than 50%, as seen in Figure 3.5).  

 

3.5.1.4 According to marital status 

A large proportion of the respondents were married, accounting for 61.8% of the respondents. Further, out 

of the 1648 respondents, there was an almost even segregation of respondents with and without children. 

863 respondents, accounting for 52.4% of the sample size had children compared to 785 respondents who 

did not.   

 

3.5.1.5 According to annual household income 

Figure 3.8 presents the classification of responses on the basis of household income of the respondents.  

 

 
 

Figure 3.8: Response classification of questionnaire survey according to annual household income 
 
 

It can be seen that the largest group (23% of the respondents) have an annual household income between 

4 and 6 Million Yen, followed by the group with an annual household income between 2 and 4 Million 

yen (21% of the respondents).  7% of the respondents reported an annual household income less than 2 

Million, while only 8 respondents (0.005% of the total respondents, indicated by the black sector in Fig 

3.8) reported annual household incomes greater than 20 Million. Generally, there were fewer responses 
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from households with more annual income as compared to households with less annual income. It is 

apparent from Figure 3.8 that more than two thirds of the respondents reported an annual household 

income of less than 8 Million yen. Approximately 9% of the respondents chose to withhold their 

household income, while 8% of the respondents indicated that they did not know their household income. 

Hence, a significant number (17%) of the respondents did not provide any information pertaining to their 

household income, suggesting that disclosing information about income may be a sensitive issue with 

respondents.  

 

3.5.1.6 According to profession 

Figure 3.9 presents the questionnaire responses classified with respect to common professions in Japan. 

Accordingly, housewives or househusbands form a bulk of the responders, accounting for almost 19% of 

the total responses.  

 
 

 
Figure 3.9: Response classification of questionnaire according to profession 

 
 

Clerical company employees, technical company employees and part-timers form the next largest groups 

in order or magnitude, with 14, 12.6 and 11.3% contribution to the total response rate, respectively. There 

was very little participation from individuals with managerial positions like executive officers and 

officials, with less than 5% responses received from these groups. It would be incorrect to say that a 

particular group is less interested in the water supply aspects based on number of responses received 

because there is no data to show how many people from each group have been approached for the 

questionnaire. 
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3.5.2 Question-wise analysis of responses 

3.5.2.1 Based on total responses 

As explained earlier in section 3.4.3.1, the questionnaire contained two parts. The first part requested 

responders to provide personal and demographic details, while the second part was designed to evaluate 

the PINT. Question-wise analysis of the eight (8) questions of the second part of the questionnaire has been 

performed in the current section.  

 

Figure 3.10 presents the range of consumer responses of each of the eight questions. Among the variables, 

‘good quality tap water’ appears to be the most crucial variable for consumers. 95.63% of the respondents 

have indicated that ‘good quality tap water’ is either very important or important to them. Among the 

other variables, consumers have placed high importance on ‘trust in water supplier’, ‘price of water’ and 

‘equity of distribution’. Although the response trend for these three variables is quite similar, ‘trust in 

water supplier’ scores highly on the ‘very important’ category among the five choices, suggesting that it is 

perhaps one of the most crucial variable in the eyes of the public. 

 

Contrarily, the ‘financial state of utilities’ and ‘employee productivity in utilities’ seem to elicit very little 

importance from the consumers – only 18.02 and 19.24% of the respondents respectively find these two 

variables very important. A key feature to note is that 38.17% and 40.05% respondents respectively have 

indicated an undecided stance when specifying the importance of these two variables. This suggests that 

either the consumers do not know the significance of these two variables or they are uncertain whether or 

not these variables are really important. Under the circumstances, in both cases, it is quite clear that these 

variables do not garner much importance from the consumers.  

 

Surprisingly ‘customer service’ appears to figure low on importance, with only 20.21 % of the consumers 

placing high importance on it. A possible explanation for this anomaly could be that in Japan it is difficult 

to find examples of bad customer service. Japanese people are renowned to be very cordial and polite, and 

they carry this trait to their places of work. Hence, consumers may have never had an experience of bad 

customer service, which would make it difficult for them to ascertain whether or not ‘good customer 

service’ is important. Further, 28.09% of the respondents took an ‘undecided’ stance regarding ‘customer 

service’, giving further justification to the line of thought that consumers may not be aware of what bad 

customer service is.  

 

There seems to be a mixed response to the ‘research and development in utilities’ variable with over 66% 

of the respondents indicating it to be either ‘very important’ or ‘important’, but almost 29% taking an 

‘undecided’ stance. 
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Figure 3:10: Response pattern for questions to evaluate Public Interest 
 

 

66.87 

28.76 

3.64 0.55 0.18 
0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 
How important is good quality tap water to 

you? 

44.30 46.30 

6.61 2.55 0.24 
0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is price of tapwater to you? 

20.21 

42.11 
28.09 

9.04 
0.55 

0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is customer service to you? 

51.64 

32.71 

13.77 
1.64 0.24 

0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is trust in your water 
supplier to you? 

25.79 
41.02 

28.88 

3.58 0.73 
'!
)'!
"'!
+'!
$'!

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is R&D in your water 
utility for you ? 

44.05 
33.92 

19.42 
2.12 0.49 

0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is equity of distribution to 
you? 

19.24 
33.13 40.05 

6.37 1.21 
0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is the productivity of 
employess in your utility to you? 

18.02 
36.83 38.17 

6.01 0.97 
0 

20 

40 

60 

80 

Very 
Important 

Important Undecided Slightly 
Important 

Not 
Important 

R
es

po
ns

e 
ra

te
 (%

) 

How important is the financial state of 
your utility to you? 



!                    Introducing “Public Interest” in Water Supply 

! ++!

Figure 3.11 presents the summative score of each question (variable) based on the scoring pattern outlined 

in section 3.4.3.2. The trend is very similar to that when the questions were analyzed individually. 

Accordingly, respondents have given the highest score to ‘good quality tap water’, followed by ‘trust in 

water supplier’, ‘price of water’ and ‘equity of distribution’. Hence, these four variables appear to be 

more important for consumers. Conversely, consumers have placed relatively lower importance on 

‘employee productivity in utilities’, ‘financial state of utilities’, ‘customer service’ and ‘research and 

development in utilities’, suggesting that these variables may not have an significant role to play when 

estimating the Public Interest. 

 

 

 
 

Figure 3.11: Summative scores for total responses, for questions to evaluate Public Interest 

 

3.5.2.2 Based on gender 

Figure 3.12 presents gender-wise classification of the summative scores for each of the eight questions for 

evaluating the Public Interest. It is apparent that the response pattern and trend for each question is more 

or less similar for both males and females. This suggests that there is virtually no difference in opinions 

and choices of the consumers based on gender. Further the trend is in good agreement with the overall 

trend where ‘good quality tap water’ and ‘trust in water supplier’ figure high on the importance levels, 

and ‘employee productivity in utilities’ and ‘financial state of utilities’ are deemed less important by 

consumers.  
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Figure 3.12: Summative scores for questions to evaluate Public interest, based on gender 
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a standardization medium. As observed in Figure 3.13, generally there is an increase in the summative 

scores with an increase in the magnitude of the age groups.  
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Figure 3.13: Summative scores for questions to evaluate Public interest, based on age groups 

 

The average summative scores calculated for older respondents are visibly higher than those for younger 

respondents. Given that the summative scores are significantly impacted by the ‘very important’ and 

‘important’ choices, because these have the highest magnitudes, it appears that the older respondents give 

more importance to the various aspects of the supply system. This can be attributed to  
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supply system.  In light of the current technology and state of the art systems, the younger respondents 

will have had fewer unpleasant experiences.  
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system, because of which they place more importance on the diverse properties of the supply system. 
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• Priorities: Younger respondents may have different priorities. They may be more concerned with other 

things essential for their personal development instead of the water supply system which is already in a 

good state.  

 

3.5.3 Factor Analysis Results 

3.5.3.1 Hypothesis development 

In accordance with the methodology outlined in sections 3.4.4 and 3.4.5, Factor Analysis was performed 

with responses received for the questions (variables) in the second part of the questionnaire. Although the 

consumer priorities and general areas of interest have been identified in the preceding section, there is still 

no mechanism to mathematically cluster the variables of PINT. Hence, the main purpose of carrying out 

the Factor Analysis was to quantify the PINT by developing regression equations. An essential component 

of Factor Analysis is proposing a hypothesis, which would be then tested through the analysis. Based on 

the question-wise analysis of responses, covered earlier in section 3.5.2.1, the following hypotheses were 

proposed 

 

• HYP-1: Factor Analysis will lead to the isolation of a factor, which will be called the “Public 

Interest (PINT) factor”. ‘Good quality tap water’ and ‘Trust in water supplier’ are the primary 

variables affecting PINT. ‘Price of water’ and ‘Customer service’ are among the other variables 

that have some influence on the PINT.  

 

• HYP-2: The remaining variables (questions) in the study — ‘Employee productivity in utilities’, 

‘Financial state of utilities’, ‘Customer service’ and ‘Research and development in utilities’ — 

will load on another factor, “Public Disinterest (PDIN )” which is the antithesis of PINT. 

 

3.5.3.2 Tests for sampling adequacy 

Table 3.3 presents the results of the Kaiser-Meyer-Olkin (KMO) test and the Bartlett’s test of sphericity. 

Details of the two tests can be revisited in section 2.4.2. The KMO index of 0.850 is meritorious, 

suggesting that the sample size for Factor Analysis is satisfactory.  

 

Table 3.3: KMO and Bartlett’s test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .850 

Bartlett's Test of Sphericity Approx. Chi-Square 3575.351 

df 28 

Sig. .000 
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Further, the significance level is less than 0.005, which indicates that the correlation matrix is not an 

identity matrix, and there exists some correlation between the variables. Hence, the sample is suitable for 

Factor Analysis.   

 

3.5.3.3 Factor extraction 

Table 3.4 presents the eight factors, corresponding to the eight variables that were extracted by the 

analysis. As seen, there is only one factor, which has an eigenvalue greater than one, suggesting a single 

factor solution. However, since the second factor has an eigenvalue almost equal to 1, and the objective of 

the study was to extract two factors, the first two factors of the analysis were considered for the study. 

Accordingly, the first factor accounts for 43.72% of the variance, while the second factor extracts 12.40%. 

Hence, the total variance extracted by the two factors is 56.11%, which may be considered suitable for 

this kind of analysis.  

 

                          Table 3.4: Extractions of Factors  

 Initial Eigenvalues 
Factor Total Variance (%) Cumulative variance 

1 3.497 43.717 43.717 
2 0.992 12.394 56.111 
3 0.814 10.171 66.282 
4 0.709 8.868 75.150 
5 0.617 7.713 82.863 
6 0.557 6.964 89.828 
7 0.431 5.381 95.209 
8 0.383 4.791 100.000 

 
 
3.5.3.4 Factor interpretation 

To be able to extract more meaningful information from the factors, a varimax rotation was performed, 

and the relevant results are presented in Table 3.5. The coefficients in the table represent the loading of 

each variable on to the factors. A loading of 0.4 and higher was considered significant in this study. 

Accordingly, there are three variables that load on the first factor – ‘Employee productivity in utilities’, 

‘Financial state of utilities’ and ‘Research and Development in utilities’, in order of magnitude of 

loadings. This arrangement partially satisfies the HYP-2 hypothesis developed earlier in section 3.5.3.1. 

Hence, this factor can be said to be the PDIN factor.  

 

Similarly, the variables loading on to the second factor are ‘Trust in water supplier’, ‘Good quality tap 

water’, ‘Research and Development in utilities’, ‘Equity of distribution’ and ‘Price of water’. This pattern 
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partially satisfies the HYP-1 hypothesis, indicating that the second factor is the PINT factor. The ‘Research 

and Development in utilities’ variable loads on both factors and this is a cross loading variable. 

 

Table 3.5: Factor matrix with varimax rotation 

 Factor 
1 2 

Good quality tap water 0.096 0.595 
Price of water 0.202 0.403 
Customer service 0.355 0.397 
Trust in water supplier 0.292 0.643 
Research and Development in utilities 0.487 0.528 
Financial state of utility 0.708 0.258 
Employee productivity in utilities 0.750 0.206 
Equity of distribution 0.390 0.476 

 
 

Although cross-loading variables are not desirable and are usually dropped, retaining the variable is the 

prerogative of the researcher, especially if there are very few cross loaders (Costello and Osborne, 2005). 

In this study, the cross loading variable was retained so that there are at least three variables contributing 

to the PDIN factor, since factors with less than 3 variables are usually unstable. Further, there is a good 

possibility that given the nature of technological innovation in Japan, consumers may be interested in the 

‘Research and Development in utilities’ variable.  

 

The rotated factor solution partially proves both the hypotheses – HYP-1 and HYP-2 – made for the 

study. 

 

3.5.3.5 Quantifying PINT 

Regression equations were developed to quantify PINT, which used the factor score coefficients resulting 

from the analysis, which are presented in Table 3.6. 

 

Based on the factor score coefficients for each variable in Table 3.6, the following regression equations 

were developed 

 

PINT = (0.347 x Trust in water utility) + (0.313 x Good quality water) + (0.197 x R&D in water utility) + 

(0.162 x Equity of distribution) + (0.144 x Price of water)……………………………...….…………..(3.1) 

 

PDIN = (0.484 x Employee productivity in water utility) + (0.387 x Financial state of water utility) + 

(0.112 x R&D in water utility)……………………………………………………………..…………..(3.2) 
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Table 3.6: Factor score coefficient matrix  

 Factor 
1 2 

Good quality tap water -0.128 0.313 
Price of water -0.014 0.144 
Customer service 0.048 0.112 
Trust in water supplier -0.054 0.347 
Research and Development in utilities 0.112 0.197 
Financial state of utility 0.387 -0.083 
Employee productivity in utilities 0.484 -0.156 
Equity of distribution 0.046 0.162 

 
 

In context of this study, only equation 3.1, corresponding to PINT, is significant.  

 

3.5.3.6 Check for reliability of results 

In accordance to section 3.4.5, the Cronbach’s Alpha was used to check for internal consistency. The 

results of the reliability analysis are presented in Table 3.7. 

  

 
 
The variables contributing to both the factors – PINT and PDIN – have high values of Cronbach’s alpha, 

with magnitudes over 0.70, suggesting that the factors are represented well by the respective variables.   

 

3.5.4 Relationship between PINT and components of 9-cPIS 

3.5.4.1 Identification of target water utilities for the study 

In order to establish the relationship between the PINT and components of the 9-cPIS, eleven (11) target 

utilities were identified. The choice of the utilities depended upon the number of questionnaire responses 

received from the service area of the utilities – areas from where maximum responses were received were 

selected as the target areas, and the water utilities that supplied water to these areas were chosen as target 

water utilities. Table 3.8 presents the target water utilities along with the number of responses received 

from each. 

Table 3.7: Reliability analysis  

Public Interest (PINT) Public Disinterest (PDIN) 

Cronbach’s 
alpha 

Cronbach's Alpha 
Based on 
Standardized 
Items 

N of Items Cronbach's 
Alpha 

Cronbach's 
Alpha Based on 
Standardized 
Items 

N of Items 

0.734 0.735 5 0.760 0.760 3 
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                       Table 3.8: Selected target water utilities based on questionnaire responses 

Target Area Prefecture Number of responses 

Osaka City Waterworks Bureau Osaka 263 

Kobe City Waterworks Hyogo 132 

Waterworks Bureau, City of Kyoto Kyoto 118 

Sakai City Waterworks Osaka 52 

Amagasaki Waterworks Hyogo 40 

Waterworks Bureau of Nishinomiya City Hyogo 43 

Suita Municipal Waterworks Osaka 39 

Hirakata City Waterworks Osaka 29 

Otsu City Waterworks Shiga 28 

Nara City Waterworks Bureau Nara 38 

Wakayama City Waterworks Bureau Wakayama 24 

 

The PINT for each response, in each target utility, was calculated using the regression equation 3.1, 

developed in section 3.5.3.5. The frequency distribution of the PINT was then plotted for each target utility, 

as seen in Figure 3.14.  The aim of this exercise was to estimate the central tendency of the PINT for each 

target utility. Based on the frequency distributions in Figure 3.14, it is clear that in all the cases, the data is 

positively skewed, with a majority of the data concentrated towards the left. There are very few data 

values, which are towards the right. Hence, considering the mean or median of the entire data set as the 

central tendency may be misleading. 

 

To address this issue, the cumulative probability distribution for each water utility was plotted as 

indicated by the thick lines in Figure 3.14. Then, all data values corresponding to 90% probability were 

selected. The mean, median, mode and standard deviation were then calculated from this range of values, 

after which the most probable value was fixed depending upon the shape of the distribution. Given that all 

the distributions are more or less normally distributed, the average or mean value was considered as the 

most probable value. 

 
 
Table 3.9 presents the key statistics of the PINT for the range of values corresponding to 90% cumulative 

probability, for each of the selected utilities. It is observed that there is very little difference between the 

mean and median values for all utilities, except Otsu and Wakayama. Moreover, the standard deviation 

for all cases is almost the same, suggesting that the mean value of the PINT can be used to generalize the 

PINT for each utility. Hence, the average or mean value of the PINT has been considered for further 

analysis. 
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                (a) Osaka City Waterworks Bureau              (b) Kobe City Waterworks 

 

 

         (c) Waterworks Bureau, City of Kyoto   (d) Sakai City Waterworks 
 

 

 

         (e) Amagasaki Waterworks         (f) Waterworks Bureau of Nishinomiya City 
 

Figure 3.14: Frequency distribution of PINT for selected target water utilities 
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           (g) Suita Municipal Waterworks               (h) Hirakata City Waterworks 
 

 

            (i) Otsu City Waterworks           (j) Nara City Waterworks Bureau 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 (k) Wakayama City Waterworks Bureau 
 

Figure 3.14: Frequency distribution of PINT for selected target water utilities continued… 
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                      Table 3.9: Key statistics of central tendency of PINT, for selected target water utilities 

Water Utility Mean Median Mode St. Dev 
Osaka City Waterworks Bureau 1.91 1.87 1.16 0.52 
Kobe City Waterworks 1.81 1.85 1.16 0.46 
Waterworks Bureau, City of Kyoto 1.82 1.84 1.16 0.50 
Sakai City Waterworks 1.83 1.85 1.16 0.47 
Amagasaki Waterworks 1.98 2.03 1.36 0.55 
Waterworks Bureau of Nishinomiya City 1.76 1.71 1.16 0.43 
Suita Municipal Waterworks 1.96 1.98 1.90 0.39 
Hirakata City Waterworks 1.82 1.85 1.16 0.45 
Otsu City Waterworks 1.85 1.70 1.36 0.54 
Nara City Waterworks Bureau 1.71 1.69 1.16 0.41 
Wakayama City Waterworks Bureau 1.70 1.51 1.16 0.49 

 

 

3.5.4.2 Magnitude of components of the 9-cPIS, for selected target utilities 

The 9-cPIS has 33 items, for which the data was obtained from each of the eleven target utilities. Then 

using the equations 2.1 through 2.9 (in Chapter 2), the magnitudes of each component of the 9-cPIS, for 

each water utility was calculated. Table 3.10 presents the calculated values for the selected target utilities.  

 

Table 3.10: Magnitudes of the components of 9-cPIS for selected target water utilities 

Water Utility EV EP FS AM PIN GWS CSWQ ERI ERWS 

Osaka 690.484 56496.640 107.868 11.144 128.407 -61.086 14.938 5.240 31.594 

Kobe 789.145 62334.081 98.341 9.120 29.482 -35.680 -12.086 9.432 39.202 

Kyoto 813.722 61957.978 104.742 2.014 204.487 -39.594 10.891 2.272 11.487 

Sakai 838.762 91292.746 101.153 10.412 46.216 -5.577 13.814 3.983 48.371 

Amagasaki 796.458 118256.248 107.411 0.741 49.266 -62.197 4.100 3.595 37.566 

Nishinomiya 794.791 68373.537 101.725 2.717 61.133 -35.169 -10.200 4.310 7.342 

Suita 622.352 66477.968 98.417 0.247 43.792 -46.940 25.235 2.084 31.160 

Hirakata 776.260 96597.429 109.816 0.000 103.809 -68.323 3.637 4.556 36.807 

Otsu 729.833 78476.319 112.749 3.040 111.596 -67.401 0.672 5.714 14.501 

Nara 833.306 62731.645 107.750 0.000 139.257 -20.073 -10.633 3.717 68.296 

Wakayama 810.647 7829.330 127.495 0.000 212.015 -47.300 -31.763 8.152 2.511 
EV: Economic Value of Water; EP: Employee Productivity; FS: Financial Sustainability; AM: Adaptive Management 

PIN: Private Investment; GWS: Green Water Supply; CSWQ: Consumer Satisfaction for Water Quality  

ERI: Emergency Response Index; ERWS: Earthquake Resistant Water Supply 

 

All the values in the table are non-standardized but the values have been standardized in the range 0 to 1 

later, using the normalization formula indicated previously in Equation 2.10. The reason for doing this 
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was to avoid any negative values that result from negative component score coefficients. It was important 

to have all positive values to ensure that it is easy to test the regression models developed between the 

PINT and 9-cPIS.  

 

3.5.4.3 Regression models to relate PINT and each component of 9-cPIS  

Figure 3.15 shows the relationship between the PINT and each component of the 9-cPIS. Accordingly it 

can be seen that, based on the coefficient of determination (R2), there is no strong relationship between 

the PINT and any of the components of the 9-cPIS. This suggests that in order to extract a more accurate 

relationship, additional variables will have to be considered. However, the objective of this study is not to 

derive an exact relationship but to understand how the PINT and 9-cPIS are related, and thereby suggest a 

reasonable relationship that can be used to understand the public behavior (or interest) in the water supply 

systems.  

 

As seen in Figure 3.15, there appears to be a negative correlation between the PINT and the Economic 

Value of Water. This is not a good sign because it indicates that the public is not really aware of the true 

cost of water supply and its importance. A possible reason for this is that the cost of water is not 

significant enough to arouse public concern or interest. However, as long as the price of water reflects the 

cost of production decrease in the Economic Value of Water may not be of concern. A simple linear 

relationship between the PINT and the Economic Value of Water is presented in Equation 3.3 

 

EV = -2.112 PINT + 4.563…………………………………………………………………...………….(3.3) 

 

The Employee productivity surprisingly is positively correlated to the PINT. This is in contradiction with 

the results of the Factor Analysis in section 3.5.3.4, where it was established that the consumers are not 

interested in the productivity of employees of their water utilities. A possible explanation for this could be 

that from the questionnaire results, already presented in Figure 3.10, there were a large number of 

respondents who chose ‘undecided’ when asked about how important was EP to them. This could have 

affected the reliability of results. The linear relationship between the Employee Productivity and the PINT 

is shown in Equation 3.4  

 

EP = 1.627 PINT – 2.416.…………………………………………………………………...………….(3.4) 

 

The next component of the 9-cPIS, Financial Sustainability, also displays an inverse relationship with the 

PINT. This trend agrees well with the results of the Factor Analysis mentioned earlier. Equation 3.5 shows 

the relationship between the Financial Sustainability and the PINT. 
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! 
Figure 3.15 Relationships between PINT and each component of the 9-cPIS 
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Figure 3.15: Relationships between PINT and each component of the 9-cPIS continued… 
 

 
FS = -1.277 PINT + 2.637……………………………………………..……………………...………….(3.5) 

 

Conversely, there does not appear to be any relationship between the Adaptive Management and the PINT. 

A possible reason for this is that, as seen in Figure 3.15, there are many entries of ‘zero’ for the AM, 

which has affected the correlation coefficient. No relationship has been suggested in this case because of 

the extremely weak correlation between the Adaptive Management and the PINT. 

 

There appears to be a negative relationship between the Private Investment and the PINT. This is quite 

understandable because it is usually the investors who have interest in the Private Investment - the general 

public does not. However, from a sustainability point of view it is very useful for the water utilities if the 

public takes a keen interest in investment. The relationship between the Private Investment and the PINT is 

presented in Equation 3.6 

 

PIN = -1.895 PINT + 3.871………………………………………..………………………...………….(3.6) 

 

There appears to be a negative relationship between the Green Water Supply and the PINT. This a major 

cause of concern because it suggests that the public is not interested in GHG emissions reductions and an 

environmentally friendly supply. The water utilities in Kansai region, thus, need to spread awareness 

among consumers regarding the need of reducing the GHG emissions in order to ensure sustainability of 

water supply. Equation 3.7 presents the relationship between the GWS and the PINT. 

 

GWS = -1.53 PINT – 3.183…………………………………………….…………………...………….(3.7) 

 

There is a strong positive relationship between the Consumer Satisfaction for Water Quality (CSWQ) and 

the PINT. This is in good agreement with the results of the Factor Analysis, where good quality tap water 
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was one of the most important variables of the PINT factor. The relationship between the Consumer 

Satisfaction for Water Quality and the PINT is depicted in Equation 3.8 

 

CSWQ = 2.390 PINT – 3.808……………………………………………….…………………...……….(3.8) 

 

Surprisingly there appears to be a negative relationship between the Emergency Response Index and the 

PINT. A possible explanation is that in the Kansai region, there have not been too many cases in the last 

decade or so which could have aroused public concern with respect to this component. Equation 3.9 

presents the relationship between the Emergency Response Index and the PINT. 

 

ERI = -1.340 PINT + 2.828……………………………………..…….……………………...………….(3.9) 

 

Finally, as seen in Figure 3.15, there is no discernable relationship between the Earthquake Resistant 

Water Supply and the PINT.  

 

3.5.4.4 Multiple Linear Regression to determine the relationship between PINT and 9-cPIS 

In the previous section, the relationships between each component of the 9-cPIS and the PINT were 

established. It was seen that none of the components had a very strong relationship with the PINT, 

suggesting that the PINT cannot be explained by a single component.  This section endeavors to develop a 

relationship between the all the components of the 9-cPIs together with the PINT. Multiple Linear 

Regression (MLR) was used for this purpose. 

 

MLR attempts to model the relationship between two or more explanatory variables and a dependent 

variable by fitting a linear equation to the observed data. A MLR model takes the form as depicted in 

Equation 3.10 

 

Y = ß0 + ß1x1+ ß2x2+….. ßnxn+ e……………………...……………………………...………………..(3.10) 

Where 

Y = Dependent variable 

ß0 = Intercept 

ß1… ßn = Coefficients  

x1…xn = Explanatory variables 

e = error 

 

MLR is usually based on least squares: the model is fit such that the sum-of-squares of differences of 

observed and predicted values is minimized. Ostrom (1990, p. 14) lists six basic assumptions for the 
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regression model 

 

• The relationship between the dependent and explanatory variables is linear 

• The errors are uncorrelated with individual explanatory variables 

• The expected value of residuals is zero. The residuals measure the closeness of fit of the predicted 

values and actual values  

• The variance of the residuals is constant 

• The residual terms are random, or uncorrelated in time 

• The error term is normally distributed 

 

Based on the data presented previously in Tables 3.9 and 3.10, MLR was performed to establish a 

relationship between the PINT and 9-cPIS. The PINT was taken as the dependent variable whereas each of 

the nine components of the 9-cPIS was considered as an explanatory variable. In order to ensure that there 

are enough cases to perform the analysis, 5-10 questionnaire responses were selected from the service 

areas of the 11 target utilities. The criteria used for selection was that the PINT of the response of a 

particular area should be within one standard deviation of the mean PINT of that area. This was done to 

ensure that the PINT of the responses was close to the mean PINT of the respective areas. In doing so, 77 

responses were selected. The analysis was performed with PASW 18.0 Statistics Base. 

 

The model performance was evaluated using the coefficient of determination (R2) and the adjusted 

coefficient of determination (adjusted R2). In statistics, the coefficient of determination R2 is the 

proportion of variability in a data set that is accounted for by a statistical model. In this definition, the 

term "variability" is defined as the sum of squares. Adjusted R2 is a modification of R2 that adjusts for the 

number of terms in a model. R2 always increases when a new term is added to a model, but adjusted R2 

increases only if the new term improves the model more than would be expected by chance. 

 

During the analysis, it was observed that inclusion of all explanatory variables in the model resulted in a 

negative adjusted R2, which indicated that there are some explanatory variables that are unnecessary 

causing the model performance to drop. Hence, the analysis was performed in stages by removing the 

least necessary variable (based on the individual variable’s correlation with the PINT) at one time. In doing 

so, the Earthquake Resistant Water Supply and Adaptive Management components were found redundant 

and were omitted from the modeling process. It must be noted that it was also not possible to establish 

relationships of both these components with the PINT, as seen in the previous section.  

 

Hence the final model constituted of 7 explanatory variables: Economic Value of Water, Employee 

Productivity, Financial Sustainability, Private Investment, Green Water Supply, Consumer Satisfaction 
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for Water Quality and Emergency Response Index. Table 3.11 presents the goodness of fit for the model 

developed. 

 

Table 3.11: MLR model summary 

R R2 Adjusted R2 Std. Error of 

the estimate 

0.772 0.596 0.555 0.065 

 

It is seen that the model performs reasonably well with the seven explanatory variables, resulting in an 

adjusted R2 of 0.555. Further, there is very little difference between the R2 and adjusted R2 values, 

suggesting reliability of sample size. The standard error of estimate also is quite low at 0.065, indicating 

the suitability of this model. Table 3.12 presents the coefficients for the model. 

 

                           Table 3.12: Coefficients for MLR model 

Variable Unstandardized coefficients 

Constant 2.083 

Economic Value of Water 0.001 

Employee Productivity 2.17 x 10-6 

Financial Sustainability -0.004 

Private Investment 0.001 

Green Water Supply -0.001 

Consumer Satisfaction for Water Quality 0.004 

Emergency Response Index 0.021 

 

Based on the coefficients in Table 3,12, equation 3.11 expresses the relationship between the PINT and 9-

cPIS 

 

PINT = 2.083 + 0.001 EV + 2.17 x 10-6 EP – 0.004 FS + 0.001 PIN – 0.001 GWS + 0.004 CSWQ + 0.021     

                                                                                 ERI………………………………………………(3.11) 

 

3.5.4.5 Implications of the study 

From the information presented in the previous two sections, it is seen that out of the nine components of 

the 9-cPIS, only 2 exhibit a positive relationship with the PINT: Consumer Satisfaction for Water Quality 

and Employee Productivity. The consumers appear to have some genuine interest in these components. 

The water utilities can use this information to build their relationship with the consumers. For example, 

the results suggest that the consumers are interested in Consumer Satisfaction for Water Quality. Utilities 
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can promote their product by highlighting the technology used in the production of water, and the 

resulting water quality. They can also disseminate information about latest measures that have been 

implemented, or are being planned. Doing so will not only garner the interest of the public but will also 

help the public to have a good impression of the water utilities. Having a good impression is particularly 

useful to earn the trust of consumers because any adaptation measures in response to climate change that 

need to be implemented will require public support. Receiving public support becomes easier when the 

consumers trust the utilities. An additional advantage is that when the utilities have to make investments 

in technology to improve water quality for which a hike in water fees is needed, there is a very strong 

possibility that the consumers will readily support this endeavor. Hence, the utilities will depend less on 

subsides from the government, and move towards self-dependency.  

 

Two components of the 9-cPIS display no relationship with the PINT: Adaptive Management and 

Earthquake Resistant Water Supply, possibly because of anomalies in data.  

 

Five components of the 9-cPIS exhibit a negative relationship with the PINT: Economic Value of Water, 

Financial Sustainability, Private Investment, Green Water Supply and Emergency Response Index. While 

it is understandable that the public has little interest in the first three, the lack of Public interest in the 

Green Water Supply is a concern. As mentioned earlier, any adaptation measure for climate change will 

require public support and it is imperative that the public is aware of the implications of climate change 

on water supply so that they will be willing to adapt. The utilities, thus, need to make more focused 

efforts to disseminate the information about climate change among consumers so as to make them aware 

of the potential problems. This can be done through advertisements on the television, fliers or providing 

the relevant information on the utility’s websites. Another novel way of raising awareness is to attach an 

informative pamphlet along with the water bills, and send them to the consumers. In a nutshell, every 

possible effort must be made to create awareness among consumers about the potential impacts of climate 

change on water resources, to ensure public support for the implementation of the adaptation strategies 

employed by the utilities. 

 

A multiple regression equation between the PINT and all components of the 9-cPIS together has been 

developed to help in evaluating tradeoffs between the consumer expectations and reductions in GHG 

emissions. Details of the analysis and proposed methodology will be discussed in detail in Chapter 5.  

 

3.6 Summary 

 

The thematic focus of this study was to introduce a concept called “Public Interest PINT” in water supply. 

In light of climate change and its impacts, the water utilities will have to adopt various adaptation 
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measures, especially with respect to making a tradeoff between water quality and energy use.  

Understanding the public interests and concerns is very crucial in planning for any adaptation measures 

because without public support it will be very difficult to achieve success.  

 

An Internet based questionnaire survey was conducted in the Kansai region of Japan. The questionnaire 

contained eight questions, of which five were hypothesized to be related to public interest while the others 

not related to the public interest. 1648 responses were received, based on which Factor Analysis was 

carried out to isolate the PINT factor. From the Factor Analysis results, two factors were extracted. The 

first factor was found to be the Public Disinterest factor PDIN, which contained three variables: ‘employee 

productivity in utilities’, ‘financial state of utilities’ and ‘Research and Development in utilities’. There 

are five variables contributing to the second factor, PINT: ‘trust in water supplier’, ‘good quality tap 

water’, ‘Research and Development in utilities’, ‘equity of distribution’ and ‘price of water’.  

 

From the relationships developed between the PINT and the components of the 9-cPIS, it emerged that two 

of the components: Consumer Satisfaction for Water Quality and Employee Productivity displayed a 

positive relationship with the PINT. On the other hand, it is matter of concern that there is a negative 

relationship between the Green Water Supply and the PINT. The utilities, thus, need to make more focused 

efforts to disseminate the information about climate change, and its impacts on water supply, among 

consumers so as to make them aware of the potential problems so that adaptation measures can be 

implemented successfully.  

 

The study also developed a multiple linear regression model between the PINT and all components of the 

9-cPIS together. The main purpose of this was to prepare a background to facilitate tradeoff between the 

consumer expectations and reduction of energy use in utilities. Details of the tradeoff analysis – the 

methodology and results – are discussed in detail further in Chapter 5.  

 

A possible limitation of the study could be with regards to a bias in the questionnaire responses because 

of the recent earthquake and tsunami disaster in Sendai in March 2011, which led to the breakdown of a 

nuclear power plant. There was widespread concern in both national and international circles about 

nuclear contamination. In response, the radiation level in drinking water was thoroughly monitored by 

utilities all over Japan, and ardent efforts were taken by the government to mitigate public anxiety. 

Despite this, there is a possibility that this incident may have played on the minds of the respondents 

when filling out the questionnaires. However, it is difficult to confirm or ascertain the presence of this 

bias because the questionnaire was conducted in December 2011, 9 months after the disaster, and the 

dissemination area (Kansai region) is quite far away from the disaster site.  
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CHAPTER IV 
 

REGRESSION MODELING FOR CLIMATE CHANGE SCENARIOS 
 
 

4.1 Background 

 

4.1.1 Thematic objective 

The ultimate aim of this doctoral research is to, through numerical modeling, provide a framework for 

water utilities in Japan to make tradeoffs between meeting customer expectations with respect to water 

quality and reducing energy use, in light of climate change. The framework involves developing 

mathematical models, which would be then tested against different scenarios of change. This aim of this 

chapter is the development of these models.  

 

Most of the water supply models developed for climate change have considered the water availability and 

water scarcity aspects (e.g. Charlton and Arnell 2011; Vairavamoorthy et al., 2008; Dessai and Hulme 

2007; etc.). Using advanced scientific techniques these models attempt to provide feasible solutions to 

maintain adequate supply of water. However, until recently there have been relatively few studies based 

on evaluating the water quality under climate change scenarios. A comprehensive literature review carried 

out by Delpla et al. (2009) provides a description about the limited range of topics researched recently. 

Fewer studies have been carried out to explore the nexus between drinking water quality and energy use. 

Admittedly there have been a few publications based on reducing energy use for advanced water 

treatments (e.g. Shaffer et al., 2012; Kolagirou 2005) but to the best of the author’s knowledge there have 

not been any studies on designing or exploring the tradeoff between water quality and reduction of energy 

use.  

 

A model is basically a mathematical relationship between a dependent variable and one or more 

independent variables. To correctly describe the phenomenon of the process being modeled, it is very 

important that the appropriate variables (dependent and independent) are selected. In this study, it is 

crucial that the independent variables are related to climate change because the modeled process involves 

the analysis of different scenarios of change. Further, the choice of the dependent variable must be so that 

it can be related to all the independent variables. The next section describes the selection of variables for 

this thematic study. 

 

4.1.2 Selection of variables 

4.1.2.1 Independent variables 

Two variables – ‘Raw water turbidity’ and ‘GHG emissions’ were selected as independent variables.  
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(a) Raw water turbidity: The most common effects associated with climate changes in Japan are 

increased precipitation volume and increase in extreme events. Both of these have a direct repercussion on 

the water quality, leading to degradation of water quality in rivers and lakes due to increased sediment 

transport and organic matter concentration. The Japan Water Research Center (JWRC, 2009) conducted a 

questionnaire survey in 2008 with 110 utilities, in which the utilities were asked in one of the questions, 

to identify changes in raw water quality after short-term weather changes like heavy rainfall etc. The 

results of the questionnaire are shown in Figure 4.1. Accordingly, 97.5% of the utilities indicated that 

turbidity of raw water  is most affected after weather changes like rainfall or snowmelt, suggesting that 

raw water turbidity can be used as a good indicator to monitor the affects of climate change on water 

resources. 

 

!
Figure 4.1: Reported change in water quality after short-term weather changes (Source: JWRC, 2009) 

!
(b) GHG emissions: In context of adaptation to climate change, reducing the GHG emissions is no longer 

a choice — It is a necessity. Efforts are being made worldwide, at both global and regional scale to 

encourage the reduction of GHG emissions. The United Nations Framework on Climate Change 

(UNFCC, 2012b), through its various agendas like the Kyoto Protocol, Bali Road Map, Cancun 

agreements, is a leading player in raising awareness among member nations and providing capacity 

building support to pursue the required targets of reduction in GHG emissions. Japan has committed to 

reducing its GHG emissions by 25% from 1990 levels up to the year 2020. Hence reduction in GHG 

emissions is an important Driver of Change for all public and private sectors. Although the drinking water 

sector contributes to less than 1% of the total GHG emissions of the nation, reducing the GHG emissions 
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is nevertheless a significant endeavor because it will lead to a change in attitudes of both consumers and 

suppliers towards the sustainable use of water.  

!
!
4.1.2.2 Dependent variables 

‘Power consumption’ was selected as the primary dependent variable because both the GHG emissions 

and the raw water turbidity are expected to be theoretically related to the power consumption. Further, 

since the models will be ultimately tested against the PIs of the 9-cPIS, ‘Water production volume’ was 

selected as another dependent variable, which depends upon the power consumption. The reason is 

because it is easy to relate the water production volume to most of the components of the 9-cPIS. Water 

production volume is the volume of water produced inclusive of all transmission and distribution loses. 

Hence water production volume is the volume of water supplied to consumers, plus all losses. The 

average loss for Japanese water utilities is around 8%.  

 

Finally, three PIs in the 9-cPIS - Financial Sustainability, Green Water Supply and Economic Value of 

Water were selected as the dependent variables, which depend upon the water production volume. The 

criteria for choosing these PIs was  

 

 (a) Suitability in context of climate change: The 9-cPIS has 9 components or PIs, which evaluate 

different aspects of the supply system generally. However since this study endeavors to develop a tradeoff 

between water quality and reducing energy use under scenarios of climate change, only those PIs were 

shortlisted which are expected to be significantly affected by climate change. 

!
(b) Data availability: Since the modeling process requires continuous time series data, it is important to 

choose PIs for which the data is available for a reasonable length of time. This is an important criteria 

because, for example although Emergency Response Index (one of the components of the 9-cPIS) is an 

important PI in context of climate change, there is not enough data available from the selected water 

utility to warrant its inclusion in the study. 

 

4.2 Regression models 

 

Regression models are statistical models to identify the relationship between a response variable and one 

or more explanatory variables (Bouveyron and Jacques, 2010). A general regression linear model is given 

by equation 4.1 

 

Y= b0 +b1X + ! ……………………………………………………..…………………………………..(4.1) 

Where,  
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b0 = intercept  

b1= parameter estimate for variable X 

! = Error term 

 

! is the residual that cannot be explained by the variables in the model. The following assumptions must 

hold when building a linear regression model 

• The dependent variable must be continuous.  

• The data being modeled should meet the ‘iid’ criterion, which means the error terms ! are (a) 

independent from one another and (b) identically distributed 

• The error term is normally distributed with a mean of zero and a standard deviation of  "2, N(0, 

"2). 

 

When there are two or more independent variables that are required to estimate the dependent variable, 

the analysis is called multiple linear regression which takes the form of equation 4.2 

Y= b0 +b1X1+b2X2 + !………………………………………………………………………….………..(4.2) 

 

The use of regression models in water supply is not new and has numerous applications — Evaluating 

THMs in drinking water (Morrow and Minear, 1987; Golfinopoulos et al. 1998; Golfinopoulos and 

Arhonditsis, 2002), modeling water supplies (Iliadis et al. 2011; Prokopy 2005; Vidoli 2011), and 

forecasting water demand (Herrera et al. 2010; Qi and Chang, 2011) among other potential applications. 

Given its simple structure and wide range of applications, the use of regression models was thought 

appropriate for this study. Due to data constraints, for this study, only univariate analysis, using a single 

independent variable has been used in all the models.  

 

4.3 Overall modeling framework for the study 

 

The thematic objective of this study was to first develop regression models between the independent and 

dependent variables selected for a specific water utility — the Kobe City Waterworks. The overall 

modeling framework for this thematic focus is depicted in Figure 4.2. Accordingly, two Drivers of 

Change (DoC) — Turbidity of raw water and GHG emissions — were identified from literature and 

managerial targets, as discussed in the previous section. Further, a relation was established between each 

DoC and the Power consumption, resulting in Models 1 and 2 respectively. Next, a relationship was 

derived between the Power Consumption and the water production volume (Model 3). Finally, the water 

production volume was associated with three components of the 9-cPIS, namely Financial Sustainability, 

Green Water Supply and Economic Value of Water (Models 4, 5 and 6 respectively). The models 
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enclosed in the smaller rectangle is the water quality model unit, while the models bounded by the larger 

rectangle is the water quantity model unit. Following is a detailed description of each model. 

 
 

 
 
       
  
 
 

Figure 4.2: Overall modeling framework for the study 

 

Model 1 relates the Turbidity of raw water to the power consumption. Discussions with the utility 

manager of Kobe City Waterworks indicated that when the turbidity of raw water increases, the utilities 

increase both the coagulant dosage and the retention times in the flocculation basin. Increasing the 

retention time in the basins will lead to increased operation hours of the treatment plant, because the target 

daily amount of water must be supplied. With increased operation hours, it can be inferred that the power 

consumption will also increase, providing the rationale for developing this model. The total power 

consumption data was used to develop the models 

 

Model 2 relates the GHG emissions with the Power consumption. Carbon dioxide emissions resulting 

from the consumption of electricity are the single highest source of emissions for many industries. Most 
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countries use an emission factor to convert power consumption to GHG emissions. The determination of 

this factor depends upon a variety of factors – type of fuel used for energy generation (coal, gas, oil), 

mode of generating (hydropower, nuclear etc.), age of the power plants (new plants usually have higher 

efficiency). It can be thus understood that there is a very strong and cogent relationship between the GHG 

emissions and power consumption. 

 

Model 3 relates power consumption with the water production volume. The choice of the ‘water 

production volume’ variable was based on two criteria. First, a variable was needed which would 

theoretically have a strong relationship with the power consumption. Second, the variable should also be 

strongly related with the components of the 9-cPIS considered for this study.  Based on judgment and 

background, it was hypothesized that the water production volume would display a strong correlation with 

the power consumption and selected components of the 9-cPIS, which will be shown later in the chapter. 

 

Models 4, 5, and 6 relate the water production volume with three components of the 9-cPIS - Financial 

Sustainability, Green Water Supply and Economic Value of Water. As stated earlier, changes in the water 

production volume are expected to affect the magnitudes of the components.  

 

4.4 Methodology for model development 

 

 Figure 4.3 depicts the flow of activities for the model development for this thematic study. Accordingly, 

first, a basic check was performed by plotting the scatter plot of the input and output to determine whether 

or not there could be a relationship between the two. Only if the plot indicated a definite trend, the 

variables were considered for subsequent analysis. Next, the input data was divided into training and 

testing sets, with the testing data set making up between 25-30% of the total data.  Four types of fits were 

used to check the fit of the input and output – Linear, Quadratic, Cubic and Power. Each of these fits were 

then tested against three goodness-of-fit indices as indicated in equations 4.3 through 4.5 

 

(a) Average Absolute Relative Error (AARE) 
 

AARE  =   ………………………………………………………………(4.3) 

 
 
(b) Root Mean Square Error (RMSE) 
  

 RMSE = 
1
N

[(Oi !Mi )
2 ]
1
2

i=1

N

"
…………………………………………………………..…….(4.4) 

 

1
N

Oi !Mi

0ii=1

N

" X100
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Figure 4.3: Schematic for developing regression models 
 

  
(c) Threshold static 
 
 TSx = (n/N) x 100           ……………………………………………………………………….(4.5) 
 
Where, 

Oi = Observed data 

Mi = Modeled data 

TS = Threshold static for a level of x % 

n = Number of testing data points having a predicted relative error less than x% 

N = total number of testing data points. 

 
4.5 Data collection 

 

4.5.1 Data Source 

All the data for this study was obtained from Kobe City Waterworks, which is the biggest water utility in 

the Hyogo Prefecture of Japan. Located on the southern side of the main island of Honshu, approximately 
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30 km to the west of Osaka, the city of Kobe is home to a little over 1.5 million people. The Kobe City 

Waterworks is a very old establishment, set up in the year 1900 to provide safe and reliable drinking 

water supply to the consumers. Because Kobe is wedged in between coasts and mountains, the terrain is 

steep. Thus, there are three storage reservoirs, located at different levels, into which water is pumped and 

thereby distributed through gravity. Figure 4.4 shows the distribution area, and main water sources for the 

Kobe City Waterworks. 

 

 
Figure 4.4: Water sources for the Kobe City Waterworks 

 

In Figure 4.4, there are six items in the legend, in Japanese, indicating that the distribution area is serviced 

by six water sources. The topmost item in the legend corresponds to Hanshin Water Supply Authority, 

which is the largest source of treated water for the Kobe City waterworks. As seen in Figure 4.4, the water 

from Hanshin Water Supply Authority is supplied to most of the distribution area in Kobe. The next item 

in the legend corresponds to the Hyogo Prefectural Authority, from which the Kobe City Waterworks 
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receives water to supply the North West region of Kobe. The Hanshin and Senghari reservoir is the next 

item on the legend followed by the Senghari reservoir, Senghari and Hyogo reservoir and finally the 

Okuyama River, which are all among the minor sources of water supply.  

 

There are six water treatment plants under the Kobe City Waterworks – Uegahara, Okuhirano, Senghari, 

Motoyama, Rokkousan and Sumiyoshi (which is currently out of service). Most of the treatment plants 

use the traditional style of treatment with sedimentation, coagulation, rapid sand filtration, activated 

carbon treatment and chlorination among the major processes. The Motoyama treatment plant is the only 

plant that uses membrane technology to treat water. The distribution leakage rate is a mere 5% suggesting 

a well-monitored pipe network. The number of staff workers as of 2010 was 746. Figure 4.5 indicates that 

the production volume and per capita consumption has been on the decline over the last few years, while 

the population has been on the rise. A possible explanation for the reduced per capita demand is that the 

fixtures used by the consumers utilize water saving technology.  

 

 
Figure 4.5: Basic water supply information for Kobe City Waterworks 

 

Specific data, especially the water quality data, was collected from the Senghari water treatment plant 

because it is the largest treatment plant under Kobe City waterworks, having a treatment capacity of 

108,000 m3/day. The plant uses rapid sand filtration and Activated Carbon treatment, and the treated 

water is supplied to the Kita ward in Kobe.  

 

4.5.2 Data Description 

The data collected for each of the six models developed in the study are described in Table 4.1. Most of 

the data was collected by personally visiting the Waterworks and taking copies of the official data sheets. 
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Further, discussions with the utility manager and other senior officials yielded a wealth of information 

regarding the operations and structure of the Waterworks. A site visit was also conducted to one of the 

treatment plants to get a background about the supply technology and distribution. Details of the various 

data can be referred to in Appendix C. 

 

Table 4.1: Particulars of data collected for study 

Data Description Unit Frequency Duration Required For 

Raw Turbidity Degrees Quarterly 2005-2010 Model 1 

Power consumption kWh Monthly 2005-2010 Model 2, 3,5 

GHG emissions t-CO2 Monthly 2005-2010 Model 2,5 

Water production volume 106 m3 
Monthly 2005-2010 Model 3 

Yearly 1994-2004 Model 4,5,6 

Operating Revenue Yen Yearly 1994-2004 4 

Non operating revenue Yen Yearly 1994-2004 4 

Acquisition revenue Yen Yearly 1994-2004 4 

Total Revenue Yen Yearly 1994-2004 4,6 

Operating expense Yen Yearly 1994-2004 4 

Non operating expense Yen Yearly 1994-2004 4 

Acquisition expense Yen Yearly 1994-2004 4 

Unit cost of water Yen/m3 Yearly 1994-2004 4,6 

Unit price of water Yen/m3 Yearly 1994-2004 4 

Water fee for up to 10m3 consumption Yen/m3 Yearly 1994-2004 6 

Water fee for up to 20m3 consumption Yen/m3 Yearly 1994-2004 6 

Supply population Number Yearly 1994-2004 3 

 

For some data, especially the GHG emissions, the emission factor recommended by the Ministry of 

Environment was used to convert the Power consumption into GHG emissions. This information was 

availed from the Internet. All data was first screened for outliers before they were used in the model 

development. Standard time series data and scatter plots were used in this preliminary analysis.  

 
4.6 Results and Discussion 
 
 
4.6.1 Model 1 (Raw water turbidity – Power consumption model) 

Figure 4.6 portrays the relationship between the raw water turbidity and Power consumption for the Kobe 

City waterworks.  
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Although the correlation is not very strong (R2 = 0.32), a reasonably well-defined relationship between 

the raw water turbidity and power consumption can be observed. There appears to be a positive linear 

relationship between the two, suggesting that increase in turbidity levels causes a rise in power 

consumption. Based on discussions with the utility manager of the Kobe City waterworks, the operating 

procedure of the utility in response to increased levels of turbidity is to increase the volume of coagulant, 

and increase the retention time in sedimentation and filtration tanks. It can be inferred that an increased 

retention time will lead to increased operating hours of the plant since a target volume of water must be 

supplied irrespective of turbidity. Increased operating hours will naturally mean more power 

consumption, which is the relationship depicted in Figure 4.6.  

 

 
Figure 4.6: Relationship between raw water Turbidity and Power consumption 

 

A total of 16 data exemplars were available to define the Raw water Turbidity-Power consumption 

relationship, out of which 11 data points were used for developing the models (training) and 5 data points 

were used for testing the models (testing). Four sets of equations corresponding to Linear, Quadratic, 

Cubic and Power fits were developed with the training data set, which have been presented in Equations 

4.6 through 4.9 respectively. 

 

PC = 4933.05 + 230.62 TR…………………………………………………………….…...…………….(4.6) 

PC = 5297.10 – 122.57 TR +81.12 TR
2 ………………………………………………………….…...….(4.7) 

PC = 1.12 x 104 – 9342.73 TR + 4593.74 TR
2 – 698 TR

3……………………………………….…….….(4.8) 

PC = 5113.54 TR
0.08……………………………………………………………………………….…..…(4.9) 

Where  

PC: Power Consumption (1000 kWh) 

TR: Turbidity (Degrees) 
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Figure 4.7 depicts the trend of each model with respect to the training data. It can be observed that the 

trends for the Linear and Quadratic models are more or less similar within the range 1 – 3 degrees of 

Turbidity. Although the cubic equation appears to fit the data the best between the range 2 – 2.5 degrees, 

the trend appears to be cyclic with rounded peaks and troughs, which is inconsistent with the knowledge 

that the power consumption is likely to increase with higher values of raw water turbidity. The quadratic 

equation agrees well within the trained data range, but will need to be checked against the testing data set 

for credibility, while the power equation does not seem valid for low values of turbidity. Table 4.2 

presents the results of the Raw water turbidity – Power consumption model for both training and testing 

sets. 

 

 
Figure 4.7: Fitted trends for Raw water turbidity – Power consumption models 

 

Table 4.2: Results for Turbidity-Power consumption model 

Model 1: Turbidity – Power consumption relationship 
Input: Turbidity (Degrees)      
Output: Power consumption (1000 kWh) 
Training 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (1000 kWh) 0.5 % 1% 2% 5% 10% 
Linear 11 2.96 198.27 09.09 27.27 45.45 81.82 100 
Quadratic 11 3.03 194.31 09.09 09.09 36.36 81.82 100 
Cubic 11 2.51 167.82 0 36.36 54.55 90.91 100 
Power 11 3.00 200.56 18.18 27.27 45.45 81.82 100 
Testing 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (1000 kWh) 0.5 % 1% 2% 5% 10% 
Linear 5 3.74 270.05 20 20 20 80 100 
Quadratic 5 7.72 721.50 0 20 40 80 80 
Cubic 5 108 13600 40 40 40 60 80 
Power 5 2.26 142.24 20 20 40 100 100 
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For the training set, it is seen that the cubic equation fits the data the best with a low AARE of 2.51% and 

an RMSE of 167.82 kWh, while 90.91% of the training set has a relative error of less than 5%. However 

this model fails miserably with the testing data, where the AARE is 108%. This anomaly is due to a 

negative value generated for the entry with the largest magnitude in the testing data set. Similarly, the 

quadratic model fits well with the training data (3.03 % AARE) but not with the testing data (7.72 % 

AARE) suggesting the unsuitability of this model. Both the Linear and Power models fit the training data 

well with AARE 2.96% and 3.0% respectively, and 198.27 kWh & 200.56 kWh RMSE respectively, 

while in both cases 81.82% of the training data has a relative error of less than 5%. However, in the 

testing data set, the Power model is significantly better than the Linear model with an AARE of 2.26% 

compared to 3.74%. Moreover, the RMSE of the Power model is also quite low at 142.24kWh, with all 

testing data points showing a relative error of less than 5%.  

 

Hence, the Power model has been chosen as the best-fit and practical model to depict the relationship 

between the raw water turbidity and power consumption 

 

Power Consumption = 5113.54 (Raw water turbidity)0.08 

 

Figure 4.8 shows the trend for observed and modeled values of power consumption with the Power 

model, for the training set where a reasonably good fit is seen. Although the magnitudes of the observed 

and modeled values do not fit exactly, there is a good fit in terms of the general trend for most part of the 

data.  

 

 
Figure 4.8: Observed and modeled data of Power consumption in training set using power model 
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The fit is even better for the testing data set shown in Figure 4.9, where the trends for the observed and 

modeled data appear to match very well. Although the testing data has only five exemplars due to data 

constraints, a strong correlation can be observed between the observed and modeled values suggesting the 

suitability of the Power model.  

 

 
Figure 4.9: Observed and modeled data of Power consumption in testing set using power model 

 

4.6.2 Model 2 (GHG emissions – Power consumption model) 

There is an empirical relationship between the GHG emissions and Power consumption. Based on the 

recommendations made by the Ministry of Environment, Japan emission factors presented in Table 4.3 

were used in the study 

 

Table 4.3: Emission factors to calculate 

    GHG emissions from Power consumption 

Year Emission factor 

2010 3.11 X 10 -4 

2009 2.94 X 10 -4 

2008 3.55 X 10 -4 

2007 3.66 X 10 -4 

2006 3.38 X 10 -4 

2005 3.58 X 10 -4 
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The emission factors should be multiplied with the Power consumption (in kWh) to obtain the GHG 

emissions as tones of C02. 

 

4.6.3 Model 3 (Power consumption – Water production volume model) 

The purpose of developing this model was to relate the Power consumption of the Kobe City waterworks 

to the volume of water produced, which would be then used to evaluate some selected PIs of the 9-cPIS. 

Figure 4.10 shows the trend of water production volume with respect to Power consumption. It can be 

seen that there is a very strong linear relationship between the two (R2 = 0.82), which is logically sound 

since the volume of water supplied is expected to be proportional to the power consumption, especially so 

in Kobe City waterworks where electricity is the only source of energy used in every stage of water 

production.  

 

 

 
Figure 4.10: Relationship between Water production volume and Power consumption 

 

A total of 60 data exemplars were available to define the Power consumption-Water production volume 

relationship, out of which 40 data points were used for developing the models (training) and 20 data 

points were used for testing the models (testing). The four models corresponding to Linear, Quadratic, 

Cubic and Power fits are expressed in equations 4.10 through 4.13 

 

Wp = 1.75 + 2.68 x 10 -3 PC……………………………………………………………………………(4.10) 

Wp = -22.02 + 1.12 x 10 -2 PC – 7.69 x 10 -7 PC
2………………………………………………………(4.11) 

Wp = -241.72 + 0.13 PC – 2.22x 10 -5 PC
2 + 1.28 x 10 -9 PC

3…………………………………….…….(4.12) 

Wp = 7.59 PC
0.89……………………………………………………………………………….……….(4.13) 
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Where PC: Power Consumption (1000 kWh) 

WP: Water production volume (106 m3) 

 

Figure 4.11 depicts the trends of the four models against the observed training data, where it is clear that 

all the models fit the observed data quite well within the range 5000 to 6500 x 103 kWh, although the  

Cubic and Quadratic models may not necessarily follow the same trend outside the range 5 Million – 6.2 

Million kWh. Hence for all practical purposes the linear and power models appear to be better choices. 

  

 
Figure 4.11: Fitted trends for Power consumption – Water production volume models 

 

Table 4.4 presents the statistical results of the four Power consumption-Water production volume models, 

for both the training and testing sets.  

 

Table 4.4: Results for Power consumption – Water production volume model 

Model 3: Power consumption – Water production volume relationship 
Input: Power consumption (1000 kWh)      
Output: Water production volume (106 m3) 
Training 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (106 m3) 0.5 % 1% 2% 5% 10% 
Linear 40 1.33 0.256 27.50 32.50 77.50 100 100 
Quadratic 40 1.24 0.228 15 45 77.50 100 100 
Cubic 40 1.20 0.243 20 50 77.50 100 100 
Power 40 1.33 0.240 27.50 32.50 75 100 100 
Testing 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (106 m3) 0.5 % 1% 2% 5% 10% 
Linear 20 2.09 0.413 20 25 55 95 100 
Quadratic 20 2.12 0.417 25 25 50 95 100 
Cubic 20 2.11 0.415 20 25 55 95 100 
Power 20 2.09 0.414 20 25 55 95 100 
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 In the training set, yet again the cubic model appears to fit the data best with an AARE of 1.20%, RMSE 

0.243 x 106 m3, and all data exemplars show a relative error of less than 5%. There is not much difference 

among the other models, wherein all data exemplars have a relative error of less than 5%, with low AARE 

(1.24 % for Quadratic and 1.33% for Linear and Power models). Further, the RMSE for all models range 

between 0.228 and 0.256 Million cubic meters, which is a small range. 

 
Similar results are seen for the testing set as well, where AARE for all models lies in the range 2.09 to 

2.12 %. Also, the RMSE for the models is quite similar in the range 0.413 to 0.417 x 106 m3, and  95% of 

the data set, in all four cases, display a relative error of less than 5%. Hence, it can be said that all the 

models are more or less identical. However as indicated earlier, the cubic and quadratic models may not 

show the same trend for different ranges of input, especially when the input range is beyond the range 

trained and tested in the study. Hence, the choice is between the linear and power models. Among the 

two, the linear model has a lower RMSE (0.413 Million m3 compared to 0.414 Million m3) and hence has 

been chosen as the best-fit model.  

 

Water production volume = 1.75 + 2.68 x 10 -3 Power Consumption 

 

Figure 4.12 shows the trends of observed and modeled data of Water production volume with the linear 

model, for the training set where a near perfect match can be observed. This is due to the high correlation 

between the two variables. The observed and modeled data in the testing data set, seen in Figure 4.13, is 

not quite as good as the training set but yet indicates a decent match. Hence, for all practical purposes it 

appears that the linear model is suitable to depict the relationship between the water production and power 

consumption.  

 

 
Figure 4.12: Observed and modeled data of Water production volume in training set using linear model 
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Figure 4.13: Observed and modeled data of Water production volume in testing set using linear model 

 

4.6.4 Model 4 (Water production volume – Financial Sustainability model) 

Financial Sustainability is one of the components of the 9-cPIS.  As highlighted earlier in Chapter 2, there 

are four contributing variables to Financial Sustainability – Current account balance ratio, Total balance 

ratio, Revenue to cost ratio of water supply and Operating balance ratio. The details of the regression 

equations and explanatory variables can be revisited in section 2.7.4.  

 

The objective of this model was to establish a relationship between the Water production volume and the 

Financial Sustainability PI. By understanding this relationship, it will then be possible to estimate the 

affect of change in the water production volume, under scenarios of climate and socioeconomic change, 

on the Financial Sustainability Indicator. By using this relationship, and scenarios of expected change, the 

Kobe City waterworks will be able to assess the impact of change in production on the Financial 

Sustainability of the utility. 

 

Figure 4.14 shows the preliminary relationship between water production volume and Financial 

Sustainability of Kobe City Waterworks. There appears to be a reasonably strong negative linear 

relationship between the two (R2 = 0.54) suggesting that with an increase in water production volume, the 

Financial Sustainability decreases. This is because, for the Kobe City waterworks, the unit cost of 

producing water is greater than the unit-selling price of water. Hence with increased production, the 

revenue losses increase, leading to reduced Financial Sustainability. 
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Figure 4.14: Relationship between Water production volume and Financial Sustainability 

 

12 data exemplars were available for the analysis. In this case all the data was used for model 

development without division into training and testing sets. This is because the ultimate aim of 

developing this relationship is not to get an accurate value of the Financial Sustainability under different 

scenarios, but rather to make a relative comparison of the values under different scenarios to help the 

utility in decision-making. The four models corresponding to Linear, Quadratic, Cubic and Power fits are 

expressed in equations 4.14 through 4.17, whereas the trends of the four models are shown in Figure 4.15 

 

FS = 2.07 – 5.34 x 10 -3 WP……………………………………………………………………………(4.14) 

FS = 9.38 – 7.70 x 10 -2 WP + 1.76 x 10 -4 WP
2………………………………………………………..(4.15) 

FS = -1073.11 + 15.93 WP – 7.87 x 10 -2 WP
2 + 1.30 x 10 -4 WP

3……………………………………..(4.16) 

FS = 72.16 WP
-0.81……………………………………………………………………………………...(4.17) 

Where, 

FS: Financial Sustainability 

WP: Water production volume (106 m3) 

 

Figure 4.15 depicts the trends of the four models, while Table 4.5 presents the statistical results of the four 

Water production volume –Financial sustainability models, where it is seen that the cubic model provides 

the least AARE (1.72%). However, the cubic model is cyclic in nature as seen in Figure 4.15, and thus not 

suitable. Among the other there models, the quadratic model has the least error but, given its trend, it 

cannot be considered since it is not likely that the model will work outside the range 196 – 210 x 106 m3 

of water production volume. Both the power and the linear model can be considered for the modeling 

R# = 0.54 
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because the AARE is nearly identical in both cases, and in both cases 92.31% of the data has a relative 

error of less than 5%.  

 

The linear model was chosen as the best-fit model due to its simpler structure. 

 

Financial Sustainability = 2.07 – 5.34 x 10-3 Water production volume 

 

 

 
Figure 4.15: Fitted trends for Water production volume – Financial Sustainability models 

 

 

Table 4.5: Results for Water production volume-Financial Sustainability model 

 

 

 

 
 
 
 
 
 

 
Figure 4.16 depicts the observed and modeled data for Financial Sustainability using the linear model. For 

most part of the course the two trends are similar except in the tail part where there appears to be some 

discrepancy. However, as mentioned earlier since the objective is to make a relative comparison of the 

Financial Sustainability under different scenarios, the slight discrepancies may not be very significant. 

 

Model 4:  Water production volume – Financial Sustainability relationship 
Input:  Water production volume (106 m3)  
Output: Financial Sustainability 

   

Model Exemplars AARE Threshold static (%) 
  (%) 0.5 % 1% 2% 5% 10% 
Linear 13 2.06 07.69 30.77 53.85 92.31 100 
Quadratic 13 2.00 07.69 30.77 61.54 92.31 100 
Cubic 13 1.72 23.08 53.85 76.92 92.31 100 
Power 13 2.04 23.08 30.77 61.54 92.31 100 
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Figure 4.16: Observed and modeled data for Financial Sustainability using linear model 

 

4.6.5 Model 5 (Water production volume – Green Water Supply model) 

Green Water Supply (GWS) is an integral component of the 9-cPIS, especially in light of providing an 

environmentally friendly supply. There are three main variables in this component – Greenhouse gases 

emissions, Power consumption and Energy consumption. In Kobe City waterworks, the only source of 

energy used for all purposes, except vehicle fuel, is electricity. Hence, the GWS in this context will only 

include the GHG emissions and power consumption. Section 2.7.4 can be referred to for details of the 

regression equation for GWS. Figure 4.17 shows the relationship between the water production volume 

and the GWS.  

 

 
Figure 4.17: Relationship between Water production volume and Green Water Supply 
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There does not seem to be a very well defined relationship between the two, which is also exemplified by 

the low coefficient of determination (R2 = 0.21). However, the general trend is that as the water 

production volume decreases, the GWS increases. This agrees very well with the field condition because a 

reduction in water production volume leads to lower power consumption (already seen in section 4.6.3), 

and lower power consumption generate lower GHG emissions (already seen in section 4.6.2). 

 

50 data exemplars were used for the model development and the four models corresponding to Linear, 

Quadratic, Cubic and Power fits are expressed in equations 4.18 through 4.21, whereas the trends of the 

four models are shown in Figure 4.18. 

 

GWS = 4.78 – 0.14 WP………………………………………………………………………..........….(4.18) 

GWS = 0.55 + 0.38 WP – 1.5 x 10 -2 WP
2……………………………………………………..……….(4.19) 

GWS = -332.91 + 61.57 WP – 3.75 WP
2 + 7.57 x 10 -2 WP

3………………………………………..….(4.20) 

GWS = 30.85 WP
0.90………………………………………………………………………………...…(4.21) 

Where, 

GWS: Green Water Supply 

WP: Water production volume (106 m3) 

 

 

 
Figure 4.18: Fitted trends for Water production volume – Green Water Supply models 

 

Table 4.6 presents the results of the Water production volume – Green Water Supply models, and it is 

observed that the AARE of all models is relatively high compared to the previous models. This is 

probably because of the weak relationship between the two, as indicated earlier. The cubic model is not 

suitable because of the cyclic trend, in spite of its low AARE (5.82%). There is very little difference 



!!!!!!!!!!!!!!!!!!!!!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Regression Modeling for Climate Change Scenarios 

! ),&!

between the linear, quadratic and power models in terms of AARE, and in all cases more than 80% of the 

data show a relative error of less than 10%. 

 

To maintain a simple structure, the linear model was chosen as the best-fit model 

 

Green Water Supply = 4.78 – 0.14 Water production volume 

 

Table 4.6: Results for Water production volume-Green Water Supply model 

 

 

 

 

 

 

 

 

The trend for the observed and modeled demand of GWS, with the linear model is shown in Figure 4.19. 

Inspite of the relatively higher AARE of the model, there appears to be a very good fit between the two 

data suggesting the suitability of this model for further analysis. 

 

 

 
      Figure 4.19: Observed and modeled data for Green Water Supply using linear model 
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Model 6:  Water production volume – Green Water Supply relationship 
Input:  Water production volume (106 m3)  
Output: Green Water Supply 

   

Model Exemplars AARE Threshold static (%) 
  (%) 0.5 % 1% 2% 5% 10% 
Linear 50 6.27 4 8 10 36 80 
Quadratic 50 6.29 4 10 14 46 84 
Cubic 50 5.82 2 6 12 42 82 
Power 50 6.28 4 8 10 38 80 
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4.6.6 Model 6 (Water production volume – Economic Value of Water model) 

The Economic Value of Water (EV) indicator of the 9-cPIS deals with the water charges and fees for 

various scales of supply. It has four main variables – Water supply revenue, Price of water for households 

using up to 20 m3/month, Water production cost and Price of water for households using up to 10 

m3/month. Figure 4.20 shows the relationship between the volume of water production and the EV. As 

expected, there seems to be quite a strong correlation between the two variables, which is exemplified by 

a high value of the coefficient of determination (R2 = 0.76).  

 

 
Figure 4.20: Relationship between Water production volume and Economic Value of Water 

 

9 data exemplars were used to establish the relationship between the Water production volume and 

Economic value of Water. The four models corresponding to Linear, Quadratic, Cubic and Power fits are 

expressed in equations 4.22 through 4.25, whereas the trends of the four models are shown in Figure 4.21. 

 

EV = 17.06 + 0.41 WP……………………………………………………………………………...….(4.22) 

EV = 1241.93 – 11.78 WP + 0.30 x 10 -2 WP
2………………………………………………………….(4.23) 

EV = 1.38 x 105 – 2054.55 WP + 10.20 WP
2 – 0.02 WP

3……………………………………...……….(4.24) 

EV = 1.22 WP
0.93………………..…………………………………………………………………...…(4.25) 

 

Where, 

EV = Economic Value of Water 

WP = Water production volume (106 m3) 
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Figure 4.21: Fitted trends for Water production volume – Economic Value of Water models 

 

Table 4.7 presents the results of the Water production volume – Economic Value of water models, where 

it is seen that yet again the cubic model provides the least AARE (0.35%). This model can be very useful 

if the water production volume ranges between 196 and 206 x 106 m3. However, under climate and 

socioeconomic change it is difficult to restrict the water production volume to this range. Among the other 

models, there is not much difference in terms of AARE (0.49% and 0.51%) and the threshold static, with 

the relative error less than 2% for all exemplars for all models. Hence, for simplicity the linear model was 

chosen for subsequent analysis 

 

Economic Value of Water = 17.06 + 0.41 Water production Volume 

 

Table 4.7: Results for Water production volume-Economic Value of Water model 

 

 

 

 

 

 

 

 

The trend for the observed and modeled data for Economic Value of Water using the linear model is 

shown in Figure 4.22. The data appear to fit quite well suggesting the suitability of the model. 

Model 5:  Water production volume – Economic Value of Water relationship 
Input:  Water production volume (106 m3)  
Output: Economic Value of Water 

   

Model Exemplars AARE Threshold static (%) 
  (%) 0.5 % 1% 2% 5% 10% 
Linear 9 0.51 55.56 88.89 100 100 100 
Quadratic 9 0.49 66.67 88.89 100 100 100 
Cubic 9 0.35 77.78 100 100 100 100 
Power 9 0.51 55.56 88.89 100 100 100 
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Figure 4.22: Observed and modeled data for Economic Value of water using linear model 

 

4.7 Summary 

 

The thematic objective of this chapter was to develop regression models between selected variables. Two 

independent variables were chosen – Raw water turbidity and GHG emissions. The variables were chosen 

because they are likely to be influenced by the climate change phenomenon. The two dependent variables 

selected, Power consumption and Water production volume, were chosen because of their strong 

relationship with the selected performance indicators of the 9-cPIS, namely Financial Sustainability, 

Green Water Supply and Economic Value of Water. Six univariate models were developed: Raw water 

turbidity – Power consumption model, GHG emissions – Power consumption model, Power consumption 

– Water production volume model, Water production volume – Financial Sustainability model, Water 

production volume – Green Water Supply model and Water production volume – Economic Value of 

Water model. Each model was tested against three statistical indices – AARE, RMSE and Threshold 

static. All the models were developed with data obtained from the Kobe City Waterworks, Japan, the 

water utility used for this test study. The models developed in this chapter will now be subsequently 

tested against different scenarios of climate change in the subsequent chapter.  
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CHAPTER V 
 

DEVELOPING TRADEOFF BETWEEN CONSUMER EXPECTATIONS OF 

WATER QUALITY AND ENERGY REDUCTION 

 
!
5.1 Thematic objective 

 

Climate change is likely to cause a change in raw water quality because of which production of safe and 

reliable tap water is an eminent concern. Additionally, consumers are becoming more health conscious as 

a wealth of information is being made available to them, and their expectations of tap water quality have 

increased dramatically, especially with advent in technology. To meet consumer expectations, adopting 

advanced water treatment is an option but doing so will result in increased energy consumption because 

these treatments are energy intensive. Given that utilities should make every effort possible to reduce their 

GHG emissions, in order to combat the effects of climate change, switching to advanced treatments may 

not be advisable. Hence, the challenge for utilities is to arrive at a feasible tradeoff between meeting the 

consumer expectations and reduction in energy use. This objective of this chapter is to design the 

appropriate tradeoff using numerical modeling. 

 

 In the previous chapter six regression models were developed using the variables likely to be affected by 

climate change (raw water turbidity and GHG emissions) as independent variables, and the power 

consumption and water production volume as dependent variables, for Kobe City Waterworks. 

Relationships were then established between the water production volume and selected components of the 

9-cPIS (Financial sustainability, Green water supply and Economic Value of water). In this chapter the 

regression models have been evaluated under different scenarios of climate change. Then, based on the 

evaluation results, tradeoffs between consumer expectations of water quality and reduction in GHG 

emissions for various scenarios have been developed. 

 

5.2 Scenarios of change 

 

This study considers two major phenomenon of change – Change in raw water quality and Reduction in 

GHG emissions. While the scenarios of change in raw water turbidity due to climate change encourage 

the utility to prepare for adaptation, scenarios of reduction in GHG emissions support mitigation efforts. 

Both adaptation and mitigation are important processes to address the ill effects of climate change. The 

IPCC defines mitigation as “an anthropogenic intervention to reduce the sources or enhance the sinks of 

greenhouse gases” (GHG), which are responsible for climate change, whereas adaptation is an 
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“adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, 

which moderates harm or exploits beneficial opportunities” (IPCC, 2001 a).   

 

5.2.1 Scenarios of changes in Raw water turbidity  

As described previously in Chapter 4, in a survey conducted with major water utilities in Japan by the 

JWRC in 2008, a majority of the utilities indicated that the effect of short-term weather changes, like 

heavy rainfall, is most often a rise in the raw water turbidity parameter. Because climate change is 

expected to cause wetter days in Japan (MLITT, 2008), the raw water turbidity is an important driver of 

change. Figure 5.1 shows the time series trend for raw water turbidity of the Senghari treatment plant of 

the Kobe City Waterworks for six years (2005-2010). The median value of raw water turbidity data is 

around 2.15 Degrees, with most values below 5 Degrees. A maximum value of 24 degrees was observed 

in July 2006, possibly due to an extreme rainfall event.  

 

 
Figure 5.1: Trend of raw water turbidity in Senghari treatment plant between 2005 and 2010 

 

Based on historical data, it appears that the changes in raw water turbidity have never been sudden except 

when an extreme rainfall event occurs. Even then, high turbidity values are observed for a short time only. 

Hence from a utility point of view, steady but consistent rise in raw water turbidity is more significant 

than a sudden extreme increase. While the former will require a change in treatment technology and mode 

of operation, the latter can be addressed by merely shutting down intake temporarily, if enough storage is 

available.  

 

Hence, most of the scenarios considered for this module are steady but consistent increase in raw water 

turbidity. The average monthly raw water turbidity for the year 2010 has been considered as the base 
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condition, and scenarios have been generated with percentage increments from the base condition. Only 

one scenario has been considered for an extreme event, where the raw water turbidity was hypothesized to 

reach 100 Degrees, based on actual projections for Japan made by the Federation of Japan Water 

Industries (2010). Table 5.1 presents the various scenarios for raw water turbidity considered in the study. 

 

 Table 5.1: Scenarios for increase in raw water Turbidity 
 

 

 

 

 

 

 

 

 

 

 

 

 

As stated earlier, one of the effects of climate change in Japan is a likely increase in rainfall volume and 

intensity. Hence, ideally it may be more effective if a relationship could be established between the 

rainfall and raw water turbidity, since usually with more rainfall the sediment transport in rivers would 

increase. If the aforementioned relationship is known, then the scenarios of raw water turbidity can be 

generated for various magnitudes of rainfall, instead of regular percentage increments of raw water 

turbidity.  

 

To explore this relationship, monthly rainfall data was obtained from Meteorological station 47770, Kobe, 

which is very close to the intake source for the Senghari water treatment plant. The relationship between 

rainfall and raw turbidity is depicted in Figure 5.2. It can be observed that there is no discernable 

relationship between the two, with a very low coefficient of determination (0.15). This suggests that the 

raw water turbidity in the area may also depend upon additional factors like soil type, land use, 

topography etc., and not just the rainfall. Hence, it is not possible to model the rainfall-turbidity 

relationship univariately. It might be possible to model the relationship between the two variables using 

multivariate analysis but due to time and resource constraints it was not possible to do so in this study. 

Under the circumstances, the original regular percentage increments of raw water turbidity were 

continued with for this module. 

 Condition Expected raw water 
turbidity (Degrees) 

BCTUR Base condition 3.275 

TUR5 5% increase in Turbidity 3.439 

TUR10 10% increase in Turbidity 3.602 

TUR15 15% increase in Turbidity 3.766 

TUR20 20% increase in Turbidity 3.930 

TUR25 25% increase in Turbidity 4.094 

TUR50 50% increase in Turbidity 4.912 

TUR100 100% increase in Turbidity 6.550 

TUR150 150% increase in Turbidity 8.8.18 

TURMAX Max increase in Turbidity 100 
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Figure 5.2: Monthly rainfall – raw water turbidity relationship for Senghari treatment plant 

 
5.2.2 Scenarios of reduction in GHG emissions 

Given that Japan is committed to reduce its GHG emissions by 25% up to the year 2020, the scenarios 

used in this study considered increments in percentage reduction from the 2010 base year. Table 5.2 

presents the various scenarios used in the study, where the target power consumption and GHG emissions 

have been established based on the Power consumption-GHG emissions model (Model-2) developed 

earlier in Chapter 4. 

 
Table 5.2: Scenarios for reduction of GHG emissions 

 

 

5.3 Research methodology 

 

Figure 5.3 elucidates the step-by-step methodology used in the study. The methodology is based on 

performing Monte Carlo simulations on the input data set to arrive at the most probable value of the 

output, with a certain degree of confidence. Details of the theory, application and advantages of Monte 

Carlo simulations are explained in the next section.  
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Code Condition Target Power 

consumption (kWh) 

Target GHG emissions  

(t-CO2) 

BCGHG Base condition 5.55 x 106 1726.737 

GHG5 5% reduction in GHG emissions 5.27 x 106 1640.400 

GHG10 10% reduction in GHG emissions 5.00 x 106 1554.063 

GHG15 15% reduction in GHG emissions 4.72 x 106 1467.727 

GHG20 20% reduction in GHG emissions 4.44 x 106 1381.390 

GHG25 25% reduction in GHG emissions 4.16 x 106 1295.053 
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Figure 5.3: Schematic for numerical simulation 

 

Monte Carlo simulations were performed with the six regression models developed earlier in Chapter 4: 

Raw water turbidity – Power consumption, GHG emissions – Power consumption, Power consumption – 

Example: Turbidity – Power Consumption model 
Input: Turbidity 
Output: Power Consumption 

Estimate the Mean and Standard Deviation of input set 

Generate random numbers using the  
Distribution function of the input data 

Plot the frequency distribution 
of the input data set 

Perform Monte Carlo simulations with random 
Numbers as inputs and best-fit model obtained earlier  

Plot the distribution function of the mean output 

Estimate the Mean and Standard Deviation of output set 
Calculate the 
standard error of 
Output data set 

Estimate the Upper confidence limit and Lower 
Confidence limit for 95% and 99% confidence level 

5000 random numbers 
for each model 

5000 simulations for 
each model Repeat the simulation 

Express the most probable value of output 
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Water production volume, Water production volume – Financial Sustainability, Water production volume 

– Green Water Supply and Water production volume – Economic Value of Water. The first term in each 

model corresponds to the input while the second term is the output. The analysis was performed with 

Wolfram Mathematica 8 software. To begin with, the frequency distribution of the input for each model 

was plotted, based on historical data. Depending on the shape of the distribution, the distribution function 

of the input was estimated. All the model inputs in the study were found to be more or less normally 

distributed.  

 

Next, by using the values of the mean and the standard deviation of the input data set in the distribution 

function, 5000 random values of the input were generated. Then, by applying the relationships developed 

in the regression models (Chapter 4), the output corresponding to each random value was calculated. This 

resulted in 5000 values of the output. In the next stage, the mean value of all the outputs was calculated 

and recorded. 

 

The same procedure was repeated 5000 times (5000 simulations or iterations) with different sets of 5000 

random values, thereby generating 5000 mean (average) values of the output. The frequency distribution 

of the output, using the 5000 mean values, was then plotted. Based on the shape of the distribution, the 

most probable value of the output was estimated. Because in most cases the output distribution resembled 

a normal distribution, the average value of the output was used as the most probable value. To test this 

value for confidence, 2 confidence levels were used – 95% and 99%. The standard error of the output 

distribution was calculated using equation 5.1, while the lower and upper confidence limits for each 

confidence level were calculated using equations 5.2 and 5.3.  

 

SE = 

………………………………………………………………………...………………………(5.1) 

UCL = Mean + z. SE…………………………………………………………..…………..…………….(5.2) 

LCL = Mean – z. SE……………………………………………………………………..……..………..(5.3) 

 

Where, 

SE = Standard Error 

s = Standard deviation  

n = Sample size  

UCL = Upper confidence limit 

LCL = Lower confidence limit 

z = z value = 1.96 for 95% confidence and 2.575 for 99% confidence 

s
n
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5.4 Monte Carlo Simulation 

 

5.4.1 General 

Monte Carlo simulation is a technique that uses random numbers and probability to solve problems, under 

conditions of uncertainty. John von Neumann, Stanislaw Ulam and Nicholas Metropolis coined the Monte 

Carlo method in the 1940s, while they were working on nuclear weapon projects (Manhattan Project) in 

the Los Alamos National Laboratory. With Monte Carlo simulations, the analysis is performed by 

substituting a range of random values – a probability distribution – for any factor that has some 

uncertainty. The results are then calculated over and over again, each time using a different set of random 

values from the probability function. Depending upon the number of uncertainties and the ranges 

specified for them, a Monte Carlo simulation could involve thousands or tens of thousands of 

recalculations before it is complete. The output of Monte Carlo simulations is in the form of distributions 

of possible outcome values. Using the correct probability distribution function is crucial in determining 

realistic outcomes. There are a number of distribution functions, some of which are mentioned hereafter. 

 

5.4.2 Common Distribution functions 

Normal – Or “bell curve”: This is the most common type of distribution where values in the middle near 

the mean are most likely to occur.  Normal distributions are symmetrical with a single central peak at the 

mean (average) of the data.  The shape of the curve is described as bell-shaped with the graph falling off 

evenly on either side of the mean.  Fifty percent of the distribution lies to the left of the mean and fifty 

percent lies to the right of the mean. The spread of a normal distribution is controlled by the standard 

deviation.  The smaller the standard deviation the more concentrated the data.   

The general formula for the probability density function of the normal distribution is described in 

equation 5.4 

……………………………………………………………………………..(5.4) 

where, 

µ = mean of the variate x and !2 = variance  

By taking µ = 0 and !2 = 1 in Equation 5.4, the standard normal distribution function is obtained. 

 

 Lognormal:  Values are positively skewed, not symmetric like a normal distribution. The logarithm of 

the variable is normally distributed. It is used to represent values that are greater than zero, with unlimited 

P(x) = 1
! 2"

e!(x!µ )
2 /(2! 2 )
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positive potential.  The general formula for the probability density function of the lognormal distribution 

is described in equation 5.5 

…………………………………………………………………………..(5.5) 

Uniform: All values have an equal chance of occurring.  

Triangular:  It is a continuous probability distribution with a lower limit, upper limit and a mode (most 

likely value).  Values around the mode are more likely to occur.  The general formula for the probability 

density function of the triangular distribution is described in equations 5.6a and 5.6b.  

 For a " x " c ………………………………………………………...……….(5.6a) 

 For c " x " b ………………………………………………………...…..….(5.6b) 

where, 

a and b = the lower and upper limits respectively 

c = mode 

PERT:  Like the triangular distribution, this also has a lower limit, upper limit and a mode (most likely 

value).  Values around the mode are more likely to occur.  However values between the mode and 

extremes are more likely to occur than the triangular; that is, the extremes are not as emphasized.  This is 

a special case of beta distribution, which is given by equation 5.7 

………………………………………………….…………….(5.7) 

  

Discrete: It is a distribution that takes into account specific values that may occur and the likelihood of 

each.  Unlike the continuous distribution, which can take any values between two specified values, 

discrete distributions are whole number distributions. Among the common discrete probability 

distributions are Binomial, Hypergeometric, Multinomial and Poisson distributions. With a discrete 

P(x) = 1
! 2"

e!(ln x!µ )
2 /(2! 2 )

P(x) = 2(x ! a)
(b! a)(c! a)

P(x) = 2(b! x)
(b! a)(b! c)

P(x) = 1
B(!1,!2 )

(x ! a)!1!1(b! x)!2!1

(b! a)!1+!2!1

!1 =
4c+ b! 5a
b! a

!2 =
5b! a! 4c
b! a
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probability distribution, each possible value of the discrete random variable can be associated with a non-

zero probability. Thus, a discrete probability distribution can always be presented in tabular form. 

5.4.3 Advantages of Monte Carlo simulation 

During a Monte Carlo simulation, values are sampled at random from the input probability 

distributions.  Each set of samples is called iteration, and the resulting outcome from that sample is 

recorded.  Monte Carlo simulation does this hundreds or thousands of times, and the result is a probability 

distribution of possible outcomes.  In this way, Monte Carlo simulation provides a much more 

comprehensive view of what may happen.  It presents not only what could happen, but also how likely it 

is to happen. 

Monte Carlo simulation provides a number of advantages over deterministic, or “single-point estimate” 

analysis: 

• Probabilistic Results: Results show not only what can happen, but also how likely each outcome 

is. 

• Graphical Results: Because of the data a Monte Carlo simulation generates, it is easy to create 

graphs of different outcomes and their chances of occurrence.  This is important for 

communicating findings to other stakeholders. 

• Sensitivity Analysis: With just a few exemplars, deterministic analysis makes it difficult to see 

which variables impact the outcome the most.  In Monte Carlo simulation, it is easy to see which 

inputs have the biggest effect on bottom-line results. 

• Scenario Analysis: In deterministic models, it is very difficult to model different combinations of 

values for different inputs to see the effects of truly different scenarios.  Using Monte Carlo 

simulation, analysts can see the exact combination of inputs when certain outcomes occur.  This 

is invaluable for pursuing further analysis. 

• Correlation of Inputs: In Monte Carlo simulation, it is possible to model interdependent 

relationships between input variables.  This is important to represent how, in reality, when some 

factors goes up, others go up or down accordingly.  

 

5.5 Results and Discussion 

 

5.5.1 Monte Carlo Simulation results 

Tables 5.3 and 5.4 presents the Monte Carlo simulation results for the Raw water turbidity – Power 

consumption, and Power consumption – water production volume models. The results for the other 

models are presented later in this chapter. !
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5.5.1.1 Raw water turbidity – Power consumption model 
 
Input: Turbidity  
Output: Power consumption (1000 kWh) 
Number of Random numbers: 5000 
Number of simulations: 5000 
 
Table 5.3: Monte Carlo simulations results for Raw water turbidity-Power consumption model 
Modeling Scenario Mean of 

input 
(Degree) 

Standard 
Deviation of 
input 

Mean of 
output 
(1000kwh) 

Standard 
Deviation 
of output 

Standard 
Error 

For 95% Confidence For 99% Confidence 

      LCL UCL LCL UCL 
Training set 2.236 0.522 5449.29 111.016 1.570 5446.21 5452.37 5445.25 5453.33 
BCTUR 3.275 0.522 5625.52 74.489 1.053 5623.46 5627.58 5622.81 5628.23 
TUR5 3.439 0.522 5650.69 70.813 0.969 5670.26 5674.06 5669.66 5674.66 
TUR10 3.602 0.522 5672.16 68.536 0.924 5690.63 5694.25 5690.06 5694.82 
TUR15 3.766 0.522 5692.44 65.306 0.901 5712.24 5715.78 5711.69 5716.33 
TUR20 3.930 0.522 5714.01 63.715 0.858 5730.50 5733.86 5729.97 5734.39 
TUR25 4.094 0.522 5732.18 60.702 0.731 5818.23 5821.09 5817.78 5821.54 
TUR50 4.912 0.522 5819.66 51.711 0.555 5957.95 5960.13 5957.61 5960.47 
TUR100 6.550 0.522 5959.04 39.278 0.447 6067.00 6068.76 6066.73 6069.03 
TUR150 
TUR MAX 

8.818 
100 

0.522 
0.522 

6067.88 
7441.88 

31.590 
3.157 

1.570 
0.045 

5446.21 
7441.79 

5452.37 
7441.97 

5445.25 
7441.77 

5453.33 
7441.99 
 

LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 
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5.5.1.2 Power consumption – Water production volume model 
 
Input: Power consumption (1000 kWh)  
Output: Water supply volume (106 m3) 
Number of Random numbers: 5000 
Number of simulations: 5000 
 
Table 5.4: Monte Carlo simulations results for Power consumption – Water production volume model 
Modeling Scenario Mean of input 

(1000 kWh) 
Standard 
Deviation 
of input 

Mean of 
output 
(106 m3) 

Standard 
Deviation 
of output 

Standard 
Error 

For 95% Confidence For 99% Confidence 

      LCL UCL LCL UCL 
Training set 5521.010 251.858 16.591 0.682 9.6 x10-3 16.57 16.61 16.57 16.62 
BCGHG 5552.209 251.858 16.686 0.678 9.6 x10-3 16.67 16.71 16.66 16.71 
GHG5 5274.599 251.858 15.921 0.687 9.7 x10-3 15.90 15.94 15.90 15.95 
GHG10 4996.988 251.858 15.198 0.681 9.6 x10-3 15.18 15.22 15.17 15.22 
GHG15 4719.378 251.858 14.446 0.676 9.6 x10-3 14.43 14.46 14.42 14.47 
GHG20 4441.767 251.858 13.686 0.687 9.7 x10-3 13.67 13.71 13.66 13.71 
GHG25 4164.157 251.858 12.946 0.692 9.8 x10-3 12.93 12.97 12.92 12.97 
LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 
 
!
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The outputs in Tables 5.3 and 5.4 are the average monthly values of Power consumption and Water 

production volume respectively. To convert to annual data, the output values in the respective tables 

must be multiplied by 12. 

 

Tables 5.3 and 5.4 each have ten columns. The first column describes the modeling scenario used. For 

each model, the first scenario used is Monte Carlo simulation with the input data of the training set. The 

objective of doing this was twofold — First, to obtain the magnitude of the standard deviation, which 

would be then used as the common standard deviation for the input data of all the subsequent scenarios, as 

seen in the third column of the tables. Second, to have a preliminary idea of the output distribution 

function. The second column is the mean of the input set, respectively. For the different scenarios, the 

mean values correspond to the values previously tabulated in Tables 5.1 and 5.2. Columns 4 and 5 are the 

mean and standard deviation of the output, after 5000 Monte Carlo simulations. The sixth column is the 

standard error for each condition, based on which the upper and lower confidence limits for 95 and 99% 

have been calculated in Columns 7,8,9 and 10. It can be seen that for all models, the mean output can be 

stated with 99% confidence level because of the low standard error.  

 

Figure 5.4 shows the frequency distributions of the outputs for the training set of each model. It can be 

seen that the distributions for all cases are more or less normal. Hence, the mean value of the output has 

been taken as the most probable value of the output. 

 

 
      (a)       (b) 
 
Figure 5.4: Frequency distribution for output training sets for (a) Power consumption (b) Water production 

volume 
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5.5.2 Modeled power consumption under scenarios of climate change 

Figure 5.5 shows the modeled power consumption for Kobe City Waterworks under different scenarios of 

climate change – reduction in GHG emissions, and increase in raw water turbidity. 

 
Figure 5.5: Trend of expected power consumption under scenarios of climate change 

 

Accordingly, it can been seen that in order to reduce the GHG emissions the power consumption must 

decrease, if no additional sources of energy are available. For example, to achieve a 25% reduction of 

GHG emissions from the base condition, the power consumption will need to be reduced to around 4.2 x 

106 kWh. However, with increase in raw water turbidity due to climate change, the power consumption is 

likely to increase. This is to ensure that the water quality will not suffer, and consumers are provided with 

the same quality that is currently available. Hence, in order to meet the emission targets the utility will not 

only have to reduce the power consumption required to reduce GHG emissions, but also take into account 

the power consumption required to counter the effects of increase in raw water turbidity.  

 

Figure 5.6 shows the required reduction in monthly power consumption required under different 

scenarios. Accordingly, it is observed that with increase in raw water turbidity, more reduction in power 

consumption is required. Understandably, the rate of reduction increases, as the emission targets get more 

intense – the rate of reduction for 25% reduction in GHG emission is almost three times the rate for 5% 

reduction in GHG emissions. Table 5.5 presents the actual values of monthly reduction in power 

consumption required for all scenarios. The Kobe City Waterworks can use this table as a reference to 

decide which of the emission targets they would like to pursue. It must be mentioned that this table has 

been developed without considering the option of using renewable energy like solar or wind. In case 
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options of renewable energy are available, the magnitude of required reduction in power consumption in 

Table 5.5 will decrease. 

 

 
Figure 5.6: Target reduction in power consumption for Kobe City Waterworks for various scenarios of 

reduction in GHG emissions and increase in raw water turbidity 

 

 
Table 5.5: Required reduction in power consumption (1000 kWh) for Kobe City Waterworks under different 

scenarios of climate change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 5.5 also provides the Kobe City Waterworks a reference to plan their future operations and 

treatment technology. For example, if the utility realizes that the reduction of power consumption to 

achieve 25% GHG reduction and turbidity 8 Degrees (1.9 x 106 kWh) is too much, they can consider 
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 Reduction in GHG emissions from base condition (%) 
Raw water turbidity (Degrees) 5 10 15 20 25 

3.439 376.09 653.70 931.31 1208.92 1486.53 
3.602 397.56 675.17 952.78 1230.39 1508.00 
3.766 417.84 695.45 973.06 1250.67 1528.28 
3.930 439.41 717.02 994.63 1272.24 1549.85 
4.094 457.58 735.19 1012.80 1290.41 1568.02 
4.912 545.06 822.67 1100.28 1377.89 1655.50 
6.550 684.44 962.05 1239.66 1517.27 1794.88 
8.818 793.28 1070.89 1348.50 1626.11 1903.72 
100 2139.40 2417.01 2694.62 2972.23 3249.84 
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investing in newer equipment and changing the treatment technology which can reduce power 

consumption, while maintain the quality of water. 

 

5.5.3 Effect of climate change on selected component of the 9-cPIS 

Three models were developed to explore the relationship between the water production volume and three 

components of the 9-cPIS – Financial Sustainability, Economic Value of Water and Green Water Supply. 

The aim of developing these models was to examine the effect of climate change (reduction in GHG 

emissions) on the selected components of the 9-cPIS, so that tradeoff analysis could be performed. Tables 

5.6 through 5.8 present the Monte Carlo simulation results of the three models under scenarios of 

reduction in GHG emissions. 

 

All values of the selected components of the 9-cPIS are actual values, and not standardized. 

 

For Tables 5.6 through 5.8, the input data is the water production volume, which is the output of the 

Power consumption – Water production volume model, previously presented in Table 5.4. However, it 

must be noted that while the output of water production volume in Table 5.4 is the average monthly 

volume, the inputs in Table 5.6 and 5.7 are the annual volume of production (average monthly volume x 

12). The input values in Table 5.8, however, are monthly values. 

 

 

Accordingly from Table 5.6, it is seen that with reduction in GHG emissions, the Financial Sustainability 

increases. The reason is because in the Kobe City Waterworks, the cost of producing water is more than 

its selling price. Thus, the ‘revenue to cost ratio of water’, which is an important contributing variable of 

the Financial Sustainability indicator, is less than one. As seen in previous models, reduction in GHG 

emissions is associated with reduction in production volume, and this will cause the net loss (selling price 

minus cost price of water) to reduce, thereby improving the Financial Sustainability. This augurs well for 

the Kobe City Waterworks because it means that attempts to achieve the GHG emission targets will not 

cause any financial harm to the utilities. 

 

From Table 5.7, however it is seen that the Economic Value of Water decreases with reduction in GHG 

emissions, resulting from reduced water production. This is understandable because the main variables 

contributing to the Economic Value of Water are the ‘water supply revenue’ and the ‘unit price of water’. 

With reduced water production, the water supply revenue will naturally reduce. Also in Kobe City 

Waterworks, the price of water does not change often – once in 7 or 8 years. Hence, with dwindling water 

supply revenue and constant price of water, the Economic value of water will reduce. !
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5.5.3.1 Water production volume – Financial Sustainability model 

 
Input: Water production volume (106 m3)    
Output: Financial Sustainability 
Number of Random numbers: 5000       
Number of simulations: 5000 
 
Table 5.6: Monte Carlo simulations results for Water production volume – Financial sustainability model 
Modeling Scenario Mean of input 

(106 m3) 
Standard 
Deviation 
of input 

Mean of 
output 
 

Standard 
Deviation 
of output 

Standard 
Error 

For 95% Confidence For 99% Confidence 

      LCL UCL LCL UCL 
Training set 203.611 5.016 0.987 0.027 1.36 x10-4 0.9867 0.9873 0.9867 0.9873 
BCGHG 200.236 5.016 1.004 0.027 1.36 x10-4 1.0037 1.0043 1.0037 1.0043 
GHG5 191.046 5.016 1.054 0.027 1.37 x10-4 1.0537 1.0543 1.0536 1.0544 
GHG10 182.374 5.016 1.100 0.026 1.36 x10-4 1.0997 1.1003 1.0997 1.1003 
GHG15 173.346 5.016 1.148 0.026 1.36 x10-4 1.1477 1.1483 1.1477 1.1483 
GHG20 164.232 5.016 1.197 0.027 1.37 x10-4 1.1967 1.1973 1.1966 1.1974 
GHG25 155.351 5.016 1.244 0.027 1.39 x10-4 1.2437 1.2443 1.2436 1.2444 
LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 
 
 
 
 
 
 
 
 



                                                    Tradeoff between consumer expectations of water quality and energy reduction!

! "#%!

 
 
 
 
 
5.5.3.2 Water production volume – Economic Value of Water model 

 
Input: Water production volume (106 m3)    
Output: Economic Value of Water  
Number of Random numbers: 5000    
Number of simulations: 5000 
 
Table 5.7: Monte Carlo simulations results for Water production volume – Economic Value of Water model 
Modeling Scenario Mean of input 

(106 m3) 
Standard 
Deviation 
of input 

Mean of 
output 
 

Standard 
Deviation 
of output 

Standard 
Error 

For 95% Confidence For 99% Confidence 

      LCL UCL LCL UCL 
Training set 200.851 3.092 99.900 1.280 1.82 x10-2 99.864 99.936 99.853 99.947 
BCGHG 200.236 3.092 99.642 1.284 1.80 x10-2 99.578 99.648 99.567 99.659 
GHG5 191.046 3.092 95.826 1.276 1.77 x10-2 95.805 95.875 95.794 95.886 
GHG10 182.374 3.092 92.314 1.254 1.75 x10-2 92.267 92.335 92.256 92.346 
GHG15 173.346 3.092 88.538 1.240 1.78 x10-2 88.518 88.588 88.507 88.599 
GHG20 164.232 3.092 84.813 1.262 1.82 x10-2 84.810 84.882 84.799 84.893 
GHG25 155.351 3.092 81.127 1.287 1.83 x10-2 81.116 81.188 81.105 81.199 
LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 
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5.5.3.3 Water production volume – Green Water Supply model 

 
Input: Water production volume (106 m3)      
Output: Green Water Supply 
Number of Random numbers: 5000     
Number of simulations: 5000 
 
Table 5.8: Monte Carlo simulations results for Water production volume – Green Water Supply model 
Modeling Scenario Mean of 

input 
(106 m3) 

Standard 
Deviation 
of input 

Mean of 
output 
 

Standard 
Deviation 
of output 

Standard 
Error 

For 95% Confidence For 99% Confidence 

      LCL UCL LCL UCL 
Training set 16.556 0.700 2.462 0.087 1.2 x10-3 2.460 2.464 2.459 2.465 
BCGHG 16.686 0.700 2.447 0.088 1.2 x10-3 2.445 2.449 2.444 2.450 
GHG5 15.920 0.700 2.538 0.088 1.2 x10-3 2.536 2.540 2.535 2.541 
GHG10 15.198 0.700 2.631 0.088 1.2 x10-3 2.629 2.633 2.628 2.634 
GHG15 14.446 0.700 2.727 0.089 1.3 x10-3 2.725 2.729 2.724 2.730 
GHG20 13.686 0.700 2.824 0.089 1.3 x10-3 2.822 2.826 2.821 2.827 
GHG25 12.946 0.700 2.914 0.088 1.2 x10-3 2.912 2.916 2.911 2.917 
LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 
 
 
 

!
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However, this is not such a serious concern as it sounds. The main objective of introducing the Economic 

Value of Water as one of the components of the 9-cPIS was to ensure that the true value of water, and its 

production is not lost on the consumers. Hence, even though the Economic Value may drop due to 

reduced supply, as long as the water is priced appropriately, reflecting the true production cost, there 

should be no concern. 

 

From Table 5.8, it is seen that the Green Water Supply increases with reduction in GHG emissions. This 

again is quite natural since the GHG emissions are directly proportional to the volume of water produced. 

For the Kobe City Waterworks, electricity is the only form of energy used for water production and 

pumping, and is responsible for all GHG emissions. Hence, with reduced water production, there will be 

less GHG emissions, resulting from power consumption, thereby improving the Green Water Supply. 

 

Figure 5.7 shows the output distribution of Financial Sustainability, Economic Value of Water and Green 

Water Supply respectively, with the input data of the training sets. It is seen that all three distributions are 

normal in nature and thus the mean value of the output can be considered as the most probable output 

value. 

 

 

 
 

 
 

 
 

 
 

        (a)              (b) 
 
 
 
  
 
 
 
 
 
 
 
                 (c) 
 

Figure 5.7: Frequency distribution for output training sets for (a) Financial Sustainability (b) Economic 

Value of Water (c) Green Water Supply 
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Figure 5.8 shows the trend of the three selected components of the 9-cPIS from 2006 to 2010, and then 

under different scenarios of GHG emission reduction. From 2006 through 2010, a very slight decrease in 

Financial Sustainability is observed, because of small fluctuations in revenues and costs.  

 

 
Figure 5.8: Trends of selected components of the 9-cPIS based on historical data and scenarios of GHG 

reduction 

 
Based on actual data presented earlier in Figure 4.5 of Chapter 4, it was pointed out that the water 

production volume has decreased from 200.321 x 106 m3 in 2006 to 196.5 x 106 m3 in 2010. This should 

ideally warrant an increase in the Financial Sustainability. However, the reduction of 3.821 x 106 m3 is too 

small to make any significant change in the Financial Sustainability. Hence, the Financial Sustainability 

does not show any major/sharp movement from 2006 to 2010 in Figure 5.8. To achieve 5% reduction in 

GHG emissions, the production volume suddenly drops 191.04 x 106 m3 (calculated from Table 5.4 

previously presented). Because of this, there is a noticeable upward movement of the Financial 

Sustainability in Figure 5.8, which continues for further reductions in GHG emissions. It is important to 

point out here that the magnitudes of Financial Sustainability for Kobe City Waterworks from 2006 

onwards have been above 1 (one).  This is particularly encouraging because the Financial Sustainability is 

basically a ratio of revenues to costs, and any value above 1 means that the revenues are greater than the 

costs. 
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The Green Water Supply has generally showed a decreasing trend from 2006 to 2010, with just a sudden 

rise in 2009. This can be attributed to the fact that in 2009, the water production volume was the least at 

191.04 x 106 m3 (previously presented in Figure 4.5). With reduction in GHG emissions, the water 

production volume will decrease, thereby justifying the upward movement of the Green Water Supply for 

the different scenarios of GHG emissions reduction.  

 

The Economic Value of Water has generally shown a decreasing trend from 2006 to 2010 and is further 

expected to decrease under the different scenarios of GHG emissions reduction. As explained earlier, this 

is due to reduced revenues, resulting from reduced supply. As also pointed out before, this is not too much 

of a concern as long as the water price does not drop down to a level where the consumers begin to have a 

wasteful attitude towards water. 

 

5.5.4 Public Interest under scenarios of change 

In order to design the tradeoff between the consumer expectations of water quality and the reduction in 

energy use, the Public Interest (PINT), introduced earlier in Chapter 3, has been used. It may be recalled 

that in the questionnaire survey carried out to quantify the PINT, respondents were asked questions about 

how important certain areas of the supply system were to them. It can be reasoned that if a respondent 

indicates a particular area of the supply system as important, it means that he/she has some natural 

expectations from the utility with respect to that area. For example, if the respondent states that ‘tap water 

quality’ is important to him/her, it can be understood that he/she expects the tap water quality to conform 

to certain standards that he/she thinks are adequate.  

 

The regression equation for PINT, developed previously in section 3.5.3.4 of Chapter 3, has five 

independent variables — Trust in water utility, Good quality tap water, Equity of distribution, R&D in 

utility and water price. The magnitude of the PINT will be greater if the coefficients of the five independent 

variables have larger values, and if the coefficients have large values it follows that the consumer 

expectations are being met better.  Hence PINT is synonymous with ‘meeting consumer expectations.   

 

To calculate the PINT (or ‘meeting consumer expectations) under different scenarios of climate change 

(reduction in GHG emissions), the values of the Financial Sustainability, Economic Value and Green 

Water Supply indices from Tables 5.6, 5.7 and 5.8 respectively were used in the MLR equation 3.11, 

developed earlier in section 3.5.4.3. The said MLR equation was developed to relate the PINT with all the 

components of the 9-cPIS together. Figure 5.9 shows the trend of the PINT, under different scenarios of 

reduction of GHG emissions. It is seen that the PINT decreases uniformly with increased reduction in GHG 

emissions. 
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Figure 5.9: Trend of PINT for various scenarios of reduction in energy use 

 

This suggests that in an effort to reduce the GHG emissions, meeting consumer expectations becomes 

more challenging. This is understandable because reduction in GHG emissions can be achieved in three 

ways:    

• Reduced water production volume 

• Increased use of renewable energy 

• Improved efficiency of equipment 
 
 

All these measures can cause a loss of revenue and reduced financial security. This can very well lead to 

increased water prices and low water quality because of heavy investment in installation of renewable 

energy, thereby causing a reduction in meeting consumer expectations.  

 

To understand the implications of the reducing trend of the PINT with reductions in GHG emissions, it is 

important to analyze the trends of each variable of the PINT under scenarios of change.  

 

The first variable is ‘Good quality tap water’. With reduction in GHG emissions, the power consumption 

will reduce unless there is an immediate provision for renewable energy. Under reduced power 

consumption, it will be difficult to pursue more advanced treatment systems because such systems are 

usually energy intensive. Table 5.9 shows the average energy requirement for different advanced 

treatment systems in the USA and Canada, taken from a report published by the American Water Works 

Association (AWWA, 2008).  
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Table 5.9: Energy requirement for various advanced water treatment technologies 

Treatment System Process or Component Specific Energy Consumption  

(kWh/1000 gal) 

UV disinfection Medium-pressure lam system 0.02-0.09 

Ozone disinfection LOX feed 0.02-0.05 

 VPSA feed 0.06-0.08 

 Ambient air feed 0.11-0.16 

Micro-filtration/Ultra-filtration Pumps, air scouring, cleaning 

system 

0.4-1.0 

 

Reverse osmosis Feed pumps 0.5-4.8 

* All values are based on selected case studies in USA and Canada 

Source: AWWA Research Foundation 

 

Accordingly it is evident that for more advanced levels of water treatment, the energy consumption is 

more. Hence, it can be established that in an effort to reduce GHG emissions, the quality of tap water 

may not improve, suggesting that this variable can partly explain the reduction of the PINT under 

scenarios of reduction in GHG emissions. 

 

The second variable is ‘Trust in water supplier’. This is intrinsically related with good tap water quality, 

meaning that if the quality of tap water is not satisfactory, the consumers are not likely to trust the 

suppliers. It might be argued that the trust in water suppliers may also be influenced by reliability of 

service, like in most developing countries. However, reliability of services is not really a concern in 

Japan, where more than 97% of the population has access to continuous water supply. Thus, with 

reduction in GHG emissions, the consumer’s trust in water utilities is likely to diminish because of 

inadequate water quality. 

 

The third variable is the ‘Research and Development’ in utilities. Any efforts that the utility takes towards 

reducing the GHG emissions will require some form of technological input. These may include the use of 

renewable energy, or improving the efficiency of pumps etc., both of which require the latest technology. 

Hence, there is every possibility that the ‘Research and Development’ in utilities is likely to improve with 

efforts to reduce the GHG emissions, thereby suggesting that this variable will cause a rise in PINT. Hence, 

it can be inferred that ‘Research and Development’ is not responsible for the decrease in PINT as seen in 

Figure 5.9. 

 

The fourth variable is the ‘Equity of distribution’. The equity of distribution deals with supplying an 

adequate quantity of water to all consumers under any situation. In order to reduce GHG emissions it is 
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possible that utilities may consider lowering the water production. However, even if the water production 

volume is reduced the quantity of water supplied will, in all likelihood, meet the consumer demands 

because the per capita consumption is declining anyways. More importantly, given the current policy of 

distribution, it is unlikely that there will be bias in supply when the production volume is reduced. 

Further, in Japan drinking water supply sector has priority over the other sectors, meaning that even in 

conflicting situations the consumers’ demands will be met without bias. Hence, ‘Equity of distribution’ is 

not likely to be affected by reductions in GHG emissions, suggesting that the decrease in PINT is unlikely 

to be influenced by this variable. 

 

The last variable is the ‘Water price’.  In a bid to reduce the GHG emissions, if utilities decide to only 

lower the water production then it may not cause a significant effect on the water price. However, if the 

utilities decide to invest in renewable energy then the cost of installation and operation will have to be 

reflected in water fees, thereby causing a hike in water fees. Additionally, if the utility decides to improve 

on the treatment technology, the costs will increase leading to rise in water prices, if subsidies from the 

government are not available. Hence, the decrease in PINT for different scenarios of GHG reduction can 

also be partly explained by a possible increase in water price. However, the water price is the least 

significant variable of the PINT factor (seen previously in equation 3.1), so it can be speculated that the 

water price will make only a marginal contribution to the decrease in PINT.  

 

From the discussion above, it is clear that ‘Research and Development’ and ‘Equity of distribution’ will 

either increase or remain constant under the various scenarios. Thus, these variables cannot be associated 

with the reduction in PINT observed in Figure 5.9. Among the other variables, although the ‘Water price’ 

causes the PINT to decrease, the affect is small because ‘Water price’ is the least significant variable of the 

PINT factor. Hence, only two variables are responsible for the reduction in PINT, under different scenarios 

of GHG emissions reduction – ‘Good quality tap water’ and ‘Trust in suppliers’. Also, as pointed out 

earlier in this section ‘Trust in suppliers’ depends heavily on the quality of drinking water, it can be thus 

inferred that ‘Good quality tap water’ is the single most important variable that can explain the reduction 

in PINT. 

 

Thus, this study suggests that the decrease in PINT, under scenarios of GHG emissions reductions, is 

most likely to be caused by inadequate water quality. In other words, the consumer expectations of 

water quality is not likely to be met with reductions in GHG emissions.  

 

Hence, the y-axis in Figure 5.9 can be changed to ‘meeting consumer expectations for water quality’. This 

revision is shown in Figure 5.10. 
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Figure 5.10: Trend of meeting consumer expectations of water quality for various scenarios of reduction in 

GHG emissions 

 

5.5.5 Tradeoff between consumer expectations of water quality and energy use 

The aim of the tradeoff analysis, in this context, is to arrive at an optimal value of GHG reduction such 

that there is a balance between reducing energy use and meeting consumer expectations of water quality.  

For example, by targeting a high GHG reduction, of say 25%, the utility will no doubt be able to reduce 

the energy use but in doing so it will be difficult for them to perform well on meeting consumer 

expectations.  Conversely, by targeting a high value of meeting consumer expectations of water quality 

the targets of reducing energy use will suffer. Hence, the analysis aimed to arrive at such a value of GHG 

reduction where both targets would be achieved equally.  

 

It is also important to note that the tradeoff analysis in this study is based on the assumption that both 

reducing energy use and meeting consumer expectations of water quality have equal weightage. Thus, 

both the entities of the tradeoff are considered equally important and should be measured in the same 

units. There may be a line of thought that considers one member of the tradeoff as more important than 

the other, which makes a case for different weightage for each member of the tradeoff. However, to do so 

would require converting the values of the members of the tradeoff into monetary or some common unit, 

based on additional analysis, which is beyond the scope of this study. This study has designed a tradeoff 

between two equals. Hence, the optimization problem has been simplified in this case is to identify that 

particular value of GHG reduction at which both reducing energy use and meeting consumer expectations 

of water quality have equal values. The concept of providing equal weightage to both the members of the 

tradeoff, in this case, is quite rational because in Japan both reducing energy use and meeting consumer 

expectations of water quality are equally prominent issues. While one issue is directly concerned with the 

well-being of consumers, the other is directly concerned with the well-being of the planet, which will 

#*&,+!
#*&,(!
#*&,,!
#*&,)!
#*&,$!
#*&)!
#*&)"!
#*&)#!
#*&)%!
#*&)'!
#*&)+!

&! +! "&! "+! #&! #+!

L
11
568
M!
47
8D
3:

10
!1
AG
14
<5
67
8!
7>
!

N
<5
10
!O
3<
=65
F!
!

H12345678!68!./.!1:6DD678D!>07:!E<D1!478265678!I-J!



 
                                                    Tradeoff between consumer expectations of water quality and energy reduction!

!
!

"%(!

ultimately have a cascading effect on consumers. Hence to prioritize one issue over the other may not so 

easy.  

 

The target reduction in power consumption required for various cases of GHG reduction, under different 

scenarios of raw water turbidity, for Kobe City Waterworks has already been calculated in section 5.5.2. 

This has been shown graphically in Figure 5.11, for selected cases of raw water turbidity. Understandably, 

the required reduction in power consumption increases for more stringent cases of GHG emissions 

reductions or more severe cases of increase in raw water turbidity.  

 

 

 
Figure 5.11: Reduction in power consumption required for Kobe City Waterworks for various scenarios of 

climate change 

 

To facilitate the tradeoff between the consumer expectations of water quality and the reduction in energy 

use, Figures 5.10 and 5.11 will have to be combined so that both these variables are represented on the 

same graph, at the same time. This combination is shown in Figure 5.12. However, because the two 

variables have different units, some form of standardization technique is required to ensure reliability of 

results. The standardization formula used here is the same as that which has been used previously in this 

study, which can be revisited in section 2.8.1 (Equation 2.10). Standardization in this context is very 

important to warrant that the scale of the vertical axes does not affect analysis. For example, if the 

maximum value of the ordinate is y1 units, in the absence of a standardization medium it is not possible to 

specify the maximum value for the scale of the y-axis because that choice is entirely up to the analyst. 

Hence, different analysts will obtain different values of the optimal tradeoff depending upon the scale of 

the axes used. Standardization of values overcomes this problem by ensuring that the scales of the vertical 

axes are fixed, thereby providing consistency in analyses across multiple users. Additionally, because 
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both the members of the tradeoff have been given equal weightage, the same standardization scale has 

been used for both the primary and secondary axes. The choice of the standardization scale depends 

entirely up to the user (e.g. the user can standardize the values in the range -1 to 1 or 1 to 5 etc.) without 

impacting the interpretation of the results. 

 

 
Figure 5.12: Standardized values of PINT and reduction in power consumption required for Kobe City 

Waterworks for various scenarios of reduction in GHG emissions and increase in raw water turbidity 

 

The methodology to obtain the optimal tradeoff between meeting consumer expectations of water quality 

and reduction in energy use is as follows 

 

• Identify the expected increase in raw water turbidity based on climate change models or expert 

opinion 

• Locate the point of intersection of the line corresponding to the expected increase in raw water 

turbidity with the PINT line 

• From the point of intersection, drop a vertical line downwards on the x-axis. It is only at this point 

of intersection that the standardized values of both meeting consumer expectations of water 

quality and reduction in energy use have equal values suggesting that this is the point where the 

two members of the tradeoff are balanced.  
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• The value of the x-axis is the reduction in GHG emissions that should be targeted to ensure 

optimal tradeoff between the consumer expectations of raw water quality and the reduction in 

energy use. 

• For example, if the expected increase in raw water turbidity is 100% from the base condition, the 

coordinates of the intersection point are (0.55, 11.3). Hence, a maximum of 11.3% reduction in 

GHG emissions can be done to ensure optimal tradeoff between consumer expectations of water 

quality and reduction in energy use.  

 

Figure 5.12 can be used by Kobe City Waterworks to identify the optimal tradeoff between meeting 

consumer expectations of water quality and reduction in energy use, for various conditions of expected 

increase in raw water turbidity. It is apparent that for more severe cases of increase in raw water turbidity, 

the optimal reduction in GHG emissions is less. This is to ensure that the water quality does not 

deteriorate significantly. For example, under the current situation of turbidity, the optimal reduction in 

GHG emissions is around 14.4% from base condition but for 150% increase in turbidity from base 

condition, the optimal reduction in GHG emissions from base condition is 10.5%.  

 

5.5.6 Tradeoff between consumer expectations of water quality and energy use for various 

treatment systems 

In the previous section a methodology was developed to estimate the optimal tradeoff between meeting 

the consumer expectations of water quality and reduction in energy use, for Kobe City Waterworks. The 

said water utility uses Rapid Sand Filtration (RSF) and Granulated Activated Carbon (GAC) to treat water 

before it is supplied to the consumers. This section attempts to examine the tradeoff relationship for other 

advanced forms of treatment.  Like in the previous section, the basic assumptions of the tradeoff analysis 

in this section also remain the same, which is based on providing an equal weightage to both members of 

the tradeoff. 

 

It can be discussed that there is a possibility that the trend of the consumer expectations of water quality 

will change because of the better water quality, which can very well shift the PINT (or meeting consumer 

expectations of water quality) line upwards. However, it is very likely that the trend of reduction in 

energy use will also change, with an upward shift, because these advanced water systems use more 

energy. Because both the lines shift upwards simultaneously, there is a strong possibility that the net 

effect will ensure that the optimal GHG reduction remains unchanged. However, because of time 

constraints this aspect could not be verified in this study. 

 

Two advanced treatment systems were studied – (a) GAC with Ozonation and (b) GAC + Ozonation + 

Ultra Violet treatment (UV). Both the treatment systems are used by another water utility (Osaka City 
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Waterworks Bureau), which is located close to the Kobe City Waterworks. The service population of both 

the utilities is more or less the same, suggesting that the scale of supply is comparable. Hence it can be, 

for modeling studies, assumed that if Kobe City Waterworks adopts either of these treatment systems, the 

operation features and statistics will be quite similar to those of Osaka Waterworks in its present state. 

The power consumption data for the treatment systems was obtained from the two utilities, and is 

described in Table 5.10 

 
 
Table5.10: Unit power consumption for various treatment systems considered in the study 

Treatment system Power consumption 
(kWh/m3) 

Utility Data Source 

RSF + GAC 0.005 Kobe Calculated from raw data 
GAC + Ozonation 0.015 Osaka Secondary data obtained from utility 
GAC+ Ozonation + UV 0.07 Osaka Secondary data obtained from utility 

 

Expectedly, the data indicates that as the level of water treatment increases, the unit power consumption 

also increases. Hence, the more advanced treatment systems are more energy intensive.  

 

Also observed in Table 5.10 is that  

Power consumption for GAC + 03 = 3 * Power consumption for RSF +GAC……………………...….(5.8) 

Power consumption for GAC + 03 + UV = 14 * Power consumption for RSF +GAC………..………..(5.9) 

 

By multiplying the coefficients in equations 5.8 and 5.9 with the power consumption scenarios developed 

earlier for Kobe City Waterworks in section 5.5.2, tradeoffs were developed for the two treatment 

systems. A point of contention here is that although the unit power consumption data is for Osaka 

Waterworks Bureau, the water production volume data used is for Kobe City waterworks. However, as 

specified earlier in this section, the scale of supply for both Kobe and Osaka is almost the same – in terms 

of water production and the service population. Hence, the data was used interchangeably for this 

analysis.  

 

The analysis for the two treatment systems (GAC + O3 and GAC + O3 + UV) was performed in the same 

manner as that for RSF + GAC, as seen previously in section 5.5.5.  Figures 5.13 and 5.14 shows the 

tradeoff analysis for the two treatment systems respectively, while Figure 5.12 shown previously is the 

tradeoff analysis for the RSF + GAC treatment system 

 

From Figures 5.12, 5.13 and 5.14 it can be seen that in all three treatment systems, the range of optimal 

GHG reductions lie between 10 and 15% from base condition. For most scenarios of increase in turbidity 
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there is very little difference in the optimal reduction in GHG emissions. For example, for 100% increase 

in raw water turbidity from base condition, the optimal reductions of GHG emissions from base condition 

for RSF + GAC, GAC + O3 and GAC + O3 + UV treatments are 11.3%, 11.4% and 10.8% respectively.  

 

 
Figure 5.13: Tradeoff between PINT and reduction in power consumption required for GAC + 03 

 

 

 
Figure 5.14: Tradeoff between PINT and reduction in power consumption required for GAC + 03 + UV 
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It must be noted that Figures 5.12, 5.13 and 5.14 are not to be compared relatively because even though 

the optimal reduction for GAC + O3 + UV is 10.8% in this case, the absolute value of reduction will be 

much higher when compared to the other two treatment systems. Figure 5.15 clarifies this explanation in a 

better way. It can be seen that the monthly reduction in power consumption for GAC + O3 + UV treatment 

(14.83 Million kWh), to achieve 15% reduction in GHG emissions, is around 13.5 times the reduction 

required for RSF + GAC (1.10 Million kWh) for the same conditions. Similarly, the reduction in power 

consumption for GAC + O3 treatment (2.82 Million kWh), to achieve 15% reduction in GHG emissions, is 

around 2.5 times the reduction required for RSF + GAC for the same conditions.  

 
Figure 5.15: Reduction in power consumption required for the three treatment systems, for various scenarios 

of reduction in energy use 

 

To understand the relative comparison between the three treatments systems, Figure 5.16 has been 

developed by considering the required reductions in power consumption for the three systems for 50% 

increase in raw water turbidity from base condition. It can be seen from Figure 5.16 that if the optimal 

GHG reduction for RSF + GAC treatment is around 18.7%, it is around 15.1% and 6.2% for GAC + O3 

and GAC + O3 + UV treatments respectively. It is important to point out here that these values are only 

meant for relative comparison and are not to be taken as the absolute value for each treatment system. 

Thus it would be incorrect to say that if the utility uses GAC + O3 + UV treatment, it should target an 

optimal tradeoff of 6.2%. This analysis must be performed separately using the methodology outlined in 

this section. Figure 5.16 only suggests that, for the same conditions, the optimal reduction in GHG 

emissions for RSF + GAC treatment is around 1.24 and 3 times the optimal reduction for GAC + O3 and 

GAC + O3 + UV treatments respectively.  
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Figure 5.16: Relative comparison of optimal reduction in GHG emissions for three treatment systems 

 

5.5.7 Scenarios based on per capita demand 

In the previous sections (5.5.5 and 5.5.6), a methodology was developed to identify the optimal reduction 

in GHG emissions based on tradeoff between meeting consumer expectations of water quality and 

reducing energy use. From the tradeoff analysis results for Kobe City Waterworks, it was observed that 

the optimal reduction in GHG emissions ranges within 10.5% - 13.5% from base condition, for various 

scenarios of increase in raw water turbidity. To achieve reduction in GHG emissions, the utility will need 

to concentrate on three major thematic areas — reducing water production, improving efficiency of 

equipment, and increasing use of renewable energy. Ideally, the utility action plan should involve a 

combination of all the three measures for effective results.  

 

This section of the study focuses on investigating the possible reduction in the water production to curtail 

GHG emissions. Reducing the water production is never an easy task for the utilities. First, it leads to a 

loss of revenue, thereby affecting the financial stability of the utility. Second, it may result in the 

consumers’ demands not being met. While both the concerns are valid, it is the second concern which is 

perhaps more significant because it is imperative for the utility to meet the basic demand of its customers 

under all circumstances. From the background information about the Kobe City Waterworks, presented 

earlier in Chapter 4 (section 4.5.1), it was seen that the water production volume and the per capita 

demand have been declining over the last few years. Hence, it appears that there is a natural reduction in 

water production volume and per capita consumption. In light of the above, it may not be incorrect in 

assuming that the per capita consumption may very well decrease further in the years to come, and hence 

reducing water production will still result in all needs being met.  
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However, there is a limit up to which the per capita demand can reduce. There are certain basic water 

needs, which need to be fulfilled irrespective of the background/class/status of consumers, while some 

needs are site specific. In other words, there is a minimum per capita demand that the water utilities will 

have to meet, based on which there is a minimum water production volume. The amount of water 

production must always be equal to or greater than this minimum water production volume, even if it 

results in more GHG emissions.  

 

The scenarios (or settings) is this section are based on estimating the minimum water supply volume that 

will need to be provided to meet the demands of the consumers. Water supply volume, in the context of 

this study, is the volume of water received by the consumer after accounting for all transmission and 

production losses. Hence, 

 

Water supply volume = Water production volume - Losses 

 

Based on the minimum water supply volume, the minimum power consumption can be estimated since 

there is a very strong relationship between the power consumption and the water supply/production 

volume as already seen in Chapter 4. This relationship will be presented again in the next section. 

 

As observed earlier in Table 5.2, to reduce the GHG emissions, the power consumption will have to 

reduce. This endeavor will become even more challenging in light of increase in raw water turbidity. 

However, production, and thereafter water supply, requires power consumption, and in order to meet the 

minimal demand there is a limit up to which this power consumption can be reduced. The settings in this 

module address this important issue. 

 

5.5.7.1 Water production volume – Power consumption model 

To begin with, a relation will need to be established between the water production volume and power 

pconsumption. Using historical data of water production volume and power consumption, and the 

procedure outlined in Chapter 4, a regression model was developed between the water production volume 

and power production. Then based on water production values, water supply was calculated by deducting 

the relevant losses. 

 

A total of 60 data exemplars were available to define the water supply volume – power consumption 

relationship, out of which 40 data points were used for developing the models (training) and 20 data 

points were used for testing the models (testing). Four sets of equations corresponding to Linear, 

Quadratic, Cubic and Power fits were developed with the training data set, which have been presented in 

Equations 5.8 through 5.11 respectively. 
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Pc = 558.452 + 300.885 WP ………………………………………………………………...........…….(5.8) 

Pc = 8318.37 – 644.52x WP + 28.74 WP
 2……...…………………………..………...………...….……(5.9) 

Pc = 34763.3 – 5499.07 WP + 325.126 WP
 2 – 6.02 WP

 3…………………………….……..…..……..(5.10) 

Pc = 441.53 WP 0.90……………………………………………………………………..………….…..(5.11) 

 

Where  

PC: Power Consumption (1000 kWh) 

WP: Water production volume (106 m3) 

 

Figure 5.17 shows the trend of each model with respect to the training data. Accordingly, it can be 

observed that all four models fit the data well when the range of water production volume is between 15 x 

106 and 18 x 106 m3. However, when the water production volume exceeds or precedes this range, it 

appears that the linear model might work best. 

 

 
 Figure 5.17: Fitted trends for Water production volume – Power consumption models 

 

Table 5.11 presents the statistical results of the four Water production volume – Power consumption 

models, for both the training and testing sets. For the training set, the best results are obtained with the 

quadratic model (1.35% AARE and 81.79 x 103 kWh). The same model also provides the least AARE 

(1.61%) for the testing data. The errors in the testing data set does not vary significantly across different 

models, with the linear model and power model providing similar results. Hence for simplicity, the linear 

model has been chosen as the best-fit model. 

 

Power consumption = 558.452 + 300.885 Water production volume 
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Table 5.11: Results for Water production volume – Power consumption model 

 

 

Figure 5.18 depict the observed and modeled data for the training set while Figure 5.19 shows the same 

for the testing sets, with the linear model for both cases. Accordingly, a very good fit can be seen for both 

the cases, for most part of the time series. The observed and modeled data appear to deviate slightly only 

towards the end of the time series. However, there is a good fit generally, suggesting the suitability of the 

linear model for this application. 

 

 
         Figure 5.18: Observed and modeled data of Power consumption in training set using linear model 
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Model 3:  Water production volume –  Power consumption relationship 
Input:  Water production volume (106 m3)  
Output:  Power consumption (1000 kWh)      
Training 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (1000 kWh) 0.5 % 1% 2% 5% 10% 
Linear 40 1.48 95.27 20 30 70 100 100 
Quadratic 40 1.35 81.79 22.50 27.50 75 100 100 
Cubic 40 1.47 93.42 17.50 25 77.50 100 100 
Power 40 1.36 82.26 20 30 67.50 100 100 
Testing 
Model Exemplars AARE RMSE Threshold static (%) 
  (%) (1000 kWh) 0.5 % 1% 2% 5% 10% 
Linear 20 1.69 110.92 5 35 65 100 100 
Quadratic 20 1.61 106.90 10 35 65 100 100 
Cubic 20 1.61 106.59 10 35 65 100 100 
Power 20 1.70 111.29 5 35 65 100 100 
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 Figure 5.19: Observed and modeled data of Power consumption in testing set using linear model 

 

5.5.7.2 Estimation of Per capita demand under different settings 

 Water production volume of Kobe City Waterworks in 2010 = 196.5 x 106 m3 

 Losses = 4.8 %  

 Effective water supply volume  = 187.068 x 106 m3 

 Service population in 2010 = 1.532 Million 

 Per capita consumption = 334.54 L/cap/day 

 

From the above calculations it is observed that the current per capita consumption of the customers of 

Kobe City Waterworks is 334.54 L/cap/day. This value is a little higher than the national average of 314 

L/cap/day in 2008 (MLITT, 2008). In Japan, the per capita demand increased with economic growth in 

the 1990s but has been generally decreasing in the last few years. With advanced water saving technology 

in household appliances like dishwashers, washing machines and toilets, the consumption of water has 

been reducing. As seen in Figure 5.20, the per capita water consumption of the customers of Kobe City 

Waterworks has reduced from around 388 L/cap/day in 1996 to 334.54 L/cap/day in 2010.  

 

 
Figure 5.20: Per capita water consumption trend for Kobe City Waterworks 
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Because of the absence of per capita consumption forecasts for Kobe City in literature, an indirect method 

was used to estimate the per capita demand for Kobe by comparing the consumption trends of two other 

similar cities in Japan – Tokyo and Osaka. For Tokyo, the per capita water consumption has been 

projected to decrease to 217.7 L/cap/day in 2025 from 247.9 L/cap/day in 1996 (Nakagawa et al., 2010), 

amounting to a 12.2% decrease or 0.42% annual linear decrease.  

 

For Osaka, the per capita water consumption has been projected to decrease to 249.8 L/cap/day in 2020 

from 274.2 L/cap/day in 1996 (Nakagawa et al., 2010), amounting to 8.9% decrease or 0.36% annual 

linear decrease. There is very little difference between the annual linear decrease in per capita 

consumption for the two cities. Hence, it can be expected that the per capita consumption in Kobe City 

Waterworks will also reduce by a similar rate.  

 

Because Kobe is geographically closer to Osaka, with similar climatic conditions, the annual linear rate of 

decrease in per capita consumption for Osaka (0.36%/year) has been used to estimate the per capita 

consumption of Kobe City.     

 
5.5.7.3 Setting 1 (Year 2015) 

Based on the data published by UN Habitat (2009), the population of Kobe is likely to be 1.539 Million in 

2015. 

 

Hence Projected population = 1.539 Million 

Projected per capita water consumption = 334.54 - (0.36 x 5)% of 334.54 = 328.52 L/cap/day 

Minimum water supply volume = 184.541 x 106 m3 

Minimum water production volume (4.8% losses) = 193.398 x 106 m3 

 

From equation 5.8,  

Power Consumption = 558.452 + 300.885 Water production volume 

Thus, Minimum annual power production = 58.750 x 106 kWh 

 

Based on this setting, and the analysis performed earlier in Section 5.5.2 for power consumption under 

different scenarios of climate change, as presented in earlier in Figure 5.6 and Table 5.5, some interesting 

information is brought to the fore. This is presented in Figure 5.21, which shows the annual target power 

consumption for Kobe City Waterworks under different scenarios of climate change (increase in raw 

water turbidity) in order to meet the GHG emission targets.  
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Figure 5.21: Annual target power consumption for 2015, under different scenarios of GHG reduction and 

increase in Turbidity 

 

Accordingly, it can be seen that when there is no increase in turbidity (0 % increase or base condition), 

only up to 10% of GHG reduction is possible by merely reducing the production volume. The supply 

volume, in these cases of reduction, will not go below the minimum water production volume, thereby 

satisfying the criteria for minimum power consumption (and minimum per capita demand). GHG 

reduction above 10% for base condition is not possible unless some alternative form of energy is used. If 

the turbidity increases by 10% from the base condition, only 5% GHG reduction is possible with the 

existing sources of energy.  

 

The situation becomes even graver when considering further increase in turbidity from base condition. 

Accordingly, it is seen that when the increase in turbidity is above 20% from base condition, even 5% 

reduction in GHG emissions is not possible. This clearly suggests that with the existing source of energy, 

it is difficult to target greater reduction in GHG emissions as well as meet the consumer demand. In order 

to meet the demand, and achieve higher GHG reduction targets, the utility will have to invest in 

renewable energy, or improve the energy efficiency of the existing supply system. 

 

Table 5.12 presents the amount of renewable energy required for Kobe City Waterworks to meet the 

targets of GHG reduction, where it is seen that no renewable energy is required for GHG reductions up to 

10% from base condition, under up to 10% increase in turbidity from base condition. Beyond these levels, 

renewable energy is required for all scenarios in increasing order of magnitude as the scenarios become 

more stringent.  
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Table 5.12: Additional annual Power (Million kWh) required in the form of renewable energy to meet  

GHG targets in 2015 

 

 

 

 

 

 

5.5.7.4 Setting 2 (Year 2020) 

Based on data published by UN Habitat (2009), the population of Kobe in 2020 is likely to rise to 1.543 

Million in 2020 

 

Hence Projected population = 1.543 Million 

Projected per capita water consumption = 334.54 - (0.36 x 10)% of 334.54 = 322.50 L/cap/day 

Minimum water supply = 181.630 x 106 m3 

Minimum water production (4.8% losses) = 190.348 x 106 m3 

 

From equation 5.8,  

Power Consumption = 558.452 + 300.885 Water production volume  

 

Minimum annual power production = 57.831 x 106 kWh 

 
When compared to setting 1, it is seen that the annual minimum power production required for setting 2 

has decreased from 58.750 x 106 kWh to 57.831 x 106 kWh, a net decrease of 0.92 x 106 kWh. The 

change is quite small because the rate of population increase between the two settings is also small, 0.26 

%, as the population is projected to rise from 1.539 Million to 1.543 Million. Hence, there is a very small 

difference between the two settings. 

 

Figure 5.22 depicts the annual target power consumption under different scenarios of climate change 

(increase in raw water turbidity) in order to meet the GHG emission targets. The trend for this setting 

appears very similar to the first setting where only 5 and 10% reduction in GHG emissions is possible by 

reducing water production, under the base condition of raw water turbidity. In this setting, 5% reduction 

in GHG emissions is also possible under 10 and 15% increase in raw water turbidity from base condition. 

However for all other conditions, no reduction in GHG emissions is possible if only the current source of 

energy is used. As with the previous setting, additional energy in the form of renewable energy is required 

to cater to the demand.  

GHG Reduction (%) Increase in Turbidity (%) 
 0 10 20 50 100 150 Max 
5 0 0.23 0.73 2.00 3.67 4.97 21.13 
10 0 6.89 7.39 8.66 10.33 11.64 27.79 
15 2.12 13.55 14.05 15.32 16.99 18.30 34.45 
20 5.45 20.21 20.72 21.98 23.66 24.96 41.12 
25 8.78 26.88 27.38 28.65 30.32 31.62 47.78 
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Figure 5.22: Annual target power consumption for 2020, under different scenarios of GHG reduction and 

increase in Turbidity 

 

Table 5.13 presents the amount of renewable energy required to meet the GHG emission targets in 2020, 

which can be used by the Kobe City Waterworks to plan their activities. The trend of the values for 

different conditions of climate change in this setting is quite similar as that for the first setting. However 

the magnitudes in this table are slightly lower than the previous case because of the marginal decrease in 

minimum water production volume.  

 
Table 5.13: Additional annual Power (Million kWh) required in the form of renewable energy to meet GHG 

targets in 2020 

 

5.5.7.5 Setting 3 (Year 2025) 

Based on data published by UN Habitat (2009), the population of Kobe in 2020 is likely to stay constant 

at 1.543 Million in 2025.  

 

Hence Projected population = 1.543 Million 

Projected per capita water consumption = 334.54 - (0.36 x 15)% of 334.54 = 316.47 L/cap/day 
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GHG Reduction (%) Increase in Turbidity (%) 
 0 10 20 50 100 150 Max 
5 0 0 0 1.08 2.75 4.06 20.21 
10 0 5.97 6.47 7.74 9.41 10.72 26.87 
15 1.20 12.63 13.13 14.40 16.07 17.38 33.53 
20 4.53 19.29 19.80 21.06 22.74 24.04 40.20 
25 7.86 25.96 26.46 27.73 29.40 30.71 46.86 
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Minimum water supply = 178.234 x 106 m3 

Minimum water production (4.8% losses) = 186.789 x 106 m3 

 

From equation 5.8,  

Power Consumption = 558.452 + 300.885 Water production volume 

 

Minimum annual power production = 56.76 x 106 kWh 

 
The minimum power consumption in this setting reduces by 1.071 x 106 kWh, when compared to the 

previous setting. This is primarily because of the decrease in the projected per capita water consumption, 

which results in a lower water production volume. Figure 5.23 shows the annual target power 

consumption under the different scenarios of climate change.  

 
 Figure 5.23: Annual target power consumption for 2025, under different scenarios of GHG reduction and 

increase in Turbidity 

 

The results for this setting are a little different from the previous two settings. Here, it is seen that under 

the current condition of raw water turbidity, it is possible to reduce up to 15% GHG emissions from the 

base condition. Additionally, a 5% reduction in GHG emissions is possible under up to 50% increase in 

raw water turbidity. For all other scenarios of climate change, it is not possible to reduce the GHG 

emissions, necessitating the input of renewable energy to meet the demand.  

 

Table 5.14 presents the magnitude of renewable energy required under the various conditions of change, 

where it is seen that no renewable energy is required for 5% reduction in GHG emissions under up to 50% 

increase in raw water turbidity. The magnitudes in this table are less than in Table 5.13, because of the 

reduced projected per capita consumption, as indicated earlier.  
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Table 5.14: Additional annual Power (Million kWh) required in the form of renewable energy to meet GHG 

targets in 2025 

 

 

 

 

 

 

5.5.7.6 Sensitivity of population estimates 

The three settings developed in the previous sections were based on minimum per capita water 

consumption, which is a function of projected population. The projected population data of Kobe City 

used for this study was based on reports published by UN Habitat (2009). It is difficult to find population 

projection data only for Kobe City elsewhere. The Statistics Bureau, which keeps a record of past and 

projected population, has no specific projected data for Kobe City because all data is either at national 

level or prefectural level. Further, even work by independent researchers (e.g. Nishioka et al., 2011) is 

usually done at a prefectural level with different age groups, instead of city level. 

 

There is a general consensus among researchers that the population in Japan is likely to decrease over 

time (Nishioka et al., 2011; Kaneko et al., 2008; Takahashi 2004), across all age groups except the elderly 

(above 65). The same view is reinforced by data projections made by the Statistics Bureau (2011). 

However, it is important to note that all these studies and projections are made on a national level, and not 

city level.  

 

This study, however, based on data from UN Habitat, considers that there will be a marginal increase in 

the population of Kobe City from 2010 to 2020, after which it will be constant. Since this trend is 

opposite to that for the country as a whole, this section attempts to explore the sensitivity of population 

estimates on the final result. 

 

According to the data used in the study, 

Existing population for Kobe City in 2010 = 1.532 Million 

Projected population for Kobe City in 2015 = 1.539 Million 

Projected population for Kobe City in 2020 = 1.543 Million 

 

The difference in population from 2010 to 2020 = 11,000 people only that accounts for a growth of only 

0.7%, which is virtually negligible. 

 

GHG Reduction (%) Increase in Turbidity (%) 
 0 10 20 50 100 150 Max 
5 0 0 0 0.01 1.68 2.98 19.14 
10 0 4.90 5.40 6.67 8.34 9.65 25.80 
15 0.13 11.56 12.06 13.33 15.00 16.31 32.46 
20 3.46 18.22 18.73 19.99 21.67 22.97 39.13 
25 6.79 24.89 25.39 26.66 28.33 29.63 45.79 
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Further, assuming the per capita consumption of 334.54 L/capita/day (existing demand in 2010), the 

yearly water production for these extra 11,000 people will be only 1.34 x 106 m3. This extra production is 

only 0.68% of the existing water production in 2010 (196.5 x 106 m3). 

 

In terms of power production, the annual power required to cater to 1.34 x 106 m3, based on equation 5.8, 

is only 961.638 x 103 kWh, which is a mere 1.61% of the total annual power production in 2010 (59.62 

Million kWh) 

 

Hence, it can be seen that the growth rate of population for Kobe City used in this study is too small to 

make any significant impact on the final analysis. In other words, even if the population of Kobe were to 

remain constant from 2010 to 2025, or decrease at a constant rate from 2010 onwards, it will not make a 

significant difference to the results of this study. The Kobe City Waterworks, thus, can consider the 

scenarios generated in this study, seriously, without focusing on the accuracy of the population estimates.  

 

5.5.7.7 Implications for tradeoff between water quality and reduction in GHG emissions 

As seen in the three settings, by reducing the water production volume the GHG emissions can also be 

reduced. However, to account for minimum per capita demand, there is a limit up to which the water 

production volume can be reduced. Based on the three settings, it was seen that up to 15% reduction in 

GHG emissions is possible, for up to 50% increase in raw water turbidity. It may be recalled from the 

tradeoff analysis carried out earlier for Kobe City Waterworks that the optimal reduction in GHG 

emissions for the utility is between 10.5 and 14.5%. Hence, a major portion of the GHG reduction is 

possible by lowering the water production alone. However, before doing so, the affects of loss of revenue 

must be taken into account.  

 

The consumer expectations of water quality can be better met by using advanced water treatments but this 

will require additional energy. This indicates that the PINT will increase if more advanced treatment 

systems are used because ‘water quality’ is the main variable which influences the PINT.  This concept is 

shown in Figure 5.24, where two hypothetical situations are presented. The first condition is the ‘Original 

Public Interest’, which corresponds to the PINT under the existing situation. As discussed earlier, when 

advanced treatment is used the PINT will increase, which is represented by the ‘Modified Public Interest’ 

line in Figure 5.24. It can be seen that the optimal reduction in GHG emissions increases from OT1 to 

OT2, when advanced treatment is used. Hence, if additional energy can be available in the form of clean 

energy, the optimal reduction in GHG emissions will increase, leading to a greener water supply 
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Figure 5.24: Effect of improved PINT on optimal reduction in GHG emissions 

 

 5.6 Summary 

 

This chapter focused on developing a methodology to design the tradeoff between meeting consumer 

expectations of water quality and reduction in energy use. ‘Meeting consumer expectations’ of water 

quality was represented by the PINT, whereas reduction in energy use was represented by reduction in 

GHG emissions. The analysis was performed by evaluating the regression models developed in the earlier 

chapter, under different scenarios of climate change. All models were evaluated under two main scenarios 

of change: increase in raw water turbidity and reduction in GHG emissions. Considering 2010 as the base 

condition, the models were tested under 5, 10, 15, 20 and 25% reductions in GHG emissions from base 

condition, and 5, 10, 15, 20, 50, 100, 150% increases in raw water turbidity from base condition. The 

models were also evaluated for an extreme event case of 100 Degrees Turbidity (almost 3050% increase 

from base condition). Monte Carlo Simulations were used for the evaluation.  

 

The tradeoff analysis suggested that the optimal reduction in GHG emissions was in the range 10.5 – 

14.5% for the various scenarios of increase in raw water turbidity. As the raw water turbidity increases, 

the optimal value reduces. Further analysis was performed with three different water treatment systems – 

RSF + GAC, GAC + O3, GAC + O3 + UV. The range of optimal GHG reductions for the three treatment 

systems is between 10 and 15% from base condition.  It was found that the optimal reduction in GHG 

emissions for RSF + GAC treatment is around 1.24 and 3 times the optimal reduction for GAC + O3 and 

GAC + O3 + UV treatments respectively.  
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To achieve reduction in GHG emissions, the utility will need to concentrate on three major thematic areas 

— reducing water production, improving efficiency of equipment, and increasing use of renewable 

energy. The study investigated practical settings for the Kobe City Waterworks for the years 2015, 2020 

and 2025. After establishing a minimum per capita water demand, and following the population growth 

trend, the target power consumption was established for each year, under the various scenarios of change. 

The results suggest for all the three settings, only up to 15% reduction in GHG emissions, under up to 

50% increase in raw water turbidity, is possible by only reducing the production volume. Any further 

reduction in production volume will result in per capita water consumption below the established 

minimum value, which may not be acceptable. However, reduced water production can very well lead to 

reduced revenues from water fees, so some financial analysis must be done before making a decision. To 

achieve higher GHG emission reduction targets (20 and 25%), while providing the minimum per capita 

demand, the Kobe City Waterworks will need to consider the usage of renewable energy (solar or wind). 

Further, the consumer expectations of water quality can be better met by using advanced water treatments 

but this will require additional energy. If this additional energy can be available in the form of clean 

energy, the optimal reduction in GHG emissions will increase, leading to a greener water supply. The 

study has provided the Waterworks with guidelines about the actual amount of renewable energy required 

under the various conditions of climate change. 
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CHAPTER VI 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

6.1 Key findings of the study 

 

The main objective of this study was to develop a methodology for water utilities in Japan to make 

tradeoffs between meeting customer expectations with respect to water quality and reducing energy use.  

Based on the study results, analysis, personal and professional perspectives, a number of key findings 

have emerged. These findings are described hereafter. 

 

(a) Based on the development of the 9-cPIS, the key findings are 

• The current Performance Indicator System recommended by the JWWA has not found 

widespread application, with very little participation from utilities, especially small utilities.  

• The 9-cPIS developed in this study is a more condensed and manageable indicator system, 

which the utilities will find easier to manage. 

• Apart from its use for self-evaluation, the 9-cPIS has remarkable applications in benchmarking, 

planning and management of water utilities through the PDCA cycle, and evaluating business 

models. 

 

(b) Based on introducing “Public Interest PINT” in supply systems, the key findings are 

 

• The study respects the increasingly popular notion that stakeholder (public) participation in 

water management is imperative to ensure sustainability. However, until now there have been 

no studies on evaluating the public participation, and interest, in the water supply system. 

• The concept of PINT was developed to enhance the decision support system for the water 

utilities. Accordingly, five variables were found to form the factor, PINT: ‘trust in water 

supplier’, ‘good quality tap water’, ‘Research and Development in utilities’, ‘equity of 

distribution’ and ‘price of water’.  

• Alternately, the variables that formed the Public Disinterest factor (the opposite of Public 

Interest) were: ‘employee productivity in utilities’, ‘financial state of utilities’ and ‘Research 

and Development in utilities’.  

• Among the components of the 9-cPIS, only the Consumer Satisfaction for Water Quality shows 

a strong positive relationship with the PINT, suggesting that good tap water quality is the most 

important PI from the consumers’ point of view. 
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• A relationship has been found (derived) between the PINT and the components of the 9-cPIS, via 

multiple regression modeling. 

• The study strongly advocates that the PINT, in water supply systems is site specific and will 

change from place from place. For example, while ‘Research and Development in water 

utilities’ may arouse Public Interest among Japanese consumers, this may not be the case in in 

developing countries.  

 

(c) Based on developing tradeoff between meeting consumer expectations of water quality and energy 

reduction 

 

• Presently, the only way for Kobe City Waterworks to reduce their GHG emissions is by 

reducing their power consumption because electricity is the only source of energy used by the 

utility. 

• Because power consumption and water production volume have a very strong relationship, 

reduction in power consumption will naturally mean reduced water production. 

• Climate change is likely to increase the raw water turbidity, and the study indicates that this 

increase causes the power consumption to increase. 

• In an effort to reduce GHG emissions, meeting consumer expectations with respect to water 

quality is likely to suffer. 

• A methodology for tradeoff between meeting consumers’ expectation of water quality and 

reducing energy use has been developed for various scenarios of climate change. Accordingly, 

in the current situation the optimal reduction in GHG emissions from base condition for Kobe 

City Waterworks is 14.4%.  

• For tradeoff analysis performed with various water treatment systems — RSF + GAC, GAC + 

O3, GAC + O3 + UV — it was found that the range of optimal GHG reductions for the three 

treatment systems is more or less similar, between 10 and 15% from base condition. However 

when compared relatively for 50% increase in raw water turbidity, the optimal reduction in 

GHG emissions for RSF + GAC treatment is around 1.24 and 3 times the optimal reduction for 

GAC + O3 and GAC + O3 + UV treatments respectively. 

• The consumers’ expectations of water quality can be better met by using advanced water 

treatments but this will require additional energy. If this additional energy can be available in 

the form of clean energy, the optimal reduction in GHG emissions will increase, leading to a 

greener water supply. 

• Based on the results of practical settings developed for Kobe City Waterworks for the years 

2015, 2020 and 2025, it was found that for all the three years, a maximum of 15% reduction in 
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GHG emissions, under up to 50% increase in raw water turbidity, is possible by only reducing 

the production volume. However, this can very well lead to reduced revenues from water fees, 

so some financial analysis must be done before making a decision.  

• To achieve higher GHG emission reduction targets (20 and 25%), while providing the minimum 

per capita demand, the Kobe City Waterworks will need to consider the usage of renewable 

energy (solar or wind). 

 

6.2 Recommendations 

 

The overall objective of this study was to develop a tradeoff between meeting the consumers’ expectation 

of water quality and reducing energy use. A number of interesting and pertinent results were obtained, 

both from a theoretical and practical point of view. The following recommendations are made based on 

the results of the study. 

 

• The study recommends the usage of the 9-cPIS as a basic Performance Indicator mechanism for 

water utilities in Japan because of its simple structure and ease of evaluation. This does not in any 

way indicate that the PIs recommended by the JWWA are meaningless. If utilities desire to have a 

more stringent evaluation of their supply systems, they are free to adopt the original PIs. It is also 

recommended that a benchmarking exercise should be performed with the 9-cPIS not just across 

utilities but also within the utility – comparing the performance of the utility over time. Further, it 

is recommended that the utilities should use the 9-cPIS in planning and management, especially 

in the PDCA cycle.  

 

• The general methodology developed in this study, to design the tradeoff between meeting 

consumer expectations of water quality and reduction in energy use, is recommended for use by 

all utilities in Japan. By improving on the methodology as described in the next section, and using 

their own data, utilities can design tradeoffs, and target an optimal reduction in GHG emissions.  

 

• It is recommended that the Kobe City Waterworks should use this report as a reference in 

planning their GHG emission reduction targets. The tradeoff analysis performed in this study will 

help the utility to target an optimal reduction in GHG emissions, to ensure the right balance 

between meeting consumer expectations for water quality and reducing energy use. Because the 

per capita demand has been naturally declining over the last few years, they will be able to 

achieve some reductions in GHG emissions naturally. To maintain emission targets under more 

serious cases of climate change, especially increase in raw water turbidity, it is recommended that 

the utility should start planning and considering alternate energy sources like solar energy.  
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• It is also recommended that the utilities take efforts in spreading knowledge about climate 

change, and its impacts on water supply, among their consumers. This is to ensure that PINT in 

water supply will increase, which will create a good support base for the utility. Such public 

support is crucial in implementing any adaptation measure that the utility deems feasible. 

 

6.3 Scope for further research 

 

All the efforts made in this study have culminated into developing a methodology to design a tradeoff 

between meeting consumer expectation of water quality and reduction in energy use. Due to time and data 

constraints there are a few limitations in the study, which can be improved by future research. 

 

The tradeoff analysis performed in this study is based on the assumption that both meeting consumer 

expectations of water quality and reducing energy use are equally important and are given equal 

weightage. Further studies can consider converting the values of the two members of the tradeoff into a 

common unit and then perform the tradeoff. 

 

This study only considered two main variables as the drivers of change of climate change: reduction in 

GHG emissions and increase in raw water turbidity. Future research can consider other relevant variables 

like increase in volume of precipitation, land use change etc. 

 

This study is based on univariate analysis: only one variable was used to obtain the output of each model. 

To improve on model accuracy and to take into account additional explanatory variables, future research 

can consider multivariate analysis. 

  

Due to data constraints, only three components of the 9-cPIS could be evaluated under the different 

scenarios of climate change. A thorough evaluation of all the nine components will provide a better 

framework for developing the tradeoff between meeting the consumers’ expectation of water quality and 

reducing energy use. 
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APPENDIX A 

 

List of Performance Indicators recommended by the JWWA 

 
IND CODE INDICATOR UNIT DESCRIPTION 

1. SUPPLY OF SAFE AND GOOD TASTING WATER 

(a) Conservation of water resources 
1001 Water Utilization % (Avg daily water supplied / Avg. daily water received 

from sources) x 100 

1002 Water Rate margin (Drought 

index) 

% ((Amount of water required to ensure no droughts/Max 

daily volume of distribution)-1) x 100 

1003 Utilization rate of raw water % (Annual water supplied/ Annual intake) x 100 

1004 Water retention rate  % (Self-owned water/Total volume of water) x 100 

(b) Water Quality Management 

1101 Degree of raw water quality 

monitoring 

Number Number of monitoring units 

1102 Density of water quality 

inspection points 

Points /100 

km2 

(Water testing locations/Service area) 

1103 Continuous automatic water 

quality monitoring 

Units 

/1000m3/day 

(Number of continuous monitoring units / Avg daily 

water of distribution) x 1000 

1104 Water quality non conformance 

rate 

% (Number of standards tests not met/Total number of tests) 

x 100 

1105 Achievement of water in terms 

of musty odor 

% ((1-max Geosim conc /Standard for Geosim)+(1-max 2-

MIB conc /Standard for 2-MIB))/2 x 100 

1106 Achievement of water in terms 

of chlorinous odor 

% ((1-(max residual chlorine conc - permissible 

concentration)/permissible conc) x 100 

1107 Trihelomethane concentration as 

ratio of permissible THM 

 

% 

(Maximum THM concentration/Permissible THM) 

X100) 

1108 TOC concentration as ratio of 

permissible TOC 

% (Maximum TOC concentration/Permissible TOC 

concentration) X100) 

1109 Pesticide concentration  % !(xi/Xi)/n   x 100   xi = max conc of pesticides measured 

each year; Xi = allowable standard conc; n= number of 

pesticides measured  

1110 Heavy metal concentration  % !(xi/Xi)/n   x 100   xi = max conc of heavy metals 

measured each year; Xi = allowable standard conc; n= 

number of heavy metals measured  
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1111 Density of minerals in water % !(xi/Xi)/6   x 100  xi = max conc of minerals measured 

each year; Xi = allowable standard conc  

1112 Organic matter concentration % !(xi/Xi)/4   x 100  xi = max conc of organic matter 

measured each year; Xi = allowable standard conc  

1113 Organochlorine chemical 

concentration 

% !(xi/Xi)/9   x 100  xi = max conc of organochlorine 

measured each year; Xi = allowable standard conc  

1114 Concentration of by products of 

disinfectants 

% !(xi/Xi)/5   x 100  xi = max conc of disinfectant 

byproducts measured each year; Xi = allowable standard 

conc  

1115 Households without receiving 

tank 

% (No of houses using water supply system/Total 

households) x 100 

1116 Activated carbon injection rate % (Activated carbon injection days in a year/ Number of 

days in that year) x 100 

1117 Lead water pipes indicator % (Number of lead pipes/ Total number of pipes) x 100 

 

2. STABILITY OF WATER SUPPLY 

(a) Reliability of Water Supply 

2001 Drinking water storage per 

capita in event of disaster 

L/person ((1/2(Total water supply) + Cap of emergency storage 

tanks)/Population served) x 100 

2002 Per capita water distribution L/d/person (Average daily water distribution/Population served) x 

1000 

2003 Water reserve ratio % ((Total cap of treatment plant - Daily water prod)/Total 

treatment plant cap)) x 100 

2004 Capacity of distribution 

reservoirs 

Days (Total capacity of pond water distribution/Average daily 

distribution) 

2005 Non service days Days Self explanatory 

2006 Penetration rate % (Population served/Total population in service area) x 

100 

2007 Pipe Density km/km2 (Length of distribution pipes/Total service area) 

2008 Water meter density Number/km Number of water meters/length of pipes) 

2101 Rate of aging water treatment 

plants 

% (Capacity of treatment plants exceeding design life/Total 

capacity) x 100 

2102 Aging equipment rate % (Number of aged equipment and machinery/Total number 

of equip and machinery) x 100 

2103 Aging pipeline rate % (Length of aged pipes/Total length of pipes) x 100 

2104 Pipeline renewal rate % (Renewed length of pipeline/Total length of pipes) x 100 

2105 Pipeline rehabilitation rate % (Repaired length of pipeline/Total length of pipes) x 100 

2106 Valve replacement rate % (Num of replaced valves/Total number of valves) x 100 



                                                                                                                                                                      Appendix A 

! $!

2107 Pipeline extension rate % (Length of extended new pipeline/Total pipeline length) x 

100 

(b) Risk Management 

2201 Water quality accident rate Number Number of cases in a year 

2202 Accident rate of trunk (main) 

pipelines 

Cases/100km  (Number of cases/100 km length of trunk pipeline) 

2203 Rate of distribution when 

accidents occur 

% (Volume of water distributed up to 24hrs after  

accident/Average daily volume distributed) x 100 

2204 Rate of service provision when 

accidents occur 

% (Population served up to 24hrs after accident/Total 

population of service area) x 100 

2205 Water based density for 

emergency 

Point/100km2 (Total number of ponds supplying emergency water/Total 

service area) 

2206 Water purification rate % (Raw water capacity / Treated water capacity) x 100 

2207 Water facilities seismic rate % (Anti seismic design capacity of treatment plants/Total 

treatment capacity) x 100 

2208 Pump station seismic facility rate % (Anti-seismic design capacity of pump stations/Total 

pump capacity) x 100 

2209 Distribution reservoir seismic 

facility rate 

% (Anti-seismic design capacity of reservoirs/Total 

reservoir capacity) x 100 

2210 Rate of seismic pipes % (Pipelines designed for seismic loading/Total length of 

pipes) x 100 

2213 Water vehicles ratio Vehicles/ 

1000 per 

(Number of water vehicles/Population served) x 1000 

2214 Potable plastic tanks/plastic 

packs 

Num/ 

1000 per 

(Number of potable plastic tanks/packs per 1000 persons) 

2215 Emergency water tank capacity m3/1000 per (Capacity of emergency water tanks / Population served) 

x 1000 

2216 Emergency power generation 

capacity 

% (Emergency power generation capacity / Total power 

generation capacity) x 100 

2217 Alarm rate % (Number of facilities with alarms/Total number of 

facilities) x 100 

2218 Incidents of freezing of 

plumbing fixtures 

Cases/1000 

cases 

(Annual number of frozen plumbing fixtures/Total 

service connections) x 1000 

 

 

 

 

 

 



                                                                                                                                                                      Appendix A 

! %!

 

3. SUSTAINABILITY OF WATER SUPPLY 

(a) Operational Infrastructure Characteristics 

3001 Operating balance ratio % (Operating revenue/Operating costs) x 100 

3002 Current account balance ratio % (Operating profit /Operating costs) x 100 

3003 Total balance ratio % (Total revenue/Total cost) x 100 

3004 Cumulative net loss ratio 

 

%  

3005 Carryover ratio (expenditure and 

revenue) 

% (Carryover capital/Total revenue) x 100 

3006 Carryover ratio (capital income) % (Carryover capital/Total capital) x 100 

3007 Water revenue per employee 1000 

Yen/person 

(Water revenue/Number of employees) 

3008 Staff salary as ratio of total 

revenue 

% (Amount of staff salary/Total revenue) x 100 

3009 Corporate bond interest rate of 

return for water supply 

% (Interest on corporate bonds/Total revenue) x 100 

3010 Depreciation as ratio of revenue % (Depreciation/Total revenue) x 100 

3011 Redemption rate of revenue 

bonds 

% (Corporate bond redemption proceeds/Water revenue) x 

100 

3012 Percentage of outstanding 

revenue bonds 

% (Balance of corporate bonds/Water revenue) x 100 

3013 Supply to Production cost ratio 

of water 

% (Price of water/Cost of water) x 100 

3014 Water supply revenue Yen/m3 (Revenue earned from water supply/Amount of water 

supplied) 

3015 Water production cost Yen/m3 (Total cost of producing water/Amount of water 

supplied) 

3016 Price for households using up to 

10m3 water  

Yen Water price for households using up to 10m3 of 

water/month 

3017 Price for households using up to 

20m3 water  

Yen Water price for households using up to 10m3 of 

water/month 

3018 Yield of water   

3019 Facility utilization rate % (Average daily water supplied/Water supply capacity of 

the facility) x 100 

3020 Maximum facility utilization rate % (Maximum daily water supplied/Water supply capacity of 

the facility) x 100 

3021 Load factor % (Average daily water supply/Max daily water supply) x 

100 
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3022 Assets to Debts ratio % (Current assets/Current liabilities) x 100 

3023 Percentage of equity % ((Equity + retained earnings)/(Total liabilities)) x 100 

3024 Fixed assets Ratio % (Assets/(Capital+Profit)) x 100 

3025 Depreciation rate corporate 

bonds vs. principal repayment 

% (Corporate bond principal repayment/Depreciation 

current year) x 100 

3026 Fixed assets turnover Time ((Operating revenue-revenue const contract)/(Fixed 

assets at beginning + Fixed assets at end)/2) 

3027 Utilization rate of fixed assets m3/10,000 

Yen 

(Total water supply/Tangible assets) x 10000 

(b) Capacity building and technology 

3101 Qualified personnel indicator Person/ 

per 

(Number of JWWA qualified employees/Total 

employees) 

3102 Degree of qualified civilians Cases/per 

 

 

3103 External training rate Hours (Number of externally trained staff x Number of hours 

trained)/Total employees 

3104 Internal training rate Hours (Number of internally trained staff x Number of hours 

trained)/Total employees 

3105 Technical staff ratio % (Number of technical staff/Total employees) x 100 

3106 Average work experience ratio Years/per (Total work experience of all staff/Number of staff) 

3107 Development staff ratio % (Number of staff involved in technological 

development/Total number of staff) x 100 

3108 Development expense ratio % (Cost spend in tech development/Total revenue) x 100 

3109 Amount of water supplied per 

unit staff 

m3/ per (Amount of water supplied/Total employees) 

 

3110 Meters per unit staff Number/per (Total number of meters/Total employees) 

3111 Health affairs % (Total absence days due to health reasons/Total staff duty 

days) x 1000 

3112 Tap water consumption rate % (Number of respondents using tap water for 

drinking/Total number of respondents) 

(c) Enhancement of Quality of service to consumers 

3201 Information disseminated to 

consumers 

Number (Magazines/information letters distributed/Number of 

household connections) 

3202 Rate monitor Number/1000 

per 

(Number of people contacted for survey 

requested/Population served) x 1000 

3203 Consumers involved in surveys Number/1000 

per 

(Number of survey respondents/Population served) x 

1000 

3204 Visitors rate to treatment plant Num/1000per (Number of visitors/Service population) x 1000 

3205 Percentage of complaints about Cases/1000 (Water service complaints/Total number of respondents) 
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water services per x 1000 

3206 Percentage of water quality 

complaints 

Cases/1000 

per 

(Water quality complaints/Total number of respondents) 

x 1000 

3207 Percentage of water rate 

(pressure) complaints 

Cases/1000 

per 

(Water rate complaints/Total number of respondents) x 

1000 

3208 Audit Requests Cases (Number of requests made for audits in a year) 

3209 Information disclosure Cases (Number of requests made for information about 

services) 

3210 Per capita number of reception 

staff 

Number Number of reception staff/Service Population 

 

4. ENVIRONMENTAL CONSIDERATIONS 

(a) Reducing global warming and increasing awareness about environment protection 

4001 Power consumption kWH/m3 (Total power consumption /Annual distribution of water) 

4002 Energy consumption MJ/m3 (Total energy consumption in all facilities/Annual 

distribution of water) 

4003 Renewable energy utilization 

rate 

% (Power used from renewable energy like wind, sun 

etc/Total power use) x 100 

4004 Rate of recycle and reuse % (Recycled solid waste/Total solid waste generated) x 100 

4005 Construction by product 

recycling rate 

% (Amount of recycled construction by products/Total 

amount of const by products) x 100 

4006 Greenhouse gases emissions  gCO2/m3 (Amount of carbon dioxide emitted/ Total water 

produced) 

(b) Sound water cycle 

4101   Groundwater use index % (Volume of groundwater pumped/Total water use) 

 

5. BUSINESS MANAGEMENT OF WATER SUPPLY SYSTEMS 

(a) Operation management 

5001 Proper supply pressure rate % ((No of days when pressure was measured in the proper 

range/(total pressure measurement points x number of 

days in the years) x 100 

5002 Implementation rate for cleaning 

pond water 

% ((Capacity of dist reservoirs cleaned in 5 years)/5/Total 

capacity) x 100 

5003 Average pumping performance % (Op. time of all pumps/(Total number of pumps x 

Number of days in a year x 24)) x 100 

5004 Metering error rate Cases/1000 

cases 

(Number of erroneous meters/Total number of meters) x 

100 

5005 Billing error rate Cases/1000 

cases 

(Number of billing errors/Total number of billings) x 100 
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5006 Non-payment index % (Total fee not paid at the end of the year/Total fee 

amount) x 100 

5007 Rate of stoppage of service Cases/1000 

cases 

(Number of stops/Number of service connections) x1000 

5008 Contract meter commissioned 

rate 

% (Number of contracted water meters/Total water meters) 

x 100 

5009 Third party contract rate % (Capacity of treatment plants commissioned to 3rd 

party/Total capacity) x 100 

(b) Maintenance 

5101 Water treatment plant accident 

rate 

Cases in 10 

years/ 

(No of accidents in 10 years causing stoppage /Total 

number of treatment plants) 

5102 Ductile iron pipe ratio % (Total ductile iron pipe length/Total pipe length) x 100 

5103 Pipeline accident rate Cases/100 km (Number of pipeline accidents/Total pipe length) x 100 

5104 Steel pipeline accident rate Cases/100 km (Number of steel pipeline accidents/Total length of steel 

pipes) x 100 

5105 Non iron pipeline accident rate Cases/100 km (Number of accidents in non iron pipes/ Total length of 

non iron pipes) x 100 

5106 Accident rate for water supply 

pipes 

Cases/1000 

cases 

(No of accidents in pipes/Total service connections) x 

1000 

5107 Leakage rate % (Amount of leakage per year/Annual distribution) x 100 

5108 Leakage volume per service 

connection 

m3/year/ 

connect 

(Annual leakage volume/No of service connections) 

5109 Turbidity outage time Hours (Shutdown when turbidity increases x Population 

affected)/Service population 

5110 Equipment inspection rate % (Number of equipment inspected/ Total number of 

equipment) x 100 

5111 Pipeline inspection rate % (Length of pipeline inspected/Total length of pipeline) x 

100 

5112 Valve density Units/km (Number of valves installed/Total pipe length) 

5113 Hydrant inspection rate % (Number of hydrants inspected/Total number of 

hydrants) x 100 

5114 Hydrant installation density Units/km (Number of hydrants installed/Total length of pipes) 

5115 Cistern water supply teaching    

 

6. INTERNATIONAL RELATIONS 

6001 Degree of international 

cooperation 

Man-week (Number of co-agents abroad x length of stay) 

6101 Number of international 

relations 

Number (Number of interactions with international agencies) 
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APPENDIX B 

!
Questionnaire for Investigating Public Interest in water supply  

!
Background information for responders 
 
Water is the driver of life. Scientific opinion suggests that water resources are becoming 
more vulnerable to changes brought about by natural and human activities. Hence, the water 
supply utilities need to prepare to tackle the changes by planning adaptation strategies. An 
important part of the planning process is to consider the views, concerns and opinions of all 
stakeholders. Since consumers are the key focus of any water supply development plan, this 
questionnaire is an attempt to gauge the consumer’s perspective with respect to what is 
important to them. 
 
This study is being carried out by the Kyoto University as part of a research project to 
investigate feasible adaptation strategies for water supply utilities in Japan in context of 
future change. We would appreciate it if you could spare a few minutes and fill out this 
questionnaire. All information provided by you will be kept confidential and used for research 
purposes only.  
 
 
SET A 
Gender  
! Female                                                     ! Male 
 
Age    
! 19 and below                                            ! 20-29                                           ! 30-39               
! 40-49                                                        ! 50-59                                           ! 60 and 
above   
 
 
SET B 
Please indicate your interest and agreement with respect to the following aspects of a the 
water supply system by checking (") on the appropriate box  
 
1. How important is good quality tap water to you? 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
 
2. How important is the price of water to you? 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
 
3. How important is customer service to you? 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
 
 
4. How important is trust in your water supplier to you? 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
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5. How important is the state of research and development in your water utilities to you? 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
 
6. How concerned are you about the financial condition (profit and loss) of your water supply 
utilities? 
! Very concerned                                   ! Concerned                         ! Undecided                    
! Slightly concerned                              ! Not concerned 
 
7. How concerned are you about the productivity of employees (the amount of work that 
employees do) in your water supply utilities? 
! Very concerned                                   ! Concerned                         ! Undecided                    
! Slightly concerned                              ! Not concerned 
 
8. How important is equity of distribution to you? (Water is supplied to everyone irrespective 
of personal wealth, social status etc.) 
! Very important                                   ! Important                           ! Undecided                       
! Slightly important                              ! Not important 
 
 
 
Additional comments (Please use the space below for any additional comments that you may 
have) 
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日本における水道事業に対する消費者の意識調査 !
!

回答者への説明 !
!
水は生命の源です。科学的意見によると、自然と人類活動によって水資源が

脆弱的に変化しました。このような変化に対応するため、水道施設の適用戦

略を計画する必要があります。その計画過程の重要な部分は、全ての利害関

係者の関心、意見、見解を考慮することです。任意の給水開発計画の主な焦

点が消費者であるため、このアンケートを通じて、消費者の視点から「自分

たちにとって何が重要であろうか」を評価することに試みしたいと思います

。!
本研究では、将来の変化を背景として、日本の給水施設に対して実現可能な

適応戦略を検討する研究プロジェクトの一環として、京都大学で実施されて

います。お忙しい所、お手数ですが、このアンケートにご記入していただけ

たら幸いです。個人情報は、アンケート結果の分析以外の目的には使用いた

しません。!
!
!
セット"!
性別!
%!女性!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!男性!
!
年齢!
%!&'()'!!!!!!!!! %!)*(+,!!!!!!!!!!!!!!!!!!!%!+&(''!!!!!!!!!!!!!!
%!'*(-,!!!!!!!!!!!!!!!!!!!!!!!! ! !!!!!!%!./%01!-,!!
!
!
セット!"
水供給システムへの関心について、次の選択肢に該当する四角［□］にチェ

ックマークをつけて下さい。!
&2!あなたにとって、水質はどのぐらい重要だと思いますか。!
%!非常に重要!!!! !!!!!!!!! !!!!!!!!!%!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!重要でない!!
!
)2!あなたにとって、水道料金はどのぐらい重要だと思いますか。!
%!非常に重要!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!%!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !!!!
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!%!重要でない!
!
32!あなたにとって、顧客サービスはどのぐらい重要だと思いますか。!
%!非常に重要!!!!!!!!!!!!!!!! !! !!!!!!!!!!!!%!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!%!重要でない!
!
+2!あなたにとって、水道事業への信頼はどのぐらい重要だと思いますか。!
%!非常に重要!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!%!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !!! !
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!%!重要でない!
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!
'2なたにとって、水道事業の研究開発状態はどのぐらい重要だと思いますか!
%!非常に重要!!!!!!!!!!!!!!!!!!!! !!!!!!!!!! %!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!%!重要でない!
!
*2!なたは給水施設の財務状況5損益6にどのぐらいの関心を持っていますか。!
%!非常に関心がある!!!!! %!関心がある!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない !
%!やや関心がある!!!!!!!!!!! !!!!!!!!%!関心がない!
!
-2あなたは給水施設に対する従業員の生産性5従業員が行う作業の量6にどのぐ
らいの関心を持っていますか。!
%!非常に関心がある!!!!!!!!!!!!!!! !!%!関心がある!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない !
%!やや関心がある!!!!!!!!!!! !!!!!!%!関心がない!
!
72あなたにとって、配分の公平さはどのぐらい重要だと思いますか。5水の供
給は個人的な富、社会的地位などに関わらず、全ての人に供給されている6!
%!非常に重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!! %!重要!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%!分からない!!!!! !
%!やや重要!!!!!!!!!!! !!!!!!!!!!!!!!!!!!%!重要でない!
!
!
!
!
!
!
!
!
!
!
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APPENDIX C 

!
Data collected from Kobe Waterworks  

 
 
C-1 Power consumption and Water production data 
 
 

 
 

Year Month Power 
consumption 
 (kWh) 

Water 
production 
 (m3) 

Year Month Power 
consumption 
 (kWh) 

Water 
production 
 (m3) 

2006 April 5403764  16133820  2009 November 5458424  15889860  
2006 May 5599583  16759790  2009 December 5563330  16778910  
2006 June 5570876  16770410  2010 January 5598895  16505990  
2006 July 5784825  17679000  2010 February 5115015  14833650  
2006 August 6119989  18168870  2010 March 5277299  16144550  
2006 September 5661130  16684630  2010 April 5314168  15639680  
2006 October 5635430  16978990  2010 May 5389218  16236940  
2006 November 5513530  16246580  2010 June 5487709  16126290  
2006 December 5640606  17158760  2010 July 5740585  17242400  
2007 January 5664540  16617960  2010 August 6006066  17527840  
2007 February 5062602  14978400  2010 September 5758028  16545490  
2007 March 5308721  16144140  2010 October 5550653  16424970  
2007 April 5301991  16168190  2010 November 5398497  15962950  
2007 May 5495201  16794830  2010 December 5520212  16718460  
2007 June 5477051  16661640  2011 January 5718962  16722560  
2007 July 5731177  17393340  2011 February 5286892  14972360  
2007 August 6122262  17902230  2011 March 5455522  16390160  
2007 September 5780339  16898630      
2007 October 5617191  16878990      
2007 November 5488833  16204180      
2007 December 5524144  16869560      
2008 January 5643329  16473940      
2008 February 5256096  15534560      
2008 March 5478530  16419400      
2008 April 5290592  15896570      
2008 May 5402903  16453440      
2008 June 5320902  16222540      
2008 July 5852755  17994800      
2008 August 5982955  17616150      
2008 September 5586274  16517410      
2008 October 5525953  16812940      
2008 November 5320383  16079760      
2008 December 5502116  16754950      
2009 January 5435752  16289020      
2009 February 4963922  14713230      
2009 March 5219376  16185150      
2009 April 5204415  15815310      
2009 May 5348216  16185650      
2009 June 5321455  16369250      
2009 July 5680763  17225290      
2009 August 5798733  17118340      
2009 September 5609059  16328690      
2009 October 5604967  16602410      
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C-2 Water Quality Data 
 
Year Month Raw Water Turbidity 

 (Degrees) 
Month Raw Water Turbidity 

 (Degrees) 
Month 

2006 May 2.1 2008 October 2.4 
2006 July 24 2009 February 1.7 
2006 October 2.3 2009 May 2.2 
2007 February 2.2 2009 July 2.5 
2007 May 2.0 2009 October 2.9 
2007 July 1.9 2010 February 1.7 
2007 October 3.1 2010 May 1.9 
2008 February 3.5 2010 July 5.8 
2008 May 1.2 2010 October 3.4 
2008 July 1.5 2011 February 2.0 
 
C-3 Other data 
 
Variables Unit 2011 2010 2009 2008 2007 2006 
Service population Number 1539349 1532764 1529323 1525867 1523531 1521229 
Water production 1000 m3  NA 196510 195798 197536 200200 200321 
Operating revenue Yen 32823296 32846755 33446346 34084637 33983477 33990305 
Non-op revenue Yen 2623592 2771031 2790489 2898168 3040392 3197791 
Acquisition revenue Yen 933659 1237197 1272723 1177633 1360721 1722847 
Total revenue Yen 36380547 36854983 37509558 38160438 38384590 38910943 
Operating expense Yen 25605411 26163066 26934637 27411450 27191331 27356201 
Non-op expense Yen 10440176 10376912 10201137 10310709 10756142 11114136 
Acquisition expense Yen 67086 53021 61709 61035 74741 65438 
Total expense Yen 36112673 36592999 37197483 37783194 38022214 38535775 
Unit cost of water Yen/m3 NA NA 189.32 188.38 187.73 190.19 
Unit price of water Yen/m4 NA NA 174.06 175.53 176.58 176.1 
Price of water (up to 10 m3) Yen/m5 92.4 92.4 92.4 92.4 92.4 92.4 
Price of water (up to 20 m3) Yen/m6 152.25 152.25 152.25 152.25 152.25 152.25 
        
Variables Unit 2005 2004 2003 2002 2001 2000 
Service population Number !"!"#"$% !"!!&!'% !"&"&("% !#)()*"% !#)&'&)% !"!"#"$%
Water production 1000 m3 '&!$!"% '&!")#% '&&*"'% '&#!$$% '&*!!&% '&!$!"%
Operating revenue Yen $$#+$*&"% $$(*$*++% $#)#!+"(% $""+$!("% $*!)$'#$% $$#+$*&"%
Non-op revenue Yen $$+$*''% '(#'""!% ')"*+&#% $!*+("#% $&'(!#!% $$+$*''%
Acquisition revenue Yen '(*$($+% $&!#!)+% ')(+)!&% $!+'#$'% $!)('*(% '(*$($+%
Total revenue Yen $)+!!&*#% $)+'&#'"% #&((*$+'% #!)!$#+!% #'#!)*"'% $)+!!&*#%
Operating expense Yen '+$+)!+&% '++!$()(% '(++#)')% $&**&("+% $&)")&$"% '+$+)!+&%
Non-op expense Yen !!)+"+$"% !'$!**&$% !!*$+)*!% !!()"&$'% !'#'"$'*% !!)+"+$"%
Acquisition expense Yen **((+% *!"##% **()(% "$)("% !!+('*% **((+%
Total expense Yen $)#'!+)'% #&&)'&#"% #&#+)+((% #'*&)(+#% #$"&'!(+% $)#'!+)'%
Unit cost of water Yen/m3 !)#,*#% !)(,&$% '&$,*"% '!&,('% '!',(+% !)#,*#%
Unit price of water Yen/m4 !+",)$% !+*,$+% !+*,"!% !++,(+% !+),$)% !+",)$%
Price of water (up to 10 m3) Yen/m5 )',#% )',#% ((% ((% ((% )',#%
Price of water (up to 20 m3) Yen/m6 !"','"% !"','"% !#"% !#"% !#"% !"','"%
       
Variables Unit 1999 1998 1997 1996 1995  
Service population Number 1469170 1419170 1412443 1410206 1480642  
Water production 1000 m3 209295 210386 210604 209775 204758  
Operating revenue Yen 37032492 36121581 35040653 28927000 21978000  
Non-op revenue Yen 2969216 3244334 3567112 5406270 3117379  
Acquisition revenue Yen 4126582 3843406 4912464 2540674 2010215  
Total revenue Yen 44128290 43209321 43520229 36873944 27105594  
Operating expense Yen 30699848 31233573 31674672 28227381 28453438  
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Non-op expense Yen 11855014 10790737 10162834 10964736 11474687  
Acquisition expense Yen 129263 141811 268010 1469088 NA  
Total expense Yen 42684125 42166121 42105516 40661205 39928125  
Unit cost of water Yen/m3 206.23 202.31 200.25 193.17 NA  
Unit price of water Yen/m4 180.56 175.9 174.79 152.75 NA  
Price of water (up to 10 m3) Yen/m5 88 88 88 74 74  
Price of water (up to 20 m3) Yen/m6 145 145 145 120 120  
NA: Not Available 
 
 


