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Preface 

 

Electronic excited molecule is one of the most attractive research topics in modern 

chemistry because its chemical reactivity and physical property are much different from 

those of ground state molecule.  In the previous researches, electronic structure calculations 

have played important roles.  One of advantages of the electronic structure calculations is 

that they can present molecular geometries in the excited states, which are difficult to 

evaluate by experimental methods.  Another advantage is that the calculations can 

explicitly show assignments of the excited states such as nπ*, ππ*, and charge transfer states, 

with quantitatively evaluating mixtures of them. 

Though the electronic structure calculation is a powerful tool for the study of the 

excited molecules, its application must be careful, especially for the excited transition metal 

complexes.  This is because electronic structure of the excited transition metal complex 

sometimes shows complicated nature such as multiconfiguration nature and near-degeneracy 

of excited states, which sometimes induces incorrect calculation result.  Thus, studies with 

the electronic structure calculations have been fewer in the field of excited transition metal 

complexes compared to excited organic molecules.  However, the computational studies for 

the excited states of the transition metal complexes should be actively performed since the 

electronic structure calculations can investigate fundamental properties of the excited state 

chemistry such as the molecular geometry and the electronic structure. 

In this thesis, the author presents explanation and understanding about the nature and 

properties of the excited transition metal complexes by the electronic structure theories.  

This thesis consists of general introduction, chapters 1 to 5, and general conclusion.  In 

chapters 1 and 2, multiple chemical bonds between two transition metals are investigated.  

Achievements of these chapters become fundamental knowledge of photochemical reactions 

of transition metal complexes; note that partial formation or dissociation of the metal−metal 
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multiple bonds often occur in these reactions.  In chapter 3, phosphorescence energies of 

some platinum complexes are investigated.  Shifts of the phosphorescence energies by 

experimental conditions such as solvent and temperature are discussed.  In chapter 4, 

phosphorescence properties of other platinum complexes are studied.  Discussion whether 

the phosphorescence occurs or not is performed based on the relationship between symmetry 

of electronic structure and spin−orbit interaction.  In chapter 5, a new method is proposed 

to estimate oscillator strength of the Laporte-forbidden d−d absorption.  Though this new 

method does not follow the Hertzberg−Teller approximation, which considers admixture of 

electronic states by molecular vibrations, it alternatively considers distortion of molecular 

orbitals.  This new method clearly explains the degree of oscillator strength by molecular 

orbital pictures. 

 

The author believes that achievements of this thesis will evolve the excited state 

chemistry of the transition metal complexes. 
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General Introduction 

 

1. Theoretical Study of Electronic Excited Molecule 

N. J. Turro, who is one of the most brilliant scientists in the field of photochemistry, 

said that “the excited molecule is really an electronic isomer of the corresponding ground 

state-molecule.” in his book.1  This means that the electronic excited molecule frequently 

shows interesting chemical reactivities and physical properties that are not observed in the  

ground state molecule.  Examples of such chemical reactiviteis are photo-addition, 

photo-dissociation, and photo-isomerization reactions.2  These photoreactions sometimes 

produce compounds that cannot be yielded by heat activated reaction.  Thus, the 

photoreactions are attractive in the field of both fundamental and industrial chemistries.  

Examples of the physical properties are photo-emission3 and photo−electric conversion.4  

These properties are also attractive to industrial chemists; molecules with these properties 

are applicable to frontier products such as light-emitting device3c−e and photovoltaic cell.4 

In the history of excited state chemistry, theoretical study based on electronic structure 

calculation has played an important role.  This is because such study provides fundamental 

properties of the excited state chemistry; one is molecular geometry and another is 

assignment of electronic structure.  The former is difficult to evaluate by experimental 

methods because life-time of the excited state is generally short.  The latter, of course, can 

be evaluated by experimental spectroscopic methods.  An advantage of the calculation 

method is that it can estimate quantitative degree of state mixture in the excited state;5 note 

that many excited states are formed by mixture of some electronic states such as nπ*, ππ*, 

and charge transfer (CT) states.  In addition, the theoretical studies have presented creative 

and useful rules for nature and properties of the excited state molecules.  One of 

well-known examples is the Woodward−Hoffman’s rules.6  These rules predict a product of 

the photo-isomerization reaction.  Another example is the El-Sayed’s rules.7  These rules 

forecast the rate of intersystem crossing and the intensity of phosphorescence in organic 

molecules. 

 



- 2 - 
 

2. Theoretical Study of Electronic Excited Transition Metal Complex 

Though the electronic structure calculation is a powerful tool to research the electronic 

excited molecules, its application must be careful, especially for transition metal complexes.  

A popular calculation method such as density functional theory (DFT)8 sometimes provides 

incorrect result.  Two reasons of this difficulty will be explained, as follows. 

 

2.1. Multiconfiguration Nature 

One reason is that the electronic structure of transition metal complex often shows 

multiconfiguration nature.9  This means that the electronic structure is difficult to be 

represented by single electron configuration.  For instance, in a molecule with C=C double 

bond, electronic structure of this C=C bond is represented by single electron configuration as 

σ2π2π*0σ*0, if this molecule does not have the multiconfiguration nature, where σ and π 

represent bonding molecular orbitals between two carbon atoms while σ* and π* represent 

antibonding counterparts.  On the contrary, if this molecule has the multiconfiguration 

nature, the representation of the electronic structure needs excited electron configurations 

σ2π0π*2σ*0, σ0π2π*0σ*2, σ0π0π*2σ*2, etc, in addition to the σ2π2π*0σ*0.  Because the σ 

and π orbitals do not have a node between two carbon atoms while the σ* and π* 

counterparts have it, considering these excited electron configurations makes electron 

density between two carbon atoms be thin and alternatively makes the density around each 

carbon atom be thick.  Thus, the multiconfigurational representation is suitable for a weak 

C=C bond while the single-configurational one is appropriate for a strong C=C bond.  

When the π and π* orbitals are respectively highest occupied and lowest unoccupied 

molecular orbitals (HOMO and LUMOs), the weak C=C bond corresponds to small 

HOMO−LUMO energy gap, whereas the strong C=C bond corresponds to large one.  Thus, 

the multiconfiguration nature often appears when the HOMO−LUMO energy gap is small. 

In an electronic structure calculation of a molecule with the multiconfiguration nature, 

singlereference methods such as DFT, Møller−Plesset perturbation theory (MP),10 and 

coupled cluster (CC)11,12 methods frequently give incorrect results.  In order to perform 

correct calculation, we must use multireference methods such as multiconfigurational 
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perturbation theory based on the complete active space self-consistent-field wavefunction 

(CASSCF/CASPT2)13 and multireference MP perturbation theory based on the CASSCF 

(CASSCF/MRMP).14  Of course, the singlereference methods also take into account the 

excited electron configurations.15  However, contribution of them is few percent in 

calculated wavefunctions.  In the multireference methods, on the other hand, this 

contribution is much large. 

In the transition metal complexes, d orbitals of metal atoms are localized near the 

metal centers.  Thus, overlap of atomic orbitals between metal atom and another metal or 

typical atom is often small.  This small overlap sometimes induces the small 

HOMO−LUMO energy gap.  In this case, the transition metal complex presents the 

multiconfiguration nature. 

One example of the transition metal complexes with the multiconfiguration nature is 

[Re2Cl8]
2−.  This complex is famous for the first molecule with quadruple chemical bond, 

which is reported by F. A. Cotton et al in 1964.16  This quadruple bond is formed by four 

bonding molecular orbitals between two rhenium nuclei; one σ, two π, and one δ orbitals, as 

shown in Figure 1.  Since two dxy orbitals hardly overlap each other, the energy gap 

between δ and δ* molecular orbitals is much small.  In addition, these molecular orbitals 

are respectively the HOMO and LUMO.  As a result, [Re2Cl8]
2− has multiconfiguration 

nature, in other words, the electronic structure of this complex cannot be appropriately 

represented by one electron configuration as σ2π4δ2δ*0π*0σ*0.  Other electron 

configurations such as σ2π4δ0δ*2π*0σ*0 must be needed.  Because of this 

multiconfiguration nature, electronic structure calculation of [Re2Cl8]
2− had been difficult.  

Actually, quantitative theoretical study had not been reported until recently, while qualitative 

studies had been published.17 The first quantitative study was reported by L. Gagliardi and B. 

O. Roos in 2003.18  They used the CASSCF/CASPT2 method.  Their study presented 

schematic electron configuration of the Re−Re molecular orbitals as 

σ1.92π3.74δ1.54δ*0.46π*0.26σ*0.08 by summarizing mixture of the ground and excited electron 

configurations.  This quantitative result means that the σ and π bonds are strong but the δ 

bond is weak. 
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Figure 1.  Molecular orbitals between two rhenium nuclei and schematic representation 

of Re−Re quadruple bond in [Re2Cl8]
2−. 

 

 

2.2. Near-Degeneracy of Excited States 

There are many kinds of electronic excited states in one transition metal complex; one 

is metal-centered excited state such as d−d state and another is ligand-centered excited state 

such as intra-ligand charge transfer (ILCT) and ligand centered ππ* states.19  In addition, 

metal-to-ligand, ligand-to-mtal, and ligand-to-ligand charge transfer (MLCT, LMCT, and 

LLCT) excited states are also often observed.19  Because of the wide variety of excited 

states, some of them frequently take similar energies one another, in other words, some 

excited states nearly degenerate to another state.  In this case, solution of the electronic 

structure theory depends a great deal on initial condition and solution algorithm of the 

numerical calculation.  As a result, the calculation sometimes provides an incorrect result; 

the solution of target excited state is not provided but that of another excited state is 

presented when the initial condition and solution algorithm are inappropriate for the target 

state. 

Though the near-degeneracy nature is a difficulty of the electronic structure 
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calculation, this nature introduces an interesting property of the transition metal complexes.  

The near-degeneracy of the lowest and second-lowest excited states means that they easily 

alternate each other by environmental condition such as solvent.  One example is excited 

states of [Pt2(µ-H2pz)2(dfppy)2] (H2pz = pyrazolate and dfppy = 

2-(2,4-difluorophenyl)pyridine) reported by M. E. Thompson et al.20  The lowest energy 

triplet (T1) excited state was experimentally assigned as mixture of ligand-centered ππ* and 

MLCT states in polystyrene at room temperature (RT).  However, the assignment of the T1 

state changes to metal−metal to ligand charge transfer (MMLCT) state when observed in 

2-methyltetrahydrofulan (2-MeTHF) at RT.  In addition, the phosphorescence energy is also 

changed by experimental condition; it is observed at 2.50 and 2.66 eV in the former 

condition but 1.93 eV in the latter one.  Detailed discussion of these interesting 

phosphoresce properties will be presented in chapter 3 of this thesis. 

 

3. Aims of This Thesis 

Because of above mentioned difficulties, theoretical studies of the excited state 

chemistry have been fewer published in the field of transition metal complexes than in the 

field of organic molecules.  Although many experimental studies have presented interesting 

nature and properties of the transition metal complexes so far, their fundamental 

explanations and understandings by the electronic structure theory are still very limited.  

Because the theoretical study can present the fundamental properties of the excited state 

chemistry such as the molecular geometry and the electronic structure, achievements of this 

study are very attractive for all chemists.  Thus, the theoretical study should be actively 

subjected for the future.  In this thesis, the author wishes to perform theoretical studies on 

electronic excited states of transition metal complexes, overcoming above mentioned 

difficulties. 

In chapter 1, multiple chemical bonds between two transition metals are studied.  The 

knowledge of multiple bond is important and necessary in discussion of the photochemical 

reactions since partial formation or dissociation frequently occurs in these reactions.2  

However, knowledge of metal−metal multiple bond is hard to study because the transition 
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metal complexes with the metal−metal multiple bond often show the multiconfiguration 

nature; note that one example is above mentioned Re−Re quadruple bond in [Re2Cl8]
2−.  In 

this chapter, the author uses the multireference methods, the CASSCF/MRMP method and 

multiconfigurational quasi-degenerate perturbation theory based on state-averaged CASSCF 

wavefunction (SA-CASSCF/MCQDPT),21 to appropriately investigate the metal−metal 

multiple bonds.  Four rhenium dinuclear complexes, [Re2Cl8]
2−, [Re2(µ-Cl)3Cl6]

2−, 

[Re2(µ-Cl)3Cl6]
−, and [Re2(µ-Cl)2Cl8]

2− are investigated, where each complex take different 

molecular geometry, as shown in Figrue 2; [Re2Cl8]
2− takes non-bridged geometry,16 

[Re2(µ-Cl)3Cl6]
2− and [Re2(µ-Cl)3Cl6]

− take face-sharing bioctahedral bridged one,22−24 and 

[Re2(µ-Cl)2Cl8]
2− takes edged-sharing one.25  Although the [Re2Cl8]

2− was studied in the 

previous work,18 as mentioned above, the other complexes have not been theoretically 

investigated by the multireference methods.  Purpose of this chapter is to clarify electronic 

structures and strengths of bonding interactions of the Re−Re multiple bonds.  Also, 

comparisons of these properties among the four rhenium complexes are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Molecular geometries of [Re2Cl8]
2−, [Re2(µ-Cl)3Cl6]

2−, [Re2(µ-Cl)3Cl6]
−, [Re2(µ-Cl)2Cl8]

2−, 

[Re2(µ-O)2(NH3)6]
3+, and [Re2(µ-O)2(NH3)6]

4+.  The former four and the latter two complexes are 

respectively studied in chapters 1 and 2. 

[Re2Cl8]
2-

[Re2(µ-Cl)3Cl6]
2-

[Re2(µ-Cl)3Cl6]
-

face-sharing bioctahedral

bridged geometry

edge-sharing bioctahedral

bridged geometry

non-bridged

geometry

[Re2(µ-Cl)2Cl8]
2-

ＸＸＸＸ

edge-sharing bioctahedral

bridged geometry

[Re2(µ-O)2(NH3)8]
3+

[Re2(µ-O)2(NH3)8]
4+

chapter 2chapter 1

[Re2Cl8]
2-

[Re2(µ-Cl)3Cl6]
2-

[Re2(µ-Cl)3Cl6]
-

face-sharing bioctahedral

bridged geometry

edge-sharing bioctahedral

bridged geometry

non-bridged

geometry

[Re2(µ-Cl)2Cl8]
2-

ＸＸＸＸ

edge-sharing bioctahedral

bridged geometry

[Re2(µ-O)2(NH3)8]
3+

[Re2(µ-O)2(NH3)8]
4+

chapter 2chapter 1



- 7 - 
 

In chapter 2, multiple bonds in two rhenium dinuclear complexes, 

[Re2(µ-O)2(NH3)8]
3+ (Re(III)−Re(IV) complex) and [Re2(µ-O)2(NH3)8]

4+ (Re(IV)−Re(IV) 

complex), are investigated, where these complexes are model of [Re2(µ-O)2(Metpa)2]
3+, 

[Re2(µ-O)2(Metpa)2]
4+, and [Re2(µ-O)2(Me2tpa)2]

4+ {Metpa = ((6-methyl-2-pyridyl)-methyl) 

bis(2-pyridylmethyl)amine and Me2tpa = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl) 

amine}.26  Both investigated complexes take the edge-sharing bioctahedral bridged 

geometry, as shown in Figure 2, like [Re2(µ-Cl)2Cl8]
2− (Re(IV)−Re(IV) complex) in the 

previous chapter.  Molecular orbitals between two rhenium nuclei are complicated in this 

chapter, as follows:  In the previous chapter, the σ, π, and δ bonding Re−Re orbitals and 

their antibonding counterparts mostly consist of atomic orbitals of rhenium nuclei but hardly 

include those of chlorine ligands.  However, in this chapter, the σ, π, δ, and σ* orbitals are 

formed by atomic orbitals of both rhenium nuclei and oxygen ligands, while the π* and δ* 

orbitals mostly consist of those of only rhenium atoms.  Because of these complicated 

Re−Re molecular orbitals, the multiple bonds in [Re2(µ-O)2(NH3)8]
3+ and 

[Re2(µ-O)2(NH3)8]
4+ are untypical.  Purpose of this chapter is to elucidate electronic 

structures and strengths of bonding interactions of such complicated Re−Re multiple bonds 

by the multireference theoretical methods.  Also, assignments of absorption spectra of these 

complexes are presented. 

In chapter 3, phosphorescence properties of four dinuclear platinum complexes, 

[Pt2(µ-R2pz)2(dfppy)2] {dfppy = 2-(2,4-difluorophenyl)pyridine; R2pz = pyrazolate (H2pz), 

3,5-dimethylpyrazolate (Me2pz), 3-methyl-5-tert-butylpyrazolate (MetBupz), and 

3,5-bis(tert-butyl)pyrazolate (tBu2pz)} (Table 1), are researched.  Their phosphorescence 

energies are much affected by experimental conditions such as solvent and temperature, as 

shown in Table 1,20 note that the phosphorescence energies of the µ-H2pz complex have 

already been mentioned above.  Not only the µ-H2pz complex but also the other three 

complexes emit lower-energy phosphorescence in 2-MeTHF at RT than in 2-MeTHF at 77 K 

and polystyrene at RT; for example, the phosphorescence energies of the µ-MetBupz 

complex are 1.95eV in the former condition but 2.49 and 2.27 eV in the latter two conditions.  

In addition, these differences of phosphorescence energies are large in the µ-H2pz and 



- 8 - 
 

µ-Me2pz complexes but small in the µ-MetBu and µ-tBu2 complexes.  Purpose of this 

chapter is to reveal mechanism of these interesting phosphorescence properties, based on 

electronic structure and molecular geometry in the excited state.  The former factor was 

experimentally assigned in the previous work20 but the latter was not investigated. 

 

 

 

 

 

Table 1.  Phosphorescence energies (in eV) of four platinum dinuclear complexes reported in ref 20.  
 complex 2-MeTHF at 77 K polystylene at RT 2-MeTHF at RT  

 

 

 µ-H2pz 2.71,  2.52 2.66,  2.50 1.93 

 

 

 

 
 

 µ-Me2pz 2.68,  2.49 2.63,  2.46 1.98 

 

 

 

 

 

 µ-MetBupz 2.49 2.27 1.95 

 

 

 

 
 

 µ-tBu2pz 2.18 1.96 1.80 
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In chapter 4, intersystem crossing from singlet to triplet excited states is studied.  

This is one of the determinant factors whether the phosphorescence strongly occurs or not 

since the phosphorescence occurs after the intersystem crossing.  This intersystem crossing 

is induced by spin−orbit interaction between the singlet and triplet excited states, thus, 

discussion of the spin−orbit interaction is indispensable for understanding and predicting the 

phosphorescence intensity. 

The discussion of the spin−orbit interaction had been actively performed for the 

organic molecules by M. A. El-Sayed.7  He estimated strength of the spin−orbit interaction 

by matrix element <1Ψ|Hso|
3Ψ>, where the 1Ψ and 3Ψ are wavefunctions of the singlet and 

triplet excited states and the Hso is spin−orbit Hamiltonian.  It is noted that the 1Ψ and 3Ψ 

have unique symmetries; for example, in pyrazine molecule, the wavefunction of nπ* 

excited state possesses B3u symmetry while that of ππ* one possesses B1u.
7a  In addition, 

the Hso also has symmetry since this Hamiltonian includes angular momentum operator l.7c  

Thus, degree of the spin−orbit matrix element <1Ψ|Hso|
3Ψ> can be estimated by symmetries 

of the 1Ψ and 3Ψ, in other words, strength of the spin−orbit interaction is determined by 

symmetries of the singlet and triplet excited states.  El-Syaed had deeply studied these 

matrix elements for many kinds of excited states of organic molecules.  He had presented a 

lot of useful conclusions; for instance, in nitrogen heterocyclic molecule, the spin−orbit 

interaction between 1nπ* and 3ππ* states is larger than that between 1nπ* and 3nπ* states, 

where the superscript 1 and 3 respectively mean singlet and triplet excited states.  

Nowadays, his conclusions are called as the El-Sayed’s rules. 

The discussions by El-Sayed can also apply to the spin−orbit interaction and the 

intersystem crossing of the transition metal complex.  Thus, purpose of chapter 4 is to 

discuss whether the phosphorescence occurs or not in some transition metal complexes, 

based on symmetries of their excited states.  In particular, phosphorescence properties of 

two platinum dinuclear complexes, [Pt2(µ-pz)2(bpym)2]
2+ and [Pt2(µ-pyt)2(ppy)2] (Figure 3), 

are researched.  The former complex emits phosphorescence in solid state at RT but does 

not in 2-MeTHF at RT27 while the latter one does in both conditions.28  This difference is 

discussed in this chapter. 
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Figure 3.  Geometries and phosphorescence properties of 

[Pt2(µ-pz)2(bpym)2]
2+ (ref 27) and [Pt2(µ-pyt)2(ppy)2] (ref 28). 

 

 

In chapter 5, Laporte-forbidden d−d absorptions of transition metal complexes bearing 

octahedral geometries are studied.  In the octahedral complex, five d orbitals of metal 

center are split into three t2g and two eg orbitals,29 as shown in Figure 4.  One electron 

excitation from the t2g to the eg orbitals is assigned as the d−d absorption.  This excitation 

corresponds to 1A1g → 1T1g and 1A1g → 1T2g absorptions.  Because the 1A1g, 
1T1g, and 1T1g 

states possess gerade symmetry but the dipole moment operator er possesses ungerade one, 

transition dipole moments <Ψ(1A1g)|er|Ψ(1T1g)> and <Ψ(1A1g)|er|Ψ(1T2g)> are completely 

zero, where the Ψ(1A1g), Ψ(1T1g), and Ψ(1T2g) represent wavefunctions of these states.  As a 

result, both 1A1g → 1T1g and 1A1g → 1T2g absorptions are assumed as inactive under the 

transition dipole approximation.29  However, in a real complex, both absorptions are 

observed though intensities of them are small.  This is because symmetries of the 1A1g, 
1T1g, 

and 1T2g states are broken by molecular vibrations, in other words, these states have no 

longer the gerade symmetries.29 

In modern theoretical chemistry, time-dependent (TD) DFT30 is one of the most useful 

methods to evaluate absorption spectrum.  Actually, this method can quantitatively estimate 

the transition energies of the d−d absorption in many systems.31  However, the oscillator 

strength of the d−d absorption cannot be evaluated.  This is because the TD-DFT method 

calculates the oscillator strength by the transition dipole approximation. 
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Figure 4.  Schematic representation of d−d absorptions 

of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+. 

 

 

One method to estimate the oscillator strength is related to the Hertzberg−Teller 

approximation.32  This approximation considers mixtures of electronic excited states by 

molecular vibrations.  For instance, this approximation considers that the 1T1g state mixes 

with other excited states bearing ungerade symmetries such as the 1A1u, 
1T1u, and 1T2u states, 

though degree of this mixing is small.  As a result, this mixed 1T1g state has also ungerade 

symmery, which enables the 1A1g → 1T1g absorption. 

Although the Hertzberg−Teller approximation is useful and popular method to 

evaluate the oscillator strength of the Laporte-forbidden d−d absorption, this approximation 
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would be suitable for the understanding of the d−d absorption.  Thus, the author proposes a 
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understandings of the d−d absorptions base on molecular orbital pictures.  This new method 

does not consider mixture of the excited states but alternatively considers distortion of the t2g 

[Co(NH3)6]3+

[Rh(NH3)6]3+

d-d absorption

t2g

eg
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and eg orbitals by molecular vibrations.  Because the distorted eg and t2g ortbitals are no 

longer the gerade symmetry, the t2g → eg excitation is no longer the Laporte-forbidden.  

Thus, the oscillator strength can be evaluated by the transition dipole approximation within 

the TD-DFT method.  This new method applies to the 1A1g → 1T1g and 1A1g → 1T2g 

absorptions of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ (Figure 4)33,34.  Discussion about their 

oscillator strengths is performed based on the molecular orbital picture of t2g and eg ortbitals. 

 

Through studies of chapters 1 to 5, the author presents explanation and understanding 

about the nature and properties of the excited transition metal complexes.  The author 

believes that achievements of all chapters will evolve the excited state chemistry of the 

transition metal complexes. 
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Chapter 1 

 

Theoretical Study of Rhenium Dinuclear Complexes:  Re−−−−Re Bonding 

Nature and Electronic Structure 

 

1.1. Introduction 

[Re2Cl8]
2− (d4−d4) (1; see Scheme 1) is one of the most interesting dinuclear transition 

metal complexes, because this complex possesses a unique Re−Re quadruple bond in a 

formal sense, as reported by Cotton and his collaborators.1  In this complex, the dx2−y2 

orbital of each Re center interacts with Cl ligands and the other four d orbitals participate in 

the Re−Re bonding and antibonding molecular orbitals, as follows:  Two dz2 orbitals 

interact with each other to form σ(a1g) and σ*(a2u) molecular orbitals, as shown in Scheme 2.  

The dxz and dyz orbitals of one Re center interact with those of the other Re center to form 

π(eu) and π*(eg) molecular orbitals.  The dxy orbital of one Re center interacts with that of 

the other Re center to form δ(b2g) and δ*(b1u) molecular orbitals.  The quadruple Re−Re 

bond arises from the σ2π4δ2 electron configuration.1  The eclipsed structure with D4h 

symmetry of this complex is one of the evidences of the presence of the δ bonding 

interaction;  if this bonding interaction was absent, the eclipsed structure became less stable 
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than the staggered one because of the larger static repulsion between Cl ligands.1  Similar 

complexes such as [Mo2Cl8]
4−, [Tc2Cl8]

2−, and [Tc2Cl8]
3− have been reported so far.2−4  

Their metal−metal bonding nature is discussed in the same way. 

Several rhenium dinuclear complexes taking different structures from that of 1 have 

been reported so far.  Some of them are [Re2(µ-Cl)3Cl6]
2− (d3−d4) (2a) and [Re2(µ-Cl)3Cl6]

− 

(d3−d3) (2b), which take a face-sharing bioctahedral structure with D3h symmetry,5−7 as 

shown in Scheme 1.  In these complexes, five d orbitals of each Re center split into eg- and 

t2g-like orbitals.  The former orbitals are unoccupied in a formal sense because they are at 

much higher energy than the latter orbitals by the antibonding interaction with Cl ligands.  

The latter orbitals form σ(a1'), δ(e'), δ*(e''), and σ*(a2'') molecular orbitals between two Re 

centers, as shown in Scheme 3.  This means that these complexes contain a Re−Re multiple 

bond in a formal sense.  Similar complexes such as [Ti 2(µ-Cl)3Cl6]
−, [Cr2(µ-Cl)3Cl6]

3−, 

[Mo2(µ-Cl)3Cl6]
3−, and [W2(µ-Cl)3Cl6]

3− have been reported, too.8−11  Another example is 

[Re2(µ-Cl)2Cl8]
2− (d3−d3) (3), which takes an edge-sharing bioctahedral structure with D2h 

symmetry, as shown in Scheme 1.12  Like 2a and 2b, five d orbitals of each Re center split 

into eg- and t2g-like orbitals.  The former orbitals are unoccupied like those in 2a and 2b.  

The latter orbitals form σ(ag), π(b2u), δ(b1g), δ*(au), π*(b3g), and σ*(b1u) molecular orbitals 

between two Re centers, as shown in Scheme 4.  [Ti2(µ-Cl)2Cl8]
2−, [Mo2(µ-Cl)2Cl8]

2−, and 

[Re2(µ-Cl)2Cl8] also take a similar edge-sharing bioctahedral structure.8,13,14 

Many theoretical studies of 1 have been carried out to clarify its interesting electronic 

structure and its Re−Re bonding nature.15−18  However, the 1A1g → 1A2u (δ → δ*) excitation 

energy was not correctly calculated previously; for instance, the self-consistent-field Xα 

scattered-wave (SCF-Xα-SW) method presented a much smaller excitation energy (0.87 

eV)15 than the experimental value (1.82 eV).19  On the other hand, the general valence bond 

method with the configuration interaction (GVB-CI) and the complete active space 

self-consistent-field (CASSCF) method presented large excitation energies, 3.2016 and 
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3.384 eV,17 respectively.  Recently, its excitation energy was correctly evaluated to be 1.97 

eV by the second-order perturbation theory based on the CASSCF reference state 

(CASPT2).18  This result suggests that incorporation of dynamical electron correlation 

based on the multireference wavefunction is indispensable to investigate this complex. 

Various kinds of face- and edge-sharing dinuclear metal complexes including 2a, 2b, 

and 3 were also theoretically investigated with the broken-symmetry density functional 

theory (BS-DFT) by Stranger and his collaborators,20 in which metal−metal bonding nature 

was discussed.  However, the relative energies of several important electronic states have 

not been studied yet, although they deeply relate to the metal-metal bonding nature.  It is 

worthwhile to evaluate the relative energies of the ground and several low-energy excited 

states of these dinuclear rhenium complexes and to shed clear light on the Re−Re bonding 

nature. 
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Scheme 3.  Re−Re bonding and antibonding orbitals of [Re2(µ-Cl)3Cl6]
2− (2a) and [Re2(µ-Cl)3Cl6]

− (2b). 
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 Scheme 4.  Re−Re bonding and antibonding orbitals of [Re2(µ-Cl)2Cl8]
2− (3). 
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In this work, we theoretically investigated 1, 2a, 2b, and 3 with the multireference 

second-order Møller−Plesset perturbation theory (MRMP2)21 and the multiconfigurational 

quasidegenerate second-order perturbation theory (MCQDPT).22  Our purposes here are to 

show clearly what is the ground state, to evaluate relative energies of several important 

low-energy excited states and to clarify electronic structures and Re−Re bonding nature of 

these complexes.  The DFT(B3LYP),23,24 coupled cluster singles and doubles with 

perturbative triples (CCSD(T)), BS-DFT(B3LYP), and BS-CCSD(T) methods were also 

applied to 1 and 2b to examine reliabilities of these methods for theoretical investigation of 

these dinuclear rhenium complexes. 

 

1.2. Computational Details 

Geometries of these complexes were taken from X-ray analyses (see Table A1 in 

Appendix).1,5,12  Only in 1 was geometry optimization performed with the CASSCF and 

MRMP2 methods, where the Re−Re and Re−Clt1 bond distances and the Re−Re−Clt1 bond 

angle were optimized under D4h symmetry.  Potential energy curve (PEC) of 1 was 

evaluated with the MRMP2 method, where the only Re−Re bond distance was changed but 

the Re−Clt1 bond distance and Re−Re−Clt1 bond angle were fixed to the corresponding 

experimental values, respectively. 

We employed two basis set systems (basis-I and II) in this study.  In basis-I, core 

electrons of Re were replaced with the small relativistic effective core potentials (ECPs) 

reported by Hay and Wadt25 and valence electrons were represented by (541/541/111/1) basis 

set.25−27  The cc-pVDZ basis set was used for Cl.28  In basis-II, valence electrons of Re 

were represented by (4311/4311/111/1) basis set,25−27 whereas the same ECPs as those of 

basis-I were used to replace core electrons.  For Cl, the aug-cc-pVDZ basis set28 was used. 

The CASSCF and MRMP2 methods were applied to 1, 2b, and 3 to investigate their 

nondegenerate electronic states, and the state-averaged CASSCF (SA-CASSCF) and 
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MCQDPT methods were applied to 2a to investigate its degenerate electronic states.  In the 

CASSCF calculation of 1, one σ, two π, and one δ molecular orbitals and their antibonding 

counterparts were taken as the active space (see Scheme 2), in which eight electrons were 

involved. Molecular orbitals that consist mainly of the dx2−y2 orbital were excluded from the 

active space because they are at much different energies from the active orbitals.  In the 

SA-CASSCF calculation of 2a and the CASSCF calculation of 2b, one σ and two δ 

molecular orbitals and their antibonding counterparts were taken as the active space (Scheme 

3).29  Seven and six electrons were involved in the active spaces of 2a and 2b, respectively.  

In the CASSCF calculation of 3, one σ, one π, and one δ molecular orbitals and their 

antibonding counterparts were taken as the active space (Scheme 4), in which six electrons 

were involved.  Molecular orbitals that consist mainly of the eg-like d orbitals were 

excluded from the active space of 2a, 2b, and 3 because they are at much different energies 

from the active orbitals.  The MRMP2 and MCQDPT calculations were carried out with the 

reference wave function from the CASSCF and SA-CASSCF calculations, respectively.  In 

these calculations, the 1s, 2s, and 2p orbitals of Cl ligand were kept to be frozen. 

The CASSCF and SA-CASSCF calculations were performed with the GAMESS 

program package.30  The MRMP2 and MCQDPT calculations were carried out with the 

MR2D program31 implemented in the GAMESS package.  The DFT-(B3LYP), CCSD, 

CCSD(T), BS-DFT(B3LYP), BS-CCSD, and BS-CCSD(T) calculations were performed 

with the Gaussian 03 (rev. C.02) program package.32  Molecular orbitals were drawn by the 

MOLEKEL (ver. 4.3) program.33 

 

1.3. Results and Discussions 

1.3.1. [Re2Cl8]
2−−−− (1) with a Re−−−−Re Direct Bond 

The geometry of 1 in the 1A1g ground state was optimized with the CASSCF and 

MRMP2 methods, as shown in Table 1.  At the CASSCF level of theory with both basis-I 
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and basis-II, the optimized Re−Re distance and Re−Re−Clt1 angle are in good agreement 

with the experimental values, whereas the optimized Re−Clt1 distance is somewhat longer 

than the experimental value.  All these geometrical parameters are improved at the MRMP2 

level of theory; the Re−Re distance and the Re−Re−Clt1 angle are almost the same as their 

experimental values and the Re−Clt1 distance considerably approaches its experimental value.  

Thus, the MRMP2 method reproduces well the geometry of 1 like the CASPT2 method.18 

Relative energies and natural orbital populations of several important electronic states 

were evaluated by the CASSCF/basis-II and MRMP2/basis-II methods with the 

experimental geometry, as shown in Table 2.  In the 1A1g ground state, the population of the 

δ orbital (1.52) is much smaller than the usual value (2.0) of a doubly occupied orbital and 

that of the δ* orbital (0.48) is much larger than the usual value (0.0) of an unoccupied orbital.  

These results suggest that the δ bonding interaction is very weak.  Therefore, the 

multireference theoretical method should be applied to this complex.  Actually, the weights 

of the main configuration (σ2π4δ2) and the second leading one (σ2π4δ* 2) are evaluated to be 

67 and 18 %, respectively, by the CASSCF method. 

 

 

Table 1.  Optimized Re−Re and Re−Clt1 bond distances (in Å) and Re−Re−Clt1 bond angle 

(in degree) of [Re2Cl8]
2− (1) 

 method r(Re−Re) r(Re−Clt1) a(Re−Re−Clt1) 

 CASSCF 2.259 2.382 104.7 this work (basis-I) 

  2.260 2.381 104.6 this work (basis-II) 

 MRMP2 2.236 2.342 103.8 this work (basis-I) 

  2.250 2.341 103.1 this work (basis-II) 

 CASPT2 2.259 2.304 103.44 ref 18 

 expt 2.24 2.29 103.7 ref 1 
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Table 2.  Relative energies (in eV) and natural orbital populationsa,b of several important states of 

[Re2Cl8]
2− (1), [Re2(µ-Cl)3Cl6]

2− (2a), [Re2(µ-Cl)3Cl6]
− (2b), and [Re2(µ-Cl)2Cl8]

2− (3) 

 relative energy natural orbital population 

 complex state CASSCF MRMP2 expt σ σ* π π* δ δ* 

 1 1A1g 0.00 0.00 1.92 0.08 3.74 0.26 1.52 0.48 

  3A2u 0.45 0.52 1.92 0.08 3.75 0.25 1.01 0.99 

  7A2u 5.97 6.29 1.90 0.10 2.02 1.98 1.00 1.00 

  9A1g 9.68 10.65 1.00 1.00 2.00 2.00 1.00 1.00 

  1A2u 3.14 1.95 1.82c 1.92 0.08 3.70 0.30 1.04 0.96 

 

 2a 2E" 0.00 0.00 1.87 0.13   3.47 1.53 

  4E' 0.34 0.36 1.87 0.13   2.93 2.07 

 

 2b 1A1' 0.00 0.00 1.62 0.38   2.18 1.82 

  3A2" 0.08 0.07 1.62 0.38   2.12 1.88 

  5A1' 0.26 0.21 1.62 0.38   2.01 1.99 

  7A2" 1.09 1.94 1.00 1.00   2.00 2.00 

 

 3 1Ag 0.02 0.03 1.00 1.00 0.99 1.01 0.97 1.03 

  3B1u 0.02 0.02 1.00 1.00 0.99 1.01 0.97 1.03 

  5Ag 0.01 0.02 1.00 1.00 0.99 1.01 0.98 1.02 

  7B1u 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

(a) Basis-II was employed.  (b) Relative energies and natural orbital populations of 1, 2b, and 3 were evaluated 

by the CASSCF and MRMP2 method and those of 2a were evaluated by the SA-CASSCF and MCQDPT 

method.  (c) ref 19. 

 

 



- 23 - 
 

The natural orbital populations of the σ, π, and δ bonding orbitals are much larger than 

those of their antibonding counterparts, respectively, in the 1A1g ground state, as shown in 

Table 2.  This result suggests that all σ, π, and δ bonding interactions contribute to the 

Re−Re bond.  From these natural orbital populations, the Re−Re bond order34 is evaluated 

to be 3.18 in the 1A1g ground state, which is much smaller than 4.0.  This value is almost 

the same as the previous value (3.20) evaluated by the CASPT2 method.18  In the 3A2u 

excited state, on the other hand, the population of the δ orbital is almost the same as that of 

the δ* orbital, whereas the populations of the σ, σ*, π, and π* orbitals in the 3A2u state are 

almost the same as those in the 1A1g state, respectively.  This means that the δ bonding 

interaction disappears upon going to the 3A2u state from the 1A1g state, and that the energy 

difference between these two states corresponds to the approximate stabilization energy by 

the δ bonding interaction.35,36  This energy difference is estimated to be 0.52 eV by the 

MRMP2 method.  In the 7A2u state,37 the population of the σ orbital is larger than that of the 

σ* orbital and the populations of the π and δ orbitals are almost the same as those of the π* 

and δ* orbitals, respectively, as shown in Table 2.  This means that only one σ bonding 

interaction remains but the π and δ bonding interactions disappear in the 7A2u state.  Thus, 

the energy difference between the 7A2u and 3A2u states is the approximate stabilization 

energy by the two components of degenerate π bonding interactions.  This energy 

difference is evaluated to be 5.77 eV by the MRMP2 method.36  In the 9A1g state,37 the 

populations of the σ, σ*, π, π*, δ, and δ* orbitals are 1.00, which means that all Re−Re 

bonding interactions disappear.  The energy difference between the 7A2u and 9A1g states 

corresponds to the approximate stabilization energy by the σ bonding interaction.  This 

energy difference is evaluated to be 4.36 eV by the MRMP2 method.36  These results are 

summarized, as follows:  The σ, π, and δ bonding interactions yield the approximate 

stabilization energies 4.36, 2.89 (= 5.77/2), and 0.52 eV, respectively; note that two π bonds 

exist.  The δ bonding interaction is much weaker than the π bonding interaction and the π 
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bonding interaction is much weaker than the σ bonding interaction, as expected.  Although 

this result is not surprising, this is the first semiquantitative estimation of relative strengths 

of the σ, π, and δ bonding interactions of 1. 

The 1A1g → 1A2u (δ → δ*) excitation energy is evaluated to be 3.14 and 1.95 eV by 

the CASSCF and MRMP2 method, respectively.  It is noted that although the 

CASSCF-calculated value is much larger than the experimental value (1.82 eV)19 like the 

previous CASSCF-evaluated value,17 the MRMP2-calculated value agrees well with the 

experimental value like the CASPT2-calculated value.18  This result indicates that 

incorporation of dynamical electron correlation based on the multireference wave function is 

indispensable, as reported.18 

The PECs of the 1A1g, 
3A2u, 

7A2u, and 9A1g states were calculated by the 

MRMP2/basis-II method, as shown in Figure 1.  The Re−Re distance at the energy 

minimum relates to the strength of the Re−Re bonding interaction.  The energy minimum 

of the 3A2u state is at a slightly longer Re−Re distance (2.3 Å) than that of the 1A1g state (2.2 

Å).  Also, the shapes of the PECs of these two states resemble each other.  These results 

arise from the fact that the weak δ bonding interaction disappears upon going to the 3A2u 

state from the 1A1g state.  In contrast, the energy minimum of the 7A2u state is at a much 

longer Re−Re distance (2.8 Å) than that of the 3A2u state (2.3 Å).  Also, it is noted that the 

PEC of the 7A2u state is very shallow, unlike those of the 1A1g and 3A2u states.  These results 

are interpreted in terms that the stronger π bonding interaction disappears upon going to the 

7A2u state from the 3A1g state.  The PEC of the 9A1g state is completely repulsive because all 

Re−Re bonding interactions are absent in this state. 

Natural orbital populations of the σ, π, δ, δ*, π*, and σ* orbitals evaluated by the 

CASSCF/basis-II method are presented as a function of the Re−Re distance in Figures 2a−c.  

In the 1A1g state, the population of the δ orbital becomes almost the same as that of the δ* 

orbital at r(Re−Re) = 3.6 Å, as shown in Figure 2a; in other words, the δ bonding interaction 
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disappears at this distance.  On the other hand, the populations of the σ and π bonding 

orbitals are still larger than those of their antibonding counterparts, respectively, even when 

the Re−Re distance is longer than 3.6 Å.  This result indicates that the σ and π bonding 

interactions still remain in this region.  They disappear at r(Re−Re) = 4.6 and 6.0 Å, 

respectively.  These results are useful to discuss what type of interaction contributes to the 

metal−metal bond in dinuclear metal complexes. 

Energy differences between the 1A1g and 3A2u states and between the 1A1g and 1A2u 

states were also investigated by the DFT(B3LYP), CCSD, CCSD(T), BS-DFT(B3LYP), 

BS-CCSD, and BS-CCSD(T) methods, as shown in Table 3.  The 3A2u state is calculated to 

be more stable than the 1A1g state by the DFT-(B3LYP) and CCSD methods.  This result is 

completely different from the relative stability calculated by the MRMP2 method.38  On the 

other hand, the CCSD(T) and all BS methods present the correct stability order of these three 

states.  These results indicate that the BS-DFT(B3LYP), BS-CCSD, and BS-CCSD-(T) 

methods are useful to discuss bonding nature and the electronic state of the ground state in 

this complex, as reported previously.20 
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 Figure 1.  Potential energy curves of the 1A1g, 
3A2u, 

7A2u, and 9A1g states 

 of [Re2Cl8]
2− (1).  Basis-II was employed. 
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Figure 2.  Natural orbital populations of the σ, π, δ, δ*, π*, and σ* orbitals in the 1A1g, 
3A2u, and 7A2u 

states of [Re2Cl8]
2− (1).  Basis-II was employed. 

 



- 27 - 
 

Table 3.  Comparisons of DFT(B3LYP), CCSD, CCSD(T), BS-DFT(B3LYP), BS-CCSD, and 

BS-CCSD(T) methods in Calculating Relative Energies of the 1A1g, 
3A2u, and 1A2u states of [Re2Cl8]

2− (1) 

and those of 1A1' and 5A1' states of [Re2(µ-Cl)3Cl6]
− (2b) 

 complex state B3LYP CCSD CCSD(T) BS-B3LYP BS-CCSD BS-CCSD(T) expt19 

 basis-I 

 1 1A1g 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

  3A2u −0.30 −0.51 0.10 0.18 0.32 0.20  

  1A2u 0.70 0.80 0.69 1.18 1.61 0.62 1.82 

 

 2b 1A1' 0.00 0.00 0.00 0.00 0.00 0.00 

  5A1' −1.83 −2.48 −2.25 0.14 −0.84 −0.66 

 

 basis-II 

 1 1A1g 0.00 0.00 0.00 0.00   0.00 

  3A2u −0.27 −0.49 0.15 0.19   

  1A2u 0.73 0.83 0.72 1.18   1.82 

 

 2b 1A1' 0.00 0.00 0.00 0.00   

  5A1' −1.79 −2.49 −2.25 0.15   

 

 

 

1.3.2. Face-Sharing Complexes [Re2(µµµµ-Cl)3Cl6]
2−−−− (2a) and [Re2(µµµµ-Cl)3Cl6]

−−−− (2b) 

In 2a, the 2E'' and 4E' states were investigated by the SA-CASSCF and MCQDPT 

methods because both states are degenerate.  The 2E'' state is the ground state and the 4E' 

excited state is calculated to be 0.36 eV above the 2E'' state by the MCQDPT/basis-II method, 

as shown in Table 2.  In the 2E'' state, the natural orbital populations of the δ and δ* orbitals 

are 3.47 and 1.53, respectively.  These values are much different from formal values (4.0 

and 1.0 for the δ and δ* orbitals, respectively) in the pure σ2δ4δ* 1 configuration.  This 

result suggests that the electronic structure of 2a cannot be described well by one σ2δ4δ* 1 

configuration.  Actually, the weights of this configuration and the second leading one 
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(σ2δ2δ* 3) are evaluated to be 72 and 12 %, respectively, by the SA-CASSCF method.  

Consistent with these results, the Re−Re bond order is only 1.84, which is much smaller than 

the formal value (2.5) in the pure σ2δ4δ* 1 configuration. 

In the 4E' excited state, the populations of the δ and δ* orbitals are 2.93 and 2.07, 

respectively; note the δ and δ* orbitals are doubly degenerate (see Scheme 3).  Because the 

difference between these two populations (0.86) is much smaller than that in the 2E'' state 

(1.94) by about 1, the δ bonding interaction in the 4E' state is much weaker than that in the 

2E'' state.  The populations of the σ and σ* orbitals are little different between these two 

states.  Thus, the energy difference (0.36 eV) between these two states corresponds to the 

approximate stabilization energy by the two components of degenerate δ bonding 

interactions.  These δ bonding interactions are much weaker than that of 1.  Its reason is 

easily understood in terms of the Re−Re distance and the Re oxidation state.  In 2a, the 

Re−Re distance is much longer than that of 1 because of the face-sharing bioctahedral 

geometry.  Also, 2a consists of Re(III) and Re(IV) centers, and 1 consists of two Re(III) 

centers.  Because the d orbital of Re(IV) expands less than that of Re(III), the dδ−dδ overlap 

of 2a is smaller than that in 1.  Because of these two factors, the δ bonding interaction is 

weaker in 2a than in 1. 

Relative energies and natural orbital populations of the other face-sharing rhenium 

complex (2b) were investigated by the CASSCF/basis-II and MRMP2/basis-II methods, as 

shown in Table 2.  The 1A1' state is the ground state and the 3A2'' and 5A1' excited states are 

evaluated to be at slightly higher energies than the ground state with the MRMP2 method by 

0.07 and 0.21 eV, respectively (see Table 2).  The 7A2'' excited state is at much higher 

energy than the 5A1' state by 1.73 eV. 

In the 1A1' ground state, the populations of the δ and δ* orbitals are 2.18 and 1.82, 

respectively (see Table 2), which clearly shows that the δ bonding interaction is very weak 

because both populations are close to each other.  This means that a multireference method 
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such as MRMP2 or CASPT2 should be employed to investigate 2b like 1 and 2a.  Actually, 

the weight of the main configuration (σ2δ4) is evaluated to be very small (18 %) by the 

CASSCF method.39  Consistent with the very small weight of the σ2δ4 configuration, the 

Re−Re bond order is only 0.80.  In the 5A1' excited state, the populations of the δ and δ* 

orbitals are 2.01 and 1.99, respectively.  This means that the δ bonding interaction is 

negligibly small in this state.  The energy difference between the 1A1' and 5A1' states is 

evaluated to be 0.21 eV by the MRMP2 method, which corresponds to the approximate 

stabilization energy by the two components of degenerate δ bonding interactions. 

The strength of the σ bonding interaction in 2b is also worthy of investigation.  The 

populations of the σ and σ* orbitals are 1.62 and 0.38, respectively, in both the 1A1' and 5A1' 

states, as shown in Table 2.  These values suggest that the σ bonding interaction is not 

strong very much unlike those of 1 and 2a.  In the 5A1' state, the weights of the σ2δ2σ* 2 and 

δ2δ* 2σ* 2 configurations are evaluated to be 73 and 11 %, respectively, by the CASSCF 

method.  In the 7A2'' state, the population of the σ orbital is the same as that of the σ* 

orbital, which indicate that even the σ bonding interaction disappears in this state.  Thus, 

the energy difference between the 5A1' and 7A2'' states (1.73 eV) corresponds to the 

approximate stabilization energy by the σ bonding interaction, which is much smaller than 

that (4.36 eV) of 1.  The σ bond order in the 1A1' state of 2b (0.62) is also considerably 

smaller than those in the 1A1g state of 1 (0.92) and the 2E'' state of 2a (0.87).  This weak σ 

bond of 2b is interpreted, as follows:  One factor is the long Re−Re distance; because the 

Re−Re distance of 2b (2.704 Å) is much longer than that of 1 (2.24 Å), the dσ−dσ overlap 

between two Re centers is much smaller in 2b than in 1.  The other factor is the oxidation 

state of the Re center.  In 1, the populations of the σ and σ* orbitals are 1.83 and 0.17, 

respectively, when the Re−Re distance is taken to be the same as the experimental distance 

(2.704 Å) of 2b, as shown in Figure 2a.  Thus, the σ bond order of 1 with this Re−Re 

distance is 0.83, which is considerably larger than that of 2b (0.62), even though the Re−Re 
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distance is the same.  This result clearly shows that not only the Re−Re distance but also 

the other factor are responsible for the weaker σ bond of 2b than that of 1.  Such a factor is 

the oxidation state of the Re center.  As discussed above, 1 consists of two Re(III) atoms, 

but 2b consists of two Re(IV) atoms.  The less-expanding d orbital of Re(IV) than that of 

Re(III) leads to smaller dσ−dσ overlap of 2b than that of 1.  These two factors are 

responsible to the weaker σ bonding interaction of 2b than that of 1. 

It is of considerable interest to make a comparison between 2a and 2b, because the 

electronic structure is much different despite the similar geometry and similar d electron 

number; both complexes take the face-sharing structure and 2b has fewer d electrons than 2a 

by only one.  In 2a, the main configuration is σ2δ4δ* 1.  It is expected that one d electron is 

lost from the δ* orbital upon going to 2b from 2a and the Re−Re bond of 2b is stronger than 

that of 2a.  However, natural orbital population of the δ orbital extremely decreases and that 

of the δ* orbital rather increases in 2b, as shown in Table 2, against the above expectation.  

These population changes suggest that one d electron is lost not from the δ* orbital but from 

the δ orbital.  Thus, the electronic structure of 2b cannot be understood in terms of a usual 

orbital picture.  Also, it is noted that the Re−Re bond distance becomes longer in 2b than in 

2a, as shown in Table A1 (Appendix).  One plausible reason of the longer Re−Re distance 

in 2b is that one electron loss occurs in the δ orbital upon going to 2b from 2a.  This 

induces weakening of the δ bonding interaction.  It is worthwhile to discuss the reason that 

one electron loss occurs not in the δ* orbital but in the δ orbital in 2a.  It is likely that the 

electron repulsion of the d-shell is larger in 2b than in 2a because the d orbital of the 

Re(IV)−Re(IV) core is more compact than that of the Re(III)−Re(IV) core.  Also, Coulomb 

repulsion in the d-shell is larger in the σ2δ4 configuration than in the σ2δ3δ* 1 configuration.  

If the energy separation between the δ and δ* orbitals is sufficiently large, one δ* electron 

loss occurs in the σ2δ4δ* 1 configuration to afford the σ2δ4 configuration upon going to 2b 

from 2a.  In these complexes, however, the δ−δ* energy separation is small.  Thus, one δ 
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electron loss occurs in the σ2δ4δ* 1 configuration to afford the σ2δ3δ* 1 configuration, so as to 

decrease Coulomb repulsion in the d-shell. 

The DFT(B3LYP), CCSD, CCSD(T), BS-DFT(B3LYP), BS-CCSD, and BS-CCSD(T) 

methods were also applied to 2b, as shown in Table 3.  The 5A1' state is evaluated to be 

more stable than the 1A1' state by the methods other than BS-DFT(B3LYP).  These results 

are different from the results by the MRMP2 calculations.38  On the other hand, the 

DFT(B3LYP) method presents a similar result by the MRMP2 calculation, which indicates 

that the DFT(B3LYP) method is useful to present correctly the ground state of 2b. 

 

1.3.3. Edge-Sharing Complex [Re2(µµµµ-Cl)2Cl8]
2−−−− (3) 

Relative energies and natural orbital populations of the 1Ag, 
3B1u, 

5Ag, and 7B1u states 

were calculated by the CASSCF/basis-II and MRMP2/basis-II methods, as shown in Table 2.  

In all these states, the populations of the σ, π, and δ bonding orbitals are almost the same as 

those of their antibonding counterparts, respectively.  This means that the σ, π, and δ 

bonding interactions do not contribute to the Re−Re bond in these four states.  The weights 

of several important electron configurations are evaluated to be very small by the CASSCF 

method; 6 % for both the σ2π2δ2 and σ2π2δ* 2 configurations in the 1Ag state, 7 % for both the 

σ2π2δ1δ* 1 and σ2δ1δ* 1π* 2 configurations in the 3B1u state, and 16 % for both the 

σ2π1δ1δ* 1π* 1 and π1δ1δ* 1π* 1σ* 2 configurations in the 5Ag state.  As a result, these four 

states are in almost the same energy (within 0.03 eV).  In other words, the low spin state is 

not stabilized by the Re−Re bonding interaction unlike 1, 2a, and 2b.  These results are 

consistent with the experimental report that 3 is not diamagnetic but paramagnetic.12 

The absence of the Re−Re bonding interaction arises from the long Re−Re distance 

(3.691 Å) due to the edge-sharing geometry.  The oxidation state of Re(IV) center is also 

responsible for the absence of the Re−Re bonding interaction, as follows:  Because the d 

orbital of Re(IV) expands less than that of Re(III), the σ, π, and δ bonding interactions in 3 
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are weaker than those in 1.  For instance, the population of the σ orbital is almost the same 

as that of the σ* orbital in those four states of 3, as shown in Table 2, whereas the population 

of the σ orbital (1.30) is considerably larger than that of the σ* orbital in the 1A1g state of 1 

at the same Re−Re distance (3.691 Å) (see Figure 2a).  These results clearly show that the 

σ bonding interaction disappears in 3 but still remains in 1 at r(Re−Re) = 3.691 Å. 

Three d electrons are localized in three d orbitals of each Re center because the Re−Re 

interaction is absent.  As a result, the four states, 1Ag, 
3B1u, 

5Ag, and 7B1u, emerge from the 

electron configurations in which six electrons occupy the σ, π, δ, δ*, π*, and σ* orbitals in 

D2h symmetry.  The other states are at much higher energy than these four states by over 1.0 

eV (see Table A2 in Appendix) because those states consist mainly of the high-energy 

excited configurations. 

 

1.4. Conclusions 

Four dinuclear rhenium complexes, [Re2Cl8]
2− (1), [Re2(µ-Cl)3Cl6]

2− (2a), 

[Re2(µ-Cl)3Cl6]
− (2b), and [Re2(µ-Cl)2Cl8]

2− (3), were theoretically investigated by the 

CASSCF, MRMP2, SACASSCF, and MCQDPT methods.  In the 1A1g ground state of 1, the 

weights of the σ2π4δ2 and σ2π4δ* 2 configurations are 67 and 18 %, respectively, where 

weights evaluated by either the CASSCF/basis-II or the SA-CASSCF/basis-II method are 

presented hereafter.  The energy difference between the 1A1g and 3A2u states, which 

corresponds to the approximate stabilization energy by the δ bonding interaction, is 

evaluated to be 0.52 eV by the MRMP2/basis-II method.  The 7A2u state is much less stable 

than the 3A2u state by 5.77 eV.  This is because the bonding interactions of the two π 

orbitals disappear upon going to the 7A2u state from the 3A2u state.  The 9A1g state is further 

less stable than the 7A2u state by 4.36 eV because the σ bonding interaction disappears upon 

going to the 9A1g state from the 7A2u state.  Thus, the σ, π, and δ bonding interactions yield 

the approximate stabilization energies of 4.36, 2.89 (= 5.77/2), and 0.52 eV, respectively.  
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In the 1A1g state, the δ bonding interaction completely disappears at r(Re−Re) = 3.6 Å, 

whereas the π and σ bonding interactions completely disappear at r(Re−Re) = 4.6 and 6.0 Å, 

respectively. 

In the 2E'' ground state of 2a, the weights of the σ2δ4δ* 1 and σ2δ3δ* 2 configurations 

are 72 and 12 %, respectively.  The natural orbital populations clearly show that the δ 

bonding interaction in the 4E' state is much weaker than that in the 2E'' state.  As a result, 

the former state is evaluated to be 0.36 eV less stable than the latter one.  These results 

indicate that the δ bonding interaction is weaker in 2a than in 1.  In the 1A1' ground state of 

2b, the weight of the σ2δ4 configuration is evaluated to be 18 %.  The energy difference 

between the 1A1' and 5A1' states is evaluated to be 0.21 eV by the MRMP2/basis-II method, 

which corresponds to the approximate stabilization energy by the two components of 

degenerate δ bonding interactions.  The σ bonding interaction is also weak in this complex, 

as follows:  In the 5A1' state, the weights of the σ2δ2δ* 2 and δ2δ* 2σ* 2 configurations are 73 

and 11 %, respectively.  The energy difference between the 5A1' and 7A2'' states is evaluated 

to be 1.73 eV by the MRMP2/basis-II method, which corresponds to the approximate 

stabilization energy by the σ bonding interaction.  This approximate stabilization energy is 

much smaller than that of 1.  The bonding nature and the electronic structure of 2b are 

much different from the expectation based on a usual orbital picture that one d electron is 

lost from the δ* orbital upon going to 2b from 2a and the δ bonding interaction becomes 

stronger in 2b.  However, our theoretical calculation presents completely different results 

from the above expectation; the natural orbital population of the δ orbital decreases by 1.29 

and that of the δ* orbital increases by 0.29, which indicates that one electron loss occurs not 

in the δ* orbital but in the δ orbital upon going to 2b from 2a.  These unexpected results are 

interpreted in terms that one electron loss occurs in the δ orbital so as to decrease Coulomb 

repulsion in the d-shell because the δ−δ* energy separation is very small. 

In 3, the σ, π, and δ bonding interactions do not contribute to the Re−Re bond.  As a 
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result, the low spin 1Ag state is not stabilized by these bonding interactions unlike 1, 2a, and 

2b.  Four states, 1Ag, 
3B1u, 

5Ag, and 7B1u, are in almost the same energy within 0.03 eV.  

This result is consistent with the experimental report that 3 is paramagnetic.12 

The above mentioned energy difference between the ground and low-energy excited 

states lead to the conclusion that the Re−Re bonding interactions in the order 1 > 2a > 2b >> 

3, which is interpreted in terms of the Re−Re distance and the Re oxidation state. 

 

 

1.5. Appendix 

 

Scheme A1. 

σ σ*
δ δ*

a b c d

s t u v

(A)  deg-degorbitals including Re-Cl bonding interactions

(B)  Re-Re interaction orbitals

(C)  deg-deg orbitals including Re-Cl antibonding interactions

[Re2(µ-Cl)3Cl6]2- (2a) and [Re2(µ-Cl)3Cl6]- (2b)
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Scheme A2.  Several important molecular orbitals of [Re2(µ-Cl)2Cl8]
2− (3) 

σσσσ δδδδ*ππππ* δδδδσσσσ* ππππ

ba

ts

(A)  deg-degorbitals including Re-Cl bonding interactions

(B)  Re-Re interaction orbitals

(C)  deg-degorbitals including Re-Cl antibonding interactions

[Re2(µ-Cl)2Cl8]2- (3)
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Table A2.  Relative Energies (in eV) and Natural Orbital Populations of [Re2(µ-Cl)2Cl8]
2− (3) by the 

CASSCF/Basis-II and MRMP2/Basis-II Methods 

 relative energy natural orbital population 

 complex state CASSCF MRMP2 σ σ* π π* δ δ* 

 3 1Ag 0.02 0.03 1.00 1.00 0.99 1.01 0.97 1.03 

  1B1g 3.41 2.04 1.27 1.29 0.61 0.63 1.09 1.12 

  1B2g 3.38 2.00 1.59 1.58 0.72 0.71 0.69 0.72 

  1B3g 3.40 2.15 1.28 1.29 0.71 0.73 0.94 1.06 

  1Au 3.42 2.04 1.28 1.27 0.62 0.63 1.09 1.11 

  1B1u 3.51 2.21 1.00 1.00 1.00 1.00 1.00 1.00 

  1B2u 3.40 2.14 1.28 1.27 0.72 0.73 0.94 1.06 

  1B3u 3.39 2.01 1.58 1.57 0.70 0.73 0.69 0.73 

 

  3Ag 1.76 1.13 1.00 1.00 1.00 1.00 0.96 1.04 

  3B1g 1.71 1.10 1.28 1.26 0.98 1.02 0.71 0.75 

  3B2g 1.79 1.10 1.00 1.00 1.00 1.02 0.98 1.01 

  3B3g 1.70 1.08 1.26 1.26 0.73 0.74 0.96 1.04 

  3Au 1.71 1.10 1.27 1.27 0.98 1.02 0.72 0.74 

  3B1u 0.02 0.02 1.00 1.00 0.99 1.01 0.97 1.03 

  3B2u 1.69 1.08 1.27 1.26 0.73 0.74 0.96 1.04 

  3B3u 1.79 1.10 1.00 1.00 1.01 1.01 0.98 1.01 

 

  5Ag 0.01 0.02 1.00 1.00 0.99 1.01 0.98 1.02 

  5B1g 1.71 1.10 1.26 1.27 1.00 1.00 0.73 0.74 

  5B2g 1.78 1.07 1.00 1.00 1.02 0.99 0.98 1.01 

  5B3g 1.69 1.08 1.27 1.26 0.73 0.74 1.00 1.00 

  5Au 1.71 1.08 1.29 1.25 1.00 1.00 0.71 0.75 

  5B1u 1.75 1.13 1.00 1.00 1.00 1.00 1.00 1.00 

  5B2u 1.70 1.09 1.26 1.27 0.73 0.74 1.00 1.00 

  5B3u 1.78 1.07 1.00 1.00 0.98 1.03 0.97 1.02 

  

  7B1u 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Chapter 2 

 

Theoretical Investigation of µµµµ-O-Bridged Dinuclear Re Complexes:  

Electronic Structure, Bonding Nature, and Absorption Spectra 

 

2.1. Introduction 

Sulfur-bridged,1 halogen-bridged,2−6 and oxo-bridged7−11 dinuclear complexes are very 

interesting because the metal centers take various oxidation states and various coordination 

numbers in these compounds.  Especially, oxobridged rhenium, tungsten, and molybdenum 

complexes have attracted a lot of interests because their metal−metal distances are much 

shorter than those of other complexes, i.e., they should have strong metal−metal bond 

interaction.7−11  Also, they exhibit characteristic adsorption bands in visible region.  

However, the details of electronic structures, metal−metal bonding interactions, and origin of 

absorption spectra have not been clarified yet. 

These dinuclear transition metal complexes are one of the most challenging research 

subjects in theoretical chemistry because they have a lot of low-lying excited states in 

general.  For such systems, a multiconfigurational self consistent-field (MCSCF) method12 

should be applied to present even qualitatively correct results.  Furthermore, the dynamical 

electron correlation effects should be taken into consideration by ab initio multireference 

theory.  Several multireference methods such as multireference singles and doubles 

configuration interaction method (MR-SDCI), multireference second-order Møller−Plesset 

perturbation theory (MRMP2),13 and multiconfigurational second-order quasi degenerate 

perturbation theory (MCQDPT)14 have been proposed as such methods.  Although they all 

require much more computational efforts than the conventional DFT method, they were 

applied to π-conjugated15 and transition metal systems16,17 quite successfully. 

Stranger and coworkers theoretically investigated various dinuclear complexes of 

rhenium, technetium, tungsten, and molybdenum with the broken symmetry (BS) DFT 
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method to clarify the nature of the ground state and some low-lying excited states.18  Also, 

detailed knowledge including low-lying excited states of [Re2Cl8]
2−, [Re2Cl9]

−, [Re2Cl9]
2−, 

and [Re2Cl10]
2− were presented by ab initio multireference theories recently.19,20 

[ReIIIReIV(µ-O)2(Metpa)2]
3+, [ReIV

2(µ-O)2(Metpa)2]
4+, and [ReIV2(µ-O)2(Me2tpa)2]

4+ 

(Metpa = ((6-methyl-2-pyridyl)-methyl)bis(2-pyridylmethyl)-amine, Me2tpa = 

bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) synthesized by Umakoshi et al. 

exhibit characteristic absorption bands in visible region and these absorptions were on the 

basis of the metal−metal bonding and antibonding orbitals.10  It is also noted that the Re−Re 

bond length (2.426 Å) of [ReIIIReIV(µ-O)2(Metpa)2]
3+ is considerably longer than that (2.368 

Å) of [Re2
IV(µ-O)2(Metpa)2]

4+.  This result was experimentally interpreted in terms that 

[ReIIIReIV(µ-O)2(Metpa)2]
3+ and [ReIV2(µ-O)2(Metpa)2]

4+ which take the electron 

configurations of σ2π2δ2δ*1 and σ2π2δ2, respectively, and the occupation of the δ* orbital 

leads to the longer Re−Re distance of [ReIIIReIV(µ-O)2(Metpa)2]
3+ than that of 

[ReIV
2(µ-O)2(Metpa)2]

4+. 

In this article, we theoretically studied [ReIIIReIV(µ-O)2(Metpa)2]
3+, 

[ReIV
2(µ-O)2(Metpa)2]

4+, and [ReIV2(µ-O)2(Me2tpa)2]
4+, using an ab initio 

multireference-based MRMP2 method and the B3LYP method27,28 to clarify their electronic 

structures and bonding nature of the ground and some low-lying excited states.  Because 

these complexes are too large to calculate real molecules by the MRMP2 method, we 

modeled them as [ReIV
2(µ-O)2(NH3)8]

4+ (1; See Scheme 1) and [ReIIIReIV(µ-O)2(NH3)8]
3+ (2), 

by replacing Metpa and Me2tpa with eight NH3 ligands. 

 

 Scheme 1. 
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2.2. Computational Methods 

For hydrogen, nitrogen, and oxygen atoms, Dunning’s cc-pVDZ basis sets21 were used.  

In rhenium atom, the Kr core, 4d, and 4f electrons were replaced with effective core 

potentials, whereas the 5s, 5p, and valence electrons were represented by (5s6p3d/3s3p2d) 

Gaussian basis set.22 

In 1, the geometries of singlet to septet states were optimized by the B3LYP method.  

As this complex has a lot of low-lying excited states, the MRMP2 method was employed 

here, which state-specific CASSCF wavefunctions were used as reference functions.  The σ, 

σ*, π, π*, δ, and δ* orbitals involving six electrons were taken as active space in the 

CASSCF calculations, where these orbitals mainly consist of 5dx2−y2, 5dyz, and 5dxz orbitals of 

each rhenium center (see Scheme 1 for coordinate system).  In the MRMP2 calculations, 

the CASSCF active space was employed as the reference space, whereas the N 1s and O 1s 

orbitals were always kept to be doubly occupied.  The transition energies of low-lying 

excited states up to about 3.0 eV were calculated by the state-averaged CASSCF 

(SA-CASSCF) and MRMP2 methods, in which five state-averaged CASSCF wavefunctions 

for each irreducible representation were taken as reference functions.  Oscillator strengths 

were estimated with the SA-CASSCF wavefunctions.  In 2, geometries of doublet to sextet 

states were optimized by the B3LYP method.  The transition energies of low-lying excited 

states were evaluated by the SA-CASSCF and MRMP2 methods, in which nine 

state-averaged CASSCF wavefunctions were taken as reference functions for each 

irreducible representation.  The time-dependent (TD) B3LYP method was also used to 

evaluate transition energies and oscillator strengths. 

The B3LYP and CASSCF calculations were carried out with the Gaussian 0323 and 

GAMESS24 packages, respectively.  The MRMP2 calculations were performed with the 

MR2D25 program implemented in the GAMESS package.  To draw the 3D plots of 

molecular orbitals, the MOLEKEL (ver. 4.3) program package26 was used. 
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2.3. Results and Discussion 

2.3.1. Optimized Geometries and Electron Configurations for Each Spin Multiplicity 

Optimized geometries of 1 and 2 have C2 symmetry in all spin multiplicities.  Table 1 

shows selected bond lengths and bond angles optimized for all spin multiplicities of these 

two complexes.  The Re−Re bond length of 1 is 2.379, 2.570, 2.617, and 3.066 Å for the 1A, 

3B, 5A, and 7B states, respectively.  As the spin multiplicity increases, the Re−Re bond 

length becomes longer due to the occupation of antibonding orbitals.  As shown in Figure 1, 

the molecular orbitals of the 1A state calculated by the B3LYP method rise in energy in the 

order σ < δ* < π < π* < δ < σ*, which is different from the order σ < π < δ < δ* < π* < σ*, 

expected usually and proposed experimentally.10  As a result, the σ, δ*, and π orbitals are 

doubly occupied and the π*, δ, and σ* orbitals are unoccupied in the 1A state against our 

expectation and experimental proposal.  It is interesting to clarify the reason that the π and δ 

 

 

Table 1.  Bond lengths (in Å) and bond angles (in degree) of [ReIV
2(µ-O)2(NH3)8]

4+ (1) and 

[ReIIIReIV(µ-O)2(NH3)8]
3+ (2) optimized by the B3LYP method. 

 [ReIV
2(µ-O)2(NH3)8]

4+ (1) [ReIIIReIV(µ-O)2(NH3)8]
3+ (2) 

 1A 3B 5A 7B 2B 4A 6B 

 r(Re−Re) 2.379 2.570 2.617 3.066 2.461 2.569 3.023 

 r(Re−O) 1.951 1.948 1.993, 1.963 1.980 1.963 1.955, 2.016 1.977 

 r(Re−N1) 2.269 2.251 2.246 2.268 2.269 2.249 2.274 

 r(Re−N2) 2.269 2.251 2.257 2.268 2.269 2.270 2.274 

 r(Re−N3) 2.203 2.221 2.220 2.207 2.224 2.220 2.218 

 r(Re−N4) 2.203 2.221 2.216 2.208 2.224 2.227 2.218 

 a(Re−O−Re) 75.1 82.6 82.8 101.5 77.6 80.6 99.7 

 a(Re−Re−N1) 135.1 135.6 134.6 132.9 135.0 136.0 131.3 

 a(Re−Re−N2) 135.1 135.6 136.2 132.9 135.0 133.8 131.3 

 a(Re−Re−N3) 100.2 98.1 96.3 95.5 96.1 96.3 94.2 

 a(Re−Re−N4) 100.2 98.1 98.8 95.5 96.1 96.3 94.2 
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Figure 1.  The σ, δ*, π, π*, δ, and σ* molecular orbitals and orbital energies (in eV) of 

[ReIV
2(µ-O)2(NH3)8]

4+ (1) calculated by the B3LYP method. 

 

 

orbitals are calculated to be at higher energy than the δ* orbitals.  This unexpected order of 

orbital energies are easily interpreted in terms of the Re−O interaction, as follows:  As the 

dπ−dπ and dδ−dδ bonding orbitals of 1 form strongly antibonding interactions with doubly 

occupied p orbitals of O atoms, these orbitals are pushed up in energy by these antibonding 

interactions.  Actually, these antibonding interactions are clearly observed in the 61st and 

63rd orbitals (see Figure 1).  Although the dδ−dδ antibonding orbital does not involve 

antibonding overlap with the doubly occupied p orbitals of O atoms is involved; in other 

words, the δ* orbital is essentially the same as nonbonding d orbital.  Therefore, it is at 

lower energy than δ, π, and π* orbitals, and the orbital order calculated by the B3LYP 

method is reasonable.  Also, the 3B, 5A, and 7B states mainly consist of σ2δ*2π1π*1, 

σ2δ*1π1π*1δ1, and σ1δ*1π1π*1δ1σ*1 configurations, respectively, where those occupations 

are consistent with the order of orbital energies in the 1A state. 

The Re−Re bond length of 2 was optimized by the B3LYP method to be 2.461, 2.569, 

and 3.023 Å in the 2B, 4A, and 6B states, respectively.  It is noted that the Re−Re distance of 

2 in the 2B state is considerably longer than that of 1 in the 1A state as reported 

experimentally, while the Re−Re distances of 2 in the other 4A and 6B states are little 

different from those of 1 in the 3B and 7B states, respectively.  These results suggest that the 

ground state is the 2B state, as will be discussed later in more detail.  This difference in 

bond length between 1 in the 1A state and 2 in the 2B state is easily interpreted in terms of 
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electron configuration, as follows:  Complex 2 takes σ2δ*2π2π*1 electron configuration in 

the 2B state.  Because 2 has one more d electron than does 1, the π* orbital becomes 

halfoccupied in 2 with the 2B state, but it is unoccupied in 1 with the 1A state.  As a result, 

the Re−Re bond is weaker in 2 with the 2B state than in 1 with the 1A state. 

 

2.3.2. Relative Energies of Each Spin Multiplicity and Electronic State of Ground State 

Relative energies were estimated by the B3LYP, CASSCF, and MRMP2 methods, as 

shown in Table 2.  The electronic states become higher in energy in the order 7B < 3B < 5A 

< 1A in 1 and in the order 6B < 2B < 4A in 2, and the 7B and 6B states were calculated to be 

the most stable in 1 and 2, respectively, by the B3LYP method.  The CASSCF method 

presents the same order as that of the B3LYP method.  In the MRMP2 calculations, 

however, the low spin state is the most stable, and these electronic states become in the order 

1A < 3B < 7B < 5A in 1 and in the order 2B < 6B < 4A in 2.  As shown in Table 3, the 

decreasing order of the natural orbital occupation by the CASSCF method is almost the same 

 

 

 

Table 2.  Relative energies (in eV) of [ReIV(µ-O)2(NH3)8]
4+ (1) and [ReIIIReIV(µ-O)2(NH3)8]

3+ (2) 

calculated by the B3LYP, CASSCF, and MRMP2 methods, relative to the 1A and 2B state, respectively. 

 1A 3B 5A 7B 

 [ReIV(µ-O)2(NH3)8]
4+ (1) B3LYP 0.00 −0.16 −0.14 −0.78 

  CASSCF 0.00 −0.50 −0.24 −2.36 

  MRMP2 0.00 0.42 0.88 0.87 

 

 2B 4A 6B 

 [ReIIIReIV(µ-O)2(NH3)8]
3+ (2) B3LYP 0.00 0.04 −0.20 

  CASSCF 0.00 0.37 −1.19 

  MRMP2 0.00 0.93 0.42 
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Table 3.  Natural orbital populations of [ReIV
2(µ-O)2(NH3)8]

4+ (1) and [ReIIIReIV(µ-O)2(NH3)8]
3+ (2) 

calculated by the CASSCF method. 

 σ δ* π π* δ σ* 

 [ReIV
2(µ-O)2(NH3)8]

4+ (1) 1A 1.86 1.59 1.66 0.34 0.41 0.14 

  3B 1.67 1.33 1.06 0.94 0.67 0.33 

  5A 1.63 1.02 1.00 1.00 0.98 0.37 

  7B 1.00 1.00 1.00 1.00 1.00 1.00 

 

 [ReIIIReIV(µ-O)2(NH3)8]
3+ (2) 2B 1.86 0.35 1.90 1.10 1.65 0.14 

  4A 1.84 0.99 1.92 1.08 1.01 0.17 

  6B 1.00 1.00 1.00 1.00 2.00 1.00 

 

 

 

as the increasing order of Kohn−Sham orbital calculated by the B3LYP method in each state.  

It is noted that the natural orbital populations considerably differ from the usual values for 

unoccupied, half-occupied, and doubly occupied orbitals; for instance, the occupation 

numbers of the δ* and π natural orbitals are not 2.0 but about 1.6 in the 1A state.  Thus, the 

multireference-based methods such as the MRMP2 and CASPT2 methods must be applied to 

these complexes.  From these results, it is concluded that the 1A and 2B states are the 

ground states of 1 and 2, respectively, which will be discussed later based on a different 

support. 

 

2.3.3. Comparison between Experimental and Optimized Geometries 

The optimized Re−Re and Re−O bond lengths are 2.379 and 1.951 Å, respectively, in 

1 with the 1A state, as shown in Table 1.  These values are in good agreement with 

experimental values, r(Re−Re) = 2.368 Å and r(Re−O) = 1.952 and 1.932 Å for 

[ReIV
2(µ-O)2(Metpa)2]

4+ and r(Re−Re) = 2.383 Å and r(Re−O) = 1.946 and 1.915 Å for 
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[ReIV
2(µ-O)2(Me2tpa)2]

4+.  In the other 3B, 5A, and 7B state these optimized geometrical 

parameters considerably differ from the experimental values.  For instance, the 

experimental Re−Re distance is much shorter than the Re−Re distances optimized in these 

states; it is 2.570 Å in the 3B state and 2.617 Å in the 5A state.  In 2 with the 2B state, the 

optimized Re−Re and Re−O bond distances are 2.461 and 1.963 Å, respectively.  These 

values are in good agreement with experimental values, r(Re−Re) = 2.426 Å and r(Re−O) = 

1.965 and 1.934 Å for [ReIIIReIV(µ-O)2(Metpa)2]
3+.  The good agreement of the optimized 

Re−Re distance in the 2B state provides reliable support that the ground state of 2 is the 2B 

state, which is consistent with the computational results by the MRMP2 method. 

The longer Re−Re bond length of [ReIIIReIV(µ-O)2(Metpa)2]
3+ than those of 

[ReIV
2(µ-O)2(Metpa)2]

4+ and [ReIV2(µ-O)2(Me2tpa)2]
4+ was experimentally interpreted in 

terms of the occupation of the δ* orbital in the former complex.  Although the 

B3LYP-calculated electron configuration (σ2δ*2π2π*1) of the 2B state is different from the 

experimentally proposed one (σ2π2δ2δ*1), the present electron configuration provides 

reasonable explanation of the longer Re−Re distance in 2 with the 2B state as follows:  

Because the antibonding π* orbital becomes singly occupied on going from 1 with the 1A 

state to 2 with the 2B state, the Re−Re bond length is longer in 2 with the 2B state than 1 with 

the 1A state. 

 

2.3.4. Various Low-Lying Excites States in Geometries of Singlet to Septet States 

Figure 2 shows the MRMP2-calculated relative energies of the 1A, 1B, 3A, 3B, 5A, 5B, 

and 7B states with geometries optimized for each spin multiplicity by the B3LYP method.  

The 1A, 3B, and 5A states are considerably more stable than the 1B, 3A, and 5B states in all 

the geometries of singlet to septet states.  Although the 1A and 3B states are most stable in 

the optimized geometries of singlet and triplet states, respectively, the 5A and 7B states 

become considerably stable at the septet-optimized geometry.  These results show that 
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B3LYP-optimized geometries are expected to be similar to MRMP2-optimized geometries 

and the optimization by the B3LYP method is reasonable.  Figure 3 shows occupation 

numbers of σ, π, δ, δ*, π*, and σ* natural orbitals of 1A, 3B, 5A, and 7B states with 

geometries optimized for each spin multiplicity.  As the occupation numbers of the σ 

bonding orbital in the 1A, 3B, and 5A states considerably diminish between quintet and septet 

geometries, the σ bonding interaction does not exist at the septet geometry, r(Re−Re) = 

3.066 Å.  Also, the occupation numbers of the π bonding orbital in the 1A and 3B states 

considerably diminish between singlet and triplet geometries.  Therefore, the π bonding 

interaction does not exist in the triplet geometry, r(Re−Re) = 2.570 Å.  As the occupation 

numbers of these orbitals are almost 1.0 in all states taking the geometry, r(Re−Re) = 3.066 

Å, no metal−metal bonding interaction exists in this geometry.  Also, the occupation 

numbers are almost 1.0 in the 7B state, indicating that all these orbitals are singly occupied; 

in the other words, the Re−Re bonding interaction does not exist at all in this state. 

 

 

 

Figure 2.  Relative energies (in eV) of ground and low-lying excited states for [ReIV2(µ-O)2(NH3)8]
4+ (1) 

calculated by the MRMP2 method.  Geometries were optimized with the B3LYP method for each spin 

multiplicity. 
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Figure 3.  Occupation numbers of natural orbital for [ReIV
2(µ-O)2(NH3)8]

4+ (1) estimated by the CASSCF 

method.  The r(Re−Re) distances at the singlet (1A), triplet (3B), quintet (5A), septet (7B) states are 2.379, 

2.570, 2.617, and 3.066 Å, respectively. 

 

 

2.3.5. Excitation Energies and Oscillator Strengths 

[ReIV
2(µ-O)2(tpa)2]

4+, [ReIV
2(µ-O)2(Metpa)2]

4+, and [ReIV2(µ-O)2(Me2tpa)2]
4+ exhibit 

two strong absorption bands at 2.19, 2.13, and 2.13 eV, respectively, and at 2.60, 2.57, and 

2.56 eV, respectively as shown in Table 4.  The molar extinction coefficient of the second 

band is about four times as large as that of the first one.  The SA-CASSCF method was 

employed to determine the wavefunctions of excited states, in which five states and nine 

states were employed for each irreducible representation in 1 and 2, respectively.  In 1, the 

first excitation is calculated at 2.49 eV by the CASSCF method and 2.12 eV by the MRMP2 

method.  The second excitation is calculated at 2.37 eV by the CASSCF method and 2.59 

eV by the MRMP2 method.  The oscillator strengths of the first and the second excitations 
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Table 4.  Excitation energies (in eV) and oscillator strengths of [ReIV2(µ-O)2(NH3)8]
4+ (1) and 

[ReIIIReIV
2(µ-O)2(NH3)8]

3+ (2) calculated by the MRMP2 ,method, relative to the ground state 1A and 2B, 

respectively. 

 CASSCF MRMP2 f transition expta 

 [ReIV
2(µ-O)2(NH3)8]

4+ 

 11B 2.49 2.12 0.002860 δ* → π* 2.19 (2400),b 2.13 (2100),c 

      2.13 (1800)d 
 

 21B 3.37 2.59 0.000176 π → π*,   δ* → δ 2.60 (9200),b 2.57 (11200),c 

      2.56 (8700)d 
 

 11A 2.99 3.08 0.000000 πδ* → π*δ 

 31B 3.91 3.11 0.010271 π → δ 

 41B 4.04 3.27 0.002902 σ → π* 

 51B 4.17 3.55 0.000101 σ → δ 

 

 [ReIIIReIV(µ-O)2(NH3)8]
3+ 

 12B 0.48 0.52 0.000003 π* → δ 

 12A 0.94 0.91 0.006461 π* → δ, π → π* 

 22A 1.46 1.31 0.001773 δ*π* → δ2, π → δ 1.38 (2000),e 1.34 (2100),f 

      1.30 (1100)g 
 

 32A 1.76 1.39 0.000389 δ* → π* 

 42A 1.85 1.66 0.002284 π → π*, δ* → δ 1.85 (4700)f 

 22B 2.02 1.97 0.000027 π* → σ* 

 52A 2.43 2.39 0.001541 δ*π* → δ2, π → δ 2.17 (11900),e 2.18 (11500),f 

      2.23 (7200)g 
 

 62A 2.78 2.65 0.000097 σ → π* 

 72A 2.77 2.66 0.012656 ππ* → δ2 2.60 (8700),e 2.60 (8300)f 

 32B 2.96 2.79 0.000000 δ*2 → π*δ 

 82A 2.89 2.87 0.000005 δ*π* → δσ*,   π → σ* 

(a) In parentheses are molar extinction coefficients (in dm3mol−1cm−1).  (b) [ReIV
2(µ-O)2(tpa)2]

4+ in ref 9.  (c) 

[ReIV
2(µ-O)2(Metpa)2]

4+ in ref 9.  (d) [ReIV
2(µ-O)2(Me2tpa)2]

4+ in ref 9.  (e) [ReIIIReIV(µ-O)2(tpa)2]
3+ in ref 9.  

(f) [ReIIIReIV(µ-O)2(Metpa)2]
3+ in ref 9.  (g) [ReIIIReIV(µ-O)2(Me2tpa)2]

3+ in ref 9. 
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are calculated to be 0.002860 and 0.000176 at the SA-CASSCF level.  The 

MRMP2-evaluated excitation energies agree well with the experimental values and the 

CASSCF-calculated excitation energies moderately agree with the experimental values, 

whereas oscillator strengths are somewhat different from the experimental values.  Thus, 

the first excitation is assigned as 11B state, which mainly consists of the δ* → π* excitation.  

The second excitation is assigned as 21B state, which mainly consists of the π → π* and δ* 

→ δ excitations. 

Also, the TD-B3LYP method was applied to evaluate the transition energies of 1.  

The excitation energies to the 11B and 21B states were calculated to be 1.91 and 2.57 eV, 

respectively.  Oscillator strengths were 0.0019 and 0.0343, respectively.  Although these 

two states estimated by the TD-B3LYP method are not the first and second excited states but 

the third (π → δ and δ* → π*) and the fifth (δ* → δ) ones; the first (δ* → π*), the second (π 

→ π*), and the fourth (π → σ*) excited states which are calculated at 1.09, 1.32, and 2.54 eV, 

respectively, have negligible small oscillator strengths.  Thus, the TD-B3LYP calculated 

excitation energies in 1 agree well with the experimental results. 

[ReIIIReIV(µ-O)2(tpa)2]
3+, [ReIIIReIV(µ-O)2(Metpa)2]

3+, and 

[ReIIIReIV(µ-O)2(Me2tpa)2]
3+ exhibit a lot of absorption bands, whereas [ReIV

2(µ-O)2(tpa)2]
4+, 

[ReIV
2(µ-O)2(Metpa)2]

4+, and [ReIV2(µ-O)2(Me2tpa)2]
4+ which exhibit two strong ones.  For 

example, two weak absorption bands are observed at 1.34 and 1.85 eV, and two strong bands 

are observed at 2.18 and 2.60 eV in [ReIIIReIV(µ-O)2(Metpa)2]
3+.  In 2, the excitation 

energies with large oscillator strengths are calculated to be 0.91, 1.31, 1.66, 2.39, and 2.66 

eV by the MRMP2 method and assigned as the 12A, 22A, 42A, 52A, and 72A states, 

respectively.  Two weak absorption bands are the 22Aand 42Astates and two strong bands 

are the 52Aand 72A states.  Excitation energies and oscillator strengths agree well with 

experimental values except for the oscillator strength of the 2B → 52A excitation.  Both the 

2B → 22A and 2B → 52A excitations mainly consists of the δ*π* → δ2 and π → δ excitations 
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and the 2B → 42A excitation mainly consists of the π → π* and δ* → δ excitations.  The 2B 

→ 72A excitation mainly consists of the ππ* → δ2 excitation.  In other words, δ*, π, π*, and 

δ orbitals participate in these absorptions. 

In the TD-B3LYP calculations, the excited state with the largest oscillator strength is 

the 2B state.  The excitation energy of 2.40 eV agrees well with the experimental values.  

However, the assignments are different between the MRMP2 and TD-B3LYP calculations; 

all the excited states with large oscillator strength by the SA-CASSCF method are belonging 

to the 2A states.  Although the TD-B3LYPcalculated excitation energies in 1 agree well 

with the experimental values, the TD-B3LYP-calculated results in 2 do not agree with the 

experimental values.  As much more low-lying excited states exist in 2 than in 1, the 

multiconfigurational nature of wavefunction is very strong in the excited state of 2. 

 

2.4. Conclusions 

We theoretically studied [ReIV
2(µ-O)2(NH3)8]

4+ (1) and [ReIIIReIV(µ-O)2(NH3)8]
3+ (2), 

which are the model of [ReIIIReIV(µ-O)2(Metpa)2]
3+, [ReIV

2(µ-O)2(Metpa)2]
4+, and 

[ReIV
2(µ-O)2(Me2tpa)2]

4+, using the MRMP2 and B3LYP method to clarify their electronic 

structures and bonding nature of the ground and some low-lying excited states.  In the 

B3LYP calculations of the 1A state of 1, important molecular orbitals rise in energy in the 

order σ < δ* < π < π* < δ < σ*, which is different from the order σ < π < δ < δ* < π* < σ*, 

experimentally proposed.  However, the computational results are reasonable, as follow:  

The π and δ bonding orbitals of 1 form antibonding interactions with doubly occupied p 

orbitals of O atoms but the δ* antibonding orbital does not, the π and δ orbitals become 

higher in energy than the δ* orbital. 

The ground states of 1 and 2 were assigned to be the 7B and 6B states, respectively, by 

the B3LYP and CASSCF methods, but to be the 1A and 2B states, respectively, by the 

MRMP2 method.  Although the B3LYP-optimized Re−Re distances of the 7B and 6B states 
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differ much from the experimental values of similar complexes such as [ReIV
2(µ-O)2(tpa)2]

4+, 

[ReIV
2(µ-O)2(Metpa)2]

4+, and [ReIV2(µ-O)2(Me2tpa)2]
4+, those of the 1A and 2B states are in 

good agreement with the experimental ones.  These results indicate that the ground states 

are the 1A and 2B states, respectively, as evaluated by the MRMP2 method.  Also, these 

three complexes exhibit two large absorption bands at about 2.1 and 2.6 eV, which are 

assigned to be the 1A → 11B and 1A → 21B excitations by the MRMP2 method.  These 

excitation energies are calculated to be 2.12 and 2.59 eV by the MRMP2 method, which are 

in good agreement with the experimental values of three similar complexes.  The 1A → 11B 

excitation mainly consists of the δ* → π* excitation, and the 1A → 21B excitation consists of 

the π → π* and δ* → δ excitations.  [ReIIIReIV(µ-O)2(Metpa)2]
3+ exhibits two strong 

absorptions at 2.18 and 2.59 eV and two weak ones at 1.34 and 1.85 eV, which are assigned 

to be the 2B → 52A and 2B → 72A excitations and the 2B → 22A and 2B → 42A excitations, 

respectively, by the MRMP2 method.  The 2B → 22A and 2B → 52A excitations mainly 

consists of the δ*π* → δ2 and π → δ excitations and the 2B → 42A excitation mainly consists 

of the π → π* and δ* → δ excitations.  The 2B → 72A excitation mainly consists of the ππ* 

→ δ2 excitation. 
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Chapter 3 

 

Theoretical Study of Pyrazolate-Bridged Dinuclear Platinum(II) 

Complexes:  Interesting Potential Energy Curve of the Lowest Energy 

Triplet Excited State and Phosphorescence Spectra 

 

3.1. Introduction 

Luminescence spectra of transition metal complexes have been investigated well so far 

in both fundamental chemistry and applied chemistry because luminescence spectra provide 

valuable knowledge of the excited state and also emissive compounds are useful as optical 

materials such as light-emitting devices, photochemical sensors, and biological labeling 

probes.1−3  In particular, the 5d transition metal complexes such as iridium2 and platinum 

complexes2a,3−6 have drawn considerable interest because most of them exhibit strong 

phosphorescence spectra. 

Recently, new characteristic phosphorescence spectra were reported in multinuclear 

platinum complexes.1c,2a,3−5  Interestingly, those spectra are much different from those of 

mononuclear complexes.  For instance, phosphorescence spectra of pyrazolate-bridged 

dinuclear platinum(II) complexes, [Pt2(µ-R2pz)2(dfppy)2] (dfppy = 

2-(2,4-difluorophenyl)pyridine; R2pz = pyrazolate in 1, 3,5-dimethylpyrazolate in 2, 

3-methyl-5-tert-butylpyrazolate in 3, and 3,5-bis(tert-butyl)pyrazolate in 4; Scheme 1), 

which were reported by Thompson and his collaborators,5 are interesting for the reasons that 

follow:  (1) The energies of phosphorescence of 1 and 2 are almost the same in both 

polystyrene at room temperature (RT) and 2-methyltetrahydrofuran (2-MeTHF) at 77 K, 

while the energies of phosphorescence of 3 and 4 are moderately lower in the former 

solution than in the latter one.  (2) The energy of phosphorescence of 3 is much lower in 

fluid 2-MeTHF at RT than in frozen 2-MeTHF at 77 K, while the energy of phosphorescence 

of 4 is moderately lower in the former solution than in the latter one.  These interesting 
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features were discussed in terms of the geometries and the electronic structures of the singlet 

ground state (S0) and the lowest energy triplet excited state (T1).
5  Thus, it is worth 

theoretically investigating the geometries and the electronic structures of the ground and 

excited states of these complexes. 

In this study, we theoretically investigated the pz-bridged dinuclear platinum(II) 

complexes 1−4.  Our purposes here are to present theoretical knowledge of the geometries, 

the electronic structures, and the potential energy curves (PECs) of the S0 and T1 states of 

these complexes and to clarify the reason why their phosphorescence spectra depend 

considerably on the substituents on pz and the measurement conditions. 

 

 

 

Scheme 1. 
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3.2. Computational Details 

We employed two basis set systems (basis-I and II) in this study.  In basis-I, core 

electrons (up to 4f) of Pt were replaced with the relativistic effective core potentials (ECPs) 

proposed by Hay and Wadt,7 and its valence electrons were represented by (541/541/111/1) 

basis set.8,9  The 6-31G* basis sets10 were used for H, C, N, and F.  In basis-II, valence 

electrons of Pt were represented by (5311/5311/111/1) basis set8,9 with the same ECPs as 

those of basis-I.  The cc-pVDZ basis sets11 were used for H, C, N, and F. 

The geometries of 1−5 were optimized by the DFT(B3PW91)/basis-I method12,13 in 

both the S0 and the T1 states.  We ascertained that each optimized geometry exhibited no 

imaginary frequency.  The PECs of 1−4 were evaluated as a function of the Pt−Pt distance 

in the S0 and T1 states, where all geometrical parameters were optimized with the 

DFT(B3PW91)/basis-I method at each Pt−Pt distance.  The energy of phosphorescence was 

defined as the energy difference between the S0 and the T1 states at either the T1-global or 

the T1-local minimum geometry.  This energy difference was calculated by the 

DFT(B3PW91)/basis-II method. 

The solvent effect of fluid 2-MeTHF was taken into consideration by the polarized 

continuum model (PCM),14 where THF was employed as a model of 2-MeTHF as in 

previous theoretical study.15  All calculations were performed with the Gaussian 03 

(revision C.02) program package.16  Molecular orbitals were drawn by the MOLEKEL 

(version 4.3) program.17 

 

3.3. Results and Discussion 

3.3.1. Geometry and Electronic Structure of the S0 State 

The optimized geometries of 1−4 in the S0 state are named 1S0−4S0, respectively, 

hereafter.  As shown in Table 1 and Figure 1, the optimized geometrical parameters 

including the Pt−Pt distance of 1S0, 2S0, and 3S0 agree well with those of the experimental 
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ones, while the optimized Pt−Pt distance of 4S0 is moderately longer than that of the 

experimental one.  The geometry of the Pt−dfppy moiety is almost the same in 1S0−4S0 

(see Table 1 for the Pt1−N5 length, the N5−Pt1−C1 angle, etc.).  Interestingly, the Pt−Pt 

distance becomes shorter in the order 1 > 2 > 3 > 4, and the θ angle between the Pt−dfppy 

moiety and the N1−N2−N3−N4 plane decreases in the same order in both the experimental 

and the calculated geometries, where the N1, N2, N3, and N4 are on one plane18 and the θ  

angle is defined in Scheme 1.  These experimental results are explained in terms of the 

steric repulsion between dfppy and the substituents on pz, as follows:  In 1S0, the H atoms 

on pz slightly push the dfppy plane away, leading to the large θ angle and the long Pt−Pt 

distance, as shown in Figure 1.  In 2S0, the four methyl groups on pz moderately push the 

dfppy plane away to moderately decrease the Pt−Pt distance and the θ angle (see Figure A1 

in Appendix).  In 3S0, the two methyl and two tert-butyl groups considerably push the 

dfppy plane away to considerably decrease the Pt−Pt distance and the θ angle.  In 4S0, the 

four tert-butyl groups on pz strongly push the dfppy plane away to greatly decrease the Pt−Pt 

distance and the θ angle. 

The highest occupied molecular orbitals (HOMOs) of 1S0−4S0 mainly consist of the 

dσ−dσ antibonding overlap between two Pt nuclei, and their lowest unoccupied molecular 

orbitals (LUMOs) mainly consist of the π* orbital of dfppy, as shown in Figures 2 and S2 

(Appendix).  The HOMO is named the dσ*(Pt−Pt) orbital hereafter because the dσ orbital 

of one Pt atom overlaps with the dσ orbital of the other Pt atom in an antibonding way.  The 

π orbital of dfppy is at moderately lower energy than the HOMO.  As the Pt−Pt distance 

becomes shorter, the dσ−dσ antibonding overlap increases.  As a result, the dσ*(Pt−Pt) 

orbital energy becomes higher with a decrease in the Pt−Pt distance, as clearly shown in 

Figure 3, in which the dσ*(Pt−Pt) orbital energies are plotted against the Pt−Pt distance.  

On the other hand, the π and π* orbital energies of dfppy (Figure 2) slightly depend on the 

Pt−Pt distance, as expected.  In addition, these orbital energies are almost the same as those 
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of the mononuclear Pt(II) complex [Pt(µ-pz)2(dfppy)B(C2H5)2] (5), as shown in Table 1. 

These features observed in the S0 geometry, the HOMO, and the LUMO deeply relate 

to the phosphorescence spectra of those complexes, as will be discussed below. 

 

 

 

 

 

 

: Pt

: H

: C

: N

: F

1S0

3.395 Å (calc)
3.376 Å (expt)

rPt−Pt :

front view

1T1a

2.735Å

1T1b

3.410Å

small

front view

4S0

2.939 Å (calc)
2.834 Å (expt)

rPt−Pt :

4T1a

2.649 Å

large

 

Figure 1.  S0- and T1-optimized geometries of 1 and 4.  Red arrows schematically represent the steric 

repulsion between dfppy and substituents (H atoms in 1 and tert-butyl groups in 4).  Experimental Pt−Pt 

distances were reported in ref 5. 
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Table 1.  Several important optimized bond lengths (in Å), bond angles (in degree), dihedral angles (in 

degree)a and energies of π*(dfppy), dσ*(Pt−Pt), and π(dfppy) orbitals (in eV)b of 1 to 5 

 1 2 

 exptc 1S0 1T1a 1T1b exptc 2S0 2T1a 2T1b 

 r(Pt1−Pt2) 3.376 3.395 2.735 3.410 3.191 3.239 2.724 3.252 
 

 r(Pt1−N1) 2.082 2.117 2.140 2.119 2.057 2.124 2.138 2.124 

 r(Pt1−N3) 2.009 1.988 2.032 2.027 2.020 2.017 2.030 2.018 

 r(Pt1−N5) 2.013 2.027 2.010 1.996 2.007 2.028 2.014 2.027 

 r(Pt1−C1) 1.996 1.988 1.989 1.962 2.001 1.987 1.990 1.987 
 

 a(N1−Pt1−N3) 85.5 85.1 85.0 85.1 86.4 84.6 85.1 84.6 

 a(N5−Pt1−C1) 81.5 81.1 81.6 82.4 80.8 81.0 81.5 81.0 
 
 d(Pt1−N1−N3−N4)d 132.6 132.3 116.9 132.6 128.3 128.0 116.6 128.4 
 

 ε(π*(dfppy))  −2.04 −2.25 −2.24  −1.99 −2.18 −2.18 

 ε(dσ*(Pt−Pt))e  −5.85 −4.96 −5.93  −5.60 −4.85 −5.65 

 ε(π(dfppy))  −6.50 −6.23 −6.51  −6.45 −6.59 −6.52 

 3 4 5 

 exptc 3S0 3T1a exptc 4S0 4T1a exptc 5S0 5T1 

 r(Pt1−Pt2) 3.046 3.044 2.686 2.834 2.939 2.649    
 

 r(Pt1−N1) 2.096 2.155 2.167 2.121 2.161 2.166 2.074 2.118 2.118 

 r(Pt1−N3) 2.031 2.020 2.027 2.054 2.043 2.052 2.010 2.020 2.029 

 r(Pt1−N5) 2.004 2.031 2.023 2.015 2.029 2.017 2.006 2.028 1.998 

 r(Pt1−C1) 1.979 1.984 1.986 1.987 1.985 1.995 1.981 2.020 1.968 
 

 a(N1−Pt1−N3) 85.2 84.8 85.2 86.0 85.9 86.4 84.7 84.3 84.7 

 a(N5−Pt1−C1) 81.2 80.9 81.3 81.1 80.9 81.3 80.6 80.7 81.9 
 

 d(Pt1−N1−N3−N2)d 130.3 128.2 120.7 

 d(Pt1−N1−N3−N4)d    118.4 120.7 114.8 140.9 144.8 145.9 
 

 ε(π*(dfppy))  −2.00 −2.16  −2.04 −2.25  −2.12 −2.37 

 ε(dσ*(Pt−Pt))e  −5.38 −4.81  −5.07 −4.58    

 ε(π(dfppy))  −6.49 −6.48  −6.49 −6.34  −6.14 −5.99 

(a) Geometries were optimized with the DFT(B3PW91)/basis-I method.  (b) Orbital energies were calculated 

in the S0 state with the DFT(B3PW91)/basis-II method, where the S0-, T1a-, and T1b-optimized geometries were 

employed for the S0, T1a, and T1b states, respectively.  (c) Ref 5.  Averaged values for Cs symmetry in 1, 2, and 

4 and C2 symmetry in 3.  For instance, r(Pt1−N1) in this table corresponds to the average value of r(Pt1−N1) 

and r(Pt2−N2) reported experimentally.  (d) The dihedral angle corresponds to θ  in Scheme 1.  (e) The 

HOMO of the S0 state. 
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Figure 3.  Energies of the dσ*(Pt−Pt) orbital (HOMO of the S0 state) and the π*(dfppy) orbital (LUMO 

of the S0 state) of 1 to 4 vs. the Pt−Pt distance.  These orbital energies were calculated in the S0 state with 

the DFT(B3PW91)/basis-II method.  The geometries were optimized in the T1 state at each Pt−Pt distance 

with the DFT(B3PW91)/basis-I method. 

 

 

3.3.2. Geometry and Electronic Structure of the T1 State 

There are two possible lowest energy triplet excited states, as shown in Figure 2.  In 

one (1T1a), one-electron excitation occurs from the dσ*(Pt−Pt) orbital to the π* orbital of 

dfppy.  In the other (1T1b), one-electron excitation occurs from the π orbital to the π* 

orbital in dfppy.  The former is named metal−metal-to-ligand charge transfer (MMLCT) 

excitation and the latter is the π−π* excitation.  First, we optimized the geometry of the 

former excited state, which corresponds to the T1-global minimum (1T1a−4T1a), as will be 

shown below.  Its optimized geometrical parameters are presented in Table 1 and Figure 1 

(see also Figure A1 in Appendix for the T1-global minimum geometries of 2 and 3).  The 

Pt−Pt distance is much shorter and the θ angle is much smaller in all the T1-global minimum 

geometries (1T1a−4T1a) than in all the S0-equilibrium ones (1S0−4S0).  This result is 

explained in terms of the dσ−dσ bonding interaction, as follows:  In 1S0, this bonding 
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interaction is not formed at all because the antibonding dσ*(Pt−Pt) orbital is doubly 

occupied, as shown in Figure 2.  In 1T1a, on the other hand, one-electron excitation occurs 

from the dσ*(Pt−Pt) orbital to the π* orbital of dfppy.  As a result, the dσ*(Pt−Pt) orbital 

becomes singly occupied, which leads to the formation of the Pt−Pt bonding interaction and 

the decrease of the Pt−Pt distance in 1T1a.  The difference (0.086 Å) in the Pt−Pt distance 

between 1T1a and 4T1a is much smaller than that (0.456 Å) between 1S0 and 4S0.  This 

result indicates that the T1-global minimum geometry depends less on the substituents on pz 

than does the S0-equilibrium one.  This is because the Pt−Pt bonding interaction in addition 

to the substituents on pz plays important roles to determine the Pt−Pt distance of the 

T1-global minimum but only the substituents on pz play important roles to determine the 

Pt−Pt distance in the S0 state.  Thus, the Pt−Pt distance depends less on the substituent on 

pz in the T1-global minimum than in the S0 state. 

The dσ*(Pt−Pt) orbital is at a much higher energy in the T1-global minimum geometry 

than in the S0-equilibrium one in all complexes, as shown in Table 1.  This is because the 

Pt−Pt distance is much shorter in the T1-global minimum geometry than in the 

S0-equilibrium one; note that the dσ*(Pt−Pt) orbital energy becomes higher as the Pt−Pt 

distance becomes shorter (Figure 2) because this orbital involves the dσ−dσ antibonding 

overlap.  It is noted that the orbital energy of 4T1a is the highest in all the T1-global minima, 

as shown in Table 1 and Figure 3.  This is because the Pt−Pt distance of 4T1a is the shortest 

in these T1-global minima.  On the other hand, the dσ*(Pt−Pt) orbital is at a much lower 

energy in 1T1a and 2T1a because the Pt−Pt distance is considerably longer in these 

geometries.  It is also noted that the orbital energy of 3T1a is little different from those of 

1T1a and 2T1a (see Figure 3) in spite of the shorter Pt−Pt distance of 3T1a than those of 1T1a 

and 2T1a, as clearly shown in Table 1.  These results are interpreted in terms of the 

symmetries of these complexes.  Because all substituents on pz are the same in 1, 2, and 4 

(H atoms in 1, methyl groups in 2, and tert-butyl groups in 4; see Schemes 1 and 2), both the 
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phenyl and the pyridine moieties of dfppy are pushed away to a similar extent by these 

substituents on pz.  As a result, 1T1a, 2T1a, and 4T1a take the Cs-like geometry.  Because 

the dz2 orbital of Pt1 expands toward the Pt2 atom in this geometry, the dσ−dσ antibonding 

overlap is large, which considerably raises the dσ*(Pt−Pt) orbital energy.  In 3, two large 

tert-butyl groups and two small methyl groups are introduced to pz.  Because the pyridine 

moiety of dfppy is strongly pushed away by the tert-butyl group but the phenyl moiety is 

moderately pushed away by the methyl group, as shown in Scheme 2, 3T1a takes not the 

Cs-like symmetry but the C2-like one.  In this geometry, the dz2 orbital of Pt1 does not 

expand toward Pt2, and its direction deviates from the Pt−Pt line, which decreases the 
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dσ−dσ antibonding overlap.  As a result, the dσ*(Pt−Pt) orbital energy of 3 is not 

destabilized very much but becomes similar to those of 1 and 2 in spite of its shorter Pt−Pt 

distance than those of 1 and 2. 

We tried to optimize the T1-geometry with the π−π* excitation of dfppy and found a 

T1-local minimum of 1 and 2 (1T1b and 2T1b), as shown in Table 1 and Figure 1.  We 

ascertained that these local minima have no imaginary frequency.  These T1-local minima 

are less stable than the T1-global minima by 0.09 eV in 1 and 0.21 eV in 2.19  Their 

geometries are similar to the S0-equilibrium geometries unlike 1T1a and 2T1a.  This is easily 

understood in terms of the electronic structures of 1T1b and 2T1b.  Because the dσ*(Pt−Pt) 

orbital is doubly occupied in 1T1b and 2T1b like 1S0 and 2S0, as shown in Figure 2, the 

dσ−dσ bonding interaction is not formed at all in 1T1b and 2T1b, which is consistent with the 

long Pt−Pt distance of 1T1b (3.410 Å) and 2T1b (3.252 Å).  Several interesting features are 

observed in 1T1b and 2T1b, as follows:  (1) Though the π and π* orbitals of dfppy are 

delocalized on the whole molecule in 1S0, 2S0, 1T1a, and 2T1a, they are localized on one 

dfppy in 1T1b and 2T1b.  (2) The dπ(Pt−Pt) orbital weakly interacts with the π orbital of 

dfppy in an antibonding way in 1S0, 2S0, 1T1b, and 2T1b, where the dπ(Pt−Pt) represents the 

dπ−dπ bonding orbital between two Pt atoms.  (3) But, the dπ(Pt−Pt) orbital slightly 

participates with the π* orbital of dfppy in 1T1b and 2T1b.  Thus, the electronic structures of 

1T1b and 2T1b are not simple ligand-centered π−π* excited states but the mixture of 

ligand-centered π−π* excited states and metal-to-ligand charge transfer excited states 

(3LC/MLCT).  This feature is similar to the T1 state of 5 (5T1).  Actually, the π(dfppy) and 

π*(dfppy) orbital energies are almost the same in 1T1b, 2T1b, and 5T1, as shown in Table 1.  

In other words, the electronic structures of 1T1b and 2T1b are similar to that of 5T1. 

No local minima, which corresponds to 1T1b and 2T1b, however, could be optimized in 

the T1 state of 3 and 4.  This is easily interpreted in terms of the large steric repulsion 

between the substituents on pz and dfppy.  As shown in Figure 1, this large steric repulsion 
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significantly decreases the Pt−Pt distance even in the ground state; actually, the Pt−Pt 

distance of 4 is much shorter than that of 1.  The short Pt−Pt distance considerably 

destabilizes the dσ*(Pt−Pt) orbital energy, which leads to a considerably stable 3MMLCT 

excited state relative to the 3LC/MLCT excited state.  As a result, the 3LC/MLCT excited 

state cannot become local minima in 3 and 4. 

 

3.3.3. Phosphorescence Spectra of [Pt2(µ-pz)2(dfppy)2] (1) and [Pt2(µ-Me2pz)2(dfppy)2] (2) 

PECs of the S0 and T1 states of 1 and 2 are represented as a function of the Pt−Pt 

distance (Figures 4a and 4b), in which both S0- and T1-geometries were optimized at each 

Pt−Pt distance.  A small but non-negligible activation barrier exists between the T1-global 

(1T1a and 2T1a) and the T1-local minima (1T1b and 2T1b).  Because of the presence of this 

barrier, it is likely that the T1-geometries of 1 and 2 stay at these T1-local minima in frozen 

2-MeTHF at 77 K and polystyrene at RT, where geometry changes do not easily occur.  

Thus, the energy of phosphorescence in these conditions corresponds to the energy 

difference between the T1 and the S0 states at the T1-local minimum geometry (1T1b and 

2T1b).  This energy difference is calculated to be 2.35 eV in both complexes, which agrees 

well with the experimental value,5 as shown in Table 2.  These phosphorescence spectra are 

assigned as the π*(dfppy) → π(dfppy) + d(Pt) transition because 1T1b and 2T1b are 

characterized as the 3LC/MLCT excited state, as discussed above.  This is theoretical 

support to the experimental assignment by Thompson et al.5  Here, we wish to mention two 

split peaks experimentally observed in the phosphorescence spectra of 1 and 2, when the 

measurement is carried out in frozen 2-MeTHF and polystyrene.5  These split peaks were 

discussed in terms of the coupling with the breathing vibration of the aromatic ring of 

dfppy.5,6  Because such vibrational coupling is not incorporated by the usual electronic 

structure calculation, we compare here the calculated energy of the phosphorescence with 

the averaged value of these two peaks. 
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(b) 2: [Pt2(µ-Me2pz)2(dfppy)2]

(c) 3: [Pt2(µ-Me(tert-Bu)pz)2(dfppy)2] (d) 4: [Pt2(µ-(tert-Bu)2pz)2(dfppy)2]

(a) 1: [Pt2(µ-pz)2(dfppy)2]
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Figure 4.  PECs of the S0 and T1 states of dinuclear complexes 1−4 vs the Pt−Pt distance.  The 

geometries of the S0 and T1 states were optimized with the DFT(B3PW91)/basis-I method at each Pt−Pt 

distance.  It is noted that the energy difference between two curves does not correspond to the energy of 

phosphorescence because the T1-curve represents the energy of the T1-optimized geometry and the 

S0-curve represents the energy of the S0-optimized geometry. 

 

 

In contrast to frozen 2-MeTHF at 77 K and polystyrene at RT, fluid 2-MeTHF at RT 

does not suppress the geometry change.  Because the activation barrier between the local 

and the global minima is small in the T1-potential energy curve (T1-PEC), where the height 

of this activation barrier is 0.12 eV in 1 and 0.07 eV in 2,20 the geometries of 1 and 2 in the 

T1 state easily change to their T1-global minima (1T1a and 2T1a) in fluid 2-MeTHF.  In this 

case, the energy of phosphorescence corresponds to the energy difference between the T1 and 

the S0 states at the T1-global minimum geometry.  These are calculated to be 1.92 and 1.98 
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eV in 1T1a and 2T1a, respectively, which agree well with the experimental energies,5 as 

shown in Table 2.  The calculated energy of phosphorescence is little different between 

vacuum and THF, as shown in Table 2, indicating that the solvent effect is small in the 

energy of phosphorescence.  The phosphorescence in fluid 2-MeTHF is assigned as the 

π*(dfppy) → dσ*(Pt−Pt) transition because the T1-global minima (1T1a and 2T1a) are 

characterized as the 3MMLCT excited states, as experimentally reported by Thompson et al.5 

It is noted that the energy of phosphorescence is much lower in fluid 2-MeTHF at RT 

than in frozen 2-MeTHF at 77 K and polystyrene at RT, as shown in Table 2.  This is 

interpreted in terms of the PECs of the S0 and T1 states.  The S0 state becomes less stable in 

energy than does the S0-equilibrium geometry as the Pt−Pt distance becomes shorter, as 

shown in Figures 4a and 4b.  Because the Pt−Pt distance in the T1-global minimum 

geometry is much shorter than in the T1-local minimum, which is similar to that in the 

S0-equilibrium one, the energy difference between the T1 and the S0 states is much smaller at 

the T1-global minimum geometry than at the T1-local minimum one.  Thus, the Stokes shift 

is much larger in fluid 2-MeTHF than in frozen 2-MeTHF and polystyrene. 

When the phosphorescence spectrum is measured in fluid 2-MeTHF at RT, 1 exhibits 

two small peaks at 2.52 and 2.71 eV in addition to one large peak at 1.93 eV.5  On the other 

hand, 2 exhibits only one peak at 1.93 eV in fluid 2-MeTHF. This difference between 1 and 2 

is easily interpreted in terms of the equilibrium between the T1-global and T1-local minima.  

In 1, the Gibbs free energy difference (∆∆G0) between 1T1a and 1T1b at 298 K is very small 

(0.019 eV),21 which leads to the equilibrium constant (K) of 0.48 and the somewhat large 

population (about 30 %) of 1T1b.  As a result, the phosphorescence occurs not only at the 

T1-global minimum but also at the T1-local minimum even in fluid 2-MeTHF.  The 

complex 1 in the global minimum presents one large peak at 1.93 eV, and the complex 1 in 

the local minimum presents two small peaks at 2.52 and 2.71 eV; remember that the 

vibration coupling was observed at the local minimum.  In 2, however, the population at the 
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local minimum 2T1b is negligibly small because the ∆∆G0 between 2T1a and 2T1b at 298 K 

is large (0.13 eV).  As a result, only one large peak is observed at low energy in 2. 

Here, we wish to make a comparison of the phosphorescence spectra of 1 and 2 with 

that of the mononuclear complex 5.  The optimized geometry of the T1 state (5T1) is almost 

the same as the S0-equilibrium one (5S0), as shown in Table 1.  Thus, the Stokes shift is 

expected to be small and little different between fluid 2-MeTHF and frozen 2-MeTHF.  

Actually, the experimentally reported phosphorescence spectrum in frozen 2-MeTHF at 77 K 

is almost the same as that in fluid 2-MeTHF at RT, as shown in Table 2.  The energy 

differences between the S0 and the T1 states at 5T1 are 2.35 and 2.36 eV in a vacuum and in 

2-MeTHF, respectively, which agree well with the experimental phosphorescence spectrum,5 

as shown in Table 2.  This phosphorescence spectrum is assigned as the π*(dfppy) → 

π(dfppy) + d(Pt) transition like those of 1T1b and 2T1b.  This is because 1T1b, 2T1b, and 5T1 

take the 3LC/MLCT excited state, as shown in Figure 2.  It is noted that the energies of 

phosphorescence of 1T1b and 2T1b are almost the same as that of 5T1, indicating that the 

phosphorescence occurs in 1T1b and 2T1b like that of the mononuclear complex 5; in other 

words, any character of dinuclear complex does not participate in the phosphorescence of 

1T1b and 2T1b. 

 

3.3.4. Phosphorescence Spectra of [Pt2(µ-MetBupz)2(dfppy)2] (3) and 

[Pt2(µ-tBu2pz)2(dfppy)2] (4) 

PECs of the S0 and T1 states of 3 and 4 are represented as a function of the Pt−Pt 

distance in Figures 4c and 4d.  It is noted here that the T1-local minimum is absent in these 

PECs.  However, the electronic structure of the T1 state depends on the Pt−Pt distance like 1 

and 2, as follows:  The T1 state of 3 and 4 is the 3MMLCT excited state when the Pt−Pt 

distance is shorter than 3.10 Å but is the 3LC/MLCT excited state when the Pt−Pt distance is 

longer than 3.10 Å.  Actually, the PEC of the T1 state is not smooth around 3.10 Å, 

suggesting that the electronic structure changes around here. 
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Table 2.  Energies (in eV)a of phosphorescence spectra of 1 to 5 and their assignments 

 energy of phosphorescence 

 calc exptb 

 comp geom assignment vacuum THF 

 1 1T1b π*(dfppy) → π(dfppy) + d(Pt) 2.35 2.37 2.52, 2.71 (2-MeTHF at 77K) 

      2.50, 2.66 (polystyrene at RT) 

  1T1a π*(dfppy) → dσ*(Pt−Pt) 1.97 1.92 1.93  (2-MeTHF at RT) 

 

 2 2T1b π*(dfppy) → π(dfppy) +d(Pt) 2.35 2.37 2.49, 2.68 (2-MeTHF at 77K) 

      2.46, 2.63 (polystyrene at RT) 

  2T1a π*(dfppy) → dσ*(Pt−Pt) 1.92 1.98 1.98  (2-MeTHF at RT) 

 

 3 3T1b' π*(dfppy) → dσ*(Pt−Pt) 2.54 2.57 2.49  (2-MeTHF at 77K) 

      2.27  (polystyrene at RT) 

  3T1a π*(dfppy) → dσ*(Pt−Pt) 1.88 1.92 1.95  (2-MeTHF at RT) 

 

 4 4T1b' π*(dfppy) → dσ*(Pt−Pt) 2.17 2.20 2.18  (2-MeTHF at 77K) 

      1.96  (polystyrene at RT) 

  4T1a π*(dfppy) → dσ*(Pt−Pt) 1.59 1.63 1.80  (2-MeTHF at RT) 

 

 5 5T1 π*(dfppy) → π(dfppy) + d(Pt) 2.35 2.36 2.51, 2.69 (2-MeTHF at 77K) 

      2.49, 2.66 (2-MeTHF at RT) 

(a) The energy of phosphorescence is defined as the energy difference between the T1 and S0 states at the same 

geometry (vertical transition energy).  This energy difference was calculated by the DFT(B3PW91)/basis-II 

method.  (b) See ref 5. 

 

 

 

First, we assumed that the phosphorescence of 3 and 4 occurs at the S0-equilibrium 

geometry in frozen 2-MeTHF at 77 K like 1 and 2 because the geometry changes little in 

these conditions.  In this case, the energy of phosphorescence corresponds to the energy 

difference between the T1 and the S0 states at the S0-equilibrium geometry (3S0 and 4S0); in 

other words, we assumed that no geometry change occurs in frozen 2-MeTHF.  The 
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calculated energies are 2.67 eV in 3S0 and 2.35 eV in 4S0, which are somewhat larger than 

the experimental values (2.49 eV in 3 and 2.18 eV in 4; Table 2).5  These results suggest 

that the geometry is not completely fixed in frozen 2-MeTHF.  It is likely that the solvent 

cage little changes in frozen 2-MeTHF but the geometry changes occur in this solvent cage.  

We assumed that the geometry change in the solvent cage occurs without change of the Pt−Pt 

distance because the change of the Pt−Pt distance would need the change of the solvation 

cage.  Thus, the geometries of 3 and 4 in the T1 state were optimized with the Pt−Pt 

distance fixed to be the same as that of the S0-equilibrium geometry (3.044 Å in 3 and 2.939 

Å in 4).  In such optimized geometries (3T1b'  and 4T1b'), the energies of phosphorescence 

are evaluated to be 2.54 and 2.17 eV in 3 and 4, respectively, which agree well with the 

experimental values in frozen 2-MeTHF,5 as shown in Table 2.  These results suggest that 

the geometry changes moderately occur in the solvent cage of frozen 2-MeTHF.  The 

phosphorescence spectra are assigned as the π*(dfppy) → dσ*(Pt−Pt) transition because the 

T1 state at these Pt−Pt distances is characterized as the 3MMLCT state, as discussed above.  

The energy of this phosphorescence is considerably lower in 4T1b'  than in 3T1b' .  This 

result is interpreted in terms of the Pt−Pt distance as follows:  Because the Pt−Pt distance 

(2.939 Å) of 4T1b'  is considerably shorter than that (3.044 Å) of 3T1b' , the dσ−dσ 

antibonding overlap is considerably larger in 4T1b'  than in 3T1b' , which leads to the higher 

energy of the dσ*(Pt−Pt) orbital in 4T1b'  (−5.02 eV) than in 3T1b'  (−5.36 eV).  On the other 

hand, the energy of the π*(dfppy) orbital is little different between 4T1b'  (−2.16 eV) and 

3T1b'  (−2.11 eV).  Thus, the energy of phosphorescence is lower in 4 than in 3. 

In fluid 2-MeTHF at RT, the phosphorescence occurs at the T1-global minimum 

geometry (3T1a and 4T1a) like 1 and 2 because the geometry easily changes to the T1-global 

minimum.  The energy of phosphorescence is evaluated to be 1.92 and 1.63 eV in 3 and 4, 

respectively, as shown in Table 2.  The calculated energy of 3 agrees well with the 

experimental value,5  while that of 4 is moderately lower than the experimental value.  
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These phosphorescence spectra are assigned as the π*(dfppy) → dσ*(Pt−Pt) transition 

because the T1-global minimum is characterized as the 3MMLCT excited state.  This 

assignment agrees with the experimental proposal.5  Interestingly, both experimental and 

theoretical results indicate that the energy of phosphorescence of 4 is much lower than those 

of 1, 2, and 3 in fluid 2-MeTHF.  This result is interpreted in terms of the dσ−dσ 

antibonding overlap.  Because the Pt−Pt distance of 4T1a is the shortest in all the T1-global 

minimum geometries, the dσ*(Pt−Pt) orbital of 4T1a is at the highest energy in those of 

1T1a−4T1a.  As a result, the π*(dfppy) → dσ*(Pt−Pt) phosphorescence occurs at the lowest 

energy in 4. 

It is noted here that the energy of phosphorescence of 3T1a is almost the same as those 

of 1T1a and 2T1a, as shown in Table 2, in spite of the shorter Pt−Pt distance of 3T1a than 

those of 1T1a and 2T1a (see Table 1).  This is because the dσ*(Pt−Pt) orbital of 3T1a is at an 

energy similar to those of 1T1a and 2T1a (Figure 3); remember that the dσ*(Pt−Pt) orbital 

energy of 3T1a is not destabilized very much in spite of the short Pt−Pt distance because the 

dz2 orbital of one Pt atom does not extend toward the other Pt atom and its direction deviates 

from the Pt−Pt line in 3 because of the C2 symmetry of 3T1a (see above and Scheme 2). 

The energy of phosphorescence of 4 is moderately lower in fluid 2-MeTHF at RT than 

in frozen 2-MeTHF at 77 K, but that of 3 is considerably lower in fluid 2-MeTHF at RT than 

in frozen 2-MeTHF at 77 K.  Because the phosphorescence occurs at the T1-global 

minimum geometry (3T1a and 4T1a) in fluid 2-MeTHF but at the geometry (3T1b'  and 4T1b') 

that is similar to the S0-equilibrium one in frozen 2-MeTHF, the above-mentioned difference 

between 3 and 4 arises from the difference in the geometry of the T1 state between 3 and 4, 

as follows:  The geometry difference between 4T1a and 4S0 is considerably smaller than 

that between 3T1a and 3S0; for instance, the Pt−Pt distance of the T1-global minimum is 

shorter than that of the S0-equilibrium one by 0.290 Å in 4 and 0.358 Å in 3, as shown in 

Table 1.  Because the 3S0 and 4S0 geometries are similar to the 3T1b'  and 4T1b'  geometries, 



- 76 - 
 

respectively, as discussed above, the T1 geometry considerably changes upon going from 

3T1b' to 3T1a but moderately upon going from 4T1b' to 4T1a.  This is the reason why the 

energy of phosphorescence of 4 is moderately lower in fluid 2-MeTHF than in frozen 

2-MeTHF but that of 3 is considerably lower in the former solution than in the latter one. 

The reason why the geometry difference between 4T1a and 4S0 is smaller than that 

between 3T1a and 3S0 is explained in terms of the steric repulsion between the substituents 

on pz and dfppy.  As discussed in Section 3.3.2, the S0-equilibrium geometry depends 

considerably on this steric repulsion; because 4 has four large tert-butyl substituents but 3 

has two large tert-butyl and two small methyl substituents on pz, the steric repulsion is much 

larger in 4 than in 3.  As a result, the Pt−Pt distance is considerably shorter in the 

S0-equilibrium geometry of 4 than of 3.  On the other hand, the T1-global minimum 

geometry depends less on the steric repulsion than does the S0-equilibrium one because the 

dσ(Pt−Pt) bonding interaction plays important roles to determine the geometry of the 

T1-global minimum in addition to the steric repulsion (see above); actually, the Pt−Pt 

distance of 4S0 is considerably shorter than that of 3S0 by 0.105 Å, but the Pt−Pt distance of 

4T1a is little different from that of 3T1a (see Table 1).  In other words, the Pt−Pt distance of 

4S0 is already short relative to that of 3S0.  Thus, the geometry changes take place less upon 

going to 4T1a from 4S0 than upon going to 3T1a from 3S0. 

The energies of phosphorescence in polystyrene at RT are experimentally reported to 

be 2.27 and 1.96 eV in 3 and 4, respectively,5 which are lower than those in frozen 2-MeTHF 

at 77 K but higher than those in fluid 2-MeTHF at RT, as shown in Table 2.  These results 

are different from those of 1 and 2, where the energy of phosphorescence in polystyrene is 

almost the same as that in frozen 2-MeTHF. The results of 1 and 2 were interpreted in terms 

that the T1 state is in the local minimum geometry (1T1b and 2T1b), which is similar to the 

S0-equilibrium geometry in frozen 2-MeTHF and polystyrene, as discussed in Section 3.3.3.  

On the other hand, there are no local minima in the T1-PECs of 3 and 4, as shown in Figures 
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4c and 4d.  In such cases, it is likely that the geometry does not completely change to the 

T1-global minimum geometry (3T1a and 4T1a) but moderately changes toward the T1-global 

minimum in polystyrene.  In other words, in polystyrene, the geometries of 3 and 4 are 

intermediate between the considerably distorted T1-global minimum geometry and the 

slightly distorted T1-geometry (3T1b'  and 4T1b') taken in the frozen 2-MeTHF.  This is the 

reason why the energies of phosphorescence of 3 and 4 are lower in polystyrene than in 

frozen 2-MeTHF but higher than those in fluid 2-MeTHF.  In addition, these results suggest 

that the rigidity of polystyrene is lower than that of frozen 2-MeTHF.  The 

phosphorescence spectra of 3 and 4 in polystyrene are assigned as the π*(dfppy) → 

dσ*(Pt−Pt) transition because the Pt−Pt distance is shorter than 3.1 Å (see above). 

 

3.4. Conclusions 

Four kinds of 3,5-dialkylpyrazolate(R2pz)-bridged platinum(II) dinuclear complexes 

[Pt2(µ-R2pz)2(dfppy)2] (dfppy = 2-(2,4-difluorophenyl)pyridine; R2pz = pyrazolate in 1, 

3,5-dimethylpyrazolate in 2, 3-methyl-5-tert-butylpyrazolate in 3, and 

3,5-bis(tert-butyl)pyrazolate in 4) were theoretically investigated by the DFT(B3PW91) 

method to present detailed knowledge of their geometries and electronic structures in the T1 

state and to clarify the reason why the phosphorescence spectra significantly depend on the 

substituent on pz and the measurement conditions. 

In 1 and 2 bearing H atoms and methyl groups on pz, respectively, the T1-local 

minimum exists besides the T1-global minimum.  The Pt−Pt distance of the T1-local 

minimum is similar to that of the S0-equilibrium geometry, but the Pt−Pt distance of the 

T1-global minimum is considerably shorter than that of the S0-equilibrium one.  The 

phosphorescence occurs at this local minimum in frozen 2-MeTHF at 77 K and polystyrene 

at RT because the geometry of the T1 state is captured in this local minimum.  This 

phosphorescence spectrum is assigned as the π*(dfppy) → π(dfppy) + d(Pt) transition.  In 
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fluid 2-MeTHF at RT, the geometry of the T1 state easily changes to the T1-global minimum 

geometry (1T1a and 2T1a).  Because geometries of 1T1a and 2T1a are much different from 

the S0-equilibrium geometries, the energy of phosphorescence is much lower in fluid 

2-MeTHF than in frozen 2-MeTHF and polystyrene.  Because the T1 state at the T1-global 

minimum geometry is characterized as the 3MMLCT excited state, the phosphorescence in 

fluid 2-MeTHF is assigned as the π*(dfppy) → dσ*(Pt−Pt) transition. 

In 3 and 4 bearing methyl and/or tert-butyl substituents on pz, no local minimum is 

optimized in the T1 state.  The reason is easily understood as follows:  Because the bulky 

tert-butyl substituents strongly push the dfppy plane away to decrease the Pt−Pt distance, the 

dσ*(Pt−Pt) → π*(dfppy) excited state becomes stable, and the π(dfppy) + d(Pt) → 

π*(dfppy) excited state cannot become a local minimum.  The geometry of the T1 state 

changes slightly in frozen 2-MeTHF at 77 K except for the Pt−Pt distance, and it moderately 

changes in polystyrene at RT unlike in 1 and 2.  This is because the T1-local minimum is 

absent in the T1-PEC.  Thus, the energy of phosphorescence is somewhat lower in 

polystyrene than in frozen 2-MeTHF.  In fluid 2-MeTHF at RT, the geometry of the T1 state 

completely changes to the T1-global minimum geometry.  This geometry change largely 

occurs in 3 but moderately in 4 because the Pt−Pt distance is already short in 4S0 due to the 

presence of four tert-butyl groups on pz but still considerably long in 3S0 due to the presence 

of two methyl groups.  As a result, the energy of phosphorescence of 3 is much lower in 

fluid 2-MeTHF than in frozen 2-MeTHF, but that of 4 is moderately lower in fluid 2-MeTHF 

than in frozen 2-MeTHF.  The phosphorescence spectra of 3 and 4 in these conditions are 

assigned as the π*(dfppy) → dσ*(Pt−Pt) transition. 

In conclusion, interesting phosphorescence spectra of these pz-bridged dinuclear 

platinum(II) complexes are successfully understood in terms of their PECs of the T1 state. 
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3.5. Appendix 
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Figure A1.  S0- and T1-optimized geometries of 2 and 3.  (a) A red arrow schematically represents the 

steric repulsion between dfppy and substituents (four methyl groups in 2 and two tert-butyl and two 

methyl groups in 3) on pz.  (b) Ref 5. 

 

 

Figure A2.  Several important molecular orbitals of 2, 3, and 4.  H atoms are omitted for brevity. 
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Chapter 4 

 

Theoretical Study of Excited States of Pyrazolate- and Pyridinethiolate- 

Bridged Dinuclear Platinum(II) Complexes:  Relationship between 

Geometries of Excited States and Phosphorescence Spectra 

 

4.1. Introduction 

Emissive transition-metal complexes have drawn a lot of interest because they are 

potentially useful to optical materials such as light-emitting devices, photochemical sensors, 

and biological labeling probes.1−3  In particular, 5d transition metal complexes such as 

iridium2 and platinum2a,3−8 complexes have been well-investigated because large 

phosphorescence spectra are often observed in these complexes. 

Recently, multinuclear transition metal complexes have been investigated in many 

experimental works1c,2a,3−8 because they exhibit a variety of phosphorescence spectra.  For 

instance, the phosphorescence spectrum of pyrazolate-bridged dinuclear platinum(II) 

complex [Pt2(µ-pz)2(bpym)2]
2+ (1; pz = pyrazolate and bpym = 2,2'-bipyrimidine; see 

Scheme 1)5 is observed in the solid state but not in the acetonitrile (CH3CN) solution.  

However, that of pyridinethiolate-bridged dinuclear platinum(II) complex [Pt2(µ-pyt)2(ppy)2] 

(2; pyt = pyridine-2-thiolate and Hppy = 2-phenylpyridine; Scheme 1)6 is observed in both 

the solid state and theCH3CNsolution.  It is of considerable interest to clarify the reasons 

why these moderately different bridging and chelating ligands induce the above-mentioned 

differences in phosphorescence behavior between 1 and 2.  The phosphorescence spectrum 

of 2 was experimentally discussed in terms of the geometries and electronic structures of the 

singlet ground state (S0) and the lowest-energy triplet excited state (T1).
6  However, the 

reasons for the above-mentioned differences between 1 and 2 have not been discussed yet. It 

is worth investigating theoretically the ground and excited states of 1 and 2 to understand 

their phosphorescence spectra and elucidate the reasons why the phosphorescence behavior 
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is different between them. 
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In this study, we theoretically investigated pz- and pyt-bridged dinuclear platinum(II) 

complexes 1 and 2 and discussed the geometries and electronic structures of the S0 ground 

state and the lowest-energy singlet and triplet excited states (S1 and T1, respectively).  We 

also discussed whether or not spin−orbit interaction between the S1 and T1 states operates, 

because this spin-orbit interaction plays an important role in the S1 → T1 intersystem 

crossing.  Our main purposes here are (i) to present a theoretical understanding of the 

geometries, electronic structures, and phosphorescence spectra of 1 and 2 and (ii) to clarify 

the reasons why the phosphorescence spectrum of 1 is absent but that of 2 is present in the 

CH3CN solution and why those of 1 and 2 are observed in the solid state. 

 

4.2. Computational Details 

We employed two basis set systems (basis-I and II) in this study. In basis-I, core 

electrons (up to 4f) of platinum were replaced with the relativistic effective core potentials 

(ECPs) proposed by Hay and Wadt9 and its valence electrons were represented by the 

(541/541/111/1) basis set.9−11  The 6-31G* basis sets12 were used for hydrogen, carbon, 

nitrogen, and sulfur.  In basis-II, valence electrons of platinum were represented by the 

(5311/5311/111/1) basis set9−11 with the same ECPs as those of basis-I.  The cc-pVDZ basis 

sets13 were used for hydrogen, carbon, nitrogen, and sulfur. 

Geometries of 1 and 2 in the S0 ground state were optimized by density functional 

theory (DFT) with basis I, where the B3PW91 functional14,15 was employed.  The 

geometries in the S1 and T1 excited states were optimized with the unrestricted (U)DFT 

method.  Because the singly occupied molecular orbital (SOMO) bearing an α-spin electron 

is different from that bearing a β-spin electron in the S1 state, the spin symmetry of the 

evaluated wave function is broken in the UDFT calculation.16  In this meaning, the UDFT 

calculation of the S1 state is called broken-symmetry (BS)DFT.  It is also called permuted 

orbitals (PO)DFT in several cases.17  We ascertained that all optimized geometries 
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exhibited no imaginary frequency.  The potential energy curves (PECs) of 1 and 2 were 

evaluated as a function of the Pt−Pt distance in the S0, S1, and T1 states, where all 

geometrical parameters were optimized at each Pt−Pt distance. 

The energy of phosphorescence is calculated here as the energy difference between the 

S0 and T1 states at the T1-optimized geometry.  The total energies, orbital energies, and 

Mulliken charges were evaluated with the DFT(B3PW91)/basis-II//DFT(B3PW91)/basis-I 

method.18  The solvent effect of the CH3CN solution was taken into consideration by the 

polarizable continuum model (PCM).19  The united-atom topological model of the universal 

force-field method (UA0)19b,20 was employed to estimate the molecular volume and 

construct a molecular cavity in the PCM calculation. 

The DFT calculations were performed by the Gaussian 03 (revision C.02) program 

package.21  Molecular orbitals were drawn by the MOLEKEL (version 4.3) program.22 

 

4.3. Results and Discussion 

4.3.1. Equilibrium Geometries and Electronic Structures of [Pt2(µµµµ-pz)2(bpym)2]
2+ (1) in 

the S0, S1, and T1 States 

Important optimized geometrical parameters of the S0 equilibrium geometry of 1 (1S0) 

are shown in Table 1.  This geometry is C2v-symmetrical, which is clearly shown by the fact 

that the Pt1−N1, Pt1−N3, Pt2−N2, and Pt2−N4 bond lengths are the same (2.012 Å).  The 

Pt1−Pt2 distance (3.451 Å) and thePt1−N1−N3−N4dihedral angle θ1 (135.1o) are similar to 

those of [Pt2(µ-pz)2(dfppy)2] [3; dfppy=2-(2,4-difluorophenyl)pyridine] recently reported by 

Thompson et al.,7 in which the Pt−Pt distance is 3.376 Å and the θ1 dihedral angle is 132.6o; 

see Scheme 1 for the definition of θ1.  These results indicate that the geometry of 1 is 

mainly determined by the µ-pz ligand. 

We optimized geometries of the S1 and T1 excited states against various Pt−Pt 

distances and found two equilibrium structures in these excited states:  one bearing the 
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short Pt−Pt distance (1S1a and 1T1a geometries) and the other bearing the long Pt−Pt distance 

(1S1b and 1T1b geometries), as shown in Table 1; see the Pt−Pt distances of 1S1a (2.791 Å), 

1T1a (2.777 Å), 1S1b (3.441 Å), and 1T1b (3.480 Å).  All of these optimized geometries 

have no imaginary frequency.  Interestingly, the 1S1b and 1T1b geometries are 

C1-symmetrical; see the Pt1−N1, Pt1−N3, Pt2−N2, and Pt2−N4 bond lengths of 1.996, 2.020, 

2.020, and 2.011 Å, respectively, in the 1S1b geometry and 2.009, 2.023, 2.014, and 2.009 Å, 

respectively, in the 1T1b geometry.  On the other hand, the 1S1a and 1T1a geometries are 

C2v-symmetrical; their Pt1−N1, Pt1−N3, Pt2−N2, and Pt2−N4 bond lengths are the same 

(2.024 Å).  The 1S1a geometry bearing the short Pt−Pt distance is the global minimum of 

the S1 state.  However, the 1T1b geometry bearing the long Pt−Pt distance is the global 

minimum of the T1 state, although the energy difference between the global and local 

minima is small; they are 0.16 and 0.04 eV in the S1 and T1 states, respectively.  Previously, 

similar global and local minima were found in the T1 state of 3.8 

In the 1S1a and 1T1a geometries, the dσ*(Pt−Pt) and π*(bpym) orbitals are singly 

occupied, where the dσ*(Pt−Pt) orbital mainly consists of the dσ−dσ antibonding orbital 

between two platinum nuclei and the π*(bpym) orbital represents the π* orbital of the bpym 

ligand, as shown in Figure 1.  In other words, one-electron excitation occurs from the 

dσ*(Pt−Pt) orbital to the π*(bpym) orbital in these excited states.  Thus, this electronic 

structure is assigned as the metal−metal-to-ligand charge-transfer (MMLCT) excited state.  

The same assignment was experimentally and theoretically reported for the T1 excited state 

at the T1 global minimum of 3.7,8  Because one-electron excitation occurs from the 

antibonding dσ*(Pt−Pt) orbital to the π*(bpym) orbital in these excited states, the bonding 

interaction between two platinum nuclei becomes stronger; note that the formal Pt-Pt bond 

order is 0.5 in the 1S1a and 1T1a geometries but 0.0 in the 1S0 geometry.  As a result, the 

Pt1−Pt2 distance becomes shorter and the θ1 dihedral angle becomes smaller in the 1S1a and 

1T1a geometries than in the 1S0 geometry, as shown in Table 1.  The other geometrical 
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parameters of the 1S1a and 1T1a geometries such as the Pt1−N1 distance, the N1−Pt1−N3 

bond angle, and the bond distances in the bpym and pz moieties are not significantly 

different from those of the 1S0 geometry; see Table 1 and Table A1 in the Appendix for these 

geometrical parameters. 

 

 

Table 1.  Several important optimized bond lengths (in Å), bond angles (in degree), dihedral angles (in 

degree),a π*(bpym), dσ*(Pt−Pt), and π(bpym) orbitals energies (in eV),b,c and molecular volumes (in Å3) of 1 

 exptl valuse of a 

 similar complexd 1S0 1S1a 1S1b 1T1a 1T1b 

 r(Pt1−Pt2) 3.376 3.451 2.791 3.441 2.777 3.480 

 r(Pt1−N1) 2.093 2.012 2.024 1.996 2.024 2.009 

 r(Pt1−N3) 2.071 2.012 2.024 2.020 2.024 2.023 

 r(Pt2−N2) 1.998 2.012 2.024 2.020 2.024 2.014 

 r(Pt2−N4) 2.019 2.012 2.024 2.011 2.024 2.009 

 r(Pt1−N5) 2.005 2.036 2.023 2.030 2.022 2.026 

 r(Pt1−N7) 2.021 2.036 2.023 1.996 2.022 1.976 

 r(Pt2−N6) 1.986 2.036 2.023 2.037 2.022 2.038 

 r(Pt2−N8) 2.005 2.036 2.023 2.027 2.022 2.034 
 

 a(N1−Pt1−N3) 86.1 85.3 85.4 85.9 85.3 86.3 

 a(N2−Pt2−N8) 84.8 85.3 85.4 85.1 85.3 85.1 

 a(N5−Pt1−N7) 81.6 80.1 80.6 80.9 80.5 81.5 

 a(N6−Pt2−N8) 81.4 80.1 80.6 80.1 80.5 80.1 
 

 d(Pt1−N1−N3−N4)e 132.6 135.1 118.9 137.2 118.7 136.9 

 d(Pt1−N3−N1−N2) −132.3 −135.1 −118.9 −134.7 −118.7 −138.7 

 d(Pt2−N2−N4−N3) −138.8 −135.1 −118.9 −132.6 −118.7 −135.1 

 d(Pt2−N4−N2−N1) 126.2 135.1 118.9 135.1 118.7 133.3 
 

 ε (π*(bpym)) −8.46 −8.97 −8.88 −8.99 −9.00 

 ε (dσ*(Pt−Pt)) −12.47 −11.73 −12.49 −11.79 −12.53 

 ε (π(bpym)) −13.77 −13.94 −13.76 −13.95 −13.76 
 

 molecular volume 585 606 586 604 585 

(a) Geometries were optimized with the DFT(B3PW91)/basis-I method in vacuo.  (b) These orbitals are shown 

in Figure 1.  (c) Orbital energies were calculated in the S0 state with the DFT(B3PW91)/basis-II 

//DFT(B3PW91)/basis-I method.  (d) Experimental bond lengths, bond angles, and bond dihedral angles of 3 

reported by Thompson et al. (ref 7).  Note that 3 is not C2v but Cs symmetrical.  (e) This dihedral angle 

corresponds to θ1 in Scheme 1. 
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Figure 1.  Several important molecular orbitals of the 1S0, 1T1a, 1S1a, 1T1b, 1S1b, 2T1a, and 2S1a 

geometries.  Irreducible representations (a1, b1, b2, a, and b) of these molecular orbitals are also 

represented.  H atoms are omitted for brevity. 

 

 

In the 1S1b and 1T1b geometries, the π(bpym) and π*(bpym) orbitals are singly 

occupied, as shown in Figure 1.  The π(bpym) orbital somewhat interacts with the d orbital 

of platinum, while the π*(bpym) orbital little interacts.  Thus, the electronic structures of 

the 1S1b and 1T1b geometries are assigned as a mixture of the ligand centered π−π* excited 

state and the metal-to-ligand charge transfer excited state (LC/MLCT).  The same 

assignment was experimentally7 and theoretically8 reported for the local minimum geometry 

of the T1 excited state of 3.  As shown in Figure 1, the dσ*(Pt−Pt) orbital is doubly 

occupied in the 1S1b and 1T1b geometries, unlike in the 1S1a and 1T1a geometries.  As a 

result, the dσ−dσ bonding interaction is absent in these 1S1b and 1T1b geometries, like in the 

1S0 geometry, leading to little changes in the Pt1−Pt2 distance and the θ1 dihedral angle 

when going from the 1S0 geometry to the 1S1b and 1T1b geometries, as shown in Table 1.  

Also, the other geometrical parameters are little different among the 1S1b, 1T1b, and 1S0 

geometries; see Table 1 and Table A1 in the Appendix.  This means that the 1S1b and 1T1b 

geometries resemble well the 1S0 geometry. 
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The differences in the electronic structure and geometry between the MMLCT (1S1a 

and 1T1a) and LC/MLCT (1S1b and 1T1b) excited states are explained in terms of 

dependences of the π*(bpym), dσ*(Pt−Pt), and π(bpym) orbital energies on the Pt−Pt 

distance.  The dσ*(Pt−Pt) orbital energy becomes higher as the Pt−Pt distance becomes 

shorter because the antibonding overlap between the two dσ(Pt) orbitals increases with a 

decrease in the Pt−Pt distance; see Figure 1 for the dσ*(Pt−Pt) orbital.  On the other hand, 

the π(bpym) and π*(bpym) orbital energies little depend on the Pt−Pt distance.  Actually, 

the dσ*(Pt−Pt) orbital exists at much higher energy in the 1S1a and 1T1a geometries than in 

the 1S1b and 1T1b geometries, while the π(bpym) and π*(bpym) orbital energies are little 

different among the 1S1a, 1S1b, 1T1a, and 1T1b geometries; see Table 1 for the orbital 

energies.  Thus, the energy difference between the π*(bpym) and dσ*(Pt−Pt) orbitals is 

much smaller in the 1S1a (2.76 eV) and 1T1a (2.80 eV) geometries than in the 1S1b (3.61 eV) 

and 1T1b (3.53 eV) geometries. These are the reasons why the 1S1a and 1T1a geometries 

bearing the short Pt−Pt 

distance take the MMLCT [dσ*(Pt−Pt) → π*(bpym)] excited state but the 1S1b and 1T1b 

geometries bearing the long Pt−Pt distance take the LC/MLCT [π(bpym) + d(Pt) → 

π*(bpym)] excited state. 

 

4.3.2. Equilibrium Geometries and Electronic Structures of [Pt2(µµµµ-pyt)2(ppy)2] (2) in 

the S0, S1, and T1 States 

The optimized geometry (2S0) of 2 in the S0 state agrees well with the experimental 

one,6 as shown in Table 2, except that the Pt1−Pt2 distance (2.944 Å) is moderately longer 

and the Pt1−N1−S1−N2 dihedral angle θ2 (108.3o) is moderately larger than their 

experimental values (2.849 Å and 105.4o); see Scheme 1 for Pt1, Pt2, N1, etc., and the 

definition of θ2.  It is noted that the Pt−Pt distance of 2 is much shorter than that of 1 and 

two Pt-ppy planes of 2 are almost parallel to each other, unlike two Pt-bpym planes of 1; see 
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Scheme 1.  These significant differences in the geometry between 1S0 and 2S0 arise from 

the direction of the lone-pair orbitals of the pyt and pz ligands.  As shown in Figure 2, two 

nitrogen lone-pair orbitals of pz expand toward the outside but the nitrogen and sulfur 

lone-pair orbitals of pyt expand in nearly parallel fashion to each other or toward rather the 

inside.  Optimized geometrical parameters of 2 in the S1- and T1-global minima (2S1a and 

2T1a) are also presented in Table 2.  The Pt1−Pt2 distances of the 2S1a and 2T1a geometries 

are much shorter, and their θ2 dihedral angles are much smaller than those of the 2S0 

geometry.  These results are understood in terms of the electronic structures of the 2S1a and 

2T1a geometries:  SOMOs are the dσ*(Pt−Pt) and π*(ppy) orbitals in the 2S1a and 2T1a 

geometries, as shown in Figure 1. This means that one-electron excitation occurs from the 

dσ*(Pt−Pt) orbital to the π*(ppy) orbital in the 2S1a and 2T1a geometries, which leads to the 

presence of the Pt−Pt bonding interaction.  Hence, the Pt1−Pt2 distance becomes shorter 

and the θ2 dihedral angle becomes smaller in the 2S1a and 2T1a geometries than in the 2S0 

geometry.  These S1 and T1 excited states of 2 are assigned as the MMLCT excited state. 

The 2S1a and 2T1a geometries are similar to the 1S1a and 1T1a geometries, respectively, 

except that the 2S1a and 2T1a geometries are C2-symmetrical, unlike the C2v-symmetrical 

1S1a and 1T1a geometries, as shown in Tables 1 and 2 and Figure 1.  One important 

difference between 1 and 2 is that the local minimum geometry is absent in the S1 and T1 

excited states of 2 but present in those of 1, as discussed above.  This is interpreted in terms 

of the lone-pair orbital of the bridging ligand.  The sulfur and nitrogen lone-pair orbitals of 

pyt expand toward rather the inside (Figure 2), as discussed above, leading to the short Pt−Pt 

distance (2.944 Å) even in the S0 ground state.  Because the LC/MLCT excited state is 

possible when the Pt−Pt distance is long, the LC/MLCT excited state cannot be formed in 2.  

A similar feature is observed in 3; the T1 local minimum of the LC/MLCT state bearing the 

long Pt−Pt distance cannot be formed in 3 when bulky substituents are introduced to the pz 

ligand, as reported previously,7,8 because the bulky substituents decrease the Pt−Pt distance.  
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On the basis of these results, it is concluded that the pyt ligand plays a role to decrease the 

Pt−Pt distance, like the pz ligand bearing a bulky substituent in 3. 

 

 

Table 2.  Several important optimized bond lengths (in Å), bond angles (in degree), dihedral angles (in 

degree),a π*(ppy), dσ*(Pt−Pt), and π(ppy) orbitals energies (in eV),b,c and molecular volumes (in Å3) of 2 

 exptld 2S0 2S1a 2T1a 

 r(Pt1−Pt2) 2.849 2.994 2.680 2.675 

 r(Pt1−N1) 2.142 2.180 2.194 2.194 

 r(Pt2−N2) 2.142 2.180 2.194 2.194 

 r(Pt1−N3) 2.038 2.061 2.052 2.050 

 r(Pt2−N4) 2.036 2.061 2.052 2.050 

 r(Pt1−S1) 2.284 2.316 2.330 2.331 

 r(Pt2−S2) 2.284 2.316 2.330 2.331 

 r(Pt1−C3) 1.987 1.992 1.998 1.997 

 r(Pt2−C4) 1.983 1.992 1.998 1.997 
 

 a(N1−Pt1−S1) 90.4 88.4 88.1 88.0 

 a(N2−Pt2−S2) 90.3 88.4 88.1 88.0 

 a(N3−Pt1−C3) 81.1 80.7 81.0 81.0 

 a(N4−Pt2−C4) 81.3 80.7 81.0 81.0 
 

 d(Pt1−N1−S1−N2)e 105.4 108.3 103.8 103.7 

 d(Pt2−N2−S2−N1) 106.3 108.3 103.8 103.7 
 

 ε (π*(ppy)) −1.72 −1.84 −1.84 

 ε (dσ*(Pt−Pt)) −4.72 −4.37 −4.36 

 ε (π(ppy)) −6.52 −6.37 −6.37 
 

 molecular volume 712 698 697 

(a) Geometries were optimized with the DFT(B3PW91)/basis-I method in vacuo.  (b) These orbitals are shown 

in Figure 1.  (c) Orbital energies were calculated in the S0 state with the DFT(B3PW91)/basis-II 

//DFT(B3PW91)/basis-I method.  (d) Reference 6.  (e) This dihedral angle corresponds to θ2 in Scheme 1. 
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Figure 2.  Lone-pair orbitals of pz and pyt. H atoms are omitted for brevity. 

 

 

4.3.3. S0, T1, and S1 PECs of 1 and 2 

The PECs of the S0, S1, and T1 states of 1 are evaluated as a function of the Pt−Pt 

distance in vacuo, as shown in Figure 3a, where the geometry was optimized at each Pt−Pt 

distance with the B3PW91/basis-I method.  In the S1 and T1 PECs, a small but 

nonnegligible barrier exists around the Pt−Pt distance of 3 Å.  The S1 and T1 states take the 

MMLCT excited state in the Pt−Pt distance shorter than 3 Å and the LC/MLCT excited state 

in the Pt−Pt distance longer than 3 Å. 

The energy difference is very small (0.02 eV) between the 1S1a and 1T1a geometries 

but somewhat large (0.22 eV) between the 1S1b and 1T1b geometries.  These results are 

interpreted in terms of the exchange integral, as follows:  The energy difference between 

the S1 and T1 states is approximately represented by twice the exchange integral, when the 

molecular orbitals are not very different between these two states:23 

 E(S1) − E(T1)
  
≈

  2(XY|YX) (1) 

where E(S1) and E(T1) are the energies of the S1 and T1 states, respectively, X and Y are 

SOMOs of the S1 and T1 states, and (XY|YX) is an exchange integral.  In general, the 

exchange integral becomes large when the SOMOs (X and Y) are localized in one moiety.  

In the 1S1b and 1T1b geometries, the SOMOs are localized on the right-hand side of the 
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molecule, as shown in Figure 1.  In the 1S1a and 1T1a geometries, on the other hand, the 

SOMOs are delocalized on the whole molecule.  As a result, the energy difference between 

the 1S1a and 1T1a geometries is smaller than that between the 1S1b and 1T1b geometries. 
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Figure 3.  PECs of the S0, T1, and S1 states of 1 vs the Pt−Pt distance.  Geometries were optimized with 

the DFT(B3PW91)/basis-I method at each Pt−Pt distance.  It is noted that the energy difference between 

the T1- and S0-curves does not correspond to the energy of phosphorescence because the T1 curve 

represents the energy of the T1-optimized geometry and the S0-curve represents the energy of the 

S0-optimized geometry.  The energy of phosphorescence corresponds to the energy difference between the 

T1 and S0 states at the T1-optimized geometry. 

 

 

The S0, T1, and S1 PECs of 1 were reevaluated in the CH3CN solution by the PCM 

method at the B3PW91/basis-I level, where the optimized geometries in vacuo were 

employed.  Although the 3MMLCT-optimized geometry (1T1a) is slightly more unstable 

than the 3LC/MLCT-optimized geometry (1T1b) in vacuo (Figure 3a), the former is 

considerably more stable than the latter in the CH3CN solution, as shown in Figure 3b.  To 

elucidate the reason of this solvent effect, we will examine here how much polarization 

occurs in the MMLCT and LC/MLCT excited states.  The LC/MLCT state mainly consists 

of localized π−π* excitation in one bpym and moderate CT excitation from the Pt−pz moiety 
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to bpym in one pz−Pt−bpym moiety, as shown in Figure 1.  On the other hand, the MMLCT 

state consists of CT excitation in two pz−Pt−bpym moieties.  These features of the 

MMLCT and LC/MLCT states are consistent with the Mulliken charges of the 1T1a, 1T1b, 

and 1S0 geometries.  In the 1T1b geometry, the Pt1 atom is somewhat and the pz(N1^N2) is 

moderately more positively charged (+0.10 and +0.06, respectively) than those in the 1S0 

geometry, as shown in Table 3, where the pz(N1^N2) means the pz ligand including N1 and 

N2 atoms.  Consistent with these Mulliken charges, the bpym(N6^N8) is much more 

negatively charged (−0.19) in the 1T1b geometry than in the 1S0 geometry.  On the other 

hand, the Mulliken charges of the Pt2 atom, pz(N3^N4), and bpym(N5^N7) are little 

different between the 1T1b and 1S0 geometries.  In the 1T1a geometry, two Pt atoms and 

two pz ligands are much more positively charged (+0.10 and +0.11) and two bpym ligands 

are much more negatively charged (−0.21) than those in the 1S0 geometry.  These results 

indicate that CT more likely occurs in the MMLCT state than in the LC/MLCT state, leading 

to the formation of a more polarized electron distribution in the MMLCT excited state than 

in the LC/MLCT state.  As a result, the MMLCT state is more stabilized by the polar 

CH3CN solvent than the LC/MLCT state.  This is the main reason why the 1T1a geometry 

becomes a global minimum in the CH3CN solution.  In the S1 excited state, the 1MMLCT 

state is also much more stabilized by theCH3CNsolution than the 1LC/MLCT state, like in 

the T1 states, as shown in Figure 3b. 

It should be noted that the Mulliken charges change much more in the CH3CN solution 

than in vacuo when going from the 1S0 geometry to the 1S1a and 1T1a geometries, as shown 

in Table 3; for example, the Mulliken charge of Pt1 increases by +0.16 in the CH3CN 

solution but by +0.10 in vacuo when going from the 1S0 geometry to the 1S1a and 1T1a 

geometries.  This means that the CH3CN solvent accelerates CT from the Pt moiety to the 

π* of bpym in the MMLCT excited state.  As a result, MMLCT excitation decreases more 

the electron density of the dσ*(Pt−Pt) orbital in the CH3CN solution than in vacuo, which 
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decreases more the Pt−Pt distances of the 1MMLCT and 3MMLCT excited states to 2.620 

and 2.610 Å, respectively, in the CH3CNsolution than in vacuo, as shown in Figure 2b.  

These equilibrium geometries in the CH3CN solution are named as 1S1a'  and 1T1a'  hereafter. 
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Figure 4.  PECs of the S0, T1, and S1 states of 2 vs the Pt−Pt distance.  Geometries were optimized with 

the DFT(B3PW91)/basis-I method at each Pt−Pt distance.  It is noted that the energy difference between 

the T1- and S0-curves does not correspond to the energy of phosphorescence because the T1 curve 

represents the energy of the T1-optimized geometry and the S0 curve represents the energy of the 

S0-optimized geometry.  The energy of phosphorescence corresponds to the energy difference between the 

T1 and S0 states at the T1-optimized geometry. 

 

 

The S0-, T1-, and S1-PECs of 2 are shown in Figures 4a and 4b.  Only the global 

minimum exists in the S1 and T1 PECs of 2, but no local minimum exists in these excited 

states, as mentioned above.  The same names, 2S1a and 2T1a, are employed for these global 

minimum geometries in both vacuo and the CH3CNsolution, because these geometries in the 

CH3CN solution are almost the same as those in vacuo, unlike the 1S1a and 1T1a geometries; 

for instance, the Pt−Pt distance is 2.680 and 2.675 Å for the 2S1a and 2T1a geometries, 

respectively, in both vacuo and the CH3CN solution; see Table 2 and Figure 4.24 
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Table 3.  Changes of the Mulliken Charges when going from the S0-optimized geometry to the S1- or 

T1-optimized geometries of 1 and 2 

 Pt1 Pt2 pz(N1^N2) pz(N3^N4) bpym(N5^N7) bpym(N6^N8) 

 in vacuo 

 1S1a +0.10 +0.10 +0.11 +0.11 −0.21 −0.21 

 1T1a +0.10 +0.10 +0.11 +0.11 −0.21 −0.21s 

 1S1b +0.10 +0.01 +0.07 +0.02 +0.02 −0.22 

 1T1b +0.01 +0.01 +0.06 +0.01 +0.01 −0.19 
 

 in CH3CN 

 1S1a +0.16 +0.16 +0.10 +0.10 −0.26 −0.26 

 1T1a +0.16 +0.16 +0.10 +0.10 −0.26 −0.26 

 1S1a' +0.17 +0.17 +0.10 +0.10 −0.27 −0.27 

 1T1a' +0.17 +0.17 +0.10 +0.10 −0.27 −0.27 

 1S1b +0.11 +0.02 +0.12 +0.04 +0.02 −0.31 

 1T1b +0.13 +0.01 +0.10 +0.02 +0.02 −0.28 

 Pt1 Pt2 thp(N1^S2) thp(N2^S1) ppy(N3^C3) ppy(N4^C4) 

 in vacuo 

 2S1a +0.05 +0.05 +0.09 +0.09 −0.14 −0.14 

 2T1a +0.04 +0.04 +0.09 +0.09 −0.13 −0.13 
 

 in CH3CN 

 2S1a +0.10 +0.10 +0.10 +0.10 −0.20 −0.20 

 2T1b +0.09 +0.09 +0.10 +0.10 −0.19 −0.19 

(a) pz(N1^N2) means the pz ligand including N1 and N2 atoms; see Scheme 1. 

 

 

4.3.4. Reasons Why the Phosphorescence Spectrum of 1 Is Observed in the Solid State 

but Not in the CH3CN Solution 

In 1, S0 → S1 photoexcitation occurs at 3.50 eV (353 nm).5  This excitation energy is 

evaluated to be 3.39 eV as the energy difference between the S0 and S1 states at the S0 

equilibrium geometry.  This S0 → S1 photoexcitation yields the S1 state, with the S0 

equilibrium geometry (1S0) due to the Franck−Condon principle.  It is likely that the 

geometry of the S1 state changes to the C2v-symmetrical global minimum 1S1a' geometry in 

CH3CN, because the CH3CN solution is flexible enough not to suppress the geometry 
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change.  The electronic structure of the S1 state changes from the LC/MLCT state to the 

MMLCT one when going from the 1S0 geometry to the 1S1a'  one.  In the 1S1a'  geometry, 

spin−orbit interaction between the S1 and T1 excited states is absent because the direct 

product of irreducible representations of the SOMOs of these excited states and the orbital 

angular momentum operator (l) does not belong to the a1 representation in the 

C2v-symmetrical 1S1a' geometry; see the Appendix for details.  Thus, the S1 → T1 

intersystem crossing hardly occurs in the 1S1a'  geometry.  As a result, the population of the 

T1 state is absent and the phosphorescence of 1 cannot occur in the CH3CN solution. 

Although the S1 → T1 intersystem crossing is considered to hardly occur, the 

fluorescence of 1 was not experimentally observed in the CH3CN solution.5  This means 

that the S1 → S0 non-radiative decay occurs; if not, the S1 → S0 fluorescence spectrum must 

be observed.  We will briefly discuss here the reason why the S1 → S0 non-radiative decay 

occurs around the S1 global minimum geometry (1S1a') in the CH3CN solution.  The energy 

difference between the S1 and S0 states is evaluated to be small (1.33 eV) at the 1S1a' 

geometry with the PCM method.  This energy difference becomes much smaller than 1.33 

eV as the Pt−Pt distance becomes shorter than the equilibrium distance of 1S1a'  (2.620 Å), as 

shown in Figure 3b.  Because the Pt−Pt distance would become shorter by molecular 

vibration and/or geometry fluctuation around 1S1a' , it is likely that the S1 → S0 non-radiative 

transition occurs in the CH3CN solution at RT.  We discuss the reason why the shortening 

of the Pt−Pt distance leads to a decrease in the energy difference between the S1 and S0 states.  

The dσ*(Pt−Pt) orbital energy becomes higher as the Pt−Pt distance becomes shorter, as 

discussed above.  Because the dσ*(Pt−Pt) orbital is doubly occupied in the S0 state but 

singly occupied in the S1 state, the S0 state becomes more unstable in energy than the S1 state 

as the Pt−Pt distance becomes shorter.  Hence, the energy difference between the S1 and S0 

states becomes small with a decrease in the Pt−Pt distance. 

Here, we discuss whether the T1 → S0 emission is allowed or forbidden; this 
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discussion is necessary because forbidden phosphorescence is not observed at all even if the 

S1 → T1 intersystem crossing occurs.  The T1 → S0 transition occurs when some of the 

singlet excited states mix into the T1 state through spin-orbit interaction.  As discussed 

above, spin−orbit interaction between the S1 and T1 states is absent at the 1T1a'  geometry.  

Thus, the S1 → S0 transition does not contribute to the oscillator strength of the T1 → S0 

emission.  On the other hand, the S2 state mixes into the T1 state by spin−orbit 

interaction.25a  The oscillator strength of the S2 → S0 transition is moderate, which is 

evaluated to be 0.0170 by time-dependent (TD)-B3PW91 with the PCM method.25b  Singlet 

excited states with higher energy than the S2 state mix less into the T1 state because the 

energy difference between the higher energy singlet excited state and the T1 state is large.  

In conclusion, the T1→ S0 emission is not forbidden mainly because of mixing of the S2 state 

into the T1 state, indicating that phosphorescence is observed in CH3CN if the population of 

the T1 state is present. 

Another issue to be discussed here is whether or not the S1 → T1 intersystem crossing 

occurs around the S0 geometry (1S0) before geometry relaxation to the global minimum.  

Actually, the rapid intersystem crossing is observed in some platinum(II) complexes.26  The 

S1 state is C1-symmetrical around the 1S0 geometry, as shown in Figure 1, in which 

spin−orbit interaction between the S1 and T1 excited states operates to induce the S1 → T1 

intersystem crossing; see the Appendix for details.  After this intersystem crossing, the 

geometry changes to the T1 global minimum (1T1a').  The energy difference between the T1 

and S0 states is small (1.24 eV) at the 1T1a'  geometry, as discussed above about the 1S1a' 

geometry; see also Table 4.  Thus, it is likely that the T1 → S0 non-radiative decay occurs at 

the 1T1a' geometry; in other words, 1 would not be emissive in the CH3CN solution even 

though the S1 → T1 intersystem crossing occurs before the geometry change to the 1S1a' 

geometry in the S1 state. 
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Table 4.  Energies (in eV)a and assignments of phosphorescence spectra of 1 and 2 

 energy of phosphorescence 

 calcd 

 geometry assignment vacuo CH3CN exptlb 

 1T1a' π*(bpym)  
→ dσ*(Pt−Pt) 1.66 1.22 c CH3CN at RT 

 

 1T1b π*(bpym)  
→ dσ*(Pt−Pt) 2.33 2.28 2.41, 2.59, 2.73 solid state at RT 

 

 2T1a π*(ppy)  → dσ*(Pt−Pt) 1.75 1.87 1.89 CH3CN at RT 

      1.93 solid state at RT 

(a) The energy of phosphorescence is defined as the energy difference between the T1 and S0 states at the 

T1-optimized geometry.  This energy difference was evaluated with the DFT(B3PW91)/basis-II 

//DFT(B3PW91)/basis-I method.  (b) See refs 5 and 6 for complexes 1 and 2, respectively.  (c) Phosphorescene 

was not observed.  (d) The peak of the phosphorescence spectrum was split.   See ref 27. 

 

 

In the solid state, the phosphorescence of 1 is experimentally observed at 2.41, 2.59, 

and 2.73 eV at RT.5,27  The reason why 1 is emissive in the solid state is considerably 

interesting.  The S0 → S1 excitation occurs at the S0-equilibrium geometry (1S0), like in the 

CH3CN solution.  However, it is likely that the geometry of the S1 state does not change to 

the S1 global minimum (1S1a) in the solid state, unlike in the CH3CN solution.  One reason 

is that the molecular volume considerably changes when going from the 1S0 geometry to the 

1S1a; note that the molecular volume is much different between the 1S1a (606 Å3) and 1S0 

(585 Å3) geometries, as shown in Table 1.  Such a large volume change is difficult in the 

solid state.  Another reason is that there is a small but non-negligible activation barrier 

between the 1S1a and 1S1b geometries in the S1-PEC, as shown in Figure 3a.  This 

activation barrier would suppress the geometry change from 1S1b to 1S1a in the solid state; 

hence, the geometry of the S1 state would stay in the local minimum geometry (1S1b) in the 

solid state.  In the C1-symmetrical 1S1b geometry, spin−orbit interaction between the T1 and 

S1 states operates to induce the S1 → T1 intersystem crossing because the direct product of 

the irreducible representations of the SOMOs in these excited states and the l operator 
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belongs to the “a” representation; see the Appendix for details.  The geometry of the T1 

excited state would change to the 1T1b geometry even in the solid state because the 

molecular volume little changes in this case; the molecular volumes of the 1S1b and 1T1b 

geometries are almost the same and are 586 and 585 Å3, respectively, as shown in Table 1.  

Thus, the population of the T1 state would be present, and T1 → S0 phosphorescence occurs 

at the 1T1b geometry.  This phosphorescence is allowed because the S1 state mixes into the 

T1 state by spin−orbit coupling, and the S0 → S1 transition is symmetry-allowed.  The 

energy of this phosphorescence corresponds to the energy difference between the T1 and S0 

states at the 1T1b geometry, which is evaluated to be 2.33 eV, as shown in Table 4.  This 

value agrees well with the experimental value (2.41, 2.59, and 2.73 eV).5,27  The 

phosphorescence in the solid state is assigned as the π*(bpym) → π(bpym) + d(Pt) 

transition. 

At the end of this section, we mention the comparison between 1 and 3 because 3 is 

emissive in a 2-methyltetrahydrofuran (2-MeTHF) solution, unlike 1 in a CH3CN solution.  

It is likely that the geometries of the S1 and T1 states of 3 are Cs-symmetrical in solution.8  

In this geometry, S1−T1 spin−orbit interaction operates to induce the S1 → T1 intersystem 

crossing.  Thus, the population of the T1 state of 3 is not zero and the T1 → S0 emission of 3 

is observed in 2-MeTHF.  This is the reason why 3 is emissive in solution, although its 

geometry and electronic structure are similar to those of 1. 

 

4.3.5. Reasons Why the Phosphorescence Spectrum of 2 Is Observed in Both the Solid 

State and theCH3CN Solution 

Photo-excitation occurs at 2.47 eV (500 nm) in the CH3CN solution at RT.6  The 

energy difference between the S0 and S1 states is evaluated to be 2.33 eV at the S0 

equilibrium geometry (2S0).  This value agrees well with the experimental excitation energy.  

The geometry of the S1 state is the same as the 2S0 geometry just after photo-excitation 
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according to the Franck−Condon principle.  It is likely that the geometry changes to the S1 

global minimum (2S1a) in the CH3CN solution.  The 2S1a geometry is C2-symmetrical and 

its electronic structure is the MMLCT excited state, as shown in Figure 1.  Because the 

direct product of the irreducible representations of the SOMOs and the l operator belongs to 

the “a” representation in the C2 symmetry, spin−orbit interaction between the S1 and T1 

excited states operates to induce the S1 → T1 intersystem crossing; see the Appendix for 

details.  Then, the geometry of 2 would change to the T1 global minimum (2T1a), in which 

phosphorescence would occur from the T1 excited state to the S0 ground state.  The energy 

of this phosphorescence is evaluated to be 1.87 eV with the PCM method, as shown in Table 

4.  This value agrees well with the experimental one (1.89 eV).6  This phosphorescence is 

assigned as the π*(ppy) → dσ*(Pt−Pt) transition.28 

It is likely that even in the solid state geometry relaxation occurs from the 2S0 

geometry to the 2S1a one, like in the CH3CNsolution, because no barrier exists between the 

2S0 and 2S1a geometries, as discussed above.  Another reason is that the molecular volume 

changes less when going from the 2S0 (712 Å3) geometry to the 2S1a (698 Å3) geometry than 

when going from the 1S0 geometry to the 1S1a geometry, as shown in Table 2.  In the 

C2-symmetrical 2S1a geometry, the S1 → T1 intersystem crossing occurs, followed by 

geometry relaxation to the 2T1a geometry on the T1-PEC.  Thus, the population of the T1 

state is present; hence, T1 → S0 phosphorescence occurs at the 2T1a geometry in the solid 

state; note that this phosphorescence is allowed because the S1 state mixes into the T1 state 

through spin−orbit interaction and the S1 → S0 transition is allowed.  The energy of this 

phosphorescence is calculated to be 1.75 eV, as shown in Table 4.  This energy agrees well 

with the experimental value (1.93 eV)6 observed in tne solid state. 

We discuss here the reason why the energy of phosphorescence of 2 is similar between 

in the solid state and the CH3CN solution.  The important result is that the local minimum 

is absent in the T1-PEC of 2.  Another important factor is the moderate change in the 
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molecular volume when going from the 2S0 geometry to the 2T1a geometry.  Thus, the T1 

geometry of 2 reaches almost the same global minimum geometry (2T1a) in both the solid 

state and the CH3CN solution, leading to the similar energy of phosphorescence of 2 

between the solid state and the CH3CN solution.  In 1, on the other hand, the T1 geometry 

still exists at the T1-local minimum in the solid state but changes to the T1-global minimum 

in a CH3CN solution, as discussed above. 

This difference between 1 and 2 arises from the different direction of the lone-pair 

orbitals between pz and pyt; as discussed above, the nitrogen and sulfur lone-pair orbitals of 

pyt expand toward rather the inside, as shown in Figure 2, while nitrogen lone-pair orbitals 

of pz expand toward the outside.  As a result, the geometry bearing the long Pt−Pt distance 

can be formed in 1 but not in 2.  This is one of the important factors for the different 

features between 1 and 2. 

 

4.4. Conclusions 

In the S1-PEC of 1, both global (1S1a) and local (1S1b) minimum geometries are 

present.  The 1S1b geometry is similar to the S0-equilibrium geometry (1S0), but the 1S1a 

geometry is considerably different.  The S1 state of 1 takes the 1S1b geometry in the solid 

state because the geometry changes from the 1S0 geometry to the 1S1a one with difficulty in 

the solid state.  Spin−orbit interaction between the T1 and S1 states operates in this 

C1-symmetrical 1S1b geometry to induce the S1 → T1 intersystem crossing.  Then, the 

geometry moderately changes to the 3LC/MLCT-minimum geometry (1T1b), in which 

π*(bpym) → π(bpym) + d(Pt) phosphorescence occurs.  In the CH3CN solution, the S1 

geometry of 1 reaches the S1 global minimum (1S1a') concomitantly with a change of the 

electronic structure from the 1LC/MLCT state to the 1MMLCT state.  Because of the 

C2v-symmetrical 1S1a'  geometry, spin−orbit interaction between the T1 and S1 states is absent 

not to induce the S1 → T1 intersystem crossing.  Also, the S1 excited state of 1 
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non-radiatively decays to the S0 ground state because of the small energy difference (1.33 

eV) between the S1 and S0 states at the 1S1a' geometry.  Thus, both phosphorescence and 

fluorescence of 1 are not observed in the CH3CN solution at RT.  There is a possibility that 

the S1 → T1 intersystem crossing occurs before geometry relaxation to the 1S1a'  geometry.  

Even in this case, T1 → S0 phosphorescence is not observed in CH3CN, too, because the T1 

→ S0 non-radiative decay would easily occur because of the small energy difference between 

the T1 and S0 states at the T1-global minimum geometry (1T1a') in CH3CN. 

In the S1-PEC of 2, the local minimum is absent and the molecular volume does not 

change very much when going from the S0 equilibrium geometry (2S0) to the S1-global 

minimum geometry (2S1a).  Hence, the S1 geometry of 2 changes to the 2S1a geometry in 

both the solid state and the CH3CN solution.  Because the 2S1a geometry is C2-symmetrical, 

spin−orbit interaction operates to induce the S1 → T1 intersystem crossing.  Thus, the 

population of the T1 state is present; hence, π*(ppy) → dσ*(Pt−Pt) phosphorescence occurs 

at the 2T1a geometry in both the solid state and the CH3CN solution.  The direction of 

lone-pair orbitals of the bridging ligand and the symmetry of the chelating ligand are 

responsible for these differences between 1 and 2. 
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4.5. Appendix 

 

 

Table A1.  Several important optimized bond lengths (in Å)a in pz and bpym of 1 

 1S0 1S1a 1S1b 1T1a 1T1b 

 pz r(N1−N2)b 1.354 1.351 1.356 1.350 1.356 

  r(N1−C1) 1.348 1.345 1.349 1.345 1.348 

  r(C1−C5) 1.391 1.394 1.392 1.394 1.391 
 

 bpym r(N5−C7) 1.345 1.352 1.346 1.352 1.342 

  r(C7−C11) 1.387 1.378 1.382 1.378 1.387 

  r(C11−C15) 1.395 1.409 1.408 1.409 1.415 

  r(C15−N9) 1.335 1.325 1.321 1.325 1.319 

  r(N9−C19) 1.317 1.328 1.328 1.327 1.336 

  r(C19−N5) 1.358 1.376 1.379 1.375 1.389 

  r(C19−C21) 1.480 1.450 1.446 1.451 1.439 

(a) Geometries were optimized with the DFT(B3PW91)/basis-I method.  (b) Labels of atoms are represented in 

Scheme A1. 

 

 

 

 Scheme A1. 
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Table A2.  Several important optimized bond lengths (in Å)a in thp and ppy of 1 

 exptlb 2S0 2S1a 2T1a 

 thp r(N1−C1)c 1.335 1.356 1.353 1.352 

  r(C1−S2) 1.747 1.745 1.743 1.742 

  r(N1−C5) 1.360 1.351 1.349 1.349 

  r(C5−N7) 1.367 1.351 1.349 1.349 

  r(C7−C9) 1.411 1.400 1.401 1.401 

  r(C9−C11) 1.361 1.381 1.381 1.381 

  r(C11−C1) 1.398 1.414 1.412 1.412 
 

 ppy r(N3−C13) 1.330 1.342 1.353 1.353 

  r(C13−C15) 1.390 1.386 1.377 1.377 

  r(C15−C17) 1.398 1.395 1.409 1.408 

  r(C17−C19) 1.308 1.386 1.385 1.385 

  r(C19−C21) 1.405 1.400 1.399 1.399 

  r(C21−N3) 1.369 1.363 1.381 1.381 

  r(C21−C23) 1.471 1.457 1.445 1.445 

  r(C23−C25) 1.400 1.402 1.406 1.406 

  r(C25−C27) 1.338 1.388 1.386 1.386 

  r(C27−C29) 1.422 1.397 1.400 1.400 

  r(C29−C31) 1.338 1.394 1.394 1.393 

  r(C31−C3) 1.411 1.403 1.399 1.400 

  r(C3−C23) 1.421 1.420 1.424 1.424 

(a) Geometries were optimized with the DFT(B3PW91)/basis-I method.  (b) Reference 6.  (c) Labels of atoms 

are represented in Scheme A2. 

 

 

 Scheme A2. 
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Table A3.  Evaluated orbital energies (in eV) 

 1S0 1S1a 1S1b 1T1a 1T1b 

 B3PW91/basis-I//B3PW91/basis-I 

  ε (π*(bpym)) −8.40 −8.90 −8.83 −8.92 −8.94 

  ε (dσ*(Pt−Pt)) −12.14 −11.72 −12.22 −11.70 −12.13 

  ε (π(bpym)) −13.18 −13.19 −13.10 −13.19 −13.11 

 

 B3PW91/basis-II//B3PW91/basis-I 

  ε (π*(bpym)) −8.46 −8.97 −8.88 −8.99 −9.00 

  ε (dσ*(Pt−Pt)) −12.47 −11.73 −12.49 −11.79 −12.53 

  ε (π(bpym)) −13.77 −13.94 −13.76 −13.95 −13.76 

 2S0 2S1a 2T1a 

 B3PW91/basis-I//B3PW91/basis-I 

  ε (π*(ppy)) −1.56 −1.68 −1.68 

  ε (dσ*(Pt−Pt)) −4.61 −4.27 −6.23 

  ε (π(ppy)) −6.42 −6.22 −6.23 

 

 B3PW91/basis-II//B3PW91/basis-I 

  ε (π*(ppy)) −1.72 −1.84 −1.84 

  ε (dσ*(Pt−Pt)) −4.71 −4.37 −4.36 

  ε (π*(ppy)) −6.52 −6.37 −6.37 

 

 

Table A4.  Evaluated energies (in eV) and assignments of phosphorescence spectra of 1 and 2 

 energy of phosphirescence 

 geometry assignment vacuo CH3CN 

 B3PW91//basis-I//B3PW91/basis-I 

  1T1a' π*(bpym) → π(bpym) + d(Pt) 1.73 1.29 

  1T1b π*(bpym) → dσ*(Pt−Pt) 2.35 2.30 
 

  2T1a π*(ppy) → dσ*(Pt−Pt) 1.81 1.94 
 

 B3PW91/basis-II//B3PW91/basis-I 

  1T1a' π*(bpym) → π(bpym) + d(Pt) 1.66 1.22 

  1T1b π*(bpym) → dσ*(Pt−Pt) 2.33 2.28 
 

  2T1a π*(ppy) → dσ*(Pt−Pt) 1.75 1.87 
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Discussion about the spin−−−−orbit interaction between the T1 and S1 states based on the symmetry of 

the electronic structure 

The spin−orbit interaction between the triplet and singlet excited states is one of the most important 

factors to induce the phosphorescence in transition metal complexes.  If the spin−orbit interaction is very 

small, the intersystem crossing from the singlet excited state to the triplet excited state hardly occurs.  In 

such case, the population of the triplet state is absent, and hence, the phosphorescence does not occur.  

Here, we will discuss the spin−orbit interactions between the T1 and S1 states of 1 and 2 and between the 

T1 and S2 states of 1. 

The spin−orbit interaction between the T1 and S1 states is approximately represented by the 

spin−orbit matrix elements. 

 (spin−orbit matrix elements) 
1 1, ,0T m SO SH= Ψ Ψ  (A1) 

In eq A1, ΨT1,m and ΨS1,0 are wavefunctions of the T1 and S1 states, respectively, and the subscript “m” 

represents the z-component of the spin angular momentum (m = +1, 0, −1).  In this study, the spin−orbit 

Hamiltonian (HSO) is represented by one-electron term of the Breit−Pauli Hamiltonian, which is defined 

below: 

 
2

32

nuclear electron
A

SO
A j A j

Z
H

r

α= ∑ ∑ lAj . sj (A2) 

where α is the fine-structure constant, r is the distance between nucleus A and electron j, l and s are the 

orbital and spin angular momentum operators, respectively, and Z is the nuclear charge.  Wavefunctions 

of the T1 and S1 states are approximately described by the Slater determinants, as follows: 

 1,1 +ΨT  XY=  (A3) 

 0,1TΨ  { }YXYX +=
2

1
 (A4) 

 1,1 −ΨT  YX=  (A5) 
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 0,1SΨ  { }YXYX −=
2

1
 (A6) 

where X and Y are α-spin MOs of the T1 and S1 states and X  and Y  are their β-spin MOs.  These 

Slater determinants are described by the Hartree products, as follows:  

 1,1 +ΨT  { }YXXY −=
2

1
 (A7) 

 0,1TΨ  { }XYYXXYYX −+−=
2

1
 (A8) 

 1,1 −ΨT  { }XYYX −=
2

1
 (A9) 

 0,1SΨ  { }XYYXXYYX +−−=
2

1
 (A10) 

In two electron system, the one-electron term of the Breit−Pauli Hamiltonian is described, as 

below: 

 SOH  ∑ ∑ ⋅=
nuclear

A
jAj

electron

j Aj

Aeff sl
r

Z
3

,
2

2

α
 (A11) 

 ∑ ∑ ⋅=
=

nuclear

A
jAj

j
Aj sl

2

1

λ  (A12) 

 { }∑ ⋅+⋅=
nuclear

A
AAAA slsl 222111 λλ  (A13) 

 ( ) ( ){ }∑ +++++=
nuclear

A
zzAyyAxxAAzzAyyAxxAA slslslslslsl 22222221111111 λλ  (A14) 

 ∑











 ++= +−−+
nuclear

A
zzAAAA slslsl 1111111 )(

2

1λ  
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









 +++ +−−+
2222222 )(

2

1
zzAAAA slslslλ  (A15) 

where lAx1, lAy1, and lAz1 are x-, y-, and z-components of the orbital angular momentum operator for 

electron 1, respectively, around atom A.  The sx1, sy1, and sz1 are x-, y-, and z-components of the spin 

angular momentum operator for electron 1, respectively.  The l +
A1 and l −

A1 are the raising and lowering 

operators for the orbital angular momentum, respectively, and the s+
1 and s−

1 are the same operators for 

the spin angular momentum.  The λA j is equal to (α2ZA)/(2r3
A j). 

The wavefunction of the S1 state (eq A10) is changed by operating of the spin−orbit Hamiltonian 

(eq S15): 

 0,1SSOH Ψ  ∑











 ++= +−−+
nuclear

A
zzAAAA slslsl 1111111 )(

2

1λ  

 { }XYYXXYYXslslsl zzAAAA +−−










 +++ +−−+

2

1
)(

2

1
2222222λ  (A16) 

 ( ) ( ){∑ +−−= −−
nuclear

A
AAAA YXXYll 22114

λλh
 

 ( ) ( )XYYXXYYXll zAAzAA +++−+ 2211 λλ  

 ( ) ( ) }XYYXll AAAA +−+ ++
2211 λλ  (A17) 

where h  is the reduced Planck constant. 

Multiplying this equation by the T1-wavefunctions (eqs A7−9) develops the spin−orbit matrix 

elements between the T1 and S1 states, as follows: 

 0,1, 11 SSOT H ΨΨ +  { } ( ) ( ){∑ +−−−= −−
nuclear

A
AAAA YXXYllYXXY 221142

1 λλh
 

 ( ) ( )XYYXXYYXll zAAzAA +++−+ 2211 λλ  

 ( ) ( )


+−+ ++ XYYXll AAAA 2211 λλ  (A18) 

 { } ( ) ( )






 +−−−= ∑ −−

nuclear

A
AAAA YXXYllYXXY 2211

24
λλh

 (A19) 
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





 −−= ∑∑ −−

nuclear

A
AA

nuclear

A
AA YlYXlX λλ

22

h
 (A20) 

 

 0,0, 11 SSOT H ΨΨ  { }XYYXXYYX −+−=
2

1
 

  ( ) ( ){∑ +−−× −−
nuclear

A
AAAA YXXYll 22114

λλh
 

 ( ) ( )XYYXXYYXll zAAzAA +++−+ 2211 λλ  

 ( ) ( )


+−+ ++ XYYXll AAAA 2211 λλ  (A21) 

 { }XYYXXYYX −+−=
8

h
 

 ( ) ( )∑ +++−×
nuclear

A
zAAzAA XYYXXYYXll 2211 λλ  (A22) 

 






 −= ∑∑

nuclear

A
zAA

nuclear

A
zAA YlYXlX λλ

2

h
 (A23) 

 








−= ∑∑
nuclear

A
zAA

nuclear

A
zA

A

Aeff YlYXl
r

Z
X λα

3

,
2

4

h
 (A24) 

 

 0,1, 11 SSOT H ΨΨ −  { } ( ) ( ){∑ +−−−= −−
nuclear

A
AAAA YXXYllXYYX 221142

1 λλh
 

 ( ) ( )XYYXXYYXll zAAzAA +++−+ 2211 λλ  

 ( ) ( )


+−+ ++ XYYXll AAAA 2211 λλ  (A25) 

 { } ( ) ( ){∑ +−−= ++
nuclear

A
AAAA XYYXllXYYX 2211

24
λλh

 (A26) 
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





 −= ∑∑ ++

nuclear

A
AA

nuclear

A
AA YlYXlX λλ

22

h
 (A27) 

 






 −= ∑∑ ++

nuclear

A
AA

nuclear

A
AA YlYXlX λλ

22

h
 (A28) 

Eqs A25 and A28 are deformed with the relational expressions lA
+ = lxA + i lyA and lA

− = lxA − i lyA, where i 

is the imaginary unit: 

 0,1, 11 SSOT H ΨΨ +  






 −−= ∑∑

nuclear

A
xAA

nuclear

A
xAA YlYXlX λλ

22

h
 

 






 −+ ∑∑

nuclear

A
yAA

nuclear

A
yAA YlYXlXi λλ

22

h
 (A29) 

 








−−= ∑∑
nuclear

A
xA

A

Aeff
nuclear

A
xA

A

Aeff Yl
r

Z
YXl

r

Z
X

3

,

3

,
2

24

hα
 

 








−+ ∑∑
nuclear

A
yA

A

Aeff
nuclear

A
yA

A

Aeff Yl
r

Z
YXl

r

Z
Xi

3

,

3

,
2

24

hα
 (A30) 

 

 0,1, 11 SSOT H ΨΨ −  






 −= ∑∑

nuclear

A
xAA

nuclear

A
xAA YlYXlX λλ

22

h
 

 






 −+ ∑∑

nuclear

A
yAA

nuclear

A
yAA YlYXlXi λλ

22

h
 (A31) 

 








−= ∑∑
nuclear

A
xA

A

Aeff
nuclear

A
xA

A

Aeff Yl
r

Z
YXl

r

Z
X

3

,

3

,
2

24

hα
 

 








−+ ∑∑
nuclear

A
yA

A

Aeff
nuclear

A
yA

A

Aeff Yl
r

Z
YXl

r

Z
Xi

3

,

3

,
2

24

hα
 (A32) 

Eq A30 is combined with eq A32, as below: 

 0,1, 11 SSOT H ΨΨ ±  








−= ∑∑
nuclear

A
xA

A

Aeff
nuclear

A
xA

A

Aeff Yl
r

Z
YXl

r

Z
X

3

,

3

,
2

24

h
m

α
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







−+ ∑∑
nuclear

A
yA

A

Aeff
nuclear

A
yA

A

Aeff Yl
r

Z
YXl

r

Z
Xi

3

,

3

,
2

24

hα
 (A33) 

It is likely that the intersystem crossing occurs at the S1-equilibrium geometry because the geometry 

of the S1 state easily changes to this geometry.  Thus, we investigated the spin−orbit interaction between 

the T1 and S1 states at the S1-equilibrium geometry from eqs A24 and A33. 

In CH3CN, the global minimum geometry 1S1a' is C2v symmetrical.  The SOMOs of 1S1a' are the 

dσ*(Pt−Pt) and π*(bpym) orbitals, as shown in Figure 1, where the former and the latter SOMOs 

correspond to X and Y, respectively, in above equations.  The irreducible representation of the the 

dσ*(Pt−Pt) orbital is b1 and that of the π*(bpym) orbital is a1.  The irreducible representation of the 

x-component of the angular momentum operator (Σ(Zeff,A/rA
3)lxA) is b2 because its representation is the 

same as the Rx operator, where the Rx means the rotation around the x-axis.  Similarly, the irreducible 

representations of the Σ(Zeff,A/rA
3)lyA and Σ(Zeff,A/rA

3)lzA operators are b1 and a2, respectively.  Thus, the 

direct product of these irreducible representations is b1 (= a1 × b1 × a1) for the 

<π*(bpym)|Σ(Zeff,A/rA
3)lxA|dσ*(Pt−Pt)>.  Because this is not a1, the matrix element 

<π*(bpym)|Σ(Zeff,A/rA
3)lxA|dσ*(Pt−Pt)> becomes zero.  The other matrix elements in eqs A24 and A33 are 

also zero because of the same reason (see Table A5), leading to the absence of the spin−orbit interaction 

between the T1 and S1 states.  As a result, the S1 � T1 intersystem crossing hardly occurs in the 1S1a' 

geometry. 

The local minimum geometry 1S1b is C1 symmetrical, in which the SOMOs are the π(bpym) and 

π*(bpym) orbitals, as shown in Figure 1, where the former and the latter SOMOs correspond to X and Y, 

respectively, in above equations.  The irreducible representations of these orbitals are “a”.  Also, the 

irreducible representations of the Σ(Zeff,A/rA
3)lxA, Σ(Zeff,A/rA

3)lyA, and Σ(Zeff,A/rA
3)lzA operators are “a”.  

Because the direct product of these irreducible representations is “a”, as shown in Table A3, all matrix 

elements in eqs A24 and A33 are non-zero, leading to the presence of the spin−orbit interaction.  Thus, 

the S1 � T1 intersystem crossing occurs in the 1S1b geometry. 

 

 



- 113 - 
 

 

Table A5.  Direct products of matrix elements in eqs A24 and A33 at the S1-minimum geometries 

 1S1a' (C2v) 1S1b (C1) 2S1a (C2) 

 Xl
r

Z
X

nuclear

A
xA

A

Aeff∑ 3

,  b1 × b2 × b1 = b2 a × a × a = a b × b × b = b 

 Yl
r

Z
Y

nuclear

A
xA

A

Aeff
∑ 3

,  a1 × b2 × a1 = b2 a × a × a = a a × b × a = b 

 Xl
r

Z
X

nuclear

A
yA

A

Aeff
∑ 3

,  b1 × b1 × b1 = b1 a × a × a = a b × b × b = b 

 Yl
r

Z
Y

nuclear

A
yA

A

Aeff
∑ 3

,  a1 × b1 × a1 = b1 a × a × a = a a × b × a = b 

 Xl
r

Z
X

nuclear

A
zA

A

Aeff
∑ 3

,  b1 × a2 × b1 = a2 a × a × a = a b × a × b = a 

 Yl
r

Z
Y

nuclear

A
zA

A

Aeff
∑ 3

,  a1 × a2 × a1 = a2 a × a × a = a a × a × a = a 

 

 

In 2, the global minimum geometry 2S1a is C2 symmetrical, in which the SOMOs are the 

dσ*(Pt−Pt) and π*(ppy) orbitals, as shown in Figure 1, where the former SOMO corresponds to X and the 

latter one corresponds to Y in above equations.  Irreducible representations of these SOMOs are “b” and 

“a”, respectively.  The Σ(Zeff,A/rA
3)lxA and Σ(Zeff,A/rA

3)lyA operators belong to “b” irreducible representation 

and the Σ(Zeff,A/rA
3)lzA operator belongs to “a” irreducible representation.  All direct products of these 

irreducible representations are not “a”; for example, the direct product of the irreducible representations is 

b (= a × b × a) in <π*(ppy)|Σ(Zeff,A/rA
3)lxA|π*(ppy)>; see Table A3.  Thus, all matrix elements in eq A33 

becomes zero, and hence, the spin−orbit matrix element <ΨT1,±1|HSO|ΨS1,0> becomes zero.  On the other 

hand, the <X|Σ(Zeff,A/rA
3)lzA|X> and <Y|Σ(Zeff,A/rA

3)lzA|Y> matrix elements in eq A24 are not zero, because 

the direct products of the irreducible representations are “a” in these matrix elements; for example, the 

direct product is a (= a × a × a) for the <π*(ppy)|Σ(Zeff,A/rA
3)lzA|π*(ppy)>.  Thus, the spin−orbit matrix 
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element <ΨT1,0|HSO|ΨS1,0> is not zero.  From these results, it is concluded that the S1 � T1 intersystem 

crossing occurs at the 2S1a geometry. 

Next, we will discuss the spin-orbit interaction between the T1 and S2 states of 1.  Wavefunction of 

the S2 states is represented by the Slater determinants, as follows: 

 0,2SΨ  { }ZXZX −=
2

1
 (A34) 

where, X and Z are SOMOs of the S2 state; the former is the same as the one SOMO of the T1 state while 

the latter is different from that of the T1 state, as shown in Scheme A3.  The Slater determinants in eq 

A34 are described by the Hartree products, as follows: 

 0,2SΨ  { }XZZXXZZX +−−=
2

1
 (A35) 

 

 

 Scheme A3. 

dσ*(Pt-Pt) (b1)

π*(ppy) (a1)

π*(ppy) (b1) x

y

z

T1 S2  
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The wavefunction of the S2 state is changed by operating of the spin−orbit Hamiltonian (eq A15): 

 0,2SSOH Ψ  ∑











 ++= +−−+
nuclear

A
zzAAAA slslsl 1111111 )(

2

1λ  

 { }XZZXXZZXslslsl zzAAAA +−−










 +++ +−−+

2

1
)(

2

1
2222222λ  (A36) 

 ( ) ( ){∑ +−−= −−
nuclear

A
AAAA ZXXZll 22114

λλh
 

 ( ) ( )XZZXXZZXll zAAzAA +++−+ 2211 λλ  

 ( ) ( ) }XZZXll AAAA +−+ ++
2211 λλ  (A37) 

Multiplying this equation by the T1-wavefunctions (eqs A7−9) develops the spin−orbit matrix 

elements between the T1 and S2 states, as follows: 

 0,1, 21 SSOT H ΨΨ +  { } ( ) ( ){∑ +−−−= −−
nuclear

A
AAAA ZXXZllYXXY 221142

1 λλh
 

 ( ) ( )XZZXXZZXll zAAzAA +++−+ 2211 λλ  

 ( ) ( )


+−+ ++ XZZXll AAAA 2211 λλ  (A38) 

 { } ( ) ( )






 +−−−= ∑ −−

nuclear

A
AAAA ZXXZllYXXY 2211

24
λλh

 (A39) 

 ∑ −=
nuclear

A
AA ZlY λ

22

h
 (A40) 

 0,0, 21 SSOT H ΨΨ  { }XYYXXYYX −+−=
2

1
 

  ( ) ( ){∑ +−−× −−
nuclear

A
AAAA ZXXZll 22114

λλh
 

 ( ) ( )XZZXXZZXll zAAzAA +++−+ 2211 λλ  
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 ( ) ( )


+−+ ++ XZZXll AAAA 2211 λλ  (A41) 

 { }XYYXXYYX −+−=
8

h
 

 ( ) ( )∑ +++−×
nuclear

A
zAAzAA XZZXXZZXll 2211 λλ  (A42) 

 ∑−=
nuclear

A
zAA ZlY λ

2

h
 (A43) 

 ∑−=
nuclear

A
zA

A

Aeff Zl
r

Z
Y

3

,
2

4

hα
 (A44) 

 0,1, 21 SSOT H ΨΨ −  { } ( ) ( ){∑ +−−−= −−
nuclear

A
AAAA ZXXZllXYYX 221142

1 λλh
 

 ( ) ( )XZZXXZZXll zAAzAA +++−+ 2211 λλ  

 ( ) ( )


+−+ ++ XZZXll AAAA 2211 λλ  (A45) 

 { } ( ) ( ){∑ +−−= ++
nuclear

A
AAAA XZZXllXYYX 2211

24
λλh

 (A46) 

 ∑ +=
nuclear

A
AA ZlY λ

22

h
 (A47) 

 ∑ +=
nuclear

A
AA ZlY λ

22

h
 (A48) 

Eqs A40 and A48 are deformed with the relational expressions lA
+ = lxA + i lyA and lA

− = lxA − i lyA, as 

follows: 

 0,1, 21 SSOT H ΨΨ +  ∑∑ −=
nuclear

A
yAA

nuclear

A
xAA ZlYiZlY λλ

2222

hh
 (A49) 
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 ∑∑ −=
nuclear

A
yA

A

Aeff
nuclear

A
xA

A

Aeff Zl
r

Z
YiZl

r

Z
Y

3

,
2

3

,
2

2424

hh αα
 (A50) 

 0,1, 21 SSOT H ΨΨ −  ∑∑ +=
nuclear

A
yAA

nuclear

A
xAA ZlYiZlY λλ

2222

hh
 (A51) 

 ∑∑ +=
nuclear

A
yA

A

Aeff
nuclear

A
xA

A

Aeff Zl
r

Z
YiZl

r

Z
Y

3

,
2

3

,
2

2424

hh αα
 (A52) 

Eq A50 is combined with eq A52, as below: 

 0,1, 21 SSOT H ΨΨ ±  ∑∑=
nuclear

A
yA

A

Aeff
nuclear

A
xA

A

Aeff Zl
r

Z
YiZl

r

Z
Y

3

,
2

3

,
2

2424

h
m

h αα
 (A53) 

Here, we will discuss the spin-orbit interaction between the T1 and S2 excited states at the 1T1a' 

geometry to investigate whether the S2 state mixes to the T1 state or not.  In the 1T1a' geometry, the 

SOMOs of the T1 state are the dσ*(Pt−Pt) (b1) and π*(ppy) (a1) orbitals and those of the S2 state are the 

dσ*(Pt−Pt) (b1) and antisymmetrical π*(ppy) (b1) orbitals, as shown in Scheme A3, where the dσ*(Pt−Pt) 

(b1), π*(ppy) (a1), and π*(ppy) (b1) orbitals correspond to X, Y, and Z, respectively; see Scheme A3 for X, 

Y, and Z.  The irreducible representations of the Σ(Zeff,A/rA
3)lxA, Σ(Zeff,A/rA

3)lyA, and Σ(Zeff,A/rA
3)lzA 

operators are b2, b1 and a2, respectively, as discussed above. 

 

 

Table A6.  Direct products of matrix elements in eqs A44 and A53 at the 1T1a' geometry 

 1T1a' (C2v) 

 Zl
r

Z
Y

nuclear

A
xA

A

Aeff
∑ 3

,  a1 × b2 × b1 = a2 

 Zl
r

Z
Y

nuclear

A
yA

A

Aeff
∑ 3

,  a1 × b1 × b1 = a1 

 Zl
r

Z
Y

nuclear

A
zA

A

Aeff
∑ 3

,  a1 × a2 × b1 = b2 
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the a1 representation; see the Appendix for details.  (b) The oscillator strength of the S1→ S0 transition 

at the 1T1b geometry is 0.0313 and that of the S2 → S0 transition is 0.0022, indicating that the S2 → S0 

transition little contributes to the oscillator strength of the T1 → S0 transition of 1.  Although the 

oscillator strength is moderately larger in the S1 → S0 transition at the 1T1b geometry than in the S2 → 

S0 transition at the 1T1a geometry, it should be concluded that the oscillator strength of the T1 → S0 

transition is not zero at the 1T1a geometry. 

(26) Danilov, E. O.; Pomestchenko, I. E.; Kinayyigit, S.; Gentili, P. L.; Hissler, M.; Ziessel, R.; Castellano, F. 

N. J. Phys. Chem. A 2005, 109, 2465. 

(27) (a) In the phosphorescence spectrum of 1 observed in the solid state at RT, three split peaks were 

observed at 2.41, 2.59, and 2.74 eV.5  These split peaks were understood in terms of the coupling with 

the breathing vibration of the aromatic ring of bpym like the other pz-bridged dinuclear platinum(II) 

complex 3.7,8  Because such vibrational coupling is not incorporated by the usual electronic structure 

calculation, we compare here the calculated energy of phosphorescence with the average value of these 

three peaks.  (b) Nonradiative decay hardly occurs in the 1T1b geometry, unlike in the 1T1a'  geometry, 

because the energy difference between the T1 and S0 states is considerably larger in 1T1b than in 1T1a'  ; 

see Table 4. 

(28) It is noted that the energy difference between the T1 and S0 states in the CH3CN solution is considerably 

larger at the 2T1a geometry (1.87 eV) than at the 1T1a'  geometry (1.24 eV).  Thus, the T1 → S0 

non-radiative decay hardly occurs in 2, unlike in 1, which agrees with the experimental results that 

phosphorescence of 2 is observed in the CH3CN solution. 
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Chapter 5 

 

Oscillator Strength of Symmetry-Forbidden d−−−−d Absorption of Octahedral 

Transition Metal Complex:  Theoretical Evaluation 

 

5.1. Introduction 

Absorption spectra of transition metal complexes can be easily investigated nowadays 

with electronic structure theory such as time-dependent density functional theory (TD-DFT)1  

and symmetry-adapted cluster expansion followed by configuration interaction 

(SAC/SAC−CI) method.2  However, the oscillator strength of a symmetry-forbidden 

transition such as a d−d transition of a transition metal complex bearing inversion symmetry 

cannot be evaluated with the usual electronic structure theory, as is well-known.3,4  In a real 

molecule, however, geometry is not frozen but thermally vibrating.  Some of the molecular 

vibrations break the symmetry of geometry in which the transition dipole moment of the d−d 

transition becomes nonzero even in a metal complex with the inversion symmetry.  In other 

words, the d−d absorption is induced by molecular vibration.  This means that the oscillator 

strength of the symmetry-forbidden d−d transition can be theoretically evaluated by 

incorporating effects of molecular vibration into the electronic structure calculation.  

However, such theoretical evaluations have been limited, so far.  One of the pioneering 

theoretical works was reported by Kato, Iuchi, and their collaborators.5  They investigated 

the d−d absorption spectrum of octahedral [Ni(H2O)6]
2+ with a model Hamiltonian which 

was constructed by molecular dynamics simulation.  Another example6 was a theoretical 

study of the d−d absorption spectrum of square planar [PtCl4]
2− with the Hertzberg−Teller 

(HT) approximation.7  In this study, the Taylor expansion of transition dipole M by normal 

coordinate Qi is truncated at the second term and then the M value is calculated with the 

derivative of M by Qi, (∂M/∂Qi), and the vibrational wave functions in the electronic ground 



- 122 - 
 

and excited states; see ref 8 for more details.  Considering that the oscillator strength of 

symmetry-forbidden d−d transition has not been evaluated except for these studies, its 

theoretical evaluation is challenging even nowadays.  Remember that the d−d absorption 

spectrum provides us with important knowledge of the d−d orbital energy gap.  To present 

a correct assignment of the d−d absorption, the oscillator strength is indispensable.  Thus, it 

is important to investigate theoretically the d−d absorption and its oscillator strength. 

In this study, we wish to propose a new method to evaluate the oscillator strength of 

the symmetry-forbidden d−d transition.  In our method, the geometry distribution around 

the equilibrium geometry is incorporated by considering the vibrational wave function, while 

the HT approximation was not employed.  The Boltzmann distribution law was employed 

to evaluate the population of vibrationally excited state.  This method was applied to 

octahedral transition metal complexes, [Co(NH3)6]
3+ and [Rh(NH3)6]

3+, as an example.  

Though these compounds are not of that much interest, we calculated the oscillator strength 

of these well-known compounds here because this is the first application of our method.  

Our purposes here are to examine whether or not our method is useful in evaluating the 

oscillator strengths of symmetry-forbidden d−d transitions, 1A1g → 1T1g and 1A1g → 1T2g, of 

an octahedral transition metal complex,9 to elucidate what kinds of molecular vibrations 

contribute to their oscillator strengths, to evaluate contribution of zero-point vibration, and to 

show how much temperature influences the oscillator strength. 

 

5.2. Method and Computational Details 

5.2.1. DFT Calculations 

The core electrons of Co (up to 2p) and Rh (up to 3d) were replaced with the 

Stuttgart−Dresden−Bonn relativistic effective core potentials (SDB ECPs),10,11 and their 

valence electrons were represented with (311111/22111/4111/11) basis sets.10−12  The 

cc-pVDZ basis sets13 were used for H and N. 
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Geometries of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ in the 1A1g ground state were optimized 

with the DFT method, where the B3PW91 functional14,15 was employed.  Their vibration 

frequencies were evaluated with the same method.  Excitation energies of the 1A1g → 1T1g 

and 1A1g → 1T2g absorptions were evaluated with the TDDFT(B3PW91) method.16,17 

All electronic structure calculations were performed by the Gaussian 03 and 09 

program packages,18 where the numerical integrals were calculated with the “UltraFine grid” 

(99 × 590) and the geometry optimizations were carried out in the “VeryTight” convergence 

criteria in the Gaussian programs.  The evaluated frequencies and force constants were 

corrected with scaling factors, 0.9573 and 0.9164, respectively.19  Molecular orbitals were 

drawn by the MOLEKEL program.20 

 

5.2.2. Procedure to Evaluate Oscillator Strength of Symmetry-Forbidden d−−−−d 

Transition 

To calculate the oscillator strength explicitly, we need vibrational wave functions at 

the ground and excited states.  However, it is not easy to calculate the potential energy 

surface and vibrational wave function in the excited states of [Co(NH3)6]
3+ and the Rh 

analogue because their excited states induce the Jahn−Teller distortion.  Here, we wish to 

propose an approximate way to evaluate the oscillator strength of the symmetry-forbidden 

d−d transition.  In our method, the oscillator strength is calculated with distorted geometry 

along the normal coordinate of fundamental vibration, as will be discussed below.  This is 

the same as the usual calculation of symmetry-allowed transition in which the 

Franck−Condon factor is not considered explicity but assumed to be 1.0.  However, the 

potential energy surface and the vibrational wave function of the excited state were not 

considered in our method.21  Because of these approximations, our method is not perfect 

and its application is limited; for instance, it can not be applied to the evaluation of shape 

and vibrational structure of absorption spectrum which arises from vibronic coupling.  Also, 



- 124 - 
 

the present method is not useful to make a comparison of absorption spectrum between two 

complexes when the potential energy surface in the excited state is considerably different 

between them.  In addition, note that, in our method, the Jahn−Teller effect of the excited 

state is ignored,21 which influences the absorption spectrum.22  Despite of these defects, we 

believe that the present procedure has some practical merit. 

As well-known, the probability gi,n(Qi) of distorted geometry is determined by the 

square of the vibrational wave function χi,n(Qi);
21 

 

 
2

,, )()( iniini QQg χ=  (1) 
 

where n (= 0, 1, 2,...) is quantum number of the vibrational wave function and Qi is normal 

mode coordinate associated with the fundamental vibration mode i.  Equilibrium geometry 

corresponds to Qi = 0.  The probability of distorted geometry in zero-point vibration is 

schematically shown in Scheme 1a, as an example. 

The inversion center of the octahedral complex disappears with some of molecular 

vibrations. In such distorted geometry, the oscillator strengths of the 1A1g → 1T1g and 1A1g → 

1T2g transitions become nonzero.9  The oscillator strength fdist,i(Qi) at distorted geometry Qi 

was calculated with the TD-DFT method,23 where the distorted geometrical coordinate Qi 

was determined along the normal mode i at an appropriate interval; note that the normal 

mode i is provided by the Gaussian program package, where the harmonic oscillator 

approximation is employed.  All vibration modes were considered unless otherwise the 

contribution to the distorted geometry is negligibly small; See Appendix for details of 

evaluation of fdist,i(Qi). 

The oscillator strength fi,n induced by vibration mode i with quantum number n is 

represented by the integral of the product of fdist,i(Qi) and gi,n(Qi), as shown by eq 2; 
 

 ∫
∞

∞−
= iiidistinini dQQfQgf )()( ,,,  (2) 

For instance, the fi,0 value corresponds to a dark area in Scheme 1c.  This integral was 

calculated numerically; see also Appendix. 
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Scheme 1. 

×××× =
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Probability of distorted  geometry
by zero-point vibration

Oscillator strength as a function
of coordinateQi  

 

 

The population Pi,n of the n-th vibrationally excited state in the vibration mode i 

depends on temperature T, according to the Boltzmann distribution law.  Because the 

harmonic oscillator approximation is employed here, the population Pi,n is described by eq 3 
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where kB is the Boltzmann constant, ħ is the reduced Planck constant, and ωi is the frequency 

of vibration of mode i.  The oscillator strength fi(T) induced by vibration mode i at 

temperature T is represented by the sum of the product of fi,n and Pi,n(T); 

 ∑
∞

=

=
0

,, )()(
n

ninii fTPTf  (4) 

The sum of the fi(T) values on all fundamental vibrations corresponds to the total 

oscillator strength f(T) at temperature T 

 ∑=
all

i
i TfTf )()(  (5) 

Here, the mode coupling is not considered after checking that it is not large; see Appendix 

page S4.  Two-photon excitation is not considered also, indicating that some of intensity is 

missed. 
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5.3. Results and Discussion 

5.3.1. Optimized Geometries and d−−−−d Absorption Spectra of [Co(NH3)6]
3+ and 

[Rh(NH3)6]
3+ 

Optimized M−N bond lengths of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ are 2.009 and 2.113 

Å, respectively, as shown in Table 1, which agree well with the experimental values (1.967 

and 2.071 Å).24,25  The excitation energies of [Co(NH3)6]
3+ are evaluated to be 2.61 and 

3.62 eV for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively, which also agree well 

with the experimental values (2.62 and 3.67 eV).26  Those of [Rh(NH3)6]
3+ are evaluated to 

be 3.92 and 4.54 eV for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively.  The 

former energy is almost the same as the experimental value (4.03 eV).27  Though the latter 

one is moderately lower than the experimental value (4.86 eV),27 the difference is not large 

(about 0.3 eV). 

The oscillator strengths of [Co(NH3)6]
3+ at 293 K are evaluated to be 11.1×10−4 and 

8.1×10−4 for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively, as shown in Table 2.  

These results agree well with the experimental values (11×10−4 and 9×10−4).26 

 

 

Table 1.  Optimized bond lengths (in Å) and absorption energies (in eV) of [Co(NH3)6]
3+ and 

[Rh(NH3)6]
3+ 

 calcd exptl 

 [Co(NH3)6]
3+ r(Co−O) 2.009 1.967a 

  ∆E(1A1g → 1T1g) 2.61 2.62b 

  ∆E(1A1g → 1T2g) 3.62 3.67b 

 

 [Rh(NH3)6]
3+ r(Rh−O) 2.113 2.071c 

  ∆E(1A1g → 1T1g) 3.92 4.03d 

  ∆E(1A1g → 1T1g) 4.54 4.86d 

(a) Ref 24.  (b) Ref 26.  These absorption energies were measured in 5.0 M ammonia−water at 293 K.  (c) Ref 

25.  (d) Ref 27.  These absorption energies were measured in aqueous solution at room temperature. 
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In [Rh(NH3)6]
3+, the oscillator strengths are evaluated to be 22.7×10−4 and 13.0×10−4 

for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively.  Though these values are 

somewhat smaller than the experimental values (36×10−4 and 27×10−4),27,28 the experimental 

trend of the oscillator strength is reproduced well, as follows:  In both of experimental and 

theoretical results, the oscillator strengths of the 1A1g → 1T1g transitions of [Co(NH3)6]
3+ and 

[Rh(NH3)6]
3+ are somewhat larger than those of the 1A1g → 1T2g transitions and the oscillator 

strengths of [Rh(NH3)6]
3+ are considerably larger than those of [Co(NH3)6]

3+ in both of the 

1A1g → 1T1g and 1A1g → 1T2g transitions.  These results indicate that our method is useful in 

evaluating and discussing the oscillator strength of the symmetry-forbidden d−d absorption, 

at least semiquantitatively. 

 

5.3.2. Oscillator Strength at 0 K and Contributions of Various Molecular Vibration 

Modes 

It is of considerable interest to investigate whether or not the symmetry-forbidden d−d 

absorption can be observed at 0 K because vibration does not occur at 0 K in a classical 

sense.  However, the oscillator strength of [Co(NH3)6]
3+ is evaluated to be 4.6×10−4 and 

4.1×10−4 for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively, at 0 K, as shown in 

Table 2, though they are considerably smaller than those at 293 K (11.1×10−4 and 8.1×10−4), 

as expected.  The oscillator strength of [Rh(NH3)6]
3+ at 0 K is evaluated to be 11.7×10−4 

and 7.6×10−4 for the 1T1g and 1T2g transitions, respectively, which are also considerably 

smaller than the values at 293 K (22.7×10−4 and 13.0×10−4).  It is noted that though these 

oscillator strengths at 0 K are considerably smaller than at 298 K they are not negligibly 

small but instead are 40 to 60 % of the oscillator strengths at 298 K.  This means that the 

symmetry-forbidden d−d absorption can be observed even at 0 K.  This is because the 

zero-point vibration provides the distribution of distorted geometry around the equilibrium 

geometry even at 0 K, which corresponds to the uncertainty of geometry around the 
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equilibrium geometry at 0 K. Such distribution of distorted geometry contributes to the 

oscillator strength of the symmetry-forbidden d-δ transition. In other words, the zero-point 

vibration plays an important role in the symmetry-forbidden d−d transition. 

It is of considerable interest to clarify what vibration mode contributes to the oscillator 

strength at 0 K.  In the octahedral molecule, there are such six fundamental vibration modes 

as the symmetric stretching mode (A1g), symmetric degenerate stretching mode (Eg), 

symmetric degenerate bending mode (T2g), antisymmetric degenerate stretching mode (T1u), 

and two kinds of antisymmetric degenerate bending modes (T1u and T2u),
29 as shown in 

Schemes 2a and 2b.  Because the symmetry of the former three vibrational modes is gerade, 

the oscillator strength is not provided at all by these vibration modes.  On the other hand, 

the latter three vibrational modes, whose symmetry is ungerade, contribute to the oscillator 

strengths of the symmetry-forbidden d−d transition.  In [Co(NH3)6]
3+, two kinds of 

degenerate antisymmetric H3N−Co−NH3 bending vibrations of T1u and T2u considerably 

contribute to the oscillator strength of the d−d absorption at 0 K, as shown in Table 2, 

because the considerably large geometrical distortion is induced by these vibrations; the 

oscillator strength induced by the T1u bending mode is 1.2×10−4 and 0.8×10−4 for the 1A1g → 

1T1g and 1A1g → 1T2g transitions, respectively, and that induced by the T2u bending mode is 

0.8×10−4 and 0.6×10−4 for the 1A1g → 1T1g and 1A1g → 1T2g transitions.29  On the other hand, 

the degenerate antisymmetric Co−NH3 stretching vibration mode of T1u contributes much 

less to the oscillator strength because the distortion is not large; for instance, the oscillator 

strength induced by this vibration mode is 0.0 and 0.5×10−4 for the 1A1g → 1T1g and 1A1g → 

1T2g transitions, respectively. 

There are several other vibration modes which induce little distortion from the 

octahedral geometry.  One of such vibration modes is the M−NH3 wagging mode; see 

Scheme 2c.  Interestingly, this vibration mode contributes considerably to the oscillator 

strength of the d−d absorption, as follows; the oscillator strength induced by this vibration 



- 130 - 
 

mode is 1.7×10−4 and 1.4×10−4 for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively, 

in [Co(NH3)6]
3+ at 0 K, as shown in Table 2.  Also, the M−NH3 rotational vibration around 

the M−NH3 bond axis (Scheme 2c)30 contributes somewhat to the oscillator strength at 0 K, 

though this vibration distorts the octahedral geometry much less than the M−NH3 wagging 

mode; the oscillator strength induced by this vibration mode is evaluated to be 0.5×10−4 and 

0.3×10−4 for the 1A1g → 1T1g and 1A1g → 1T2g transitions, respectively, as shown in Table 2. 

Not only the M−NH3 bonds but also the N−H bonds of the NH3 ligands contribute to 

oscillator strength.  Such vibrations are N−H stretching and H−N−H bending modes.  As 

shown in Table 2, the oscillator strengths induced by the N−H stretching and H−N−H 

bending modes are evaluated to be 0.3×10−4 and 0.2×10−4 for the 1A1g → 1T1g and 1A1g → 

1T2g transitions, respectively, at 0 K.  In other words, both vibration modes contribute 

somewhat to the oscillator strength of the d−d transitions of [Co(NH3)6]
3+. 

In [Rh(NH3)6]
3+, the molecular vibrations contribute similarly to the oscillator strength 

at 0 K like in the Co analogue, as follows:  Two kinds of degenerate antisymmetric 

H3N−Rh−NH3 bending modes (T1u and T2u) contribute considerably to the oscillator 

strengths of the 1A1g → 1T1g and 1A1g → 1T2g transitions, as shown in Table 2.31  On the 

other hand, the degenerate antisymmetric Rh−NH3 stretching mode of T1u contributes little 

to the oscillator strength.  The Rh−NH3 wagging vibration contributes considerably to the 

oscillator strength, though this vibration distorts little the octahedral geometry.  The 

Rh−NH3 rotational vibration around the Rh−NH3 axis and the vibrations in the NH3 ligand 

moieties contribute somewhat to the oscillator strength of the d−d transition at 0 K. 
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Scheme 2. 

symmetric stretching (A1g)
symmetric degenerate
stretching (Eg)

symmetric degenerate
vending (T2g)

antisymmetric degenerate
stretching (T1u)

antisymmetric degenerate
vending (T1u)

antisymmetric degenerate
vending (T2u)

(a)  Characteristic vibration modes of octahedral molecule with gerade symmetry

(b)  Characteristic vibration modes of octahedral molecule with ungerade symmetry

(c)  Other vibration modes

M-NH3 wagging
rotational vibration
around M-NH3 axis

Though only one M-NH3 ligand 

vibrates in left schemes for brevity,

six M-NH3 ligands vibrate in real

molecule. 
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5.3.3. Temperature Dependence of Oscillator Strength 

Here, we wish to discuss what vibration mode contributes to the increase in oscillator 

strength by temperature.  The rotational vibrations around the M−NH3 bond axis 

significantly increase the oscillator strength; for instance, these vibrations increase the 

oscillator strength from 0.5×10−4 and 0.3×10−4 to 5.2×10−4 and 2.8×10−4 for the 1A1g → 1T1g 

and 1A1g → 1T2g transitions, respectively, in [Co(NH3)6]
3+, when going from 0 to 293 K, as 

shown in Table 2.  The significantly large increases by these vibrations arise from their 

very small wavenumbers of 42−128 and 47−107 cm−1 in [Co(NH3)6]
3+ and [Rh(NH3)

6]3+, 

respectively, as shown in Table 3.29,30  Because of such small wavenumbers, the population 

of the vibrationally excited states considerably increases, when going from 0 to 293 K; for 

instance, these populations are 0.53−0.81 and 0.59−0.79 in [Co(NH3)6]
3+ and [Rh(NH3)6]

3+, 

respectively, at 293 K, which are much larger than their populations at the vibrational ground 

state, as shown in Table 3.  Because the probability of the distorted geometry is much larger 

in the vibrationally excited state than in the ground state, the rotational vibration around the 

M−NH3 bond axis contributes considerably to the oscillator strength at 293 K. 

Besides the M−NH3 rotational vibration, two kinds of H3N−M−NH3 antisymmetric 

bending vibrations of T1u and T2u moderately contribute to the increase in the oscillator 

strength, when going from 0 to 293 K, as shown in Table 2.  The increase in the oscillator 

strength by these vibrations is somewhat smaller than that by the M−NH3 rotational vibration.  

This is because the wavenumbers of these H3N−M−NH3 antisymmetric bending vibrations 

are much larger than that of the M−NH3 rotational vibration, as shown in Table 3.  As a 

result, the populations (0.24 in the T1u mode and 0.36−0.38 in the T2u mode) of the 

vibrationally excited states are much smaller in these antisymmetric bending vibrations than 

in the rotational vibration (0.53−0.81), and hence, the oscillator strength moderately 

increases by these bending vibrations when temperature goes up.
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The wavenumber of the degenerate antisymmetric M−NH3 stretching vibration is 

400−402 cm−1 and 395−397 cm−1 in [Co(NH3)6]
3+ and [Rh(NH3)6]

3+, respectively,31 which 

are considerably larger than those of the degenerate antisymmetric H3N−M−NH3 bending 

vibration and the M−NH3 rotational vibration; see Table 3.  The population of this 

vibrationally excited states is small (0.14) at 293 K in both complexes, as shown in Table 2.  

Thus, the degenerate antisymmetric M−NH3 stretching vibration contributes much less to the 

increase in the oscillator strength than the degenerate antisymmetric H3N−M−NH3 bending 

and the M−NH3 rotational vibrations, when going from 0 to 293 K; actually, this vibration 

increases the oscillator strength of the 1A1g → 1T1g transition by only 0.3×10−4 in 

[Co(NH3)6]
3+, as shown in Table 3.  On the basis of these results, it is concluded that the 

degenerate antisymmetric M−NH3 stretching mode contributes little to the oscillator strength 

of the d−d absorption at both 0 and 293 K, though the molecular distortion from the 

octahedral geometry is somewhat largely induced by this vibration mode. 

The wavenumbers of the M−NH3 wagging, N−H stretching, and N−H bending 

vibrations are significantly large, being more than 700 cm−1 in both of [Co(NH3)6]
3+ and 

[Rh(NH3)6]
3+, as shown in Table 3.  Thus, the populations in their vibrationally excited 

states are nearly zero even at 293 K, and hence, these vibration modes contribute little to the 

increase in the oscillator strength, when going from 0 to 293 K. 

 

5.3.4. MLCT Character in Symmetry-Forbidden d−−−−d Transition 

The t2g and eg Kohn−Sham orbitals of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ are presented in 

Figure 1.  The eg orbitals mainly consist of the d orbital of the metal center and moderately 

of the lone-pair orbitals of the NH3 ligands, whereas the t2g orbitals consist of the d orbital of 

the metal center only.  This means that the 1A1g → 1T1g and 1A1g → 1T2g transitions 

moderately contain metal-to-ligand charge transfer (MLCT) character from the dxy, dyz, and 

dxz orbitals of the metal center to the lone-pair orbital of NH3 ligand. 
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Figure 1.  Kohn−Sham orbitals of [Co(NH3)6]
3+ 

 

 

 

 

 

Table 4.  Mulliken populations of Co, Rh, N, and H atomsa in the 1A1g, 
1T1g, and 1T2g states of 

[Co(NH3)6]
3+ and [Rh(NH3)6]

3+ 

 Mulliken population change of Mulliken population 

 1A1g 
1T1g 

1T2g 
1A1g → 1T1g 

1A1g → 1T2g 

 [Co(NH3)6]
3+ Co 27.064 26.997 27.019 −0.067 −0.045 

  N 7.059 7.073 7.069 +0.014 +0.010 

  H 0.810 0.809 0.809 −0.001 −0.001 

 

 [Rh(NH3)6]
3+ Rh 44.980 44.826 44.848 −0.154 −0.132 

  N 7.102 7.129 7.125 +0.027 +0.023 

  H 0.801 0.800 0.800 −0.001 −0.001 

(a) Averaged values of six N atoms and eighteen H atoms are presented here. 
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This MLCT character is larger in the 1A1g → 1T1g transition than in the 1A1g → 1T2g 

transition, as follows:  In both of [Co(NH3)6]
3+ and the Rh analogue, the 1A1g → 1T1g 

transition decreases more the M atomic population and increases more the N atomic 

population than does the 1A1g → 1T2g transition, as shown in Table 4, where the Mulliken 

population analysis was employed; note that the change in the N atomic population directly 

relates to the extent of the CT to the lone pair orbital of NH3.
32  Also, the 1A1g → 1T1g and 

1A1g → 1T2g transitions decrease more the M atomic population and increase more the N 

atomic population in [Rh(NH3)6]
3+ than in [Co(NH3)6]

3+, as shown in Table 4.  These 

results indicate that the MLCT character is larger in the 1A1g → 1T1g transition than in the 

1A1g → 1T2g transition and larger in the d−d transitions of [Rh(NH3)6]
3+ than in those of 

[Co(NH3)6]
3+. 

As the MLCT character increases, the oscillator strength increases in general.  

Actually, the extent of the MLCT character in the d−d transition is parallel to the oscillator 

strength of the d−d transition; remember that the oscillator strength of the 1A1g → 1T1g 

transition is larger than that of the 1A1g → 1T2g transition, and both of their oscillator 

strengths are larger in [Rh(NH3)6]
3+ than in [Co(NH3)6]

3+. 

We wish to mention here the reason why the MLCT character is larger in the 

symmetry-forbidden d−d transition of [Rh(NH3)6)]
3+ than in that of [Co(NH3)6)]

3+.  In 

general, the 4d transition metal forms stronger coordinate bond than the 3d transition metal 

because the 4d orbital expands more widely than the 3d orbital.33  As a result, the 4d orbital 

of Rh overlaps with the lone pair orbital of NH3 more than the 3d orbital of Co does, which 

leads to larger mixing of the NH3 lone pair orbital into the deg orbital in the Rh complex than 

in the Co analogue.  Thus, the MLCT character is larger in the Rh complex than in the Co 

complex, which is responsible for the larger oscillator strengths of [Rh(NH3)6)]
3+ than those 

of [Co(NH3)6)]
3+. 
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5.4. Conclusions 

We proposed here a new method to evaluate the oscillator strength of the 

symmetry-forbidden d-d transition of the transition metal complex bearing the inversion 

symmetry.  In this method, the probability of distorted geometry is evaluated with the 

vibrational wave function, and the Boltzmann distribution law is employed to evaluate the 

population of the vibrationally excited state.  The Herzberg−Teller approximation is not 

necessary here.  We applied this method to the symmetry-forbidden d−d absorptions of 

such octahedral complexes as [Co(NH3)6]
3+ and [Rh(NH3)6]

3+.  The present calculations 

reproduce the experimental results,26,27 as follows:  (i) The oscillator strengths of the 1A1g 

→ 1T1g and 1A1g → 1T2g transitions agree well with the experimental results in [Co(NH3)6]
3+, 

while those of the Rh analogue are somewhat smaller than the experimental results.  (ii) 

The oscillator strength of the 1A1g → 1T1g transition is considerably larger than that of the 

1A1g → 1T2g transition in both of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+.  And, (iii) the oscillator 

strengths of these transitions are considerably larger in the Rh complex than in the Co 

complex. 

In these complexes, the H3N−M−NH3 antisymmetric bending vibration (M = Co or 

Rh) contributes considerably to the oscillator strength of the d−d transition because the 

geometrical distortion is largely induced by this vibration.  It is also noted that the M−NH3 

wagging vibration contributes considerably to the oscillator strength despite of moderate 

lowering of symmetry by this vibration and that the M−NH3 antisymmetric stretching 

vibration contributes little to the oscillator strength despite of considerable lowering of 

symmetry by this vibration. 

Interestingly, the oscillator strengths of the 1A1g → 1T1g and 1A1g → 1T2g transitions 

are evaluated to be considerably large even at 0 K in these complexes.  The distorted 

geometry (or the geometry uncertainty) by the zero-point vibration is responsible for the 

oscillator strength of the symmetry-forbidden d−d transition at 0 K.  When temperature 
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goes up to 293 K, the oscillator strength increases.  This increase in the oscillator strength is 

mainly induced by the H3N−M−NH3 antisymmetric degenerate bending vibrations of T1u and 

T2u symmetries, M−NH3 wagging vibration, and M−NH3 rotational vibration around the 

M−NH3 bond axis.  The MLCT character, which is involved in the symmetry-forbidden 

d−d transition, contributes to the oscillator strength of the d−d absorption.  This character is 

larger in [Rh(NH3)6]
3+ than in [Co(NH3)6]

3+. 

These results indicate that our method is useful in evaluating and understanding the 

oscillator strength of the symmetry-forbidden d−d transition.  Our procedure is much 

simpler than the method with MD simulation and the Herzberg−Teller approximation.  

Though our procedure needs to calculate fdist,i(Qi) value at many Qi points, we can reduce 

this computation; see Appendix.  At the end of this chapter, we wish to note again the 

presence of several weak-points in our method; see the section “Method and Computational 

Details”. 
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5.5. Appedix 

 

Details of Computational Procedure of Oscillator Strength 

The interval of Qi was determined as follows: 

A small interval leads to correct value but we need large computational cost for too small interval.  

We calculated square of vibrational wavefunction at appropriate interval of the coordinate Qi and 

evaluated its root mean square value, where we employed vibrationally ground state wavefunction 

(quantum number of vibration, n = 0) at the electronic ground state.  This is because the vibrationally 

ground state is the most important to determine the distorted geometry distribution.  The Qi
rms value 

which provides this root mean square value was evaluated for n = 0.  The interval was taken to be one 

twentieth of Qi
rms; we checked that the computation result little changed when the interval was decreased. 

 

The integration of eq 2 

The integration was performed with enough range; we expanded integration range until the integral 

value does not increase by expanding the integration range. 

 

The neglect of vibration mode whose frequency is large 

We consider all vibration modes including soft modes.  However, we neglected the vibration mode 

when its frequency is large and it little contributes to the distorted geometry after checking if the oscillator 

strength by this mode is negligibly small. 

 

The neglect of mode coupling 

The anharmonicity of mode coupling is neglected, here.  However, we checked the potential 

energy surface (PES) along the coordinate of typical fundamental mode but the PES is almost parabolic.  

This result suggests that the vibration occurs in a harmonic manner and the mode-coupling is not large. 
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Evaluation of Oscillator Strength fdist,i(Qi) with Relation fdist,i(Qi) = aiQi
2 

In our procedure, the fdist,i(Qi) value must be calculated at many normal mode coordiante Qi.  This 

is troublesome and time-consuming.  However, this weakpoint can be solved as follows: 

In the Hertzberg−Teller approximation, the transition dipole moment of the symmetry-forbidden 

d−d transition is represented as a linear function of a normal mode coordinate Qi.
7  Because the oscillator 

strength is proportional to the square of the transition dipole moment, the oscillator strength fdist,i(Qi) is 

presented by a quadratic function of the normal mode coordinate Qi under the Hertzberg−Teller 

approximation; in other words, the oscillator strength is represented by eq A1; 

 

 2
, iiidist Qaf =  (A1) 

 

where ai is a coefficient.  To evaluate the fdist,i(Qi) value with eq A1, we need to determine the coefficient 

ai value.  Because it is likely that the use of small fdist,i(Qi) value for the evaluation of ai gives rise to 

large numerical error, we must employ an appropriate Qi value for the evaluation of the ai value.  To 

determine such Qi value, eq A2 was employed here; 

 2

1

,
2*

,,, )()( 




= ∫

∞

∞− iiniiininavgi dQQQQQ χχ  (A2) 

This eq 7 presents a mean value of Qi in a fundamental vibration i.  Here, we employed the vibration 

wavefunctions of the ground (n = 0) and the first-excited (n = 1) states because the population of 

thermally excited state steeply decreases as the vibration quantum number increases.  Next step is to 

calculate oscillator strength by the TD-DFT(B3PW91) method at Qi = ±Qi,avg,0 and ±Qi,avg,1.  From these 

calculated fdist,i(±Qi,avg,0) and fdist,i (±Qi,avg,1) values,20 the ai value was determined with the least square 

fitting, as shown in Scheme 1b.  With thus-obtained ai value, the fdist,i (Qi) value was estimated by eq A1. 

This procedure presents almost the same oscillator strength shown in Table 2, indicating that we can 

reduce computational time by using this procedure. 
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values cannnot be presented by the TD-DFT calculations under the default conditions of Gaussian 03 
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(27) (a) Peterson, J. D.; Ford, P. C. J. Phys. Chem. 1974, 78, 1144.  (b) The oscillator strength was evaluated 
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(28) (a) One of the plausible origins of the smaller calculated oscillator strength than the experimental value 

in the Rh complex is the neglect of the spin−orbit interaction, because the spin-forbidden 

symmetry-allowed state can mix into the spin-allowed symmetry-forbidden d−d excitation state through 

spin−orbit interaction.  The other plausible origin is the weak point of the TD-DFT method.28b  In 

general the TD-DFT method tends to present a small transition dipole.28c  Moreover, in the Rh complex, 

the d−d transition contains larger CT character than in the Co complex because the orbital overlap 

between the d orbital and NH3 lone pair orbital is larger than in the Co complex.  The TD-DFT 

calculation tends to present a poor result for a CT transition28d without the range-corrected exchange 

functional.28e  (b) Recent review:  Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11, 

10757.  (c) Appel, F.; Gross, E. K. U.; Burke, K. Phys. Rev. Lett. 2003, 90, 043005.  (d) Dreuw, A.; 

Weisman, J. L.; Head-Gordon, M. J. Chem.. Phys. 2003, 119, 2943.  (e) Tawada, Y.; Tsuneda, T.; 

Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120, 8425. 

(29) [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ have three fundamental vibration modes of the T1u H3N−M−NH3 

antisymmetric degenerate bending vibration.  Their oscillator strengths presented in Table 2 are the sum 

of the oscillator strengths provided by three fundamental bending vibrations in the T1u mode; for 

example, the oscillator strength of the 1A1g → 1T1g transition of [Co(NH3)6]
3+ by this vibration is 

1.2×10−4 which is the sum of three oscillator strengths (0.4×10−4) induced by three T1u vibrations. 

(30) [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ have three fundamental rotational vibrations around the M−NH3 axis 

with ungerade symmetry.  Wavenumbers of these fundamental vibrations are 42, 44, and 128 cm−1 in 

[Co(NH3)6]
3+ and 47, 48, and 107 cm−1 in [Rh(NH3)6]

3+.  We reported here their wavenumbers as 

42−128 cm−1 and 47−107 cm−1, respectively, for brevity.  The wavenumbers of the other molecular 

vibrations are also provided in the similar way. 
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(31) Because [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ are not completely Oh symmetrical strictly speaking, the 

H3N−M−NH3 antisymmetric bending (T1u and T2u) and M−NH3 antisymmetric streching (T1u) vibrations 

are not completely degenerate.  However, these fundamental vibrations exhibit similar frequency values 

to each other; for example, the wavenumbers of the T2u bending mode are 199, 209, and 209 cm−1 in 

[Co(NH3)6]
3+ and 189, 196, and 196 cm−1 in [Rh(NH3)6]

3+, indicating that the discussion can be 

presented based on the Oh symmetry; see also ref 9. 

(32) Because the lone pair orbital of NH3 participates in the bonding interaction with the deg orbital of the 

metal center, the Mulliken population of the H atom hardly changes in both transitions.  Thus, the 

change in N atomic population corresponds to the CT from the NH3 lone pair to the metal center. 

(33) Frenking, G.; Frohlich, N. Chem. Rev. 2000, 100, 717. 
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General Conclusion 

 

In this thesis, the author theoretically studied nature and properties of electronic 

excited states of transition metal complexes.  Achievements of this thesis are summarized, 

as follows. 

 

In chapter 1, the author investigated metal−metal multiple bonds in transition metal 

complexes.  Accomplishments of this investigation become fundamental knowledge of 

photochemical reactions of multinuclear transition metal complexes because partial 

formation or dissociation of the metal−metal multiple bonds often occurs in these reactions.  

Summary of this investigation is as below:  Four dinuclear rhenium complexes, [Re2Cl8]
2−, 

[Re2(µ-Cl)3Cl6]
2−, [Re2(µ-Cl)3Cl6]

−, and [Re2(µ-Cl)2Cl8]
2− were theoretically investigated by 

complete active space self-consistent-field (CASSCF), multireference Møller−Plesset 

second-order perturbation theory (MRMP2), state averaged (SA) CASSCF, and 

multiconfigurational quasi-degenerate perturbation theory (MCQDPT).  Interesting 

differences in the electronic structure and Re−Re bonding nature among these complexes are 

clearly reported, as follows:  In [Re2Cl8]
2−, which takes non-bridged geometry, the ground 

state possesses 1A1g symmetry.  Electron configuration of Re−Re molecular orbitals in this 

ground state is evaluated as σ1.92π3.74δ1.52δ*0.48π*0.26σ*0.08 by the CASSCF wavefunction.  

This electron configuration is much different from the formal electron configuration as 

σ2π4δ2δ*0π*0σ*0.  This difference means that the bonding interaction of the δ orbital in 

[Re2Cl8]
2− is much weak, which was also reported by the previous theoretical study 

(Gagliardi, L.; Roos, B. O. Inorg. Chem. 2003, 42, 1599).  Approximate stabilization 

energies by the σ, π, and δ bonding interactions are evaluated to be 4.36, 2.89, and 0.52 eV, 

respectively, by the MRMP2 method.  In [Re2(µ-Cl)3Cl6]
2−, which takes face-sharing 

bioctahedral bridged geometry, the ground state possesses 2E'' symmetry.  The electron 

configuration of the Re−Re molecular orbitals is estimated as σ1.87δ3.47δ*1.53σ*0.13 by the 

SA-CASSCF wavefunction, which is much different from the formal electron configuration 

as σ2δ4δ*1σ*0.  This difference means that the bonding interactions of two δ orbitals are 
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also much weak like that of the δ orbital in [Re2Cl8]
2−.  The approximate stabilization 

energy by two degenerated δ bonding interactions is estimated to be 0.36 eV by the 

MCQDPT method.  In [Re2(µ-Cl)3Cl6]
−, which also takes face-sharing bioctahedral bridged 

geometry, the ground state is 1A1' state.  The Re−Re electron configuration evaluated with 

the CASSCF wavefunctiom is σ1.62δ2.18δ*1.82σ*0.38.  Populations of σ (1.62) and σ* (0.38) 

orbitals are respectively smaller and larger than those of σ (1.87) and σ* (0.13) orbitals in 

[Re2(µ-Cl)3Cl6]
2−.  This means that the σ bonding interaction is much weaker in 

[Re2(µ-Cl)3Cl6]
− than in [Re2(µ-Cl)3Cl6]

2− though both complexes take similar face-sharing 

geometry.  In [Re2(µ-Cl)2Cl8]
2−, which takes edge-sharing bioctahedral bridged geometry, 

the σ, π, and δ bonding interactions are not effectively formed between two Re centers.  

The electron configuration of the Re−Re orbitals is estimated as 

σ1.00π0.99δ0.97δ*1.03π*1.01σ*1.00 by the CASSCF wavefunction. 

In chapter 2, the author investigated the metal−mtel multiple bonds in transition metal 

complexes like in chapter 1.  Though the metal−metal molecular orbitals discussed in the 

previous chapter are formed only by atomic orabitals of transition metals, the metal−metal 

orbitrals in this chapter include atomic orbitals of both transition metals and typical elements.  

Summary of this chapter is as below:  The ground state and some low-lying excited states 

of [Re2(µ-O)2(NH3)8]
3+ (Re(III)−Re(IV) complex) and [Re2(µ-O)2(NH3)8]

4+ (Re(IV)−Re(IV) 

complex) were theoretically investigated by the MRMP2 method and density functional 

theory (DFT) with B3LYP functional.  These complexes are model of 

[Re2(µ-O)2(Metpa)2]
3+, [Re2(µ-O)2(Metpa)2]

4+, and [Re2(µ-O)2(Me2tpa)2]
4+ {Metpa = 

((6-methyl-2-pyridyl)-methyl)bis(2-pyridylmethyl)amine and Me2tpa = bis((6-methyl-2- 

pyridyl)methyl)(2-pyridylmethyl)amine}.  The ground states of [Re2(µ-O)2(NH3)8]
4+ and 

[Re2(µ-O)2(NH3)8]
3+ are respectively assigned to be 7B and 6B states by the DFT(B3LYP) 

method, but to be 1A and 2B states by the MRMP2 method.  In [Re2(µ-O)2(NH3)8]
4+, the 

DFT-optimized Re−Re distance of the 7B state is different from the experimental values of 

similar complexes such as [Re2(µ-O)2(Metpa)2]
4+ and [Re2(µ-O)2(Me2tpa)2]

4+.  However, 

the Re−Re distance of the 1A state is in good agreement with the experimental ones.  Also, 

in [Re2(µ-O)2(NH3)8]
3+, the DFT-optimized Re−Re distance of the 6B state much differs from 
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the experimental value of the similar complex, [Re2(µ-O)2(Metpa)2]
3+, but that of the 2B state 

agrees well with the experimental value.  These results indicate that the ground state of 

[Re2(µ-O)2(NH3)8]
4+ and [Re2(µ-O)2(NH3)8]

3+ respectively are the 1A and 2B states, as 

assigned by the MRMP2 method.  In the DFT(B3LYP) calculations of the 1A state of 

[Re2(µ-O)2(NH3)8]
4+, the Re−Re molecular orbitals rise in energy in order σ < δ* < π < π* < 

δ < σ*, which is different from general order σ < π < δ < δ* < π* < σ*.  This interesting 

result is explained, as follows:  The π and δ bonding orbitals of [Re2(µ-O)2(NH3)8]
4+ 

include d(Re)−p(O) antibonding interaction but the δ* antibonding counterpart does not.  

As a result, the π and δ orbitals become higher in energy than the δ* orbital. 

In chapter 3, the author researched phosphorescence energies of transition metal 

complexes which are shifted by experimental conditions such as temperature and solvent.  

This research focused on not only assignment of the electronic structure but also geometry 

change in the excited state, where discussion based on the latter factor rarely presented in the 

previous studies.  Summary of this research is as below:  Four kinds of 

3,5-dialkylpyrazolate-bridged dinuclear platinum(II) complexes [Pt2(µ-R2pz)2(dfppy)2] 

(dfppy = 2-(2,4-difluorophenyl)pyridine and R2pz = pyrazolate (H2pz), 

3,5-dimethylpyrazolate (Me2pz), 3-methyl-5-tert-butylpyrazolate (MetBupz), or 

3,5-bis(tert-butyl)pyrazolate (tBu2pz)) were theoretically investigated by the DFT method 

with B3PW91 functional.  Phosphorescence properties of these platinum complexes were 

discussed on the basis of potential energy curve (PEC) of the lowest energy triplet excited 

state (T1).  This PEC significantly depends on bulkiness of substituents on pz.  In the 

µ-H2pz and µ-Me2pz complexes, bearing small substituents on pz, one local minimum 

appears in the T1 state besides the global minimum.  This local minimum geometry is 

similar to the S0-equilibrium one.  The T1 state at this local minimum is characterized as 

π−π* excited state in dfppy, where dπ orbital of Pt participates in this excited state through 

antibonding interaction with π orbital of dfppy; in other words, this triplet excited state is 

assigned as mixture of ligand-centered π−π* and metal-to-ligand charge transfer excited 

state (3LC/MLCT).  Geometry of the T1-global minimum is considerably different from the 

S0-equilibrium one.  The T1 state at the global minimum is characterized as 
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metal−metal-to-ligand charge transfer (3MMLCT) excited state, which is formed by 

one-electron excitation from dσ−dσ antibonding orbital to π* orbital of dfppy.  Because of 

presence of the local minimum, the geometry hardly changes in polystyrene at room 

temperature (RT) and frozen 2-methyltetrahydrofuran (2-MeTHF) at 77 K.  As a result, the 

phosphorescence energy is almost the same in these conditions.  In fluid 2-MeTHF at RT, 

on the other hand, geometry of the T1 state easily reaches the T1-global minimum.  Because 

the T1-global minimum geometry is considerably different from the S0-equilibrium one, the 

phosphorescence occurs at considerably low energy.  These are reasons why the Stokes 

shift is very large in fluid 2-MeTHF but small in polystyrene and frozen 2-MeTHF.  In the 

µ-MetBupz and µ-tBu2pz complexes, bearing bulky tert-butyl substituents on pz, only 

T1-global minimum is present but local minimum is not.  Electronic structure of this 

T1-global minimum is assigned to the 3MMLCT excited state like the µ-H2pz and µ-Me2pz 

complexes.  Though frozen 2-MeTHF suppresses the geometry change of the µ-MetBupz 

and µ-tBu2pz complexes in the T1 state, their geometries moderately change in polystyrene 

because of the absence of the T1-local minimum.  As a result, the phosphorescence energy 

is moderately lower in polystyrene than in frozen 2-MeTHF.  The T1-global minimum 

geometry is much different from the S0-equilibrium one in the µ-MetBupz complex but 

moderately different in the µ-tBu2pz one, which is interpreted in terms of symmetries of 

these complexes and steric repulsion between tert-butyl group on pz and dfppy.  As a result, 

the phosphorescence energy of the µ-MetBupz complex is much lower in fluid 2-MeTHF 

than in frozen 2-MeTHF like the µ-H2pz and µ-Me2pz complexes, while that of the µ-tBu2pz 

complex is moderately lower. 

In chapter 4, the author studied the spin−orbit interaction between S1 and T1 states of 

transition metal complex, which is one of the determinant factors whether the complex 

exhibits phosphorescence or not.  Discussion of this study was performed based on the 

relationship between symmetry of electronic structure and the spin−orbit interaction like the 

previous study by El-Sayed.  Thus, this study corresponds to one of the works to evolve the 

El-Sayed’s rule, which predicts the rate of intersystem crossing and the intensity of 

phosphorescence in organic molecules.  The discussion is summarized as below:  
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Dinuclear platinum(II) complexes [Pt2(µ-pz)2(bpym)2]
2+ (pz = pyrazolate and bpym = 

2,2'-bipyrimidine) and [Pt2(µ-pyt)2(ppy)2] (pyt = pyridine-2-thiolate and ppy = 

2-phenylpyridine) were theoretically investigated with the DFT(B3PW91) method to clarify 

the reasons why the phosphorescence of [Pt2(µ-pz)2(bpym)2]
2+ is not observed in acetonitrile 

(CH3CN) solution at RT but observed in solid state at RT, and why the phosphorescence of 

[Pt2(µ-pyt)2(ppy)2] is observed in both CH3CN solution and solid state at RT.  The S1 and 

T1 states of [Pt2(µ-pz)2(bpym)2]
2+ in CH3CN solution are assigned as the MMLCT excited 

state.  Their geometries are C2v symmetry, in which the spin−orbit interaction between S1 

and T1 states is absent.  This is because direct product of irreducible representations of the 

singly occupied molecular orbitals (SOMOs) of these excited states and the orbital angular 

momentum (l) operator does not belong to a1 representation, where the l is included in the 

spin−orbit Hamiltonian.  As a result, S1 → T1 intersystem crossing hardly occurs, leading to 

the absence of T1 → S0 phosphorescence in CH3CN solution at RT.  In solid state, geometry 

of the S1 state does not reach the global minimum but stays in C1-symmetrical local 

minimum.  This S1 excited state is assigned as the LC/MLCT state.  The spin−orbit 

interaction between S1 and T1 states operates to induce the S1 → T1 intersystem crossing 

because the direct product of irreducible representations of the SOMOs and the l operator 

belongs to “a” representation.  As a result, the T1 → S0 phosphorescence occurs in solid 

state at RT.  In [Pt2(µ-pyt)2(ppy)2], the S1 and T1 states are assigned as the MMLCT excited 

state.  Their geometries are C2-symmetries in both CH3CN solution and solid state, in 

which the spin−orbit interaction between S1 and T1 states operates to induce the S1 → T1 

intersystem crossing.  This is because direct product of irreducible representations of the 

SOMOs and the l operator belongs to “a” representation.  Thus, the T1 → S0 

phosphorescence occurs in both CH3CN solution and solid state, unlike 

[Pt2(µ-pz)2(bpym)2]
2+. 

In chapter 5, the author proposed a new method to calculate oscillator strength of the 

Laporte-forbidden d−d absorption.  This new method incorporates effects of distortions of 

molecular orbitals induced by molecular vibrations.  The study by this method is 

summarized as below:  The oscillator strengths of [Co(NH3)6]
3+ and [Rh(NH3)6]

3+ were 
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theoretically evaluated.  Calculated oscillator strengths of [Co(NH3)6]
3+ agree well with the 

experimental values in both 1A1g → 1T1g and 1A1g → 1T2g absorptions.  In [Rh(NH3)6]
3+, 

although the calculated oscillator strengths are somewhat smaller than the experimental 

values, computational results reproduce well the experimental trends; one trend is that the 

oscillator strengths of [Rh(NH3)6]
3+ are much larger than those of [Co(NH3)6]

3+ and another 

trend is that the oscillator strength is larger in the 1A1g → 1T1g absorption than in the 1A1g → 

1T2g one.  The difference of the oscillator strengths between two complexes are explained, 

as below:  Mixture of the sp3 orbitals of NH3 ligands to the d orbitals of metal center is 

larger in [Rh(NH3)6]
3+ than in [Co(NH3)6]

3+.  Thus, the distortions of the d orbitals are 

larger in the former complex than in the latter one, which induces the stronger oscillator 

strength in the former complex.  The calculation clearly shows that the oscillator strength is 

not negligibly small even at 0 K.  This means that the d−d absorptions of [Co(NH3)6]
3+ and 

[Rh(NH3)6]
3+ are strongly induced not only by the excited molecular vibrations but also by 

the zero-point molecular vibration. 

 

As described above, the author presented explanation and understanding of nature and 

properties of electronic excited transition metal complexes, overcoming theoretical 

difficulties of the electronic structure calculations.  Because these achievements were based 

on fundamental properties of the chemistry such as the molecular geometry and the 

electronic structure, the author believes that this thesis will certainly evolve the chemistry of 

excited transition metal complexes. 
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