First-principles thermodynamics of La₂O₃-P₂O₅ pseudobinary system

Kazuaki Toyoura,^{1,*} Naoyuki Hatada,¹ Yoshitaro Nose,¹ Tetsuya Uda,¹ and Isao Tanaka^{1,2}

¹Department of Materials Science and Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan

²Nanostructure Research Laboratory, Japan Fine Ceramics Center, Atsuta Nagoya 456-8587, Japan

(Received 26 July 2011; revised manuscript received 23 September 2011; published 14 November 2011)

Phase stabilities in the La₂O₃-P₂O₅ pseudobinary system have been theoretically analyzed. Phonon modes of five crystals, i.e., La₂O₃, La₃PO₇, LaPO₄, LaP₃O₉, and LaP₅O₁₄, and vibrational modes of gaseous P₂O₅(g) are computed from first principles in order to obtain the contribution of vibrations to the free energy. Additional dynamical contributions, i.e., rotations and translations are also taken into account for the gaseous P₂O₅(g). Vibrational states strongly reflect the crystal structures and bonding states. In this system, the strong P-O covalent bonds in PO₄ units and the relatively weak La-O bonds are found to be the key factors determining the vibrational spectra. In the oxyphosphate, La₃PO₇, the two bonding states are coexisting, and the vibrational spectrum is approximately an average of La₂O₃ and LaPO₄. On the other hand, the P₂O₅-rich compounds, i.e., LaP₃O₉ and LaP₅O₁₄, cannot be treated in the same manner. Their PO₄ units form corner-sharing networks whose vibrations are strongly correlated. The networks raise the vibrational frequencies, leading to high-frequency modes up to 40 THz. The Gibbs energies using the calculated vibrational spectra are in reasonable agreement with the available data of La₂O₃, LaPO₄, and P₂O₅(g), e.g., the differences between the calculated and reported values are less than 2 kJ/mol-atom (20 meV/atom) at 1500 K. The Gibbs energies and the phase stabilities of the other three compounds, La₃PO₇, LaP₃O₉, and LaP₅O₁₄, are evaluated, whose data are yet unknown so far.

DOI: 10.1103/PhysRevB.84.184301

PACS number(s): 63.70.+h

I. INTRODUCTION

Lanthanide phosphates have received much attention due to their various potential applications such as catalysts, phosphors, and proton conductors.^{1–3} They have been synthesized by many different routes. However, the most important data necessary for rational processing are lacking: Thermodynamic data and equilibrium phase diagrams,^{4,5} which can provide information on phase stabilities and process routes, have not been well established in most of lanthanide phosphate systems.

In the La₂O₃-P₂O₅ system, two phase diagrams have been reported,^{6,7} in which seven intermediate compounds were suggested, i.e., La₅PO₁₀, La₃PO₇, La₇P₃O₁₈, LaPO₄, La₂P₄O₁₃, LaP₃O₉, and LaP₅O₁₄. As for their thermodynamic properties, the standard enthalpies, entropies, and Gibbs energies of formation and the standard entropies at 298 K ($\Delta H_{f,298\,\text{K}}^{\circ}, \Delta S_{f,298\,\text{K}}^{\circ}, \Delta G_{f,298\,\text{K}}^{\circ}$, and $S_{298\,\text{K}}^{\circ}$ are available only for LaPO₄.⁸⁻¹⁴ But, the reported values are widely scattered, e.g., $\Delta G_{f,298\,\text{K}}^{\circ}$ is in the range of 200 kJ/mol.

For discussion of their phase stabilities, phonon modes are computed from first principles in order to obtain the contribution of vibrations to the free energy. Additional dynamical contributions, i.e., rotations and translations are taken into account for a gas phase. Vibrational spectra strongly reflect the crystal structures and bonding states. In this system, the crystal structures of lanthanum phosphates except oxyphosphates are composed of La^{3+} cations and PO_4^{3-} anions. It is widely accepted that the P-O covalent bonds in the PO₄ units are strong, leading to high-frequency phonon modes. Although the presence of the high-frequency modes has been observed in experimental Raman and infrared spectra,¹⁵ first-principles phonon calculations of lanthanide phosphates have not been reported to the authors' knowledge. The neighboring PO₄ tetrahedra are corner shared to form the infinite networks in LaP_3O_9 and LaP_5O_{14} , which can also bring changes to the vibrational states. In the case of oxyphosphates, oxygen atoms form La-O bonds similar to those in La_2O_3 , in addition to the P-O covalent bonds in PO₄ units. In the present study, the vibrational spectra are discussed from the viewpoints of the crystal structures and bonding states.

Using the calculated vibrational spectra, the Gibbs energies are evaluated as a function of temperature. Solid phases subjected to the analysis are La₂O₃, La₃PO₇, LaPO₄, LaP₃O₉ and LaP₅O₁₄, in which information of the crystal structure is available. A gas phase, P₂O₅(g), is also examined, taking the rotational and translational contributions to the Gibbs energy into account. Here the conventional expression of "P₂O₅ gas" is used, although it consists of P₄O₁₀ molecules. The suffix (g) denotes a gas phase. No suffix is used for a crystalline phase.

II. METHODOLOGY

A. Gibbs energies of solid and gas phases

Phase stabilities can be discussed using Gibbs energies, G = U + PV - TS, where U is the internal energy, P is the pressure, V is the volume, T is the temperature, and S is the entropy. In the case of solid phases under atmospheric pressure, Gibbs energies can be approximated by Helmholtz energies, F, since the PV term is negligible. Lattice vibrations are the major contribution to the temperature dependences of Helmholtz energies of solid phases. It can be given by the summation of the static energies without lattice vibrations, E_{stat} , and the vibrational free energies, F_{vib} , as follows:

$$G_{\text{solid}} \simeq E_{\text{stat}} + F_{\text{vib}}.$$
 (1)

In the case of gas phases, the rotational free energies, $F_{\rm rot}$, and the translational free energies including the PV term, $G_{\rm trans}$, also have contributions to the Gibbs energies in addition to the static energies and the vibrational free

TABLE I. Calcul	ated lattice	parameters	of La_2O_3 ,	La_3PO_7 ,	LaPO ₄ ,	LaP_3O_9 ,	and LaP_5O_{14} .	The e	xperimental	values	used	as the	e initial
structures are also she	own for refe	rence.											

			Lattice parameters						
Space group			a	b	С	β			
La ₂ O ₃	<i>P</i> 3 <i>m</i> 1	Calc. (this work)	3.94		6.18				
		Expt. ^a	3.94		6.13				
La ₃ PO ₇	Cm	Calc. (this work)	13.26	13.71	12.51	108.6			
		Expt. ^b	13.09	13.59	12.43	110.0			
LaPO ₄	$P12_{1}/n1$	Calc. (this work)	6.80	7.04	6.48	103.3			
		Expt. ^c	6.831	7.071	6.503	103.3			
LaP ₃ O ₉	$C222_{1}$	Calc. (this work)	11.41	8.74	7.49				
		Expt. ^d	11.30	8.65	7.40				
LaP ₅ O ₁₄	$P12_{1}/c1$	Calc. (this work)	8.94	9.30	13.28	90.32			
	-,	Expt. ^e	8.821	9.120	13.171	90.66			

^aReference 25.

^bReference 26.

^cReference 27.

^dReference 28.

^eReference 29.

energies:

$$G_{\text{gas}} \simeq E_{\text{stat}} + F_{\text{vib}} + F_{\text{rot}} + G_{\text{trans}}.$$
 (2)

In the present study, the lattice and molecular vibrations were treated under the harmonic approximation. The static energies are directly obtained as the total energies at 0 K by the electronic structure calculations, and the vibrational free energies are given by

$$F_{\text{vib}} = \sum_{i} \left\{ \frac{1}{2} h v_i + kT \ln \left(1 - \exp \left(-\frac{h v_i}{kT} \right) \right) \right\}, \quad (3)$$

where v_i is the vibrational frequency of the *i*-th normal mode, *h* is the Planck constant, and *k* is the Boltzmann constant. Molecular rotations were treated as a rigid rotor to evaluate the rotational free energies of gases. The energy levels are expressed as BJ(J + 1) (J = 0, 1, ...), where *B* is the rotational constant related to the moment of inertia of molecules. The symmetry number of P₄O₁₀ molecule was taken into consideration in estimation of the rotational free

energy. Using the ideal gas approximation, the translational free energies are given by $kT\ln(pV_Q/kT)$ on the basis of quantum mechanics. V_Q is the quantum volume defined as $(h^2/2\pi mkT)^{3/2}$, where *m* is the mass of molecules.

B. Computational conditions

All the calculations were performed from first principles using the projector-augmented wave (PAW) method¹⁶ implemented in the VASP code.^{17–21} The generalized-gradient approximation (GGA-PBE) parameterized by Perdew, Burke, and Ernzerhof²² was used for the exchange-correlation term. The plane-wave cutoff energy was 400 eV. The 5*s*, 5*p*, 6*s*, and 5*d*, orbitals for lanthanum, 3*s* and 3*p* for phosphorus, and 2*s* and 2*p* for oxygen were treated as valence states. The supercells employed in the present study were $3 \times 3 \times 2$ unit cells for La₂O₃, $2 \times 2 \times 2$ for LaPO₄ and LaP₃O₉, $2 \times 2 \times 1$ for LaP₅O₁₄, and $1 \times 1 \times 1$ for La₃PO₇. The *k*-point meshes were $2 \times 2 \times 2$ meshes for La₃PO₇, LaP₃O₉, and LaP₅O₁₄, and $1 \times 1 \times 1$ for La₂O₃ and LaPO₄. Atomic positions were

FIG. 1. (Color online) Crystal structures of La_2O_3 , La_3PO_7 , $LaPO_4$, LaP_3O_9 , and LaP_5O_{14} . The red (small) and green (large) balls denote La and O, and the purple tetrahedra denote PO₄ units. La_3PO_7 has a stacked structure of La_2O_3 -like and $LaPO_4$ -like structures.

fully optimized until the residual forces become less than 1×10^{-5} eV/Å, since phonon calculations are sensitive to the residual forces of the structures before displacements.^{23,24} Phonon calculations were made by the direct method using the phonopy code.²⁴ Each atom in the supercells was displaced by ± 0.01 Å in each of *x*, *y*, and *z* directions to obtain all the interatomic force constants.

III. RESULTS AND DISCUSSION

A. Crystal structures and static energies

Experimental crystal structures in the La₂O₃-P₂O₅ system are known for La₂O₃, LaPO₄, LaP₃O₉, and LaP₅O₁₄.²⁵⁻²⁹ As for La_3PO_7 , only the space group, Cm, and the cell parameters were reported.³⁰ The fractional coordinates of an isostructural compound, Nd₃PO₇, were used as initial inputs for the structural optimization of La₃PO₇. Table I summarizes the theoretical and experimental lattice parameters of each solid phase. The differences between the theoretical and the experimental values are less than 2%. Figure 1 shows the crystal structure of each phase. Neighboring PO₄ tetrahedra are corner shared in LaP₃O₉ and LaP₅O₁₄ to form PO₄ infinite networks, while all the tetrahedra are isolated in LaPO₄. The crystal structure of La₃PO₇ can be considered as a stacked structure of La₂O₃-like and LaPO₄-like layers. It is interesting that the two bonding states, P-O and La-O bonding, are coexistent in the oxyphosphate, which leads to the notable vibrational spectra as described in the following subsection.

Figure 2 shows the calculated static energy of each phase with reference to the static energy of the mixture of La_2O_3 and $P_2O_5(g)$ at the corresponding ratio of x, which is called the mixing static energy in this paper. The polygonal line connecting all the points shows a convex hull, which means all the compounds do not decompose into the neighboring phases from the viewpoint of the static energies.

B. Vibrational density of states

Figure 3 shows the total and partial vibrational density of states of each phase computed in the present study. The black lines denote the total density of states, and the green,

FIG. 2. Calculated static energy of each phase in the La_2O_3 - P_2O_5 system. The energy reference is the static energy of the mixture of La_2O_3 and $P_2O_5(g)$ in each ratio of *x*.

FIG. 3. (Color online) Total and partial density of states for lattice vibrations of each phase in the $La_2O_3-P_2O_5(g)$ system. The black lines denote the total density of states, and the green (light gray), blue (gray), orange (medium gray), and red (dark gray) lines are contributions of lanthanum, phosphorous, oxygen with La-O bonds, and oxygen with P-O bonds, respectively. The O contribution with P-O bonds is subdivided into two, i.e., corner shared and unshared by PO₄ tetrahedra, shown by the solid and dotted lines, respectively. Oxygen atoms with La-O bonds are also distinguished by the coordination number, 4 and 6, by the solid and dotted lines. The regions below 0 THz correspond to imaginary frequencies.

blue, orange, and red lines are contributions of lanthanum, phosphorous, oxygen with La-O bonds, and oxygen with P-O bonds, respectively. The regions below 0 THz correspond to imaginary frequencies. Tiny imaginary frequencies appear in a few compounds. Detailed inspection of their phonon dispersion curves found that the imaginary modes do not appear at wave vectors that are commensurate with the periodicity of the supercell. The imaginary modes can therefore be attributed to numerical errors. The neglect of the imaginary modes does not increase the error of our free energy estimation, e.g., <1 kJ/mol-atom (<0.01 eV/atom) at 1500 K.

The eigenfrequencies of the La contribution are relatively low in all the compounds due to the heavy La nucleus, which is located mainly below 10 THz. In contrast, the P contribution has higher frequencies, reflecting the strong covalent bonding between P and O. The contributions of P and O with P-O covalent bonds, i.e., the PO₄ contribution, can be classified into three types. The first type is vibrations without deformation of PO₄ units, having low frequencies less than 10 THz. The second has middle frequencies in the range of 10 THz to 25 THz, corresponding to PO₄ bending modes with the O-P-O

FIG. 4. (Color online) Vibrational free energies of La_2O_3 , La_3PO_7 , $LaPO_4$, LaP_3O_9 , LaP_5O_{14} , and $P_2O_5(g)$ as a function of temperature. The broken line denotes the average vibrational free energy of La_2O_3 and $LaPO_4$.

angles changed. The third is attributed to PO_4 stretching with change in length of P-O bonds, having high frequencies of more than 25 THz. In the P_2O_5 -rich compounds, LaP_3O_9 and LaP_5O_{14} , neighboring PO₄ tetrahedra are corner shared to form infinite PO₄ networks. Their vibrational states are different from $LaPO_4$ that includes only isolated PO₄ units. Remarkably, LaP_3O_9 and LaP_5O_{14} have higher-frequency modes close to 40 THz, which do not exist in $LaPO_4$. The vibrational modes are attributed to stretching of the P-O bonds with the corner-shared oxygen atoms, which are strongly pinned at the original positions. The PO₄ vibrations are thus strongly correlated through the corner-shared oxygen atoms, leading to the rise of the vibrational frequencies in the two phosphates.

On the other hand, the O contribution with La-O bonds shows relatively low frequencies less than 18 THz. The oxyphosphate, La₃PO₇, is interesting in terms of the coexisting of the two kinds of oxygen atoms with P-O and La-O bonds. The vibrational spectra can be approximated as the average of La₂O₃ and LaPO₄, reflecting the stacked structure of the two

FIG. 5. The vibrational, rotational, and translational free energies of $P_2O_5(g)$ under 1 atm (broken lines). The summation of the three contributions is also shown by the solid line.

FIG. 6. (Color online) The standard Gibbs energies of La_2O_3 (black [top] lines), $LaPO_4$ (blue [middle] lines), and $P_2O_5(g)$ (red [low] lines) with reference to those at 298 K. The solid and broken lines denote the calculated and experimental values, respectively.

phases. The discrepancy between the averaged and calculated spectra of La₃PO₇ is derived from the coupling between the La₂O₃-like and LaPO₄-like layers. Particularly, some of the bending modes of PO₄ tetrahedra in the LaPO₄-like layers are strongly coupled with the vibrations of oxygen atoms in the La₂O₃-like layers. The coupling leads to the large difference in the contribution of oxygen atoms with P-O bonds between LaPO₄ and La₃PO₇, in the range of 10 THz to 18 THz. In addition, the difference in La-O bonding states also creates a difference between the averaged and calculated spectra. Oxygen atoms in La_2O_3 are classified into two, i.e., tetrahedrally and octahedrally coordinated ones by lanthanum atoms, Otet and Ooct, respectively. Meanwhile only Otet exists in the La₂O₃-like layers of La₃PO₇. The O_{oct} contribution has a large peak at around 6 THz, which is located in the lower-frequency region than that of the Ottet contribution.

The vibrational spectra are related to the crystal structures and bonding states in this way. The strong P-O bonds forming PO_4 tetrahedra are the origin of the high-frequency modes,

FIG. 7. (Color online) Mixing Gibbs energies under 1 atm of La_2O_3 , La_3PO_7 , $LaPO_4$, LaP_3O_9 , LaP_5O_{14} , and $P_2O_5(g)$ at 0, 500, 1000, 1500, and 2000 K, with reference to the two end members.

	Mixing Gibbs energy (kJ/mol)								
Temperature (K)	$La_2O_3(s)$	La ₃ PO ₇ (s)	LaPO ₄ (s)	LaP ₃ O ₉ (s)	$LaP_5O_{14}(s)$	$P_2O_5(g)$			
0	0	-166	-281	-210	-168	0			
298	0	-158	-264	-190	-145	0			
500	0	-153	-252	-177	-130	0			
1000	0	-139	-221	-143	-92	0			
1500	0	-124	-189	-109	-53	0			
2000	0	-110	-157	-74	-13	0			

TABLE II. Mixing Gibbs energies under 1 atm in the La_2O_3 - P_2O_5 system at 0, 298, 500, 1000, 1500, and 2000 K.

while the weak La-O bonds make the low-frequency modes. The barycenter of the whole vibrational density of states, therefore, tends to increase with increasing the P_2O_5 composition in the La₂O₃-P₂O₅ system. As will be described later, the tendency in the vibrational density of states has notable impacts on the relative Gibbs energies at finite temperatures.

C. Gibbs energies

Figure 4 shows the vibrational free energy, F_{vib} , of each phase as a function of temperature, which monotonically decreases with increasing temperature following Eq. (3). With increasing the P₂O₅ composition, $x(P_2O_5)$, the contribution of the zero-point vibrational energies increases, while the temperature dependence of F_{vib} decreases in this temperature range. These tendencies reflect the fact that the ratio of the high-frequency vibrational modes increases with increasing $x(P_2O_5)$. It is interesting that the vibrational free energy of La₃PO₇ coincide with the average line of La₂O₃ and LaPO₄ (dotted line), resulting from the averaged vibrational spectra of the two phases as a crude approximation.

As for $P_2O_5(g)$, the rotational and translational free energies should be also taken into account. Figure 5 shows the three contributions to the Gibbs energy by the vibrations, rotations, and translations under 1 atm. The contributions of the rotations and the translations result in large temperature dependence of the total Gibbs energy. Note that P_2O_5 gas has a unique feature in the Gibbs energy compared with gas phases composed of simple molecules, such as N_2 and O_2 . In such simple molecules, the rotational and translational contributions are much larger than the vibrational contributions, because they have only a few vibrational modes per molecule. For example, diatomic molecules have only one stretching mode. However, P_2O_5 gas (P_4O_{10} molecules consisting of 14 atoms) has 36 vibrational modes, leading to the large vibrational free energies comparable to the other two contributions.

The temperature dependences of the standard Gibbs energies are available only for La₂O₃, LaPO₄, and P₂O₅(g) in the literature.^{31–33} Figure 6 is the comparison of the temperature dependences between the calculated and reported standard Gibbs energies. Our calculated values (solid lines) are in reasonable agreement with the available data (broken lines). For instance, the differences between the calculated and reported values at 1500 K are 1.8 kJ/mol-atom (19 meV/atom) for La₂O₃, 0.02 kJ/mol-atom (0.2 meV/atom) for LaPO₄, and 1.7 kJ/mol-atom (18 meV/atom) for P₂O₅(g).

D. Phase stabilities

It is now possible to discuss the phase stabilities in the La_2O_3 - P_2O_5 system using the calculated Gibbs energies, which have not been reported so far except those of La_2O_3 , $LaPO_4$, and $P_2O_5(g)$. Figure 7 shows the mixing Gibbs energies under 1 atm for La_3PO_7 , $LaPO_4$, LaP_3O_9 , and LaP_5O_{14} at several temperatures from 0 to 2000 K. The solid polygonal lines in the figure connect all the compounds at each temperature. The dotted polygonal lines show the convex hull of the free energy. For the readers' convenience, the calculated values of the mixing Gibbs energies are listed in Table II.

With increasing temperature, stability of high $x(P_2O_5)$ phases, i.e., LaP₃O₉ and LaP₅O₁₄, decreases. The behavior is most clearly seen for LaP₅O₁₄ in which the relative Gibbs energy is much higher than the value on the convex hull. The instability can be ascribed to the larger temperature dependence of the free energy of P₂O₅(g) compared to the crystalline phases. According to the calculated Gibbs energies, the following decomposition reactions of LaP₃O₉ and LaP₅O₁₄ proceed

$$LaP_3O_9 \rightarrow LaPO_4 + P_2O_5(g), \tag{4}$$

$$LaP_5O_{14} \to LaP_3O_9 + P_2O_5(g).$$
 (5)

The calculated equilibrium $P_2O_5(g)$ partial pressures reach the atmospheric pressure at 1880 and 890 K, respectively. On the other hand, the "gradual" pyrolyses of LaP₃O₉ and LaP₅O₁₄ have been experimentally observed at 1073 K³⁴ and 973 K,³⁵ respectively. The stability of LaP₅O₁₄ seems to be underestimated in the present study, since its large instability by our calculations at the reported temperature.

IV. CONCLUSIONS

Phase stabilities in the La_2O_3 - P_2O_5 pseudobinary system at finite temperatures were theoretically analyzed from first principles. The Gibbs energies of six compounds, i.e., La_2O_3 , La_3PO_7 , $LaPO_4$, LaP_3O_9 , LaP_5O_{14} , and $P_2O_5(g)$ were calculated as a function of temperature. Dynamical contributions, i.e., vibrations, rotations, and translations, were taken into account for their Gibbs energy calculations. The vibrational spectra strongly reflect the crystal structures and bonding states. The strong covalent P-O bonds in the PO₄ units and the relatively weak La-O bonds determine the vibrational states. In La_3PO_7 with a stacked structure of La_2O_3 -like and $LaPO_4$ -like layers, the vibrational spectrum is approximately the average of the two phases, resulting in the average vibrational free energy. On the other hand, the P_2O_5 -rich compounds, i.e., LaP₃O₉ and LaP₅O₁₄, cannot be treated in the same manner. Their PO₄ units form corner-sharing networks whose vibrations are strongly correlated. The networks raise the vibrational frequencies, leading to high-frequency modes up to 40 THz. The calculated Gibbs energies of La₂O₃, LaPO₄, and P₂O₅(g) were found to differ from the experimental values by less than 2kJ/mol-atom (20 meV/atom) at 1500 K. The

*Corresponding author: k.toyoura0315@gmail.com

- ¹Y. Takita, K. Sano, T. Muraya, H. Nishiguchi, N. Kawata, M. Ito, T. Akbay, and T. Ishihara, Appl. Catal. A **170**, 23 (1998).
- ²U. Rambabu and S. Buddhudu, Opt. Mater. **17**, 401 (2001).
- ³N. Kitamura, K. Amezawa, Y. Tomii, and N. Yamamoto, Solid State Ionics **162**, 161 (2003).
- ⁴M. W. Chase Jr., *NIST-JANAF Thermochemical Tables*, 4th ed, Monograph No. 9 (The American Chemical Society and American Institute of Physics, New York, 1998).
- ⁵I. Barin and G. Platzki, *Thermochemical Data of Pure Substances*, 3rd ed. (VCH, Weinheim, New York, 1995).
- ⁶H. D. Park and E. R. Kreidler, J. Am. Ceram. Soc. **67**, 23 (1984).
- ⁷J. Kropiwnicka and T. Znamierowska, Pol. J. Chem. **62**, 587 (1988).
 ⁸V. H. Schäfer and V. P. Orlovskii, Z. Anorg. Allg. Chem. **390**, 13
- (1972).
 ⁹I. A. Rat'kovskii, B. A. Butylin, G. I. Novikov, V. P. Orlovskii, and
- ²I. A. Rat kovskii, B. A. Butylin, G. I. Novikov, V. P. Orlovskii, and E. A. Ionkina, Dokl. Chem. **210**, 428 (1973).
- ¹⁰D. Usubaliev, Russ. J. Phys. Chem. **49**, 943 (1975).
- ¹¹L. A. Marinova and V. N. Yaglov, Russ. J. Phys. Chem. **50**, 477 (1976).
- ¹²V. P. Orlovskii, T. V. Belyaevskaya, and V. I. Bugakov, Russ. J. Phys. Chem. **22**, 1272 (1977).
- ¹³S. V. Ushakov, K. B. Helean, and A. Navrotsky, J. Mater. Res. 16, 2623 (2001).
- ¹⁴C. Thiriet, R. J. M. Konings, P. Javorský, N. Magnani, and F. Wastin, J. Chem. Thermodyn. **37**, 131 (2005).
- ¹⁵E. N. Silva, A. P. Ayala, I. Guedes, C. W. A. Paschoal, R. L. Moreira, C. K. Loong, and L. A. Boatner, Opt. Mater. **29**, 224 (2006).
- ¹⁶P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994).
- ¹⁷G. Kresse and J. Hafner, Phys. Rev. B **47**, RC558 (1993).

Gibbs energies and the phase stabilities of the other three compounds, La_3PO_7 , LaP_3O_9 , and LaP_5O_{14} , yet unknown so far, have been evaluated.

ACKNOWLEDGMENT

This study was supported by the Elements Science and Technology Project from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

- ¹⁸G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
- ¹⁹G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
- ²⁰G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
- ²¹G. Kresse and J. Furthmuller, Phys. Rev. B **54**, 11169 (1996).
- ²²J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).
- ²³K. Parlinski, Z.-Q. Li, and Y. Kawazoe, Phys. Rev. Lett. **78**, 4063 (1997).
- ²⁴A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
- ²⁵W. C. Koehler and E. O. Wollan, Acta Crystallogr. **6**, 741 (1953).
- ²⁶E. G. Tselebrovskaya, B. F. Dzhurinskii, and O. I. Lyamina, Inorg. Mater. **33**, 52 (1997).
- ²⁷Y. Ni, J. M. Hughes, and A. N. Mariano, Am. Mineral. **80**, 21 (1995).
- ²⁸J. Matuszewski, J. Kropiwnicka, and T. Znamierowska, J. Solid State Chem. **75**, 285 (1988).
- ²⁹J. M. Cole, M. R. Lees, J. A. K. Howard, R. J. Newport, G. A. Saunders, and E. Schönherr, J. Solid State Chem. **150**, 377 (2000).
- ³⁰K. K. Palkina, N. E. Kuz'mina, B. F. Dzhurinskii, and E. G. Tselebrovskaya, Dokl. Chem. **341**, 127 (1995).
- ³¹I. Barin, *Thermochemical Data of Pure Substances*, 3rd ed. (VCH Verlagsgesellschaft mbH, Weinheim, 1995), p. 936.
- ³²K. Popa, D. Sedmidubsky, O. Benes, C. Thiriet, and R. Konings, J. Chem. Thermodyn. **38**, 825 (2006).
- ³³I. Barin, *Thermochemical Data of Pure Substances*, 3rd ed. (VCH Verlagsgesellschaft mbH, Weinheim, 1995), p. 1265.
- ³⁴K. Amezawa, Y. Kitajima, Y. Tomii, and N. Yamamoto, Electrochem. Solid State Lett. **7**, 511 (2004).
- ³⁵W. Jungowska and T. Znamierowska, Mater. Chem. Phys. **48**, 230 (1997).