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ABSTRACT

Radiofrequency spectroscopy is a field of atomic physics which has been
growing fast during last years: electronic and nuclear magneiic resonance,
double resonance, multiple quantum transitions, Autler-Townes effect, new
kind of parametric magnetic resonances, etc. have been widely studied and
used for various physical applications.

The "method of optical detection of magnetic resonance", that is "optical
pumping", proposed by Kastler in 1950 is a very ingenious and prolific technique
in radiofrequency spectroscopy. This thesis gives a theoretical and experi-
mental s£udy on the effects of the transverse optical pumping in the optical
pumping experiments by use of the phenomenoclogical Bloch equation.

With optical pumping it is possible to achieve selective population of
atomic sublevels ;or an arbitrary angle’between the pumping light beam and an
external static magnetic field. Adding the arbitrary directions of the
applied rf field and the pumping light beam, we encounter a variety of phenom-
ena. Longitudinal optical pumping, with respect to the static magnetic field,
combined with a linearly oscillating transverse field gives the multiple quantum
resonanceS'heralding.the real absorption of an odd number of photons. On the
other hand, the resonances involving an even number of photons are observed
with transverse optical pumping. These resonances termed the Haroche reso- /
nances and they stem from virtual transitions at points of level crossing in
the coupled atom-field system. Consequently they are not broadened to lowest
order in the radiofrequemcy (rf) field amplitudes, and they can be used to
obtain more accurate measurements of the power shifts than the multiple quantQ
resonances.

For longitudinal pumping, several papers have recently been devoted to

the calculation of higher order terms appearing in the expression of the Bloch
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Siegert shift. This renewal of interest has been stimulated by an article

of Chang and Stehle who derive the shift from quantum electrodynamics calcu-
lation. This expression obtained by Chang and Stehle is in complete dis-
agreement with the results of several other theoretical approaches: Shireley's
theory using Floquet states,‘Pegg and Series' treatment based on appropriate
changes of reference frames, Stenholm's calculations leading to continued
fractions.

We carry out an exact treatment of the case of the transverse optical
pumping. The Bloch equations are solved analytically in terms of continued
fractions, and the solutions are used both to compute exact results for the
generalized Bloch-Siegert shifts of the transverse resonances, the Haroche
resonances, and to obtain analytic results for some limiting cases. When
the doublet becomes degenerate, i.e., for the Hanle effect, our results
display the Cohen-Tannoudji effect, where the rf field dresseé the g-factor
of the atom by a Bessel function. Then we measure with great precision the
positions of the Haroche resonances with optically pumped cesium atoms.

The Haroche resonances make us possible to obtain more accurate measurements
of the power shifts, because they have narrow linewidth compared with the
multiple gquantum resonances. The experimental results of the power shifts of
the Haroche resonances agree well with the continued fraction solutioms.
Hence we can conclude that the Bloch-Siegert shift for large values of the

rf field is expressed by the semiclassical results of Shireley, Pegg and
Series, and Stenholm rather than by the electrodynamics result of Chang and
Stehle. |

Furthermore, it is shown that the medium irradiated by a strong linearly
oscillating rf field becomes anisotropic and the atomic g-factor is drastically
modified by the oscillating rf field when the Hanle effect or parametric reso-

nance takes place.



o

For a rotating rf field, whose rotating plane is perpendicular to a
static magnetic field, the Bloch equation is exactly solved analytically.

The resonance at twice the rotating rf frequency and the Hanle curve, which
shifts towards the high field region and is broadened as the intensity of the
rotating rf field is increased, are predicted. The theoretical results pre-~
dicted are verified experimentally.

The consequences of misalignment of a rotating or an oscillating rf field
are also investigated. The main effects of misalignment of the rf field are
appearance of the different two types of the resonances, i.e., the longitudinal
resonance and the transverse resonance, at integral multiples of the rf freqen-
cy. It is shown that there is no essential difference between the parametric
resonance and the Haroche resonance and that both resonances are exhibited by an
inclusive formula.

At the end of this thesis, we report the observation of the new type
resonances when the static magnetic field with an arbitrary intensity is ori-

ented in an arbitrary direction with respect to the strong oscillating rf field.

These resonances appear at the points which satisfy the condition that the
magnetic field component, parallel to the oscillating rf field axis, becomes

the integral multiples of the rf frequency. The behavior of these resonances
is similar to that of the Haroche resonance. The new type resonances observed
experimentally can be derived from a theoretical analysis based on the numerical

integration of the Bloch equations.
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CHAPTER 1

GENERAL FEATURES

1.1. Introduction

The optical spectra of atoms gave the impulse which lead to Bohr's
theory of the atom and subsequently to the quantum mechanical description of
matter. The technical advances during last two decades have lead to
much more powerful methods for atomic investigations. These include optical
pumping, double resonance and level crossing methods.

Optical pumping is a method for producing important changes in the
population distribution of atoms and ions among their energy states by
optical irradiation. The method of optical pumping was proposed by
Kastler (1950) as a method io change the relative populations of Zeeman
levels and of the hyperfine levels of the ground state of atoms. These
population changes can be monitored by the change of intensity of the light
transmitted by the sample cell in which optical pumping is produced or by the
change of intensity or of polarization of the scattered resonance light.
Population changes produced by thermal relaxation or by radio frequency
resonance can be detected in this mammer.

The method of optical pumping and optical detection can be used, either
together or separately to investigate excited states of atoms. The
pioneering work in this direction is the study of radio frequency resonance
in the excited state 63P1 of the mercury atom, made by Brossel and Bitter
(1952). In this case polarized optical resonance radiation 2537 A is used
to obtain a selective excitation of Zeeman sublevels of the excited state,
and magnetic resonance is detected by the change of the polarization of the

reemitted resonance radiation.

This method of studying excited states was called the "double resonance"



method by its authors. Two resonances, an optical resonance and a magnetic
resonance are associated in it. More generally, two monochromatic radiations
of different frequencies in the electromagnetic spectrum are simultaneously
applied to an atomic system. Since 1950, both excited states and ground
states of atoms have been studied extensively by optical pumping and by optical
detection methods. An excellent reviews on the results obtained on excited
states and on ground states or on metastable atomic states have been published
by Kastler (1957), Carver (1963), Cohen-Tannoudji and Kastler (1966), Series
(1970) and Happer (1972).

The presence of a strong light will affect the atomic.levels and shift
the resonances by measurable amownts (Barrat and Cohen—Tannoudji’1961a,b,
Cohen~Tannoudji 1962a,b, Kastler 1963). The effects of virtual and real
multiple photon trangitions between the lévels have been considered by Cohen~
Tannoudji and his coworkers (Cohen-Tannoudji 1962a,b, Polonsky and Cohen-
Tannoudji 1965a,b,c, Cohen-Tannoudji and Haroche 1965, 1966, 1969a,b).

The phenomena connected with crossing and anticrossing of energy levels lead
to interference phenomena (Colegrove, Franken, Lewis and Sands 1959, Franken
1961, Rose and Carovillano 1961, Eck, Foldy and Wider 1963).

For a long time, quantum electrodynamics was applied to problems involving
only a few quanta of radiation and hence they could be treated within
perturbation theory. The covariant formulation provides an efficient tool
for the treatment of high energy scattering of radiation from matter.

During the last two decades another aspect of the problem has emerged.

For the low energies where atoms and molecules have their spectra, experimental
methods have developed into directions where the nonlinear properties of the
interaction become important. The concept of quantum mechanical coherence

in strong radio frequency and microwave fields has been used widely to

investigate atomic spectra (Cohen-Tannoudji and Kastler 1966, Cohen-Tannoudji
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1962a,b, Novikov et al. 1970).

The problem of optical coherence can fruitfully be discussed both along
classical and quantum mechanical lines (Mandel and Wolf 1965), and using the
states advocated by Glauber (1963) one can establish useful correspondences
(Mandel and Wolf 1966). The significant difference between semiclassical
and quantized field theories lies in the treatment of spontaneous emission.

The interaction matrix elements which determine the evolution of the atomic
state vector under stimulated emission and absorption are identical in the two
theories;for those situations in which spontaneous emission plays no significant
role. Recently, Pegg(1973c) showed that a recent quantum-electrodynamic
derivation by Chang and Stehle (1971) of double-quantum resonance-frequency
shifts is equivalent to a previous known semiclassical approximation, and

that neither of these methoés was adequate to account for the results of Kush's
experiments (1956). A more exact semiclassical computation was given which

was reasonable agreement with Kush's results in the region where these results
are meaningful. He concluded that the assertion of Chang and Stehle that

quantum electrodynamics is necessary for such situation is unfounded.

In the radio frequency spectroscopy of atoms the number of photons
is easily made large, which together with the low frequencies involved
makes saturation phenomena important in many experiments. Combining
several fields one can achieve multiple photon process or double resonance
phenomena, which have been used to give information about atomic parameters.
The plan of this thesis is to discuss about the interaction between
atoms and magnetic fields by using the phenomenological Bloch equation.
The interacfion of atoms with radio frequency fields of small intensity
can be treated readily by semiclassical and quantum mechanical theories
for the case of the longitudinal pumping (with respect to the static field).

In particular, the interaction of spin-1/2 atom in a static magnetic field

Ho with a weak linearly oscillating rf (radio frequency) field l{lcos wt
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perpendicular to HO is well known. When the oscillating field strength
ig increased a shift in the resonance frequency, the Bloch-Siegert shift,
occurs. The position of the resonance is shifted from UJO =w to

w. =wll-1/16( wl/w)zl, where W =7¥Hy,, W, = ¥H, and T is the

0
gyromagnetic ratio (Ramsey 1955). At higher oscillating field strength
multiple quantum transitions become evident (Margerie and Brossel 1955,
Winter 1955, 1959), and eventually the next term in the series for the
resonance frequency, the term in H14, becomes important. The value of this
next term has not been well established and, in fact, Pegg (1973b) has pointed
out that different approaches have led to different results (Shirley 1965,
Chang and Stehle 1971). Chang and Stehle claim that semiclassical or
classical theory does not give tﬁe correct result for the Bloch-Siegert shift
when terms of order higher than le are important, and that quantum electro-
dynamics is needed for such calculations. Furthermore, they claim that
semiclassical theory cannot properly take care of the multiple quantum
transitions. However, Pegg (1972b) and Tsukada, Yabuzaki and Ogawa (1973)
have shown independently how the "multiple quantum resonance" in magnetic
resonance can be described entirely by a semiclassical model or classical
model. These resonances occur as normal magnetic resonances induced by
rotating harmonics of the applied field in the oscillating frame or frequency
modulated frame. In the laboratory frame the appiied field has only two
rotating components and no such multiplicity of harmonics, but at field
strengths where the Bloch-Siegert shift becomes important, this frame is not
the most appropriate to ﬁse.

The basic problem is to obtain a time-dependent Schrddinger equation
in at least approximately integrable form. When the components of the
Hamiltonian do not commute, this can be achieved by converting into a

predominantly static form. Cohen-Tannoudji and Haroche (1969a,b) have

-4 -
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done this by including the field Hamiltonian in the total quantum system.
Conservation of the energy then ensures a static total Hamiltonian.

Shirley's (1965) approach is a replacement of the atomic Hamiltonian matrix by an
infinite static Floquet matrix. While this is a semiclassical theory,

nowhere involving explicit field quantization, Shirley shows that this Floquet
states can be interpreted physically as quantum field state. Indeed, his
Floquet frequency diagram is identical with that derived by Cohen-Tannoudji

and Haroche (1969a,b), and his results can be applied directly to their

approach (Allegrini and Arimond 1971).

The more conventional approach is to view the atomic Hamiltonian or
magnetic fields from a reference frame in which it appears predominantly
static. Transformations to two particular reference frame have been used
for this purpose: the well-known rotating frame used for dealing with weak
oscillating fields (Salwen 1955), and the oscillating frame used for high
frequency oscillating fields (Pegg and Series 1970,1973).

Wnile Pegg's results agree well with those of Shirley (1965) and
Stenholm (1972a,b), they are in gross disagreement with those obtained
by Chang and Sfehle (1971) from quantum electrodynamics. Theoretical and
exewerimental results given in this article appear to support the semiclassica;

/
E

theory by Pegg (1973a,b) and Stenholm (1972a,b).

1.2. The Principle of the Optical Pumping

By "optical pumping" we mean the use of light to produce a population
of a set of energy levels of a system which is different from the normal
Boltzmann distribution at the temperature of the experiment. The energy
levels in question might be magnetic energy levels of an atom in which case

the optical pumping would refer to either the orientation or alignment of
the atoms by the light bean.



Optical pumping produces unequal populations of different magnetic
sublevels of the ground state of atoms. Let us take an example: the case
of an alkali atom in its ground staie which is a 281/2 state with electron
spin-1/2 divided by a magnetic field into two Zeeman sublevels: m = -1/2
and m = +1/2. For simplicity let us disregard nuclear spin. Such a model
has a particularly simple form and provides an adequate approximation to the
behavior of real alkali atoms. By absorption of optical resonance radiation

1

are the excited states nearest to the ground state.

(the D, and D, lines), the atoms is raised to the %p . and % states which
2 1/2 3/2

Figure 1.1 shows the Zeeman structure of the levels involved and of the
spectral transitions between them: (a) is an energy scheme: the energy of the
state is given by the vertical position of the horizontal line representing
the state. Spectral transitions are indicated by vertical arrows. (b) is
a polarization scheme: magnetic sublevels of a same state are represented by
equidistant points on a horizontal line. The arrows indicate the Zeeman
t:anéitions. In this scheme vertical arrows correspond to Am=0 or 7L
transitions, arrows with a positive slope to Am = +1 or G* transitions,
arrows with negative slope to 4m = -1 or o~ transitions. The encircled
number indicatesthe relative transition probabilities in an arbitrary scale.

We recall the selection rules for Zeeman lines of a dipole transition:
only Am=0 and Am = +1 transitions are allowed. The polarization rules
for electric dipole transitions are the following: A4m = 0 corresponds to 70
polarization: the light is linearly polarized with its electric vector
parallel to the magnetic field, 4m = +1 corresponds to a-Jr polarization:
the light is circularly polarized in a plane perpendicular to the field.
The sence of rotation is the sence of the electiric current in a coil generat-
ing the magnetic field. Am = -1 corresponds to 0~ polarization: the

light is circularly polarized in a plane perpendicularly to the field.
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(a). Zeeman structure of the D; and D, resonance lines
of alkali atoms. Energy scheme.
(b)  Zeeman structure of the D, and D, lines.

2
Polarization scheme.

PD: Photo-Detector, PL: Polarized Light



The sense of rotation is opposite to at. For magnetic dipole transitions
the selection rules are the same. In the polarization rule the word electric
vector has to be replaced by magnetic vector of the electromagnetic radiation
field.

An observer looking in the field direction and receiving light propagated
in the direction opposite to the field sees ot light rotating clockwise
and calls it "right-handed polarized". An observer looking in the opposite
direction and receiving light propagated in the field direction sees a"+
light rotating anti-clockwise and calls it "left-handed".

The atoms are illuminated with circularly polarized resonance radiation,
say o‘+. Suppose that the incident light contains only Dl line. In this
case, only one of the upward transitions shown in Fig.l.1 will take place.
Atoms from the m = -1/2 level of the ground state will be raised to the
m = +1/2 level of the upper state. Falling back by spontaneous emission to
the ground state, part of them will return to the initial Zeeman level, part
of them will transit, by emission of the = component, to the m = +1/2 level
of the ground state. According to the transition probabilities of three
atoms having each absorbed one photon, two will return to the initial level
and one will go.to the+l/2 level.

After a small number of absorption processes a high degree of population

change can be obtained in this manner.

l.3. Review of Various Resonance Effects in RF Spectroscopy

We review in briefly the various resonance effects in rf spectroscopy.
The various resonance effects are due to both the longitudinal pumping
(with respect to the static magnetic field) and the transverse pumping.
Difference of the characters between the resonance effects caused by the

[ J
longitudinal pumping and those caused by the transverse pumping is remarkable.
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Fig. 1.2. Schematic diagrams of various magnetic resonances.

(a) Ordinary magnetic resonance.

(b) Multiple quantum resonance.

(¢) Hanle effect (level crossing experiment).

(d) Parametric resonance.

(e) Haroche resonance.

(f) oOff-diagonal resonance.



The resonances caused by the longitudinal pumping and the resonances caused
by the transverse pumping appear as a decrease or ap increase of the
pumping light transmitted through the vapor cell. Therefore, we convention-
ally separate the various resonances into two types: the longitudinal resonances
and the transverse resonances. The longitudinal resonances caused by the
longitudinal pumping are strongly broadened by the rf field, but the trans-
verse resonances caused by the transverse pumping are hardly broadened by the
rf field and the width of the transverse resonances are decided mainly by the
decay constant without affection of the intensity of the rf field. The
longitudinal and the transverse resonances correspond to the anticrossing

and the crossing of the energy levels, respectively (Cohen~Tannoudji and
Haroche 1969a,b, Haroche 1971a,b). The ordinary resonance and the multiple
quantum resénances belong to the longitudinal resonance, and the parametric
resonance, the Haroche resonance and the off-diagonal or coherence resonance

belong to the transverse resonance.

1.3.1. Longitudinal Resonances
(a) Ordinary Resonance

The well-known paramagnetic ordinary resonance is described classically
as the induced conical precession of the magnetic moment vector about the
direction of a static magnetic fielde)under the action of a rotating
magnetic field El or a. weak oscillating field Blcos w t perpendicular
to the static field Ho. This situation is shown in Fig.1.2(a).

This type of resonance was first investigated in the field of
nuclear magnetic resonance. The fheory of various molecular beam magnetic
resonance methods and of the resonance absorption and nuclear induction
experiments is usually chiefly concerned with the calculation of the effect
of weak oscillating or rotating magnetic field on nuclear magnetic moments

in the presence of a strong magnetic field. Some of the simplest problems
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of this sort were first solved by Rabi (1937), Schwinger (1937), and Bloch
(1946) by a straightforward quantum mechanical of transition probabilities
or by related methods.

The use of a rotating coordinate system to solve magnetic rescnance
problem has been reported by Rabi, Ramsey and Schwinger (1954). They have
shown that on a coordinate system rotating with the applied rotating magnetic
field the effective field is reduced by the Larmor field appropriate to the
rotational frequency. On such a coordinate system problems can more readily
be solved since this is no time variation of the field. The solution in a
stationary frame of reference is then obtained by a transformétion from the
rotating to the stationary frame. This procedure has been widely applied
both to the molecular beam magnetic resonance metth and to resonance abgorp-
tion and nuclear induction experiments.

When the oscillating field is increased a shift in the resonance fre-
quency, the Bloch-Siegert shift, occurs. The position of resonance is shifted
from wy=w to W, =w [1-(1/16) wl/t.o )2] At higher oscillating
field strength multiple quantum transitions become evident. However, if a
rotating rf field is used instead of an oscillating field, we observe no shift

in resonance frequency.

(b) Multiple Quantum Transition

- An oscillating rf field is applied perpendicularly tolk)(see Fig.1.2(b)).
The frequency w being fixed, we observe, as we vary u)o, several resonant
variation of the transmitted 1light. Transitions between two levels are in-
duced by the rf field. We observe an odd spectrum of resonances: they occur
for w, = (2n + 1)W , where n is an integer. They are broadened and 2

shifted as we increase the amplitude Hl.

The first observation of multiple quantum transitions on optically

pumped atoms has been performed on alkali atoms (Margerie and Brossel 1955).

- 1] -



Theoretical investigation has been made by Winter (1955,1959). Strong
exciting fields are required to observe multiple quantum transitions,

since all photons must impinge on the atom before its virtual intermediate
states decay back to the original state. Further investigations of multi-
ple quantum transitions have been treated semiclassically by Shirley (1965),
quantum electrodynamically by Chang and Stehle (1971) and by using the Green
function by Gush et al.(1972). Recently, theoretical investigations of
higher order terms in the Bloch-Siegert shift was‘reported by Pegg (1973a,b)
and Stenholm (1972a,b). Higher order terms in the Bloch-~Siegert shift
obtained by Stenholm (1972b), Pegg (1973b), Cohen-Tannoudji et al (1973a,b)
and Hannaford et al,(1973) support those derived by Shirley (1965) by means
of Floquet theory, and are in gross disagreement with those derived by Chang
and Stehle (1971) from quantum electrodynamics, particularly at extremely

high field intensities.

1.3.2. Transverse Resonances

(a) The Hanle Effect

The pumping light beam is perpendicular to the fiehi!&)in the absence
of rf field as shown in Fig. 1.2(c). If there is no magnetic field, i.e.,
Ho = 0, the pumping light beam orients the magnetization of vapor M in its
own direction. In mathematical terms, the density matrix which describes
the atoms in the ground state has non-zero off-diagonal elements. if HO= o,
the magnetic dipole of the vapor which has been just pumped by the light
beam is pointing along the light beam direction. Immediately afterwards
it begins to precess aroundl%)aj the Larmor frequency of the ground state.
After a mean time 7T, the atom undergoes a disorientating collision or

absorbs another photon and its orientation is destroyed or changes completely.

The resulting magnetization at time t = 0 is the vectorial sum of all the

- 12 -

e



dipoles, created at time -t (t goes from O to +o0 ). They have an amplitude
proportional to exp(-t/T ) and make an angle w,t from their initial direc-
tion. Hence the transverse pumping creates a magnetization in the vapor
only for small fields. Tese predictions have been confirmed experimentally
on the odd isotopes of Cd (Lehmann and Cohen-Tannoudji 1964). This phenom-~
enon is very similar to the Hanle effect of excited state, or zero field

level crossing (Hanle 1924, Mitchell and Zemansky 1934) which appearsin the

excited state.

(b) Parametric Resonance

The pumping light beam direction is perpendicular to Ho, but chos wt
is now parallel to H, as shown in Fig. 1.2(d). As the rf field contains
only 7 photons, it is impossible to have transition from one Zeeman sublevel
to the other.

In the absence of the rf field, there is no creation of the transverse
magnetization except for wo'c<< 1. Neverthless, as we vary HO' w being
fixed, and observe the absorption of the pumping light, we get a full
spectrum of resonances. They occur for w0= nw . As the intensity of
the rf field is increased, we observe no shift and no broadening of the
resonance curves. These resonances may be detected at the various harmonics
p W of the signal. Their intensity as a function of Hl has been theoret-
ically predicted and experimentally measured (Favré and Geneux 1964,

Aleksandrov, Constantinov, Perel “and Khodovoi 1964, Polonsky and Cohen-
Tannoudji 1965).
(¢) Haroche Resonance
The experimental set-up is very similar to that of ordinary or multiple
quantum transitions except for the direction of the pumping light beanm
vwhich is now perpendicular to M, (see Fig. 1.2(e)). An rf field is applied

parallel to the pumping light. Keeping w fixed, we vary w , and look at

0
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the absorbed light of the pumping light beam. No resonance appear for

w, = (2n + 1)w . However, new resonances appear for W, = 2nW .

They form an even spectrum, and may be detected on the various harmonics
2pW in the transmitted light beam. This type of resonance has been
experimentally and theoretically investigated by Cohen-Tannoudji and Haroche
(1965, 1967, 1969a,b).

On the other hand, Cohen-Tannoudji and Haroche have observed experimen
tally (1965)that the Haroche resonance for w, = O,namely the Hanle curve,
is broadened by the oscillating rf field, and this broadening was interpreted
as a change in the effective Lande g-factor for atoms strongly coupled to
the oscillating field, i.e., the concept of "dressed atom" (1969a,b).
Recently, Tsukada and Ogawa (1973a) showed that the broadening of the Hanle
curve by the oscillating rf field can be interpreted as the variation of the

position and shape of the Haroche resonances.

(d) off-diagonal Resonance

The evolution of a magnetic moment in a system of paramaénetic particles
optically oriented across a constant magnetic fieldl%)in the presence of
a rotating rf field with frequency w aboutl&)has been investigated independ-
ently by Haroche (1971a,b), Aleksandrov and Sokorov (1972) and Tsukada et al
(1972). They have shown that under these conditions a distinctive type
of magnetic resonance may be realized, differing sharply from ordinary
resonance. The resonance is characterized by the build up of a considerable
moment with a mean value across the field.[&r Formally, the difference
between the ordinary resonance and this type of magnetic resonance reduces to
a difference in the type of relaxation. Relaxation in the absence of a
variable field leads to the establishment of the longitudinal magnetization.
While the relaxation, in which the optical orientation process is included,

tends to establish in the system a transverse magnetization. Since transverse
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magnetization is associated in the theory with the off-diagonal elements of
the density matrix, this type of magnetic resonance can be conventionally
called "off-diagonal resonance" by Aleksandrov et al. (1972). All of the
transverse resonances, i.e., the Hanle effect, parametric resonance and
Haroche resonance, however, are due to the off-diagonal elements of the den-
sity matrix. We call "off-diagonal rescnance" only for the transverse
resonances which are caused by the rotating rf field (see Fig. 1.2 (f)).

A situation closesin principle tb "off-diagonal" resonancearisen in the
work of Dodd and Series (1961), in which the modulation of the emitted
radiation of the excited mercury atoms was studied, for off-diagonal exci-
tation in particular. However, it was not possible to observe the above
resonance in the proper sence under the conditions of this work,because
of the very large width of the excited levels; for which an over-powerful

variable field would be required.

1.4. Outline of the Present Work

The remainder of the paper is organized into five sections and three
Appendices. In Chapter 2, we review the equation of motion appropriate to
the optically pumped atomic vapor system, and cast into the familiar Bloch
equation. The relation between the Bloch equation and the density matrix
of spin-1/2 system is studied briefly. We derive the excitation operator
and the monitoring operator from considerations of the semiclassical éorres-
pondence and by the application of the Wigner-Eckart theorem. Bloch equa-
tion for the optical pumping case is adapted to the simple cases. We show
that the Hanle effect (level crossing experiment) and the anticrossing
experiment can easily be described with the Bloch equation.,

In Chapter 3, we discuss the effects of the transverse pumping in the

presence of the rotating rf field. The solution of the ‘Bloch equation for
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the case of a rotating rf field transverse to the static field predicts the
new type resonances for the strong rf field. The same type of resonances
have been treated by Haroche (197la,b) and Aleksandrov and Sokorov (2972).
Mis case is exactly solvable and the authors verify their calculations
experimentally. We also solve the case of a rotating rf field, including
misalignment effects of the pumping light beam. It is ghown that the Hanle
curve is broadened by a rotating rf field and is shifted towards high field
region as the intensity of the rotating rf field is increased (Psukada et al.
1972). We then consider the evolution of the magnetization of optically
pumped atoms in the presence of two rotating rf fields with different fre-
quencies. 1t is shown that the new type resonances which are due to the
effect of the transverse pumping, together with the ordinary resonance and
the multiple quantum resonances, are realized. .

Chapter 4 is devoted to the discussions of the effects of the transverse
pumping in the presence of an oscillating rf field. As described already,
Cohen-Tannoud ji and Haroche (1966, 1969b) and Pegg and Series (1970) have
pointed out that the atomic g-factor is modified by the nonresonant rf field
which is applied perpendicularly to the static magnetic field. We consider
the more general case that the rf field is oriented in an arbitrary direction
to the static magnetic field, and show by classical and quantum mechanical
treatments that the g-factor is also modified by the oscillating rf field
whenvthe parametric resonances take place (Yabuzaki et al. 1972a). The
anisotropy of the atomic g-factor (Landré et al. 1970) is also shown (Yabuzaki
et al. 1972b).

In Chapter 5, we deal with the interaction between optically pumped atoms
and the strong rf field. The calculation of the positions and shapes of the
Haroche resonances for large intensity rf field, which differs from earlier

work for weak rf field by Cohen-Tannoudji and Haroche (1965, 1967), are given
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by use of Stenholm's technique (1973a). Then it is shown that the vari-
ation of the width of the Hanle curve by the oscillating rf field, i.e.,
the modification of the atomic g-factor, is due to the Haroche resonances
(Tsukada and Ogawa 1973a,b).

We then treat the saturation effects for the more general case that the
static magnetic field directs to an arbitrary direction with respect to the
oscillating rf field. It is shown that the new type resonances similar to
the Haroche resonance appear when the parallel component of the static field
with respect to the oscillating rf field is equal to the integral multiple
of the oscillating frequency (Tsukada and Ogawa 1973b, Tsukada, Koyama and
Ogawa 1973a,b).

'Finally, in Chapeer 6, we summarize our findings. The paper concludes

with Appendices in which certain aspects of the calculation are clarified.
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CHAPTER 2

BLOCH EQUATION AND MONITORING OPERATOR
2.1. Introduction

The theory of electron- and nuclear-spin resonance and the theory of
the two level maser have in common the interaction of radiation with a
two level system. We shall, first of all, give an identification
between the density operator for the spin-1/2 system and the
phenomenological Bloch equation. For the optical pumping case, the
effects of relaxation or damping and population regeneration or excitation
must be added to the equation of motion of the bulk magnetization.

By examining the Bloch equation, the characteristics and line shapes

of several different magnetic resonance experiments may be seen.

The evaluation of the monitoring and the excitation operator for
spin-1/2 ground state is made. It is well known that the amount of
the absorption of the light beam by atoms is related to the component of
the magnetization along the direction of the pumping light beam, and
has been given by Dehmelt (1957).

In addition, we will consider the behaviors of the magnetic moment
in the static field. The Hanle effect (level crossing) and the

anticrossing experiment for zero frequency are investigated in detail.

2.2. The Bloch Equation and the Equation of Motion for the

Density Operator

2.2.1. The Bloch Equation and the Density Matrix
In quantum statistical mechanics, the properties of a system are

fully determined by the density matrix pP . Its equation of motion is



i =g = (% P, (2.1)

and the average of a physical quantity, corresponding to an operator G,

is given by the equation
<G> =m[PG]. ‘ (2.2)
From eqs.(2.1) and (2.2), it follows that the equation of motion of G is

d <G> .
ih—p = < [G,R]1>. (2.3)

The derivation we give here is for the spin-1/2 case, but it will be
seen that it also holds for the general spin-S case. If the spin is in
a constant external maganetic field HO and an oscillating field Hl, the

spin Hamiltonian is

1

H =- S Vh(o-H +H ) (2.4)

where we have introduce the Pauli spin matrices,

0 1 ‘ 0 -i 1 o0
0'x=(1 o)’ 0‘y=(i o)’ GZ:(O -1)’ (2:5)

to describe the spin vector of the spin-1/2 particle. if Si is the spin

vector of the spin-i, the total magnetization will be given by the equation
M =27k s, = NIh<s >, (2.6)
i .

where (...) denotes an average. From eqs.(2.3) and (2.6) we get

imM 1 a<a> NY¥Hh 1 .
% - 5 MR —p— = —1% <[0‘.-2—zrhm-uo+ul)]>.(2.7;




Using the commutation relation of the component of ¢ , which in

symbolic form can be written as follows,

(C*»T1=2i0 . (2.8)

We find from eq.(2.7) that

48 y{mxm], (2.9)

holds, where H = HO + Hl.

2.2.2. Orientation as a Bulk Magnetization

In the case of the optical orientation it is reasonable to characterize
the population differences among the magnetic sublevels of the system by a
macroscopic magnetization. In addition, relaxation terms are present in
the orientation expressions that describe the rate at which the atoms regain
their normal Boltzmann distribution among the sublevels.

Since the ensemble of atoms can be characterized by a magnetization
and by relaxation, it is reasonable that the macroscopic magnetic properties
of the system can be described by expression similar to the phenomenological
equation of Bloch (1946) which were formulated to describe the motion of
nuclear moments in the presence of external magnetic fields. The solutions
of these equations would then describe the behavior of the system of optically
pumped atoms. The boundgry values for the equations could be specified by
a given set of exﬁerimental conditions.

In thé absence of a pumping process or relaxation, the time variation
of the magnetization M per unit volume of ensemble of atoms is given by
eq.(2.9). In the case of nuclear magnetism, the Bloch equation is obtained

by adding relaxation terms to eq.(2.9) which then becomes

M 1+M j M - M
M - X Y z 0
Tt ={[MxH] T, - T K (2.10)

1)



Here &, j, k unit vectors in the laboratory coordinate system, and Mx’ My
and Mz are the components of M in this coordinate system. Mo is the
z-component value of the magnetization when the ensemble of magnetic moment
has achieved a normal Boltzmann distribution. 1t is assumed that a steady
external magnetic fiela is applied along the k direction. Tl and T2 are
the longitudinal and the transverse relaxation times, respectively, and
describe the rate at which the component of M relax along their respective
directions.

The usual procedure is to solve eq.(2.10) for Mx, My.and Mz with
particular boundary conditions. These are usually dictated by the
experimental conditions and the range of t in which one is interested
H is generally composed of a steady magnetic field Hb ( applied along the
k direction ) plus a magnetic field lil(t) with the frequency w are
experimental variables contained in the expressions for Mx’ My and Mz.

When optical pumping is also taking place the state populations and,
hence, the magnetization are changed from the normal Boitzmanp value.

This change can be introduced by simply adding the contribution that comes
from pumping. If the pumping is such that it changes the total z component
of the angular momentum of the ensemble of atoms, the contributions to be

added will be

k , (2.11)

where Mg is the maximum equilibrium value of Mz while pumping is taking
place and Tp is the "optical pumping time" for this process to occur.
It must be noted that'MS is a constant determined by three factors: Ti’ the
transition probabilities for excitation of the atom, and the intensity of

light used for the pumping process. Usually Mg is much larger than the



normal Boltzmann distribution, which enables one to neglect the Mo term

for most problems. Equation (2.10) for the optical pumping case now

becomes
. . P
M 1+M 3 M M., -M
iM o sImMxH] - X L (== + 2 23k _ (2.12)
dt T T
T2 1 P

If we assume that the longitudinal and the transverse relaxation times

are equal to each other, i.e., T, =T, =T, eq.(2.12) becomes

]
M, -M

ad M 0

3~ = §(MxH] + = , | (2.13)
where
v T p
M, = T M, , (2.14a)
P

i Tp'l st (2.14b)

Hereafter, we will use eq.(2.13) for investigation of the magnetic
properties of various experimental\configurations. ,

The eq.(2.13) have the same structure as the Bloch equation. In the
Bloch eguation, Mé is the thermal equilibrium magnetization, given by
Boltzmann factor, and usﬁally parallel to the applied static field Ho.

For optical pumping case, usually'Mé is much larger than the normal

ﬁoltzmann distribution, which, as mentioned above, enables one to neglect
Mo k term for most problems. Therefore, Mé is essentially created by the
optical pumping and is parallel to the pumping light. Namely, Mé is not

)

forced to be parallel to the static field M,. The fact that MO and Ho
are not parallel to each other, i.e., the transverse optical pumping, is
essential in the optical pumping experiments and leads the interesting

effects. We will mainly investigate the effects of the transverse optical

pumping in the following Chapters.
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2.3. Monitoring Operator and the Exciting Operator

In optical double-resonance experiments, a bulk sample of particles,
usually a vapour with suitable spectroscopic properties, is polarized by
an optical pumping cycle represented by particular f’o. The monitoring
process consists of observing the intensity of absorbed or emitted light
which connected the grbund states and excited states. The light itself
has a polarization state reﬁresented by the vector e, which describes the
direction and relative phase of the electric field component of the light.
The monitoring beam for absorption experiments is usually derived from a
discharge lamp, containing the same element as the sample, which emits an
adequately strong line.in electric dipole transition. After passing
through the sample the partially scattered or absorbed beam is detected
by a photodetector, which may either be sensitive only to quasistatic
variations as the static field HO is varied through the resonance value,
or may be tuned to the fundamental or harmonics of w , and followed by a
phase sensitive amplifier.

It is easy to find the form of the optical monitoring operator for
experiments of this type from considerations of the semiclassical corres-
pondence and by the application of the Wigner-Eckart theorem. There are
a number of subtle points concerning the lifetime of the excited states
and the spectral distribution of the light. These effects happily do not
concern us in these examples if we consider that the spectral distribution
of the light beam is sufficiently broad to cover or overlap the group of
states of excited or ground, and this is the usual case because of the fact
that the spectral distribution from the lamp is always as broad as, and
usually broader than, that of the absorbing sample.

In this semiclassical model of absorption, the electric field of the

incident light induces an electric dipole moment of the atom which is
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proportional to the field and is represented by a dipole matrix element.
The absorption on which our monitoring operator depends is proportional
to the quantum mechanical transition rate, which is well known to be depen—
dent on the square of the field or the square of the dipole matrix element.

The form of the monitoring operator is
*
Q= K'§ <m|e-Plyqie *Plm'> , (2.15)

where the individual brackets are the matrix elements of the electric dipole
" operator P or appropriate to the polarization & of the incident light,
taken between the states m which are monitored, and a final state or states
/d . This form for § is applicable not only to absorption but also to
emission because of the fact that both processes are proportional to the
square of the electric dipole matrix element even though they differ in
magnitude by the ratio of the Einstein B and A coefficients. The @ operator
is identical to the G+G¥* of Dodd and Series (1961);

To evaluate Q we make use of the matrix elements (Condon and Shortley

1951) written below for reference

¢n,jym | Pl n',j+1,m#l > = TP, (n,0',3,3") —;-[(:i*ml)(a'tmz)]Vz(xriy),

ciom 1P1 glmy>= 2[5+ D2 -n?1Y2 2,

Gom 1P1 §ym 15 = By == ((dxm)(3tm + 012 (x21y),

<Gsm Pl jym> = P0 mZ,

1/2

Gm 1PV i Lm1>= Py ——[(GFm)(izn - DIV (xxiy),

¢3m 1P) §-Lm> = P [5° - n°] 2 (2.16)

These elements consist of a reduced matrix element depending on specific
spectroscopic information involving the principle quantum number (shown in
the first example and omitted from the notation in the remainder) and the

- 24 -



Fig. 2.1 The direction of the light beam and

the electric vector.
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spectroscopic configuration. This reduced matrix element is multiplied by
Clebsh-Gordon coefficient depending only on the angular momentum. This
separation is an example of the Wigner-Eckart theorem (for example Slichter
1963). It is convenient because we are concerned with transitions between
a group of m levels and another group of M levels, and can therefore
absorb the reduced matrix element in the K’constant and find the form of Q
from the angular momentum coefficients alone.

The evaluation of M% for spin—l/2 ground state is made. This case is
of the most simple model: optical pumpihg for Dl line of alkali atoms by
neglecting the nuclear momentum: transition 281/2 .*.2P1/2. It has been
well known that the hypothetical alkali atom of zero nuclear spin behaves
as a spin-1/2 particle. The calculation based bn such a model has a
particularly simple form and provides an adequate approximation to the
behavior of real alkali atoms. The hypothetical alkali atom model is
adopted for the evaluation of Ma of D1 optical pumping. Related energy
levels of the atom in a weak magnetic field and relative transition
probabilities between the Zeeman sublevels were already shown in Fig.1l.1.

Let the electric field of the inciaent light at time t be Ei(t) =
Ei(t) eg, where eg is a unit vector representing the direction of
polarization. Let the direction of the light be specified by 6, ¢,
and let the eleétric vector make an angle o with the unit vector

associated with 6 as shown in Fig.2.1. Then

L =i ( cos@ cos¢p cosd - sin@ sind )
+ 3 ( cos@ singp cosad + cos¢p sind )

+k (-sin@ cosdl ) . (2.17)
In eq.(2.15) the matrix e-P is written as

¢n,1/2,m|e*PIn',1/2, mu> oc<n,1/2 1 PA n',1/2> (2.18)
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where the components of the unit electric field polarization vector € are
given by e, = e 3 iey = (cos @ cos@ + isind )Jexp( =+ i¢ ), e, =

-sin 6 cosd . For the case of arbitrary linear polarization,

1 0
\ (2.19)
1k

S, <mlePluyuje*-PIm'> < j¢n,1/2 1l PU n',1/2>\2
M 0

Since the application of eq.{2.19) to Mg in eq.{2.14a) can produce no
magnetization, i.e., Mg = 0, no magnetic resonance is observed as the
intensity of the static field HO is varied. If one uses circularly
polarized light, then the matrix of e'P(Gallagher et al. 1963) becones

e e e e
2 - 1oz -
+ i
e =-e_[d=0 e =-e |a=90°
+ + 2
-sin 6 cos 6 ei® 0 ie"1?
= N 4+ 1 .
cos 8 el¢ sin 8 - ig 0
-sin 0 (cos 6 ¥ l)e-”s
= ' + 1 iP s
(cos & % 1)e sin 6 , (2.20)
and the matrix (2.15) now becomes
l'l T cosO F sin 6 oi?
. -i¢ +
- sino e 1tcos6 |, (2.21)

which gives nonzero magnetization, and we can observe the magnetic resonance
as the static field is varied, where the upper and lower signs refer to
the circular polarization of the pumping light. Then we can obtain the

components of Mg as follows;
P _ - p
My, = Q/2,1/2 * Qy/p,1/2 = + 2 8in0 cos¢ My , (2.22a)
¥ = i(q -Q ) =% 28in6 singp M (2.22b)
Oy -1/2,1/2 1/2,-1/2 ’ :
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p _ _ = P
My, = Ql/z’l/z Q_l/z,_l/2 =+ 2 cos O M, | (2.22¢)

These results are completely equivalent to the values which are easily
expected by projecting the unit vector directed along the pumping light
beam, specified by 6, ¢, into the axes on the coordinate system.
It is well known that the amount of the absorption of the light beam
by atoms is related to the component of the magnetization along the direction

of the light beam, and given by the following equation { Dehmelt 1957)
]
s=K[1-a( Mn/MO ). (2.23)

Here K is the absorption coefficient for the unpolarized vapour, while a is
a dimensionless constant depending on the degree of polarization attained

and also on nuclear effects.

2.4. DBehavior of the Magnetic Moment in a Static Field

2.4.1. The Hanle Effect

Let us start with a simple remark concerning the polarization that
the light beam must have in order to achieve a transverse pumping. Let
0z be the direction ol the field.HO with the light beam propagated along
Ox and having a right circularly polarized with respeét to this direction

(see Fig.2.2).

Fig. 2.2 Schematic diagram of the Hanle effect
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A solar cell or photo detector PD measure the variation of the intensity

of the light beam which transmitted through the sample cell. We investi-
gate the variation with HO of optical signal S, i.e., Mx' when the value of
HO vary near the value zero very slowly. We are interested in the steady

state solution as a function of the magnitude of field Ho. For this case,

the Bloch equation becomes as follows;

d Mx M M

0 X _
T = WM+ = - % (2.24a)
s 2y
T =-wW M - : (2.241b)
d M M,
T = - —= . (2.24¢)

At steady state, i.€., de/dt = dM y/dt = dMZ/dt = 0, we can immediately

obtain the steady state solutions

1
M
x 1+ ( wot)2 0o , (2.25a)

Do * ' (2.250)
M = - M 2.25b
y 14+ ( w, T )2 0

M o= 0 . ' (2.25¢)

Mz remains always zero. The magnetic dipole of an atom which has been
Just pumped by the light beam of Fig.2.2, is pointing along the Ox

direction. Immediately afterwards it begins to precess around H. at the

0
Larmor frequency of the ground state aJO. After a mean time T, the atom
undergoing a disorientating collision or absorbs another photon and its
orientation is destroyed or change completely.

In order to obtain the whole transverse magnetization of the vapour at

a given time to, we have to take the resultant of all the dipoles which have
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been pumped at time t<t0 and which have not yet undergone a disorientating
process at time to. All these dipoles form a kind of a fan, starting from
the Ox axis and having an average angular spread is very small; the resultant
has its maximum value and is directed along Ox. When 000 increase, the
fan opens, the resultant decreases, and rotates: a My component appears.

When w.T>1, the fan has become isotropic in the plane perpendicular to

0
H. so that the resultant is now zero.

0

These predictions have been confirmed experimentally on the odd isotopes
of Cd (Lehman and Cohen-Tannoudji 1964). This phenomenon is very similar
to thé Hanle effect (Hanlé 1934, Mitchell and Zemansky 1934) which appears
in the excited state.

For more general case that the pumping light beam makes an angle 6
with respect to the static field.HO. the magnetization along the pumping
light bean, ‘gf is easily given in the same manner and is given in the
form

= 1 N sin26 + M cos29 (2.26)
1+ ( 00012)2 :

M

n 0 0

The first term on the right hand side of eq.(2.26) is due to the transverse
pumping or the Hanle effect and the second term is due to the longitudinal

pumping.

2.4.2. Anticrossing Experiment

We consider the variation of the magnetization in the sample cell
which is optically pumped for the case that the field added to the ambient
field is sweeping from negative to positive through zero in an arbitrary
direction. As shown in Fig.2.3, we choose the sweeping field axis as
2 direction, and x axis is chosen in the direction of the component of the
ambient field which exists on the perpendicuiar plane to the z axis.

in Fig.2.3, P.L. shows the pumping light, Hi and.ﬂi are 02 component and
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xy plane component of the ambient field, respectively. $ is the angle
between Hr and the projection on the xy plane of the pumping light direction
and 8 is the angle between z axis and the pumping light beam. The strength

of the compositive field along the z axis becomes Hs + Hz'

Fig. 2.3 Schematic diagram of the anticrossing

experiment for zero frequency.

In this situation, the angle 3 between the pumping light beam and the
total field direction which is the compositive vector of Hr, l{z and Hs is

given as follows;

H cos® sin® + H_ cos®
T s

cos ¥ = (2.27)
2 o 1172
[(Hs + Hz) + H_ 1
Substituting this into eq.{2.26), we can obtain
M = 1 > [( w_T )2(c052¢ sin26 - cos?6 )
1+ ( w,T)
+ W w 'tzcosep sin28 + ( w_ T )2 29 1 u (2.28
r s 0 cos + 1] o ¢ .28)
where
2 2 2
wo=(w, +w) + w (2.29a)
U)S =THS, wz =THZ’ wr anr- (2.29b)
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For O = 0, Mn becomes as follows;

1+ ( w + w )z?
S Z

M= M, - (2.30)
1+ (w,T )2
While, for @ = 7%/2, M becomes
1
M_ - L —— [ w,_T )%os’d + 1] . (2.31)
1+ ((0011 )

Equation (2.30) has the same form as Mz of the ordinary resonance which
will be descrived Sec. 3.2. The half width at half maximum of the lines

of eqs.(2.30) and (2.31), §w, is given by

sw= [( 502 + w2 1¥2 (2.32)

Figures 2.4 show the line shapes of M calculated with eq.(2.28)} (a)
and (b) are for w_ = 500, T= 1, ¢ = 0 and 7/4, respectively, and (c)
and (d) are for wrr=1, T=1, ¢ =0 and /4, respectively.

Experimental results are shown in Fig.2.5. In this experiment, the
axis of a double Helmholtz coil is nearly oriented to the direction of the
geomagnetic field to minimize the anbient field Hr and the sweeping field
Hs is created by the Helmholtz coil. The experimental results show a
good agreement with the theoretical results in Fig.2.4(b).

By using the anticrossing curves, we may decide the field direction.
Indeed, Aleksandrov , Bonch-Bruevich and Khodovoi (1967) show the
posibilities of measuring weak magnetic fields by method of optical orien-
tation of atoms. Theirrtheoretical analysis shows that the optimum objects
are alkali-metal atoms, and the optimum mode is that of extremely low
intensities of the orienting light. It has also been shown that when the
object and the optical-orientation regime are optimally chosen, their

proposed method guarantees a maximum sensitivity not worse than 10-11 Qe

at a recording-equipment bandwidth of 1 Hz.
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Fig. 2.4 (a), (b). For legend see P.34.
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Fig. 2.4 Theoretical curves for the anticrossing
experiment. (a) YH_ =500, T=1, 6= 0°,
(b) ¥E, = 500, T=1, 0 =45, (c)¥H, =1,

T=1, 6 =0°, (Q)¥E =1, T=1, 6 = 45°.
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Fig. 2.5. Experimental recordings for anticrossing

curves for zero frequency.
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2.5. Conclusion

We have shown the equivalence between the equation of motion
of the density matrix for spin 1/2 and the phenomenological Bloch
equation. In the steady state resonance of the usual "bulk" magnetization
we must include the effects of relaxation or damping, and of population
regeneration. To this end, for the optical pumping case, the effects
of relaxation or damping and population regeneration or excitation
have been added to the equation of motion of the bulk magnetization in the
magnetic field. By using the Bloch equation (2.13) obtained in 2.2.2,
we will examine the characteristics and line shapes of the various
magnetic resonances.

The evaluation of the monitoring and the excitation operator between 31/2

and P states has been given. It is well known that the amount of the

1/2

absorption of the light beam by atoms is related to the component of the

magnetization along the direction of the pumping light beam ( Dehmelt 1957).
By using the Bloch equation (2.13), we have analyzed the behaviors

of the magnetic moment in the static field. Two types of situations

have analyzed. One corresponds to the level croséing or the Hanle

experiment, and the other corresponds to the anticrossing experiment.

The level crossing experiment is essentially an interference phenomenon.

When the levels are degenerate, the intensity of the transmitted light

increases. The anticrossing signal is the same as a double resonance

signal, but in the one case the perturbation is static, and in the other,

rf field Hl.
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CHAPTER 3

EFFECTS OF THE TRANSVERSE PUMPING IN THE

PRESENCE OF THE ROTATING RF FIELDS

3.1. Introduction

In the usual double resonance experiments atoms are subjected to the
static magnetic field Ho and the rf field Hl(t) oscillating in the plane
perpendicularly to the field H0 with angular frequency W , together with
the circurarly porarized light beam which has two roles to create the
magnetization in the ensemble of atoms along the direction of the light beam
and to monitor the variation of this component of magnetization.

Workers in the magnetic resonance have often obtained solutions for
spin flip transition probabilities by solving the corresponding classical
problem of apinning dipole in a magnetic field using a rotating frame
( Rabi, Ramsey and Schwinger 1954 ). Feynman et al.(1957) and terr Harr
(1966) have in fact shown that the semiclassical Schrodinger equation for a
two state system is mathematically equivalent to the phenomenological Bloch
equation. Hence the Bloch equation may interpret the multiple quantum
transitions, the Bloch-Siegert shift ( Bloch and‘Siegert 1940) and other
quantum mechanical effects.

At present, there exists an optical method of creation of magnetization
which makes it possible to create magnetization in an arbitrary direction
with respect to the magnetic field. In particular, a characteristic case
is possible when magnetization is created across the static field by means
of circurarly polarized light beam. It is obvious that when the rate of
creation of magnetization is slow compared with the period of precession
of the magnetization in the field,no significant magnetization will

build up in the system. The situation, however, is changed when time
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. varing magnetic field is applied. An interesting case, called parametric
resonance, arises when the oscillating rf field is parallel to the static
field ( Aleksandrov et al. 1966, Polonsky and Cohen-Tannoudji 1965 ).

Under the irradiation to an atomic vapor with optical and rf fields,

Bell and Bloom (1957) have detected the modulation of the light at W in

cross—-beam experiment. They have used a phenomenological model; based

on Bloch equation, to interpret their experimental result. But the effect

of the transverse optical pumping of the monitoring beam directed perpen-

dicularly to H, was neglected. Their treatment is justified only the case
that the magnetic field.Ho is much larger than the rf field.ﬂl. While

in the case that the pumping beam and.ﬁl are perpendicular to the field.Ho,
the effect of the transverse pumping has been analyzed by using density

matrix and iteration method by Cohen-Tannoudji and Haroche (1967). They

have then observed the new type resonances in the modulation of the
transmitted light beam with mercury vapor, and the resonances have been
called " Haroche resonance " by Cohen-Tannoudji (1968). These resonances
appear in the various even harmonics 2p W of the transmitted.light

when Hj = 2nWw /'X ,( n=1,2,... ) for weak rf field and are shifted but

not broadened as the intensity of the rf field is increased. |

Recently, we have analyzed the effect of the transverse pumping in the case
that the direction of the pumping light beam and nonresonant rf field

which is parallel to the pumping light beam, makes an arbitrary angle

with respect to H, ( Yabuzaki et al. 1972a ).  And we have shown by
classical and quantum mechanical treatments the fact that the atomic g-
factor is modified by the nonresonant rf field when the Hanle effect and

parametric resonance take place. This fact will be shown in chapter 4.

In section 3.2., we consider the situation that the direction of the

pumping light beam makes an arbitrary angle 6 with respect to the field
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HO and the direction of the rf field is perpendicular to the field HO
( PTsukada et al.1972 ). If the anglef is chosen at 907, this situation
coincides with that of experiment by Cohen-Tannoudji and Haroche (1966,
1969a,b ), and if @ is chosen at Oi this situation coincides with that
of the ordinary magnetic resonance. We analyze this situation by using
the phenomenological Bloch equation which 1S obtained in chapter 2.

We show that the Hanle effect and the new type resonances appear in the
unmodulated or dc component and the component modulated at y in
addition to the component modulated at 2 W predicted by the theory of
Cohen~Tannoudji and Haroche (1967,1969a,b). It is shown theoretically
and experimentally that the new type resonances are strongly broadened
by increasing the rf field.

We carry out the experiments with optically pumped cesium vapor by
using the effective field in a rotating system. Because the effective
field can be easily made so weak that the transverse pumping plays an
important role. We mainly investigated the character of the new type
resonances which appear in the components modulated at W and 2W and
dc component in the transmitted light.

In section 3.3., the evolution of the magnetizatioﬁ in a system of
paramagnetic particles in the presence of two rotating rf fields with
frequencies u)a and u)b is investigated with the phenomenological
Bloch equation. » In this case, the paramagnetic particles are optically
oriented to an arbitrary direction to the static field Ho. Consequently,
the results obtained here might be applicable to the special case that the
rf field is elliptically polarized or linearly polarized. As one

might expect, the multiple quantum transitions take place at W, = 2 w a

0
- (L)b, and 2 U)b - UJa corresponding to the three photon process and at
w 0= -2 U)a + S‘A)b'correspond to the five photon process, in addition
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to the ordinary magnetic resonances at W, = W and u)b. In addition
to these resonances, the resulis of the calculation predict the new type
resonances which are due to the effect of the transveése optical pumping.
The new type resonances take place at 0)0 = 0, 2 u)a, 2 u)b, u)a P w b
and ¥ 2 u’a - u)b) etc. for the two rotating rf fields.

Since the maximum magnitude of the ordinary and the multiple quantum
resonances are obtained when the pumping light beam is parallel to the
stétic field Ho, these type of resonances can be conventionally called
" longitudinal resonance ". On the other hand, the maximum magnitude of
the new type resonances are obtained when the pumping light beam is
perpendicular to HO’ therefore these type of resonance can be conventionally
called " transverse resonance ". It is also shown that the transmitied
light beam propagating through the system of atoms, or sample cell,
contains the beat freqﬁencies such as w, - W o wa -2 U‘)b’ 20!)a - W b
and 2( u)a -w b) etc., and the Hanle curve corresponding to the transverse
resonance at a)o =0 is broadened by not only the oscillating rf field

{ Cohen-Tannoudji and Haroche 1969b) but also the rotating rf field.

3,2. Effects of the Transverse Pumping in the Presence of a Rotating RF

Field

A theoretical and experimental study has been made of the effect of
transverse optical pumping in the optical-rf double r;sonance. The solution
6f Bloch equation shows that the Hanle effect and the new type resonances,
i.e., the off-diagonal resonance, become notable in the weak magnetic field
or for strong rf field, as the effect of the transverse pumping. The new
type resonances appear in the unmodulated component and the components
modulated at the first and the second harmonics of the applied rf frequency

in the pumping light beam transmitted through the vapor cell. It is pre-
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Fig. 3.1. Direction of the magnetic fields and of the pumping

light beam for the situation to be considered.
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Fig. 3.2. Directions of the magnetic fields and of the pumping
light beam in the coordinate system which rotatesa
with the angular frequency w . The direction of
the pumping light beam rotates around Z axis with

angular frequency - W .

- 41 -



dicted that the new type resonances are not only shifted but also broadened
as the intensity of 'the rf field is increased. The shift, broadening
and the amplitude for observed new type resonances are in good agreement
with the theoretical prediction within the middle strength of the xf
field.
3.2+1. Theory

We consider about the behaviors of the magnetiza.tioh for the case of
a rotating rf field transverse to the static field Ho ( see Fig.3.1 ).
A transformation to a system rotating about HO(Z axis) at a frequency w
makes magnetic field "time indepéndent". In the Oxyz coordinate system
as shown in Fig.3.2, the total magnetic field becomes an effective magnetic
rield H_ =[(H, - W/7¥ )2 + B 1/2 4n4 the direction of the pumping light
beam rotates with the angular frequency W about the z axis. The direction
of He(z' axis) is given by the angle B= ta.n-l[Hl/(Ho - Ww/¥ )] with respect
to the x axis. Hence, by a further rotation'of the coordinate system
Oxyz about the y axis through the angle B the new z' axis is made to
coincide with the direction of He. In the Ox'y'z' coordinate system, we
obtain the equations governing the motion of three components of the

macroscopic magnetization M as follows;

d M_,
1 ! . L
dtx = = (- Mocos 6 sinf3 + Mos;\.ne cosﬁ ‘coswt - Mx,)+ weuy' ,
(3.1a)

dM., 4 .
—y-dt = _’i:—( Mosnne sinwt - My' ) - wM ., o, (3.1b)
d Mz' 1 ! L .

el — ( M cos O cosfB + Mosn.ne sinf coswWt - M _, Y, (3.1c)

where
w,y=¥H, dw= w,-w, W =7H, w =Y¥H, (3.22)
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w, = (aw?+ w22 | g (@ /aw). (3.20)
Using the relation

.

Mo, =M, +iM, (3.3)

we obtain the following two equations which are equivalent to three diffe-
rential equations (3.1) in the form

dM' [} 1
7&%' —-,—]l':—( - Mycos @ sin3 + M sin § cosfB coswt

' i ; 2
+ 1 Mysin 6 sinWwt ) - = (1+1 w.T )M+, , (3.4a)

d M,
Z

el —,}:— ( M(')cos fcos B + M(')sin 8 sin3 coswWt - M, ) (3.4p)

Equations (3.4) can be solved and the steady state solutions are given

as follows;

1 .
u Moc03951n/3 . 1 M,sin 6(1 + cosp ) {coswt + (we+ ) )’Csinwt]
Yoore(w )2 2 14 (w +w)PT?
. ,
1 Mosine(l-cosﬁ)
- 5 2{coswt-(we-w)'tsinwt}
1+( U)e -w)°T
t 1
s Mycos Osin M,sin 0 (1+cospB)

-5 5 {sinwt - ( W +w)T cos wt}

2 * 2
1+ (w, T) 1+ (wsw)T

l['s:Lne( 1 - cosB )
0 3 {sinwt + ( W, -w )T cos'wt}, (3.5a)

1
+ 72

1+ ( Q)e ..w)z’z:
. M(;sinBsin,B ( . (3.5)
M, = cos @cos + coswt+wTsinwt). .
at = Yo p 1+ (wz )2

The signal of the absorption of the transmitted light beam are proportional
to S given by eq.(2.23). The value of M in eq.(2.23) is obtained by
evaluating the time variation of the angles between the light beam and

each axis of the Ox'y'z' coordinate system. If the quantities &(t), 7(t)
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and E(t) represent the angles betweén the light beam and x',y' and z' axes

respectively, they are given by the following representations

cos §(t) = sin 6 cos B coswW t - cos @ sing , (3.6a)
cos 1) (t) =sin@sinwt , (3.6b)
cos % (t) = 8in @ sinB cosW t + cos 8 cos B . (3.6¢)

Then the total magnetic moment'l[n which directs to the light beam becomes
M =M ,cos S(t) + l(y,cos 7 (t) + ¥, cos T (t). (3.7)

When we substitute egs.(3.5) and (3.6) into eq.(3.7), M is given in the

form
¥ = Mn(O) + l(n,s(w)sin wt o+ Mn’c(w)cos wt
+ l(n's(2w)sin2wt + lln’c(zw)coszwt, (3.8)
where
1 .2 2 ' 2
M (0) =1 sin + cos M .cos @
2 2 2 .
+{ (1 + cosﬁz) 5+ (1 - cosﬁa) 5 + 2 sin“AB 2}M081n29 '
1+(w+w)°T 1+(w-w)"T 1+ (wT)
(3.9a)
(w+ w ) (w-w)
¥ (W) = 1 8 (1 + cosg ) + £ (1-cosB)
TS 2004 (wrw)?z? A ~w )?z? A
w '
+ 2WT > cos B8 + 2 Wel }sin/a Mosinecoso ,
1 + (wt) 14+ (we’t) (3.9b)
¥ (w) = x 1 (1+cos B) + 1 (1-cosB)
n,¢ 2 { 1+ (waw)?T? 1+( w -w )?z?
2 2 L
5 coslﬂ - } sin 8 Mo sin@cos 0 ,
1 wT
+ ( ) 1l + (we't) (3-90)
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L (@ew) (w-w )
Mn,s(zw) = -_4—{ 2.2 * T \24-2
1+(w+we )T 1+((A)-we)'c
- —22F 3 ain®8 uy sin®6 (3.94)
1+ (WT)
1 1 1
¥ (2W) = - —— +
n,o(2%) 4{ 14 (w4 w, )22 1+ (0 -w_)2T?
2 L2 2
- —=%———— 1 sin M. sin“0 . (3.9¢)
ol Rt 0

The magnetic moment Mn contains the unmodulated component and the components
modulated at W and 2W . The same results can be obtained by using the
density operator and the monitoring operator (Carver and Partridge 1966)

as shown in Appendix A. If @ is chosen to zero in eqs.(3.9), the effect
of the transverse pumping disappears and only the ordinary magnetic resonance
appears in the umnmodulated component as one alters Ho. When @ is chosen
to 75/2 rad., the situation coincides with that of the experiment by Haroche
(19711v), un(o), xn,s(zw) and Mn,c(zw) are not zero. For the condition

that WT>1, eqs.(3.9a), (3.94) and (3.9e) become respectively as follows;

1 (1-cosfB )2 '
nn(o) - (o - )22_2 My » (3.10a)
e

Mn(za)) = un's(zw)smzw t + Mn’c(2w)0032a) t

R sin’ 8 Msin(ew t + d ) (3.10D)
4 i (w _we)th 0 ’
where
-1 1
d_ = tan
; (3.11)
(w -w)T

Equations (3.10) show the resonances whose maximum appears for W = @,

i.e.,
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w =wiw[1-(wl/w)2]1/2,

0 (3.12)

and the maximum of the resonances are given in the form
1 2q1/2 27"
i (0% = -2 {1 - [1-( @ /@ )2 TV~ @ /)%y, (3.130)

M (20)™ = 2= (W /w )P uy (3.13)

Equation (3.12) shows the resonances occur at CUO~O and wo~2a) for

weak rf field and Bloch-Siegert (1940) type shift occurs as the magnitude

1
high field region and the resonance for wo~2w shifts to the low field

of the rf field H, is increased. The resonance for wo~0 shifts to the

region, i.e., both resonances move towards u)o = 0. The maxima of the
resonance of the component modulated at 2 is proportional to 1112 as

shown eq.(3.13b).  On the other hand, if € is chosen to 0 <€ <%/2, all
of eqs.(3.9) are not zero. It should be noticed that the new type resonance
may be detected not only in the unmodulated component and the component
modulated at 2W but also in the component modulated at W of the trans-
mitted light beam. For the condition that @7T »1, using egs.(3.9a) and

(3.9c) the component modulated at w becomes as follows;

lln(w)=lln’s(w)sin wt + nn,c(w Jeosw t

(1 ~cosB )sinB
T+ (- w )22

1
- —2— sin26 My sin{ Wt + & ). (3.14)
The variation of the position for the resonance peak is the same quantity

as given by eq.(3.12) and the maximum can be represented as follows;

Wy

M ()™ - -‘11— {1-[1-(w/w)?] Y2} sino o M, . (3.15)

The half width at half maximum Awh of the new type resonances is given

from eqs.(3.10) and (3.14) as follows;
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aw, =l {1+ )" - L::)—l R R %1— )2}1/21(3 16)

For the weak values of Hl, the linewidth AU)h becomes T —1, i.e., normal
line width of the levels. When the magnitude of Hl is increased, the line-
width becomes dependent not only on T but also LDl and W . The theore-
tical curves of the new type resonances calculated with eqs.(3.9a), (3.9d)
and (3.9e) are shown in Fig.3.3. In Fig.3.3, (a) and (b) show the resonances
of the unmodulated and the modulated at 2W components, respectively.

The maximum of the resonance in the unmodulated component is approximately
given by eq.(3.13a) and the maximum of the component modulated at 2w is
proportional to le as shown in eq.(3;13a). The magnitude of the shifts

of both the unmodulated and the component modulated at 2W are equal to
each other; it is proportional to H12 for the weak values of Hl as shown in
eq.(3.12).

The resonance of the component modulated at 2W given in eq.(3.10b)
may be the same as one of the resonances predicted by Haroche et al. (Cohen-
Tannoudji and Haroche 1965, 1967), so called "Haroche Resonance" (Cohen-
Tannoud ji 1968). From their conclusion, it is expected that the resonances
are shifted but not broadened, as the intensity Hl is increagsed, and both
the shift and the maximum of the resonance of the component modulated at
2w are proportional to H12; all the peaks of the resonance curves for
various values of Hl are thus on a straight line. Although all the peaks
of the resonance curves of (b) in Fig.3.3, component modulated at 2w |,
are on a straight line for weak Hl, the peaks deviate from the straight
line for comparatively large H;. The resonance curves of (a) and (B) in
Fig.3.3 are broadened as the intensity of Hl is increased. Haroche et al.

have experimentally observed the saturation effect, i.e., the deviation of

the peaks of the resonance from the straight line for large values of Hl‘
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but they have not explained this effect in detail ( Cohen-Tannoudji and
Haroche 1965,1967). Recently, Haroche has explained this saturation effect
in detail by using "dressed atom" theory (Haroche 1971a,b). The new type
resonances which appear in the component modulated at w have not been pre-
dicted by their theory, because only the case that 6= 7 /2 has been treated
in their theory.

If the conditions wg»l and W,>w; are satisfied, egs.(3.9a~c) are

expressed in the following form;

AwT )2 '
Mn(O) = L+ ( > ) 5 My cos® O ’ (3.17a)
1+ (AWT)S 4 ( wl’l:)
1 ]
‘M (W) = M, sin O cos® , (3.17b)
n,s 1+ (Awt)z + ( wl,c )2 0
2
Mn,c(w) = = L M, sinb cosf . (3.17¢)

14 (awT)? 4 (w,T)?

It is seen that the intensities of resonances of the unmodulated component
and the component modulated at W are proportional to c0526 and sin@ cosg,
respectively. The results of eqs.(3.17) are the same as that obtained by
Abragam (1961) in nuclear magnetic resonance and by Bell and Bloom (1957)
for "cross-beam" method in optical pumping, except for the angular depen-
dency of O .

If the rf field Hl is removed, the mag:}etic moment Mn directed along
the optical axis is given from eq.(3%.8) as follows;

1

1
M =———— N sin%6 + M. c0s0 . (3.18)
1+ (wyT) ‘

(] 0

The first term on the right hand side of eq.(5.18) is due to the transverse
pumping or the Hanle effect (Hanle 1924, Mitchell and Zemansky 1934) and

the second term is due to the longitudinal pumping. This result coincides
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with that derived by using the Bloch equation (Lehman et al. 1964, Ito et al.
1968) and the density matrix (Brossel 1965) for the case that the rf field
is absent.

Thus, it is shown that eq.(3. 8 ) gives a comprehensive theoretical
description for the behavior of the ensemble of the optically pumped a.tdms

which undergo the double resonance.

3.2+2. Experiments and Discussion

For the purpose to confirm the conclusions of the theory, experiments
were made with optically pumped cesium atoms. An absorption cell with
wall coated with paraffin, containing saturated vapor of cesium at tempera-
ture about 25°C, was situated at the center of a set of Helmholtz coils
which produced a constant magnetic field Es~ 0.5 gauss. To observe the
effect of the transverse pumping, the experiments must be carried out -in
a weak magnetic field.' Therefore we used the effective field in the rotating
coordinate system as a static field HO in the theory. The rf field
hocosQ t with frequency 9-/275- 175 KHz was applied perpendicula.rly to the
field H_ and the another rf field H,cos W t with frequency Ww/27 = 3 KHz,
oscillating in the direction of the Hs, was produded by a low frequency
generator. The optical pumping was done by means of circularly polarized
light beam from an electrodeless cesium lamp, propagating along HB.

When the frequency Q is set at near resonance condition of the ordi-
nary magnetic resonance, i.e., Q~)‘Hs, the direction of the effective field
in the rotating coordinate system which rotates about z axis with angular
frequency §$2 makes an angle 8 = tan-l(a'ho/(“d‘Hs-Q )) to Hs(z axis) and
its magnitude is H_ ={ (HS -/ )2 + h02}1/2 as' shown in Fig.3.4. The
rotating coordinate system is then equivalent to the situation which is dis-
cussed in the theory by considering that Ho = He and O = /5’ s and by neglec-

ting the counter-rotating component of the oscillating rf field Hl.



/ H1COS o B

Y

PUMPING
LIGHT BEAM

Fig. 3.4. Experimental situation on the coordinate
system which rotates around H.s with

angular frequency W .

At first, the angle B was set at just 7Z/2 rad., i.e., Q = ¥H_.
The change of the transmitted light intensity obtained for this case can be
calculated with eq.(3.8) by setting the angle @ to 75/2 rad,
In this case the resonances are expected in the unmodulated component from
the second term of fhe right hand side of eq.(3.9a) and the component modu-
lated at 2w from eqs.(3.9d,e), but the component modulated at w disapp-
ears.

Resonances in the unmodulated component and the component modulated at
2W in the light beam transmitted through the absorption cell were recorded

by an X-Y recorder as the amplitude ho, i.e., H, in the theory, was varied

0
continuously. The recorder traces of the resonance appearing in the un-
modulated component are shown in Fig.3.5, where each resonance corresponds
to a different value of Hl. We can see in Fig.3.5 that the maxima of the
resonance for Wa~ 2@ move towards the low field region, as Hl ig in-

creased. The resonance for a)o~ 0 expected from eq.(3.12) can not be
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observed, because in the experiments the oscillating rf field was used
instead of the rotating rf field. The sudden increase of the transmitted

light near h, = 0 is associated with the Hanle effect in the rotating co-~

0
ordinate system. The effect of "dressed atom" (Cohen-Tannoudji and Haroche
1969a,b) is seen in the resonance curves, especially the resonance curve for

V., = 22 millivolt, where Vl is proportional to Hl, shows the remarkably

1
broadened Hanle curve. The curve for Vl = 0 shows the normal Hanle curve

in the absence of the rf field. Figure 3.6 shows the recorder traces of the
component modulated at 2@ . The resonance for aJOa-zcu shifts towards
the same direction and by the same quantity as the resonances which appear
in the unmodulated component. The peaks of the resonance curves are on a
straight line for weak rf field and the saturation effect appears in the re-
gion of the relatively large Hl as expected by the theory. The half width
at half maximum of the resonance is nearly equal to the inverse of the relax-
ation time T for the weak rf field Hl, but it is remarkably broadened by
increasing the intensity of Hl' Figure 3.7 shows the maxima of the reso-
nances for a)o«—zu) of the unmodulated component as a function of Hl,

in which the solid line is the theoretical value and the cross points are

the experimental results. In Fig.3.8, the solid line shows the theoretical
value of the maxima of the component modulated at 2w and the circle points
. show the experimental results. The shift of the center of the resonance
curves is shown in Fig.3.9 as a function of Hl. The solid line shows the
theoretical result. and the cross points and the circular points show

the experimental results. The agreement between the experimental and the
theoretical results is excellent in the case that wq =¥rH, does not exceed

1

w . When the value of 601 goes over W , our theory becomes invalid,

because the counter-rotating component of the oscillating rf field Hl becomes

important for such a large value of qu. If the rotating rf field is used
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Fig. 3.5. Recorder traces of the resonance curves for w

0

= 2W in the unmodulated component as a function

of hO' The rf field hO is varied from gero to
20 milligauss. A number written in each trace is
the input voltage Vl of rf coils (in millivolt),

which is proportional to Hl'
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MODULATION AT 2w
S 19
5 ok 21 17 2 milligauss
3o 15
O'E 22
3
()
=2
58 12
s81t
Ny
ol 9
£
< Hi=
6 Wo=2w
L) B

Magnetic field Ho

Fig. 3.6. Recorder traces of the resonance curves of the.
component modulated at 2 wW for u)o= 2w .
A number written in each trace is the input
voltage V; of the rf coils (in millivolt),

which is proportional to Hl.
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Fig. 3.7.

Fig. 3.8.

N
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Amplitude of the resonance
(Arbitrary unit)

| R

0 5 0 15 20
Intensity of the rf field Va(millivolt)

The variation of the resonance maxima of the unmod-
ulated component as a function of Vl. Experimental
points are shown by the crosses and the solid line

is the theoretical value.

N
T

pury
T

Amplitude of the resonance
(Arbitrary unit)

0 5 10 15 20
Intensity of the rf field Va(millivolt)

The variation of the resonance maxima of the com-
ponent modulated at 2w as a function of Vl.
Experimental points are shown by the circles and

the so0lid line is the theoretical value.
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Magnetic field He

Fig.3.10. Resonance curves in the component modulated at w3

(a), (b) and (c) correspond to the cases that the
intensity of Hl is small, medium and large, respec-
tively. The resonance curves in the component

modulated at 2W are also shown.

-57_



in the experiments the theory is rigorous without thé restriction for the
intensity of the rf field, and the resonance for QJO-O may appear. The
new type resonance which appearsin the component modulated at w is also
observed for the case that the angle B differs from 7T/2 rad. Figure
3.10 shows the resonance curves for small, medium and large values of Hl,

in which the resonances in the component modulated at 2w are also shown.
The resonance curves situate on the slope of the ordinary magnetic resonance
curve in the component modulated at w , the center of which is at uJO =W,
When the value of Hl is increased, it shifts towards the same direction and
. by the same ﬁagnitude as the resonances which appear in the unmodulated
component and the component modulated at 2W .

It has been shown by Cohen-Tannoudji and Haroche (1969a,b) that the new
type resonances are due to the crossing of the energy levels of the system,
which consigts of an atom and the rf photon. Their theory shows that the
linewidth of the new type resonance or Haroche resonance is determined only
by the natural width of the crossing energy levels and is independent of the
amplitude of Hl' However, as we have shown theoretically and experimentally,
the new type resonances are actually broadened by the rf field Hl' This
fact can be explained from the point of view of the crossing of the energy

levels. When the magnitude of static field H, is varied, the region of H

0

where the energy levels are crossed is independent not only on the natural

(]

line width qf thése levels but also on the angle between the crossing energy
levels which ié determined by the atomic g~factor. The angle is perturbed by
the anticrossing of the energy levels which is associated with the ordinary
magnetic resdnance. The variation of the angle can be considered as an
effect of the modification of the atomic g-factor by the rf photon..Accord-
ingly, when the amplitude of H, jg increased, the crossing point of the

energy levels, i.e., the center of the resonance, shifts accompanying the.
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Fig. 3.11. Directions of magnetic fields and pumping light

beam in the laboratory coordinate system
(S(o) frame).
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broadening of the resonance line. It must be emphasized that the broadening
of the new type resonance is due to the fact that the atomic g-factor is

modified by the rf field B‘l'

3.3, Effects of the Transverse Pumping in the Presence of Two Rotating

RF Fields

The evolution of the magnetization of the optically pumped atoms in the
presence of two rotating rf fields with different frequencies is investigated
by using the Bloch equation. It is shown that the new type resonances
which are due to the effect of the transverse pumping together with the
ordinary magnetic resonance and the multiple quantum resonances are realized
undergoing the influences of two rotating rf fields. It is also shown that
the Hanle curve is broadened by the rotating rf field in the same manner as
by the oscillating rf field, and is shifted towards high field region as the
intensity of the rotating rf field is increased. The results obtained are
applicable to the case of an elliptically rotating rf field, which is super-

position of two rotating rf fields.

3.3.1. Theory
(a) Transformation of the Magnetic Fields
We investigate the evolution of a magnetization M acted upon a static

fieldli0 and the two rotating rf fields Hl and H2, which rotate about Ho

with angular frequency wa and wb’ respectively, as shown in Fig.3.1ll.

The magnetic fields in the laboratory frame S0 are represented as follows;

0 .
H (t) = Hl(lcos w_t+ §sin wat) + Hz(icos wyt + jsin wbt) +k Hy

| (3.19)
In the absence of }12, it has been shown that the ordinary magnetic

resonance at wo = wa and the transverse resonance at wo a 2 wa occur
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(Aleksandrov and Sokorov 1972, Tsukada et al. 1972). It now remains to see

how the presence of H, rotating at frequency Wy affects the evolution of

2
magnetic moment. This problem can easily be analyzed by the use of rotating
frames. Consider the problem from the point of view of a frame rotating
with angular frequency wa.' This transformation makes the field Hl to
rest, and the frequency of field Hzto wb - u)a. This succeeds in removing
resonant terms leaving only a small off-resonant field. If we were to
neglect the off-resonant field, we would obtain the usual "zeroth order"
approximation which predicts the ordinary resonance at w, = wa and the

0

all of the first order effects of H2 is given by the following successive

transformations (Abragam 1961, Rewis 1969),

transverse resonance at w, = 2 wa.' A more accurate solution which includes

cos cobt sin wbt 0
Rl(sousl) =| -sinwt cos wt 0 (3.20a)
0 _ 0 1/
cos & o] - 8in §
B(s'es?) = [ o 1 0
sin & 0 cosd /1 (5.20p)
cos( w, - wb)t sin( w - wb)t 0
R3(824» s3) = | - sin('wa - wb)t cos( w, - b)'c 0] (3.20c)
0 0 1/
cos 3 0 - 8in 8
R4(s3 oesh=| o 1 0 (3.204)
sin 8 0 cosf [ °

The first transformation (3.20a) represents that of the rotating field H, to rest.
This transformation is accomplished by introducing a system Sl that rotates
with the angular frequency wy about the z axis of the laboratory frame So.
The magnetic field in the frame Sl becomes as follows;
1 . P
H (t) = Hl[lcos( w - wb)t + Fsin( w - wb)t] +iH2 + k(Ho- wb/x ).(3.21)
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Next transformation (3.20b) represents that the direction of the static part

4

of this field is chosefi as the z2 axis in the S2 frame, therefore

Hz(t) = Hl[icos & cos{ w - wy )t - Jsin( w - wb)t +ksin d cos( g)a— wb)t]

+k[(Hy - w /7 )2+ 322 ]1/2 . - (3.22)

The direction z2 is given by the angle 4§ with respect to the zl axis.

The angle & is defined by
tan § = H, /(8 - W /¥) - (3.23)

We once again rotate the frame 82 about the z2 axis at frequency wa- u)b _
by the transformation (3.20c). Then in this frame S3, the magnetic field

becomes as

H3(t) = Hl[-isinz( § /2)cos2( w - wb)t -jsinz( ) /2)sin2(>wa- wb)t
+ ksin § cos( w - wb)t] + ichosz( S /2)
iy - @ /7)Y (0w K (3.24)

4

and we again choose the direction of the static part as the z' axis by using

the transformation (3.204). The magnetic'field in the frame 54 becomes as

(1) = B [-i{sin®( & /2)cos B cos2( w - W)t - sin§sinBeos( W - W, )t}
-3 sin2( & /2)sin2( ‘wa- wb)t —k{sin2(5/2)sinﬁ cos2( W, - W)t

+sind cos 8 cos( w, - wb)t}] +k (/7). (3.25)

The static field is now

2, 126084 6 /2) Y2 . (3.26)

Q/v= [y @ /5)% 1,212 (w - wy) 24

The angle B is defined by

Hy cos2( S /2)
i 2 2.1/2 (3.27)
[(Hy - @ /7 )+ B ) - (w, -w)/¥T
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The field 1{4(t) contains only small fields of order of Hl(HZ/HO) and Hl(HZ/HO)z
at frequency W - @, and 2( w, - U.)b), if the condition Hy> H,, H, is
satisfied. We can obtain a useful approximation by neglecting the effect

of the time dependent fields, keeping only the static field Q/T .

4

1]
(b) The Bloch Equation and the Orientation Parameter M, in the Frame S
4

We investigate the evolution of a magnetization M in the frame S° by

means of a system of the phenomenologicali Bloch equation. In this frame S4,
the magnetic field can be represented approximately by a static field Q-/T
under the condition HO»HI, Hz, but the orientation parameter M(’) by means of
circularly polarized light is no longer time independent. The orientation
parameter M(')4 iri the frame S4 is obtained by accomplishing the similar

successive rotations (3.20). The components of the orientation parameter

1
M04 are then given as follows;

'4 ' 0 4 n n
Moo= M {Ax + r§1( Bcos w t + C sin w t ) (3.28a)

w4 ou a0 fj(B" W _t + Clsi t)

oy = o { vt z ,008 Wt + Cosin w , (3.28b)
'4 ' 0 4 n n_.
My, = My {A, + nZl( Bcos W t+ Cosin w ¢t ) N (3.28¢)
with

wll-waQ (D2== w w = wa_w

p W3 p Wym W o-2w,, (3.29)

where

o
[]

-cos 8 sin B8 cos & ,

]

=]
=
]

271sin 8 cos ® cosB(1+cosd ),

(-]

~sin 6 cos @ sin B sin J

WM N M

-cos 6 cos 8 sin & ,

”w
Y

27 1gin 6 cosd cos B (1 - cos s ),

Nw-b
[
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= 215in @ sin¢ cos B (1 + cos & ),

(e}

Q
LI N

= -3in @ sin¢® sin B sin § ,

= 2 18in 6 sind cos B8 (1 - cos & ),

Q
[l I

. 27 lsin @ sin$ (1 + cos & ),

-]
]

= 271sin 6 sin¢ (1 - cos d ),

‘<w4> <

=

—2"15in 0 cos P (1L + cos & ),

Q
«
L}

= cosB sind ,

Q

= 27 5in 6 cos ¢ (1 -cosd ),

«Q
O YA 9w

L
[]

cos @ cos B cos O ,

= N

27lgin 6 cos ¢ cos B (14 cosd),

Nt:d
[

-]

b
(SIS I

= sin O cos $ cos B 8in 0,
= —cos @ sinB sin 6 ,

= -2l8in@ cosP sinB (1 - cos J ),

td

MW NEAE NN N NS

= 27%in 0 sin¢ sin B8(1 + cosd' ),

(o]

Q

= 5in @ sin$ cos B sin J ,

w27 15in 0 sin ¢ sinB8 (1 - cos d ),

Q

Ay By-By cy c, = 0. (3.30)

Q

Using the eqs.(3.26) and (3.28), we obtain the Bloch equation governing
the motion of the three components of the ma.gnetizationll4 in the frame S4

as follows;

1 1
T -ng——,g- lfi-i-?lgx, (3-313)
aut

1 1
- - QM - (3.310)



A4, L -
i - Mt=T "gz' (3.31c)
Using the relation

wh oy ‘”?r . (3.32)

we obtain the following two equations which are equivalent to the three

diferential equations (3.31) in the form

a
dt* - - i.Q.Hf --%_:—Miw%( ng+ iﬂgy). (3.33a)
a vt
R A (3.33b)

Since the system of eqs.(}.}}) are linear differential equations, we can

get exact solutions

4
Mﬁ = 2-1{ 2M}0c + El( Mnxccos w t+ Mnxssinwnt )

+ i2—1{2llg + anl( M;ccos oF M'zlssin ot )} (3.34a)
4 0 4 c S_.
MZ-MZ+I§,1( M:coswnt+MIzls:mu)nt ), (3.34b)
in which
M0 - 1 AO

x 1+(Sl’t)2 x ’

1
TN AL PRI S

1
1+ (Q-wn)z’t

s{(B -l )+ (R +w )T (L +5)),

s 1 n n
M?‘g1+(Q+Cun)2'1;2{(C’C-By)\&(Q +wn)t(B2+C;)}
. L. s+ ) - (R -w)z (B -c))},

14 (Q -w )%z
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0 RT 20

YT (@ e
1 n - no_ n
- 1+(sz+wn)2t2{(‘°x*33) (R +w)T (3 +c}
+ 1 {(02+B;)+(.Q -wn)t(-32+c;)},

14 (Q -w)?T?

M;S= 1+(Ql+wn)2t2 {(32‘“0;)*(9+wn)’t(—c§+3’;)}
1+ (9 iwn)27;2 {('32“’;)‘(9 -wn)T(C§+B;)} ,

W - A,

e 1

- (B -w_1xc?),
z 1+(wn,c)2 2z n Z

e . 1 (s w TH ) . (3.35)
1+ (wW_T)
n
(¢) Absorption of the Pumping Light Beam

It is well known that the amount of the absorption of the light beam
'by atoms is related to the component‘ of the magnetization along the direction
of the light beam, and given by eq.(2.23). Since the values of the compo-
nents of the magnetization in the frame S4 was given by eqs.(3.34), Mn is

obtained by transforming back to the laboratory frame ¥ with eqs.(3.20).

Thus Mn becomes

‘-1 4 4 4 4 ..'4
M o= M ( M’;l:MOx+My M M) M) (3.36)

The magnetization Mn contains the unmodulated or D.C. component and the
components which are modulated at w_, | Wes Wyt Wy 2W,, 2( w, -
wb), etc. It should be also noticed that the beat frequencies such as

W -w,, 2( w, -wb), w, -2w,, 2wW_~-w,, etc. appear.
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Table 3.1.

Resonance functions and the resonance positions.

Resonance Function

Resonance Position

Dependency of @

' 2
0 w, y2W W cos" 8
2
Q +w, 2w , 2(wb-wa) sin“@
2
Q-w, 0 ) 2w sin@
2
Q +w, W twy ,—w§+wb sin“@
2
(@) -w w-w, ,3wW,-w sin"@
®) +(wa—wb) 2W ~wW, ., 2w +3W ., cos’p
Q "'(wa_— wb) wb ] 00829
. 2
SB +(wa-2wb) 2(wa-wb)’-2(wa-wb) s8in'6
Q «(w —2w.) 2w 0 sin’@

b . ’
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Fig. 3.12. Broadening of the Hanle curve by the linearly
oscillating rf field; (a), (b) and (c) show
tfxe calculation results for the cases ¢ = 0,
7t/4 and 7 /2 rad, respectively.
Parameters for the theoretical curves:

T = 0.01 sec, W = 1000 rad sec™ ang 6 = 7¢/2.
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The strengthsof the resonances contained in the various modulated components
are not all the same; they depend on some power series of Hl/H0 and }12/H0
and on the angle 9 .

Unmodulated component Mg in eq.(3.36) is given by substituting eqs.(3.28.),

(3.34) into eq.(3.36) and given as follows;

0 .0 0
W) - A +M2Az

0

X

bR e ) )
This expression is complicated, but it is possible to expect the resonance
positions from the expressions of the components of the magnetic moment in
eqs.(3.35). Resonances may occur when the quantities L8] ’ Q twa.’ ‘Qi wb’
Q +( w - u)b) and 2 +( w -2 wb) pass through the minimum values.

The positions of the resonances for the case Hl/Ho, HZ/HO« 1 are shown in
Table 3.1. It is known that the transverse resonances i.e., the components
which are proportional to sin29 , occur at wo =0, 2 w ., 2W,, W+ Wy,
=( w_+ wb), +2( w, - wb) etc. The trangverse resonance at Wy, = 0
represents the Hanle effect and the resonances at wo = 2 wa’ 2 wb are
just those reported in previous section 3.2. The longitudinal resonances
at wo = wa.’ wb correspond to the ordinary magnetic resonance, and at

w 0= 2 wa - wb, 2 wb - wa correspond to the multiple quantum resonance
of three photon process, and at u)o= 2w a®t 3wb corresponds to the five
photon process. These results agree well with those obtained previously

by Winter (1959). It should be noticed that the line width of the longi-
tudinal resonances depends on the intensity of Hl and is remarkably broadened
as the Hl is increased, but the width of the transverse resonances is almost
determined by only the z;ela.xation time T for small Hl. Namely, the width
of the transverse resonances is narrower than that of the longitudinal

resonances. For the case T =o0o, the transverse resonances may disappear,
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Fig. 3.13. Broadening and shift of the Hanle curve by the
rotating rf field. Parameters for the theoret-
ical curves: T = 0.0l sec, w = 1000 rad sec™t

and @ = 7T/2.
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and only the longitudinal resonances are detectable; the relaxation time

is the essential factor for the appearance of the transverse resonance.

3.3.2. Special Cases and Discussion

For the case of was-w=w a.ndH1=H=h

b 2 1
fields become an oscillating rf field. In this case the longitudinal

the two rotating rf

resonances occur at wo = (2n + 1)wW ; these nesonances correspond to the
ordinary and the multiple quantum transitions as mentioned above. On the
other hand, the transverse resonances occur at wo = 2nl . The shift of

the resonances at W; = nW can be obtained from eq.(3.35) as Wom +tw

- —1-11- (Xhl/w)z] y Wy +2w[1- —%— (¥Yh)/w )2] and W, =30
[1 - -:é—- (% hl/w )2], ete. The resonances at W = -_!-_w[l - ‘%"‘ (Uhl/

w )2] are ordinary, or fundamental resonance and the quantity of the shift
of the resonance frequency coincides with the result which has been first
derived theoretically for magnetic resonance by Bloch and Siegert (1940) and is
often refered to as the Bloch-Siegert shift.

The width of the Hanle curve due to zero field level crossing is remark-
ably broadened by the linearly oscillating rf field. Figures3.12(a)~(c)
show the results of the calculation with eq.(3.37). Figures 3.12(a)~(c)
correspond to the values ¢ = 0, 76/4 and 7/2 rad. respectively. The
cases for ¢ =0 and 7/2 rad. correspond to the cases that h1 is parallel
and perpendicular to the pumping light beam, respectively. The shift
towards the high field region of the Hanle curves for large values of hl’
which are drown with the dashed lines, may be caused by the fact that the
condition &= o, i.e.; w<E Thl, is nomore satisfied. It should be noticed
that the peaks of fhe Hanle curves for ¢ = O remain nearly the same magni-
tude as the intensity of rf field hl is increased, but for ¢ a 7¢/4 and
7C /2 rad. peaks of the Hanle curves are remarkably decreased as the

intensity of hl is increased. If we observe the Hanle curve in the case
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of ¢ = 7€/2 rad., its magnitude decreases as hl is increased and finally
will disappear.

The broadenning of the Hanle curve by the linearly oscillating rf field
has also be interpreted by the shifts of the energy levels of "dressed atom"
which has been analyzed quantum mechanically by Cohen-Tannoudji and Haroche
(1969a,b), semiclassically by Pegg et al. (1970), and classically by
Yabuzaki et al. (1972a). Their results indicate that the frequency of the
precession of the magnetization around the static field Ho, and hence g-
factor of the atom, are modified to be ngo(K hl/(u ), where & is unperturbed
value of g-factor and JO(B'hl/(o ) is the Bessel function of the zeroth
\order and the first kine, when the angular frequency W of the rf field is
much larger than uJo. But they have not consider on the variation of the
Hanle curves for the various values of Wj.

If we put the value H2 to zero in eq.(3.37), we can easily obtain the
Hanle curves for the rotating rf field as a parameter of the intensity of
Hl. As the intensity of the rotating rf field is increased, the Hanle
curve is not only broadened but also shifted as showmn in Fig.3.13. lWhen the
rotating rf field is absent, the transverse pumping creates a magnetization
only for the weak field, but the transverse pumping is able to create the
magnetization even for strong static field when the intensify of the rotating
rf field increases. The peaks of the Hanle curves decrease as the intensity
of H1 is increased.. Obaervatiqn of the Hanle curves with the rotating rf
field has been reported by Series (1970) and Haroche (1971a,b).  Series
has observed the shift of the Hanle curve due to the rotating rf field.

But his data can not endure to discuss about the broadening and the decreas-—
ing of the peak of the Hanle curve, because of the deformation of the Hanle
curve, caused by the appearance of resonances for the antirotating field

when the rf field is strong. More recently, Haroche (1971 b) has observed
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the shifts of the Hanle curve due to the rotating rf field. His results
agree well with our theory,

The broadening of the Hanle curve by the rotating rf field may also
be interpreted by considering the energy levels of "dressed atom", and may
effectively be expressed in terms of the variation of the atomic g-factor.
The g-factor of the atom in the oscillating rf field is given by the Bessel
function as mentioned above, and varies in a somewhat complicated way.
However, the effective g-factor in the rotating rf field decreases monoto-
nously to the value of zero as the intensity is increased.

The ground state of alkali atoms consists of two hyperfine levels
FuI+1l/2andF' =1~1/2, where I is nuclear spin of the atom. Since
the signs of the gyromagnetic ratio of the two hyperfine levels F and F’ are
opposite each other, the zero field level crossing or the Hanle curves in
the presence of the rotating rf field are displaced in opposite directions

for the two hyperfine levels as shown in Fig.3.14.

Elk
i;;; [ ééé 1
: P=I+ 5
1
|
|
|

2
b T gl o
H(F') = 5% B (F) = 5o
I
_——’///:\\\\‘~— ]
0 H,

Fig. 3.14. Zeeman hyperfine diagram of alkali atoms
perturbed by a rotating rf field. The
fictitious fields Hf(l) and nf(a) are of

opposite signs.
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3.4. Misalignment Effects of a Rotating RF Field

By means of a theoretical approach recently developed by Pegg and
Series (Pegg and Series 1970,1973, Pegg 1973a,b), the consequences of
misalignment of the rotating rf field in the magnetic resonance are investi-
gated. For the longitudinal pumping case, the resultant equation becomes
the same result obtained by Pegg (1973a). The effects of the transverse
pumping are also included in the Bloch equation. The effects of the
transverse pumping appeared in the resultant equation are very complicated.

The rotating rf field is regarded as a static fictitious field Hf -rH12/2w.

3.4.1. Theory
We shall allow the plane of rotation to be at an arbitrary angle to

the static field by considering the field configuration
Hachoswt( cosai+sin9k)+Hlsinu)tj+Hsk. (3.38)

When 6 = 0, the normal configuration which has been considered in section
3.2 is regained. A non-zero €6 allows for field misalignment. Equation

(3.30) can be written as

H = (H1/2)( l1+cos8 )(coswti+sinwt )
- (Hl/2)( 1-cos60 )(coswti+sinwt §) + Hysin 6 cosw t k

+HEK . (3.39)

This is the sum of a rotating, a counter-rotating, an oscillating and a
static component. Normally TH1<<w » which is just the necessary
condition for the application of the procedure of Pegg and Series (1970,
1973). This procedure involves the transformation to a reference frame
in which the oscillating component vanishes. Under this ‘tra.nsforma.tion
the rotating fields become a series of rotating components with different

amplitudes and frequencies. A further transformation can then be
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made to the frame in which any one of these components is static.

Under these transformations, the static component becomes as follows;

Hy= (8 0 ,H -(p+1)w /7)), (3.40)
where

ﬁg = (8,/2) {J_p(a.)( l1+cosf) - J_p_2(a)( 1 - cos@ ), (3.41)

a = ‘o’Hl sin @ /00 and p is an integer, positive negative or zero,
specifying the rotating component selected.

Ignorir_lg the non-static components (for zeroth-order approximtion)
reduces the problem to that of normal magnetic resonance in the usual
rotating frame, but now with H_ - (p+ 1w /r and ﬁg in place of

H - W/¥ and H, in (3.2b), giving as the total field in the new frame
~ 2 - 2 1
Hg =[{H, - (p+ )@ /3} 4 ( Hg < ] /2, (3.42)

¥While the excitation components in this frame are given as

U = M, cos B cos @ (1) + ll(')ycos psin @ () - M) sin 3 (3.43a)

W - - l(‘;xsin 0 (t) + l((')ycos o (%) , (3.43b)

W - M) sin B cos @ (t) + u(')y sin 3 sin @ (t) + M, _cos A , (3.43c)
where

@(t) =asinwt+ (p+ 1)wt, (3.44a)

B = tan™t % : (3.44p)

Hs-(p+l)w/b'

1 ot 1 :
and HOx ’ l[oy and lOz are excitation components in the laboratory frame,

vhich have been given in eqs.(2.22). Substituting eqs.(3.42) and (3.43)
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into the Bloch equation (2.13), we obtain the equations governing the motion
of three components of the magnetization in thé oscillating-rotating frame

as follows;

e - @oly- T % = Yox o (3.452)
~p
au
~p=p _1 ~p 1 3P
-—d—tx.-wollx-,cl(y+_t noy’ (3'45b)
~p
ax
~ 1
TR L L (3.45¢)
where
mg = ¥HY . (3.46)

0
Using the relation

we obtain the following two equations which are equivalent to the three

differential equations (3.45) in the forms

dif &SP %P 1 P 1 (5P ~p
aw i Wok-=TK = (Mg, + Yoy )s (3.482)
awr
2z 0 S TR S
7T - M = Y, - (3.480b)

Bquations (3.48) can be completely be solved and the steady state solutions

are given as follows;

~p l 1] .
M = - ~ M. sin 8
x 1"'(ng)2 0z

8

+ —i— R mJn(a) j_Z [Fi(n+p+1)[l[(;x{cosls fi(n+p+1) -1}
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. My Join 8 + £, (neprl)}] sin(nepel) @ ¢

+ Fy(neprl) [M(;x{ cos @ + £, (n+p+l)}

+ M(')y{ 1 - sin@ £, (n+p+1)V)cos(mpsl) o t
(-1)* F, (n-p-1) [u(')x{l + cos @ £, (n-p-1)}

+ u(')y{ fi(n-p-l) - 8ingY}] sin(n-p-1) w t

-n)* Fi(n—p-l) { M(')x {cosg8 - fi(n-p-l)

| + M(;y{l + sing fi(n-p-l)}] cos(n-p-l) w t , (3.49a)
@R .
M = M sin
y 1+ ( 58 T )2 0z A

+ = é‘i Ja(®) i-.-z+',-{t F, (n+p+1)[ My {cos B + £, (nep+1)}
+ M:)y {1 - sing £, (n+p+1)}] min(miprl) @ ¢

+ B (n+p+l) [ + My {1 - cos £, (nep+l)

: ll(')y{sinﬁ + £ (aepr1)}] cos(neprl) w ¢

+ (-1)" P (a-p-1)[M, {cosB - £, (n-p-1)}

+'u(')y{1 + sinf £, (n-p-1)}] sin(n-p-1)w &

7 (-1)* B, (n-p-1) [M(')z {1+ cosB £, (n-p-1))

t My {sinfB - £ (n-p-1)}] cos(n-p-1) w ¢, (3.49b)
W = My, cos 0
+ %’ naZ-w Jh(a) sin 83 [ G(n+p+l) {M(')x gln+p+l) + l((')y} sin(n+p+l) w t

+ G(n+p+1) {M(;x- M(')y g(n+p+1)) cos(nip+l) W ¢
+ G(n-p-1) {M(.)x g(n-p-1) - (-2)" MC')y} sin(n-p-1) w t
+ G(n-p-1) {(-1)1‘. M(;x - g(n-p-1) M(')y} cos(n-p-l)w t , (3.49¢)

with
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1

F (q) = (3.50a)

YT s (qw + oh%?

£(2) = (aw 1 BYHT | (3.500)

G(q) = L (3.50¢)
1+(qw<e )2 '

gla) =qwT , (3.504)

where the upper and the lower signs refer to i = + and -, respectively.
When the transformation is made back to the laboratory frame the components

of the magnetization are given as

MIZ’ = ( 'ﬁi cos B + ﬁlz) sin@ ) cos @ (t) - ig sin @ (t), (3.51a)
1Y uP %P L WP

My = ( u cos B + M sin@ ) sin @ (t) + My cos @ (t), (3.51b)

lllz) = - 'ﬁi sinfB + iz cos 8 . . (3.51c)

3.4.2. The Case of the Longitudinal Pumping

: ]
Let us at first consider the longitudinal pumping case, i.e., MOx =

[ ] ]
MOy' 0 and M, = M,. For this case, egqs.(3.49) become

0 0 ‘
WP - - 1 M. sin : 3.52a)
x 1+ ( &)g T )2 0 £ ¢
W - j 5 M;) sin 8 , (3.52p)
Y o1+ ( wg’c ) .
'MIZ) = M, cos s - (3.52¢)

By using eqs.(3.61), we can obtain the magnetization Mz along the pumping
light beam as

llp=' 1 ' 8in2 X, cos®
z 1+ ( &;87)2 ¥ R +¥ A (3.53)
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Substituting eq.(3.44) into eq.(3.53), MIZ) becomes as

=p 2
( THT )

P _ - '. .
Mz [1 l+(T}:_IgT)2+ {st‘(p'-fl)(U}z'Ez]Ho (3.54)

For @ = 76/2 rad. and p = -1, eq.(3.54) become
(v T )2 '
w - [1- — 20 3 ] ¥, (3.55)
1+ (¥ B T) + (YHT )
where
=P
B =J (vH/w ) @,/7 (3-?6)

Since we are restricting the problem to |‘o’ H1l<< w , i.e.,
J,(vH/w) ~ (1/2)( ¥ E/w), (3.57)

eq.(3.55) become

wP .
2

E (wipw 2 9.
) (I/T )2 + ('U'Hs)z + ( u)f/zw )2 ] L{0 ¢ (3-58)

This expression .clearly exhibits that the rotating rf field which is
rotating in the plane containing the static field [IS actsas a static
fictitious field Hf prerpendicularly to the rotating plane and its magnitude
is w12/2w .
3.4.3. The Case of the Transverse Pumping

Since the general expression of the magnetization for the transverse
pumping has a very complicated form, we consider only the D.C. component
of the magnetization for near zero field. We can obtain the following
expression for @ = 7C/2 rad. and for the pumping of x-direction, by

neglecting the higher order Bessel function Jn(a) =0, wheren=1, 2, ...,
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2 (01 1 [}
M_=J7 ( ) = ¥
x 0 w { 1+ ( @ )2 0
B = tan -1 i
H ’

8

w, - ¥ ( H +H

0

)1/2

0052/3 + M(') sin2,6},

By using eqs.(3.56) and (3.57), eq.(3.59) can be rewritten as

=3 w/w){1-

(% E, )°

(1/ )2+ (v, )P+ (w/ew)?

(3.59)

(3.60a)

(3.60b)

o
(3.61)

From egs.(3.58), (3.61) and (3.12), we can see that the rotating rf

field acts as a static fictitious field H = (lez)/zw , which is

parallel to the rotating axis.

Fig.3.15 shows the configurations of the

static field HS and the rotating rf field, and also shows the fictitious

field due to the rotating rf field.

(a)

Fig. 3.15. Fictitious field due to the rotating rf field

z 4 z
4 HS
! L.y
tu
s
u_;;;
(v) (c)

for various configurations.
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3.5. Conclusion

The effects of the transverse sptical pumping in the presence of
rotating rf fields have been taken into account for the phenomenological
Bloch equation used by Bell et al.(1957). The new type resonances which
appear in the unmodulated component and the components modulated at W and
2w  in the transmitted light beam have been predicted and verified
experimentally in section 3.2. Quantitative characters of the observed
new type resonances agree with the theoretical calculations. The new type
resonances are shifted and broadened as the intensity of the rf field
increases.

We have treated the rf field Hl as a rotating rf field in the theory
but used an oscillating (linearly) rf field in the experiments, so that
the rigorous comparison between the theory and the experimental results is

restricted within the condition that w,<w is satisfied. It should be noted

1

that eq.(3.9) givés a comprehensive descriptipn for the behavior of the
ensemble of the optically pumped atoms without the restriction, if we use
a rotating rf field instead of the oscillating rf field.

The evolution of the magnetization of the paramagnetic particles in the
presence of the two rotating rf fields with frequencies a)a and U)b has
been investigated in section 3.3. It has been shown that the longitudinal

resonances occur at aJO = u)a, Wy 2 u)a - u)b, and 2 u)b - u)a,etc.,

and the transverse resonances occur at u)o = 0, 2 u)a, 2 u)b, W, Wy
and i2( wa - wb), etc. The longitudinal resonances at wo = W, a)b

correspond to the ordinary magnetic resonance and those at Q)O = 2 a)a -

u)b, 2 a)b - uaa correspond to the multiple quantum transitionswhich are

due to three photon process. The transverse resonances at uJo =0, 2 u)a,

2 W, can be expected from our previous paper (Tsukada et al. 1972), and

those at w, = W, t wy +2( w, - u)b) etc., which correspond to the
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new type resonance for the case of the two rotating rf fields, have been
first shown by Tsukada, Yabuzaki and Ogawa (1973). We have also shown
that the transmitted light beam passed through the sample cell contains
the beat frequencies such as- W, =W, 2( w, - u)b), w, - 2w,

and 2 a)a - a)h etc. Moreover, it has been shown that the Hanle curve is
broadened not only by the oscillating rf field but also by the rotating rf
field. As the intensity of the rotating rf field is increased, the Hanle
curve shifts towards wa = w and its peak is decreased. The peak of
the Hanle curve is also remarkably decreases with the intensity of the
oscillating rf figld, if the pumping light beam is perpendicular to h.1 and
HO. '

In section 3.4, we have investigated the effects of misalignment of the
rotating rf field in the magnetic resonance by means of a theoretical
approach developed by Pegg and Series (1970). The effects of the trans-
verse pumping appeared in the resultant equations (3.49) are very complicated.
For weak static field, the rotating rf field is regarded as a static fictitious

. 2
field H, = ¥H,; /2w .
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CHAPTER 4

EFFECTS OF THE TRANSVERSE PUMPING IN THE

PRESENCE OF AN OSCILLATING RF FIELD

4.1. Introduction

In the usual magnetic resonance experiments with optically pumped
atoms, the atoms are subjected to the static magnetic field HO and the rf
field which is linearly oscillating, rather than rotating, in the plane

perpendicular to the static field H., together with the circularly

0
polarized light beam which has two roles to create the magnetization in the
ensemble of atoms along the direction of the light beam and to monitor the
variation of this componeﬁt of the magnetization. In common with these
experiments, the angular frequency of the rf field is set near the Zeeman
splitting YHy = gOlBHO of the ground state, where 8y is the atomic g-factor
and ,B is Bohrmagneton, and its amplitude is, in general, weak
enough not to saturate the Zeeman transitions.

The interest in the effects of the strong oscillating rf field on the
optically pumped atoms has been increased. In the case that the rf field
is oriented parallel to the field Ho, the parametric resonance takes place
when the integral multiple of the angular frequency of the rf field coincides
with the Zeeman splitting. Semiclassical (Aleksandrov et al. 1963, Favré
and Geneux 1964) and quantum mechanical treatments (Polonsky and Cohen-
Tannoudji 1965c) Qn the parametric resonance have been given, and demonstrat-
ing experiments have been made by observing the modulation of the fluorescence
with cadmium vapor and observing the absorption of the pumping light beam
propagating perpendicularly to the field.ﬂb with mercury vapor. We show
the theoretical analysis for the parametric resonance in Appendix B.

On the other hand, when the oscillating rf field is oriented perpen-
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dicularly to the field.ﬁo and the integral multiple of its angular frequency
coincides with the Zeeman splitting, studies have been made on the shifts

of the resonance frequency and the multiple quantum transitions between
Zeeman sublevels (Cohen-Tannoudji and Haroche 1969a,b).  Recent interest
has been given to the effects of the strong rf field, whose frequency is
nonresonant for the atomic transitions. Cohen-Tannoudji and Haroche (1969&,
b) have analyzed this case by quantizing the rf field and by introducing a
new concept that the atom is "“dressed" by the rf photons. One of the
important effects of th;f"dressed‘atom" is thét the frequency of the precession
of the magnetic moment around the field.Hb, and hence the g-factor of the
atom, is drastically modified by the rf photons, when the angular frequency
of the rf field is much higher than B‘Ho (Cohen-Tannoudji and Haroche 1969b,
Haroche and Cohen-Tannoudji 1970).

Recently, Pegg and Series (1970) have considéred semiclassically the
case that the sfa.tic magnetic field Iio has weak component H; perpendicular
to the oscillating rf field Hl(t) = H;cos W t, and the component H, parallel
to Iil whose magnitude is equal to nw /¥ , where n = 0, -_n;l, +2y **.

The theoretical results have been cheked partly by Chapman (1970) by
observing themodulation in the fluoreécence of dercury vapor.

In the case that_the pumping light beam and the oscillating rf field
Hl with an angular frequency  are perpendicular to the static field HO’
the effects of the transverse pumping have been analyzed by using the density
matrix and iteration method (Cohen-Tannoudji and Haroche 1967) and by use
of quantum mechanics (Cohen-Tannoudji and Haroche 1969a).  Cohen-Tannoudji
and Haroche (1965,1967) have observed the new type of resonances in the
modulation of the transmitted light beam propagated through the mercury
vapor and the resonances have been named "Haroche's resonance" by Cohen-

Tannoudji (1968). They concluded that these resonances appear in
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the various even harmonics 2pw , where p is an integer, of the transmitted
light beam when Ho = 2nW /T , where n is an integer, for wgak rf field and
shifted but not broadened as the intensity of the rf field is increased.
They have also mentioned that their experimental results for the components
modulated at 2w and 4w show the saturation effect in the resonance
intensity for large intensity of the rf field. We show that the Haroche
resonance is sitrongly power broadened and is seen to move towards low field
region more rapidly than their perturbation results. Saturation effects in
their experiments appear to be consistent with our theoretical results,

but their presented data (Cohen-~Tannoudji and Haroche 1965) are not so many
enough to allow a detail comparison. Indeed, we have already shown in
section3.2 that the Haroche like resonances for the rotating rf field are
not only shifted but also broadened as the intensity of the rf field is
increased.

In section 4.2, we generalize the case treated by Pegg and Series (1970)
and Cohen-Tannoudji and Haroche (1966) to the situation that the static
magnetic field.!:!.0 is oriented in an arbitrary direction with respect to the
oscillating field.Hl. In that case the circularly polarized light beam ié
applied along the direction of Hl. We analyze the behavior of the optically
pumped atoms in these static and oscillating magnetic field, in terms of the
macroscopic magnetization. In the classical theory, we can easily introduce
the effects of the relaxation process and of the pumping light beam, and
can ébtain the shapes of the line of the Hanle curve and the parametric
resonances, which take place respectively H, =0 and H/, =nw /¥ , where
n is an integer, when the magnetic field H, is weak, We show that the
angular frequency of the Larmor precession of the magnetization around the
field H, is drastically modified by the rf field when the Hanle effect or

the parametric resonance occurs. This fact can be also obtained by the
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quantum mechanical treatment (Yabuzaki et al. 1972a).

In order to verify the theory, we carry out the experiments with respect
to the ground state of cesium atoms, in which we observed the secular change
of the transmitted light intensity. In addition, the effects of the'non—
resonant oscillating rf field on optically pumped alkali vapor magnetometer
are investigated.

In section 4.3, we investigate the behaviors of the magnetization under-
going the influences of both the transverse and the longitudinal pumping.

We study, by use of the theoretical approach recently developed by Pegg (1973a,
b), the case that the misaligned oscillating rf field can be regarded as a
perturbation on the static field. It is shown for this case that two types
of resonances, i.e., the longitudinal and the transverse resonances, appear
gsimultaneously at integral multiples of the oscillating rf field frequency.

Some experimental results are also shown.

4.2. Modification of the Atomic g-factor by the Oscillating RF Field

In this section, we deal vith the interaction between atoms in the ground
state and a relatively strong rf field. Behavior of the optically pumped
atoms in the oscillating rf field is analyzed classically in terms of the
macroscopic magnetization, in the case that the static magnetic field has
components both parallel and perpendicular to the rf field. The theory
predicts that the g-factor is modified by the rf field when the Hanle effect
and the parametric resonance take place, and that the effect makes its
appearance in the variation of width and maxima of lines of the Hanle effect
and the parametric resonance. The modification of the g—factor is also
derived by the quantum mechanical treatment. The theoretical predictions are

quantitatively verified by the experiments with cesium vapor.
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4.2.1. Theory
(a) Phenomenological Description of Spin System
The directions of the magnetic fields and of the pumping light beam are

shown in Fig.4.1.

H,

“Hgos wt PUMPING
LIGHT BEAM

Fig. 4.1. Illustration of the situation to be considered.

From eq.(2.13), we obtain the equations governing the motion of three

components of M as follows;

d Mx 1 1 '
el —'E-Mx + = MO - O.)J_My, (4.13.)
d M 1

_xdt = - —’c— My - ( Q)” + Q).ICOS w t)MZ + w-LMx ) (4‘lb)
d Mz 1
TN, (0, wjcosw M, (4.1c)

where
w,= &RY, s @ = gpH . W) = gpH;. (4.2)

It is well known that the amount of the absorption of the eircularly
polarized light beam by atoms is related to the component of the magne-
tization along the direction of the light beam. Then in this case the

signal to be observed is determined by the x-component of M, i.e., Mx’

80 that we have to solve egs.(4.1) for M . 1t is usual in analysis to
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transform the variables Mx, My and llz to the component of M along the static
magnetic field, i.e. Hoin this case, and two components rotating around the
static magnetic field. This transformation has actually been used by
Novikov et al.(1968). However, in order to get approximate solution, the
restriction that wlsin 6 /wK 1 is required in this transformation.

In our treatment of the oscillating rf field it is very helpful to refer
the motion of the magnetization, not to the fixed coordinate system of
the laboratory but to a coordinate system that rotates about Ho with the
modulated angular frequency (wl/ w )sinw t, in which the oscillating rf
field is reduced to zero (Pegg and Series 1970). In this frame, however,
the static magnetic field HO in the laboratory frame is no longer time-
independent. The field in the frequency modulated rotating frame is the

sum of the various harmonics of @ of rotating rf field and become as

follows;

(e =]
He=-H ng—oan( wl/w ) {Jz,cosnwt+ Jy,sin nwty . (4.3)

Considering the motion of the magnetization in the rotating frame, we think
of that the geometrical configuration of ﬁe magnetic fields and the
pumping light beam is the case of the ordinary magnetic resonance with many
rotating rf fields. When [¥H) /wl < 1 and w>»[? are satisfied, it is a
good approximation to consider that only one of the rotating rf fields with
the angular frequency nw , affects the motion of the magnetization near
‘(H”= nw . Therefore, the variation of the transmitted light intensity

is given as follows;

oo 1+(w,,+nw)27:2

M -
¥ neme 14+ (W, +nw + Awn)2T2+{wJ_Jn(w1/w)"-'}2
(4.4)

where we have included the term Awn, yet to be determined, to allow for
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possible resonance shifts due to higher order effects of the neglected
rotating components.

Since we are restricting the problem to IIHLI« w, it is sufficient to
consider only those effects derivable by second order perturbation theory
applied, for example, after incorporating the rotating components in a
Floquet matrix (Shirley 1965). Elementary shifts due to each component
will therefore be added. Each rotating fields component gives rise to

2 .
a Bloch-Siegert type shift {leJm( u)l/cu )}}/2mw . The total shift

is thus
2
(KH_L) phaid w
2 1 1
A(‘Un=2w =Z_"°°Jm( w )n-m : (4.5)
min

This expression is the same one as that obtained by Allegriniand Arimond
(1971) and by Pegg (1972a).

When the variables @,, ® and W, are fixed, eq.(4.4) shows that
Mx as a function of w,, is expressed by the superposition of the Lorentzian
functions, the center of which is given by ‘*’// = -n W .v When the value

of w satisfies the condition
w?s w4+ (1/7)? (4.6)

each Lorentzian function is well resolved. Hereafter we consider the case
that @ satisfies the above condition.

First we will consider the particular case that W, = 0, i.e. the off-
resonant rf field Hl(t) whose angular frequency w satisfies the condition
(4.6) is applied perpendicularly to the static magnetic field H_L . In this
case the secular component ( or D.C. component ) of the magnetization along

the direction of Hl becomes from eq.(4.4), neglecting the term Awn in eq.
(4.4), as follows;
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o (/T )2 '
Mx = 2 2 MO . (4'7)
{0 d,( w/w)¥?+ (2/7T) ~

In the absence of Hl, eq.{4.7) gives rise to the usual Hanle effect
which can be obtained by sweeping H, around the value of zero. We can see
from eq.(4.7) that the broadening of the Hanle curve due to the field H,
is drastically modified by the rf field Hl, which leads to the concept that
the angular frequency of the Larmor precession around H; is modified by Hl.
In general it may be expected that the medium in'the relatively strong rf
field is no more isotropic, and hence the g-factor perpendiéular to the field

Hl, i.e. 8, is modified as follows;
g, = & Jol Wy/w ). (4-8)

Equation (4.8) is exactly the same as the result cbtained by Cohen-Tannoudji
and Haroche (1966) who have analized by quantizing the rf field, and by
Pegg and Series (1970). However, in their analysis, the disorientation
process due to the thermal relaxation and the pumping light beam was neglected
so that the condition to obtain the eq.(4.8) was that w>w,; instead of the
inequality (4.6).

On th; other hand, by varing w, in the vicinity of —w, -2w , **-,
eq.{4.4) gives rise to the effects of the parametric resonances. The

minimum of Mz for the n-th resonance are given by

(1/ T )2 -
= M., .
X,mn wLJn( wl/w ) 2 + (1/,t )2 0 (4 9)
and its half width d‘”n is given by
8,,“ -(1yT)? +{w, 3 (w /w ) (4.10)

Generally the parametric resonance is characterized by the absence of
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the broadening due to the rf field, but in our case the width of the n-th
resonance depends on the amplitude of Hl. This is due to the existence-of
the weak magnetic field Hl perpendicular to the field Hl. Then in the
extreme case that uﬁ§[z?lJn( qu/cu ), eq.(4.9) gives the pure effect of the
parametric resonance.

Consequently, when W), is in the region where lu)”+ nwl« 1/t + w; ,
we are agéin led to the new concept that the angular frequency of the prece-

ssion around the field Hl is modified, i.e. 8, becomes
= w. /w ), .11
g, = & I W /W) (4.12)

It should be noted that‘an essential difference existsbetween the
modificationSof g, represented by eqs.(4.8) and (4.11). in each other. Namely
in eq. (4.8) the angular frequency w is nonresonant,but in eq.(4.11) the inte-
gral multiple of & is resonant to the static field HO, approximately to 5,

When we set @, to the center of the n-th resonance, and sweep w, ,
we can get the Lorentzian curve which is analogous to the Hanle curve repre-

sented by eq.(4.7). The half width for the n-th resonance is given by

8= {To(w/w)}t (4.12)

(b) Quantum Mechanical Treatment of the Modification of g-Factor

Modification of the value of 8, due to the rf field, which is represented
by eq.(4.11), can be also obtained by the quantum mechanical treatment, in
which the rf field is quantized. Here we analyze along the line of the theory
by Cohen-Tannoudji and Haroche (1969b), who have treated the case H” = 0.
We neglect the thermal relaxation process and assume that the total electronic
angular momentum J in the ground state of an atom is 1/2 and then the ground
state consists of the two Zeeman substates |+> and |=> . If the effect of

the pumping light is neglected, the total Hamiltonian of the system can be
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written as
= WI + W + W afa+ AT (a+ at ), (4.13)

where Jx and J 2 are the components of the angular momentum of an atom
along the x and z axes respectively, and at and a are the creation and

annihilation operators of the rf photon w . The first and second terms on

(o]

the right hand of eq.(4.13) represent the magnetic dipole coupling with stati
magnetic fields H; and H,,,respectively. The first term has eigenstates 1+)z
and I->z with eigenvalues + 1/2 W, , and the second term has eigenstates |+>x
and |-) with eigenvalues + 1/2w,. The third term is the Hamiltonian of
the rf field only, the eigenstate being represented by |n) , where n is the
number of the rf photons. The last term represents the interaction between
the atoms and rf photons, A being the coupling coefficient which is given
by Cohen-Tannoudji and Haroche (1969a) as
!

A= , ' (4.14)
2V ¥

where N is the average number of the rf photons.
In eq.(4.13), the second term is considered to be a small perturbation,
thus we adopt the perturbation theory. Bquation (4.13) can then be written

as follows;

H o= Ko+ Wy (4.15)

where

#, w”Jx+wa.+a+7\Jx( a+a ). (4.16)

The eigenstates and eigenvalues of # 0 have already been obtained (Polonsky ‘

et al. 1965) and given by
Ry 1,li> = (Wu/z+nw = Aaw ) 12,05 . (4.172)
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H 125> = (- Wa/2+n'w - X/gw) [ 5, (4-171)

with

|5+>4=D(; XN/w)In), (4.18)

where D(+ X\ /w ) is the displacement operator (Glauber 1963).

Equations (4.17) indicate that the eigenstates |+)x|ﬁ+) and |-, [n_>
have the same energy, when the condition (n - n')w = W, is satisfied.
This is the condition for which the parametric resonance takes place. This
degeneracy is removed by the perturbation w_LJZ.
The effects of the perturbation of w, J’z can be obtainad by finding

the matrix element in the base of [+ [r_1+) s l.e. eigenstates of “0'

The matrix element is
KHIIWI 10> = w < jn)y K+ 0->, - (4.19)

— -t
For the large value of n, the matrix element (n+| n_) is given by
Jn—-n'( wl/ W ). The matrix <& 1=, can be diagonalized by a rotation
of the coordinate system of 7C/2 about Oy, then we have new energies
+ (1/2) w-l-Jn-n'( wl/w ). Consequently, if we measure the g-factor in
the direction of the z axis, g, is predicted to modified as represented by

eq.(4.12).

4.4.2. Experiments and Discussion

In the experiment, the situation is slightly different from that dis-
cussed in the theory; the atoms are subjected to the rf field h (t) rotating
in the Y-Z plane with the amplitude h and the angular frequency §2 , in
addition to the static magnetic field lis and the oscillating rf field l{l(t)
which are oriented in the X axis, as shown in Fig.4.2(a). Thus in the

present case , the coordinate system rotating about X axis synchronously to
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{a) He- /6,8 {
leSwt 1 I }.{'
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- dbUGHT BEAM ﬂ; LIGHT BEAM

Fig. 4.2. Directions of magnetic fields and pumping light
beam in the laboratory coordinate system {(a)
and in the coordinate system rotating synchro-

nously to the rf field h(t)(b).
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the field h(t) becomes important. As shown in Fig.4.2(b), in the rotating
coordinate system, the stafic magnetic field is the effective field.Hb, and
its components parallel and perpendicular to the direction ofiﬂi(t) can be
varied independently. Thus the rotating coordinate system is equivalent

to the situation discussed in the theory by considering that
E =H, H, -H - Q/gy8 +H =h. (4.20)

Since the direction of observation, i.e. the Qirection of the pumping light
beam, is kept unchanged by the rotation of coordinate system, it results that
the change in M;(O) to be observed in the present experiment gives the change
in M?:(O) derived in the theory.

The optical system consists of an electrodeless rf cesium lamp, a
circular polarizer, an absorption cell containing cesium vapor, and a solar
cell.

Resonance radiation from the cesium lamp propagating in the X direction
was passed through a circular polarizer, and was focussed by a quartz lens
onto an absorption cell which was situated at the center of the Helmholtz
coils to produce the static magnetic field.ﬁs. The magnitude of the field
Hs was about 0.5 gauss. The sylindrical absorption cell with coated walls
has diameter of § cm and length of 5 cm, and contained the saturated cesium
vapor at the temperature of about 30°C. The rf fields h(t) aﬁd Hl(t) were
provided by the »f coils of 10 cm in diameter wound around the absorption cell.
The light beam transmitted through the absorption cell was focussed onto the
solar cell in order to detect the secular or D.C. change in the X component
of the magnetization M. In the following experimemt, we set the frequencies
R /2 and w/27  to 175 KHz and 3 KHz, respectively.

In order to demonstrate the Hanle effect and the parametric resonance

in the rotating coordinate, the magnetic fieldHs was swept through the
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resonance of about 0.5 gauss and the output of the solar cell was anplified
by a D.C. amplifier and displayed on the X-Y recordér, as a function of Hs'
The typical recorder traces in the case that the amplitude h is set about
0.2 milligauss are shown in Fig.4.3, where the amplitude Hl is varied as a
parameter.

It is noted that these recorder traces give the variation of the quantity

A M; = Mé(l - Mz), which is represented in eq.(4.4), due to the field
amplitude h. In Fig.4.3, we can see that two resonance lines appear when
H_ is swept mear (Q+nw )/goﬁ , where n is zero or an integer. The
appearance of the two resonance lines is due to the fact that the rf field
h(t) is not circularly polarized but elliptically polarized, so that the
resonances of two hyperfine levels, F = 4 and 3, in the ground state of the
cesium atom are induced. In the following discussion, we will give a
particular attention to the larger line which is due tb the resonance of the
F = 4. In Fig.4.3, we can see that the width of each resonance line is a;—
most independent of the amplitude Hl' This feature can easily be explained
by the theory, by assuming w,<1/T in eq.(4.10). This assumption is
valid in this case, since U{L/27t is about 70 Hz and the value of 1/27ZT
estimated from the width of the resonance line is about 120 Hz.

From eq.(4.10), it is expected that the width of each resonance line is
broadened by the rf field Hl(t) for the large value of w, . This can be
seen in Fig.4.4, which shows the recordef traces in the case h5=3.4 milli-
gauss, i.e. w_Le.'lO/"C‘ .

The variation of the maximum of the n-th resonance line due to the
amplitude Hl was automatically obtained by setting the value of Hs to the
center of ‘the n-th resonance, i.e. (2 + nw )/ gy and sweeping the ampli-
tude Hl from the value of zero. The line appearing at Hs = /gop is
not due to the resonance, but to the Hanle effect in the rotating coordinate

and we will call it zeroth resonance.
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Fig. 4.3. Recorder traces showing the Hanle effect and
parametric resonances in the case h~0.2 milli-
gauss. The static magnetic field Hs is swept

near 0.5 gauss and the amplitude H, of the rf

1
field Hl(t) is varied as a parameter. A num-
ber written in each trace gives the value of

ng Hl = number x 1.9 milligauss.
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Fig. 4.4. Recorder traces showing the Hanle effect and parametric
resonances in the case h =~ 2.4 milligauss. A number
written in each trace gives the value of Hl;

Hl = number x 1.9 milligauss.
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Typical results for zeroth, first and second resonances are shown in
Fig.4.5. Although the drifts of the base lines exist in these recorder
traces, we can confirm that these experimental results agree with the
theory given by eq.(4.9).

Recent demonstrating experiment (Cohen-Tannoudji and Haroche 1969b)
on the modification of the g-factor due to the nonresonant rf field has
been carried out by measuring the width of the Hanle curve, which is deter-
mined by the quantity g GH,T as shown in eq.(4.7). In order to obtain
experimentally the similar Hanle curve in the rotating coordinate, based on
the relations (4.20), we set H_ to the zeroth resonance, i.e. to 2 /gof3 )
and varied the value of h near zero. The variation of the maximum of the
zeroth resonance is shown in Fig.4.6(a), where the amplitude Hl is varied
as a parameter. The vertical axis in this figure is drawn downward, since
the increase of the maximum of the zeroth resonance corresponds to the de-
.crease of Mﬁ(o). Figure 4.6(a) shows apparently the variation of the width
of the Hanle curve due to Hl and this variation is the same.as that of &fo)
dug to ‘091 in eq.(4.12). As the result,.we can confirm experimentally
that the value of 8, is modified as seen in eq.(4.8).

The similar experiments were carried out by setting Hs to the first and
second resonances.  The results are shown in Fig.4.6(b) and (c). We see
that the shape of the curves in Fig.4.6(b) and (c) are quite analogous to
that of the Hanle curves shown in Fig.4.6(a), and the widths also vary
considerably with the field amplitude Hl' The variation of the widths of
the curves in Fig.4.6(b) and (c) due to H, shows a good agreement with that
of 5;‘1) and EL52) due to @, in eq.(4.12), and then it can be said
that the value of g, becomes ngl( u)l/co ) and ng2( 0)1/60 ) when w,= W

and W, = 2w , respectively. In this way the varidity of eq.(4.11) can

be proved experimentally.
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AMPLITUDE H;(milligauss)
Fig. 4.5. Level crossing experiment as a function of Hl.
Recorder traces showing the variation of the maxima
of the zeroth resonance (a), the first resonance (b),
and the second resonance (c¢) due to the amplitude H).

The amplitude h is about 1 milligauss, i,e. W, /27 =

350 Hz.
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MAXIMUM OF ZEROTH RESONANCE

Fig. 4.6. (a). Variation of the maximum of the zeroth resonance
due to the amplitude h with a parameter of the

amplitude H A number written by each curve

1°
gives the value of H1 in the unit of 1.9 milligauss.

AMPLITUDE  hy {milligouss}
0 as 10 LS 20

18

~~~~~

MAXIMUM OF FIRST RESONANCE

Fig. 4.6. (b). Same as for Fig.4.6(a), but for the maximum

of the first resonance.
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AMPLITUDE h, (milligauss)
0 05 ﬁ L5 20

MAXIMUM OF SECOND RESONANCE

Fig. 4.6. (c). Same as for Fig.4.6(a), but for the maximum

of the second resonance.

mw
\ {d)
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E, (c)
2% s
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58
== (b)
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-MLANATANNS

0 50 100 150

AMPLITUDE  H, (milliqouss)

Fig. 4.7. Level crossing curves as a function of Hl for various
values of h. Recorder traces showing the variation
of the maximum of the zeroth resonance due to the

amplitude H The amplitude h is varied as a param-—

l.
eter; (a), (b), (c) and (d) are the cases that h = 0.7
milligauss, 2.0 milligauss, 6.2 milligauss and 18.2

milligauss, respectively.
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The theory shows that the modification of g occurs when the condition
(4.6) is satisfied. Then it might be worthwhile to consider the condition
(4.6) from the experimental point of view. Figure 4.7 shows the recorder
traces representing the maximum of the zeroth resonance as a function of the
amplitude Hl’ while the amplitude h, i.e. H, , is varied as a parameter.

In Fig.4.7, (a),(b), (c) and (d) are the cases Wy/27 =240 Hz, 720 Hz,
2160 Hz and 6480 Hz, respectively. Since the values of W /270 and 1/27WT
are respectively 3 KHz and 120 Hz in these cases, it can be said that (a) is

the case that the condition (4.6) is satisfied and the case (d) is entirely

out of the condition. In this figure, we can see that the maximum of the
zeroth resonance in the case (a) is exactly expressed by the quantity A M;.
For the larger values of W, , the maximum does not fall to zero even when
the value of JO( a)l/cu ) becomes zero, as seen in Fig.4.4(c) and (d), and
then it can be no more expressed by A‘M:. This fact may be understood by
considering the effects of the other resonance lines expressed by A Mz
with n & O. Since these lines are broadened by the field Hl as seen in
Fig.4.4, the effects of the slopes of these lines on the zeroth resonance
increase with the value of w, . As the results, the maximum of the zeroth
resonance becomes independent of the amplitude Hl for the large.values of Wy .
This fa t may imply that the value of gl cannot be expressed by eq.(4.11),

but is expected to be 8, for large value of w, .

4.2.3. Frequency Shift due to the Nonresonant RF Field

We deal with the shift of the output frequenéy of the optically pumped
alkali vapor magnetometer due to the nonresonant rf field, whose direction
is arbitrary with respect to the static magnetic field to be measured.
It has been known that the magnetometer does not respond to the rf field with
the f?equency much higher than the inverse of the relaxation time of the

alkali vapor, and hence the influence of such rf field has not been considered
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yet. Recently, La_ndre': et al. (1970) have shown that the atomic g-factor is
severely modified by the strong rf field when the angular frequency of this
field is much higher than the Zeeman splitting of the atom. However, when
we study the shift of the optically pumped alkali vapor magnetometer quantita-
tively, their results cannot directly be applied to our case, .since they have
treated the special case that the oscillating nonresonant rf field is oriented
perpendicular to the static magnetic field.

In previous section, we analyzed the behavior of the optically pumped
atoms in the nonresonant rf field in terms of the macroscopic magnetization.
When the oscillating nonresonant rf field Hl(t) with the angular frequency w
and a circularly polarized pumping light beam are oriented in the same axis
(X axis) and the static magnetic field Ho is oriented in an arbitrary directionm,

the secular component of the magnetization along the X axis can be written as

( guBEL)? + (1/7)?

¥,(0) - 2 2 2
goﬁﬂ_LJo( roﬁl/w ) + ( gopH// ) + (1/7: )

M, . (4.21)

if the condition w2 ( gy@Hy)° + (1/T ) is satisfied. In eq.(4.21),

'
M. is the equilibrium magnetization when the fields Ho and Hl are absent,

0

& p the gyromagnetic ratio of the ground state of the atom, T the relax-
ation time including the optical pumping time, Hl the amplitude of the field
Hl(t). Comparing eq.(4.21) and l(x(O) in the case that H, = 0, we can

expect

&g V(& poin 6)% + (g,p008 0)° (4.22)
where

g

=8 & =gl Wy /w ), 6=t (E,/H). (4.23)

From egs.(4.22) and (4.23), it can be said that the medium irradiated by the

strong nonresonant rf field is nomore isotropic, and the gyromagnetic ratio
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1
Fig. 4.8. The output frequency of the magnetometer as a function of the

amplitude Hl of the nonresonant rf field. The frequency

W /27 of the field Hl is varied as a parameter. The solid
lines are the theoretical curves calculated from eq.{(4.26), and
two circles indicate the values which are used to determine

the absolute values of Hl'
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becomes a tensorial quantity. The output frequency of the magnetometer is
given by the quantity geF3HO/27L, since it gives rise to the Zeeman splitting
of the atom in the nonresonant rf field. When gopﬂl« w , the shift Au)o

of the output frequency is given by

Awy/ Wy - ( gypHEsin 6 /2w )2. (4.24)

In order to verify the theoretical prediction, we carried out the
experiment with a self-oscillating magnetometer with cesium vapor. The static
magnetic fieldHo was fixed to about 0.06 gauss and 8 was chosen about 450.
The output frequency of the magnetometer as a function of the amplitude Hl is
shown in Fig.4.8, where the frequency W/27 of the field Hl(t) is varied as
a parameter. In this figure, we can see that the shift obtained agrees
approximately with eq.(4_.24). vThe discrepancy between the theory and the
experimental results for the large value 61‘ El is due to the direct coupling
between the field Hl(t) and the photodetector circuit in the magnetometer.

In general, we can easily obtain the anisotropy of the atomiec g-factor

for the case that w,=n w . At W, =nw , the gyromagnetic ratio gl;

gg = &, \/cos26 + an( wl/w )sin26 , (4.25)

here we assumed that the additional small magnetic field makes an angle @8

with respect to the oscillating rf field and W, .

4.3. Mixture of the Longitudinal Resonance and the Transverse Resonance

By means of a theoretical approach recently developed by Pegg and Series

(1970), the consequences of misalignment of an oscillating rf field in optical-rf

double resonances are investigated. Effects of both the longitudinal pumping

and the transverse pumping are considered. We show that the ordinary or
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multiple quantum resonanees and the transverse resonances appear at integral
multiples of the oscillating rf field frequency simultaneously. It is also
shown that there is no essential difference between the parametric resonance
and the Haroche resonance, namely the transverse resonance becomes the

parametric resonance for misalignment angle @ = 90° and becomes the Haroche

o
resonance for = 0.

4.3.1. Theory
We study the behavior of the magnetization M of spin 1/2 atom in the

field
H =Hcosg coswti+(Hlsin9 coswt+H0)k, (4.26)

by use of Bloch equation taking into account the effects of both the longi-
tudinal pumping and the transverse pumping. Equation (4.26) can be rewritten
as

H = (1/2) Hicos @ (coswti+sinwt j)+ (coswti+sinwt §)

+ ( Hysin 6 cosw t + Hy ) k. (4.27)

This is the sum of a rotating, a counter-rotating, an oscillating and a static
component. We consider the case of Ib‘chos 0l < w , which is the necessary
condition for the application of the procedure of Pegg and Series (1970,1973)
This procedure involves the transformation to a reference frame in which the
oscillating component vanishes. The magnétic field in the reference frame,
which rotates with angular frequency asin wt +(p +'1) w t about z axisg,
where p is any integer, positive, negative or zero, specifying the rotating

component selected, and a=2 wlsine /w , becomes

E- {W/7 <(p+1)0 /%) k

+ w,cos @ /28{ i cos(~asinwt - pw t) + § sin(~asinw t - pw t)}

+ W.cos6 /2%{ i cos[-a sinw t - (p + 2)w 1]
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+ Jsin[-asinwt - (p+ 2)w 11}, (4.28)

where wl =% Hl and Wy = THO. The last two terms can be Fourier

analyzed in terms of Bessel functions as

o= 7 (w,/2) {J(a) + I _,(a)} cos @

% {cos{-p - m) Wt &+ sin(-p - mw t §}, (4.29)
and the static component is
BIE)O) - ,‘ﬁgo) = ( wl/z) { J_p(a) + J_p_2(a)} cos § . (4.30)

Ignoring the non-static component, the Bloch equation in this frame is

given as follows;

—X AT S B SR

1T =xmy- = M o+ = B , (4.31a)
a M

—Y __§ - g .1 5

it "W - My (4.31v)
aM

2, 1l - 1 =

7w "~ Mo (4.31¢)

where
2 1/2
— (0
x=[{w0-(p+1)w}2+ wg)] ’ (4.32)

ﬁ0x, ﬁOy and ]Tdoz are the orientation parameters in the reference frame:

My, = MycosB cos{asinwt+ (p+1)w t}

+ Moycosﬁ sinfasinwt+ (p+1)w t}

- My sin B , (4.33a)
ﬁoy = - My sin{a sinwt + (p+1)w t}
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+M0ycos{a sinwt+ (p+1l)wt}, (4.33b)

MOZ=Moxsinpcos{a sinwt+ (P+1)wt}
+M0ysinp sin{fasinwt+ (p+1)wt}

+ My cos B (4.33¢)

with

—(0)
-1 W™

g = tan (4.34)

Wo-(p+1)w
Using the relation
o= +i¥ (4.35)

we obtain the equation which is equivalent to the diffrential equations

‘. (4.31a) and (4.311),
a i_+ { X M L% o+ (H i W
T = -1 e N~ Ox+lM0y)' (4.36)

The equations (4.31lc) and (4.36) are linear differential equations, and

they admit exact solutions

t
_ £ 1 -
Beon(- ) ] g, a3 v, (4.570)
- t - -
M+.exp(-ix-—,zl-__—)tL° —l,z:—(MOx+iny)
exp( 1 X + == )t dt. (4.37b)

Using the well-known relatjons

) o0
sin(asinwt+pwt) = Z Jn(a) sin(n+p)lw t, (4.38a)
n=-co
and
. o0
cos( asinwt+pwt)a= 3 Jn(a) cos( n+plwt, (4.38b)
n=—co

- 109 -



the solutions of the equations (4.37a) and (4.37b) can be obtained and the
final expressions of L-{x, ﬁy and ﬂz becomes as follows;
cos3 +1

{u
1+(mw+X)2'C2 0x

- 1 B
M= m=z—'m Jxn—p-l(a')[

cos B -1
x)z’tz {MOx*MOy(_mw +X)’l:}] cos mw t

- Moy(mw + X)}

1+ (nw -
oo cosfB +1
1
v 2 @] {M,. + U, _(nw +X)T}
2 oo mp-l 1+ (mw +X)2’C2 Oy Ox
cos8 -1

+ + My, (nw - X)’C}] sin mw t

{¥
1+ (nw —)()2712 Oy

1

- M_ sinf (4.392)
1 + ( X’C )2 0z p 4
_ 1 = cosB +1 p
¥ =~ J (a) [- M, +M (nw +X)
y .2 ;oo m-p-1 1+ (mw + X)z't 2 ¥ 0y 0x

cosf -1 ( ( ye} ' .
+ M, +M (mnw -X)T ] cos mW
T 14 (mw —X)2'C 2 Oy. ox™. '
1 i () cosf +1 { ( ' Yt
—_ J M. -M (nw +X)T
+ 2 Me—00 m—p—l a [ 1+ (mw + x)2 T 2 Ox Oy
cosfB -1 { ( 3
- M -M (nw-X ]sin nwt
1+ (nw -X)2752 Ox Oy
1 n )
sinf8 , , (4.391)
14+ (xT)? Yoz -
oo sin 8
i = J (a) (M, -mwTM, )} cosnw t
2 m=§00 m..p_l { 14 (mw't )2 Ox MOy }
0o sinﬁ
+ J (a) (M, +nwWTM. )] sinmw t
m;oo m-p-1 f1 + (mwT )2 Oy 0x }
+ My, cos B . , (4.39c)

It is well known that the variation of the absorption of the light beam

by atoms is proportional to the component of the magnetic moment along the
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light beamn, Mn' In general, Mn is given as

S = = - -1
M = ( M, My o+ My Moy + ¥ WM, ) M, , : (4.40)
with
2 2 2 2 = 2 = 2 = 2
My o= M+ Moy + My, = My T+ uoy + My ° . (4.41)

Substituting equations (4.33) and equations (4.39) into equation (4.40), the
magnetic moment along the light beam in the laboratory frame, l[n, can be
obtained, but we are interested in only the unmodulated component MII:(O) in

M . After some tedious treatments, we obtain M:(O) in the form

{ (cos@ +1)2

1 & 2
MP(0) = —— J (a)
n 4 Zoo_ m-p-1 1+(mw +X)2T2

M-
(cosB -1 )2 . 2 sin2ﬁ }' MOxz + “0y2
1+ (nw-x)27T?2 1+ (nwtT)? M,
2 (x T)%stin i
e Bommp | oy
P 1+ (xt )? M,
w 2
+{ 1 sin2/3 + coszﬁ } R— (4.42)
Uis(xz)? Y

It contains two types of resonance functions. One of them is the function
mw + X contained in the denominators of the first term in the right side
and the other is the function X contained in the denominators of the second
and the third terms.. If we set MOx = MOy = 0 and MOz = My, i.e., for the
longitudinal pumping, equation (4.42) becomes

Mg(o) ={—]ﬁc—)-2— sinzﬂ + coszﬂ } “ M, . (4.43)

This can be rewritten by using equations (4.32) and (4.34) as
1+ {wy - (p+ 1w} T2
0

1+ (0O )2, 0 -5+ w2z 2 0

M3(0) = (4.44)
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This equation expresses that the resonances occur at wo =(p+1)w.
These resonances correspond to the ordinary or the multiple quantum resonances,
caused by the misalignment of the oscillating rf field. Usual multiple

quantum resonances induced by an oscillating rf field, perpendicularly to

the static magnetic field, occur only at W (2p+1 )W . On the

0

2 2 -
other hand, if we set MOz = 0 and MOx + MOy = Mo, it.e., for the transverse

pumping, equation (4.42) becomes

- (4::05/3+1)2
1 2
-Mﬁ(o) =7 m=z."°° Jm-p—l(a){ 1+ (mw +x)2T?
2 . 2
. (cosp -1) X 2 sin“fB }-M (4.45)
1+ (nw -x)?T?2 1+ (nwz)? 0

This expresses that the resonances occur at nw + X =0, i.e., wo =
{m + (p + l)} W =nw , where m and n are any integer, positive negative

or zero. We call this type of resonances "transverse".

4.3.2. Discussion

As we can see from the resultant equation (4.42), under the influense
of the effects of both the longitudinal pumping and the transverse pumping,
the main effect of misalignmeht of the oscillating rf field is appearance
of the different two types of the magnetic resonances at Wa =eeees, 2w
- w, 0, w, 2wW , «-****, simultaneously. One of them belongs to the
longitudinal resonance, which includes ordinary resonance and the multiple
quantum resonance, and the other is the transverse resonance, which includes
the parametric resonance and the Haroche resonance. The simultaneous
existence of the longitudinal resonance and the transverse resonance has

been observed as shown in Fig.4.9.

For the case @ = 90° and Moo = Mys eq.(4.42) becomes as follows;
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2w1 Mo

Mﬁ(O) = i JmEp-l ( w

5% (4.46)
M=—o 1+ {wo + (mp-1)w}° T .

This expression agrees with the result obtained for the parameteic resonance
(for example Aleksandrov et al. 1963, Favre et al. 1964, Polonsky et al.
o
1965a,b,c). While for the case that @ =0, My, = My, m=1 and p=0, eq.
(4.42) becomes as follows; '
2
(c:os,{3+1)2 (cosB -1)

0 1
MO)="'—" +
a! 4 (wae w)?T? 14 (w - w)?7T?
2
2 sin
/32 M, (4.47)
1+ (wWT)
where
2 2 1 1/2
w, - {(wy-w)s W} (4.48)

This expression agrees with the result of the Haroche resonance or off-
diagonal resonance obtained for the case of the rotating rf field (Aleksandrov
et al. 1972, Tsukada et al. 1972). Therefore, we can understand that the
"transverse resonance" given in eq.(4.45) expresses both the parametric
resonance and the Haroche resonance inclusively. The parametric resonénce
and tne Haroche resonance correspond to the special cases of the "transverse
resonance" given in eq.(4.45). Finally we can say that there is no essential
difference between the parametric resonance and the Haroche resonance. For
small misalignment angle, the nature of thé Haroche resonance appears
strongly, and for large misalignment angle the nature of the parametric
resonance appears strongly.

We show the experimental recordings for the mixture of the longitudinal
resonance and the trangverse resonance in Fig.4.9. In the Fig.4.9, the
longitudinal resonances appear as decrease of the intensity in the transmitted

light, while the transverse resonances appear as increase of the transmitted
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light intensity. The transverse resonances can be seen for V1 = 34~ 40
and V) = 76~86 at @, /w =0, and for V) = 4 and V; = 56~60 at w, /w

= 1.

4.4. Conclusion

In section 4.2, we have shown by classical and quantum mechaniecal treat-
ments the fact that the atomic g-factor is modified by the oscillating rf
field when the Hanle effett aid the parametric resonance take place. Theory
has been verified by the experiment with optically pumped cesium vapor,
where we have considered in the rotating coordinate system.

It should be noted that the expression for the secular component of the
magnetization M derived in the classical theory is quite general and coincides
with the theoretical results derived previously for the particular cases.

In the case that the xf rield.ﬂl(t) is absent, eq.(4.5) agrees with the
expression derived by Bell and Bloom (1957), who have analyzed for the
ordinary magnetic resonance in optically pumped atoms, and in the case that
both the fields Hl(t) and H, are absent, eq.(4.7) gives the expression for
wne Hanle effect. Moreover, eq.{4.5) agrees approximately with the theory

by Novikov et al. (1968), which is valid for the case that Ww,sin 0 /w<l.
The expression for the g-factor obtained here agrees with the previous theory
by Cohen-Tannoudji and Haroche (1969b), for the particular case that w, =0,
in which the relaxation process is neglected. If we take account of the
relaxation process, the condition should be revised as given by the inequality
(4.6). The existence of the term 1/ in this condition is important,
rarticularly when we try to detect the modification of the g-factor of the
excited state with a short life time. In addition, we have obtained the
concept of the anisotropic g-factor (Landré et al. 1970, Yabuzaki et al. 1972b)

which may be obgserved as the response to additional small, static field in
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arbitrary direction with respect to the oscillating rf field. This effect
has peen verified by using vhe optically pumped cesium vapor magnetometer.

We then consider the case that the static magnetic field and the pumping
light beam make arbitrary angle with respect to the oscillating rf field in
section 4.3. As a result, we have shown that two types of magnetic resonances,
i.e., the longitudinal and the transverse resonances, may be appeared at

Q)o = pw , where p is an integer, simultaneously. The "transverse reso-
nance" expresses both the parametric resonance and the Haroche resonance
inclusively. Namely, the parametric resonance and the Haroche resonance
correspond to the special cases of the "transverse resonance", respectively.
We can say that there is no essential difference between tne parametric reso-
nance and the Haroche resonance. For small misalignment angle, i.e., the
static field Ho is nearly perpendicular to the oscillating rf tield Hl, the
nature of the Haroche resonance appears strongly, and for large misalignment
angle, i.e., the i‘ields,ﬂO and.Hl,are nearly parallel to each other, the
nature of the parametric resonance appears strongly.

Some of the experimental results have been shown for verification of

the theory.
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CHAPTER 5

SATURATION EFFECTS IN RF SPECTROSCOPY

5.1. Introduction

Several theoretical approaches have recently been developed for determin-
ing higher order terms in the expression for the Bloch-Siegert shift.

This renewal of interest has been stimulated by an article of Chang and Stehle
(1971), who derive the shift from a quantum electrodynamics calculation.

Chang and Stehle find, in particular, that for a two-level system inter-
acting with a strong field both the power broadening and the Bloch-Siegert
shift become oscillatory functions of the rf intensity. This is Dpartly
disagreement with the,results of several other treatments: Shirley's theory
(1965) wusing Floquet states, Pegg and Series' treatment (1970,1973a, see
also Pegg 1973b) based on appropriate changes of reference frames, Stenholm's
calculations (1972a,b) leading to continued fractions.

The experimental worksby the group of Cohen~-Tannoudji (for example see
Haroche 1971b page 336) support qualitatively a monotonic behavior. The
quantitative measurements by Morand and Theobald {1969) agree well with the
semiclassical calculations. A detailed comparison of their work with the
theory has been published by Stenholm (1973d).

However, the experimental test of the higher order terms of the Bloch-
Siegert shift in the multiple quantum resonances is not easy: when the rf
field Hl increases, the resonance is not only shifted, but also broadened
and distorted, so that a precise determination of its center becomes diffi-
cult. Fortunately, other kinds of magnetic resonance, namely the Haroche
resgonance, exist which are easier to study experimentally (Cohen—Tannoudji

et al. 1973b, Tsukada and Ogawa 1973a, Tsukada, Murakani and Ogawa 1973a)-
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In this Chapter, we will investigate these kinds of magnetic resonance
theoretically and experimentally.

In section 5.2, the continued fraction representation which has been
recently adapted to the longitudinal optical pumping by Stenholm (1972a,b) is
used to solve the Bloch equation for the case of the transverse pumping and
the results of the calculations of the positions and the shapes of the Haroche

resonances, caused by the large intensity rf field, are given. The con-
putational convenience of the continued fraction makes the poss1ble to combine
the cbncept of the modification of the atomic g-factor with the Haroche reso-
nances. We want to show that the behaviors , position, width and magnitude
etc.; of the various Haroche resonances obtained by the experiments for large
intensity of the rf field are entirely described by the continued fraction
representation. As a result, the broadening of the Hanle curve by the osci-
llating rf field, i.e., the modification of the atomic g-factor, is due to
the position and the width of the Haroche resonances. It seems we had
better say that the modification of the atomic g4factor is due to the "resonant
effect rather than "nonresonant" effect. In addition, we study the saturation
effects of the longitudinal resonances. We observe the time-dependent com-
ponents contained in thne transmitted light and report the first observation
of the modulation in absorption for the longitudinal pumping experiment.

In section 5.3, we show the theoretical analysis based on numerical
integration of Bloch equation for the strong rf field and for the general
configuration of the magnetic fields. The new type resonances are expected
and the resonances appear at H” =nw /¥ . Behaviors of these type of
resonances are similar to those of the Haroche resonance. It is shown that
the agreement between the numerical and the experimental results is excellent.
For the very low frequency and for large intensity of the rf field, the anti-
crossing curve near zero magnetic field is deformed and is then sharpened by
the new type resonances.
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5.2. Saturation Effects of the Transverse Resonance

The continued fraction representation which has been recently adapted
to the longitudinal optical pumping by Stenholm (1972a) is used in the Bloch
equation to study the saturation effects of the Haroche resonance, caused by
the transverse pumping. This section gives calculations of the position and
shape of the Haroche resonance for large intensity of the rf field, which
differ from the earlier work for weak rf field by Cohen-Tannoudji and Haroche
(1967). It is shown that the variation of the width of the Hanle curve
by the oscillating rf field, i.e., the modification of the atomic g-factor,
is due to the Haroche resonance. The position of the Haroche resonance
observed for the large intensity of the rf field agrees weil with those of
our continued fraction solutions rather than those of the perturbation theory
(Cohen-Tannoudji and Haroche 1967). The saturation effects of the resonance
intensity of the Haroche resonance, which is due to the large intensity of

the rf field, is also verified theoretically and experimentally.

5.2.1. Bloch Equation and Continued Fraction
The external magnetic field H is the rf field Hl(t) =H, cosw t
in the x direction and the static magnetic fieldlﬂ)in the 2 direction; we

obtain
H =-(111 cos w t, 0 , Ho). (5.1)

Consider that the pumping light creates the magnetization in an arbitrary
direction and we introduce the quantities MOx’ MOy and MOz for the component

of the magnetization in the x, y and z direction. Then we have

' T
My = T ( Mopr Mos Mo, ) s (5.2)

with
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2 2 2 2
Mo = Mox 4+ Moy + MOZ .

Inserting eqs.(5.1) and (5.2) into eq.(2.16), we have

d M | M

Ox
X . w - —=
Tt oMy~ *TT .
Y
d M M MO
— - - g Y
T - wo Mx+ wl cosu)‘tlﬂz = + Tp
d M M M
2 Z 0z
FTS .—.—wl coswtny- < + Tp .

(5.38)

(5.3b)

(5.3c)

Using the well-known relations between density matrix and the components

of the magnetization; P++ - P )Ez-, ,O+_ - P_+ =i Mx and P+- + P—-+

= Mx, and putting MOx = MOy =0, eqs.(5.3) becomes to the sames one given by

Stenholm (1972a).

We use a Fourier expansion technique and write

i inw t

©o .
in W
M=y s RO

y N=~00 n
= inw t
Moo= 3 d e ,
N=--0Q

(5.4a)
(5.4p)

(5.4¢)

and find from equations (5.3) by equating the coefficients of equal powers

of exp(iw t) the recurrence relations

We = - - i
nwe, iw, sn+il"cn 1)\x6n0’

nws

(]
[}
[N

. 1 . .
nwd =i—5 W ( Sp,1 * s,1) + ilfa, - 1)\28n0 ’
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with

-1
P2 N = Mo /Toe Ky = Mo /T and XN = Mo /T

From eq.(5.5a) we get

PN
0 x
c = o inw M é‘no . (5.6)

Inserting this into eqs.(5.5b) and (5.5c) we find

o - —1 1 + 1 (a .+ .)
n 4 r'+i(nw-w0) r'+i(nw+wo) n+l""n-1
w r
0 )
-— b ——— A (5.7)
r12 + woz x nO '—-'2 + 0)02 y no,
and
w

d = - L ( 21 YWos g +8 )+ rl, A28 no. (5.8)

n (+inw

In our case, the transverse optical pumping, eqs.(5.7) and (5.8) can

be combined with one equation by writing

r,2 + w02
8, n even ,
- Wy A+ r.)‘y :
X = 5 2 _ (5.9)
r o+ u)o
d n odd ,

-wokx+|")\y n

L 1 1
2 r'+i(nu.)-wo) +r'+i(nu)+u)o) n even ,
D (n)=
1
r'+inw n odd
(5.10)
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and the difference equation to be solved is

(-1)® =1 om) ( )
*n = B 2 (n Fpplr Y1 /T é\nO *

(5.11)

This equation is just the same one obtained by Stenholm (1972a) and the

solution is given in the form

' 1
X0 50 1+ —%— w ;2 p(1)D(2)
T2
14 == w,° D(2)0(3)
( 1+ ......-)

-1 . *
1 -~ % 2(-1) dy
X0 1+ % w,? p(1)n(-1) By

( 1 4 cooee .e )

Inserting these into eq.(5.7) with n=0 we get

sp= (—wy Ay + A, P2+ w2 e (w2201,

where
7w 5o — 28
1+T-u.)1 p(1)n(2)
(14 ceeeees ) o,

Moreover inserting eqs.(5.14) and (5.15) into eq.(5.6) we obtain

2
(1- 0 ) X

1
F2ewl e (w?/2)7,

Y r

X

W,

r2s w02+ ( w12/2)i'., My

+
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The amount of the absorption of the pumping light beam by atoms is given
by eq.(2.23). We are interested in the component of the transmitted light
intensity which are taken time average. If the pumping light beam directs
to the x direction, i.e., Xy = )‘z =0, ¢y in eq.(5.16) gives the time
averaged component, or unmodulated component, of Mx. On the other hand,
if the pumping light beam directs to the y direction, i.e., )‘x = )\Z = 0,
e in eq.(5.14) gives the time averaged component of My'

It has been known that the resonances for the transverse pumping are
at w0z2nw for weak rf field (Cohen-Tannoudji and Haroche 1967, 1969a).
From the continued fraction of (5.15), we can see why these occur. A1l the
even D functions have a resonance whereas the odd ones are nonresonant.

As a result, we see that the resonance is at the position

2

1
4 (an® -1 )w? } ’ >

w
w

0=2nw{l—

for weak rf field. This coincides with the result derived from resolvant

formalism by Cohen-Tannoudji and Haroche (1969a).
5.2.2. Computed Results

In this section we intend to discuss the saturation effects of the
Haroche resonances and the Hanle effect using the solutions of the continued

fraction. We consider the case with one decay rate [” only and choose
=002wW ., (5.18)

The main results of computations for the case that the pumping light

beam di t i i .e, = =
irects to x direction, i.e., )\x Mo/Tp, 7\y =

in Fig.5.1. The comparison of the positions of the Haroche resonances be-

)\z = 0, are given

tween the results of the exact calculation of equation (5.16) and the appro—~
ximate expression (5.17)are shown in Fig.5.2. This is done for W, up

to 700[” and for resonances up to 12w . All of the Haroche resonances
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Fig. 5.1. The appearance of the Haroche resonances in an optical detection
experiment; the solid lines are the resonance at Wy = 2w ,
the dotted broken lines are the resonance at UJO = 4W and
the broken lines are the resonance at u)o =6w. This shows
how the resonance is shifted and broadened as the rf field U)l
isincreased. The Hanle curves for UJl/r' = 50, 60, 70 and

80 are not shown. These Hanle curves are shown in Fig. 5.3(a).
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Fig. 5.2. Positions of the various Haroche resonance peaks as a
function of the rf amplitude aJl. The peaks are seen
to appear, shift and disappear. The solid lines for even
regonances are the result of this paper, the dashed lines
for even resonances are the approximate expression (5.17).
Positions of the multiple quantum resonance peaks given

in the paper of Stenholm (1972b) are also shown.
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" are seen to move down in frequency more rapidly than eq.(S.lB). The devi-
ationsfrom the approximate expression increase with the order of resonance.
We can observe the appearance of higher order Haroche resonance as wl is
increased. Positions of the multiple gquantum resonances for up to 1lw are
also shown in Fig.5.2. Two lines, for the multiple quantum resonance at
wq = ( 2n - 1 )w and the Haroche rgsonance at wo = 2nw , overlap
each other before they enter the zero field. It should be noticed that
the values of wl’ at which two lines enter the zero field, coincides with
the values at the zeros of zeroth order Bessel function JO( wl/w ).
This fact can be expected from the modification of the atomic g-factor
introduced in the paper of Cohen-Tannoudji and Har;'oche (1969v). The vari-
ation of the width of the Hanle curve calculated from eq.(5.16) is shown
in Fig.5.3(a). The width of the Hanle curve is represented as I"/Jo( w,
/W ) at the region wo KW . This fact has been analyzed, for the con-
dition W «W , quantun mechanically by Cohen-Tannoudji and Haroche (1966),
semiclassically by Pegg and Series (1970), and classically by Yabuzaki et al.
(1972a). However, eq.(5.16) can be used for the arbitrary value of coo/w
and even for arbitrary intensity of the rf field.

The behavior of the Hanle curve for the case that the pumping light
beam directs to y directionm, ‘i.e., )\y = MO/Tp and )Lx = >‘z = 0, is
obtained from eq.(5.14) and is shown in Fig.5.3(b). For this case, the
peaks of the Hanle curves remarka.bly.‘ decrease as the intensity w, increases.
The variation of the pea.ksv of the Hanle curves for the case is well repre-
sented by Jo2( wl/w ). AThis fact agrees well with the result recently
obtained by Tsukada et al.(Tsukada, Yabuzaki and Ogawa 1973) and that expected
from the parametric resonance at zero magnetic field ( for example Polonsky
and Cohen-Tannoudji 1965).
5.2.3. Bxperiments

For the purpose to confirm the theoretical conclusions, experiments are
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Fig. 5.3. The variation of the width of the Hanle curve as a function
of W,/ The width is given by the expression
r /Jo( wl/w ), for the region W, «wW. The Hanle curves
for the case that the pumping light beam directs to x direc-

tion are shown in (a) and for the pumping light beam directs

to y direction in (b).
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made with optically pumped cesium atoms. An absorption cell with wall coated
with paraffin, containing saturated vapor of cesium at temperature about 25°C,
is situated at the center of a set of Helmholtz coils. The static field

Ho is provided by a Helmholtz pair of diameter 80 cm. 1t is.a.rra.nged to
vary the static field Ho continuously from -~100 to 100 mG. Stray fields

are reduced to less than 2 mG by two pairs of Helmholtz coils of diameters

90 cm and 100 cm at right angle. We can estimate the magnitude of the

stray field from the width of the anticrossing curve in the absence of the

rf field. ‘The width is given as [(n{s/z'n: )2 + r'2] 1/2

s, where Hs is
the magnitude of the sfray field which exists on the perpendicular plane

with respect to the static field HO. The oscillating rf field Hcosw t

1
is applied perpendicular to the static field Ho by a Helmholtz pair of
diameter about 20 cm. The source of cesium pumping light is electrodeless
rf discharge lamp. Both the Dl and D2 lines are used for optical pumping
of the cesium atoms in the cell. After passing through a circularly
polarizer, the light incidents parallel to the oscillating rf field on
absorption cell. An change in the intensity of the light transmitted
through the cell detected with a photocell. The magnitude of absorption
in the unmodulated component and the depth of modulation at frequency 2w
or 4w as function of the static field H’o are recorded. The experimental
disposition of apparatus is shown in Fig.54.

The recorder traces of the resonance for w, = 2W appearing in the
unmodulated component are shown in Fig.5.5(a), where each resonance corre-
sponds to a different value of the input voltage Vl of the rf coils, and
w/2r= 10 Kdz. A peak at zero field is due to the anticrossing curve
rather than the Hanle curve. There are stray transverse static fields

and these can stimulate a resonance at zero frequency, so-called anti-

crossing curve for zero frequency. From Fig.5.5(a) we can find that the
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Fig. 5.4. Disposition of apparatus. The static magnetic field Ho
ig in the direction of z axis. The rf field Hl is in

the direction of the pumping light beam (x axis).
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'Fig. 5.5. Experimental curves as a function of Ho: the

resonance curves for (a) W, = 2W in the

unmodulated component, (b) w o= 2W in the

component modulated at 2w , (c) Wy = 4w

in the component modulated at 4 W .

The number

written by each curve is the input voltage Vl

of the rf coils (in millivolt), which is

proportional to Kl .
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rescnance curves for a)o = 2w move towards the low field region and are

broadened as the intensity of H1 is increased. "It should Be noticed that
when the Haroche resonance shifts towards low field region the Hanle curve

is broadened gradually. When the ﬁaroche resohance overlaps the Hanle curve,
in this case anticrossing curve at zero frequency, the width of the Hanle
curve or the anticrossing curve is maximized and it is then narrowed again.

We showed in our previous paper ( Tsukada and Ogawé 1973a ) that the value

of Hl, at which one of the Haroche resonances overlaps on the Hanle curve,
coincides with one of the values of the zeros of zeroth order Bessel function
Jo(“o’Hl/w ).

The recorder traces of the'resonance for u)o = 2W appearing in the
componont modulated at 2w are shown in Fig.5.5(b), where each resonance
corresponds to a different value of Vl, and “@61- 10 KHz. The recorder
traces of the resonance for a)o = 4w appearing in the component modulated
at 4w  are shown in Fig.5.5(c). In this case the frequency of the rf

field is 5 KHz.

5¢.2.4. Discussion

In this section, we want to compare the experimeqtal results with the
theoretical regults obtained previous gection. The amount of the variation
in the unmodulated component of the pumping light transmitted through the
vapor cell is given in the form as eq.(5.16). We_pan also obtain the ana-
lytical expressions for the components modulated at 2w and 4w from eqs.

(5+5) and (5.6). The amplitude of these components, fe,| and |c4|, can be

expressed as follows;

w
e [T e 2 %2 (5.19)
) |
el o 0 S
[°4 2+ (4w 22 [84] , (5.20)

where
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p(2)

5 = ( —5 )X
2 2 1+ —}1— w 2p(2)D(3)/( 1 + *+*)
(1) )
X 8
( 1 w 2p(1)n(2)/( 1+ «+-) 0 (5.21)
( Wy y2( D(4)
5, =12 1+ == @ 2()D(5)/( 1+ +ee0)
% ( D(3) ) o, (5.22)

1+ = w,20(3)0(4)/( 1 +-000)

and 8q is given by eq.(5.14). The main results of the computational calcu-
lation of egs.(5.16), (5.19) and (5.20) are given in Figs.5.6(a) ~ (c).
Figure 5.6(a) shows the behavior of the unmodulated component for the
resonance for W, = 2W . Figures 5.6(b) an& (¢) show the behaviors of

the resonance for a.)o = 2W in the component modulated at 2w and the
resonance for a)o = 4w in the component modulated at 4w . The parameter

chosen is
wy =50 . (5.23)

The behaviors of the theoretical curves in Figs.5.6(a)~(c) agree well
with those of the experimental curves in Figs.5.5(a)~(c) in shape and
magnitude. The experimental results obtained by Cohen-Tannoudji and Haroche
(1965) show that the saturation effects of the resonance intensities in the
components modulated at 2w and 4w become noticeable for large intensity
of rf field H;. This saturation effect may be explained with eqs.(5.19)
and (5.20), indeed Figs.5.6(b) and (c) show the saturation effect for large

intensity of the rf field.

Figure 5.7 shows the positions of the peaks of various resonances as a

function of Vl/Lu . The points, the crosses and the triangles are experi-
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Fig. 5.6. Theoretical curves as a function of Hj ( wo): the resonance
curves for (a) wo = 2W in the unmodulated component calculated
from eq.(5.16) for various values of rf amplitude H, ( u)l), (v)

W, = 2W in the component modulated at 2w calculated from

0
eq.(5.19), (c) W, = 4w in the component modulated at 4 W
calculated from eq.(5.20).
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Fig. 5.7. Positions of various resonance peaks as a fun;:tion of the rf amp-
litude Vl/u.) or U)l/o.) . The circles, the crosses and the tri-
angles are experimental points. The circles show the resonance
for wo = 2W in the unmodulated component, the cfosses for
Wy = 2w in the component modulated at 2 W and the triangles
for u)o = 4w in the component modulated at 4w . The solid
lines are obtained from eq.(5.16), and the broken line and the
dotted broken line are obtained from egs.(5.19) and (5.20),respec-
tively.
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mental points. The circles show the resonance for wq = 2w in the unmod-
ulated component and the crosses and the triangles show the resonances for
wgq = 2w in the component modulated at 2w and for wy = 4w in the
component modulated at 4w , respectively. The solid lines show the theo-
retical curves obtained by eq.(5.16). They show the positioﬁs of the reso-
nances fox; wo = 2w and 4w in the unmodulated component. The broken
line is the theoretical curve of the resonance for u)o = 2w in the compo-
nent modulated at 2w . Then the dotted broken line is the theoretical
curve of the resonance for wo = 4w in the component modulated at 4w .

The agreement between the experiment and the theory is quite satisfactory.

For the case that W = 2w and w7, eq.(5.19) becomes

w 2

L M. (5.24)

leal = P2+ ew - w, - - wlz/w)}:e]i/a 0

For the case that W, = 4w and WH[" , eq.(5.20) becomes

4
wl

I° M+ o - w, - %( w %/w )22 o

4l = [ (5.25)
From egs.(5.24) and (5.25), we see that for small intensity rf field the
shift and the intensity of the resonance for wo = 2 1in the component
modulated at 2w are proportional to wi2 and the shift of the resonance
for wo = 4w in the component modulated at 4w is proportional to w12
and the intensity to u)14. This coincides with the results obtained
by Cohen-Tannoudji (1965).

Figure 5.8 shows the level crossing signal with an oscillating rf field
to be comparéd with the experimental results shown in Fig.4.7. Agreement

between the calculated results and the experimental results is excellent.

The introduction of several different decay rate into our equations
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Fig. 5.8. Level crossing signal as a function of the intensity
of rf field for various values of o.)o. This figure

corresponds to the experimental results in Fig. 4.7.
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would change thequantitative behavior only but not affect the qualitative
behavior. Evaluation of the continued fraction is done with the recent

work by Feldman and Feld (1972).

5.2.5. Modulation in Absorption for the Longitudinal Pumping

Recently, we have investigated the saturation effects of the transverse
resonances, including the Hanle effect and the Haroche resonance, theoreti-
cally (Tsukada and Ogawa 1973a) and experimentally (Tsukada, Murakami and
Ogawa 1973a). On the other hand, the saturation effects of the longitudinal
resonance, including the ordinary resonance and the multiple quantum reso-
nance, have theoretically been investigated by Stenholm (1972a,b).  Experi-
mental studies of the saturation effects of the time-independent component,
i.e., multiple quantum transitions in the time-independent component, have
been reported by Margerie and Brossel (1955), Cohen-Tannoudji (1968) and
Haroche (1971b). However, the experimental study on the time-dependent
components of the longitudinal resonance has not been reported yet. In the
longitudinal pumping experiment, the oscillating rf fieLilHFos w t is per-
pendicular to the static magnetic fieldlﬁ)and the circularly polarized light
is parallel to EH). We have observed the time-dependent components contained
in the transmitted light passing through a vapor cell (Tsukada, Murakami
and Ogawa 1973b). Resonance curves expected for this case can be obtained
from the papers of Stenholm (1972a) and Tsukada (1973a). The quantities
to be detected in the experiments correspond to the Fourier coefficients
dn's: in the paper of Stenholm (1972a). The resonances at W, = I‘HO =
( 2p +1 )w in the various odd harmonics 2nw , where p and n are integers,
are expected for the longitudinal optical pumping.

The basic apparatus used is the standard one used in the experiment

in which the pumping radiation is circularly polarized light and the trans-
mitted light is monitored. An absorption cell with wall coated with paraffin,

- 137_



containing saturated vapor of cesium at temperature about 25°C, was situated
at the centeerf a set of Helmholtz coils which compensates geomagnetic

field and produces a constant magnetic fieldl&r The stray fie;d was
reduced to about 2 milligauss. The frequency of the oscillating rf field
was set at 10 KHz. The transmitted light was monitored by a solar cell

We have observed the components modulated at 2w and 4w , which

corresponds to the Fourier coefficients d2 and d4 in the paper of Stenholm
(19722)., The behaviors of the resonances at W, = w and u)o'a 3w in
the component modulated at 2w and at wo = 3w and wo = 5w~ in the
component modulated at 4w  were observed for various values of the rf field.
Figs.5.9(a) and (b) show the resonance curves in the component modulated at
2w and 4w for various values of the input voltage V1 of the rf coil.
Figs.5.10(a) and (b) show the theoretical curVes for the component modulated
at 2w and 4w which are calculated for w = SQ, [”=2, where w and

r correspond to L and ¥ of Stenholm's notations, respectively. The
resonance curves are not simple Lorentzians but the more complicated functions,
especially the resonance at wg, = 3w in the component modulated at 2w

is complicated function. As the rf amplitude w, is small, the resonance

1

curve at wg = 3w becomes more like a conventional dispersion curve, and

as the rf amplitude u)l is large, it becomes similar to B function of Dodd
et al. (1959). The resonance curves are shifted and broadened as the rf
amplitude U)l is increased. Very sharp resonances comparing the time-
independent component, which corresponds to the Fourier coefficient do in
Stenholm's paper (1972a), can be seen, because power broadening affects
those resonances less than the time-independent component. Figure 5,11
shows the positions of the resonance peaks and dips for the component modu-
lated at 2w as a function of the rf amplitude w,. Black circles are

experimental points for the resonance at UJO = w and the encircles, crosses,

triangles are experimental points for the resonance at u)o = 3W . The
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Fig. 5.9. (a.). Experimental recordings for the resonances at o.)o = )
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Fig. 5.9. (b).
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Experimental recordings for the resonances at u)o

= 3w and W, = 5w in the component

0
modulated at 4w . Experimental condition:

W /27 = 5 KHz.
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Fig. 5.11. Positions of the resonance peaks and dips as a function
of the rf amplitude 0)1. Various marks are experimental
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solid lines are theoretical curves obtained from Fig.5.10(a).

We can see that the behavior of the resonances obtained experimentally
agree with that obtained theoretically. The discrepancy between the theory
and the experimental results for the small values of a:o or HO is due to
the influence‘of the stray field existing in the plane perpendicular to the
static fieldlﬁr The resonances in the modulatjon of the transmitted light
for the case of the transverse pumping experiment, in which the circularly
polarized light is parallel to the oscillating rf field, are well known as
the Haroche resonance. However, the resonance of the modulation in absorp-
tion for the longitudinal pumping experiment was not reported. In this
section, we reported the first observation of the modulation in absorption

for the longitudinal pumping experiment.

5.3. Saturation Effects in Magnetic Resonances for General Magnetic

Fields Configuration

Various magnetic resonances appearing in optical pumping experiments
have been analyzed theoretically aﬂd experimenfaily. .However, there are
not so many works with regard to the saturation’pffects caused by the strong
rf field. Recently, the saturation effects of the multiple quantum reso-
nances and of the Haroche resonance have been investigated by Stenholm (19
72a,b) and Tsukada and Ogawa (1973a), respectively. In-this section, we
treat the saturation effects for more general case that the static magnetic
field with arbitrary magnitude directs to an arbitrary direction with respect
to the oscillating rf field withvarbitrary intensity. The experimental
results are compared with the exact solutions computed by numerical integra-
tion of the Bloch equation. It is shown experimentally and theoretically

that the resonances similar to the Haroche resonance appea{ at w,=nw,

where w, = ¥ H, , n is an integer and H, is the parallel cbmponent of the
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static magnetic field with respect to the oscillating rf field and ¥ is

the gyromagnetic ratio.

5.3.1. Experimental Results

The experimental arrangement resembled the arrangement described in the
preceding section 5.2.5. The sample cell in this experiment contained satu-
rated vapor of cesium at temperature about 2500. The sample cell was placed
in a weak static field H.. It is necessary to compensate for stray fields
only to a small fraction of the width of the ground state. The sweeping
fieldl{Lwas provided by Helmholtz coil and additional Helmholtz coils were
used to compensate stray fields. The stray field reduced within 1 milli-
gauss. ExperimentsAwere made for the case that the pumping light was para-
1lel to the oscillating rf field. The frequency w of the oscillating rf
field was set at 5 KHz. The transmitted light was monitored by a solar cell.:
Arrangement of the experiment is that the static field H, and the oscillating
rf field chos w t are transverse to the sweeping field H,. The directions
of the magnetic fields and the pumping light beam are shown in Fig.5.12.

Figure 5.13 showé the experimental result for w, = 0, i.e., the real
transverse pumping experiment. This is the similar experimental results
which has beem reported in our previous paper (Tsukada, Murakami and Ogawa
19733) and shows the behavior of the Haroche resonance and the Hanle curve
as the rf field is increased. Variation of the peak of the Hanle curve is
due to the stray field which exists on the perpendicular plane with respect
to H_L ‘and H// . Therefore, the curve existing on H; = 0 is the anti-crossing
curve rather than the crossing curve (Hanle curve). In our previous paper
(Tsukada et al. 1972), the real Hanle curve together with the Haroche reso-
nance was obtained in the rotating frame.

Figure 5.14 shows the deformation of the anti-crossing curve by the

oscillating rf field and the appearance of the Haroche like resonance for
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shift towards low field region.

used in this experiment.
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As the intensity of the rf

field is increased, a Haroche resonance is seen to appear and

The value w/27, = 5 KHz was
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Fig. 5.14. Deformation of the anticrossing curve by the oscillating rf field.

~
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A number written in each trace is the input voltage Vl of the rf
coils (in millivolt), which is proportional to H;. For small
intensity of the rf field, Vl = 2~8, the multiple quantum reso-
nances appear on the slope of the anticrossing curve. As the
intensity of the rf field is increased, the multiple quantum reso-
nances saturate at V1-24 and the Haroche like resonances appear
at Vl-50_
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w, = w . If the oscillating rf field is absent, i.e., Hl = 0, this situ-

ation corresponds to the anticrossing experiment (for example Series 1963)

and the width of the curve is given as V (1/% )2 + (b’H,,)2 . As the inten-
sity of the rf field is increased, the dips appear on the slope of the anti-
crossing curve. The dips grow up and completely erase the anticrossing
curve. After that, the new resonances appear near H.L =2W /3" s ETOW up
and shift towards low field region. A number written in each trace gives
the input voltage Vl ofthe rf coils in millivolt, which is proportional to
the intensity of the rf field Hl. The resonance peak appearing for above
Vl = 50 at H; = O is the anticrossing curve appeared again. At Vl = 58,
the first new resonances exist on the slope of the anticrossing curve and
the second new resonances appear near W, = 3.5 . Hereafter, we call
the new resonances "Haroche like resonance". More detailed behavior of
the Haroche like resonance is shown in Fig.5.15; (a) and (b) show the first
and the second Haroche like resonances for w,=w , reépectively. Figures
5.16(a) and (b) show the Haroche like resonances for )= 2w . Further-
more, the Haroche like resonance for w,= 3w 1is shown in Fig.5.17. It
is seen from Figs.5.15, 5.16 and 5.17 that the Haroche like resonances grow
up, shift towards low field region as the intensity of the rf field is
increased and then disturb the anticrossing cur-ve.
We then investigate the behaviors of the Haroche like resonances near

w, =0, W. TFigure 5.18 shows the Haroche like resonance near d),,n 03
(a), (b) and (c) are for w, =0, 0.1W and 0.2w , respectively.

Figure 5.19 shows the Haroche like resonances near W, = W ; (a), (b) and
(c) are for w,= w, 1.05w and 1.10w , respectively. As the deviation
from W, = 0 or W is increased, the width of the Haroche like resonances

become larger and the peaks become smaller than those for just w, =0, w.

The theoretical analysis for the Haroche like resonance is given in the next

section.
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Fig. 5.15. The Haroche like resonances observed for w,= W ; (a) and
(b) show the first and the second Haroche like resonances,

respectively.
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Fig. 5.18. Behavior of the Haroche like resonance near u)”= Q;
(a), (b) and (c) are same as for Fig.5.15 but for

W, = 0, 0.1w and 0.2W , respectively.
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5.3.2. Theoretical Discussion
(a) Equation of Motion

We can obtain the equations governing the motion of the three components
of the magnetization M for the situation of the magnetic fields and the

pumping light beam given in Fig.5.12 as follows;

d Mx

1]
3T = W My + "]5:— ( My - M ) (5.26a)
My 'a 6b)
T = - W M o+ (W, + wcswt )M - =, (5.26b
aM M
2 Z
% - - ( w, + wl cosw t ) My - . (5.26¢)

The system of eqs.(5.26) under the condition that H; must be small enough

to allow the approximation, ¥ H,& W, has been investigated independently

by Pegg and Series (1970) and Yabuzaki et al. (1972a) as mentioned in section
4.2. The system of eqs.(5.26) for W, = 0 has been investigated theoreti-
cally and experimentally by Tsukada and Ogawa (1973a, see also Tsukada,

Murakami and Ogawa 1973a) as shown in section 5.2.

(b) Numerical Results

Here, we want to show the some results of the numerical calculations
of the system of eqs.(5.26) and will compare those with the experimental
results in the hext section. We are interested in the time-independent
component of the steady state solution. For preliminary test, the solutions
of the numerical integration for W, = 0 were compared with the continued
fraction solutions obtained in the section 5.2. The deviation between the
numerical integration results and thé continued fraction results is smaller
than 1% allover the resonance curves which are presented in Fig.5.20.

All of the numerical calculations are made for the parameters
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Fig. 5.20. Numerical result tobe compared with Fig.5.13, in which fhe
Haroche resonance for w,= 0 obtained in experiment is shown.
The solid lines show the first Haroche resonance and the Hanle
curve as a function of Wi/w . The dashed lines and the
dotted broken lines show the second and the third Haroche

resonances) respectively.
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Fig. 5.21. Effective g-factor derived from the width of the Hanle curves
in Fig.5.20. The computational results derived from Fig.5.20
are répresented by the encircled points and the zeroth -order
Bessel function as a function of 031/09 is represented by the

solid line for comparison.
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Fig. 5.22. (a) and (b), For legend see P.159.
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Fig. 5.22. This figure is to be compared with Fig.5.14. In Fig.5.14, the
peak of the anticrossing curve decreases at Vl = 0~18 as the
intensity of the rf field is increased. There is however no
variation of the peak of the anticrossing curve in (a). This
discrepancy between theory and experiment is due to the stray
field existing in the experiment. (b) and (c¢) show the behav-
ior of the first and the second Haroche like resonances for

w, = w , respectively.
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W /27 = 500 Hz, ["= T * = 400 Hz. (5.27)

Figure 5.20 shows the graphs of numerical integration for w, = 0, and
as mentioned above this case has been investigated in detail in section 5.2.
Figure 5.21 shows the variation of the effective g-factor reduced from the
width of the Hanle curves in Fig.5.20. The deviation between the computa-
tional results, which are represented by the encircled points, and the zeroth
order Bessel function, which is represented by the solid line, becomes larger
as the value of the Bessel function approachesto zeros. The deviation, however,
decreases as the intensity of the rf field is increased.

Figure 5.22 shows the same graphs as for Fig.5.20. but for W,= W . In
Fig.5.22(a), the curve in the absence of the rf field, i.e., w, = 0 is
an anticrossing curve, As the intensity oJl is incréased, the curve is
deformed strongly. This deformation is due to the longitudinal resonances,
i.e., ordinary resonances and multiple quantum resonances. The longitudi-
nal resonances appear as decrease or absorption of the transmitted light.
As the intensity w, is increased more and more, the longitudinal resonances
saturate and the transverse resonances or Haroche like resonances appear
and grow up. The transverse resonances appear as increase or emission of
the transmitted light. Figures 5.22(b) and (c) show,the behavior of the
first and the second Haroche like resonances for W), = W , respectively.
Figure 5.23 shows the variation of the effective g-factor reduced from the
width of the anticrossing curves in Fig.5.22(a), (b) and (c). The encircled
points are computational results given in Figs.5.22 and the solid line is
the first order Bessel function. We can see from Fig.5.23 that the effective
g-factor for w, = (W is approximately given as Jl( u)l/cv )gb, where g,
is the unperturbed g-factor in the absence of the rf field. This fact is

consistent with the results obtained by Pegg and Series (1970) and Yabuzaki

et al. (1972a), in which the width of the Hanle curve or anticrossing curve
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Fig.5.23. BEffective g-factor derived from the width of the anticrossing

curves in Fig.5.22. The computational results derived from
Fig.5.22 are represented by the encircled points and the first

order Bessel function is shown with the solid line.
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7

Behavior of the Haroche like resonance near u),/= 0.
The numerical results for u)”= 0, 02w , 0.4 at
W, = 1.6W are shown in this figure. This figure is

to be compared with the experimental results in Fig.5.18,
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Fig. 5.26. Same as for Fig.5.25 but for w, = c.6w, 0.8wW,
w , 1l.2W and l.4w at u)l = 3W . This figure is

to be compared with the experimental results in Fig.5.19.
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Fig. 5.27. Influence of the decay rates on the Haroche like resonances.
The widths of the Haroche like resonances are strongly
influenced with the decay rates. The small decay rates
lead the sharp resonance curves. The positions of the
Haroche like resonances are however hardly influenced with

the decay rates.
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should vary as [’qu( wl/w )l"l in the presence of an additional static

field H. parallel to the oscillating rf field and of magnitude q w /5

u P
where q is an integer. It should be noticed that for w,= 0, only the
transverse resonance occurs, but for w,=nw (n 0) both the longitudinal
resonance and the transverse resonance occur. Figure 5.24 shows the numeri-
cal result for w,=2w .

Figure 5.25 shows the behavior of the Haroche like resonances near W, =
0; calculations were made for w,= 0, 0.2w , 0.4w at w, = l.6w.
Figures 5.26(a) and (b) show same graphs as for Fig.5.25 but for W, = w ;
calculations were made for w, = 06w, 0LBw, W, l.2w and l.4w at

w, = 3w . As the deviation from w, = 0, or w is increased, the width

of the Haroche like resonances become larger and the peaks become smaller.
Figures 5.25 and 5.26 correspond to the experimental results given in Figs.
5.18 and 5.19 and show a qualitatively good agreement.

1t appears from the comparisons between the experimental and the theoreti-
cal results that the experimental lines have got a smaller width than the
theoretical one. The widths of the Haroche like resonances of the numerical
results can easily be made smali by choosing of the small values of [” as
shown in Fig.5.27. However, the influence of the decay rates [T on the

positions of the Haroche like resonance is very small .

5.3.3. Comparisons between the Experimental Results and the Numerical Results
We have studied the behaviors of the Haroche like resonances similar

to the Haroche resonance experimentally and theoretically. The Haroche like

resonances can be obsreved near Wy,= nw for strong rf field and shift

towards w; = O. The peaks of the Haroche like resonances which appear at

W, = nwW are seen to appear, shift and disappear. Figure 5.2 shows

the positions of the various Haroche like resonances as a function of the

rf amplitude u)l. The encircled points are experimental results and the
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Positions of the various Haroche like resonances as a function
of W,; (a) is the first Haroche resonance, (b), (c) and (d)
are the first Haroche like resonances for w;,=- w, 2w ,
3w , respectively. (e) and (f) are the second Haroche like
resonances for 0.),/: W, 2w , respectively. The encircled
points are the experimental results and the solid lines show
the numerical results. 1t should be noticed that the values
of wl/w , at which the Haroche like resonances for W= qu
enter the zero field of H,, corresponding to the values at the
zeros of the q-th order Bessel function Jq( wl/a) ). The
values of Jn’m's represent the m-th zero of the n-th order

Bessel function Jn( wl/w ).
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solid lines are numerical solutions; (a) is the first Haroche resonance for
w, =0, (v), (c) and (d) are the first Haroche like resonances for w, =W,
2w and 3w , respectively, and (e) and (f) are the second Haroche like
resonances for Wy, =W and 2w .  Agreement between the observed results
and the numerical results is extremely excellent. It should be noticed that
the values of uul/uu , at which the Haroche like resongnces for W,=nw
shift and enter the zero field, i.e., H; = 0, correspond to the values at
the zeros of n-th order Bessel function Jn( UJl/uJ ). This fact is consist-
ent with that the modification of the atomic g-factor by the linearly oscil-
lating rf field at w,= nwW is given as Jn( u.)l/u) )go. For w,= 0, only
thé transverse resonances or Haroche like resonances occur, but for w, = nw
(n%oO ), both the longitudinal or multiple quantum resonances and the
transverse resonances play important roles simultaneously. The longitudinal
resonances appear as the absorption of the pumping light and the transverse
resonances appear as increase of the transmitted light. As the intensity of
the rf field is small, only the longitudinal resonances appear. For middle
intensity of the rf field, both the longitudinal resonances and the transverse
resonances appear simultaneously, and for large intensity of the rf field,
the longitﬁdinal resonances saturate and hence only the transverse resonances
can be observed. It seemsfrom the experimental results of Figs.5.18 and
5.19, and from the theoretical results of Figs.5.24 and 5.25 that the Haroche
like resonances do not shift towards w.=( W, 2 + Oleth 0 but w,;=0.
Therefore, it seems convenient to consider for strong rf field that'thé total
magnetic field.Hﬁ:is separated into the parallel and the perpendicular compo-
nents, H,/ and l‘I_L , with respect to the oscillating rf field.

Further investigations for various directions of the pumping light beam

and the transient solutions for the system of eqs.(5.26) may introduce some
interesting phenomena. This type of the numerical approach may be imporant

to describe the experiments performed in more general situations.
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5¢3+4. Competition of the Longitudinal Resonance and the Transverse Resonance
Saturation effects of the longitudinal and the transverse resonances for
the case that an oscillating rf field chos w t is perpendicular to the static
magnetic field M, have been investigated theoretically by Stenholm (1972a,b)
and Tsukada and Ogawa (1973a), respectively. This section descrives an
experimental investigation of the competition of the longitudinal and the
transverse resonances. The geometric configuration of the experiment is

showm in Fig.5.29. The circularly polarized light beam is parallel to the

<<

Hr
PUMPING

X LIGHT BEAM

Fig. 5.29. Geometric disposition to be considered.

oscillating rf field Hl and it is taken to be in the X direction. The compo-
nent of the magnetic field in the XY-plane is denoted by‘Hr, and H// and H,
are the components of Hr along the X and Y directions, respectively. We
have observed the variation of the light intensity after passing through the
absorption cell, as the magnetic field I{S taken to be in the Z direction is
varied negative to positive through zero. If the oscillating rf field is

absent, this situation corresponds to the anticrossing experiment. When the

two levels become degenerate, they can be coupled by a static interaction,
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and hence the anticrossing experiment can be regarded as a double resonance
experiment at zero frequency.

We want to observe the deformation of the anticrossing curve as the
intensity of the rf field is increased. Experiments were made for various
values of - wr/w with optically pumped cesium atoms. We show the experi-
mental results for the two special cases, i.e. wr<<<o and u)r» w, where
w.. denotes THr. For the case W €W the recoredr traces are
shown in Fig.5.30(a). On the other hand, for the case w_»w, the recorder
traces are shown in Fig.5.30(b).  Comparing Fig.5.30(a) with (b), we see
that the behavior of the variation of the transmitted light intensity for
the special two cases are quite different from each other. When the condi-
tion UJréiu) is satisfied, we can expect the variation of the light intensity
by using the notion of "dressed atom" introduced by Cohen-Tannoudji and Haroche
(1969a,b).  The variation of the transmitted light ALy for this case is
given as follows;

14 (WuT )2

Al = = — — (5.28)
14+ ( w,,2+ u)J_2+ c,uz)'li2

where

w,=v4,, w="1H, w, = T H,

’7"—”= r S }lg JO( a—Hl/w v o, T = Jo(le/w )T . (5.29)

The experimental results obfained for the case wr«»u) agree well with
eq.(5.28).

However, there hals been no theory which could explain the behavior of
the variation of the fransmitted light in‘tensity for the case wr»w .
Fortunatevly, this behavior is a.;ble to be explained quantitatively by using
the theory of the saturation effects of the .‘longitudinal and the tra.nsverse

resonances (Stenholm 1972a,b, Tsukada and Ogawa 1973a). From their results,
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Fig. 5.30. Recorder traces showing the variation of anticrossing

curve. A number written in each traces gives the

value Hl; Hl = number x 7 milligauss. Experimental

conditions: (a) W /27 = 3 KHaz, wr/27t

1 KHz,

(b) W /27t = 300 Hz, w_/27C = 35 KHz.

-171 -



we can see that at the same value of Hl’ the width of the longitudinal reso-
nance is much larger than that of the transverse resonance, and the transverse
resonance appears at large value of Hl. Therefore the deformation of the
anticrossing curve is explained as follows; (1) as H,=0, the curve coincides
with the anticrossing experiment, so-called anticrossing curve, (2) the dip
of the center of the anticrossing curve at le 4 or 5 is due to the longi-
tudinal resonance, (3) the longitudinal resonance is nearly saturated by the
rf field over all the anticrossing curve at Hl = 8 or 10, (4) the peak appear-
ing at the center of the dip as Hl is increased is due to the transverse
resonance corresponding to "crossing" of the energy levels. At the values
above H1= 16, the longitudinal resonance is completely saturated. Therefore,
the variation of the transmitted 1ight intensity is due to only the transverse
resonance. As is expected from the results of the saturation effects, the
magnitude of the transverse resonance increaseswith thé order of resonance
at the same value of H, as the Hl is increased. The width of the curve of
the transverse resonance is of the order of the decay rate [~ = 1/7T of the
étom for small value of rf intensity and become larger as Hl is increased.

If we use the crossing curve due to the transverse resonance
instead of the anticrossing cﬁrve, the components of the external magnetic
field could be measured with better accuracy than the measurement by using

the anticrossing curve (Aleksandrov et al. 1968).

5.4. Conclusion

In section 5.2, we have shown that the Haroche resonancescan be described
entirely by the continued fraction representations. These resonances occur
ét u)o = 2nWw as the intensity of the rf field Hl is small. Cohen~Tannoud ji
and Haroche (1965, 1969a) have shown that the width of the Haroche resonances

is determined only by the decay rate. Namely, they have concluded that the
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resonances are shifted but not broadened as the intensity Hl is increased.
But their results are applicable only to weak rf field. We have shown that
the resonances are shifted and broadened as the intensity Hl is increased,
and the broadening is remarkably for large Hl.

1t has been also shown that the variation of the width of the Hanle

curve by the oscillating rf field, i.e. the modification of the atomic g-
factor, is due to the Haroche resonances, especially for large intensity of
the rf field. If the pumping light beam directs to the y-direction, i.e.
perpendicularly to the oscillating rf field, the Haroche resonances are very
small and it is difficult to observe them.

The experimental results obtained are in fairly good agreement with the
continued fraction solutions. In the past, the variation of the width of
the Hanle curve by the oscillating rf field, i.e. the mddification of the
atomic g-factor, has not been related to the Haroche resonance. It should
be noticed that the Haroche resonance plays an important role on the variation
of the width of the Hanle curve. We also showed from the continued fraction
solutions that the positions of the Haroche resonances for large intensity
of Hl deviate from those obtained with perturbation theory. These facts
have been verified in optical pumping experiments with cesium vapor.
Moreover, the saturation effects of the resonance intensity for the large
intensity of the rf field have been investigated in the modulated components
in the transmitted light beam not only for the transverse pumping but also the
for the longitudinal pumping.

In section 5.3, we have treated the saturation effects for more general

/
/

cases that the static magnetic field with arbitrary magnitude directs an
arbitrary direction with respect to the oscillating rf field with arbitrary

intensity. The experimental results have been compared with the exact solu-

tions based on the numerical integration of the Bloch equation. It has been
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shown experimentally and theoretically that there exist the resonances similar
to the Haroche resonance at wy = nw , where n is an integer or zero. As is
expected from section 4.3, both the longitudinal resonance and the transverse
resonance appear simultaneocusly. The longitudinal resonances appear as the
absorption of the pumping light beam and the transverse resonances appear as

the increase of the transmitted light. As the intensity of the rf field is
small, only the longitudinal resonances appear, and for middle intensity of

the rf field both the longitudinal and the transverse resonances can be observed.
for extremely large inteﬁsity of the rf field, the longitudinal resonances

saturate and only the transverse resonances can be observed.
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CHAPTER 6

SUMMARY AND CONCLUSION

We have discussed the effects of the transverse optical pumping for
various configurations of the static magnetic field and the rf field(s), by
use of the Bloch equation.

In Chapter 2, we have briefly reviewed that for gpin-1/2 system the
equation of motion of the density matrix is equivalent to the phenomenological
Bloch equation, and have evaluated the monitoring operator and the excitation
matrix. By using these results, we have analyzed two simple cases, i.e., the

level crossing ( or the Hanle effect ) and the anticrossing experiment.

Various resonances treated in the later chapters can be essentially separated
into these two kinds of resonances.

In Chapter 3, the effects of the transverse pumping in the presence of the
rotating rf field(s) are discussed. For a rotating rf field which exists in a
perpendicular plane with respect to the static magnetic field, the transvarse
pumping leads the.new type resonance at twice the rotating rf frequenocy in
the unmodulated component and the component modulated at 2( in the trans-
mitted light beam. Then we have demonstrated that the Hanle curve is broad-
ened and is shifted towards high field region as the intensity of the rotat-
ing rf field is increased.

On the other hand, the theory on the transverse pumping in the presence
of the two rotating rf fields with different frequencies and with different
magnitudes predicts the resonances corresponding to the process of even number
of rf photons, i.e., zero photon process (the Hanle effect), two photon pro-
cess, four photon process etc., and the modulation of the beat frequencies

between the two rotating frequencies. The effects of the misalignment of

the rotating rf field in the magnetic resonance have been investigated.
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Three main effects arise: a shift in the resonance frequency, a reduction in
power broadening, and the appearance of the multiple quantum resonances at
integral multiples of the rotating field frequency. In addition it has been
shown that for weak static field the rotating rf field is regarded as a static
fictitious magnetic field along the rotating axis of the rf field.

In Chapter 4, the effects of the transverse optical pumping with the
linear oscillating rf field have been investigated. In the first instance,
the interaction between the atoms and the strong rf field has been studied by
analyzing classically and quantum mechanically the behavior of the optically
pumped atoms. The theory shows that the medium irrédiated by a strong linear

oscillating rf field becomes anisotropic and the atomic g-factor becomes a

tensorial quantity, and predicts that the component of the g-factor perpen-
dicular to the rf field is drastically modified by the rf field when the Hanle
effect or the parametric resonance takesplace. The theoretical predictions

have been verified by the experiments with cesium vapor. The atomic g-factor
has so far been considered to be determined only by atomic constants, so that

the fact obtained here that the g-factor is controllable by applying a strong

rf field might become important for the atomic physics, especially for the

rf spectroscopy and for studies on’atomic spin exchange between different species.
In addition we can expect the enhancement of the Overhauser effect by applying
this effect to the nuclear level.

Secondary, the misalignment effects of the linearly oscillating rf field lead
two types ofrmagnetic resonances, the longitudinal and the transverse resonances.
It has been shown tﬁét the parametric resonance and the Haroche resonance
correspond to the special cases of the transverse resonance. There is no
essential difference between the parametric resonance and the Haroche resonance.

For small misalignment angle, i.e., the static field is nearly perpendicular

to the oscillating rf field, the nature of the Haroche resonance appears
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strongly, and for large misalignment angle, i.e., the static field and the
rf field are nearly parallel to each other, the nature of the parametric

resonance appears strongly. In the experiment, simultaneous existence of
the longitudinal resonance and the transverse resonance has been observed.

In Chapter 5, semiclassical theory leading to the continued fraction
solution has been adapted to study saturation effects of the Haroche resonance.
We have shown that the resonances are shifted and broadened as the intensity
of the oscillating rf field is increased, and the broadening is remarkable
for large intensity of the rf field. Fortunately, however, the Haroche
resonances are shifted without being broadened appreciably when the rf power
is increased over a large range. So the Haroche resonances are the most
interesting for precise check of the higher order terms of the Bloch-Siegert
shift. It has been cleared that the experimental results for the shifts of
the Haroche resonances support the semiclassical approaches by Shirley, Pegg
and Stenholm rather than the gquantum electrodynamics approach by Chang and
Stehle.

It has been also shown that the variation of the width of the Hanle
curve by the linearly oscillating rf field, namely the modification of the
atomic g-factor, is due to the Haroche resonances. For the transverse pump-
ing perpendicular to the rf field axis, the Hanle curve is not only broadened
but also diminished in its peak as the intensity of the rf field is increased.

The experimental results obtained are in fairly good agreement with the
continued fraction solutions. In the past, the variation of the width of
the Hanle curve by the linearly oscillating rf field has not been rélated to
the Haroche resonances. We have cleared that the Haroche resonances play
an important role on the variation of the width of the Hanle curve. We also
showed from the continued fraction solutions that the positions of the Haroche

resonances for the large intensity of the rf field deviate from those obtained
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with the perturbation theory.

In addition, we have observed the oscillating terms at twice and four
times the rf field frequency for one and three, and three and fi?e quantum
transitions, respectively. Their behaviors are in very good agreement with
those expected from Stenholm's theory.

We have, last of all, studied the new type resonances when the static
magnetic field with an arbitrary intensity is oriented in an arbitrary direc-
tion with respect to the strong oscillating field. - The resonances of this
type appear at H; = nw/y . The behavior of the resonances is similar to
those of the Haroche resonance. As the intensity of the rf field is increased,
the resonances are seen to appear, shift and disappear. It has been cleared
that the modification of the atomic g-factor at Wy, = nw is related to these
Haroche like resonances. Namely, the values of u)l/u) , at which the Haroche
like resonances for W, = nt shift and enter H) = 9, correspond to the
values at the zeros of n-th order Bessel function Jn( 0)1/60 ). For W, = 0,
only the transverse resonances or the Haroche resonances occur, but for @), =
nw ( n»0), both the longitudinal or the multiple quantum resonances and
the transverse resonances or the Haroche like resonances play important roles,
simul taneously. The longitudinal resonances appear as the absorption of the
pumping light and the transverse resonances appear as the increase of the
transmitted light intensity. As the intensity of the rf field is small, only
“the longitudinal resonances appear. For the middle intensify of the rf field,
both the lohgitudinal and the transverse resonances appear simultaneously, and
for iarge intensity of the rf field, the longitudinal resonances nearly saturate
and hence only the transverse resonances can be observed. " It seems from the
experimental results and from the theoretical results that the Haroche like
resonances do not shift towards H0 = (H; + H.f_)l/2 =0 but HL = 0.

For low frequency of the rf field, i.e., W< [, the anticrossing curve
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which is described in Chapter 2 is defirmed strongly as the intensity of the rf
field is increased, and ultimately the sharp transverse resonance (Haroche
like resonance) appears.

Further investigations for various directions of the pumping light beam

and the transient solutions of the Bloch equation may introduce some intere-

sting phenomena.
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APPENDIX A  Density Matrix Treatment for the Rotating RF Field

The equation of motion of the density matrix (t), for ensemble
of spin J particles subjected to a constant magnetic field, a steady
"rotating rf field, relaxation or damping procesé , and regeneration process
which maintain a population difference between the Zeeman sublevels, is

given as follows;

p- lpel+ CIP-T1 +¥E . (a.2)
where

4 =3, Wy + wl(choswt+Jysinwt), - (a.2)

1 is the unit or identity matrix, [7 = 'z:-l, W represents the rate at which
particles are steadily supplied to the states of an ensemble in a constant
configuration PO by means of optical pumping process. The solution of

the equation has been given by Carver et al. (1966) as follows;

Z'_' -i(m-m'-m.+mt)wt 0
Pm,m'(i?) = ey e 00 w'omo,m(')
mY,m!
0’0

Rm,n n,m, Rm',n' Rn',m(')

, (2.3)
M+i [(mo - mylw + (nn') w 1 -
where (m,m',mo and m('))'kw are eigenvalues of J W , (n, and no)ﬁ_we are
eigenvalues of Jz we and Rm’n's are the individual matrix elements of the
rotation operator. They have applied this result to the considerably
simplified caseé that the my = mé termes can be neglected, i.e., Po does
not contain off diagonal elements. They have introduced a monitoring oper-
ator Q, and shown that the signals in various resonant experiments can be

easily obtained by the expectation value of Q,
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<Q> =Trace (pQ) = ) Pont) G p . (A.4)

For. the transverse pumping, the off-diagonal elements of Po are
important and cannot be neglbected, since they give rise to the effects of the
transverse pumping.

For the case that the system is spin 1/2 and for single beam, matrices

Po, Q and R are given by

l+cos 6 sin @ ‘
Q - (A.S)
sin® 1l-cos 61’
0 1l + cos@ sin 8 '
P - M (A.6)
sin @ 1l - cos@ !
cos( B/2) - sin( B/2)
= . (A'7)
sin( 8/2) cos{ 8/2)

From eq.{A.2), the elements of the density matrix for spin 1/2 can be obtained

as follows;

L (M- w [ - i(w, We)
+ TPL _%{ N sinBcosB - = (o ++we)2 sing (1+cosp)

: 0 .
C-i(w - We) Sin,B(l-cos,B)}eiwtw“—Z—Pll{ AULTLD
2

r2+(w - we)z __2_’ r’2+ w2

M+ i(w-We)
M (w- we)2

X(-sinpg cosp ) - sinp(l-cosﬁ )

M4 i(wWyWe) ~-iwt
= i 1 ’ A.8

(] iwt

' 1 w 1w
( +ix Jeriwt L —=01 1( x'-ix'")e |
|% X ) 2r P 2' 2 t/

- O

x LI
P11 =P
2'2

/
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W50 2(M - jw) 2 M-i(w+ we) 2
* 4 P.l_,.l‘ 2, w? (-etn '8)+l"2+ (w+ w )2(1+cos,8)
2% 2 e
(W .- we), }i2wt W_ 50 { 2P+ i)
lcozap)2 e + P
e (w- w )2 4 -%,% r’2 w?
My i(Wy We) M4 i(w_ W) 2 -i2wt
r'2+(w+w)2 r'2+(w-w)2}( sin ) ’
e e (A‘9)
__W__ 0 w0 1, _w_ 0 AN —iw )
fii1~72p fL1" r*f’,;;“'zp)* 4 P,l,_;{r2+ w2
2°72 2'2 2'72 272

Mo j(W. We)
re (w- u)a)2

sin 8 (l+cos 8) -

x sin 8 (l-cos,B)}e * P = I sin Bcos 8

—r—

iwt w0 {2(r'+1m
1
2'2

M+ (W We) g 1-
r2 (w-we)zsnp( woeh)

M4 i Wy We) .

xe 1@t v (A.10)
where
2 Aw w : w
w, X = 1_ g —al . (a.11)
P==3 7 r2, w? re,; w?
re + w, e e

By substituting egs.(A.5) (4.10) into eq. (A.4), we can obtain the same

result as eq.(3.8).

APPENDIX B Parametric Resonance

The pumping light beam is perpendicular to the static field Ho, and
Hcos w t is parallel to H, ( see Fig.1.2(d)). As mentioned previously,

the transverse pumping creates a magnetization in the vapor only for small

fields. This is the Hanle effect, or the zero field level crossing.
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If the rf field is presented, the situation is changed, and the transverse
pumping creates a magnetization not only for small fields but also strong

fields. In the parametric resonance case, the Bloch equation becomes as

follows;
X,
d M
+ 1
—d-t—-.—i( wy + wlcoswt)l(+— =M o+ (A.12a)
d Mz l(z
R (a.12b)
= . A.12
Mo=M +1 My ( c)

The solution of eq.(A.12b) is M, = 0. We can rewrite eq.(A.12a) as follows;

1
)|
d 1 0
[ s .,.-—-+1(w0+ wlcoswt)]l(+-—-,c . (a.13)

The solution of eq. (A.13) without the right handed term is given

M+(t) - e-t/'r e-i( Wot + —— sinwt ). (A.14)

Substituting eq.(A.14) into eq.(A.13), A becomes a function of t ( method
of the variation of constant ). Therefore, we obtain the following

equation for X ;

n(') . wy
gtx -t ot/ T Gdwgt 1 —5— sinwt (A.15)

For integration of eq. (A.15), we use the well-known relation as follows;‘
PP SR w, + inwt
e w - n=Z_:°°Jn( w ) e = ’ (A.16)

where Jn is the Bessel function of n-th order, and n is an integer or zero.

When n is an integer of negative, we have
n
ao= (). (A.17)
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Using the relation (A.16) into eq.(A.15), it becomes

=

ax (') S wy ol (w w)l t
=4+ 1 +n
T " Z_. J(—=)e T 0 . (A.18)

This equation can be immediately integrated and - N\ is given as

J(wl/w) [(1/’5)+l(w +nw)lt

A=

a|o=-
[Ms
.

I:

oo (1/T)+i(“)0+nw) -(4.19)

In eq. (A.19), we have zero as the constant of integration, because the constant

may disappear after the relaxation time T . By use of eq.(A.16), we can

M+(t);A i 7 (=) e'.[%*‘ i(wg+qw)lt

Qoo Q' W . (A.20)
Substituting eq.(A.19) into eq.(A.20) and replacing n-q = p, M_ becomes *
as follows; |
' w w o
1 1
M, = e I (Sl (e
0 -
(t) = — n' w n-p' W eipwt .(a.21)
N=~00 p==00 (1/'c)+i(w0+nw)
Rewriting this again,
M+(t) 1pwt -ipwt
= Ay + Z, (A +A_e ) (A.22)
p=-1 P
with
2, w1
p - 5 Iy ) 4
= ' A02
0 n=—o0 1 + i( u)0+nw)’c ’ ( 38)
w w
1 1
A+ S ) Jnﬂ)( w )
+ .
P n=-00 1 + i( (.L)o +nw )'l: B (A 23b)
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By using the relation (A.12c), M_ and M& are given as M_ = Re M, My = In M.
We know from eq.(A.22) that the resonances occur for w, =nw . As the
intensity of the rf field is increased, we observe no shift and no broadening

of the resonance curves. These resonances may be detected at the various

o
harmonics pw of the transmitted light beam. Their intensities as a
function of (ul/oo have been theoretically predicted and experimentally
4
measured (Polonsky and Cohen-Tannoudji 1965, Favrd and Geneux 1964, Aleksandrov,
Constantinov and Perel®1963).
APPENDIX C Transient Phenomena in the Presence of the Oscillating RF Field
We consider the behavior of the free induction decay of the magnetization
undergoing the affection of a linearly oscillating r»f field. For this case
. the Bloch equation is given in the form
‘ d M M |
[ 4 —
i - Yoy - o (A.24a)
A M M
——ldt - WM + wicoswt U - —:CL , (4.24b)
d Mi Mz
T T T W Wit M - =2 (a.24c)
Consider now the transformation of the coordinate system, that is a trans-
formation to a frame Ox'y'z' rotating about the x axis with a frequency-
w
modulated angular velocity @ (t) = (Ul sinw t. Under this transformation,
' the Bloch equation is written as follows;
: d Mx' Mx'
v T = Woos A (t) ny, + W sin @ (t) W, -—=2— (a.25a)
a M, M {
—Y—dt = - w,cos @(t) M, - -—-—Y—,t , (A.25D)
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d M,
Z
at

= - wysin @(t) M, - ,Cz' . (A.25¢)

Using the relation (A.16) and assuming that W, must be small enough to allow

the approximation w & W, eqs.(A.25) become

d M, w M,
X 1 X

T~ Wolol g ) My =T (a.26a).
d M, w M,
A —2 P AL

T = - W Jo( o) M = (A.26b)
ke = - e (a.26c)
at T .

The solutions of eqs.(A.26) can be obtained as

w
-t/ 1
M,=0C e cos W, Jo(-—w 't (A.27a)
w .
-t/T 1
M, =Cpe /T sin SN N ey AT ' (A.271)
MZ' = C2 ] (A'27c)

where Cl and 02 are the integral constants, which are decided by the initial
conditions'. Suppose a 90o pulse is applied and MO' lies along the x axis.
The initial conditions for this case is that at t = O, Mx,- 0" and hence
C1 = MO" 02= 0. Returning to the laboratory coordinate, the components of

magnetization are

LRSS wy
M= M, e /cos{ w JO(T)t} , (A.28a)
Y W,y Wiy W,y
My =M e sin { W, JO(T)t}fJO( " )+ eén 2Jp( ™ Ycospw t].
harmonics ‘(A.28b)
Yoo - ~t/T . wy “y
M =-MNe /T gin {w, JO(—E)—-)t}{ 2. 2Jp( o )einp w t]. (A.28¢c)
odd
harmonics
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These expressions are the same one as derived by Series and Pegg (Series 1970,
Pegg and Seiies 1970). Neglecting the harmonics of rf, one find that the

magnetization becomes

w
M = M(') 8T s {wg JO(T})t) ) (A.29a)
[] - w U)l
My =M e t/z Jo( wl) sin { w Jo(—w')t} s (A.29b)
M, =0 . (A.29¢)

Transverse component M, with respect to I{o is

M = M(') e-t/t[i cos{wyd, )t'] + on( )sin{w wl)}] ,  (a.30)

which shows that the Larmor precession around Ho is no more circular but

elliptical. This equation can be rewritten as follows;

Wy
1+ 3,0 ., _
M = ——29-(——— M, e t/T[x cos{wo Jo( )t}+ k) sin{wo JO( ) }]
w3
1-J ( w) [
+-———0-2——Mo e t/t[i cos{w 0( )t} -3 s:m{ o Jo(-—ww—l-)t}].

(4.31)

This expression shows that the magnetization M, consists of the two rotating
components with the angular frequencies + w JO( wl/w ), and their
magnitudes are 2-1( 1+ Jo( wl/w )) and 2-1( 1 - Jo( wl/uo )), respectively.
This result was obtained by Cohen~Tannoudji and Haroche (1969b) and Landre

et al. (1971). They have shown theoretically and experiméntally that the
"dressing" by a nonresonant linearly oscillating rf field chos wt

introduces an anisotropy in the magnetic properties of an atomic system: the
Lande g-fac'tor depends on the angle between the static field HO and Hl;
the Larmor precession is no more circular but elliptical.
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