DEVELOPMENT
OF
AN IN-HOUSE COMPUTER NETWORK KUIPNET

Shigeyoshi KITAZAWA

Department of Information Science
Kyoto University

December 1976

.

¥

DEVELOPMENT
OF
AN IN-HOUSE COMPUTER NETWORK KUIPNET

Shigeyoshi KITAZAWA
December 1976

Department of Information Science
Kyoto University

Kyoto, Japan

Submitted to
the Faculty of Engineering of Kyoto University .

DOC in partial fulfilment of the requirements
for the degree of Doctor of Engineering
1977 |
2

DEVELOPMENT
OF
AN IN-HOUSE COMPUTER NETWORK KUIPNET

Shigeyoshi KITAZAWA

ABSTRACT

The Kyoto University Information Processing NETwork
(KUIPNET) is a network connecting several computers located in
one house. Its purpose is to realize resource sharing in in-
formation processing. The six local heterogeneous computers
are connected with a switching computer through high-speed lines
(1.6 Mbps), and a remote computer is connected with the switch-
ing computer through a 4,800 bps line. General and efficient
facilities for interprocess communication have been implemented
in the medium sized computers, and the in-house computer network
has been successfully connected, as mentioned above, to a remote
computer. The priority of the channel of the switching computer
is controlled to guarantee a stream of high-speed transmission
(800 kbps) concurrently with other streams of low-speed trans-
mission. Speech and picture data, files, and character strings
can be transferred among the computers in this network, which
allows for the mutual resource sharing. The performance so far
of the network, measured by specially prepared tools, has turned
out to fulfill the required transmission rate of the real-time

speech wave form—200 kbps.

ACKNOWLEDGMENTS

I would like to express my hearty gratitude to Professor
Toshiyuki Sakai for his guidance, constant support and encourage-
ment during the course of development of the KUIPNET, and also
to Associate Professor Koh-ichi Tabata for his continuing sup-
port. Dozens of students and members of the staff have contrib-
uted to the implementation and testing of the system described
in this thesis, but special appreciation is extended to Associ-
ate Professors Shigeharu Sugita (National Museum of Ethnology)
and Takeo Kanade, Dr. Kenji Ohtani, Mr. Tsunetoshi Hayashi,

Mr. Hirokazu Ohnishi, Mr. Kimio Maekawa, Mr. Hideji Saka,
Mr. Miéhiaki Matsu-ura, Mr. Kiyoshi Ito, Mr. Hiro-o Ueda,
Mr. Masakazu Tanaka, Mr. Kenichiro Yanagi, Mr. Yasuo Ariki,
Mr. Naoto Fujiwara, and Mr. Hirofumi Fujiwara.

In completing this thesis, I wish to thank to Professor
Shuji Doshita and Mr. Susumu Yamasaki for their support and
lastly I would like to thank to Miss Gretchen K. Mittwer for

her effort in correcting the manuscript.

- ii -

TABLE OF CONTENTS

ABSTRACT e e e e e e

ACKNOWLEDGMENTS e e e e e e e e s e e e e e e e . . it
TABLE OF CONTENTS e B & §
CHAPTER I INTRODUCTION e e s s e e e e e e e s
1.1 Motive for Development of KUIPNET 1
1.2 Development of In-house Computer Network
KUIPNET & v v o o o o o o ¢ o o o o o s s o o 8
1.3 Configuration of KUIPNET e e e e e e e e e e 15
CHAPTER II DESIGN OF KUIPNET'S IN-HOUSE COMMUNICATION
NETWORK + & ¢« ¢ ¢ & o o o o o & .. 19
2.1 System Design of Communication Network 19
2.2 - Hardware Design of Communication Network . e s 30
2.2.1 Hardware Configuration of Switching
Computer . . . e e e e e e e . 30
2.2.2 Control Hardware for High-Speed
Transmission . « « « « « o ¢ o o o« o o 32
2.2.3 Computer Connection Control Equipment . . 36
2.2.4 Estimation of Transmission Rate of
Computer Connection Control Equipment . . 43
2.3 Software Design of Communication Network .« . e 45
2.3.1 Message Switching Program 45
2.3.2 Core Map of Switching Computer 47
2.3.3 Routines of Message Switching Program . 49
2.3.4 Transition Control between Routines . . 52
2.3.5 Communication Control Procedure . . e . 53
CHAPTER 1III DESIGN OF COMMUNICATION FACILITIES FOR
PROCESSES e e e e e s e e e e e e e e 57
3.1 Concepts of Inter-Process Communication 57
3.2 Network Control Program (NCP) +« « « « . 63

- iii -

3.3
3.4
3.5

CHAPTER

4.1
4,2

4.3
4.4
4.5

3.

4.6

CHAPTER

5.5

2.1 Inter-NCP Communication Functions . .
2,2 Inter-Process Communication Functions .
2.3 Flow Control Mechanism for High—Speed
Transmission e e e e e ¢ e e .
2.4 Example of Implementation of Network
Control Program e e e e e e e e .
2.5 Example of Inter-Process Communlcatlon
Operating Monitor for Minicomputers « e e
Terminal Supporting Processes o e e e e
Magnetic Tape File Transfer e e e e e e
IAY EXTENSION OF IN-HOUSE COMPUTER NETWORK
KUIPNET TO REMOTE COMPUTER SYSTEM
(TOSBAC 5600/140) e e e e e e e e
Outline ¢ & v 4 v v v v v o v e e e

Configuration of TOSBAC 5600/140 - KUIPNET
Connection S e e e e e e e e e e e e e e e
Communication Control Procedure
Network Control Program for TOSBAC 5600/140
Measurement and Estimation of Throughput
Higher-Level Communication Function — Server

TELNET for TOSBAC 5600 TSS Subsystem o« o e e

V - PERFORMANCE MEASUREMENTS OF SWITCHING
COMPUTER AND NETWORK . « ¢ « ¢« « « o+
Introduction e e e e e e e e e e e e e e e

Performance Measurement of Switching Computer

Measurement of Network Throughput
Measurement of Network Traffic e e e e e
5.4.1 Classification of Traffic e e e e e e
5.4.2 Traffic Measurement Tool

5.4.3 Example of Observed Result

Network Measurement System o e s s e e e e e
5.5.1 Parameters Dealt with in the Measurement
System . . . s e e e e e e e e e

5.5.2 Log-File Record Format e et e e e e e

iv

63
68

72
717
80
83
85
89

93
93

94
97
103
104

106

111
111
112
122
124

124
127
129

132

132
134

(G300, IV, }
.
wvr ot n
.
wv W

CHAPTER VI CONCLUSIONS

REFERENCES T

LIST OF PUBLICATIONS AND TECHNICAL REPORTS

Initiation of Log-File
Space-Saving in Log-File
Results and Considerations

137
138
138
143
147

151

CHAPTER I: INTRODUCTION

In this thesis a computer network means "a resource shar-
ing computer network.' In most computer networks, the computer
systems are geographically distributed. A resource sharing
computer network located in a single vicinity, or located in-
house, however, can be built efficiently and with less difficul~
ty. High-speed transmission capability is the main asset of the
incorporation of computers on the premises. This thesis
describes the in-house computer network KUIPNET (Kyoto
University Information Processing NETwork), in which
heterogeneous computer systems are connected together with a
high-speed switching computer to support various researches
on information processing.

We describe in this first chapter our motive behind the
construction of this network. Then its development is

chronologically'explained.

1.1 Motive for Development of KUIPNET

KUIPNET has been developed funded by our intensive
motivation to carry out research on information processing
[Sakai, 1973]. The word "information" is used here to mean one
of the following: (1) data, programmed in coded form, (2) wave-

forms such as speech wave, (3) line drawings, figures, and

-1 -

grey-scale or color photographs. Our main goal has been to
give computers a capability to understand the intentions of

we human beings who use them as a powerful partner in our
problem-solving process. Computer systems also greatly
facilitate our studies in information processing research.
Through computer processing utilizing powerful question-
answering mechanisms, researchers both individually and
collectively have spent years of great effort to understand
natural speech, handwritten and printed characters, or natural
scenes. Such studies would be impossible without the aid of
computer systems. For the input/output of speech data in
speech recognition or synthesis, the on-line real-~time mode of
computer system has been used.

From the beginning of our research through 1970, we
depended on only a single computer system utilizing the on-
line real-time and batch processing methods. 1In 1971, a new
minicomputer-controlled terminal system which handled the
input and output of pictorial data was installed. This
minicomputer and its inclosing terminals and peripheries plus
our conventional computer system made up a computer complex on
which an interactive picture-processing system was constructed
[Kanade, 1973]. Another minicomputer-controlled terminal
system which handled the input and output of speech data was
then installed. Although this computer system made it capable
for us to carry out fundamental experiments on speech
recognition and the synthesis of single words, it was still
necessary to connect it with a larger computer system which
would provide a higher level understanding mechanism for long
and continuous speech sentences and a large-volume high-speed
file storage.

From our experience, what would be most effective for our

-2 -

purpose was an on-line real-time information-processing
system with powerful question-answering capability. This
requirement might have been fulfilled by composing a computer
complex according to individual application as mentioned above.
However, there is a great difference in organization
philosophy between a computer complex and a computer network.
A computer complex may be considered a special form of
network in which the various components are integrally linked
within a single facility. The relationship between two
computers in a computer complex is as that between a parent
company and its subsidiary. From when the system is in the
stage of being designed, the functional relation between the
two computers is usually specified in detail and fixed. On
the other hand, a computer network is a system in which
computers are autonomously combined without altering their
domestic control. Computer systems communicate with each
other in order to share certain resources such as programs oOr
data—and/or for load sharing and reliability reasons. "To
share certain resources' means that a certain resource is made
useful for a user who could not use it before in a productive
manner. If a certain resource is usable for one user in the
network, that resource can be utilized by any other user in
the network by following the way the first user utilized it.
The resource becomes, as it were, the common property of the
network. May I remark that it is the uniformity of the
network structure which, notwithstanding the independency of
the Hosts' dissimilarities, allows the establishment of common
procedure, or ."protocol". The generality and non ad hoe
approach of the computer network satisfies our purpose.
Eventually we decided to build a communication network

among the already distributed processors. In 1972, the

-3 -

computers were connected effectively by a communication
network, each component of which had been developed for
different purposes of information processing and possessed its
own characteristic terminals and peripheries that the other
computers could not provide.

There are many computer networks intended to share certain
resources [Farber, 1972]. We will outline below several
typical networks, the motive for the construction of which

seems partially common to ours.

DCS— The Distributed Computer System (DCS) [Farber, 1972] is
an experimental computer network under development at the
University of California at Irvine. It is intended to service
mini and midi scale computers. Its communication facility is
a ring network, whose data rate is 2.3 Mbps. Under its
particular hardware and communications facilities, a network-
wide standard process naming and addressing protocol was
incorporated.

DCN— The Distributed Computer Network (DCN) [Mills, 1976] is
a resource sharing computer netwofk under development at the
University of Maryland. ' The DCN is implemented on several
PDP11/45s; therefore the composition is homogeneous. An
important goal of the DCN is to provide the user with a uniform
interprocess communication mechanism, independence of process
location, and a process structure that is identical throughout
the network.

ARPANET— Perhaps the most widely publicized computer network
of the type we focus on is ARPANET [Roberts, 1970], funded by
the Advanced Research,ProjectsAgency, which connects
heterogeneous computer sites via a packet-switching communica-

tion network. The communication network is composed of IMP

-4 -

(Interface Message Processor) node computers which perform
store-and-forward message switching [Heart, 1970]. These IMP
node computers are distributed nationwide. A Host computer is
a subscriber connected to the network via a local IMP. In the
ARPANET most Host computers offering service are time~-sharing
systems (TISS). A remote time-sharing system may be used via

a local terminal through the network as if it were a local
terminal of the system. Most data transferred through the

network are characters from/to various key-board terminals.

Very high-speed transmission of raw data is the key for
an in-house computer network. One advantage of our KUIPNET
network is that it is confined to a building or a local
network wherein communication costs are not cfitical. Most
data communication facilities are composed of lines leased
from the common carrier and coupled with various concentrat-
ing units. In aAsingle building or campus, communication
facilities may be composed of private-exchange lines or high-
speed lines, available with only a small initial investment.

A computer network need not cover the entire nation. Indeed,
we believe a computer network limited, for example, to a
building or campus also has merits in its own right.

The need for such local networks is becoming increasingly
common. The greater the number of computers housed in a
common center, the more intense the need for inter-
communication. Non ad hoe solutions to this particular
problem is very important, and one such solution which we are
working on is general wideband interfacing. Recently a large
special communication system was reported in the ARPANET
[Mann, 1976] wherein a front-end computer provides connections

among several on-site Host computers, a number of shared

-5 -

peripheral control computers, several network ports, and

several hundred terminals of various types.

The benefits expected from our computer network are as

follows:

(1)

(2)

(3)

Facilitation of communication—If a certain job requires
the interactive usage of more than one computer, this
necessitates automatic switching from one computer to
another at electronic speed. In other words, fhe
computers are to be switched over automatically as the
program runs. This characteristic is also essential for
dynamic and efficient process-process communication and
is similar to the role of the electronic exchanger device
in the tele-communication system. It may be possible for
a minicomputer to be used as an exchange device. Note
that the data which passes through the exchanger is not
only command characters but also high-speed large-volume
raw data (e.g., speech data or pictorial data).

Hardware sharing—The total cost of peripheries is very
large if each computer is fully and individually equipped,
but the store-and-forward method for communication
between computers and terminals makes it possible for a
group of computers to share the file storage or
peripheries as common storage or terminals.

Distributed computation—In order to increase both
efficiency and cost performance, it is sometimes necessary
to decentralize the processing power and distribute it
among many processors which are more suitable in their
processing capabilities or hardware. No matter how high

the degree of integration may be, the variety of functions

and amount of data that can be accumulated in one place
are limited. A larger system may be constructed using
computers which individually do not have enough capacity
to house the complete system. This type of layout is
anticipated to greatly improve the efficiency of the whole
system and to open up a new field of computer application.
Subsequently, however, a problem of specialization arises
in such a community of computers. In each computer it
would be desirable to have characteristics that the other
computers cannot provide. It would be very advantageous
to construct a network by connecting computers that have
distinguishing features.

(4) Protocols—One of the most important benefits of our
KUIPNET system is the homogeniety of the network structure,
accomplished through the design of the communication
network and inter-computer communication control mechanism,
and finally the protocols on the user level. If a user
himself had to prepare an enormous amount of complicated
procedures at all points, a computer network would be
impracticable. This has greatly affected the development
of the resource-sharing network. In our system, as resource
production activities are very high, a resource is available
also for other users if it follows an authorized method and
is usable anywhere in the network, this is made possible

through the construction of protocols.

Although the new concept of the ARPANET resource-sharing
computer network has influenced us very much, the concept and
motivation behind the in-house computer network which we have
developed is different. The ARPANET offered us a possible

solution to the make-up of a resource-sharing computer network.

-7 -

The network combines many TSS computers and realizes resource
sharing—the interactive use of remote computers. The kind of
input/output information to and from a TSS computer that is
joined to the computer network is usually in the form of a
command consisting of several characters. Communication of
short messages via a key-board may be sufficient for a TSS
computer network; however, the prospective computer network
which we were trying to develop was not to be used only for
key-board communication but also for the transmission and
processing of data from speech waves, drawings, and photo-
graphs. In these cases, it would be necessary to send a

great deal of what we call "raw data'". Such raw data is very
difficult to transmit on a voice-grade communication line
(from 50 to 1,200 Baud); it needs an extremely high-speed
communication line (about 10® bps). To permit the transmission
of raw data, the specifications of the network design would be

somewhat different from those of ARPANET.

1.2. Development of In-house Computer Network
KUIPNET

Let us here look back to when our computer network
project was started and describe in brief the history of its

development.

Fundamental Studies of Computer Networks:

When we began the project in 1972, an initial
investigation on computer networks was first made especially
on the ARPANET. Through the investigation we came to think
that the most important concept of such a computer network
was "resource sharing'"; and this was well realized in the
ARPANET. So, the basic design of our network was directed
toward constructing a heterogeneous resource-sharing computer
network for information-processing research.

The first version of our design specifications were
based on a message-switching computer (IMP) in August, 1972,
and the high-speed Host-IMP connection hardware was
standardized for in-house use in September of the same year.
Experiments using the above-stated standardized interface
hardware on communication between NEAC 2200/200 and TOSBAC 40
in the distance of 400 m were successful, achieving a 1 Mbps
transfer rate. After this we began to design layered
protocols for inter-process communication; IMP-Host protocol
and Host-Host protocol. In February, 1973, the first version
of an NCP (Network Control Program) was implemented on NEAC
2200/200 to test these IMP-Host and Host-Host protocols.

The following month, an experimental resource sharing
was demonstrated using two computers, NEAC 2200 and TOSBAC 40,
connected by the above-stated hardware. Wave form data sent
from NEAC 2200 to TOSBAC 40 was processed via a Fast Fourier
Transform program, and the resultant spectrum data was sent back
to NEAC 2200 and displayed on a line printer. NEAC 2200, a
medium-sized general-purpose computer, perforﬁed as an input
file machine and an output file machine in this session.

TOSBAC 40 provided its high-speed processing capability but

-9 -

relied on the other computer, which had various peripherals,
for data input and output. This was an example of

peripheral sharing and processor sharing.

Foundation of KUIPNET:

April, 1973 saw the commencement of our in-house network
project, which was named KUIPNET (Kyoto University Information
Processing NETwork). Many staff members of our laboratory were
put to work on the implementation of its hardware and software.
The interface hardware for each Host and the NCPs, and also
for the IMP and its message-switching program had to be
materialized.

In designing both the hardware and software of the IMP,
the main problem was how high-speed raw data typical to speech
'could be made to go through the IMP. This point was our
challenge, since it was not clear whether computers of the time
(stored-program digital computers) could possibly perform
such high-speed switching. A hardware circuit-switching
system would have high-speed switching capability, but would
be costly and not flexible. Programmability was indispensable
for our system, because it might be extended to a wider network
or altered to test other control algorithms. After considering
several possibilities, store-and-forward message switching with
a minicomputer was decided upon. We employed a new idea to
allow co-existing real-time data transfer and character-
oriented transfer; a programmable priority control circuit
which assigns channel capacity to any channel designated by a

message.

- 10 -

The basic design of the IMP interface circuit was modified
to adjust to the interface condition of each Host; for MACC 7/F
and MELCOM 70. By March the design of the interface circuit for
the IMP side of the connection had been drawn up and was
ordered to be etched on the card. The necessary number of
didentical printed-circuit cards was produced.

By June, 1973, the design and implementation of the Host
monitor, NCP, and File Control Program for NEAC 2200 were almost
completed, and the operating monitors and NCPs of minicomputer
Hosts MACC 7/F and MELCOM 70 had been embodied. Around July,
1973, implementation of the NEAC monitor, NCP, and File Control
Program was completed. Debugging of the MACC's NCP and monitor,
and the MELCOM's NCP and monitor was finished.in the middle of
August.

The wiring and assembly of parts onto the IMP interface
board then began, and it too was débugged. In September, IMP
hardware tests were carried out and several troubles were
solved. An IMP-Host connection test was carried out including
a Host interface hardware test. Cables were routed between the
IMP and Hosts.

The first version of our IMP program was implemented and
tested in October. This version contained only a core of IMP
functions sized about 1K words. Through November, Host-IMP-
Host communication tests, NCP-NCP communication tests and
process—-process communication tests were carried out, and the
Host NCPs, monitors and IMP were debugged.

The first demonstrative specimen job, which included speech
data, pictorial data and character-transfer over the network,
was successful. And by this time dubugging of the total system
had been completed. The HITAC NCP was implemented in February,
1974.

- 11 -

Improvement and Enrichment of the IMP, Hosts and User

Processes:

Through 1974, improvement and enrichment of the IMP, Hosts
and user processes was being advanced. A revised version of
the IMP program was installed, which increased its reliability,
function and efficiency. Measurements were taken on the
performance of the IMP and the network throughput, and it was
decided to implement the IMP with a Terminal IMP (TIP).

The original NEAC 2200/200 Host computer was replaced by
the more powerful NEAC 2200/250 which works on a disk base
operating system and possesses a larger main memory size, a
scientific calculation unit, and a memory protection mechanism.
On this machine, more authorized methods of network access have
now been implemented by Hayashi[1977]—the NOS (Network-Oriented
Operating System). The MELCOM 70 Host computer was enhanced by
a powerful operating monitor which allows multi-job operation,
and equipped with an additional 8K-word memory.

As sophisticaﬁed user-level application programs appeared,
many difficulties on inter-process communication and on
synchronization of independent processes in the separate computers
sprang up. HITAC 8350 was used through the network from MELCOM
70 for'Fast Fourier Transformation of on-line transferred speech
data. TELNET was implemented in MELCOM 70 and in the IMP which
controlled file access in NEAC 2200. The network-shared memory

was installed in the KUIPNET under U-200's control.

Extension of KUIPNET:

In 1975, a new version of the Terminal IMP(TIP) and also of

- 12 -

the Server TELNET were implemented around the IMP. - Magnetic
tape file transfer became possible between the IMP and NEAC 2200.
A Very Distant Host, TOSBAC 5600 in Osaka, was connected to the
IMP via a 4,800 bps line to provide a GCOS time-sharing system
accessible through the TIP Server TELNET from the Host TELNET
system in KUIPNET. Process—to-process communication in
transparent mode was also made possible over this connection.
The Picture-Processing Program [Kanade, 1976] also became
accessible through the IMP from TOSBAC 5600.

KUIPNET was hooked up with the university network which
connects Kyoto and Tokyo by a 48 kbps line. In order to do
this, protocol conversion was necessary, and for this purpose
a Host U-300 was connected to the IMP. The establishment of
a connection and flow of data between the two different networks
were controlled via this gateway.

The network-shared memory, composed of the U-200 and 256K~
byte IC-memory, was authorized to have access in the network
through the "pfocedure call"” protocol supervised by the POEM
(Paging Oriented Executive Monitor) [Tanaka, 1976] in U-200.

In order to gather data about the traffic between the Hosts,
the IMP load and generally about network usage, a network
measurement system was implemented in the IMP.

Manuals describing use of the KUIPNET were published in
March, 1976 [Kitazawa, 1976; Hayashi, 1976; Kanade, 1976].

- 13 -

TV, XY plotter,
PTR,TW.

Figure 1.1

TOSBAC 5600 MT x5, DP x6, LP x2, CR x2,
CRT x3, CP, PTR, PTP.
32 K x 4 W= 36 bits.
1.6us
DN 340
HITAC 8350 FACOM U-200
256 KB(8bits) 4800bps leased line 8 KkB(8bits)
1.4 ps 50 km 750 ns
MT x2, Extended memory
DP x3, 256 KB, 800 ns
LP, CR, 5m 15m TW, PTR,
PTR, PTP. Cassette MT x2.
TIP(IMP) >NEAC 3200/50 PANAFACOM
™, ; U-300
MT x1. SEOK;‘S%”S) 5om 64 KB(8bits) 7~
650 ns 48kbps
/ \\\\\\\\\ leased
PTR, PTP,TW, Tline
>0m //// 15m Cassette MT x2.
MACC 7/F MELCOM 70
16 KW(16bits) 5m 24 KW(16bits)
600 ns 800 ns
. A
MiniDisk, & NEAC 2200/2508B 7/,?/ CRT, AD/DA, Colour TV,
Flying spot 256 Keh(6bits) B Cassette MT x2, PR,
scanner, Graf 1 us THW.
pen, CRT, Color "

MT x3, DP x3, LP, PTR,PTP.

4 coaxial cables.
64 coaxial cables.
K = 1024.

APRIL 1976.

Configuration of KUIPNET.

- 14 -

1.3 Configuration of KUIPNET

The configuration of KUIPNET is shown in Figure 1.1.
Fundamentally, the Hosts are connected in star fashion to the
message-switching computer IMP. The types and characteristics

of the Hosts in the network are as follows:

NEAC 3200/50— a message-switching computer IMP, it possesses a
32K-word (16 bits/word) core memory filled to capacity, 0.96
psec memory cycle, and 16 slots of Direct Multiplex Channel
(DMC) with priority control. It takes four memory cycles to
transfer a word via DMC channel. The order of priority of the
channel is programmable vZa the control logic that is specially
desigﬁed for this purpose. This computer is equivalent to
Honeywell's DDP-516. Other programmable features are; inter-
ruption, memory protection, and 250 usec interval timer.

This computer is equipped with a teletypewriter, a paper-—tape
reader, a magnetic-tape handler, a 4,800 bps communication
controller and modem. Currently the IMP is connected with 5
local Hosts, a gateway, and a Very Distant Host in Osaka via

a 4,800 bps communication line. This computer serves not only
as a message-switching device but also handles the communication
between the Host in Osaka, the User and Server TELNET, and takes
care of statistics.

NEAC 2200/250— a medium-sized machine equivalent to Honeywell's
1250, this Host is equipped with a disk, magnetic tape, line
printer and 256-kilocharacter main memory. Around this computer
a new operating system has been developed which provides multi-
programming and multi-network-entry facilities [Hayashi, 1977].
HITAC 8350— a micro-programming computer with multi-programming

operating system, its on-line user is restricted to one.

- 15 -

MACC 7/F— a minicomputer for the pattern recognition and
picture-processing group, this mechanism consists of a 16K-word
(16 bits/ word) core memory, 0.6 usec memory cycle, the on-line
control of a flying spot scanner, a Graf-pen, CRT, and Color TV
display. Recently, however, it has almost retired from the
KUIPNET computer network and matured as a front-end processor
of a computer complex with NEAC 2200/250 for picture processing.
MELCOM 70— a minicomputer for the automatic speech-processing
group, this is equipped with a 16K-word (16 bits/word) core
memory, 0.8 usec memory cycle, A/D converter, D/A converter,
CRT, and cassette MIs. Since a large volume of high-speed
speech data is transferred in real-time through the network to
NEAC 2200/250 to be stored into the disk file, MELCOM 70 is the
keenest computer of the network.

FACOM U-200— a minicomputer with common-bus architecture, the
256K-byte IC-memory is attached to the common-bus through a
paging mechanism. An operating system POEM (Paging Oriented
Executive Monitor) [Tanaka, 1976] controls memory space
allocation to multi-users of remote Hoéts, and this system
provides server-oriented facilities—mnamely, PCP (Procedure
Call Protocol)—for the remote use of its sub-systems.

TOSBAC 5600— a large general-purpose system located in the
Kansai Institute of Information Systems in Osaka, this computer
has participated in KUIPNET since 1975 via a 4,800 bps
communication line. TOSBAC 5600/140 (equivalent to Honeywell's
6040) is seen as a "Very Distant Host". 1Its connection to
KUIPNET allows bit-transparent transmission, and the GCOS op-
erating system provides TSS service which is accessible from
KUIPNET via TELNET connection. GCOS also provides a powerful
file system, LISP 1.6, and program packages for general picture-
processing. An interactive picture-processing system has been
developed over this connection.

- 16 -

PANAFACOM U-300— a minicomputer acting as a gateway to another
computer network, this is connected with a front-end processor
in the data-processing center of Kyoto University. Through this,

the network will be extended to Tokyo via a 48 kbps line.

Problems discussed in the following chapters are:

- the design and implementation of a communication network
for in-house use allowing high-speed real-time raw data
transmission. This includes the design of a message-
switching computer for an in-house computer network, its
hardware and software. |

- the connection of rather small non-timesharing computer
systems as Hosts to the computer network. This includes
the design of the monitor and network access mechanism—
a Network Control Program.

- the implementation of user-level protocols, such as the
TELNET system.

- the connection with a remote, large computer system via
a public communication line.

- high-speed data transmission between in-house computer
systems, digitized real-time speech signals, and pictorial
data transmission.

- the measurement system for an in-house computer network.

-17 -

I8 IEK

CHAPTER II: DESIGN OF KUIPNET'S IN-HOUSE COMMUNICATION
NETWORK

A communication network is a facility which provides connec-
tion between computers, and through which data are transferred.
In this chapter we shall show how the in-house computers are
connected together and how the high-speed communication is

guaranteed.

2.1 System Design of Communication Network

The computer communication network described below is
inherently designed to provide service to local subscribers
of heterogeneous types of computer systems, ranging from middle-
scale general-purpose machines to simple minicomputers handling
a variety of input/output devices for information processing,
and of which are in a single building. It provides a consistent-
ly short response time for interactive traffic and real-time
traffic—e.g., transmission of speech—while maintaining a fairly

large bandwidth to handle high-volume (bulk data) users.

The Communication Network

There are two major approaches to designing a network on
the premises. One uses hardwired componets, such as the ring
system based on the Bell System Tl technology, and the other is
the store-and-forward system employing message-switching com-

puters. The former incurs modest start up and low expansion

- 19 -

costs but is not programmable. The latter is programmable and
the messages can be processed according to their contents.
Because of these reasons, the store-and-forward system therefore
had greater advantages for us, providing rich flexibility and
extensibility which were our key requirements, and so we chose
it for our communication network.

Within the class of network under consideration, there
already existed several operational networks and many designs
for such a network, mentioned in Chapter I.

The following are some brief definitions to isolate the

kind of computer network we were concerned with:

- Node (IMP)— The node computer of the network is a real-
time computer which performs the basic message-switching
functions.

- Hosts— The Hosts of the network are computers, connected
to the node (IMP), which are the providers and users of the
network's services.

- Message— The unit of data exchanged between source Host
and destination Host.

- Store-and-Forward Subnetwork— The node computer (IMP) both
stores a message that it receives and forwards it to the
destination Host. The essential task of the '"subnet", which
functions as a communication network, is to transfer bits
reliably from a source Host to a specified destination.

Its operation is completely autonomous; the IMP continues

to operate whether the Host is functioning properly or not.
We applied the Host-subnetwork configuration because isolation

between independent Hosts, which are of different architecture

made by different manufacturers, was necessary.

- 20 -

Though the subscribing computers of our network were not

distributed widely but rather located together in the same

building, a communication processor was found to be necessary.

The key functions or properties required of this communication

processor were:

Buffering— Buffering is required because it is neces-
sary to receive multiple data units before sending a
previously received one. Because of the difference in
computer speed, it would even be desirable to have the
buffering data in flight between source and destination
in order to increase throughput. That is, a system with-
out adequate buffering would have low throughput due to
the time wasted in waiting for both agreement and for
transmission. The bandwidth of the circuits might be
effectively used by buffering. If communication is half-
duplex, a large amount of buffering space is necessary to
allow a smooth flow of traffic in both directions.

Error Control— The communication processor can detect
transmission errors and inform them to the sender. In-
correct data is also detected and isolated. Furthermore,
acknowledgement of message delivery or non-delivery might
be useful.

Flow Control— Different source and destination data rates
may necessitate implicit or explicit flow control rules
to prevent the network from becoming congested when the
destination is slower than the source.
Front-End-Processor— The communication processor is used
to interface communication terminals or computers to a
remote Host's data-processing system.

Gateway— The communication processor may be used as an

interface between networks.

- 21 -

Network Topology

We placed a node computer (IMP)—a store-and-forward mes-
sage switching computer having communication processor capabil-
ity—at the center of the network, the network topology, in
other words, being of the star type. This physical configura-
tion of our network is reasonable in the following points: It
is more efficient and convenient to connect computers via a
communication network than to connect individual pairs combi-
nationally. Because a node switching computer is very costly
even in a localized network (e.g., located within a single
building as ours is), it requires large buffering space and
versatile control functions to ensure high throughput, relia-
bility and availability. Rather than provide facilities on a
user-pair basis, we think it better to provide a large number
of users with a single high-speed facility which can be shared
in some fashion; this then allows us to take advantage of the
powerful "large number law'" which states that the demand at any
instant, with very high probability, will be approximately
equal to the average sum of demands of that population. In
this way the facility capacity required to support the user
traffic will be considerably less than in the case of unshared,
dedicated facilities. A node computer, with a-high fan-in
of nearby llosts and terminals, will present an increasing op-
portunity for shared use of centralized node's resources
among many different devices. The most centralized form of
network is the star net, such as KUIPNET. From this choice
arose the problem of how many Hosts can be connected to a node
—the number of fah—ins. This has affected our decision re-
garding Host-IMP connections, which is discussed later in this

part.

- 22 -

Traffic Characteristics

The anticipated traffic to be handled by KUIPNET was of

three kinds:

(1)

(2)

(3)

The rate of messages which would pass through a modem
would be rather low, being limited by the bandwidth of
the communication line. Although traffic density might
be low, however, the processor should be able to guaran-
tee perfect action at any time for this traffic, because
the communication processor would require real-time re-
sponses.

Messages which would be transferred between local Hosts
in real time would have to be guaranteed an effective,
continuous transfer rate of more than 200 kbps (kilo-bits
per second) on a communication path of the highest capa-
city. However, such traffic would only create a momentafy
flash in the network, and would be restricted to an ex-
ceptional environment.

Messages consisting of character strings from keyboards
would not need to be treated in real-time in the network.
These messages would be given lower priority than those
of (2), so they would not be allowed to utilize the full
capacity of the communication facility during other real-
time data transfer; but we must remark that the transfer
of lower priority traffic would not be entirely prohibited

even under this condition.

The traffic of these three types of messages should be

controlled appropriately by the node processor's given capacity.

In order to transmit a speech signal through a store-and-

forward network, it is necessary to convert it to an appropriate

- 23 -

digital form. If high-fidelity reproduction of the speech wave-
form were required, and conventional analog-to-digital conversion
techniques were used, the resultant PCM (pulse code modulation)
representation of the signal would require the communication
system to handle a data rate of about 250,000 bps [Forgie, 1975].
Speech transmission requires a constant data rate equal to the
peak rate. The store-and-forward type network poses a problem
for speech communication in -that a delay is introduced into the
speech data stream. While it is true that under overload con-
ditions the average throughput of a network may fall below the
required data rate for speech transmission, a straightforward
way to minimize such delay is to give speech messages priority
on the communication links. In order to handle this priority
of data traffic, it is necessary to reserve the appropriate pro-
cessing capability, buffer space, and channel capacity in the
node.

The bandwidth of the network of KUIPNET depends mainly on
three factors; the node switching computer (IMP), Host-to-IMP

connection, and message size.
The Node Switching Computer

The architecture of the node switching computer is related
to several network design parameters, as is explained here in
brief. This problem was discussed in the report by Crowther
et al. [1975], some of which is common to ours.

The speed of the processor is important in determining the
throughput rates poSsible in the network. The store-and-forward
processing bandwidth of the processor can be computed by count-
ing the instructions in the inner loop. (See section 5.2)

The speed of the memory is a major determinant of the

- 24 -

processor's speed, thus affecting the node bandwidth. The in-
put/output transfers, acting in a "cycle-stealing" fashion,
will slow down the processor. Our solution to this problem is
that the maximum frequency of cycle-stealing should be restrict-
ed in order to keep the maximum processing time degraded by
cycle-stealing within the allowable rate. (See part 2.2.2)
This restriction is also necessary to prevent any continuous
"memory busy" period which would arise when all input/output
devices try to request a memory transfer at the same instance.
There is another approach to this problem — memory will be
used concurrently if it is effectively multi-ported. Some such
high bandwidth communication processors have been reported,
such as Pluribus machines [Heart, 1973; Mann, 1976].

The size of memory is another key parameter. The storage
space in the node is mainly used for the program and associated
data structures, the remainder being devoted to the buffering
of messages. The need for a larger memory space arises from
various factors. In the interests of improved fault diagnosis
and increased maintainability, we would move more of the func-
tions presently outside the control of the network operators
to within their control. Larger data buffering and message
queuing space becomes necessary when the system requires high
throughput and short response time. (See section 5.2)

Real-time demands on the processor can be very heavy
(parallel processing of asynchronous data streams). Fast
response to interruptions is very important. In order to a-
chieve this, the control structure of the switching program is
arranged in the order of priority so as the rigid real-time

events can be preemptively served. (See section 2.3.4)

- 25 -

The Host-to-IMP Connection

The design of the Host-to-IMP connections includes several
problems specific to our in-house computer network, such as

high bandwidth and maintenability in hardware devices.

Bandwidth:

The bandwidth of the Host connections are most likely the
most important characteristics of our network. They define the
traffic-carrying capacity of the network between any given
source and destination, and are also an important factor in
delay. To reduce delay in sending or receiving long messages,
and also to allow high peak throughput rates, the Host connec—
tion bandwidth should be as high as possible (within the limits
of cost-effectiveness)—even higher than the average Host

throughput rate would indicate.

Full-duplex or half-duplex interface:

A node requires high performance from the input/output
system, both in the number of connections and data rate.

The interface should be designed to allow messages to
flow in both directions at once. The reason why the inter-
face should be full-duplex is as follows: "...There are sev-
eral situations in which an IMP may temporarily block the
transmission of a message from the source Host to the source
IMP. 1In general, any such blockage will last for only a few
milliseconds, but in some cases the blockage may be indefinite.
In at least one such case the IMP will be unable to accept the
remainder of a message from its Host until it frees buffer
space by delivering some messages to the Host (it is for this
reason that half-duplex Host-IMP interfaces are prohibited)..."
(BBN Report No.1822 p3-2) [BBN, 1974].

- 26 -

However, we were compelled to employ a half-duplex communi-
cation procedure between IMP and Host (see section 2.3.5) wherein
messages could flow in either direction, because of two kinds of
obvious hardware constraints: Firstly, we desired our IMP to
connect as many sites as possible, but the input/output system
allowed only 16 ports. For a full-duplex interface two ports
are necessary, therefore the maximum number of fan-ins is 8.
This was unsatisfactory for us. Secondly, the input/output
system of the general-purpose computer system is too complica-
ted to be tailored to our requirements. In our case, therefore,
the interface hardware was prepared through some modifactions
of an inherent peripheral controller for a half-duplex device.

Although we did not adopt full-duplex interfaces because
of the above mentioned reasons, we did require a more efficient
communication control procedure than that of conventional half-
duplex interfaces. Usually for control of half-duplex communi-
cation, the "primary-secondary" procedure is adopted to deter-
mine the direction of data flow; that is, the primary station
can start transmission any time but the secondary station is not
allowed to transfer data unless the primary station accepts.

The direction of data flow is alternated by exchanging control
messages. A procedure of this type can be seen in Chapter IV,
The efficiency of this procedure, however, is low because the
communication bandwidth is greatly degraded by the extra con-
trol messages. In our network, efficient usage of communica-
tion line capacity is required for the real-time transfer of
messages. Therefore, we adopted not the primary-secondary
procedure but the "primary-primary"” procedure; that is, wherein
either side can start transmission whenever a message is ready.

We must be prepared to resolve conflicts which arise when

more than one demand is simultaneously placed upon both ends

- 27 -

of a half-duplex connection. There are two obvious but not
final solutions to this problem: the first is to "throw out"
or "lose" both demands; and the second is to accept the demand
from the side having priority, losing the other.

In the first solution, the problem is solved only tempo-
rarily, because both ends will try to issue their demands a-
gain and may cause another conflict, though the possibility of
such conflicts depends on the statistical characteristics of
the traffic. A similar approach was taken in the ALOHA system,
which uses packet switching with a broadcast radio channel where
only one packet for transfer is accepted at a time [Abramson,
1973].

According to the second solution, either of the two ends
takes the priority. Here, two alternatives are possible. We
must consider another factor in making the final selection. In
order to avoid any lockup in the IMP, which would be caused by
the filling up of all buffers and which would block further
input, Hosts should accept the demands from the input and re-
ceive an output from the IMP. (See section 2.3.5) Every Host
should prepare at least two buffers — one for data in trans-

mission, and one as a receive buffer.

Synchronous or asynchronous transmission:

When we use synchronous devices (e.g., modems), a different
aspect of the node computer is in question — its responsive-
ness. Synchronous devices require precisely timed service. If
the node does not prepare for a new input within a given time,
the next input arriving on that circuit will be lost. Like-
wise on output, the node must be responsive in order to keep
the circuits fully loaded. This requirement suggests that

some form of interruption system is necessary to keep the

- 28 -

response latency low, Z.e., that the overhead of the operating
system, task scheduler, and dispatcher may be prohibitive.

When we use asynchronous devices (e.g., the handshake pro-
cedure in transmission), the responsiveness of the node computer
need not be so strained. However, for high throughput the node
must be responsive in order to keep the circuit fully loaded.

Asynchronous operation is preferable to permit the bit rate
to adjust to the rate of the slower member of the pair, and it
is free of critical timing situations, especially the problems
associated with contention over memory among the various syn-—
chronous input/output devices, consequently limiting the trans-
fer bit to a low rate. On the other hand, for asynchronous
devices the maximum transfer bit rate can be set much higher,
and therefore a higher throughput can be achieved. (See section

2.2.3)
Message Size

The basic elements of communication exchange to be taken
into consideration in data communication network concepts are
the data segment and the data packet. The segment, composed
of a leader followed by text, is the element entered by a sub-
scriber into the network for subsequent delivery to some other
network subscriber. The packet, composed of a header followed
by text, is the fundamental element handled and processed by
the switching nodes of the network. Both of these elements are
mutually conformed in configuration in the local network; <.e.,
a leader is the same as a header and both texts are the same.

Message size needs to be large because the overhead on '
messages is significant if the node has to address many
messages, and it may be inefficient for the Hosts to have

many message interruptions. The upper limit on message size

- 29 -

is. what can conveniently be stored and assembled within given
node storage and delays. We chose the maximum message size of
8095 bits.

A speedier Host connection allows the use of a longer mes-
.sage with less overhead and Host processing per bit, and there-
fore greater efficiency. The faster the Host connection, the
longer the message should be, since long messages have less
overhead and permit higher throughput, while the added delay

due to the length is less important at high circuit rates.

2.2 Hardware Design of Communication Network

The hardware of the communication network consists of a
node switching computer, lines,and the high-speed computer

connection control equipment.
2.2.1 Hardware Configuration of Switching Computer

We adopted NEAC 3200/50 as a node . switching com-
puter (IMP). This computer is the same as Honeywell's
DDP-516, which is employed as an IMP in the ARPANET. The high-'
speed data channel of this computer, called DMC (Direct Multi-
plex Control) channel, has a maximum transfer capability of
260K words/sec (1 word = 16 bits), summing up all the parti-
tioned 16 channels. Each channel is given ordered priority,
so each Host receives priority determined by the IMP channel.

The configurationof the IMP hardware is illustrated in
Figure 2.1. The IMP accepts 8 Hosts, but at present is equipped

with Host-interface cards for 5 Hosts. The full-duplex commu-

- 30 -

TTY - CPU +— PTR
. | 4800bps
MTC d SLC MODEM|,_ phone
- wost Lyl 16 1/0 Hine
Jlinterface CHANNELS
5HOSTY :
1
J HosT
Jlinterface |
! _
PROGRAMMABLE| 32K MEMORY
PRIORITY 16bit WORD
CONTROL 0.96us
CIRCUIT
250ps CLOCK

Figure 2.1 IMP hardware configuration.

nication lines between Host and IMP are composed of four coaxial
cables, two cables for each direction. Both ends are connected
directly with the cables, without any insertion of such equip-
ment as modems or the like.*

The computer-connection-control equipment (CCCE) attached
to the IMP is a standard interface for IMP-Host connection (see
section 2.2.3), and is constructed from about 80 TTL 74-series
IC's on a board of printed circuit. Each Host is different in
its architecture, and its interfaces are designed to accomodate
its electrical interface condition. But since the serial-paral-
lel conversion part and the drivers and receivers are fixed,

they are produced of printed circuit.

* An experimental device for DC isolation was tested and

proved to have the same functions as designated.

- 31 -

The transfer method is asynchronous, bit-serial, DC mode.
Every bit is converted into two kinds of pulse widths — 200
nano-seconds for "0" and 400 nano-seconds for "1", respectively.
A stream of data bits is sent through a cable enclosed by two
control signals; start of transmission (a pulse of 1 usec
width), end of transmission (a pulse of 2 usec width). A
"ready for next byte" signal (a pulse of 0.5 psec width) is
sent back to the sender through another cable for control when
the receiver is ready for the next 9 bits (8 data bits and 1
parity bit). (See section 2.2.3)

The procedure stated above is a "hand-shake procedure".

Data bits in a Host are sent from the most significant bit
of a word in order of decreasing power and increasing address
of memory. The bit transfer rate is 1.6 Mbps within a

distance of 50m, 1.1 Mbps at a distance of 200 m. (See section

2.2.4) Cables are extensible to 400 m.
The IMP includes a 250 psec clock and a 4,800 bps communi-

cation controller called a Single Line Controller (SLC). A
teletype and a paper tape reader which are attached to the IMP
are used for maintenance, debugging, and operation. A magnetic
tape controller which drives a 1,200 foot, 800 bpi, 9-track

tape is used for logging of measurement data. (See section 5.5)

2,2.2 Control Hardware for High-Speed Transmission

The control hardware of the IMP is developed so as to
harmonize with the three kinds of traffic stated in section
2.1. In this section the control hardware particular to

- KUIPNET is described.

Control of channel rate: To achieve real-time

- 32 -

data transfer (1.6 Mbps) between two Hosts connected to the same
IMP, the high rate of access to the core storage should be au-
thorized to the CCCE through the DMC channel. The rate is 100K
words/sec when the data transfer rate is 1.6 Mbps, though the
maximum rate of the DMC channel allows a rate of 260K words/sec.
Since access to the memory is determined by the controller in
the IMP in a way that a request from a channel has priority over
a request from a CPU, the number of instructions executed per
second may decrease extremely due to memory-cycle stealing by
channel when there is a concurrence of data transfer between
many Hosts. In order to allow the CPU a reasonable amount of
time to carry out its processing function, access of the data-
transfer channel to the memory is restricted to within 507 of
the total available memory access slots by the hardware attached
in front of the DMC channel. In this way, the ratio of channel
utilization is limited to less than 50%. As shown in Figure

2.2, the length of time of one cycle of the core memory itself

% %
100 100 [
- (a) - (b)
-o Oo
))
S S
= CcPU i CPU
5 50l B 50t 1.2%
3 3 BKbps
E E Tine
o channel o channel
0 0.5 T0 0 0.5 T.0
Throughput in Mbps Throughput in Mbps

Figure 2. 2 Relation between channel utilization and
throughput (a); and with communication line(b).

- 33 -

is 0.96 usec, and the access interval of the CPU is not degraded
by more than two of these cycles.

A communication line of 48 kbps uses only about 1.2% of the
available memory time slots. Communication lines were employed
in this in-house computer network to connect it with a nation-
ally distributed computer network and a remote computer system.

(See Chapter 1V)

Programmable priority control: A special logic was de-
signed and inserted between the IMP-Host communication control-
ler and the DMC channel so as to be able to assign transfer
capacity to a pair of Hosts which needs real-time high-speed
large-volume data transfer. Each channel, by DMC mechanism,
has its individual priority which is adopted in the transfer
of every word. The order of priority goes from #1 to #16 down-
ward in opposite order . with the fixed order of the channel
number. The programmable priority control circuit is a logic
circuit which may change the order of priority of a channel any
time by means of a message sent from a Host.

The fundamentals of the logic are shown in the following
boolean formula. First, we shall describe here the fixed or-
dered priority method.

Consider the case of n pieces of service request lines.

At a time point ¢, ul(t), u2(t), cees un(t) are binary varia-
bles that indicate a request on a channel by I and no request
on a channel by 0. The value changes from I to 0 when a re-—
quest on the channel is accepted. Values vl(t), 02(t), cees
vn(t) are output values of channels. The fixed ordered pri-

ority is given in the following expression:

- 34 -

vl(t) uz(t)

7:_1 > (2.1)
v.(t)
1

I
-~
1

uJt))u.(t)y, 1 =2,..., n.
J=1 7 v

Next, we shall describe the programmable priority control
logic.

There are n pairs of service requests and accept lines. A
binary value xi(t) at a time point ¢, (¢ = 1,..., n) is assigned
to each request line. yi(t) is a value of output from the pro-
grammable priority control circuit. The complexity of the con-
trol circuit increases depending on depth of specification of
priority. Shown here is an example of an implementation which
has been adopted in our subnet that allows the first order and
the second order to be designated to two channels arbitrarily.
The order of designation is extensible in the general way up to
the k-th order (k< n). A set of outputs yi(t)h are fed to the
fixed ordered priority logic (Z.e., y.(t) = u.(t)). 1In the

(1) 1) and pi(Z)t v

first and second priority designation flip-flops, respectively,

following formula, p; (t) are outputs of the

and each is set by external command:

N

(1) (1) (2)

n
. . AT)e . . At
y; (t) {p% (t) + §=i+1x (t)e(p, (t) +p; (t))}xﬂ()

(i =1,..., n-1) >(2.2)

yn(t) xn(t) J

If it is desired that the first priority be designated, one of

the pi(Z)(t)'s (4 =1,..., n) is set to 1 and all the others

- 35 -

are set to (. The second priority is exactly analogous. If all
the pi(l)(t)'s and pj(Z)(t)'s are set to 0, the programmable
priority control circuit has no effect and so the order of the
priority is determined by that of the fixed order circuit in the
computer. If all pi(l)(t) = 0, and pi(2)(t) =1, (i =1,..., nl,
then the order of priority becomes the reverse of the fixed order
of priority in the computer. TFigure 2.3 is an example of this
logic equipped on the IMP.

The measurement results shown in Chapter V, show that with
the aid of the above-mentioned two control mechanisms, the mes-
sage throughput of the highest priority path which is changeable
by program is about 800 kbps even under a heavy load of traffic.

If these control mechanisms were not employed:

- By memory-cycle stealing from channel, the processor would
be completely stopped during heavy traffic causing a "mem-
ory busy" period.

- Due to the fixed ordered priority assignment, only one path
(fixed and not program changeable) could achieve high
throughput, while the transmission of other paths placed

on lower priority levels would be interfered with.

2.2,3 Computer Connection Control Equipment

Here the hardware configuration and control mechanism re-
garding the computer connection control equipment which connects
the IMP and Host is described. The description includes the
standards of the Host interface design, the IMP interface design,
and the IMP-Host data transmission method.

The computer connection control equipment is designed for

on-line data transfer between computers generally of different

- 36 -

p (1) oTn 5 3 9 8 DplLol
k1 7 ‘ﬁgjgb{bow
: a
. <:, 3 7410 Y 1
. K N5 Oy .
(1) Lsﬁ”ﬂ ‘—:@5 \
N0 F »
p8 P ! _ ST $“’ "nD piL.e
clocki 9 ¥ . : 7LA27I2 1) y2
e ' D
.-|<u;:\ 9 gy 10 U103
o B>o-0
(IMIT 1 » (14) y3
Al
CpaEIRa
] nl Iz D108
‘ —’T—E!i) 3 B
z‘;olalt; 128 i e y4
a g L
ok (16) . 11
(2) wz])

W Los
1

DR (16) y5

4 8

14

ce e
™
Do
S
/a: —=s
Bt
113
—]
—— |
bt)
=8

10

N 5 6liIIAl)b

— ;ﬂl 1)p-§>wo' y p

N an

00 o 17
HasT]

il 3
3

10
N nLo;
=P e

> Y,
14

9D DL 0¥
i
vy aw y8

Figure 2.3 Programmable priority control circuit.

manufacturers. An outline of the computer connection control

equipment (CCCE) is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

Bit-serial transmission— To adjust to the word length of
individual computers, the data format dispatched by a sender

on a line is in the form of a bit stream which is accepted

by the receiver, splitting them into a sequence of words of

the same length as itself.

Hand-shaking— To adjust the data transfer rate of both
parties (each of which has different channel rates), the
transmission method is fundamentally asynchronous. Every

eight bits are sent only after both the sender and receiver

are ready for transmission.

Half-duplex communication control procedure— IMP-Host
communication control procedure is half-duplex, due to the
restriction on the number of channel slots available.
Interruption— To accomplish interleaving with the channel
flow, the controller communicates with a computer via inter-
ruption line.

Separation of transmitter part and receiver part— To make
possible a self-standing local loop test, the interface
hardware itself is devised to have the capability of a full-
duplex operation. Adaptation of the transmitter and/or receiver
to any Host is possible through an input/output.controller, the
special part of which is designed to be as small as possible
compared to the common part and to adopt to the architecture of
the computer.

Pulse width coding— Data bits and control signals are

coded in a pulse width of geometrical progression, of which

one unit is 200 nano-seconds, which is transmitted along

the cables connecting two computers. A unit of four coax-

ial cables makes up the communication medium between com—

puters.

- 38 -

@)

(8)

Error detection— The error detection method consists of
the addition of an odd parity bit to every eight bits of
data sent by a sender, and inspection of this parity bit
by the receiver.*

Padding function— The padding, by hardware, of zeros onto
the afterend of a data stream is carried out in order to
make a multiple of a unit when the total amount of bits
dispatched is not a multiple of 8 or when the total amount
of bits received is not a multiple of the word length of

the receiving computer.

The configuration of a computer connection is shown in

Figure 2.4. Two computers are connected to each other via the

CCCEs, each of which is attached to an input/output control unit.

Computer A (a) > Computer B
b)
1/0 e { 1/0
Contro]]ero CCCE CCCE OControHer
(c) >
, (d)

CCCE: Computer Connection Contro] Equipment

data and control signal sent from computer A to B
Receive Ready signal sent from computer B
Receive Ready signal sent from computer A
data and control signal sent from computer B to A

Figure 2.4 Configuration of computer connection.

*

From our experience, the in-house direct connections are

highly reliable if they are well designed and adjusted.

- 39 -

Two CCCEs are connected vZa communication cables and a party
communicates data by exchanging control signals. The CCCEs com-
municate data with a main memory through their input/output con-
trol units. The data in the memories of two computers which are
connected by CCCEs are communicablék

The organization of a CCCE is shown in Figure 2.5. The

functions of the blocks in the figure are as follows:

Qutput buffer— 1In order to speed up the transmission rate,

preemption of the next data while the current data is still in
the process of being transmitted is accomplished by storing the
output data dispatched from a computer in this buffer.

Parallel - serial conversion block— Parallel data fed

into the output buffer from a computer is passed through the
shift register in this block, converted here into a sequence of
bits, and dispatched.

Coding block— In this block, the sequence of data bits

converted in the parallel - serial conversion block and control
signals for data transfer are converted into a sequence of pulse
widths, and then sent to a cable. (encoder in Figure 2.5)

Decorder block— Data and control signals that have been

coded according to pulse width by the sender are decoded in this
block by testing the pulse width.

Serial - parallel conversion block— Sequences of bits re-

ceived are put into a shift register until the register is filled
to the length of a word. Then the parallel bits are moved to
the input buffer.

Input buffer— Any data which is to be fed into a computer

is stored once in this buffer. 1In this way, the receiver can
receive the next byte before the previous byte has been fed into

the computer.

- 40 -

driver

data

data

data

re- end

quest

receiv;§;

/

receiver driver
encoder decoder i
coding block T
re-
end data end quest
pqral]e] to se- serial to paral-|l_|
rial converter [i— lel converter |kitart
(shift register)|| re- [(shift register){__
quest
re- | end data|re- |end
quest; . Jquest arror
output buffer ||start |input buffer

data|re- |end

quest

I/0 controller (computer)

control equipment.

Transmitter mechanism—

output buffer block to the computer.

- 41 -

Figure 2.5 Organization of computer connection

Below is a brief description of the behavior of a CCCE.

The output data stored in the out-
put buffer waits until all current bits are sent out from the
shift register to the coding block and the shift register be-
comes empty, when the parallel+serial conversion block requests
the output buffer to move the next data into the shift register.
At this point, a request for further data is then made by the
During this time, the

number of bits moved through the shift register is counted by a
shifting pulse. When all bits in the shift register are moved
out and the shift register becomes empty, as before, a request
for the next data is again made to the output buffer.

From the bits conveyed from the shift register, a sequence
of pulses is generated of which width corresponds to the value
of a 0/1 bit, and is transferred from the driver circuit. Zero
is a pulse of 200 nano-seconds and one is 400 nano-seconds. A
sequence of pulses contains 200-nano-second zero-level intervals
between every two bits. One unit of transmission consists of
eight bits plus an odd parity bit, spaced by the above-mentioned
zero-level intervals. After sending one such unit, or in other
words 9 bits, the sender waits for a response from the receiver
which signals that the receiver is ready for the next unit, when
the next 8 bits plus parity bit are sent. A sender can issue a
"send" request signal to a receiver. This signal—a pulse l-usec
wide—is touched off through an instruction by the computer.

The end of transmission is indicated from a computer. After
the output buffer and the shift register have become empty and
a "ready" signal from the receiver is received, and "end of
transmission' signal of 2-usec pulse is sent from the sender.

A padding sequence of 100...0 is added at the end of the last
output data, calculated so that the final unit is 8 bits in

length—a complete unit.

Receiver mechanism— An input is composed of a sequence

of pulses of various widths which determine their digital values
—0 or 1. The decorder circuit descriminates these values, and
also determines the inherent timing sequence. A sequence of
such timing signal bits accompanied with digital value bits is
fed into the shift register of the serial-parallel conversion

circuit, where they are accumulated by a bit counter so that

- 42 -

they match the length of a unit of the computer — (e.g.,

16 bits). When the counter reaches the length of a word, this
accumulated data is moved to the input buffer in which block

a request is made to the computer to read the content. The
serial-parallel conversion block has another counter which
matches the input unit length (in our case, one byte = 9 bits).
It checks the parity bit at the end of the byte and detects
transmission error. Thus a unit of transmission is completed.
The serial~parallel conversion block issues a request, when the
shift register moves its content to the input buffer and the
receiver is able to accept the next byte (in our case, 1 byte

= 8 bits + 1 parity bit). The receiver side issues a "ready for
next byte' signal and clears the bit counter which counts 9.
Receipt of the "end of transmission' pulse causes an addition of
a padding sequence to complete the length of the final data unit
—7i.e., the length of a word—in order to be fed to the computer

as the last data.

2.2.4 Estimation of Transmission Rate of Computer

Connection Control Equipment

Described here is an estimation of the transfer capability
of the CCCE. Figure 2.6 shows a time chart of digital data on
a line where t] is the width of a pulse of "I" (typically 400
nano-seconds), to is the width of a pulse of "0" (200 nano-
seconds), td is the width of the interval between two successive
pulses (200 nano-seconds), t_ is the delay in propagation through
a cable (800 nano-seconds/200 m), tc is the delay in propagation
through a circuit, n, is the number of "0"s in a transfer block
(9 bits), and n, is the number of "1"s in a transfer block. The

1
transfer bit rate P (bps) is given by the following expressicn:

- 43 -

eight bits data

/ A\
1 0 1 0 0 0 1 0
t
T4 0
->tc<-
t Kk
p

receive ready signal

t]: pulse width of logic 1
tg: pulse width of logic 0
td: zero level interval
propagation delay
circuit delay

Figure 2.6 Time chart of line signal.

P = 8/(n0 to + n, tl + 8td +2tp + ZtC R ", + n, = 9 (2.3)

Delay in cables is doubled because a sender must wait for a
response from the receiver, making the propagating path a two
way. A delay in a circuit is made by both the sender
and receiver.

The average bit transmission rate is P = 1.31 Mbps under
the condition n0 = nl = 4.5, tp = 800 nano-seconds, tc = 100
nano-seconds. The transmission rate may change depending on

the ratio of 0 and 1 in the data, since the coding principle is

based on pulse width.The fastestset of bit patterns is the case

- 44 -

where nO = 8 and nl = 1; then the maximum transmission rate is

P = 1.60 Mbps. The worst case is no =0, n

imum transmission rate is P = 1.14 Mbps.

7 = 9; then the max-
From the above discussion follows the conclusion that a
maximum transmission rate of at least 1.0 Mbps is assured even
under the worst conditions between computers at a distance of
200 m. The transfer rate of computer channels is high enough
that it does not place any limitation on the CCCE's transfer

rate. For example, the selector channel of NEAC 2200 is 1 Mbps.

2.3 Software Design of Communication Network

There are two usual techniques: message-switching
and packet-switching. In KUIPNET, the message-switching system
was employed instead of the packet-switching system in which a
message is split into many packets. This is because the Hosts
in KUIPNET are adjacent to the switching computer so that a mes-
sage need not pass multi-nodes, and the given path allows high-

speed transmission.

2.3.1 Message Switching Program

The main role of the IMP operational program is message
processing which includes processing a leader, dispatching a
message to the destination, and generating a RFNM (Ready For
Next Message). (See section 3.2.3) As we have stated before,
none of the following IMP functions are provided in KUIPNET:

packeting, which splits a message from a Host into packets

- 45 -

attached with a packet header; exchanging routing information;
re-assembling a message from received packets before dispatching
it to a Host; or send back "acknowledge' packets to confirm
receipt of the correctly received packets. However, this IMP
program does gather statistical data on traffic and investigates
the IMP's status such as any IMP-Host interface trouble or buffer
lockup. (See section 5.5)

The message-switching program consists of several tasks
which are activated by external interruptions (Figure 2.7).
When the transmission of a message has finished, the HOST-IN
routine is touched off by an interruption from a CCCE on the
receiver side, and the message received is placed on the tail
end of the HOST-TASK queue. The TASK routine takes a message on
the HOST-TASK queue, in turn from the top, and places it on the
HOST-OUT queue according to the destination Host's name denoted
in the initial leader. 1In turn, the HOST-OUT routine dispatches
the messages on the HOST-OUT queue to the destination Host. The

buffers from which the messages were sent are then returned to

TASK

-1 HOST-IN MODEM-IN K=
HOSTs line
< HOST-0UT MODEM-0UT]

1Ty P TIP-IN

TELNE

TIP-OUT

Figure 2.7 Message flow in IMP.

- 46 -

the "free buffer" list for further use as new Host input buffers.
Since CCCEs are similar to each other, the program that controls
communication with Hosts can be used as a common routine by any
Host. ‘ |

Besides the IMP functions, this program provides extensible
capabilities for the optional use of TIP (Terminal IMP) (See
section 3.4); that is, it is capable of such special communica-
tion control as terminal accommodation in the network and access
to and from the VDH (Very Distant Host) (See Chapter IV).

The whole program consists of 21 functionally divided rou-
tines, each of which occupies one or two sectors of the main
storage (1 sector is 512 words, and an IMP's word is 16 bits).
These routines communicate with each other via the common data
resident in the storage. The storage for the switching program
is about 4K words, and 6K words for buffers. (See the next sec-

tion)

2.3.2 Core Map of Switching Computer

NEAC 3200/50 is equipped with full 32K words storage, half
of which is used to store the codes related to the message-
switching IMP functions and the store—and-forward buffers. The
rest of the storage is used for TIP and VDH functionms. Each
individual routine, which contains machine codes and address
pointers to machine codes in other sectors, is clustered with
care in a single sector. The core map of IMP NEAC 3200/50 in

Figure 2.8 shows its current status of utilization.

- 47 -

PAGE

PAGE
0]Keyin | Indirect Address Table [,/
Interrupt Analysis
IMP-HOST 1/0 Control "/
Task | A
41 Timer V. "/ TIP Program
Background Vo2
Initialization %
Dump
10f SLC v
Statistics Table
TTYIO|
14
' MT I1/0
S S S
Statistics Program
20
1 Very Distant Host
24
0 Store-and-forward Buffer Area 7SS Buffer
3
SLC Buffer
34 Tracer
Tracer Buffer
MT Loader
37 U/ /7 Loader
oz e

.Figure 2.8 IMP core map.

- 48 -

40

44

50.

54

60 -

64

70

74

77

2.3.3 Routines of Message Switching Program

The IMP operational program is composed of several func-
tionally partitioned modular routines.

The Interruption Routine analyzes the cause of interruptions

by external events in turn; memory parity error, interval timer,
communication controller, Host interfaces, task interruption,
teletypewriter, magnetic tape drive unit, and console.* After
the analysis of the source of the interruption according to the
above-given sequence of priority, the previous status of the
processor is saved; the contents of the A, B, P, K, and X reg-
isters, four software registers, and the program mode indicator.**
Then this routine passes the ‘control onto the particular routine.
At the completion of the process which was triggered by the an-
alyzed interruption, the exit routine is called back to its pre-
interrupted state.**

There is another kind of interruption which arises from
the violation of "protective'" restrictions toward the execution
of special instructions—instructions to write into a protected
sector, input/output instructions, or priviledged instructions
which may change the CPU mode.

The IMP-Host Input/Output Control Routine handles IMP-Host

half-duplex interfaciﬁg. (See section 2.3.5) This routine is
subdivided into five sub-routines which each supports a differ-
ent stage of the communication control procedure. (1) Host-Out
Start sends a "start" signal to a Host to request the initiation

of the Host's receiving channel, and waits for a response from

* This process requires an average of 13 main memory cycles.
*¥k This process requires 57 main memory cycles for the ‘enter
and 63 for the exit operation, which amounts to about 30

to 707 overheads.

- 49 -

same Host. The (2) Mode Decision Routine receives an interrup-

tion from a Host when the Host accepts the request sent from the
IMP or the Host requests the IMP to receive a message. The (3)

Qut-End Interruption Routine is touched off by the interruption

from a channel when it has finished transmission of a message
block up to the final address. The IMP dispatches an '"end"
pulse which indicates the end of data, then goes to the next

message output if any. The (4) Start Interruption Routine is

activated through an interruption by a Host's "start" signal
that begins the sending of a message. Upon receipt of this sig-
nal, the IMP is expected to prepare a '"receive" buffer and to
return a "ready" pulse to let the Host know that the IMP has
accepted the previous request and is ready to receive a message.
If the IMP can not obtain a receive buffer from the free list,
the response will be postponed for 30 seconds to wait for a free
buffer. If no free buffer is available after 30 seconds, then
the request is discarded and a control message is sent to the
Host to the effect that the request has been discarded because

of lack of a free buffer. The (5) Input-End Interruption Routine

is activated by the "end" pulse which is sent from a Host at the
end of transmission of a message. It senses the status of the
interface, reads the_address counter to determine the message
length, places the message on the HOST-TASK queue, sets the pro-
grammable task interruption, and gets a receiving buffer from
the free list to prepare for any further request from the Host.

The Task Routine, activated by the programmable task inter-

ruption, handles messages on the HOST-TASK queue according to
their destination on the HOST-OUT queue and triggers the Host-
Out Start routine.

The Timer Routine is composed of a fast timeout routine, a

middle timeout routine, and a slow timeout routine. The fast

timeout routine is started every 25 ms. Its purpose is to find

- 50 -

out if a Host receive buffer has been allocated, and if not, to
allocate one from the free buffer list. It also watches the IMP
utilization. (See section 5.5) The middle timeout routine is
started every 100 ms and cares for transmission control. The
slow timeout routine is started every 0.5 second and investigates
Host-channel lockup. If locked for more than 30 seconds, it in-
itiates the channel. The slow timeout routine also executes a
pseudo-timeout routine (see below the Pseudo-Timeout Routine)
which is used by various routines which need timeout functions,
such as SLC and TIP. Furthermore, this routine executes statis-
tics (see below the Statistics Routine).

The Background Routine is an idle loop which senses several

statuses and is interrupted by higher level routines. It moni-
tors the pseudo-timeout routine, the statistics routine, the
Server TELNET, and the TIP routine.

The Statistics Routine is triggered by the timer routine at

every statistics interval and observes several parameters relat-
ed to the network measurement system. (See section 5.5)

The Initializing Routine brings all the flags, tables and

queues back to their initial state, and is the first routine in
the IMP program.

The Console Routine handles console interruption and prints

out the statuses of the IMP program.

The Pseudo-Timeout Routine handles interval timeout requests

from the TELNET, TIP, statistics and SLC routines.

Although the principle of the organization of KUIPNET's IMP
program is quite different from the usual organization of gener-
al-purpose computers, similar system calls are established in
both that are procedures commonly and exclusively used by sever-—
al routines related to the manipulation of message queues and
message buffers, and to the manipulation of program priority

level. These procedures are also used to implement TIP and the

- 51 -

VDH around the IMP program. (See section 3.4 and Chapter IV)
Queues and lists are used for allocating buffer area, for
keeping the order of incoming or outgoing messages, and for

scheduling interval timer requests.

2.3.4 Transition Control between Routines

The IMP program is divided into many sub-routines (see pre-
vious section) which are entered by sub-routine calls or hard-
ware interruptions. The method of division is based on priority
levels, introduced to improve the responsiveness and efficiency
of the processor resources. Each routine is given a different
priority level and is executed as a task. Task switching takes
place only from a lower level task to one of a higher level. A
lower priority task can always be interrupted by higher priority
tasks. The control is returned to the lower priority task only
after completion of the higher level task. There is no supervi-
sing monitor. Individual tasks inherently know when they can go.

A1l tasks enter and leave in the same manner as the inter-
ruption routines do. They may be triggered not only by true
interruptions but also by artificial interruptions, wherein a
task triggers another higher task by artificial interruption and
a lower task by programmable interruption which causes hardware
interruption. These functions provide lower level processes,
such as TIP (see section 3.4), a means to communicate with the
IMP. Table 2.1 shows a list of tasks and the ways to activate
them.

It is easy to realize mutual exclusion, since there is only
one task per level. Critical sections or indivisible operations

are entered after an INH (inhibit interruption) instruction and

- 52 -

Table 2.1 Task activation methods in IMP program.

Task Name Symbol | Activation Method |Task
Interrupt

Memory Parity Error MPE I1
SLC Control SLC EI, Al *
Host Interface Control HOST EI, Al *
Timer 1 ™I EI *
Timer 2 ™2 Al
Timer 3 TM3 Al *
Task TSK PI, AI
Restricted Mode Monitor RMV I1
TTY TTY EI
Traffic Statistics TRF SC
TIP TIP SC
Back Ground BG -
Memory Dump MDP CI

II: Internal Interrupt

EI: External Interrupt

Al: Artificial Interrupt

PI: Programmable Interrupt

SC: Subroutine Call

CI: Console Interrupt

-: always active .

leave through an ENB (enable interruption) instruction.
Table 2.2 shows possible transitions of tasks and their

causes.

2.3.5 Communication Control Procedure

As mentioned in section 2.1, "The Host-to-IMP Connection',

- 53 =

Table 2.2 Task transition and its causes.

to MPE SLC HOST TM1 TM2 TM3 TSK RMV TTY TRF TIP BG MDP

from

MPE SC
SLC |II P1 CI
HOST |IT EI PI Cl
™1 |IT EI EI,AI Al PI CI
™2 [IT EI EI EI Al Pl CI
™3 |II EI,ATI EI,AI EI PI CI
TSK |11 EI,Al EI,AI EI CI
RMV |IT EI EI EI EI Al CI
TTY {IT EI EI El EI Cl
TRF |IT EI EI El EI II CI
TIP |IT EI EI EI ET,AI CI
BG ([II EI EI EI EI EI SC SC Cl
' MDP

symbols are same as in Table 2.1

the communication control procedure is based on a half-duplex
mode between IMP and Host. Although the CCCE is capable of full-
duplex operation, the communication path to a Host is limited

to one channel. In a half-duplex operation, the direction of
data transfer is decided by mutual interruption from both ends.
The IMP-Host communication control is represented by the state-
transition matrix in Table 2.3.

A sender CCCE issues a "start'" pulse which requests the
start of transfer of a block. The receipt of such a start pulse
causes a '"start interruption'" to the CPU of the receiver side.
If a receive buffer is available, the receiver party issues a

positive acknowledgement pulse to the CCCE of the sender side

- 54 —

Table 2.3 IMP-Host communication control
state transition matrix.

ol 12134510214 [23
State o prall e 5 2ls
-)] (1] Y o |4
© = = Y- = 4%
= + o = + >
o— Q bk [sa] o= T |
© 5] (a4 [[1o] f ot
Event | SIF || 5|12 |FI¥|S
Slol @& 8l el | 8lae
HE AR AR IR R IR
= [n'4 [a'4 [a] = O X = |x=
a| Receive Start 1 3] 1 3| 3123123123
b| Receive Ready 4 14
Receive
| Read End 3 3
Receive
d Write End 5 015 10
el Send Start 2 12
f| Timeout 0 0 0l O 10 110
Get
9| Receive Buffer 0 0 !
h Receive Buffer- 10
Empty

blank: program error
\ : default
explanation of states and events is shown in the next page.

through a peripheral control instruction. On the other hand, if
a receive buffer is not available in an IMP, the IMP-Host control
message informs the sender party's Host of that fact, i.e., that
a receiver buffer is not available.

A few additional comments would be appropriate here. In a
particular case where both the IMP and a Host have simultaneous-
ly issued a pulse to request transfer, in order to avoid heavy

congestion in the IMP, it receives priority over the Host for

- 55 =

the transfer. (See section 2.1, part "Full-duplex or half-duplex
interface')

states and events in Table 2.3 have following meaning:

Read End Wait: waiting for the "end" pulse which is received at

the end of input.
Ready Wait: waiting for the "ready" pulse acknowledging the
start of message.transmission. '

Buffer Request: searching in the free list to get a free buffer.
Write End Wait: waiting for the end of output. V
Overrun: receiving a message longer than the buffer length.
Receive Buffer Empty: receive buffer is not available.
Receive Buffer Wait: waiting for allocation of a receive bufferw
Receive Start: receipt of a "start" pulse. . ‘
Receive Ready: receipt of a '"ready" pulse.
Receive Read End: receipt of an "end" pulse.
Receive Write End: receipt of an interruption from a channel at

the end of transmission. : f
Send Start: sending ofa"start" pulse. '
‘Time out: timeout occurrence.

Get Receive Buffer: a receive buffer is obtained.

Receive Buffer Empty: no receive buffer is available.

- 56 -

CHAPTER III: DESIGN OF COMMUNICATION FACILITIES FOR PROCESSES

The communication facilities used for supervising the
processes distributed among the individual Hosts are constructed
upon the inter-computer communication network. In this chapter
the concept of inter-process communication, the facilities for
inter-process communication implemented on the Hosts, and some

of their applications are explained.

3.1. Concepts of Inter-Process Communication

The computer system may be seen as having two facets: The
monitor and the processes. The monitor performs such functions
as switching control from one process to another, fielding
interruptions, creating processes, caring for sleeping processes,
and providing the processes with a set of machine-extending
operations (supervisor calls). The process facet performs the
normal user functions (user processes).

A co-operative job may be performed by more than two process-—
es. In such a case, mutual communication is necessary to control
the progression of the two individual processes. For example, a
co-operation of two processes may proceed as shown in Figure 3.1.

Suppose that process A concerns computing functions and process

- 57 -

process A process B

e message /j;f/§22252§/
/42?5?222%» message

message ///%//
T

¢ message (L

wai
time /Ck?j//// message

Figure 3.1 Inter-process communication

S

B is a printer process. Process A sends a message to process B
which is waiting for a message. Then process A waits for a message
from process B which is now controlling a printer. Upon completion
of movement, process B will then send a message to process A to
inform A of the completion. Process A and process B are in
different and independent computers, so some parts of their
computation may proceed parallel.

Communication between distributed processes must be
controlled by individual monitors, each in a different computer.
Control is distributed in this way. The monitors then simplify
the interface condition between the processes.

Usually, inter—-process communication functions are provided

by the monitor:

— RECEIVE— This operation allows a specified process to send
a message to another process which is executing RECEIVE. The
receiving process is informed when the transmission has com-
pleted.

— SEND— This operation sends a message from the process

- 58 -

executing the SEND to a specified receiving process. The
sending process is informed when the transmission has

completed.

The fundamental functions necessary in process communication
are: (1) identification of individual messages, (2) synchroni-
zation, and (3) format [Metcalfe, 1973]. TFor a sender, the
first function is to recognize an individual message dispatched
from one process and to identify its destination (where to go).
For a receiver it is to identify the expected message (which one
is desired to be received). 1In other words, this function is
generalized to match the sender request and the receiver request
somewhere in the network at the rendezvous site [Walden, 1972].
The second function is to know when a sender can send a message
or when the most preferrable time is; that is, exactly when the
receiver would be ready to accept the message correctly. TFor a
receiver it is necessary to know when a message will arrive. Each
participating process must know the status of the other. The
third function is a set of agreements among sender and receiver
processes on the interpretation of data in a message (e.g., a unit
of data or a set of characters).

One approach to accomplishing the identification function
between processes in different computers is "conceptual line-
switching'"—"thin-wire connection" as called by Metcalfe[1973].

As shown in Figure 3.2 the two co-operating processes communicate
with each other through two paths via a sending port and a
receiving port for each path. The data-receiving port to a process
is identified by the name "receiver socket", and the data-sending

"sender socket'". A

port from a process is identified as
combination of a sender socket and a receiver socket is uniquely

identified in the network, this relation being called a

- 59 -

rocess A rocess B
P

sender receiver
llsocket socket \
N link (7

i £

£
D‘ link

Figure 3.2 Concept of process connection.

"connection". When either one of the two processes wishes to
communicate with the other, it identifies the partner process on
the other monitor and they both set up the connection. This is
very similar to the line-switching of the telephone system.

After the establishment, the conncetion is identified as a
"link". Generally, a pair of connections (or links) is necessary
for bi-directional inter-process communication, since data flow
on a single link is uni-directional. In cases where data flow

is voluminous, a connection is a very effective way of utilizing
resources, because the setup costs are amortized over the large
number of streamlined transactions. However, if the traffic
among processes is predominantly light and burstly, the relatively
high setup cost of such connections will dominate, and efficiency
will be low.

On the user process level the synchronization mechanism is
implicit, because a process must wait for another process's
reaction which may happen immediately, or may not happen at all.
A SEND operation would not be allowed until the receiver process
executes a RECEIVE operation. A RECEIVE operation will not be
complete until a message arrives from the SEND operation designa-
ting the process. A synchronization mechanism of this type will

work well if both of the communicating processes are sound and

- 60 -

the communication path is reliable, but may cause some trouble
if the processes are ill-matched or a message is lost on the
communication path. The latter case is more common.
Consequently another type of synchronization mechanism such as
the following, which is more explicit, is necessary. If a
process wishes to communicate directly with the partner process
whatever the status of the partner process, the partner process
is forced to go into the predefined state. This type of
operation is similar to the "INTERRUPT" or "BREAK" in
conventional systems.

On the monitor level, however, inter-monitor communication
is asynchronous. The integral part of the monitor is the Network
Control Program (NCP) which provides inter-monitor communication
functions. The NCP may receive and send messages any time.

Two NCPs, of which processes are in communication, exchange
control commands and notify their statuses to each other. For
instance, a connection request may be sent any time from a
primary NCP to a secondary NCP when a primary process issues a
network command to establish a connection with a secondary
process. The request will be fulfilled if the secondary NCP
has a corresponding outstanding connection request; if not it
will be refused. In this way, an NCP can know the status of
the other NCP any time, asynchronously. Any way, the primary
process is informed about the result of the previous command.

The communication system that provides the inter-process
communication functions is organized in a layered fashion, as
shown in Figure 3.3.

The first level is the packet-switching communication
network—similar to the subnet of ARPANET.

The second level is the interface between the autonomous

Host computers and switching node computer IMP (IMP-Host

- 61 -

HOST A HOST B

user user level user
process — 11 protocol . process
.\\ HOST-HOST ’/.
o N | protocol NP 11 o
HOST IMP-HOST HOST
~ _protocol B 2e
0S ~ ol 0S

IMP-IMP
subnet

Figure 3.3 Hierarchical protocols for
inter-process communication.

protocol). Isolation between Hosts is accomplished on this
level because a disconnection of a Host does not affect the
functions of the IMP. Even heterogeneous computer systems use
the standardized interface and communication procedure on this
level, so that from the IMP's view all Hosts are identical.

The third level is the inter-monitor communication wherein
the NCP's control-exchange commands control inter-process
communication (Host-Host protocol) [Carr, 1970].

The fourth level is the inter-process communication.
Processes communicate with each other utilizing the communication

facilities provided by the NCP (user level protocol).

- 62 -

3.2 Network Control Program (NCP)

3.2.1 Inter-NCP Communication Functions

An NCP is a unique process, often in the form of a system
process, existing singularly in a Host and representing the
Host's operating system. Each Host's NCP can communicate with
any other Host's at any time, since an NCP is an autonomous
process. There are two types of transactions between NCPs;
control commands which inform the other of the status of the
NCP and relate requests to it, and regular messages which are
data sent or received by user processes. The functions of the
NCP are to establish connections, terminate connections, control
flow, transmit interrupts, and respond to test inquiries. Table
3.1 offers a summary of the control commands—the definitions
of which follow that of the ARPANET (NIC #8246) [McKenzie, 1972].
However, these definitions of NCP functions are only conceptual;
from our experiences, we offer the following practical
interpretations:

"Host-Host protocol" is a formal description of the
interface condition between Hosts on the software level. It is
performed by the NCP usually as a part of the operating system.
Although the functions defined in the Host-Host protocol should
all be implemented, only the NCP functions which are absolutely
necessary for process communication or implementation of user-
level protocols are actually implemented. The selection of the
NCP functions depends on the degree of implementation of the
protocol.

Control commands RFC (Request For Connection)—RTS and STR—

- 63 -

Table 3.1 NCP control commands.

command operation function

NOP no operation no operation
RTS receiver to sender connection

STR sender to receiver establishment
CLS close connection termination
ALL allocate

GVB give back flow control
RET return

INR " interrupt by receiver

INS interrupt by sender interruption
ECO echo

ERP echo reply test inquiry
RST reset

RRP - reset reply initialization

and CLS (close) are indispensable for the establishment of a
connection between two processes and must be implemented in all
NCPs.

NOP (no-operation) is necessary for the NCP function test
and for IMP-Host connection establishment.

The message flow control mechanism is defined in the Host-
Host protocol of the ARPANET (NIC {8246). The control command
used for this is ALL (allocate). Real-time digital speech
transmission protocol implicitly employs this allocation
mechanism to improve the efficiency of the communication path
(See 3.2.3). In more complicated timing situations such as the
TELNET or the File Transfer where the control of inter-process

communication moves frequently between the two processes

- 64 -

concerned, the ALL mechanism is necessary to certify that the
receiver process has issued a Receive command from the arrival

of an ALL before dispatching a message. Many NCPs which handle

a number of co-existing connections do not allocate a receive
buffer to an individual connection beforehand in order to save
the would-be-used amount of storage. If a receive buffer is not
available for an arriving message, the message will normally be
discarded. These NCPs, therefore, must inform the sender process
of the allocation of a receive buffer. The allocation mechanism
implemented in our NCPs works well in these cases.

GVB (give back) and RET (return) are also parts of the
allocation mechanism, but are not employed in KUIPNET because
they are too complicated to be implemented in such a simple in-
house network as the KUIPNET, and furthermore, it was difficult
to understand the authentic meaning of the mechanism. Another
reason was that we could not believe that there exists any
practical application for user-level protocol, in which these
mechanisms are useful in controlling behavior. Hence, at present
these are not implemented in any NCP in the KUIPNET.

The NCP-level interruption mechanism (Host-Host and process-
process communication level) is necessary for the unconditional
transition of the current state of a process. This is necessary
to implement the TELNET protocol synchronization sequence or
reinitialization procedure (NiC #18639) and the abort procedure
which appears in the File Transfer protocol (NIC #17759). This
mechanism is also necessary in other user-level protocols to
implement sophisticated operations such as interruption or
suspension, purge, state-recovery, synchronization, and
reinitialization. All of these functions are implemented through
usage of the interrupt function on the NCP level.

Echo (ECO) and echo reply (ERP), which are used to test the

- 65 -

Table 3.2 Implementation of selected NCP
functions in KUIPNET.

TOSBAC

NOS | MACC |MELCOM|HITAC | TIP U200 5600

NOP

Control RTS

command | gTR

Ol0|0 10
Olo|010
OlO[10[0

CLS

o](e]le] @) @)
O|0[0|0[0
O|0|O[0|0
O|0|0j0 (0

ALL

GQVB

RET

INR

olo
olle;

INS

ECO

ERP

ERR

©)

RST

RRP

NO— operation

Network Init

command |}, 55ien

Close

Send

Q|O[0|C|O
Q|O[0|0|O
QjO|0|0[0
Ql0O|0|0|O

Receive

O{O|0|0]|0[O

Interrupt

Q] [OO|0|0|C|O

Purge

LCBRD

ACCEPT

O|O[0] [O]O|O[0[01O

INHIB

- 66 —

well-being of the NCP, are not needed so much.

Reset (RST) and reset reply (RRP) are reinitialization
commands from the NCP itself. If reinitialization, synchroniza-
tion, interruption, or pause functions are not available in user-
level protocols, these NCP commands may be used as an alternative
or next-best substitution. They are also very useful for
debugging user-level protocols. Implementation of these
functions, therefore, is of great advantage to the operationa-
bility of user-level protocols. Although the initialization of
the NCP is done mainly through the connection tables, for all
practical purposes it should include the initialization of the
logger process and the initialization of processes related to
the NCP.

The error-reporting functions of the NCP are implemented
together with the functions of error detection; the detection
of erroneous sequences or command parameters on the NCP level.
These functions do not affect the operationability of the user-
level protocol, but may provide a powerful means for debugging
higher level protocols.

From the above discussions, it can be seen that some of
the NCP functions are indispensable, some of them useful but not
indispensable, and some of them ﬁot particularly important.

The choice of NCP functions can be made arbitrarily by the
designer of an NCP, taking into accodunt the necessity of the
NCP functions to implement the user-level protocols.

The present state of NCP implementation in KUIPNET is shown

in Table 3.2.

- 67 -

3.2.2 1Inter-Process Communication Functions

A user process is given a set of commands to communicate

with a remote process through the local NCP. The interface

between NCP and user process is designed by the implementer of

the NCP. NCPs of usual organization communicate with a user

process through a set of network commands which are almost of

the same form as system calls. Generally the NCP functions

become transparent to a user process via network commands. User

processes are provided with any of the NCP functions.

From typical examples of NCPs which have been implemented

so far (for example, see Refereces [TENEX, 1973 and Winett, 1973]),

we deduced the set of network commands presented in Table 3.3.

A connection is established by the exchange of a pair of

RFC commands on the NCP level. (See part 3.2.4). Since both

the processes which are associated with the connection are in

independent processors, both RFC commands are not necessarily

synchronized together. Synchronization of commands means that

Table 3.3 Network commands,

Command Description

Init Request NCP to issue an RFC.

Listen Request NCP to place in the listen state.
Send Request NCP to transmit a buffer.

Receive Accept a buffer from the NCP.

Close Request NCP to close a connection.
Interrupt Request NCP to issue an INS or INR.
Status Request status from the NCP.

Purge Request NCP to purge an entry.

- 68 -

when a process issues a connect request (Init) and the correspond-
ing RFC command is transmitted through the network to another
Host and then to the NCP, the partner process has already issued
an Init, the arriving RFC is matched with this Init in the NCP,
and a matching RFC is sent back. Another case is when the
partner process has issued a Listen and is waiting for the
arrival of an RFC. Command-matching fails when neither the
matching Init nor Listen has been issued from the partner process
corresponding to the arriving RFC. One solution to this problem
is to place the arriving RFC on a queue and have it wait for the
local process to issue an Init or a Listen. The problem here,
however, is that nobody can decide beforehand the length of queue
to place the arriving RFC on. Another solution is to regard the
arriving RFC as a failure of connection establishment when the
matching process is not found, and to send back a CLS instead

of queuing the RFC. Many NCPs employ the latter mechanism, but
in these NCPs the initiating process does not abort the connection
after the first refusal by the remote NCP. It must try to
establish the connection several times, sending RFC commands by
issuing Inits, hence RFCs, even if the remote NCP answers by CLS.
Meanwhile, the target process will issue "Init" or "Listen", the
matching RFC will be returned, and the connection will be
established.

"Listen" is a network command to request the establishment
of a connection by the waiting for arrival of an RFC instead of
issuing an RFC. Listen does not designate either the name of
the foreign Host or foreign socket. The foreign Host's and
socket's names are assigned by the NCP from the RFC command
received on the connection establishment. This is advantageous
to server processes which accept connection requests from
versatile user processes. If the coming RFC is an RFC which
admits an Init, a response RFC is not necessary; but if the

- 69 -

coming RFC is one which corresponds to a Listen, an acknowl-
edging RFC is necessary.
There are several typical combinations of network commands

to establish a connection:

- (Init-Init)— Both commands must be synchronized to
establish a connection.

- (Init-Listen)— If Init is issued before Listen is, the
connection request fails. But a connection will be
established after a succession of Init retries, at the
moment a Listen from the other side is issued. If Listen
is issued beforehand, a connection is established immediate-

ly upon the sending of Init. This case is most preferable.

A connection is terminated by a network command '"Close".
Close may be sent from either side of the process at the end of
the connection. Ordered by a Close command, the NCP dispatches
a CLS to the destination Host and waits for a response CLS.
When the NCP receives a CLS on the open connection, then it
returns a CLS and records that the connection is closed. After
this the process may issue Close; the NCP itself does not send
a CLS but responds to the process that the connection has
already been closed. The process may issue Send or Receive
instead of Close, but such cases are handled in almost the same
way; the NCP simply responds to the process that the connection
has already been closed.

Incoming CLSs should be interpreted differently by the NCP
depending on the current state of the process: (1) A CLS
corresponding to an RFC, (2) a CLS corresponding to a CLS, (3)
a CLS to an open connection, or (4) a CLS to a non-existent
connection. In cases (1) and (3) a CLS is returned. In case

(2) no response is returned since the closing procedure has been

- 70 -

completed. In case (4) an ERR (error) is returned. The NCP
should not interpret a CLS to a socket in the Listen state as
a failure of connection establishment, because the only way to
terminate a Listen is to establish a connection with the other
end.

There are two alternatives in the implementation of
network commands: One is wherein the process which has issued
an Init or Listen command may be blocked until the completion
of the connection establishment by an RFC or the refusal of
connection by a CLS. The other is wherein the process which
has been issued the command immediately gets back the control
before reception of an RFC or CLS. The former is simple to
implement, but the latter is more flexible for controlling the
user process. For example, the process may listen to many
sockets concurrently and may be opened through any one of them
from the remote process. 1In the latter case, the completion
of the connection establishment is checked with the Status
command of the NCP before the execution of data transfer.

A user process need not wait for the complete closure of
the connection after a Close command is issued. If the socket
is to be reopened immediately after one disconnection, the next
open may fail unless it is executed after the acknowledging CLS
has been received from the remote Host [TENEX, 1973]. The
acknowledging CLS does not always arrive, because of some
failure of the remote Host. To caution against connection
failures due to this, the user process should terminate the

command after a predetermined timeout period.

- 71 -

3.2.3 Flow Control Mechanism for High-Speed Transmission

Although user processes are not concerned with the timing
when the message is sent or received, nor with the control that
the procedures the message is transmitted by come from, the
communication system involved must pay a great deal of attention
toward the prevention of congestion and lockout and the efficien-
cy of the communication path. Concerning these problems, a
number of measures are taken [Kahn, 1972]. These are of special
concern to us, since our network deals with voluminous high-
speed data transmission such as the digital speech data. By
filling the communication path with messages, forming a "pipe
line" from source to destination, the flow control mechanism
for real-time transmission in KUIPNET has achieved high through-
put and low delay.

Before describing the high-speed data transmission control
procedure, conventional flow control techniques will be described.

The first is the control by the RFNM (Ready For Next
Message) [Heart, 1970]). When a message is sent to the destina-
tion Host, the destination IMP sends back an RFNM to the source
Host assuring it that the previous message has arrived. In
ARPANET this mechanism is also used to prevent reassembly lockup
in the destination IMP [Kahn, 1972; McQuillan, 1972]. An RFNM
is sent back to the source IMP to inform it that a reassembly
buffer has been reserved in the destination IMP. However, in
our network reassembly is not performed, since packeting is not
employed; a message (max. 8096 bits) corresponds to a unit of
transmission in the network. RFNMing, therefore, has been made
optional in our network—an NCP may use it as an acknowledgement
of transmission of a message, may not use it, or can even

suppress its return by the IMP. The schematic expression of

- 72 ~

HOST A IMP HOST B

message
message
_ RENM e

I/

K message
message

i RENM o
time

Figure 3.4 Message transfer with RFNM control.

the sequence related to message transmission using this RFNM
control technique is shown in Figure 3.4. Employment of RFNM
control will increase transfer delay to about twice that of non-
RFNM usage for short messages, because the IMP-Host connection
is half-duplex in KUIPNET. This, in turn, will also increase
the processing time in both the NCP and the IMP.

The second is the control by the ALL (allocate). (See
reference [McKenzie, 1972]) When the receiving Host has reserved
a receive buffer space, the NCP sends an ALL, the parameter of
which is the connection link number and the size of receiving
space. The sending Host is prohibited from sending a message
over the link until the receiving space has been allocated in
the destination Host. Our interpretation of the ALL mechanism
is that a Receive operation of a -user process makes the NCP send
an ALL, because the NCP contains no room for storing received
messages. Figure 3.5 shows a schematic representation of the
transfer controlled by‘ALL. A Send operation may fail before
the receiving buffer is allocated in the destination process.
The NCP will discard a message if a destination buffer for it
is not found in the user process. Therefore, synchronization

between the Receive and the Send is neceséary by the ALL

-73 -

Process A NCP A NCP B Process B

wait Send—yx ~ ALL __—{Receive walt
[I P
A T Send—
_ ALL _—Receiverasy
L wait Send—>
time

Figure 3.5 Message transfer with ALL (allocate) control.

mechanism. (See part 3.1) However, this mechanism will degrade
the message throughput between processes to about half that of
the non—-ALL control mode, since for every message utilizing

this mechanism an ALL must bg received from the destination NCP.
Furthermore, this mechanism will thus increasé processing delay
in the NCP of both ends.

Below is a description of the high-speed transmission
mechanism. This mechanism is applied to real-time speech signal
transmission in KUIPNET to maximize the message throughput by
simply avoiding unnecessary control messages.

The two above-stated flow control mechanisms would work
implicitly, we thought, if the following assumptions were

satisfied:

(1) The RFNM has no meaning of flow control in KUIPNET. It was
used in the early ARPANET to control traffic in the network
by restricting a number of links—hence a number of messages
dispatched from Hosts—because only one message can be

transmitted over one link at a time [Heart, 1970]. But

- 74 -

later it came to be used to prevent reassembly lockup in
the destination IMP, because it was proved that the most
significant congestion in the network occurred because the
destination Host could not obtain reassembly space for
multi-packet messages [Kahn, 1972]. However, KUIPNET is
a single-node network (star type) and messages in the
network are not split into multi-packets. Therefore, flow
control by RFNM is not necessary.

(2) The destination Host receives messages faster than the
source Host sends them, and therefore, messages do not
accumulate in the IMP. Even in the case of real-time
transfer, when both the source and the destination Hosts
are executed in the real-time mode, the destination process
receives messages at an extremely fast rate; but still the
destination Host is able to satisfy most real-time transfer.

(3) quever; if the source process sends messages faster than
the destination process receives...

The destination NCP should not discard messages received
before the destination process issues a Receive. If both
the processes are sound and the receiver receives the same
amount of messages as the sender sends, the destination
NCP may hold the incoming messages for a short while until
the process receives them. In this case the IMP is forced
to suspend sending successive messages which arrive from
the source Host, since then the IMP will be filled with
these messages. Are the other processes prohibited from
sending messages? No, they aren't. Processes in other
Hosts may feel a small delay in sending their messages to
the IMP, where all buffers are in use. However, a new
buffer will be available in the IMP because the receiving
Host which is concerned with real-time transmission consumes

messages from the IMP at a very fast rate.

- 75 -

HOST A IMP HOST B

0V)

7

message message message

Figure 3.6 Message transfer with pipe-lining control.

(4) 1In the exceptional case that the destination Host does not
receive messages because of some failure of the receiving
process, the IMP will be filled with the messages missing
their acceptor. The IMP will discard these messages after

a delay of 30 seconds.

The schematic configuration of the message path in this
transmission mode is shown in Figure 3.6. Messages will fill
up the whole path from source to destination; one in-access to
the IMP, some in the IMP buffers, and one in delivery to the
destination Host, maximizing the message throughput. This effect
is called "pipe lining" by Rosener[1975]. This technique keeps
the access pipe line 80% full (800 kbps). (See part 5.2)

To a large extent, network congestion is reduced through
the combination of several features. The reduced holding time
of buffers in the IMP, due to the fact that messages are trans-
ferred over high-speed line, leads to a higher probability that
buffer space will be available for arriving messages. For
character-oriented messages from/to low-speed terminals, the
conventional flow control also helps to prevent the congestion
which could result from a high-speed source (such as a computer)

transmitting into the network at a much higher rate than the

- 76 -

destination (such as a teleprinter terminal) can receive, thus

holding a full buffer for an inordinately long time.

3.2.4 Example of Implementation of Network Control Program

The establishment of logical connections for inter-process
communication and control of data flow over the connection are
supported by the Network Control Program (NCP) resident usually
as a part of the Host operating system. An example of the data
structure and control mechanism of an NCP implemented in a mini-
computer is briefly described.

The connection status is registered in the "Link Control
Block" (LCB) resident in the NCP or in the user process, the LCBs
scattered in the main-storage being chained together by their
pointer field. Figure 3.7 shows the configuration of an LCB

corresponding to a connection.

ls—— 1 Word (16 bits)—>

POINTER
LOCAL SOCKET NAME
FOREIGN SOCKET NAME
BYTE SIZE |FOREIGN HOST NAME

BYTE COUNT
LINK # LINK STATUS BYTE
T RESERVED AREA :['-

Figure 3.7 Configuration of LCB.

- 77 -

An LCB contains information for connection identification:
The local socket name is the identifier of the local process;
the foreign socket name is the identifier of the destination
process; the foreign Host name is the identifier of the
destination computer; the byte size is the unit of data sent over
the connection, each message containing an integral number of
bytes of this size; and the byte count shows the length of data
area—send data or receive buffer. A link status byte shows the
status of the connection—whether or not it is open or closed,
waiting for a response or an acknowledgement from the other end
to an issued RFC or CLS, holding a message to be received, or
holding a message to be sent. The link number itself is the
identifier of the link, and all messages are sent over the
connection identified by this number. 1In order to assign a
unique number to a receiving socket of a process, or to identify
an incoming message with its destination socket, the NCP refers
to the link table. The RFC stack is used by the NCP to recognize
the process which is engaged in communication with a process in
the network.

A message consists of a header and a text. The header
contains a leader, byte size, and byte count. A control command
is conveyed to the destination NCP in the text portion of a
Control Message, over the predefined control link.

Figure 3.8 illustrates the control of the NCP resident in
" the main-storage of a Host. Suppose that a user process in Host
A establishes a connection with another user process in Host B,
transfers data, and closes the connection. The user process in
Host A issues a connection request (Init) to Host B. 1In Host A
the local and foreign socket names and the foreign Host's name
are recorded in the LCB from the parameters of the Init. The
Init issued is kept in the RFC stack in the NCP. From the

information in the LCB, the NCP compiles a control command RFC

- 78 =

from IMP to IMP
(,—~ £, = —
S ~a ——
LS command
message message RFC-comand
Teader leader o]ggag;“—zg;g
text text 4
1ind table Tink control 7

text transfer

\\user process Ju

link”

|
'
~SK_REEEEEE/ main memory of HOST-A 4,/

A . REC stack
Y leader assembly gggg%f$; Nd o
v - ~. | release -
(8 R { = -—-—-—4:?§ﬁconnection ~
B . | LCB
]12§atus . ~ | gsocket
; In1} Host name
| ! =~ | J : LCB
| Receive- éext 4 Stajus
l text A—— y) “j
: |
|) ' Close ——f”’/////r Nep

Figure 3.8 Data and control flow in NCP.

which is sent in the text portion of the message.

text field a leader is added which indicates the destination NCP.

Ahead of the

The control command is dispatched to the destination via the

well-known control link.

The process in Host B has already

issued a connection request '"Listen'" which is kept in the RFC

stack, but does not produce an RFC command.

When an RFC arrives

in Host B, the NCP examines the correspondence between the RFC

- 79 -

and the connection requests in the RFC stack, and if a correspond-
ing LCB is found, then a link number is allocated to identify this
connection and an RFC command is sent back to the NCP in Host A

to acknowledge the establishment of the connection. Thus, a
connection is established.

Over this connection the sender process issues a network
command "Send" and transmits a message containing the data denoted
in the Send command. When this message has arrived in the NCP,
the receiving process is identified referring to the link number
contained in the leader and in the link table. The text portion
of the message is delivered to the user process which is issuing
"Receive".

When either process issues '"Close", the NCP sends a control
command CLS to the other NCP. Then the connection is disconnected
and the processes at both ends are notified that the connection
has terminated.

The size of NCP is 1K words (16 bits/word) for MACC and
MELCOM, and 4K characters (6 bits/character) for NEAC 2200/200 in

the early version. Each includes buffer space of about 8000 bits.

3.2.5 Example of Inter-Process Communication

A special user-level protocol is implemented so that mini-
computers which do not have auxiliary file devices to store their
user programs can perform as co-workers in the network-wide
jobs—a kind of resource sharing. This protocol allows a mini-
computer to load its user program from the file system of a large

computer in the network, and also includes timing control or

- 80 -

synchronization mechanisms between user processes scattered among
several computers in the network.

In this protocol, synchronization between two processes is
achieved by a pair of system calls—'"Init" and "Listen". An Init
issued by a primary process will be successful if the secondary
process has already issued a Listen; if not, it will be a failure.
The primary process tries to initiate the connection again and
again until the secondary process issues a Listen, by this way
achieving a kind of process synchronization. _

An example of the procedure of this protocol, in this case
where cooperation among processes scattered between the three
Hosts—MACC, MELCOM and NEAC is possible, is shown below:

First, every Host is loaded with its own NCP and monitor
and is an integral part of the network-wide monitor which per-
forms the protocol as a whole.

Either MACC or MELCOM can initiate a network-wide job. An
operator may type a command via either MACC or MELCOM's console
typewriter and initiate a network-wide job. Then all Hosts are
loaded with their user processes, which are transferred from the
NEAC's file system.

Suppose that MACC initiates the job. The procedures stated
below are shown in Figure 3.9. Arrow 1 in the figure is the
procedure where the process in MACC informs the job name to the
process in NEAC by executing a series of system calls (shown in
Table 3.4 as stage 1); Init, Send (job name), and Close. The
process in NEAC executes a series of system calls; Listen,
Receive (data), and optional Close. The process in NEAC, which
issued a Listen and was blocked, is unblocked and executes the
program transfer (arrow 2 in Figure 3.9, and stage 2 in Table 3.4).

By stagé 3, the same task name is sent from MACC to the

process in MELCOM which issued a Listen, and the process repeats

- 81 -

MELCOM

—= instruction to
co-process,

m=p program transfer,

® Mal, Nel, Mel: sender
socket,

Y @ Ma2, Ne2, Me2: receiver

socket,

y Focess
process pro TTY: teletype.

process

Figure 3.9 Example of cooperating processes over three Hosts.

Table 3.4 Sequence of system calls corresponding to Figure 3.9.

D: cooperating process name, d: program to be transferred.

stage MACC NEAC MELCOM
Listen(Ne2) Listen(Me2)
1 Initha1,Ne2)
Send(Mal,D) Receive(Ne2,D*)
Close(Mal)
2 |Listen(Ma2) Init(Nel,Ma2)

Receive(Ma2,d*) Send(Nel,d)
Close(Net)

3 |Init(Mal,Me2) Listen(Ne2)
Send(Mat,D) Receive(Me2,D')
Close(Mal)
4 |Listen(Ma2) 1nit§Me1,Ne2)
Receive(Ne2,D') | Send(Mel,D)
Close(Mel)
5 Init(Nel,Me2) Listen(Me2)
Send(Nel,d) Receive(Me2,d"')
Close(Nel) :
6 Init§Me1,Ma2)
Receive(Ma2,D*) Send(Mel,D)

Close(Mel)

- 82 -~

itself in stages 4 and 5 just the same way as in stages 1 and 2.
NEAC loads its program by itself and with this the three programs
corresponding to the job name are distributed to every Host.

Stage 6 certifies that all Hosts are loaded with the
processes which are going to cooperate in this particular job.
Then the network-wide monitor passes the control to the individual
process in each Host, and resource-sharing is achieved. After
the completion of the job, the network-wide monitor resumes its
control from each process.

Under this protocol several resource-sharing jobs are

implemented. (See examples shown in part 5.4.3)

3.3 Operating Monitor for Minicomputers

Minicomputer Hosts connected to the KUIPNET provide
peripheral-oriented processes: input/output processing for raw
speech data; output processing of synthesized speech data;
processing of photographs, including color-modified photographs;
and line drawings. The operating monitor for these minicomputer
Hosts was designed to provide access to the network and terminals.

The features of the monitor are as follows [Sakai, 19741]:

(1) Multi-tasking and scheduling— 1In order to enable a mini-
computer Host to concurrently manage many peripheral devices
including the network communication unit, the monitor
provides the conventional multi-tasking mechanism. Although
regular tasks are scheduled according to first-come first-

serve basis, real-time tasks are exceptionally scheduled in

- 83 -

(2)

(3)

(4)

response to external events. Input/output of speech and
pictorial data are handled as real-time tasks to realize
high-speed processing and control. On the other hand,
complicated processing of extracted parameters and re-
organization of data are performed by the lower priority
tasks or by the large computer system in the network.
Input/output control— In cooperation with the above multi-
tasking mechanism, input/output control is performed by the
monitor in response to interruptions from peripheries. So
as to reduce input/output overhead of the monitor and to
achieve high-speed real-time processing, input/output
instructions that are not accompanied by interruptions can
be directly executed by user processes. An extended monitor
function is provided to user processes—a user process is
allowed to directly handle special interruptions that have
been registered beforehand. This function reduces the
monitor overhead's processing time and memory space
accompanied with input/output control, and provides a tool
for extending monitor functions to handle various peripheral
devices which may be attached afterward.

Users' interface— The interactive interface with the
monitor is provided to operators via a teletype or a
character-display terminal in order to control user-—
developed programs containing conversational processing
methods. The functions available from a terminal are
initiation/termination of jobs, loading of programs from
auxiliary storage, and making inquiries about allocation of
memory space and peripheral devices.

Interfacing to the network— For input/output with the
network interface device (CCCE), four kinds of interruptions
are processed (see part 2.3.3) to achieve inter-computer

transmission. Accompanied with the above function, the

- 84 -

Network Control Program (NCP) provides functions for inter-
process communication control (see part 3.2.4). User
processes are provided with several network commands to

communicate with other processes in the network (see part
3.2.2).

The number of jobs which may be carried out concurrently is
limited by the available memory space and the allowable execution
time (lower priority jobs have a low probability of obtaining the
processor, and hence take a long time for processing). The
number of jobs regarded as practical is two at most—a real-
time job and a background job.

The monitor occupies about 2K words (1 word = 16 bits),
including the NCP (which contains buffer space of 500 words) for
MACC and MELCOM.

3.4 Terminal Supporting Processes

In conventional systems, the "batch" mode of processing has
beeﬁ dominant. KUIPNET, too, is designed to allow non-time-
sharing, or in other words, non-character-oriented systems such
as real-time raw data processing. In a computer network—which
ideally is a total complex of facilities constituting a pool of
resources—however, interactive processing between the various
facilities is also important, not only for time-sharing systems
(in KUIPNET, NOS (see section 1.3) and GCOS (see Chapter 1IV) are
actual examples of time-sharing systems) but also for other appli-
cations. Interactive processing makes it poséible to take fullest

advantage of the "pool of resources' available in the network.

- 85 -

To make this interactive processing possible, a simple mini-
Host combined with a Network Control Program (NCP) called
Terminal IMP (TIP) was implemented in the IMP. How to utilize
the TIP efficiently, however, was a new problem. It was
different from other Hosts because there were no pre-existing
constraints to accomodate with. - But for this very reason, the
TIP system has achieved high performance with a small, relatively
limited processor.

For the success of interactive processing the programs of
the various Hosts must be able to communicate smoothly with each
other. This necessitates a terminal-oriented standard interface,
which in turn involves the establishment of procedure and format
agreements throughout the network. Importance has been attached
to the establishment of such homogeneous structures for
communication by many computer network designers, and many
efforts have been made about this problem [Crocker, 1972;
Ornstein, 1972; Mimno, 1973; Sanders, 1976].

Among these efforts, the TELNET protocol, by its concept of
a "Network Virtual Terminal" which is an imaginary but logically
defined terminal, is one of the most well developed systems. It
provides a fairly general bi-directional, eight-bit oriented
communication facility—a character device with printer and key-
board (NIC #18639), and can be used not only for terminal-to-
process communication but also for many kinds of process—to-
process communications. 1In the case of KUIPNET, the TELNET is a
part of the TIP in the IMP.

The TELNET possesses two major facets. One is the User
TELNET, a human-operator oriented system which controls the
terminal devices, and the other is the Server TELNET, a process
oriented system which typically serves User TELNET processes.

Both possess identical interfaces.

- 86 -

User TELNET: The User TELNET interprets the commands from
the TIP and controls the input/output of terminals. At present,
the teletype is the only terminal being served by this User
TELNET in the KUIPNET. The input/output control block, when
theré is no character to print, watches the status flag which is
set when a character is typed on the keyboard. From the
characters typed, command characters discriminated by control
codes are stored in the command buffer, while the remaining
characters are stored in the input buffer. The complete command,
when it has been gathered, is then interpreted and executed.

From messages passed from the IMP, control commands are
processed in the NCP. (See section 3.2.4.) The remaining.
messages are passed from the NCP to the text receiver of the
User TELNET. 'After some code conversion in order to interpret
the meaning of the text, the received text is handed to the
input/output control block. Since the teletype is operated in
half-duplex mode, it is set in the input-from-keyboard mode when
there is no output. At the moment an output character is placed
on the print-out queue, the teletype is set in the output mode
and starts to print out. Input from the keyboard is blocked
until all output characters have gone out. Output characters are
generated independently both by the command interpreter and by
the text receiver. These texts are put on a print-out queue and
wait for processing by the input/output control block executed
as an autonomous task.

Server TELNET: The Server TELNET, a specific process pre-
pared to give access to the remote Host computer, is described
in detail in section 4.6. It should be explained here, however,
that under the Server TELNET there is a special Logger process
which supervises the server processes and is the mechanism that

interprets the commands sent through the TELNET. A main frame

- 87 -

of the Logger is the Initial Connection Protocol (ICP) procedure
[Postel, 1971]. Upon arrival of a connection request from a
User TELNET process, the Logger creates a server process and
reconnects the user process to it—this action being the ICP.

Besides being used in the IMP, the TELNET systems are also
implemented in several Hosts. For example, the two minicomputers
MACC and MELCOM each have User TELNET processes. NOS (NEAC 2200/
250), developed by Hayashi[1977], has both User and Server
TELNETs and is operated completely in the time-sharing mode.

For TOSBAC 5600 too, both the User TELNET and Server TELNET are
implemented (see Chapter IV).

The TIP, in addition to having a User and Server TELNET,
also consists of magnetic tape option (MT option) and the NCP
sub-tasks.

MT option: The functions of the MT option will be described
in the following section. The relation between the MT option and
the User TELNET, however, is as follows: The command executive
of the MT option is started by "@ M'" type commands typed locally
via the User TELNET. Commands and response messages returned
from the destination Host are trapped in the User TELNET text
receiver block before they are handed to the print-out queue, and
are used to control the MT option.

NCP: The NCP of the TIP simulates IMP-Host communication
through the.iMP system calls (see section 2.3.4) whose functions
are (a) removal of a message from the HOST-OUT queue (see section
2.3.1) and (b) addition of a message to the HOST-TASK queue (see
section 2.3.1). The input process from the IMP is performed by
the status check of the HOST-OUT queue. If there is any message
on the queue, it is transferred to a receive buffer in the TIP,
and then the IMP buffer is returned to the free-buffer list.

The output process to the IMP is performed by transfer of the

- 88 -

output buffer in the TIP to the IMP buffer which is obtained
from the free-buffer list. Then the IMP buffer is placed on
the HOST-TASK queue. The NCP has twelve ports, half of them
allocated to sender sockets and the other half to receiver
sockets. A pair of sender and receiver ports is allocated
to the User TELNET, the ICP logger, and the MT option, and
three pairs of ports are allocated to the Server TELNET. The
NCP is used concurrently by six processes each of which pos-
sesses a pair of these ports.

Monitor routine: Execution of all the above-mentioned
TIP sub-tasks is scheduled by a monitor routine which is
directly coupled with the background routine (see section
2.3.3) of the IMP., The monitor routine passes the control
to each sub-task by the following principles: (1) The input/
output control block is started when the teletype is found
to be ready for the next output or a new input character;
(2) The NCP is started when a message has arrived from the
network; (3) Other sub-tasks are started by the occurrence
of the events—input/output completion, connection establish-
ment, allocation of buffer space, disconnection, or timeout.
The started task completes its execution by naming the
expeéting events after processing of data and notifying the

other tasks of occurence of new events.

3.5 Magnetic Tape File Transfer

The file transfer mechanism is an important data-
sharing facility in a computer network. In ARPANET, it
is named File Transfer Protocol (NIC #17759). .In

- 89 -

KUIPNET, file transfer is important for medium conversion;
for instance, conversion between two different types of
magnetic tape files—one written on the 9-track 800 bpi tape
drive unit, the other on the 7-track 556 bpi tape drive unit.
As was described in section 3.4, an optional TIP function

to transfer these magnetic tape files was implemented in
KUIPNET. To begin with, a pair of TELNET connections is
established with the destination Host via the TELNET's ICP
mechanism provided by the TIP. Magnetic tape commands are
entered to the magnetic tape option routine which controls
tape drive unit and manipulates files. The magnetic tape
files are transferred in a way that allows any set of codes
and any file format. Here the file transfer mechanism is
briefly described, including the correspondence of data and
file formats.

Data conversion format: A unit of data conversion is a
frame on a tape. Eight bits, or one byte, is a unit on 9-
track tape, and six bits, or one character, is a unit on 7-
track tape. Let us consider the case of a 9-track tape being
copied onto a 7-track tape. The 8 bits of the n-th byte on the
9-track tape corresponds to the under 2 bits of the (2n-1)th
character and 6 bits of the 2n-th character on the 7-track tape.
All bit positions in a frame are filled in lower-order bits,
and any bit positions unused are filled up with logic zeroes.

A record on the 9-track tape is correspondingly converted into
a record on the 7-track tape. The maximum record length of 9-
track tapes, being restricted by read buffer size, is 2048 bytes.

File conversion format: A file on a 9-track tape is
defined as a sequence of records enclosed by two tapemarks.

The first record of a tape begins with a BOT (Beginning Of Tape) and

ends at with a tapemark. The end of the records is defined by a double

- 90 -

tapemark. A file on 7-track tape is defined as a sequence of
records which begins by a HDR (Header) record and ends by an EOF
(End Of File) record, the next file beginning by another HDR
record and ended by an EOF record. The end of all records is
defined by an ERI (End of Real Information) record.

Files in the above-mentioned two different mediums corre-
spond with each other. For example, suppose a 9~track tape is
transferred to a 7-track tape, a destination file where the
records are stored is opened, wherein a header label is written
down on the tape. A record is read from the 9-track tape and
transmitted to the destination Host. The process that performs
transfer in the Host converts a frame (eight bits) into two
characters (twelve bits) as stated above; and reproduces a record
to be written into a tape; that is, an output record on 7-track
tape is converted so as to have twice as much length of frames
as that of the record originally written on the 9-track tape.
This process continues until a tapemark is found, when a trailer
label is written on the output tape. Three EOF records are
written and two records are back-spaced. If new records follow,
they are treated as a new file, and a header label is produced to
precede them. When a tapemark is followed by a tapemark from the
input tape, this means the end of the recorded data and that no
more records remain. Then the connection used for magnetic tape
transfer is closed. The process in the Host finds that the sender
process has closed the connection and closes the file by writing
two trailer labels followed by an ERI and an EOR (End Of Reel),
and rewinds the tape.

File transfer protocol: The file transfer mode of KUIPNET
is almost analogous to the eight-bit byte stream mode of the FTP
of ARPANET (NIC #17759). A unit of a byte is composed of eight

bits and data is trasmitted in the form of a stream of bytes.

- 91 -

EOR (End Of Record) and EOF (End Of File) are represented by

two bytes of control codes which describe the records and files.
Control code 1 represents an EOR, 2 represents an EOF, and 3
represents an End Of Record & End Of File. Escape characters—
all logical—which appear in the data stream are doubled by the
sender to distinguish them from control codes. The data stream
is conveyed by a sequence of messages whose length is fixed to
72 bytes. A record may end in the midst of a message, the
characters following after an End Of Record code included in the
next record. Characters following after an End Of File code are
padding bytes and are all zeroes. This protocol allows the
transfer of any pattern of binary data.

As we can imagine frgm the above description, a fairly good
file conversion mechanism is provided between two different types
of machines—a byte machine and a character machine. However,
this conversion mechanism is very complicated and requires lengthy
processing time. This is because the conversion process contains
a number of bit-shifting operations and each byte must be
separated from a data stream to test the control codes. For-
tunately, we can appreciate the high-speed transmission capabili-
ty of KUIPNET. Usually, file transfer speed is rather limited
not by the line speed but by two factors—the processing time in
computers and the mechanical speed of tape drive units. From
our experience, it takes about 20 minutes or so to convert a reel

of 1200-foot tape.

- 92 -

CHAPTER IV: EXTENSION OF IN-HOUSE COMPUTER NETWORK KUIPNET
TO REMOTE COMPUTER SYSTEM (TOSBAC 5600/140)

KUIPNET is not necessarily confined within a limited
location—in-house, but can be widely extended. Two major
efforts have been made toward the extension of our computer
network: (1) connecting it to a remote large computer in Osaka
via 4,800 bps line, and (2) making possible an inter-university
computer network by connecting two computer centers, one in
Tokyo and one in Kyoto via 48 kbps line. In this chapter the
former effort, in which the author participated, is described.

(See Reference [Yanagi, 1976])

4.1 Outline

TOSBAC 5600/140 (which is equivalent to Honeywell's 6040) is a
_distant Host at the Kansai Institute of Information Systems (KIIS)
Viﬁ:Osaka connected to the IMP through 4,800 bps communication line.
The key functions accomplished by this connection are: (1) communica-
tion control with a Very Distant Host; and (2) establishment of an
intellectual Server TELNET which provides an authorized time—sharing i
system (TSS). The connection between TOSBAC 5600 in Osaka and the |
IMP on the Kyoto University campus, located 50 km apart, is an ex-
‘tension of the local IMP-Host connection. For precision on a com-
munication line, a mechanism for reliable transmission was introduced

(See 4.3). TOSBAC 5600/140 is called a Very Distant Host (VDH) since

- 93 -

it has an NCP and provides Host-Host transmission procedures.

The powerful operating system GCOS provides versatile
subsystems including the TSS. Access to this is very desirable
for the KUIPNET. TELNET allows a way for remote terminals in
the network to gain access to the terminal-oriented processes;
typically, the TSS. The usefulness of the TELNET is augmented
by the vigorous TSS. A new approach to open an entry to the
TSS from the remote TELNET was attempted on the IMP. Without
altering the GCOS-TSS system, a Server TELNET was implemented
‘in the IMP to serve as the external computer of TOSBAC 5600.

4.2 Configuration of TOSBAC 5600/140 - KUIPNET Connection

The configuration of the VDH (TOSBAC 5600/140)-KUIPNET
connection is shown in Figure 4.1. First, several layers of
interfacing blocks for the VDH are described below. The
communication line which connects the two computers 50 km apart
is at the transmission rate of 4,800 bps and is leased from
N.T.T.. The communication controllers at both ends are operated
in synchronous full-duplex (though half-duplex in TOSBAC 5600)
basic mode by the IMP (NEAC 3200/50) and DN340 (a front-end
communication processor of TOSBAC 5600). The communication
control between the IMP and DN340 is an extended type of the
basic mode procedure, called DDS120B interface in TOSBAC 5600.
The communication between DN340 and TOSBAC 5600 is performed by
two packages, GRTS-340 in DN340 and GRTS-5600 in TOSBAC 5600.
In the IMP the communication with TOSBAC 5600 is controlled by
two packages, DDS-120B and GRTS, both of which have the

corresponding functions of those inherent in DN340. The VDH

- 94 —

KUIPNET (Kyoto)

HOST(N2200/250)

IMP(N3200/50) '8 /| PROCESS
wTI] S
) c
Dle IMP-VDH 1 3 E_ 1|P |_[SERVER
71 | 2R A | H[[M P} TELNET
0 > |7 {T-5600 N g g P
D i 3{s |SERVER |C T! HOST(MACC7/F,MELCOM)
Bl (67 |TELNET P 8 TH] W 2
B - 0
user 11 i s §
TELNET | =
| b | i[] | Pl USER
HRALIRE (= TELNET
el 4
| G P
4800bps ﬁ
/]
50km _
KIIS (Osaka)
TOSBAC-5600
gl [H TCP |
D340 X (——ﬁ “ét) PROCESS
MR erms| [S1]E| Pl useR
D15 | - &l M TELNET
5 2 |340 el L
0
IB 0
0
o TsS

Figure

4.1 Configuration of VDH(TOSBAC 5600/140)-
KUIPNET connection.

95 -

special communication control between IMP and Host is performed
by the two packages IMP-VDH in the IMP, and HOST~IMP in TOSBAC
5600. Messages destined to TOSBAC 5600 are handed to the IMP-
VDH package and messages sent from TOSBAC 5600 are handed to the
message-switching program via the IMP-VDH package. NCP-level
communication is performed by two NCPs, one in TOSBAC 5600 and
the other in KUIPNET.

Besides being a VDH, TOSBAC 5600 has another aspect——a TSS
system. A user process in the KUIPNET can communicate with the
TSS in TOSBAC 5600 through the IMP. The IMP, by the complex
function of two packages—DDS-120B and GRTS, performs as if it
were an inherent remote terminal concentrator of TOSBAC 5600.
From outside, the GRTS interface is seen virtually as a set of
terminals, each of which is mapped onto a Network Virtual
Terminal (see 3.4) having a pair of TELNET sockets. The "T-
5600 SERVER TELNET" package (a Server TELNET) and the NCP provide
a Host function which allocates a process corresponding to a
virtual terminal in response to a request for a TELNET connection
from a user process. -At the beginning of communication with the
TSS, a user process connects with the Server TELNET in the IMP
(TIP). After establishment of a connection, the Server TELNET
is invisible to a user process, being apparently connected with
the TSS beyond the Server TELNET. Thus any user process which
has a TELNET interface, including TIP itself, may become a

virtual terminal of the TOSBAC 5600 TSS.

- 96 -

4,3 Communication Control Procedure

Although no special control mechanism is required within a
distance of several hundred meters of IMP-Host communication, a
modem and communication controller with error control mechanism

are employed for the connection with a Host located at a distance
of 50 km.

Basic Communication Control:

The communication control procedure between IMP and VDH is
a variation on the basic control mode of 7-bit character JIS-code
with an eighth parity bit. It is called the DDS120B-type
communication control procedure, and was originally used between
the front-end-processor DN340 and its terminals. In order to
realize bit-transparency concerning communication between NCPs
(network mode), small modifications are introduced into the

DDS120B interface.

SIS|S|S|SIAl S|FIFIF{F{F|F|S ElLlE
Y{Y|Y|Y|O]D]TIC|C|C|CIC|C|T{= Text =t TRl 0O
N{NIN{NJH]R{Aj1]2{3]{4]5]6fX xlclT
1 | ! — LT
Function Codas -rart of Text Eggggzugﬁﬁgi““"
-___§§3$g§sc°de Redundancy Chqck.
L Start of Heading End of Transmission

Synchronization Pattern

Figure 4.2 Message frame format on DDS120B interface.

- 97 -

(1) Message format between DN340 and IMP

Figure 4.2 shows the message format of a frame transmitted
between DN340 and the IMP. ADR(address), represented by a set
of eight bits—pllaaaaa (p is a parity bit)—is an identifier of
terminals. The network mode is particularly represented by aaaaa
= 00000. STA is a status code representing either NUL(null),
ACK(acknowledge), NAK(nack), BSY(busy), INT(interrupt), BRK
(break), or DIS(disconnect). FCl - FC6 are function codes —
all zero for regular messages; FC6 = DLE(data link escape) when
in transparent mode. The text part is composed of a sequence
of 7-bit JIS-code characters with parity. LRC is a longitudinal
redundancy check code computed by the exclusive-or operations
from ADR through ETX(end of text).

For bit-transparent transmission, an 8-bit code is used
instead of the 7-bit JIS-code. Figure 4.3 shows the message
format of a bit-transparent mode frame. The pair of control
characters DLE/STX(start of text) shows the beginning of a binary
mode text, and the pair of control characters DLE/ETX(end of
text) shows the end. DLE/DLE may appear in a binary mode text,
meaning a data byte DLE. In the transparent mode, a data byte
DLE is dispatched with an extra DLE from the sender, one pf them

being removed upon receipt.

S| S| S| S| S|A|S{F|F|F|F|F|D|S D|D D|E|L
YIY[Y[Y]OID}T|C|C]C|C|C|L] T [e=——Text L|L SILITIR
NININ|N]JHIR] A]1]2]|3}4]|5]|E{X E{E E}{ X C
< /-bits character _____¢4e___8-bits binary data .
JIS-code with eighth without parity
parity bit

DLE: Data Link Escape

Figure 4.3 Message frame format in transparent mode.

- 98 -

(2) Connection establishment between DN340 and IMP

IMP issues an empty frame (EF) after a predetermined interval
of no traffic. If DN340 has no outstanding message frame (MF),
an EF is sent back to the IMP. In response to an EF, IMP may
send an MF to DN340.
(3) Message and response

The configuration of message frames and their possible

response messages are shown in Figure 4.4.

Connection Establishment:

GRTS is a set of communication functions of GCOS resident
in DN340. Remote terminals (e.g., IMP) must connect with
GRTS-340, which is a subsystem of GRTS, before connecting with
GCOS (TOSBAC 5600/140). There are two possible connection modes,
DAC(direct access) and TSS. Since the NCP in TOSBAC 5600 is
implemented as a user process (see 4.4), it communicates with
another NCP vZa DAC mode, and since the Server TELNET is
implemented in the IMP, it communicates with the TSS in TOSBAC
5600 via TSS mode. Other available control commands are

Disconnect and Break.

Higher Level Communication Control:

Communication control between Host and IMP is usually

- 99 -

=OWwn

messages sent by IMP

8 All FC % E k response is S|AJA SIEIL} correctly
H R # s 1% ; RIACK or NAK g R % FCs ; ; B Rgﬁe1ved
- interrupt N STETE
error &
8 AN S EL B ﬁ FCs § i E request for
0 B JIFCs ; Text ; g ' retransfer_
. S|AlB SIEIL] IMP is busy
normal mode data with ;ﬁ?ponse > g,R % FCs 1 ilé request for
8 6 j % k retransfer
FC4L]T|Binary Text |L STAIE STEIL
HIRIL] el X E1X)C 0|p|r{Fcs |TITIR|ACK &
transparent mode data HIRIK XIXACl break
SIA|D SIEJL
0ib]1|Fcs TITIR ACK &
L HIR{S X1X1C] disconnect
messages sent by DN340 response by IMP
STAIN S 0 [[STAN STETT] Ack &
OIDJU}FCs |T Text T{R 0|DJU}FCs |TITIR
HIRIL X X|C HIRIL X]1X}C re?gonse
normal mode data nu
Tl orrs e [EH | | TR FRE cret
sl a S
BRI T X{B ey Textik]| AlRIR x|xfcj request for
transparent mode data
AlB L SIA|L SIE]L or &
o|alrcs [3[%|& break request alolufres [71E[Rlstop
RIK X1X | (BIRIT XDAC Y g
8 é ? Fes % EIEldisconnect
ilrls x]x| ¢ request

response by DN340

Figure 4.4 Configuration of message frames

and their possible responses.

- 100 -

specified by the IMP-Host protocol, but communication control
between VDH and IMP requires an additional control mechanism.
Most of the necessary controls related to the communication

line (e.g., sequencing, error control) are performed by GRIS and
and DDS120B, but some kinds of control are performed using
information from an IMP-VDH control-word(32 bits) as shown in
Figure 4.5, The first 32 bits of binary mode text is used as

the control word, and the rest of the text which contains a
leader and a header is the message defined by the IMP-Host
protocol. The control word contains status flags used especially
for communication control between the IMP and the NCP ih the VDH.
The basic functions of the IMP-VDH protocol are founded on the
GRTS functions. Connection establishment and data transfer

control are described as follows:

must be zero

wait until break accepted ______J
*send request

break accepted
**end of transmission
*connection established

from IMP

control bit

* is effective in NCP » IMP
** {s effective in IMP » NCP

Figure 4.5 IMP-VDH control-word.

- 101 -

(1) Connection establishment between the IMP and the VDH

After the establishment of connection on the DDS120B
interface level, the IMP opens a communication link with the
NCP, GRTS-340 informs the NCP of the opening of this link, and
also informs the IMP of the Connection Established state by
turning on the flag bit in a control word.
(2) Data transfer from VDH to IMP

After the establishment of connection, VDH can send data
to the IMP if there is any data ﬁo send; even a sole control
word. The length of data must be less than 8096 bits.
(3) Data transfer from IMP to VDH

The IMP interrupts the VDH by a Break command when IMP has
data to send to the VDH. On detection of a Break command, if the
VDH has any space to accept data, it notifies the IMP by a control
word, turning on the flag of Break Accepted. If there is not
any space to accept data in the VDH, the VDH responds to the IMP
by turning on the flag of the Break Accepted But (the transmission
must) Wait in a control word, and continues its sending process.
to the IMP. If after transfer of a Break command there is no
Break Accepted nor Break Accepted But Wait in two successive non-
empty messages returned from the VDH, the IMP regards the Break
command as not having been received by the VDH. In continuous
transmission of data from IMP to VDH, the IMP must halt transmis-
sion between every message and wait for a Break Accepted. On
reception of a Break Accepted, the IMP sends a control word of
Transmission Finished if there is no further data to send.
(4) Alternation of direction of transmission between IMP and VDH

After continuous reception of several messages from the IMP,
if the VDH has data to send to the IMP, the VDH sends a control
word of Stop Transmission. - The IMP responds by a Break Accepted

But Wait if the IMP has any more data to send, or if the IMP has

- 102 -

no more data to send, by simply a Break Accepted. The VDH begins
to send data in the case of Break Accepted, but returns a Break
Accepted to the IMP in the case of Break Accepted But Wait,

After a succession of transmission (typically 10 messages) to the
IMP, the VDH sends a Break Accepted and tries to accept a message
from the IMP. The IMP may either send data, if any, or an empty

frame if there is no data to send out.

4.4 Network Control Program for TOSBAC 5600/140

The NCP implemented in TOSBAC 5600 is exactly harmonized
with the IMP-Host and Host-Host protocols in the KUIPNET. This
NCP was implemented as a user-level job program in order to avoid
introducing any modification to GCOS, since it is difficult to
change the monitor in the main Host and new monitors pose
continuing compatibility problems. ‘While this approach is good in
principle, and in fact was the only possible approach, it often
leads to problems. The I/0 system between the main Host and the
peripheral processor is not designed for network connection and
presents serious timing and bandwidth constraints that greatly
degrade performance (see 4.5). Furthermore, the logical protocols
that have preexisted preclude the main Host from acting as a
general-purpose Host on the network. For instance, only batch

jobs are accessible via the NCP, and TSS mode jobs are not.

- 103 -

4.5 Measurement and Estimation of Throughput

The message throughput was estimated between IMP and NCP in
TOSBAC 5600. Message transfer is controlled by the iMP—VDH
protocol (see 4.3), the procedure in which a message is
transmitted being as follows:

Parentheses () and < > represent a DDS120B-level message
sent from DN340 to IMP and a message sent from IMP to DN340,
respectively., A message is sent from IMP to NCP in the sequence;
(Break Accepted), <ACK>, (EF), <message>, (Response Null), <ACK>,
(EF), <EF>. A message is sent from NCP to IMP in the sequence;
(message), <ACK>, (EF), <Break>, (Break Accepted), <ACK>, (EF),
<RFNM>, (Response Null), <ACK>, (EF), <EE>. The processing
delay both in the IMP and TOSBAC 5600 was quantified by the
roundtrip delay of an empty frame. Transmission delays of
individual messages are proportional to the messages' lengths
and can be estimated based on the bit rate of the line (2.08 ms/
bit). Figure 4.6 shows the computed message throughput between
the IMP and the NCP in TOSBAC 5600. The result is shown as the
ratio of throughput to the line speed of 4,800 bps.

In comparison with this, another measurement report is
presented. V.G. Cerf reported in his Very Distant Host
measurements that the actual line utilization was about 20% in
each direction, assuming a normal 50 kbps available in full-
duplex capacity between sites, where the average text length
was 560 bits [Cerf, 1976]. The actual bandwidth of delivered
data on a full;duplex line was 3.8 kbps, and average message
rate was 6.6 messages per second. He used a very complicated
transmission procedure (large overhead) and high-speed full-
duplex line (50 kbps), while we use a rather simple procedure

(less overhead) and low-speed half-duplex line (4,800 bps).

- 104 -

%
80
70t
60+ IMP to NCP -

50 ///

40t /// NCP to IMP

30t i

207 4/

10t

0 1 23 4 5 6 7 8x1000bit
Message length

Figure 4.6 Computed message throughput between IMP and NCP
(TOSBAC 5600).

Throughput

Sg%f_ﬂessage TOSBAC 5600-» NEAC 2200

p— e e e e s it

5.0 NEAC 2200-» TOSBAC 5600

S
(=]
T

N
o
| J

100 200 300 200
Message length byte/message

Figure 4.7 Message delay between TOSBAC 5600-and
NEAC 2200.

- 105 -

The throughput between a pair of user processes is degraded
because of response delay induced by the communication between
DN340 and the main TOSBAC 5600, by the flow control between NCPs
which is performed by exchanging allocation commands, and by the
operating system overhead. The message delay observed between
user processes in TOSBAC 5600 and in NEAC 2200/250 is shown in
Figure 4.7. 1In a practical application, a frame of a picture
(128 x 128 elements, total 101,376 bits) was sent from Kyoto
(NEAC 2200/250) to Osaka (TOSBAC 5600). It took 221 seconds,
where the text length was 3168 bits. The actual delivered data
bandwidth was 0.46 kbps.

4.6 Higher-Level Communication Function —— Server TELNET
for TOSBAC 5600 TSS Subsystem

Use of the IMP to connect the TSS in TOSBAC 5600 to the
KUIPNET with no Host computer hardware or software modifications
has been accomplished. For this, the NCP was removed from the
Host computer and placed in the IMP system to become a front-
end processor of TOSBAC 5600.

One way of connecting a Host is through the use of a
number of slow speed terminal ports back-to-back with the
terminal ports of the IMP. This particular approach is
straitforward, with no modification to the Host computer;
hoﬁever it is wasteful in the large number of asynchronous
interfaces it requires. 1In our case, the connection_is made

through the interface of a miniprocesser-based remote

- 106 -

concentrator designed to concentrate data from as many as 32
terminals. The basic software to serve a defined number of
lines can be configured by the manufacturer. On the IMP side,
special applications are required so that it can be incorporated
with the standard routines in TOSBAC 5600.

The Server TELNET (terminal oriented interfaces, see 3.4)
in the IMP, combined with TIP is a cooperating process with
GCOS in TOSBAC 5600 and appears as a provider of the time-
sharing system to user processes in the KUIPNET. The major
functions of this process are as follows: (1) connection
establishment with processes supported by the User TELNET
through the ICP (Initial Connection Protocol) [Postel, 1971];
(2) protocol conversion between the DDS120B-type interface on
the TOSBAC 5600 side and the TELNET protocol on the KUIPNET

side; and (3) management of buffer space.

(1) ICP and logger:

In the ICP process, the logger part of the Server TELNET assigns
a pair of server sockets and the NCP assigns a link number to
individual connection requests. The logger searches for a pair
of free sockets and allocates them to the request from a user
process. The sockets are returned to the free list when the
connection has been closed.

(2) Data format conversion between DDS120B interface and TELNET:
Data within the TELNET connection is transmitted a line at a
time ending by a CR/LF, and has less than 72 byteé. The Server
TELNET deletes the CR/LF at the end of each line and hands the
line to the DDS120B interface. The Server TELNET also splits a
message from the DDS120B interface, where the length of a
message is at maximum 1280 bytes with a parity bit, into several

segments of less than 72 bytes with parity bits off, scanning

- 107 -

the text of the message from head to end for CRs to split the
text into multi-lines, and sends them over the TELNET connection
to the User TELNET.

(3) Allocation algorithm of buffer space:

Input buffer space in the Server TELNET is divided into 72
bytes of fixed length for each of three user ports. 1280 bytes
of output buffer space is reserved in order to accomodate the
maximum transmission block size from TOSBAC 5600.' However, the
probability that all users will use the maximum block size of
1280 bytes at the same instance is very small. Therefore, the
buffer field of 1280 bytes is dynamically divided into three
parts (zero byte is possible) and co-used by three individuél
users, hence making it possible for every user to be supplied
the maximum length of 1280 bytes, though not coincidently. The
first user is allocated a buffer area from the top of the field,
the second from the tail, and the third from the middle of the

unused field equally extended in both directionms.

The Server TELNET accepts only User TELNET processes
constructed through the User TELNET protocol. Those which
satisfy the above conditions are implementéd in two Hosts—

TIP and NOS (NEAC 2200/250). The prime points to consider for
new implementations on other Hosts are: (a) the ICP and the
allocation mechanism; and (b) the size of a unit of transfer—
under 72 bytes—to adjust to the buffer length of the Server
TELNET. Up to three user processes are connected to the Server
TELNET, hence to the TSS of TOSBAC 5600, and served concurrently..
The kinds of terminals which are provided services are DDS120B
display, teletype, typewriter (132 characters/line), and 4010-

type display.

- 108 -

This connection has been successful, since users in KUIPNET
can appreciate the full set of TSS functions. However, these
approaches to Host interfacing that require minimal effort limit
the Host computer's network interaction to that supported by
existing Host communication hardware and software. For instance,
user jobs in TOSBAC 5600 can be activated remotely, but TOSBAC
5600 itself can not initiate any job in the remote Host computers.
Any connection with TOSBAC 5600 must be initiated from the remote

terminals.

- 109 -

/10 BEUR

CHAPTER V: PERFORMANCE MEASUREMENTS OF SWITCHING COMPUTER
AND NETWORK

5.1 Introduction

When constructing a computer network, the validity of the
design can be tested through quantification of its actual
performance.

Other papers on the performance of computer networks have
usually discussed the problem via the combined use of analysis,
simulation, and measurement. Analytical considerations, applying
queueing models, have been given by Kleinrock[1970] and some
others. The major problem dealt with in these reports was the
queueing delay suffered by messages or packets in the network
nodes. The queueing model is effective in a large system where
the contribution of individual factors is small; however, not
effective in those systems where network traffic is heavy or
interference between factors is high. The analytical results
are examined with simulations of the network behavior. In order
to simulate a complicated system, a detailed model is necessary,
though the level of detail should be held down to avoid long
simulation run times. The model, therefore, is simplified
causing important details to be neglected. The results obtained
from measurements are the most realistic as compared with the
two other approaches. However, some analytical models are also
necessary to understand the measurement results. Cole[1972]

measured the performance of the early ARPANET at the Network

- 111 -

Measurement Center, and its traffic characteristics have been
observed by Kleinrock[1974]. Kleinrock[1976] studied the line
overhead through analysis and measurements.

Usually the performance of many computer networks has been
discussed under the assumption that network traffic is very
light. On the other hand, the behavior of the network under
heavily loaded conditions is important in our case, bacause the
high-speed transmission required in our network induces an
extremely heavy load which would scarcely appear in other large
networks.

In the following sections, the performance of the switching
computer is discussed through measurement and computational
estimations. Under extremely loaded conditions, the character-—
istics of the programmable priority control circuit which is
described in the section "Control Hardware" (see 2.2.2) is tested.
The throughputs between the computers in the in-house network
have been measured. A measurement tool has been developed to
investigate the traffic in the network and observe the character-
istics of the traffic caused by digitized speech wave forms,
pictorial data and so on. Furthermore, a network measurement
system has been developed which gathers data on the usage of
the network—resource utilization of the switching computer,

traffic matrixes, and control of the network.

5.2 Performance Measurement of Switching Computer

As shown in Figure 5.1, two lines of the switching computer
IMP bound for two Hosts (four coaxial cables) are short linked

to form a closed loop. Messages are circulated on this loop and

- 112 -

HOST(A) +1 I- HOST(B)
il 2 [3[a[s] 6 [7] time

a) sequence of message flow

buffer—1 |—2-27>[CCCEle HOST(B)
l buffer-2 .l ccca' HOST(A)

b) circulation of message

Figure 5.1 Factors of message delay
in IMP.

their throughput is measured.

The performance of the IMP was investigated by the following
method: Two similar closed loops LI and L2 were made, and also

an extra logical loop L3 on which messages would go to a Host

and then come back (Figure 5.2).

.

4{ :)L]

"oy D ost
O mOmei®)

P: programmable priority control cjrcuit
C: computer connection control equipment

[clolofelo |

Figure 5.2 Configuration for measurement
of IMP throughput.

- 113 -

The time spent for a message to pass the IMP depends on

the following time-consuming factors (Figure 5.1-(a), (b)):

(1) Establishment of transmission path from Host (A) - IMP.
(2) Data transmission from Host (A) - IMP.

(3) Release of transmission path from Host (A) - IMP.

(4) Message-switching in the IMP.

(5) Establishment of transmission path from IMP - Host (B).
(6) Data transmission from IMP - Host (B).

(7) Release of transmission path from IMP - Host (B).

Terms (1), (3), (4), (5), and (7) are delays due to processing
by the CPU, and are denoted by db (usec). Terms (2) and (6)
are delays due to the transmission rate of the IMP channel, and
are denoted by dc (usec). 1 (Mbits) is the message length, s
(Mbps) is the data transmission rate of the IMP channel, and ¢
(Mbps) is the throughput. The following relationship exists

between these elements:
d = — , t = ——— (5.1)
Below are some results of our investigations:

Case 1: Varing the message length (1), the maximum through-
puts (¢) on a single loop were observed (results, Figure 5.3).
Applying the above-mentioned formula (5.1), the graph was
constructed according to the method of "least squares' wherein
the two coefficients d_and s are adjusted so that the sum of
the difference betweenpthe computed throughputs (points on the
curve) and the observed throughputs (scattered dots nearby the
curve) is as minimal as possible, with consideration to all

observations as the message length varies, the processing of the

- 114 -

CPU (d%) and the effective channel speed (8) were deduced to be
1.13 ms and 1.Q2 Mbps, respectively.

The message delay (db + dc) is proportional to the message
length (1) (see Figure 5.4).

By summing up the processing routines of messages (Table
5.1), the average db was deduced to be 1.126 ms, and if the IMP
channel is assumed to behave as stated in section 2.2.2, another
value of 8 — 1.04 Mbps —is obtained. These values coincide

well with the ones deduced by the least square method.

~ 10

Nai ;

»

Q.

£

= 7 - Figure 5.3 Throughput
oS t=Fgra: of a single loop.
S p e

Q.

S d =1.13ms,

= p

o s =1.02Mbps.

i =

’—. 2

0 5 10
Message length in kbytes(z)

N
d = 980 us

—\Q)]J. p HE
S s = 1012 kbps.
+
"UQ'
N—
£ s
>
I
)
©
<8}
o
(1]
3 A 1 1 A 1 i .'\
Q 0 0.5 1.0

Message Tength in kbytes (1)
Figure 5.4 Message delay of a single loop.

- 115 -

Table 5.1 Processing delay calculated from amount of cycles

contained in each stage.

STAGE cycle/message
(1) Establishment of transmission path Host(A) » IMP 259
(3) Release of transmission path Host(A) > IMP 365
(5) Establishment of transmission path IMP - Host(B) 268
(7) Release of transmission path IMP -»Host(B) 281
Total 1173

1 cycle = 0.96 usec 1.126 ms/message

Case 2: Two loops, the configuration is L1 and L2,
excluding L3, shown in Figure 5.2, are formed. When Li and
L2 work concurrently, the superiority or inferiority of each of
these loops is determined by the given priority of each channel
where the loop is inserted. The highest throughput path or loop,
in other words, is established through the designation of the
order of priority of the pairs of channels (sender and receiver),
L2 > L1 means the priority of L2 over LI. If no priority is
designated, the order of priority is LI > L2 owing to the inherent
priority order of the IMP channel.

Figure 5.5 shows a comparison of the maximum throughput of
L2 and L1 when the message length of L2, which has priority, is
fixed and the message length of L1, which does not have priority,
is varied. Two situations, where we changed the fixed length of
L2, were examined and the fesulting pairs of curves are shown
in the figure. The longer the length of L2, the higher its
throughput. The throughput of the priority loop—in this case
L2—is dependent only on its own message length, almost
independent of the message length of LI—the secondary loop.

Therefore, the path given priority in the IMP maintains high

- 116 -

t(L2): 1(L2)=1.0kbytes.
N e, m——

g
o

f(Ll): Z(Lg)fglffégfff' Figure 5.5 Throughputs of

5 s
//t(Ll) . 1(L2)=1.0kbytes.

Throughput in Mbps.(¢)

gbytes(Z(ng)
10

Message length

throughput capacity independent of the traffic of the lower
priority channels. Our investigations show, furthermore, that
the throughput and message length of the priority loop conform to
the formula (5.1); in this case d? amounting to twice that '
obtained in Case 1, because the CPU speed is degraded by the
memory cycle-stealing from the channel, which has priority over
that from the CPU and which can be carried out concurrently with
the CPU processing. Memory cycle-stealing from the channel is
regulated by the circuit stated in section 2.2.2 so that it does

not consume more than half of the available memory access slots.

Case 3: The configuration is the same as in Case 2, where
L1 > L2 and the length of L2 is fixed. The throughputs of LI
and L2 are plotted against the length of LI in Figure 5.6. This
figure shows the decrease in throughput of the lower priority
loop (L2) as the messages in the higher priority loop (L1) become
longer. The throughput of L2 is at its worst because Ll achieves
the maximum throughput and consumes the maximum amount of memory
cycles, which is not a practical situation. Nevertheless, even
in the worst condition, the lower priority loop can achieve more

than 140 kbps of throughput.
- 117 -

| = R0 T

= ; ~ | ¢(r2): 1(12)=1.0kbytes.

g 3 e

2 2

c £

.- .5.: P‘..

5 |- 3

o =

= =)

(@] = : i

o Sy 2 :LOkb tes.

= Crern) E D 21307
0 5 10 0 5 o)
Message length in kbytes Message length in Kbytes

Figure 5.6 Throughputs of Figure 5.7 Throughputs of two
two loops; (L1 > L2). loops (L7 and L2) and a Host
connection (£3); (L2 > L1 > L3).

Case 4: Figure 5.7 shows the relation between the through-
puts of L1, L2 and L3 (L2 > L1 > L3); that is, the configuration
in Figure 5.2. L1 stands exactly in the same relation to L& as
in Case 2, and their throughputs are also almost the same as in
Case 2. The only difference is that loop L3 generates extra
messages to and from a Host. Moreover, the extra L3 traffic can
be handled by the IMP concurrently, though its volume is very
small (about 10 kbps).

Case 6: Figure 5.8 shows the relation between the through-
puts of L1 and L2 as plotted against their lengths in the case
where they both are of equal length. The difference between the
two curves shows the effect of channel priority. Besides this,
the sum of these throughputs is also shown. This sum is limited
to 1 Mbps due to the hardware constraint introduced in section
2.2.2 where the total capacity of the IMP channel is limited to

2 Mbps, which is divided into two equal parts for sending and

- 118 -

‘}i':"_['.. |-[;(L])+t(L2) T T T B B O B T O O I A BN

R0 Shor,
- "
5 8
o ’ .C
] = N
=2 500 ,_,“;_
Q PN [
5, S | 70 d=1.13 x2=2.26ms,
3 ! e b
e ol AU _g L;s =1.02Mbps.
= T (Z(Ll) Z(L2)) = i
0 10 0 5 .
Message 1ength in kbytes Message length in kbytes(l)
Figure 5.8 Throughputs of Figure 5.9 Throughput of
two loops; (1(L1) = 1(L2), the highest priority loop (L2).
L1 > L2). O L2 > Ll1.

X L2 > L1 > L3.

receiving channels—hence corresponding to 1 Mbps of throughput.
As can be seen in Cases 2 and 4, the path given priority in
the IMP maintains a high throughput capacity independent of the
traffic of lower priority channels. Figure 5.9 shows the through-
put of a priority loop and its length of message. From the
results in Cases 2 and 4, the throughputs of the priority loops
and their lengths of messages are obtained. The curve in the
figure is a computed result according to the formula (5.1) where
the processing delay dp is doubled because the execution speed
of the CPU is degraded by 50% due to channel interference,
doubling the estimated dé as compared to that obtained in Case 1.

This estimation proves accurate.

Case 6: TFigure 5.10 depicts the situation wherein LI and
I,2 are alternatively given priority; that is, both paths take

equal probability in priority of access to the main storage on

- 119 -

D10f D10

~ 3 ~)

v w |

o | s 2

= CTTE(LD) T £ |

FRg-1 & ,Tgmnﬂ:mz o .p.ss

3 cfLB(L2): o 2

a2 |- : i

g | 1(L2)=1. Okby tes. £ |

e e ST Y N A P e K ISR IR RIS 1 I
S N R 7517 1 N P S B L Pt

0 5 10 0 5 10
Message length in kbytes Message length in kbytes

Figure 5.11 Throughputs of
two loops of equal priority;
(2(p1) = 1(L2)).

Figure 5.10 Throughputs of
two loops of equal priority.

the hardware level. Alternation of priority is performed by a

task which is independent from the message-switching task. The

programmable priority control circuit can change the priority
order between channels at any time. Since the frequency of the
alternation is very high—almost 10° times per second—every
channel seems to have exactly the same priority. Figure 5.10
corresponds to Figure 5.5. Both LI and L2 have limited maximum
throughputs of 0.5 Mbps; that is, the capacity of the IMP channel
is divided into equal parts. However, there do remain effects
due to the order of interruption priority. Figure 5.11, in

correspondence with Figure 5.8, reveals these effects.

Case 7: Measurements have been performed with fixed
message length. However, the way in which the message lengths
are distributed may change the characteristics of the through-

puts. Following the usual assumption, exponential distribution

- 120 -

o
T

(3

Throughput in Mbps.(t)

0 G 10
Message length in kbytes

% t(L2); with fixed 50 bytes of message length of LI.
® t(L2); with random message length of LI.
O t(L1); with exponentially distributed random message
length (mean = 50 bytes).
Figure 5.12 Throughputs of two loops; with exponentially

distributed random message length (L1).

‘was examined. The test data was generated by the sequence of
random numbers stored in the IMP memory of 8192 words. Only LI
was adopted in this random sequence. The result was almost the
same as that of the fixed message length which is equal to the
average of the exponential distributed random number sequence

(Figure 5.12).

In a practical situation, a Host dispatches messages dis-
continuously or bufstly, so it is natural to expect that real-
prevalant traffic due to the Host's messages does not cause such
a heavy load on the IMP as that of the above experiments. Usually,
messages are dispatched and received via NCPs in the Hosts,
this introducing the processing delay in NCPs. If processing
includes data transfer between external storage, such as between
a disk and a computer, the service time of the disk accounts for

a great deal of processing delay. Owing to these factors, from

- 121 -

our expefience the total maximum traffic dispatched or consumed
by a Host is restricted to about 640 kbps—the maximum through-
put from MELCOM to NEAC. (See section 5.3)

Suppose that interactive processing is predominant in the
network, and the expected average message length dispatched from
a Host is 40 bytes. In this case, the throughput of the IMP
obtained from the formula (5.1) is 220 kbps. The traffic should
be within 50% of full capacity, allowing a safety factor for
inaccuracies in the message length data. The total traffic
dispatched from all Hosts is restricted to less than 110 kbps.
Dividing this capacity by 10 kbps for each Host, the maximum

number of Hosts connectable to a single IMP would be eleven.

5.3 Measurement of Network Throughput

Host computers communicate with each other through the IMP,
and the concurrent throughput is defined here as the maximum
amount of bits from one Host to another Host which passes the
IMP in a second.

Maximum throughput was measured between arbitrarily chosen
Host pairs where the message length was variable. The flow
control mechanism for high-speed transfer was adopted. The
transmission path was filled up with messages—pipe lining (see
section 3.2.3). One Host sent messages as fast as possible,
the partner Host receiving them as fast as possible. Messages
were generated by a usér process, sent through an NCP to the
network, and received via another NCP and another user process.
Hence, transmission delay included the processing delay in the

NCPs at both ends.

- 122 -

Table 5.2 Measured message delay in KUIPNET.

Path Processing delay Channel capacity
MACC - MELCOM K = 1491 usec C = 799 kbps
NEAC - MELCOM 2977 432
MACC + NEAC 2623 831
MELCOM - NEAC 2372 821

From the observed throughput we were able to obtain figures
on the average interval from the arrival of one message to the
arrival of the next. Message delay is proportional to the length

of the messages and is représented by the formula:

D=K+—" (5.2)
uc

D (sec) is the message delay, K (sec) is the processing delay,
—%— (bit) is the message length, and C (bps) is the channel
capacity.

The message delay for each tested combination of Hosts is

shown in Table 5.2.
The maximum throughputs between Hosts were: MACC - MELCOM

682 kbps (8000 bits/message); NEAC - MELCOM 374 kbps (7760 bits/
message); MACC - NEAC 632 kbps (8064 bits/message); and MELCOM -
NEAC 646 kbps (8064 bits/message) respectively.

- 123 -

5.4 Measurement of Network Traffic

The IMP of KUIPNET is designed to handle high-speed in-
house communication. Throughput was measured on the IMP itself,
and in this part the measurement results of the traffic, in the

operating state, which passes through the IMP shall be discussed.

5.4.1 Classification of Traffic

In KUIPNET, traffic is sorted according to their character-
istics, as shown in Table 5.3.

The first type of traffic is real-time transmission of data
that appears in speech data processing by computers, and which
is to be stored into computer's files for further processing.
The network allows a message throughput of 200 kbps (this rate
corresponds>to the speech data sampled every 20 kHz, 10 bits for
éach sampled value), though measurements show the maximum message
throughput to be 400 kbps from MELCOM to NEAC. The key objective

of this real-time speech transmission is not to keep the average

Table 5.3 Classification of network traffic.

Type Content Message lehgth Number of messages
Real-time data Speech 485word 110
transfer (16bits)

Large volume Picture 134 ‘ 6
data transfer

File transfer Program 95 33
Character Command ’ 9 1
strings

- 124 -

message throughput within the range of the data rate, but to
maintain a continuous flow with constant delay without gaps
or discontinuities. '

There are two other types of real-time speech data: The
first is a time-sequence of sound spectra obtained through a 20-
channel filter bank, the element of which is an amplitude of 10
bits at 10 ms sampling intervals (Z.e. 20 kbps). The second is
a sequence of zero-crossing wave elements, which is represented
by characters of variable lengths. Its aQerage data rate was
proved by Tomita[1973] to be 9 kbps. These two representations
of real-time speech data, however, are compressed forms of
speech data and demand less rigid real-time transmission.

The second type of traffic is that of a large volume of
digital pictures or photographs which is preferably transferred
over the high-way in the network, though it may be treated as a
kind of background traffic. For example, the. total amount of
bits of a photo is 256 x 256 x 5 in monochrome, three times larger
in color. Requirements of a much higher resolution show a
quadratic increasing rate of the amount of bits transferred.
Such a case would arise in interactive processing or designing
with computer aids.

As was stated in section 5.2, the longer the length of a
message becomes, the higher the throughput which is achieved.
However, user process implementers are apt to utilize simpler
methods of manipulating data, since blocking and deblocking
processes, introduced for the sake of improvement of transmis-
sion efficiency, are rather time and space consuming. Still
more, some user programmers often feel a dislike for elaboration
on programming. For instance, the message length of picture
data is 134 words (Table 5.3) which corresponds to a unit of
picture data, e.g., a horizontal line in TV scanning mode.
Sometimes the size of a unit of a logical element of pictorial

data is determined from the record size or buffer size of the

- 125 -

auxiliary storage (e.g., a disk or a tape) in order to avoid
packing/unpacking here again.

The third type of traffic is transfer of files between
computers. The type of files transferred are programs of mini-
computers and magnetic tape files. Two distinguishing points of
file transfer are: a) the efficiency of communication path or
throughput—that is, the amount of bits sent per second should
be large, and b) the reliability of the transferred data—that
is, all bits in the file are transferred exactly, without error,
from one computer to another remote computer. In many cases the
latter is a more important feature than the former. File trans-
fer is required for many purposes, storage sharing and others.
Minicomputers which are not equipped with auxiliary files share
random access files equipped around a large Host computer as if
those files were their local file. (See section 3.2.5) NEAC
2200 performs as the file computer in KUIPNET.

Another case where file transfer is utilized is to facilitate

medium conversion. For example, a 9-track magnetic tape is
transferred through the network to a Host which is equipped with
a 7-track megnetic tape in order to convert the storage medium.
(See section 3.5) 'From our own experience we know that informa-
tion transfer through the network is more convenient than that
by transportation of recording mediums, such as a magnetic tape
or a paper tape, because the former is faster and more reliable
than the latter. Medium transportation is time-consuming; and
still more, the magnetic tape drive units of different manufac-
turers are sometimes incompatible even though they are of the |
same specifications—that is,vthe same number of tracks and the
same recording bit-density. A magnetic tape written by one
computer often causes difficulty for another computer to read.

The fourth type of traffic is transfer of characters which

- 126 -

are produced by TELNET commands or of characters of natural
sentences. These data are intermittent and of short length, and
are typed via keyboard. For such traffic the key feature is
transmission delay in the network. One of the main specifications
of ARPANET was to satisfy the condition that the maximum message
delay in the network would be less than 0.5 second. It is remark-
able that ARPANET achieved the above condition perfectly for
messages which pass over several node computers (IMPs) connected
via communication lines of 50 kbps. But this specification is
easy to accomplish for us. Because KUIPNET is an in-house
computer network, a) a message passes only one node computer
which is the center of a star type network, and b) communication
lines which connect Host computers are high-speed (1.6 Mbps—
about 30 times faster than that of ARPANET).

5.4.2 Traffic Measurement Tool

Traffic is measured during daily usage of the network by a
built-in program of the IMP. The statistics program in the IMP
calculates the traffic matrix of . every 5 minutes and
prints it on a teletypewriter. The status of the traffic in the
network is monitored immediately and directly by the IMP.

The quantity and lengths of the messages which pass the IMP
are measured, and these messages are accumulated in columns
corresponding to their source and destination Hosts. This
measurement is performed in a sub-routine which is built in the
IMP's message-switching program. After integration during a
fixed period, the results are processed by the statistics prbgram,
which is executed as a background program. There the average
message length, total message count, and average traffic density

are calculated, these measurements printed out on the teletype-

- 127 -

Table 5.4 Programs used for traffic measurement.

Processing
Routine Size time
Data gathering © 63 words 90 usec per message
Statistics 5.5K words 2 sec 5 minute intervals
Output " 3 min 100 baud
Message switching 4.5K words 980 usec per message

writer of the IMP. This statistics calculation is set to 5
minutes in order to meet the printing speed which takes about
3 minutes.

Table 5.4 shows a list of programs which are related to
traffic measurement. The data-gathering routine that watches
individual messages coming into the IMP and accumulates message
dimensions, coded in assembler language, occupies 63 words. The
processing time of this routine is 90 usec per message.

The statistics routine, coded in FORTRAN, occupies 5.5K
words. 1Its processing time is 2 seconds/traffic-matrix, and it
takes about 3 minutes to print a traffic matrix with a teletype-
writer of 100 baud.

The data-gathering routine may cause a small disturbance
in the IMP's switching characteristics. It takes about 980 usec
for a message to pass the IMP. The data-gathering routine adds
about 107 extra delay to the switching delay of the CPU, exclud-
ing the delay by channel of 1 psec/bit. Hence, degradation on
message throughput is small.

Figure 5.13 shows an example of output from the statistics

- 128 -

**TRAFFIC ACCOUNTING TABLE(/S5MINUTES)*271/16155' Osx
*AVERAGE MESSAGE LENGTH (WORD/MESSAGE)
«THROUGHPUT (KBPS)

*TOTAL MESSAGE COUNT

DESTI NEAC MACC MELC HITA FACM TRML

HATION 2200 1/F oM70 c83s U200 IMP
SOURCE

NEAC 0.00 9.00 485.55 0.00 0.00 0.00

2200 0.000 0.000 27.398 0.000 0.000 0.000

0 1 1058 o (o] 0

MACC 6.31 0.00 220.03 0.00 0.00 0.00

1/F 0.004 0.000 0.364 0.000 0.000 0.000

13 0 k3 o] 0 0

MELC 9.00 9.50 0.00 0.00 0.00 0.00

oM70 0.000 0.001 0.000 0.000 0.000 0.000

1 2 0 o} (o} 0

HITA 0.00 0.00 0.00 0.00 0.00 0.00

c83s 0.000 0.000 0.000 0.000 0.000 0.000

0 0 0 0 0 0

FACM 0.00 0.00 0.00 0.00 0.00 0.00

U200 0.000 0.000 0.000 0.000 0.000 0.000

0 o} 0 0 0 0

TRML 0.00 0.00 0.00 0.00 0.00 0.00

IMP 0.000 0.000 0.000 0.000 0.000 0.000

0 o} 0 0 0 0

suM 6.50 9.33 477 .99 0.00 0.00 0.00

(DES 0.005 0.001 27.762 0.000 0.000 0.000

TINATION) 14 3 1089 0 0 [

Figure 5.13 Example of traffic matrix.

program: the average message length in words (16 bit/word),
throughput (kbps), and total message count that were accumulated
within 5 minutes. A cell in the Z-th row, j-th column represents

the traffic sent from the Z-th Host to the j-th Host.

5.4.3 Example of Observed Result

The traffic and time of execution of three kinds of network

- 129 -~

jobs are observed: (a) color-enhanced display of on-line
signature, (b) color display of speech spectrum, and (c) speech
synthesis by zero-crossing wave elements. In job (a), speech
response is used. Speech data .converted into digital form is

sent through the network in real-time and continuously at a uni-
form rate of 120 kbps. In job (b), the speech sound spectrum

is analyzed by a 20 channel filter bank, sampled every 10 ms,
blocked into a message of 100 ms samples, and then sent to the
main Host to be stored into a file. This'takés place in real-time
continuously for 10 seconds, after which designated sections are
interactively retrieved to be sent to the other Host to be dis-
played in a color-enhanced spectrum on the color TV. In job

(c), a "kana" letter sentence of natural Japanese, fed from a key-
board, is synthesized from zero-crossing wave elements. Again,
speech is reproduced in real-time. -

Besides these messages a small number of control commands
are exchanged between Hosts to establish connections.

Figure 5.14 shows a sample of one hour's traffic demsity.
Traffic in the network is greatly affected by the types of jobs
using the network—the message count and amount of bits trans-
ferred. Figure 5.15 shows the distribution of message length.
Speech and pictorial data are almost a hundred times larger in
numbers, and also in length, than character data. These are
distinctive features of the raw data traffic which appears in
the information processing of KUIPNET; quite distinct from other

computer networks.

- 130 -

4000 <40

0 " i A A L 'y ' A

o >
s <
o (@D
@ > o
o average amount of number of 4
@ 3000 . 430
n bits per second\ messages T ‘.2 i
g 3 2
£ ad
s
4= o S
O 20001 420 © ~+
| i o
v n
L0 (10 ~h
5 g <
-
= 1000p 410 3 o
aw
-
~
o
©
(2]
e

16:30 35 40 45 50 55 17:00 S 10 15 20 25 30 time
a a c b b b b c job

Figure 5.14 Number of messages and amount of bits
transferred in each 5 minutes.

?
spectrum data for
4000F color display
(7]
(]
o
T© 3000
7]
(%]
[) speech
£ spectr D converted
‘g 2000F igital-voice data
|
43}
L0
= commands
S 1000%
= program
I wave-element
/] graphic expressions for
(L_ 1 !dat‘a. _ | speech synthesis X
o] 100 200 300 400 500

Message length in IMP word

Figure 5.15 Distribution of message length.

- 131 -

5.5 Network Measurement System

The measurement system developed for KUIPNET gathers several
parameters in the daily usage of the network. The following
three points are the main purposes of this measurement system:

To know (1) the status of utilization of the resources in the
actually operating switching computer; (2) the characteristics
of the traffic in the network; and (3) the status of utilization

of the network.

5.5.1 Parameters Dealt with in the Measurement System

Considering the purposes stated above, we employed the

following parameters which are observable in the IMP:

(1) Status of the IMP — The following parameters in the IMP

are collected every minute:

- Store-and-forward buffer utilization — There are four
counters; one which counts the buffers from the free list,
one for the buffers returned to the free list (from these
two counters the number of messages in the IMP can be
estimated), a counter to identify the number of times a
free buffer is unavailable, and a counter of the pendency
of transfer requests from a Host due to lack of a receive
buffer.

- IMP-Host channel conflicts — There are two counters; one
to measure the number of conflicts on the IMP-Host half-
duplex line, and a counter of the extra output operations

executed due to these conflicts.

- 132 -

- Idle time of the CPU — The background loop counts the
number of times it is executed, sampled every 25 ms, and
makes a histograﬁ'of CPU utilization during the last one
minute. This histogram supposedly reveals momentary high
overload, although the values represented in the histogram
are actually the averages of the loads during time spaces
of 25 ms.

(2) Traffic measurement ~— With regard to every source and

destination Host pair, the length and count of every message

passing through the IMP are measured. The result is a traffic
matrix which shows the total amount of messages and the total
amount of bits which passed the IMP from one Host to another Host.

The columns of the traffic matrix, each composed of two 32-bit

counters (Z.e., four 1l6-bit words), accumulate and thus count

the number of words in a message and the number of messages.

This data is calculated by a sub-routine of double precision

addition. A traffic matrix is sampled every minute, there being

two traffic tables used in turn for a minute each. The size of

a table is 4(words) x 8 x 8 x 2 = 256(words) x 2 = 512(words).

After a minute, a background task is triggered to write the

table just used into a magnetic tape. The magnetic tape is

operated by the background program.

(3) Status of network usage — TFor what jobs the network is

used is an interesting problem. This may be known from the users'

accounting information, usually performed by individual Hosts.

Another way is to ask a user to report his usage of the network.

Here we adopted a new method which monitors the Host-Host proto-

col performed by every process in a Host. This observation shows

the way a user uses the Host-Host protocol; the user messages
sent over the connection during a session, from the establishment
of a connection through the closing of it. Information concern-

ing the Host-Host protocol is obtained from messages which pass

- 133 -

the IMP over the control link (line# 0). Those show the control
between NCPs; the connection status between sockets (processes),
buffer allocation, interrupt, error messages, reset and so on.
Except for "allocation'" commands, usually such data are not so
large as compared to regular messages—for example, the establish-
ment and closing of a connection is simply represented by the
sequence RTS, STR, CLS, CLS. Control messages which have entered
the IMP are stored and copied into a magnetic tape for further
retrieval. The status of network usage may be investigated

later by retrieving this tape in the off-line environment. ALLs
(allocation) are not stored, since a great many—almost the same

quantity as regular messages on the user level—are generated.

5.5.2 Log-File Record Format

All data are stored in a magnetic tape attached to the IMP.
It is a 1/2-inch, 800 bpi, 1200-foot, 9-track tape, the transfer
rate being 30 kilocharacter/sec. The magnetic tape contains
two files. The first file stores a copy of the entire IMP
program codes on the IMP main memory that amounts to 32,768 words
(a word = 16 bits). As was shown in Figure 2.8, the last 1,024
words of the IMP main memory contains the loader which loads the
IMP program from the magnetic tape into the IMP memory. A copy
of the IMP program, amounting to 31,680 words (the loader and
other miscellaneous codes account for the difference of 1,088
words) is recorded in the file with 125 records of 512 byte
length. 1In order to assure the program loading between the tape
and the main memory, a check word is attached at the end of all
words of the copy. The check word is calculated by iterative

exclusive-or operations of all words contained in the copy. It

- 134 -

is verified at the time of loading. A tape mark ends this file.
The second file is a collection of measurement data., The records
in this file are composed of three intermixed types of records
described below, the lengths of which are undefined as long as
they are less than 1,024 bytes. A tapemark also ends this file.
For maintenance of the recorded tape, a double tapemark may be
added at the end of all files.

In the initialization process the IMP program sets the tape
head to the point at the end of the last data. New data gathered
by the IMP is then recorded after this point.

Measurement data composes one file, which we call a "log-
file". A log-file is composed of several '"run-files'". All
records produced from the start through the stop of the IMP are
sequentially related in one run-file, but the records in the
different run-files are disconnected. The first input in a run-
file is the date and time when the IMP was started (type-1
record), which is given by an operator from a keyboard, and this
record is what separates each run-file. Following the type-1
record, records regarding the CPU status and traffic—written
every minute—(type-2), and control commands related to the Host-
Host protocol (type-3) are entered. Two buffers, each 1,024
bytes, are prepared for the type-3 record; one to store arriving
commands and one as an output buffer, used in turn. Type-3
records are written into a tape when the buffer becomes full or
30 seconds has past from the time of the last-stored command.
The type-2 and type-3 records are intermixed and written sequen-
tially in the order they are produced. Figure 5.16 shows the
formats of these records.

When an operator stops the IMP, no closing operation is
necessary. The log-file remains in its present position, since

the initiation of the IMP program can find and set the log-file

- 135 -

RECORD TYPE-1 RECORD TYPE-2 RECORD TYPE-3

1} x'0100°' 11} Xx'0200' 1 1 | x'0300'
MINUTE MINUTE
HOUR HOUR
DAY SECT
MONTH OTCT
YEAR EXCT TRAFFIC CONTROL
BGCT
S
BRCT MATRIX COMMAND
BFCT
BJCU
UNUSED
UNUSED
80{ cc 80 | cc
byte byte
512
byte
1024 | CC
byte

SECT: number of "receive" requests sent to bufferless channel.
OTCT: number of conflicts on IMP-Host half-duplex lines.

EXCT: number of extra output operations executed due to conflicts.
BGCT: number of buffers obtained from free list.

BRCT: number of buffers returned to free list.

‘BFCT: number of times free buffer list is empty.

BJCU: histegram of IMP utilization.

CC: continuation code.

Figure 5.16 Record formats in log-file.

- 136 -

at the end of the last record by computing the continuation
codes in the successive records. The initiation process of a
log-file takes only a few minutes and is accurate (see next
section). But it would be unreliable to request an operator

to close a log-file.

5.5.3 Initiation of Log-File

A log-file is written in sequential mode so that old data
is protected and the newest record is the last one in the file.
In the initiation process of the IMP program, the log-file is
forwarded to the end of the last record and positioned for a new
record. This process was perfected with the following principles
in mind: (1) old records should be protected, (2) searching
should be completed quickly, (3) the file should be kept consis-
tent. All records in a log-file are accompanied with a 16-bit
continuation code. The continuation code is generated by a feed-
back shift-register simulated by software. For the first record
of a log-file, a continuation code is calculated using the
initial value of zero. The continuation code of the previous
record is used as the initial value of the next computation of
continuation code. Consequently, all records in a log-file are
related with each other through this sequence of continuation
codes. The log-file initiation process is performed through
computation of the sequence of continuation codes, and it is

completed by the first incorrect continuation code or read error.

- 137 -

5.5.4 Space-Saving in Log-File

In order to use file space efficiently, logging is sup-
pressed when there is no traffic. If a traffic matrix is all
zero, then the type-2 record is skipped. This rule greatly re-

duces the total amount of records written at intermittent times.

5.5.5 Results and Considerations

(1) CPU utilization in idle time:

Idle time is defined as the time when there is no .traffic
in the network. During such times, the IMP program executes
only timer and background routines which contain the -following
functions: (a) Timer-task triggered by an interval-timer inter-
ruption, This task updates current time and supervises IMP
channel lock-up, buffer allocation, and timeout functions includ-
ing statistics. (b) Communication control of 4,800 bps line.
When there is no traffic, empty frames are exchanged to test
line breakage (see section 4.3). (c) TIP supervisory routine.
This routine, carried out once every 25 ms, supervises the status
of input/output completion from teletype, inputs from the network,
and occurences of events (see section 3.4). (d) Pseudo-timeout.
Pseudo-timeout ‘is supervised in the background routine. When
timeout happens, a modification is made in the event table to
cause timeout interruption (see section 2.3.3). (e) Magnetic
tape output. All records, which are formated in the measurement
routine, are written by this routine. This routine is executed
by a sub-routine call from the background loop.

The results of measurements of CPU utilization during idle

time is shown in Table 5.5. CPU utilization, as the table

- 138 -

Table 5.5 CPU utilization in idle time.

Timer routine 4.567%
Communication control 0.047%

Terminal status sensed in TIP 15.387%

Pseudo-timer routine 0.827%
Total 20. 80%

denotes, 1is 20.8% when there is no traffic. This is subdivided
into four parts: (1) timer routine—4.56%, (2) communication
controller—0.04%, (3) TIP—15.38%, and (4) pseudo-timeout—
0.82%. Since the execution priority of (1) and (2) are higher
than that of the message-switching task, CPU resources of this
part are used independent of traffic demsity. Tasks (3) and (4)
are in background level, so CPU resources in these are overridden

by the message-switching task and become smaller with the traffic.

(2) 1IMP utilization and traffic:

' IMP utilization was sampled at 25 ms intervals during one
minute, and a histogram was made. The results give us the
frequency distribution of IMP utilization in relation to
traffic of 280 kbps which passes the IMP during one minute, as
compared with the cummulative frequency distribution of IMP
utilization when there is no traffic (Figure 5.17). The former
case (solid line in Figure 5.17) shows about 207 of IMP utiliza-

tion.

- 139 -

no message passed
1.0p5 e o2t RIS Pot
279kbps,
s 5088 messages/min.
0.5t

CUMMULATIVE FREQUENCY

0 50 ~700%
IMP UTILIZATION

Figure 5.17 Cummulative distribution of
IMP utilization.

(3) Traffic matrix:)

Table 5.6 is a traffic mafrix of all messages which passed
the IMP since April 19, 1976 through July 16, 1976. 1In each
column, the upper is the total bits contained in the messages
and the lower is the total number of messages. As is seen from
the table, the most active pair of Hosts has been NEAC 2200 and
MELCOM 70. They transfer digital speech wave forms in real-time.
Note that they used long message size, Z.e., 1642-bits from NEAC
to MELCOM, and 700-bits from MELCOM to NEAC. Self-looping was
performed by NEAC 2200 and TIP. Somewhat heavy traffic was
observed between NEAC 2200 and PANAFACOM U-300. This was artifi-
cial traffic generated for the measurement of throughput. TIP
has frequently been connected with TELNET in NEAC 2200. However,
the character-oriented traffic over this connection has been
small. TOSBAC 5600 in Osaka was used only slightly. HITAC 8350

and FACOM U-200 were inactive during this period.

- 140 -

Table 5.6 Network traffic summary.

(number of bits which passed the IMP)
(number of messages which passed the IMP)

from APR. 19, 1976 through JUL. 16, 1976.

DESTINATION NEAC 2200 | PP-U300D MELCOM-70 | HITAC8350 |PACOM-U200 |TIP TOSBACS600
SOURCE HOST

NEAC 2200 91143280 10037920 | 285216960 0 0 84672 1280

82501 1736 173737 0 0 677 12

PF-U300 6337456 0 0 0 0 0 0

1728 0 0 0 0 0 0

MELCOM-70 291952528 0 0 0 0 0 0

416772 0 4] 0 0 0 0

HITAC8350 0 0 0 0 0 1) 0

0 0 0 (1] [0 [}

PACOM-U200 0 0 0 0 0 0 0

0 o 0 0 0 0 0

TIP 60384 160 0 0 1] 53232 160

498 1 0 1] 0 536 1

TOSBAC5600 768 0 0 0 0 0 0

8 0] 0 0 [}

\MACC 7/F was -disconnected from KUIPNET and replaced by PF-U300,

‘'which was under experiment for a gateway to the inter-university
network.

(4) Status of network usage:

Control commands related to the Host-Host protocol can be
observed from the type-3 records in the files. Here are some
descriptive features of this type record: (a) The majority of
observed commands are related to connection establishment between
processes that are implemented on the Hosts in the network. (b)
These data are very useful to trace NCP-level communication
(Host-Host protocol) and to detect misinterpretation of the
protocol. Several extraordinal oscillations of connection
requests owing to mismatching of two related processes were
recorded. (c) These records contain wealthy and interesting
information about the behavior of the IMP, NCPs, and user pro-

cesses; e.g., the time when messages entered the subnet, the

- 141 -

responsiveness of NCPs, identification (by socket number) of
establishment, duration and breakage of connections.

Statistical considerations on this data should give us a
deeper insight into this network. Unfortunately, because the
measurement system began to accumulate data just recently and
because network usage is not yet very high, the amount of col~-
lected data is too small to be applied to some of the statistical
processes.

Sometimes these log-files are removed from the IMP and
merged in another tape in order to protect them from accidental
destruction. A program is being developed to retrieve these

merged log-files.

- 142 -

CHAPTER VI: CONCLUSIONS

In this thesis I have described the development of a high-
speed communication network, called KUIPNET, utilized for in-
formation processing by the cooperation of on-site computers.

In Chapter II the design of the message switching computer,

having the following high-speed transmission properties, is ex-

plained:

(1) Maximum throughput set to 1.0 Mbps.

(2) Switching computer guaranteeing one stream of high-speed
transmission concurrently with several other streams of
low-speed transmission.

(3) Standardized computer connection—single and asynchronous
transmission, and half-duplex control. The maximum trans-—

mission rate achieved is 1.6 Mbps.

The message switching computer has achieved high throughput
by regulating the memory access conflicts between input/output

channels and CPU in the following ways:

(1) The priority of the channels has been made programmable,

high priority being assigned when and where high throughput

is necessary.
(2) The rate of memory-cycle stealing has been restricted in

order to guarantee the real-time communication control

maintained by the CPU.

Performance of the switching computer is measured in Chapter

- 143 -

V, the summarized results being:

(1) Maximum message throughput = about 900 kbps.

(2) Message throughput of highest priority path = about 800 kbps
under heavy traffic load.

(3) Message throughput of second priority path = about 160 kbps
under heavy traffic load.

These throughput characteristics of KUIPNET are important
for achieving real-time transfer, for such transfer brings a
heavy load into the switching computer. The maximum throughput
of 900 kbps satisfies the bandwidth required for real-time trans-
mission of high fidelity speech wave forms, which require more
than 200 kbps continuous transmission rate.

In Chapter III, I have described the interprocess communi-
cation mechanism. The functions for interprocess communication
control aré composed &af (1) communication control between a com-
puter system and communication network, (2) communication control
between computer systems—an integral part of the monitor, and
(3) communication control between processes.

The efficiency of implementation, both in the size and in
processing overhéads, are important factors. The selective
communication functions are implemented in small systems—like
minicomputers. The monitors for minicomputers are designed ef-

ficiently to achieve the desired properties described below:

(1) preemptive processing of high priority tasks—real-time
tasks, controlled with multi-programming mechanism.

(2) extensible input/output functions and user programmable
input/output functions.

(3) interactive console functions with operators.

(4) interfacing to the network.

- 144 -

I have shown several cases of interprocess communication:

a case of process cooperation supervised by the network-wide
monitor; a case of implementation of a terminal supporting func-
tion for direct entry into the network; and a file transfer pro-
cedure designed for conversion between two different types of
magnetic tapes.

In Chapter IV the in-house computer network is extended to
a distant large computer system. A reliable communication con-
trol mechanism over a distance of 50 km, and 4,800 bps line was
adopted. The procedure of the basic communication control was
modified from that of character-oriented computer—-terminal com-
munication (Z.e., the computer being master and the terminals
slaves,) into that of character code transparent computer—com—
puter communication (Z.e., either side of both ends can be
master). The time-sharing system in the distant system becomes
accessible from the User TELNET in the KUIPNET through the Server
TELNET in the switching computer. In the explanation, the effec-
tive message throughput is estimated and measured over this
connection.

In Chapter V the performance of the switching computer is
measured. From the results of the measurements it may be con-
cluded that the message switching computer guarantees one stream
of high-speed transmission concurrently with several other
streams of low-speed transmission.

The throughputs between Host computers, which are limited
by the rate of the transmission path and delay in controlling
the input/output in the Hosts, are also measured. The maximum
throughput accomplished is 700 kbps.

We have developed a network measurement system which meas-

ures and records the following parameters:

- 145 -

(1)

(2)

(3)

Utilization of processor of the switching computer—process-
or utilization under idle state is 20.8%, while under heav-
iest traffic ever observed (280 kbps) it is about 30%.

The matrix of traffic from source to destination. Descrip-
tions show the actual utilization of Host computers under
network modes.

Interprocess connections and disconnections.
In summary then,

A new application of computer network technology to the in-
formation processing research system has been accomplished
in this network. A high-speed communication facility has
been constructed connecting in-house. computer systems,
which allows transmission of raw data such as speech and
picture.

On not-so-large systems such as minicomputers, economical
interprocess communication facilities have been implemented.
Among several computer systems, process cooperating func-
tions and general terminal supporting functions have been
implemented.

The in-house computer network is not necessarily confined
within a @ small area but can be extended to remote
computer systems or large networks. In this thesis I have
shown the extension of KUIPNET, which necessitates the con-
trol of a long communication line, and a large computer
system which greatly enhanced the value of the total re-

sources available in this network was appreciated.

- 146 -

REFERENCES

Abramson, N.[1973]: "Packet Switching with Satellites'", AFIPS
NCC, Vol.42, pp.695-702.

BBN[1974]: "Specification for the Interconnection of a Host and
an IMP", Bolt Beranek and Newman Inc. Report No.1822.

Carr, C.S., Crocker, S.D., and Cerf, V.G.[1970]: "HOST-HOST
Communication Protocol in the ARPA Network', AFIPS SJCC,
Vol.36, pp.589-597.

Cerf, V.G.[1976]: "ARPA Internetwork Protocols Project Status

Report", for the period November 15, 1975 - February 15,
1976.

Cole, G.D.[1972]: "Performance Measurements on the ARPA Computer
Network', IEEE Trans., COM-20, No.3, pp.630-636.

Crocker, S.D., Heafner, J.F., Metcalfe, R.M., and Postel, J.B.
[1972]: "Function-Oriented Protocols for the ARPA Computer
Network'", AFIPS SJCC, Vol.40, pp.271-279.

Crowther, W.R., Heart, F.E., McKenzie, A.A., McQuillan, J.M.,
and Walden, D.C.[1975]: "lssues in Packet Switching Network
Design", AFIPS NCC, Vol.44, pp.161-175.

Farber, D.J.[1972]: "Networks: An Introduction", DATAMATION, Vol.
18, No.4, pp.36-39.

Forgie, J.W.[1975]: "Speech Transmission in Packet-Switched
Store-and-Forward Networks'", AFIPS NCC, Vol.&44, pp.137-142,

Hayashi, T.[1976]: "NEAC 2200/250 NOS Operating System—Design
Concepts, Functions, and Operations", KUIPNET Manual-2,
(in Japanese).

Hayashi, T.[1977]: "NOS Operating System: An Operating System

for a Host Computer in a Computer Network'", (Doctral
Thesis, in preparation), Kyoto University.

- 147 -

Heart, F.E., Kahn, R.E., Ornstein, S.M., Crowther, W.R., and
Walden, D.C.[1970]: "The Interface Message Processor for
the ARPA Computer Network", AFIPS SJCC, Vol.36, pp.551-567.

Heart, F.E., Ornstein, S.M., Crowther, W.R., and Barker, W.B.
[1973]: "A New Minicomputer/Multiprocessor for the ARPA
Network'", AFIPS NCC, Vol.42, pp.529-537.

Kahn, R.E., and Crowther, W.R.[1972]: "Flow Control in a Resource-
Sharing Computer Network", IEEE Trans., COM-20, No.3,
PP.539-546.

Kanade, T.[1973]: "Picture Processing System by Computer Complex
and Recognition of Human Faces", Doctral Thesis, Kyoto
University.

Kanade, T., et al.[1976]: "Manual for the Conversational Picture
Processing System", KUIPNET Manual-3, (in Japanese).

Kitazawa, S.[1976]: "Guide to KUIPNET—Outlines, Operations, and
Specifications", KUIPNET Manual-1, (in Japanese).

Kleinrock, L.[1970]: "Analytic and Simulation Methods in
Computer Network Design', AFIPS SJCC, Vol.36, pp.569-579.

Kleinrock, L., and Naylor, W.E.[1974]: "On Measured Behavior of
the ARPA Network', AFIPS NCC, Vol.43, pp.767-780.

Kleinrock, L., Naylor, W.E., and Opderbeck, H.[1976]: "A Study
of Line Overhead in the Arpanet", C.ACM, Vol.19, No.1l,
PP-3-13.

Mann, W.F., Ornstein, S.M., and Kraley, M.F.[1976]: "A Network-
Oriented Multiprocessor Front-End Handling Many Hosts and
Hundreds of Terminals", AFIPS NCC, Vol.45, pp.533-540.

McKenzie, A.A.[1972]: "Host/Host Protocol for the ARPA Network",
NIC #8246,

McQuillan, J.M., Crowther, W.R., Cosell, B.P., Walden, D.C., and
Heart, F.E.[1972]: "Improvements in the Design and
Performance of the ARPA Network", AFIPS FJCC, Vol.4l,
pp. 741-754,

Metcalfe, R.M.[1973]: "Packet Communication', MAC TR-114.

- 148 -

Mills, D.L.[1976]: "An Overview of the Distributed Computer
Network", AFIPS NCC, Vol.45, pp.523-531.

Mimno, N.W., Cosell, B.P., Walden, D.C., Butterfield, S.C., and
Levin, J.B.[1973]: "Terminal Access to the ARPA Network:
Experience and Improvements", Compcon 73, pp.39-43.

NIC #8246: See McKenzie[1972].
NIC #17759, Neigus, N.: "File Transfer Protocol", July, 1973.
NIC #18639, "TELNET Protocol Specification", August, 1973.

Ornstein, S.M., Heart, F.E., Crowther, W.R., Rising, H.K.,
Russell, S.B., and Michel, A.[1972]: "The Terminal IMP for
the ARPA Computer Network", AFIPS SJCC, Vol.40, pp.243-254.

Postel, J.B.[1971]: "Official Initial Connection Protocol", NIC
#7101,

Roberts, L.G., and Wessler, B.D.[1970}): "Computer Network
Development to Achieve Resource Sharing", AFIPS SJCC, Vol.
36, pp.543-549.

Rosner, R.D., Bittel, R.H., and Brown, D.E.[1975]: "A High
Throughput Packet-Switched Network Technique Without
Message Reassembly", IEEE Trans., COM-23, No.8, pp.819-828.

Sakai, T., Kanade, T., Nagao, M., Tabata, K., Kitazawa, S.,
Ohnishi, H., and Ohta, Y.[1973]: "Inhouse Computer Network
for Information Processing and Some Applications',
presented at the Seminar on Computer Assisted Chemical
Research Design, July 2-6 1973, Hawaii U.S.A.: published
in Fujiwara, S., and Mark, H.B.[1975]: "Information
Chemistry: Computer Assisted Chemical Research Design',
University of Tokyo Press, pp.309-336, Sakai, T., Tabata,
K., Kanade, T., Kitazawa, S., Ohnishi, H., and Ohta, Y.:
"KUIPNET: In-House Computer Network for Information
Processing and Some Applications".

Sakai, T., Tabata, K., Ohnishi, H., and Kitazawa, S.[1974]:
"Inhouse Computer Network and HOST Computer", Jour.
Information Processing Soc. of Japan, Vol.1l5, No.12,
pp.948-954, (in Japanese); also appeared in Information
Processing in Japan, Vol.l5, pp.75-79.

- 149 -

Sanders, R.W., and Cerf, V.G.[1976]: "Compatibility or Chaos in
Communications'", DATAMATION, Vol.22, No.3, pp.50-55.

Tanaka, M.[1976]: "Computer Network Oriented Shared Memory'",
Master's Thesis, Dept. of Information Science, Kyoto
University, (in Japanese).

TENEX[1973]: "TENEX JSYS MANUAL — A Manual of TENEX Monitor
Calls', Bolt Beranek and Newman Inc., Section 2, pp.81-90.

Tomita, S.[1973]: "On-Line, Real-Time, Multiple Speech Output
System and Its System Evaluation", Doctral Thesis, Kyoto
University.

Walden, D.C.[1972]: "A System for Interprocess Communication in
a Resource Sharing Computer Network", C.ACM, Vol.l1l5, No.4,
PP.221-230.

Winett, J.M., and Sammes, A.J.[1973]: "An Interface to the ARPA
Network for the CP/CMS Time-Sharing System—Volume 1", MIT
Technical Note 1973-50.

Yanagi, K.[1976]: "Connection of Very Distant Host (TOSBAC-5600)

to the KUIPNET", Master's Thesis, Dept. of Information
Science, Kyoto University, (in Japanese).

- 150 -

LIST OF PUBLICATIONS AND TECHNICAL REPORTS

"Inhouse Computer Network for Information Processing and
Some Applications'"; T.Sakai, T.Kanade, M.Nagao, K.Tabata,
S.Kitazawa, H.Ohnishi, and Y.Ohta, presented at the Seminar
on Computer Assisted Chemical Research Design, July 2-6
1973, Hawaii USA; published in Fujiwara, S., and Mark, H.B.:
"Information Chemistry: Computer Assisted Chemical Research
Design', University of Tokyo Press, pp.309-336, T.Sakai,
K.Tabata, T.Kanade, S.Kitazawa, H.Ohnishi, and Y.Ohta:
"KUIPNET: In-House Computer Network for Information
Processing and Some Applications', 1975.

"Computer Network"; T.Sakai, and K.Tabata, Jour. Soc. of
Instrument and Control Engrs. Japan, pp.863-873, Vol.1l2,
No.1ll, Nov. 1973, (in Japanese).

"In-house Computer Network KUIPNET"; T.Sakai, K.Tabata,
S.Kitazawa, and H.Ohnishi, Proc. of the 14th Annual
Convention of Information Processing Soc. Japan, Dec. 1973
(in Japanese).

"In-house Computer Network KUIPNET and Its Subnet'"; <bid.

"In-house Computer Network KUIPNET and HOST Software";
T.Sakai, K.Tabata, H.Ohnishi, and S.Kitazawa, ibid.

"Inhouse Computer Network KUIPNET"; T.Sakai, K.Tabata,
S.Kitazawa, and H.Ohnishi, Technical Report for the
Professional Group on EC of IECE Japan, EC73-56, Dec. 1973,
(in Japanese).

"Inhouse Computer Network and HOST Computer'"; T.Sakai,
K.Tabata, H.Ohnishi, and S.Kitazawa, Jour. Information
Processing Soc. Japan, Vol.1l5, No.12, pp.948-954, Dec. 1974,
(in Japanese); also appeared in Information Processing in
Japan, Vol.15, pp.75-79, 1975.

"Throughput Measurement of Switching Subnet of the KUIPNET";

T.Sakai, and S.Kitazawa, Proc. of the 15th Annual Conv. of
Information Processing Soc. Japan, Dec. 1974, (in Japanese).

- 151 -

10.

11.

12.

13.

14.

15.

"Inhouse Computer Network KUIPNET for Information
Processing"; T.Sakai, T.Hayashi, S.Kitazawa, and K.Tabata,
Proec. of PACNET Symposium on Computer Networks, pp.39-46,
Aug. 1975.

"Measurement of IMP and Subnet of the KUIPNET"; T.Sakai, and
S.Kitazawa, Proc. of the 16th Annual Convention of
Information Processing Soc. Japan, Nov. 1975, (in Japanese).

"Message-Switching System for the KUIPNET"; T.Sakai,
K.Tabata, S.Kitazawa, and H.Ohnishi, Trans. Inst. Electronics
Comm. Engrs. Japan Abstracts, Vol.58, No.ll, pp.57-58, Nov.
1975 (Originally appeared in Japanese; Trans. IECEJ, 58-D,
11, pp.697-704, Nov. 1975).

"KUIPNET and Very Distant HOST (TOSBAC 5600)"; T.Sakai,
K.Tabata, S.Kitazawa, K.Yanagi, and S.Iki, 1975 Nat. Conv.
Rec. IECE Japan, 1272, Mar. 1975, (in Japanese).

"Guide to KUIPNET—Outlines, Operations, and Specifications";
S.Kitazawa, KUIPNET Manual-1, Feb. 1976, (in Japanese).

"NEAC 2200/250 NOS Operating System—Design Concepts,
Functions, and Operations"; T.Hayashi, KUIPNET Manual-2,
Feb. 1976, (in Japanese).

"Manual for the Conversational Picture Processing System';
T.Kanade, et al., KUIPNET Manual-3, Feb. 1976, (in Japanese).

- 152 -

-

e

N

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48
	page49
	page50
	page51
	page52
	page53
	page54
	page55
	page56
	page57
	page58
	page59
	page60
	page61
	page62
	page63
	page64
	page65
	page66
	page67
	page68
	page69
	page70
	page71
	page72
	page73
	page74
	page75
	page76
	page77
	page78
	page79
	page80
	page81
	page82
	page83
	page84
	page85
	page86
	page87
	page88
	page89
	page90
	page91
	page92
	page93
	page94
	page95
	page96
	page97
	page98
	page99
	page100
	page101
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128
	page129
	page130
	page131
	page132
	page133
	page134
	page135
	page136
	page137
	page138
	page139
	page140
	page141
	page142
	page143
	page144
	page145
	page146
	page147
	page148
	page149
	page150
	page151
	page152
	page153
	page154
	page155
	page156
	page157
	page158
	page159

