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PREFACE

Stability is one of the most important concepts in the theory
of automatic control systems.4 Once a control system in equil-
ibrium state is perturbed by some external disturbances, the
system will be: in the ;tansient state from the time disturbances
are: removed. Ihcthe case where this transient state dies out
after a sufficiently long time and the system returns to the
original equilibrium state, thg system is called asymptotically
stable.

Investigations on the conditions for stability of control
systems originated with E.J.Routh(1877) and A.Hurwitz(1895).
They independently obtained the stability conditions of the sys-
tems,-whose characteristics: were represented by linear ordinary
differéntial equations with constant conefficients, in an
algebraic form. Henceforth, many studies on stability of the
systems charapterized by linear equations have been'promoted
until now. Especially frequency domain analysis and syrdbhe-
sis of closed loop control systems preposed:by H.Nyquist(1932)
marked the first milestone in constructing a systematic method
of analyzing and synthesizing the control éystems.

On ?he other hand, on systems which have nonlinear chara-
cteristics the developement of studies has been less fruitful
than that of linear systems. One of the most representative
work on the analysis of nonlinear systems is "the absolute
stability problem" (Lur'e problem) first formulated by A.I.Lur'‘e
(1944). Many reseachers have been reported about this
problem. As is the case: with linear systems, there are two

ways to solve this problem, one is time domain method, i.e.,
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the second method of Lyapunov, the other is frequency domain
method developed by V.M.Popov(l959). In either case, for
linear or nonlinear systems, the main interest of the stability
problems. was taken in the following two points : to extend the
classes of the systems to which the stability theorems are appli-
‘cable, and to obtain the better stability conditionss using sys-
tem parameters.

Recently according as the scales of the system dealt by
control theory are getting lafger and the structures of the
systems are becoming much more complex, the stability analyses;

of large scale systems are a¢tfacting much mttention among
_stability problems of control systems. This thesis is devo-
ted to the stability analysis of large scale systems. General-
1y speéking, large dimensionality and complexity of the.systems
may necessarily cause many difficulties in treating these systems.
In this thesis, the'assumption that the systems are decomposed
into several subsystems is employed throughout. The method
fﬁr;anélizing‘fhe sYstemé:on this assumption is oftenlcalled
the decompbsition method., The essential feature of the
method is the reduction of complexity which comes: from decom-
posing the overall systems into some subsystems$ with appropriate
Size. The procedures of applying the methéd to large scale
systems afe as follows.

First, the comparison equations are derived from the proper-
ties: of subsystems and the relations among them. Then the
"imaginary systems", whose characteristics are described by the -
comparison equations, is.supposed. The imaginary systems

don not formulate objective physical systems directly, but it
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corresponds to mafhematical expression, i.e., the comparison
equations., Next, it is shown that the stabitity conditions
of the overall systems .can be obtained by examining the propert-
iesiof the imaginary systems, Finally, the stability propert-
ies of the imaginary systems are examined by some well-known
analyzing methods. Thus the stability criteria for some
classes of large scale systems can be obtained with reduced
dimensional difficulties.

This thesis uses two different methods to get the stability

conditions of the imaginary systems. One is a time domain
method; the other is a frequency domain one. Two chapters
are devoted to the discussions for each case. In another

part_of this thesis the conditions of positive definiteness: and
positive sémidefiniteness of real rational matrix for any value

of its argument is conéidered. By using these conditions,

the relations between the results obtained by the two methods
above mentioned are investigated. In the last part of this
thesis, the stability and instability conditions-of large scale
systems-tha@ have unstable subsystems are derived using the decom-
position method; The method in fhis casé, however, is diff-

erent slightly from that using the comparison equations.
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Chapter 1. Introduction ;.'j. e

Section 1.1 Stability studies of Large Scale ‘Systems

In this Section studies on the-stability of large scale control
Systems already reported are summarized hriefly.' The control
Systems dealt with here have been calIed; in addition to the
above-mentioned "large scale systems", multi-input multi-output
systems; control systems with many nonlinearities and so on.
Recently according as: the "decomposition" method utilized in
this thesis has been introduced in anelyzing control systems w1th
'large dlmen81onallt1es,‘these systems get to be called inter-
connected systems, comp051te systems and the 11ke. Because
these systems: are looked upon as cons1st1ng of some subsystems
wh;ch have comparatlvely independent properties with each other.
Throughout this thesis "1ag~ge scale systems"‘ is adopted. '

There sre vsrious~kinds'of definitions of stability, but
| roughly speaklng they are class1f1ed 1nto follow1ng two classes.
The flrst class: of stablllty concepts is 1ntr1n81c stability
whlch 1s related to the 1ntr1n81c states of systems' The:
second class of stablllty conslderations of systems deals with
1nput—output stablllty whlch is. considered by aiming only at
input-output relatlons of systems. In this the31s, the former
deflnltlons, espe01ally asymptotlc stablllty in the large ( hence-
forth abbrev1ated ‘o ASIL ), are con81dered. : Investigations:
on 1nput—output stabllity of large scale systems have been deve-
10ped actively 1n parailel w1th those of intrinsic stablllty,
but here they are not touched on. h

' Studles on stablllty of large scale systems started with
'“-extendlng the methods for single—input 51ng1e—outputsystems so

o
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far oﬁtained’to systems with many.nonlinearities or to multi;
input multi-output systems at the beginning.’ As are known well
there are two mainbmethods.of-stability‘investigation for systems
with a single nonlinearity. One is: the second method of Lyapu-
nov.and the other is frequency domain method stated by V.M.Popov.
These two methods were extended and generalized to be applicable
to.control systems with many nonlinearities. | Sultanov(61),
Tbkumaru and Saito (62),Aemployed.the former way, Jury and Lee
(25), Yakubovich (69), Partovi and Nahi (51), Tokumaru and Saito
(62), Lee Xun-Jing (32) applied the latter. However, these
two methods get to possess some aefects due fo.extending to multi-
variable or multi-input multi-output case. Araki (2) pointed
ouf these defects were as in the following :

(1) Stability theorems contain too many arbitrary pérameters.

(2) Cbmputatiohs required for checking whether systems satisfy

the'éééumbtionsrof the theorem or not beéome increasingly
difficult as: dimensions of systems increase.

Thereafter the direction to remedy thesé defects was showed
by Bailey (7) and other researchers. They employed the method
called the "decomposition" method. Fundamental procedures
of the method are as follows. |

>(1) to decompose the systems into some subsystems
(2) to obtain the stability conditions of the overall systens
from properties of subsystems: and relations among them.
The most advantageous: point of this method is that it introduces
hiérarchical.point of view in system analysis and gives a syétem—
atic way of practicml computation for obtéining the stability

conditiogs. Bailey assumed the decomposed systems and utilized



the vector Lyapunov function method, which was a sort of the com-
parison method requlres that there exists an approprlate Lyapunov
bfunctlon for each subsystem. The stability conoltlons of the
overall systems can be derlved from examlnlng the properties of
solutions of aux111ary equatlons (comparlson equations), whose
dlmen81ons are as many as the number of subsystems and whose varl—
able 1s the Lyapunov functlon corre5pond1ng to each subsystem.

As well Tokumaru, et al. (67) deflned an analogous stability
';concept with respect to 1nput—output relatlons and derlved the
“condltlons of stablllty vs1ng companlson equatlons.’ However,
lmost of the researchers of stablllty of large scale systems
}after Balley have adopted sllghtly defferent methods from the
lcomparlson method. - They employed the second method of Lyapunov
using the sum of scalar—multlplied Lyapunov function correspond—
,1ng to each subsystem as a ‘candidste of Lyapunov functlon Tor -
4the overall systems w1thout constructlng the comparlson equatlonsi
_ThlS method ‘was: employed by Araki and Kondo (2),'(6), Michel (41),
| (42) and others. | Partloularly, Araki and Kondo showed that '
an M—matrln, Wthh has been used hitherto in numerlcal analysis
.and theoretlcal economlcs, was an effective tool for analys1s

lof large scale systems by the "decompos1t10n" method and derlved
the stability condltlons of uhe systems superlor to Balley's
‘theorem. ‘ |

| | The most prlncipal feature of the above~mentioned "decompo-
s1t10nﬂ method 1s that it has made a detalled«lnformation on

| systems aVallable.‘ Generally speaking, the more 1nformatlon
on systems are utlllzed, the more superlor condltlons of stablllty

Can berobtalned. ~ With respect to this p01nt the "decompo-



sition" method however ds still'unsatisfactory, because it is
- Besed on merely the "absolute value" of the state variables of
systems and neglects phase relations among,suhsystems; There~-
fore, it is needed tovprovide-completely with the better stability
utheorems by virtue of utilizing the more minute properties_of
”systems. | |
| Now, the reports on stabllity problems of large scale systems
after Bailey were mostly based on the "decomposition® methods, |
which were methods in t1me domaln. The other method, i, .
.frequency domaln me thod for 81ng1e-1nput 51ngle—output systems
equips follow1ng merits, even if it were extended to multl—input
multl—output systems.
(1) It can be applied to systems with transfer functions
| ' obtained’experimentally. | |
(2) It 1s appllcable to systems which 1nvolve dead time
elements.
(3) It can be stated Wlthout restrictlon on the ordér of
systems expressed by a certain input-output relatlon.
_(4)vvarious modifications of this method have beenhprOposed
: unt11 now maklng use of +the properties of systems..
The reason why the method is nevertheless less useful for large
| scale systems is that computat10na1 dlfflcultles have not been
overcome so far. However recently by Rosenbrock and other Eng-
lish researchers (33), (36),.(53), (56), though mostly for linear
.case, frequency domain theories of analysis and synthesis for
tlarge scale systems (mltivariable systems) have been steadily
: deve10ped from practlcal V1ewp01nts. The central idea of

these theorles is to surmount the burden owing to increase of

-



dimensions by utilizing computers with graphic display terminsal.

In these theories, under a certain condition, whose satisfantion

»‘Tis able to be checked easily by computers w1th display, analy—

:itic and synthetic techniques for large scale systems were
developed in parallel with the already perfected classical control
theory for systems w1th Single 1nput-output relation.

w However these theories are not seemed to be fully completed,
for namely, nonlinear characteristics of systems are not o

fully aocepted by these theories. V Therefore it appears

that there 1s a room for constructing a better frequency domain
stability criterion. v It is certain that availability of
_ﬁcomputers w1th graphic terminal is practically & powerful tool

'of the stability 1nvest1gations of large scale systems in fre-

“\.1quency domain. - . So the develoPement of stability theory of

“flarge scale systems aided effectively by computers w1th appro—

ilpriate diaplay deyice 1s hoped henceforth.

| Section 1f2. Summary‘of.the Contents

In the folloWing chapters, stability theory of large scale
control systems 1s established, making the most of knowledge
_ on properties:of “the systems. Stability theorems are des—
. cribed 1n two different forms $ one 1s a time domain criterion,

. and the other a frequency domain criterion. ‘In both cases,

‘ L,;the;"decomp091tion" method is adopted throughout 'Relation-

fShlp between these two kinds of stability theorems is discussed
u81ng the p091tive definiteness conditions of rational matrices.

R
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" In chapter 2, stability theorems: of large scale systéms with

time-varying interconnections between subsystems;are derived

using the veétdr Lyaﬁunov function method. It is also shown
that the better stability conditions can be obtained when much
more'information on systems, such as periodicity condition for

interconnections, are available. In chapter 3, frequency

~domain stability criteria for largé scale systems afe given on

“the assumption that the-syétems are decomposed into subsystems.

The comparison equations and Li Xun-Jing's theorems, viz. Pbpov—
type stability theorems extended to multi-input multi-output
systems, are basic tools for obtaining frequency domain criteria
by the "decomposition" method. In chaptér 4, coﬁditiops
for'positive definiteness of reéﬂ rational matrices are dis=
cussed. It is sﬁown that, under a appropriate condition,
sufficient conditions or necessary and sufficient conditions for
positiQe definiteness of the matrices are'exbresséd in a'simble

algebraic form. - An analogous results are given for positive

sémidefiniteness of the matrices. Using the results obtained

in thisvchapter, relations between time domain criteria obtained
up to noﬁ and frequency domain cfiteria developed in the preced-
ing chapter are discussed in chépter 5. In chapter 6,
stability and’iﬁstability theorems of large scale systems with
stable éndvuﬁétable’subsystems:are studied without employing the
comparison method and the second method of Lyapunov. In

chapter 7, some concluding remarks dre given.
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Section 1.3 IList of Notation

'.I!hroughout this thesn.s, unless otherwise specified, the

follown.ng symbol conventions are utilized. Here, generally
_scalars are denoted by llghtface, lower case Roman and Greek

letters vectors by boldface, lower _case: Roman, and matrices

‘by llghtface, upper case Roman a.nd Greek.

R
; C

CR")

nxm nxm

6“’2 )

notatlons

field of real ﬁumbers

flelds of complex numbers

llnear space of ordered n-tuples in C (/R )

ring of matrlces Wl'th n rows and m columnsw:l.th

elemen‘b in C (R )

nj dimensional state vector of the i-th 'ssubsyss‘“t;em,'I(,cvsll?rl ¢

the number of subsystems which constitute the large
scale system

the state vector of the large scale systen, J’CGR
where n = }f_, nj

=1
n; dimensional nmull vector, OméﬂZn‘
Euclidean norm of vector %

matrix norm of a matrix P compatible with the i‘rect‘or
norm defined above

transpose of a vector'% (matrix P)
conjugate of a vector iy (matrix P) .
conjugate transposeof a vector Y (matrix P)

gradient vector of a scalar function Vi with respect
'tO %1

(aw . ... )
0%’ X! ax,,b

set of natural numbers, = {l,2_,---,m\}

inner product of vectors X and rﬁ

i - matrix having aj j as element in row i, column j
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¢ inverse of a nonsingular square matrix A

: determinant of A (detA)

diag(aii) : square diagbnal matrix having ai4i as the i-th

diagonal element

offdiag('“ﬁ) ¢ square matrix whose diagonal elements are equal
: 815/

K

A=>B

xz Y

to zero and offdiagonal (i,j) element ai j

a set of M—matrices; i.e. matfices with non-positive
offdiagonal elements and positive principal minors

: ajjzbj4, for all possible i,j

(1]

XiZ Yi , for all ie M, %, ek

p.d(p.s.d) : a class Qf positive definite(positive semidefinite)

08,
'1 

B (x)

sgn k |

i,3,k

matrices

: a class of diagonal matrices, real parts of.whose.
elements are all positive(non-negative)

unit matrix, i.e. diag(l)

time retardation of the system

"scalar ndn—decreasing’function'sétisfying,‘
- $i(0) =0, ¢ﬂﬂ—ﬂx(r+m),
signum function : |
A +1 9y k> O

= { -1 -y k< O

| 0 , k=0

the number for identifying the subsystem, unless other-
wise specified, they take values 1,2,°*°,m

implies

if and only if



Section 1.4 System Description

In this section‘the equations of~lérge scale systems dealt
with fhrough this thesis are given in a general form. Let us
consider a 1arge scale system, which is cémpoéed of m subsystens
as shown in_rig} 1.1. Each subsystem Si-is described by the
vector differential equation,

X = Fil Xi, 8) + Wy (1-1)
Here W4 is a real nj vector, i.e. Riiéﬂzniand (-) denotes differ-
entiation with respect to time-t . The first term in the right
hand side of (1-1) satifies a following equation,

CFiC O, 5 )= O (1-2)
Furthermore, the function jri satisfigs a gloabal Lipshitz _
condition so thgt_thé soiution jCi( t 5 to, Kio) of (1-1) exists
and is’unique'énd continuous for all initial conditions and t.

The second term’in’thé>righf.ﬁéna'side of (l—l)vexﬁréSSeszan'
input to tﬁe i—th’sﬁbsysteﬁ'and'consists of an intercbﬁnecfion

function @i and an outer-input vector W(j, such that
Wi = gi( Ka, Xay ==o X, t) + Ui (1-3)

where the function @i satisfies

GiC Ons Oy w2500 )= 00 (1-4)
When Wj= Qh:. , (1-1) becomes
Ky - £iO x4, 1) | O (1-9)

The above equation is considered to.be the characteristics of
the unforced subsystem separated from each other. So hence-
forth the system described by (1-5) will be called the i-th

isolateq'subsystem.



Fig. 1.1 Configuroﬁdn of Large Scale System
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Equation (1-1), combined with (1-3) describes the large scale

system in question as a whole. They are rewritten as follows
(

1 Xi fi( jCi y B) Uy 4

4 ' | (1-6)
Wy = ﬁi( Kys, Koy *ooy Xagy, t ) + Wio

\ .

Hereafter we call the large scale system expressed by (1-6)

system Z . The state vector of Z.\ is the direct sum
of that of each subsystem and written as |
o= (K Kgy vy Kp ) | (-1
By (1-7), the connecting funétio‘n gi( Wy KayereyXm, t) in
(1-3) may be replacedsi_mply as %Li( T, t ). When (o= O. R
thé sole equilibrium state of (1-6) is = On by (1-2) and (1-4).
We say that the system Z\ is ASIL (Asymptotically Stable |
In the Iarge), if its trivial solution IC = On is ASIL. |
In this thesis the condition for ASIL of ~i:he system 25 where
Ko = On is chiefly discussed.
Another frequéntiy encoun‘b’ered defintion of stability is
ESIL (Exponentially Stable In the Large). - Exponentigl
stablility of systems means that the absolute values of the
system states decay exponentially as an increase of time.
In the light of (26, Krasbvskii), the system(1l-5) is ESIL if
and only if the.re ‘are a positive definite function Ui (Xs,t)
‘and four pbsitive cinstaﬁts cij (3=1,2,3,4) such that
- (a) ¢11I3Cilzs Vi(%yi,t) € cip| Xi|
iz

(v) Vi(Xy,t) < ~ei3| Xy

(1-5)
() . |FVi)< esg| Xy

where ’U'ilf—i gzzfi + (V?j‘i)'- {i is the total time derivative
a-5

(1-8)



12 -

of U5( Xi, t ) along the solution pfv(l—S). It is assumed
hereafter that those quantities are éiready found for the expo-
nentially stable systems. ~ Note that in (1-8) when[jfi\ is

replaced 5y any non-decreasing functions Sbi([]Ci\) satisfying:

Pi(0) =0, lin P;(r) = oo
r->» co

- system (1-5) is concluded to be ASIL, not ESIL.
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Chapter 2 Stability Criteria of Large Scale Systems with
Time-varying Interconnecting Relations

Section 2.1 '.Introduétion

A systematic method for analyzing large scale systéms was
first proposed by F.N.Bailey (7). He assumed that the system
was decomposed into several subsystems and derived the conditions
for stability of the syétem utilizing the properties of subsystems
and'relétions of interconnéction aﬁong them. This method has
been called the "decompositioﬂ"'method. Mahy reports about
the stability conditions of large scale systems have been publish-
ed after Bailey, using the "decomposition" method. ‘: However,
most of them assumed that the conditions corresponding to "sector"”
cinditiqns, which were»supposed frequently‘in the absolute
stability proﬁlems of nonlinear feedback control systems, were
satisfieq for the intercbnnécting relations among subsystems;

In.thisvchapter, stability of a 1arge'scéle system with time-
varying interéonnecting relations is analyzed, but the "sector"
conditionsjéfe not necéssariiy assumed for the system dealt with
hefe; Tb;obtain'the stability conditions of the system, the
weighted vector Lyépunov function method is introduced. Thé
principal featufe of the method is thaf the elements of a vector
Lyapunov function are multiplied by appropriate scalar weighting
functions. The results obtained is shown to coincide with
Bailey's theorem when the interconnecting relations are time-
invariant. It is also shown with.an illustrative example that
by'makiﬁg use of much more infromation on system properties,
such as periodicity conditions of intercdnnecting relations,

improveq'conditions of stability can be obtained.
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Section 2.2 System~Equations and Some Preliminary Lemmas

Let us study the system EE. described by the equations of

the more specified form than (1-6) as follows

xi=fi(%i,t)+ Wi

| (2-1)
’y = 2:. 03 5(E) %y + Ky
)z

where'cij(t) is a matrix-valued function of a real variable %,
K; a real constant matrix of an appropriate size, and (L an
outer-input vector tO.Z:l. " The equations (2-1) are consider-
ed to be a special form of (1—-6) whér‘e %i( ", t ) =Z Cij(t) X3
and to describe a large scale system with time—évarying linear
intercpnnecting elements. Putting W= Q in (2-1), we will
consider the stability properties“of ;ZL ‘with zero outer-input
of the form _ | | _

= fi( Ris 8+ ﬁcljuma o (@)

=;L
We assume that each subsystem described by (1-5) is ESIL.

.As mentioned in Chapter i, it means,the existence of the positive
~ definite function w;( jﬁi,-t) and fbur positive constants:
cij(j=1,2,3,4) satisfying

(a) 01113(1\: Wil i, 8)S egp |Ta]

() Wil X4, t)|<-c13 |74 1 | | (2-3)

() |Vl Zas 0] 2 osa|Ral -

In order to derive the stability don@itionszof IZ; bysthe
"decomposition" method, some preliminary lemmas will be éhown in
the next place. The first lemma concerns the condition undef
which the solutions of first order différential-ineaualities:are
bounded-by those of differential equations having the same
right hand side of the differentail inequallties.;
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The comparison theorems for more general ~types of equations
and inequalities are listed in Appendix (B).

Lemma 2. 1 “S)

The solut:.on . of ‘the differential equation of the form
Tr=(a+B(t))X , %(0) = X, and the solution of the differ-
entiel inequality Y<(a+BENY %(0) = X, - satisfies
the relation Z(,gs X, Vt>0, if the following inequalities ho;q.

ajj + byj(t)2 O (1%3) & Yt20
where A = { a. } and B = {bij(-t)} are a real constant matrix and

a matrix-valued continuous function, respectively.

‘ | The next two lemmas deal with the stability conditions of the

 first order linear dhifi‘.erential equations,

Lemma 2.2

"Let the solution of the differential eqlié.tion ‘ld- %L be
ASIL (i.e. in this case ESIL). It for the equation Z (A
+ B(%)) 2 having the same initial cond1t10ns:~ as above equation
at time t = 0, the condition H

| "B(t)" <c, KYt20

where ¢ is a positive condtant relating to the property of A, is
satisfied, then the solution of ‘Z= (A + B(%))Z is also "-»'ASII:. (
ESIL). |

Though the proof of this lemma was shown in (10), the outline
will be given for subsequent discussions.

" Mhe proof of Lemma 2.2
The solution of the differentisl equation Z = (A + B(t))Z is

- t :
Z =1+ g Y (=5)B(+) Z (4) At

Jo
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where Y is the solution of matrix equation Y = AY , Y(0) =I
and Y=Y Z(0). From the assumptions, there exist positiwve
constants ¢, , c,and & satisfying l%l < ¢, P s IY(t)||<c, e .

Using these inequalities |21 is evaluated as

v acf. -t)
12l < ¢,e* . CzS 1Bt || 1 Zetn) 4ty

[

Then it follows:
|1Zl< Gt CCzS IZ(f‘l)lMl

Bellman-Grownwall's inequallty says tha‘b u< c.j uvd,’c, implies
us< c,exp(jvdt; ), where u, v are non-negative scalar functions,
c, a positive constant. According to this inequality, we

get the relation

|1Zl e C/lc

Thus if we choose: c as cc,<a, |Z| goes to O as t to o2 .

(4)
Lemma 2.3

Without chahging the conclusion of Lemma 2.‘2,. the condition
" with respect to || B(t)|l of the above lemma can be replaced by

the following condition

.B(‘b),—’ Q@ (Null Matrix) , %I— oo
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Section 2.3 The Weighted Vector ILyapunov Function

In this section, some differential inequalities used to
obtain the st@bili‘by conditions: of 2. ame derived, making
use of the functions W( Xi,t) which satisfy (2-3).

Let scalar functions O;(t) be such that

o (¢) > m>0 , t=t | (2-4)
where, m; is a conétan“t. | We constitute a following m dimen- .
sional vector ¥~ using 'a‘bovef defined & ji(t) and w;_( Ki,t) of
(2-3). -

VR (VI(K1,8), Va(Xp,t), oty Vp(Xmyt) ) (2-5)

Ui Ry,t) & O5(t) Wi(xy,t)

Now, the differ_entia"bion". of U'j with respect to t along the
solution of Z\ is ' |

(R0 = Sy (0) Wi(Ra,®) ¢ (8 Wiy, 0

- @-2)

= dy(t) Wy 1(%4,%) + oty () (2L + (up)f 1)
+ &y (%) { ([71,41,;).('2'—:_l cij(t)?’(-j)} (2-6)
%

The second term in the right hand side of the above equations

can be evaluated, by the assumptions, as
3 ] 2
ol (£)( au}%t* (VM‘)-][i )< -ey3 O(i(t_)lxi\
- and the third term as

(t)k (Pw)" (zcij(t)mj )}< o(i(t)IVafllz; cl;,(t)x A\

< cl4d (£)( Z_,\ 1j(t)kj‘ )Ix‘l\

q.
Using again the equatlons (2-3), (2-5), scalar inequality .

—aZ+bz< -aZ/2+b7/2a (a >0, b> 0) and Schwartz's inequality;,

we obtain



18

1(t) '_ Ci3
U'l(“*i’“‘()ilf( ot 1 (%) 2¢55 ) V4
.+ it (i Log®lD (37 %) 4y (oo
2013 . k= )==-l le j(t)

This inequality:can be rewritten as in the following vector

form _ ‘ |
V< (A+ B(£)) U - (2-8)

where U is defined by (2-5) and both A and B(t) are m dimen-

Sional square matrices defined resPectlvely as follows

o
A= alJS = diag( —*EEig')
&i(8)
B(t) ={bij(t)\ = Tx—in:T ,  for i=j (2-9)
03'.24 m 2 oi(t)
iy oD 2

for ixj

Now, in order to exXpress (2—7) by another form , we assume the

existence of real constants M; and non-negative constants Ny ij

satisfylng

0‘122)5 = M; + 5:|_("?) ' 51(1:)20 ’ .t]lf'ﬂgi('t)=0 : (2‘—10)

5c;1ci1 3c 1 (;Hclk(t)”z)—:{;—gg = Nij + Sij(t) , ik

’r v oo
where Si(t) and é‘ij(t) are éontinuous functions of time t .

Under these assumptions (2-7) is written as follows

7}1( :W-iat)l‘vf 2—13-)'”1 +iNlj'{rj
(2-2) iz , .
&.(t) .M d (’b) ) }
+ (22 -m )Y Cix(t) )————N (%4
J108) i it = {2c13 gf:“ ik .“’ 31 1) i3] ¢-d

(2-12)



The vector form of (2—12),are

U< Aot B(E) VU L (213)

where A, , Egt)fare'defined respectively as follows

cj _ .
My - —géig ’ for i=j

A, ={afs} %
{alj} N S , for ixj
. (2-14)
- S d3(t) M , for =3
B(t) = {pyy()} 2{ °‘i(’°)
' | ( {_’\ “Clk(t)“ )& 1(%) 1"") Nij

for ixj

Section 2.4 Stability Theorems
Two theorems are derived on the basgsis of the results deve-

loped in.the preceding seétipns;

Theorem 2.1

'If the folowing conditions (i ) and (il ) are satisfied,
the system 2 is ASIL.
(1 ) There exist m continuoﬁsly differenttiiable scalar functions
A4 (t) satisfying | .
a;(t) =mg >0 ,  te [to, o)
where mj is a constant.
(11 ) For the matrix given by
: | S -
v v (t) .
B(%) =-{bij(t)} =
o Teprem (i |lcik(t>llz)———r’c‘3‘d :

for i#j

’ for i=}j
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the following relation is established.

IB(6)]} < mibn-z-g—i—g— ’ te [ t,, )

Theorem 2.2

If in addition to the condition (1 ) of Theorem 2.1 the
following conditions (3 ), (Il ) are satisfied, then the system
is ASIL. '
(i1 ) There exist real numbers M;, non-negative numbers Nj s
and non-negative continuous ~f1incti0ns gi(t) and Sij(t)
satisfying the donditions of (2-10) and (2-11), respectively.
(ill) The matrix given by

Mj - 201'3' . , for i=j
o A C4
Ay = {aij} = e

| Nyy ,  for ixj

‘is- a stable matrix.

Proof of Theorem 2.1

Consider the differential equation Z = ( A + B(t) )Z where
matrices A and B(%) are defined by (2-9). By Lemma 2.2,

if +the relation. such that

lllB(t)_I]gc< a/c, (2-15)

is sa‘bisfied, then the solution of the differrential equation .

is ESIIL. The constants:a and ¢, in (2-15) should be chosen
so as to satisfy | ehtl|<czéat . As in the present case
matrix e™ is given by

At .
- e = dlag[exp(— _é%g—t)} ,
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we choose a, ¢, such that

a = m%n —§%§%— " c, =1 ’
which give the bounds for I B(t) |l 1n the condition (ll) of the
theorem. Here, as the matrix norm |-, the induced one
from the Euclidean vector norm is adopted. Moreover, by
the way of construction, the offdiagonal elements of the matrix
B(%) are all non—hegative, so we get by Lemma 2.1 an inequality

of the form,

VIt) < Z(t) ) t >t (2-16)
whence we have

| )< 2], szt (2-17)

Because X (t) is ESIL, there exist positive constants £ and V
such that

-2¢€¢t-ts)

\'Iﬁ'(t) |< vIw(s)]| e
From this inequality we have _

M ' .

. - t-to

2L Vg [Ute,) | 3

L= _

Here, V3(Xj,t) is denoted simply as 2;.

Meanwhile, from (2-3), (2-4) and (2-5), we obtain

Ui < 11< Ui
cizoti(‘t)*-x'l“ cil my

Whence if we put cj1 mi = min c57 my and cizofi(t) = max

ciocti(t) , we have

125‘ (% )%’T\vl“\ \<— Z‘V (2-19)

C3 i=t
If we also put Ui( Ko,y t,) = ?)‘; , we get
1 w0) 1< S . ~ (2-20)

L=t

(2-18)
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From (2-18), (2-19) and (2-20), |X| is evaluated as

L —e(t-to
I%IStl%leu ‘
where T = YEV:C1p0 1, o = 0(t,) | W= K(tp)e
Ci1 i ’ ’

Thus ASIL of . is proved.
QoEoDo

PI_‘oof of Theorem 2.2

Consider the differetial equation Z = ( A, + Bo(t) )= ,
where A, and B, are given by (2-14). By the condition (i)
it can readily be‘ shown that the offdiagonal elements of matrix
A, and Bo(t) are all non-negative and B,(t)—8(Null Matrix) as
t—>o00 , Therefore the conditions of Lemma 2.1 are satisfied
and we have |'Z)f(f)] _<_]Z(‘b)]_. . Furthermore, if the condi-
tion (i) ) is assumed, then the solution of ¥ = Aot is ASIL(ESIL).
Hence thve conditiohs of Lemma 2.3 are sétisfied and 2 , the
solution of ¥ = ( A, + Bo(t) )X , tends to Om as t increases
infinitely. The discussion to be followed is the same as

that of Theorem 2.1 and is omitted.

Q.E.D.
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Section 2.5 Consideration on Theorems

In section 2.3, m of the differential inequality with respect
to Yi( Ki,t), which was the weighted Lyapunov function for the
~ i-th subsystem,Were combined into tﬁo different forms of vector
differential inequalities. In either form the coefficient
matrix of the inequality was partitioned into two portions ;
time-invariant part and time-varying one, so as to obtain the
stability conditions. The reason why these partitioning were
adopted is that the analysis Was.carried out from the inference
that the system would be stable, if the relative "value" of time-
varying infefaéfions was small enough in contrast to the "dégree"
of stability for all subsystems. The obtained results vali-
date this inference. The'COndition of Theorem 2.1 shows a
limitvto which relative-ﬂvalue“ of interactiona (i;e., norms of
intercéﬁnecting functions) should be increaéed in compafison with
the “degreéﬁ of étability for each sﬁbsystem tb assure stability
of the qverall system.‘ 'Aiso, in the case when the interconnect-
iﬁg relations; among subéystemé have constant limits such as "DC-
bias",bTheorem 2.2 showé the relation among the limits and the
"degreé"‘of'stability“of,each subsystem to make overall sysfem
staﬁle. o |

Naw, the obtained theorems can be considered to be the ex-
tension of Bailey's theorem. Because, Bailey's theorem is
applicable only to the system ‘Z: , in which the interconnect-
ing relations are time-invariant, i.e. Cij(t) = Cij(const.).
Tet us examine our theorem, restricted to this case, in compa-
rison with Bailey's. Bailey's theorem is outlined in Appendix

(a). _If we put Cij(t) = Cij(const.) in Theorem 2.1 and
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Theorem 2.2, all the time-varying components of the elements of
the matrix B and Bo are those which involve only ok (t).
Therefore it is sufficient to chqoée (Xi(t) as time-invariant
function. If we choose O1(t) = Oo(t) = «ve= Olp(t) = 1,
the diagonal elements of the matrix A of Theorem 2.1 become those
of &, where X is a matrix defined in Appendix (A). Namely,

the matriées-A and B(t) in Theorem 2.1 are no more than a decom—
posed form of A in this case. On the other hand, in Theorem
2.2 under the conditions ©(%) = Oo(t) = ««. = dm(t) =

we have

]
(@]

w - Sim SR YES

Ns s =
+J 2c13c ZE:”CIk“

Then the matrices A, and Bo(t) become A and Q(null matrix),
reSpectively. In this case Theorem 2.2 coincide with Balley's
theorem completely. Araki pointed out the conclusion of
Bailey's theorem could be replaced by ESIL instead of ASIL.
Therefbre, we can also concludé ESIL of in this case.

Now, let us show an illustrative examples to compare the
condition of Theorem 2.1 with that of Bailey's. Consider
a large scale system composed of two exponentially stable sub-
Systems, which}ére mutually connected by linear time-invariant
elements as shown in Fig. 2.1. Application of Bailey's theorem
for this system gives following stability condition

z

©11%21 C13C23
612 |21l < 135 o521 | (2-21)




S

Fig. 2.1 An Example of Large Scale System (m=2)

>2

25



26

On the other hand, by choosing (%) (i=1,2) as ©O9(%)= (%)
=1, Theorem 2.1 gives us 3 -
2 .
Cl4 2 024 2 . ] c
max ( -——-1i4  |C C ) < min (=13 23 )

.;..... (2_22)

Since condition (2-22) implies (2-21) and the converse is not
true as réadily understood, Bailey's theorem provides the better
stability condition for systems with time-invariant interconnect-
ing relations than Theorem 2.1 does. This is owing to the
following fact : The condition of Bailey's theorem is a nece-
ssary and sufficient condition for ASIL of the solution of the
"comparison" equation F=AF ’ .while the condition of Theorem
2.1 is a sufficient condition for ASIL of the equation %}==(A+
B(t)) y . | '

Section 2.6 Examples

In applying Theorem 2.1 or Theorem 2.2 to large scale systems,
arbitrary scalar functions &;(t) satisfying (2-4) should be
chosen at first so as to satisfy the assumptions of each theorem.
Namely, matrix norm of B(t) in Theorem 2.1 should be able to be
calculated or the existence of Mj, Nj, Sjjiﬂ, §ij(t) satisfy-
ing the condition (i1 ) in Theorem 2.2 must be assured.

Moreover, as the arbitrary function o;(t) itself has several
arbitrary parameters, we must take care of reduction of the
number of these parameters. However, in many cases inter-

connecting matrices Cij(t) are given in a definite form and in
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some cases any constraints are placed to them. We can make
use of such a knowledge of Cij(t)-in choosing ©4(t). In

the following; we will give a few exemplary applications.

Example 1

Consider the case in which the sum of the norm of the matri-
ces which interconnecf the i-th subsystem with the other is
bounded as follows

Z\lc (t)\\<K R, bz, | (2-23)
NEl
where Kj and ﬁi are scalar.cénstant and Ki> 0. If the
signs of ‘ﬁj}s are all neﬂative the stability'condition cannot
be’ obtalned by the theorems in section 2.4. However, in case
where the only one ‘ﬁl_ls negatlve and the absolute value of the:
.4%1_1s not larger than the other, we can get the stability
condition by Theorem 2.1, Without loss of generality, we

can_rearrange the order of subsystems such that
Z,uc ; che L, is1,2,ee-
J( )\< K e y t =% , i=1,2, ym~1

Z“cmk(t)u <K, et 424

| (2-24)

where K; >0, i=1,2,°°-,m and ﬁlzﬁzzuozﬁm_l _>_7gm>0.
Inequatities (2-24) shows that unbouded "gain" elements may
exist between the ﬁéth subsystem and the other. We choose

arbitrary function O,(t) in Theorem 2.1 as follows
o, () = e¥id >0 t >t | (2-25)
i = T 4 ’ < Yo .
Here,

‘Yi:ki ' i=1,2,¢¢+,m-1

Ym.= ¥Km-1 - km
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Then we can calculate the upper bound of the norm of the matrix
B(t) in condition (ii ) of Theorem 2.1. In case of m =72 we

obtain the following stability condition

. '2_
Ky c14 XKy
2¢ c _
IB(6)f < BTN o omin (%13 23 ) (2-26)
2 2¢ )y 2¢C
2023 Cy1 -

Note that we adopted so far the matrix norm which was induced
from the vector norm, however none the less we may choose any.
norm which gives the best possible condition so far as it is

compatible with the vector norm.

Example 2

Let us éonsider the system Z\ in which the interconnecting

relations are given

2t

s ‘
' KZ;" ||cik(t)||2 = K K1, K; e')) (2-27)

£35S
where %i, Kj and K;L are scalar constants such that ‘k_-L< 0,

/ . ' .
Ki >0, K;>0 (i=1,2,-:-,m) ; 'ﬁp = m?x fej (3x1i) .

If we choose ¢;(t) = e-ﬁ“t y by Theorem 2.2 we have-
Mi - - ﬁi 2 ’
. ci4KiKi
ip © T2ciicq

Nij=0 ( j%p )

The matrix A, defined by (2-14) is as follows
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. C
ko i3 1=
N { o} 1 2012 '
= a. = .
o lj c§.4‘K.Ki . . .
7;;;;??;“ » ix3 , J=p

0 y ixj J—*rp

The stability condition .of ES: is obtained as the condition
that the above A, isba stable matrix. In case of m=2, we

get the following conditions

£y +fp > -1 (%13, °23)
- Cl2 2o (2-28)

4011C13021023(2012 ﬁ,l+013) ( 2co9 ﬁ 2+023)

K / ,
1K.K1Kp < =
C14C24

Example 3

Assume m=2 and Hcij(t)nzis given by

2
K
le, (0] = 1 o1
B \ - ta s 222 0 (azgy)
2 PR (2-29)
leor () = B0 £+ 1)
We choose o ;(t) as follows
Oq(t) = t7+ 222 Oy (t) = 1
Then, the matrix B(t) of Theorem 2.1 is calculated as
! 2
r 2t c14 K1 £ 4 282
t?+ 2a* 2013021 t2- ta + 2a
B(t) = | (2-30)

c;4 Ko £ 41 : 0
2023011 t2+ 2a%
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If we adopt the matrix norm of the form | All = m max ajj 5 we
. )

Obtain the stability condition by Theorem 2.1 as follows

1 B+4_c14 Ky co4 Ko ;
max ( - . min
Zo, T Zeigep 2¢53011 ) < min(

°L3 %23 ) (2-31)
4cyo %022
As guessed by the above examples, the main weak point is that

we have no systematic means to choose ot 3(t) satisfying the con-
ditions of the theorems and that the obtained stability conditions
are no better than that of Bailey's. These defects should
be overcome hereafter. On the other hand, the usefulness

of our theoréms are due mainly to its appliéability to more
general classes of large scale systems. - By choosing & (t)
appropriately, the theorems will be effective tools for analy-
zing the large scale systems with wider classes of interconnect-

ing relationss

Section 2.7 Improvement of the Stability Condition

As discussed in the previous sections, the theorems derived
in this chaptef does not give wider ranges: for stability in .
parameter space than that obtained by Bailey's. However,
it can intuitively considered that if we are given more infor-
mation on_systems,<fhe improved étability condition could be
obtained by effective use of this information. In this
section, it is shown that the improved stability.condition of
27, can be established under the assumption that the intercon-
necting matrices are periodic.

First, in the system ;E: 'y assume that there existska~pOSitive'



31
number T, a period of interconnecting matrices, satisfying

Cij(t+T) = cij(t) , T2z, , ixj (2-32)

We choose an arbitrary scalar function ;(t) in the same way
as in the previous discussions and add another assumption that

A 5(t) is-also periodic with period T such that
O (64T) = K (t) , vt (2-33)

From this equation, we have

X (4+4T) = R3(t) , t >t (2-34)

Using these X;(t)'s we constitute a matrix B(t) in the same
way as in Theorem 2.1. Then from (2-32) and (2-34), it is

straightforward to show
B(t+T) = B(t) , t = t (2-35)

. In parallel with the discussion in the proof of Theorem 2.1,

it can be easily verified that if the solution of the equation

3

¥V = (A + B(%))V
_ . _ cli ' 023 e e _; cm3 .—
A = diag ( 2c1p ' T 2¢pp ? ’ 2epo ) (2-36)

is ASIL, then the system ;Z: with periodic interconnections
is also ASII. Now, we will introduce a preparatory lemma
to derive the stability condition of 223 .

(23)
Lemma 2.4

Let C be a real constant matrix,  the real parts of whose
eigenvalues are all negative, and D(t) be a periodic matrix

L ,
with period T. . If the quantity S [p(t)-cllat is small
2

-
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enough, then the solution of the equation = D(t)r is ASIL.

In the above lemma, "small enough" means that the following
inequality is satisfied.
By the assumption, there exist positive constant K, B such

that

Jexp(Ct)| < Re~P? (2-37)

and for these wvalues the relation

T .
S ID(t)-Clat< BT/K | (2-38)
‘holds;

If we put D(t)=A+B(t) and C=A, these matrices are shown to
satisfy the assumptions of the above lemma. In this case

the constants K, B satisfying (2-37) is calculated respectively

as K=1 and B= min ( ci3/2ci2 ). By (2-38) we can obtain a
stability condition of the solution of the equation (2-36) as
follows ;
1 T
| TS"B(t)ll dt < min ( _%i3 ) (2-39)
‘ v 2cyio

0

The above discussion leads us to the following theorem.

/

Theorem 2.3

If the inequality (2-39) is satisfied for the matrix B(t) of
(2-9), then the system 2.4 with linear periodic interconnecting
elements with period T is ASIL. Here, the function Xj(t)
in the elégeﬁfs éf B(f) shﬁﬁld be chosén.so as to be perodic of

period T.

-
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Apparantly, the condition (2-39) is implied by the condition
for || B(t)|| in Theorem 2.1. Though Theorem 2.i can be, of
course, applied to systems with periodic interconnections; it
could be replaced by the better result, i.e. Theorem 2.3, if
only periodic Ot ;(t) could be chosen. Intuitively speaking,
the condition (2-39) shows that an average of the absolute "value"
of coupling matrices over a period T should be less than the
"degree" of stability for each subsystem for stability of the
overall system;

Now, we will give an exemplary application.

Example

Let us consider the large scale system composed of two sub-
systems. We assume that the norm of the interconnecting

matrices are given by

(24sin t) K

Cqo(t)]
e ()] 50

(24+cos t) K

Il

[ Cor(t 1|

We assume furthef that ZU&:-%{R&F(i:l,Z) is the function which
satisfies the assumptions of (2-3) for each subsystem. Now,
let us try to obtain the stability regions in (c13, 023) plane.

Both c13 and cp3 are considered to express the "degree" of

Stability for each subsystem. In this case, we have cjj
Cio = 1/2, ci4 = 1(i=1,2). If we choose oO1(%t) = & o(%t)
B(t) can be calculated as.follows

I
r

2
0 (2+§1n t) i
B(t) = S 2 13
(2+cos %) K3

oo 023 0
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Whence, -
V. . 2,7"
- uB(t)Ildt
27C
1 X X
< §7F max {.(2+81n t), (2+cos t)} dt < max( °13 ' 53 )
2
( + 4/’- ) *max( K K )
7 13 ’ Cos
From (2-39) we obtain the stability condition as
. 2 z 9 , 4/2 2
min ( ¢ c ) > (F+—==)K
‘ 13° 23 7 2. Us (2_40)
k6.3 K~

When Araki's theorem (cf. Appendix(A)) is applied to the systen,

the following condition is derived.

c13c¢23 > 9 K" (2-41)

On the other hand, the application of Theorem 2.1 gives the

following condition
min ( C13y 023 )> 3K . (2-42)

The regions for condition (2-40) to (2-42) are illustrated in
Fig, 2.2, As clarified by this figure, the conditions (2-40)
and (2-41) are not included by each other, That is, in some

case Theorem 2.3 gives stability regions that has not been ob-

tained by other. theorems.
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Fig. 2.2 Stability Regions for Condition (2-40), (2-41), (2-42) .
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Chapter'3 Frequency Domain Criteria of Large Scale Systems:
Section 3.1 Introduction

In the preceding chapter, several stability theorems of large
scale systems were derived'by the weighted vector Lyapunov funci:
tion method, which was a kind of the "comparison" methods. As
mentioned previously, the orincipal idea of these "comparison"
methods is that the stability conditions of the overall systems
can be established by examining the stability properties of the
solution of a icomparison equation. The comparison equation
is derived from the properties of subsystems and the interconnect-
ing relatioms.:r. Hence, various classes of large scale systems
1eaq to various types of comparison equations. Therefore,
o analyze a variety of large scale systems, we should provide
the stability criteria that are applicable to wider class of
systems characterized by the comparison equations. = As are
known well, frequency domain methods have been widely developed
up to now to investigate a various kinds of systems. From
this point, we will choose frequency domain stability criteria
-to examine the properties of the comparison equations. Here-
after, we will call the system whose characteristics are subject
to the compafisop equation an imaginary systemn.

In thislchapter, various imaginary systems are analyzed by
the extended P0pov—£ype stability criteria given by Li Xun-Jing
to obtain the stability conditions of corresponding large scale
systems.' The obtained conditions are also expressed as the
form of multiple input-output frequency domain condition.
Generally speaking, 'in contrast to the effectiveness of frequency

domain method for single-input single-output systems, the method
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for multiple input-output systems is less usefui because of
troublesome work required for its application. This diffi-
culty is considerablly reduced by utilizing a computer with a
graphical display terminal. The obtained ‘bheorems are applied
to some large scale systems, whose subsystems have dead time

elements in their own feedback loop.

Section 3.2 Comparison Eyuations and Imaginary Systems

In this chapter, we deal with the system described by (1-6),
though in which the function %‘i(x’t) is assumed to have still
more specified forms or to be placed some restrictions.

First, we assume the following rélations for thevvector—valued
function gi(x )
m

Pwi- gi(x,)< érijfﬂ Wi) »  rijzO (ix)) (3-1)
where W is a scalar function for each subsystem satisfying
(2-3) and )Lj( wj) is a non-decreasing sca}ar function satisfy-
ing fj(0)=0. As a particular case ‘of (3-1), we also consi-
der the large scale system, the "magnitude" of whose interconnect-

ing relations between subsystems: is evaluated by linear combina-

tion of the norm of the state for each subsystem such as

Coom
|9:¢%,0)] < 20115 | %] 91320 (i%3)  (3-2)
We call the system represented by (1-6) ZI ,-ZAL , if it
satisfies (3-1), (3-2), respectively for convenience sake in

this chapter. Apparantly, 2 _,L is a subclass of 2 ;

and Bailey discussed the system Z\L ’
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. In this case,

where yjj in (3-2) was given as yij = "Cijl

(3-1) is satisfied by putting rij as

Tij = vig —i4 (i%3) (3-3)
cjl
Now, we differentiate the function wW}j along the solution of

E s with respect to time t and evaluate the derivative using

(2-3) and (3-1). Then, we have
Wy < -2y, S (W)
=7 ey ii_jalriij( J

If we put W& ( Wy, W, *°°, Wy f, the above inequalities

can be written in the vector form of

W < AW + RF(W)

. ci ' (3-4)
with A2 aieg (- )
i2

{71;]

F(W) £ diag ( £3(wy) )

lik

113

R

The comparison principles (cf. Appendix(B)) tell that the solu-
tions of the above inequalities are bounded above by those of

corresponding differential equations such as
V = AV + RF(V) ' (3-5)

Therefore, ASIL of EE: can be proved by checking whether the
- System described by (3-5) has the same properties or not.
Hereafter, the éystem whose characteristics are given by (3=5)
will be called the imaginary system and be written as I .

In case of the system :E:L , {(3-5) is expressed as

Vv = AV + BV ' (3-6)
where

ci4 )

B = offdiag ( y4
1] le
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Similarly, we call the imaginary system corresponding to Zn. s LI
Next, we consider the case where each subsystem described by
(1-5) has a dead time element in their own feedback loop.

We assume that dead time of all the loops are given by a same

value T > 0. These systems are described by the following
equations
Xy o= fi(Xg, t) + Wy (3=7).
Wi = @i( i, Xi($-T), ) + Ri(R, 1)

where J4i and X denote Xji(t) and ®(t), respectively for the
sake of simplicity and ﬁ,i(k’,,*.‘t) satisfies the relation such as

-7
Twy' #i(3, +) S)Z:Jrijfj(wj) - (3-8)
where rij20 (ixj) and ]Lj( wj) is a scalar non-decreasing
function. Moreover, we assume that %(i(lti, X;i(%-T), t)

satisfies the following relations

@1( om,omvt)—-omy te(-oo,oO)

(3-9)
Vs % (xl,% (t-T), t) = cya dlllml(t—t)l
where dj71 is a real constant. The system which satisfies
(3-7) to (3-9) is named ZD in this chapter. For the

system ZD s we have the following inequalities in a smilar

way as (3-4) (.by using the conditions (2-3), (3-8) and (3-9) ).
W(t) < AW(t) + DW(t) + RF(W(t)).

where N
D = diag ( cy4 @i ) (3-10)

4. A 'dj1/cin y d31>0
ip = :

di1/eso y d33< 0
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We consider the following differetial equation corresponding to

the above inequalities
V(t) = AV(t) + DV(4-T) + RF(V(%)) (3-11)

The system described by (3-11) is also an imaginary system and
we call it system ID . According to the comparison principles
( Appendix(B)), the inequalitiy between the solutions of (3-10)
and those of (3-11) of the form

v(t) = w(t) , t=20

holds, so far as the relations V(t) > vw(t) are satisfied during
the interval -t < t < O. Therefore, the conditions for
ASTL of the solutions of (3-11) give the conditions of S.1D fop
ASIL;' Now, when the function %i are given, especially,
by

@i( K, RZi(t-T), t) = Dj Ki(t-T) (3-12)
where Dy is a njx n; real constant matrix, we have the matrix D

of (3-10) in the following form
D = diag ( ¢ ,|Di}l/ i1 ) (3-13)

If the norm of the function ‘ﬁLi( Xi, t) given by (3-7) is evalu-

ated by the same way as (3-2), that is,

Iﬁi( X, t)l < Zlvij | 24 , 71§=0 (3-14)
=L
i Xy

then the equation corresponding to (3—10) has a linear form as
V(t) = AV(%) + DV(t2T) + BV(%) | (3-15)

We call again the system Z,D whose interconnecting relations
are restricted as in (3-14) >.[D. and ﬁe call the correspond-
ing ima_ginary system, IDe . Of course, system ZDL.
is é specified élass of Z_D .
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Now, let us derive the stability conditions of the imaginary
system described by (3-6), (3-11) and (3-15) in order to obtain
the stability conditions of the overall system: Apparently,
the stability conditions for (3-6) can easily be obtained in
simple algebraic form. However, to get the stability condi-
tions for the other two equations,is not so easy on account of

the existence of time deviating arguments.

Section 3.3 Extended Popov-Type Theorems (by Li Xun-Jing)

In this section, we introduce frequency domain criteria to
examine the properties of the imaginary systems I, ID and ID.
corresponding to 2. , 2D ana >Dv , respectively. For multi-

input multi-output systems, several frquency domain theorems of

stability have been reported before now, (25), (32), (51), (62).
Here, we employ the extended Popov-type theorems established by

Li Xun-Jding (32). The reason why these theorems are especial-
ly adopted is that they can give the stability conditions for
wider clasé of systems that have dead time elements. In
applying:the . theorems tb the imaginary systems, some notice

will be required. Because, in contrast to the imaginary systems
that have closed loop equations, the system equations in the
theorems are written in two forms ; open loop equation..and feed
back loop equation. As will be necessitated later, we show

the outline of Ii's theorems below.

K(t)

AX(E) + DR(t-T) + R—f(z(t)) (3-16)

Z(t) = -CX(t) , T>O0

-
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mxm

where A, D, R and C € R Jﬁ(}?(t)) is a m vector whose j-th
component fj(Z:) depends only on the j-th component 2j of the
vector 2 , that is, j:j(z) = JLJ'( Z3) and f(@) = Q.

We assume that the function ;f(;z(t)) also satisfies the follow-

ing "sector" conditions,
2
0 < =i fi(By) < A3 23 (3-17)

where fii is a positive constant. The transfer matrix of

system (3-16) is

G(s) = -C(sT - A -¢e'D )R - (3-18)

For this system, the following theorems hold.

(32)
Theorem 3.1

If the real parts of the roots of the characteristic equation
|sI -A-¢eDdl=0 (3-19)

are negative, and there exist two square diagonal matrices P
and Q of order m such that

1 the elements of the matrix P are all non-negative ;

2° for any real number w (0< w$o0), the matrix
: *
Ww) = PH + %[(P+jw Q)G (jw) + [(P+ij)G(5w )l\} (3-20)

where H = diag (hj)

is positive definite,
then for any continuous vector function fr(Z:) satisfying the .
conditions of (3;17), the null solution of the system (3-16) is

ASiL. ? .- That is, the system is absolutely stable in the large.

The next theorem treats the same system as above except less

ristriction on f( Z).
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(32)
Theorem 3.2

If all the roots of the equation (3-19) have negative real
parts and there exist two diagonal matrices P and Q of order m
with non-negative elements such that, for any arbitrary real

number w (0< W<d), the matrix
W(w) = (P+gw)e(3w) + ((Priw Qe(w)] (3-21)

is positive definite, then for any continuous vector function

satisfying the condition
0< 25 f3(35) - (3-22)

the null solution of system (3-16) is ASII.

" In addition, we remark tha.t circle criterion for multi-
input multi-output systems given in (51) is a special case of
the above theorems and is obtained by putting D = ©(Null Matrix), |
P =1 and 'Q = 0 in Theorem 3.1. - However, in the circle

criterion, the function f can be assumed to be non-stationary.

Section 3.4 Main Theorems

By the arguments so far presented, the theorems of the previ-
ous section give the stability conditions of 2., and Z.D s
when they are applied to the imaginary systems I and ID, Tespec-—
tively. In this section, we will give some theorems for some
classes of} large écale systems. . First of all, consider the
imaginary sjstem IDy , which éorre3ponds to the large scale sys-
tem >.Db . | In Theorem 3.1, if we put f (Z(t)) = -HZ(t),

where H is a mxm real constant matrix, we have

-
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X(t) = AP(t) + DX(t=T) + RHC X(%)

Now, if we choose R, H add C as follows

I (Unit Matrix)

joel
]

diag ( cis ) - (3-23)
offdiag ( vij/ cj1 )

I

in order to correspond the third term of the right hand side of
the aobve equation with that of.(3—15), the transfer matrix of
IDL can be given from (3-18) as

‘Yij/cjl
s + ci3/c12 - ci4digégt

G(s) = offdiag ( - ) (3-24)

We obtain the following statility theorems for‘z:[DL by applying
Théorem 3.1 to the imaginary system ID .

Theorem 3.3

If the‘following two conditions are satisfied,.EZE)L is ASIL.

1 A1l the roots of the equations
s 4 013/c12 - ci4d12é“'= 0 (i=1,2,:-+,m)

have negative real parts.
2 There exist a square diagonal matrix P with non-negative

elements of order m and also a square diagonal matrix Q of

the same order such that the matrix .

W(w) = PH' + % {(P+jw QAG(jw) + [(mjw Qe(iw)) } (3-25)

is positive definite for any real w (0<wsoo),

Here, H and G(s) are given by (3-23) and (3-24), respectively.

Since (3-6) can be obtained by putting D = © (Null Matrix)

in (3-15), the system 2 .L can be considered to be a special
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class-of.EZ[)L. Thereforé, we can also obtain the stability
condition of EZQ. by applying Theorem 3.1 to the.imaginary
System T .. | In this case, the transfer matrix of IL is
given by

?ij/cjl
s + ci3/cio

G(s) ; offdiag ( - ) (3-26)

Theorem 3;4

If there exist two square_diagonal matrices P and Q defined
in the condition 2°of'The6rém’3.3, such that the matrix defined
by (3-25) is positive definite for any real w (0SS wgoo),
then 2L is ASTL. Here, G(j@u) in (3-25) is given by
(3-26). |

Next, we will deal with the large scale system whose intercon-
nectinglrélations are nof able to be evaluated linearly, that is,
EZJ ~and ;Z:E> . .In this case, we apply Theorem 3.2 to the
corresponding imaginary systems. The transfen matrix of T

and ID are giVen,_respectively as

G(s) ={- Tij L (3-27)

s + °i3/°i2 - Ci4di2éﬁt

G(s)={— T } | (3-28)

S +>013/012

Thebremb3;5 ‘ ,

If the following conditions are satisfied, >.aL) is ASIT.

(-] o :
1 The same condition as 1 of Theorém 3.3
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2 There exist two square diagonal matrices P and Q with non-
negative elements of order m such that the matrix

Ww) = (2riwa)e(e) + [(Priwaeiw)) (3-29)

is positive definite for any w (0 < we oo ). Here,

G(jw) of (3-29) is given by (3-27).

The stability conditions for the system QES can be obtained
by equating all the coefficients of et to zero. Thus the

above theorem reduces to the folloWing theorem for the system

PR

Theorem 3.6

If the .same condition as 2 of the above theorem holds,

when G(jw) is given by (3—28), then 2. is ASIL.

Section 3.5 Some Examples

Comparison the theorems in section’3.3 with other theorems
obtained up o now will be made in another chapter ( chapter 5 ).
The discussions of this section are confined to giving some
examplés and remarks on fhe theorems.

Though the theorems in this chapter can be applicable to
the various'classes of large scale systems, the application
of those theorems to actual systems meets with thé following

computational difficulties.

-
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1 Every theorem reqires to choose 2m arbitrary panameters that
are the diagonal elements of matrices P and Q.

2 ’Checking'positive definiteness of the matrix-valued function
for any real.value of w usually needs laborious work or
troublesome manipulations.

A way to overcome the above difficulties is to utilize a computer

with a graphic display terminal. By a computer with a dis-

play device, we will immediately be able to check positive
definiteness of the matrix, aﬁd to seek for parameters in a cut-
and-try manner. Before giving several applications of the
theorems with a computer, we show a example where the stability
condition can be obtained in an analytic form by the theorems of

this chapter.

Example 1(

Consider the system ;ZIDL where m = 2, We assume that the
inequalities
ci3/Cip = Cy4dip > O (i=1,2) (3-30)
are satisfied. Then, the condition T of Theorem 3.3 is also
met( ef. Appendik(c) ). Now, we choose P=I and Q=8(Null

- Matrix), respectively. The matrix W(w ) defined by (3-25)
takes the form of -

s

-1 1 P .
m ey (3w gy (-0 )
W) = ' (3-31)

5 glg(—jw)+g21(jw)} " ny'
L -
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Here, gij(j(ﬂ) (i,j=1,2 ; i%j) are the offdiagonal elements of

the transfer matrix of ID.L and given as

gij(jw) = - Yij/o .
3+ ci3/cip = cypd;€T

(1,3=1,2 5 ixj) (3-32)

Since h; > 0 (i=1,2), the condition that the matrix of (3-31)
is positive definite for any w (0 < W < oo ) is equivalent to
the condition that the following inequality holds for any w (o
<w<goR)
-} 1 2
(h1hy) - Flerp(dw) + gp1(-3w)| > 0 (3-33)

Considering the inequality

ij +a-bed > ljw + a‘ - ‘bérwj‘z a-b

where a, b>0 ; a-b> 0 and
|12(3w) + Ep1(=3w)| < [e1,(39)] + | gp1(-3w)]

we can easily verify that Iglg(jUJ) + 821(”j°U)| takes its

maximum value at W = 0O, Consequently, if the inequality
- 1 ) 2
(hyhy) - (815(0) + g57(0)) > © - (3-34)
holds, then (3-33) is satisfied. The converse is trivial,

Therefore, we can conclude that the matrix given by (3-31) is
positive definite for any w (0< W <oo), if and only if the
-inequality (3-34) holds. By (3-23) and (3-32), (3-34) can
be written as ' |

2

B | '
(c1g0p4) - _1_( Y1210 + ¥21C071 )>0
Cp1€313-Cp1€314¢12412 c11c23~-cj11c24¢21d22

ce s (3_35)

AS an application of the resuli obtained above, we take the

system "whose system equations are written as
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Xs
o iﬂsxs+r{>20——f(0“)

s=1

- Ps xS.J’ o+ g‘:\ksj xj(t"t) ’ s=1,2,3,4
’ (3-36)

.where Pa 2/033/022 /01 > 0, r>0, T> 0, £(0)=0, of(0-)>0.
The case where there exists no dead time element; i.e. K={kij}
=Q (null Matrx) in the above equation, was studied by Piontkov-
skii and Rutkovskaya as the exemplary application of the vector
Lyapunov function method (52).

We constitute subsystems of the system (3-36) as follows

subsystem 57 ; Xg = = Ps Xg y 5=1,2,3,4
subsysten So 3 0~

I‘.Pz(?'-— f(o)

For the sﬁ.bsystem 51, So defined above, we choose the Lyapunov

function that satisfies (2-3) as
<+ . 1
c*(z.il‘.zs)2 and ¢ ()%

respectively. Here, c* and ¢** are arbitrary positive
constants, Then, we can calculate the values of the constant
cij(i=172 3 j=1’2y3’4)9'7j_j(iyj=172 ; ixj) and diz(i=l92)-
By the condition of (3-35), the stability condition of the system

(3-36) is obtained such as

Pi-1lKl>0 (3-37)

(P - 1EDrpy + max Z\le\ < 0

Particularly, when no dead time elements exist, i.e. K=0, (3-37)

reduces fo the form of

pirpo + mgx 2|Bg|l < 0 (3-38)
Thus, in a special case we could attain the stability condi—.

tion in an analytic form wothout numerieal experiments,

Moreovef', it can be proved that under a certain condition
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some theorems in section 3.3 will be transformed to those in
an algebraic form. However, the detailed discussion about
them will be left for in chapter 5.
" The following two examples show how the checking positive

definiteness of the matrix is aided by a computer with a graphic

display terminal.

Example 2

Let us consider the. system described by

X1 =A% +bo + BEL(t-T) + A(Xy) |
. 3 n 2 (3"39)
o = -P0 - ro + q(‘é 2‘.13)2 + p o-(t-T) .

where . ‘ .
K—l = ( x]_]_, 7-12, Tty xln ) 3

%‘«( *7)

{13

2 /
'hl(éxls)( Xi11y Xa2y 7ty Xap)

-hy % | X7 |*

’

. nxn
hy, ﬁ sy Ty Py @ and T are all positive constants ;s A, BeR
and b € R" .

In this case we take two subsystems of the form

subsystem S; | Xy = ARy
subsystem Sp - ; o = -/oo~
’ V3
If we take the function of (2-3) for subsystem S; as Wi = ( Xy"Xq)
then we have cy; = cqp = ¢34 = 1. Similarly, for S, ¥ =
2 .1 :
(0" )* makes cyq = Cop = Cpg4 =1 and cp3 = p . The constants

and functions in Theorem 35 will be written in this case as
' %
Wep(w) = (P+jwQ)Ger(jw) + ((P+ij)Ge1(jw)] | - (3-40)

where Gg3(jw) is given as
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( hj _ -1bl =
TJw+ eyy - [Ble™ jw+ cy3 - 1B
Ger(Jw) = (3-41)
Jo o= 55 Tut p 28
P §

<

Theorem 3.5 reads that if the matrix given by (3-40) is positive
definite for any w (0< w < oo ), the system of (3-39) is ASTL.
Here, we choose the matrices P = diag(pi)fand Q = diag(qi) in

(3-40) as

Pp=¢13,  Pp=p , a1 =4qp=1
If the actual values of the constants of the system are given,
'We-can check positive definiteness of the matrix by Sylvester's
method using a computer with a display. Fig. 3.1 shows the
output of the system (3-39), displayed on the graphic terminal,
in which hy=1, |bl =0.5, g=3, r=10, c13=2, NBll =1, T=2, p =1.15,
p=1. The abséissa of the figure denotes the frequency
and the ordinate, the'values of (1,1) element of Wgj(w ) and
det(Weyp(w)).- .Note that though checking positi?e'definite—
ness isirequired for any real values Qf w by Theorem 3.5,
it is enough to inspect it in some frequency ranges decided by
the relations among system parameters. For, the absolute
value of each element of the matrix (3-40) usually converges to
a finite constant value in the high frequency region.
According to the result in Appendix(C), the condition 1° of

Theorem 3.5 is satisfied, if the relation such that

ci3 > Bl =and p >P

hold. -~
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(@ (1,1)-element of the Matrix Wg1(jw) , the frequency runs from w=0 to w=100

(b) det(Weg] (jw)) , from w=0 to w=100

continued to next page.

Fig. 3.1 Graphical Display Output to Check Positive Definiteness of
the Matrix (3-40)
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(c) ditto , from w=0 to w=10

- C13

0 1.0 5.0 10.0

a-

Fig. 3.2 Stability Regions for the System of Example 2, in Which
h] =1,IBlN=1, =2, |bl=0.3, q=3, p=1, r=10
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Of course, these relations are also satisfied in this example.
Therefore, from these considerations, the system can be proved
to be ASIL.

The stability regions obtained by this method in (c13 y P )
plane of the system where the parameters, except c13 and P ,
are fixed, are depicted in Fig. 3.2. In this case, the
constants are set as hjy=1, |bl| =0.3, q;3, r=10, | Bl =1, T =2
and p=1.

Now, the theorems in this éhapter generally assume that all
subsystems are ESIL. "When some subsystems are exponentially
unstable and others ESIL, the same arguments so far developed
can be valid. We can replace ~-c13 given in the assumption
(2-3) by c13 throughout the discussion from the assumptions
to the conclusion. Thus; we can obtain the theorems of large
scale systems includihg the unstable subsystems. %n applica-

tion of them Will be shown bélow.

Example 3

Consider the system whose equations are written as

]i'l = A1 Kq + byfi( 0"1) + 91( X1, Xy(t=T), t) , 07 = c1 X2
(3-42})
Ko = AoXo + b2f2(0“2) + %2( Aoy %2(.17"'6)’ t) 0o = °2, xq
mxni : Ny X1 n h
whereA]_éR ,Ageﬂ? : 3 b1, 02612' 3 bo, 0161}22 ;
fi( 03) (i=1,2) are scalar functions satisfying
- £3(0) =0 , 0 < 03fi(oy)< Kooy , Ki>O0 (3-43)

The function %i(%i’ X;(t-T), t) in (3;-42) is given by

-
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/

, . , | )
gl( xiy xi(t_t)1 ’t):—(I‘:;i_-i- l-w'll) lxi(t—t)l ( xj_]_; xi27' *y 13})()

, i=1,2 ' | ceeeees (3-44)
where rj and r, are positive conststants. We take the equa-—-

tion of each subsystem as

subsystem Sj : J’Cl = Ay X
subsystem 82 ; J.Cg = Ao o
We assume that instead of the second inequality of (2-3), the

inequality
M 2
Wil < ci5]%il ,»  1=1,2

(5

holds for each subsystem and assume further that the function Wy

in (2-3) is given by the form of W= I«jf'xi (i=1,2). Then,
we have cjj=cj,=cjs=1 (i=1,2) and ([7&(/‘1)'@/1 < -r;Wi(t=-T) (i=1,
2). By choosing the matrices Piand Q of Theorem 3.3 as P=I

- and Q=0 and applying the theorem to the system described by
'(3-42) to (3-44), we can conclude.the system is ASIL, if the
matrix of the form

2Wep(w ) = diag(2) + offdiag( - —Rilleal & [bjllej|Ky
jw=-cysrid™ - jw-cper et

is positive definite for all w (02 wW<0o) and if the condition 1°

of Theorem 3.3 is satisfied for the equations

S - ¢35 + ‘J:'ie-st =0 (i=1,2)

Figs. 3.3 (a) to (c) present the displayed computational result
of det(Wez) vs. frequency w “for .various ranges of w , when the
parameters of the system are' given ag |

by=1, le1| =1, K3=0.02, c¢35=0.08, ri=1, T=1.047

bo=1, |cp| =1, Kp=0.02, cp5=0.8, rp=1 .

For these values of the parameters, it can be shown from Appendix
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(a) The Frequency Range is w =0~ ¢ = 5

b) w=0~w=0.9

|
|

continued to next page.

Display Output of det (Wgp(jw)) for Some Ranges of w
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(C) that the condition 1 of Theorem 3.3 is satisfied.

Therefore, the system has proved to be ASIL.

Thus, if computers with graphic display devices are available, .
the theorems of this chapter will provide a valuable aid for
examining the stability properties of various kinds of large

scale systems.
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Chapter 4 Conditions for Positive Definiteness of Rational
Matrices '

Section 4.1 Introduction

In this chapter we deal with conditions for positive definite-
ness of rational matrices in order to compare the frequency
domain stability theorems of the preceding chapter with other
theorems obtained previously and to réeduce the freQuency domain
conditions more tractable forms. The problem discussed in
this chapter is formulated more precisely as follows : Under
what conditiohs a square matrix G(s) =-(gij(s)} , Where gij(s)
is a real rational function, is positive definite for any pure
imgginary value of s. In . general, the condition for posi-
tive definiteness of a matrix can be checked by Strum's test,
if the actual values of the elements are given. However;
this test requires troublesome ﬁanipulations as the increase of
the diméﬁsion of the matrix. Besides, to get the condition
for positive definiteness in an énalytic form is generally not
So easy by ény means. S0, we shall be able to have an
answer to this problem only in a restricted circumstancés.

In this chapter, we discuss the conditions for positive
definiteness or positive semidefiniteness of the matrix as the
‘following procedures, which will be éhown in section 4.3.

First, a sufficient condition for positive definiteness of
the matrix is given in a matrix from. Next, under certain
.constraints to diagonal elgments ahd pairs of offdiagonal elements
of the matrix, a necessary condition for positive definiteness
is given. Finally, it is shown that the above two conditions

are equivalent to each other and give a necessary and sufficient
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condition for positive definiteness in an algebraic form by
imposing some other constraints to the elements of the matrix.
Whether the elements of the matrix satisfy these constraints

or not can be examiried by a simple calculation or by drawing the
vector loci of them. Discussions for positive semidefinite-
ness of the matrix are given in parallel with those for positve
definiteness. In the next section, some preliminary lemmas
concerning the propefties of some classes of ﬁatrices are present-
ed. In the last section of this chapter, several examples

are given to show the usefulness of the results of this chapter.

Section 4.2 Some Preliminary Propositions

Let us consider a square matrix A(s) = {aij(s)} of order m
whose elements are real rational functions of complex argument s.

In this chapter, we write the matrix A(s) as follows
A(s) = diag( ajj(s) ) +-offdiag( a;j(s) )

Now, let us show the definitions of the class of positive defini-

te masrices and positive semidefinte matrices.

Definition 4.1

mxm

A matrix A (¢C ) is positive definite, if the inequality
Z(A+£)% >0 holds for any non-zero vector % (eC"™ ). The

class of positive definte matrices will be written simply as,p.ld.

Definition 4.2

A matrix A (Gdfx)_is positi#e semidefinte, if for any vector.

Z (€ Qf’), the inequality Z(A+A)Z >0 holds. The class of

-

positivé semidefinte matrices will be written simply as p.s.d.
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Similar definitions are given for matrices in real number field.

Definition 4.3

xm
A matrix A (edf ) is in the class Q (Qo), if for any non-

zero vector X , there exist a subscript k such that
X5 0 Re A (A .Y > 0 ( = 0)

where Xy and (AX ), is the k-th element of X and AX , respec-
tively.

The properties of the matrices in Q, have already examined in

(38). It is supposed that the class Q should also have
analogous properties with Q, .- And this is indeed the truthl
and is easily verified. . We have the following proposition. -

Proposition 4.1

The following properties of a matrix A are equivalent :

| f’For any non-zero vector X (eifq), there exist a natural number
k such that

Xl % 0, Re g (AX )> 0 ;

2 Tor any non-zero vector X (€ Qr), there exists a diagonal

matrix Dy with non-negative elements satisfying
XD > 0 , Re (XDeAX ) >0
3 @et( A+D)=0 , ¥Ded ;

-e

4° A+ DeqQ , VDedl ;

5°-Re( A; (A+D)(N)}>0 , VDedd, , YNEM
Here, (A+D)(N) is a principal submatrix of (A+D) correspond-
ing’to the index set N and A;(A+D)(N) is characteristic root

of (A+D)(N) 3
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6 Re [Ay(a+D)] >0 , VDedld .
The properties of the matrices in Q. shown . in (38) are the
same as above, but where the second inequality of the property 2°_

is replaced by Re [fDxAJC] > 0 and mo by 0 ‘be.f!.ow the property 2.

Definition 4.4

mxm

A matrix A (¢ C ) belongs to the class L y if there exist
.m consStant positive numbers di (ie M ) satisfying
) m
dj Re ajy > Z:Zdj‘ aij\ y ieM
j=v
The class dve is defined analogously so as to include the case

where equalities hold in the above relations.

The following proposition indicates the relations between JZ and

Q and between o, and Q .

Proposition 4.2

Acl = aceq , rel, = A eq,

The latter half of the above proposition was proved in (38).
The first half can be shown analogously, or can be shown easily'

by Gershgorin's theorem (29).

Definition 4.5

mxim

If a2 matrix A (6 R ) satisfying
ajj<0 , i¥j , Vi,jeM

have positive (non+negative) principal minors of any order, it

is said that A belongs to the class K ( K, ).
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The matrices defined by Definition 4.5 are known as M-matrices
(semi M-matrices). We will show some of their properties

for subsequent arguments.

Proposition 4.3

w XM '
Tet A (€K ) be the matrix such that

Then the following conditions are equivalent :
1% a11 principal minors of A are positive ;
2° The real part of each characteristic root of A is positive ;

3% There exists a vector % >0 such that A > ©

-e

4° Each real characteristic root of A is positive,

e

Proposition 4.4

) xm .
Let A (GF? ) be the matrix such that
aj =0  ,  ix] , Vi,jeM
Then the following conditions are equivalent :
1° Each principal minor of A is non-negative 3
2° Each real characteristic root of A as well as of each prineci-
ral minor of A is non-negative ;

3° A+£I ¢ K , VE>O where T is a unit matrix.

Proposition 4.5

Assume that the elements of the matrix A satisfy
ajj<0 s i¥j R Vi,jeM .

If there exists a vector | X >0 such that AKX > 0, then A is
in K, . Conversely, let A be in K, . If A is
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1 .
irreducible, then there exists a vector X >0 such that AX > 9.

Proposition 4.6

mMxm

Tet A and B (el ) be matrices satisfying the following pro-
perties : bijs_o o ixj ’ Vi;jeM s A€K (Ko) i A<B,
then B is in K (. K. ).

If a matrix A is symmetric with réspect to its principal diago—

nal, the following property of it is trivial.

Proposition 4.7

mxm

If a matrix A (¢ ) is such that
’ : mx

A s A or for A (eR ) A=A, then
AeQ ( Q) «<— Aep.d (p.s.d)

Section<4;3 Condition for Positive Definiteness and Positive
Semidefiniteness

In this section, we consider the conditions that a real-
rational matrix A of the form of
A(s) = dieg( aji(s) ) + offdiag( ajj(s) )

belongs to p.d or p'.s.d. First, we try to get a sufficient

‘A matrix A is said to be reducible, if there exist a nonvoid
NcM ( N x M), such that ajy=0for ic¢N and jeM-N. A matrix

is irreducible if it is not reducible.

-
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condition for positive definiteness of the matrix. If we put
the matrix G(jw) as G(jw) = A(jw)+A(-jw), G(jw) can be
written as

G(jw) = diag( g;;(w)3) + offdiag( g;3(jw) )
where gij(w) = 2 Re a;5(jw) , - VieM
glJ(Jw) = ala(jw) + aji("'jw) y 1i¥j L, Vi,jeNM

By this matrix, we define a real symmetric matrix G in the form

of
S . o R °
G =.d1ag( gi; ) + offdiag( &1 j )
where o | |
8ii = iwrif gii(w ) y YieM
o v
sz - (jw i Vi,jeM
€ij 3 fzzglgla(;] )\ y %), s J

In this case, we have the following theorem.

Theorem 4.1

Goep.d — A(jw) ep.d , v weR

This theorem gives a sufficient condition for positive definite-
ness of the matrix A. Of course, for G to be in p.d it should

be that

inf Re a i(jw)>-0 , YieM

w20 ,i

suplay j(jw)l< oo, dixj , Vi,jeM

w20

Notice that when aij(s) expresses the input output relation of a
physical system, such as the transfer function, the element g{j

of the matrix Gocan be obtained by a simﬁle calculation or by

drawing the vector loci of aij(s) and agi(s).



66

Proof of Theorem 4.1

Assume G e p.d. Since g?. = °._<_O, ixj, VYi,jeM by
the definition of G, G is also in K . From the property
3" of Proposition 4.3, there exist m positive constants d; (ie M)

satisfying
m
° .
digii + Zdjgij>0 y VieM
j=
This shows G is in L . Furthermore, the following inequal-
ity are satisfied ;
WA .
o . .
djRegijj(w) = djg55 > - z’_\ digij = Z\dj gijliw)
)XV = A
Vwz=0 , Viem
That is, G(jw) is also inL for any value of w (0=sw<oeo ),
By Proposition 4.2, G(jw ) belongs to Q for any value of w .
Considering that G(jw ) is a Hermitian matrix, it follows that

by Proposifion 4.7
G(jw) € p.d for welR

Thus by Definition 4.1, A(jw) € p.d, VweR is proved.
QoEoDc

A sufficient condition for positive semidefiniteness can be given

as well in the following theorem.

Theorem 4.2
If G° is irreduciblé and belongs to p.s.d, then A(jw) belongs

to p.s.d for any w (0SS W< o0),

The 'proof ~of the above theorem is similar to that of Theorem
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4,1, but where the property 2° of Proposition 4.4 and the latter
half of Proposition 4.5 should be used instead of the property
4" of Pfoposition 4.3 and the property 3° of Proposition 4.3,
respectively. |

Now, we have considered so far a sufficient condition for
positive definiteness or positive semidefinteness of a matrix A.

Next, we will cqnsider a necessary one. - We write the matrix
G(jw) = A(Jw) +.A(-jw)
in the form of
G(jw) = ReG(jw)+ jImG(jw) = U(w ) + j¥(w).

Then the matrices U(w )2ReG(jw ) and V(w )2ImG(jw ) are given

respectively by

U(w) = diag( uj5(w) ) + offdiag( ujj(w) )

where . _
wi(w) = gg3(w) = a3, (Jw) + aji(-jw) , VieM
uj j(w) = Reg; ;(jw) = Re {aij(jW)+aji(-jw)} , ixd ,
Vi,jeM
and

V(C()) = offdiag( Vij(W) )

where
Vij(u>) = Img; 5(jw) = Im {aij(jtu)+aji(—jUJ)} y 1%J

Vi,jeM .

Using the above notations, we have the following theorem.

Theorem 4.3
A(jw) e p.d, VWER —5 U(w) e p.a, V weR

-

Proof
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assume that A(jw) e p.d, VweR . By Definition 4.1,
for any non-zero vector Z ; Z*G(jw)Z>O, VweR is satisfied.

m

Now, when the vector %Z is written as Z= Jc+j-gy , XER™ lﬁéR ’

ZxG(jw )B is expressed as

‘. e U(w) V(w) X
B'G(iw)E="( X ,4 ) . |

T(w) U(w) Y
Therefore, the condition that the Hermitian matrix G(jw ) of

order m is positive definite is equivalent to the real symmetric

matrix of order 2m such that

' T(w) V(w)
X(w) =
V(w) T(w)
is positive definite. The conclusion, that is, U(w)e p.d,

VYweR comes from a necessary condition for the matrix X(w)

to be positive definite.
Q.E.D.

Suppose that there exists a real number a (0<a < o°) such

that

gis(w) = gi3(a) >0 , Yw20 , Viem

' (1)
-© < Regj j(Jja) < Regij(jw) =0 ,Yw=0, ixj ,Vi,jeM

Under these assumptions, we have the following_ theorem.

Theorem 4.4 .
AMjw)ep.d , YweR —> U(a)ep.d <> U(w)ep.d , ¥ w20
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Proof
The first half is obvious from Theorem 4.3. We will
prove ( —=” ) of the latter nalf. By assumption (1),

U(w ) has non-zero offdiagonal elements and is symmetric for
any real w . Therefore, it is verified by the property J
of Proposition 4.3 that U(a)e¢ p.d and U(w )e p.d, Y w =0 are
equivalent to'U(a)EIk and U(w) elK ,Yw= 0, respectively.

The conclusion can be immediately obtained from Proposition 4.6.

QoEoDo

As was understood by the above proof, under the assumption (1)
the  existence of the matrix V(w ) makes the difference between
the necessary and sufficient condition for positive definiteness
of the matrix A(jw ) for any real w and a necessary one given
in the above theorem. As to the condition for positive
semidefiniteness, the following results can be obtained corresp-

onding to Theorem 4.3 and Theorem 4.4.

Theorem 4.5

A(jJw)ep.s.d ,¥weR —>» U(w)e¢ p.s.d , Yw>=0

Theorem 4.6

If the assumption (1) is satisfied, then we have a proposi-

tion such that

A(jw)ep.s.d ,Vcdeﬂ? — U(a).e p.s.d <—> U(w)ep.s.d ,lw>0

Now, we consider the case where the following conditions are met

instead of the condition (1) 3
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gi3(w) = gi:(a)> 0, Pwz0, VieM

(2)
- < Regy j(ja) = -sup |eijiw)i< 0, ixj , Vi,jeN
' Z=0

Then from the definition of the matrix G: we have U(a) = Gi
Moreover, by Theorem 4.1 and the first half of Theorem 4.4 ,

the following theorem can be attained.

Theorem 4.7

Under the condition (2), we have a proposition such that

A(jw)e p.d , YwelR <> U(a) = Ge p.d

Similar theorem on positive semidefinteness can be obtained

as . follows.

Theorem 4.8

Under the condition (2), we have a proposition such that
A(jw)e p.s.d , YoeR <=>T(a) = G ep.s.d and U(a) = G 3

irreducible

Whether the elements of the matrix A(s) satiéfy the condition
(2) or not can be checked as well as the condition (1), Theorem
4,1 and Theoreﬁ 4.2 by a simple calculation or by drawing the
vector loci ofAthém. Fig. 4.1 shows the regions for the
condition (2) on the complex plane. The first inequality
of the condition (2) is depicted in Fig. 4.1 (a) and the other
in Fig. 4.1 (b). Note that the first inequality of the
condition (2) is the same as that of the condition (1) and

the second one of both conditions is not included by each other.
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Theorem 4.7 -and Theorem 4.8 show that under appropriate conditions
we can obtain the necessary and sufficient condition for positive
definiteness of the matrix A(jw ) for any real value of W in a

matrix form.

Section 4.4 Some Illustrative Examples

In this section, we give some examples of rational matrices
satisfying the assumptions of the theorems in the previous sec-
tion. As already mentioned, with reSpéct to positive defini-
teness Theorem 4.1 gives a sufficient condition and Theorem 4.3
gives a necessary one, If we assume the condition (2),
then the necessary and sufficent condition can be derived as in
Theorem 4.7. Checking whether a matrix A(s) meéts the condi-
tion (2) or not can be carried out by a observation of the A(s)
or by a simple calculation if the element of A(s) has a simple
form or by drawing the vector loci of the elements, otherwise,

We consider first the case where the elements of A(s) have

comparatively simple forms.

Example 1
‘Let A(s) be the form of
A(s) = diag( K3 ) + offdiag( —-E—gigzg—)
whrere ’
Kj >0, dij>0 (ixj), . Vi,jeM

Apparently;'the elements of this ‘matrix satisfy the condition-.(2)

-
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and U(a) equals to G where a = O. Fig.4.2 shows the vector
locus of the offdiagonal (i,j) element, that of conjugate (j,i)
element and the sum of the both loci. In this figure,

a; . denotes the (i,j) offdiagonal element of -A(s). By

13
virtue of Theorem 4.7, the necessary and sufficient condition
for positive definiteness of this matrix can be obtained immediate-
ly as follows

>A(O)e p.d
In addition, it might be notiéed that this matrix has the same

offdiagonal elements as appeared in (3-24), which was given as

the transfer matrix of the imaginary system I. .

Example 2

‘Consider the matrix

A(s) = {3 5())
- — + K L
S22+ 5 + 1 1 S2+ 5 +.-1
B -1 s + 1
S+ s + 1 - sxssI tR

.

As known well, by hitherto-obtained frequency domain stability
criteria extended to large scale systems, the stability condition
reads that.abmatrix, whose elements are real rational functions
of s of comparatively high order, belongs to thé class p.d.
However, the work required for checking this condition is not a
easy one és aforesaid. ,ﬁirai and Kurematsu proposed a gra-
pPhical method of checking positive definiteness of the real
rational matrix, taking the above matrix as an example, but the

me thod is applicable only when m is less than or equal to 2:”0
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The vector loci of all(s),,azz(s) and a12(5)+a51(s) of this
matrix are depicted in Figs. 4.3 (a), (b) and (c¢), respectively.
From these figurés, it can easily be shown that the matrix satis-
fies the condition (1) where a = oo, but not the condition (2).
Therefore, we can not obtain the necessary and sufficient condi-
tion for positive definiteness by Theorem 4.7. But we can
obtain a sufficent condition and a necessary one separately by
Theorem 4.1 and Theorem 4.4, respectively. The matrix G

in Theorem 4.1 is calculated as

Kl a
le -
> =
=1 K2
where
_ ,/6+6f§§
a=—=5— = 0.073°""

72

Whence, a sufficent condition for the matrix to be in p.d is
given by Theorem 4.1 as
KiKp > & = 0.0053+ -

On the other hand, a necessary condition is given by Theorem 4.4
as |

A(joo ) = diag( K; )e p.d
That’is,.K1:>O and Ko> O. Hirai and Kurematsu obtained the
necessary and sufficient éondition for positive definiteness of
this matrix by their methbd as K3 >0, K2>>0:24) Consequently,

in this casz Theorem 4.4 gives a necessary and sufficient condi-

tion.
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Example 3

We consider the following transfer matrix of order 3.

A(e) = [y 5(0))

-

Figs. 4.4 (a) to (c) are the vector loci of the offdiagonal
eleﬁénts, those of conjugate elements in symmetric position and
the sum of them.
third diagonal element.
that the matrix satisfies the condition (2) and a.= O.

Whence, by Theorem 4.7 the necessary and sufficient condition for

positive definiteness can be obtained as

K -1
1 s ¥ 1
-1
(s+1)(2s+1)(3s+1) Ko
_s*+ 25 + 3 ' 1
25t + 45 + 2 s + 6

A(0) € p.d

Example 4
Let A(s) be such that

A(s) = {aij(s)\

B -1

- s+ 28 + 1
-1
s?4+ 25 4+ 2 K2

where

K770, Ko> 0.

S

S
+

1

+ K3

7~

Fig. 4.4 (d) is the vector locus of the

We can confirm fyom these figures .
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The vector locus of the offdiagonal elements of this matrix is
shown in Fig. 4.5, where 351 denotes the conjugate of a0y -
From this figure, we can see that the matrix satisfies the
condition (2), where a = 0 or a =12. Therefore, the nece-
ssary and sufficient condition for positive definiteness is

obtained by Theorem 4.7 as
A(0) = A(+jV2) e p.d
Whence, we have
K1Kp > 1/2, K> 0, Ky> 0

Thus, it has been shown that, under certain conditions for the
elements of a real rational matrix, the necessary and sufficient
condition for positive definiteness or positive semidefinteness
can bg transformed into a simple algebraic condition. The
conditivns for the elements of the matrix are checked by relative-
ly easy prbcédures. These results will give fundamental
means to transform the frequency domain method into algebraic one
equivalently. . Détails of an approach and results of the
transformation will be developed in the next chapter. Even
when +the condition (2) is not met for a matrix, we can obtain

a sufficient condition by Theorem 4.1 and a necessary one by
Theorem 4.3, independently. - Especially, Theorem 4.3 provides
a tractable step for checking positive definiteness or semidefini-
tgness'of the matrix. Finally, it should be noted that the
results of this chapter are considered to have a close relation

to the applications of multivariable circle ériteria obtained by

Rosenbrock (s-1) or Cook (s-2). However the detailed discussion

about it will not be given.
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Chapter 5 Transformation of Frequency Domain Stability
Theorems into Algebraic Forms

Section 5.1 Introduction

In the preceding chapter, we derived the conditions for
positive definiteness and positive semidefiniteness of a real
rational matfix in a matrix form under some restricted circum-
stances. | We show, in this chapter; the stability conditions
in frequency domain of chapter 3 can be transformed into alge- |
braic conditions. By this transformation the stability
conditions of some of the theorems in chapter 3 become comparable
with those of the theorems which have already been obtained
by other authors in an algebraic form. We‘will give some
further considerations about the theorems in chapter 3 by compa-
ring them with other theorems in an algebraic form. Further-
more, we show fhat by the results of the preceding chapter it .
is also possible in some cases to tranéform frequency domain
criteria of large scale systems established by other amthors
into an algebraic form equivalently. And we also show
that even if this equivalent transformation is impossible, we
can obtain a sufficient condition for the criteria in a matrix
form, Whence, in the latter case, we have a sufficient condi-
tion for stability; though of course arrestricted one, in an
algebraic form. In the same way, a necessary condition for
the criteria is presented and it ié shown by an exam?le that the
condition provides a simple test for checking the conditions -

of the criteria.

-
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Section 5.2 Considerations on Theorems in Chapter 3

The procedures required for assuring stability of large scale
Systems by theorems in chapter 3 are to check positive definite-
ness of the real rational matrix constituted mainly by the system
transfer matrix. So, by utilizing the results of the preced-
ing chapter, we will be able to compare some of the result in
chapter 3 woth othef theorems previously obtained. Since we
have also to make use of some other properties of matrices belong-

ing to the class K , let us collect them in the following lemmas.

Qam
Lemma 5.1

Let A eK . If D is a diagonal matrix with positive diago-

nal elements, then DA and DA belong to K as well.

(2)
Lemma .2(‘
mxm

Let A (¢R ) be a matrix such that

;550 i%j sy Vi,je M.
The necesséry and sufficient condition for A to be in the class
K is that there exists a diagonal matrix W (2diag(w;)) with

positive diagonal elements such that the matrix given by
) . ,
B= 5 ( WA+ £W)
is positive definite,
We, first, consider Theorem 3.4. " This theorem treats the

system .2:L . Many stability theorems for the 'system 2o

have been developed up to now, because its imaginary system I.

-
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are linear and can be examined easily. Ndw, if we put the
matrices P and Q in Theorem 3.4 as
P = I(unit matrix) , Q = 8(null matrix)

then the matrix W(w ) given by (3-25) and (3-26) becomes

Ww) = dlag(cl4) + offdlag[ l(jUZiJézg}clz + ngjé/gl% 2i](5—1)

By Theorem 3. 4 the stability condition of ;Z:L is obtained as
the condition for positive definiteness of W(w) for any real
value of w ., Recalling example 1 of chapter 4, this condi-
tion is equivalent to positive definiteness of the matrix

‘ Cig¥ij  C3p¥ji
W(0) = diag(ei,) + offdiag[-—]é—(cficji . cggci; )\X (5-2)
1

Now, we put matrices Iy and Xy as follows

Ly = diag(ej3/cio) + offdiag(«ci4yij/cjl)-(

(5-3)

X3 diag(ciz/ci3ci4)

Then W(O) can be written as

1 ' ‘

W(0) =5 ( X1Iq + InXy )

Noting that the offdiagonal elements of L1 are non-positive,
it is shown by Lemma 5.2 that W(O) € p.d is a necessary condition
to Ine K . The condition Ly € [K is no other than the codi-
tion. 6f the theorem given by $iljak (59). Namely, the cohﬁif
tion of Theorem 3.4, where the matrices f and Q are chosen as
I and Q, respectively, implies that of Siljak's theorem.

However;'a comparison of Theorem 3.4 in itself with éiljak's is

not known now. A comparison between éiljak's theorem
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and the theorems given by other autinors is made by Araki(3).
He states in (3) that his theorems include :éiljak's, but he also
States there the converse has not yet been proven.

Next, we consider Theorem 3.3 which gives the stability
condition of the system ZDL— . To begin witﬁ, remind
fhat we could have the same discussions as those in chpter 4
about non-rational matrices whose elements include 6" , and that
the results of chapter 4 are also true for these matrices.
Let us assume that for the system Z.DL the following inequalities
holgd.

ci3/cipo > ci4d50 , ieM | (5-4)
As mentioned in example 1 of éhapter 3, the condition 1" of
Theorem 34.3 is met in this case, Therefore, to examine
stability of the system J.JJL , it is left to check positive
definiteness of the matrix W(w ) given by (3-25) and (3-24).
We will choose the matrices P and Q in Theorem 3.3 as P'= I and
.Q = 0 as well as in Theorem 3.4. Then, the Offaiagonal
elements of W(u.)) £ {wij(w )} become

Yij/cj1 ¥43/Ci1
wy s(w) = - L + ii

2 ( Jjw +ci3/ci2—ci4dize.)wc -Jjw +Cj3/ca‘é—0j4dj267wc)(5-5)

for ixj]

Let us manipulate sup‘wij(w )l for w2 0, in the next place.

If a and b are positive constants such that a>b, we have

O<a-bs|jw +al -b< |jw + a - bee"| (5-6)
for any value of w . The last term of the above inequali-
ty takes the value a-b only when w =0 . Considering

that the inequalities (5-4) are assumed, we can obtain: from
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(5-6) the supremum of \wij(aJ)l as follows

sup | wij(UJ)l = |Wij(0)| = %‘(Ci3;i?/fg} d:o T s ;g%/fi% d - )
. i27%14%12 33/%je7%34%52 0
for ixj secrects * (5-6)
Consequently, we have
-sup|wy 5(w)| = w; 5(0), ity , Vi, jeM (5-7)

Since the diagonal elements of W(w ) are positive constants,
the matrix W°, which corresponds to G’ in Theorem 4.1 of chapter
4 is given Dby

w' = w(0)

By Theorem 4;1, W%&p.d is a sufficient condition for W(w) to
be in p.d. And it is evident that this condition is also
a neceSSary one, Therefore, W= W(0) e p.d is the necessary
and sufficient condition for W(w )ep.d, Vw (0sws<oo),

From (3-24) and (3-25), it follows that

a . 1( tii/Cq ¥ji/cil )
Ww(0) = dlag(ci4) + effdlag{— E-Qi3/°iz‘°i4di2 + °j3/°jz‘°j4dj2
ceeeeann (5-8)

As the offdiagonal elements of the above matrix are non-positive,

the condition W(0)¢ p.d is equivalent to the condition that
W(0) € K from the properties of the matrices in K .

If we put square matrices L, and X, as

L, = aiag(®i37%i2%2%4) 4+ offdaiag( - Ci4¥ij )
N 3 c -
iz . 31 (5-9)
. Ci2 ‘
X, = diag( :

it follows that
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’
W(0) = 3 ( Zpbp + LpXp )

According to analogous discussions to those in the case of

Theorem 3.4, it can also be shown that W(0)e€ K only if I, €K .

All this can be.put in the form of a theorem thus;

Theorem 5.1

Assume the relation (5-4) holds. The system EZEDL is
ASIL, if the matrix W(0) given by (5-8) belongs to the class p.d.

This theorem shows: that under:appropriate'conditions Theorem 3.4
can partly be'transformed into the theorem in an algebraic form
equivalenfly; A comparison of Theorem 3.4 with other theorens
will be omitted here, because there are few adequate theorems

to compare with so far as our research. ~As well, as to Theorem
3.5 and Theorem 3.6, where large scale systems with non-finite
"sector conditions" were dealt, we will not treat here because
of the same reason mentiqﬁed above, Note that, in the case
of Théorem 3.5 and Theorem 3.6, the transformation into an
algebraic fdrm is not an easy work on account of the existence
of non-constant diagonal elements in the matrix W(w) given in
(3-27) to (3-29). However, the examples in the next section

will give some refferences to the applications of these theorenms.

Section 5.3 Applications to Checking the Conditions of Frequency
Domain Theorems by Other Authors:
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The results of chaﬁter 4 are useful not only for rewriting the
theorems of chapter 3 but also for applying frequency domain
theorems of large scaie systems obtained by other researchers
up to now. We Qill give some examples to illustrate useful-
ness of the results of chapter 4. Most of frequency domain
theorems requires checking positive definiteness of a real-
rational matrix with cbmplex argument s for its stability condi-
tion. We take here Partovi and Nahi's theorem (51) as a
representative of them. -The outline of their theorem.is:

shown below for subsequent arguments.

Partovi and Nahi's Theoren

Let a system be formulated by the following equations
X =A% +Bf(e, t) , e&=C% | (5-10)

where : m mam m
xeR ; A,B,c e R ;s f(o, t)eR

and :

f( g, t) = [fl(o‘ly 029"'_’t)a f2(01’ 0_29“'9t)1...’fm(0-l§ 0~2""9t)\l
Here, each component f1(9, t) is piecewise continuous in &

and t such that (5-10) has a unique solution and éatisfies the

foilowing condition

ie M (5-11)
fi( O, O, "., O, .t) = O [} tZO

1

Then, we have the following stability criterion.

t The expressions used in their theorem are not faithfully

-

followed in detail for convenience's sake,
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Tor the system of (5-10), if A has all its characteristic roots
with negative real parts, f(cr, t) satisfies the condition (5-11)

and W(w) given by
W(u))==[G(jw) + K]4 [G(jw) +'K] | (5-12)

where

6(jw) = -C(jwI - 4 )'B (5-13)

K = diag( Ki')

is positive definite for all w , then the system is absolutely
stable ( that is, the system is ASIL for any functions satisfy-
ing (5-11) ). |

We: consider the application of this theorem in the followinge.

Example 1

Let. a system be written by the equation

. ' Xl—X2
Xy = -4X7 + 2Xp -~ mlﬁ_
. 2X1+Xo | (5-14)
Xo =X - X - (1+Xi)2Ké.
where K7> 0 and K2> 0. . Taking 037=X31-Xp, 0p=2X3+Xp, we
have
-1 0 1 -1 -4 2
B = C = . A=
0 -1 ’ 2 1 ’ 1 -1

and the +transfer matrix

A
r s S + 2
- | 4 s*+ 53 + 2 s2+ 55 + 2
G(s) = -C(sI - A) B = ' -
( _ 2s + 1 ‘ S (5-15)
T 824 55 4+ 2 "+ 58 + 2 J
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The matrix W(w ) of (5-12) can be written as
W(w) = (e(iw) + E)+ (d(jw) + K) (5-16)
where G(s) is given by (5-14) where s=jw and
K = aiag( Ky ) 1212,

Here, £1( ¢1) and fu( 05) are taken as

Xy - Xp ‘ 2X1 + Xp
flo) =@imeR |, £2002) = TRk (5-17)
and
0 <£l_(£l_)<Kl , . 0 <____f2( o2) < Ko
- o R - (05} -

The condition for the matrix W(w ) of (5-16) to be positive
definite for all uJ‘gives:the étability condition of the system
(5-14). - For checking positive definifeness of a matrix,
Syivester's methed and Strum's test are usually employed.

And these methods generaily requires laborious manipulations

as the increase of the order of the matrix. However, if
the elements of a matrix satisfy a certain consfraint, such as
the condition (2) in chapter 4, we can obtain the condition for
positive definiteness directly. The matrix W(w) given

by (5-15) and (5-16) is one of such matrices that satisfy the
condition (2). To see this, we show the vector the vector
locus of the diagonal elements of G(é) in Fig. 5.1 (a), and the
loci of the offdiagonal elements g1o(s) and g,1(s) and the sum
of them are in Fig. 5.1 (b). - In this case, a real number
"a' in the condition (2) is found to be O. And we have

the condition for positive definiteness from Theorem 4.7 as

6(0) + &) + (6(0) + K) e p.d (5-18)
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and the stability condition

.0} <-%§ , EK1>0, E,>0 ‘ (5-19)

Even if it is proved that the condition (2) is not satisfied
for W(w), we can mostly get a sufficient condition for posi-
tive definiteness in the process of checking the condition (2)

by Theorem 4.1. See the following example 3

Example 2

Let the system equations be

X1 = -X3+ Xp - £1(071) , oy = X1 - Xp
: ' (5-20)

P4
n
1]

-X1 - £2(02) , 0o =-X] + Xp

where f4( 0) (i=1,2) satisfies the "sector condition" shown in

Fig. 5.2 and is written as

2 .
0 <oyfi(03)<K 05y , K >0 (i=1,2) (5-21)
We have
-1 0 1 -1 -1 1
B = C = A =
O —1 9 -1 l ) "'1 0
and A
B
"~ G(s) = -C(sI - A) B
s + 1 _ s
82+ 5 + 1 s2+ 5 + 1
= (5-22)
_ S + 1 , 2
s+ 8 + 1 S24+ 8 4+ 1



Fig. 5.2  Sector Condition |

—Re

Fié. 5.3  Vector Loci of the Offdiagonal Elements of the Matrix (5-22)
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Fig. 5.3 shows the vector loci of the two offdiagonal elements
of G(s) and the locus of the sum of them; The vector locus
of the diagonal element is not shown, because it is nothing

but the sign—changed one of the diagonal element. As readi-
{wij(w)} = [G(jw) +
Kjl+ [G(juJ) + Kl*dOes not satisfy the condition (2).

1y been found by these pictures, W(w )

But the matrix W' corresponding to G in Theorem 4.1 is given 

by )
0 L 0 ) o
W = diag( wii ) + offdiag( i 5 )
where o :
wij = inf wis(w) , i=1,2
o : ‘ - - . -
Wij = -sup Wij(j“’)l ioixJ 5 1,J=1,2
w20
and this matrix is obtainale from these pictures. We have
in this case | |
- (-] . o
Wiy = 2K1 ’ woo = 2Kp
0 ° ' 5
Wil = W21 = -% |

Therefore, by Theorem 4.1 we get the stability condition such

that

25
K]_K2 > 15 (5-23)

Lastly, we show Theorem 4.3 could be used for checking positive-

definiteness in the preliminary stages.

Example 3

Let us consider the system described by

-

%1 = -Xp + Xp - 0:6%1 = 0.4Xysin t

(1 + X7 )2

Ky (5-24)
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: X1Ky XoKp
o= M- @z M @T+xF ¢, K, Kp>0 (5-24)

when Ky and K, equal to 1, this system is the same that was
given by Partovi and Nahi as an example of their theorem.

Taking o0y=X3; and 0= Xj1+Xo, we have

T .

-1 0 1 0 -1 1.

B = C = A=
0 -1 ’ 1 1 ’ -1 0]
and
-1 '
G(s) = ~C(sI - A) B
11
—_ 8 1 .
_ S2+ 5 + 1 s24+ 8 4+ 1
= (5-25)
s - 1 s + 2
S2+ s + 1 S24+ 8 + 1
and
f1( 04, 1) fo(0~0, 1)

0171 Y o g 0 < =2 2 < X

where
0.6X1 - 0.4Xosin %
f10 03, t) = (1 + X312 )2 K1
(5-26)

X7 + Xo
f2( 0'2, t) = (1 + X12)2K2

By Partovi and Nahi's theorem, the system (5-24) is ASIL, if the

matrix

Ww) = (6(Jw) + &) + (6(jw) + K} (5-27)

is positive definite for all w . Here, G(jw) is given

T In the Partovi and Nahi's paper (51), the matrix B was

written as B = T. But this is not valid.

Tt Theré, the second diagonal element of G(s) was also miscal-
S + 1

culated as 55+ s+ 1T °
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by (5-25) and K is by
K = diag( X{ ) , i=1,2

' Now, let us put K3 and K, as Ki=1l and Kp=7, respectively.

According to Theorem 4.3, ReW(w)e p.d, YWER is a necessary

condition for W(w) e p.d, YwelR . We remark the second
diagonal element of G(s). The real part of it is given by
' 2

W= w2 ¥ 1
By simplé manipulations, we obtain

Re gpp(3w) 2 1 -5/3 = - 0.1546- -
Then, we have

Re Wop(w) = 2(Re gpp(jw) + 1/7) = - 0.0237---

and the condition ReW(w ) e p.d, ¥ we€ R is not satisfied.
Thus, it has turned out that the system given by (5-24) where

Ky=1 and Kp=T7 cannot be proved to be ASIL by Partovi and Nahi's

theoremn,
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Chapter 6 Stability of lLarge Scale Systems: Containing
Unstable Subsystems

Section 6.1 Introduction

>Frequency domain stability criteria of large sdale systems
so far obtained have such a significant feature that they can
be applied on the basis only of the output réSponseSzof the
systems, not necessary of the explicit expressions of the system
equations. The theorems in chapter 3 have also an analogous
feature, if the parameters of the imaginay systems could be
obtained. To obtain these parameters seems to be possible,
if, for example, subsystems are described by simple linear equa--
tions. On the other hand, algebraic methods of analyzing
large scale:systems assume that the knowledges of the mathema-
tical constructions of the systems should previously be given.
Therefore, for algebraic approaches attention has been focused
on relaxing the assumptions on the properties of subsystems
and the interconnecting relations between them and on obtain-
ing the stability conditions for systems with a variety of inter-
connecting relations. With respect to the assumptions on
the properties of Subsystems, exponential stability, asymptotic
stability and exponential instability have been assumed in turn.
In this chabter, we deduce the stability conditions of large
scale sjstems confaining unstable subsystems. A new class
of assumptions for the interconmnecting relations are put in
the fheorems of this chapter. Gruji¢ and Siljak (20) also
derived the stability conditions of large scale systems with
stable and unstable subsystems under analogous assumptions.

In the"last section of this chapter, a comparison between the
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obtained results and Grujié¢ and éiljak's theorems will be made

by giving some illustrative examples.

Section 6.2 System Equations and Assumptions

Let us consider large scale systems described by (1-6).
We write here again the equations (1-6) where inputs to the

systems are put © as follows
xy = Jgl'i( i, T ) + @i( X 4 %) ,' ie M (6-1)
Both thé functions j{i and %i satisfy |
fi( Op, 5 )591( On 5, t)= 0n , tekR (6=2)

The i-th isolated subsystem is described by
¥i = fil X1, %) (6-3)

For each subsystem (6-3), we assume that there exist non-nega-
tive fuctions Ui(Xi, t ), ¢i( |Xi\ ) .and positive constants

Cii and Ci satisfying the inequalities
P 1Xa)) < Vul Xy, 1)< GPi(|®i| ) (6-4)

where ¢i(r) is a scalar monotonously increasing function satis-
fying ¢i(0) = 0, ¢i(r)+oo(r—>~oo ). We assume further
that the subsystems are claséified intOjtwo.groups H one is
composed of stable (exponentially Sfcable) subsystems and is
written as S, and the other is of unstable (exponentially un-
stable) subsystems and written as U. " The number of subsys-
tems belonging to S and U are assumed to be L( £ < m) and

-

m- L, résPectively. '~ The derivatives with respect to time t
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of the function V3 along the solutions of the equation (6-3)

are assumed to be evaluated as

i3 P11kl < VR0 Xy, ) <reqy B3( Kl ), Vies (6-5)
cig B |2 [) ViR, +) s es3ps([]) , viev

where 0<ci4g i3 and SUU =M = {1,2,"',m} .

The assumptions for the interconnecting relations are as follows H
there exist real-valued functions Pj (%X, t) and Qi (X, t)
such that |

Q3 (%, ©)Pi(|Re]) + Jhaig(m, ©)Ps( &35 < (Voy)igy
J¥ :
(X, t) < Py (R, )P (|Ry]) + )Z..Pij(x, ) D50 %5])
. : ' Xt

Vi€S,U teesececsenve (6—6)

where

Qij(x’ t)S.Pij(I’ -t) ? IGRM ’ t elR ’ Vi,jéM (6"7)

and U satisfies.(6—4) and (6-5). We put the lower bound
of Pj 5 aS,pij‘and the upper bound of Qi 5 as Qi je That is,
inf PN + = . s s s % = . .
I P(X0 ) = miy . s 0(X, 8 =y
teR te R (6-8)
Vi,jeM

From (6-7), it follws that
qlJ < Pij ’ Vi, jeM (6“9)

"Prom (6-6) we have the inequalities

” ,' m

;Z‘qij P30 1sh) = (PUa)@i(x, 4) < 'Z,J’Pia'( =3

=1 . ).——

. Yiesuu =M

(6-10)
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The above mentioned are the all assumptions put here to the sys-
tems. In this chapter, we also call..*bhe systems which
satisfy these assumptions 25: . For the sequel discu-
Ssions we will give some inequalities with respect to Vi.

Let us differentiate 2/; with respect to % fo:p some i such
that i€ S along the solutions of (6-1). We obtain from
(6-4), (6-5) and (6-10),

. ' m
V3 < ey Pil|Rs]) + pay B (X)) + ;‘ P13 Py |2y
=1

(6-11)
~Cs4 + Ps
i4 ij ] o
< Cix 1*22 F'U , ies
L G
where the subscript k is given by
1 for —c;4+p::> 0 or p;:>0 (ixj)
Kk 2 ’ 14T +d (6-12)
2.y for -c;,+pj3< 0 or :pjj< 0 (isxj)
In the same way, for V-, i€ U we have
U; > Sig * Gy Uy o+ Z 34j vy (6-13)
Cix cjk
where
. 2 , . for ci4+qi'i>0 or g4 4>0 (i=3)
k= (6-14)

1, for ¢i4+231 <0 or g; 5<0 {(i%3)

Moreover, using again (6-4), (6-5) and (6-10), we have the
iriequalities with the reversed inequality signs in (6-11) and
(6-13) such as

- _c- + .
iy e gy S
Cik Cik

'-?'o

, 1e€s8 (6-15)
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. w
Vs < 813 * Pii . 4 Pij s .
= Cik * ; C 3k J.‘ ’ ieU (6-16)
U= .
Here, the denominator il of the fractional expressions of the

type a/ci) takes the value as follows ;

- Cio ’ a>0 , for i€ S
Cik =
Ciq R a<0 , for ie S
| (6-17)
C. a>0 for ieU
A il ! ’
Cix = { |
Cio ’ a< 0 , for i€ U

Multiplying by a positive number k; the both sides of (6-11),

we have
=C + P Z p
kivl < _140—.1{1-2-__1{ v + : cili k —lj. y ie 8 (6_18)
i ):Fo J

and (6-13) by a negative number -k; (ki> 0)

, iemU (6-19)

° . Cs + q.
i4 ii
"'kiv'i < - o Z '; —=J k ’U‘

—'K-L

In the same way, multiplying the both sides of (6-15) by a
negative -h; (h;> 0) and (6-16) by a positive h; yield

o -Ci3 + Qi4 2’ i\ qij
“h Yy < - o Ui LT oYy e (6-20)
Jzb Tk

. Csy + Dis z Ds s
13 1ji ij )
h; 75 < oy hi Vs + <P Ty V5 iew (6-21)
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Section 6.3 Some Preliminary Lemmas

This section deals with some preliminary lemmas required for
deriving +the main results. The first lemma is a special

‘case of Lemma 2.1.

Lemma 6.1
The solutions of scalar differentail inequality 5{5 aX, X(0)=X,

satisfies X<o' X, , t2xO.
The proof of this lemma is omitted here because of its simplicity.

Lemma 6.2

Let 7 and 7 be the vectors with the elements 2/j(t) of
order / .and m-/ |, fespectively, and ¥'i(t) is a non-negative
scalar function of +t. Moreover, let 'ﬁ,o )and ﬁw; ‘ﬁf) and 7%&)'

w) ()
be the vectors of the same order as 7~ and ¥~ with positive

elements. - We assume for the values defined by
(2) . @) &3] . (2)
hp = min ( hypyy , hgsp , °°° )
2) (2) @) ()
hM=max(h1,h2,--~’h,.) '
2 (6-22)
) . n t
k= min (k3 , k', cer , Ky )
ku) _ X > o) KU)
= max (kg ok, e s By )
that the following inequality
n @ 2)
kp by > -k hy - (6-23)
is satisfied. Then if the relations
Q) ) v w
ﬁ,-zy-- -Zt’*gNle'“'t ’ for t>0
| : (6-24)

W’ oy 2
t v -Iﬁ“%"iNze , for t20

-
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where W, A, Nl and N, are real constants and A ,/u>0 ’

then there exist positive constants I and a such that

Vi <Le®,  tzo , iem (6-25)

Proof

We first show that under the condition (6-23) and (6—24)
both Nj and N, in (6-24) can not be non-positive. Let us
assume the contrary ; that is, Nj< 0, Np< O or Ny = Np = 0.
From (6-24) we have

#af #?ﬁ"z}"< 0
" - B < g

From these relations and (6-22), it follows that
€2) )
2 W
ﬁn:Z’U‘l - Z\’Z}" <0
)

(”Z\v}_ _ kMZ,U_ <0

) .
where Zx and Z denote the summmations over the a2ll elements

of V" ana V. Dividing the both sides of the first inequali-
ty by h;) and of the second by kN‘f) and adding them, we get

k‘-” h )
(gﬁ% hfgz,)Zvls 0 (6-26)

o
Since Z 'U‘ is non—positlve, we obtain the following inequality.

This contradicts the assumption (6-23). Therefore, we
assume Ny >0, N,> 0 in the sequel. If either Nj or No is

negativve’,’we have the same discussions as the following by putt-

ing it to O.
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By analogous arguments to those in der1v1ng (6-26), the follow-

ing 1nequa11ty can be obtained.

h .
Zm M. Ny #t N At
@ - Ta Eiv-< T € + —2-e
( k ht )) — kM) ’ £>0 (6-27)

As the parenthesized part of the above inequality is positive by
(6-23), we can assert the existence of positive constants'f and

& such that

[4))

Us < T -0t
2)

Since 2 |U* is evaluated as

U)
ut
Z’U’ h—;ﬁ-’ ?/"i + —h{l‘) e

for some positive f'and @ the following inequality also holds.

2)
Z\’Ui S f e’at

,

The function V; being non-negative, thus the existence of L
and a satisfying (6-25) has been proved.

Q.E.D.

Lemma 6.3

Let us assume the same condition as in Lemma 6.2 and assume

that the following inequality holds in place of (6-23)

ur &)

) 7] B ’
kg hp'< gy by . (6-28)
and that the constants A , M in (6-24) are positive.

If Ny and N, in (6-24) can be chosen negative numbers, there

exist ﬁbsitive numbers L and a satisfying
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-

. W)

Zviz L et | 21,2 (6-29)

Proof

As in the case of lemma 6.2, we have

o)

@) ’
§ t
h;) ?fl - hi;[’ Z vi < Nl e'u

> - 2) & PN (6“30)
KD Uy -k DL v < Ny e
Trom these inequalities, (6-27) can be deduced. As the parén—

thesized part of (6-27) is, in this case, negative by (6-28),

the evaluation of (6-29) for j=1 is obtained by dividing th%”

both sides of (6-27) by the value of this part. As to 22:2’1,

from the second inequality of (6-30)

[1}} )

2)
N
m 2. At
Do > D v —2,
Lok 17 ky

hdids; And from this, the conclusion for j=2 is evident.

Q.E.D.

Section 6.4  Stability Theorems and Instability Theorem

We can assume without loss of generality as S = {1,2,"°,l3,
U ={£+1,l+2,°-°,m} by rearranging the order of subsystems in
the sequel discussions. Let us define a matrix A composed
of the coefficients of (6-11) and (6-13) as. follows
Aq A
A= 3

(6-31)
Ay Ao .

where the order of A, Ao, A3 and A4 are such that
Ay 5 x4 Ap 5 (m-f) x (m-L), A3 5 Ax(m-L), Ay 5 (m-L)xL ,

Here, Aj(i=1,2,3,4) are given by
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J

- ‘- L Das A
Ay 2 diag( _~%i4 T Pii ) 4 offdiag(_g;ﬁ_)
| Cix J
Ay 2 diag(_ %2414 * Yrimi) + offdiag( 2eild)
T oK > (6-32)

Ay é{ B, o1 } |

Cor. <
Ay é.{_qh%i }

c.

J&

where the subscript k of the denominator cj) of the elements of
matrices Ay and A3 is defi'ned‘,'by (6-12) and of Ao, Ay by (6—14);
Analogously, for the inequalities (6-15) and (6-16) we define 2

coefficient matrix B as follows.

(6-33)

where By 3 Lxf » By ; (m-l)x(mrﬁjv By ; &x(m-0) , By 3 (m-2)xl

Each matrix Bj(i=1,2,3,4) is defined as

By 2 diag(_~%3 * %ii ) 4 offdieg(-3ii)
‘ e51 . - ik
2 3i Cori,3 + Dur,ev; i Pori 4+
32 2 diag( £ ) + offdiag( Feridy )
CCart,k .k > (6-34) .
B3 é{ q':rpef\!}
c .
215,k

a Deri Jj | |
B, & J)

4 { 5k } J
where the subscript of cj in By and By is defined by the first.
half of (6-17) and B, and B, by the latter half.

We also define a square matrix C of the same order as A and

r

B in the following way.

- (6-35)
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where A1y, A3, Bs and By are defined by .(6-32) and (6-34).

Then we have the following theorem for stability of the system

2. .

Theorem 6.1

If the matrix C,, the transposed matrix of C, has at least one
real chatacteristic root with negative sign and the elements of
- the corresponding characteristic vector have the same sign,

the systen Z:\ is ESIL.

'Proof

Let a vector V be such that

4
W’ e

(?;I“ y U )’=(V1’ Vo, °°°y Vm) .

11y

v

Then from (6-11), (6-16), (6-32), (6-34) and (6-35), we have

V| < cov (6-36)
>3

where C is given by (6-35) and IZ denotes that the derivatives
are taken along the solutions of Z . " By the assumption
~of the theorem, C has a characteristic root A (< 0) and a
co-rreSponding characteristic vector /7% = (kq, ko, *°°, km)/,

k; >0, i€ M such that

L NN
that is, -

N = Ec , (6-37)
For a scalar non-negative function ¥ = 'Iﬁl-v, (6-36) and (6-37)
yields

- VIZ‘ < AV (6-38)
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By Lemma 6.1 we obtain

v<ye™ | 420, w= V(D) (6-39)

As ¥V is the sum of the positively-multiplied Lyapunov function
for each subsystem, it can be considered to be a Lyapunov func-

tion of the overall system. Therefore, (6-39) shows asympto-
tic stability in the large of the system. The proof for ESIL
can be given in the similar way as in Theorem 2,1 and is omitted.

Q.E.D.

As a special case of Theorem 6.1, let us consider the case where
all the offdiagonal elements of the matrix C are non-negative.

j(JC, t) satisfies

>0, biesS, U , i%]

In this case the upper bound Pij of Pi
Pij

We have the following theorem.

Theorem 6.2

Assume that all the offdiagonal elements of the matrix C given
by (6-35) are non-negative. ~If the principal minors of <C

of any order are positive, the systen _2{1 is ESIL,

Proof

Note first by the property 1 of Proposition 4.3 the assump-
tion of the theorem is equivalent to the condition that the
matrix -C is in the class K y that is, the class of M-matri-
ces, We start from the inequalities (6-36). By the
definition of the class K , if -C is in K -¢"is also in K .
Therefore, by the property 3°of Proposition 4.3 there exists a
vector % >0 such that —C/-/é > 0, Hence, 1‘5-'0<9.
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Then from (6-36) we have
V| = Avlg <hov <o

Thus, ASIL of >, 1is proved as in the case of Theorem 6.1.

The proof for ESIL is also omitted.
Q.E.D.

Remark
Theorem 6.2 is already reported in more general form in
(20). There, instead of (6-36) the following inequality

was derived.
Vgseg , B= (91, Bp, or, Py)

where ¢i (1 €M) is a appropriate comparison function.
But in this theorem the conclusion should be ASIL, not ESIL.
Under the condition that the offdiagonal elements are all
non-negative, Theorem 6.1 is included by Theorem 6.2.
Because from property 3°of Proposition 4.3 and the assumption of
Theorem 6.1, -C-R = - At{ > 0 leads to -C € K . It is
evident that the converse ié not true. Grujié and éiljak
pointed out in'(20) the supposition that the offdiagonal elements
might be negative should be improper so that it turns out to
make the value of the Lyapunov function for some subsystem
negative. - This can be simply explained by the example such

that the solution vi(t) of the inequality
Vi< avy + bvp , Db<O

may be negativé when started from v1(0)=0, vo(0) > 0. But
if v1=0 implies vo=0 invariably, it might not be the case

just mentioned. We show an example of it in the later
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section.
Now, let us discuss the case where V3 can be evaluated
below and above such as in (6-11) to (6-17). Then, we

have the following theorem.

Theorem 6.3

Assume that both A and B: the transposed matrices of A and B
given respectively by (6-31) and (6-32), (6-33) and (6-34),
have at least one negative characteristic root and a correspond-

ing characteristic vector & and #A written in the form of
1‘£ ( ]ﬁu; , &o: )
lfb ( ﬁf” . ﬁa) )

(6-40)

where
. (l). . o) Vs

W) 2 ) @) o)
R= ( ki, ko, ***, k ), " = ( kpi19 Kogoy °°°y Ky )
o) 1753 ) V) ,Q) Q) c2) 2) .,
ﬁ,: ( hl’ h2’ ooo, hﬁ )’ ﬁ: ( h1'+l’ h'£+2, o.-’ hm )
Here; the signs of the elements of the vector # and A are

specified as

) (7]

sgn kl = sgn ki % 0
]‘-:2’3, oo 0 ’ ‘L

(4 .

sgn hﬁ = sgn h{’: 0
' , (6-41)

sSgn k;:_l = sgn kc:f = sgn kj“_v .
. o - i=£+l,l+2,on.’m

sgn hi’: sgn hy

sgn h;il

If the inequality (6-23) is satisfied for the values defined by
(6-22), then the system 2\ is ESTL.

Proof -
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If we could get the inequalities (6524) under the assumptions
of the theorem, the conclusion of the theorem can be obtained
by Lemma _6.2. Without loss of generaity we can take .‘bhe sign
of the elements of &K”’ and A positive and put

@) (z) 2) ey -
_/é = ( -k£+l, -k,4+2’ --., _km )

rd

2) @) )

- A= (-, -hg,, ctt, b
where h; >0 and ki >0, di=f+1,0+2,°"°, m.
Now we choose the elements of the characteristic vector # and
% as positive number k;'s and hj's in (6-18) to (6-21).

Summing up the inequalities (6-18) over i¢ S, we have

-u)

o U,
rg.?rg&’.[Al , A3] _Ut;)
2 | (6-42)

Also for the inequalities (6-19), we obtain
@)’ e ’
—Tk-'ld\s-zﬁ.[A,l , Ag] .

’U%) (6-43)

Adding (6-42) and (6-43) leads to

7| < €y (6-44)
5

Where A is given by (6-31). By the assumption of the Theorem
6.3 the matrix A" has a characteristic root X (< 0) and a corres-

ponding characteristic vector fﬁ. such that

AR = A1
that is,

'élA = AR’

Substituting this into (6-44), we have
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7| s ARV
Therefore, by Lemma 6.1 it follows that

Ry < ey, ¢Nt-to) ’ T, = ()

Thus we obtain the latter half of (6-24). The first half

is obtained in the same manner.
Q.E.D.

Now, we will give instability theorem for QZ: as follows.

Theorem 6.4

Let us assume that both the traﬁsposed ﬁétrix A of A given
by (6-31) and B given by (6-33) have a positive characteristic
root and the corresponding characteristic vector % ’ 73
given by (6-40) and (6-41). If by taking some initial

values such that

#-vo<0 4 -v,< 0 Vo = V(to)  (6-45)
the inequality (6—28) is satisfied, then the equilibrium state
of the system LZZ is unstable.

Proof

As seen in the proof of Theorem 6.3, N7 and No in Lemma 6.3
correspond to ﬂgtVo and v%f:vo, respectively and are negative
by (6-45). Therefore, by Lemma 6.3 there exist positive

constants L and a such that
(¢}

Zvi >L el ’ j=1,2

Since Vi is a non-negative function, this inequality means
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that at least one V5 tends to co0 as t to oo . Then, by
(6-4) we have ¢i( |Jti| ) — oo , that is, lxil_’ oo |
Q.E.D.

Section 6.5 Examples

In this section, we give an example for each theorem in the
previous section and make some remarks relating to the results
of Grujié and §iljak. In the first place, the application

of Theorem 6.1 will be given below.

Example 1 _
Let the system equations be such that

Ry

. -
%1+ gal : (6-16)

Xo = Ao Ko + qz(x,. t)

where K = ( x11, %15 )y, Xy = ( xp1, %22 ), X=( X1, X3 ¥

-4 0 -3 4
Ay = ‘ Ap =
0 -4 0 -3
and
-( |xo1] + Xo ) sgn x11
Di(x, 1) =| 1] .l 2|
—( |xp1| + | %22 ) sgn x3o
(2 + sint ) sat X711
%2(1, t) = ‘

(2 + sin t ) sat xop

Here, the function sat x is defined as

-
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a X Ix|I< 1
sat X =
1, x| >1
Ve take subsystem S (i=1,2) as

: ‘ Y,
and choose the functions ¥ (i=1,2) as V3 = ( Xil + x40 )

(i=1,2). Then, we have
-l o : )
V'U“i = ?)'i %i N l=1,2

and

'U"']_ < -4 ?fl » y for S5

U, < -2 y,  for §p
and .

’ 4
([7771)'@‘1 = -7)'1 ( |X11| + |X12| )( ]X21| + |X22|)

- \
< -?( x1 + X 2 ( Xo] + Xap )2
= - D‘z

(Vrs)- @2 < 7}‘-2‘( X11Xp1 + X12%Xpp ) < V3

‘From the above relations, the following inequalities can be

obtained.
W <AV
where
-4 =1
A =
1 -2

Taking the matrix C in Theorem 6.1 as the aobve A and noting
that A has characteristic root -3 and the corresponding chara-
cteristic vector ( t,t')'where t is any real number, A satisfies

the assﬁmption of Theorem 6.1 and the sysyem is proved to be
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ESIT. Since the matrix C has negative offdiagonal element,

Theorem 6.2 can not be applied to this system.

The following example is an application of Theorem 6.3.

Example 2
Consider the system composed of two subsystems S1 and So

that are described by -

51 5 g =-6%

: (6-47)
Sp 5 Kp=Xp

The interconnecting functions between them are written as

g11( X, t) sgn X313
C]l( x, t) = 11 ’ = -%—{3+2{§+(2r2—3)sin t},‘x§1+x222
ggg( x, t) Sén X22
4’} (% ‘t) g21(x’ 't) (6_48)
e\ J, = - '
goo( 3, t)
. where
- 9+3sin % 4t +3
ga1( 2y t) 2 - S5S5282 xp) 4+ RIS ([x17]+ [x12]) sen xp;
A +3sin % At* + '
goo( %, t) = - Z5iny 32ln X2 + ¥ +J3£ ([x11] +|x12] ) sen xp;

. -
Putting % = (x§; + sz_z)& » 1=1,2, we have V¥ = 2yX;, i=1,2

and
(V013 Gy = F{3+272+(2/2-3)s1n £}( |x19] +|x10])
(FOp)- g = (23S0 Ty 2 4 o2 s

4%% +3 2 2 %
+=gz5 (%21 + xoo ) (xaaf + (%120 ) (| x01) +|%09] ) -



117

From these relations it fpllows that
3% < (D7) Gy < 40
3y -6 5([702)'- 4, 5'4?/1- 3, .
Since i}l = -6U1, Up = Vy, the following inequalities hold.
-6 + 3V, < #15-6?/1;47»2
3V - 5%, < Vp < 42 - 2 Uy .

This system can not be proved-to be stable by Theorem 6.2, though

the matrix C in the theorem is given by
| -6 4
C =

4 -2
and the offdiagonal elements of this matrix are positive.
For, as readily be checked, det(-C) is negative. Therefore,
we will apply Theorem 6.3 to this system. The matrix A
and B in this theorem are

-6 4 -6 3
A = B =

3 , -5 and 4 -2

The matrix A" has a characteristic root -9 and a corresponding
characteristic vector (tl, —tly and B has a characteristic root
-8 and a~vector.(2t2, —fz)i Here, t7 and to are any non-
zero real numbers, Apparently, the elements of these vectors
satisfy the condition (6-23) and all the assumptions of Theorem

6.3 are met. Thus, the system is proved to be ESIL by
Theorem 6.3. '

Finally, we give an example of Theorem 6.4.
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Example 3

Let the matrices A and B of (6-31), (6-33) have the form of
11 -6 12 -6
A= B = (6-49)
6 1 R 5 -1
Then, A has a characteristic root 5 and a corresponding characte-
ristic vector (%4, -tlf and B has a characteristic root 2 and
a vector (t2, —2t2f . Therefore, if we could choose the
initial states of the system'such that (6-45) is satisfied, this
system can be proved to be unstable by Theorem 6.4. |
For a comparisén with Grujié and §iljak's insﬁability theorem,
we show fhe outline of their results below.
In (20) two sufficient conditions for instability were given.

Namely, a comparison inequality is derived as

vz, W= (@, By, v, Bg ) (6-50)

where Gbi (i€ M) is some comparison function, and instability

condition is as either of the following 3

1 -Aek
2° TFor the matrix A = {aij} ,’there exists a row i such that

<0 ,  i=j

alj

SO 9 i#j ? j=1,2,.'.,l—1’ﬁ+1,...,m.

In case of example 3, from (6—47), the inequalities correspond-
ing to (6-48) become

V2DV
where 12 -6

6 -1
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This matrix satisfies neither the above condition.

It can be thus shown that there exist systems which can be
proved to be stable or unstable by the theorems in this chapter
and meénwhile are not proved by previously obtained theorem.

It should be noted that Theorems 6.1 to 6.4 were derived with-
out employing the comparisbn principle. Consequently, the
existence of non-positive offdiagonal elements of the coefficient
‘matrix- of the comparison ineqﬁalities are ailowed. -~ Especial-
ly Theorem 6.3 was obtained in the way of utilizing more inform-
ation on systems, that is, the lower bound of the derivative of
Zfi . - All the theorems except Theorem 6.2 requires to get
signs of a characteristic root-and of the elements of the corres-
ponding characteristic vector of a matrix for checking stability
or instability. The manipulation for this is not seem to be
easy one when,the ordér of the matrix increases. Howéver,
- we could rewrite the conditions of the theorem in more tractable
form, if more restrictions were put to the systems as in case of

- Theorem 6.2.
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Chapter 7 Concluding Remarks

Main results are summarized and some further works are summa-

rized, in this chapter.

Stability theorems for various kinds of large scale systems
have been studied under the assumption that the system were decom—
posed into stable or unstable subsystems. Studies were carried
out by two representative ways; that is,ifrequency domain method
and time domain method. The stability conditionsin time domain
method usually have an algebraic form.

In chapter. 2 systems with time-varying interconnecting rela-
tions between subsystems: were treated by the -modified vector
Lyapunov function method. In section 2.5 the obtained theorems
were compared with the results previously obtained by Bailey
and others. The theorems could give no better condition than
those established before, when the "absolute value" of the inter-
connecting functions were evaluated linearly. However, the
theorems could be applied even to systems with interconnections,
the "absolute value" of which were not bounded linearly by the-
"absolute value" of the system states. Improvement of the
condition of these theorems by adding more assumptions was
shown in section 2.7. This could be performed by making use
of much more information on systems ; namely periodicity of
interconnection relations. The method employed throughout
chapter 2 might well be said: to be time domain method. On’
the other hand, frequency domain‘stabilify criteria of large

scale systems were developed in chapter 3, where we derived
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stability criteria by the following procedures. First we
constituted the comﬁarison equations and the imaginary systems,
the characteristics of which were subject to the comparison equ-
ations, from the properties of subsystems and the interconnec—
tions among them: Then, the extended Popov-type theorems
established previously were applied to the imaginary systems.,
Thus, several freguency domain theorems: were established accord-
ing as the pfoPerties of subsystems and interconnectiong:relations,
including the case where each éubsystem had dead time element:;
in its own feedback loop. In section 3.5 it was shown that
the theorems obtained in this way became more usgful by the
aid of computers with a graphic display terminal.

In chapter 4, some conditions for positive definiteness and
positive semidefiniteness of a matrix-valued function‘with argu-
ment s=ju). for any value of w were considered. Under a
certain condi%ion we ‘got. the necessary and sufficient condi-
tion for vositive definiteness or positive.semidefiniteness in
a very siﬁple form. Whe ther it is the case where such a
simple condition can be obtained or not can be checked mainly
by drawing the vector loci.of the elements of the matrix.

In addition to the necessary and sufficient condition, a suffi-
cient condition or a necessary one for positive definiteness ox
semidefiniteness wgs. obtained separately in this chapter.

In chapter 5, the results of chapter 4’were used for compar-
ing the theorems of chapter 3 with other theorems. For
systems without the dead time elements, one of the theorems
was. comparable with those obtained by other authors and was
shown to include some of them. In section 5.3 it was exhi-

-

bited by some illustrative examples that the condition:iwas also
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useful for applying frequency domain criteria of large scale
systems by some other researchers.
In chapter:' 6, stability theorems of large scale systems .

including stable and unstable subsystems were established with-

out the comparison principle. Instability theorem. for the se
Systems was also derived there. The obtained results were
compared with Grujié and §iljak's theorems. It was shown ~

that there exist‘systems that were proved to be stable or

unstable byrthe theorem in this chapter, but not by Gfujié and

Siljak's.

Thus, we have obtained the means of investigating many kinds.
of large scale systéms. However, the following works seem +to
remain unsolved and to be investigated in the future.

N The approaches to the problems of theis thesis were general-
ly taken not so much from practical view points as from theo-
retical interest. So, to consolidate more tractable ways
for applying the theorems to the actual systems is a future
work to be done. In that case, considering large dimen-
sions of the system, td make the most of computers with
appropriate input-output devices should be necessary.

2 By taking advantageé of the feature of systems, that is, emp-
loying much more information on systems, improvement of the |
stability coﬁdition could be anticipated. Stability
‘theorems, therefore, might be established extensively according

as the proferties of the systems.

3 It may be interesting to deal with large scale systems where
subsystems are coupled by interconnecting functiqhs with
retarded arguments, considering the phase-shifting effect

of tlie interconnections.
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4° To make more use of nonlinear character‘istics included in
the systems without simple linear evaluations is expected,

though it may be very difficult.
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Appendix
Appendix A. Stability Theorems of Large Scale Systems
Previously Obtained by Other Authors

Some stability theorems of large scale systems: previously
obtained by other researchers are introduced for the purpose of
comparison and reference. The theorems listed below are
chosen from among those: that are considered to be typical and
and comparable with the theorems derived in this thesis,
Symbols and notations used in these theorems are unified for
the sake of convenience.

Let systems be written by (1-1) and (1-3), where vector
function.j?i_and %}i satisfy the assumptions (1-2) and (1-3).
The i-th isolated subsystem is expressed by (1-5). We call
these systems 2. and discuss the stability of the equili-
brium sate On of D .

. , 1)
Bailey's Theorenm

Assume that for each subsystem described by (1-5) there exist
a non—negativé function V3 and positive constants C5 (j=1,2,3,
‘4) satisfying (1-8). Namely, each subsystem is assured to
be ESIL; Moreover, the interconnecting function %}i(ﬂ:, t )
is expressed in a linear form of the states of subsystems as
' . m
Gi(, %) = 25 035X, _. (a-1)
%)
)

where cije;EQ is a COnstan? matrix. Then if a matrix A

given by
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v I I’
A = diag (- Cd ) + offdiag ( c”’é%;zﬂ ), | (A-2)

is a Hurwitz matrix, the system‘z: is ESIL.

(2)
Araki's Theorem

Assume that for each subsystem there exist a non-negatiwe

function ¥'5( Xi, t ) and positive constants c;j3 a2nd ¢j4 such

that v
?.fi \(1—5) < - 013111\2 (a-3)
.\Vv'i‘ < cig| Kyl | (A-4)
Vi(Ki , t)—> 00 (|Ki|—o) (a-5)

For the interconnecting gunction ¢%jJ the following inequali-

ty is assumed.

| G2, )2 Za”pc;,\ ~ (a-6)

jw
If the principal minors of any order of a matrix A given by

Cl3

A = diag (== ) + offdiag ( - €4 ) (A-T)

are positive, then 2:: is ESIL. Moreover, when each sub-
system is ESIL, that is, the inequaities (1-8) hold instead of
(A-2) to (A-4), >, is ESTIL.

Remark The above asmumption with respect to the matrix A

may be séid in other words that A pelongs to the class y 1.4,
the class of M-matrices. .- Some properties of these matrices

are presented in Proposition 4.4 and 4.5 in chapter4 and Lemma

5.1 and 5.2 in chapter 5.

-
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v (s7)
Siljak's Theorem

For each subsystem there exist a non-negative function

U3(Xy.t) and positive constants 7 13(3=1,2,3,4) such that

71 | 7| Svi(%i,t)i)ﬁzlxbl (A-8)
Vi | (15) € -7 1%l (2-8)
[Pvil =g (£-10)

The ass.umptiohs for interconnecting function:. @ il X ,3) i=
the same as (A-5). If the principal minors of any order

of a matrix B defined by
B = diag (—sz) ¥ offdiag ( --j&i-éij ) (A-11)
Niz /N _
is: positive, the systen;lzz: is ESIL.

Apparantly, the assumption for the matrix B is also equivalent

to the condition that B is in K .

Appendix B Comparison Principle:

Comparison principle is an important techniqﬁe in the
theqrey of differential equations. used for estimating a
function satisfying a differential inequality by the external
solutions, of the corresponding differential equation. In
this appendix, some comparison theorems for differential
equations and functional differential eqﬁations;are introe-
dueed. We present first the theorem for differential

-

inequalities.
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Definition B.1

.A vector function f = ( fq, fo, oo, T )_’of a vector
variable 17(,='( X1y Xp, *** , Xp ¥ will be .said to be of type
Ky with respect to X in a set S, if . for each subscript i=1,
2,¢--,m we have fj(a) < fj(b) for any two points a = ( 81,
8o, *+e, ay Y and b = ( by, bp, <-+, by )y in S with aj =-bj
and ay < by ( k=1,2,--+.,m ; k¥i ).

Theorem B.1l

Let f( X, 't ) be smooth and continuoué for any arguments
So that on an interval ( a , B ) the solution X(t) of the

differential eqation

o= f(x, t) (B-1)

is assured.to be unique and continuoué, and of type Kj with
respect to X for each fixed values of t. If Z (%) is

continuous on (a, ), satisfies the differential inequality
zéf(31't) (B-2)

and Z(a)< X(a), them Z(t)< T(t) for a<t<b.
Proof of this theorem is shown in (15).

Definition B.2

‘Tet 'f(x,\y, t ) be a vector function of vector variable
m w / Cos
xel ,%C—P and t ¢R y continuous for any arguments.

If the following conditions are satisfied, f is
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said to be type K. ,
1°  For any Yﬁl and 21} » such that Zﬂ 1&77}2 y the inequality

FOx g, )< f(x, Y, t)
holad.
2°  The function J@- is of type Xj with respect to X .,

Theorem B.2

Condsider the functional differential inequalities

Z() < f(2(®), Z(+2), 5) , 20 , T>0 (3-3)
and

B8 2 FCUY), Yoty 53, 520 (B-4)
where f is of type Ko. o If Z(t)s_‘l;(t) yT<t=0

holds, then Z({t)< ‘L](t), t>0.

Theorem B.3

Let us assume the solution 7P(t) of the functional differe-

ntial eguation

x(t) = fF (x(t), X(+-T), %) (B-5)

exists and unique and the function f is of type Ko.
If for the solution Z (1) of the inequality (B-3) Z(t)< (%)
-T < t £ 0 holds, then X (t)< X (%), t_éd.

For the case of m = 1, +the proofs of the above theorems are

A S

given in (28). In this case the condition 1° of the definition

B.2 is trivially satisfied. For m z 2, the proofyof the theorems
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can be given, for example, in an analogous manner to those

given by Tokumaru et al. (47) and is omitted.

Appendix C. The Number of the Root with .Positive Real Parts
S (¢)

of the Equation S +a + b e = 0
In this appendix, we present the region of asymptotic
stability in the space of the coefficients a and b for the

trivial solution of the equation
x(t) + ax(t) + bx(t-T) = 0 (c-1)

Where a, b , and T are constants and T > O. In thiss

case the characteristic equation has the form

S+a+bec-=0 - (c-2)

The stabiiity condition is obtained as the condition for the
absence of roots with positive real parts of the characteris-
tic>quési-polynomia1 P(S)y =s+a+be ., | Fig. C.1.
shows the régions in the space of coefficients(a, b) having
constant -number of roots with positive real parts. - In

this figure, n denotes the number of roots with positive real
parits. Therefqre, the region corresponding to n=0
gives‘the stability ranges in this space. : The equations

for the line (1) and the straight line (2) are given respec—

tively as follows

D = — L g = - _J COSTY

sinty ’ sinty
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where y is a parameter,

and a+b=0.

Fig. C.1  Parameter Plane Diagram '\
\
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