多モード光ファイバの伝送特性に関する研究

池 田 正 宏

多モード光ファイバの伝送特性に関する研究

1 9 7 9 年 1 月

池田正宏

DOC	
1979	
16	
電気系	

.

International Party

The spice of

次

第1	章)	予	1811	â ·	•••••		•••••	•••••	••••	• • • • • •	•••••	•••••	•••••	••••	•••••	••••			••••		••••	1
	1.	1	歴	史白		景・	•••••	• • • • • • •		••••		•••••		•••••	•••		••••	• • • • •	• • • • • •	••••		• • • •	1
	1.	2	本	研究	宅の	目的	•••	••••	•••••	••••	• • • • • • •		•••••	••••	••••	•••••	••••	• • • • • •		••••	•••••	••••	3
	1.	3	本	論ご	ての	構成	•••	••••	• • • • • •	••••	• • • • •	•••••	••••	•••••	•••	••••	••••		•••••	•••••	•••••	••••	4
第2	章		多モ		ド光	ファ	イバ	の基	本特	性	••••	•••••	•••••	••••	••••	••••	••••	• • • • • •	• • • • •	•••••	•••••	••••	6
	2.	1	序	•	•••••	••••		••••	••••	••••	••••	•••••	•••••	••••	• • • •	••••		••••	•••••	•••••	•••••	•••••	6
	2.	. 2	ス	テ	ップ	形多	ŧ –	ド光	ファ	イン	・のま	基本	特性	•••	••••	••••	••••	• • • • •	• • • • • •	•••••	•••••	••••	6
		2.	2. 1	Ĩ	電磁	界分	布	••••	•••••	••••	••••	•••••	•••••	•••••	• • • •	••••	• • • • • •	••••	•••••	•••••	•••••	•••••	6
		2.	2. 2	₹	洋遅	延時	間	••••	•••••	••••	•••••	•••••	•••••	••••	••••	•••••	• • • • • •	• • • • •	•••••	•••••		•••••	13
		2.	2. 3	:	ŧ —	ドボ	リュ	- 4	•••	• • • • • •	•••••	•••••	••••	•••••		••••	• • • • • •	••••	•••••	•••••	•••••	•••••	19
	2	. 3	Ŋ	· v ·	ーデ	ッド	形多	モー	ド光	ファ	71-	べの	基本	特性	1	••••	• • • • • •	••••	•••••	•••••	•••••	•••••	21
		2.	3. 1	[固有	モー	ドと	規格	化直	交性	ŧ	•••••	••••		• • • •	••••	••••	•••••	•••••	•••••	• • • • • • •	•••••	21
		2.	3. 2	1	笄遅	延と	イン	バル	ス応	答	••••	•••••	••••	••••	••••	••••	• • • • • •	••••	•••••	•••••	•••••	•••••	27
		2.	3. 3	į	波長	分散	を考	慮し	た最	適扂	围 折	率分	布	••••		• • • • • •	••••	•••••	•••••	•••••		•••••	41
		2.	3.4	, .	€ -	ドボ	リュ	- L			• • • • •	••••	••••		• • • •	••••	• • • • •		••••••	•••••			54
		2.	3. 5	• •	幾何	光学	КI	る解	析	••••	•••••	••••••	••••	• • • • • •	• • • •	• • • • • •	• • • • •	•••••	•••••	•••••	· • • • • • • •	••••	55
		2.	3 . 6	i :	光紡	!とモ	- ŀ	・との	対応	<u>,</u>		•••••	•••••	• • • • • •	••••		• • • • •	•••••	•••••	•••••	•••••	•••••	58
	2	5.4	幸	٤	め	•••••	••••	••••	••••	• • • • •	•••••	•••••	••••	• • • • • •	• • • •	•••••	••••	••••	••••	• • • • • • •	••••		63

第3章 インコ	ヒーレント光と多モード光ファイバの結合効率	64
3.1 序		64
3.2 ステ	ップ形多モード光ファイバとの結合	64
3. 2. 1	直接励振の場合	64
3. 2. 2	コニカルコーンによる結合効率の改善	67
3. 2. 3	球面レンス装着による結合効率の改善	70
3.3 2 乗	会布形多モード光ファイバとの結合	75
3. 3. 1	3次元モデルにおける臨界角	75

3.3.2 平円板状発光面を持ったLEDモデルによる結合効率	9
3.4 まとめ	3
第4章 伝送特性の測定法	4
4.1 序	4
4.2 屈折率分布の測定	4
4.2.1 反射電力による屈折率分布の測定原理	5
4.2.2 測定系	36
4.2.3 測定結果と測定精度	38
4.2.4 自動測定装置の試作)1
4.3 ニア・フィールド分布の測定)4
4.4 モード分析	95
4.4.1 モード分析の原理	96
4.4.2 試作したモード分析器の構成と測定結果	99
4.5 伝達関数の測定	04
4.5.1 パルス波形解析法	04
4.5.2 パルス・ストリーム法	12
4.5.3 周波数 掃引法	13
4.6 伝送特性における距離依存性の測定	21
4.6.1 光パルス周回器による方法	21
4.6.2 超音波 偏向器による方法	,28
4.7 まとめ	.33
第 5章 入射励振条件と伝送特性]	.34
.1 序]	134
5.2 ガウシアン・ビームによる励振モード	134
5.2.1 入射ビームが不整合の場合	134
5.2.2 入射ビームが軸ずれした場合	136
5.2.3 入射ビームが斜入射および軸ずれした場合	139
5.3 ガウシアン・ビームで励振した場合のインパルス応答	142

.

.

(jj)

149	
5.3.1 入射ビームが不整合の場合	
5.3.2 入射ビームが軸ずれした場合	
5.3.3 入射ビームが軸ずれおよび斜入射した場合	
5.4 クレーデッド形多モード光ファイバにおける測定例156	
5.4.1 測定系とファイバ・パラメータ	
5.4.2 最低次モードを励振した場合	
5.4.3 高次モードを励振した場合	
5.4.4 インパルス応答波形における分離現象の解析	
5.5 まとめ	

第6章 多モード光ファイバにおけるモード変換
6.1 序
6.2 曲がりによるモード変換
6.2.1 曲がりによる臨界角の変化
6.2.2 曲がり部でのモード変換損失
6.3 モード変換の伝送特性に与える影響
6.3.1 2モード伝送路モデルと基本方程式
6.3.2 インパルス応答波形
6.3.3 インパルス応答波形の中心時間
6.3.4 インパルス応答波形幅の伝搬距離依存性
6.8.5 定常状態におけるモード電力比
6.3.6 ベースバンド周波数応答特性
6.8.7 ベースバンド周波数応答特性の数値計算例
6.4 まとめ

	『部が伝送特性におよぼす影響	第7章 接続部
		7.1 序
±におよぼす影響198	そ続点における軸ずれが伝送特性	7.2 接続
	軸ずれによる接続損失	7.2.1
▶影響	* 軸ずれが伝送特性におよぼす	7. 2. 2

7.3 接続によるモード変換
7.3.1 接続点でのモード変換量の測定
7.3.2 モードスクランプラとその特性
7.4 まとめ
第8章 定常モード伝送特性
8.1 序
8.2 定常モードの定義
8.3 定常モード励振器
8.8.1 測定された定常モード分布と定常モード励振器の構造
8.3.2 定常モード励振器で励振した場合の伝送特性
8.4 接続された長尺伝送路の伝送特性
8.4.1 測定系
8.4.2 測定結果と考察
8.5 モードスクランプラ装荷による伝送帯域の改善効果
8.6 まとめ
第9章 結 論
謝 辞
文 献
付 録
付録 1. 回帰点, Rmax, Rmin の導出
付録 2. 螺旋波の臨界角 eta_c の導出
付録 3 . 臨界角 _{rc} ^s および _{rc} ^m の導出258
付録 4. (6.17)式の解の導出
付録 5. 本研究に関連した発表論文リスト261

記号表

- a コアの半径
- α 自由空間モードがとり得る伝搬角(2.2.3 節)
- B 磁東密度ペクトル
- *B*。 単位角度当りの発光強度
- *b* 光源の半径
- *b_n* 規格化伝搬定数
- *β* z 方向の伝搬定数
- β 光線とy軸とのなす角(3章)
- *c* 真空中での光速
- Γ ガンマ関数
- r 光線とz軸とのなす角
- D 電束密度ペクトル
- △ 屈折率差比 △ = (n₁-n₂)/n₁
- δ クロネッカーのデルタ関数(2.3 筋)
- E 電界ベクトル
- ε。 真空中の誘電率
- ε1 コア内の誘電率
- ε2 クラッディング中の誘電率
- *F*(α, β; r; δ) 超幾何関数
- く 規格化された波面係数
- g 集束係数
- H 磁界ペクトル
- H₁⁽¹⁾ 第1種ハンケル関数
- ん 2モード伝送路における結合係数(6.3節)
- h_{ij} iモードからjモードへの電力の結合係数
- θ 角度変数
- θ_c 臨界角

Ι ο	0次の第1種変形ペッセル関数
Ι1	1次の第1種変形ベッセル関数
I (t)	インパルス応答
Jν	第1種ベッセル関数
Kν	変形ベッセル関数
k	真空中での波数
<i>k</i> 1	コア内の波数
k 2	クラッディング内の波数
L	ファイバ長
$L_{\mu}{}^{ u}$	ラゲールの陪多項式
λ	使用波長
μ	半径方向のモード次数
μ0	真空中の透磁率
μ_1	コア内の透磁率
μ2	クラッディング内の透磁率
N	伝搬可能な全モード数
No	群屈折率
n_1	コア内の屈折率
n 2	クラッディング内の屈折率
ν	θ 方向のモード次数
R	反射率(4.2.1節)
Rma x	最大回帰点
Rmi n	最小回帰点
r _f	ファイバでの位置変数
r _L	光源での位置変数
ρ	屈折率分布の4次項係数
S	ポインティングペクトル
σ	分散の rms幅
σ	コア内の電気伝導率
σ2	クラッディング内の電気伝導率

(vi)

1

- τ_g群遅延時間
- U(t) ステップ関数

u コア内での半径方向の伝搬定数

- v 規格化周波数 $v = ka\sqrt{n_1^2 n_2^2}$
- *vg* 群速度
- v_i iモードの群速度
- ω クラッディング内での半径方向の伝搬定数
- wo 固有スポットサイズ
- w 角周波数

第1章 序

1.1 歴史的背景

光を利用する公衆通信方式の可能性については古くから誰しもが考えてきたことであるが、 その光源自体に公衆通信システムを形成させるまでの特性を持ったものがなく、夢物語に終わ らざるを得ない時代が長く続いた。1960 年6月に至ってルビー・レーザがMaimanによっ て発明されてから⁽¹⁾, 一躍その実用化について議論されるようになってきた。さらにその2年 後の1962 年には公衆光通信用システムには不可欠とされている発光ダイオード(*LED*) がKeyes と Quistによって製作され⁽²⁾, 引続いて Hall 等によって*GaAs* 半導体レーザに よるレーザ発振が確認されるに至って^(3~5), 光通信用の光源としてその将来は約束されたも のとなった。すなわち半導体レーザの持つ特質としてコヒーレント光であることは言うに及ば ず,外形が小さいこと、本来丈夫なこと、効率が高いこと、電流による直接変調が可能なこと等 から光通信用光源としては最適である。この光源に見合った伝送媒体としては当時はなく、空 間伝搬に頼らざるを得なかった。

論

このような状況の下で、1968 年に英国S. T. L. の kao は、当時ガラス・ファイバの 伝搬損失が1000dB/km 以上であったにもかかわらずガラスの純粋化によって実用に耐え 得るガラス・ファイバを製造できる見通しを発表した⁽⁶⁾。これに答えて1970 年になると米 国コーニングガラス会社のKapron,Keck,Maurer 等が伝搬損失20dB/kmの単ーモード 光ファイバを数百メートル製造するのに成功した⁽⁷⁾。さらに多モード光ファイバの伝搬損失を 4dB/km まで低減させるのに3年とかからなかった⁽⁸⁾。光ファイバが公衆光通信方式におけ る伝送媒体として適していることは誰の目にも明らかである。すなわち、細径無誘導、大容量 伝送可能,可撓性良好、低損失性等、通信用伝送路としては最適である。ここに半導体レーザ、 あるいはLEDを光源とし、光ファイバを伝送路とする光伝送システムの実用化に対して着実 な一歩を踏み出したのである。

一方日本においては電々公社電気通信研究所の平野等によってレンズ列による光伝送方式が 1968 年より実用化を指向して研究を開始されている⁽⁹⁾。引き続き1967 年より空間伝搬 の伝送実験が行われたが⁽¹⁰⁾,1970 年にKapron等によって20*dB/km*の光ファイバ が発表されると研究の重点は空間伝搬方式から光ファイバ伝送方式へと移行した。

-1 -

以来, 光ファイバの低損失化に重点をおいた研究が数多くなされ, 米国コーニング・ガラス 会社における火炎加水分解法⁽¹¹⁾ やベル電話研究所における化学気相法(Chemical Vapor Deposition, CVD)⁽¹²⁾ 等によって多モード光ファイバでは1973 年に既に2~4*dB/* km のものが報告されている。⁽¹³⁾ さらに1976 年に至って多モード光ファイバでは, バル クガラスのレーレ散乱による理論的極限値に近い 0.47 *dB/km* の値が 1.2 μm の波長で測定 されるようになった⁽¹⁴⁾。また単一モード光ファイバでも1977 年に 0.75 *dB/km* の値が 1.05 μm で報告されている⁽¹⁵⁾。

このように光ファイバにおける伝搬損失が理論的極限値近くまで低減化されてきた現在,研 究の重点はその伝送特性の解明および新しい構造の光ファイバの開発に移ってきた。光ファ イバの伝送特性はその屈折率の分布構造によって大きく変化する。数十Gb/sの伝送容量を持 つといわれる単一モード光ファイバを除いて多モード光ファイバは従来にない特質を持った伝 送路である。すなわち従来から使用されている同軸ケーブルや導波管にしても,伝搬可能なモ ード数は多くても実際に信号モードとして使用するモード数は一つであり,多モード光ファイ バのように多数のモードを信号モードとして使用する伝送路はない。このような多モード伝送 路の伝送特性上で一番問題になるのはモード間の群遅延差に寄因するモード分散である。多モ ード光ファイバの屈折率分布構造として一番簡単なステップ形多モード光ファイバに関する伝 送特性については従来より数多くの研究がなされ,厳密解を始めとして近似解法も種々報告さ れている^(16~19)。しかしながらモード分散を低減化する為にコア部分の屈折率分布に勾配を持 たせたグレーデッド形多モード光ファイバに関しては厳密な解析解が得られ難い為,種々の試 みがなされている^(20~23)。また多モード光ファイバの解析に非常に有効な手段となる幾何光学 近似と波動光学との対応も未だ明らかにされていない。

多モード伝送路において複数個のモードを信号モードとして利用する場合にはモード変換現 象の把握が不可欠である。モード変換現象についてはPersonick や Marcuse 等によってイ ンパルス応答波形のパルス幅が,モード変換がない場合には伝搬距離に比例して増加するが, モード変換が十分に起った時点では伝搬距離の¹/2 乗に比例して増加することが指適されてい る^(24, 25)。しかしながらモード変換が未だ十分に起っていない過渡状態での伝送特性,あるい は定常状態に達した時の各モードにおける伝送特性については未検討の部分が多いのが現状で ある。

光ファイバの伝送特性把握には理論検討もさることながら,伝送特性の測定技術が重要な役 割を持つ。光ファイバの伝搬損失低減化が主な研究課題となっていた時期には,測定法として

- 2 -

は吸収損失の測定^(26,27),散乱損失の測定^(28,29)が重要であったが,モード分散の低減化 を図る為には光ファイバの構造バラメータの測定あるいは伝達関数の測定技術が重要な課題と なってきた。特にモード分散を決定する,コアにおける屈折率分布形の測定法が重要である。 この測定法としては従来より干渉顕微鏡法^(30,31)によっていたが試料作製の煩雑さや測定精 度等に問題があった。これの解決法として,ニア・フィールド・バタン法⁽³²⁾,反射電力法⁽³³⁾ 等が開発されてきている。また伝送特性の測定法としてはバルス幅の短かい光バルスを入射さ せ出射バルス波形を観測してバルス応答を測定する方法が採られてきた⁽³⁴⁻³⁶⁾。またベースボ ンドの周波数特性として直接周波数領域での測定も行われるようになってきている^(37,38)。 しかるにグレーデッド形多モード光ファイバで伝送帯域の広いものや,単一モード光ファイバ についての伝送特性測定においては測定精度の不足,あるいは周波数領域での測定では変調帯 域の不足等によって測定が困難である。この問題に関する一解決法として同一ファイバ中を往 復伝搬させて測定するシャトルバルス法⁽³⁹⁾等が開発されているが今後さらに測定技術の向上 が望まれる。

1.2 本研究の目的

公衆光通信方式にとって信頼性,経済性等の面から光ファイバは不可欠である。使用する光 源との結合効率,ファイバ同士の接続,あるいは伝送方式上の問題等から最初に実用化される 光ファイバは多モード光ファイバである。この多モード伝送路を通信用伝送路として実用化す るためには,その伝送特性の理論的把握,さらに実際の伝送特性測定によって現実の伝送特性 把握が必要である。本研究の目的は多モード光ファイバ,特にグレーデッド形多モード光ファ イバの伝送特性を理論的に明らかにし,実際に測定される伝送特性と比較検討することによっ て実用の伝送路としての伝送特性を把握することにある。

多モード光ファイバの伝送帯域を広帯域化する要因としては,先ず第一に屈折率の分布形で あり,第二にモード変換現象である。これらの要因を考慮した場合の多モード光ファイバにお ける伝送帯域の極限値を明らかにする必要がある。

また多モード伝送路の伝送特性は励振条件に大きく依存するため,伝送路の使用条件によっ ては伝送特性の規定が困難となる。本研究においては伝送特性の理論的把握だけにとどまらず, 実用の伝送路としての伝送特性の規定法あるいは使用法についても検討する。

-3 -

1.3 本論文の構成

本研究は1972 年から日本電信電話公社武蔵野電気通信研究所で開始され、さらに1976 年から1977 年まで日本電信電話公社茨城電気通信研究所で引き継ぎ行われた研究成果を まとめたものである。本論文は以下に述べる構成となっている。

第2章 多モード光ファイバの基本特性

第3章 インコヒーレント光と多モード光ファイバの結合効率

第4章 伝送特性の測定法

第5章 入射励振条件と伝送特性

第6章 多モード光ファイバにおけるモード変換

第7章 接続部の伝送特性におよぼす影響

第8章 定常モード伝送特性

第9章 結 論

第2章は多モード光ファイバの伝送特性の基本となるステップ形多モード光ファイバについ て波動光学による解析を行っている。さらに幾何光学との対応,光線とモードとの対応をつ けることを試みている。またグレーデッド形多モード光ファイバについては波長分散まで考慮し たときの全分散について検討を加えている。

第3章では多モード光ファイバとLEDのようなインコヒーレント光源との結合効率について理論検討している。LEDのような光源と比較して実際のファイバのコア径は小さく結合効率は非常に小さい。本章では光学系による結合効率の改善について検討している。

第4章は実際の光ファイバについて伝送特性を測定する場合に必要となる測定法で新しく 開発,試作した方法について述べている。また伝送特性に大きく影響を与えるパラメータの測 定についてもふれている。

第5章では多モード伝送路に特有な,入射時の励振条件によって伝送特性(インパルス応答特性,ベースバンドの周波数応答特性)が受ける影響について理論的,実験的に検討している。

第6章においてモード変換現象の理論解析を行っている。モード変換現象の理論的把握を 容易にするために二つのモードのみが伝搬する2モード伝送路のモデルについて解析し,モー ド変換現象の過渡状態,および定常状態での伝送特性把握を行うことができる。

第7章では現実の多モード光ファイバを接続したときに問題となる伝送特性,特にモード変換

量について検討している。さらに接続点におけるモード変換量を一定値に規定する方法につい ても検討している。

第8章は以上の章の結論を盛り込んだ定常モード状態で長尺の伝送路を規定する方法につい て述べている。定常モード電力分布を得る定常モード励振器を試作し, これの使用で単位長の 伝送特性を偏差なく規定することを可能にした。さらに本章では単位長の伝送特性の線形結合 で,接続された長尺伝送特性を推定する方法について検討している。なお長尺伝送路の帯域改 善効果についても考察した。

第9章は得られた結論を述べている。

第2章 多モード光ファイバの基本特性

2.1 序

本章では以下の章での議論の根本概念である,光ファイバ内の光の振舞,すなわち電磁界分 布,分散特性等について解析する。多モード光ファイバを大きく分類するとステップ形多モー ド光ファイバとグレーデッド形多モード光ファイバに二大別される。本章では解析における厳 密解の得られるステップ形多モード光ファイバとグレーデッド形多モード光ファイバの基本形 である2乗分布形多モード光ファイバについて解析する。

ステップ形多モード光ファイバの伝送特性に関する研究は既に多くの著者によって報告されているが⁽¹⁶⁻¹⁹⁾,本章ではグレーデッド形多モード光ファイバの伝送特性との対比,基本特性の把握の目的である程度くわしく考察する。またステップ形,グレーデッド形両者について波動光学と幾何光学との対応についても言及する。

2.2 ステップ形多モード光ファイバの基本特性

2.2.1 電磁界分布

図 2.1 にステップ形多モード光ファイバの構造とその屈折率分布を示す。

図 2.1 ファイバ構造と屈折率分布

実際の光ファイバではクラッデイングの厚さは有限であるが, ここでは電磁界の浸み出しが 小さいとして b=∞ と仮定する。各々の媒質定数である。誘電率 ε, 屈折率 n, 透磁率 μ, 電気伝導率 σ を次式のように仮定する。

マクスウェルの方程式から波動方程式が導かれる。

$$\nabla \times \mathbf{H} = \partial \mathbf{D} / \partial t \qquad \qquad \cdots \cdots \cdots (2.2)$$

$$D = \varepsilon E \qquad \cdots \cdots \cdots (2.4)$$
$$B = \mu H \qquad \cdots \cdots (2.5)$$

E, H, D, Bは各々電界, 磁界の強度ベクトル, 電束, 磁束密度ベクトルを表す。(2.3), (2.5) 式より次式が導かれる。

$$\nabla \times (\nabla \times E) = -\mu \frac{\partial}{\partial t} (\nabla \times H)$$
(2.6)

さらにHを消去してEベクトルのみの式を得る。

これは変形されて

$$\nabla^{2} \mathbf{E} + \nabla \left[\mathbf{E} \cdot \frac{\nabla \epsilon}{\epsilon} \right] = \epsilon \mu \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \qquad \dots \dots \dots (2.8)$$

を得る。今,考慮している媒質中での誘電率の変化が小さい場合には∇ εの項が無視できて

以下の波動方程式を得る。

時間とz方向の変化が $expj(\omega t - \beta z)$ に比例すると仮定して、z成分を極座標表示すると次式で表される。

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + u^2 E_z = 0 \qquad \dots \dots \dots (2.10)$$

H_z 成分に対しても同様に次式が得られる。

ただし $u^2 = k^2 - \beta^2$, $k^2 = \omega^2 \epsilon \mu$ (2.12)

ここでβは z 方向の伝搬定数と呼ばれる。 (2.10), (2.11)式は r 成分とθ成分とに変数分離して解くことができる。

$$E_{\tau} = AF(\tau) e^{j\nu\theta} \qquad \cdots \cdots \cdots (2.13)$$

(2.10), (2.13) 式より次式を得る。

(2.14)式は2階のベッセルの微分方程式であり、2個の独立解を有する。ここでは伝搬モードを考慮しているためコアの中心で有限の値を持ち、半径rの大きい所で(r→∞)0に収束する解が妥当である。(2.14)式の解である円筒関数Z_ν(ur)のうちで上記条件を満足するものとして次のものがあげられる。

$$E_{\tau} = A J_{\nu}(u\tau) e^{j\nu\theta} \qquad \tau \leq a \qquad \cdots \cdots \cdots (2.15)$$

- 8 -

$$E_{z} = C H_{\nu}^{(1)} (jwr) e^{j\nu\theta} \qquad r \ge a \qquad \dots \dots \dots (2.16)$$
$$u = j w \qquad \dots \dots (2.17)$$

ただし J_{ν} および $H_{\nu}^{(1)}$ は各々第1種ベッセル関数および第1種ハンケル関数を表す。第1 種ハンケル関数は変形ベッセル関数 $K_{\nu}(wr)$ に比例するため(2.16)式は $K_{\nu}(wr)$ で表される。 また磁界 H_z についても同様に求まり次式のように表される。

$$H_{z} = B J_{\nu}(ur) e^{j\nu\theta} \qquad r \leq a \qquad \dots \dots \dots (2.18)$$
$$H_{z} = D H_{\nu}^{(1)} (jwr) e^{j\nu\theta} \qquad r \geq a \qquad \dots \dots \dots (2.19)$$

ただし

$$u^{2} = k_{1}^{2} - \beta^{2}, \ k_{1}^{2} = \omega^{2} \epsilon_{1} \mu_{0} \qquad \dots \dots \dots (2.20)$$
$$w^{2} = \beta^{2} - k_{2}^{2}, \ k_{2}^{2} = \omega^{2} \epsilon_{2} \mu_{0} \qquad \dots \dots \dots (2.21)$$

一方,電界,磁界のr, θ成分はマクスウエルの方程式から次式のようにz成分のみで表される。

 $E_{\tau} = -\frac{j}{u^{2}} \left(\beta \frac{\partial E_{z}}{\partial r} + \omega \mu \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} \right) \qquad \dots \dots \dots (2.22)$ $E_{\theta} = -\frac{j}{u^{2}} \left(\beta \frac{1}{r} \frac{\partial E_{z}}{\partial \theta} - \omega \mu \frac{\partial H_{z}}{\partial r} \right) \qquad \dots \dots \dots (2.23)$

$$H_{\theta} = -\frac{j}{u^2} \left(\beta \frac{1}{r} \frac{\partial H_z}{\partial \theta} + \omega \varepsilon \frac{\partial E_z}{\partial r}\right) \qquad \dots \dots \dots (2.25)$$

(2.22)~(2.25)式にEおよびHのz成分。 解 を代入して各成分は求まるが未定定数, A, B, C, Dが残る。これはコアとクラッデイングの境界(r=a)で電界, 磁界の切線成分が 連続であるという境界条件によって決定することができる。すなわち電界, 磁界の各, θ, z

- 9 -

成分がr = aの点で等しい条件によってA, B, C, Dを決定することができる。また同時に この条件を満足する場合には β が任意の値を取ることができず離散的な値を取る。いわゆる固 有値方程式(特性方程式)を満足する値, すなわち固有値(β)を決定することができる。以下 に求まった電磁界成分と固有値方程式を示す。(以下u, w, 及びrを規格化して示す。) \circ コア内の電磁界 ($R \leq 1$)

$$E_{z} = J_{\nu}(uR)g_{c} \qquad \dots \dots \dots (2.2.6)$$

$$E_{r} = -j \frac{\beta a}{u} \left[J_{\nu}'(uR) - P \frac{\nu}{uR} J_{\nu}(uR) \right] \cdot g_{c} \qquad \dots \dots \dots (2.2.7)$$

$$E_{\theta} = -j \frac{\beta a}{u} \left[P J_{\nu}'(uR) - \frac{\nu}{uR} J_{\nu}(uR) \right] \cdot g_{s} \qquad \dots \dots \dots (2.2.8)$$

$$H_{r} = j \sqrt{\frac{\epsilon_{1}}{\mu_{0}}} \frac{k_{1} a}{u} \left[P\left(\frac{\beta}{k_{1}}\right)^{2} J_{\nu}'(uR) - \frac{\nu}{uR} J_{\nu}(uR) \right] \cdot g_{s} \qquad \dots \dots (2.80)$$

$$H_{\theta} = -j \sqrt{\frac{\epsilon_1}{\mu_0}} \frac{k_1 a}{u} \left(J_{\nu}'(uR) - P\left(\frac{\beta}{k_1}\right)^2 \frac{\nu}{uR} J_{\nu}(uR) \right) \cdot g_c \qquad \dots \dots (2.31)$$

○ クラッデイング内の電磁界 ($R \ge 1$)

$$E_{z} = \eta_{3} K_{\nu}(wR) \cdot g_{c} \qquad \dots \dots (2.32)$$

$$E_{\theta} = j\eta_{3} \frac{\beta a}{w} \left[P K_{\nu}'(wR) - \frac{\nu}{wR} K_{\nu}(wR) \right] \cdot g_{s} \qquad \cdots \cdots \cdots (2.34)$$

$$H_{r} = -j\eta_{3} \sqrt{\frac{\varepsilon_{2}}{\mu_{0}}} \frac{k_{2}a}{w} \left[\left(\frac{\beta}{k_{2}} \right)^{2} P K_{\nu}'(wR) - \frac{\nu}{wR} K_{\nu}(wR) \right] \cdot g_{s} \cdots \cdots (2.36)$$

$$H_{\theta} = j\eta_{3} \sqrt{\frac{\epsilon_{2}}{\mu_{0}}} \frac{k_{2}a}{w} \left[K_{\nu}'(wR) - \left(\frac{\beta}{k_{2}}\right)^{2} \frac{\nu}{wR} P K_{\nu}(wR) \right] \cdot g_{c} \quad \dots \dots (2.37)$$

固有値方程式は次のようになる。

1

$$(\eta_{1}+\eta_{2}) \{\eta_{1}+(1-\Delta)^{2}\eta_{2}\} = \nu^{2} [1-(2\Delta-\Delta^{2})(\frac{u}{v})^{2}] (\frac{1}{u^{2}}+\frac{1}{w^{2}})^{2} \cdots \cdots (2.38)$$

$$v^{2} = u^{2} + w^{2} = k^{2} a^{2} (n_{1}^{2} - n_{2}^{2}) \qquad \dots \dots (2.4 \ 0)$$

$$g_{c} = c os(\nu \theta + \varphi_{\nu}) exp\{j(\omega t - \beta z)\} \qquad \dots \dots (2.42)$$

$$g_s = sin(\nu\theta + \varphi_{\nu}) exp\{j(\omega_t - \beta_z\} \qquad \dots \qquad (2.43)$$

$$\eta_{1} = \frac{J_{\nu}'(u)}{uJ_{\nu}(u)} , \quad \eta_{2} = \frac{K_{\nu}'(w)}{wK_{\nu}(w)} , \quad \eta_{3} = \frac{J_{\nu}(u)}{K_{\nu}(w)} \quad \dots \dots (2.44)$$

$$R = r / a , \qquad \Delta = 1 - n_2 / n_1$$

$$J_{\nu}'(x) = \frac{d}{dx} J_{\nu}(x) , \qquad K_{\nu}'(x) = \frac{d}{dx} K_{\nu}(x)$$

$$\cdots \cdots (2.46)$$

固有値方程式からステップ形多モード光ファイバには下記の4種のモードが存在することがわ かる。

(i)
$$\nu = 0 \sigma$$
 場合 $TM_{0,\mu} = - F$
(2.38)式より

$$(\eta_1 + \eta_2) \{ \eta_1 + (1 - \Delta)^2 \eta_2 \} = 0 \qquad \cdots \cdots \cdots (2.47)$$

(2.47)式は2つの場合に分けることができる。

 $\eta_1 + \eta_2 \neq 0$ の場合にはP = 0となり(2.29)式より $H_z = 0$ となる。すなわちz方向の磁界 成分がないモードで,これを $TM(Transverse\ Magnetic)$ モードと呼ぶ。このモードの特性 方程式は次式で与えられる。

$$\eta_1 + (1-\Delta)^2 \eta_2 = 0$$
(2.48)

遮断条件ではw = 0の条件が満足されるため(2.48)式よりvの値は次式で決定される。ここ でvは規格化周波数と呼ばれる。

$$J_0(v) = 0$$
(2.49)

(jj) $\nu = 0$ で $\eta_1 + \eta_2 = 0$ の場合, $TE_{0,\mu}$ モード

この場合には (2.15)式 $r_A = 0$ をとることができ $E_z = 0$ となる。すなわち z方向の電界 成分がないモードで、これを $TE(Transverse\ Electric)$ モードと呼ぶ。特性方程式は次式 で与えられる。

遮断条件は T M モードの場合と同じて, v の値は次式で決定される。

$$J_{0}(v) = 0$$
(2.51)

(ii) ν ≥ 1 , P=-1の場合, HE_{ν, μ} モード
 固有値方程式(2.38)式より

$$(\eta_{1} + \eta_{2}) \{\eta_{1} + (1 - \Delta)^{2} \eta_{2}\} = \nu^{2} [1 - (2\Delta - \Delta^{2}) (\frac{u}{v})^{2}] (\frac{1}{u^{2}} + \frac{1}{w^{2}})^{2} \dots (2.52)$$

(2.52)式において ω→0の時, 遮断条件が求まる。

-12-

$$\nu = 1$$
 の場合 $J_1(v) = 0$ $v \ge 0$ (2.53)

$$v \ge 2$$
 O 場合 $\frac{vJ_{\nu-2}(v)}{J_{\nu-1}(v)} = -(n-1)\frac{n_1^2 - n_2^2}{n_2^2}$ (2.54)

ただし、この場合には(2.45)式のPの値は – 1となる場合である。このモードに対しては、 電界、磁界のz成分が存在するので一般に $HE_{\nu,\mu}$ モードと呼ばれる。

 $(M \nu \ge 1, P = (n_1 / n_2)^2$ の場合, $EH_{\nu, \mu}$ モード 遮断条件は同じく(2.38)式より,

(2.55)式において $w \to 0$ でかつ $P = (n_1 / n_2)^2$ の場合には遮断条件は次式で与えられる。

ただし、v = 0の根は除外して考えるものとする。このモードに対しては電界、磁界成分とも 存在するので(ii)のモードと区別して $EH_{v,\mu}$ モードと呼ばれる。

2.2.2 群遅延時間

各モードの群速度は(2.38)式の固有値方程式から決定される伝搬定数を周波数で微分する ことによって求めることができる。以下に群速度 vg を求める。

$$v_{g} = \frac{d\omega}{d\beta}$$

$$= \frac{c}{n_{1}} \left(\frac{\beta a}{k_{1} a}\right) \frac{X - Y + \frac{2\nu^{2}}{(k_{1} a)^{2}} \left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)^{2} + 4\nu^{2} \left(\frac{\beta a}{k_{1} a}\right)^{2} \left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right) \left(\frac{1}{u^{4}} - \frac{1}{w^{4}}\right)}{X - (1 - d)^{2} Y + 2\nu^{2} \left(\frac{\beta a}{k_{1} a}\right)^{2} \left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)^{2} + 4\nu^{2} \left(\frac{\beta a}{k_{1} a}\right)^{2} \left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right) \left(\frac{1}{u^{4}} - \frac{(1 - d)^{2}}{w^{4}}\right)$$

.....(2.57)

$$X = \left(\frac{\nu^{2}}{u^{4}} - \frac{1}{u^{2}}\left(1 + 2\eta_{1}\right) - \eta_{1}^{2}\right) \left(2\eta_{1} + \left\{1 + (1 - \Delta)^{2}\right\}\eta_{2}\right) \qquad \dots \dots (2.58)$$

-13-

$$Y = \left(\frac{\nu^{2}}{w^{4}} + \frac{1}{w^{2}}(1 - 2\eta_{2}) - \eta_{2}^{2}\right) \left(2\eta_{2} + \left\{1 + (1 - d)^{2}\right\}\eta_{1}\right) \qquad \dots \dots (2.59)$$

図2.2に各モードにおける正規化周波数に対する群速度を示す。

図 2.2 規格化周波数 v に対する規格化群速度

縦軸における0は平面波がコア中を伝搬する群速度に対応し,1は平面波がクラッディング 中を伝搬する時の群速度に対応している。したがって群速度は遮断周波数に近づくにつれてク ラッディング中における平面波の群速度に近づくモードグループと,そうでないものとにわか れている。これは各モードの電力がコア中にどのくらい集中しているかを考慮すれば容易に理 解できる。

今あるνモードのコア部における電力の集中度ッを次式で求める。

$$\eta = \frac{P_{core}}{P_{total}} \qquad \dots \dots (2.61)$$

ファイバ断面における電力はポインティングベクトルSのz方向成分として求まる。

$$S_{z}(r) = \frac{1}{2} (E_{r}H_{\theta} - E_{\theta}H_{r})$$
(2.62)

$$= \frac{\beta a k_{1}^{2}}{2 \mu \omega u^{2}} A_{\nu}^{2} \times \begin{cases} J_{\nu}^{2} \mp 1 (u r / a) / J_{\nu}^{2} \mp 1 (u) & (r \leq a) \\ K_{\nu}^{2} \mp 1 (w r / a) / K_{\nu}^{2} \mp 1 (w) & (r \geq a) \end{cases}$$

·······(2.63)

ただし a, A_{ν} は各々コア径,比例定数を示す。複号は-がHE, + $\hbar EH$ モードに対応する。

(2.63)式より Pcore, Ptotal は次式で求まる。

(2.64), (2.65) 式より電力集中度 η は次式のように求まる。

ただし(2.66)式の導出で次式の関係を用いた。

$$u_{\nu}J_{\nu}/J_{\nu\mp 1} = \pm w_{\nu}K_{\nu}/K_{\nu\mp 1} \qquad \cdots \cdots (2.67)$$

遮断周波数に近い時(2.66)式は次の値をとる。

(i)
$$\nu > 2$$
 $\mathcal{O}_{HE_{\nu n}} = -\nu \eta = (\nu - 2)/(\nu - 1)$ (2.68)

遮断周波数からはなれた場合にはヵは全て次式で表される。

図2.3は各モードの電力のコア部への集中度をvに対して示したものである。この図からわか

図2.3 コア部の電力の集中度

るように HE_{11} , $TM_{0, \mu}$, $TE_{0, \mu}$, $HE_{2, \mu}$ モードについては遮断周波数でコアでのパワは0 になる。すなわちクラッデイングに電力は拡がることがわかる。したがって群速度もクラッデ イング中での平面波の群速度になることがわかる。

一方前記モード以外のモードは遮断周波数になってもコア部に電力が残ることを示している。 このことは幾何光学での光線とモードとの対応を考えると、前者はコアの中心を通る光線群(蛇 行波,meridional ray)に対応し、後者はコアの中心を通らないで回転しながら伝搬する 光線群(螺旋波,skew ray)に対応している。次にモード数の多い場合における群速度およ

-16-

び群遅延を考察する。ファイバの物理量(コア径,屈折率差比)を規格化するために次のよう な規格化周波数vおよび規格化伝搬定数b_nを定義する。

これより伝搬定数月は次式で表される。

ファイバ長L での群遅延時間 τ_g は次式で定義される。

$$\tau_g = L \frac{d\beta}{d\omega} = \frac{L}{c} \frac{d\beta}{dk} = \frac{Lv}{ck} \frac{d\beta}{dv} \qquad \dots \dots \dots \dots (2.75)$$

(2.76)式の第1項は材料分散の項を表す。ステップ形多モード光ファイバにおいては第2項のモード分散に比較して第1項は無視できるため、ここでは考慮しないことにする。
 (2.76)式の第2項は次のように求めることができる。

$$(2.73) \pm 1 b \frac{d(vb_n)}{dv} = 1 + (\frac{u}{v})^2 - 2 \frac{u}{v} \frac{du}{dv} \qquad \dots \dots \dots (2.78)$$

ここで du/dvは固有値方程式(2.38)式を微分して得ることができるが(2.38)式は近似的 に次式で表される。

$$-17-$$

(2.79)式をvで微分し, $u^2 + w^2 = v^2$ の関係を使うとdu/dv は次式で表される。

$$\frac{du}{dv} = \left(\frac{u}{v}\right) \left[1 - \frac{K_{v}^{2}(w)}{K_{v-1}(w) K_{v+1}(w)}\right] \qquad \dots \dots (2.80)$$

(2.80)式より遮断周波数で $\frac{d(vb_n)}{dv}$ の値は次式となる。

ただし ν≧2 の場合を示している。

遮断周波数から遠くはなれた場合には次式の値となる。

したがって最低次モードと最高次モードとの群遅延時間差 *Δ*τ は遮断周波数から離れた最低次 モードと,遮断周波数での最高次モードの群遅延時間の差として次のように求まる。

$$\Delta \tau = \tau_{g \ \nu \ m \ a \ x}^{-\tau} \tau_{g \ 0}$$
$$= \frac{L}{c} n_{1} \Delta \left(1 - \frac{2}{\nu_{m \ a \ x}} \right) \qquad \dots \dots (2.88)$$

モード数が多い場合の近似として $\nu_{max} \cong \nu$ とすると(2.88)式は近似的に次式で表される。

とこで比較のために幾何光学近似で群遅延時間差 Δτ を考察する。簡単のため蛇行波のみを考 えると伝搬可能な最高次モードに対応する 光線は次式 で表される臨界角 θ c に対応する。た だし θ はファイバの軸と光線とのなす角を表す。

n1 と n2 の値がほぼ等しい時には次の近似が成立する。

$$\theta_{a} \simeq \sqrt{2A}$$
(2.86)

したがって群遅延時間差 $\Delta \tau$ は $\theta=0$ の光線と $\theta=\theta_c$ の光線の伝搬時間差として次式のよう になる。

すなわち,幾何光学近似で求めた群遅延時間差4r は波動光学で求めた結果(2.84)式において v→∞とした場合に相当することがわかる。

2.2.3 モードボリューム

ッ値の非常に大きいファイバ, すなわちコア径 α, あるいは屈折率差比 4 の非常に大きいフ ァイバについては前節でも明らかになったように幾何光学近似が良く合う。ここでは » が大き いファイバにおける伝搬モードの総数, すなわちモードボリュームについて考察する。ファイ バにおける臨界角を θ。とすると,空気中での臨界角度は次のように表される。(図2.4参 照)

図 2.4 光線と角度

-19-

空気中における臨界角 θ , は次式のようになる。

ー方コア内を伝搬することのできる自由空間モードがとり得る伝搬角αは次式で与えられる。

ただし λ および α は使用波長およびコア半径を表す。 自由空間モードの偏波面は直交したものが2通り考えられることと.θを立体角になおして考 えることにより,伝搬可能な全モード数Nは次式で与えられる。

$$N = 2 \left(\theta_{c}' / \alpha \right)^{2}$$

$$= 2 \left(n_1 \sqrt{2\Delta} / \lambda / \pi_a \right)^2$$

$$= 2 \left(-\frac{\pi_{a} n_{1} \sqrt{2\Delta}}{\lambda} \right)^{2}$$

ところでファイバの規格化周波数」は次式で与えられる。

 $\dots \dots (2.91)$

したがってNは近似的に次式で与えられることがわかる。

$$N \simeq \frac{v^2}{2}$$
(2.93)

これよりモードボリュームは規格化周波数の2乗に比例することがわかる。

2.3 グレーデッド形多モード光ファイバの基本特性

2.3.1 固有モードと規格化直交性

集束性を持った不均質媒質中においては、その媒質固有の伝搬モードが存在する。本節では 伝搬方向と垂直断面内での屈折率分布が2乗分布形で変化する媒質の固有モードについて考察 する。実際のファイバではコア径は有限であるが、ここでは解析の簡易性から無限媒質を考慮 する。考慮する座標系および屈折率分布を図2.5 に示す。

図 2.5 座標系と屈折率分布

屈折率の分布を次式で仮定する。

 $\varepsilon(r) = \varepsilon(0) \{ 1 - (gr)^2 \}$ (2.94)

電界および磁界は次のマクスウエルの方程式で記述される。

 $\nabla \times H = \partial D / \partial t \qquad \dots \dots (2.95)$ $\nabla \times E = -\partial B / \partial t \qquad \dots \dots (2.96)$ $D = \varepsilon E \qquad \dots \dots (2.97)$ $B = \mu H \qquad \dots \dots (2.98)$

-21-

E, H, D, Bは各々電界,磁界の強度ベクトル,電束,磁束の密度ベクトルを表す。今考 慮している誘電媒質中の電界強度について考察する。(2.96)式からステップ形ファイバの時 と同様に次式の波動方程式を得る。

$$\nabla^2 E + k^2 E = 0$$
(2.9.9)

ただし時間の変化が exp(jωt)に比例すると仮定する。 (2.99)式を導くときに,考慮している媒質中では次の条件が満足されるものと仮定した。

$$grad \quad \epsilon \simeq o \qquad \qquad \cdots \cdots \cdots (2.1 \ 0 \ 1)$$

(2.101)式は考慮している媒質中での誘電率変化が無視できる場合である。(2.99)式の電 界を横方向の電界について円筒座標(r, θ, z) で記述すると次のように表される。

ここで、誘電率 ϵ は (2.94)式のように r 方向に 2 乗分布で変化する。 (2.94)式より k^2 は次式で表される。

 $k^{2} = k_{0}^{2} [1 - (gr)^{2}] \qquad \dots \dots (2.108)$ $k_{0}^{2} = \omega^{2} \mu_{0} \varepsilon(0) \qquad \dots \dots (2.104)$

ただし μ₀, ε(⁹) は各々真空中の透磁率,ファイバ軸での誘電率を表す。(2.102)式の 解の形を次式のように仮定する。

$$E(r, \theta, z) = R(r) \Theta(\theta) \cdot exp(-j\beta z) \qquad \dots \dots \dots (2.105)$$

$$-22-$$

(2.102),(2.105)式より

(2.106)式の解は次式となる。

$$\Theta = \cos \nu \theta \quad \forall t \quad \sin \nu \theta \qquad \cdots \cdots \cdots (2.107)$$

(2.107)式よりR(r) に関する方程式は常微分方程式の形に書ける。

ここでさらに次式の変換をする。

$$\xi = \alpha r^{2} , \qquad \alpha = g k_{0}$$

$$\eta = k_{0}^{2} - \beta^{2}(2.109)$$

$$R = \xi^{\nu/2} F(\xi) exp(-\xi/2)$$

(2.109) 式の変換を施こすと(2.108) 式は次式の微分方程式となる。

$$\xi F''(\xi) + (\nu + 1 - \xi)F'(\xi) + \frac{1}{4} (\eta / \alpha - 2 - 2\nu)F(\xi) = 0....(2.110)$$

(2.110)式の解はラゲールの陪多項式で与えられる。

ただし $\eta/\alpha = 2(2\mu+\nu+1)$ (2.112)

ことでラゲールの陪多項式 Lu^ν は次式で定義される。

$$L_{\mu}^{\nu} \equiv \frac{d^{\nu}}{dx^{\nu}} \left\{ e^{x} \frac{d^{\mu}}{dx^{\mu}} \left(e^{-x} x^{\mu} \right) \right\}$$

.....(2.113)

さらに次の変換をする。

以上より電界は次式のように求まる。

$$E(\tau, \theta, z) = E_0 \cdot (\tau/w_0)^{\nu} L_{\mu}^{\nu} (\tau^2/w_0^2) \{ \frac{\cos \nu \theta}{\sin \nu \theta} \}$$
$$\times exp\{-\frac{1}{2} (\tau/w_0)^2 - j\beta z\} \qquad \dots \dots (2.115)$$

$$\theta^{2} = k_{0}^{2} - 2 \left(2 \mu + \nu + 1 \right) g k_{0} \qquad \cdots \cdots \left(2.1 \ 1 \ 6 \right)$$

(2.115) 式より固有モードの電界はラゲールの陪多項式とガウス関数の積の形で変化することがわかる。また(2.114) 式で与えられる w_o は媒質固有のスポットサイズ(電界の拡がり $\pi e^{-1/2}$ になる距離)を表している。gは集束係数と呼称されるもので電磁界のとじ込めを規定する量を表している。

簡単のため以後固有スポットサイズw。 で規格化された r 変数 R を使用する。

(2.115)式を固有モード関数として使用するために、ここで(2.115)式の規格化と直交性 を検討する。任意のzにおける(R, θ)面上の電界の式を次式のように表す。

$$E_{\mu,\nu}(R,\theta) = A_{\mu,\nu} \cdot R^{\nu} L_{\mu}^{\nu}(R^2) \left\{ \begin{array}{cc} c \ o \ s \ \nu \ \theta \\ s \ i \ n \ \nu \ \theta \end{array} \right\} exp \left(-\frac{1}{2} R^2 \right) \qquad \dots \dots (2.1\ 1\ 8)$$

ただし A_{µ. ν} は規格化定数,

 $\left\{\begin{array}{ccc} cos & \nu\theta\\ sin & \nu\theta\end{array}\right\}$ は θ に関してそれぞれ,対称波 s,および反対称波 A を表す。 (2.118)式の(R, θ)面上での直交関係を調べるために $E_{A,\nu}$ と $E_{\mu',\nu'}$ の積について 面積分をおこなう。

$$\Phi(\nu_{i}, \nu_{j}') \equiv \begin{cases}
\sin \nu\theta & \sin \nu'\theta : i=A, j=A \\
\sin \nu\theta & \cos \nu'\theta : i=A, j=S \\
\cos \nu\theta & \sin \nu'\theta : i=S, j=A \\
\cos \nu\theta & \cos \nu'\theta : i=S, j=S
\end{cases} \dots \dots \dots (2.120)$$

まずθに関する積分をおこなう。

$$\nu \neq \nu' \quad \mathcal{O} \geq \mathfrak{F}, \quad \int_{0}^{2\pi} \mathcal{O} \left(\nu_{i}, \nu_{j}'\right) d\theta = 0 \qquad \dots \dots \dots (2.121)$$

$$\nu = \nu' \neq 0 \ \mathcal{O} \ \xi \ \xi, \ \int_{0}^{2\pi} \mathcal{O} \ (\nu_{i}, \nu_{j}') d\theta = \begin{cases} 0 : i \neq j \\ \pi : i = j \end{cases} \qquad \dots \dots (2.122)$$

$$\nu = \nu' = 0 \mathcal{O}$$
とき、 $\int_{0}^{2\pi} \mathcal{O}(\nu_{i}, \nu_{j}') d\theta = \{ \begin{array}{l} 0 : i = j = S 以外 \\ 2\pi : i = j = S \end{array} \dots \dots (2.123)$

したがって,

v = v'のときは(2.121)式より(2.119)式は0となる。 v = v'のとき

$$\int \int E_{\mu,\nu} \cdot E_{\mu',\nu'} \, dS = 0$$

次にv = v′ ≒ 0の場合について R に関 する積分をおこなう。

 $\nu_i = \nu_j = \nu$ として R の積分をおこなうと (2.119) 式より,

$$\int_{0}^{\infty} R^{2\nu} L_{\mu}^{\nu} (R^{2}) L_{\mu'}^{\nu} (R^{2}) exp(-R^{2}) R dR$$

$$= \frac{1}{2} \int_{0}^{\infty} \xi^{\nu} L_{\mu}^{\nu} (\xi) L_{\mu'}^{\nu} (\xi) exp(-\xi) d\xi \qquad \dots \dots (2.125)$$

$$= \begin{cases} 0 \qquad : \mu \neq \mu' \\ \frac{1}{2} \frac{\Gamma (\mu + \nu + 1)}{\mu !} : \mu = \mu' \end{cases}$$

ただしΓ(x)はガンマ関数を表す。 (2.1 2 2), (2.1 2 6) 式より(2.1 1 9)式は次のように表すことができる。

$$\int \int E_{\mu,\nu} \cdot E_{\mu',\nu'} \, dS$$

$$= \begin{cases} 0 & : \{ \nu_i \neq \nu_j' \} \lor \{ \mu \neq \mu' \} \lor \{ \nu_i = \nu_j' = 0 \\ i = j = S \bowtie \} \end{cases}$$

$$= \begin{cases} A_{\mu,\nu}^2 \frac{\pi}{2} \frac{\Gamma(\mu + \nu + 1)}{\mu !} : \{ \nu_i = \nu_j' \neq 0 \} \land \{ \mu = \mu' \} \\ A_{\mu,\nu}^2 \pi & : \{ \frac{\nu_i \neq \nu_j' = 0}{i = j = S} \} \land \{ \mu = \mu' \} \\ i = j = S \end{cases}$$
.....(2.127)

(2.127)式より規格化定数 A_{µ, ν} は次のように求まる。

$$A_{\mu, \nu} = \begin{cases} \sqrt{\frac{2}{\pi}} & \frac{\mu!}{\Gamma(\mu+\nu+1)} & : \nu \neq 0 \\ \\ \sqrt{\frac{1}{\pi}} & : \nu = 0 \\ \\ -26- \end{cases}$$

(2.127), (2.128) 式より(2.119)式は規格化されて次式のように表すことができる。

$$\int f E_{\mu, \nu} \cdot E_{\mu', \nu'} \, dS = \delta_{\mu\mu'} \, \delta_{\nu, \nu'} \, \delta_{i, j} \qquad \dots \dots \dots (2.129)$$

ただしるはクロネッカーのデルタ関数でサフィックスが一致した時のみ1で他では0である。 以上より $E_{\mu,\nu}$ は正規直交関数系を構成していることが証明された。したがって誘電率が2 乗分布形で変化する媒質中の固有モードは(2.118)式のラゲール・ガウス関数で表される。ち なみに(2.118)式で規定される固有モードの数例について,電力分布を図2.6-(a)~(b)に示 す。図中における数字は電力の強度を表している。この図においては光電力の強い部分が白 く見えるように計算機処理したもので量子化過程での若干の誤差を含んている。このパターン は円筒状集束形多モード光線路で観測されるパターンと良く対応がつく。

ν次モード次数が高くなるにつれてθ方向で電力の変化が多くなり,μ次モード次数が高く なるとr方向で電力の変化が多くなる。また高次モードになるにしたがって電力の拡がりが大 きくなることが図より明らかである。

2.3.2 群遅延とインパルス応答

多モード光ファイバにおいて群遅延が最小になる屈折率分布は2乗分布に近い形であること が川上等によって導かれている⁽²²⁾。すなわち蛇行波(meridional wave , μ 次数が大きく, かつ $\nu = 0$ の波に対応する)に対しては,

$$n^{2}(r) = n^{2}(0) \left[1 - (r/L)^{2} + \frac{2}{3} (r/L)^{4} + \dots \right] \qquad \dots \dots (2.130)$$

 $n(r) = n_0 / coshar$ (2.131)

の分布形の時µ次モード間の群遅延差は0となる。ただし、L,およびαは定数を表す。 一方,螺旋波(skew wave , ν次数が大きく,かつµ=0の波に対応する)に対しては

 $n^{2}(r) = n_{0}^{2} / [1 + (r/L)^{2}] \qquad \dots \dots (2.132)$

の分布形に対して ν 次モード間の群遅延差は0 となる。なお,一般的なモード次数(4 ν)

$$\boxtimes 2. \ 6 - (b) \quad \mu = 0$$

-28-

-29-

-30-

-31-

に対して群遅延を0にする屈折率分布は存在しないことがわかる。

この節では屈折率分布が次式で与えられるような、4次項の付加された2乗分布形光ファイ バについて考察する。

$$n(r) = \begin{cases} n_0 \left(1 - 2\Delta (r/a)^2 + \rho \Delta^2 (r/a)^4 \right)^{1/2} : r/a \le 1 \\ \\ n_0 \left(1 - 2\Delta + \rho \Delta^2 \right)^{1/2} : r/a \ge 1 \end{cases}$$
(2.133)

ただし ρは 4 次項係数を表す。

(2.133)式の媒質中での分散式は(2.116)式での摂動として次式のように表される。。

$$n_{0}^{2} k_{0}^{2} - \beta_{\mu\nu}^{2} = \frac{2n_{0} k_{0} \sqrt{2d}}{a} (2\mu + \nu + 1)$$
$$- \frac{\rho d}{2a^{2}} [6\mu^{2} + 6\mu(\nu + 1) + (\nu + 1)(\nu + 2)] \qquad \dots \dots (2.134)$$

ただしょ。は自由空間における波数を表し次式で定義される。

(j) 4次項係数を無視した場合 ρ = 0

(2.134)式での分散式は簡単化されて次式となる。

$$\left(1 - \frac{\beta_{\mu, \nu}^{2}}{n_{0}^{2} k_{0}^{2}}\right) = \frac{2 \mu + \nu + 1}{\frac{n_{0} k_{0} a}{\sqrt{2 d}}} \qquad \dots \dots (2.136)$$

(2.136)式を書き直して次式の形にする。

$$\delta = \frac{1}{2} \left(1 - \frac{\beta_{\mu, \nu}}{n_0^2 k_0^2} \right)$$

$$\mu_{max} \equiv \frac{1}{4} n_0 k_0 a \sqrt{2d}$$

$$\dots \dots \dots (2.138)$$

$$\nu_{max} \equiv \frac{1}{2} n_0 k_0 a \sqrt{2d}$$

伝搬定数βのとり得る値はコアの中心の屈折率およびクラッディング中での屈折率での平面 波の伝搬定数と対応して次式の値域をとる。

 $\beta: \left[n_0 k_0, n_0 k_0 (1-2d)^{\frac{1}{2}} \right] \qquad \dots \dots (2.139)$

(2.139)式のβの値域に対応してδのとり得る値域は次式のようになる。

 $\delta = (0, \Delta) \qquad \dots \dots \dots (2.140)$

(2.137)式と(2.140)式より μ および ν はそれぞれ0から最大値 μ_{max} , ν_{max} の値まて 変化することがわかる。次に群遅延時間 τ (μ , ν)は(2.136)式の分散式より以下のように求 めることができる。

ただしL, cはそれぞれ伝搬長および真空中での光速を表す。

$$\tau (\mu, \nu) = \frac{L}{c} \frac{1}{2 k_0 \beta} (n_0^2 k_0^2 + \beta^2)$$
$$= \frac{L n_0}{c} \frac{1 - \delta}{(1 - 2\delta)^{1/2}} \qquad \dots \dots \dots (2.142)$$

∂は(2.140)式よりたかだか 4のオーダであるから(2.142)式は近似的に次式のように 展開できる。

$$\tau (\mu, \nu) \cong \frac{Ln_0}{c} (1 + \frac{1}{2} \delta^2 + \delta^3 + \dots) \qquad \dots (2.143)$$

-方 \delta は (2.187) 式 より ム の形で表す ことができる。

$$\tau (\mu, \nu) \cong \frac{Ln_0}{c} [1 + \frac{1}{2} \Delta^2 (\frac{\mu}{\mu_{max}} + \frac{\nu}{\nu_{max}})^2 + 0 (\Delta^3)] \dots (2.144)$$

(2.144) 式は次の関係式を満足するモード群では群遅延時間が等しいことを示している。

$$u = 2\mu + \nu + 1 \qquad \dots (2.145)$$

ここで全モードが均一に励振された時のインパルス応答について考察する。(2.145)式より μ, νモードは u次のモード群として取り扱うことができることから, モード次数 u での電力 密度を d p(u) とすると次式の比例関係が成立する。

ここで最低次モードとの遅延時間差を t とした時のインパルス応答を I(t)とすると, I(t)は次式の形で表される。

tは(2.144)式よりuで表すことができる。

一方(2.147)式より全電力は u²_{max} に比例する。

$$P_{to \ tal} = u_{max}^{2} \qquad \dots \dots \dots (2.150)$$

(2.147)式から(2.150)式よりI(t) は次式のように求まる。

time

$$I(t) = \frac{c}{Ln_0} \cdot \frac{2}{\Lambda^2} = \frac{1}{\frac{\Lambda^2}{2}T_0} \qquad \dots \dots (2.151)$$

(2.151)式よりインパルス応答は t の値域全域にわたって一定となることがわかる。したが って時間波形は図 2:7 のようになる。

図 2.7 インパルス応答波形

(jj) 4次項係数までを考慮した場合

群遅延時間τ(μ,ν) は(2.144)式の導出と同様にして次式を得る。

$$\tau (\mu', \nu') = \frac{Ln_0}{c} \Big[1 + \frac{1}{2} (\mu' + \nu')^2 \Delta^2 - \frac{\rho}{8} (\frac{3}{2} \mu'^2 + 3\mu'\nu' + \nu'^2) \Delta^2 - (\mu', \nu') \Big\{ \frac{3}{2} (\mu' + \nu')^2 + \frac{\rho}{4} (\frac{3}{2} \mu'^2 + 3\mu'\nu' + \nu'^2) \Big\} \Delta^3 + 0 (\Delta^4) \Big]$$

最低次モードとの群遅延時間差 t (μ, ν)は次式となる。

$$t (\mu', \nu') = \frac{Ln_0}{c} \left[\frac{d^2}{2} \left\{ \left(1 - \frac{3}{8} \rho \right) \mu'^2 + 2 \left(1 - \frac{3}{8} \rho \right) \mu' \nu' + \left(1 - \frac{\rho}{4} \right) \nu'^2 \right\} - \frac{3}{2} d^3 \left\{ \left(\mu' + \nu' \right)^3 + \frac{\rho}{6} \left(\mu' + \nu' \right) \left(\frac{3}{2} \mu'^2 + 3 \mu' \nu' + \nu'^2 \right) \right\} \right] \dots \dots (2.153)$$

ただし µ', v' は規格化モード次数を表す。

ただし μ_{max} , ν_{max} は 4 次項係数を無視した場合の値(2.138)式を仮定している。 4 次項 係数の付加による μ_{max} , ν_{max} の変化は微小である。

(2.153) 式においてモード次数 μ' , ν' によらず t が一定ならばモード間の群遅延はなく なるが,屈折率の4次項係数 ρ の選択だけでは群遅延をなくすことはできない。ここで蛇行液 (meridional Wave) すなわち $\nu'=0$ のモード群に対しては(2.153) 式より $\rho=8/3$ の時,群遅延は小さくなる。

一方螺旋波(skew wave) すなわち $\nu' > \mu'$ のモード群に対しては一般的に群遅延をな くすことはできないが、 $\rho = 4$ に近い値で群遅延時間差は小さくなることがわかる。数値例と して図 2.8に $\rho = 4$ の場合の遅延時間差をモード次数に対してブロットしたものを示す。この 場合には (μ , ν)モードの方が(0,0)モードに比べて遅延時間が短かいため $d\tau(\mu, \nu)$ の値 としては負となる。したがってこの場合には高次モードほど群速度は早く、時間領域では早く 電力が到達する。この場合には屈折率分布の4次項係数 ρ が螺旋波(skew wave)に対して 遅延時間差を小さくする値($\rho = 4$)に設定されているため(μ , o)モード群の曲線の傾き が一番急峻である。

次に屈折率分布の4次項係数ρに対する群遅延時間差 $dr(\mu,\nu)$ の変化を図2.9に示す。蛇 行波(μ ,o)に対しては ρ = 8/3の点で $dr(\mu$,o)は0になるが、螺旋波(μ , $\nu \neq 0$)に 対しては ρ の一点で全てのモードの遅延時間差は0にならないことを表している。 ν の次数 が高くなるにつれてdrを0にする ρ の値は4に近づくことがわかる。またこの図においては、 傾きの急な直線ほどρに対するdrの変化が大きいことを示している。したがってモード次数

図 2.8 モード次数に対する群遅延時間差

が同程度の蛇行波と螺旋波とを比較した場合には螺旋波の方が4次項係数の変化に対して群遅 延時間差の変化がゆるやかである。このことは蛇行波に対するρのコントロールが重要である ・

群遅延時間差 $d\tau$ の等しいモード(μ , ν)を結んで得られる等遅延時間差曲線をモード平 面上に表したのが図 2.10である。 $\rho = 1$ (この場合には屈折率分布形が完全2乗形の場合 を表す),8/3,3,4の各々の場合について(a)から(d)まで示してある。(μ , ν)平面に かいてµ軸,あるいは ν 軸に平行な等遅延時間差曲線はモード次数 μ ,あるいは ν に関して遅 延時間差がないことを示す。したがって $\rho = 8/3$ の場合には μ 軸に, $\rho = 4$ の場合には ν 軸にほぼ等遅延時間差曲線は平行になっていることがわかる。また4次項係数の違いにより等 遅延時間差曲線群のパターンが大きく変化することが明確にわかる。

(2.153)式より最大遅延時間とインパルス応答波形を求めることができる。

図 2.11 は伝搬可能な全モードが均一に励振された場合のインパルス応答波形を示している。 最低次モード,(0,0)モードに対する群遅延時間差を横軸に目盛っている。この図からわ

図2.9 群遅延時間差 Δτ(μ,ν)の 4次項係数 ρ に対する変化

 $\boxtimes 2.10 - (a) \qquad \rho = 1$

遅延時間差 Δτ が等しいモード(μ,ν)を結んで得た等遅延時間差曲線

 \boxtimes 2. 1 0 - (b) $\rho = 8 \swarrow 3$

 \boxtimes 2.1 0 - (c) $\rho = 3$

-39-

 $\boxtimes 2.1 \ 0 - (d) \qquad \rho = 4$

2

ρは4次項係数を表す。 $n(R) = n_0 [1-2\Delta R^2 + \rho\Delta^2 R^4]^{1/2}$

-40-

かるように4次項係数の相違によってインパルス応答波形は大きく変わり、4次項係数が大き くなると、高次モード成分の電力は最低次モードの電力に比較して早く伝搬されることがわか る。このことは4次項係数が大きくなると屈折率分布の周辺部における屈折率が小さくなり、 高次モードの伝搬速度が早くなることから容易に理解することができる。4次項係数の各場合 における最大遅延時間はμ、νの各最大モード次数に対応して次のように求めることができる。

(i) ρ = 1の場合

(ii)
$$\rho = \frac{0}{3}$$
の場合

(前) ρ=3の場合

(I) ρ=4の場合

$$t_{max} = 0$$
, $t_{min} = T_0 \left(-\frac{\Delta^2}{4} - 3 \Delta^3 \right)$ (2.159)

2.3.3 波長分散を考慮した最適屈折率分布

前節では波長分散(使用波長の相異に基づく分散)を無視した場合の群遅延とインバルス応 答について屈折率分布形の4次項係数まで考慮した検討を行ってきたが、本節では波長分散 をも考慮して屈折率分布形の最適化について考察する。多モード光ファイバにおいてモード分 散を完全に消去する分布形は存在しないことが証明されている⁽²²⁾。したがって波長分散とモー ド分散の両者を合わせて最小にする屈折率の分布形が重要となる。両者を考慮した最適屈折率 分布形について報告した例は二,三あるが⁽⁴¹⁻⁴³⁾,屈折率の分布形が半径のべき乗で表され る分布形にしか適用できない。これは解析の方法が、WKB法において等しい伝搬定数を持つ モードは等しい群遅延時間を持つという仮定の下で計算する,いわゆる Gloge と Marcatili の方法⁽²³⁾に基づいているためである。この仮定条件は必ずしも常に成立するとは限らず⁽⁴⁴⁾, 屈折率分布形が半径のべき乗で表される場合において成立する。また他の方法についても報 告されているが⁽⁴⁵⁻⁴⁸⁾,ここでは摂動法で解析する⁽⁴⁹⁾。

(1) 群遅延時間

考察する屈折率分布形は前節で取り扱かったものと同様に4次項まで考慮した集束形を検討する。

$$n(r) = \begin{cases} n_0 \left(1 - 2\Delta (r/a)^2 + \rho \Delta^2 (r/a)^4 \right)^{1/2} & : r/a \leq 1 \\ & & \\ n_0 \left(1 - 2\Delta + \rho \Delta^2 \right)^{1/2} & : r/a \geq 1 \end{cases}$$
.....(2.160)

ただし、各パラメータは前節で使用したものと同じとする。

(2.160)式の媒質中での分散方程式は次式で与えられる⁽²²⁾。

$$n_{0}^{2} k_{0}^{2} - \beta_{\mu}, \nu^{2} = \frac{2n_{0} k_{0} \sqrt{2d}}{a} (2\mu + \nu + 1)$$
$$- \frac{\rho d}{2a^{2}} \left[6\mu^{2} + 6\mu (\nu + 1) + (\nu + 1) (\nu + 2) \right] \dots \dots (2.161)$$
(再 揭)

ただしμ, νは各々半径方向及びθ方向のモード次数を表す。(2.161)式より群遅延時間 τ(μ, ν)は次式のように求まる。

-42-

 $N_{0} \equiv n_{0} - \lambda_{0} n_{0}' \qquad \dots \dots (2.163)$ $A \equiv \mu' + \nu' \qquad \dots \dots (2.164)$ $B \equiv \frac{3}{2} \mu'^{2} + 3\mu'\nu' + \nu'^{2} \qquad \dots \dots (2.165)$ $\mu' \equiv \mu / \mu_{max} , \quad \nu' \equiv \nu / \nu_{max} \qquad \dots \dots (2.166)$ $\mu_{max} \equiv \frac{1}{4} n_{0} k_{0} a \sqrt{2d} = \frac{1}{4} v \qquad \dots \dots (2.167)$ $\nu_{max} \equiv \frac{1}{2} n_{0} k_{0} a \sqrt{2d} = \frac{1}{2} v \qquad \dots \dots (2.168)$

ただしN, Lは各々群屈折率及びファイバ長を、 Δ' は屈折率差比 Δ の波長微分を表している。(2.162)式から、 τ が $\mu' + \nu'$ だけの関数で表されるならば τ は β だけの関数として表現できることがわかる。この条件は $\rho = 0$ の場合に満足される。 $\rho = 0$ 以外では上記条件は満足されない。このことはモード空間において等 β 曲線と等 τ 曲線は一致しないことを意味している。

最低次モードの群遅延時間 τ (0,0)との差t(μ , ν)は次式で表される。

$$t(\mu,\nu) = \tau(\mu,\nu) - \tau(0,0)$$

$$= \frac{LN_0}{c} \left[\varepsilon A \Delta + \left\{ \left(\frac{1}{2} + \varepsilon \right) A^2 - \left(\frac{\rho}{4} + \varepsilon + \frac{\rho}{8} \right) B \right\} \Delta^2 + O(\Delta^3) \right] \dots (2.170)$$

前節で検討したように $\epsilon = 0$ の場合には、 $\nu = 0$ のモード群に対しては $\rho = 8/3$ が、 $\mu = 0$ のモード群に対しては $\rho = 4$ の場合が群遅延差を最小にする。

(ii) 全分散の表現式

(2.170)式から得られるインパルス応答波形は各パラメータの相違によって異なった波形。

になる。本節では rms幅(root mean square width)で評価する。波長分散を考慮した全 分散の rms幅 o は次式で与えられる。

$$\sigma^{2} = \langle \tau^{2}(\lambda_{0}) \rangle - \langle \tau(\lambda_{0}) \rangle^{2}$$

$$+ \frac{\sigma_{\lambda}^{2}}{\lambda_{0}^{2}} \left[\langle \lambda_{0}^{2} \tau'^{2}(\lambda_{0}) \rangle + \langle \tau(\lambda_{0}) \lambda_{0}^{2} \tau''(\lambda_{0}) \rangle - \langle \tau(\lambda_{0}) \rangle \langle \lambda_{0}^{2} \tau''(\lambda_{0}) \rangle \right]$$

$$\dots \dots \dots (2.171)$$

ただし σ_{λ} は光源の τms スペクトラム幅, τ' , τ'' は各々 τ の1次及び2次の波長徴分を表している。(2.171)式はさらにモード分散 σ_{modal} , 波長分散 σ_{wave} 及びクロス項に分離される。

$$\sigma^{2}_{total} = \sigma^{2}_{modal} + \sigma^{2}_{wave} + \sigma^{2}_{cross} \qquad \cdots \cdots \cdots (2.172)$$

$$\sigma^{2}_{modal} = \langle \tau^{2}(\lambda_{0}) \rangle^{-} \langle \tau(\lambda_{0}) \rangle^{2} \qquad \qquad \cdots \cdots (2.173)$$

$$\sigma_{wave}^{2} = \frac{\sigma_{\lambda}^{2}}{\lambda_{0}^{2}} < \lambda_{0}^{2} \tau'^{2} (\lambda_{0}) > \cdots \cdots (2.174)$$

$$\sigma_{c\tau oss}^{2} = \frac{\sigma_{\lambda}}{\lambda_{0}^{2}} \left[\langle \tau(\lambda_{0}) \lambda_{0}^{2} \tau''(\lambda_{0}) \rangle - \langle \tau(\lambda_{0}) \rangle \langle \lambda_{0}^{2} \tau''(\lambda_{0}) \rangle \right] \dots (2.175)$$

(2.175) 式のクロス項の値は他の項の値と比較して非常に小さい為、ここでは無視して検討 する。波長分散の項はさらに分離して表すことができ、材料分散 $\sigma_{naterial}$, 構造分散 σ_{guide} 及びクロス項 σ_{cross} となる。

$$\sigma^{2}_{wave} = \sigma^{2}_{material} + \sigma^{2}_{guide} + \sigma^{2}_{cross} \qquad \dots \dots (2.176)$$

$$\sigma^{2}_{material} = \frac{\sigma^{2}_{\lambda}}{\lambda_{0}^{2}} \left(\frac{L}{c} \lambda_{0}^{2} n_{0}''\right)^{2} \qquad \dots \dots (2.177)$$

$$\sigma_{guide}^{2} = \frac{\sigma_{\lambda}^{2}}{\lambda_{0}^{2}} < (\lambda_{0} \delta \tau'_{\mu, \nu})^{2} > \qquad \dots \dots (2.178)$$

ただしての微分において次式の近似式を使っている。

(2.176)式から明らかなようにクロス項の符号が負ならば波長分散は小さくなる。この符号 はシングルモード領域においては正となり、多モード領域においては負となる。実際の多モー ド光ファイバの場合にはクロス項の値は非常に小さくなり、あまり寄与しない。

a モード分散による rms幅

今伝搬される各モードが均一に励振された場合のモード分散による rms 幅を求める。

 $\sigma_{madal}^{2} = \langle t^{2} \rangle - \langle t \rangle^{2}$ (2.181)

(2.182), (2.183) 式より o_{modal} は次式のように求まる。

$$\sigma_{mod \ a \ l} = \frac{LN_0}{c} \left[\frac{1}{18} \ \epsilon^2 \ d^2 + \frac{2}{15} \ \epsilon \left(\epsilon + \frac{1}{2} \right) \left(1 - \frac{\rho}{3} \right) \ d^3 \right] + \left(\epsilon + \frac{1}{2} \right)^2 \left(\frac{1}{12} - \frac{\rho}{18} + \frac{7}{720} \ \rho^2 \right) \ d^4 \right]^{1/2} \qquad \dots \dots (2.184)$$

$$-45-$$

(2.184)式からモード分散を最小にするρの値は次のように求まる。

(2.185) 式よりモード分散を最小にする ρ の値 $\rho_{opt(modal)}$ は次式となる。

$$\rho_{opt(modal)} = \frac{20}{7} \left(1 + \frac{8}{5} \frac{\epsilon}{4} \frac{1}{1+2\epsilon} \right) \qquad \dots \dots \dots (2.186)$$

ε = 0 の場合には前節の値 20/7 と一致する。

b 波長分散による rms幅

(2.176)式から(2.179)式で定義される波長分散のrms幅は(2.162)式の波長微分から求めることができる。

ただし
$$-\frac{L}{c} \lambda_0 n_0'' \delta \tau_{\mu,\nu}$$
 は無視した。
 $\delta \tau_{\mu,\nu} = \frac{LN_0}{c} \left[\epsilon A d' + (1+2\epsilon) \left(A^2 - \frac{\rho}{4} B \right) d d' \right]$ (2.188)
 $<\lambda_0 \delta \tau_{\mu,\nu} > = \frac{LN_0}{c} \lambda_0 d' \left[\frac{2}{3} \epsilon + \frac{1}{2} (1+2\epsilon) \left(1 - \frac{\rho}{4} \right) d \right]$ (2.189)
 $<(\lambda_0 \delta \tau_{\mu,\nu})^2 > = \frac{L^2 N_0^2}{c^2} \lambda_0^2 d'^2 \left[\frac{\epsilon^2}{2} + \frac{4}{5} \epsilon (1+2\epsilon) \left(1 - \frac{\rho}{3} \right) d$
 $+ (1+2\epsilon)^2 \left(\frac{1}{3} - \frac{2}{9} \rho + \frac{3}{80} \rho^2 \right) d^2 \right]$ (2.190)

以上より波長分散による rms幅は次のように求まる。

$$\sigma_{wave} = \frac{\sigma_{\lambda}}{\lambda_{0}} \frac{L}{c} \left[\left(\lambda_{0}^{2} n_{0}'' \right)^{2} - 2 \left(\lambda_{0}^{2} n_{0}'' \right) N_{0} \left(\lambda_{0} \Delta' \right) \left\{ \frac{2}{3} \epsilon \right\}$$

-46-

$$+\frac{1}{2}(1+2\varepsilon)(1-\frac{\rho}{4})\Delta + N_{0}^{2}(\lambda_{0}\Delta')^{2} \left\{\frac{\varepsilon^{2}}{2} + \frac{4}{5}\varepsilon(1+2\varepsilon)(1-\frac{\rho}{3})\Delta + (1+2\varepsilon)^{2}(\frac{1}{3}-\frac{2}{9}\rho + \frac{3}{80}\rho^{2})\Delta^{2}\right\}^{1/2}$$
.....(2.191)

(2.184), (2.191) 式より全分散を考慮した rms幅 ototal を求めることができる。

(ii) 数值計算結果

実際のファイバについて全分散を計算するためにはドーブされた石英の分散カーブを知る必要がある。ここではCVD法で製作されたドーブ石英について測定された屈折率のデータ⁽⁵⁰⁾ より分散カーブを求める。以下に示す4種類のドーブされたガラスについて検討する。各々についてA, B, C, Dと呼称し、ドーバント濃度は次の通りである。

A: 7 mol % G_eO₂ ドープされた石英 B:12 mol % B₂O₃ "

 $C: 8 mol # G_eO_2 6 mol # B_2O_3 ドープされた石英$

 $D: 4 mol % P_2O_5 ドープされた石英$

これらのドープされた石英と純粋石英を使用してファイバを作製するとすると、A、C、D のドープされた石英はコアとし、純粋石英をクラッディングとした構造となる。またポロンの ドープされた石英は純粋石英の屈折率より低いため上記構成とは逆の関係でファイバを構成す る。

各々のバルクガラスについて屈折率は476nmから1020nm までの8ポイントについて測定されている。図 2.12 は3項まで考慮したセルマイヤーの式にフィットさせた屈折率の分散 カープを示している。セルマイヤーの式を次に示す。

$$n^{2} = 1 + \sum_{i}^{3} \frac{A_{i} \lambda^{2}}{\lambda^{2} - B_{i}} \qquad \dots \dots (2.192)$$

測定データから決定される(2.192)式を使って $\lambda dn/d\lambda$, および $\lambda^2 d^2n/d\lambda^2$ を求めること ができる。図 2.13 は4種のドーブされた ガラスについての $\lambda^2 d^2n/d\lambda^2$ を示している。この 場合には4本のカーブはほとんど差がなく図中では一本のカープで示されている。 $\lambda^2 d^2n/d\lambda^2$

-47-

図 2.12 各種のドープされたガラスの屈折率分散カーブ

の値は材料分散に直接比例する。との値の符号は図から分かるように 1.2 7 µm の近辺で正か ら負へ変化する。また純粋石英と比較するとドープされたガラスの $\lambda^2 d^2 n/d\lambda^2$ の値はやや大 きくなる。本節で定義した屈折率分布形において,屈折率差比 4 は次式で表される。

図 2.18 屈折率分散の二次微分

図 2.14は、図 2.12の屈折率の分散カーブから(2.193)式を使って求めた屈折率差比の波 長依存性を示している。ボロン・ドーブのファイバ(B_2O_3 doped fiber)は dの波長依存 性が小さいことがわかる。他のドーバントを含んだファイバについては全波長域で約5 % 程度 減少する傾向にある。図 2.15は(2.193)式を微分して得られる、 $\lambda dA/d\lambda$ の波長依存性 をプロットしたものである。この図においてはボロンドーブのファイバの波長依存性が小さい 傾向がさらに顕著である。

図 2.1.4 屈折率差比 4 の波長依存性

図 2.15 $\lambda \frac{d \Delta}{d \lambda}$ の波長依存性

以上の測定データをもとにして各分散を計算する。図 2.16は(2.184)式から求めた各フ アイバにおけるモード分散の rms幅を,4次項係数ρを変化させてプロットしたものである。

-49-

前述したように各ファイバにおける最小モード分散は(2.186)式で定義される ρ_{opt} (modal) の値で生じている。各ファイバでの最小モード分散の rms幅は次のようになる。

図 2.16 モード分散の 4次項係数依存性

Fiber	⊿ (%)	Minimum σ_{modal} $\lambda = 0.82 \mu m$
A	1.02	24.0 psec
В	0.55	3.1 "
С	0.45	21.0 "
D	0.2 2	19.0 //

ポロン・ドーブのファイバを除いて,最適ρの近辺でのモード分散の変化は屈折率差比 4 に 比例して急峻になる。またモード分散の最小値はポロン・ドーブのファイバで起ることがわか る。

図 2.12 から図 2.15 までの分散データから波長分散のrms幅を求めることができる。ここ で使用光源として以下の三種類を考える。すなわち光源のスペクトラム拡がりのrms幅が 2 Å (これは光源のスペクトル拡がりがガウシアンであると仮定すると 1/e になる拡がり幅が 8

-50-

Åとなり半導体レーザ光源に相当する。)10Å(この場合にはスーパールミネッセンスダイ オードSLDに相当する)及び100Å(この場合は通常のLEDに相当する)について数値 計算する。図 2.17 はこれらの計算結果を示している。各々の場合における全分散による rms 幅の最小値は次に示す通りである。

図 2.17-(b) 全分散の rms幅-4次項係数 (光源のスペクトル拡がり σ₂=10Å, 100Å)

Fiber	⊿ (%)	Minimum σ_{total} $\lambda = 0.82 \mu m$		
		$\sigma_{\lambda} = 2 \overset{\circ}{A}$	$\sigma_{\lambda} = 10 \text{ Å}$	$\sigma_{\lambda} = 100 \text{\AA}$
A	1.0 2	30 psec	105 psec	1.00 nsec
В	0.55	19 ″	97 ″	0.96 "
С	0.4 5	29 "	100 "	0.9 9 ″
D	0.2 2	27 "	99	0.9 9 "

これらの結果は、屈折率の分布形が2乗形に近いファイバにおいては波長分散効果が非常に 大きいことを示している。屈折率分布の4次項係数が最適値に設定された場合には、光源のス ベクトル拡がり σ_{λ} が2Åの時でさえ波長分散効果がモード分散効果を上まわる。図2.18 は 光源のスペクトル拡がり σ_{λ} が10Åの場合の最小分散値とその時の4次項係数を波長に対し てブロットしたものである。図2.18は屈折率差比 dの小さいファイバにおいては短波長側で 最適4次項係数 pが大きく変化することを示している。すなわち,最適4次項係数は λdd/dλ の項に大きく依存していることを示している。

ポロンドーブのファイバにおける λd は小さく, ゲルマニウム・ドーブのファイバでは λd' と d がかなり大きい為に最適 4次項係数は波長に対してあまり大きく変化しないものと解釈で

図2.18 全分散の最小値と4次項係数の波長依存性

きる。また, ポロン・ドーブのファイバでは屈折率差の割に全分散を小さくすることができる 事を示唆している。

以上の検討結果から次の結論を導くことができる。

- (1) 全分散を考慮した時の最適4次項係数は、短波長側を除いてモード分散を最小にする4 次項係数から、あまり大きくはずれない。
- (2) 全分散が最小となる波長は1.30 μm の近傍である。
- (3) ポロン・ドープ・ファイバの屈折率分布分散(ここでは λ Δ'を呼称する)は小さく、
 かつ全分散も小さい値とすることができる。

2.3.4 モードボリューム

ステップ形多モード光ファイバにおいて規格化周波数 v 値の非常に大きい場合におけるモードボリュームは (2.91)式で得ることができた。

グレーデッド形多モード光ファイバにおいてもモード数の非常に多い場合についてモードボ リュームを近似的に求めることができる。簡単のため2乗分布形の場合について求める。

(2.137) 式より µ'と v' は次式の関係を満足する。

したがって伝搬可能なモード(μ, ν)は図 2.19 で示される三角形の領域内に存在する。

図 2.19 伝搬可能なモードの領域

 μ , $\nu = - \kappa 数 0 最大値 \mu_{max}$, ν_{max} は(2.138)式で得られているから全モード数 N (モードボリューム)は次のように求めることができる。各モード(μ , ν)は偶モード(even mode), 奇モード(odd mode) および偏波方向に関して2個の縮退モードが考えられる ことを考慮して次式で計算する。

$$N = 4 \times \frac{1}{2} \mu_{max} \times \nu_{max} \qquad \dots \dots (2.195)$$

$$\mu_{max} \equiv \frac{1}{4} n_0 k_0 a \sqrt{24}$$

$$\nu_{max} \equiv \frac{1}{2} n_0 k_0 a \sqrt{24}$$

$$J$$

-54-

$$N = \frac{1}{4} n_0^2 k_0^2 a^2 2 \Delta$$

ととでステップ形多モード光ファイバで定義した規格化周波数vを使用して(2.196)式は次 式の形で表される。

. . .

ー方ステップ形多モード光ファイバにおけるモードボリュームは 1/2 v² であることから 2 乗分 布形多モード光ファイバにおけるモードボリュームはステップ形多モード光ファイバの半分に なっていることがわかる。

2.3.5 幾何光学による解析

との節では2次元モデルによる幾何光学での群遅延時間を検討する。 光線方程式は次式の形で与えられる⁽⁵¹⁾。

$$\frac{d}{ds} \left(n\frac{dr}{ds}\right) = gradn$$

 $\dots \dots (2.198)$

ただし dsは線素, rは光線のペクトルを表し座標系を図 2.20 のようにとる。

図 2.20 座 標 系

各成分に分けると(2.198)式は次式の形で表される。

(2.199) 式より初期条件をx = 0 で θ 方向の光線と考えると,

$$n \frac{dz}{ds} = n_0 \cos \theta \qquad \dots \dots (2.200)$$

$$\therefore \qquad n \frac{d}{ds} = n_0 \cos \theta \frac{d}{dz} \qquad \dots \dots (2.201)$$

(2.199)式と(2.201)式より

ととて屈折率の分布形を次式で仮定する。

 $n^{2}(x) = n_{0}^{2} (1-2\Delta x^{2})$ (2.203)

(2.202), (2.203) 式より

(2.204)式を初期条件 $\frac{dx}{dz}\Big|_{z=0} = tan \theta$ の下で解くと次式の解を得る。

(2.205) 式はθにより周期が異なることを意味している。すなわちθが大きくなると 周期が 短くなる。 次に(2.205)式よりθに対する群遅延時間を求める。

$$dt = \frac{n}{c} ds$$
 より半周期にかかる時間は次式で与えられる。

このとき $z = \frac{cos}{\sqrt{2A}} \pi$ より距離 L 伝搬するのに要する群遅延時間は次式で求まる。

ここで $\theta = 0$ に相当する光線の群遅延時間は次式で与えられる。

これは最低次モードの群遅延時間に相当する。

今最低次モードの群遅延を差し引いた群遅延時間差でを求めると

(2.209)式が求める群遅延時間差を与える式である。 ここで屈折率差がΔとなる群遅延時間差を求める。屈折率差がΔの場合に伝搬され得る最大の 伝搬角(ファイバ軸となす角 θ_c)は次式で与えられる。

 $\theta_c = c \, o \, s^{-1} \, (1 - d)$ (2.210)

(2.209), (2.210) 式より最大群遅延時間差 4元 を求めると近似的に次式で表される。

(2.211)式は波動光学より求めた結果の(2.146)式と4の2次のオーダまでを考慮すると 一致する。 2.3.6 光線とモードとの対応

との節では2乗分布形多モード光ファイバにおける光線と固有モードとの対応について考察 する。

2 乗分布形多モード光ファイバ内における光線は平面内を蛇行しながら伝搬する光線 (meridional ray) と螺旋状に回転しながら伝搬する光線(akew ray) とにわけられ る。図 2.21 に示すような円柱座標系における光線方程式は次式で表される。

図 2.21 3 次元モデルの座標系

$$\frac{d}{ds}\left(n\frac{dr}{ds}\right) = gradn \qquad (\exists t) \qquad \dots (2.212)$$

屈折率分布関数 n が r だけの関数とすると(2.212)式は次のように分離して書くことができる。

$$\frac{d}{ds} \left(n \frac{dr}{ds}\right) - nr \left(\frac{d\theta}{ds}\right)^2 = \frac{dn}{dr} \quad : \quad r \qquad \qquad \dots \dots \dots (2.213)$$

$$n \frac{dr}{ds} \frac{d\theta}{ds} + \frac{d}{ds} \left(nr \frac{d\theta}{ds}\right) = 0 \quad : \quad \theta \qquad \qquad \dots \dots \dots (2.214)$$

$$\frac{d}{ds} \left(n \frac{dz}{ds}\right) = 0 \qquad \quad : \quad z \qquad \qquad \dots \dots \dots (2.215)$$

(2.214)式に r をかけて整理すると,

今回 2.21 に示すように P点における初期条件を $(r_0, \alpha_0, \beta_0, r_0)$ とする。ただし α_0, β_0, r_0 は各々 $\overrightarrow{r_0}$ と x軸, y軸, z軸との角度を表わす。(2.216)式は初期条件を入れて次のようにかける。

ただし noはP点におけるnの値を示す。同様に(2.215)式に初期条件を入れて,

を得る。(2.217),(2.218)式より次式が得られる。

. .

(2.213)式において屈折率分布関数nはrのみの関数であることに注意して変形すると次式のように表すことができる。

(2.219), (2.220) 式より次式を得る。

ここで屈折率分布関数を4次項までを考慮して次式のように仮定する。

 $n^{2}(R) = n_{0}^{2}(1-2dR^{2}+\rho d^{2}R^{4})$ $0 \le R \le 1$ (2.2.2.2)

ただし Rはコア半径 a で規格化された規格化半径 R = r/a, dはコアの中心と R = 1との屈折 率差比 ($d = (n_1 - n_2)/n_1$) を表す。また ρ は 4次項係数を表すものである。 (2.221) 式を規格化して整理すると次のようになる。

 $\frac{d^{2}R}{dZ^{2}} + g(R) = 0 \qquad \dots \dots (2.223)$ $g(R) = c_{2}(R - \rho \Delta R^{3}) - \frac{c_{1}}{R^{3}} \qquad \dots \dots (2.224)$ $c_{1} \equiv (r_{0}/a)^{2} sec^{2}r_{0} cos^{2}\beta_{0}$ $c_{2} \equiv 2\Delta sec^{2}r_{0}/(n_{0}/n_{1})^{2} \qquad \dots \dots (2.225)$

ただしZ はコア半径で規格化された規格化 z 座標である。関数G(R),E(R)を次のように定 義する。

- $G(R) = \int_{0}^{R} g(R) dR \qquad \dots \dots \dots (2.2\ 2\ 6\)$
- $E(R) = \frac{1}{2} \left(\frac{dR}{dZ}\right)^2 + G(R) \qquad \cdots \cdots \cdots (2.2\ 2\ 7\)$

(2.224)式より(2.226)式は次のようになる。

(2.227)式はポテンシャル・ウエル中の質点の運動方程式で, Eはトータル・エネルギ, 関数G(R)はポテンシャルウエル関数とみなすことができる。図2.22は(2.228)式の一例を示したものである。

(2.223)式より関数E(R)は次式を満足する。

$$\frac{dE}{dR} = \frac{d^2R}{dZ^2} + g(R) = 0 \qquad \dots \dots (2.229)$$

(2.229)式より、図2.22 において横軸に平行な直線群は解の集合を与えることがわかる。

図2.22 螺旋波に対するポテンシャルウエル

したがってコア内にトラップされる光線はボテンシャルウエル内を振動することがわかる。グ レーデッド形ファイバ内の光線は一般的にはェ方向に進行し、かつ中心軸の周りを回転しなが らその距離(R)を変えて伝搬する。図 2.22 において R。の点から出発した光線はRの最大値 R_{max} と Rの最小値 R_{min} の間を振動しながら伝搬する。この光線の振舞はシュレーディンガー ーの波動方程式における粒子の振舞と同様であり、波動方程式の近似解法WKB法が適用でき る。グレーデッド形ファイバ内の電磁界式にこの方法を使用した例はJ.P. Gordon⁽⁵²⁾ 等の文 献にあり、ここではその結果を利用する。(2.222)式で示したような屈折率分布形を持った 媒質中での電界分布 u (R. θ . Z) は次式を満足する。

$$\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{\partial u}{\partial R}\right) + \frac{1}{R^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial Z^2} = -a \ \omega^2 \varepsilon_0 \mu_0 n^2 u \qquad \cdots \cdots (2.230)$$

,

ただし ω は角周波数, ϵ_0 , μ_0 は各々真空中での誘電率,および透磁率である。(2.230)式の解として次式を仮定する。

(2.230), (2.231) 式よりRだけの関数の(R)に関する方程式を得る。

さらに $\phi(R) \equiv \varphi(R) / R^{1/2}$ の変換により(2.232)式は次のように簡単化される。

(2.233)式は常微分方程式で,かつ,ただ一つの独立変数Rを含んているからWKB法を使用して次のように書くことができる。

$$\int_{R_{min}}^{R_{max}} \left(a^2 \omega^2 \varepsilon_0 \mu_0 n^2 - \beta^2 - \frac{\nu^2 + \frac{1}{4}}{R^2} \right)^{1/2} dR = \left(\mu + \frac{1}{2} \right) \pi \qquad \dots \dots \dots (2.234)$$

ただし μ は整数であり,固有函数 φ_{μ} の次数を決定する。(2.234)式より μ を求めることができる。また R_{min} , R_{max} は回帰点(Turning Point) であるから次式を満足する。

$$a^{2} \omega^{2} \varepsilon_{0} \mu_{0} n^{2} - \beta^{2} - \frac{\nu^{2} + \frac{1}{4}}{R_{max}^{2}, min} = 0 \qquad \dots \dots (2.235)$$

(2.222)式と(2.235)式よりνおよびβは次のように表すことができる。

$$\nu^{2} = \frac{a^{2} \omega^{2} \varepsilon_{0} \mu_{0} R_{max}^{2} R_{min}^{2} \left\{ n^{2} (R_{max}) - n^{2} (R_{min}) \right\}}{R_{max}^{2} - R_{min}^{2}} - \frac{1}{4}$$
$$= \left(\frac{2\pi a}{\sigma}\right)^{2} n_{0}^{2} R_{max}^{2} R_{min}^{2} \Delta \left\{ 2 - \rho \Delta \left(R_{max}^{2} - R_{min}^{2} \right) \right\} - \frac{1}{4} \dots (2.236)$$

(2.234), (2.236) 式に示した µ, ν は各々固有関数の次数と対応することから光ファイ

バ内の固有モードと光線の関係が規定されることがわかる。

2.4 ま と め

多モード光ファイバをコアの屈折率分布形から,ステップ形とグレーデッド形の2種類に大別してその基本伝送特性を検討した。ステップ形多モード光ファイバについては既に多くの研 究者によって解析されていることと,本論文ではグレーデッド形に重点を置いているため本章で は,厳密解と幾何光学近似との対応,モードボリュームについてふれるにとどめた。

グレーデッド形多モード光ファイバでは2乗分布形について固有モードとその規格化直交性 についてくわしく調べ,その結果,波動光学と幾何光学との対応,光線とモードとの対応を 明らかにすることができた。さらに波長分散を考慮した最適屈折率分布について2乗分布形に 4次項まで付加した場合を検討し以下のような結論を得た。

(1) 全分散を考慮した時の最適4次項係数は、短波長側を除いてモード分散を最小にする4 次項係数からあまり大きくはずれない。

(2) 全分散が最小となる波長は 1.30 µm の近傍である。

(3) ポロンのドープされたファイバの屈折率分布分散は小さく,全分散も小さい値となる。
第3章 インコヒーレント光と多モード光ファイバの 結合効率

3.1 序

単一モード光ファイバのコア径に較 べて多モード光ファイバのコア径は大きく,約100 μm 程度である。したがってコアとコアの接続も容易である。さらに多モード光ファイバへの インコヒーレント光の入射(例えば発光ダイオードLEDによる)も比較的容易である。

本章ではLED光源と多モード光ファイバとの結合効率について検討する。多モード光ファ イバとレーザ光源との結合効率についての解析は種々報告されているが⁽⁵³⁻⁵⁵⁾, インコヒーレ ント光との結合については二三の報告⁽⁵⁶⁻⁵⁸⁾はあるが改善方法については未だ不十分である。 本章では光学系を使った改善方法についても若干検討する。

3.2 ステップ形多モード光ファイバとの結合

ステップ形多モード光ファイバの屈折率分布はコア全域にわたって一定である。したがって 臨界角 θ 。もコアの全域にわたって一定である。(螺旋波に対する臨界角もファイバ軸への投 影角で表すと一定となる。)

光源としては LEDを想定し、平円板状発光源(Lambertian)を仮定する。光源とファ イバとの結合が直接結合の場合、あるいは光学系による改善を考慮する場合に簡単のため、こ こでは幾何光学による二次元モデルで解析する。

3.2.1 直接励振の場合

今,単位角当りの発光強度を B。とし、半径 b の光源を考える。発光源からの全電力 P。は 次式で表される。

ただしr_L,r_f は各々光源,ファイバでの位置変数を表す。

光源とファイバコアとの位置関係を図3.1のように定める。

$$-64-$$

図3.1 光源とファイバコアとの位置関係

ファイバコアに励振される電力P_{in}^f は位置関係によって次のように表される。 (i) $0 \le a \le \ell \ tan\theta_c - b \ O 場合$ $P_{in}^{f} = 2\int_{0}^{a} \int_{-b}^{b} B_{0} d\theta \ dr_{L}$ $= 2 B_{0} \{ (a+b) t \ an^{-1} \ \frac{a+b}{\ell} - (a-b) \ tan^{-1} \ \frac{a-b}{\ell}$ $+ \frac{\ell}{2} \ell_{n} \ \frac{(a-b)^{2} + \ell^{2}}{(a+b)^{2} + \ell^{2}} \}$ (3.2)

(jj) (ℓ tan $\theta_c - b$) $\leq a \leq (\ell$ tan $\theta_c + b$) の場合

$$P_{in}^{f} = 2 B_0 \left\{ \theta_c (a+b) - (a-b) t a n^{-1} \left(\frac{a-b}{\ell} \right) + \frac{\ell}{2} \ell_n \frac{\left\{ (a-b)^2 + \ell^2 \right\}}{\ell^2 s e c^2 \theta_c} \right\}$$

(jj) ℓ tan θ_c + b≤a の場合

$$P_{in}^{f} = 4 B_0 \theta_c b$$
(3.4)

-65-

 $(V) \quad 0 \leq a \leq b - \ell \ tan \theta_c \ O$ 場合

 $(\forall \quad b - \ell \ tan \ \theta_c \leq a \leq b + \ell \ tan \ \theta_c \ O \ Bc$

$$P_{in}^{f} = 2 B_0 \{ \theta_c (a+b) - (a-b) t a n^{-1} \frac{a-b}{\ell} + \frac{\ell}{2} \ell n \frac{(a-b)^2 + \ell^2}{\ell^2 s e c^2 \theta_c} \}$$

結合効率 η は P_{in}^{f} / P_{0} として計算する。

図 3.2 および図 3.3 は各々直接励振した場合の,光源の大きさおよび光源とファイバとの距離を変化させた場合の結合効率を示している。この図から明らかなように屈折率差比 4 が 1.25 多のファイバには高々15 多しか結合しないことがわかる。また,実際のファイバでは Skew ray の効果も考えるとさらに効率は低下する。そこで次節では結合効率の改善を検討する。

図3.2 直接励振での入射結合効率(光源の大きさを変化させた場合)

図 3.3 直接入射での入射結合効率(光源との距離を変化させた場合)

3.2.2 コニカル・コーン(Conical Cone)による結合効率の改善

ファイバにおける臨界角が小さく,光源からの指向角が大きいため直接結合の場合には結合 効率を上げることができない。そこで光源からの入射角を小さくすれば結合効率を上げること ができる。この目的で光源にテーバ状のコーンをつけた場合の結合効率の改善を検討する。

今, 図3.4のように光源(半径 b)とファイバコア(半径 α)が配置され,その間をコニカ ルコーンで結合する場合を考える。コア上のP点に到達する光線はコーンの壁面での反射が完 全である場合には図で示される2αの角度内に制限される。このことはP点から光源側へ進む 光線を考えた場合に,2α以上の角度成分を持った光線は光源まで到達しないで折り返してく ることを考慮すれば容易に求まる。この角度αは次式で求まる。

$$\alpha \simeq \sin^{-1}\left(\frac{r_0}{r_0 + \ell}\right) = \sin^{-1}\left(\frac{b}{a}\right) \qquad \dots \dots (3.7)$$

図 8.4 コニカルコーンと座標系

ただしr。はテーバの中心を円の中心とし, b, -b を通る円の半径を表す。テーバの角φ が小さい場合には(3.7)式はP点の位置によらずほぼ成立する。したがってコニカルコーン を装着した場合には光源が等価的に拡がった事に相当する。そこでコア面上での電力をP_c と し、ファイバへの結合効率を ηとすると次式のように表すことができる。

 $P_c = 2 \ a \cdot B_0 \cdot 2 \ a \qquad \cdots \cdots \cdots (3.8)$

ただしα_m は金属製コーンで反射が完全である場合の角度を表す。

ところでコニカルコーンがガラスでできている場合の $a \ge a_g$ とすると a_g は次式で表される。

$$a_{g} \cong s i n^{-1} \left(\frac{b}{a} \frac{1}{n_{1}} \sqrt{n_{1}^{2} - n_{2}^{2}} \right) \qquad \dots \dots \dots \dots \dots (3.10)$$

ただし n_1 , n_2 は各々コーンの屈折率および周囲の媒質の屈折率を表している。

۶

. .

図 3.5 コニカル・コーン装着による入射効率の改善

図3.6 コニカル・コーン装着による結合効率の改善

.

.

-69-

図 3.5, 図 3.6はコニカルコーンがガラス(n₁=1.5)の場合および金属製の場合について テーパ角の変化に対する結合効率を表したものである。この場合にはテーパ角が大きくなれ ば結合効率は100%に達するが実際の場合には反射率が100%を得ることができないこと, あるいは壁面の不整等のために効率は小さくなる。

3.2.3 球面レンズ装着による結合効率の改善

光源からの指向角をファイバコア上で小さくして結合効率を改善するために種々の方法が提 案されているが⁽⁵⁹⁻⁶¹⁾, ここではコア上に球面レンズを装着する方法について検討する。 今, 図 8.7に示すような配置および座標系を考える。

図 3.7 光源と球面レンズの座標系

球面レンズはコア部のみをおおっているとし、屈折率は n_s とする。今光源の任意の点 r_L から出た光線が球面レンズ上の点P(x, y)にあたった場合におけるコアでの指向角 θ_1 は以下のようになる。

$$y = r_L + (\ell + b - x) t a n \theta_L$$

......(3.11)

光源からの全電力P。は次式で与えられる。

ここでファイバへ励振される全電力 P_{in}^f は次のように表される。

ただし $\theta_{c\ell}$, θ_{cu} は各々光源側からみたファイバヘトラップされる臨界角の値を示し、各々 r_L の関数である。

以下図 3.8~図 3.12 に各バラメータの変化による結合効率の改善について数値例を示している。

図3.8, 図3.9は各々光源とファイバ端面の距離, および光源の大きさが変化した場合の結合効率の変化を表している。レンズ効果のため結合効率は各パラメータで最適値が存在するようになり, 球面レンズがコアの屈折率と等しい場合には結合効率は約1.25倍改善されることがわかる。図3.10は球面レンズの厚さを変化させた場合で, ファイバの屈折率差比 4 が小さい場合には依存性が小さいことを示している。

次に球面レンズの屈折率が大きくなった場合の結合効果について示したのが図 3.11である。 この図から明らかなように屈折率n。が大きくなると結合効率の改善度も大きくなり n。 が 2.0 および 3.0 の場合,各々約 1.7 5倍,約 2 倍改善される。図 3.1 2 は n₃が 3.0 の時の結 合効率と光源との距離の関係を示している。ファイバの屈折率差比 4 が小さい場合には光源と

-71 -

図 3.8 球面レンズ装着による入射効率の改善(光源との距離を変化させた場合)

図 3.9 球面レンズ装着による入射効率の改善(光源の大きさを変化させた場合)

図 3.10 球面レンズ装着による結合効率(レンズの厚さを変化させた場合)

の距離に対する結合効率の変化が大きく制御がむずかしくなることがわかる。実際の場合には n₃の屈折率が大きくなると反射損が増大し、結合効率は計算値より小さい値となる。

図 3.11 球面レンズの屈折率を変えた場合

-73-

.

図 3.1 2 球面レンズ装着時の結合効率(n₃=3.0の場合)

3.3 2 乗分布形多モード光ファイバとの結合

2 乗分布形多モード光ファイバ内における光線は平面内を蛇行しながら伝搬する光線 (meridional ray) と螺旋状に回転しながら伝搬する光線(skew ray) にわけられる。 インコヒーレント光による入射を考えるときにはほとんどの光線が螺旋波として伝搬される。 本節では2 乗分布形多モード光ファイバを3次元モデルについて考察する。

8.3.1 3次元モデルにおける臨界角

2 乗分布形多モード光ファイバの座標系を円柱座標とし、第2.2.6 節と同様に光線方程式を 考える。この光線方程式を変形するとポテンシャルウエル中の質点運動の方程式の形にするこ とができる(第2.2.6 節参照)。したがってコア内にトラップされる光線はポテンシャルウェ ル内を振動し、かつ回帰点(Turning point)における、光線の中心軸からの距離(R_{max}) がコア半径以内である。このことから有限径のコアにおける臨界角は次の条件より求めること ができる。コア内の任意の点 Pの初期条件(R_0 , r_0 , β_0) に対する R_{max} は次の条件より求 まる。ただし記号は第2.2.6 節と同様とする。

$$\frac{1}{2} \left(\frac{dR}{dZ} \Big|_{0} \right)^{2} + G \left(R_{0} \right) = G \left(R_{max} \right) \qquad \cdots \cdots \cdots (3.16)$$

$$\left(\frac{dR}{dZ}\Big|_{0}\right)^{2} = \frac{1}{\cos^{2}r_{0}} = \frac{1}$$

(3.16), (3.17)式より回帰点 (R_{max} , R_{min})を求めることができる(付録 1,参照)。 ただし Zはコア半径 aで規格化された規格化 z 座標, r, および β は z 軸および y 軸と光線の 位置ベクトル r との立体角を表す。また関数G(R) はポテンシャルウエル関数であり,次式 で表される。

$$G(R) = \frac{c_2 R^2}{2} \left(1 - \frac{\rho \Delta}{2} R^2 \right) + \frac{c_1}{2R^2} \qquad \dots \dots \dots (3.18)$$

$$c_1 = R_0^2 \sec^2 r_0 \cos^2 \beta_0$$

$$c_2 = 2\Delta \sec^2 r_0 \swarrow \left(\frac{n_0}{n_1} \right)^2$$

$$\dots \dots \dots \dots (3.19)$$

ただし noはP点における n の値を示し, 屈折率の分布形は次式で表す。

$$n^{2}(R) = n_{1}^{2} (1 - 2\Delta R^{2} + \rho \Delta^{2} R^{4}) \qquad \dots \dots (3.2 \ 0)$$

 $R_{max} = 1$ の条件から β に関する臨界角 β_c は次のように求められる(付録2参照)

$$\beta_{c} = cos^{-1} \left(\frac{\rho \Delta^{2}}{R_{0}^{2} \left(\frac{\pi_{0}}{n_{1}}\right)^{2}} \left\{ 2 \sqrt{-P^{3}} cos \left(2\pi - 3cos^{-1} \left(\frac{\frac{3}{2} - \frac{1}{\rho \Delta}}{\sqrt{3A_{1} + A_{2}^{2}}} \right) \right) - \frac{1}{27} \left(2A_{2}^{3} + 9A_{1}A_{2} \right) \right\} \right)^{1/2} \qquad \dots \dots \dots (3.21)$$

$$p = - (3 A_{1} + A_{2}^{2})/9$$

$$A_{1} = -\frac{2 E_{0}}{\rho \Delta c_{2}}$$

$$A_{1} = \frac{2}{\rho \Delta}$$

$$E_{0} = t \alpha n^{2} r_{0} + \frac{2 \Delta R_{0}^{2}}{\left(\frac{n_{0}}{n_{1}}\right)^{2} c \sigma s^{2} r_{0}} \left(1 - \frac{\rho \Delta}{2} R_{0}^{2}\right)$$

ただし β_c は r_o の値に対する β の臨界角である。ここで螺旋波に対する臨界角 r_c 。を r_o の取り得る最大値として定義すると次の条件で r_c 。を決定することができる。

- $\frac{dR}{dZ}\Big|_{0} = 0 \qquad \dots \dots (3.23)$ $\beta_{0} = \frac{\pi}{2} r_{0} \qquad \dots \dots (3.24)$

(3.23), (3.24), (3.25) 式よりr_cs は次のように求まる(付録3参照)

またコア内の入射点 P における蛇行波の臨界角 r_o^m は $\beta_0 = \frac{\pi}{2}$ の条件での r_o の最大値として求めることができ、(付録 3 参照)、次式のように表される。

$$r_{c}^{m} = \sqrt{\frac{24 - 24R_{0}^{2} (1 - \frac{\rho A}{2}R_{0}^{2}) - \rho A^{2}}{(\frac{n_{0}}{n_{1}})^{2}}} \qquad \dots \dots (3.27)$$

したがってP点でのrに関する臨界角 r_c は r_c ^m と r_c ^sの間の値をとることができる。

ー例として $R_0 = 0.5$ における r_c および β_c の値をブロットしたものが図 3.13 である。図 3.13 における r_c および β_c の空間的な関係は図 3.14 に示している。ここで入射点 P において光ファイバのコアにトラップされて伝搬され得る光線のコーンを考える。このコーンの x - y面での断面図を図 3.14 に示す。 r_c^m および r_c^s に対応した立体角でできる円の半径を R^m および R^s とすると、コーンの断面図はx軸上で R^m , y軸上で R^s を通る円となる。 R^m は P 点における蛇行波の臨界角によって決定されるから(3.27)式より考慮している P 点がコアの周辺部になるにつれて 0 まで減少する。

一方 R^{s} は(3.26)式からわかるようにコアの周辺部でもそれほど変化がない。したがっ て伝搬され得る光線のコーンは周辺部にいくにつれて偏平になり、 $R_{o} = 1$ の点では平面にな る。蛇行波の臨界角 r_{c} "および螺旋波の臨界角 r_{c} "のRに対する変化を図3.15に示す。この 場合は屈折率分布の4次項係数 ρ が8/3 の場合を示す。屈折率差が大きい場合は ρ の変化に よって螺旋波の臨界角も変化し、完全2乗形の場合($\rho = 1$)はコアの周辺での臨界角は中心 でのそれより大きくなる。4次項係数が大きくなるにしたがってコアの周辺での臨界角 r_{c} "は 中心でのそれより小さくなる。

図 3.13 螺旋波の臨界角r_cとβ_cとの関係

図 3.14 x-y 平面に投影した伝搬可能領域 Do

図 3.15 蛇行波の臨界角r_c^m および螺旋波の 臨界角r_c^s の位置に対する変化

臨界角以下の光線はトラップされて伝搬されるととから螺旋波の方が蛇行波に較べて伝搬 される光線のエネルギーが大きい。すなわち螺旋波に対応するモード・ボリュームが蛇行波に 対応するモード・ボリュームより大きいことを示している。

3.3.2 平円板状発光面を持ったLEDモデルによる結合効率

最近LED(発光ダイオード)の発光効率および指向性の点ですぐれたストライブ状の電極 構造を持ったLED⁽⁶²⁾が報告されているが,現時点では板状の発光面を持ったLEDが一般 的である。本節では発光面は平円板状で,かつ任意の面素dsから発光する光線は2π(立体 角)の拡がりを持つものと仮定する。したがってこのモデルにおける放射パターンは球状とな る。ここでLEDと2乗分布形多モード光ファイバのコアとの空間的位置関係を図3.16に示 す。LEDの面素ds_Lから単位立体角当り放射される光強度をB。とすると,LEDから放射 される全電力I。は次式のように表される。

-79-

図 3.16 LEDと光ファイバの座標系

ただし Q および b はそれぞれ z 軸と光線との立体角,および L E D の 半径を表す。一方コア 面が受ける光電力 I, は次式で表される。

$$I_{1} = \int_{S_{I}} \int_{Q_{1}} B_{0} ds_{L} dQ$$

$$= 2\pi B_0 d \int_0^b \int_0^a \int_0^{2\pi} \frac{r' dr' r dr d\theta}{(d^2 + r^2 + r'^2 - 2rr' \cos \theta)^{3/2}} \qquad \dots \dots \dots (3.30)$$

ただしr, r' は各々光ファイバおよびLEDの動径座標, aはコア半径を示す。図3.16に おける光線とz軸およびy軸となす角度rおよびβは次式で与えられる。

 $r = t a n^{-1} \{ r'^{2} s i n^{2} \theta + (r - r' c o s \theta)^{2} \}^{\frac{1}{2}} / d \} \qquad \dots \dots \dots (3.3 1)$

$$\beta = tan^{-1} \{ (d^2 + (r - r' \cos \theta)^2)^{1/2} / r' \sin \theta \} \qquad \dots \dots \dots (3.32)$$

この点においてトラップされる光線は(3.2 1)式および(3.2 8)式で決定される r および βに関する臨界角以内の光線である。 したがってコア面が受ける光電力のうちコア内にトラッ プされる光電力 I₂ は次式のように表すことができる。

$$I_{2} = \int_{s} \int_{L} g_{c} B_{0} ds_{L} d\Omega$$

= $2\pi B_{0} d \int_{0}^{a} \int_{0}^{r'_{c}} \int_{0}^{\theta} \frac{r' dr' r dr d\theta}{(d^{2} + r^{2} + r'^{2} - 2rr' cos\theta)^{3/2}} \qquad \dots \dots (3.33)$

入射結合効率ヵは(3.22), (3.33)式より次のように書くことができる。

$$\eta = \frac{I_2}{I_0} \times 100$$

$$= \frac{d}{\pi b^2} \int_0^a \int_0^{\tau' c} \int_0^{\theta c} \frac{r' dr' r dr d\theta}{(d^2 + r^2 + r'^2 - 2rr' cos\theta)^{3/2}} \times 100 \dots (3.34)$$

ただし、臨界角におけるr' および θ , r'_c および θ_c は(3.21)式および(3.28)式で 決定される r_c および β_c から決定される。

図 3.1 7 はコアと空気との屈折を考慮して求めた結合効率の距離依存性を示している。発光 面とコアとの間隔を短くしていくと入射効率は高くなってくるが、コア半径とほぼ同程度以 下に近づけても効率はあまり変化しないことを示している。また屈折率差比4が大きくなれば、 ほぼ直線的に入射結合効率も大きくなることを示している。図 3.18はLEDとコアとの間隔 を一定にして発光面の大きさを変化させた時の結合効率の変化を示したものである。この図か らわかるように発光面の半径がコア半径の0.7倍程度で入射効率は最大となる。

-81-

図 3.17 結合効率の光源との距離依存性

図 3.18 結合効率の発光面積依存性

3.4 ま と め

発光ダイオード(LED)と多モード光ファイバとの結合効率について検討した。ステップ 形多モード光ファイバにおいては通常のLEDとファイバ(屈折率差比4=1%,コア径約 60µm[¢])の結合効率は約2%と非常に小さい。これを改善する方法を検討し,ファイバ端面 に球面レンズを装着することによって結合効率を大きく改善できることを示した。2乗分布形 多モード光ファイバとLEDとの結合については3次元モデルの幾何光学近似で解析し,LED の発光面積には結合効率を最大にする最適値が存在し,半径の約0.7倍であることを明らかに した。

第4章 伝送特性の測定法

4.1 序

本章では多モード光ファイバの伝送特性の測定法について述べる。伝送特性を主として決定 する光ファイバ・コアの屈折率分布形,あるいはモードに依存した損失等のパラメータの測定 法,およびモード分析,ニア・フィールド分布等の伝送特性を解析する為に必要となる基礎特 性の測定法についても述べる。

4.2 屈折率分布の測定

多モード光ファイバの伝送特性は主としてモード分散で決定される。モード分散は光ファイ バ・コアの屈折率分布形に大きく依存するため、屈折率の分布形を正確に測定することが重要 となる。現時点における光ファイバの屈折率分布形を求める方法は主として以下に示す6通り の方法がある。

(j) イオン濃度測定法⁽⁶³⁾

ファイバ端面に電子ビームをあて,着目したイオンによる特性X線強度を測定することに よって,光ファイバ・ガラス中に含まれるイオン濃度を求め,これより屈折率分布形を推定 する方法である。求めたイオン濃度分布が使用波長での屈折率分布形に直接対応しないとい う欠点を有している。

(jj) 干涉顕微鏡法⁽³⁰⁾⁽⁶⁴⁾

ファイバを干渉顕微鏡で観察し,得られる干渉パターンから屈折率分布形を求める方法で ある。この方法には破壊法と非破壊法があり,破壊法ではファイバを軸に対して直角に薄切 りにして軸方向と平行な方向から干渉パターンを得る。一方,非破壊法ではファイバ軸と直 角方向から光ビームをあてて,干渉パターンを得るもので,両者とも屈折率勾配による光線 の曲がりの影響を考慮する必要がある。

(11) 散乱回折バターン法 (65-67)

ファイバ側面から平面波を照射し、前方あるいは後方散乱パターンを数値処理することに よって屈折率の分布形を求める方法である。非破壊で測定できる利点を持つが計算による誤 差が大きい。

(IV) ニア・フィールド・パターン法⁽⁶⁸⁾

多モード光ファイバの伝搬モードが均一に励振された場合には、そのニアフィールド分布 形と屈折率分布形とが良く一致する⁽²³⁾。

したがって本測定法は伝搬モードが均一に励振されるような条件の下でニア・フィールド 分布形を測定して, 屈折率分布形を推定する方法である。励振時に伝搬モード以外のリーキ ーモードも励振されるため較正が難しい。

(V) 透過電力法⁽⁶⁹⁾

ファイバ端面における臨界角は、その点での屈折率と対応関係がある。したがってビーム を絞った状態でファイバ端面を走査すれば屈折率分布形に対応した透過電力を出射端で得る ことができる。この方法は原理的にはWV項のニア・フィールドパターン法と同じである。 (VI) 反射電力法⁽³³⁾

ファイパ端面に光ビームを入射させたとき,反射される電力は屈折率と対応関係がある。 光ビームをファイパ端面上で走査させ,その反射光を測定することによって屈折率分布形を 求める方法である。

以上 6 通りの方法があるが本節では著者らの開発した反射電力法による屈折率分布形の測定 法について述べる。

4.2.1 反射電力による屈折率分布の測定原理

図 4.1 に示すような屈折率 n。の 媒質 1 と 屈折率 n(f)の 媒質 I において平面波が垂直に入射 した場合の,境界面からのエネルギー反射率R は次式で与えられる。

ただし、 $n'(r) = n(r)/n_0$ である。ここで反射率の微少な変化量をARとすると次式が成立する。

$$\frac{\Delta R}{R} = \frac{4}{n'(r)^2 - 1} \Delta n' \qquad (4.2)$$

ただし、ムn' は微少な屈折率差比を表す。したがって基準点を中心にとった時の屈折率差 比ムn'(r) は次式で求まる。

$$\Delta n'(r) = \frac{n'(o)^2 - 1}{4} \cdot \frac{\Delta R(r)}{R(o)} \quad \dots \quad (4.3)$$

(4.3)式より基準点における反射電力および測定位置の変化による反射電力の変化量を測定することによって屈折率差比を求めることができる。(4.3)式からわかるように測定精度 は全反射電力に対する変化量の比として1次のオーダで効くことがわかる。

図 4.1 入射端面での反射

4.2.2 測定系

図 4.2 は反射電力法による屈折率分布形の測定系を示している。測定に使用した光源は以下の理由で円偏波のH_e - N_eレーザ光を使用した。

(i) 試料表面からの反射光を効率良く取り出す。

(ii) 試料表面以外からの反射光を取り除く。

(11) 試料端面の傾きによる影響を小さくする。

(V) ビームスポットサイズを小さくする。

(i),(ii)の条件を満足させるために複屈折性ブリズム(グラン・ティラー・ブリズム)と λ/4 波長板を使用した。すなわち,直線偏波の入射光は複屈折性プリズムを通過し, λ/4 波長板を通過すると円偏波になる。試料表面で反射した円偏波は入射光とは逆の円偏波となる ため λ/4 波長板を通ったあとては入射光とは直交した直線偏波となる。この反射直線偏波は 複屈折性 プリズムで反射され,検出器2 で受けることができる。ファイバ端面を走査すると反 射点の屈折率に応じて反射率Rは変化するが,変化量 4 RはRに較べて非常に小さい(通常

-86-

図4.2 反射電力法による屈折率分布の測定系

のファイバでは1 %以下の変化量)そこで変化量を精度良く測定するために,入射光との差を 取ってその結果をロックインアンプで測定した。測定に使用したH_e - N_eレーザは,ファイバ 端面でレーザ・ビームを絞り込み,ビームスポットサイズ(電界強度が1/e になる幅の半分) が1 μm 以下となるようにビームエキスパンダと40倍の対物レンズを使用した。ビームのス ポットサイズwは対物レンズ出射後のビーム拡がり角θより次式で求まる。

$$w = \frac{\lambda}{\pi \theta} \qquad (4.4)$$

ただしえは使用波長である。ビーム拡がり角の測定値は24度程度であったため、ビームは 1μm 程度の領域に充分絞り込まれている。また入射ビームに対して試料面が垂直で、かつビ ームの焦点面にある必要がある。上記条件の決定方法は次のようにしておこなった。図4.2に おいてえ/4 波長板とレンズとの間に図4.3に示すように絞りとハーフミラを挿入する。ハー フミラによって反射光を取り出し、40倍のレンズで絞って10μm 径のビンホールを介して フィールドバターンを観測する。

まず試料直前のレンズをはずして試料のかわりにミラを置き,直接反射光のフィールドバタンを観測する。この場合,ビームウエストのスポットサイズは1µm 程度となっているため,

-87-

図4.3 試料面の位置決め方法

ビンホールを通過した後のフィールドバタンはフリンジ(同心円状の稿)を生じない。この状態でレンズを挿入して同様のフィールドバタンが出るようにレンズの軸合わせをおこなう。このとき反射光を絞り(アイリス)上で確認して大体の軸合わせをおこなう。レンズの軸が光軸に合っていないと得られるフィールドバタンはフリンジが出たり,強度の強い部分が横にずれたりして,もとのバターンとは異なった様相を呈する。レンズの軸合わせ後,そのままミラを取り除き,試料を装着してフィールドバタンを観測する。このとき試料が焦点面上にない場合や,傾いている場合には調整して,試料面と光軸と直角の方向に動かして,もとのバタンと同一のバタンが出るようにする。この方法は焦点面の動きに非常に敏感であり,精度良く位置決めをすることができる。

4.2.3 測定結果と測定精度

図4.4 にコア径がほぼ20µm の集束形光ファイバの屈折率分布形測定結果を示す。本試料 は多成分系ガラスで作られており、中心での屈折率 n₁ は光ファイバ製造条件から求めた値で ある。コアの中心付近でかなり平担で、周辺部分で勾配が急な分布形となっている。

次に測定精度について検討する。

位置の精度は微動台の精度とビームスポットサイズの大きさで決まるが、ビームスポットサイズの直径が1μm 程度であり、微動台の精度が1μm であるから全体の位置精度は1μm 程

図4.4 集束形光ファイバの屈折率分布形の測定例

度となる。

一方屈折率差の測定値精度は次のようにして評価した。すなわち屈折率値のわかっている BK-6 ガラスとBK-7 ガラスを光学接着し、研歴した標準試料を本測定系で測定した。

図4.5 測定精度の評価

図4.5は標準試料の測定結果である。屈折率差比の真値は測定波長0.633µmで,0.970%

であるから、測定誤差は4.3%以下と判定した。測定値がこのようにばらついているのは標準 試料の表面が完全に平担でないことによるものと思われる。これは測定系自身の振れ幅は屈折 率差に換算して0.05%以下であることによって明らかである。次にビームと試料の傾きによ る誤差の検討を行う。

図 4.6 各偏波面を持った光に対する反射率

図4.6 は空気と屈折率1.5 %の媒質との境界面での反射率の入射角依存性を示している。図 から明らかなように直線偏波光に対しては反射率が入射角に大きく依存するが,円偏波光に対 しては入射角依存性が非常に小さい。例えば,垂直入射の反射率に対して,入射角が30度傾 いた場合には,入射面に平行な直線偏波に対しては35%,入射面に垂直な偏波に対しては 40%の各変動がある。一方円偏波光に対しては30度傾いた場合でも反射率は0.3%程度し か変化しない。本測定系では傾いて反射された電力でも検出できるため,傾きによる測定誤差 は無視できることがわかる。 4.2.4 自動測定装置の試作

前節までに検討した反射電力法による光ファイバの屈折率分布形測定を,自動的に行うことを 目的として試作した。試作測定装置の具備すべき特徴として以下の点を考慮した。

(i) ファイバ端面の全域にわたって屈折率分布形が求まること

(ii) ファイパ端面のセッティングが容易であること

(iii) 測定結果はグラフとして求まること

(v) 操作が容易であること

以上の点を考慮して試作した屈折率分布形自動測定装置を図4.7 に示している。測定器の構成は予備実験の測定系と同じであるが,試料端面のセッティングを容易にするために,焦点面 合わせ及び傾き調整をメータを見ながら出来るように構成した。測定試料とのせる台を,走査 させることによってファイバ端面全域の屈折率分布形と,X-Yレコータ上に得ることができ る。本測定装置の機能と規格を以下に示す。

(i)	測定出力安定度	$ \Delta n / n_0 \approx 2 \times 10^{-4}$
(ij)	ビームスポットサイズ	約2µm (e ⁻² の点)
(jij)	位置決め	(a)被測定面と集光レンズとの位置決めはメータ指示による定
		位置設定
		(b)被測定面の傾き調整はスクリーン(粗調)およびメータ
		(微調)を用いて行う。
(v)	試 料 台	(a)光軸方向(z)にマイクロメータ手動送り
		(b)光軸方向に垂直かつ水平(x)方向に自動送り速度100μm/
		min, 分解能 1 µm
		(c)上下(y)方向に自動送り最小2.5 μm ステップ
		(d)水平および垂直面内で±3°の回転
(v)	出 力	X : x方向の位置
		Y : 反射光強度と参照光強度との差をアナログ電圧にて
		出力
(vi)	寸法, 重量	(a)光学部:185H, 600W, 500Dmm, 45kg以下
		(b)処理部:295H, 429W, 450Dmm, 25kg以下
7	本試作測定器で測定した測定	結果を図4.8に示す。

外径125 μm^{ϕ} , コア径80 μm^{ϕ} の石英製集束形多モード光ファイバの測定例である。中心

偏光子 メータ PD1 AGC SH1 - Y 出力 PD2 SH2 滅衰器 レーザ トフティカル DAC カウンタ アイソレータ メータ バルスモータ駆動回路 ப்படிய்ப プリズム 位置検出系 ・光チョッ・ マイクロメータ • Ч COMP Ф メータ 傾き,位置,検出 LULAU 集光レンズ 光チョッパ・シンクロナスモータ用電源 モータ PD2 傾き検出系 自動測定用,シーケンス回路 \Box -92 - ペンON-OFF ┺ D= 電気マイクロメータ パルスモータ (上下) ファイバ ホルダ シンクロナスモータ (左右) Q マイクロメータ 垂直面内回転 -マイクロメータ(Z) マイクロメータ 水平面内回転

(a) ブロック図

٠

図 4.7 試作した屈折率分布形自動測定装置 (1)

à +

.

光学部ブロック図

• •

.

•

処理部プロック図

► X 出力

- マーカ

.

処 理 部

光学部

(b) 外 観 写 真

図4.7 試作した屈折率分布形自動測定装置(2)

に対して左右非対称な屈折率分布形となっている。

図 4.8 測 定 結 果

本測定法である,反射電力による屈折率分布測定においては,測定光線が測定媒質内を伝搬 しないため,得られた結果は直接その屈折率分布を表している。一方,測定試料面の平担度 に強く依存するため,ファイバ端面の処理方法について検討する必要がある。また試料ファイ パの他端からの反射光が検出器に入ると測定誤差となるため、測定に際しては他端をマ。チン グオイルに浸して反射光を消去する必要がある。本測定系のビームスボ。トサイズは2μm⁶程 度であるため、シングルモードファイバのコアにおける屈折率分布形を測定する場合には未だ 位置の分解能が不十分である。シングルモードファイバを測定する場合には分解能としては約 0.2μm必要と思われる。本測定法において、ビームの強度分布を考慮して得られた結果を数値 解析することによって位置精度および屈折率差の測定精度向上は可能になるものと思われる。

4.3 ニア・フィールド分布の特性

ファイバ内に励振される電力の分布形はニア・フィールド分布形として観測できる。図 4.9 にファイバ端面でのニア・フィールド分布形を観測する測定系を示す。ファイバ断面内の電力

図4.9 ニア・フィールド分布の測定系

分布形を観測するために、ファイバ端面上に顕微鏡によって焦点を合わせた集光系を構成する。 シリコンビジコン・カメラの撮像管面上に実像を結ばせてモニタで観測する。得られる像は シリコンビジコン管面上の光強度に対応するバタンとして観測される。したがって、ファイバ 端面における一横断面のニア・フィールド分布形は、TV信号の一走査出力信号をシンクロス コープで観測することによって得られる。シリコンビジコンの撮像管は光強度に対して出力信 号がほぼ直線関係にあるため、シンクロスコープ管面上で観測される波形がそのままニア・フ ィールド分布形を示す。

図 4.1 0は上記測定系で測定した多モード光ファイバのニア・フィールド分布形を示している。(a), (b)は各々ステップ形, グレーデッド形の多モード光ファイバである。多モード光ファ

イバでモード数が十分に多く,かつ伝搬されるモードが均一に励振される場合にはニア・フィ ールド分布形と屈折率分布形はほぼ一致する⁽⁶⁾。本測定での光源は面光源であるBurrus typeのLED を使用し,できるだけ伝搬モードが均一に励振されるように,直接結合状態で 測定した。ファイバ長は2~3mの短尺ファイバであり,モードストリッバによるクラッディ ング・モードの除去をしてもなおリーキーモードの除去は不可能である。

(a) ステップ形多モード光ファイバ

(b) グレーデッド形多モード光ファイバ

図4.10 ニア・フィールド分布形

4.4 モード分析

多モード光ファイバにおけるモード分析は、伝送特性を把握する上で不可欠の技術である。 モード変損の現象を明らかにする場合や、損失の機構を明らかにする場合には直接その威力を 発揮する。このような目的に使用するモード分析器として具備すべき条件として以下の点が挙 げられる。

- (i) 各モード毎の電力が測定できること
- (ii) 各モード毎のパルス応答特性, あるいは周波数応答特性が測定できること

(III) 汎用性があること

(V) 測定が容易であること

上記条件を全部満足するモード分析法は未だ開発されていないが次のような方法が報告され

ている。

(i) テーパ法⁽⁷⁰⁾⁽⁷¹⁾

被測定ファイバをテーバ状に細くして,高次モード側から順次カットオフ条件にさせて放 射させる。この放射する電力を測定することによって,モード電力および群遅延を測定する 方法である。この方法はごく低次モード(最低次モードから5個程度)のみに対して分離可 能であるが非常に多くのモードが伝搬する多モードファイバに対してはあまり有効な方法で はない。また被測定ファイバを線形なテーパ状に加工する必要があり現実的な方法とは言え ない。

(ii) ニア・フィールドパタンおよびファーフィールドパタンから算出する方法⁽¹²⁾

ニア・フィールド分布形とファーフィールド分布形を求め、かつコア部の屈折率分布形とか らファイバに励振されているモード電力分布を求める方法である。この方法では各モードの バルス応答特性、あるいは周波数応答特性は測定不可能である。またモード電力分布形を求 めるには数値計算を要し、測定が容易でない。

(11) ファーフィールド分離法(73)

ファイベ出射端から放射されるファーフィールドを空間的に分離測定する方法で,モード 電力および各モードのベルス応答あるいは周波数応答を求めることができる。この方法によ るモード分析を著者等は検討し,十分使用に耐えられるモード分析器を試作した。

4.4.1 モード分析の原理

ファーフィールド分布を空間フィルタで分離するためには各モードのファーフィールド分布 形が分離している必要がある。ここではステップ形多モード光ファイバに対して有効なモード 分析法を検討する。

図4.11 ニア・フィールドとファーフィールド

今図4.11に示すようにステップ形多モード光ファイバの出射端が焦点面となるようにレンズを配置し、他の焦点面でのフィールドU2 を考えると、U2 のフィールド分布は U1 のフレネル・フラウンホーファ回折場として次式に示すように求めることができる⁽⁷⁴⁾。

$$U_{2}(r_{2}, \theta_{2}) = \frac{exp(jkd)}{j\lambda d} exp(j\frac{k}{2d}r_{2}^{2})$$

$$\times \int_{0}^{0} \int_{0}^{2\pi} U_{1}(r_{1}, \theta_{1}) exp(j\frac{k}{2d}r_{1}^{2}) exp\{j\frac{k}{d}r_{1}r_{2} \cos(\theta_{1}-\theta_{2})\}$$

ただし
$$k = \frac{2\pi}{\lambda}$$
 であり、 λ は自由空間波長を示す。
今 $d \geq \frac{k r_{1 max}^2}{2}$ の近似が成立するから(4.5)式は簡単化される。

ここで U, のフィールドにステップインデックス形ファイバの固有関数をとると,

$$U_1(r_1, \theta_1) = J_n(ur_1/a) \cos n\theta_1 \qquad (4.6)$$

と表すことができる。ただし, uは 横方向の波数を表し, nと共にモード次数を決定する。 aはコア半径を表す。 (4.5), (4.6)式より U₂ は次のように表される。

$$U_{2}(r_{2}, \theta_{2}) = \frac{exp(jkd)}{j\lambda d} exp(j\frac{k}{2d}r_{2}^{2})$$

$$\times \int_{0}^{a} J_{n}(u\tau_{1}/a) \int_{0}^{2\pi} cosn\theta_{1} exp\{j\frac{k}{d}\tau_{1}\tau_{2}cos(\theta_{1}-\theta_{2})\} d\theta_{1} d\tau_{1}$$

$$= \frac{exp(jkd)}{j\lambda d} exp(j\frac{k}{2d}\tau_{2}^{2}) cosn\theta_{2} \cdot 2\pi j^{n}$$

$$\times \int_{0}^{a} J_{n}(u\tau_{1}/a) J_{n}(\frac{k}{d}\tau_{1}\tau_{2})\tau_{1} d\tau_{1}$$

$$= \frac{exp(jkd)}{j\lambda d} exp(j\frac{k}{2d}r_{2}^{2}) cosn\theta_{2} \cdot 2\pi j^{n}$$

$$\times \frac{a}{(\frac{u}{a})^{2} - (\frac{k}{d}r_{2})^{2}} \left\{ \frac{u}{a} J_{n+1}(u) J_{n}(\frac{k}{d}r_{2}a) - \frac{k}{d}r_{2}J_{n}(u) J_{n+1}(\frac{k}{d}r_{2}a) \right\} \dots (4.7)$$

ここで考慮しているステップ形多モード光ファイバはコア径. 屈折率差比とも大きい場合, すなわち v (規格化周波数)が大きい場合には, u は次式のように表される⁽¹⁹⁾。

ただし u_{∞} は $J_{n+1}(u) = 0$ の根を表す。したがって U_2 の光強度 $P(r_2, \theta_2)$ は次式のように表される。

$$P(r_2, \theta_2) = U_2 \cdot U_2^*$$

(4.10)式において $\frac{k}{d} r_2 a$ が J_{n+1} の根の近傍においては次式の近似式が成立する。

$$J_{n+1} \left(\frac{k}{d} r_2 a \right) \cong sin \left(r_2 - \frac{ud}{ka} \right)$$
 (4.11)

$$-98-$$

(4.11)式より(4.10)式は近似的に次式の比例関係がある。

$$P(r_{2}, \theta_{2}) \propto \cos^{2}n\theta_{2} \frac{\sin^{2}(r_{2} - \frac{ud}{ka})}{(r_{2} - \frac{ud}{ka})^{2}} \quad \dots \dots \quad (4.12)$$

(4.12)式より $\theta_2 = 0$ における光強度は図4.12のようになることがわかる。

図 4.12 ファーフィールド分布

今,波長0.633 μ_m のHe – Ne レーザ光源でレンズの焦点距離を5cm, v = 40程度のフ r イバで考えると $\frac{ud}{ka} \cong 10^7$ と非常に大きくなりほとんど各モードのファーフィールド分布は デルタ関数的になり、十分に分離可能であることがわかる。

4.4.2 試作モード分析器の構成と測定結果

4.3.1 節で検討したようにファイバ出射端にレンズを配置することによって空間的フーリエ 変換作用をさせ、レンズの焦点面にファーフィールド分布を得ることができる。図4.13はこ の測定原理に基づいて構成したモード分析器を示している。

レンズによってファーフィールド分布が求まる面に空間フィルタS.F.を配置し,任意のモード電力を分離することができる。分離後はさらにレンズ L₂ で絞って電力を測定したり,A PDで受光して各モードの波形,あるいは周波数応答等を測定することができる。

-99-

図4.13 試作モード分析器の構成

図4.14は試作した空間フィルタを示す。この場合には空気中における伝搬角が1度毎に分離可能で14度の成分まで測定可能なように製作した。材質はアクリルで写真製版によるパタンの焼付を行っている。図4.15は試作したモード分析器の写真を示している。ここで使用したレンズは焦点距離4cm,有効径30mm^Ø,最小錯乱円が100μm^Ø以下となるように収差を取っている。また波長0.82μm に対して無反射となるようにコーティングしたレンズを使用した。

図4.16は本モード分析器を使用して,ステップ形多モード光ファイバのモード分析を行う 測定系を示している。測定に使用した光源は波長0.82 μmの半導体レーザで,パルス巾 300 psec 以下のインパルス状波形で駆動可能である。測定に使用したファイバは640 m の多モードステップ形光ファイバでコア径約80 μm^{\$},屈折率差比約0.7 %のものである。

図4.17は得られた各モード群毎のパルス波形を示している。図中の数字は空気中での伝搬 角に対応している。例えば数字1は1度から2度までの成分を持ったモード群を表している。 この図からわかるように、各モード群はモード分散によって群遅延差を持っていることが明ら かである。また各モード群に存在する電力に比例した大きさで波形が観測される。なおファイ バと群遅延自体の問題に関しては後述する。

図4.18はモード分析器によって分離された各モード群の電力比を示している。図中o印が 図4.17の各モード群毎の波形に対応している。この図から明らかなように、各モードが均一 に励振された場合には電力分布形は伝搬角に比例して増加する電力分布形となるが、この例で

-100-

図4.14 空間フィルタ

図4.15 試作したモード分析器

図 4.1 6 モード分析測定系

は高次モード群の電力が小さい為減少している。伝搬角が4度以下の比較的低次モード群の間 ではほぼ均一に励振されていることがわかる。

図4.17 モード分析されたパルス波形

図4.18 モード分析された電力分布形

4.5 伝達関数の測定

多モード光ファイバの伝送特性は励振条件によって大きく変化する。したがって伝達関数を 定義する場合には励振モード電力の分布形を規定して定義する必要がある。

ここで測定しようとする伝達関数は多モード光ファイバを1つのBlack Box と見た特性 である。伝達関数の測定方法は種々あるが、ここでは時間領域と周波数領域での測定で三通り の方法を検討した。

4.5.1 パルス波形解析法

光ファイバの伝達関数h(t)は入力波形をf(t),出力波形をg(t)とした時次式の関係がある。

$$f(t) \otimes h(t) = g(t)$$
 (4.13)

ただし記号⊗はコンポリューションをとることを意味している。また(4.13)式は周波数領 域では次式の関係を満足する。

したがって入,出力波形を測定し,各々の周波数特性を計算により求めれば(4.14)式より 周波数領域での伝達関数H(ω)を求めることができる。さらに逆フーリエ変換することによって 時間領域での伝達関数h(t)も求めることができる。ここでは入,出力波形を測定し,周波数領 域での伝達関数を求める測定系を試作し,実際のファイバの伝達関数を測定した。図4.19は 入,出力波形より伝達関数を数値的に求める波形解析システムの構成図である。解析手順は入, 出力のパルス波形をサンプリングオシロスコープからアナログ・ディジタル変換によってデー タ入力し,FFT(高速フーリエ変換)処理をして,各々の波形の周波数特性を計算する。伝 達関数(周波数領域における)は出力の特性を入力の特性で割ることによって振幅,位相の周 波数特性として得る。その結果は複素平面上(ナイキスト図表示)および振幅,位相別々のグ ラフとして出力させる構成である。

解析機能として次の項目を処理する。

(i) アベレージング機能

図4.19 波形解析システムのハードウェア構成

入力データを数値的にアベレージング処理して波形の記憶をおこなう。サンプリングする データ数は256ポイントであり,アベレージング回数は最大32回である。

(ii) モーメント計算

入力されたデータ波形に対するモーメント計算をおこなら。

モーメント Mr は次式で計算する。

$$Mr = \int_{-\infty}^{\infty} DATA(t) \cdot t^{r} dt = \sum_{j=1}^{4096} DATA(j) (j \cdot \Delta T)^{r} \cdot \Delta t \quad \dots \dots \dots \quad (4.15)$$

(4.15)式より,波形の面積,重心, rms値等を求めることができる。 (iii) 伝達関数の計算

入,出力波形のFFT処理後伝達関数の計算を行う。

(い) 伝達損失の計算

入,出力波形の直流振幅をRi, Roとすると伝達損失. Loss は次式で計算する。

$$Loss = -20 \log \frac{R_0}{R_i}$$
 (4.16)

$$-105 -$$

図 4.20は試作したパルス波形解析装置の外観写真である。次に本測定システムでの測定精 度について検討する。

図 4.2 0 試作したパルス波形解析装置

(i) 周波数分解能

FFTによる数値計算を行うため、原理的に次のような分解能の上限がある。今時間波形 を入力する場合の時間幅をTとすると、周波数軸上の分解能は1/T以下とすることはできな い。したがって同一周波数帯における周波数分解能を上げるためには時間幅Tを拡げる以外 にない。そこで本試作では、サンプリングオシロスコープ上の波形を256ポイント入力し さらにデータ(この場合には孤立波形とするためにデータとしては0を付加する。)を付加 して4096ポイントの時間データを入力してFFT処理を行っている。したがってサンプ リングオシロスコープ管面の時間軸フルスケールをTとすると、周波数分解能は1/16T まで向上させることができる。

(ii) 振幅値の分解能

振幅値の分解能は時間波形のデータを如何に正確に取り込むかに依存する。すなわち,時間波形の1ポイントをA/D変換する場合に,量子化する分割数で決定される。本試作A/D変換では10ビットに対応させている。(2¹⁰=1024ポイント)

したがって,得られる分解能はダイナミックレンジで最大約30dB(電気パワで換算すると60dB)となる。

ここで実際に測定精度をチェックするために、図 4.21 に示すような矩形波を入力した場合の周波数特性を求めた。

図 4.2 1 テスト用入力波形

図 4.2 2, 図 4.2 3 は各々得られた数値結果と周波数応答特性を示している。図 4.2 1 の波形の周波数特性は解析的に次のように求まる。

$$f(t) = U(t) - U(t-T)$$
 (4.17)

$$F(s) = \frac{1}{s} (1 - e^{-Ts}) \qquad (4.18)$$

(4.18)式は(4.17)式のラブラス変換である。(4.18)式よりただちに振幅の周波 数特性 R(f)は求まる。

$$R(f) = -10 \log \frac{|\sin \pi f T|}{\pi f T} \qquad (4.19)$$

今T=100 nsec とすると、最初の振幅減衰量が無限大となる周波数は10 MHzとなる。 また減衰量のチェックとして第1番目のビークとなる周波数15 MHzで比較する。

$$R(15MHz) = 6.73 dB$$

図 4.2 2 からわかるように解析的に求めた値と波形解析結果とは約 0.2 6 %以下の誤差で一 致している。

次にこの波形解析装置を使って測定した実測例を示す。

図4.24は長さ980mのグレーデッド形光ファイバ(イー0.75%, 2a~80μm)を 半導体レーザ(発振波長0.82μm)を使用して測定した入出力のバルス波形である。この場

TEST

*DATE :6,15,'77

*TIME/CM(NSEC): LØ

*MAGNIFIER:1

*SEEP WIDTH(CM):1Ø PAUSE : CALIBRATION(Ø) PAUSE : CALIBRATION(1)

SYSTEM A(1),B(2),XFER(3) OR NOT(Ø) ? 1 PAUSE SYSTEM:A

*MILIVOLTS/CM:1Ø

*AVERAGING:1Ø GRAPH-1 OUT(1) OR NOT(Ø) ? 1 AUTO-SCALE(Ø) OR NOT(1) ? Ø PAGE COUNTER = Ø AXIS PLOT(1) OR NOT(Ø) ? 1 RETRY(Ø),LIST(1) OR NOT(2) ? 2 MOMENT CALC(1) OR NOT(Ø) ? 1

ØTH	ORDER	:	Ø.764672E -5	(MV.SEC)
1 S T	ORDER	;	Ø.385337E-12	(MV. SEC+2)
2N D	ORDER	:	Ø.2584Ø2E-19	(MV. SEC+3)
3RD	ORDER	:	Ø.194941E-26	(MV.SEC14)

.

.+

.

TITLE:TEST DATE :6,15,'77 L-2 :POWER SPECTRUM

MHZ		DB	MHZ		DB
ø.øøøøøø£	ø	ø.øøøø	Ø.622711E	ø	-ø.ø221
Ø.124542E	1	-ø.111ø	Ø.186813E	1	-Ø.25Ø9
Ø.249Ø84E	1	-Ø.4578	Ø.311355E	1	-ø.7191
ؕ373626E	1	-1.Ø57Ø	Ø.435897E	1	-1.4635
Ø.498168E	1	-1.9629	ø.56ø439E	1	-2.5567
Ø.622711E	1	-3.2712	ø.684982E	1	-4.1416
ؕ747253B	1	-5.2423	Ø.8Ø9524E	1	-6.6231
Ø.871795I	1	-8.624Ø	Ø•934Ø66E	1	-11.915Ø
Ø.9963378	1	-27.9415	g. 195861 E	2	-12.3539
g . 112988£	2	-9.6552	Ø.118315E	2	-8.2813
Ø.124542E	2	-7.474Ø	Ø.130769E	2	-6.9522
Ø.136996E	2	-6.7Ø9 9	Ø.143223E	2	-6.6496
Ø.149451E	2	-6.7475	Ø.155678E	2	-7.0220
Ø.1619Ø5E	2	-7.4425	Ø.168132E	2	-8.1Ø77
ؕ174359E	2	-8.9ø78	Ø.18Ø586E	2	-10.1550
ؕ186813E	2	-11.8966	Ø.193Ø4ØE	2	-15.1954
Ø.199267E	2	-27.Ø415	Ø.2Ø5495E	2	-15.2423
Ø-211722E	2	-12.4487	Ø.217949E	2	-11.0250
Ø.224176E	2	-1ø.ø939	Ø.23Ø4Ø3E	2	-9.4503
Ø-23663ØE	2	-9.1ØØ7	Ø.242857E	2	-8.9434
Ø-249Ø84E	2	-8.9792	Ø.255311E	2	-9.2ØØ5
Ø.261538B	2	-9.5Ø97	ؕ267766E	2	-10.1046
Ø-273993E	2	-10.9098	Ø-280220H	2	-12-1552
Ø.286447E	2	-13.8996	Ø.292674E	2	-16.9563
ø.2989ø1e	2	-27.0415	Ø.3Ø5128E	2	-17.ø199

図 4.2 2 テスト用波形に対する出力データ

合には入力波形の半値幅は約250 psec で、出力波形は半値幅で約900 psec に拡がっている。また出力波形はかなりガウシアン分布に近い波形となっている。

図 4.2 3 テスト用矩形波形の周波数特性

図4.24 グレーデッド形光ファイバの入,出力波形

TITLE: G-10, DIRECT DATE : 7. 26. '76 G-2 : POWER SPECTRUM

図4.25 入,出力波形の周波数特性

図4.25は図4.24の波形をFFT処理して得た周波数特性を示している。なおこの計算で は10log(Rout/Rin)として計算しているため、電気信号での減衰量(dB) は図の値の 2倍となる。図4.26は入,出力の周波数特性から伝達関数を求めた結果を図示したものであ る。この図からわかるように、伝達関数はほぼガウシアンとなっている。振幅の周波数特性よ り、3dB帯域幅は約550MHzとなっている。また位相特性は低周波側ではほぼ線形に変化 しているが、高周波側でやや非線形に変化する傾向がみられる。

図4.27は伝達関数を複素平面上にプロットしたもので振幅と位相を同時に比較する場合に 有効となる。

パルス波形解析法の特徴としては、光源の種類、変調周波数の限界に依存しないで伝達関数 を求めることができ、広帯域な光フェイバの特性測定に有効である。

図4.26 グレーデッド形光ファイバの伝達関数

図4.27 グレーデッド形光ファイバの伝達関数(ナイキスト表示)

4.5.2 パルス・ストリーム法(75)

この測定法は次節でのべる周波数掃引法と測定原理は同じであるが,使用する信号源が異な る。すなわち,高周波成分まで含んだ鋭い,パルスの繰返し信号(この状態をパルス・ストリ ームと呼ぶ)を入力信号として使用する。この場合には周波数分解能はパルスの繰返し周波数 で決定される。次に被測定ファイバにパルス・ストリームを通して周波数特性を測定する。伝 達関数(周波数領域での)としては両者の差をとった結果が周波数応答特性として求まる。

実際の測定例について述べる。

図 4.28は半導体レーザ(発振波長 0.82 μm)を繰返し周波数20 KHzでパルス駆動した時間波形である。1目盛500 psec である。このパルス・ストリームをSi-APD(アパランシェ・フォト・ダイオード)で受光し、スペクトル・アナライザで観測した結果を図 4.29 に示している。

図4.29においては1目盛が20MHzであるため、周波数分解能20KHzは十分な精度である。ここではステップ形多モード光ファイバの伝達関数を求める為、フルスケールを200MHz として測定した。3dB帯域幅として200MHz以上伸びていることが図より読みとれる。

図 4.2 8 入力時間波形

図4.29 入力パルス・ストリームの周波数特性

次に、ステップ形光ファイバ約11cmに上記、パルス・ストリームを通してその周波数特性 を観測する。なお、測定に使用したステップ形光ファイバはコア径60μmφ,屈折率差比Δ = 0.7%の多モード光ファイバである。

図4.30はファイバを伝搬した後の時間波形で、半値幅で約15 nsec 拡がっていることが わかる。なお出射波形自体はかなり指数関数的な形をしていることから、モード変換は少ない

図 4.3 0 出力時間波形

図4.31 出力パルス・ストリームの周波数特性

と推定される。図4.31はファイバを伝搬した後のパルス・ストリームをスペクトル・アナラ イザで観測した結果を示している。出力波形が指数関致的な形をしているため、振幅の減衰は 低域側で大きく、高周波領域ではあまり減衰量が大きくならない。図4.29と図4.31とから ファイバの伝達関数を求めることができる。例えば、3dB帯域幅は、この場合には約20MHz となり、10dB帯域幅は約36MHzとなる。この測定法の特徴は時間波形と周波数特性が同 時に観測できる点にある。

なお, S/N比と周波数分解能とは逆比例の関係にあるため, 測定用光源としてはピーク電力が大きくて, かつ時間幅の狭い光信号を必要とする。

4.5.3 周波数掃引法

本測定法は光信号をベースバンドのサイン波形で変調し、その変調周波数を掃引して被測定 ファイバ挿入前後のRF受信電力を測定することによって、ベースバンドの周波数領域におけ る伝達関数を測定するものである。本測定法自体は電気回路の周波数特性、あるいは銅線ケー ブルの周波数特性測定法として古くから利用されていたが、光ファイバにおいては変調技術の 進歩と相まって最近報告されるようになってきた^{(37)・(75-77)}。図4.32は本測定法における測定 系を示している。

光源としては光電力強度を直接変調可能なLEDおよび半導体レーザ,また連続発振している光源と外部変調器による構成が考えられる。ここではLED,半導体レーザおよびYAGレ ーザと外部変調器による三通りの方法について検討した。

-113 -

図4.32 周波数掃引法によるベースパンド周波数特性の測定系

(i) LED

中心発振波長1.025 μm のLEDを使用して周波数掃引法によるベースバンド周波数特性の測定系を構成した。図4.33は直流バイアス電流150 mA で駆動した場合の発光スペクトラム分布形を示している。中心波長1.025 μm 発光スペクトラム幅は1/e幅で約760Åの拡がりを持っている。また発光スペクトラムの関数形はガウシアン分布に非常に近い。この状態での全電力は約120 μw である。このLEDの変調特性を図4.34に示す。6dB 帯域幅で約160 MHz, 10 dB帯域幅で約220 MHzの特性が得られた。ノイズレベルは測定可能を帯域を決定する重要を要因であるが、本測定系では200 MHzにおいてダイ

図 4.33 LED の発光スペクトラム分布

図4.34 LED 変調特性

図4.35 LEDでのペースパンド周波数特性

ナミックレンジを30dBまでとることが可能である。LEDにおいては発光電力が安定である ということと長寿命であるという点が現時点での光源として有望視されているが、低電力である ことと,発光スペクトラムが広い欠点がある。図4.35は本測定系でグレーデ・ド形多モード光 ファイバのペースパンド周波数特性を測定した例である。被測定ファイバの屈折率差比は約 0.7 %,全損失は波長 0.8 μm で 3.9 d B/km, コア径約 6 0 μm ,ファイバ長約 1 km の 8 のを使用した。 6 dB ダウンの周波数は約 1 6 0 MHz程度である。第 2 章で述べたように多モ ード光ファイバの分散(群遅延)はモード分散,材料分散,構造分散の三つで決定されるが, グレーデッド形多モード光ファイバでモード分散が小さくなるとLEDのような発光スペクト ラムの広い光源に対しては主として材料分散でベースバンドの周波数特性は決定される。発光 中心波長 1.0 8 μm における材料分散は約 4 psec/Å·km⁽⁷⁸⁻⁸⁰⁾であり,本測定系でのLED のスペクトラム幅は 7 6 0 Å であるから,群遅延は約 8 nsec/kmとなる。一方モード分散の 値は 2 0 0 MHz帯域では無視できる程小さく(後述), ほとんど材料分散効果が図 4.8 5 では 効いていることがわかる。ベースバンドの周波数特性もガウス形を示しており,材料分散効果 による劣化であることを裏付けている。

(ii) 半導体レーザ

GaA1As 半導体レーザは直接変調が高周波領域まで可能であり、周波数掃引法での光源と して適している。ここでは発光中心波長0.832 μm の半導体レーザを直接変調して測定系を 構成した。図4.36は使用した半導体レーザの各変調周波数における発光スペクトラムの様子 を示している。無変調時の発光スペクトラムは半値幅で約10Å位であるが変調周波数を上げ

図 4.3 6 半導体レーザの変調時における発光スペクトラム

ていくにつれて発光スペクトラムは拡かる傾向を示している。この現象は既に報告されており 変調回路による改善は困難である。したがって低周波での変調時と1GHz程度での変調時では 発光スペクトラムは約3倍に拡がり,材料分散効果が顕著にあらわれる広帯域なグレーデッド 形光フェイバにおいては測定に留意する必要がある。図4.37は半導体レーザの変調特性を示

(81)

図 4.3 7 半導体レーザの変調特性

図4.38 半導体レーザでのペースパンド周波数特性

-117 -

している。6dB帯域幅で約1.4GHzの帯域を持ちノイズレベルによるダイナミックレンジの 制限は1.5GHzで40dB以上可能である。図4.88は本測定系でグレーデッド形多モード光 ファイバのベースバンド周波数特性を測定した一例を示している。被測定ファイバの屈折率差 比は1.04%, コア径約60μm,ファイバ長約1.4kmである。グレーデッド形多モード光フ ァイバをレーザ光で励振すると励振されるモード分布は局在したものになり(第5章参照), 周波数特性は入射励振条件によって大きく変化する。ここでは1.4km伝搬後のモード分布形 に近い状態で入射励振モードを規定するために定常モード励振器(第8章参照)を使用して測 定した。本測定方法においては、半導体レーザの出力電力の安定性及び寿命の点、さらに発光 スペクトルの不安定性に問題はあるが、高出力を得ることができること、SN比を1.5GHz帯 域で40dB以上取ることが可能であること等の点で長尺かつ広帯域な光ファイバの伝送特性 を測定する場合に有利となる。

(jji) YAGレーザ

光ファイバの全損失は l μm 帯で極低損失を示すことはよく知られている⁽¹⁴⁾。また材料分散 の値も長波長(1.27μm 近辺)帯で非常に小さくなるため,この波長領域における伝送特性 の把握は非常に重要である。従来この波長領域での伝送特性は YAG レーザをモードロックし て得られる 1.06μm でのパルス光を利用してパルス伝送特性として解析していた。本節では YAG レーザ光を周波数掃引法の光源として利用するために外部変調器による測定系を構成し た。図 4.39は本測定系の構成図を示している。外部変調器の構成として,電気光学結晶によ

図4.39 YAGレーザによるベースバンド周波数掃引測定系

る位相回転を利用する方法を採用している。すなわちYAGレーザからの光を偏光子を通して 直線偏波光にして変調器の電気光学結晶に当て,その出力光をクロスニコルに構成した検光子 を通して検出すると,駆動電圧によって直線偏波面が回転し、出力光が変調される。補償板C は変調器の動作点を光学的にバイアスする為に挿入したものである。本御定系で使用した変調 器はLiNbOs 結晶にTiを拡散して得られる三次元の導波形変調器⁽⁸²⁾である。導波路の幅 は約5 μm。 磔さ約5 μm のガウス形分布に近い屈折率分布形を持ち,屈折率差 dnは0.002 ~0.003である。したがってYAGレーザの発光波長1.06 μm においては単一モード導波 路となっている。本御定系においてはトラ。キング・ジェネレータからの出力約5 dBm で直 接変調して御定した。図4.40は本御定系での変調特性を示している。横軸は200MHz/ div,縦軸は10 dB/div を示している。10 dB 帯域幅として1.5 GHz,ノイズレベルで 制限されるダイナミ。クレンジは40 dB 以上可能である。なおYAGレーザの縦モード間隔 約300MHz毎にスパイク・ノイズが生じるが、変調度を上げることによって抑圧することが 可能である。

図 4.40 YAG レーザと外部変調器による周波数 掃引等性

200MHz/div, 10dB/div

図4.41に本測定系でグレーデッド形多モード光ファイバのベースバンド周波数特性を測定 した一例を示す。被測定ファイバは(i)で述べたLEDでの測定時に使用したグレーデッド形光 ファイバと同一のものである。YAGレーザの発光スベクトラムは非常に狭い発光幅を持ち約 1 Å以下である。したがって図4.41に示したベースバンド周波数特性は、ほぼモード分散の

図 4.4 1 YAGレーザで測定したベースバンド周波数特性

みで劣化した周波数特性と見なすことが可能である。YAGレーザ光を対物レンズ等で絞って 入射させる場合には,励振されるモード分布形が局在したものになるため,入射励振条件によ って周波数特性も大きく変化する。したがって入射励振モード分布形と得られる周波数特性と は合わせて解析することが必要である。

以上周波数掃引法によって光ファイバのベースバンド周波数特性を測定する方法について検 討したが、本方法の特徴として以下の点を挙げることができる。

- (i) 単一の周波数での変調,検波を行えば良い為にSN比を大きく取れる。
- (ii) 原理的に振幅特性, 位相特性を直接測定することができる。
- (11) 現時点では周波数測定の精度の良い電気系が整備されている。
- (V) 外部変調器があれば光源の種類を問わない。

等の利点があるが、インパルス応答波形等を直接観測できないこと,原理的に変調帯域が制限 されること等の欠点もあり、時間領域と周波数領域の測定は合わせて行う必要がある。

4.6 伝達特性における距離依存性の測定

光通信用伝送路としての設計に際しては,伝送特性,特にパルス幅,周波数応答特性の距離 依存性を知ることは不可欠である。

パルス伝送特性の距離依存性を測定した例としては, 順次被測定ファイバを短くして測る 方法, あるいはシャトルパルス法⁽³⁹⁾・^(83,84) が報告されている。この測定法は, 被測定ファイバ の入出射端に適当な反射率を有するハーフミラを接し, 被測定ファイバ内で多重反射させ, 出 射端で奇数回反射した光パルスを検出測定するものである。

との節では,被測定ファイバ内で光バルスを周回させ,一周回毎の光バルスを検出する光パ ルス周回法を検討する。

4.6.1 光パルス周回器による方法

光バルスを周回させるためには, 被測定ファイバがループ状に測定系として構成されている 必要がある。この閉ループに光バルスを結合させ, かつ一周回毎の光バルスを検出できる機能 を持った光バルス周回器を試作した。光バルスの結合, 取り出し機能は光ファイバを斜めに研 磨した結合器^{(85),(86)}で行っている。図4.42に光バルス周回器の構成と測定系を示している。 光バルス周回器は3本の多モード光ファイバから成り, F1, F2(周回用ファイバ)は, 傾 斜した光学研磨面を持ち, 互いに接して配置する。周回した光バルス検出用ファイバ, F3は 分岐される光を効率良く受光するため大口径かつNAの大きいファイバを用いている。被測定 ファイバはF1とF2にそれぞれ接続することにより閉ループを構成することができる。

なお,入射結合はレンズによって結合させているが,結合用としてファイバを利用すること も可能である。

(i) 光パルス周回器の最適設計

検出可能な周回数は,光パルス周回器を構成する傾斜面の反射率,被測定ファイバの損失, 光源と検出器で決まる最低受光量等によって決定される。

光パルス周回器の傾斜角と反射率は、自然光に対するエネルギの反射率Rから決定される。 所定の反射率を得るためには、精度良く角度制御を行う必要がある。たとえば、R = 0.2 ± 0.05 に設定するためには、ファイバ軸となす角 $\theta_1 = 41^\circ \pm 0.5^\circ$ の精度が要求される。

ことで反射率の周回数に対する最適設計について検討する。いまれ周回目の光パルスの電

図4.42 ファイバ回路を用いた光パルス周回測定系

力を p(n)とすると,次式で表すことができる。

$$P(n) = P_0 \cdot R^2 \cdot (1-R)^{n-1} \cdot 10^{-0.1\alpha_0 n L} \cdot \eta_0 \cdot \eta_1^{2n} \cdot \eta_2^{n-1} \cdot \eta_3 \cdots (4.20)$$

ただし

いま検出器の最低受信電力を Pmin とすると次式の関係式が成立する。

$$-122-$$

ただし

$$\eta(n) = \eta_0 \eta_1^{2n} - \eta_2^{n-1} \eta_3 \qquad \dots \qquad (4.22)$$

ここで反射損のみで決まる損失をLRとすると,

$$L_R = 10 \log \{ R^2 (1-R)^{n-1} \} \qquad (4.23)$$

(4.23)式より周回数 n に対して L_R を最小にする反射率 R_{opt} は次式のようになる。

$$R_{opt} = \frac{2}{n+1} \qquad \dots \qquad (4.24)$$

反射率Rに対する反射損LRを周回数nをパラメータにして図4.43に示している。この図

図4.43 周回数と反射損の関係

から,多数回の周回パルスを検出する場合には反射率は小さい方が効率がよいことがわかる。 しかしながら最適反射率からのずれに対しては損失が急増する傾向を示している。例えば,最 適反射率からのずれを±0.1%としたとき損失は, n = 3 で約0.5 dB, n = 6 では約1 dB 増加する。

図444は被測定ファイバの損失によって決る検出可能を最大周回数を決定する図である。 ここでは以下の定数を代入して求めている。

L_n:50dB (測定系のダイナミックレンジ) :10log(P₀/D)

 $\eta_0 = 0.7$ $\eta_1 = 0.9$ $\eta_2 = \eta_3 = 0.8$

ただし結合効率ηは測定結果である。例えば、被測定ファイバの全損失が4 dB とすると、 反射率を約0.2 に選ぶと、周回数は最大5 回まで検出可能となる。

図4.4.4 検出可能な最大周回数

(ii) 光パルス周回器の試作

被測定ファイバの損失:3dB/km,ファイバ長1km 程度の光ファイバを測定する目的で 光パルス周回器を製作した。光パルス周回器を構成するファイバ(F1, F2, F3)のパラ メータを以下に示す。 F1, F2:グレーデッド形光ファイバ, コア直径:82 μm, 1:0.75%

F3 :シリコーン・クラッディング・ステップ形光ファイバ,

コア直径:185µm, 4:3.6%

図4.43より $R_{opt} = 0.3$ で $n \le 6$ となる。そこで最適反射率をR = 0.3に設定しファイバの角度研磨を試みた。得られた周回用ファイバ(F1,F2)の自然光に対する反射率を以下に示す。

F1 : R = 0.18

F 2 : R = 0.32

この2本のファイバは反射率で0.14の差,角度量で1.7度の差があり,角度研磨の難し さを示している。検出用ファイバ(F3)はF2の角度面からの反射光を効率良く結合させる ために,大口径,大N・A・のファイバを用いている。これらのファイバを使用して光パルス周 回器を組立て測定した結果以下の特性を得ることができた。

R = 0.3

插入損失: 0.8 9 (dB)

(11) パルス伝送特性測定結果

下記に示すパラメータを持ったファイバについて測定した。

ο ステップ形多モード光ファイバ

コア径 2a=52µm

クラッディング外径 2b=147μm

損失 loss = 3.9 dB/km ($\lambda = 0.82 \mu m$)

ファイバ長 L=0.79 km

とのファイバは、CVD法で製作されたステップ形多モード光ファイバであり、ナイロンの ジャケッティング付で、直径500mmのドラムに巻いた状態で御定した。図4.45に5周回 までの出射パルス波形を示している。

入射パルスは半導体レーザ(GaAs)をパルス駆動して得られた半値幅300ps 程度のパ ルス光を使用したため、この場合には近似的にインパルスとみなすことができる。出射パルス 波形は破線で示している。周回数の増加に対して、出射パルス波形が指数関数形からガウス関 数形へ移行していく様子がみられる。このことはモード変換がかなり起っていることを示して

-125-

図4.45 光パルス周回波形

図4.46 伝送特性の距離依存性

いる。パルス幅拡がりは約5 nsec/kmであり,材料分散に比較して極めて大きいことから, パルス幅拡がりはモード分散によっていることがわかる。

図4.46は得られたパルス波形から,パルス幅の距離依存性と帯域幅の距離依存性を求めた ものである。帯域特性はパルス波形をFFTで周波数領域に変換して求めたものである。この 図から明らかなようにパルス幅特性と帯域特性の両者共距離の平方根に比例しており,モード 変換が大きいことを裏付けている。なお,このモード変換要因については後述する。

光パルス周回器として光ファイバ回路自体を使った例について詳述したが、図447に示す ように、ハーフミラを使って閉ループを構成し、周回波形を観測することも可能である。図4. 45 における実線の各出射波形は、このハーフミラで構成した測定系によって得られた波形で ある。得られた両者の波形を比較すると、ハーフミラで構成した測定系で得られる出射波形の 方が指数関数形に近く、測定系でのモード変換効果が小さいことがわかる。したがって、この 方法で多モード光ファイバの伝送特性を測定する場合には測定系自体でのモード変換効果を考 慮して、測定結果を検討する必要があることがわかる。

図4.47 ハーフミラを使った光パルス周回測定系

-127-

4.6.2 超音波偏向器による方法

前節では光バルス周回器あるいはハーフミラによる光分岐回路によって光バルスを周回させ かつ検出する方法について検討したが、この方法では本質的に各周回毎に光電力を分岐損失す るため多数回の周回特性を得ることができない。本節では超音波偏向器を使って、各周回毎の 分岐損失を避け、任意周回後の信号のみを閉ループ外に取り出して検出する方法⁽⁸⁷⁾について述 べる。

(i) 測定装置

図 4.4 8 は超音波 偏向器を用いて閉ループとの 結合を起させる構成とした周回光パルス 測定 系を示している。

図448 超音波偏向器を用いた周回光パルス測定系

図における(a)の部分は光学測定系を示し、(b)の部分は電気回路系を示している。超音波偏向 器はファイバ端面からの放射ビームを二つのレンズで平行ビームにして構成した閉ループの中 間に置き,入射、出射パルスを結合させる。超音波偏向器はリチウム・タンタル結晶を使用し 半導体レーザ光(発光中心波長=0.84µm)に対して偏光効率は約30%および有効径は2 mm 直径である。ファイベ閉ルーブ間の過剰損失をできる限り小さくするためには、ファイベ 端間の距離を短くして回折損失を防ぐ必要がある。その為にミラM1, M2を使用してレンズ L3, L2の間隔を小さくしている。

ファイバ閉ループへの光バルスの結合および取り出しはダブルバルスで超音波 偏向器を駆動 して行っている。すなわち150MHzで変調されたRF信号を最初のバルスでゲートして半導 体レーザからの入射バルスを偏向させ閉ループに結合させ、次のバルスでゲートされたRF信 号で閉ループ内を周回している光バルスを取り出す構成になっている。周回数の選択は遅延回 路によって最初のバルスと次のバルスの間隔を変化させることによって実現している。偏向器 と駆動するRF信号は結晶のオーバヒートを避けるためにできる限り短いバルスで駆動する 必要がある。駆動バルス幅_{てRF}は次式で決定される。

$$\tau_{RF} > \frac{nL}{c} + 2 \tau_{rise} + 2 \tau_{pw}$$
 (4.25)

ただしLは結晶長, nは結晶の屈折率, cは真空中での光速, τ_{rise}は偏向器の駆動立上がり 時間,立下がり時間, τ_{pw}は光パルスの拡がり幅を示している。例えば光パルス幅τ_{pw}が100 nsec 程度と仮定すると(4.25)式の他の項は無視できる程度となるためダブルパルスの二 番目の最小パルス幅τ_{RF}は約0.2 μsecとなる。

次に超音波偏向器を使った場合に観測できる最大周回数について検討する。

前節と同様にn回周回して検出される電力をPnとすると次式のように表すことができる。

 $P_n = P_0 \eta_{def}^2 \cdot \eta_1 \eta_2^{2n} \cdot \eta_4 10^{-0.1 Lnl_0} \qquad (4.26)$

ただし Poは半導体レーザ出力のピーク電力、 η_{def} は超音波偏向器の偏向効率、Lは被測定 ファイバ長、 ℓ_0 は被測定ファイバにおける全損失値(dB/km) η_i は最初の入射電力が光フ ァイバに入射する場合の結合効率、 η_2 は周回ビームとファイバとの結合効率、 η_i は出射ビー ムとAPDとの結合効率を表している。 η_1 、 η_2 は実測値で約0.9となった。

図4.49は被測定ファイバの損失が約3dB/kmの場合について(4.26)式を計算して示している。同図にはシャトルパルス法で測定する場合の結果もあわせて示してある。シャトルパルス法の場合にはハーフミラの反射率をパラメータとして示している。例えば測定系のダイナミ

図4.49 最大周回数と検出ダイナミックレンジ

・クレンジが50dBと仮定すると同図より偏向器による方法では最大12回観測されるのに対して、シャトルパルス法では反射率80%の時最大7L伝搬した後の波形まで観測できる。 このようにシャトルパルス法より検出回数は多く取れ、しかも各周回パルス波形を任意にとり出して観測することが可能となる。

(ji) 测定結果

ステップ形多モード光ファイベ2本(0.78 kmとl km)と、クレーデッド形多モード光フ ァイバ2本(l kmとl.8 km)について周回パルス特性を顔定し、各々5回から4回の周回パ ルス波形を観測した。ステップ形多モード光ファイバについては出力波形が指数関数形からガ ウシアン分布形へと変化するのに対して、グレーデッド形多モード光ファイバについては第1 回目の周回パルス波形がほぼガウシアン分布形に近い波形が観測された。図4.50は各ファイ バに対する出力パルス波形の半値幅を伝搬距離に対してプロットしたものである。

ステ。プ形ファイバにおいてはパルス幅の距離依存性は√L特性を示したのに対して、グレ ーデ。ド形光ファイバの場合にはL^{0.85} 特性を示している。また得られたパルス波形からFF Tによるフーリエ変換によって周波数特性を求めた。ベースバンド周波数特性の3 dB ダウン 周波数の距離依存性も、パルス幅の距離依存性と同一の特性を示した。

図4.50 超音波偏向器による周回パルス特性

次に測定系でのモード変換効果を検討した。本測定系でのモード変換はビームと光ファイバ 内の固有モードとの不整合,あるいはレンズ等の軸ずれによる効果が考えられる。測定系での モード変換効果を分離測定するために,図4.50で示したファイバAを110mの短尺ファイ バと670mのファイバに切断し,光パルス周回法と直接測定結果を比較した。すなわち 110m長ファイバを6回周回した後の出射パルスと670m長ファイバを伝搬した後の出射 パルスを比較した結果を図4.51に示している。

両者のベルス波形を比較すると、6回周回した後のベルス波形はガウス関数形に近く,670 m 直接伝搬した後のベルス波形はやや指数関数形に近い。またベルス波形の半値幅を比較する と,前者は約4.9 nsec,後者は約5.2 nsec と直接伝搬した後の波形の方がベルス幅拡がり が大きく観測されている。このことは6回周回したベルスの方がモード変換を多く起こしている ことを示している。さらにベルス波形の半値幅の伝搬距離依存性を検討した結果次のことが明 らかになった。すなわち110m伝搬後の測定値と670m直接伝搬した測定値の示す距離依存 性はL特性を示したのに対して,周回ベルス波形の測定値はL特性とL^{1/2}特性の間の傾向を示 した。この検討結果から測定系でのモード変換効果は無視できないことが明らかになった。

図4.51 御定系でのモード変換効果の検討

したがってモード分散の距離依存性を $L^{1/2}$ とし、波長分散の距離特性を L^1 と仮定すると、 グレーデッド形光ファイバにおいては全分散の距離特性はほぼ $L^{0.75}$ 特性を示す。ただし使用 した半導体レーザの発光スペクトラム半値幅が約18Åとし、0.82 μ m での材料分散による パルス幅拡がりを11psec/kmÅとして計算した場合の推定である。 $L^{0.75}$ 特性は実測値の $L^{0.85}$ 特性にほぼ近い値となっている。

以上光バルスを周回させて短尺の光ファイバを用いて伝送特性の距離依存特性を測定する方 法について述べたが、本測定法では、測定系によるモード変換が無視できないことがわかった。 ところで短尺ファイバを接続して長尺ファイバとした時の伝送特性は、後述するように接続点 でのモード変換が実際の接続点ではかなり大きい。したがって本測定法による測定結果は短尺 ファイバをn本接続した場合の伝送特性を検討する場合に有効である。また波長分散効果、あ るいは単一モード光ファイバの長距離特性を測定する場合に非常に有効な測定手段となる。

4.7 まとめ

光ファイバの伝送特性を測定する方法,技術については現在確立されておらず,本章では伝 送特性を決定するパラメータの測定および伝送特性自体の測定について新しく開発したものに ついて述べた。

屈折率分布の測定は自動測定装置の製造段階まで進めることができた。残された問題として 試料端面を如何に平担に作製するかという点がある。ニア・フィールド分布の測定は容易で非 常に有効であるが、リーキーモードの励振という問題が定量化を困難にしている。

モード分析に関しては、ファー・フィールドを分析する本方法はステ。プ形多モード光ファ イバについては直接分析可能であるが、グレーデ。ド形多モード光ファイバについては数値処 理する必要がある。

伝達関数の測定法に関しては三種類の方法を試み,充分実用に耐えることを確認した。また伝 送特性における距離依存性についても光パルス周回法を開発して検討した。

第5章 入射励振条件と伝送特性

5.1 序

多モード光ファイバのモード変換量が小さい場合には、入射励振時の励振モード電力分布に よって被測定ファイバの伝送特性は大きく変化する。本章ではグレーデッド形多モード光ファ イバの伝送特性の入射励振条件依存性について検討する。

5.2 ガウシアン・ビームによる励振モード

レーザ光を光ファイバに入射させる場合には普通光学系を使用してビームを絞った状態で入 射させる。したがって入射ビームが伝送媒質固有の固有モードにうまく整合が取れていないと 伝送媒質中で多数のモードを励振することになる。本節では、入射ビームが媒質固有のスポッ トサイズw。で中心入射する場合からずれた時に励振される固有モードの結合係数について解 析する⁽⁸⁸⁾。

5.2.1 入射ビームが不整合の場合

ここでは一般的に波面係数 Pを持つガウス・ビーム波が中心に入射した場合の固有モードとの結合係数を求める。図 5.1 に示す座標系において波面係数 P_{in} を持つビーム波が中心に入射したときの、z=0における入射波の電界 $E_{in}(r, \theta)$ は次式のように表すことができる。

図 5.1 入射ビームにミスマッチングがある場合

$$E_{in}(r, \theta) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} exp(-\frac{1}{2}P_{in}r^2) \qquad (5.1)$$

$$\zeta = P_{in} w_0^2 = \left(\frac{w_0}{w_{in}}\right)^2 + j w_0^2 \frac{k(0)}{R_{in}} \qquad (5.3)$$

ただし w_{in} ・く, R_{in} は各々入射ビームのz = 0におけるスポット・サイズ、規格化された 波面係数、および入射波面の半径を表す。 (5.1)式を規格化された r 座標で表すと,

$$E_{in}(R, \theta) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} exp(-\frac{1}{2}\zeta R^2) \qquad (5.4)$$

となる。この入射波を2乗分布形媒質内の固有モード関数(2.118)式で展開する。

$$E_{\mu,\nu}(R,\theta) = A_{\mu,\nu} \cdot R^{\nu} L^{\nu}_{\mu}(R^2) \left\{ \begin{array}{c} \cos\nu\theta\\ \sin\nu\theta \end{array} \right\} exp\left(-\frac{1}{2}R^2\right) \quad \cdots \cdots \quad (5.5)$$

$$\overline{PR}$$

$$E_{in}(R, \theta) = \sum_{\mu,\nu}^{\infty} C_{\mu,\nu} E_{\mu,\nu}(R,\theta) \qquad (5.6)$$

$$C_{\mu,\nu} = \int_{S} E_{in} \cdot E_{\mu,\nu} \, dS$$

= $\int_{0}^{2\pi} \int_{0}^{\infty} w_{0}^{2} E_{in} (R,\theta) E_{\mu,\nu} (R,\theta) R d\theta dR$ (5.7)

ただしSは断面内を表す。

(5.4), (5.5)式より レ=0 以外は (5.7)式は0となる。

ここで次式の数学公式を利用して⁽⁸⁾
$$\int_{0}^{\infty} e^{-bx} L_{N}(x) dx = (b-1)^{N} b^{-N-1} \qquad (5.9)$$

(5.8)式は次式のように書ける。

$$C_{\mu,0} = 2 \frac{w_0}{w_{in}} \frac{(\zeta - 1)^{\mu}}{(\zeta + 1)^{\mu + 1}} \qquad (5.10)$$

ここでく=1の場合、すなわち整合のとれている場合は、

となる。なお(5.10)式はすでに末松,伊賀によって求められている⁽⁹⁰⁾。

5.2.2 入射ビームが軸ずれした場合

図 5.2 に示すように波面係数 P_{in} のビーム波が δ だけ軸ずれ垂直入射した場合の、伝搬媒質

図 5.2 入射ビームが軸ずれした場合

内において励振されるモード結合係数について考察する。入射波は(5.1)式で与えられる。 いま入射面(x-y)上で軸ずれるがx軸上に起ったとすると,入射波は次式のように表される。

$$E_{in}(\delta) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \exp\left(-\frac{1}{2}P_{in}\left\{\left(x-\delta\right)^2 + y^2\right\}\right) \qquad (5.12)$$

ここで(x, y)座標から (R, θ) 座標に変換する。

ただし ð' は固有スポットサイズ w。 で規格化された規格化 軸ずれ量を表 す。(5.12)式 は(5.13)式より次式のように変換される。

(5.14)式を固有モード $E_{\mu,\nu}(R,\theta)$ で展開する。

$$E_{in}(\delta') = \sum_{\mu,\nu}^{\infty} C_{\mu,\nu} E_{\mu,\nu} (R,\theta) \qquad \dots \qquad (5.15)$$

$$C_{\mu,\nu} = \int_{0}^{\infty} \int_{0}^{2\pi} w_{0}^{2} E_{in}(\delta') E_{\mu,\nu} (R,\theta) R d\theta dR$$

$$= \frac{A_{\mu,\nu}}{\sqrt{\pi}} \frac{w_{0}}{w_{in}} e^{-\frac{1}{2} \zeta \delta'^{2}} \int_{0}^{\infty} \int_{0}^{2\pi} e^{-\frac{1}{2} (\zeta+1) R^{2}}$$

$$\times R^{\nu} L_{\mu}^{\nu}(R^{2}) e^{\zeta \delta' R \cos \theta} \cos \nu \theta R d\theta dR \qquad \dots \qquad (5.16)$$

(5.16)式をθとRの積分に分けておこなう。

ここで三角関数の冪の公式を利用する。

$$\cos^{2n+1}\theta = \frac{1}{2^{2n}} \sum_{p=0}^{n} {\binom{2n+1}{p}} \cos(2n-2p+1)\theta \qquad (5.19)$$

以上より

(5.20)式より(5.17)式は次式のように表される。

$$I_{\nu} = \sum_{i \ge \nu}^{\infty} \frac{(\zeta \,\delta' R)^{i}}{i!} \frac{\pi}{2^{i-1}} \left(\begin{array}{c} i \\ (i-\nu)/2 \end{array} \right) \qquad (5.21)$$

ここで変数を i から k へ次式の関係で変換する。

$$2 k = i - \nu$$
 (5.22)

$$I_{\nu} = 2 \pi \sum_{k=0}^{\infty} \frac{(\zeta \, \delta^{!} R / 2)^{2^{k+\nu}}}{(2k+\nu)!} \begin{pmatrix} 2k+\nu \\ k \end{pmatrix}$$
$$= 2 \pi \sum_{k=0}^{\infty} \frac{(\zeta \, \delta^{!} R / 2)^{2^{k+\nu}}}{k! (k+\nu)!} \qquad (5.23)$$

次に(5.23), (5.16)式よりRに関する積分をおこなう。

$$I_{R} \equiv \int_{0}^{\infty} e^{-\frac{1}{2}(\zeta+1)R^{2}} \cdot R^{2(k+\nu)} \cdot L_{\mu}^{\nu}(R^{2}) R dR \qquad (5.24)$$

次式の積分公式 (89) により(5.24)式は求まる。

$$\int_{0}^{\infty} e^{-st} t^{\beta} L_{N}^{a}(t) dt = \frac{\Gamma(\beta+1) \Gamma(a+N+1)}{N! \Gamma(a+1)} S^{-(\beta+1)} \times F(-N, \beta+1; a+1; \frac{1}{S}) \qquad (5.25)$$

$$:\mathcal{R}_{e}(\beta) > -1, \mathcal{R}_{e} S > 0$$

$$F(a, \beta; \tau; x) = \sum_{n=0}^{\infty} \frac{a(a+1) \cdots (a+n-1) \beta(\beta+1) \cdots (\beta+n-1)}{n! \tau (\tau+1) \cdots (\tau+n-1)} x^{n}$$

ただし関数Fは(5.26)式で定義される超幾何関数である。 (5.25)式より(5.24)式は次のように表される。

. .

$$I_{R} = \frac{1}{2} \frac{(\nu+k)!(\mu+\nu)!}{\mu!\nu!} \left(\frac{1+\zeta}{2}\right)^{-(\nu+k+1)} \cdot F(-\mu,\nu+k+1;\nu+1;\frac{2}{1+\zeta}) \cdots (5.27)$$

(5.23), (5.27)式より軸ずれがある場合の結合係数は次式に示すように求まる。

$$C_{\mu,\nu} = \sqrt{\pi} A_{\mu,\nu} \left(\frac{w_0}{w_{in}}\right) e^{-\frac{1}{2}\zeta \, \delta^{\prime 2}} \frac{(\mu+\nu)!}{\mu!\nu!} \cdot (\zeta \, \delta'/2)^{\nu} \left(\frac{1+\zeta}{2}\right)^{-(\nu+1)}$$

$$\times \sum_{k=0}^{\infty} \frac{(\zeta \, \delta'/2)^{2k}}{k!} \left(\frac{1+\zeta}{2}\right)^{-k} \cdot F(-N,\nu+k+1;\nu+1;\frac{2}{1+\zeta}) \qquad (5.28)$$

5.2.3 入射ビームが斜入射および軸ずれした場合

この節では図 5.3 に示すように、入射ビーム波が斜入射と軸ずれの両者で入射した一般的な

図 5.3 入射ビームが軸ずれおよび斜入射した場合の座標系

場合の, 伝搬媒質内において励振される固有モードの結合係数について考察する。 P 点に波面 係数 P_{in} のビーム波が, x 軸上で δ の軸ずれ, かつ (y-z) 面内で φ の斜入射をしたと仮定す ると, 入射波の電界 E_{in} は次式で表される。

$$E_{in}(0,0) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \exp\left(-\frac{1}{2}P_{in}r^2 - j\beta_{in}z'\right) \qquad (5.29)$$

ただし E_{in} (0,0)および β_{in} は各々中心入射波の電界および、z'方向の伝搬定数を表す。 (y-z) 面内で φ だけ回転した座標を(y'-z') とすると次の関係式が成り立つ。

$y' = \cos \varphi \cdot y + \sin \varphi \cdot z$		(5.30)
$z' = \cos \varphi \cdot z - \sin \varphi \cdot y$	J	

(5.29)式に(5.30)式の関係を代入して次式を得る。

$$E_{in}(0,\varphi) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \exp\left\{-\frac{1}{2}P_{in}(\cos^{2}\varphi \cdot y^{2} + \sin^{2}\varphi \cdot z^{2} + 2\cos\varphi\sin\varphi \cdot z + x^{2}) - j\beta_{in}(\cos\varphi \cdot z - \sin\varphi \cdot y)\right\} \quad \dots \dots \quad (5.31)$$

)

z=0の面上では(5.31)式は次式のように簡単化される。

$$E_{in}(0,\varphi) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \exp\{-\frac{1}{2}P_{in}(\cos^{2}\varphi \cdot y^{2} + x^{2}) + j\beta_{in}\sin\varphi \cdot y\} \qquad (5.32)$$

ここで x 軸上で δ の 軸ずれがあると仮定すると入射波は次式で表される。

$$E_{in}(\delta,\varphi) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \exp\left(-\frac{1}{2}P_{in}\left\{\cos^{2}\varphi \cdot y^{2} + (x-\delta)^{2}\right\} + j\beta_{in}\sin\varphi \cdot y\right) \qquad (5.33)$$

さらに規格化して

$$E_{in}(\delta',\varphi) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} e^{-\frac{\zeta \delta^{12}}{2}} exp\{-\frac{\zeta}{2}(\cos^{2}\varphi \ \sin^{2}\theta + \cos^{2}\theta)R^{2} + \zeta\delta'\cos\theta \cdot R + j\beta_{in}^{\dagger} \sin\varphi \ \sin\theta \cdot R\} \qquad (5.34)$$

ただし β_{in} は規格化伝搬定数 ($\beta_{in} = w_0 \beta_{in}$)を表す。 ここで傾き角 φ が小さいと仮定して $sin^2 \varphi$ の項を無視すると(5.34)式は次のように表される。

$$E_{in}(\delta',\varphi) = \frac{1}{\sqrt{\pi}} \frac{1}{w_{in}} \cdot e^{-\frac{\zeta \delta'^2}{2}} \cdot e^{-\frac{1}{2}\zeta R^2} \cdot e^{\zeta \delta' R \cos\theta} \cdot e^{j\beta_{in} + \sin\varphi \sin\theta \cdot R} \cdots (5.35)$$

(5.35)式を固有モード E_{μ,ν}(R,θ)で展開する。

$$C_{\mu,\nu} = \int_{0}^{\infty} \int_{0}^{2\pi} w_{0}^{2} E_{in} \left(\delta^{\dagger}, \varphi \right) E_{\mu,\nu} \left(R, \theta \right) R d\theta dR$$

$$= \frac{A_{\mu,\nu}}{\sqrt{\pi}} \left(\frac{w_{0}}{w_{in}} \right) e^{-\frac{1}{2} \zeta \delta^{\dagger 2}} \int_{0}^{\infty} \int_{0}^{2\pi} e^{-\frac{1}{2} \left(\zeta + 1 \right) R^{2}} e^{\zeta \delta^{\dagger} c o s \theta \cdot R}$$

$$\times e^{j\beta_{in}^{\dagger} sin\varphi sin\theta \cdot R} \cdot R^{\nu} L_{\mu}^{\nu} (R^{2}) c o s \nu \theta R d\theta dR \qquad (5.37)$$

(5.37)式の積分をθとRにわけて行う。

$$I_{\theta} = \int_{0}^{2\pi} exp(\zeta \delta' R \cos\theta + j \beta_{in} R \sin\varphi \cdot \sin\theta) \cos\nu\theta \, d\theta \qquad \dots \qquad (5.38)$$

(5.38)式を簡略に記すために次式の置換をおこなう。

$$I_{\theta} = \int_{0}^{2\pi} e^{a\cos\theta} \cdot e^{jb\sin\theta} \cos \nu\theta \, d\theta$$

$$= \int_{0}^{2\pi} e^{\frac{1}{2}(a+b)e^{j\theta} + \frac{1}{2}(a-b)e^{-j\theta}} \cdot \frac{1}{2} (e^{j\nu\theta} + e^{-j\nu\theta}) \, d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{A^{k}}{k!} \frac{B^{\ell}}{\ell!} (e^{j(k-\ell+\nu)\theta} + e^{j(k-\ell-\nu)\theta}) \, d\theta \qquad (5.40)$$

$$A \equiv \frac{1}{2} (a+b)$$

$$B \equiv \frac{1}{2} (a-b)$$

(5.40)式で積分と和の順序は置換できるから(5.40)式は次式のように表すことができる。

$$I_{\theta} = \frac{1}{2} \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} \frac{A^{k}}{k!} \frac{B^{\ell}}{\ell!} \int_{0}^{2\pi} \{ e^{j(k-\ell+\nu)\theta} + e^{j(k-\ell-\nu)\theta} \} d\theta \qquad (5.42)$$

(5.42)式は次に示す場合にのみ値をもちそれ以外では0である。

$$I_{\theta} = \pi \sum_{\ell \ge \nu}^{\infty} \frac{B^{\ell}}{\ell!} \frac{A^{\ell-\nu}}{(\ell-\nu)!} \qquad (5.4.3)$$

以上より

(i) $k-l+\nu=0$ の場合

ただし A', B' は次の変換をおこなった。

$$A \equiv \frac{1}{2} \left(\zeta \,\delta^{\dagger} + \beta_{in}^{\dagger} \sin \varphi \right) R \equiv A^{\dagger} R$$

$$B \equiv \frac{1}{2} \left(\zeta \,\delta^{\dagger} - \beta_{in}^{\dagger} \sin \varphi \right) R \equiv B^{\dagger} R$$

$$\left. \qquad (5.46) \right.$$

.

次にRに関する積分をおこなう。

(5.47)式は数学公式(**)から次のように求まる。

$$I_{R} = \frac{1}{2} \frac{\Gamma(k+\nu+1) \Gamma(\mu+\nu+1)}{\mu! \Gamma(\nu+1)} \left(\frac{\zeta+1}{2}\right)^{-(k+\nu+1)} \times F\left(-\mu, k+\nu+1; \nu+1; \frac{2}{\zeta+1}\right) \qquad (5.4.8)$$

以上より結合係数 $C_{\mu,\nu}$ は次式のように求まる。

$$C_{\mu,\nu} = \frac{1}{2} \sqrt{\pi} A_{\mu,\nu} \left(\frac{w_0}{w_{in}}\right) e^{-\frac{1}{2} \zeta \delta^{12}} \cdot \left(A^{\nu} + B^{\nu}\right) \cdot \frac{\Gamma(\mu + \nu + 1)}{\mu! \Gamma(\nu + 1)}$$

$$\times \left(\frac{\zeta + 1}{2}\right)^{-(\nu + 1)} \cdot \sum_{k=0}^{\infty} \frac{\left(A^{\nu} B^{\nu}\right)^{k}}{k!} \cdot \left(\frac{\zeta + 1}{2}\right)^{-k} \cdot F(-\mu, _{k} + \nu + 1; \nu + 1; \frac{2}{\zeta + 1})$$
.....(5.49)

ただし関数Fは(5.26)式で定義される超幾何関数である。

5.3 ガウシアン・ビームで励振した場合のインパルス応答

第2章で検討したように多モード光ファイバにおいては各モード(μ,ν)は各々異なったモ ード・電力を持ち,かつ各々異なった群速度で伝搬する。したがって厳密には出力波形は離散 的になるが、モード数の多い多モード光線路においては連続的に取り扱う方がより実際的であ る。本節ではモード数に関しては連続として検討する。また2乗分布形多モード光ファイバに おいては第2章・2.2.2.節で明らかにした等遅延時間差曲線からわかるように異なったモード (μ,ν)間でも遅延時間差は等しいモード群が存在する。そこで次数μとνの間に次式の関係 を有するモード変数 uを導入する。

 $u = 2 \mu + \nu + 1 \qquad (5.50)$

ここで単位時間当りの電力としてインパルス応答関数 I(r) を次式のように定義する。

$$I(\tau) \equiv \frac{C^2(u) du}{d \tau} = \frac{C^2(u)}{\frac{d \tau}{d u}} \qquad (5.51)$$

ただし C(w)は前節で求めた結合係数であり、τは2乗分布形多モード光ファイバでの最低次モード(0,0)との群遅延時間差を表す。したがって結合係数 C(w)が変数 u に 関して陽に 書き表す ことが可能である。

5.3.1 入射ビームが不整合の場合

入射ビームのミスマッチング条件としては次のものが考えられる。1°ビーム・スポットサイズが固有スポットサイズからずれている場合,2°入射点がビーム・ウエストからずれている場合,3°1°と2°が同時に起っている場合がある。

ここで規格化波面係数くは、ビームウエストから入射端面までの距離 Z_{in} を使用して次式のように表される。

ただし Z_{in} は固有スポットサイズ wor規格化された規格化 Z_{in} を表すo また n₁ はコア中心での屈折率を表す。

1の場合として入射ビームのスポットサイズは固有スポットサイズからずれているが、入射 端面ではビームウエストと一致している場合には規格化波面係数くは実数部のみとなる。規格 化ビームスポットサイズ win = win/w。をパラメータとして(5.10)式から求めたモード電力 分布を図5.4に示す。また2の場合としてビームウエストのスポットサイズは固有スポットサ イズと一致しているが、ビームウエストが入射端面からずれている場合のモード電力分布を図 5.5に示す。図5.4、図5.5からわかるようにビームスポットサイズにミスマッチングがある と高次モードが励振されやすいが、最低次モードよりは小さい。次にこの場合におけるインパ

-143-

図5.4 ビームスポットサイズにミスマッチングがある場合の励振モード電力分布

図 5.5 入射ビームの波面にミスマッチングがある場合のモード電力分布

ルス応答波形を求める。この場合には入射ビームがファイバ中心軸に垂直に入射するため、θ 方向に関する次数νの高次モードは励振されない。したがって結合係数C(ω)はただ一つの変数 μで表されるためインバルス応答関数I(r)は以下のように解析的に求まる。群遅延時間差 r(ω)は、2乗分布形光ファイバの場合には次式で表される。

$$\tau(w) = \frac{n_1 l}{C} \left\{ \frac{1 - 2\sqrt{2d} (2\mu + 1) / ka}{\sqrt{1 - 2\sqrt{2d} (2\mu + 1) / ka}} - A \right\}$$
 (5.53)

$$A = \frac{1 - \sqrt{2d} / ka}{\sqrt{1 - 2\sqrt{2d} / ka}}$$
 (5.54)

(5.53)式を逆にµについて解くとての関数として次式のように表される。

$$\mu = \frac{k a}{2\sqrt{2A}} (A^{12}-1) \{-1 + \sqrt{1 + \frac{1}{A^{12}-1}}\} - \frac{1}{2} \qquad (5.5 5)$$

$$A' \equiv A + \frac{\tau c}{n_1 l}$$
 (5.5 6)

ただし c, l は各々真空中での光連およびファイバ 長を表す。この場合のモード電力分布は 次式で表される。

$$C^{2}(\mu) = \frac{4 w_{in}^{\prime 2}}{(1 + w_{in}^{\prime 2})} \cdot \left(\frac{1 - w_{in}^{\prime 2}}{1 + w_{in}^{\prime 2}}\right)^{2 \mu} \qquad (5.5 \ 7)$$

また dr/duは(5.53)式を徴分して次式を得る。

$$\frac{d\tau}{d\mu} = \frac{n_1 l}{c} \cdot \frac{2\sqrt{2d} k_a}{\sqrt{1 - 2\sqrt{2d} \mu' k_a}} \left\{ -1 + \frac{1 - 2\sqrt{2d} \mu' k_a}{1 - 2\sqrt{2d} \mu' k_a} \right\} \dots (5.58)$$
$$\mu' \equiv 2\mu + 1 \qquad \dots (5.59)$$

(5.57),(5.58)式よりインパルス応答関数1(1)は次式のように求まる。

ここでμおよびμは(5.55)式によってτで表される。このように解析的にインパルス応 答関数が求まると、この関数から周波数応答関数をも求めることが可能である。しかし一般的 には関数が複雑になり実用的でない場合が多い。ここでは計算機によって等遅延時間差のモー ド電力を累積して得たインパルス応答波形の一例を図5.6に示す。ビームスポットサイズのミ スマッチングによってインパルス応答波形は大きく拡がることが明瞭である。

図 5.6 ビームスポットサイズにミスマッチングがある場合のインパルス応答波形

5.3.2 入射ビームが軸ずれした場合

入射ビームが中心軸からずれた場合には 5.1.2節で検討したように半径方向の次数 μと θ方向の次数 μの両者のモードが励振される。いま入射ビームが固有スポットサイズに整合されて 垂直入射し,かつ軸ずれした場合について考察する。この場合には(5.28)式で表される 結合係数は次のように簡単化される。

$$\zeta = 1 \qquad \dots \qquad (5.61)$$

$$C_{\mu,\nu} = \sqrt{\pi} A_{\mu,\nu} e^{-\frac{\delta'^2}{2}} \cdot \frac{(\mu + \nu)!}{\mu! \nu!} \left(\frac{\delta'}{2}\right)^{\nu}$$

$$\times \sum_{k=0}^{\infty} \frac{\left(\frac{\delta^1}{2}\right)^{2k}}{k!} \cdot F(-\mu,\nu + k + 1;\nu + 1;1)$$

ただし次の関係式を用いた。

$$F(-\mu,\nu+k+1;\nu+1;1) = \frac{\Gamma(\nu+1)\Gamma(\mu+k)}{\Gamma(\mu+\nu+1)\Gamma(-k)}$$
$$= \begin{cases} 0 & : k < \mu \\ (-1)^{\mu} & \frac{\nu!}{(\mu+\nu)!} & \frac{k!}{(k-\mu)!} & : k \ge \mu \end{cases}$$

..... (5.63)

(5.62)式から計算した励振モード電力分布を図 5.7(a)~(a)に示す。
この例は屈折率差比 4 が 5 %の集束形光線路で入射ビームが固有スポットサイズの2.4.6.
8,10倍だけ軸ずれした場合のモード電力分布の変化を示したものである。図中の数字は電力の強さを強い方から5段階に数字で0から5までで表示したものである。図の縦軸は半径方向の次数を表し,横軸は θ 方向の次数を表している。これらの図からわかるように入射ビームが軸ずれした場合には中心モードは μ 次の高次モード側に片寄り,さらに ν 次の高次モードも励振されるようになってくる。また分布形としては μ 軸と ν 軸を 2 辺とした 3 角形の分布

 $\boxtimes 5.7 - a \qquad \delta' = 2.0$

 $\boxtimes 5.7 - b \qquad \delta' = 4.0$

$$\boxtimes 5.7 - c \qquad \delta' = 6.0$$

-148-

 $\boxtimes 5.7 - e \quad \delta' = 10.0$

-149-

形となる。なお軸ずれ入射の問題を幾何光学的に解析した場合には一平面内を蛇行する光線 (meridional ray)しか出ないためν次の高次モードについては解析できない。したがっ て軸ずれ入射によるインバルス応答の変化を幾何光学およびそれに対応する2次元モデルで解 析すると誤差が大きくなる。ここで(5.62)式で示されるモード電力分布で励振された場合 のインバルス応答波形を求めるのであるがモード電力分布形 C²(μ,ν)が等遅延時間差変数 u そ のもので記述できない。

したがってインバルス応答波形 I(r)を解析的に求めることは困難である。そこで本節では各 モード(μ,ν) について群遅延時間差を計算し、等遅延時間を持つ各モードのモード電力を累 積することによってインバルス応答波形を求める。図5.8に屈折率差比が1.25%の2乗分布 形光ファイバの軸ずれによる線路長1 km でのインバルス応答波形の変化を示す。軸ずれ量が 大きくなるにつれて出力バルスのピーク位置が遅れ、かつガウス波形状に拡がる。

図 5.8 入射ビームの軸ずれによるインパルス応答波形

-150-

5.3.3 入射ビームが軸ずれおよび斜入射した場合

本節では、入射ビームは2乗分布形光ファイバの固有スポットサイズに整合された状態での 軸ずれおよび斜入射した場合について考察する。(5.49)式で求めた結合係数は次のように 簡単化される。

$$C_{\mu,\nu} = \frac{\sqrt{\pi}}{2} A_{\mu,\nu} \cdot e^{-\frac{\delta^{12}}{2}} \frac{(\mu+\nu)!}{\mu!\nu!} (A^{1\nu}+B^{1\nu})$$

$$\times \sum_{k=0}^{\infty} \frac{(A^{1}B^{1})^{k}}{k!} F(-\mu,k+\nu+1;\nu+1;1) \qquad (5.64)$$

$$= \frac{\sqrt{\pi}}{2} A_{\mu,\nu} e^{-\frac{\delta^{12}}{2}} \frac{(-1)^{\mu}}{\mu!} (A^{1\nu}+B^{1\nu}) \sum_{k=\mu}^{\infty} \frac{(A^{1}B^{1})^{k}}{(k-\mu)!} \qquad (5.65)$$

$$= \frac{\sqrt{\pi}}{2} A_{\mu,\nu} e^{-\frac{\delta^{12}}{2}} \frac{(-1)^{\mu}}{\mu!} (A^{1\nu}+B^{1\nu}) (A^{1}B^{1})^{\mu} e^{(A^{1}B^{1})}$$

$$= \frac{(-1)^{\mu}}{\mu!} \frac{\sqrt{\pi}}{2} A_{\mu,\nu} (\{\frac{1}{2}(\delta^{1}+\beta^{1}\sin\varphi)\}^{\nu}+\{\frac{1}{2}(\delta^{1}-\beta^{1}\sin\varphi)\}^{\nu})$$

$$\times \{(\frac{\delta^{1}}{2})^{2} - (\frac{\beta^{1}\sin\varphi}{2})^{2}\}^{\mu} e^{-(\frac{\delta^{1}}{2})^{2}} \cdot e^{-(\frac{\beta^{1}\sin\varphi}{2})^{2}} \qquad (5.66)$$

ただし(5.64)式から(5.65)式へ移る際に(5.63)式の関係を用いた。なお入射ビー ムの軸ずれがなくて傾きだけの時には結合係数は次式のようになる。

$$C_{\mu,\nu} = \begin{cases} 0 & : \nu = 2 n + 1 \\ \frac{\sqrt{\pi}}{\mu!} A_{\mu,\nu} \left(\frac{\beta' \sin\varphi}{2}\right)^{2\mu+\nu} e^{-\left(\frac{\beta' \sin\varphi}{2}\right)^2} & : \nu = 2 n \end{cases} \dots (5.67)$$

したがって軸ずれがなくて斜入射だけの場合には θ 方向の次数に関して奇数次モードは励振されない。図 5.9(a)~(d)は屈折率差比 Δ が 5 %の光ファイバについて軸ずれが固有スポットサイ

入射ビームが軸ずれおよび斜入射した場合の励振モード電力分布

スの2倍の時の斜入射角 φ =1.79°, 3.58°, 7.16°, 14.32°に対する励振モード電力分布形を示したものである。軸ずれのみの場合に比べて中心モードは ν 次の高次モード側に片寄る。また全体として 円状のモード分布をするため励振されるモード数は多くなることがわかる。一方図5.10(a)~(c)は軸ずれ量が固有スポットサイズの8倍と大きい場合の斜入射 φ =1.79°, 3.58°, 7.16°による励振モード電力分布を示したものである。

この場合には入射角度がゆるい場合にはμ次の高次モード成分が強く励振されるが,傾き角

$$(\delta' = 8.0)$$

 $\boxtimes 5.10 - (b) \qquad \varphi = 3.58^{\circ} \qquad \delta' = 8.0$

 $\boxtimes 5.10 - (c) \qquad \varphi = 7.16^{\circ} \qquad \delta' = 8.0$

が大きくなるにつれてレ次の高次モード成分が強くなり、μ次の高次モード成分は小さくなる ことがわかる。このことは幾何光学的にみると蛇行波(meridional ray) に比べて螺旋波 (skew ray)の成分が強くなることに対応している。

次にインパルス応答波形について考察する。インパルス応答波形を求めるのに本節でも解析 的に求めることは困難であるため、計算機を使用して前節と同様な方法で解析する。

軸ずれ量 δ'が小さい場合には図 5.9 に示したようにビームの入射角を大きく傾けても励振さ れるモード電力分布は μ 次および ν 次とも同等の電力分布となる。したがってインバルス応答 波形の傾向は 5.2.2 節で検討した軸ずれ入射時のインバルス応答波形と同様な振舞をする。一 方軸ずれ量 δ'が大きい場合にはモード電力分布は、ビームの入射角を大きく傾けるにしたがっ て ν 次モードの方に片寄る。一例として図 5.1 1 に軸ずれ量 δ'が 6 で傾き角が 7.2 度の場合の 屈折率分布形の 4 次項係数(ρ) に対するインバルス応答波形を示す。この場合には ν 次モード 電力が強いため、 ν 次のモード分散を小さくする ρ の値($\rho = 4$, 第2章 2.2.2 節参照)でイ ンバルス応答波形は鋭くなる。図 5.1 2 に軸ずれ量 δ'=6 について、入射角 ϕ に対するバルス 幅(ビーク値の 1 / e で定義)の変化を示す。この図は上述した内容を端的に表している。す なわち軸ずれの大きい場合には、入射角 ϕ の増加に伴って、 $\rho = 4$ の場合(skew rayに対し て分散が小さくなる)には出力バルス幅は狭まることを示している。

以上の検討より次のような結論が導かれる。

(I) 入射ビームが2乗分布形多モード光ファイバに対して整合が取れていない場合として、
 波面のミスマッチングとスポットサイズのミスマッチングとの場合があるが、後者の方が
 インバルス応答により大きい影響を与える。

-154-

図 5.11 入射ビームが軸ずれおよび斜入射した場合のインバルス応答波形

- (ii) 入射ビームのミスマッチング(Iの場合)による励振モードはµ次モード群のみである。
- (ii) 入射ビームが軸ずれした場合には、μ次モードとレ次モードの両者が励振され、中心モードはμ次の高次、レ次の低次モードである。
- (№) 入射ビームが中心に入射し、かつ斜に入射した場合にはµ次モードとv次モードの両者
 が励振され、v次モードに関しては偶数次モードのみが励振される。
- (v) 入射ビームが軸ずれおよび斜入射した場合で、軸ずれが小さい場合にはµ次モードとµ 次モードは同等に励振され、軸ずれが大きい場合には入射角の増大に伴ってµ次の高次 モードが強く励振される。

図 5.1 2 入射ビームが軸ずれ、および斜入射した場合の入射角に対する出力パルス幅の拡がり (δ' = 6.0 の場合)

5.4 グレーデッド形多モード光ファイバにおける測定例

本節ではファイバ長が1 km 程度のグレーデッド形光ファイバの入射励振条件による伝送特 性の変化を測定した結果について検討する。

5.4.1 測定系とファイバ・パラメータ

グレーデッド形多モード光ファイバを最低次モード励振で測定する場合にはパルス幅の拡が りが小さいことと、固有モードのスポットサイズに入射ビームのスポットサイズを整合させる 必要があることから光源として、光パルス幅が狭く、かつビーム拡がり角の小さいモードロッ クされたYAGレーザを使用した。また不整合入射に対するパルス伝送特性を調べる場合の 光源としては半導体レーザ(中心波長 0.82μm,発振波長拡がり約40Å)を使用した。図5. 13にパルス伝送特性測定系を示す。YAGレーザは330MH₂でロッキングされ,発振波形の 半値幅は本測定系で約200psec 以下である。入射には整合用レンズ系を使用して最低次モ ード励振を行った。 検出器としてYAGレーザ(発振波長1.06µm)に対してはGeのAP D,半導体レーザに対してはSiのAPDを使用し、各々の最小パルス幅検出限界は200psec 以下であることを確認した。図5.13における絞りはファイパ出射端で放射角の大きいモード を除去するために挿入したものである。

図 5.13 パルス伝送特性の測定系

測定に使用したファイバは 3種類で各々 A. B. Cファイバと仮称する。各々の構造パラメ ータを表 5.1に示す。 Bファイバのコア径は A. Cファイバのコア径の 5.1 に示す。 Bファイバのコア径は A. Cファイバのコア径の 5.1 年の 5

各々のファイバの全損失は 0.85µmの波長で 5.7, 22.0, 7.0 dB/km である。

Fiber No.	A	В	С	No te s
Core radius a	5 0	10	4 5	μm
Cladding radius b	7 0	102	6 0	μm
Maximum relative index difference ⊿	0.7	1. 8	0. 7	%
Focusing coefficient g	5.6	360	6.9	$g = 2 \Delta a^2$ mm^{-2}
Characteristic spot size w _o	7. 0	3. 6	6. 8	1/e, μm λ=1.06μm
Normalized frequency v*	5 1. 5	17.1	464	$\lambda =$ 1. 0 6 μm
Total number of propagating modes N	663	73	538	$N=v^2/4$
Length measured L	1. 0	0.477	0.884	k m

表 5.1 測定に使用したファイバの構造パラメータ

* Assuming abrupt ⊿n, flat profile

5.4.2 最低次モードを励振した場合

最低次モードのみを励振するには入射ビームのスポットサイズを固有スポットサイズに整合 させる必要がある。 2乗分布形多モード光ファイバにおける最低次モードのスポットサイズ w (電界強度が 1/e になる半径)は次式で表される。

 $w_{0} = \{ \lambda / (2\pi n_{0} \sqrt{2A} / a) \}^{\frac{1}{2}} \qquad \dots \qquad (5.68)$

ただしえおよび a は各々使用波長および コ ア 半径を表し, no および d はコ ア 中心での 屈折率 および ク ラッディングの 屈折率とコ ア 中心での 屈折率との差をコ ア 中心での 屈折率で割った比 を表す。 各 フ ァ イ べ の 固 有 ス ボット サ イ ズ を 求める ために 図 5.1 4 (a) ~ (c) で 得 られた 屈折率 分 布 形 を 2 乗形 で あると 仮定して, 波長 1.0 6 μm で の 値 を 求め そと A フ ァ イ パ で は 7.0 μm , B フ ァ イ パ で は 3.6 μm , C フ ァ イ パ で は 6.8 μm 程度と なる。 Y A G レ ー ザ 出射光の ビ ー ム ス ポット サ イ ズ は 約 0.19 mm で ある ため 整合 用 レンズ系を 使用 して フ ァ イ パ に 入射させた。 図 5.1 5 は 各 フ ァ イ パ の 入射 波 形 に 対 す る 出射 波 形 を X ー Y レ コ ー ダ に 記録 し た も の で ある。 A, B フ ァ イ パ は 入射 波 形 と 出射 波 形 と で 差異は 観測 で き な かったが, C フ ァ イ パ に 対 す る 出

-158-

図 5.14-(a) Aファイバの屈折率分布

図 5.14-(b) Bファイバの屈折率分布

図 5.1 4 - (c) Cファイバの屈折率分布

射バルス波形は大きく拡がり、次のパルスに重なる程歪んだためYAGレーザによるパルス幅の拡がり測定は不可能であった。このことと屈折率の分布形とは良く対応しており、A、Bフ ァイバの屈折率分布形はほぼ2乗形をしているのに対してCファイバの屈折率分布形は単調な 分布形ではなく敬しく変化している。

また入射ビームをコアの中心からずらせて入射させた場合も、A、Bファイバについては入 射波形と出射波形の差異は出射バワの減少を除いて認められなかった。このことは2乗分布形 多モード光ファイバにおける軸ずれ、斜入射時のインバルス応答の解析結果(5.2.3 節参照) から次のように解釈できる。入射ビームが固有モードのビームスポットサイズに整合されてい る場合には、軸ずれさせても、一番強く励振されるモードは変化するが、励振モード総数はあ まり多くなく、伝搬中にモード変換がなければ出射バルスの波形はあまり変化しない。そこで 入射時のモード分布状態と出射時のモード分布状態を測定した。図5.16にその結果を示す。 ここでは励振されたモード分布形をファーフィールドにおける放射角度成分として表示してい る。A、Bファイバについては入力、出力共放射角の小さい成分が強く、モード変換は顕著に は起きていないことがわかる。一方Cファイバの場合には入射端直後でのモード分布形が低次 側のみでなくかなり高次モードも励振されている。また880m 伝搬後のモード電力分布形は 入力でのモード電力分布形に比べてより高次モードが励振されている。したがってCファイ

-160 -

図5.15 固有スポットサイズに整合して励振した場合のパルス応答特性

推定できる。このこととパルス伝送特性は良く一致する。

図 5.16 固有スポットサイズに整合して励振した場合のモード電力分布(角度成分分布)

5.4.3 高次モードを励振した場合

入射ビームが固有ビームスボットサイズに整合されていない場合,あるいはファイバに対し て垂直入射していない場合のバルス伝送特性を測定した。この場合には光源として発光中心波 長 0.82 μm,スペクトル半値幅約20Å,バルス半値幅約300 psecの半導体レーザを使用し た。図 5.1 7は不整合励振の場合の入力および出力のモード電力分布形を示す。Aファイバの

場合には入射励振モードは低次側モードが強く励振されているが、高次側モードもかなりモー ド電力を持っている。一方出力端でのモード電力分布形は入射端での分布形よりも高次モード 側電力が大きくなっている。このことから伝搬途中で高次モードがより多く励振されてきたこと がわかる。Bファイバの場合には軸ずれ入射させたため多少高次モードの方が強く励振されて いるがモード変換は比較的小さいということができる。一方Cファイバの方は入射励振モード はかなり低次側が強いが出射モード分布形では高次モードもかなり強く励振されている。した がって、Cファイバでは880m 伝搬するうちにかなりモード変換が起こることがわかる。これ らのモード電力分布形と対応して図 5.18にパルス応答波形を示す。最低次モードに整合して

図 5.18 不整合励振の場合のパルス応答特性

励振した場合と異なり不整合励振の場合にはパルス応答波形は非常に特異な現象を示し、Aフ アイバの方はなだらかなパルス波形の後に鋭いパルス波形が続いている。パルスの尖頭値間隔 は約2 nsec/kmである。一方 Bファイバの方は鋭いパルス波形が2個分離した状態で観測され た。この場合にはパルスの尖頭値間隔は約1 nsec/0.5 km である。またCファイバに対するパ ルス応答波形にはパルスの分離現象は観測されず,図に示したようになだらかな指数関数形波 形となった。このパルス応答波形からA.Bファイバについては測定した程度の伝搬長ではモ ード変換があまり起こっていないが,Cファイバでは起こっていると推定できる。Cファイバに対 するパルス波形の半値幅は 2.8 nsec/kmであった。 図 5.1 5 および図 5.1 8を観測する場合に は全モード電力を対物レンズでAPDに集光して測定しているため、各モード電力のパルス波 形におよぼす影響が解析できない。そこで低次側と高次側のモード電力を分離測定するために、 図 5.1 3の測定系で示したようにファイバ出射端に絞りを設けて高次モード側の電力を遮断し て出射パルス波形の変化を調べた。 図 5.1 9が高次モード電力の遮断の効果を示したモード 分布形とパルス波形である。この結果から明らかなようにAファイバでは絞りを挿入すると前

図 5.19 高次モード電力を遮断した場合の特性

部のなだらかなパルス波形が消滅し, Bファイバでは後部の第2パルス波形が極端に小さくなった。したがってAファイバでは高次モードが低次モードよりも時間的に前に到達し, Bファ イバでは高次モードが低次モードより遅れて到達していることが明らかとなった。また高次モ ード電力を遮断すると,高次モード電力によるパルス波形はほとんど消滅することから,この 測定例ではモード変換量は非常に小さいということがわかる。次節でこのパルス波形の分離現象 について検討する。 5.4.4 インパルス応答波形における分離現象の解析

本節では 5.3.3 節で明らかになったパルス伝送特性を理論検討する。図 5.19で示したモー ド電力分布で A, B各ファイバを励振した場合のインパルス応答波形について考察する。測定 された出射パルス波形が分離していることから屈折率分布形が単一の関数形で表されなくて, 複合形をしていることが考えられる⁽⁹¹⁾。そこで屈折率の分布形を図 5.20のような 2 乗分布形 が重なった複合形屈折率分布を仮定する。図 5.20における実線の分布形は Aファイバに対応

図 5.2 0 複合形屈折率分布モデル

して内側の部分の屈折率が高い場合を示したが、Bファイバについては破線で示した分布形を 仮定して解析するものとする。屈折率の分布を次式のように仮定する。

ただし Δ = (n₀-n_c)/n₀ で表す屈折率差比であり,αは屈折率の分布形を規定するパラメ ータである。ここで内側の分布形のパラメータにサフィックスiを付し,外側の分布形のパラ メータにサフィックス0を付すものとする。本測定例のファイバではコア径が使用波長の百数 十倍であり,屈折率差比は約1%であることから解析手段としては幾何光学および0次のWK B法が使用できる。ここでは D. gloge によるWKB法⁽²³⁾の結果を利用して解析する。伝 搬定数 βを持つモードの群遅延τはファイバの長さをLとすると次式で与えられる。

$$\tau = \frac{L n_0}{c} \frac{d\beta}{d k_0}$$

-166-

$$= \frac{L n_{0}}{c} \frac{1 - 4\delta/(\alpha + 2)}{(1 - 2\delta)^{\frac{1}{2}}} \qquad \dots \qquad (5.70)$$

$$\delta = \frac{1}{2} (1 - \beta^{\frac{2}{2}} k_{0}^{\frac{2}{3}})$$

$$k_{0} \equiv 2 \pi n_{0} / \lambda \qquad (5.71)$$

ただし、cは真空中での光速を表す。いまモード変換がないと仮定すると、i部に主として 電力が集中しているモードと、0部に主として電力が集中しているモードとの伝搬定数タがコ ア半径 bを境にして大きく異なる。内側部分に励振されたモードによる群遅延差は(5.70) 式から次式のように求まる。

ただし(5.72)式のでは最低次モードの群遅延時間を差し引いた値であり、カッコ内の前項 と後項の間の値をとり得る。またコア半径」は内側の分布形と外側の分布形との交点の半径を 表すものとする。次に外側部分に主として電力を持つモードによる群遅延でを内側での最低 次モードからの群遅延差として表すと次式のようになる。

一方簡単の為ファイバ軸と光線のなす角を伝搬角として伝搬定数βを近似すると、次式が近似 的に成立する。

したがって、伝搬角θに対する電力分布がわかれば(5.72),(5.74),(5.76)式よ り近似的インパルス波形を求めることができる。

ここでAファイバ, Bファイバを図 5.20に近似させると図 5.21のように表すことがで きる。この図からわかるように A ファイバでは実線の 複合形に, B ファイバでは破線の 複合形

図 5.2 1-(a) 複合形を考慮した屈折率分布(Aファイバ)

図 5.21-(b) 複合形を考慮した屈折率分布(Bファイパ)

に各々良く一致している。そこで(5.72)式,(5.74)式にしたがって内側および外側の 群遅延時間を求めるとA. B各ファイバについて次のような値となる。

Bファイバ

励振されたモード電力分布は伝搬角で示すと低次側から高次側にかけてモード電力が減少する 分布形である。そこで解析上簡単のため図 5.2 2 に示すモード電力分布形を仮定する。この分 布形と、伝搬角に対するモードボリュームが比例することを考慮してインバルス応答波形を近

図 5.2 2 解析に用いたモード電力分布

似的に求めた結果が図 5.2 3 である。破線は入射パルスの拡がり幅およびモードボリュームの

図 5.23 複合形屈折率分布を持ったファイバのインパルス応答波形

不整等を考慮したインバルス応答波形を示している。この推定波形と実測されたバルス波形は 良く一致している。したがって A. Bファイバにおいて出射パルス波形に二つのビークが出現 する現象は屈折率の分布形が複合形をしているためと解釈できる。Aファイバにおいては高次 モード電力が低次モード電力より早く伝搬し、Bファイバにおいてはその逆であることを屈折 率の分布形から明らかにすることができた。

以上の検討から次のような結論を得ることができた。

- (i) パルス伝送特性は2乗分布に近い屈折率分布でも大きく変化する。
- (ii) 2 乗分布形に近いファイバでは固有モードで励振すると1 km 位の伝搬長ではパルス波形の歪は観測できなかった。
- (|||) 一方,分布形が大きく変動するファイバではモード変換が起こり,かつパルス歪も大きい。
- (W) 不整合状態で励振した場合には、入射条件によってバルス伝送特性は大きく変化し、パルス波形が2つに分離することもある。
- (v) バルス波形が2つに分離する原因は屈折率の分布形が単純な一つの関数形ではなく、2 乗分布形に近い二つの分布形が複合した屈折率分布形をしているためであることが判明した。

したがって伝送帯域を広くするためには屈折率の分布形制御をコアの周辺までにわたって単一の関数形で十分コントロールする必要がある。

5.5 まとめ

多モード光ファイバにおいては入射時の励振条件によって伝送特性は大きく変化する。本章 では特にグレーデッド形多モード光ファイバについて検討した。またレーザビームで典型的な ガウシアン・ビームによる励振の問題を検討し以下の結論を得た。

- (i) 入射ビームの不整合において、スポットサイズの不整合の方が波面の不整合よりインパル ス応答に与える影響が大きい。
- (ii) グレーデッド形多モード光ファイバにおいてはステップ形多モード光ファイバの場合と
 異なり、入射ビームがファイバ軸から軸ずれした場合には高次モードが励振されるように
 なる。
- また実際のファイバについて測定した結果次のような結論を得た。
 - (i) 伝送特性の入射励振条件存在性は屈折率分布によって大きく変化する。
 - (ii) インバルス応答波形が二つのパルス波形に分離する原因は屈折率の分布形が単純な一つの関数形ではなく、2乗分布形に近い二つの分布形が複合した屈折率分布をしているためである。

第6章 多モード光ファイバにおけるモード変換

6.1 序

多モード光ファイバにおける伝搬モードは伝送路が理想的であればモード変換を起こさないで 伝搬する。現実の光ファイバでは伝搬軸の曲がりや、コアとクラッディングの境界面の不整、 あるいは屈折率分布のゆらぎ等によるモード変換現象がある。多モード光ファイバではモード 変換現象によって伝搬モード間のエネルギ交換あるいは放射モードと伝搬モードとの変換によ る損失増等が伝送特性を複雑にしている。

本章では先ず最初に直線部分の光ファイバから円形の曲がり部が続いている場合に生ずるモ ード変換による損失について考察する。解析手段としては曲がりによるモード変換現象を把握 しやすい光線近似を使って、ステップ形多モード光ファイバとグレーデッド形光ファイバの曲 がりによる損失を検討した。

一方群遅延特性はモード変換がない場合には伝搬距離に対してモード間の群遅延時間差は比例して増加するが、モード変換が大きい場合には距離の平方根に比例して増加することが知ら れている^(24,25),⁽⁹²⁾。

ここではモード変換によるインパルス応答の解析およびベースバンドの周波数特性を解析す るために、厳密解の得られる2モード伝送路について考察した。

6.2 曲がりによるモード変換

多モード光ファイバにおける伝搬モードは平面波の重畳で考えることができる。平面波は光線と対応するため、ここでは光線近似による解析をグレーデッド形多モードファイバについて 行 う。

6.2.1 曲がりによる臨界角の変化

簡単の為図 6.1に示す 2次元モデルについて解析する。光線方程式は次式で与えられる⁽⁵¹⁾。

図 6.1 曲がり線路の 2次元モデル

ただしds は光線の軌跡に沿った線素, rは位置ベクトル, nは屈折率分布を表す。 ここで 曲がり半径 R_cが大きい場合にはds は次式のように近似できる。

ここで z は曲がったファイバの軸に沿った距離を表す。 (6.2) 式より近軸近似での光線方 程式は次のようになる。

以後変数 x, z, R_c はコア半径で規格化された規格化変数として取扱う。 (6.3)式を書き直して次式を得る。

$$\frac{d^2 x}{dz^2} + g(x) = 0 \qquad (6.4)$$

ここで

$$g(x) \equiv -\left\{ \frac{1}{n} \left(1 + \frac{x}{R_c} \right)^2 \cdot \frac{dn}{dx} + \frac{1}{R_c} \right\} \qquad (6.5)$$

今 G(x), E(x) の関数を次のように定義する。

(6.4)式と(6.7)式から次の関係が成立する。

$$\frac{dE}{dx} = \frac{d^2x}{dz^2} + g(x) = 0 \qquad (6.8)$$

ここで(6.8)式はポテンシャル・ウェル中における 質点の運動方程式とみることができる。 Eは全エネルギであり、Gははポテンシャル・ウェル関数を表している。

今, 屈折率分布が x 方向のみに変化するものとし, 次式で示す屈折率分布関数について考察 する。

ただしA.Bはコア半径を1としたときの規格化定数,n,はクラッディングの屈折率, cは屈 折率分布形のパラメータを表す。

図 6.2に(6.9)式の関数形を示す。 x=1の点でコア中心部の屈折率 n_1 とクラッディングの屈折率 n_2 の中間の値をとるように A. Bを決定したものである。図 6.2において、c=20

図 6.2 屈折率分布 関数形

の場合がステップ形光ファイバに近く。 c = 4の場合が2乗分布形光ファイバに最も近い。 図 6.3はポテンシャルウェル関数を表している。 この図において dE/dx=0. すなわちょ 軸に平行な直線が(6.3)式の解の一つである。例えば, x = 0の点で, ある角度 dx/dz をも

図 6.3 曲がりファイバのポテンシャルウェル

った光線は,入射角 dx/dz に対応する $\frac{1}{2} (dx/dz)^2$ の値がポテンシャルウェルの高さ E_t を 越さなければこのポテンシャルウェル中を振動する。すなわち入射角 $dx/dz|_{x=x_0}$ が次式の 条件を満足する光線はポテンシャルウェル中にトラップされる。

 $E_{0} \equiv \frac{1}{2} \left(\frac{dx}{dz} \mid x = x_{0} \right)^{2} + G(x_{0}) \leq G(x) \qquad \dots \qquad (6.11)$

また $E_o > E_t$ の条件を満足する光線はファイバから放射される。ただし E_t は(6.8)式の振動解における全エネルギの最大値である。このことからコア内の任意の位置 xにおける臨界角 θ_c (x)は次式のように表すことができる。

真直状ファイバにおいては臨界角の最大点はコアの中心でクラッディング側程臨界角は減少 してクラッディング部で0となる。一方曲がりファイバにおいては図6.3に示すようにポテン シャルウェル関数が傾斜するためE_t が減少し,臨界角も減少する。また最大臨界角の位置は 曲がりファイバの外側方向に移動する。このことはちょうど遠心力によって外側に偏よった状 態とみることができる。図6.4はコアの中心での臨界角を曲がり半径に対してプロットしたも のである。この図から明らかなように屈折率差比 d の小さいファイバ程曲がりに対して臨界角 が減少する。さらにステップ形とグレーデッド形とを比較するとステップ形ファイバの方が曲 がりに対する臨界角の変化は小さい。図6.5は屈折率分布形の相違による臨界角の変化を示し

図 6.4 2 乗分布形ファイバの中心における臨界角と曲がりの半径

図 6.5 屈折率分布形の違いによる臨界角の変化

6.2.2 曲がり部でのモード変換損失

ここでは真直状のファイバから円形曲がり部へ接続されているファイバでのモード変換によ

る放射損失を解析する。真直状ファイバでの臨界角関数 θ_{co} は位相面($x-\theta$) 平面上で閉領 域 D_0 を構成する。図 6.6 は $/ \nu -$ デッド形光ファイバでの一例を示したものである。閉領域 D_0 の外側は放射領域を示す。真直状での伝搬領域は対称形となる。一方曲がり部における伝搬領

図 6.6 位相面 ($x - \theta$)上における伝搬領域 D

域Dは図に示すように減少し、かつ0軸に対して非対称となる。今真直状ファイバにおいて伝 搬領域Do全体に電力が励振されていると仮定すると、曲がり部においてはポテンシャルウェル 関数が変化し、dx/dz の値が変化することになる。このことはモード変換に対応している。 そこでポテンシャルウェル関数の変化によってトラップされなくなる電力を放射損失として計 算することができる。すなわち曲がりによる放射損失は次式で定義される。

$$loss = \iint_{D} I \, d\theta \, dx / \iint_{D_0} I \, d\theta \, dx \qquad (6.13)$$

ただし $I(x, \theta)$ は、励振電力分布を表している。

今,励振電力分布形を x と θ に対してガウス形と仮定する。

$$I(x,\theta) = exp\left\{-\left(\frac{\theta}{\theta_{c0}}\right)^{2}\right\} exp\left\{-\left(\frac{x}{x_{t0}}\right)^{2}\right\} \qquad (6.14)$$

ここで θ_{co} はコア中心での臨界角, x_{to} は $\theta_{c}(x_{to}) = \theta_{co}(0)/e$ が成立する 点の x を表して いる。図 6.7は(6.13)式によって計算した放射損失と曲がり半径の関係を示したものであ

-176-

る。曲がり半径がコア半径の200 倍以下になると放射損失が急敵に大きくなることがわかる。 例えば屈折率差比 4 が 1.25%、コア半径 5 0 μm . 曲がり半径が 1.25 cm の時、ステップ形光 ファイバとグレーデッド形光ファイバの放射損失は各々約 0.4 dB と 1.2 dB となる。また図 6.8 は曲がりによる放射損失と屈折率差比との関係を示したものである。この図からステップ 形光ファイバとグレーデッド形光ファイバとの曲がりによる放射損失を比較することができる。

図 6.7 曲がり半径に対する放射損失

図 6.8 屈折率分布形の違いによる放射損失の変化

例えば、コア半径100μm、 屈折率差比1%、曲がり半径が1.5 cm の場合にステップ形光フ ァイバの場合の放射損失は約0.86dB となる。一方グレーデッド形光ファイバの場合に同じ条 件の下でステップ形の場合と同程度の放射損失におさえるためには屈折率差比4が約2.2%に すればよいことがわかる。すなわちグレーデッド形光ファイバとステップ形光ファイバの曲が りに対する放射損失を同程度にするためにはグレーデッド形光ファイバの屈折率差比4を2倍 以上とする必要がある。この結論はGlogeの報告結果⁽⁰³⁾と良く一致している。

6.3 モード変換の伝送特性に与える影響

前節ではモード変換による損失を検討したが、本節ではモード変換による伝送波形の変化に ついて検討する。多モード伝送路におけるモード変換現象については数多くの解析が行われ ているが、モード変換によって起る伝達関数の過渡的変化の解析、あるいは定常状態の物理的 把握は十分でない。従来モード変換によってインバルス応答波形幅の距離依存性が1乗から½ 乗に比例するようになることはS.D.Personickを始めとして多くの著者による報告がなされて いる^{(24,25),(94,95)}。これらの報告では電力の結合方程式を定常解として求めたり、近似解を求めた りしているため過渡的な振舞の把握あるいは定常状態での厳密な把握ができなかった。本節で は厳密な解析を行うことと、定常状態における各モードの振舞を把握するために二つのモード のみが伝搬するモデルについて検討する。

6.3.1 2モード伝送路モデルと基本方程式

伝搬可能なモードが2つのみの伝送路において,モード間の結合と,モードに依存した損失 のある一般的な場合について考える。各パラメータを以下のように表すものとする。

 $P_i(t,z): i モードの電力$

v _i	:iモードの群速度
α_{i}	:iモードのうける損失を表わす損失係数
hij	: i モードから j モードへの電力の結合係数

ただしファイバにおいては h_{ij} と h_{ji} は等しくなるが、ここでは区別して解析する。各モー ドの電力に関する結合方程式は次式で表される。

-178-

$$\frac{\partial P_i}{\partial z} + \frac{1}{v_i} \frac{\partial P_i}{\partial t} + (\alpha_i + h_{ij}) P_i - h_{ji} P_j = 0 \qquad (6.15)$$

ただし*i*, jは今の場合,モード1とモード2に対応し,(6.15)式は次式の形に変形される。

$$\left(\frac{\partial^{2}}{\partial z^{2}} + \left(\frac{1}{v_{1}} + \frac{1}{v_{2}}\right) \frac{\partial^{2}}{\partial t \partial z} + \frac{1}{v_{1} v_{2}} \frac{\partial^{2}}{\partial t^{2}} + \left(a_{1} + a_{2} + h_{12} + h_{21}\right) \frac{\partial}{\partial z} + \left\{\frac{1}{v_{2}} \left(a_{1} + h_{12}\right) + \frac{1}{v_{1}} \left(a_{2} + h_{21}\right)\right\} \frac{\partial}{\partial t} + \left(a_{1} a_{2} + a_{1} h_{21} + a_{2} h_{12}\right)\right) P_{i} = 0 \quad \dots \quad (6.16)$$

ただし i=1,2であり、モード1、モード2とも同一の方程式で記述される。

6.3.2 インパルス応答波形

基本方程式(6.16)式を時間領域で解く。(6.16)式は双曲形の偏微分方程式で変数の変換により次式のように簡単化される。

 $\begin{pmatrix} \frac{\partial^2}{\partial \xi \partial \eta} + D \end{pmatrix} \varphi_i = 0 \qquad \dots \qquad (6.17)$ $P_i \equiv \varphi_i \exp (B\xi - A\eta)$ $\xi \equiv z - v_1 t \qquad \eta \equiv z - v_2 t$ $A \equiv \frac{(\alpha_1 + h_2)}{v_1 - v_2} v_1 \qquad B \equiv \frac{(\alpha_2 + h_{21})}{v_1 - v_2} v_2$ $D \equiv \frac{v_1 v_2}{(v_1 - v_2)} h_{12} h_{21}$

ここでインパルス応答を求めるために(6.17)式を以下の初期条件で解く。ただしモード2 のモード1に対する励振電力比をrとする。

$$P_{2}(0) = rP_{1}(0) \qquad (6.19)$$

$$P_{1}(z, 0) = \delta(z)$$

$$\frac{\partial P_{1}(z, 0)}{\partial z} = \delta(z) \qquad (6.20)$$

$$\frac{\partial P_{1}(z, 0)}{\partial t} = -v_{1}(\delta'(z) + \{\alpha_{1} + h(1-r)\}\delta(z))$$

$$\begin{array}{c}
P_{z}(z,0) = \tau \,\delta(z) \\
\frac{\partial P_{z}(z,0)}{\partial z} = \tau \,\delta'(z) \\
\frac{\partial P_{z}(z,0)}{\partial t} = -v_{z}(\tau \,\delta'(z) + \{\tau \,\alpha_{z} + h(\tau-1)\} \,\delta(z))
\end{array}$$
.....(6.21)

ただしここでは現実のファイベに即して $h_{12} = h_{21}$ として扱う。(6.20), (6.21)式の初期条件での(6.17)式の解は次式で表される。 (付録 4 参照)

$$P_{2}(z, t) = exp\{-(\alpha_{2} + h)v_{2}t\}o(z - v_{2}t)r$$

$$+ \frac{hv_{2}}{v_{1} - v_{2}} I_{0}(X) + \frac{\sqrt{v_{1}v_{2}}}{v_{1} - v_{2}} rh \sqrt{\frac{(z - v_{2}t)}{(v_{1}t - z)}} I_{1}(X)$$

$$\times exp\{-(h + \frac{\alpha_{1}v_{1} - \alpha_{2}v_{2}}{v_{1} - v_{2}})z + \frac{v_{1}v_{2}}{v_{1} - v_{2}} (\alpha_{1} - \alpha_{2})t\}$$

$$\times \{U(z - v_{2}t) - U(z - v_{1}t)\}$$

$$(6.23)$$

$$X \equiv 2, \frac{\sqrt{v_{1}v_{2}}}{\sqrt{v_{1}v_{2}}} h \sqrt{(v_{1}t - z)(z - v_{2}t)}$$

v - v

ただしモード1の群速度 viの方がモード2の群速度 viよりも大きいと仮定している。 Io, I, は 各々 0次および1次の第1種変形ペッセル関数を表している。

次に実時間 t をモード 1 とモード 2 との伝搬時間差で規格化する。今,モード 1 の群速度 v, がモード 2 の群速度 v,よりも速いと仮定しているため,受信される電力は z の点で観測すると 〔z/v,,z/v,〕の範囲内の時間に存在する。そこで規格化走行時間 τ を次式のように定義する。

$$\tau \equiv \frac{t - z/v_1}{z(1/v_2 - 1/v_1)} \qquad (6.25)$$

ここで規格化走行時間 τを使って(6.22)式と(6.23) 式を表すと次式のように書くこ

とができる。

$$P_{1}(z,\tau) = \frac{v_{2}}{z(v_{1}-v_{2})} \quad \delta(\tau) \exp\{-(\alpha_{1}+h)z\}$$

$$+\{\frac{hv_{1}\tau}{v_{1}-v_{2}} - I_{0}(X') + \frac{v_{2}h}{v_{1}-v_{2}} - \sqrt{\frac{1-\tau}{\tau}} - I_{1}(X')\}$$

$$\times \exp\{-(\alpha_{1}+h)z\} \exp(\alpha_{1}-\alpha_{2})\tau z \qquad (6.2.6.)$$

$$P_{2}(z,\tau) = -\frac{v_{1}\tau}{z(v_{1}-v_{2})} - \delta(1-\tau) \exp\{-(\alpha_{2}+h)z\}$$

$$+\{-\frac{v_{2}h}{v_{1}-v_{2}} - I_{0}(X') + \frac{v_{1}h\tau}{v_{1}-v_{2}} - \sqrt{\frac{\tau}{1-\tau}} - I_{1}(X')\}$$

$$\times \exp\{-(\alpha_{1}+h)z\} \exp(\alpha_{1}-\alpha_{2})\tau z \qquad (6.2.7.)$$

$$X' = 2hz \sqrt{\tau(1-\tau)} \qquad (6.2.8.)$$

(6.26),(6.27)式がインバルス応答波形を表す。 これらの式より任意の励振条件, 結合状態におけるインバルス応答を解析することができる。図6.9,図6.10は各々モードに 依存した損失がない場合,モードに依存した損失がある場合におけるインバルス応答波形をモ

図 6.9 モードに依存した損失のない場合におけるインパルス応答波形 -181-

図 6.10 モードに依存した損失のある場合におけるインパルス応答波形

ード変換量を変化させた場合について示している。 横軸は規格化された走行時間軸を表して いる。図 6.9,図 6.10におけるグラフでインバルス状の波形は単位面積を持った棒状波形で 表してある。図 6.9ではモード1のみを励振した場合,図 6.10ではモード2の励振電力が モード1の励振電力の半分の場合を示している。図中,実線の波形は各モード毎のインバルス 応答波形を示し,破線の波形は二つのモードの和のインバルス応答波形を示している。規格化 走行時間軸の0に近い側にピークを持つインバルス応答波形がモード1の波形を表している。 この図から明らかなようにモード1のみを励振してもモード変換量が大きい場合にはインバル ス応答波形はガウシアン分布形に近づくことがわかる。またモードに依存した損失がない場合 には、モード変換量が増大していくと、インバルス応答波形のピークの時間はモード1とモー ド2の伝搬時間のちょうど中間に漸近していくが、モードに依存した損失がある場合には、損 失の小さいモード側にピーク値が片寄る。この傾向について次節でくわしく検討する。

6.3.3 インパルス応答波形の中心時間

図 6.9, 図 6.10からわかるようにモード変換量が増加していくにつれてモード1とモード2 のインバルス応答波形は相似したものになり定常状態においては両者の波形は時間領域で振幅 の相違を別にすれば一致するようにみえる。また従来の結合方程式における定常解では個々の モードの群遅延時間差は解析できない。本節ではモード変換量が1に比べて充分に大きい場 合,すなわち各モードが定常状態に落ちついた時の各モード電力の中心時間について検討する。 *hz* ≫ 1 の場合,次の近似式が成立する。

$$I_{0,1}(2hz\sqrt{\tau(1-\tau)})$$

$$\cong \frac{\exp(hz)}{\sqrt{2\pi hz}} \left\{ 1 + (\tau - \frac{1}{2})^2 \right\} \exp\left\{-2hz(\tau - \frac{1}{2})^2\right\} \qquad (6.2.9)$$

さらに $\tau - \frac{1}{2} = x$ とすると、ある距離 zにおける電力の時間分布は次式に比例する。

$$P_{1} \propto \{ v_{1r}(1+x^{2}) + v_{2} \cdot \sqrt{\frac{1-2x}{1+2x}} \quad (1+x^{2}) \} e^{-2hzx^{2}} \cdot e^{(d_{1}-d_{2})(x+\frac{1}{2})z} \quad \dots \quad (6.30)$$

$$P_{2} \propto \{v_{2}(1+x^{2})+v_{1}r \cdot \sqrt{\frac{1+2x}{1-2x}} (1+x^{2})\} e^{-2hzx^{2}} \cdot e^{(\alpha_{1}-\alpha_{2})(x+\frac{1}{2})z} \qquad \dots \dots \quad (6.31)$$

(6.30), (6.31)式はガウシアン分布形に比例しており、インパルス応答波形の中心時間(波形の重心時間として定義する)は波形のビークの時間より求めることができ、以下のように表される。 すなわちビークの時間は <u>dP</u> = 0 より求めることができる。

$$\tau_{1,peak} = \frac{1}{2} - \frac{v_2 - \frac{1}{2} (\alpha_1 - \alpha_2) (v_1 r + v_2) z}{2 h_2 (v_1 r + v_2) + v_2 (\alpha_1 - \alpha_2) z} \qquad (6.32)$$

$$\tau_{2,peak} = \frac{1}{2} + \frac{v_1 r^{\frac{1}{2}} (\alpha_1 - \alpha_2) (v_1 r^{\frac{1}{2}} v_2)_z}{2h_z (v_1 r^{\frac{1}{2}} v_2) - v_1 r (\alpha_1 - \alpha_2)_z} \qquad (6.33)$$

(6.32), (6.33)式より各モードの中心時間差 *d*_{peak}を求めることができる。

$$\begin{aligned} \Delta \tau_{peak} &= \tau_{2,peak} - \tau_{1,peak} \\ &= \frac{v_{1}r + \frac{1}{2} (\alpha_{1} - \alpha_{2}) (v_{1}r + v_{2}) z}{2h_{z} (v_{1}r + v_{2}) - v_{1}r (\alpha_{1} - \alpha_{2}) z} + \frac{v_{2} - \frac{1}{2} (\alpha_{1} - \alpha_{2}) (v_{1}r + v_{2}) z}{2h_{z} (v_{1}r + v_{2}) + v_{2} (\alpha_{1} - \alpha_{2}) z} \quad \cdots \quad (6.34) \end{aligned}$$

ところで、モードに依存した損失の効果よりモード変換効果の方が大きい場合には(6.34) 式は簡単化されて次式のようになる。

(6.35)式より実時間における中心時間差 4t_{peak}は次式で表される。

$$\begin{aligned} \Delta t_{peak} &= \Delta \tau_{peak} \times z \left(\frac{1}{v_2} - \frac{1}{v_1} \right) \\ &= \frac{1}{2h} \left(\frac{1}{v_2} - \frac{1}{v_1} \right) \end{aligned}$$
(6.36)

(6.36)式は zを含んでいない。したがって、いくら長距離伝搬してもモード1、モード2 の中心時間は一致しないことを示している。すなわち定常状態に達しても各モード間の位相差 (中心時間の差)は一定値として残ることが証明された。

図 6.1 1, 図 6.1 2 は各々モードに依存した損失がない場合,及びモードに依存した損失が ある場合における,各モードの中心時間のモード変換量(hz)に対する変化を示した例である。 規格化された中心時間 r_{i,c}及び実時間の中心時間差 *4t_c* は各々次式から数値計算した。

この二つの図からわかるように、モードに依存した損失がない場合には各モードの中心時間は規格化走行時間の中間に漸近するが、モードに依存した損失がある場合には、各モードの中心時間はモードに依存した損失の小さいモード側に片寄る。また実時間軸における、中心時間差 *At*c はモード変換量 *hz* が3程度で、ほぼ一定値(6.36)式に達することがわかる。

17

.

3

図 6.11 モードに依存した損失がない場合の中心時間及び中心時間差の モード変換量に対する変化

図 6.12 モードに依存した損失がある場合の中心時間及び中心時間差の モード変換量に対する変化

6.3.4 インパルス応答波形幅の伝搬距離依存性

インパルス応答波形のパルス幅の評価方法として、ここでは rms 幅を計算することとする。 先ずモード変換量の小さい場合について考察する。

hz ≫ 1 のとき,次の近似式が成立する。

$$\left. \begin{array}{c} I_{0} \cong 1 \\ I_{1} \cong h \, z \, \sqrt{\tau \, (1 - \tau \,)} \end{array} \right\} \qquad (6.3 \ 9 \)$$

(6.39)式を使用すると全電力(モード1とモード2との和)は次式に比例する。

(6.40)式より rms幅 o(r)を計算することができる。

$$\sigma^{2}(\tau) = \langle \tau^{2} \rangle - \langle \tau \rangle^{2}$$

$$= \int_{0}^{1} P(\tau, z) \tau^{2} d\tau / \int_{0}^{1} P(\tau, z) d\tau - \left\{ \int_{0}^{1} P(\tau, z) \tau d\tau / \int_{0}^{1} P(\tau, z) d\tau \right\}^{2}$$

$$\approx \frac{v_{1}v_{2}\tau}{(v_{1}\tau+v_{2})^{2}} + \frac{hz}{3} \frac{4v_{1}^{2}\tau^{2} - v_{1}v_{2}\tau + v_{2}^{2}}{(v_{1}\tau+v_{2})^{2}} \qquad (6.41)$$

$$\therefore \sigma(\tau) \approx \frac{1}{v_{1}\tau+v_{2}} \sqrt{v_{1}v_{2}\tau + \frac{hz}{3}} (4v_{1}^{2}\tau^{2} - v_{1}v_{2}\tau + v_{2}^{2})} \qquad (6.42)$$

(6.42)式から実時間でのrms幅 o(t)を求めると次式となる。

$$\sigma(t) = \sigma(\tau) \times \frac{v_1 - v_2}{h v_1 v_2} \cdot hz$$

$$= \frac{v_1 - v_2}{v_1 \tau + v_2} \cdot \frac{hz}{h v_1 v_2} \sqrt{v_1 v_2 \tau + \frac{hz}{3} (4v_1^2 \tau^2 - v_1 v_2 \tau + v_2^2)} \quad \dots \quad (6.43)$$

(6.43)式はインバルス応答波形におけるパルス幅(rms幅)の結合量依存性を表している。(6.43)式から励振条件によるパルス幅のモード変換量(hz)依存性は次式のように変化することがわかる。

(ii) 2つのモードを均等に励振した場合 r=1

$$\sigma(t) \propto \frac{v_1 - v_2}{v_1 + v_2} \cdot \frac{(h z)^1}{h \sqrt{v_1 v_2}} \qquad (6.45)$$

(6.44), (6.45)式よりモード変換量が小さい場合には入射励振条件によってインバル ス応答のパルス幅のモード変換量依存性は大きく変化し,その依存性は 3/2乗から1乗の間ま で変化することがわかる。

次にモード変換量の大きい場合について考察する。

モード1,モード2の電力は(6.30),(6.31)式に各々比例する。全電力は近似的に対称波形となるため,この場合のrms幅は次式で求まる。

$$\sigma^{2}(\tau) = \langle \tau^{2} \rangle = \int_{0}^{1} \tau^{2} P \, d\tau / \int_{0}^{1} P \, d\tau \qquad (6.4.6)$$
$$\approx \frac{1}{4 h z} \qquad (6.4.7)$$

(6.46)式より実時間の rms幅 o(t) は次式となる。

$$\sigma(t) = \frac{v_1 - v_2}{2 h v_1 v_2} (h z)^{\frac{1}{2}} \qquad (6.48)$$

(6.47)式よりモード変換量の大きい場合にはインバルス応答のバルス幅は,入射励振条件 によらずモード変換量(hz)の平方根に比例して増加することがわかる。図6.13はモードに 依存した損失がない場合における rms幅のモード変換量依存性を(6.46)式より計算した結 果を示している。励振条件によってモード変換量依存性が3/2 乗から1乗まで変化し、モー ド変換量の大きい場合には1/2乗に漸近していることがわかる。

図 6.13 インバルス応答における rms幅のモード変換量依存性

6.3.5 定常状態におけるモード電力比

各モードの電力はモード変換量が小さい場合には励振された電力に比例するが、モード変換量が大きい場合には入射時の励振モード電力に依存しない分布形となる。ここでは定常状態 (モード変換量が充分に大きい場合)におけるモード1とモード2の電力の比率を求める。本 節ではモード1からモード2への結合係数 h₁₂ とモード2からモード1への結合係数 h₂₁ が異 なった値を持つと仮定する。

hz ≫ 1 のときには各モードの時間領域における電力分布はガウシアン分布で近似できる。 したがって電力の比率はパルス波形のピーク値の比で決定される。電力比 P/P は次式のよう に求まる。

$$x_{2,peak} + x_{1,peak} = \frac{1}{2\bar{h}z} \cdot \frac{v_{1}r - v_{2}}{v_{1}r + v_{2}} \qquad (6.51)$$

が成立するから(6.49)式は次式の形に書き直される。

(6.52) 式より定常状態における電力比はモードに依存した損失と、モード変換係数で決定 されることがわかる。ここで結合係数が等しい場合(2モード伝送路では等しくなる)には電 力比は主としてモードに依存した損失で決定されることがわかる。しかし結合係数が異なる場 合(例えば伝搬されるモードが3個以上ある場合に隣り合うモード間の結合係数が異なるとし て、等価的に2つのモード間の結合係数が違うと考えた場合)には電力比は結合係数にも依存 する。このことから、多モード光ファイバにおいて、最も損失の小さくなる励振モードは、モ ードに依存した損失のみで決定されるのではなく、結合係数も考慮した上で決定されるという ことがわかる。図 6.14は P₂/P₁を次式より数値計算した例を示している。

図 6.1 4 モード1とモード2の電力の比のモード変換量依存性

 $\frac{P_{2}}{P_{1}} = \int_{0}^{1} P_{2}(\tau) d\tau / \int_{0}^{1} P_{1}(\tau) d\tau$

図から明らかなように、モード変換量の小さい場合には励振条件が電力比を大きく左右しているが、モード変換量(hz)が3程度で(6.52)式の一定値に達していることがわかる。

6.3.6 ベースパンド周波数応答特性

前節までは時間領域におけるインバルス応答を検討してきたが、本節ではベースパンド周波 数領域における伝達関数について検討する。ベースバンドにおける周波数応答特性を求める方 法としては既に求めたインバルス応答特性(6.22),(6.23)式をラブラス変換して求め ることもできるが、基本方程式(6.16)式を直接ラブラス変換して、その解を求める方が容 易である。ここでは後者の方法で周波数応答特性を求める。基本方程式及び初期条件は6.2.2 節と同じとして解く。(6.16)式をラプラス変換し、初期条件(6.20)、(6.21)式を 代入すると次式の方程式が得られる。

$$\left(\frac{d^{2}}{dz^{2}} + \left\{\left(\frac{1}{v_{1}} + \frac{1}{v_{2}}\right)s + (\alpha_{1} + \alpha_{2} + 2h\right)\right\}\frac{d}{dz} + \left\{\frac{s^{2}}{v_{1}v_{2}} + \left(\frac{\alpha_{1} + h}{v_{2}} + \frac{\alpha_{2} + h}{v_{1}}\right)s + \alpha_{1}\alpha_{2} + (\alpha_{1} + \alpha_{2})h\right\}\right)P_{i} = G_{i}(z, s) \dots \dots (6.54)$$

$$G_{1}(z,s) = \frac{\delta'(z)}{v_{1}} + \left\{ \frac{s}{v_{1}v_{2}} + \left(\frac{\alpha_{2}+h}{v_{1}} + \frac{rh}{v_{2}} \right) \right\} \delta(z) \qquad (6.55)$$

$$G_{2}(z,s) = \frac{r\delta'(z)}{v_{2}} + \left(\frac{rs}{v_{1}v_{2}} + \left(\frac{(\alpha_{1}+h)r}{v_{2}} + \frac{h}{v_{1}}\right)\right)\delta(z) \qquad (6.56)$$

(6.54)式の微分方程式は以下のようにして解ける。 まず(6.54)式の右辺を0としたときの一般解を求める。

 $P_{i}(z, s) = C_{1}(s) e^{zD_{1}} + C_{2}(s) e^{zD_{2}} \qquad (6.57)$

$$D_{i} = \frac{1}{2} \left\{ -A \pm \sqrt{A^{2} - 4B} \right\} \qquad (6.58)$$

ただし i=1, 2 は複号と対応

$$A \equiv \left(\frac{1}{v_1} + \frac{1}{v_2}\right) s + a_1 + a_2 + 2h \qquad (6.59)$$

$$B \equiv \frac{s^2}{v_1 v_2} + \left(\frac{\alpha_1 + h}{v_2} + \frac{\alpha_2 + h}{v_1}\right) s + \alpha_1 \alpha_2 + (\alpha_1 + \alpha_2) h \qquad (6.60)$$

ただし C1, C2は sを含む任意定数である。(6.54)式の右辺を考慮した一般解は上式の結果

を利用して次式のように表される。

ここで今考慮している初期値問題で、 $z \to \infty$ の時の解が0と仮定すると(6.61)式における C_1 , C_2 の係数は0となる。そこで(6.61)式の不定積分を実行して、 P_1 , P_2 の解として 次式を得る。

$$P_{1}(z,s) = \frac{1}{D_{1}-D_{2}} \left\{ \frac{1}{v_{1}} \left(D_{1}e^{D_{1}z} - D_{2}e^{D_{2}z} \right) + E_{1} \left(e^{D_{1}z} - e^{D_{2}z} \right) \right\} \qquad (6.62)$$

$$P_{2}(z, s) = \frac{1}{D_{1}-D_{2}} \left\{ \frac{\tau}{v_{2}} \left(D_{1} e^{D_{1}z} - D_{2} e^{D_{2}z} \right) + E_{2} \left(e^{D_{1}z} - e^{D_{2}z} \right) \right\}$$
 (6.63)

$$E_{1} \equiv \frac{s}{v_{1}v_{2}} + \frac{\alpha_{2} + h}{v_{1}} + \frac{\tau h}{v_{2}} \qquad (6.64)$$

$$E_{2} \equiv \frac{rs}{v_{1}v_{2}} + \frac{(a_{1}+h)}{v_{2}} + \frac{h}{v_{1}} \qquad (6.65)$$

したがって、ある距離zにおける全電力Pは和で求まる。

$$P(z, s) = P_1(z, s) + P_2(z, s) \qquad (6.66)$$

ここでベースバンドの周波数応答特性は $s=j\omega$ の変換で求めることができる。またベースバンドの周波数応答特性における振幅特性 $R(z,\omega)$,および位相特性 $o(z,\omega)$ は次式で表される。る。

$$P(z, \omega) \equiv R(z, \omega) e^{j\varphi(z,\omega)} \qquad \dots \qquad (6.67)$$

$$R(z, \omega) \equiv P(z, \omega) \qquad \dots \qquad (6.68)$$

$$\varphi(z, \omega) \equiv tan^{-1} \{ \mathcal{I}_m(P) / \mathcal{R}_e(P) \} \qquad \dots \qquad (6.69)$$

以上得られた式に代入することによってベースパンドの周波数応答特性を計算することができる。

6.3.7 ベースパンド周波数応答特性の数値計算例

種々の励振条件およびパラメータについてベースパンド周波数領域における応答特性につい

て検討する。図 6.15はモード変換量が1でかつモードに依存した損失がある場合(定常状態 における電力の比率は P. がP.の半分となる)の振幅特性について示したものである。実線はモ

NORMALIZED FREQUENCY Fo $(v_1v_2/z(v_1-v_2))$

図 6.15 ベースパンド周波数特性(モード変換量 hz=1の場合)

-ド1のみを励振した場合,破線は二つのモードを均等に励振した場合を示す。モード変換量が1程度だとまだ入射励振条件によって応答特性は大きく変化することがわかる。またモード 1のみ励振した場合にはインバルス応答波形が指数関数形に近くなり,したがって高周波領域 ての減衰が小さくなるものと思われる。

図 6.1 6 - (a)はモード変換量が 0.5 と小さく、かつモードに依存した損失のない場合の振幅, 位相特性を示している。この場合には二つのモードが均等に励振された場合で、かつモードに 依存した損失がないためインバルス応答波形は対称形となる、したがって位相の周波数特性は 周波数に対して線形に減少する。またモード変換量が 0.5 と小さいため各モード自体のインバ ルス応答波形はあまり拡がらず、高周波領域においても減衰が小さくなっている。また図 6.16 - (b)はベースバンドの周波数特性を複素平面上にプロットしたものである。この図においては 振幅は原点からの距離、位相は実軸となす角度で表される。図中の丸印は等周波数間隔を表 している。 図 6.16-(a)と対応して振幅は高周波領域でほぼ一定値の円に収束し、位相変化 は線形に減少することがわかる。

図 6.1 7 はモード変換量が 2 でかつモードに依存した損失効果も大きい場合の周波数特性を示している。モードに依存した損失の傾向がモード 1 とモード 2 に対してまったく逆の場合に

-192-

図 6.16-(a) ベースバンド周波数特性(モード変換量 hz=0.5の場合)

図 6.16-(b) 複素平面上におけるペースパンド周波数特性 (モード変換量 hz=0.5の場合)

ついて計算したものである。振幅特性については両者で差が見られないが、位相特性は大きく 相違している。すなわち高次モードに相当するモード2の損失が大きい場合には位相の変化が

NORMALIZED FREQUENCY F₀ $(v_1 v_2 \neq z (v_1 - v_2))$

図 6.1 7 - (b) 複素平面上におけるベースバンド周波数特性 (モード変換量 hz=2の場合)

図 6.1 7-(c) 複素平面上におけるベースバンド周波数特性 (モード変換量 hz=2の場合)

小さく、高周波領域で0に漸近する傾向を示している。一方低次モードに相当するモード1の 損失が大きい場合には位相の変化は大きく周波数に比例して減少するように見える。しかし減 少の傾向は周波数に対して非線形であり、脈動している。この位相変化は複素平面上でより一 層明確になる。図6.17-(め)は高次モードの損失が大きい場合の周波数特性を複素平面上にプ ロットしたものである。この図から明らかなように周波数に対する軌跡は第4象限内に留まる ため、振幅は急敵に減少するが位相の変化は小さく、かつ非線形となる。一方、図6.17-(c) は低次モード損失が大きい場合の複素面上における周波数特性を示している。この場合には周 波数に対する軌跡は全象限にわたって変化するため位相変化は大きくなる。また位相変化量は 線形減少よりもさらに急敵に減少する。図6.17-(め)、-(c)図よりわかるように振幅特性より も位相特性の方が波形に対して大きい影響を受ける。すなわち位相変化はモードに依存した損 失に対して極めて敏感であることがわかった。

図 6.18はモード変換量が非常に大きい場合の周波数特性を示している。この場合にはモード変換によってインバルス応答幅が軽減されているため、振幅特性は高周波領域においても減 衰が小さくなっている。また図 6.18-(b)からわかるように周波数に対する軌跡は非常にゆる やかに変化している。この場合においてもモードに依存した損失のためにインバルス応答波形 は非対称となり、その結果位相変化は高周波領域で線形減少からはずれてくる。

NORMALIZED FREQUENCY Fo $(v_1v_2/z_1(v_1-v_2))$

図 6.18-(b) 複素平面上におけるベースバンド周波数特性 (モード変換量 hz = 8の場合)

6.4 まとめ

6章における検討結果から次のような結論を得た。

- (1) 光線近似によりファイバ内の光線をポテンシャルウェル中の粒子の振舞で説明づけることができた。
- (2) 直線部から曲がり部への接続点で起るモード変換損失をポテンシャルウェルの傾きによって計算することができた。
- (3) 曲がり部での変換損失は最大屈折率差が同じの場合には2乗分布形の方がステップ形の 多モード光ファイバに比較して倍となる。
- (4) 2モードモデルで結合方程式の解析解を得ることができた。
- (5) 各モードのインパルス応答波形はモード間の結合により定常状態ではガウシアン分布になる。
- (6) 定常状態においても各モード間の中心時間差は残り、一定値に漸近する。
- (7) 前項の結果より定常状態においても伝達関数の線形結合性(全体の伝達関数を各部分の 伝達関数の線形結合で表わすことができること)は多モード光ファイバにおいては成立し ない。
- (8) インバルス応答波形幅の伝搬距離依存性はモード変換量および入射励振条件に依存し、 モード変換量が小さい場合には入射励振条件によって伝搬距離の1乗から3/2乗に比例して増加すること、モード変換量が大きい場合(定常状態)には伝搬距離の平方根に比例して増大する。
- (9) 定常状態におけるモード電力分布は入射励振条件に依存せず,モードに依存した損失と モード変換係数で決定される。
- (10) モード結合方程式をラブラス変換して、ベースパンド周波数における応答特性を求める ことができた。
- (1) ベースバンド周波数応答における振幅特性は波形自体の変化に対してあまり影響を受け
 ず、位相特性は大きい影響を受ける。したがってモードに依存した損失に対して位相特性は大きく変化することが明らかになった。

第7章 接続部が伝送特性におよぼす影響

7.1 序

長距離光伝送路においては光ファイバ間の接続は避けることができない。実際の接続では、 V帯による接続⁽⁹⁷⁾,あるいは融着による接続⁽⁹⁸⁾においても、伝送特性に一番大きく影響する 要因は軸ずれの問題がある。本章ではまず軸ずれの伝送特性に与える影響について検討する。

また接続点におけるモード変換量は接続条件に依存する。したがって接続された長尺伝送路 の全伝送特性は単位長の伝送特性の線形結合からだけでは推定できない。接続点におけるモー ド変換量の測定によって実際の接続においてはある程度のモード変換は避けられないことを明ら かにする。さらに接続点でのモード変換量の偏差をなくし、接続された伝送路の全伝送特性を 単位長の伝送特性より求めることを可能とするためのモードスクランプラについて検討する。

7.2 接続点における軸ずれが伝送特性におよぼす影響

本節では多モード光ファイバ同士の軸ずれによって生ずる接続損失とパルス伝送特性の変化について、ステップ形とグレーデッド形の多モード光ファイバについて検討する。

7.2.1 軸ずれによる接続損失

接続点における軸ずれの効果は接続損失が増大するのみならず,モード変換の原因となる。 またステップ形とグレーデッド形の多モード光ファイバはモード変換の影響が大きく異なる。 すなわち、ステップ形多モード光ファイバの接続点において軸ずれが生じた場合には比較的モ ード変換が小さく、リーキーモードも励振されない。一方グレーデッド形多モード光ファイバ の場合には、モード変換が大きく、かつリーキーモードまで励振される⁽⁹⁹⁾。これは第5章で検 討したように、ステップ形多モード光ファイバにおいては各モードの特徴は光線近似で考える と伝搬角(ファイバ軸と光線のなす角度)のみで記述できることに対して、グレーデッド形多モ ード光ファイバにおいては各モードは位置と伝搬角の二つで記述されることからも理解される。 また伝搬モードとリーキーモードでは損失係数が大きく異なる。しかも実際のファイバにお

いては伝搬モード間でも損失係数に差がある,いわゆるモードに依存した損失 (Differential

Loss)が存在する。したがって短尺のファイバで接続損失を測定した場合と長尺のファイバ で測定した場合には測定結果が異なる。ここでは以下にのべるステップ形とグレーデッド形の 多モード光ファイバについて短長の場合と長尺の場合の軸ずれによる接続損失を測定した。

コ ア 径 (2a) $80 \mu m^{\phi}$

屈折率差比(4) 0.75%

なお接続損失は励振されているモード電力分布によって左右されるため、ここでは伝搬モー ドが均一に励振された場合について検討する。多モード光ファイバにおいては伝搬モードが均 一に励振された場合には、ニアフィールド分布はほぼ屈折率分布形と等しくなる⁽²³⁾。したがっ て接続されるファイバ(光源側のファイバ)のニアフィールド分布が屈折率分布形に等しくな るように Burrus タイプのLED え=0.94µm)を光源として使用した。図7.1はステップ形およ びグレーデッド形多モード光ファイバをLEDで励振した場合のニア・フィールド分布と各々 の反射法で測定した屈折率分布形を示している。グレーデッド形多モード光ファイバの場合は

図7.1 ニア・フィールド分布と屈折率分布

両者はほぼ一致しているが、ステップ形の場合には、コア、クラッディングの境界付近で、ニ ア・フィールド分布形の方が、もち上がった形となっている。 このことはリーキーモードが若干 励振されていることを示している。図 7.2は図 7.1のニア・フィールド分布で励振されている ファイバに接続したときの軸ずれに対する接続損失を示している。図中の曲線は次のようにして 求めた軸ずれによる接続損失の理論曲線である。

今,伝搬モードが均一に励振されていると仮定するとニア・フィールドのパワ分布 P(B)は次式で近似できる⁽²³⁾。

$$P(R) = A (1 - R^{\alpha})$$

ただし Rはコア半径 a で規格化された規格化半径. a は屈折率の分布形を表す指数で, 2 乗形の場合は 2, ステップ形の場合には∞の値を取る。今座標系を図 7.3のように取り, 重な った部分の領域を 4D(ハッチングを施こした部分)とすると、接続損失は次式で求められる。

図 7.3 接続部の座標系

$$Loss(x) = -10 \log \left\{ 4 \iint_{D} P(R) R dR d\theta / \iint P(R) R dR d\theta \right\}$$
$$= -10 \log \left(4 I_{D} / I_{0} \right) \qquad (7.2)$$

ここで次の積分を実行する。

$$I_{D} = \int_{0}^{\cos^{-1}x} \frac{\int_{x}^{1}}{\cos\theta} (1 - R^{d}) R dR d\theta$$

= $\frac{1}{2} \{ (1 - \frac{2}{a+2}) \cos^{-1}x - x^{2} tan (\cos^{-1}x) + \frac{2x^{d+2}}{a+2} \cdot J \}$ (7.3)

$$J = \int \frac{dx}{\cos^{a+2}x}$$

$$= \begin{cases} \frac{(2p-2)!!}{(2p-1)!!} & \frac{\sin x}{\cos^{2P-1}x} & \frac{p-1}{2} & \frac{(2p-2r-3)!!}{(2p-2r-2)!!} & \cos^{2r}x & :for \ a+2=2p \\ \frac{(2p-1)!!}{(2p)!!} & \frac{\sin x}{\cos^{2p}x} & \frac{p-1}{2} & \frac{(2p-2r-2)!!}{(2p-2r-1)!!} & \cos^{2r}x \\ & + & \frac{(2p-1)!!}{(2p)!!} & \log | \tan (\frac{x}{2} + \frac{\pi}{4})| & :for \ a+2=2p+1 \end{cases}$$

..... (7.4)

 $CCT \quad \alpha = 2 \ b = 2$

(7.3), (7.5)式より

$$I_D = \frac{1}{2} \left\{ \frac{1}{2} \cos^{-1} x - x^2 t \, an(\cos^{-1} x) + \frac{x^4}{3} t \, an(\cos^{-1} x) + \frac{x}{6} \sin(\cos^{-1} x) \right\} \qquad \dots \qquad (7.6)$$

$$I_0 \equiv \int \int P(R) R dR \, d\theta = \frac{\pi}{8} \tag{7.7}$$

(7.6)、(7.7)式より損失は次式のようになる。

$$Loss_{2}(x) = -10\log \frac{2}{\pi} \{cos^{-1}x + (\frac{2}{3}x^{2}-2)x^{2}tan(cos^{-1}x) + \frac{x}{3}sin(cos^{-1}x)\} \quad \dots \quad (7.8)$$

- 方ステップ形の場合には a = ∞ として以下のように計算できる。

$$\therefore Loss_{\infty}(x) = -10 \log \frac{2}{\pi} \{cos^{-1}x - x^{2}tan(cos^{-1}x)\} \qquad (7.11)$$

(7.8),(7.11)式より求めた結果を図7.2では示している。 図7.2-(のは接続したファイバが50cmと短い場合の実験値をブロットしてある。上記計算 値と比較すると、ステップ形多モード光ファイバの場合は非常に良く一致しているが、グレー デッド形多モード光ファイバの場合には測定値の接続損失が小さくでている。このことは、ス テップ形多モード光ファイバにおいては接続時の軸ずれによってはリーキーモードが発生しな い為計算値と良く合うが、グレーデッド形多モード光ファイバでは軸ずれによってリーキーモ ードが励振され、50cm程度の短尺ファイバでは伝搬されるため損失とはならず、計算値より も接続損失が小さく測定されることに対応している。

一方,長尺のファイバが接続された場合の接続損失は,グレーデッド形.ステップ形ともに、 測定値と計算値はほぼ良く一致している。この結果から、グレーデッド形多モード光ファイバ において励振されたリーキーモード電力は1 km 程度伝搬するうちに減衰してしまい伝搬モー ドのみが残ったために計算値と良く合う結果となったことがわかる。したがって屈折率差比4の 等しいステップ形とグレーデッド形多モード光ファイバの軸ずれに対する接続損失はグレーデ ッド形多モード光ファイバの方が若干多くなるが、軸ずれ量が小さい場合には実用上、ほとん ど差がないと言うことができる。

7.2.2 軸ずれが伝送特性に及ぼす影響

7.1.1節では全伝搬モードが均一に励振された場合の接続損失について検討したが、ここで は長尺ファイバでの接続点における軸ずれが伝送特性に与える影響について検討する。光原は 中心波長 0.82µm, 半値幅約3 nsec のバルス発振する半導体レーザを使用した。図 7.4 はス テップ形多モード光ファイバを接続し、最初の1 km 点での軸ずれによって変化するモード電 力分布について測定した結果を示している。屈折率差比 0.7 %. コア径約85µm のファイバ を使用している。図 7.4 - (a)は接続点直後におけるモード電力分布の変化を示している。軸ず れによってやや高次モードが励振されているがほとんど大きな変化はみられない。また図 7.4 - (b)は接続点後1 km 点でのモード電力分布を示している。この場合には軸ずれ量が60µm 程度となってもモード電力分布はほとんど変化がない。なおこの場合の臨界角は空気中で約10 度に相当する。短いファイバ出力で10度以上の電力成分が若干観測されているのはリーキ ーモードが励振されたものと思われる。

図 7.4 - (b) 軸ずれによるモード電力分布の変化 (ステップ形、1km伝搬後のモード電力分布)

図7.5は1 km 点での軸ずれ変位による損失とパルス幅の変化について示したものである。 損失変化,パルス幅変化の傾向はともに3 km 点での変化量の方が2 km 点での値にくらべて ゆるやかになっている。これは軸ずれによって生じるモード分布の変化を,3 km 点までの間 のモード拡散によって緩和してしまうものと考えられる⁽¹⁰⁰⁾。

次にステップ形多モード光ファイバと同じディメンジョン,パラメータを持ったグレーデッド形多モード光ファイバについて,軸ずれによるパルス幅の変化を測定した。この場合には入射パルス幅は約300psec である。図7.6-(a)は1 km 点の接続直後のモード電力分布を伝搬角の電力密度として表したものである。

この図から明らかなように軸ずれによってモード電力分布は大きく変化する。このことは第 5章での軸ずれによる励振モード分布の検討結果と良く一致している。一方図7.6-(b)は接続 点後1 km 伝搬した後のモード電力分布を表しており, 入射時の変化と比較すると, 軸ずれ に対してゆるやかな変化となっているが、ステップ形と比較すると変化が顕著である。図7.7 は1 km 点での軸ずれによって2 km 伝搬後の損失とパルス幅の変化について示したものであ る。損失についてはステップ形と比較して軸ずれ量が小さい場合には, 損失増が小さくなって

図 7.5 軸ずれ変位による損失とパルス幅の変化(ステップ形)

6 15

図7.6-(a) 軸ずれによるモード電力分布の変化(グレーデッド形,接続点直後のモード電力分布)

図 7.7 軸ずれによる損失とパルス幅の変化(グレーデッド形)

-206-

いるが、20µm 以上軸ずれがあると急敵に損失が増加している。これはLEDで伝搬モード を均一に励振した場合と異なり低次側モードが強く励振されている為と解釈できる。一方バル ス幅の変化は非常に小さく、軸ずれ量が増すにつれてパルス幅が減少する傾向を示している。 損失増と合わせて考慮すると励振されるモード数が減少している為と考えられる。

以上,軸ずれに対するパルス幅の変化の検討より、多モード光ファイバにおいては接続点の 軸ずれによって接続損失は増大するが全体としてのパルス特性はあまり大きく変化しないことが 明らかになった。

7.3 接続によるモード変換

Ť

ż

前節では接続点において軸ずれが生じた場合の損失およびパルス波形の変化について検討し たが,現実の接続では軸ずれがほとんどない状態で接続される。軸ずれがない場合でも接続点 での端面の不整.あるいは傾き等によってモード変換が生じる。本節では実用上最良の接続状 態におけるモード変換量の測定および,接続された伝送路の全伝送特性を単位長の伝送特性よ り求めることを可能とするためのモードスクランプラについて検討する。

7.3.1 接続点でのモード変換量の測定

図7.8はモード電力分布形および時間波形からモード変換量を測定するための測定系を示し

図 7.8 接続点におけるモード変換量の測定系

たものである。時間領域での分解能を高めるために測定用光源としてパルス動作のGaAs半導体レーザを使用した。発振波長 0.82 μm, 3 dB-パルス幅 300 psec, 3 dB-スペクトル幅 30
Åである。またモード分析器は第4章で述べたファー・フィールドを分析する方法によるもの を使用した。このモード分析器の測定精度が十分保証される被測定ファイバとして本章では、 ステップ形の多モード光ファイバについて検討する。すなわち大口径でかつ屈折率差比の大き いステップ形多モード光ファイバにおいては伝搬角とモード次数との対応が明確であるため、 レンズによるフーリェ変換作用と空間フィルタによってモード分析を行うことができる。 接 続点のモード変換量を測定するために使用したファイバは以下のパラメータを持つステップ形 多モード光ファイバである。

コ ア 径 : $100\mu m^{\phi}$. 屈折率差比 4 : 0.7%全 損 失 : 8 dB/km ($\lambda = 0.82\mu m$) ファイバ長 : 640m

接続点でのモード変換量を各モード群毎の時間波形の変化から求めるために、接続がない場合の波形特性を測定した。測定結果を図 7.9に示す。得られた波形は 640m伝搬後の各モード群

図 7.9 各 モ ー ド 群 の 出 力 波 形 (図中の数字は伝搬角に対応する)

毎の出力波形をXYレコーダによって記録したものである。図中の波形に対応する数字は空気

中での伝搬角に対応し、モード次数と対応している。モード次数が大きくなるにしたがって出 力波形のビークは遅延していることがわかる。モード変換が起っていないと仮定すると、伝搬 角θに対応するモード群の最低次モードとの群遅延時間差τ(のは近似的に次式で表される。

ただし $\theta' \geq \theta$ はコア中の伝搬角および空気中への放射角を表す。 また L, n_1 , cは各々ファイベ長, コアの屈折率および真空中での光速を表す。 例えば伝搬角 6.5 度の群遅延時間差は L=640m, $n_1 = 1.47$ の場合には約9.3 nsec となる。一方図7.9 で示した測定値では波形 のビークで約7 nsec となり, 他のモード群でも同じ傾向を示している。したがってこの場合 には各モード間でのモード変換が若干起こっていることを裏付けている。

長距離光伝送システムにおいては,接続損失が小さく,機械的強度の強い接続が必要とされる。融着による接続⁽⁹⁸⁾では上記条件がほぼ満足され,しかも他の接続法と比較してモード変換量も小さいものと思われる。本節では最良の接続条件におけるモード変換量を評価するため、 精密微動台でファイバ端面同士をつき合わせて接続を行った。接続損失およびモード変換を 小さくするためにはファイバ端面がファイバ軸に対して直角で,平坦でなければならない。図 7.10は適当な張力下で切断して得られるファイバ端面の走査型電子顕微鏡写真である。この

図 7.10 ファイバの切断端面(外径約120μm[¢])

写真からわかるように、接続されるファイバ端面は鏡面状であり、モード変換要因とはなり難

次に接続による影響を検討するために、50cm の短尺ファイバを接続して測定した。図7. 11は接続点直後における各モード群波形を示している。各モード群の波形は図7.9における 波形と対応している。図7.9と図7.11の各波形とを比較すると接続によるモード変換が起こつ

図 7.11 接続後における各モード群のパルス波形

ていることが明瞭にわかる。また図7.1.1において、実線の波形と破線の波形とは接続点にマ ッチングオイルを含んでいない場合と含んでいる場合に対応している。各々のモード群波形は 電力の増大は見られるが、波形自体の変化はほとんど見られない。一方全体波形は各モード群 波形の総和で表される。図7.12は接続点がない場合および、ある場合の全体波形を示した ものである。接続点にマッチングオイルを含まない状態での接続損失は約0.31dBで、フレネ ル反射による損失が主として効いている。接続後の全体波形は尖頭値をそろえてブロットした もので両者の波形は非常に良く似た形となっている。このことからも接続損失は接続点での放 射損失にはよらないことが理解できる。したがって接続によるモード変換は、接続時の不整 (例えば軸ずれ、傾むき、間隙)によるものと思われる。そこで接続部におけるファイバ端面 の不整とフレネル反射の影響を除くためにマッチングオイルとしてグリセリン(屈折率1.47) を付けて 波形解析を行った。接続損失はマッチングオイルを付けることにより 0.01dB 以下 となった。またこの場合における全体波形の変化は図7.13に示すように電力の増大のみで波

 \sim°

図 7.1 2 接続前後の全モード電力によるパルス波形

図 7.13 接続点におけるマッチングオイルの有無によるパルス波形の変化

形の変化はみられなかった。各モード群波形について図 7.1 1で述べたように変化は電力の増 大のみである。これらの検討結果から、接続損失の非常に小さい接続点においてもモード変換 は起こり、原因としては接続時の不整合によるもので、実用上避けられないものと思われる。

次に接続点におけるモード変換量の定量化について検討する。接続点前後におけるモード電

力分布を全電力に対する各モード群電力の比として図 7.14に示している。例えば、接続前に

図 7.14 接続前後のモード電力分布

おける伝搬角が4度から5度までのモード電力は全電力の約19%を占めており、9度以上の モード群は存在しない。一方、接続後における4度から5度までのモード電力は17%となり、 9度から12度までのモード群が励振されたことがわかる。またマッチングオイルによるモード 電力分布の変化はないことが明瞭である。ここである一つのモード群におけるモード変換量に ついて定量化することを考える。図7.15に示すように、ある一つのモード群で、モード変換

が起る前後の波形を f₁(t) および f₂(t) とする。図に示された各領域 A₀, A₁, A₂, A₃ の電力は 各々,モード変換の前後で変化しなかった電力.低次モード群からの流入電力.他のモード群 への流出電力,高次モード群からの流入電力と解釈できる。図 7.16は上記解釈のもとに算出 したモード変換量のモード群依存性を示したものである。この図から明らかなように,接続損 失が 0.01dB 以下の接続点においてもモード変換を無視することはできない。流入電力と流出

図 7.16 接続点におけるモード変換量

電力はほとんど等しく,全電力の11%に達する。特に流出電力については伝搬角が4度以上 のモード群に大きい。すなわち,電力の流れは全体としてみると低次モード群から高次モード 群へ変換したことがわかる。

7.3.2 モードスクランブラとその特性

前節で明らかになったように、接続点におけるモード変換は実用上避けることはできない。 したがってこのモード変換量の差によって接続された長尺の伝送特性は偏差を生じることにな る。また単位長の伝送特性から長尺の伝送特性を推定することは困難である。そこで接続点に おけるモード変換量を規定することと、長尺の伝送特性を単位長の伝送特性から推定可能にす るためにモードスクランプラを試作し、その特性を検討した⁽¹⁰¹⁾。

モードスクランプラとしては高い変換効率と挿入損が小さいことが要求される。図 7.1 7 に試

作したモードスクランブラの構造を示す。このモードスクランブラはマイクロベンディングに よるモード変換によってモードミキシングを起こさせるようにしたもので、直径260µm の銅線

図 7.17 試作したモードスクランプラの構造

図 7.18 モードスクランプラの外観写真

を数本,熱収縮チューブによって圧着する構成となっている。モードスクランブラの外観写真 を図 7.18に示す。試作したモードスクランブラは非常に小形で(外径 1.5 mm[¢],長さ 17.5 mm) かつ装荷が容易であるため任意の場所でモードミキシング効果を起こさせることができる。 モードスクランプラの特性は以下の通りである。 モードミキシング効果を測定するために、図7.9に示した 640m長の出射端にモードスクラ ンプラを装荷してモード分析を行った。図7.12における破線で示した波形はモードスクラ ンプラ装荷後の全モード電力による波形を示している。装荷前後の全体波形はほとんど変化し ていないことから、放射損失は非常に小さいことがわかる。

一方モードスクランブラ装荷後の各モード群波形は大きく変化している。図7.19は各モード群毎の波形を示したものである。図7.9と比較するとモードミキシング効果が明確になる。 すなわち,各モード群波形のピークが一致し、しかも波形が非常に良く似た形となっている。

図7.19 モードスクランプラ装荷後の各モード群波形

低次モード群においては高次モード群の電力が流入してパルス幅が拡がり,高次モード群においては低次モード群の電力が大量に流入して同一波形となっていることがわかる。モードスクランブラ装荷後のモード電力分布形は図7.14に示している。この場合にはモードミキシング効果によって電力密度の尖頭値が伝搬角で4度から6度へ移行している。図7.20はモードスクランプラによって起とったモード変換量のモード群依存性を示している。流出した電力は、モードスクランプラ装荷前の電力密度に比例している。流入した電力分布は、接続点によるモード変換で求まった電力分布とは異なっている。すなわち低次モード群からの流入電力分布の尖頭値は、接続の場合に比較して低次モード側に寄っている。また高次モード群からの流入電力分布は最低次モードから高次モード(<7度)まで広く分布している。したがって、接続点に

図7.20 モードスクランブラ装荷によって生じたモード変換量

よるモード変換は高次モード群の間で強く起こり,モードスクランプラによるモード変換は全モード間で起こっていることが明らかになった。試作したモードスクランプラの挿入損失は約 0.15 dB/個 で、全電力の32%がモード変換を起こしていることがわかった。

7.4 まとめ

接続の伝送特性におよぼす影響を,軸ずれによる接続損失とパルス応答特性,接続点で生じるモード変換に重点をおいて検討した結果次のような結論を得た。

- (I) 接続点における軸ずれによって、グレーデッド形多モード光ファイバにおいてはリーキ ーモードが励振されるが、ステップ形多モード光ファイバでは励振されない。したがって 接続するファイバが短い場合にはグレーデッド形多モード光ファイバの方がステップ形 多モード光ファイバと比較して軸ずれに対して接続損失が小さくなるが、接続するファイ バが長い場合にはステップ形の方が軸ずれに対して接続損失はやや小さくなる。
- (ii) 接続点の軸ずれによって接続損失は増大するが、パルス応答特性はあまり変化しない。
 (iii) 接続損失が 0.01dB 以下の良好な接続点においてもモード変換量は全電力の 11% に達

し、原因としては接続時の不整合によるもので、実用上避けられない量として残る。

- (Ⅳ) マイクロベンディングによるモード変換を利用したモードスクランプラにより、全モー
 ド間のモードミキシングを効率良く起こさせることができる。
- (v) 接続点直後にモードスクランプラを装荷することにより,接続による特性偏差を小さく することができること、およびモード分散により生じる各モード間の群遅延時間差をほぼ 消去することができる。この結果は各モードを同位相で励振することができることを意味 し、光原による励振条件と同一にすることができる。

このことは第8章で述べる伝達関数の線形結合性を成立させる為の必要条件である。

第8章 定常モード伝送特性

8.1 序

前章までで明らかにしたように、多モード光ファイバの伝送特性は励振されているモードの 状態で大きく変化する。多モード光ファイバの全損失が低減化してくるにつれてモード変換量 も小さくなる。したがって単位長が1km程度の多モード光ファイバにおいては入射励振時のモ ード分布によって単位長の伝送特性は大きく変化する。一方長尺の多モード光ファイバを伝搬 した後のモード分布はモードに依存した損失係数とモード変換係数で決定される一定のモード 分布に到達し、入射点の励振条件には依存しなくなる。したがって短いファイバにおいて測 定した伝送特性から長尺での伝送特性を推定することは困難である。

また接続点が多数含まれるような場合には接続点におけるモード変換量によって長尺での伝 送特性が影響を受ける。

本章では短尺での伝送特性を定常モードで励振して測定し,入射条件に依存しない伝送特性 の規定法について検討する。さらに接続された長尺での伝送特性を短尺の伝送特性から推定す る方法について述べる。また長尺での伝送帯域を改善する方法についても検討する。

8.2 定常モードの定義

短尺ファイバにおいて定常モード励振を行うためには定常モードの特質を明確にする必要 がある。第6章のモード変換現象の解析結果から定常モードとは以下に述べる特質を有してい ることが結論される。

- (i) 伝搬している各モード間の電力比はファイバ中でのモードに依存した損失係数とモード
 変換係数で決定される。したがって全体でのモード電力分布は入射励振条件,あるいは
 伝搬距離に依存しない一定の電力分布となる。
- (ii) 伝搬している各モードのインバルス応答波形はガウシアン分布となる。
- (iii) インパルス応答波形幅の伝搬距離依存性が伝搬距離の平方根に比例する。またペースバンドの周波数応答特性における3dB帯域幅は伝搬距離の平方根に比例して減少する。
- (Ⅳ) 伝搬している各モードのインパルス応答波形において,各モード間の重心時間の差は伝

搬距離に依らず一定値となる。

したがって定常モードと確認するためには上記特質を検出すれば良いことになる。実験上一番容易に確認する方法は(i)項の条件である。すなわち長尺のファイバの出射端における励振モード電力分布を測定し、この分布形が入射励振条件に依存しないことを確認すれば良い。また伝搬長を変化させてモード電力分布が変わらないことを確認しても良い。時間領域と空間領域の定常状態に達するまでの伝搬長は時間領域で定常に達するまでの伝搬長の空間領域におけるものより長くなるために(ii).(iii).(M項を検出することは困難である。実験例として(M項の重心時間差が伝搬長に依存しなくなることを測定した結果,ステップ形多モード光ファイバにおいて8 km 伝搬した後に(M項の条件を満足していることが確認されている⁽¹⁰²⁾。

8.3 定常モード励振器

第5章で検討したようにレーザビームを対物レンズで絞って入射励振した場合には,励振されるモード電力分布は局在したものになり,伝送特性も大きく変化する。本節では入射時の励振条件に依存しないモード電力分布を得ることのできる励振器について検討する。

8.3.1 測定された定常モード分布と定常モード励振器の構造

長尺のクレーデッド形多モード光ファイバにおけるバルス伝送特性については報告されてい るが⁽⁸³⁾,入射時及び出射時のモード電力分布については測定されていない。とこでは接続され た長尺のグレーデッド形多モード光ファイバを伝搬した後のモード電力分布について測定した。 モード電力分布の測定は4.8節で述べた、ファーフィールド分布を分析する方法によって測定 した。この測定法はグレーデッド形多モード光ファイバについては精度の点でステップ形多モ ード光ファイバに対するものより劣るが、定常モードの電力分布を評価する為には充分である。 図 8.1 は接続された長尺のグレーデッド形多モード光ファイバを伝搬した後のモード電力分布 を示している。測定に使用した光ファイバはグレーデッド形多モード光ファイバで、コア径 8.5 μm,屈折率差比4が0.75%である。ここで示されているモード電力分布は入射時の励 振条件によってほとんど変化しないことが確認された。したがって図8.1 に示すモード電力分 布はモード変換およびモードに依存した損失によって決定される定常モード電力分布を表し ていると考えられる。そこで、光源による励振時に定常モード電力分布で励振することができ る励振器があれば、単位長の伝送特性を規定する有効な手段となる。上記目的のための定常モ

図 8.1 定常モード電力分布

ード励振器としては,局在したモード電力分布を定常モード電力分布に変換する高い変換効率 および,挿入損失の小さい特性が要求される。図8.2は試作した定常モード励振器の構造を示 している。レーザ光源を対物レンズで絞って,多モード光ファイバを励振すると非常に局在し

図 8.2 定常モード励振器の構造

たモード電力が励振される(第5章で詳述)。したがって局在して励振されるモード電力分布 を拡げるためにファイバ端面をエッチングした面で構成している。これらの対向ファイバは三 本ロッドによる接続法⁽¹⁰³⁾で接続し,整合液を兼ねた接着剤(屈折率1.508)で固定している。 図 8.3は試作した定常モード励振器の外観写真である。全長は約9 cm,外径5 mmである。 図 8.4はエッチングされたファイバ端面の走査型電子顕微鏡写真である。ファイバ端面はダイ アモンドの刃で傷をつけた後,適当な張力で破断するとファイバ軸に対して垂直な鏡面を得る ことができる。さらに50%の沸酸に20℃で一分間浸すことによって図 8.4のようなエッチ

-220-

図 8.3 定常モード励振器の外観写真

図 8.4 エッチングしたファイバ端面の 走査型電子顕微鏡写真 外径は約 125 μm

ング端面を得ることができる。リング状の段差はファイバ製造時の CVD プロセスによるもの (104) で,局在したモード電力を分散させる効果がある。図 8.5 は定常モード励振器の変換特性を示 したものである。本図から明らかなように $He - Ne \nu -$ ザ・ビームを対物レンズで絞って直接 励振した場合には非常に低次側に局在したモード電力分布となる。一方定常モード励振器で励 振した場合には $He - Ne \nu -$ ザ光源の場合でもほぼ図 8.1 で示される定常モード電力分布が励 振されている。またレーザビームの軸ずれによっても励振されるモード電力分布形はあまり変 化がなく、安定な励振特性を持っていることがわかる。また挿入損失は約 0.5 dB と良好な結 果を得た。

なおエッチング端面のかわりに端面を酸水素炎で溶かして半球状にしたものでも同様な励振 特性を得ることができた。

8.3.2 定常モード励振器で励振した場合の伝送特性

定常モード励振器の励振特性を調べるためにグレーデッド形多モード光ファイバに対して直接励振した場合と定常モード励振器で励振した場合の伝送特性について検討する。被測定ファ イバのコア径85μm,屈折率差比4は0.75%,ファイバ長は1kmである。測定に使用し た光源は発光中心波長0.82μm,出力バルス半値幅約300psecのGaAs半導体レーザで ある。このレーザからのビームを20倍の対物レンズで絞って被測定ファイバに入射した。

図 8.6 は被測定ファイバを直接励振した場合の励振モード電力分布を表している。 入射励

図 8.5 定常モード励振器で励振されたモード電力分布

図 8.6 直接励振した場合に励振される入射モード電力分布

振モード電力分布は入射点から40 cm のファイバの出射端でモード分析した結果である。フ ァイバの中心で励振した場合には低次側モードが強く励振されているが、光源が軸ずれするに つれて高次側モードが励振され、電力分布形は大きく変化する。これに対応して1 km 伝搬後のモード電力分布を図 8.7 に示す。1 km 伝搬したことによって図 8.1 に示した定常モード電力

図 8.7 直接励振した場合の 1 km 伝搬後のモード電力分布

分布に近づいている。したがって1 km 程度のファイバにおいてもモード変換の影響があるが なお定常状態には達していないことがわかる。

図 8.8 は図 8.7 のモード電力分布に対応したパルス応答波形を示している。グレーデッド形 多モード光ファイバにおける出力パルス波形は光ファイバの屈折率分布および励振されるモー ド電力分布に大きく依存する。屈折率の分布形が2乗形の複合形をしている場合には出力パル ス波形は二つのパルス波形に分離する現象が見られる(5.3 節詳述)。本測定ファイバの場合 は、時間軸上で前方のパルス波形は高次モード群に対応し、後方のパルス波形は低次モード群 に対応している。この対応は軸ずれ量の増加に伴なって前方のパルス波形が大きくなることか ら明らかである。またモード分析器による波形解析の結果からも裏付けられている。励振条件 による波形特性の変化に対応してベースバンド周波数特性 $H_f(f)$ も大きく変化する。図 8.9 は 図 8.8 のパルス応答特性と対応したベースバンドの周波数応答特性である。このベースバンド 周波数領域の振幅特性は、入出力パルス波形を高速フーリエ変換(FFT)によって周波数領域 ての減衰量に変換したものである。振幅特性の計算誤差は約1%以内である。図 8.9 から明ら かなように励振時の軸ずれによってベースバンドの周波数特性は大きく変化している。例えば、

 図 8.8 1 km 伝搬後のパルス波形(直接励振した場合)
 波形は上から *d x* = 0, 20 µm, 40 µm の各 軸ずれの場合に対応する。

FREQUENCY (MHz)

図 8.9 ベースバンドの周波数応答特性(直接励振した場合)

3 dB 減衰値での周波数は軸ずれ量 d_x が 0, 20 μ m, 40 μ mの各場合に対応して 200 MHz, 250 MHz, 280 MHz となる。軸ずれ量が増すにつれて 3 dB 帯域幅が増加するの は、出力パルス波形が単峰波形となることからもわかるように、励振されるモード数が減少する ためである。

一方被測定ファイバを定常モード励振器で励振した場合については以下に述べるような特性 が得られた。図8.10は定常モード励振器で励振した直後のモード電力分布を示している。定 常モード励振器と被測定ファイバとの軸ずれによって励振されるモード電力分布はほとんど変

図 8.10 定常モード励振器で励振した場合の入射励振モード電力分布

化なく、しかも長尺のファイバ伝搬後の定常モード分布に非常に良く似ている。

図8.11は定常モード励振器で励振した場合の1km伝搬後のモード電力分布を示している。 軸ずれ条件は図8.10と対応したものであり、この場合にはモード電力分布形は軸ずれによっ て変化しないことがわかる。

定常モード励振器として,エッチングした面を持つファイバの部分までを考えるときには上記 検討の軸ずれ条件は考慮する必要はなく,光源と定常モード励振器との軸ずれ条件のみで伝送 特性は決定される。この場合にも図8.5 で検討したように安定した定常モード電力分布を得る ことができる。図8.11のモード電力分布に対応した出力バルス波形を図8.12に示す。軸ず れ条件によって出力バルス波形はほとんど変化しないで出力電力のみが減少していることがわ かる。軸ずれ量20 μm,40 μmに対応して伝搬した電力は軸ずれがない時の0.6 および0.2 倍になる。図8.13 は定常モード励振器で励振した場合の出力バルス波形と対応した,ベース バンド領域の周波数応答特性を示している。図8.12 と対応して軸ずれ量が20 μm 程度の場 合には高周波領域まで振幅特性は変化がないことがわかる。以上の検討から以下の結果を得るこ とができた。

(i) 端面をエッチングしたタイプの試作定常モード励振器で、被測定ファイバを励振した場合には、長尺の光ファイバを伝搬した後の定常モード電力分布に非常に近いモード電力

図 8.11 1 km 伝搬した後のモード電力分布 (定常モード励振器で励振した場合)

 図 8.12 定常モード励振器で励振した場合の出力 パルス波形(1km伝搬後) 波形は上から dx = 0,20 µm, 40 µm の各軸ずれの場合に対応する。

FREQUENCY (MHz)

図 8.13 定常モード励振器で励振した場合のベースバンド周波数応答特性

分布を得ることができる。

(ii) 試作した定常モード励振器を使用することによって単位長の伝送特性を偏差少なく規定 できる。

8.4 接続された長尺伝送路の伝送特性

単位長光ファイバの伝送特性は入射励振条件によって大きく変化する。特にクレーデッド形 多モード光ファイバでは特性の変化が大きい。入射励振条件によって単位長の伝送特性が変わ らないようにするために,定常モード励振器で励振する方法⁽¹⁰⁵⁾(前節で詳述). 短い光ファ イバを光源との間に挿入する方法⁽⁴¹⁾⁽⁷³⁾等が報告されている。これらの方法によって励振すると 単位長の伝送特性は偏差少なく測定することができる。一方多数本接続された長尺ファイバの 伝送特性は,接続点でのモード変換に大きく依存する。接続損失の小さい良好な接続点におい てもモード変換量は大きく⁽¹⁰⁶⁾(7.2節で詳述),実用段階での接続においては避けられない偏 差量として残る。

光伝送システムにおける光伝送路の設計においては単位長光ファイバの伝送特性から長距離 伝送時の伝送特性を偏差少なく推定することが重要である。多モード伝送路においては、モー ド変換が全くない場合か,接続点でのモード変換が完全である場合以外は単位長光ファイバの 伝送特性から長距離伝送時の伝送特性を推定することは難しい。

単位長が1km 程度の光ファイバの伝送特性を測定し、長距離伝送特性を単位長での伝送特

-227-

性の線形結合として推定した結果と,実際に接続して測定した伝送特性とは大きく相違する。 これは単位長が1km程度の多モード光ファイバでは,時間領域における定常モード状態に達 していないため,長距離伝搬した時点での伝送特性と異なること,および接続点でのモード変換 効果が接続時の伝送特性に大きい影響を与えていることが原因である。

したがって単位長の伝送特性測定から接続された長尺伝送特性を偏差少なく推定する方法として以下に挙げる三つの方法が考えられる。

第一に,単位長の光ファイバにおけるモード変換量,および接続点でのモード変換量を精密 に測定し,モード結合理論から長尺の伝送特性を推定する方法である。この方法にはモード間 の結合係数を正確に測定すること,各モードの群速度を正確に知る必要があること等の困難がある。

第二は、単位長光ファイバの伝送特性を測定するときに光源と被測定ファイバとの間に長尺の ダミーファイバを介して測定し、測定された単位長光ファイバの伝送特性の線形結合から長尺 の伝送特性を求める方法である。この方法では、空間領域および時間領域の両領域で定常状態 に達するダミーファイバを必要とし、モード変換の小さいファイバでは非常に長尺となり非現 実的である。

第三の方法は前記二つの方法と異なり、単位長の伝送特性から接続された長尺の伝送特性を 推定できるように光ファイバを使用する方法である。すなわち接続点でモードミキシングが完 全に起こるように、モードスクランプラを装荷する方法である。本節では単純に接続して長距離 伝送特性を推定する場合と、第三の方法によって接続された長尺伝送特性を推定する場合とを 比較検討する。

8.4.1 測定系

多モード光ファイバの伝送特性を評価する方法としては、時間領域とベースバンドの周波数 領域での二通りの評価法がある。すなわち時間領域ではインパルス応答波形特性であり、ベー スバンドの周波数領域では周波数応答特性の振幅、位相特性として評価する。

ここでは接続された長尺伝送特性を解析する場合に便利なベースバンドの周波数特性で評価 する。長尺の伝送特性を測定する場合には比較的低周波領域までの測定でよいこと、ダイナミ ックレンジの大きくとれること等の点から本測定では周波数掃引法を採用した。図8.14は本 測定系の概略図を示している。使用した光源は中心波長0.83 µmのGaAlAs半導体レーザで、 トラッキングジェネレータから周波数掃引して変調されている。出射光はSi – APDで受光さ れ広帯域アンプを経てスペクトルアナライザで観測する。観測された周波数応答特性は直接X

図 8.14 接続された長尺ファイバの伝送特性測定系

- Yレコーダで記録した。本測定系のダイナミックレンジは約50dBで、周波数測定レンジ 500MHzにおける周波数分解能は3kHz,および振幅の分解能は±0.2dBである。

光源と被測定ファイバとの結合には,入射励振条件による伝送特性の偏差を避けることと,定 常モード電力分布に近く励振するために前節で検討した定常モード励振器を使用した。長尺の 伝送特性を測定する場合には単位長ファイバ同士を接続する必要がある。本測定での接続には 接続損失が小さく,接続が容易なV溝による接続方法を採用した。この接続においてはシリコ ンオイルを整合油として使用して,フレネル反射を除去した結果,接続損失は0.01 dB以下 となった。

接続点直後に装荷するモードスクランプラは第7章で検討した試作モードスクランプラを使用した。モードスクランプラ装荷によるモードミキシング効果は十分に起こっていることをモード分析結果から確認した。

8.4.2 測定結果と考察

接続された長尺光ファイバの伝送特性を検討するために以下に示す4本のグレーデッド形多 モード光ファイバについて測定した。コア中心とクラッディング間の屈折率差比4.コア半径 a.ファイバ長Lはほぼ以下の通りである。

1: 1%

a : 40 µm

L : 1 km

また測定波長 λ = 0.83 μm での全損失は, ほぼ 5.5 d B / km, 3 d B 帯域幅は約520 MHz である。

最初に,単位長のファイバの伝送特性を直接励振条件で求め,接続された伝送特性を各単位

長の伝送特性の線形結合で推定する。推定結果と実際に接続して測定した伝送特性とを比較検 討する。図 8.15は推定結果と実際に4本を単純に接続して測定した結果とを示している。各

FREQUENCY (MHz)

図 8.15 直接接続した場合の周波数応答特性

単位長のファイバの伝送特性は励振条件によって変動するため、図中では変動幅をハッチング で示してある。一方接続された長尺ファイバの伝送特性はX-Yレコーダ出力をそのまま示し ている。との場合には入射励振条件によって長尺の伝送特性はあまり大きく変化しなかった。 もしファイバにおけるモード変換が小さく、かつ接続点でのモード変換がないと仮定すると接 続された長尺光ファイバの伝送特性は入射励振条件によって大きく変動するはずである。した がって実際の測定時には、ファイバ自体でのモード変換および接続点での不完全なモード変換 によって伝送特性は入射励振条件にあまり依存しなくなったものと解釈できる。図8.15から 明らかなように、実際に測定された4 kmの伝送特性は単位長の伝送特性から4 km接続され た特性を推定した結果より全周波数領域にわたって大きく劣化している。これを3 dB帯域幅 で比較すれば両者の差は約30 MHz 程度あり、この差は高周波領域ではさらに増加する傾向 にある。この結果は接続点において各モードの群遅延情報が不完全ではあるが引継がれている ことを意味している。この傾向はファイバの損失が低減して、モード変換の小さい場合、また 接続点でのモード変換が小さくなる場合にはさらに大きくなる。

次にモードスクランプラを各接続点直後に装荷して測定した結果について述べる。接続され た場合の伝送特性が単位長の伝送特性の線形結合で表されるためには,接続点での励振条件 が空間領域でも時間領域でも一致する必要がある。一般に長尺ファイバの接続点における励振 状態は、単位長ファイバの伝送特性測定時の励振状態と時間領域では大きく相違する。すなわ ち単位長ファイバの伝送特性を測定する場合には各モード群はベースバンド周波数領域におい て同位相で励振されるが、長尺ファイバの接続点では各モード群は同位相で励振されない。こ れはモード分散効果によって群遅延差が生じ、接続によってもこの群遅延差が伝達されるため である(7.2節で詳述)。そこで時間領域でも励振条件を同じにするために各接続点直後にモ ードスクランプラを装荷して、上記条件を満足させるようにする。

FREQUENCY (MHz)

図 8.16 モードスクランブラを装荷した場合の周波数応答特性

図 8.16 は各単位長ファイバの伝送特性を定常モード励振器を使用して測定し、その線形結合で推定される接続時の伝送特性を示している。

一方4 kmの接続伝送特性は次のようにして測定した。図8.14 に示すように光源との結合 には定常モード励振器を使用し、各ファイバはV滞を使用して接続する。各接続点直後にモー ドスクランプラを装荷して接続された長尺伝送路の伝送特性を測定した。測定結果を図8.16 に示している。この場合には単位長ファイバの伝送特性から推定された伝送特性は測定結果と 測定誤差以内で非常に良く一致している。

また,各接続点にモードスクランプラを装荷する場合には単純に接続した場合と比較して伝送帯域を広くすることができる。これは各モードスクランプラでモードミキシングを起こさせる ことによってモード分散効果が低減されるためである。

ここで、単位長ファイバにおいてはモード変換が非常に小さいとして単純なモデルで考察す

る。定常モード励振器を使用して測定した周波数特性を $F_i(f, z)$ とする。ただしfはベー スバンド周波数, zは伝搬距離を表す。モードスクランプラを装荷した各接続点におけるモ ードミキシング効果が完全であると仮定すると、接続した場合の全伝送特性は $\prod_i F_i(f, \ell_0)$ と表すことができる。ただし ℓ_0 はファイバの単位長を表す。一方直接励振した場合の単位 長ファイバの伝送特性を $F_0(f, z)$ とする。単純に4本接続された場合の伝送特性は、単 位長の伝送特性は全部同じで、かつ接続点ではモード変換がないと仮定すると、 $F_0(f, 4\ell_0)$ と表すことができる。図8.17は各単位長ファイバの伝達関数をガウス形と仮定して近似計

FREQUENCY (MHz)

図 8.17 モードスクランプラを装荷する場合と、しない場合の周波数応答特性

算した特性と,実際に測定された伝送特性を示している。この図からわかるようにモードスク ランプラを装荷した場合の伝送帯域は単純に接続した場合の伝送帯域より広い。3 dB帯域幅 で比較すると測定結果では約40 MHz 改善されている。計算による推定特性と実測特性が高 周波領域で異なっているが,この相違は伝達関数をガウス形で近似したためと思われる。本測 定に使用したモードスクランプラ3個の全挿入損失は0.45 dBであった。

次節ではモードスクランプラを多数個装荷した場合の伝送帯域改善効果について検討する。

8.5 モードスクランブラ装荷による伝送帯域の改善効果

前節の測定結果から明らかになったように、長尺ファイバにモードスクランプラを装荷する ことによって伝送帯域は広くなる。本節では長尺ファイバの伝送特性で、モードスクランプラ

-232-

を装荷した場合と、そうでない場合の理論的比較検討を行う。

今,理論検討を簡単化するためファイバ自体にモード変換がない場合の2乗分布形多モード 光ファイバについて考察する。

ファイバ自体でモード変換がある場合については後で検討する。

2乗分布形多モード光ファイバにおける半径方向およびθ方向のモード次数をμおよびνと すると、次式で表わされるモード次数群では群速度が等しい(2.2節で既述)。

$$u = 2 \mu + \nu + 1$$
 (8.1)

したがって本節ではuを一つのモード次数のように取扱う。

モード変換のない場合の電力結合方程式は次式で与えられる。

ただし, pはモード次数群 u に属する一つのモードの電力を表し, u, 距離 z. および時間 tの関数である。v(u), α(u)はモード次数群 u に属するモードの群速度および減衰定数を 表す。 周 波数領域における伝達関数はラブラス変換によって容易に求まる。(8.2)式をラ ブラス変換して次式を得る。

$$\frac{\partial p}{\partial z} = - \left\{ \alpha (u) + \frac{s}{v (u)} \right\} p \qquad \dots \dots \qquad (8.3)$$

ただしsはtの変換された変数である。(8.3)式より次式の解を得る。

$$p(u, z, s) = A_0(u) f(0, s) e x p[- \{\alpha(u) + \frac{s}{v(u)}\}z] \cdots (8.4)$$

ただし $A_0(u)$ は励振電力分布を表す。f(0, s)はz = 0 における励振時間波形のラブラ ス変換を表し、伝達関数を求めるときにはf(0, s) = 1とする。(8.4)式よりモード次 数群uに属する一つのモードの電力関数が求まったので、全電力は(8.4)式を積分して求め ることができる。ここで励振電力分布形 $A_0(u)$ を次式の形に仮定する。

$$A_0(u) = A_0 exp(-u^2/U^2) \qquad \dots \qquad (8.5)$$

ただし、Uは比例定数であり、(8.5)式は高次モードほど励振される電力が減少する分布形

を意味している。 u次モード群の群速度は次式で表される。

$$v(u) = \frac{c}{n_0} \left(1 + \frac{1}{2} \Delta^2 \left(\frac{u}{u_c} \right)^2 \right)^{-1} \qquad (8.6)$$

ただし、 c は真空中での光速、 no、 d は各々次式で表される屈折率分布形 n (r)のファイ バ軸上での屈折率、および屈折率差比を表す。

$$n(r) = \begin{cases} n_0 (1 - 2 \Delta (r / a)^2)^{\frac{1}{2}} & r / a \leq 1 \\ \\ n_0 (1 - 2 \Delta)^{\frac{1}{2}} & r / a \geq 1 \end{cases} \dots \dots \dots (8.7)$$

ただし、rおよびaは半径方向の変数およびコア半径を表す。またucは次式で与えられる 伝搬可能な最高次のモード群を表す。

ただし、 λ は考慮している 波長を表す。 モード次数 群 u に属するモード数 は u に比例する ことを考慮して、全電力 P(z, s) は (8.4)、(8.5)、(8.6) 式 より 次の よう に 求まる。

 $P(z, s) = \int_{0}^{u_{c}} p(u, z, s) u d u \qquad \dots \dots \dots (8.9)$

ここで簡単の為、モードに依存した損失 α を 0 とし、 $s = j 2\pi f$ の変換をすると伝達関数 G (z, f)は(8.9)式より次のように求まる。

$$G(z, f) = \frac{P(z, f)}{P(z, 0)}$$

$$= \frac{\left\{\frac{1}{U^2} - j\frac{\pi n_0 \Delta f z}{2c}\right\}(1 - e^{-\frac{u^2}{U^2}} \cdot e^{-j\frac{\pi n_0 \Delta u_c^2 f z}{2c}})}{\left\{\frac{1}{U^4} + \left(\frac{\pi n_0 \Delta f z}{2c}\right)^2\right\}\left\{U^2(1 - e^{-\frac{uc^2}{U^2}})\right\}} \dots (8.10)$$

ベースバンドの振幅特性H(z, f)を次式で定義する。

 $H(z, f) = -20 \log |G(z, f)| \qquad (8.11)$

(811)式よりモードスクランプラを装荷した場合と、そうでない場合の伝達関数を求める ことができる。すなわちモードスクランプラを装荷した各点でモードミキシングが完全な場合 の伝達関数 G_s(f) は次式で表される。

ただしz_iは単位長を表す。 一方モードスクランプラを装荷しないで, かつ接続点もない場合の伝達関数G₀(f)は次式で表される。

$$G_{0}(f) = G\left(\sum_{i}^{n} z_{i}, f\right) \qquad \dots \dots \qquad (8.13)$$

図8.18は単位長が1kmで全長が10kmの2乗分布形多モード光ファイバについてベース

図 8.18 ペースパンド周波数応答特性(2乗分布形光ファイバでの計算)

バンド周波数特性を(8.12)式と(8.13)式より計算した結果を示している。モードスク ランプラを装荷して各点でモードミキシングを起こさせることによって伝送帯域を広帯域化でき ることがわかる。例えば3dB帯域幅を両者で比較すると、10kmにわたってモード変換が ない場合には340MHzとなるが、1km毎にモードミキシングが完全に起こる場合には1090 MHzとなり約3倍の改善がなされる。また周波数応答特性の関数形がガウス形に近くなるこ とがわかる。図8.19は単位長を一定とし全長を変えた場合の両者における3dB帯域幅の伝 搬長依存性を示したものである。接続点でモードミキシングが完全である場合には伝搬距離の

図 8.19 3 dB帯域幅の伝搬長依存性(2乗分布形光ファイバでの計算)

 1_{2} 乗に比例して減少する傾向に対して、モード変換がない場合には1乗に比例して減少する。 この3 dB 帯域幅の伝搬距離依存性は(8.10)式から容易に証明される。今、接続点でモー ドミキシングが完全な場合の3 dB 帯域幅を f_3 とすると(8.10)式より次の式が近似的に成 立する。

$$-2 \ 0 \ log \left| \left(\frac{sin \frac{\pi n_0 \ \Delta f_3 \ \ell_0}{2c}}{\frac{\pi n_0 \ \Delta f_3 \ \ell_0}{2c}} \right)^n \right| = 8 \qquad \dots \dots \dots \dots (8.14)$$

ただし ℓ_0 はモードスクランプラを装荷する間隔の単位長を表す。周波数応答特性で3dBの 減衰を示す周波数 f_3 においては $\pi_{n_0} df_3 \ell_0 / 2c \ll 1$ が成立するから(8.14)式は次の形 に表すことができる。

ただし c1, c2 は定数である。(8.15)式から次式の関係式が導かれる。

$$-236-$$

(8.16)式は3dB帯域幅 f₃が伝搬距離の1/2 乗に比例して減少することを示している。 一方モード変換がない場合には伝搬距離の1乗に比例して減少することは明らかである。図8. 19には参考のためにモードスクランプラを装荷した場合の付加損失を示してある。三点にモ ードスクランプラを装荷して付加損失が0.45 dBであった測定値から、一点あたり0.15 dB 増加すると仮定して示したものである。

全長が一定で,かつモードミキシングを起させる点の数を一定とした場合に伝送帯域を最大 とするモードスクランプラ装荷の間隔は相等しいときである。この条件は次のようにして証明さ れる。簡単のためモードミキシング点を一点とした場合について考察する。

この場合の3dB帯域幅は上記議論と同様に次のように表すことができる。

$(1 - c_1 f_3^2 \ell_1^2) (1 - c_2 f_3^2 \ell_2^2) = c_3$	(817)
$\ell_1 + \ell_2 = \ell_0$	

ただし c_1 , c_2 , c_3 は各々定数を表す。(8.17)式より f_3 を最大にする場合は $\ell_1 = \ell_2$ のときであることが導かれる。またモードミキシング点が増加しても同様の結論が得られる。したがって全長が一定の場合において伝送帯域を最大にするモードスクランプラの装荷間隔は全部相等しい場合であることがわかる。図8.20は全長を一定とし、モードミキシングを起こさせ

図 8.20 3 d B 帯域幅のモードスクランプラ装荷数依存性

る点の数を変えた時の3dB帯域幅を示している。この図から明らかなように3dB帯域幅は モードミキシングする点の数の1/2乗に比例して増加する。例えば全長10kmでモード変換 がない場合の3dB帯域幅は340MHzであるが、9点および19点モードスクランプラを装 荷すると、3dB帯域幅は各々1.10GHz、1.58GHzとなる。

一方ファイバ自体でのモード変換が無視できない場合、あるいはモードに依存した損失の効果が 無視できない場合にはモードスクランプラを装荷することによって伝送帯域が改善される度合 が減少する。これらの効果について考察するために、6.2節で解析した2モード伝送路につい てモードスクランプラを装荷することによる帯域改善効果を検討した。。図8.21は単位長

図 8.21 モードスクランプラ装荷による周波数応答特性 の変化(モード変換がある場合)

の伝送路を10本接続した場合に、各接続点でモードミキシングが完全である場合と、モード ミキシングがない場合の周波数応答特性を(8.12)式と(8.13)式より計算した結果を示し ている。この場合にはモードに依存した損失がない場合について考察しているため定常モード の電力分布は均一に励振される場合である。単位長伝送路での結合量 hzo が小さい場合、すな わち単位長の伝送路においてモード変換があまり起こらない場合にはモードスクランプラを装荷 する場合とそうでない場合との周波数応答特性の差は大きく、モードミキシングが各接続点で 完全な場合には帯域が大きく改善されることがわかる。一方単位長の伝送路自体でモード変換 が非常に大きい場合には両者の特性差は小さくなることがわかる。

一方単位長の伝送路におけるモード変換量に比較して、モードに依存した損失の効果の方が

大きい場合には異なった周波数応答特性を示す。図8.22はモードに依存した損失効果がモード変換効果よりも大きく、定常状態でモード2の電力がモード1の電力の半分になる場合の周

図 8.22 モードに依存した損失効果の大きい場合の周波数応答特性

波数応答特性を示している。モードスクランプラを装荷しない場合には低域側で減衰が大きく, 高周波側では振動しながらゆるやかに減衰する。一方モードスクランプラを装荷する場合には 低域側で大きく帯域が改善されるが,高周波領域で減衰が大きい。現実の多モード光ファイバ については,モードに依存した損失効果に比較してモード変換効果の方が大きく,ここで検討 した例は特殊な場合である。

次に単位長の伝送路自体にモード変換がある場合における3dB帯域幅の伝搬距離依存性に ついて検討する。図8.23はモードスクランプラを装荷した場合と装荷しない場合の,3dB 帯域幅と伝搬距離の関係を示したものである。実線はモードスクランプラを装荷しない場合の 伝搬長依存性を示している。ベースバンド周波数の3dB帯域幅および伝搬長はモード変換量 *hz*=0.01の場合の値で規格化して示している。モード変換量*hz*=0.01は非常に小さい為, 伝搬距離が短い範囲では3dB帯域幅は伝搬距離の1乗に比例して減少するが伝搬距離が長 くなるにつれて伝搬距離の1/2乗に比例して減少していることがわかる。一方破線の特性はモ ードスクランプラを等間隔に装荷した場合の3dB帯域幅と伝搬距離の関係を表している。 図における〇印はモードスクランプラを装荷する点を表しており,その点でモードミキシン グが完全であるとして計算したものである。この破線の特性からわかるようにモードスクラン プラを装荷すると,3dB帯域幅の伝搬長依存性は装荷直後からほぼ伝搬距離の1/2乗に比例

-239-

図8.23 モードスクランプラを装荷した場合の3dB帯域幅の伝搬長依存性

して減少するようになる。したがってモードスクランプラを装荷する場合には伝送路自体のモ - ド変換量が小さい場合に帯域の改善効果が大きいことがわかる。図 8.2 4は単位長の伝送路

図8.24 モードスクランプラ装荷による3dB帯域幅の 改善度と単位伝送路長でのモード変換量

を10本接続し、各接続点でモードミキシングが完全に起こるようにモードスクランプラを装荷 した場合に、モードスクランプラを装荷しない場合の3dB帯域幅が改善される改善率につい て示したものである。モードに依存した損失による効果がモード変換効果より大きい場合には 傾向が変わるが、モード変換効果の方が大きい場合にはほぼ図8.24のような改善効果が得ら れる。すなわち、改善率が2倍となる単位長伝送路でのモード変換量は約0.2となる。 実際の多モード伝送路においても同様な改善効果が期待できる。

8.6 まとめ

本章では短尺での伝送特性を定常モードで励振して測定し,入射励振条件に依存しない伝送 特性の測定法について検討した。さらに接続された長尺の伝送路での伝送特性を短尺の伝送特 性から容易に求める方法について検討した。以下に得られた結果を述べる。

- (i) 通常の多モード光ファイバでは空間的なモード電力分布の方が時間領域での状態に比較
 して短い伝搬長で定常状態に達する。
- (ii) 実測された定常モード電力分布は高次モードまでほぼ一様な電力分布をしている。
- (iii) 試作した、ファイバ端面をエッチングした構造の定常モード励振器によってほぼ定常モード電力分布を励振することが可能で、光源との結合状態に依存せず安定な励振条件を得ることができた。
- (IM) 接続された長尺伝送路において、単純に接続した場合には、単位長ファイバの伝達関数から線形結合して得られる推定特性と実測特性とは差異が大きい。
- (V) 伝達関数の線形結合性が成立するのは、接続点で空間的にも時間的にも単位長ファイバの伝送特性測定時と励振条件が一致する場合である。
- (W) 各接続点直後に試作したモードスクランブラを装荷することによって(W項の条件を近似的に満足させることができる。したがって接続された長尺ファイバの伝送特性は単位長ファイバの伝送特性の線形結合として容易に求めることができる。
- (vi) モードスクランブラを装荷する方式によって伝送帯域を広帯域化することができる。
- (m) モードスクランプラ装荷方式による伝送帯域の改善度は伝送路自体でのモード変換量に 依存する。

なおモードスクランプラ装荷方式の設計にあたってはモードスクランプラの装荷による損失を 考慮する必要がある。モードスクランプラとして挿入損が小さくて変換効率の高いものを開発, 研究することが今後に残された課題である。

第9章 結 論

多モード光ファイバの伝送特性,特にグレーデッド形多モード光ファイバに重点をおいた伝 送特性の理論的検討および伝送特性の測定法,さらに実際のファイバについての測定結果から 以下に述べる結論を得た。

- (1) 多モード光ファイバの伝送特性解析に関して
 - j) 波動光学と幾何光学との対応, モードと光線との対応を明らかにすることができた。
 - i) 全分散を考慮した時の屈折率分布における最適4次項係数は、短波長側を除いてモード
 分散を最小にする4次項係数から大きくずれない。
 - iii) 全分散が最小となる波長は 1.30 µm の近傍である。
 - W) ポロンのドープされたファイバの屈折率分布分散(profile dispersion)は小さく, 全分散も小さい値となる。

(以上第2章)

(2) 発光ダイオード(LED)のようなインコヒーレント光源と多モード光ファイバとの結合 効率について検討し、球面レンズ等によって結合効率の改善が可能なこと、グレーデッド 形多モード光ファイバとの結合ではLEDの発光面積に最適値が存在することを明らかに した。

(以上第3章)

- (3) 以下に挙げる伝送特性及び伝送特性を決定するパラメータの測定法を開発した。
 -) 屈折率分布の測定

反射電力による方法を開発し自動測定装置の試作を行った。

ii) ニア・フィールド分布の測定

直視できる方法を開発した。リーキーモードの補正に問題が残されている。

前) モード分析

ファーフィールドを分析する方法を開発した。グレーデッド形多モード光ファイバに適用する為には数値処理が必要である。

iv) 伝達関数の測定

次に述べる三通りの方法を検討し、各々実用に耐え得ることを確認した。

- a) パルス波形解析法
- b) パルス・ストリーム法
- c) 周波数掃引法
- V) 伝送特性における距離依存性の測定

光ファイバを閉ループ状に構成して測定する方法を開発した。

(以上第4章)

- (4) 伝送特性の入射励振条件依存性について以下の結論を得た。
 - i) グレーデッド形多モード光ファイバにおいては入射ビームの不整合がインバルス応答に 与える影響が大きい。
 - ii) 1 km程度の実際の多モード光ファイバでは伝送特性は入射励振条件に大きく依存する。
 - ii) 伝送特性の入射励振条件依存性は屈折率の分布形が複合形の場合に特に大きく変化する。 (以上第5章)
- (5) モード変換現象について解析した結果次の結論を得た。
 - i) 直線部から曲がり部への接続点で起こるモード変換損失を光線近似によるポテンシャルウ ェルの傾きによって計算することができた。
 - ii) 曲がり部での変換損失は最大屈折率差が同じの場合には、グレーデッド形の方がステップ形の多モード光ファイバに比較して2倍大きくなる。
 - ii) 2モードモデルで結合方程式の解析解を得ることができた。
 - Ⅳ) モード変換によって到達する定常状態においても各モード間の中心時間差は残り,一定 値に漸近する。
 - V) 前項の結果より定常状態においても伝達関数の線形結合性(全体の伝達関数を各部分の 伝達関数の線形結合で表すことができること)は多モード光ファイバにおいては成立 しない。
 - V) 伝送特性の伝搬距離依存性、ベースバンド周波数帯域における伝送特性について解析解 を得ることができた。

(以上第6章)

- (6) 接続点が伝送特性におよぼす影響について検討した結果以下の結論を得た。
 - i) 接続損失が0.01dB以下の良好な接続点においても,モード変換量は全パワの11% に達し,実用上避けられない量として残る。
 - ii) マイクロベンディングによるモード変換を利用したモードスクランプラにより, 全モー
ド間のモードミキシングを効率良く起こさせることができる。

iii) 接続点直後にモードスクランプラを装荷することによって,近似的に光源による励振条件と同一にすることができる。

(以上第7章)

- (7) 定常モードによる長尺伝送路の伝送特性を検討した結果以下の結論を導くことができた。
 - i) 試作した,ファイバ端面をエッチングした構造の定常モード励振器によって, ほぼ定常 モード電力分布を安定に励振することが可能である。
 - ii) 各接続点直後に試作したモードスクランプラを装荷することによって、接続点で空間的にも時間的にも単位長ファイバの伝送特性測定時と励振条件を近似的に一致させることができ、接続された長尺ファイバの伝送特性は単位長ファイバの伝送特性の線形結合として容易に求めることができる。
 - ii) モードスクランプラを装荷する方式によって伝送特性の安定化,広帯域化が図れる。 (以上第8章)

多モード伝送路を真の実用伝送路として使用,設計していくためには種々の障害を乗り越え ていかなければならない。本論文でも若干検討したモード変換現象の解明が今後に残された大 きな課題である。たとえばグレーデッド形多モード光ファイバでのモード分析技術の確立によ って,モード変換係数の測定,モードに依存した損失係数の測定を可能にし,その時点で初め て長尺の多モード伝送路の伝送特性を精確に推定することができ,伝送路の設計が可能となる わけである。現時点では光ファイバ製造技術の進展のスピードが早く解析,測定技術の一層の進 展が多モード伝送路実用化への急務と思われる。 謝

本研究をまとめるに際して,京都大学工学部高木俊宜教授,佐々木昭夫教授に一方ならぬ御 指導,御教示を頂きました。ここに厚く感謝致します。

本研究は、日本電信電話公社武蔵野電気通信研究所において、野田健一基礎研究部長、平野 順三特別研究室長(当時第三研究室長)により最初の機会が与えられたもので、その後も絶え ず御指導、激励をして頂きました。引続き大原省爾集積記憶研究部長(当時第三研究室長)に 研究の機会を与えられ御指導、御鞭撻を頂きました。本研究を遂行するにあたり終始御指導、 御討論して頂き、さらに本論文の形にまとめることを薦めて下さった池上徹彦研究専門調査役 (当時第三研究室室長補佐)に深謝致します。大川原忠義画像伝送研究室長、木村達也第三研 究室長、繩田喜代志研究専門調査役、伊藤武研究専門調査員の各氏には著者が第三研究室在室 当時御指導、御討論して頂きました。また吉清治夫研究専門調査員は本研究における直接の御 指導、有益な御討論をして頂きました。

立田光廣研究主任には,本研究の共同研究者として御協力を頂きました。特にモード分析技術の開発成果は同氏に負う所大であり,ここに感謝致します。また杉村陽研究主任,村上泰司研究主任,山内喜晴社員には本研究の各段階で多大な研究協力をして頂きました。心から感謝 する次第です。

さらに著者が茨城電気通信研究所へ移って引続き本研究の機会を与えて下さった,丸林元長 岡技術科学大学教授(当時線路研究部長),寿司範二トリオ株式会社技術開発部長(当時線路 研究部統括調査役),枡野邦夫光線路研究室長の各氏にはその後も御指導,御鞭撻を頂きまし た。島田禎晉光伝送研究室長,小山正樹研究専門調査役,内田直也研究専門調査役には数々の 御指摘,御指導をして頂きました。

東北大学工学部川上彰二郎助教授には懇切なる御指導,御討論をして頂きました。特に2モ - ド伝送路の解析に関して御教示して頂きました。

また上原信吾第二研究室室長補佐, 窪田勝利研究主任の両氏には光変調器の提供,技術指導 を受け伝送特性測定系を組むことができました。伝送特性の測定に関する研究の共同研究者と して,谷藤忠敏研究主任,北山研一社員の多大な御協力を頂きました。本研究の成果は両氏の 努力に負う所大であります。

本論文を執筆するにあたり、福富秀雄線路研究部長、加藤嘉則線路研究部統括調査役、木村

-245-

英俊導波管線路研究室長からその機会を与えて頂き,かつ御便宜をはかって頂きました。特に 木村室長には叱咤激励をして頂きました。

本研究は以上の数多くの方々の御指導,御協力の下に達成されたものであり, ここに心から 感謝致します。

文

献

- T.H. Maiman, "Stimulated optical radiation in ruby masers," Nature, vol. 187, P.493, 1960
- (2) R.J. Keyes and T.M. Quist, "Recombination radiation emitted by gallium arsenide," Proc. IRE (Corresp.), vol. 50, PP.1822-1823, 1962
- (3) R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, and R.O. Carlson, "Coherent light emission from GaAs junctions," Phys. Rev. Lett., vol.9, PP.366-378, 1962
- M.I. Nathan, W.P. Dumke, G. Burns, F.H. Dill, Jr., and G.J. Lasher, "Stimulated emission of radiation from GaAs p-n junctions," Appl. Phys. Lett., vol.1, PP.62-64, 1962
- (5) T.M. Quist et al., "Semiconductor maser of GaAs," Appl. Phys. Lett., vol. 1, PP.91-92, 1962
- (6) K.C. Kao and T.W. Davies, "Spectrophotometric studies of ultra low loss optical glasses 1: Single beam method," J. Sci. Instrum., vol. 1 (ser. 2), PP.1063-1068, 1968
- (7) F.P. Kapron, D.B. Keck, and R.D. Maurer, "Radiation losses in glass optical waveguides," Appl. Phys. Lett., vol.17, PP.423-425, 1970
- (8) D.B. Keck, R.D. Maurer, P.C. Schultz, "On the ultimate lower limit of attenuation in glass optical waveguides," Appl. Phys. Lett., vol.22, PP.307-309, 1973
- (9) J. Hirano and Y. Fukatsu, "Stability of a light beam in a beam waveguides," Proc. IEEE, vol. 52, P.1284, 1964
- (10) J. Hirano, C. Okawara and T. Ito, "Optical PCM transmission experiments through the atmosphere," J.T.R., vol.13, P.94, 1971
- (11) D.B. Keck, P.C. Schultz and F. Zimar, "Attenuation of multimode glass optical waveguides," Appl. Phys. Lett., vol.21, P.215, 1972
- (12) W.G. French, J.B. Macchesney, P.B. O'Connor and G.W. Tasker, "Optical waveguides with very low loss," Bell Syst. Tech. J., vol.53, P.951, 1974

- (13) D.B. Keck, R.D. Maurer, P.C. Schultz, "On the ultimate lower limit of attenuation in glass optical waveguides," Appl. Phys. Lett., vol.22, PP.307-309, 1973
- (14) M. Horiguchi and H. Osanai, "Spectral losses of low-OH-content optical fibers," Electron. Lett., vol.12, PP.310-312, 1976
- (15) T. Miyashita, A. Kawana, M. Nakahara, M. Kawachi and T. Hosaka, "Fabrication of GeO₂-doped silica single mode fibers," presented at 1977 International Conference on Integrated Optics and Optical Fiber Communication, B6-4, 1977
- (16) E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Amer., vol.51, PP.491-498, 1961
- (17) E. Snitzer and H. Osterberg, "Observed dielectric waveguide modes in the visible spectrum," J. Opt. Soc. Amer., vol.51, PP.499-504, 1961
- (18) A.W. Snyder, "Asymptotic expressions for eigen-functions and eigenvalues of a dielectric or optical waveguides," IEEE, Trans. Microwave Theory Tech., vol. MTT-17, PP.1138-1144, 1969
- (19) D. Gloge, "Weakly guiding fibers," Appl. Opt., vol. 10, PP.2252-2258, 1971
- (20) E.A.J. Marcatili, "Modes in a sequence of thick astigmatic lens like focusers," Bell Syst. Tech. J., vol.43, PP.2887-2904, 1964
- (21) S.E. Miller, "Light propagation in generalized lens-like media," Bell Syst. Tech. J., vol. 44, PP.2017-2063, 1965
- (22) S. Kawakami and J. Nishizawa, "An optical waveguide with the optimum distribution of refractive index with reference to waveform distortion," IEEE Trans. Microwave Theory Tech., vol. MTT-16, PP.814-818, 1968
- (23) D. Gloge and E.A.J. Marcatili, "Multimode theory of graded-core fibers," Bell Syst. Tech. J., vol. 52, PP.1563-1578, 1973
- (24) S.D. Personick, "Time dispersion in dielectric waveguides," Bell Syst. Tech. J., vol.50, PP.843-859, 1971
- (25) D. Marcuse, "Pulse propagation in a two-mode waveguides," Bell Syst. Tech. J., vol.51, PP.1785-1791, 1972

- (26) M.W. Jones and K.C. Kao, "Spectrophotometric studies of ultra low loss optical glasses II: Double beam method," J. Sci. Instrum., vol.2, PP. 331-335, 1969
- (27) P.J. Laybourn, W.A. Gambling, and D.T. Jones, "Measurements of attenuation in low loss optical glasses," Opto-Electron., vol.3, PP.137-144, 1971
- (28) E.G. Rawson, "Measurement of the angular distribution of light scattered from a glass fiber optical waveguide," Appl. Opt., vol.11, PP.2477-2481, 1969
- (29) A.R. Tynes, "Integrating cube scattering detector," Appl. Opt., vol.9, PP.2706-2710, 1970
- (30) D. Gloge, I.P. Kaminow and H.M. Presby, "Profile dispersion in multimode fibers: measurement and analysis," Electron. Lett., vol.11, PP.469-471, 1975
- (31) P.A. Belanger, "A simple analytic method for interpreting the Selfoc R rod interferograms of Rawson and Murray," Can. J. Phys., vol.53, PP.1157-1162, 1975
- (32) F.M.E. Sladen, D.N. Payne, and M.J. Adams, "Determination of optical fiber refractive index profile by a near-field scanning technique," A.P.L., vol.28, PP.255-258, 1976
- (33) M. Ikeda, M. Tateda and H. Yoshikiyo, "Refractive index profile of a graded index fiber: measurement by a reflection method," Appl. Opt., vol.14, PP.814-815, 1975
- (34) D. Gloge, E.L. Chinnock, R.D. Standley, and W.S. Holden, "Dispersion in a low-loss multimode fiber measured at three wave length," Electron. Lett., vol.8, PP.527-529, 1972
- (35) W.A. Gambling, D.N. Payne and H. Matsumura, "Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide," Optics Commun., vol.6, PP.317-322, 1972
- (36) C.A. Burrus and E.L. Chinnock, "Pulse dispersion and refractive index profiles of some low noise multimode optical fibers," Proc. IEEE, vol.61, P.1172, 1973
- (37) D. Gloge, E.L. Chinnock, and D.H. Ring, "Direct measurement of the (Baseband) frequency response of multimode fibers," Appl. Opt., vol. 11, PP.1534-1538, 1972

- (38) R. Auffret, C. Boisrobert and A. Cozannet, "Wobulation technique applied to optical fiber transfer function measurement," Digests of technical papers presented at first european conf., 60, 1975
- (39) L.G. Cohen and H.M. Presby, "Shuttle pulse measurements of pulse spreading in a low loss graded-index fiber," Appl. Opt., vol.14, PP.1361-1363, 1975
- (40) G. Toraldo di Francia, "Degrees of freedom of an image," J. Opt. Soc. Am., vol.59, PP.799-804, 1969
- (41) R. Olshansky and D.B. Keck, "Pulse broadening in graded-index optical fibers," Appl. Opt., vol.15, PP.483-491, 1976
- (42) R. Olshansky, "Pulse broadening caused by deviations from the optimal index profile," Appl. Opt., vol.15, PP.782-788, 1976
- (43) J.A. Arnaud, "Pulse broadening in multimode optical fibers," Bell Syst. Tech. J., vol.54, PP.1179-1205, 1975
- (44) M. Ikeda, "Propagation characteristics of multimode fibers with graded core index," IEEE J. Quantum Electron., vol. QE-10, PP. 362-371, 1974
- (45) J.A. Arnaud, "Pulse broadening in near-square law graded-index fibers," Electron. Lett., vol.11, PP.447-448, 1975
- (46) J.A. Arnaud, "Pulse broadening in multimode optical fibers with large ∆n/n: numerical results," Electron. Lett., vol.12, PP.167-169, 1976
- (47) S. Geckeler, "Group delay in graded-index fibers with non-powerlaw refractive profiles," Electron. Lett., vol.13, PP.29-31, 1977
- (48) S. Geckeler, "Nonlinear profile dispersion aids optimisation of graded-index fibers," Electron. Lett., vol.13, PP.440-442, 1977
- (49) M. Ikeda, "Minimum total dispersion in multimode graded-index fibers," Optical and Quantum Electron., vol.10, PP.1-8, 1978
- (50) 高橋,千吉良,福田,小山内, "石英系ガラスの屈折率分散," 信学会,昭和 51 年 度 光・電波部門全国大会予稿 P275, 1976.

-250-

- (51) Born and Wolf, "Principles of Optics," Pergamon Press, P.121, 1964
- (52) J.P. Gordon, "Optics of general guiding media," Bell Syst. Tech. J., vol.45, PP.321-332, 1966
- (53) C. Pask and A.W. Snyder, "Light acceptance properties of an optical fiber," Appl. Opt., vol.13, PP.1889-1892, 1972
- (54) J.P. Dakin, W.A. Gambling, D.N. Payne and H.R.D. Sunak, "Launching into glass-fiber optical waveguides," Optics Commun., vol.4, PP.354-357, 1972
- (55) F. Albertin, P. Di Vita, R.Vannucci, "Geometrical theory of energy launching and pulse distortion in dielectric optical waveguides," Opto-electron., vol.6, PP.369-386, 1974
- (56) C.C. Timmerman, "Launching_efficiency of incoherent light coupled into optical fibers," A.E.U., vol.27, PP.150-152, 1973
- (57) C.C. Timmerman, "Launching from light emitting diodes into gradient fibers," A.E.Ü., vol.28, PP.227-228, 1974
- (58) D. Gloge, "L.E.D. design for fibre systems," Electron. Lett., vol. 13, PP.306-307, 1977
- (59) D. Kato, "Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end," J. Appl. Phys., vol.44, PP.2756-2758, 1973
- (60) E. Weidel, "Light coupling from a junction laser into a monomode fibre with a glass cylindrical lens on the fiber end," Optics Commun., vol.12, PP.93-97, 1974
- (61) Y. Odagiri, M. Shikada, K. Kobayashi, "High-efficiency laser-tofibre coupling circuit using a combination of a cylindrical lens and a selfoc lens," Electron. Lett., vol.13, PP.395-396, 1977
- (62) T.P. Lee, "A stripe geometry double heterostructure amplified spontaneous emission (superluminescent) diode," IEEE, J. Quantum Electron., vol. QE-9, PP.820-828, 1973
- (63) 例えば小林稔, "半導体部品への走査形電子顕微鏡の応用," 電々公社電気通信研究 所,研究実用化報告, 18巻, PP.2343-2363, 1969.

- (64) P.A. Belanger, "A simple analytic method for interpreting the Selfoc R rod interferograms of Rowson and Murray," Can. J. Phys., vol.53, PP.1157-1162, 1975
- (65) K.C. Kao, T.W. Davies and R. Worthington, "Coherent light scattering measurements on single and cladded optical glass fibers," The Radio and Electron. Eng., vol.39, PP.105-111, 1970
- (66) L.S. Watkins, "Scattering from side-illuminated clad glass fibers for determination of fiber parameters," J.O.S.A., vol.64, PP.767-772, 1974
- (67) H.M. Presby and D. Marcuse, "Refractive index and diameter determinations of step index optical fibers and preforms," Appl. Opt., vol. 13, PP.2882-2885, 1974
- (68) F.M.E. Sladen, D.N. Payne and M.J. Adams, "Determination of optical fiber refractive index profile by a near-field scanning technique," A.P.L., vol.28, PP.255-258, 1976
- (69) J.A. Arnaud and R.M. Deroiser, "Novel technique for measuring the index profile of optical fibers," Bell Syst. Tech. J., vol.55, PP. 1489-1508, 1976
- (70) T. Ozeki, T. Ito, and T. Tamura, "Tapered section of multimode cladded fibers as mode filters and mode analyzers," Appl. Phys. Lett., vol.26, PP.386-388, 1975
- (71) J.E. Midwinter, in Digest of OSA Topical Meeting Optical Fiber Transmission (Optical Society of America, Washington D.C., 1975) post dead line paper PD 3-1
- (72) 井原哲茂,大洞喜正,宮内栄三,河村康次,工藤達夫, "ファイバのモードパワ分布 を求める一方法およびその伝送特性推定への応用," 電子通信学会,光・量エレ・研 究会資料, OQE 76-18, 1976.
- (73) M. Tateda and M. Ikeda, "Mode conversion in bent step index multimode fibers," Appl. Opt., vol.15, PP.2308-2310, 1976.
- (74) J.W. Goodman, "Introduction to Fourier optics," McGraw Hill Book Company, 1968
- (75) R. Auffret, C. Boisrobert and A. Cozannet, "Wobulation technique applied to optical fiber transfer function measurement," Digests of technical papers presented at first european conf., 60, 1975

- (76) S.D. Personick, W.M. Hubbard, and W.S. Holden, "Measurement of the baseband frequency response of a 1-km fiber," Appl. Opt., vol.13, PP.266-268, 1974
- (77) C.Y. Boisrobert, A. Cozannet, and C. Vassalo, "Sweep frequency transfer function measurement applied to optical fiber," IEEE, vol. IM-25, PP.294-297, 1976
- (78) D. Gloge, E.L. Chinnock, and T.P. Lee, "GaAs twin-laser setup to measure mode and material dispersion in optical fibers," Appl. Opt., vol.13, PP.261-263, 1974
- (79) B. Luther-Davies, D.N. Payne and W.A. Gambling, "Evaluation of material dispersion in low loss phosphosilicate core optical fibers," Optics Commun., vol.13, PP.84-88, 1975
- (80) D.N. Payne and W.A. Gambling, "Zero material dispersion in optical fibers," Electron. Lett., vol.11, PP.176-178, 1975
- (81) T. Ikegami, "Spectrum broadening and tailing effect in directly modulated injection lasers," First european conference on optical fibre commun., Technical digests, P.111, 1975
- (82) S. Uehara, "3-dimensional wave-guide modulator," unpublished work, 1976
- (83) L.G. Cohen and S.D. Personick, "Length dependence of pulse dispersion in a long multimode optical fiber," Appl. Opt., vol.14, PP. 1357-1360, 1975
- (84) L.G. Cohen and H.M. Presby, "Shuttle pulse measurements of pulse spreading in a low loss graded-index fiber," Appl. Opt. vol.14, PP.1361-1363, 1975
- (85) 中田孝一, 伊藤武, "光ファイバケーブルの破断点測定," 電子通信学会, 総合全国 大会論文集, 分冊 4, P.947, 1975.
- (86) 斎藤成文,横山幸嗣,藤井陽一, "光ファイバ方向性結合器によるループ状光ファイ バとの結合," 電気学会全国学会論文集, P.501, 1975.
- (87) T. Tanifuji and M. Ikeda, "Pulse circulation measurement of transmission characteristics in long optical fibers," Appl. Opt., vol.16, PP.2175-2179, 1977

- (88) 他田正宏, "2乗分布形光ファイパの斜入射伝送特性," 電子通信学会, 50 年度 全国大会予稿集,分冊4, P.880, 1975.
- (89) I.S. Gradshteyn and I.M. Ryzhik, "Table of integrals, series and products," Academic Press, N.Y. and London, 17.414.6, 1965
- (90) 末松安晴,伊賀健一, "光ビーム導波系における姿態変換," 電気通信学会雑誌,49
 巻, PP.1645,1966.
- (91) M. Ikeda and H. Yoshikiyo, "Pulse separating in transmission characteristics of multimode graded index optical fibers," Appl. Opt., vol.15, PP.1307-1312, 1976
- (92) D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J., vol.51, PP.1767-1783, 1972
- (93) D. Gloge, "Bending loss in multimode fibers with graded and ungraded core index," Appl. Opt., vol.11, PP.2506-2513, 1972
- (94) D. Gloge, "Impulse response of clad optical multimode fibers," Bell Syst. Tech. J., vol. 52, PP.801-815, 1973
- (95) D. Marcuse, "Theory of dielectric optical waveguides," Academic press, N.Y. 1974
- (96) 平沢義一, " 偏微分方程式序論," 至文堂, 東京, P.139, 1967.
- (97) A.H. Cherin and P.J. Rich, "Splice connector for joining linear arrays of optical fibers," A digests of technical papers presented at the topical meeting on optical fiber transmission, Jan. 7-9, 1975, WB 3-1
- (98) H. Tsuchiya and I. Hatakeyama, "Fusion splices for single-mode optical fibers," A digests of technical papers presented at the topical meeting on optical fiber transmission II, Feb. 22-24, 1977, PD 1
- (99) K. Kitayama and M. Ikeda, "Leaky modes effect in spliced graded index fibers," Appl. Phys. Lett., vol.30, PP.227-228, 1977
- (100) H. Yoshikiyo and M. Ikeda, "Transmission properties of optical multimode fibers," Review of the Electrical Communication Laboratories, vol.24, PP.175-186, 1976

- (101) M. Ikeda, Y. Murakami, and K. Kitayama, "Mode scrambler for optical fibers," Appl. Opt., vol.16, PP.1045-1049, 1977
- (102) K. Kitayama and M. Ikeda, "Mode coupling coefficient measurements in optical fibers," to be published
- (103) S. Ohara, "Status of fiber transmission system research in Japan," in Digests of technical papers OSA topical meeting on optical fiber transmission, Williamsburg, 1975, ThA2
- (104) H.M. Presby, R.D. Standley, J.B. MacChesney and P.B. O'connor, "Material structure of Germanium-doped optical fibers and preforms," Bell Syst. Tech. J., vol.54, PP.1681-1692, 1975
- (105) M. Ikeda, A. Sugimura, and T. Ikegami, "Multimode optical fibers: steady state mode exciter," Appl. Opt., vol.15, PP.2116-2120, 1976
- (106) M. Ikeda, Y. Murakami, and K. Kitayama, "Mode scrambler for optical fibers," Appl. Opt., vol.16, PP.1045-1049, 1977
- (107) M. Ikeda and K. Kitayama, "Transmission characteristics of mode scrambler loaded long length spliced graded index fibers," in Digests of technical papers, I.O.O.C. '77, C3.4, 1977
- (108) M. Ikeda and K. Kitayama, "Transfer function of long spliced graded-index fibers with mode scramblers," Appl. Opt., vol.17, PP.63-67, 1978
- (109) 池田正宏, "多モード光ファイバの伝送特性," 電々公社電気通信研究所, 研究実用化報告, 26巻, PP.2621-2645, 1977.
- (110) S. Kawakami and M. Ikeda, "Transmission characteristics of a twomode optical waveguide," IEEE J. Quantum Electron., vol. QE-14, PP.608-614, 1978

付録1. 回帰点Rmax, Rminの導出

第3章(3.16)式より次式が成立する。

 $R^2 = X と変換して(A 1, 1) 式を書き直すと、$

 $-X^{3} + A_{2}X^{2} + A_{1}X + A_{0} = 0 \qquad \dots \dots \qquad (A \ 1. \ 3)$ $A_{0} \equiv \frac{R_{0}^{2} \cos^{2} \beta_{0} \left(\frac{n_{0}}{n_{1}}\right)^{2}}{\Delta^{2} \rho}$ $A_{1} \equiv -\frac{2E_{0}}{\rho C_{2} \Delta} \qquad \dots \dots \qquad (A \ 1. \ 4)$ $A_{2} \equiv \frac{2}{\rho \Delta}$

(A1.3)式が有意な解を持つ条件は判別式をDとすると、D<0である。判別式を以下のように表す。

 $D = 4 p^{3} + q^{2} \qquad \dots \qquad (A \ 1. \ 5)$ $p \equiv (-3 \ A_{1} - A_{2}^{2}) / 9$ $q \equiv -(2 \ A_{2}^{3} + 9 \ A_{1} \ A_{2} + 2 \ 7 \ A_{0}) / 2 \ 7$

ここで考慮する範囲ではD<0の条件は満足されている。

したがって(A1.3)式の三つの実根を X_1 , X_2 , X_3 とした場合に各々は次のように求まる。

$$X_{1} = \frac{2}{3} \left\{ \frac{1}{\rho 4} + \sqrt{3 A_{1} + A_{2}^{2}} \cos \left(\frac{2}{3} \pi + \frac{\theta}{3} \right) \right\} \qquad (A \ 1.7)$$

$$X_{2} = \frac{2}{3} \left\{ \frac{1}{\rho \, 4} + \sqrt{3 \, A_{1} + A_{2}^{2}} \cos \left(\frac{2}{3} \, \pi - \frac{\theta}{3} \right) \right\} \qquad \dots \dots \dots (A \, 1.8)$$

$$X_{3} = \frac{2}{3} \left\{ \frac{1}{\rho 4} + \sqrt{3 A_{1} + A_{2}^{2}} \cos \left(\frac{\theta}{3}\right) \right\} \qquad \dots \qquad (A \ 1.9)$$

$$\theta \equiv tan^{-1} (-\frac{\sqrt{-D}}{q})$$
 (A 1.10)

また考慮する範囲では大小関係は次のようになる。

$$0 < X_1 \leq X_2 \leq X_3$$
 (A 1.11)

したがって求める R_{max} および R_{min} は各々次のように求まる。

$$R_{max} = \sqrt{X_2} \qquad (A 1. 1 2)$$
$$R_{min} = \sqrt{X_1} \qquad (A 1. 1 3)$$

·付録2. 螺旋波の臨界角βcの導出

臨界角は $R_{max} = 1$ の条件より求めることができる。(Al.12)式より

$$R_{max}^{2} = \frac{2}{3} \left\{ \frac{1}{\rho d} + \sqrt{3 A_{1} + A_{2}^{2}} \cos \left(\frac{2}{3} \pi - \frac{\theta}{3} \right) \right\} = 1 \quad \dots \dots \quad (A \ 2.1)$$

(A2.1)式を β_0 について解く。 β_0 を含む頃は A_0 および A_1 であるが, cos r_0 の値にくら べて cos β_0 の値は非常に小さいので近似的に A_1 は cos β_0 を含まないとすることができる。 すなわち E_0 として次式を仮定する。

上記条件の下で β_c を求めることができ、第3章における(3.21)式を得る。

付録3. 臨界角γ㎝およびγ^sの導出

第3章(3.23)式より次式が成立する。

$$G(R) = G(R_0)$$
 (A 3.1)

(A 3.1)式より

$$F(X) \equiv -\frac{\rho A}{2} C_2 X^3 + C_2 X^2 - E_0 X + C_1 = 0 \qquad \dots \dots \dots \dots \dots (A 3.2)$$

R₀の点で(A 3.2)式が成立するから

$$F(R_0^2) = 0$$
 (A 3.4)

(A 3.4)式は次のように書くことができる。

(A 3.5)式より R_{max} は求まり次のようになる。

)

 $R_{max}^{2} = 1$ の条件より r_{c}^{s} は第3章(3.26)式のように求まる。

$$\tau_{c}^{s} = sin^{-1} \sqrt{\frac{2 \Delta (1 - \frac{\rho \Delta}{2} R_{0}^{2}) - \rho \Delta^{2}}{(\frac{n_{0}}{n_{1}})^{2}}} \qquad \dots \dots (A 3.7)$$

蛇行波の臨界角 r_c^m は cos $\beta_0 = 0$ の条件から次のようにして求めることができる。 $C_1 = 0$ (A 3.8)

(A3.8)式より

$$G(R) = \frac{1}{2} C_2 R^2 (1 - \frac{\rho \Delta}{2} R^2) \qquad \dots \dots \qquad (A 3.9)$$

$$E_{0} = \frac{1}{2} \tan^{2} r_{0} + C (R_{0}) \qquad \dots \qquad (A \ 3.1 \ 0)$$

$$G (R) = E_{0} \qquad \dots \qquad (A \ 3.1 \ 1)$$

(A 3.1 1) 式より R _{max} は次のように求まる。

$$R_{max}^{2} = \frac{1}{\rho \Delta} \left\{ 1 - \sqrt{1 - \left(\frac{n_{0}}{n_{1}}\right)^{2} sin^{2} r_{0} - 2\rho \Delta R_{0}^{2} \left(1 - \frac{\rho \Delta}{2} R_{0}^{2}\right)} \right\} \cdots (A 3.12)$$

R_{max} = 1の条件から第3章(3.27)式が求まる。

付録4. (6.17)式の解の導出

第6章(6.17)式の形の双曲型偏微分方程式はRiemannの方法によって解くととができ る。(6.18)式の変換を施こした時(6.20),(6.21)式の初期条件は次式の形に変換 される。

ξ = ηのとき

$$\varphi_{1} = exp \left\{ \left(\frac{v_{1} \alpha_{1} - v_{2} \alpha_{2}}{v_{1} - v_{2}} + h \right) \xi \right\} \delta (\xi)$$

$$\frac{\partial \varphi_{1}}{\partial \eta} - \frac{\partial \varphi_{1}}{\partial \xi} = -\left(\delta'(\xi) + \left\{ \frac{\alpha_{1} v_{1} - \alpha_{2} v_{2}}{v_{1} - v_{2}} + h \left(1 - \frac{2\tau v_{1}}{v_{1} - v_{2}} \right) \right\} \delta (\xi) \right)$$

$$v_{1} \alpha_{1} - v_{2} \alpha_{2}$$

$$\times exp \left\{ \left(\frac{v_1 a_1 - v_2 a_2}{v_1 - v_2} + h \right) \xi \right\} \qquad \dots \dots \dots (A 4.1)$$

$$\begin{cases} \varphi_{2} = exp \left\{ \left(\frac{v_{1} \alpha_{1} - v_{2} \alpha_{2}}{v_{1} - v_{2}} + h \right) \xi \right\} r \delta(\xi) \\\\ \frac{\partial \varphi_{2}}{\partial \eta} - \frac{\partial \varphi_{2}}{\partial \xi} = \left(r \delta'(\xi) + \left\{ \frac{\alpha_{1} v_{1} - \alpha_{2} v_{2}}{v_{1} - v_{2}} r + h \left(r + \frac{2 v_{2}}{v_{1} - v_{2}} \right) \right\} \delta(\xi) \right) \\\\ \times exp \left\{ \left(\frac{v_{1} \alpha_{1} - v_{2} \alpha_{2}}{v_{1} - v_{2}} + h \right) \xi \right\} \qquad \dots \dots \dots (A 4.2)$$

ところで方程式(6.17)に関するRiemann 関数Rは

$$R(x, y; \xi, \eta) = J_0(2\sqrt{D(\xi - x)(\eta - y)}) \qquad (A 4.3)$$

である。ただし, x, yは任意変数を表す。

Riemannの方法によると(6.17)式の解は次式で表される。

$$\varphi = \frac{1}{2} \{ \varphi_0 (\xi) + \varphi_0 (\eta) \}$$

+ $\frac{1}{2} \int_{\xi}^{\eta} \left(R \left(\frac{\partial \varphi}{\partial y} - \frac{\partial \varphi}{\partial x} \right) + \varphi_0 (x) \left(\frac{\partial R}{\partial x} - \frac{\partial R}{\partial y} \right) \right) dx$ (A 4.4.)

また

$$\frac{\partial R}{\partial x} = \sqrt{\frac{D(\eta - y)}{\xi - x}} J_1 \left(2 \sqrt{D(\xi - x)(\eta - y)} \right)$$

$$\frac{\partial R}{\partial y} = \sqrt{\frac{D(\xi - x)}{\eta - y}} J_1 \left(2 \sqrt{D(\xi - x)(\eta - y)} \right)$$
.....(A 4.5)

であるから、(A44)式の積分を実行して次式の解を得る。ただしJ₀, J₁は0次, 1次の 第1種ベッセル関数を表す。

$$\varphi_{1} = \delta(\xi) exp \left\{ \left(\frac{v_{1}\alpha_{1} - v_{2}\alpha_{2}}{v_{1} - v_{2}} + h \right) \xi \right\}$$

$$+ \left\{ \frac{h v_{1} r}{v_{1} - v_{2}} J_{0}(X) + \sqrt{D} \sqrt{\frac{\eta}{\xi}} J_{1}(X) \right\}$$

$$\times \left\{ U(\eta) - U(\xi) \right\} \qquad \dots \dots (A 4.6)$$

$$\varphi_{2} = r \delta(\eta) exp \left\{ \left(\frac{v_{1}\alpha_{1} - v_{2}\alpha_{2}}{v_{1} - v_{2}} + h \right) \eta \right\}$$

$$X \equiv 2 \sqrt{D\xi \eta}$$

······ (A 4.8)

)

ただしUはステップ関数を表す。ここで変数を6, nからz, tにもどすと第6章,(6.22), (6.23)式を得る。 付録5.本研究に関連した発表論文リスト

原著論文

- (1) M. Ikeda, "Propagation characteristics of multimode fibers with graded core index," IEEE J. Quantum Electron, vol. QE-10, PP. 362-371, 1974
- (2) M. Ikeda, M. Tateda, and H. Yoshikiyo, "Refractive index profile of a graded index fiber : measurement by a reflection method," Appl. Opt., vol. 14, PP. 814-815, 1975
- (3) 吉清,池田, "多モード光ファイバの伝送特性",研究実用化報告,24巻, PP.1883-1903,1975.
- (4) H. Yoshikiyo and M. Ikeda, "Transmission properties of optical multimode fibers," Review of the E.C.L., vol. 24, PP. 175-186, 1976
- (5) M. Ikeda and H. Yoshikiyo, "Pulse separating in transmission characteristics of multimode graded index optical fibers," Appl. Opt., vol. 15, PP. 1307-1312, 1976
- (6) M. Ikeda, A. Sugimura, and T. Ikegami, "Multimode optical fibers : Steady state mode exciter," Appl. Opt., vol. 15, PP. 2116-2120, 1976
- (7) M. Tateda and M. Ikeda, "Mode conversion in bent step index multimode fibers," Appl. Opt., vol. 15, PP. 2308-2310, 1976
- (8) K. Kitayama and M. Ikeda, "Leaky modes effect in spliced gradedindex fibers," Appl. Phys. Lett., vol. 30, PP. 227-228, 1977
- (9) M. Ikeda, Y. Murakami, and K. Kitayama, "Mode scrambler for optical fibers," Appl. Opt., vol. 16, PP. 1045-1049, 1977
- (10) T. Tanifuji and M. Ikeda, "Pulse circulation measurement of transmission characteristics in long optical fibers," Appl. Opt., vol. 16, PP. 2175-2179, 1977
- (11) 池田, "多モード光ファイバの伝送特性", 研究実用化報告, vol.26, PP.2621-2645, 1977.
- (12) M. Tateda and M. Ikeda, "Optical power flow in bent step index fibers," The Trans. of the IECE of Japan, vol. E61, PP. 623-628, 1977

- (13) M. Ikeda, "Minimum total dispersion in multimode graded-index fibers," Optical and Quantum Electronics, vol. 10, PP. 1-8, 1978
- (14) M. Ikeda and K. Kitayama, "Transfer function of long spliced gradedindex fibers with mode scramblers," Appl. Opt., vol. 17, PP. 63-67, 1978
- (15) S. Kawakami and M. Ikeda, "Transmission characteristics of a twomode optical waveguide," IEEE J. Quantum Electron., vol. QE-14, PP. 608-614, 1978

2. 学会講演会等

- 池田, "屈折率分布をもった多モード光線路の曲り損失,"昭和48年度信学会全国大会, 997, 1973年3月。
- (2) 池田, "2乗分布形光ファイバの斜入射伝送特性,"昭和50年度信学会全国大会,4,882,1975年3月。
- (3) 池田、"多モード光ファイバの伝送特性、昭和51年度信学会全国大会、8-36、 1976年3月(シンポジウム)。
- (4) 立田,池田,"クラッド形多モードファイバの曲りによるモード変換,"昭和51年度信学
 会全国大会,4-230,1976年3月。
- (5) 村上,池田,山内,"グレーデッド形多モード光ファイバの伝送特性,"昭和51年度信学 会全国大会,4-203,1976年3月。
- (6) 池田,谷藤,山内,"パルス周回法による光ファイバ伝送特性の測定,"昭和51年度信学 会光・電波部門全国大会,501-502,1976年11月(シンポジウム)。
- (7) 立田,池田,"クラッド形多モードファイバの曲がりによるモード変換,"昭和51年度信
 学会光・電波部門全国大会,485-486,1976年11月(シンボジウム)。
- (8) 杉村,池田,内田, "超音波素子を用いた光ファイバモードアナライザの検討,"昭和51 年度信学会光・電波部門全国大会,314,1976年11月。
- (9) 村上,池田,"多モード光ファイバ伝送特性における接続の効果,"昭和51年度信学会
 光・電波部門全国大会,373,1976年11月。
- (10) 立田,池田, "モード分布の距離依存性, "昭和52年度信学会総合全国大会, 4-139, 1977年3月。

- (11) 谷藤,池田,"多モード光ファイバの距離特性,"昭和52年度信学会総合全国大会,4--140,1977年3月。
- (12) M. Ikeda and K. Kitayama, "Transmission characteristics of mode scrambler loaded long length spliced graded index fibers," 1977 International Conf. on Integrated Optics and Optical Fiber Communication (1977 July) C 3.4, pp. 419-422, 1977
- (13) 池田, "多モード光ファイバの伝送特性と測定法, *光導波エレクトロニクス研究会講演, 1977年12月。
- 3. 研究会発表論文
- 池田,吉清,"多モード光線路の曲りによる影響,"量子エレクトロニクス研究会,信学 技報,QE72-70,1972年12月。
- (2) 池田, "集束形多モード光線路の伝搬特性, "光・量子エレクトロニクス研究会, 信学技報, OQE 73-48, 1973年10月
- (3) 立田,池田,"クラッド形多モードファイバの曲りによるモード変換,"マイクロ波研究
 会,信学技報,MW76-14,1976年5月。