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PREFACE

In this ;hesis,iwe are concerned with an application of Lyapunov's
direct method to the transient stability analysis of multimachine powerv
systems,

Power systems have been steadily growing larger and larger with in-
crease in the demand for electric power, and the analyses on their tran-
sient stability also have been becoming more complicated, With the advent
of high-powered electronic computers, the size and detail of the systen
representation have been improved very much, but the analyses with such
detail representations are still expensive and time consuming tasks. In
system planning and operations, many cases must be studied under a range
of operating conditions, or for different system configurations, With
the shift from conventional dispatch centers to modern power control cen-
ters in which the security control concept is introduced, the need for
on-line transiént stability analyses has recently been recognized. The
conventional method based on simulations is not suitable for those
studies.  In view of this situation, new effective methods have been
searched for.

Lyapunov's direct method has been developed as one of promissing
methods for the last decade. It enables us to assess the first swing
stability of power systems more directly and effectively than the con-
ventional method based on simulations. The. aim of this thesis is to de-
velope Lyapunov's direct method to the level where it is a useful tool
for transient stability analyses of power systems, It is also impiié4
itly aimed to produce a theoretical background to the transient stabi-
lity of power systems which have been blindly studied with simulations,

Since we lay stress on the developement of practical procedures for-
the transient stability analysis, multimachine power systems are mainly

dealt with throughout this thesis. Many researches have been made on
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Lyapunov's direct method with one-machine connected to an infinite bus
systems, and several construction methods and important knowledges have
been derived for power systems in which system equipments are represent-
ed in detail. Most of the construction methods are incompetent to con-
struct Lyapunov functions for multimachine systems, however, so our at—
tention is restricted only to a few of them which are also applicable to
multimachine power systems. It will justify this attitude that the com-
putational superiority of the direct method is not so much compared with
the conventional method based on simulations which always able to handle
more detail system representations in such low dimensional systems,

The direct method has not reached the practical level yet in spite
of many researcher's effort over the last decade. It is prevented from
practical applications owing to three obstacles. The first is the well-
known coﬁservative nature, that is, this method often yields very conserv-
ative . results compared with the actual stability, especially in large
power systems. The second is that it takes long computational time to
calculate the critical value which represents an extent of the trans-
sient stability region, and as‘a result, the computational advantage of
this method is cancelled. The third is that this method needs highly
simplified system representations, such as, generators represented by con-
stant voltages behind transient reactances, Our specified objective is to
remove these restrictions as much as possible.

The present work has been initiated after the period when a system-—
atic construction method based on a generalized Popov criterion was pro-
posed by J.L. Willems in 1970, and this method had been refined and es-
tablished by several researchers. Before this period, several Lyapunov
functions had been derived by some researchers, e.g., P.D. Aylett and A, -
H. El-Abiad through physical considerations based on the system energy.

On the other hand, some investigations on the critical value had also been
initiated in order to remove the the obstacles mentioned above,

Firstly, we have started investigations on the ciritical value, have
introduced a new critical value, and have developed a simple method of
calculating this critical value., We have succeeded in removing the con-
servative nature and the computational difficulty related with the criti-
cal value., Next, we have proceeded to improve the system representaion.

We have derived a generalized Popov criterion which is more general than



that derived by J.B. Moore and B.D.O. Anderson. On the basis of this cri-
terion, we have constructed Lyapunov functions for two power system repre-
sentations; one in which dynamics of field flux linkages of generators are
incorporated, and one in which automatic voltage regulators and thyristor
exciters are installed in generators. The transient stability of these
systems have been successfully analyzed by Lyapunov's direct method,

We hope that the present work will be a help for Lyapunov's direct
method to come to be prevailingly used in transient stability analyses on
various stages of system planning and operations in the future, and that

it would stimulate further studies on this direct methodi
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Chapter I

GENERAL INTRODUCTION

As a general introduction of the present thesis, we begin in this
chapter with a short description of trends in present-day power systems
to clarify practical.problems faced by power utility industries. Power
system stabiliities which are important items in system design and
operation are then briefly explained paying a special attention to the
transient stability. Lyapunov's direct method of analyzing the transient

stability, is then introduced.

§1, Trends in power systems [1,2]

Demands for electric power are steadily increasing every year. It
is forecasted that the gross power demand will be twice as large as the
present one after a decade. Large power stations and transmission lines
have been builded in order to meet these demands, and power systems are
gfowing;larger and larger.

The shift from thermal power plants to nuclear power plants have been
obliging power utility industories to build power stations at places far
from load areas owingvto environmental problems., Sites for power stations
are severely limited, so many power stations with capacities more than
1,000 kw will be concentrically builded in several allowed areas, Simi-
larly, loads are maldistributed in big cities and industrial areas., In
those areas, the growth of power demand is getting slow because of shor-
tage in industrial water and environmental problems, but it is consider-
ably rapid in their environs. In the future, exisiting load areas and
their environs will form very wide and high-density load areas.

Since power generation areas and load areas are separated very much
from each other, transmission lines connectiong those areas extend as well,
Their length which is usually 50 ~ 100 km, will reach 200 ~ 600 km in the
near future., The transmission capacity is mainly determined by power sys-

tem stabilities if transmission lines are longer than 100 km, and is in-
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versely proportional to the transmission distance, that is, it decreases
with increase in the transmission distance. On the other hand, sites for
transmission lines are also severely restricted because of nature preser-
vations., This state of affairs claim to transfer bulk power through lim-
ited transmission routes., In order to meet this claim, trunk transmission
lines with 500 kv of transmission voltage have been builded in our country
since 1973, Presently, UHV (Ultra High Voltage) transmission with 1,000

kv of transmission voltage is under study. Besides, several stabilization
methods have been developed and practically used as well such as, series
condensers, braking resisters, high initial response exciters, high ini-
tial response governors, fast circuit breakers., As a result, capacities
of these trunk transmission lines will come to occupy several Vv several 10
percents of total system capacities, so outages of these lines have sig-
nificant influence on the whole system, and their influence extends to wide
areaé. In order to operate those transmission lines with high-reliability,:
better system configurations, including bus confiqurations and protective
relaying systems, must be developed,

Transmission lines are connected in grids to supply power with high-
reliability to wide and high-~density load areas., Electrical connections
among all points are strengthened, but short-circuit currents are increas-
ed"aﬁ the same time. The increase in short-circuit éurrents brings unde-
sirable problems such as, shortage in breaking capacities of circuit break-
ers, spreads of damages due to faults to wide areas, and increase in in-
duced noises in communication links. In order to solve these problems,
changes in system configurations by adopting higher transmission voltages,

" introductions of direct current power transmissions, and developements of
circuit breakers with larger capacities must be investigated,

Interconnections between power systems are enlarged and tightened for
the sake of saving system reserves, econimically operating large power sta-
tions, eliminating redundancies of system equipments, and improving reli-
abilities. On the other hand, this growth of interconnection has possi-
bilities of increasing short-circuit currents, extending disturbances re-
presented by lightnings on transmission lines to wide areas, and promoting
negative damping oscillations between power systems. It is necessary to
develope such system confiqurations and operations that take advantages of

interconnections avoiding these problems.



Summing up these trends, present-day power systems are characterized
by bulky capacities along with their individualicomponents, enormarous num-
ber of system equipments, and huge size of their interconnections., 1In or-
der to keep their sound growth, many aspect of studies on power systems
are indispensable in their designs and operations. The key item in those
studies is power system stabilities, which all systems should possess as
their characteristic without fail if they will fulfil their functions con-
stantly. In the next section, we describe on analyses of power system

stabilities along with their uses in power system design and operation.

§2., Power system stabilities and analysis

Power system stabilities are generously classified into two groups
as follows {3]:

1) Dynamic stability

The dynamic stability is concerned with small disturbances which pow-
er systems suffer under normal operating conditions such as, small changes
in generation and load outputs, and rotory and static condenser outputs,
It is characteristic of instability in this sense that it is caused by par-
ticular unstable modes which individual power system potentially may have,
and that it does not matter how large disturbances are applied. Since
small disturbances are dealt with, all nonlinear elements, e.g., satura-
tions, dead zones, limiters in exciters and governors, synchronous torques,
and loads, are negligible in analyses of this stability. Many analytical
methods have been developed on a basis of linear system theories and from
physical considerations. Results of those analyses are used in determining
future configurations of trunk and subordinate transmission systems, the
highest transmission voltage of trunk transmission systems, distributions
of power flows on outer rim of transmission lines and lower voltages of
transmission lines, and allowable operating ranges of power stations., The
dynamic stability must be kept for power systems to operate stably under
normal operating conditions,
2) Transient stability

The transient stability is concerned with relatively large disturb-

ances which power system suffer owing to various faults of transmission

lines, switchings of transmission lines, and sudden changes in generation
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load outputs, e.t.c. Since applied disturbances are large, all nonlinear
characteristics of system components come to take part";pAthis stability.
The transient stability analyses are usually classified into two groups

according to the terms with which they are concerned as follows:

i) Short term analysis

The short term means 0 v 2 seconds after a occurrence of a fault, in
which rotors of generators are accellated, and show the first swings. Ty-
pical disturbances which injure synchronized operations of interconnected
generators in this term are severe faults followed by actions of primary
protective relaying system, such as short-circuits and ground faults of
transmission lines., It is characteristics of the instability in this term
that synchronizing torques which vary with relative rotor angles of gene-
rators play an important role in their developements. Since the term is
very short, all the éystem components whose responses are relatively slow,
are neglected, and simple but adequately accurate system representations
are used in transient stability analyses in order that many case of system
configurations, or operating conditions, can be studied. Results of those
analyses are used in determining future configurations of trunk and subor-
dinate transmission systems, the highest transmission voltage of trunk
transmission systems, methods of transferring bulk power from large power
stations to outer rim of transmission systems, distributions of power flow
on outer rim of transmission lines and lower voltages of transmission lines,
operation policies on interconnections with other power utilities, opexa-
tion policies on irregular power systems in repairing system components,
etc. Thus, the transient stability analysis occupies an important posi-

tion in routine power system designs and operations.

ii) Long term analysis

The long term means 0 v 20 seconds after a occurrence of a fault, in
which system variables oscillate several ~ several ten times, Typical
disturbances which are concerned with instabilities in this term, are re-
latively large disturbances, such as switchings of transmission lines and
medium size of changes in generation and load outputs. It is charactexis-
tic of instabilities in this term that those oscillations last without
damping, or grow for long time to injure synchronized operations of inter-

connected generators. Under these undamped oscillations of system vari-
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ables, power systems are not able to transfer power constantly, and have
to stop their operations once in order to recover normal operations,
Since applied disturbances are relatively large, nonlinear characteris-
tics of system components have possibilities to cause'produced oscilla-
tions to last or grow. In analyses of this stability, dynamics of gene-
rators, exciters, governors, and voltage and frequency characteristics of
loads are represented in detail in order that their results could keep
adequate accuracies over the long term, Results of those analyses are
used in investigating stabilization methods, such as series condensers,
braking resisters, intermediate switching stations, etc., and their pro-
tective relaying systems, in studying methods of preventing faults from
spreads, such as various béék}ublprotective relaying systems, system se-
paration systems, and in elucidating unusual phenomena and serious acci-
dents, etc.

The uses of these stability analyses are summarized in Table 1., They
all have several uses in power system planning and operations. It should
be noted that the transient stability analysis in the long term has flex-
ible uses which vary according to problems at hand. The transient stabi-
lity was originally that in the short term. However, with the develope-
ment of electronic computers, the size and detail of the system represent-—
ation has been improved very much, which makes long-term simulations pos-
sible. Simulations yield time responses of all the variables in the sys-—
tem representation, and provide answers on the stability. Their object
is, accordingly, not necessarily limited to the transient stability, but
the dynamic stability can be also treated.

There are three concrete items which are investigated in usual sta-
bility analyses as follows:

[Item 1] Is a power system stable or not for a given disturbance ?
[Item 2] How much power can a power system transfer through transmission
lines without losing synchronism for a given disturbance ?

{Item 3] How do system variables vary with time for a given disturbance ?

Results on these items are combined according to their uses in power sys-
tem planning and operations as shown in Table 2, The first item is the
most basic question in the stability analysis, The stability is one of
basic qualities which the system must have in order to perform its func-

tions stably. The second item is necessary in determining stable operat-



Table 1,

Stability analysis and its objects

Object of analysis

Dynamic stability

Transient

Short-term

stability

Long-term

System
planning

Configuration of future
trunk transmission system

Protective relaying sys-
tem of future system

Future interconnection of
power systems

Confirmation of functions
of designed power systems

O

System
operation

Operation policy on trunk
transmission system

Operation policy on sys=-
tem interconnection

Operation policy onirreg-
ular transmission systems

Protective relaying sys-
tems

Methods of improving sys-
tem stabilities

Simple stability supervi=-
sion

©@@000

Operation
of power
station

Operating limits of power
stations

Optimal settingof control
equipments

Shocks on generators due
to system faults

© OO0 OO

O00PO ©POEOOO

©®

(©: mainly performed, (Q: partially performed)

Table 2,

Stability analysis and its contents

Object of analysis

Judgement of
Stability

Stability power
limits

System behaviors

Systen
planning

Configuration of future
trunk transmission systems

Protective relaying sys-
tem of future system

Future interconnection of
power systems

Confirmation of functions
of designed power systems

O

System
operation

Operation policy on trunk
transmission system

Operation policy on sys-
tem interconnection

Operation policy on irreg-
ular transmission systems

Protective relaying sys-
tems

Methods of improving sys-
tem stabilities

Simple stability supervi-
sion

OO} 00O

O O

station

Operating limits of power
stations

Optimal setting of control
equipments

Shocks on generators due
to system faults

OO0 OO0 |O00O

OO




ing areas of generators, and stable power limits of transmission lines,
This item is determined by iterating the first item for a range of load
flow conditions, so these two items are the same from a computational
point of view. The third item is useful for getting physical insights
into system behaviors in the transient period. For a given disturbance,
the time responses of all the variables included in the system represen-
tation are calculated, so simulations are useful in studying this item,
Simulations are also able to answer the first two items, but it is some-
what indirect because the time responses of system variables must be cb-
served for this purpose,

While the transient stability analyses have several uses that can,
differ with stages of power system planning and operation, its determi-
nation is almost exclusively made by simulations. Simulations are able
to include very wide range of system components into the system repre-
sentation, and to investigate their influence on the stability. However,
the use of simulations should be limited because of its indirect nature
in determining the stability of a system,

The detail and size of the system representation both directly af-
fect the computational cost of simulations. The continued growth of in-
terconnections as well as their increased used for bulk power transfer
has increased the necessary system representation size to the point that
simulation cost is prohibitory in many applications. Because of the
large inertias involved and the long ties, swings must be carried out for
several seconds or more., This indeed amounts to a lot of expensive com-
puter time, One example of the effort which this situation has stimulat-
ed is the coherence based dynamic equivalents approach [4-7]. This ap-
proach significantly increases simulation efficiency by reducing the sys-
tem representation size,

In addition to computation cost, other application-dependent disad-
vantages of simulation result from the fact that it is an indirect ap-—
proach to transient stability analyses. As an example of this, consider
the need in some planning studies for a relative figure of merit or sta-
bility measure. Due to the nature of simulation analyses, this need has,
almost by necessity, been met with the critical clearing time., In order
to calculate the critical clearing time, simulation must be made for many

initial conditions, so it can be a very time consuming and expensive task.
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Throughout the electric utility industries in the.world today, tra-
ditional dispatcher's officesiare giving way to modern system control cen-
ters [8-10}. This change from the old to the new is not merely one of
modernization of dispatching and supervisory equipment, although there
are indeed many new centers which provide little more than what used to
be done with old-style equipment, - What is significant is the change from
a limited concept of generation dispatching or supervisory control to a
more comprehensive and integrated approach to monitoring and controlling
a power system. This broader concept is referred as the security control
concept [8]. For this purpose, the transient analysis must be made in
on-line mode. The approach| envisioned is to periodically scan the re-
quired steady-state variables of the power system from which the tran-
siently stable behavior of the system when subjected to specified distur-
bances could be predicted or calculated. This digital system is conti-
nually updated by actual readings from the real power system. For on-line
stability analysis, possibly 50 to 100 transient stability studies of the
existing system are required to be run periodically, possibly every five
or ten minutes during peak load periods [11]& This requirement is by far
beyond the faculty of simulations, and some direct and more efficient
methods must be developed.

In the short-term transient stability analyses, simulation is not ne-
cessarily useful method of judging whether a system is stable or not, and
of calculating stability power limits. In the next section, we introduce
a direct method of analyzing the transient stability which is referred as

Lyapunov's direct method,

§3., ‘Lyapunov's direct method

Lyapunov's direct method is based on a theorem which was proved by
A.A. Lyapunov [12]° In this section, we begin with its description,
The nonlinear systems considered here are those whose dynamics are

described by

dx

— = f(x) . (1.1)
dt

where x is an n-dimensional state variable vector, and £(x) is an n-dimen-



sional vector consisting of continuous functions, such that
f(x) = O for x = 0 (1.2)

Namely, the origin is the equilibrium point of (l.l). The stablity cri-

terion for those systems is given as follows:
[Theorem 1]

If there exists a real scalar function V(x) which is continuous to-

gether with its partial derivatives, such

1) V(x) is positive definite in a closed region @,

2) One of surfaces yielded by V(x) = C (constant) bounds §,

3) The time derivative of V, denoted by dv/dt, is negative definite or
negative semidefinite in @, and not identically equal to zero on a

solution of the system other than at the origin,

then, the system described by (l.l) is asymptotically stable in Q.

In this theorem, conditions 1) and 2) imply that, for V < C, V is equal

to a constant which defines a closed hypersurfaces surrounding the origin,
which condition 3) implies that all trajectories originating within Q ap-
proach the origin as time goes to infinity. The function V(x) which satis-
fies all the conditions 1-3) is called Lyapunov function, This function
plays an important role in applications of Lyapunov's direct methods to
transient stability analyses.

The transient stability analysis is concerned with a systém's ability
to remain in synchronism following major disturbances such as sudden
changes in load or generation powers, or in transmission system configura-
tions due to faults and line switchings. A fault occurs somewhere in a
system, which disturbs its operating conditions. This triggers a sequence
of events; the fault is cleared and the system is restored to a healthy
condition, The state of the system after fault clearing is in general not
the desired equilibrium state of the post-fault system. The question is
whether or not the system will converge to this equlibrium state., This is
a typical example where asymptotic stability in the sense of Lyapunov is

prime importance, It must be noted that the stability problem [13] as en-
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countered in power systems is not a problem of global stability, but a
problem of estimating the domain of attraction of an equilibrium state
of the system. The power systems are never asymptotically stable in the
large., The aim of transient stability studies is to compute regions of
asymptotic stability of equilibrium solutions.

The general approach used when Lyapunov's direct methods are applied
is as follows: - The transient stability region of the post-fault power
system or an estimate of it is computed by means of a direct method. Then
the system is simulated on a computer, and the post-fault initial state
is obtained by integrating the system differential equations during fault
conditions. It is checked whether or not the state lies within the region
of stability region. The procedure for establishing the region of stabi-
lity and judging whether the system is stable or not for a given distur-
bance is shown in the flow chart of Fig.l. The following are the main

steps [14})

Step 1: Read the necessary data on the system, i.e., those on the trans-
mission lines, the buses, and the generators.

Step 2: Compute the load flow for the prefault state,

Step 3: Compute the reduced admittance matrices between the generators
by eliminating the buses without generator for the fault and
postfault states.

Step 4: Compute the stable equilibrium point for the postfault state,

Step 5: Compute the unstable equilibrium point closest to the stable
equilibrium point found in step 4.

Step 6: Compute the critical value vum} which is equal to the value of
V at the closest unstable equilibrium point found in step 5,

Step 7: Integrate step by step the fault system equations, and compute
the initial state xj of the postfault state,

Step 8: Compare V(xj) with v, ' If V(xj) is smaller than Vygl, then the

system is classified as stable,

This is one of typical applications of Lyapunov'’s direct method to tran-
sient stability analyses. It is easy to see its computational superiority
to conventional methods based on simulations. In this application, it is

only necessary to calculate an initial system state when the system reaches

-11 -
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the postfault state. This leads to much savings of computational time
and costs compared with the indirect approaches based on simulations.
One of important characteristics concerning the transient stability
of a power system is its ciritical clearing time., If a fault occurs in
the system a transient phenomenon is started; after a fault clearance, it
will converge to its stable equilibrium is the state at the instant of
fault clearing;is within the stability region of the postfault system,
The critical clearing time is defined as the maximum allowed fault dura-
tion for transient stability. If this figure is to be calculated by si-
mulations, the system equations must be integrated for many clearing
times. This is a time consuming and expensive task. One important ap-
plication of Lyapunov's direct method can be found in the calculation of
this stability measure. Lyapunov's direct method can easily produce this
figure with little additional expense of computation time to that for
judging system stability. The procedures for this calculation is shown

in the flow chart of Fig.2. Step 1 v 6 are the same as those in Fig, 1,

Step 7: Compute state variables x(t) by integrating the fault system e-
quations with initial state variable x(t - At), where At is the
integration step length,

Step 8: Compute V(t) with x(t) found in step 7, and compare it with the
critical value Vumﬁ If v(t) is greater than V,, then the sys-

tem has reached the boundary of the stability region,

In this application, the critical clearing time can be calculated by in-
tegrating the fault system equations only once., Computational time and
costs are both saved very much in comparison with the method based on si-
mulations,

It should be emphasized, however, that Lyapunov'’s direct method does
not exclude simulations. The theorem of Lyapunov is concerned with auto-
nomous systems, so Lyapunov's direct method is applicable to the postfault
system for power system stability analyses. It needs to compute the sys-
tem variables at the instant of fault clearing in order to determine the
value of Lyapunov function at that instant. In general, Lyapunov's direct
method is combined with simulations in its applications., It only substi-

tutes for simulations as far as the computation of the transient stability
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of the postfault system is concerned. This is the most important and by
far the most time consuming part of a stability analysis by computer si-

mulation, however,

§4, Background of the present work

4.1 Present work objective§

The overall objectives of the present work is to develope Lyapunov's
direct method to the point where it is a useful tool for transient stabi-
lity analyses of power systems., It offers the opportunity of assessing
the first swing stability of power systems more directly and effectively
than the cénventional approach based on simulation. For example, it al-
lows critical clearing times to be directly calculated from a single solu-
tion, More fundamentally and, in terms of potential applications, more
significantly it also provides a quantitative measure of how stable or un-
stable a particular fault case may be,

A brief description on the present-day status of Lyapunov's direct
method in transient stability analyses will serve to clarify the critical
problems which should be solved in this work, To its present state of
developement, Lyapunov's direct method can be summarized by saying that
it has been/of little practical value to date due to three troublesom pro-
blems as follows:

1) The usual Lyapunov's method yields sufficient but not necessary|condi-
tions for stability. These conditions are usually much too conserva-

'tive to be useful, particularly, for systems with more than three or
for generators,

2) The computational requirements have made studies of large power sys-—
tems infeasible., The magnitude of this effort can be appreciated by
noting that it needs the closest unstable equilibrium point which is
determined through calculations of 2Pl unstable equilibrium points,
where n is the number of generators.

3) The method requires the system representation to be highly simplified,
e.gd., generators are represented by constant voltages behind transient
reactances, and loads are represented by constant impedances.

The specific objectives of the present work have been to eliminate these

limitations as much as possible. The'problem 3) and a part of the problem
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1) are concerned with Lyapunov functions. The problem 2). and the most
part of the problem 1) are concerned with the critical value of Lyapunov
function which corresponds with boundary of the transient stability region
of the system, Studies on Lyapunov functions and their critical values
are the key in solving these problems. Concerning to Lyapunov functions,
systematic methods of constructing them for various level of system re-
presentaions have been developed although most of them are adressed to one
machine connected to an infinite bus systems {{15-30), Research along this
direction will lead to more detail system rep;égggéétion. As for the cri-
tical value, more physical considerations on system behaviors in the tran-
sient period should be made although theoretical investigations are, of
course, indispensable, The usual critical value has been detérmined by
straightly applying Lyapunov's theorem to power systems without paying no
attention to their.features. The third problem [may not be"dlyays cr{tij
cal one because much useful information can be obtained from analyses with
this simplified system representation if Lyapunov's direct method is con-
sidered as complementing rather than replacing simulation which will always

be able to handle more detailed system representations,

4,2 Previous works on Lyapunov's direct method

Since the present work deals with investigations on Lyapunov's direct
method applied to transient stability analyses of multimachine power sys-
tems, a review of the previous works on this subject will well describe a
background of this work.

The application of Lyapunov's direct method to the transient stabili-
ty analysis has been attracting many researchers for a long time since the
first work was published in 1948 [31]. Reviews on plenty of works have
been made by Willems [13] and Pavella [32], and a list of them, not com-
plete, is also provided in the last part of this thesis. Those works are
roughly classified into two groups: the first is theoretical with one-
machine connected to an infinite bus systems, and the other is practical
works with multimachine power systems. These two groups are complementing
each other.

Among them, the |works which played a fuse to the present work are as
follows; works by Willems [33,34], Pai & Murthy [35], Henner [36], and

Gudaru [37] on a systematic construction method of Lyapunov functions based
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a generalized Popov criterion; works by Luders [38], Willems [25], Prab-
hakara & El-Abiad [39], and Gupta & El-Abiad [40] on methods of determin-
ing the critical value of Lyapunov function; works by Siddiqee [23], De
Sarkar & Daharma Rao [27], Pai & Rai [28], and Willems [41] on applications
of Lyapunov's direct method to transient stability analyses of power sys-
tems in which dynamics of field flux linkages'and, moreover, voltage regu-
lators are incorporated to their representations. Of course, all the other
references given in the last part of the present thesis gave more or less
influence to us. Especially several books regarding with a general mathe-
matical treatment of the linear and nonlinear theories on the stability
f42-46], have been providing us necessary knowledge through all stages of
the present work. The paper by El-Abiad & Nagappan gave us an outline for
applying Lyapunov's method to transient stability analyses, and the sug-
gestions for the future works by Willems [13] helped us determine the di-
rection of our research on this subject,

The works contained in the present thesis have been performed during
a period from 1976 to 1979 so that excellent recent works have been pub-
lished partly during the period and partly more recently. They are listed
up here for references; Athay & Virmani [47] on transient energy direct
method of practical significance, Bergen & Hill [48] on new representation
of loads, Pai & Narayana [49] and Jocic, Pavella & Siljac [50] on a const-
ruction of Lyapunov function based on the concept of vector Lyapunov func-
tioﬂ. Those works deal with different subjects on Lyapunov's direct meth-

od, and will help Lyapunov's direct method be a useful tool in transient

stability analyses,

4,3 Contribution of the present work

In chapter II, we are concerned with the transient stability analysis
of multimachine power systems in which generators are represented by con-
stant voltages behind transient reactances, and loads are by constant im-
pedances. In usual power system designs and operations, transient stabi-
lity analyses are performed with this system representation. Three impor-
tant problems are investigated; firstly, how can we construct an appropri-
ate Lyapunov function? Section 2 and 3 are adressed to this problem. In
§2, a generalized Popov criterion is derived, and in §3, a Lur'e type Lya-

punov function is systematically constructed on the basis of the criterion.
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Secondly, how can we determine a suitable critical value of the Lyapunov
function? It is desirable that it can yield accurate results in stabili-
ty studies, and that is computed in adequately short time. In §4, a new
critical value is introduced from physical considerations of power system
behaviors in the transient period, and a simple method of computing the
critical. value is devéloped° Thirdly, how can we take influence of trans-
fer conductances into_account? This problem is rather subtle compared with
the foregoing two problems, but it is very important in practical analyses.
§5 is adressed to this problem, and one méthod of counting their influence
is developed. Lastly, Lyapunov's direct method is applied to a lO-machine
power system, and its effectiveness is verified in §é6. )

In chapter IT, we are concerned with the transient stability analysis
of multimachine power systems in which dynamics of field flux linkages are
incorporated., The field flux linkages generally decrease in the transient
period owing to the armature reaction, and deteriorate the transient stab-
ility. In §2, a Lur'e type Lyapunov function is systematically constructed
on the basis of the generalized Popov criterion. In §3, one method of de-
termining its critical value is developed, and it is also shown that there
is a possibility for a new instability to occur. In §4, the method of tak-
ing account of transfer conductances is generalized to the system under in-
vestigation. Lastly, a l0-machine power system is analyzed by Lyapunov's
direct method, and its effectiveness is verified in §5.

' In chapter IV, we are concerned with the transient stability analysis
of multimachine power systems in which generators are installed with auto-
matic voltage regulators and thyristor exciters, Thyrister exciters have
very fast response, and are widely used to improve the transient stability.
In §2, a Lyapunov function is systematically constructed based on the gen-
eralized Popov criterion. 1In §3, it is shown that automatic voltage regu-
lator gains must be somewhat low compared with actual values in order that
the Lyapunov function could be constructed according to the criterion., In
§4, Lyapunov's direct method is generalized to be applicable to power sys-
tems with high gain voltage regulators by introducing é pseudo-Lyapunov
function, In §5, Lyapunov's direct method is applied to a 1l0-machine pow-
er system, and its effectiveness is verified.

In chapter V, some summary and conclusions of the present thesis are

described,

-17 -



Chapter II

TRANSIENT STABILITY ANALYSIS OF MULTIMACHINE
POWER SYSTEM VIA LYAPUNOV'S DIRECT METHOD:
CONVENTIONAL SYSTEM MODEL

§1, Introduction

In this chapter, we are concerned with the transient stability analy-
sis of multimachine power systems in which generators are represented by
constant voltages behind transient reactances.

This system representation has been used in the transient stability
analysis of multimachine power systems for long time. With the advent of
high-powered electronic computers, more detail system representations have
come to be used recently, but their uses are still limited because of com-
putational time and cost. In practical system planning and its operation,
many cases must be studied in short time and with adequate accuracy, so
this system representation is mainly used in usual. In view of the uses
of Lyapunov's direct method in system planning and operations, the tran-
'sient stability analysis with this system representation carries weight in
the research on this method, '

Lyapunov's direct method consists of two main parts, that is, the con-
struction of the Lyapunov function and the determination of its critical
value,

Firstly, the former part is investigated. The systematic method of
constructing Lyapunov functions have been searched for long time, Lyapu-
nov functions had been constructed on physical considerations untill J,L.
Willems [33] proposed a systematic method based on a generalized Popov
criterion derived by J.B. Moore and B.D.0. Anderson [51] in 1970. However,
the application of this method is limited to this system representation be-
cause of the criterion used as the basis. In §2, this criterion is gene-

ralized in order that it would be applicable to more general system models,
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In‘§3, a Lur'e type Lyapunov function is constructed on the basis of this
new generalized Popov criterion, and its variation with parameters con-
tained in it is investigated in order to search for the proper one to the
transient stability analysis.

Secondly, the latter part is investigated, The critical value of the
Lyapunov function has significant influence on the accuracy of the estima-
ted result of the critical fault clearing time, 1In usuél analyses, the
critical value has been given by the minimum value among the values of po-
tential energy at all unstable equilibrium points, It is well-known, how-
ever, that this critical value often yields very conservative results,
espeéially, in large power systems, and that it inherently needs calcula-~
tions of extremely many unstable equilibrium points, These two fact have
been obstructing the practical application of Lyapunov's direct method to
the transient stability analysis., In §3, the cause of this conservative
nature is clarified through physical considerations on the power system
behaviors in the transient period, From the consideration, a new critical
value is introduced, and a simple method of computing the critical value
is developed,

Thirdly, we make some investigations on the influence of the transfer
conductances contained in the reduced admittance matrices which are ob-
tained after the elimination of the nodes without generators. The Lyapu-
nov function which can completely incorporate. the transfer conductances
has not been constructed yet in spite of many researcher's efforts, The
transfer conductances increases with system loads, and accordingly, they
are not negligible in practical power systems. 1In §5, their influence on
the Lyapunov function is investigated, and some methods of counting in
their influence are developed,

Lastly, in §6, the transient stability analysis of a 1l0-machine pover
system is made by Lyapunov's direct method incorporated with the methods
developed in this chapter, and their effectiveness is verified by compar-
ing the results by the direct method with those by the conventional method

based on simulations,

§2, Generalized Popov criterions

In this section, two generalized Popov criterion are introduced. The
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method used in this thesis in order to construct Lyapunov functions is ba-
sed on these criterions. One of them was derived by J.B., Moore and B.D.O.
Anderson,in 1968, [51], and was first applied by J.L. Willems in order to
construct a Lyapunov function for a multimachine power system represented
by the conventional model in 1970 [33). The other was derived in a form
differerit from that introduced here by C.A. Desoer and M,Y, Wu in 1969, [52].
and was first applied by M,A, Pai and V. Rai in order to construct a Lya-
punov function for a one-machine connected to an infinite bus system in

which a voltage regulator is installed to the generator.in 1974 [28].

2.1 Generalized Popov criterion by Moore & Anderson

The nonlinear systems considered here are those whose form is shown in
FigoLgé The Lyapunov stability is considered, and so the inputs are not

indicated. The matrix W(s) is an m Xm matrix of stable rational transfer

functions, assumed to be such that
W(®) = 0 (2.1)

The nonlinearity F(c) is an m dimensional vector, assumed to satisfy the

conditions as follows:

2
0 < £f.(o)o, < k;of (2.2)

and

(2.3)

n
(@)

£f.(c.) = O for o,
bR 1 1

where ki is a scalor satisfying

> L]

ki > 0 (2.4)
The ki define the matrix K = diag(kj, k2, <ce, Kkp), and the output o, de-

fine the output vector ¢ = (03, 02, ecos Om)', where the superscript " '"

denotes the transposition of the matrix or the vector, The stability cri-

terion for the above system is given as follows:
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[Theorem 2]

If there exist real diagonal matrices N and Q such that
z(s) = NK™} + (N + Qs) W(s) (2,5)

is positive real, then the system shown in Fig.2 is stable, where

N = diag(n1, No, ceey nm) and Q = diag(ql, d2r ococeyp qm)' with ni
> . > - i

>0, q > 0 and ni-+ q; 0, and ni/qi is not a pole of any of

the ith row elements of W(s).

Before proving this theorem, it is necessary to introduce a lemma of B.D.

O. Anderson [53].

[Lemma 1]

Let Z(s) be a matrix of rational transfer functions such that Z(s)
is finite and Z(s) has poles which lie in Re s < 0, or are simple
on Re s = 0. Let (A, B, C) be a minimal realization of Z(s) = Z(=).
The Z(s) is positive real if and only if there exist a symmetric

positive definite matrix P and matrices W, and L such that

PA + A'P = - LL'
PB = C - 1IW (2.6)
[o]
] = '
W'W Z2(®) + 2'(»)

With the aid of this lemma, the theorem is proved,

[Pxoof of theorem]

A transfer function W(s) satisfying (2.1) possesses a minimal reali-

zation (A, B, C) which is a set of three constant matrices satisfying
W(s) = c'(sI -a)~lB (2.7)

An expansion of Z(s) in terms of A, B, and C gives

Z(s) = NK~! + (N + Qs)W(s)

NK~l + NC'(sI - A)=1B + QC'[(sI - A) + A](sI - A)~lB

- 22 -



= (NK~! + QC'B) + (NC' + QC'A) (sI - a)~lB

Since Z(s) is positive real, lemma 1 can be applied to the triple (A, B,

CN' + A'CQ'), which is a minimal realization of Z(s) - Z(»®), Thus, there
exist a positive definite symmetric matrix P, and matrices I and Wb such

that

PA + A'P- = -~ LL'
PB = CN' + A°CQ' -~ LW _ (2.8)
W'W = 2"l + oc'B + B'CR'

Consider as a tentative Lyapunov function for the system of Fig.2:

g
V(x) = x'Px + 2]0 F'(p) Qdp (2.9)

where x is the state vector of the system, The positive definiteness of
P, the positive semidefiniteness of Q, and the restriction on F(o) of

(2.2) ensure that V is positive for all nonzero x. Differentiating (2.9)

gives
V(x) = x'Px + x'Px + 2F' (0)0 (2.10)
The time derivatives may be expressed in terms of A, B, C, and F(o0) by

noting that the system of Fig.2 may be represented as a linear system us-

ing state space notation, i.e., from (2.7)

X = Ax - BF{(0o)
(2.11)
g = C'x
Thus,
;(x) = [x'A' - F*'(0)B']Px + x'P[Ax - BF(0)]

+ 2F'(0)QC'[Ax - BF(0)]

x'(PA + A'P)x - 2x'(PB - A'CQ')F (o)

- F(0)°(QC'B + B'CQ')F(0)

- x"LL.'x + 2x'LWoF(o) ~ 2X'CN'F(0)
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- onk-1
- F(o)'(wo'wo 2NK~™*)F (o)

= = [x'L - F'(o)wo'][L'x - woF(o)]

- 2F'(0)N[o - K™1F(0)]) (2.12)
where (2.8) is applied in deriving (2,12). The first term is plainly non-
positive, and the nonnegative nature of N together with the nonlinearity
condition (2.2) ensure the nonpositivity of the second term. Accordingly,
V(%) proves to be positive., Since there exists a Lyapunov function for

the system in Fig.2, this system is stable according to Theorem 1. This

completes the proof,

2,2 Generalized Popov criterion by Desoer and Wu [72]

The nonlinear systems considered here are those whose form is shown
in Ei944; The Lyapunov stability is considered, and so the inputs are not
indicated, The matrix W(s) is an m X m matrix of stable rational transfer

functions, assumed to be such that
W(») = O (2.13)

The nonlinearity F(o) is an m dimensional vector, assumed to satisfy the

conditions as [follows {[52]:

1) F(o) is continuous and maps R® into RM,

2) For some constant real matrix N,

F(o)'No > 0 for all ¢ in R® (2.14)
and

F(og) = O ifo=0 (2.15)
3) There is a function V; € cl mapping RM into R such that

v, (o)

|v

0 for all o in R (2.15)

and

V1 (0) 0 ifo=0 (2.16)

and for some constant real matrix Q
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V(o) = QFF(0) for all ¢ in RM (2,17)
holds. The stability criterion for the above system is given as follows ([72]:

[Theorem 3]

If there exist real matrices N and Q such that.
Z(s) = (N + Qs) W(s) (2,18)

is positive real, then the system in Fig.3 is stable, where (N + Qs)

does not cause pole-zero cancellations with W(s).

[Proof of theorem]

The transfer matrix W(s) possesses a minimal realization (A, B, C),

which is a set of three constant matrices satisfying
W(s) = C'(sI - A)"lB (2.19)

An expansion of Z(s) in terms of A, B, and C gives

Z(s) (N + Qs)W(s)

NC*(sI - A)"IB + oCc'[(sI - A) + A] (sI - A)~1B

]

QC'B + (NC' + QC'A) (sI -~ A)~lB

Since Z(s) is positive real, Lemma 1 can be applied to the triple (a, B,

CN' + A'CQ'), which is a minimal realization of Z(s) - Z(®), Thus, there
exist a positive definite symmetric matrix P, and matrices I and wo such

that

PA + A'P = = LL'

PB = CN' + A'CQ' =~ LW, (2,20)
(] = ] 1t

W'W QC'B + B'CQ

Consider as a tentative Lyapunov function for the system of Fig.3:
V(x) = x'Px + 2v;(0) (2.21)

where x is the state vector of the system, The positive definiteness of P
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and the positive semi-definiteness of V) (0) ensure that V(x) is positive

for every nonzero x. Differentiating V(x) gives

V(x) = X'"Px + x'Px + 2VV1'(0)5

[x'A' -~ F(0)'B']Px + x"P[Ax - BF(0)]

+ 2F(0)'QC' [Ax - BF(0)]

x'(PA + A'P)x - 2x'(PB - A'CQ')F(0)

- F(0) ' (QC'B + B'CQ")F(0)

- x"LL'x + 2x"LWoF (0) = 2x"CN'F(0) - F(0) "Wo'WF (o)

- [x'L - F(0)'W,']1 [L'x - WoF(0)] - 2F(0) 'No’
: (2.22)

where (2.11) and (2.20) are applied in deriving (2.22), The first temm
is plainly non-positive, and the non-negative nature of F(o)'Nc ensures
the non-positivity of the second term, Accordingly, G(x) proves to be
non-positive, Since there exists a Lyapunov function for the system in
Fig.3, this system is stable according .to Theorem l. This completes the

proof.

2,3 Use of criterions

These generalized Popov criterions can be used as a basis of const-
ructing Lyapunov functions for multimachine power systems. Some power
systems can be formulated as such multivariable nonlinear feedback dyna-
mical systems as in Fig.3 or 4. If a power system proves to be stable
according to Theorem 2 or 3, then there exists a Iur'e type Lyapunov func-
tion given by (2.9) or (2.21). The function is obtained by solving the
matrix equations in (2.8) or (2.20), Thus we can systematically construct
Lyapunov functions for multimachinerpower systems., In the followings, we
construct some Lyapunov functions for a multimachine power system which
is represented in different levels of detail, Theorem 3 is used instead
of Theorem 2 as its base because the former is superior to the latter in
applicability. The obtained functions play important roles in Lyapunov's

direct method to determine the domain of attracﬁion of the system,
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§3, Construction of Lyapunov function

In Lyapunov's direct method, it occupies a very important part to con-
struct Lyapunov functions which are suitable to systems under studies, and
many investigations have been made on this subject, Lyapunov functions
were derived through physical considerations at the initial stage of deve-
lopement of this direct method, partially because Theorem 1 derived by A.A.
Lyapunov does not offer any information on the method of constructing Lya-
punov functions, and partially because power system engineers have been us-
ing some direct methods in transient stability analyses before Lyapunov's
direct method became popular among them. Early direct methods are based on
the energy concept., The equal-area criterion [42], and the energy integral
criterion [54] were derived on this basis. Lyapunov's direct method was
first applied to transient stability analyses of multimachine power systems
by A.H., El-Abiad & K. Nagappan in 1966, Following them, several Lyapunov
functions were derived, but those were not different so much from the energy
integral function constructed by P.D, Aylett in essence although some im-
provement were made, In 1971, a systematic construction method was proposed
by J.L. Willems [33]. This method is based on a generalized Popov criterion
derived by J.B. Moore & B.D.O. Anderson, that is, Theorem 2 in §2, It is
superior to other method in a sense that it can systematically construct
" Lyapunov functions for multimachine power systems, and as a result, it may
be applicable to more detail power system models in which physical consider-
ations will be no help in deriving their Lyapunov functions,

In this section, another systematic construction method based on Theo-
rem 3 in §2 is introduced. This theorem is more general than that used by
J.L, Willems in a sense, so this new construction method has wider applica-~
tions than that proposed by J.L. Willems., This new method is shown in a
process of constructing a Lyapunov function for a power system represented
by the conventional model, that is, in which each generator is modeled as
a constant voltage behind a transient reactance., Some detail investigation
is made on the obtained Lyapunov function by varying the parameters contain-
ed in it for the purpose of getting an appropriate Lyapunov function for

transient stability analyses.,
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3,1 System equation

In usual transient stability analyses of power systems, some basic
assumptions are made in modeling multimachine power systems as follows:

1) Each synchronous machine is represented by a constant voltage behind
its transient reactance. |In other words, its field flux linkages are
aséumed to be constant during the transient period, and regulation of
its terminal voltage is not[;gkgp into popgidératiop.

2) Mechanical power input to each generator is constant, and no governor
action is taken into.account,

3) Damping power of each generator is proportional to its slip velocity,
and it is assumed to be mainly due to its asynchronous torque.

4) Inertia coefficient of each generator is constant, and its variation
owing to deviation of rotor speed from the synchronous speed is assum-
ed to be negligible,

5) Each synchronous machine is a round-rotor machine.

6) Each load is represented by a constant impedance.

Under these assumptions, the mothion of the ith generator is described as

follows:
azs, s, n
mgo—= + & = P .- ) EjEY, sin(8;, + 6,.)
dat dt j=1 (2.26)
for i=1,2, Y Y2LY)

where, for generator i,

Pmi : mechanical power input,

m, angular momentum constant,

di : damping power coefficient,

Yijz¢ij= post-fault transfer admittance between the ith and the jth

generator nodes (obtained after reduction of a network retain-
ing only generator nodes),
« . o l f PR .oeo e..=n2— P
elj complement o ¢lj' i r 954 / ¢13,
Ei[§i: internal voltage,
6.. H 6. -6.0
1] 1 J
In order to construct a Lyapunov function, it is necessary to assume that

the transfer conductances in the reduced admittance matrix are negligible.
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Under this assumption, (2.26) changes as follows:

d26i as; n o
m, +d; = ¥ BijEiEj(simSij - sinGij)
atc2 at j=1 (2.27)
for i =1, 2, .00, n,
where
B,. =Y, .cosf0,.
1] 1] 1)

and the superscript " o" denotes the stable equilibrium point of the post~-
fault system, so (2.27) applies to the post-fault state.

Eq.(2.27) in the state space notation is given as follows:

©

X = Ax - BF{o)
(2,28)
g = C'x
where
Onn Inn Onm Tnm
A= B = C = (2.,29)
Opn  -M7ID,, M"lTnm Onm
and in which
Mnn = diag(mI' mz, eocoyg mn)
Dnn = diag(d1, d2’ cooy dn)
(2.30)
11 (n-1) 01 (m-n+1) |
Tnm= ’ T21=[l,-l]']

“I(n-1)(n-1) T(n-1){m-n+1)

The matrices 1 and O in (2,29) and (2.30) have all their elements equal to

unity and zero, respectively. The number m is defined by

m = n(n-1)/2 . (2.31)

The state vector x is a 2n dimensional vector consisting of two vectors as

follows:
x = [ é*! w' 1! (2,32)

where 6* and w are n dimensional vectors defined by
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for i=1,2,.00yNs (2.33)

The nonlinearity F(o) is an m dimensional vector defined as follows:

. o )
= + -
fk(ok) BijEiEj[s:Ln(ok Gij) 51n6ij]
' (2.34)
for i=l,2'ooo'n—l, j=i+1'°°°,n'
k=1,2,000,m
where k is related with i and j by
k = (i-1)n - i(i+1)/2 + ] (2.35)
The output ¢ is an m dimensional vector defined as follows:
o
Ok = Gij - 5ij for k—-l,2,...,m, (2.36)

where k is related with i and j by (2.35). Eq.(2.28) describes the multi-
machine power system as a multivariable dynamical system of the form as

shown ianig.4.

3.2 Stability check of system

The transfer matrix W(s) for the linear part of the system is written

as follows:

Cc'(sI - A)~-1B

W(s)

]

T [s(sI + M-1p))~1lmM~1iT (2.37)

For the system to be stable, there must exist matrices N and Q such that
Z(s) defined by (2.18) is positive real. In this problem, N is chosen as

follows: ’

N = (1/q)Ipy (2.38)

The inequality in (2.14) is equivalent to the following inequalities:

fk(ok)ok > 0 for all 0, in R (2.39)

and k=1,2,000,Mo
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However, the above inequalities are satisfied not for all Oy in R, but for

a range of o, as follows:

k

-7 - 262j < o< w2680, (2.40)

As is observed from (2.22), F(o) "No has influence on the time derivative of
V(x)o Since (2.14) is not satisfied for o which does not satisfies (2.40),
it is desirable to make its influence zero by letting q + @, However, this
selection of q causes a pole zero cancellation between (N + Qs) and W(s)
because W(s) has a pole at s = 0. In order to avoid the pole-zero cancel-
lation, we give q a finite value in the process of construction.

The function Vj(0) in (2.15) is chosen as follows:

m ag

vite) = § [ f1x(oy)doy
k=1 O
n-1 n

B..E.E.[cosG?. - cosb,, - (8,, - 6?.)sin6?.]
i21 joisr 3313 ij ij ij = i3 i3

(2.41)

It is observed from (2.41) that Vj (o) is positive not for all ¢ in RM, but
for a range of ¢ about ¢ = 0, Accordingly, the global stability of the
system can not be concluded with this function. However, it is possible to
estimate the domain of attraction by using the Lyapunov function obtained

with this function. The partial derivatives of Vj(0g) are given as follows:

vy
. o . O

—_— = BijEiEj[Sln(ok + Gij) - 51n6ij] (2,42)
3o

k

for k=l,2’ooe,m,
that is,

wy(o) = I F(o) (2.43)

Hence Q in (2,17) is given by
Q = Imnm (2.44)

By substituting (2.38) and (2.44) into (2.18), 2(s) is given as fol-

lows:

Z(s) = (1/q + s)T'[s(sI + M~lp))~im~lp (2.45)
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The conditions for Z(s) to be positive real are

1) Z(s) has all elements which are analytic for Re s > 0,

2) 2Z*(s) = Z(s*) for Re s > O,

3) 2'(s*) + Z(s) is positive semi-definite for Re s > O,
Since the first two conditions clearly hold for Z(s), so it is only nece-
ssary for Z(s) to satisfy the condition 3)., In this case, it is sufficient
to show that Z(jw) + Z'(-jw) is positive semi-definite for each scalor w.

After some manipulation, it is found out that

a, - m /q
Z2(jw) + z'(-jw) = 2T'diag( —————— )T (2.46)

m2y2 +.d?
i i

holds, If the following inequalities are satisfied;
q > mi/di for i=1,2,.00,n (2.47)

then the right hand term in (2.46) is positive semi~-definite. Hence Z(s)

is positive real, [the system is stable acéording to Theorem 3,

3.3 Minimal realization of W(s)
The transfer matrix W(s) can be expanded as follows:

n

Wis) = ~opmlt + ) —I—— mimgr (2.48)
where
l 9000000 i cooco0o0o0 n
Hi = diag(O'ooo' 0' "‘di, O'ooo, 0) (2949)

if relative dampings of generators are non-uniform, that is, di/mi takes
different values for all generators. The degree of W(s) denoted by §[W(s)]
is equal to the minimal order of realizations of W(s), and it is given as

follows:

n
§[W(s)] = rank of [T'D-!T] + ] rank of [T'H,T] (2,50)
i=1

Since

rank of [T'D™IT] = n-1, rank of [T'HiT] =1
hold, the degree §[W(s)] is given by
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§[W(s)] = 2n-1. (2,51)

Therefore the minimal order of realizations of W(s) is (2n-1). 1In this
section, non-uniform damping cases are treated because other cases where

relative dampings are not completely non-uniform can be regarded as par-

ticular cases of these cases,

The minimal realization of W(s) is given as follows:

X = Ax =~ BF(0)
(2.52)
g = C'x
where
0 K (n-1) O(n-1)m G(n-1)m
A = B = C =
0 -u~1p M7 Opm
(2.53)
and in which
11 (n-1)
Knn-1) =
~I(n=-1)(n-1) (2.54)
G(n-1)m = [ I(n-1)(n-1) =T (n-1)(m-n+1) ]
There is a relation among matrices T, K, and G as follows:
Tnm = Kh(n—l)G(n-l)m (2.55)

The state vector x is a (2n-1) dimensional vector consisting of two vectors

as follows:
X = [ 6; w? ]' (2056)
where Gr and w are (n-1) and n dimensional vectors defined by

o
6 . = 6 . - 6 . fOr i=l'2'°..'n—l'
ri .l(1+l) 1(i+1) (2.57)

= £ i=1 o0 °
mi Gi or i=1,2, n

The nonlinearity F(g) and the output 0 are the same as those defined by
(2.33) and (2.36).

- 34 -



3.4 Solution of matrix equations

Since the system is stable, there exists a Lyapunov function as fol-

lows:

V(x) = x'Px + 2V;(0) (2.58)
where P is a (2n-1) x (2n-1) symmetric positive definite matrix satisfying
the following equations:

PA + A'P = - LL'

PB = CN' + A'CQ" -~ LWO (2.59)

' = ] 10O
WOWo QC'B + B'CQ

in which L and W, are (2n-1) xm and m xm matrices, From (2,53), C'B =0

holds, so (2,59) reduces to

PA + A'P = - LL'
(2.60)
PB = CN' + A'CQ’
P and L are partitioned as follows:
P13 P12 I
P = L = (2.61)
P21 P22 L2

where Py;, P32, P21, P22, Lj; and Ijy are (n-1) X (n-1), (n-1) xn, nx (n-1),
nxn, (n-1) xm, and mxm matrices, respectively, Substituting (2,53) and

(2.61) into (2,.60) gives

0= - L11Li1 (2.62)
P11K' = P1oMlD = 0 (2.63)
Py K' + KPyp = PyoM~ID = DM™lpy, = = LysLis (2.64)
P1oM-lT = (1/q)G (2.65)
PyoM-lT = T (2.66)

From (2,63) and (2,.65),
(p~1kpy;k'p~! - D-l/)T = 0O (2.67)

is obtained., Since (D’IKP11K'D'1 - p7l/q) is a symmetric matrix, its so-
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lution is given as follows (Appendix A):
p~lkpyk'p~! - Dp7l/q = puU (2.68)

where p is a scalar, and U is an n xn matrix with all elements equal to

unity. Eq.(2.68) gives

KP),K' = D/g + pDUD . (2.69)
From (2.63) and (2.69), we obtain

KPj, = M/q + pDUM (2.70)
Eq.(2.66) is transformed as follows:

(M~lp,oM~l - M~l)T = 0 (2.71)
since (M~lPpo,M~! - M~l) is symmetric, its solution is given as follows:

M~ lpyom~t = M7l = U (2.72)
where p is a scalar. Eq.(2.72) gives

Pyp = M + uMUM (2.73)

* . Thus the matrix equations (2.59) was solved, and their solutions are summed

up as follows:

KPIIK' = (1/q)D + pDUD
KPy, = (1/q)M + pDUM (2.74)
Poo = M + uMUM

The scalars!p and u must satisfy

n
p 2 - (/) [ & : (2.75)
i=1
n dimi
p-p > =1/7

for P to be positive definite matrix (Appendix A). Substituting (2.74)

into (2.64) gives

Y
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2(D - M/q) + (1 - p) (DUM + MUD) > 0 (2.76)

This inequality is satisfied if

)2

n-1 n (dimj--d.mi ‘ n. dimi
w2 § ] : —u* ) —==— -1<0
i=1 j=i+l 4(di-mi/q)(dj-mj/q) i=1 di-mi/q
(2.77)

is satisfied, where

11* =U-=p (2078)
Accordingly, u* must lie in the interval as follows:

ut < ur < 3 (2.79)

where uf and uﬁ are the two roots of the quadratic equation defined by

(2,77) ; (Appendix A).

3.5 Lyapunov function

An expression for the Lyapunov function can be obtained by substitut-

ing (2,56) and (2,74) into (2.58) as follows:

V(x) (6] w'l| P13 P12 8 + 2V, (0)

P21 P22 w

! § + 26! + w' +
6rP11 r 2 rPlzw w'Psow 2vi (o)

§'(D/q + pDUD)& + 28'(M/q + pDUM)w

+ w'(M + uMUM)w + 2V (0) ' (2.80)

Substituting (2,41) into (2,80), and expanding and rearranging terms in

(2.80) gives the following expression:

n n n
V(x) (1/2'2 mi) ) mimj(wi - wj)2

i=1 * i=1 j=1

+

n
(% = ) (izlmiwi)2

+

n
* *
(1/q) izl(aiai + 2mow,) 8}
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n
+pl ) (a,6% + miwi)]z

i=1
n n o °
+ ] 1B .EE [coss]. = cosd . = (8, . = 6§ )sins.]
i=1 §=1 13173 3 j ij 3 ij
(2.81)
where My is a scalar|defined by
n
My == 1/_2 m, (2.82)
i=1
From (2.22), the time derivative of V(x) is obtained as follows:
Vix) = - [x'L - F(O)'wo'][L'x - WOF(U)]
- 2F(0) 'Ng
= - w'[2(D - M/q) + (1 - p) (DUM + MUD)]w
m
- (2/q) ) £, (0,)0
k=1 k' k'k
n n n
= - - 2 - *
2i£l(di mi/q)mi u izldimiizlmiwi
n n o o
- (1/q)_2 .E By JB;E;(sind . = siné ) (8, = §;.)
i=1 j=1
(2.83)

Now, a general expression of V(x) has been derived for multimachine
power system with constant field flux linkages and damping torques of ge-
nerators, V(x) in (2.8l) contains three parameters q, p, and u* which
ére'subject to (2.47), (2.75), and (2.76), respectively., We can get an
infinite number of Lyapunov functions by varying these parameters. In
the next section, we investigate on several particular Lyapunov functions

which can be obtained by chosing the values of these parameters appropri-

ately.

3.6 Selection of parameters q, p, u*

Three parameters, q, p, and p*, are contained in V(x) expressed by
(2.8l). These parameters have to satisfy certain conditions for V(x) to

be a Lyapunov function. Firstly, if damping torques are all zero, then

q * *®
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b > 0 (2.84)

B* > g

must hold, Secondly, if damping torques are uniform, that is, di/mi takes

the same value for all generators, then

qa > A
p > po (2.85)
u* > yup

must hold, where A, pg, and ua are defined as follows:

)\0 = mi/di
n
po = -1/q ) d, (2.86)
i=1
N n dimi
wo = -1/}

i=1 di - mj/q

Lastly, if damping torques are non-uniform, then

P > Py (2.87)

must hold, where A; is defined as follows:

A1 = m?X(mi/di) (2.88)
i
The parameters g, p, and p* can take any values satisfying (2.84), (2.85), ‘
or (2.87), Then, how does V(x) vary with these parameters?

For illustrative purpose, a 4-machine power system is considered. A
line diagram of the system is shown in Fing, and its generator parameters
are provided in Table 3, It is assumed that the system is disturbed by a
3-phase short-circuit which occurs at a point near no.2 generator, and is
cleared by opening the line connecting no.l and 2 generators at both ter-
minals after a certain lapse of time, Three set of damping torques in Ta-
ble 4 are adopted, which are réfe:red as no damping, uniform damping, and
non-uniform damping, respectively. The values py, ua, uf, and uz vary with

the parameter g, as shown in Fig.)6. In the case of uniform damping, u6 and
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load

load

5
—_Toad
JA

Fig.5 Configuration of 4-machine system

Table 3. Parameters of 4-machine system
No H Xd'
1 100.0 0.C04
2 1.5 1,000
3 3.0 0.500
4 2.0 0.400
Table 4, Three cases of damping torques
No no uniform non=-uniform
1 0.0 100.0 20,0
2 0.0 1.5 1.5
3 0.0 3.0 4,0
4 0.0 2.0 1.0
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(a) uniform
damping

parameters Ho,Po

(b) non-uniform
damping

Fig.6. Variations
of parameters:
p?l 113, Ui‘r u;
with g.
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po which are both negative, monotonously decreases and increases, respec-
tively. Both of them approach certain values when q approaches o and A
as follows:

*

(2.89)
- 0 q + A
and
(2,90)
+ U q - >‘0

It is observed from (2.89) and (2,90) that if we let g - <, then the in-
equalities in (2.85) approaches to those in (2.,84). In the case of non-
uniform damping, the variations of ug and pg are similar to those in the
uniform damping case except that py approaches a value which is different

from uy as follows:

ua‘ + Ug if q + o
(2.91)
> 0 a * M
and
pg + O . if q =+
(2.92)
> 0 qa > N

The values uf and U; which are negative and positive, respectively, ap-~

proach certain values when q approaches « and A} as follows:

u’{ > 0y if @ » =
. o . A (2,93)
and
up o+ up if ¢ » = A
> g - A (2.94)

As is observed from Fig.6(b), u} always takes greater values than ug, and
accordingly, pu* must be greater than uf in stead of uag Thus, the outlines
of the area in which the parameters have to stay for V(x) to be a Lyapunov

function, are now drawn. In this area, those parameters can take any values,
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Three interesting Lyapunov functions can be obtained by appropriately
chosing the parameters q, p, and u*, Two of them are well-know functions,

and the remaining one is a new function somewhat different from the first

two functions,

{(a) El-Abiad function

If we choose the parameters as follows:

q * @
p > 0 (2,95)
u* > 0

then, (2.,81) reduces as follows:

V(x) = (1/22m)2 2 m,m, ( -m)2
1—1 L= j=1

+ (1/ 2 m, )¢ z m.w, )2

i= l 1—1
rf ’z‘ o o
+ B, .E. E [cosG - cosb,., - (6., = 6,.)sin6..]
i=1 j=1 i3 1) 1] 1] 1]
1=1
n n ) ° °
+ B, .E, E cosG - cosl,., -~ (6.. - &8, .)sind .
12 Xl ij t ij 1] ¢ 13 13) lJ]

(2.96)

This function was first derived by El-Abiad & Nagappan [14] and Gless [55]
in 1966, The first term represents kinetic energy, and it depends only on
absolute angular velocities., The second term represents potential enexrgy,
and it is. stored in the system owing to some deviations of rotor angles
from those at the stable equilibrium point; Fig.7 shows the time varia-
tions of V(x) for the three damping cases, where the fault is cleared at
the critical fault clearing time. The critical clearing times are 0.60,
0.65, and 0,64 sec, respectively. It is inferred from the variation of
V(x) for the no damping case that!Vkégwhich represents the kinetic enexgy

of the center of inertia defined by

Tme,/ )
. m,6./ m, (2.97)
j=1 *t =1t
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(a) no damping

v(pu)

\/\/\/

0 1 2
time(sec)

(b) uniform
damping

Vip.u)

{(c) non-uniform
damping

vipu)

time (sec)

Fig,7. Time variations of El-Abiad function
for three cases of damping torques.

- 44 -



has no influence on the stability of the system in view of the facts that
this energy is kept constant after the instant of fault clearing, and that
it only increases the magnitude of V(x) which is kept constant after the in-

stant, too. Hence, it is desirable to make its value as small as possible

by approaching u* to ug.
(b) Energy integral function

If we choose the parameters as follows:

q -+ ©
p > O (2.98)
u* > up

then, the second, the third, and the fourth terms in (2,8l) disappear, and

(2,81) reduces as follows:

v(x) = (1/2 Z m, ) 2 Z mom, (w; = wy )2
i=1 t i=1 j=1
n

+ z z E E [c056 - cosS.. - (§.. - 6?.)sin6?.]
j=1 g=1 13173 ij ij ij i3 ij

(2.99)

This function was first derived by Aylett [54] in 1958, It consists of
two terms. The first term represents kinetic energy, and it depends only
on relative angular velocities. The second term represents potential en-
ergy. The value pu* can take g only in the cases where dampings are zero
or uniform. In the non-uniform damping case, u; is adopted as u* in stead

of pg, then (2,8l) reduces to

V(x)=(1/szl)2 Xmm(m -w)2
i=1 i=1 j=1
n
+ (g = up) € ] miwi)z
i=1

o o
+ z 2 E E, [cosd - cosl.. = (§.,. = 6..)sind..]
%1 o1 3 ij ij i3 ij

. (2.100)

As observed from FigJG(B), the difference between ug and u; is small, so

the second term in (2,100) takes negligible values compared with other
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(a) no damping

Vipu)

time (sec)

(b) uniform
damping

V(pu)

time (sec)

(c) non-uniform
damping

V(pu)

L i 1

0 1 2
time (sec)

Fig.8._ Time variations of Energy integral functlon
for three cases of damping torques.
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terms., Fig.fa shows the time variations of V(x) for the three damping
cases. In the case of no-damping, the total energy V(x) is kept constant
after the instant of fault clearance. The kinetic and the potential en=-
ergy are exchanging energy between them. If there are some dampings, then
V(x) decreases with time, Its damping rate is conspicuous in the inter-
vals when the kinetic energy is dominant, which corresponds with the fact
that the total energy.is dissipated through damping torques, It should be
noted that V(x) takes almost the same values at the critical fault clear-
ing time for the three cases while the critical clearing time itself dif-
fers with the cases, Namely, there exists a critical energy which is com-
mon to all damping cases. This fact is very important when we search for

the critical value of V(x) for a given fault,
(c) New function

If we choose the parameters as follows:
q +j A1 or Az

b+ po ’ (2.101)

u* > 0

then (2.81) reduces as follows:

V(x) = (1/2 ) m.) mmnm,(w, - w.)
i=1 ti=1 =2 * 2t )

n n
+ (1 ) m,) ( ) miwi)z
i=1 & i=1
n
+ (1/A)i§l(di6; + 2m0,) 6%
n n
- /A a)t] (a8t +muw)i?
i=1 ¥ i=1
n n o
+ z z B..E.E.[cosé?. ~cosS,, = (6,. - §°.)sind; .1
§=1 g=1 13173 ij ij ij  ij ij

(2.102)
This function contains all the terms in (2.8l1), especially the |third and
the fourth terms to their maximum extent. These terms disappear.in the no

damping case, however, and V(x) is equivalent to El-Abiad function. Fig.

'9 shows the time variations of V(x) for the three damping cases. In the
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(a) no damping
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time (sec) -y

{b) uniform
~ damping

V(p.u)

(c) non-uniform
damping

Vipu)

time (sec) .

Fig,9. Time variations of new function for
three cases of damping torques.
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case of non-uniform damping, the second term cancells out with the sum of
the third and the fourth term. The total of them has an effect of averag-
ing the damping rate of V(x), In the non-uniform damping case, the |third

[term is relatively small compared that in the uniform damping case. 2s
a result, the total of those three terms takes positive value at each time.
It has an effect of shifting the sum of the first and the fifth terms which
is equivalent to the energy integral function, upwards as a whole, It is
observed that there is no consistency of behavior in V(x) defined by (2.
102) for all different damping cases., V(x) takes different values at the
instant of fault clearance for these cases, which ﬁakes it difficult to de-

termine the critical value of V(x).

3.7 Conclusions

In this section, we have constructed a Lyapunov function with a sys-
tematic method based on a generalized Popov criterion for multimachine pow-
er systems represented by the conventional model, The nonlinearities con-
tained in the system do not satisfy the necessary conditions for all their
variables, but for a range around the stable equilibrium point, so the sys-
tem is not globally stable, The problem is how we can get an appropriate
Lyapunov function to accurately estimate the domain of attraction., Three
parameters are containeé'in theiobtained L&apunov function, and an infinite
number of\different Lyapunov functions can be obtained by Yarying these pa-
rameters, Among them, three interesting Lyapunov functions were chosen and
investigated., It is concluded that the energy integral function is suit--
able to determining the critical value for a given fault.because it has a
critical energy for the stability which is common to all cases of damping
torques, On the other hand, the new function may have potential superior-
ity over the energy integral functioﬂ,.but it will not be used in the fol-
lowing investigations because the determination of its critical value is

somewhat complicated compared with the energy integral function,
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§4, Critical value of Lyapunov function

In the preceding section, a Lur'e type Lyapunov function was derived,
It can be regarded as a kind of energy consisting of kinetic energy and
potential energy. The kinetic energy is one which is stored to rotors of
generators, and depends on relative angular velocities. vThe potential
energy is one which is stored to a network owing to some deviations of ro-
tor angles from those at the stable equilibrium point. There are inter-
actions between them, that is, energy moves from kinetic energy to poten-
tial energy according to variations of system variables. However, the
total energy is kept constant all the time if there is no damping torque.
The basic idea of Lyapunov's diréct method is that a system is stable for
a given contigency if its total energy which is stored during a fault-on
.period is smaller than a certain critical value. »

It is the key to a good success in analyzing the transient stability
of multimachine power systems whether we can precisely determine the cri-
tical value of the Lyapunov function., Many studies have been made on this
subject for the last decade [38-41].! It is common to them with a few
exceptions to choose a value of potential energy at an unstable equili-
brium point which is closest (in terms of energy) to the stable equili-
brim point as the critical value. This selection of the critical value
brings two troublesome problems to Lyapunov's direct method. One of them
is that this critical value frequently yields results that are very con-
servative in multimachine transient stability analyses., This conservative
nature of Lyapunov's method is well-known and taken for an inherent cha-
racteristic of this direct method because of a simple reason that its ba-
sic theorem i.e. Theorem 1l is only sufficient but not necessary, and more
detailed investigations of the conservative nature have not been made.

The other problem is that it takes long computational time to calculate
the critical wvalue because there are [2“"l - 1] independent equilibrium
points at maximum, where n is the number of generators, for example, if‘
n is equal to 20, then the number of equilibrium points is 524,286, The
above two problems have severely limited the practical application of the
~direct method to multimachine power system analyses,

In order to solve these problems, several researches have been made
{38 ~40]. On the latter problem, Prabhakara and El~Abiad [39] proposed

a simplified method of determing the closest unstable equilibrium point.

- 50 -



Its basic idea is that the Lur'e type Lyapunov function does not vary so
much around the equilibrium points, so it is possible to get sufficiently
accurate results by approximating those points appropriately. By using
this method, the computational time will be shortened to an extent, but
it will be useless if generators increase in number because the number of |
equilibrium points increases exponentially., Moreover, the conservative
nature of the direct method still remains. It is impossible to get rid

- of the conservative nature as long as we use the usual critical value,

It is necessary to introduce a new critical value for this purpose. G,
A. Liders suggested in his paper as follows [38]: when a power system
loses its synchronism owing to some fault, it splits into two groups of
generators at the first instant; these groups defined the step-out mdde;
the step-out mode corresponds with a particular unstable equilibrium po-
int; we can adopt the value of the potential energy at the equilibrium
point as the critical value for the fault,

In this section, the above mentioned idea is investigated in detail
in order to get rid of the conservative nature. 1If it is possible, then
we can shorten the computational time for the critical value at the same
time because we only have to determine the step-out mode for a given fa-

ult,

4.1 Model and basic equations

If damping torques of generators and transfer conductances of reduced
admittance matrices are zero, then the motion of the ith generator is des-

cribed as follows:

i o
; = ..E.,E,(sind,, - si
my .g 31331 J(s:.nélJ 51néij) (2,103)
for i=1,2,...,n,

where the superscript " o" denotes the stable equilibrium point of the
post-fault system, so (2,103) applies to the post-fault state.
A Lur'e type Lyapunov function has been derived for this system in
the preceding section as follows:
n

. n n
Vi) = (1/2)m) ) ) mm(e, -w)?
i=1l 1 i=1 j=l 1] i J
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+ Z Z E.E, [coss;. = cos§, . + (8, - 87.)sins}.]
i=1 j=1 ij 3 ij 1] 1] 1] 1)

= Vk(w) + Vb(G) (2.104)

The first term in (2.104) represents kinetic energy of generators, and it
is a function of relative angular velocities of rotors. The second term
represnts potential energy which is stored in networks owing to deviations
of rotor angles from those at the stable equilibrium point, and it is a
function of relative angles of rotors. Vi and Vp denotes kinetic energy

and potential energy, respectively. The time derivatives of Vy and V, are

p
given as follows:

de

e Z Z 5E4E; (sinsd, - sind, ) (w, = w)) (2,105)
dt i=1 J—l i3 J ]

av

) z By 4B;F, (s:.né - sind, ) (w; = w,) (2,106)
dt i=1 j=1 i3 + J

The right hand terms in (2.105) and (2.106) are of the same magnitude and
of the opposite signs of each other, which implies that there exists ex-
change of enerxrgy between kinetic energy and potential energy. These terms
do not contribute to the damping rate of V, and the time derivative of V

is given as follows:

av

— = 0 (20107)
dt

Hence, if a value is given to V at an initial time, then it is kept const-
ant afterwards. This Lyapunov function can be regarded as a kind of ener-

gy, and our discussion will be developed on this basis from now on,

4.2 Transinet stability region

From (2,104)|, it is observed that the potential energy Vp depends only
on relative rotor angles, If §; is chosen as reference, Vp can be treated
as a function of (n-1l) dimensional vector §, defined as follows:
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<
n

v _(§) ‘ (2.108)
p r '

where

$
r

(821, 831s eoer Sn1) (2.109)

Fig.lofshows an example of Vp(Gr) in ani(n-1) dimensional relative angular
space for a 3-machine power system. The curves Cj, C2, ... are equipoten-
tial curves yielded by

Vp(Gr) = Ci i=1,2,000e (2.110)
The function VP takes the minimum value at the point S, The points Uy,
U2, .. are saddle points, The curves 0;, O3, <.. are those which go th-
rough U}, Uz, ..., and are orthogonal to equipotential curves, respective-
ly. 1If C; takes samll values, then the corresponding equipotential curves
are closed, and surround the points S, With increase in magnitude of Cj,
equipotential curve goes outside, and reaches the lowest saddle point Uy

when C; takes the value defined as follows:!

Val = V,(841) (2:111)

where §,;) is the relative angle vector at U;. If Cj; is greater than Vy;,
then the corresponding curve is not closed any more. With more increase
in magnitude of Cj, the equipotential curve reaches the saddle points Ujp,

U3, .oe 1in sequence according to

V2 = Vp(auz)
Vus = Vp(5u3)

(2.112)

where Suz, Su3, ... are the relative angle vectors at U, U3,..., respec-
tively.
From (2,103), it is observed that each generator receives a torque ex-

pressed as follows:
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Fig.l0. Equipotential curves of 3-machine
system,
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n

£, = . ) B,.E.E (sins’, - sins,.) (2.113)
sop 1313 ij ij

The fi defines an n dimensional vector f

H
]

[ flr f2' oocoyp fn ]' (20114)

The sum of all torques denoted by f is given as follows:

£

I
)
H
=

Z Z E E. (51n6 - sinGi.)
i=1l j=1 J ]

= 0 (2.115)
Eg.(2.115) implies that the center of angular velocities w defined by

w

Il
Il ~>18
3
[oh
€
~
o~
8

(2.116)

does not receive any torque, and accordingly, it is kept constant all the

time, that is,

W = constant (2.117)

This fact implies that each torque does not contribute to the accellation
of the center of angular velocities, but that each torque has only influ-
ence on relative behaviors of generators., There is a relation between the

torque £ and the potential energy function V_ as follows;  the partlal

derivative of ]Vp with respect to relative angles are given by

v
p

li

2 X B, .E. E (sin i sin z.)
383, 2y i3 b 3
= - 2f; i#1 (2.118)

which gives
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—_— = - 2fr (2.119)

where fr is a reduced torque of (n-1l) dimension defined by

£ = [ £2, £3, eeer fn 1 (2.120)
Since the direction of (8Vp/36r) is orthogonal to equipotential curves,
and its magnitude is proportional to the gradient of equipotential curves,
(2.119) shows that the system receives the torque which always acts or-
thogonally to equipotential curves,

In Fig.10; fr is parallel with the curves 01, Oz, <o« from the defi-
nition of those curves, Those curves enclose the region in which the
stable equilibrium point S exists. In this region, fr acts on the system
in such way that it will confine the system in this region., On the other -
hand, fr acts in such way that it will separates the system from this re-
~gion in the outside of the region, The system will lose synchronism if
it crosses one of 'curves 0;, O2,... from the inside to the outside of the
region, because fr will acts in such way that it will separate the system
from the curve, afterwards. It is conclueded that the region enclosed by
the curves 0;, Oz, ... can be regarded as the transient stability region
in the wide sense that the system receives the synchronizing torque in the
region, We define the transient stability region by this region.

There are several equilibrium points on the boundary of the transient
stability region, for example, U; and Mp. At these points, the partial

derivatives of Vp is zero, that is,

— = 0 ) (20121)

f = 0 (2.122)

holds, and equivalently from (2,115)
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£ =0 (2.123)

holds. Namely, the solutions of (2.,121) do not depend on the selection
of the reference generator. All equilibrium points can be obtained by

solving (2,122)., Since fr is a vector consisting of periodic functions,
there exist an infinite number of solutions. Let Gr be a solution of (2,

122), then 6; defined by

'
8§57 = 4§21 + 2Kkor
'
631 = 831 + 2Kk3"
° (2.124)
'

is also a solution of (2,122), where ki, kK2, «.., kp are arbitrary inte-

gers. The number of all independent solutions of (2,122) denoted by Np is

N = 201 (2.125)
m

at maximum, and they are obtained numerically with initial approximations

as follows:

8§, = [ €21, E31¢ ecov En1 ] (2.126)

where

gil = 0 or ™ for i=2,3,°oe'no

It is clear from (2.,126) that 2n=1 §jfferent initial approximations can

be yielded by this equation. In Fig.l, four independent solutions, exist,
that is, the saddle points U) and Uz, the maximum point M;, and the stable
equilibrium point S. These points are corresponding to the following ini-

tial approximations:

s =+ [0,0]

Ul+[“'0]
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u, > [0, 7] (2.127)

Mp > [m, m]

Other points Uz, Uy, M2, coce can be obtained by applying (2.124), Among
all saddle and maximum éoints, a few of them are on the boundary of the

transient stability region, e.g., Uy, Uy, Uz, Uy, My, My, M3, and M, in
Fig.1l0, These points are all obtained from initial approximations made

as follows:

6u = [ Co1r C31r eeesr Tn) ] (2.128)

where

Cil = -1, O, T, for i = 2,3,ooo,n9

N. is equal to 8 in the case of Fig.l10. The transient stability region
is bounded by the curves (or surfaces) which go through this number of
saddle and maximum points. If n is 10, there exist 19,682 saddle and
maximum points, and if n is 20, then there exist 1,162,381,466 saddle and

maximum points at maximum on the boundary.

4,3 Stability conditions

Some geometrical interpretation of the potential field in Fig.l0 is
tried in order to get physical insights into qualitative characteristics
of the system., The area in the center of Fig.l0 can be regarded as a ba-
sin surrounded by mountains whose tops are corresponding to the maximum
points My, My, cco o Equipotential curves are treated as contour lines
which represent the height of place., Saddle points are regarded as moun-
tain passes surrounding the basin. The curves O3, 02, ... are ridges
which links mountain tops and passes. Lastly, the system is regarded as
a traveler, He is now going to get out of this basin, He has some en-

ergy. Since (2.107) holds, his energy is kept constant all the time. It
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can takes two form, that is, kinetic enerqgy and potential energy. At the
point S, his kinetic energy is maximum, and he begins to climb a slope to
a certain direction., He always receives a force which will pull him down
to S, and his kinetic energy is transformed to potential energy as he
climbs, When he reaches the height which corresponds to his total energy,
all of his kinetic energy is lost, and he can not climb any more., Conse-
quently, he must begin to descend afterwards. If the contour line corres-
ponding to his energy is closed, then he can not get out the area which is
enclosed by the line, forever. In order to get out of the basin, he must
have more energy than Vyj at least, where Vy; is defined by (2.111). The
pass Uj is the lowest one among all points on the boundary of the transient
stability region. If he has more energy than Vyj;, he is able to go over
the pass U;. However, if his energy is smaller than Vy;, there is no pos-
sibility for him to get out of the basin because the contour line corres-
ponding to his energy is closed. Summing up these observations, we can

obtain a stability condition as follows:
[Stability condition 1]

If a system satisfies

Vo< Vym (2.130)

then the system is stable, where V., |is the value of Vp(8y) at the lowest

saddle point among all saddle points.

This stability condition is associated with the lowest saddle point., It
says that if one wants to get out of the basin, then he must have at least
more energy than Vyj. However, he does not always want to go over the low-
est pass. There are many passes on the boundary of the basin. If he in-
tends to go over the pass U;, for example, according to his destination,
then he has to have more energy than Vys. Vy2 is, of course, greater than
Vui. If his energy is smaller than Vyj, he is not able to go over the pass
Uo while he may be able to go over the pass Uj. Namely, there exists a
particular condition which is related with each pass. It is described as

follows:
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(Stability condition 2]

If a system satisfies
vV < Vyi for i=1,2,c00, (2.,131)

then the system is stable around the saddle point U;, where Vyj is the

value of Vp(Gr) at Uj.

If (2.131) is satisfied, he can not go over the pass Uj, but he may be able
to go over the passes lower than Uj. On the other hand, if (2.130) is sat-
isfied, he is not able to go over any passes on the boundary of the basin,
In this sense, Stability condition 1 is absolute while Stability condition
2 is local. Those stability conditions are both concerning with the cases
where he intends to get out of the basin through some mountain pass. Since
Vp takes a local minimum value at the pass if Vp is restricted on the boun-
dary, it is easier for him to go over the pass than other points around it.
However, if he has enough energy to go over those points, then there is no
obligation on him to go through the pass. Namely, he can go over any point
if he has enough energy to go over it., From these considerations, we can

obtain the most general stability condition as follows:

[Stability condition 3]

If a system satisfies
vV < V (2,132)

then the system is stable for the points where Vpb takes greater values
than Vo, where Vo is the value of Vp(dr) at the point c on the boundary

of the stability region.

This condition is somewhat different from the preceding two conditions, The
latter conditions are based on the passes, VP takes locally minimum values
at the passes if Vp is limited on the boundary, so there is no point in the
vicinity of the passes which is on the boundary, and is lower than them. Ac-

cordingly, the two conditions are also applicable to all boundary points
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around the pass under consideration. On the other hand, if he has energy

V., then he is able to go over any point lower than c, and such points in-

c!
finitely exist in the vicinity of c., Namely, Stability condition 3 can

not guarantee the stability for all points around c, but for a half of them,
In order to apply this condition, it must be known beforehand that he in-
tends to go over a boundary point higher than c,

Three stability conditions are now at hand, These conditions are re-
lated with each other as illustrated in Fig.ll, The condition for the sys-
tem to be stable becomes looser in sequence of Stability condition 1,2, and
3. These conditions should be used according to the information which is
available., If there is no information on the boundary point which he is
going to go over, it is necessary to apply Stability condition 1 in order
to prevent him from getting out of the basin. If it is certain that he is
going to go over some boundary point around a pass Uj, we can apply Stabi-
lity condition 2. Lastly, if the boundary point where he is going to go
over is known, then we can apply Stability condition 3. Thus the applica=-
ble stability conditions becomes looser with increase in the available in-
formation., 1In other words, we can use looser stability condition with in-
crease in information on the system behavior in the transient period. This
fact leads to improvement in the accuracy of Lyapunov's direct method ap-
plied to the transient stability analysis. In the following section, it is
investigated which stability condition is appropriate for the transient
stability analysis in the light of power system's behaviors in the transient

period.

4,4 Selection of stability condition

In the applications of Lyapunov's direct method to the transient sta-
bility analysis of power systems, it has been the usual method for long
time to apply Stability condition 1, This condition is absolute in the
sense that it can gurantee the system's stability without detail informa-
tion on the system's behavior in the transient period, In this sense, it
is superior to the other two conditions. This condition is useful in the
studies in which no information on the system's behavior is available, and
only rough estimation on the stability is necessary. In spite of these ad-
vantages, however, there are two troublesome ' problem in applying this con-

dition.as follows: there is no effective method of determining the lowest

- 61 -



| Vp on boundary O (p.u.)

15

Direction from S (rad)

Fig.ll., Variation of potential energy V,(S) on
boundary of transient stability region
& Stability conditions.
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saddle point in reasonably short time; From (2.129), there are 1,048,572
saddle and maximum points on the boundary of the transient stability re-
gion if there are 20 generators in the system; In order to determine the
lowest saddle point, it is necessary to calculate all of these points; It
becomes a . formidable task with increase in generators; The other prob-
lem is that the stability condition often yields results which are very
conservative, This tendancy is conspicuous in large power systems. These
two problem have severely;limited the application of Lyapunov's direct
method to the transient stability analysis of multimachine power systems,
In practical transient stability analyses, a system is classified as
stable if it remains in synchronism during the first few swings, and the
critical fault clearing time is determined on this basis. Namely, these
analyses deal with the stability not in long time, but in short time. A
system does not necessary keep its synchronism for long time, and it only
has to keep its synchronism for several seconds in order that it is clas-
sified as stable. In accord with this definition, there are several fea-
tures of the system which support it. If a fault occurs in a power sys-
tem, it produces some discrepancies between inputs and outputs of genera-
tors, As a result, some generators which are near the fault location are
accellated, and are separated from the remaining generators. If the fault
is cleared in time, then a synchronizing toque acts between these two
groups of generators, and the system can keep its synchronism{ If not, it
will go over the boundary of the transient stability region, and will lose
its synchronism, afterwards. Fig.l2| shows some examples of trajectories
for a 3-machine power system. The initial angular velocities are assumed
to be zero, and the initial state is put on the relative angular space. In
Fig.iﬂ(a), the initial point 8, is (-0.5, 2.5) rad., and the total energy
is 5,03, which is enough for the system to go over the saddle point U; and
Us. In spite of this fact, the system stays in the stability region for
three oscillations. In Fig.lZ(Bsgstarting from the point 845 = (3.0, 2.0)
rad,, the system crosses the boundary O, after two oscillations. Its to-
tal energy is 4.27, and is enough for the system to go over U; and Up, too.
These two cases can be regarded as those which illustrate the system's be-
havior in the transient period after the first swing. The mode of the sys-
tem's oscillations do not very so much during the first several swings.

This inclination becomes conspicuous in large power systems., In those sys-
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(a) §5 = (-0.5, 2.5) rad.

(b) 8o = (3.0, 2.0) rad.

Fig.1l2, Trajectories in relative anqular
space for 3-machine system.
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tems, their oscillation modes vary very slowly, and as a result, they re-
main in synchronism for long time if they are stable for the first swing.
Moreover, the damping torques of generators which are neglected in the
present investigation, dissipate their energy as illustrated in Fig,Bkb),
(c), and help the systems to remain in synchronism. In view of the above
mentioned facts, it is clear that whether a power system stays in synchro-
nism or not for the first swing has significant part in the practical ana-
lyses, Therefore, we limit out attention to the stability of power sys-
tems for the first swing, and select the stability condition on this basis.
Stability condition 1 is too strict to apply it to judge the first
swing stability.because it does not take account of the system's oscilla-
tion mode in the transient period. Now, two stability conditions remain
as the candidate, Stability condition 3 is looser than Stability condition
2. Selection between these conditions depends on the information which is
available, In Lyapunov's direct method, it is usual to numerically simu-
late system behaviors under a given fault, Fig.lj!illustrates an example
of system trajectory in the relative angular space for a case where a fault
continues, The trajectory crosses the boundary O of the transient stabi-
lity region at the point c. Total energy increases with time in the fault-
on period. In order to keep the system in synchronism, the fault must be
cleared in an appropriate time. Since it is known that the system is going
to go over the poinf c, we are able to apply Stability condition 3 for this
purpose. Thus if we limit our attention to the stability for the first
swing, we can easily obtain the information necessary to apply Stability

‘condition 3. This condition can be rewritten in a suitable form as follows;

(Stability condition 4]

1f a system satisfies |

v < Vcr . (2.133)

then it is stable for the first swing, where V¢, is the value of Vp(Sy) 7]
at the point c.|

In the derivation of this condition, we have implicitly assumed that the

system goes toward the point c without fail even in those cases where the
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Fig.l4., Relation between w, and 3V s,
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fault does not continue, in other words, it is cleared at some instants.
This assumption is, however, satisfied not strictly, but approximately,
because the system trajectory deviates a little from that for the sustained
fault in those cases., If the deviation is adequately small, then we can
use the above condition as it is, but it is not negligible, some correction
must be made. In the next section, we will describe a method of determin-

ing the critical value V., as well as this problem,

4,5 Method of determining critical value

It is necessary to look for the point ¢ in order to apply Stability
condition 4. The time derivatives of V, and Vi in (2.105) and (2.106) can

be rewritten as follows:

av v
—E = B, (2.134)
at 38,
avy v,

- . oy (2.135)
dat 98,

The signs of these time derivatives depends on the angle which is made by
the two vectors (avp/aar) and Wyo Fig°14!illustrates the relation between
the relative angular velocity wp and the partial derivative (3Vp/36y) at
the instant when the system crosses the boundary of the transient stabi-
lity region. The vector (3Vp/86r) is always orthogonal to the equipoten-
tial curves, From the definition, the boundary O is also orthogonal to
the equipotential curves., It is assume in this figure that w, is perpen-
dicular to the boundary O at the point c. In the inside of the boundary,
(avp/aar) and w, make an accute angle, so

av dav.

-2 5 9 X <0 ' (2.136)
at at

hold, that is, Vp increases, and Vi decreases in the stability region. On

the point c, the two vectora make a right angle, so

dav de
-2 = 9 — = 0 (2.137)
at at
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hold, that is, VP and Vk

pectively, In the outside of the boundary, the two vectors make an obtuse

stop increasing and decreasing at this point, res-

angle, so

avy, - avy
— < 0 — > 0 (2.138)
dat at

hold, that is, Vy and Vi beqgin to decrease and to increase afterwards, res-
pectively., Thus the time dorivatives of Vp and Vi changes their signs from
positive to negative, and from negative to positive, respectively, at the
instant when the system crosses the boundary. Hence we can easily obtain
the point ¢ by examining tha signs of these time derivatives, and can easi-
ly calculate the critical value Vcr‘ In practical cases, W, is not pre-
cisely perpendicular:to the boundary O, and a little discrepancy exists be-
tween the point c and the point where the time derivatives of Vp and Vi
vanish, However, the direction of (va/aGr) rapidly varies, and the value
of V, varies very slowly along Wy, around the boundary of the stability re-
gion, so the discrepancy ha3s little influence on V.

An example will serve to clarify the above mentioned method. The 4-
machine power system shown in Fig. 5! is cited again. A 3-phase short-cir-
cuit occurs at a point near no. 3 generator, and is cleared by opening the
line connecting no.3 and 4 Jenerators at both terminals after a certain la-
pse of time. Fig.15(a) and (b) shows the time variations of Vv, Vp, Vs
(dVp/dt), and (dVy/dt) for a case where the fault continues, From Fig.15(b),
it is observed that (de/dt) and (dVk/dt) are of the same magnitude, and of
opposite signs with each other, and that they change their signs from posi-
tive to negative and from negative to positive at 0,53 sec, respectively.
This instant coincides with that when the system crosses the boundary of the
stability region. The potential energy VP varies as shown in Fig.15(a).
According to the above mentioned method, the critical value Vi, is obtained
by taking the value of vp at 0.53 sec., Vgy is equal to 2.725 in this case.
Since the value of V is 2,621 and 2.792 at 0.40 and 0.41 sec, respectively,
it is guessed that the critical fault clearing time exists between 0,40 and
0.41 sec. In Fig.l5/(c), the time variations of relative rotor angles are
shown for the two cases wheve the fault is cleared at 0,40 and 0.4l sec,
The figure verifies the above guess. Namely, if the fault is cleared at

0.40 sec, then the system kaep synchronism, and conversely, if the fault is
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cleared at 0.4l sec, then the system loses synchronism. In this case, Lya-
punov's direct method yields very accurate result,

However, in those cases where there is much difference between the
trajectory for a sustained fault and that for the fault which is cleared
at some instant, the stability condition 4 can not be applied as it is, and
some correction must be made. If the stability condition 4!is satisfied,
then it can not happen that the system goes over the point which higher
than the point ¢, If the synchronism is to be lost, it is through the po-

int which lower than c. On this basis, we adopt a method of correcting the

critical value iteratively as follows:

[Step 1] Determine Vor with the method described in the above paragraph,
and treat it as the first approximation Vér of the actual critical
value for a given fault,

[Step 2] Clear the fault at the instant when V reaches Vér.. If Vér is
greater than the actual critical value, then the system will crosses
the boundary of the stability region.

[Step 3] Determine the second approximation Vgr of the actual critical
value with the same method as that for Vér.

L
<

-2

By iterating the above steps, a sequence of approximate critical values
Vér' V%r, Vgr, e«ee are obtained, Vgr, Vgr' sco are closer to the actual
critical value than Vér, Vgr, soop respectively., However, the iteration
should be stopped in two or three times in order to keep the advantage of
Lyapunov's direct method. It will be shown later that two or three ite-

rations yield sufficient accurate results,

4,6 Conclusions

In this section, we have developed a method of determing the critical
value, The transient stability region was defined in a wide sense that
the synchronizing torque acts on the power system in it, From the consid-
ration of the system behavior based on the energy concept, the three sta-
bility coditions were derived., Selection of the basic condition for deter-
mining the critical value among these conditions depends on the information

- 70 -



which is available. If no information is available on the behavior of the
power system in the transicnt period, then we have to rely on Stability
condition 1, However, it brings the well-known conservative nature as well
as the computational difficulty to Lyapunov's direct method. By investiga-
ting the definition of the transient stability and the system behavior in
the transient period, it gets clear that whether|the system remains in syn-
chronism or not for the first swing, is practically very important. Hence, |
the stability is limited to that for the first swing., It is easy to get
the information necessary in applying Stability condition 3. By using this
condition, we are able to et rid of the conservative nature from Lyapunov's
direct method, One simple method of determing the critical value was pre-
sented. Since this method does not need any calculation of the saddle po-
int, it is able to shorten the computing time for the critical value, In
§6, this method will be applied to a lO-machine power system, and its ef-

fectiveness will be verificd.

§5, Influence of transfer conductances

Transfer conductances have been neglected in constructing the Lyapunov
function and in determining its critical value. These conductances repre=
sent real parts of reduced admittance matrices obtained after elimination
of nodes without generatora. Loads in power systems are modeled as con=
stant impedances, and thosa are equivalently incorporated to reduced admit-
tance matrices. Transfer «<onductances get largefi with increase in loads.
In usual, power systems have loads which are comparable with their capacity,
so transfer conductances can not be neglected,

There are two basic ways of taking account of transfer conductances,
One of them is to construct new Lyapunov functions which are applicable to
power systems with transfer conductances. "Several researches have been
made along this direction, but those have not reached results of practical
significance, yet., The other is to correct existing Lyapunov functions
appropriately. This way ia chosen in this section because we have already
had an excellent Lyapunov function at hand. Its time derivatives is zero
for power systems with no transfer conductances, and its value is kept con-
stant all the time. This nature was used as the base of determining the

critical value in the preceding section. It is injured by transfer conduc~
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tances, however, The time derivative of the Lyapunov function deviates
from zero to negative, and to positive with time., Consequently, the accu-
racy of estimation of critical fault clearing times is degraded for power
system with transfer conductances. Our basic idea of correcting the Lya-
punov function is to keep its value as constant as possible after the in-
stant of fault clearance, or at least during the first swing.

In this section, firstly, the influence of transfer conductances on
the Lyapunov function is investigated. Secondly, an outline of correct-
ing the Lyapunov function is described. Lastly, two modified Lyapunov

functions are derived.

5.1 Model and basic equations

Since transfer conductances of reduced admittance matrices are taken

into account, the motion of the ith generator is described as follows:

d26i n o
m —>= = ] Y EE.[sin(6;, + 8,.) - sin(§,. + 0, )]
a2 jop 137173 3 3 3 3
t o
= ) B,.E.E,(sins.. - sin§,.)
N B I A ij i)
j=1
t o
} G,.E.E,(cosS;. - cosS, )
NP B I A ij ij
i=l
for i=1'2'ooo,n (20139)

where Bij and Gij are transfer susceptance and transfer conductance between
the ith and the jth generators defined by
B,, = Y, .cosf,. G,, = Y,.sind_ (2.140)
1] 1] 1] 1j 1] 1]

respectively. The superscript "o " denotes the stable equilibrium point of
the post-fault system, so (2.139) applies to the post-fault state,

For the power systems without transfer conductances, the following
Lyapunov function has been constructed and used in the preceding sections:

n n

n
Vix) = (1/2)m) ) §mmle, -w)?
i=1 “i=1 32 0D
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n n
+ Z 2 B. .E, E [cosﬁ - cosl,. - (6,, - 6 )51n6 .]
i=1 j=1 1] ) ] 1]

= YV (w) + Vp(8) (2.141)

where Vi and VP denote kinetic energy and potential energy, respectively.

From (2,139), the time derivatives of Vi and Vp are given as follows:

dvy n -
— = 2 z ) G, .E, E (cosd - cos§. ) (w, - w)
iji ij i
dt i=1l j=1 (2.142)
+ B, E E, (51n6 - siné, ) (0w, - w,
Z ENEX 130 g = 0y)
=1 j=1
de n
—_— = - X X B, E E (sln6 - s8inéd..) (w. - w.) (2.143)
ij ij 1) 1 J
dt i=1 j=1
where w is defined by
- n n
w = ) m W,/ ¥ m, (2.144)
i=1 i=1

The first term in (2.142) is due to transfer conductances, and is not sign-
definite, The second term of (2.142) and the first term of (2.143) are of
the same magnitude, and of the opposite signs of each other., These terms
cancell out with each other, and do not contribute to the dampihg rate of

V. Consequently, the time derxivative of V is given by

dv n —
;: = 2121 z G. JE Ej(c056 - cosdij)(wi -w) (2.145)
j=1

Since the right hand term of (2.145) is not sign-definite, Vv in (2.141) is
not a Lyapunov function for the power systems with transfer conductances.

Some correction must be made on V in oxder to use it as Lyapunov function.

5.2 Determination of critical value

In 84, a method of determining the critical value of V was developed
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for the power systems without transfer conductances. This method is based .
on the time derivatives of Vy and V,. These time derivatives changes their
signs at the instant when the system crosses the boundary of the stability
region. However, if there are transfer conducntances, the expression of
the time derivative of Vk changes from (2.105) to (2,142), Hence, a little
correction must be made on the method of determining the critical value.

Define g; and g, as follows:

n
o
gi(ér) = jZlGijEiEj(cos(Sij - cos&ij) (2.146)

gr(ar) [ 92(51.), 93(51-), eeey gn((sr) ]. (2.147)

then (2.,142) and (2.143) can be rewritten as follows:

de BVP

— = [ Lgg(8y) - — 1'u, (2.148)
at 38,

av. av !

£ _ _E Wy (2.149)
at 38,

or, from (29119),A

av.

—= = 20 £.(8p) + Lop(6p) 1wy (2.150)
dt
de
— = - 2£.(8p) ', (2,151)
dt

where L is an (n-1)x(n-~l) matrix defined as follows:
B n
zij = 1l - m(i+1)/k§lmk for i=j
B (2.152)

n
- me1)/ ) for i#j
(1) k=1mk

The torque always acts on the system in the direction that is orthogonal to |

the equipotential curves, and in such way that it will synchronize the sys-
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tems in the transient stability region. In the power systems without trans-
fer conductances, only this torque exists, and it correspond (avy/dt) to
-(dVP/dt) completely. This correspondence is lost in the power systems with
transfer conductances, however, because of the new term Lg, in (2.148): or
(2.150)%., The torque applied to the system in the relative angular space is .
expressed by (f, + Lg,). Hence, the transient stability region must be de-
fined on the basis of (f, + Lgy) instead of f,.. Fig. 16! illustrate an ex-
ample of a trajectory in the relative angular space for the case where a
fault continues. The trajectory crosses the boundary O of the transient
stability region which is defined based on f.. The angular velocity w, is
assumed to be orthogonal to the boundary O at the point c. The torque £y
makes a right angle with w, at the point c, so (de/dt) in (2.151) vanishes.
This is the same as for the power systems without transfer conductances. The
existence of transfer conductances has no influence on (dVP/dt). However,
it does not apply to (dvk/dt). The sign of (dvy/dt) is determined by the
angle which is made by the two vectors (fr + Lgy) and wy. Assume that Lg,
has a component Lgy,, which is parallel with wy as shown in Fig.l6. The
direction of (£, + Lgr) deviates from that of fr,; so the time derivative
(dVk/dt) vanishes at the point c' where (f, + Lgy) makes a right angle with
wye The torque (fr + Lgy) makes an obtuse angle with wy, and accordingly,
(dvk/dt) takes negative values before the system reaches the point c', which
implies that the torque acts in such way that it will keep the system in
synchronism. On the other hand, (£y + Lgy) makes an accute angle with wyp,
and (dvy/dt) takes positive values after the s&stem goes over the point c',
which implies that the torque acts in such way that it will separate the
system into two groups,. Consequently, it is derived that the point c! is
on the boundary of the actual transient stability region.

The critical value of V for the first swing is defined by the value of
Vp(dr) at the point c' instead of the point ¢, An example will serve to
clarify the correction which is made on the method of determing the critical
value., The l0-machine power system shown in Fig.1l7/is used. The system is
disturbed by a 3-phase short-circuit which occurs at a point near the bus 11,
and is cleared by opening the line connecting the buses 11 and 12 at both
terminals after a certain lapse of time. Fig.l18(a) and (b) show the time

the fault continues. As shown in Fig.l1l8(b)/, (dvy/dt) and (dVp/dt) are not

variations of V, Vg, Vp, (dv/dat), (dvy/dt), and (de/dt) for the case where
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of the same magnitude, and accordingly, (dv/dt) is not zero. This is due
to the new term in (2.148): or (2.150)l. If this term is neglected, then
(dvi/dt) and (dvp/dt) are of the same magnitude and of the opposite signs
of each other, and they change their signs from negative to positive, and
from positive to negative at 0.51 sec. The value of Vj at this time will
be adopted as the critical value of V if the system has no transfer con-
ductances. However, the system contains transfer conductances in actual,
and (dvy/dt) changes its sign from negative to positive at 0.47 sec. The
value of Vp at this instant is used as the critical value, and it is equal
to 14.753 in this case. Thus the critical value of V is obtained for the

system with transfer conductances.

5.3 Correction of Vv

In the preceding section, a method of determining the critical value
was derived for power systems with transfer conductances. It can not
yields results of good accuracy by itself, however., For example, the cri-
tical value was found out to be 14,735 for the case in Fig. 18!, sSince V
takes 14.221 at 0.33 sec, and 15.357 at 0.34 sec, it is guessed that the
critical fault clearing time exists between 0.33 and 0.34 sec. However,
the actual critical clearing time exists between 0,30 and 0.3l sec as shown
in Fig.l9(a). If the fault is cleared at 0.3l sec, the the no.2 generator
steps out. The discrepancy between the estimated and the actual critical
clearing times is due | to transfer conductances, again.

Fig.19(b) shows the time variations of V, Vi and Vp for the case where
theé fault is cleared at 0.30 sec (stable case), and at 0.31 sec (unstable|
case)., V increases monotonously during the fault-on period. In both cases,
the fault is cleared before V reaches the critical value Vgy. In spite of
this fact, the system remains in synchronism in one case, and it loses syn-
chronism in the other case. V slowly increases after the instant of fault
clearance. 1In the stable case, V reaches a peak, and decreases afterwards.
It should be noted that the peak value is smaller than the critical value
Veye On the other hand, in the unstable case, V increases monotonously, and
it becomes greater than V., after the instant 0.58 sec. These facts suggest
that the fault must be cleared in such way that V does not become greater
than V_, after fault clearance. In Fig.19'(a), V takes 10,960 at 0.30 sec,
and 14.000 (peak value) at 0,75 sec in the stable case. The difference be-—
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tween them is 3,040, Namely, this energy is generated in the period be-
tween 0,30 and 0.75 sec. If it is possible to know this value beforehand,
then we can add it to V in estimating the critical clearing time, By com-
paring this V with the critical value V.., we can get an accurate estima-
tion of the critical clearing time. This is the basic idea for correcting
V for the power systems with transfer conductances,

From (2.,148) and (2.149), the time derivative of V is rewritten as

follows:

dav

— = 2Lg_(5 ) 'w (2.153)
at r''r r

Hence, AV, the increment of V in a time interval, can be given as follows:

te av
] —at
dt
ts

Av

t
[ € 21g,(5,) 'w d
Lg,(6,) 'w dt
S

s
[ © 21g (5,48,
(SS

AV(Gs 3" Ge) (2.154)

where tg and t, are both ends of the time interval, and 65 and 8, are the
values of Gr, at the instants tg and te, respectively. The increment

AV is determined only by the trajectory in the relative angular space, and
it does not matter how long it takes the system to moves from &g to fe.
Lets return to Fig.16le This figure illustrates the trajectory in the rela-
tive angular space for the fault continues., The point c' is on the bound-
ary of the actual stability region. If the system goes over this point,
then the system will lose synchronism, afterwards. The value of Vp at the
point c' is used as the critical value of V., If the fault is critically
cleared, the system moves along the trajectory, and reaches the point c',

then a relation holds as follows:

Vit ) + AV(Soy v Gc.) = Vo, (2.155)

- 80 -



where t_ . is the critical clearing time, and 6., and §,¢ are the values of
§, at the instant tgpy and the point c¢', respectively. If the fault is
cleared before t.,, then the system can not reach the point c', that is,
stable., Conversely, if the fault is cleared after t_,, then the system
goes over the point c', that is, unstable. Hence, two inequalities hold

for these two cases as follows:

V(t) + AV(S, v 8o0) < Ver for t < tg,

(2.156)
V(t) + AV(S, v §or) >V for t > t,

cr
where t is the clearing time, and §, denotes one at the instant t. Lets

define a function V,(t) as follows:
v (e = V(t) + AV(Sy v §gr) - (2,157)

Since (2.155) or (2.156) holds for each clearing time, it is possible to
get the critical clearing time by comparing Va(t) with the critical wvalue
Vere
same case as in Fig.l9. V, is greater than V by AV as is cleare from the

Fig.20| shows the time variations of V, and its components for the

definition, AV takes some value at the initial time, but decreases with
time, and vanishes at the time when the system crosses the boundary of the
stability region. As a result, V, approaches V with time, The critical
value Vgop is 14.753. Since V, takes 13,964 at 0,29 sec, and 14,830 at
0.30 sec, the critical clearing time is estimated to be 0,299 sec. The
actual critical clearing time exists between 0.30 and 0.3l sec, so the a-
bove result is adequately accurate,

One method of correcting V have been derived, now., It is able to take
account of transfer conductances in estimating critical clearing times. It
is not desirable, however, that there exist large discrepancies between V
and V, in the initial period if we were to treat V, as Lyapunov function,
which causes us to derive another method of correcting V.

The increments of Vk and Vp denoted by AVy and AVp are given as follows:

Vv,

t
p
Av = fte (Lg, = — )'w,dt

s 6y
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V(85 ™ 8a) = [Vp(a) = Vp(dg)] (2,158)

AVp

]

Vp(Ge) - Vp(Gs) (2.159)

It is observed from these equations that AVy is determined by the trajec-
tory in the relative angular space, and the AVp is determined by only dg

and 8,. Define a ratio y of AV, to AVy as follows:
y = |avp/avg] (2.160)

By substituting (2.158) and (2.159) into (2.160), Yy is expressed as fol-

lows:

1
y = (2.161)
1l - AV/AVp

The ratio y varies with AV/AVp as follows:

y > 1 for AV/AVb >0
Y = 1 for AV/AVP =0 (2 ° 162)
Yy < 1 for AV/AVP <0

If transfer conductances are zero, the second equation in (2.162) holds,
and Avy is equal to —AVP. On the other hand, if transfer conductances are
not zero, y deviates from 1, and the first or the third inequalities hold,
As is observed froﬁ Fig.19!(b), Vx decreases, and Vp increases after the in-
stant of fault clearance., At the instant when V reaches the peak value,
the most part of V is occupied by Vpe and‘Vk is nearly zero, Let t, and

tp denote the clearing time and the time when V reaches the peak value,
respectively. Energy is transferred from Vi to Vp in the period between

te and tp. The ratio y is, of course, greater than 1 in this period. Since
V is the sum  of Vi and Vps V increases. Assume that all of Vi is trans-

ferred to Vp, then the peak value can be given as follows:

V(tp) = Vplte) + yVi(ty) (2.163)
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where y is that in the period between t. and tpo The fault must be cleared

in such way that the following inequality is satisfied:
Vitp) < Vor (2.164)

Eq. (2.163) and (2.164) suggests that it is useful to make a correction on V

as follows:
vg(t) = Vp(t) + YVk (t) (2.165)

in estimating the critical f£ault clearing time, It is desirable to use the
same value of y as in (2.163), but it is impracticable because t. is, of
course, unknown in the stage of estimation. It is clear from (2.,161) that
y is determined by the trajectory in the relative angular space. If it is
assumed that the system moves along the trajectory for the case where the
fault continues, in the period after the fault clearance, too, then y takes
the same values for the two cases in which the fault continues, and the
fault is cleared at a certain time. Lets return to Fig.l8(b). The time de-
rivétive (dvyk/dt) takes negative values in the period between tg and tgr.
On the other hand, (de/dt) takes positive values in this period. Namely,
Vx decreases, and Vp increases. The value of y in (2.165) is defined as
‘follows:

]

tot te .
| [ (avpraviae/ [ (avy/aviat | (2.166)
ts tg

<
u

The time tg generally does not coincides with the critical clearing time
tops SO the values of y in (2.163) and (2.165) are not equal. Fig.21/ shows
the time variations of Vg and its components for the same case as in Fig.19.
The value of y is 1.399. Vi is initially zero, so V and VB take the same
value at 0.0 sec. The difference between them becomes large with increase
in Vi. The critical value V¢r is 14.753. Vg takes 14,062 at 0.30 sec, and
15,242 at 0.3l sec, so the critical clearing time is estimated to be 0,306
sec. The actual critical clearing time exists between 0,30 and 0,31 sec, so
this result is accurate. Fiq.22 shows the time variations of Vg and its
components for the case where the fault is cleared at 0.30 sec. The value

of y is that in Fig.iIL i.e., 1399, VB varies a little after the fault
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clearance, but its extent is small compared with V, VB takes 14,062 at
the clearing time. It is very close to the peak value of V, 14,000, which

implies that V is actually corrected according to our basic idea.

5,4 Conclusions

In this section, we have developed a method of taking account of trans-
fer conductances into the Lyapunov function derived in §3 under the assump-
tion that transfer conductances are negligible, In practical systems, gene-
rators receive additional torques due to transfer conductances. In order to
take into account these torques, some corrections have been made in determin-
ing the critical value. Namely, it is given by the value of the potential
energy Vp at the instant when the time derivative of the kinetic energy Vi
changes its sign from negative to positive under a given fault. On the other
hand, the time derivative of V is not zero., It deviates from zero to posi-
tive, and to negative with time, In order to eliminate this deviation, we
have made some correction on V in such the way that V is kept constant after
the instant of fault clearance, As a result, two new functions have been
derived.by adding some terms to the original function V., We have obtained

some results of good accuracy in estimating the critical clearing time for

the example cases,

§6, Numerical example

In this section, the transient stability of a l0-machine power system
is studied., Two different methods are used to analyze the transient stabi-
lity. Firstly, a reasonably comprehensive series of classical stability
analyses using the accepted method of step-by-step simulation. Next, Lya-
punov's direct method developed in the preceding sections is applied. Last-
ly, their results are compared., These two techniques differ markedly in
their approaches as well as in the kind of information which they provide;
the systems variables in a simulation are explicit functions of time, for
example, whereas in the transient energy method they are not, Both methods
can be used to compute critical clearing times however, so this familiar
transient Stability performance measure is used as a basis of comparison,

The line diagram of the system is shown in Fig.23!, again. The data

on its transmission lines and generators are shown in Table 5 and 6, res-
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Table 5|, Generator parameters of 1l0-machine
system
No. H Xd'
1 500.0 0.0060
2 34.5 0.0570
3 24.3 0.0570
4 26.4 0.0490
5 34.8 0.0500
6 26,0 0.1320
7 28.6 0.04136
8 35.8 0.0531
9 30.3 0.0697
10 42.0 0.0310 ‘
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Table 6.,

Transmission line constants of
l0-machine system.

BUS BUS R X S TAP
1 31 0.0010 0,0250 1,2000 1.0
1 39 0,0010 0.,0250 0,.7500 1.0
2 11 0,0008 0.0156 0,0 1,025
3 15 0,0006 0.,0232 0.0 1,025
4 17 0.0005 0.0272 0.0 1.0
5 18 0.0 . 0.0143 0.0 1,025
6 20 0.0009 0.,0180 0.0 1,009
7 21 0.0007 0.0142 0.0 1,070
8 30 0.0 0.0200 0.0 1,070
9 34 0.0 0,0250 0.0 1.070
10 38 0.0 0,0181 0.0 1,025
11 12 0.0014 0.0151 0,2490 1.0
11 14 0,0057 0.0625 1.0290 1.0
12 14 0,0043 0.0474 0,.7802 1.0
13 14 0.0014 0.0147 0.2396 1.0
13 23 0.0013 0.0173 0.3216 1.0
14 15 0.0032 0.0323 0,5130 1.0
15 38 0.0070 0.0086 0,1460 1.0
16 17 0,0022 0.0350 0,3610 1.0
16 24 0,0003 0.0059 0.0680 1.0
17 18 0.0006 0.0096 0.1846 1,0
18 19 0.0008 0.0140 0.2565 1.0
19 24 0.0008 0,0135 0,2548 1.0
20 21 0.,0007 0.0138 0.0 1,060
21 24 0.0016 0.0195 0.3040 1.0
22 23 0.0007 0.0082 0.1319 1.0
22 37 0.,0011 0.0133 0,2138 1.0
23 24 0.0007 0,0089 0.1342 1.0
24 25 0.0009 0.0094 0.1710 1.0
25 26 0.0018 0.0217 0.3660 1.0
26 27 0.0009 0.0101 0.1723 1,0
26 36 0.0008 0,0129 0.1382 1.0
27 28 0,0016 0.0435 0,0 1,006
27 30 0.0004 0.0043 0.0729 1.0
29 28 0.0016 0.0435 0.0 1,006
29 30 0.0004 0.,0043 0.0729 1,0
29 34 0,0007 0,0082 0.1389 1.0
31 32 0.,0023 0.0363 0,.3804 1.0
32 33 0.0004 0.0046 . 0.0780 1.0
32 35 0,0008 0.0112 0.1476 1.0
i3 34 0.0006 0,0092 0.1130 1.0
34 35 0.,0002 0.0026 0.0434 1,0
35 36 0,0008 0.0126 0.1342 1,0
36 37 0.,0013 0.,0213 0,2214 1,0
37 38 0,0013 0,0151 0.2572 1.0
38 39 0.,0035 0.0411 0,6987 1,0
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Table 7.

(a) light load

Load conditions of lO-machine system

BUS

ANGLE Pg(Mw) Qg(MVA) Pl(m) Qz‘“"“
1 1.0300 0.000 500,00 44.00 557.86 323.41
2 1.0265 8,461 415.00 -126,.87 0.0 0.0
3 1.0635 5,900 270,00 -86,83 0.0 0.0
4 1.0635 8.642 280,00 -15,23 0.0 0.0
5 1,0493 7.198 325,00 38,08 0.0 0.0
6 1,0123 5.782 254,00 67.76 0.0 0.0
7 0,9972 6,135 316,00 -22.47 0,0 0.0
8 0,9831 50599 325,00 10,14 0.0 0.0
9 0.9820 4,704 281,60 23.38 4,60 2,30
10 1.0475 3.138 125,00 29.47 0.0 0.0
11 1.0696 5,112 0.0 0.0 141,70 13.40
12 1.0766 3,751 0.0 0.0 103,00 13.80
13 1.,0768 1,083 0.0 0.0 140.50 37.70
14 1,0839 2,035 0.0 0.0 69,50 8.50
15 1,0728 2,696 0.0 0.0 112,00 23,60
16 1.0713 1,681 0.0 0.0 154,30 46,09
17 1.0684 4,796 0.0 0.0 123,70 42,40
18 1.0713 4,887 0,0 0.0 0,0 0.0
19 1.0672 2,761 0.0 0.0 137,00 57.50
20 1,0082 3.271 0.0 0.0 340,00 51,50
21 1,0688 3,873 0.0 0.0 0.0 0.0
22 1.0691 0,751 0,0 0.0 79,00 15.00
23 1.0716 1,147 0.0 0.0 0,0 0,0
24 1.0687 1,623 0,0 0,0 164,70 16,10
25 1.0607 0.956 0.0 0.0 160,00 76,50
26 1,0548 1,121 0.0 0,0 0.0 0,0
27 1.0523 1,895 0.0 0.0 0,0 0.0
28 1,0484 1.839 0.0 0.0 4,20 44,00
29 1.0501 1.842 0.0 0.0 0,0 0.0
30 1.0518 2,230 0.0 0.0 0.0 0,0
31 1,0473 -0,093 0.0 0.0 0,0 0.0
32 1,0424 -0,154 0,0 0,0 261,00 88,30
33 1.0431 0,080 0.0 0.0 117.00 42,00
34 1.,0478 1,101 0.0 0.0 0.0 0.0
35 1.0476 0,773 0,0 0,0 0,0 0.0
36 1,0506 0.249 0.0 0,0 250,00 92,00
37 1.0655 0,635 0,0 0,0 161,00 1.20
38 1.0689 2,009 0.0 0,0 0.0 0.0
a9 1,0560 0,761 0.0 0.0 0,0 0.0
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(b) heavy load

8

ANGLE

pg(Hw) Qq(HVA) PQ(MW) QL(MVA)
1 1.0300 0,000 1000.00 88.00 1095,07 260,25
2 1.0265 17,042 830,00 15,56 0.0 0.0
3 1.9278 11.779 540,00 -6.75 0.0 0.0
4 1.,0635 17.637 560,00 95.39 0.0 0.0
5 1.,0493 14,705 650,00 207,65 0.0 0.0
6 1,0123 11,612 508.00 161.26 0.0 0.0
7 0,9972 12,317 632,00 105.15 0,0 0.0
8 0.9831 11.428 650,00 198,49 0.0 0.0
9 0.9820 9.587 563.30 203,60 9,20 4,60
10 1.0475 6,260 250,00 143,30 0.0 0.0
11 1,0508 10,323 0.0 0,0 283,50 269,00
12 1.0511 7.567 0.0 0.0 206,00 276,00
13 1,0397 2,042 0,0 0.0 281,00 75450
14 1,0535 4,058 0.0 0.0 139,06 17,00
15 1.0586 5327 0,0 0,0 224,00 47.20
16 1.0398 3.278 0.0 0.0 308,60 92,20
17 1.0463 9,794 0.0 0,0 247,50 84,80
18 1.0515 9,991 0.0 0,0 0,0 0.0
19 1.0340 54557 0,0 0.0 274,00 115,00
20 0.9924 6,519 0.0 0,0 680,00 103,00
21 1.,0522 7,768 0.0 0.0 0.0 0.0
22 1,0335 1,336 0.0 0,0 158,00 30,00
23 1,0361 2,172 0.0 0,0 0,0 0.0
24 1,0345 3.159 0.0 0.0 329,40 323,00
25 1.0185 1.751 0.0 0,0 320,00 153,00
26 1.,0156 2,140 0.0 0.0 0.0 0,0
27 1,0186 3,779 0.0 0,0 0.0 0,0
28 1.0049 3.661 0.0 0,0 8,50 88,00
29 1,0172 3,669 0.0 0.0 0,0 0.0
30 1.0217 4,481 0.0 0.0 0,0 0.0
31 1,0298 -0,267 0,0 0,0 0,0 0.0
32 0,9999 -0,559 0,0 0.0 522,00 176,60
33 1,0011 -0,066 0,0 0.0 233,80 84,00
34 1,0120 2,101 0,0 0,0 0,0 0.0
35 1,0095 1,413 0,0 0,0 0.0 0.0
36 1,0076 0,271 0.0 0,0 500,00 184,00
37 1.,0327 1,096 0.0 0,0 322,00 2.40
a8 1,0500 3,961 0.0 0,0 0,0 0,0
39 1.0482 1.488 0.0 0.0 0.0 0,0
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pectively. This system is one of the IEEE standard power systems, and has
been used by several researchers, so a comprehensive amount of knowledge

of this system has been accumulated until now. In our studies, it is as-
sumed that this system is disturbed by a 3-phase short-circuit which occurs
at a terminal x of a transmission line x-y, and is cleared by opening the
line at both terminals, The fault location is changed in order that its
effect on the critical clearing time can be investigated, The critical
clearing time will vary according to the fault location, of course., It is
interesting whether Lyapunov's direct method developed in the preceding
section is able to well take account of the change in the fault location.
The studies are made under two different load conditions which are shown in
Table 7/(a) and (b). One of them is severe than the other, and they are re-
fered as heavy load and light load, respectively. With increase in loads,
it is expected that the critical clearing time will be short, and the tran-

sient stability of the system will be deteriorated,

6.1 Procedure of estimation

The procedure for estimating the critical clearing time is shown in

the flow chart of Fig.24., The main steps are as follows:

{Step 1] Read the necessary data on the system, i.e., those on the trans-
mission lines, the buses, and the generators,

[Step 2] Compute the load flow for the prefault state,

[Step 3] Compute the reduced admittance matrices between the generators
by eliminating the buses without generators, for the fault and
the post-fault states,

[Step 4] Compute the stable equilibrium point for the post-fault state.

[Step 5] Integrate the fault.system equations step by step, and compute
the rotor angles and their speeds; §(t) and w(t).

[Step 6] Examine whether the system has reached the boundary of the sta-
bilit& region by observing the sign of the time derivative of
the kinetic energy, i.e., (dVy/dt). If the system has reached
the boundary, then go to Step 7, and if not, then return to
Step 5.

[Step 7] Compute the critical value V.,, which is equal to the value of

the potential enexgy Vp at the instant when the system reaches
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the boundary of the stability region,

[Step 8] Compute the value of the Lyapunov function V(t).

[Step 9] Compare V(t) and Ver. If V(t) is greater than Vgr, go to Step
10, and if not, then return to Step 8,

[Step 10] Print the critical clearing time.

Some comments on those steps should be made. The integration time step
length in Step 5 is 0.0l sec in this study although more rough step length
might be adequate to the study. The method of determing the critical va-
lue V., has been developed in §4. Steps 6 and 7 serve to determine the
critical value., In Step 8, V is used as Lyapunov function, but it will be
replaced by V, or Vg for those cases where transfer conductances are not
negligible. In this study, they are, of course, not negligible, so V, and
and Vg are also used, and the results with these functions are compared
with those with the original function V. The method of producing those

functions have been described in §5.

6,2  Results by simulations

Firstly, the, conventional approach based on simulations are applied
to the transient stability analysis of the lO0-machine power system. The
system equation (2.26) is integrated step by step to Yielq 'swing curves
of generators, where damping torques of generators are assumed to be zero
in this study. In this method, a given fault is cleared at an appropriate
instant, and the corresponding swing curves are calculated. The clearing
time is adjusted by observing the swing curves. If the system is stable
for the clearing time, then it is delayed , and if the system is unstable,
then the clearing time is advanced. By iterating these manipulations, the
critical clearing time is obtained. It takes 4 or 5 times in general for
the iteration to converge, Fig. ZSfapd 26l show the swing curves for the
eight cases of fault locations under the light load and the heavy load con-
ditions, respectively. In each figure, only two cases 6f swing curves are
shown, that is, the cases near the critical one, The difference of clear-
ing time between the two case is 0.0l sec, and the critical clearing time
exists between the two clearing times. It is observed from the figures
that the step-out generators vary with fault location,. For example, no.2

generator steps out for fault 11-12 while no.3 generator steps out for
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Table 8.

(a) light load

Critical fault clearing times obtained
by simulations

Clearing times (sec) Unstable

Fault stable unstable generators
11 - 12 0.30 0.31 2

15 - 14 0.41 0.42 3

17 - 18 0.47 0.48 4

18 - 17 0.50 0,51 5

24 - 16 0.45 0.46 1

30 - 27 0.47 0.48 8

34 - 29 0.46 0.47 9

38 - 15 . 0,65 0.66 1

(b) heavy load
Clearing times(sec) Unstable
Fault
) stable unstable generators

11 - 12 0.06 0.07 2

15 - 14 ~0.20 0.21 1

17 - 18 0.22 0.23 1

18 - 17 0.22 0.23 1

24 - 16 0.18 0.19 1

30 - 27 0.23 - 0.24 1

34 - 29 0.22 0.23 1

38 - 15 0.17 0.18 1
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fault 15-14., 1In general, the generators near the fault location suffer
large disturbances even though all of them do not necessarily step out,
There are several cases where all generators in the system except no.l
generator which represents equivalently an adjacent power system, are
separated from no.l generator. The cases of .fault 24-16 and 38-15 under
the light load condition, and all faults except 11-12 under heavy load
condition fall into' such the cases. In these cases, the interconnection
between the power systems ié disjoined because of some fault occured in
on them, It should be noted that only: one generator near the fault loca-
tion mainly steps out under the light load condition while one of the
power system is mainly separated from the other under the heavy load con-
dition., It is guessed that large power is supplied into this system from
the adjacent system, and as a result, the stability margin between them
becomes low, and some disturbance occured in this system causes them to
separate easily. The results by simulations are summarized in Table 8(a)
and (b). The critical clearing time exists in ranges of 0.30 v 0,66 and
0.06 v 0.24 sec for the cases of light load and heavy load, respectively.
With increase in loads, the critical clearing time proves to be shortened
very much, In practical transient stability analyses, many cases of load
conditions are studied in order to determine the operating policies of

the power system,

6.3 Results by Lyapunov's direct method

Sedondly, Lyapunov's direct method is applied to the transient stabi-
lity analysis of the l0-machine power system. In this method, the system
equation (2.26) is integrated step by step for a given fault, where the
fault is not cleared, to yield the time variations of the Lyapunov func-
tion V. 1In this study, transfer conductances are not negligible, so the
functions Va and VB are also calculated. The instants when these functions
reach the critical value V., are adopted as the estimations of the critical
fault clearing time. The critical value V., is defined as the value of the
potential energy Vp at the instant when the time derivative of the kinetic
energy Vi changes its sign from negative to positive. Hence, the integra-
tion of (2.26) is continued till that instant,

Fig.27 and 28 show the time variations of V, V,, and Vg for the eight

cases of fault locations under the light load and the heavy load cdﬁéiEiaﬁEA
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Table 9, Critical fault clearing times estimated by

Lyapunov's direct method (sec).

(a) light load

Fault Y Vcr v Va V6 Tcr
11-12 1,398 14.75 0.33 0.29 0.30 0.30
15~14 1.077 47.11 0.42 0.40 0,41 0.41
17-18 1.351 50.17 0.51 0.47 0.49 0.47
18-17 1.347 58,61 0.53 0.48 0.50 0,50
24-16 1.305 66,41 0.49 0.44 0.46 0.45
30-27 1.275 45,89 0.51 0.47 0.49 0.47
34-29 1.281 49.17 0.50 0.46 0.48 0.46
38-15 1.189 56.12 0.71 0.67 0.69 0.65
(b) heavy load
Fault Y Vcr \'4 V. vB Tcr
; 11-12 2.719 3.91 0.1l0 0.06 0.06 0.06
15-14 1.318 32.46 0.23 0.21 0.21 0.20
17-18 1.880 34.38 0.26 0.20 0,21 0.22
i 18-17 1.857 39.18 0.27 0.21 0,21 0.22
! 24-16 1.763 41.96 0.23 0.18 0.18 0.18
‘ 30-27 1.703 31,01 0.26 0.21 0.22 0.23
34-29° 1.731 32.33 0.25 0.20 0.21 0.22
38-15 1.841 28.78 0.28 0.22 0,22 0.17

T ..: critical clearing time obtained by simulations.

cr*
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respectively. The function V is nearly equal to zero at the instant when
each fault occurs. However, it increases monotonously during the fault-on
period. Namely, the total energy stored in the system increases with time,
In order to keep the system in synchronims, the fault must be cleared be-
fore the total energy reaches the critical value Voy. In the case of fault
11-12, for example, V reaches Vor between 0,33 and 0.34 sec which implies
that the system is stable if the fault is cleared at 0.33 sec, and that it
is unstable if the fault is cleared at 0.34 sec. Thus we can get an esti-
mation of the critical cleaiing time, However, the influence of transfer
conductances 1is not taken into account by using the function V, so V4 and
Vg are used in order to take account of transfer conductances. V, approaches
V with time although it takes some amount of positive value at the instant
when the fault occurs. On the other hand, Vg takes the same value as V at
that instant, but separates from V with time., As a whole, both Vo and Vg
take greater values than V all the time, In the case of fault 11-12, for
example, V, and Vg reach the critical value V., at the instants between 0,29
and 0.30, and between 0.30 and 0,31 sec, respectively. These results are
very close to that by the conventional approach based on simulations. Table
9(a) and (b) shows the results by Lyapunov'’s direct method for the cases of
the light load and the heavy load condition, respectively, along with those
by simulations, The results with Vo and Vg are closer to those by simula-
tions than V. 1In all the fault cases, V yields optimistic results compared
with the actual stability by 0.01 ~ 0.06 sec.under the light load condition,
and by 0.03 v 0,11 sec’under the heavy load condition. Its extent is more
conspicuous in the heavy load case than in the light load case., This fact
seems to be related with the fact that transfer conductances take larger va-
lues in the former case than in the latter case. In both the cases, Vv, and
Vg yield the results whose differeneces with those by simulations are within
0.02 sec, except the case of fault 11-12, It should be noted that the re-
sults with V4, are in general smaller than those with Vg by 0,00 v 0,02 sec.
As a whole, we can get adequately accurate results by using any of these two
functions, but it is desirable to use Vy rather than Vg because the formex
function yields more safe results than the latter.

An example should serve to clarify the superiority of the new critical
value Vi, introduced in §4 to the usual critical value Vi, in the accuracy

of estimation of the critical clearing time. As the basis of comparison, Vg
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Table 10. Influence of critical value on estimation of
critical fault clearing time by Lyapunov's
direct method.

(a) light load

Fault Critical values Critical clearing times(sec)
Vum Ver Vum Ver Ter

11 - 12 14,22 14.75 0.30 0.30 0.30
15 - 14 17,91 47,11 0.27 0.41 0.41
17 - 18 17.67 50.17 0.32 0.49 0.47
18 - 17 17.67 58.61 0.31 0.50 0,50
24 - 16 17.48 66.41 0.26 0.46 0.45
30 - 27 17,17 45.89 0.33 0.49 0,47
34 - 29 17.67 49.17 0.31 0.48 0.46
38 - 15 17.69 56.13 0,41 0.69 0,65

(b) heavy load

Pault Critical values Critical clearing times(sec)
u
vum Vcr Vum Ver Ter
11 - 12 4,09 3.90 0,06 0.06 0,06
15 - 14 11,63 32,52 0.14 0.21 0.20
17 - 18 14,02 34.38 0.13 0.21 0,22
18 - 17 14,02 39.19 0.13 0.21 0.22
24 - 16 13,57 41,93 0.10 0.18 0.18
30 - 27 14,04 31.04 0.15 0.22 0.23
34 - 29 14.24 32,135 0.14 0.21 0.22
38 - 15 13.80 28,70 0.15 0,22 0.17
Top: critical clearing time obtained by simulations.
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is used as Lyapunov function., Fig.29 and 30 show the time variations of
Vg for the eight cases of fault location| under the light load and the
heavy load conditions, respectively. In the fiqures, the critical values
Vcr and V,, are shown, too. It is observed from those figures that there
is an amount of difference between Vor and V,, for all the fault cases
except fault 11-12, Vyp takes almost the same value irrespective of
fault location, which is due to the fact that the lowest saddle point does
not vary so much with fault location, Accordingly, the estimated value of
the critical value deviates a little with fault location mainly owing to
some changes in the time variations of Vge On the other hand, V., varies
very much with fault location. Namely, it can take account of fault loca-
tion. The instants when Vg reaches Voy and Vyp, are adopted as the respec-
tive estimations of the critical clearing time., In the case of fault,K 15-14,
for example, Vg reaches Vam ‘and V., at the instants between 0.27 and 0.28
sec, and between 0.41 and 0.42 sec, respectively. Since the actual criti-
cal clearing time exists between 0,41 and 0.42 sec, ﬁhe result with V,, is
very conservativé.whereas Vor vields the result very close to the actual
one. Tablel0(a) and (b) show the results of estimation for the cases of
the light load and the heavy load conditions, respectively. In the case of
fault 11-12, V,;, and V., take almost the same values, and the estimated
values of the critical clearing time is 0.30 and 0,06 sec under the light
load and the heavy load conditions, respectively. This fault case is only
one in which Vv, and Vcy give the same results, In the other cases, the
two critical values yields different results. V,, takes values in ranges
of 17.48 ~ 17.91, and 11.63 & 14,24 under the two load conditions while V_,
takes values in comparatively wide ranges of 45,89 ~ 66,41, and 28,70 ~
41.93. The estimated value of the critical clearing time with V., :is
smaller than the actual one by 0,14 v 0,24 sec under the light load condi-
tion, and by 0.02 ~ 0,09 sec under the heavy load conditions, respectively.,
The above discrepancy is somewhat large in view of the fact that the esima-
ted value with V.. falls into a range of 0.02 and 0.0l sec about the actual
value under the light load and the heavy load conditions, respectively, ex-
cept for the fault 38-15. Hence, it is concluded that V . is superior to
Vum {in the estimation accuracy.

Lastly, we should make some investigation on the case of fault 38-15,

In this case, V, and Vg yield the résults which are relatively larger than
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Table 11, Iterations of estimation of critical
fault clearing time for fault 38-15
(sec).

{a) light load

No. Ver Vo VB Y
1 56.12 0.67 0.69 1,189
2 53.06 0.65 0.69 1.176

(b) heavy load

No. Vcr V(1 VB Y
1 28.70 0.22 0,22 1.831
2 21.92 0.19 0.13 1.890
3 19,73 0.18 0.18 1,891
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the actual critical clearing times, It is guessed that there is large dif-
ference between the sustained fault trajectory and the fault trajectory
cleared at some instant, and that the critical value Vqy is different from
the actual one to an extent. One method of improving the critical value
has been described in §4.5. In this method, V., is updated by iteratively
clearing the fault at the clearing time which is estimated to be critical
in the previous estimation, The results are shown in Table ll(a) and (b)
for the two cases of load condition. In the light load case, Vor changes
from 56,12 to 53,06, With this new critical value, the cxrtical clearing
timg is estimated to be 0,65 and 0.67 sec by using Vo and Vgr respectively,
On the other hand, in the heavy load case, V., changes from 28,70 to 21.92,
and from 21,92 to 19,73, With thése new critical values, the estimated va-
lue changes from 0,22 to 0,19 sec, and from 0,19 to 0,18 sec by using any
of Vv, and VB‘ Thus, we can get adequately accurate estimations by updat-
ing V., one or two times, In the tables, the value of y is also shown, It
does not vary so much with iteration, and has little influence on the time
variation of Vge By iterating the above procedure, more accurate results
will be obtained, but the iteration should be limited at most to one time

in order that the computational advantages are not lost,

6.4 Conclusions

In this section, we have made some transient stability analysis of a
l0-machine power system. |The Lyapunov function, and the methods of deter-
mining the critical value, and of taking account of transfer conductances
developed in 83, 4, and 5 have been applied to this analysis. The results

are summarized as follows:

1) The original Lyapunov function V can not take account of transfer con-
ductances, so it has yielded somewhat optimistic results compared with
the actual stability.

2) The functions Vo and VB have been able to take account of transfer con-
ductances to some extent, and they have &ielded adequately accurate re-~
sults whose difference with the actual critical clearing time is within
0.02 sec except one fault case,

3) The usual critical value Vyny \has yielded very conservative results com-

pared with the actual critical clearing time,
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4) The new critical value V_, has accurately showed the boundary of the
transient stability region for almost all the fault cases,

5) In the cases where V. is different from the actual critical value to
some extent, more accurate critical value has been obtained by iterat-

ing the procedure in §4.5 one or two times,.

Thus, we have get rid of the conservative nature of Lyapunov's direct meth-
od by introducing the new critical value. Since the method of determining
this critical value does not need any calculation of unstable equilibrium
points, so we have removed the computational difficulty which has been po-
inted out in the calculation of the usual critical value, at the same time,
Besides, we have take account of transfer conductances which are not negli-
gible in practical power systems by introducing the two functions. By us-
ing these functions,and the new critical value, results of practical sig-

nificance will be obtained for other multimachine power systems with actual

loads.
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Chapter 1III

TRANSIENT STABILITY ANALYSIS OF MULTIMACHINE
POWER SYSTEM VIA LYAPUNOV'S DIRECT METHOD:
DYNAMICS OF FIELD FLUX LINKAGES

§1. Introduction

In this chapter, we are concerned with the transient stability analy-
sis of multimachine power systems in which dynamics of field flux linkages
of generators are incorporated.in their system representation.

- In Chapter II, we have made some investigations on Lyapunov's direct
method applied to the transient stability analysis of power systems in
~which each generatbr is represented by a constant voltages behind a tran-
sient reactance, and have developed it to the point where it can yiéld
resultsvof practical significance in the analysis. As a natural extension,
we proceed to some investigations on the direct method applied to the tran-
sient stability anélysis of power systems in which dynamics of field flux
linkages in the transient period are taken into account. These flux link-
ages generally decrease in the period owing to the armature reactions of
generators, and as a result, the transient stability of the systems is de-
teriorated to some extent compared with the results obtained under the
assumption that those linkages are kept constant in the transient period.
By taking account of their dynamics, we are able to get the results which
are closer to the actual stability of the systems than usual, It should
be noted, however, that dynamics of control equipments, such as automatic
voltage requlators and governors, are not taken into account, so that the
systems has some:stability margins compared with the results which are ob-
tained with the system representation,

Lyapunov's direct method consists of two main parts, that is, the
construction of the Lyapunov function and the determination of its crtical
value, .

Firstly, the former part is investigated. There is a systematic meth-
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od of constructing Lyapunov functions based on the generalized Popov cri-
terion derived by J.B. Moore and B.D.O., Anderson, i.e, Theorem 2 [51]. It
was proposed by J.L. Willems in a process of constructing a Lyapunov func-
tion for a multimachine power system, where it is represented by the con-
ventional model, in 1970 [33]. The obtained Lyapunov function is equiva-
lent to the energy integral function ([54]. It is suitable for estimating
the transient stability of the system, His method was applied and refined
by several researchers [35, 36, 37]. It is not applicable to the systems
in which dyanmics of field flux linkages are taken into account. because
Theorem 2 used as the basis applies to systems with single-variable non-
linear elements whereas those systems belong to a set of multivariable dy-
namical systems with multivariable nonlinear elements. In 1974, M,A. Pai
and V. Rai derived another generalized Popov criterion which is applicable
to those systems. [28]. They applied it to a one-machine connected to an
infinite bus system in which dynamics of field flux linkage is taken into
account, and constructed a Lyapunov function, Their criterion is applica-
ble also to multimachine power systems, but it needs a particular transfor-
mation of system equations, and as a result, it makes it difficult to apply
the systematic method proposed by J.L. Willems, It is necessary to derive
a new criterion applicable to more general form of systems, and was derived
by us in 1979, i.e., Theorem 3, 82 is adressed to the construction of a
"new Lyapunov function based on this new criterion,

Secondly, the latter part, that is, the determination of the critical
value is investigated. Several investigations have been made on the criti-
cal value [38-40]., In the usual method, the value of the potential energy
at the saddle point closest to the stable equilibrium point has been adopt-
ed as the critical value, and it was the main cause of the conservative na-
ture of the direct method, This conservative nature has been removed by
introducing the new critical value which corresponds with the first swing
stability [70, 47]. For the systems in which dyanmics of field flux linka-
ges are taken into account, a few investigations have been made until now.
[41, 64l. J.L. Willems pointed out that there is a new saddle point which
is closest to the‘stable equilibrium point([41], but the critical value gi-
ven on the basis of this saddle point yields very conservative results even
for one-machine connected to an infinite bus systems. H., Sasaki treated

field flux linkages as parameters, and proposed to use the critical value
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which varies with those parameters [64]. This method has a possibility of
yielding results of practical significance, In §3, we make some consider-
ations on equipotential curves, define the transient stability region, and
develop one method of determining the critical value of Lyapunov function,

Thirdly, we generalize the method of taking account of transfer con-
ductances developed in the previous chapter in order to make it applicable
to the system under investigation in §4,

lastly, we make a transient stability analysis of a 1l0-machine power

system by Lyapunov's direct method, and verify its effectiveness in §5,

§2, Construction of Lyapunov function [72,73]

In this section, a Lyapunov function is systematically constructed on
the basis of Theorem 3 in §2 of chap. II. The outline of the method has
been shown in the process of constructing a Lyapunov function for the sys-
tem represented with the conventional model. We naturally follow it with
some changes which are characteristic of the system in which dynamics of
field flux linkages of generators are taken into account. We begin this

section with a derivation of the system equations of the system.

2,1 System equation

In transient stability analyses, an n-machine power system in which
dynamics of field flux linkages of generators are taken into account, is

usually described as follows:

d2s! ds?

n

m, + 4 —= =P - ] Y, .E;E.sin(s, . +6,.)

at? at j=p *J *J ] ]

(3.1)
and’

dE’ |
T — = E_, -EBE', - (x,. - x".)i..
doi at f£di gqi di di’“di (3.2)

where, for generator i,

Pmi : mechanical power input,
m, angular momentum constant,
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d; : damping power coefficient,

Yij£¢ij : post-fault transfer admittance between the ith and the jth
generator nodes (obtained after reduction of a network retain-
ing only generator nodes),

8;45 : complement of ¢j54, i.e., B8ij = /2 - ¢ij,

ij °

Ei/§; : internal voltage,

8ij = 81 = S5,

E&il§; : voltage related with the internal voltage as in Fig. 31, and
6; indicates a rotor angle relative to a reference frame rotating
at synchronous speed,;

Efqi: excitation voltage,

igj : d-axis current,

xdi,'xéi: d-axis synchronous, transient reactances,

Téoi: d-axis transient open-circuit.time constant,

In order to construct a Lyapunov function, two basic assumptions are neces-

sary:

1) Each internal voltage lags behind the g-axis of each generator by a
constant angle ¢; all the time [64].
2) The transfer conductances in the reduced admittance matrix are negli-

gible ©

Under the assumption 1), (3.1) and (3.2) change to the equations which des-

cribe the variations of the internal voltages as follows:

a2s, ds

. n
i

m; + 43 — = P, = Y,..E.E.sin(§,. + 6..)

1 a2 1 dat mi jzl ijij ij ij
(3.3)

and
dEi Efgi ' E : R
T! . = - E; + (x33 = X3:) Y..E.cos(8.. + 6,.)
i di di

doi dt cos¢; j=1 3 13 +J

n
- tand;je(xgi - %qi) )

Y,.E.sin(6,. + 0, .
j=p 1373 45 )

ij
(3.4)

In the cases where ¢; is small, the last term in (3.4) can be neglected.
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Fig.3l. Relations of generator variables.
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Under the assumption 2), (3.3) and (3.4) change as follows (Appendix B):

a%s; as,
i
mi + di —_— =
de2 at
and
dEi
i S
dt
| ]
where
B.. = Y,.,.cosf,,
1] 1) i)

2 B,

(E E 51n6

L
%43)Bi1l/Thoi = By -

- xdl) Z B, JE (cosG

j=1
j#L

- E,.E.sin§,.) (3.5)
17 1]
o
ES)
(3.6)
- cosé. )
1]

for i=1,2,..4,n

" The superscript "o " denotes the stable equilibrium point of the post-fault

system, so (3.5) and (3.6) apply to the post-fault state.

Egs. (3.5) and (3.6) in the state space notation are given as follows:

x = Ax = BF(0)
o = C'x
where
0 n(n-1)
A =10 -M~1p
0 0 -Qt,
(n-1)m  °
cC = 0 0
| o s S
in which
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0
nm 0
Bnn

(3.8)



Mnn = diag (ml ¢ M2, ocooyp mn)
Dnn = diag (dl' d2p cooyp dn)
ann = diag (al, A2, oocoyg an)

Bnn = diag(Bll 82p cocoy Bn)

1; (n-1)
Kn(n-1) = (3.9)
| ~I(n-1)(n-1)
G(n-1)m = [ I(n-1)(n-1) =T (n-1)(m-n+l)
1) (n-1) 01 (m~n+1)
Tnm =
| “I(n-1)(n-1) T(n-1)(m-n+1)

The matrices 1 and O in (3.8) and (3.9) have all their elements equal to

unity and zero, respectively. The number m is defined by
m = n{n-1)/2 (3.10)

The state vector x is a (3n-1) dimensional vector consisting of three vec-

tors as follows:

x = [ © AE' 1! (3.11)

‘where Gr, w, and AE are defined by

o

ari = 61(i+l) - 61(i+1) for i=1,2,c00,n-1,
w, = 6i for i=1,2,c00,:0, (3.12)
— o f '_ N
AEi _— Ei - Ei orxr l—l'z'ooo'nn

The nonlinearity F(o) is an (m+n) dimensional vector consisting of two

vectors as follows:
F(o) = [ £1(0)° fa(o)' 1° (3.13)
where fj(0) is an m dimensional vector defined by

R o (o] .
£1k(0) = By, [EiEjsin(ok + 8i3) - ESEjsinéi4] (3.14)

for i=l'2’.-.'n-l' j=i+l'ooo'n'

k=1,2,ce00,m,
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where k is related with i and j by
k = (i-l)n = i(i+1)/2 + J,. (3.15)
and f,(0) is an n dimensional vector defined by
s o
failo) = B, .E.(cosd§,. - cosd,. 3.16
21 (0) _gl 1454 (60884 5 15 (3.16)
J_
3L
for i=1,2,c00 N6

The output ¢ is an (m+n) dimensional vector defined by

G S, for k=1,2 m
k . P g4go000 ity .
2o (3.17)
Gk = Ei - E]?_ for k=n'l+1'.oo,m+n’
where k is related with i and j by (3.15) for k=1,2,.e¢e,M. Eq.(3.7) des-
cribes the multimachine power system as a multivariable dynamical system

'df the form as shown in Fig°42

2,2 Stability check of system

The transfer matrix W(s) for the linear part of the system is written

as follows:

W(s) = c'(sI - A)”!B
T [s(sI +M~ D)1 IM7 1T 0
| 0 I(sI + a)'IB
I W1 (s) 0
= (3.18)
i 0 W2(S)

For the system to be stable, there must exist matrices N and Q such that

%(s) defined by (2.18) is positive real. In this problem, N is chosen as

follows:

(1/9) Iy Omn
N = (3.19)
Onm Onn

The ‘inequality in (2.14) is equivalent to the following inequalities:

f1xla)ok > O for all ok in R (3.20)

and k=1,2,¢¢¢,M.
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However, the inequalities are satisfied not for all ox in R, but for ranges

of ox as follows:

Omin £ 9k £ 0g and 0 < 0x < Opax for o5 <
or (3.21)

Omin £ 0k £ 0 and 0g £ Ok < Omax for o5 2 0

A
(o]

where

(o] S
Omin = - T - (613 + 67.)

i3
Omax = T = (5zj + aij)
og = ng - ng
and
Gij = sin—l(EzE?sindgj/EiEj)

As observed from (2.,22), F(o)'No has an influence on the time derivative of
V(x). Hence, it is desirable to make its influence zero by letting q -+ =,
However, this selection of g causes a pole-zero cancellation between (N +Qs)
and W(s) because Wj(s) has a pole at s = 0. In order to avoid the pole-zero
cancellation, we give q a finite value in constructing the Lyapunov func-
tion, and once it is obtained, we let q = «,

The function Vj(g) in (2.15) is chosen as follows:

m g
L [ fixlo)doy
k=1 0

Vl (0)

n=-1 n o
= X X Bi.[EiEj(costSij - coséij)

121 it ,
b g o ,_0_0 o (3.22)
- (6,. - 8§, .)E_E.sin§.]

1] 13 13 1]

The function Vj (o) is not positive for all o, but for a range of ¢ = O. Ac-
cordingly, the global stability of the system can not be concluded with
this function. It is possible, however, to estimate the domain of attrac-
tion by using the Lyapunov function obtained with this function. It should
be noted that Vi (0) can take negative values in the vicinity of the origin
if Ei==Eg is not satisfied for all E;, for i=l,2,...,n. This fact may have
significant influence on the stability of the system, but its influence is

assumed to be negligible,
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The partical derivatives of V) (0) are given as follows:

vy
— = B, [E.E.sin(o, + &6°.) - ESEOsins".)
ij i3 k ij i3 ij
ack
for k=1,2,c0.,m,

3V1 n o (3023)

—_ =) Bi.E.(coséi. - cosGi.)

do, 3=l 33 3 3

j#L for k=m+l,c..,m+n,

that is,

yv; (o) I(m+n)(m+n) F(o) (3.24)
Accordingly, Q is given by

Q = I(mtn)(m+n) (3.25)

By substituting (3.19) and (3,25) into (2.18), 2(s) is given as fol-

lows: }
(1/q+s)T' [s(sI +M"1D) ] 1M 1T 0
Z(s) =
0 s(sI + a)~1g
[ 21 (s) 0
_ (3.26)
L 0 25 (s)

The conditions for Z(s) to be positive real are

1) Z(s) has elements which are analytic for Re s > O,

2) 2*(s) = Z(s*) for Re s > o,

3) Z'(s*) + Z(s) is positive semi-definite for Re s > 0.
Since Z(s) is a direct sum of Zj(s) and Z(s), those are investigated in-
dependently of each other, The first two conditions clearly hold for both
Z,(s) and Z,(s). For condition 3) to be satisfied, it is sufficient in
this case to show that Zj (jw) + Z;(—jw) is positive semi-definite for each
scalor w, where i=1,2, After some manipulation, those are found out to
be as follows:

' di - mi/q
Z1 (jw) + 21(-jw) = 2T'diag(

)T (3.27)
m2w?2 + a2
i i
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B.w2

Z (ju) + Z5(-jw) = 2diag( ————r ) (3.28)
2 2
we + 0§

If the following inequalities are satisfied;
q > mi/di for i=1,2,c0.,.n, (3.29)
Bi > 0 for i=l'2’ooo'n’ (3030)

then both the right hands in (3.27) and (3.28) are positive semi-definite,
Hence Zj(s) and 25(s) are positive real, Z(s) is positive real, too. From

theorem 3, the system is stable,

2,3 Solution of matrix equations

Since the system is stable, there exists a Lyapunov function as fol-

lows:

V{x) = x'"Px + 2V; (0) (3.31)

where P is a (3n~1)x(3n-l) positive definite symmetric matrix satisfying

the following equations:
PA + A'P = - LL'
PB = CN' + A'CQ' - LW, (3.32)

1 = ' ' '
W 'W_ = QC'B + B'CQ

L and Wo in (3.32) are (3n-l)X(m+n) and (m+n)X(m+n) matrices, and there
are some relations concerning L and W, [53]1. 2(s) +2'(-s) is factorized

as follows:

Z(s) + Z2'(~s) = Y'(—s)Y(s) (3.33)

where Y(s) is an (m+n)x(m+n) matrix. Y(s) has a minimal realization

(A, B, L), that is,
¥(s) - Y(®) = L'(sI - A)~!B (3.34)
and W0 is equal to Y(»), i.e.,
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W, = Y () (3.35)

' Since Z(s) is a direct sum of Zj(s) and Zs(s), P is given as a direct sum
of Py and P, where P) and Py are (2n-1)x(2n-1) and nxn matrices, and

they correspond to Zj(s) and Z;(s), respectively. Namely,

Py 0
P = (3.36)
0 P2
The transfer matrix W (s) is rewritten as follows:
Wi(s) = C1(sI - a1)~1By (3.37)
where
o K' 0 G
Ay = By = C; = (3.38)
o -ulp M-l 0
Since CiBl = 0 holds, (2.20) reduces to
P1A; + AJP] = - L)Ly
. , . (3.39)
P;B; = CiNy + A;C103
P} and L) are partitioned as follows:
P11 P12 L11
Pl = Ll = (3040)
P21 P22 Li2

where P11, P12, P21, and Py are (n-1)x(n-1), (n-1) Xxn, nx (n-1), and nXn
matirces, and Ljj and Ljp are (n-1l) Xm and n xm matrices, respectively.

Substituting (3.38) and (3.40) into (3.39) gives the following equations:

0 = - L11L)1 | (3.41)
Py1K' - PypM~lD = 0 (3.42)
Py1K' + KPyp - Py,M™ID = DM™1Py, = - LyaLin (3.43)
PioM7IT = (/9)G (3.44)
PyoM T = T (3.45)
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These equations are the same as (2.,62) ~ (2.66), and their solutions are

given as follows:

KPy1K' = (1/q)D + pDUD
KPj2 = (1/q)M + pDUM (3.46)
Pso = M + uMUM

where U is an n xn matrix with all elements equal to l. The scalars p and

u must satisfy

n
p > - (/q) } a,

1=l (3.47)
n dimi
p-p > -1/ ) ———
i=1 4; - mi/q
for P; tobe positive definite matrix, and satisfy
n-1 n (d;ms -d:my) 2. n d;m;
1] 1 it
(a2 y Y “ur ) ——— -1¢<o0
i=1 j=i+l 4(dj -mji/q) (dj -mj/q) i=1l 4 -my/q
(3.48)
for (3.43) to be satisfied, where u* is defined by
u* =U -0 o (3049)
The transfer matrix W (s) is rewritten as follows:
Wa(s) = Ca(sI - Az)~1B, (3.50)
where
Ay = = ®%nn? By = Bnn, C2 = Ipyp (3,51)

Since Z5(s) is positive real, Z,(s) + Zé(-s) is factorized as follows:

Zy(s) + Zy(=S) = Yp(-5)¥s(s) (3.52)
where
sszi
¥2(s) = diag( —) (3.53)

i s + aj

By solving (3.34) with (3,51) and (3.53), we obtain
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Ly = - di_ag(/i-ai//é-i) (3.54)
h R

P2 and L, are related with each other as follows:
L
PaAs + AgPp = - LzLé (3.55)

By substituting (3.51) and (3.54) into (3.55), and solving it, P; is given

as follows:
Py = ap~l (3.56)
Thus P; and Py, and accordingly, P are obtained,

2.4 Lyapunov function

An expression for the Lyapunov function can be obtained by substitut-

ing (3.11), (3.46), and (3.56) into (3.31) as follows:

Vv (x) [6;, w', AE'1]| P11 Pi2 0 Gr + 2vy (o)
Py1 Paoo 0 w

0 0 Py AE

6;P116r + 26;P12w + w'Ppow + AE'PRAE + 2Vq(0)

8§'(D/q + pDUD)S + 28" (M/q + pDUM)w + w'(M + pYMUM)w
+ AE'aB~lAE + 2v) (0) (3.57)

Now the Lyapunov function is obtained, so we let q -+ « because q is intro-
duced only in order not to cause a pole-zero cancellation between (N +Qs)
and W(s) as mentioned before. Substituting (3.22) into (3.57), and expand-

ing and rearranging the terms in (3.57), we obtain the following expression:

"

n n n
V(x) (1/2.2 mi) z z mimj(mi - mj)z

i=l 7 i=1 j=1

n
(u* - uo)(izlmimi)2

+

+

n
o{i_Z_l[ai(ai - 62) + mw 1}
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n
+ I (a;/8,) (E; - ED)?

l=
+ % E B, . [E,E, (cos8;, - cosS,.) - (§,. = 80, )EE sind?.)
i=1 =1 i3 i3 ij ij ij 1377173 ij
(3.58)
where LR is a scalar defined by
n
uy = -1/ I my (3.59)
i=1

The first and the second terms in (3:58) represent kinetic energy. If
damping torques of generators are uniform, then we can choose u* to be
equal to Hge The scalar p in the third term is an arbitrary non-negative
scalar., It is chosen to be zero because the term narrows and complicates
the estimation of the transient stability of the system. The fourth term
is the new term which répreéehts}a magnitude of deviations in field flux
linkages, If field flux linkages are constant, this new term disappears.
The fifth term represents potential energy which is stored in the system
owing to some deviations of rotor angles of generators from those at the
stable equilibrium point, The potential energy plays an important role in
defining the transient stability region of the system.

In those cases where damping torques are uniform or zero, (3.58) re-

duces to

v(x)

1l

(1/2 ) m,) mm,(w, - w,)
i=t Y= gm0

n n
‘ o 0,00 . O
+ )y ¥ Bi.[EiEj(coséij - cosGij) - (Gij - Gij)EiEj31n6ij]

i=1 j=1
o (o]
+ Y (a;/8,) (B; - E))?
i=1
= Vi (W) + V(8 ,E) + Ve(E) (3.60)

where p is chosen to be zero. Vk and Vp are kinetic energy and potential

energy, respectively, The time derivatives of Vk’ Vp, and V_ are written

f
as follows:
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av n n
(1/ Z a) )y g djw; - oy )2

o

dt i=1 im j= l
n n oo . (3.61)
+ )] ) B, (EEsin . - E;E.;sin§ ) (0 - uy)
jo1 oy 13 2343 37043 3
.o f ]
—_— = - B (E E 51n6 - E.E.sind,.) (., = w.)
at j=1 §=1 *t 13 o)
E E . (3.62)
+ 2 (dE, /dt) B, .E.(cosS,. - cosS..)
i 5y 133 ij ij
e LRy § o g ot
—_— = =2 (dE. /dt) B, .E,(cosS,, - cos§, )
at i=1 * =1 43 +J ot
(3.63)

n
2 } (1/8,) (@E;/at)?
i=1

The first term of (3.61) is due to damping torques of generators, and it
is non-positive., A part of the kinetic energy is dissipated by damping
torques. The second term of (3.61) and the first term of (3.62) are the
same magnitudes and of the opposite signs of each other, which implies
that there is some exchange of energy between the kinetic energy and the
potential energy. These terms do not contribute to the damping rate of
V. Similarly, the second term of (3.62) and the first term of (3.63) are
of the same magnitude and of the opposite signs of each other, There is
some exchange of energy between Vp and Vf, too., The second term of (3.63)
is in proportion to squares of (dEi/dt), and it is non-positive regardless
of whether internal voltages Ej are decreasing or increasing. As a whole,

V dampens according to

av
T . sl J) I3 a;d, (w; = wy)?

dt 1—1 i=1 j—l (3.64)

-2 2 (1/8,) (GE, /dt)2
i=1

while Vy and V,, Vp and V. are interacting with each other, respectively.
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2.5 Conclusions

In this section, we have constructed a Lyapunov function with a sys-
tematic method based on a generalized Popov criterion for the multimachine
power system‘in which dynamics of field f£lux linkages are taken into ac-
count, There is some difference between this new Lyapunov function and
the Lyapunov function derived in §3 of the previous chapter for the power
system‘}in which field flux linkages are assumed to be constant in the
transient period, in several point as follows:

1) The new function consists of three terms, that is, kinetic energy Vi,
potential energy Vp, and a new term Vg,

2) The kinetic energy Vi is the same in both the functions,

3) The potential energy Vp varies with some deviations of field flux
linkages as well as relative rotor angles of generators.

4) The new term Vg is associated with some deviations of field flux link-
ages, It does not appear for the systems represented with the conven-
tional model,

5) The damping rate of V consists of two terms. One of them is due to
damping torques of generators, and the other is due to the time deri-
vatives of field flux linkages. The latter term does not appear for
the conventionally modeled systems,

Thus, the obtained Lyapunov function is characteristic of the power systems
in which dynamics of field flux linkages are taken into account. The tran-
sient stability of the systems is investigated on the basis of this new

functions in the following sections.

§3, Critical value of Lyapunov function [73]

In this section, we make some investigations on the critical value of
the Lyapunov function constructed in the preceding section. For the power
systems in which field flux linkages of generators are assumed to be const-
ant all the time, we have defined the transient stability region, and in-
troduced the new critical value for the first swing stability in order to
get rid of the conservative nature of Lyapunov's direct method. In these
systems under investigation, field flux linkages vary with time, and as a
result, the equipotentical curves also vary with time because the potential

energy function V, defined by (3.60) is a function of field flux linkages
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as well as relative rotor angles of generators. Accordingly, the tran-
‘sient stability region defined in the previous chapter does not apply to
these systems as it is; and some corrections must be made on it and the

critical value as well,

3.1 Model and basic equations

If damping torques of generators and transfer conductances of reduced
admittance matrices are zero, then the motion of the ith generator is des-

cribed as follows:

d26. 2 0_0 (o]
m, —= = ) B,,(E;E.sin,, - E,E,sin§, ) (3.65)
1 2 “4 1) 1] 1] 1] i)
dt =1
and
dEi o) ? o]
—_— = - qa.(E. - E.) - B. B..E,(cos6,. - cos6..) (3.66)
dt it i lj=l ij 3 ij ij
j#AL
where
— - o <! '
oy = L= (kg - xgy)Bi5 1/ Taos
4 L]
By = (%g3 =~ %451/ Tg0i

The EuPefEcriét}"o“ denotes the stable equilibrium point of the post-fault
system, so (3.65) and (3.66) apply to the post-fault state,
A Lur'e type Lyapunov function has been derived for this system in the

preceding section as follows:

V{x)

n n n )
(l/zizlmi).zl jélmimj(mi - mj)

+
il o~

It ~8

B, . [E.E, (cos8®, =~ coss,.) - (8,. = 6°.)ECESsinsS. ]
ij ivg ij ij ij i3 713 ij

i=l j=1
n o 2
+ 'Zl(ai/si)(Ei - Ei)
= Vk(u)) + vp(d B) + Vf(E) (3.67)

The first term in (3.67) represents kinetic energy of generators, and it is
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a function of relative angular velocities of rotors. The second term re-
presents potential energy which is stored in networks owing to some devi-
ations of rotor angles from those at the stable equilibrium point, It must
be noted that Vp varies with internal voltages, too. The third term Vg
represents a magnitude of deviations in internal voltages. The time deri-

vatives of V., V_, and V_ are given as follows:
k" 'p

de

Ne~18 K

]
o~

B, . (ECECsin§®, - E.E.sind, ) (0w, - w.) (3.68)
ij i3 ij 1] 1) 1 ]

at i=1 j=1

dav n
P - _ Z

dat i=1 j

Il o~18

B, . (E’E%sins®. - E.E.siné, ) (w, - w.)
1 137 ij i3 i3’ vi j

(3.69)

+

n n
o
2 } (dE,/dt) ] B, .E,(cos8.. - coss,.)
j=1 b gop 133 ij ij

|

n n
o
- §..)
” ZiZl(dEi/dt).ZlBijEj(cosdij cos lJ)
J (3.70)

n
2y (1/8,) (dE, /dt) 2
i=l

The right hand term of (3,68) and the first term of (3.69) are of the same
"magnitude and of the opposite signs of each other, which implies that there
exists exchange of energy between Vi and Vp° Similarly, the second term of
(3.69) and the first term of (3,70) are of the same magnitude and of the
opposite signs of each other. There exists exchange of energy between Vp
and'Vf, too. Those terms do not contribute to the damping rate of V., As

a whole, V dampens according to

dav

n
— = =27 (1/8,) (dE, /dt) 2 , (3.71)
dt i=1

The right hand term of (3.71) is in proportion to squares of the time deri-
vatives of internal voltages. It takes non-positive values all the time
regardless of whether internal voltages are increasing or decreasing.. The

total energy of the system is dissipated through this term.
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Fig.32.

Equipotential curves of 3-machine
systems E = (1.0, 1.0, 1.0) p.u.c.
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3,2 Transient stability region

It is observed from (3.67) that the potential energy Vp depends on
relative rotor angles and internal voltages. If §; is chosen as reference,

Vp can be treated as a function of a (n-1) dimensional vector Gr and an

dimensional vector E as follows:

Vb vp(sr, E) (3.72)

where

Gr (621, 631, ceseyp Gnl)' (3073)

Fig.32 sﬁows an example of Vp(6r, E) in a (n-1) dimensional relative angu-
lar space for a 3-machine power system. The curves C;, Cp, ... are equi-
potential curves yielded by

Vp(Gr, E) = Ci i=1,2,... (3.74)
where internal voltages are treated as parameters, and E = (1.0, 1.0, 1,0)°
in this figure., This figure is the same as Fig.l1l0. The function Vp takes
the minimum value at the point S. The points Uj, Us,.... are saddle points.
The curves 0y, Oz, ... are those which go through U, Us, ..., and are or-
thogonal to equipstential curves, respectively. If Cj takes small values,
then the corresponding equipotential curves are closed, and surround the
point S. With increase in magnitude of Ci, equipotential curves goes out-
side, and reaches the lowest saddle point Uj when C; takes the value defined

as follows:

Vulr = Vp(Sy1, E) (3.75)

where §,; is the relative!angle vector at Uj. If Cj is greater than Vy,
then the corresponding curve is not closed any more., With more increase in
magnitude of Cj, the equipotential curve reaches the saddle points U,, Uj,

s+ in sequence according to

Vuz = Vp(Sy3, E) (3.76)
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where 8,2, 843, ... are the relative angle vectors at Up, U3, oo., respec-

tively,

It is observed from (3.65) that each generator receives a torque ex-

pressed as follows:
o o_o o

£, = ) B, .(E]E.sin§,, - E,E,siné, ) (3.77)
R 1] 1] 1]

" The fi defines an n dimensional vector £

£

[ £14 £2, eees o }° (3.78)

The sum of all torques denoted by f is given as follows:

n
1t

i=1

£

n n
) Bi.(EZE9sinsz. - E,E.siné )
jo1 oy 4301 j 3 j

- 0 (3.79)

Eq.(3.79) implies that the center of angular velocities w defined by

_ n n
w = 'Z mimi/.z m, (3.80)
=1 i=1

does not receive any torque, and accordingly, it is kept constant all the

time, that is,
w = constant (3.81)

This fact implies that each torque does not contribute to the accellation
- of the center of angular velocities, but that each torque has only influ-
ence on relative behaviors of generators. There is a relation between the
torque £ and the potential energy function Vp as follows; the partial

derivativés'cofjvp with respect to relative angles are given by
v

n
—2 = 2) B (EEsins, - EE sins] )
351 jop B30 j ] j
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= - 2f; i#l (3.82)

which gives
P L oof (3.83)

where fr is a reduced torque of (n-1l) dimension defined as follows:

fr = [ fz, f3’ ecseop fr! ]'[ . (3.84)

The direction of (avp/aar) is orthogonal to equipotential curves, and its
magnitude is proportional to the gradient of equipotential curves. Eq.(3.
83) shows that the system receives the torque which always acts orthogonal-
ly to equipotential curves.

In Fig.32, fr is parallel with the curves 03, Oz, ... on these curves,
Those curves enclose the region in which the stable equilibrium point S
exists. In this region, fr acts on the system in such way that it will
confine the system in this region., The system will lose synchronism if it
crosses one the curves 0, O3, ... from the inside to the outside of the
region, because fr will act ;in such way that it will separate the system
from the curve afterwards. The transient stability region is defined as
the region which is bounded by the curves 0;, Oz,... in a wide sense that
the system receives the synchronizing torque in it. Thus the transient
stabilify region is defined in the same way as for the power systems repre-

sented by the conventional model,

3.3 Variation of equipotential curves

Since the potential energy function Vp contains internal voltages as
its variables, equipotential curves yielded by (3.74) varies with internal
voltages. Fig°3§'shows some examples of equipotential curves for the same
system as in Fig°§2L In Fig.3i(a), E; is 0.4 p.u. whereas E; and Ej are
both 1.0 p.u. In this case only the saddle point Uzzremains, and other sa-
ddle points disappear. The value of Vp at Uy is 0.17, which is very small
compared with the case where E;, E;, and Ej are all 1,0 p,u, (Fig.32). The

region enclosed by the equipotential curve which goes through u, is narrow.
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Fig.33. Variations of equipotential curves with
- internal voltages in 3-machine system,
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Relatively small disturbances are able to cause no.2 generator to step out,
Fig.33(b) shows the equipotential curves for the case where E3 is 0.4 Polo,
and E; and E, are 1.0 p.u. In this case, only the saddle point Uyl remains.,
The region enclosed by the equipotential curve which goes through U, is ve-
ry narrow, so no.3 generator will step out even for small disturbances. In
Fig.33(c), E2 and E3 are both 0.4 p.u., and only El is 1.0 p.u.. In this
case, there is no saddle point, and accordingly, no transient stability re-
gion, The system can not keep synchronism any more in such cases. Thus
the equipotential curves vary with internal voltages. These variations
have significant influence on the stability of the system, Next, we make

some investigation on their influence.

3.3.1 Time variations of internal voltages

As is observed from Fig.33(a) and (b), when some internal voltages de-
crease in magnitude, the equipotential curves vary in such way that the
corresponding generators will step out easily. Namely, when Eo decreases
from 1.0 p.u. to 0.4 p.u., no.2 generator becomes liable to step out, and
when E3 decreases from 1.0 p.u. to 0.4 p.u., then no.3 generator becomes li-
ablebto step out. Thus the magnitude of the internal voltage is closely re-
lated with the stability of each individual generator., Hence it will be use-
ful to make some investigation on qualitative nature of their time varia-

tions,

Internal voltages vary with time according to (3.66), i.e.,

dE, n
i o o

— - a, (B, = E) - BijZ]_BijEj (cosé ; = cosd; ) (3.66)

JAL

for i=1,2,000,n

The first term of (3.66) prevents the ith internal voltage from deviating
its stable value. The second term is due to some deviations of relative
rotor angles from those atithe stable equilibrium point. It causes the ith
internal voltage to leave from its stable value., As shown in Fig,34, (cos
Gij - cosGij) takes positive values in section A and C, and negative values
in section B, Assume that the ith generator is accellated with respect to
othgr generators, and that Bij stays in C for all j (j = 1~vn, # i), then
Ei decreases very much compared with other internal voltages. The rate of

decrease in Ei is maximum when Gij is equal to 7 rad. It is concluded from
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these investigations that the internal voltages decrease much in magnitude

for the generators whose rotors are accelerated with respect to other gen-
erators. Such generators are in usual corresponding to those which are near
fault locations.

Combining the fact observed from Fig°3§ka) and (b) and the investiga-
tions made in the above paragraph, we can draw a picture as follows: when
some generators suffer large disturbances owing to a fault, then their ro-
tors are accelerated with respect to other generators. With separation of
their rotor angles from those of other generators, their internal voltages
decrease much compared with other generators. The equipotential curves of
the system vary with the variations of the internal voltages in such way
that the corresponding generators will easily step out. As a result, the
stability of the system will be degraded much compared with that which is
evaluated under the assumption that the internal voltages are kept constant
all the time,

3.3.2 Movement of saddle points

In Figo3ﬂ(a), there exists only one saddle point U,y and other saddle
points disappear. Let us assume that no.2 generator suffers large distur-
bance owing to some fault, and that its internal voltage E; begins to de~
crease from 1.0 p.u., and reaches 0.4 p,u., at some instant. The saddle po-
int Uzgmoves from the point shown in Fig.32]to the point shown in Fig.33(a)
during the period, If the internal voltage continues to decrease, then Uﬂ
approaches the point S, and at last, 301n to it, Both of them will vanish
at the next instant, and the transient stability region also vanish at the
same time., On the other hand, if the internal voltage E; stop decreasing
before Uﬁ and S join, then the transient stability region remains, Some
investigations are made on this latter case,

Following the discussions made in §4.3. of the previous chapter, we can

get a stability condition as follows:

{Stability condition 5]

If a system satisfies

v, + V. < Vv O (3.85)
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then the system is stable around a saddle point U, where V,, is the value

of Vp(ér, E) at U,

This stability condition corresponds to Stability condition 2 in the previ-
ous chapter, As is clear from the definition of Vy, Vy is not constant,but
varies with internal voltages. Namely, the inequality in (3.85) is time-
dependent, Since V¢ in (3.67) takes positive values, it is possible to re-
place (Vv + Vp) by V. However, this replacement will yield a condition
more strict than (3.85). In Fig.33i(a), there exists only one saddle point

Uy. If (Vg + Vp) is smaller than v, “all the time, then the system is sta-

2
ble, where Vuzéis the value of Vp(Gr, E) at the saddle point UZ‘ Bearing
this case in mind, let us compare the time variations of Vy and (Vi + Vp).

The time derivative of Vy is given as follows:

av, dE ds
— = (3V /3E), o — + (3V,/38,)  ° — (3.86)
dt PP 0% g P Su gt

Since (avp/aar) = 0 holds at the saddle point U, (3.86) reduces to

avy dE
dt P Su at
n n o "
= ZiZl(dEi/dt)jZlBijEj(cosﬁij - coséij) (3.87)

On the other hand, the time derivative of (Vi + Vp) is given from (3.68)
and (3.69) as follows:

d(Vk-+Vp) n n
o
—_— = 2 X (dEi/dt) z Bi.E.(coséi. - cosGi.) (3.88)
at i=1 j=1 * ) ] ]
By subtracting (3.88) from (3.87), we obtain the following equation:

d[Vy - (Vk +Vp)]

n n

u

= 2 ) (4E,/dt) ) B, .E.(cosS§,. - cosS_.)

dt i=l  * 3= Y1) + )
(3.89)

If the right hand term of (3.89) takes positive values, [V, - (vk-+vp)] in-

creases, and if it takes negative values, then [Vy - (Vk +Vp)] decreases.
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The term is not sign-definite, however, so both the cases can happen., Now
assume that only the ith generator is accellated owing to some fault, and

that the fault is cleared at an instant t; in such way that
Vg - (Vg + V) = Vv, > 0 (3.90)

holds, that is, (3.85) holds. V, is regarded as stability margin, If it
takes positive values at each instant after t.s, then the system is stable
according to Stability condition 5. In usual, the following inequalities

hold during the first swing:

dE; dE,
— <0, —¥L o for j = 1nvn, # i (3,91)
dt dt
and
u . .
coscSij - cosGij > 0 for j = 1vn, #1i (3.92)

By substituting (3.,91) and (3.92) into (3.89), we can obtain an inequality

as follows:

< 0 (3.93)
dt
Accordingly, the stability margin V, decreases with time. In order that
it takes positive values all the time after the instant of fault clearance,
some positive value must be given to V, at the instant of fault clearance,
It will be useful to make a rough evaluation on the necessary stabi-

lity margin, Firstly, let us assume as follows:

dE.

i
_— = ~-~€, E. = 1,0 pou.,
at J
for j = 1vn, #1i (3.94)
u
Gij = 1/2 rad, Gij = 7 rad,

then (3.89) reduces to

av, - (v, +v.)] n
= k P = = 2€ z B, .
dt j=1 *J

j#L

(3.95)

v 2¢eB, .,
ii
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If we assume that

Bii = - 10,0, g = 0,2 p.u./sec (3.97)

hold, then we obtain from (3.96) an equation as follows:

afvy - (Vk +Vp) ]

4.0 (3.98)

dt

Namely, the stability margin V, decreases at the rate of 4.0 p.u./sec. If
it is assumed that the differences of rotor angles between the ith genera-
tor and other generators become maximum at some instant in the interval of
0.0 &~ 1,0 sec, the stability margin V, should be 4,0 at the clearing time
tc. Next, Vy is roughly evaluated. Let us assume as follows:

(¢]

Ej = 1,0 poU., Ej = 1.0 polay for j = 1vn,
§°. = 0,0 rad ¢ : 6?. = 7 rad , for j = 1vn,
ij ij £ 1
[4
o u .
§,, = 0.0 rad,, ., = 0,0 rad , for j,k = 1%Vvn,
ik jk £ i
14
(3.99)

Since V,, is defined by the value of Vp(Gr, E) at the saddle point U, it is
given by substituting the relations in (3,99) into (3.67) as follows:

N = 4B, (3,100)
- 11

<
1]
KN

Il o~
o)

p 13
j#L

The ratio of d[V, - (Vg + Vp)]/dt to V, is given from (3,95) and(3.,100) as
follows:
dlvy - (Vk-+Vp)]/dt

X = = e 8/2 (30101)
Vu

1f we substitute (3.97) into (3.100) and (3.101), then we obtain

v, = 40, [x] = 0.1 (3.102)

Accordingly, the stability margin V. which is necessary at the clearing

time, proves to be 10 percent of Vy. In order to satisfy (3.85) during
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the first swing, it is necessary to clear the fault before (Vg + Vb) reaches
(Vy = Vy) instead of V,, e.g., 36 instead of 40 in the above case,

Thus it is clarified that some stability margin must be reserved to
Stability condition 5. 1In a particular case where only one machine suf-
fers large accellation owing to a fault, we have made a rough evaluation
of the necessary stability margin. However, it is very difficult to ex-
tend the above discussion to general cases where several generators suffer
large disturbances at the same time. We close this discussion only by

noting the necessity of such stability margin.

3.3.3 Vanishment of transient stability region

As observed from Fig.33(c), there is no saddle point in the case where
E2 and E3 are both decreased from 1.0 p.u. to 0.4 p.u. Considering that fr
in (3.84) is always orthogonal to the equipotential curves, it is clear
that the system is accellated to one direction in this case, and as a re-
sult, that the system will lose synchronism. In other words, the transient
stability region does not exist. For the transient stability region to ex-~
ist, the internal voltages must remain in some area, Fig. 35 shows such a
area for the system in Fig.32. The shaded area indicates one where the
transient stability region does not exist. If the internal voltages de-
creases owing to a fault, and if they fall into this shaded area, then the
transient stability region vanishes. This vanishment will have significant
influence on the stability of the system,

Consider a one-machine connected to an infinite bus system shown in

Fig,36L The system equation in (3.65) and (3.66) reduce in this case as

follows:
d2s o
m — = BE E(sin§ - sin§) (3.103)
ae? ®
and
dE o o
~ = = qa(E - E) - BBE(cosS§ - cosf) (3.104)
dt '

where & is the rotor angle of the generator, and E_ is the voltage of the
infinite bus. The Lyapunov function V in (3.67) reduces for this system

as follows:
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V(x) = 2V*(x) (3.105)

where

Vr(x) = (1/2)mw? + BE_[E(cos§® - cosd) - (§ - 6°)E°sins®]

+ (a/28) (E - E°)2

V*(x) is equivalent to the Lyapunov function derived by M.W. Siddiqgee. [23].

Fig.37 shows some examples of the curves which are yielded by
V*(x) = C (constant) (3.106)

In Fig.37(a), (b), and (c), (E - Eo) is treated as constant, and is given

as follows:
E-E = 0.0 peu. c<co° (a)

= =0,5 P.u. evce (b)

= =1,0 p.u. c°cc° (c)

If it is assumed that the internal voltage E is fixed all the time, then
the system moves along the curve determined by (3.106) when a constant is
given to V*(x). If the curve is closed, then the system keeps synchronism.
Otherwise, the system loses synchronism. In the case of Fig.37(a), the

curves corresponding to
V*(x) < 1.884 (3.107)i

are all closed, and the system is stable if (3.107)) is satisfied. Similar-

ly, in the case of Fig.37(b), the curves corresponding to
V*(x) < 0,536 (3.108)

are all closed, and the system is stable if (3.108) is satisfied. The con-
ditions (3.107)| and (3.108) are equivalent to the condition (3.85) if (a/28)
x(E - E°)2 is subtracted from both the sides in (3.107) and (3.108). The
values 1.884 and 0,536 are corresponding to the value Vu in (3.85). Vu

varies with the internal voltages as discussed in §3.3.3. Hence, (3.85)
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is satisfied all the time, then the system is stable. However, in the case
of Fig.37(c), there is no closed curve, so the system can not keep synchro-
nism. In this case, we can not get such a condition as those in (3.107)

and (3.108). For such conditions to be obtained,
(8 - E°) > - 0.60 p.u. (3.109)

must be satisfied. Otherwise, there is no closed curve, and accordingly,
we can not get such a condition as (3.107). If (E - E°) is equal to - 0.

60 p.u., we can obtain a condition as follows:
vV*(x) < 0.484 . (3.110)

This a limit condition which is obtained by decreasing (E - Eo), If

(E - E°) becoﬁes smaller than - 0,60 p.u., we can not get such condition
any more., Fig.37(d) shows the curves yielded by (3.106) , where the rotor
velocity w is set to be zero. The curves which satisfy (3.110) are all
closed., Hence, it is concluded from Fig.37(a), (b), and (c), that those
curves are also closed in the space of (§ - 60, w, E - Eo). If (3.110) is
satisfied, then the system is stable regardless of the variation of the
internal voltage E. In this sense, (3.110) is an absolue condition where-
as (3.107) and (3.108) are temporary ones.

The same discussion hold for the system in Fig.32 and 35, and we can
get conditions corresponding to (3.109) and (3.110). In the shaded area
of Fig.35, the transient stability region does not exist, The condition
(3.109) is corresponding to Fig.35. By calculating the maximum value v&
of V(x) in (3.60) under the constraint that x does not violate the shaded

area, we can get a condition corresponding (3.110) as follows:
Vi) < VLo | (3.111)

If this condition is satisfied, then the transient stability region does
not vanish, and the system is able to keep synchronism. 'However, it is
not desirable|to adopt (3.111) in evaluating the stability of the system
because of two defects as follows; Firstly, it yields very conservative
results when internal voltages do not decrease| enough to cause the vanish-
ment of the transient stability region. As an example, consider the one-

machine system., If the internal voltage E is constant, (3.107) is satis-
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factory for the system to be stable. There is a large discrepancy between
(3.,107) and (3.110), and if the latter condition is adopted, then it will
yield very conservative result as is clear from Fig.37(a). Secondly, it
takes very much computation to get the boundary of the shaded area, and
accordingly, to get the condition (3.111). This difficulty will be appre-
ciated if one consider the case where a system contains many generators,
for example, 20 generators. In this case, the boundary forms a 19-dimen-
sional surface in a 20-dimensional space. Hence it is infeasible to obtain
the condition (3.111). Hence, in the following, we treat the internal vol-
tages as parameter, and develope our discussion on this basis.

The system usually loses synchronism by getting out of the transient
stability region. In the previous chapter, only this phenomenon has been
dealt with., However, there is a possibility for the system to lose syn-
chronism owing to the vanishment of the transient stability region in the
cases where the dynamics of field flux linkages are taken into account as
described above. In order todistinquish between these two types of insta-
bilities, we temporarily reter them as the ususal type of instability and
the second type of instability, respectively. The usual type of instabi-
lity is dominant in the cases where field flux linkages do not decrease so
much. We have to pay attention also to the second type of instability in
the cases where the decrease in internal voltages are not negligible., The
second type of instability seems not to occur in the case shown in Fig.35
because the internal voltages must decrease much, i.e. to about 0.4 p.u,
for the transient stability region to vanish. However, with increase in
the electric power output P, and P3, the shaded area becomes wider as in-
dicated by the dotted lines, and accordingly, relatively small decrease in
the internal voltages become able to cause the vanishment of the transient
stability region. Thus the sécond type of instability is prevalent in the

practical multimachine power systems which have heavy loads.!

3.4 Method of determining critical value

In §4.4 of the previous chapter, we have derived Stability condition
4 which was adopted as the basis of determining the critical value of Lya-
punov function for the first swing stability of the system, Following the

procedure of deriving it, wa can formally get a condition as follows:
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[Stability condition 6]

If a system satisfies

vV < V (3.112)
cr
then it is stable for the first swing, where Vo, is the value of Vp(dy, E)
at the point ¢ where the sustained fault trajectory crosses the boundary

of the transient stability region.

Since the transient stability region varies with internal voltages, some
comments on its influence should be necessary. Fig.385shows an example of
system trajectory in a relative angular space for a case where a fault con-
tinues. The system crosses the boundary of the transient stability region
at the point ¢, Over this point, the torque f, defined by (3.84) acts in
such way that it will accelerate the system,:and will separate it from the
stability region, 1In order that the system can ;emain in synchronism, the
fault must be cleared in such way that the system can not go over the point
ce. Thus we obtain the condition in (3.112). It may be possible to replace
V by (Vg + Vp) because the second term in (3.69) usually takes negative va-
lues during the first swing, and.accordingly, (Vg + Vp) decreases with time,
It should be noted, however, that we have implicitly made two assumptions in

deriving the condition in (3.112) as follows:

1) The system moves along the sustained fault trajectory even in the peri-
od after the fault clearance.
2) The internal voltages vary in the same way as for the sustained fault

case even .in the period after the fault clearance.

The former assumption is the same as one made in deriving Stability condi-
tion 4, and it is satisfied %o some extent in actual power systems, The
latter assumption is not satisfied so well as the former one, In usual,
the internal voltages do not decreases in the period after the fault clear-
ance so much as in the fault-on period. Since the transient stability re-~
gion becomes narrower with &2crease in internal voltages, so its boundary
will move as shown in Fig.38. Consider a case where a fault is critically

cleared. If both the above issumptions are satisfied, then the system will
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just reach the point c, and the boundary will just move to O. On the other
hand, if the internal voltages do not decrease so much as in the sustained
fault case, then the system will not reach the point ¢, and the boundary
will not move to O, but to O' in actual, too. This fact implies that the
system still has a little stability margin, namely, that the condition (3.
112) is somewhat conservative compared with the actual stability of the
system., However, this conservative nature proves to be acceptable if we
consider a case where the system just stay on the point c¢', In this case,
f, has no component along the sustained fault trajectory at this point, so
the system will stay there for long time. The internal voltages decrease
much there as described in §3.3.1, and the transient stability region be-
comes narrower. If its boundary moves from O' toward O, as a result, the
system gets out of the stability region, and will lose synchronism, Thus
it proves to be necessary to reserve some stability margin, which has been
already incorporated in the condition (3.112) by adopting Vvinstead of (Vk
+ Vp), and by making the assumption 2).

Tt is necessary to look for the point c in order to apply Stability
condition 6. The time derivative of Vi in (3.68) can be rewritten as fol-

lows:

_—= - W (3.113)

The sign of this time derivative depends on the angle which is made by the
two vectors (avp/asr) and wpo Fig.39l illustrates the relation between the
relative angular velocity wy and the partial derivative (3Vp/36.) at the
instant when the system crosses the boundary of the transient stability re-
gion. The vector (3Vp/3dr) is always orthogonal to the equipotential
curves. From the definition, the boundary O is also orthogonal to the equi-
potential curves. It is assumed in this figure that w, is perpendicular to
the boundary O at the point c. In the inside of the boundary, (BVP/BSr)

and w, make an accute angle, so

avy
-_— < 0 (3.114)
dt

holds, namely, Vi decreases in the stability region., At the point c, the
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two vectors make a right angle, so

dvy

- =0 (3.115)
dt

holds, that is, Vi stops decreasing at this point. In the outside of the

boundary, the two vectors make an obtuse angle, so

vy

—_— > 0 (3.116)
dt

- holds, namely, Vx begins to increase, afterwards. Thus the time derivative
of Vx changes its sign from negative to positive at the instant when the
system crosses the boundary. Hence we can easily obtain the point ¢, and
accordingly, the critical value V., by examining the sign of the time de-
rivative, In practical cases, however, w, is not precisely perpendicular
to the boundary O, and a little discrepancy exists between the point ¢ and
the point where the time derivative vanishes, If we consider that the va-
lue of Vp varies slowly along wy while the direction of (avp/aar) varies
rapidly, then this discrepancy proves to be negligible. Thus we can get
the point c with adequate accuracy in those cases, too. This method does
not need nay calculation of saddle points, so it can get rid of the diffi-
culty associated with their calculation,

Hitherto, we have developed our discussion under the assumption that
the transient stability region always exists. However, there are several
cases where the transient stability region vanishes owing to decreases in
internal voltages, We should make some comments on these cases., Consider
a case where a system does not crosses the boundary of the transient sta-
bility region before it vanishes under a sustained fault. Fig.40 shows an
example of system trajectory in a relative angular space(a), and in an in-
ternal voltage space(b), for a case where a fault continues. The internal
voltage E decreases as in Fig°40Rb), and it enter the shaded area in which
the transient stability region dqes not exist. The equipotential curves
initially are ones as shown by the continuous lines, Vp takes its minimum
value at the point S. U denotes a saddle point, The points S and U are
separated. However, with decrease in some internal voltages, S and U ap-

roach each other, and at last, join when E crosses the boundary O' at the
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point c¢'. The equipotential curves at this instant are such ones as shown
by dotted lines. There exists no transient stability region any more., The
system is accelerated afterwards, and will lose synchronism. Since, beforel
the instant, the transient stability region exists, and the system does not

crosses its boundary, we obtain a stability condition as follows:

[Stability condition 71

If a system satisfies

v < V! (3.117)
cr :

then it is stable for the first swing, where Vér is the value of [Vp(dr, E)
+ Vg(E)] at the instant when the transient stability region vanishes under

the sustained fault,

This condition is, of course, derived under the assumptions 1) and 2) made
in deriving Stability condition 6, It is corresponding to the condition in
(3.111) ., If it is satisfied, the transient stability region does not van-
ish, and accordingly, the second type of instability does not occur during
the first swing., In order to reserve some necessary stability margin as
described in the preceding paragraph, V!, may be replaced by Vcy although
this replacement may result in too conservative condition because Vg(E) has
relatively large values in the cases where the second type instability can
occur, The instant when the transient stability region vanishes can be ob-
tained with the same method as one of detecting the point ¢ where the sys-
tem crosses the boundary of the transient stability region., Since the tran-~
sient stability region exists, and the system does not crosses its boundary

before that instant, so

avy
dt '

holds, that is, V)i decreases. However, after the instant, the equipotential
curves becomes as shown by the dotted lines. The vector (3Vy/36y) and wy

make an obtuse angle, so
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de

—_— > 0 (3.119)
dt :

holds, and Vx begins to increase, Namely, the time derivative of Vk changes
its sign from negative to positive at the instant when the transient stabi-
lity region vanishes. Hence we can get the critical value V!, by examining
the sign of the time derivative of Vi under the sustained fault,

If we replace Vor by V&, in (3.112), or replace Vi, by Voy in (3.117),
then Stability condition 6 and 7 are equivalent to each other, Namely, we
can use the same method in determining the critical value for both the cases
where the transient stability region remains. all the time, and the cases in
which the transient stability region vanishes owing to some decreases in in-

ternal voltages,

3.5 Conclusions

In this section, we have made some investigations on the critical val-
ue of the Lyapunov function constructed in §2, The transient stability re-
gion was defined on the basis of torque applied to the system by regarding
the internal voltages as parameters, There are several natures which are
characteristic of multimachine power systems in which the dynamics of field
flux linkages are téken into account, as follows:

1) when some internal voltages decrease in magnitude owing to a fault,
the transient stability region varies in such way that the correspond-

_ing generators will step out easily.

2) Conversely, when some generators are accellated owing to a fault, and
their rotor angles are separated from other generators, their internal
voltages decreases much.

3) Wwhen we use a value of Vp at a saddle point U, denoted by V,, as the
critical value of V, some stability margin V, must be reserved because
[Vy = (Vk + Vp)] usually decreases i during the first swing.

4) When some internal voltages decrease much in magnitude, there are sev-
eral cases where the transient stability region vanishes, and as a re-
sult, the system loses synchronism., We temporally refer this instabi-
lity as the second type of instability.

Bearing these natures in mind, we have derived two stability conditions. One
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of them is associated with the case where the transient stability region
remains regardless of the variations of internal voltages, The other is
associated with the case where the transient stability region vanishes
owing to some decrease.in internal voltages. When we use any of them as
the basis for determining the critical value, it can be obtained by exam-
ining the sign of the time derivative of Vi under a sustained fault., It
‘need no calculation of saddle points, so we can get rid of the difficulty

which webexperience in calculation of these points.

§4, Influence of transfer conductances

In this section, we make some investigations on the influence of the
transfer conductances. Transfer conductances have been neglected in con-
structing the Lyapunov function and in determining its critical value., In
usual, loads in power systems are represented by constant impedances, and
they are equivalently incorporated to reduced admittance métrices. Trans-—
fer conductances denote real parts of reduced admittance matrices. Hence
they get larger with increase in loads. Practical power systems have
loads which are comparable with their capacity, so transfer conductances
are usually not negligiblea. | Since we have made some investigations on
their influence in the previous chapter, we describe only on a little di-
fference between the power system which is represented by the conventional
model and the power system in whiéh the dynamics of field fluﬁ linkages is

taken into account,

4.1 Model and basic equations

Since transfer conductances of reduced admittance matrices are taken

into account, the motion of the ith generator is described as follows:

d2s,
1

m.

n .
0_0o o
B, .(E;E.sin§,. - E.E,sinég, .
i at2 ,E Lj( ij ij i) 13)
(3.120)

+

n
0.0 o
jE Gij(EiEjCOSGij EiEjCOSGij)
for i=1,2,.e44,n

and
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dE,

B
]

- e (E - ES ) - B Z B, JEJ(cosG - cosGij)

dt —l
i 3#1 (3.121)
n
+ G..E 6 - sind, .
B 2 ij J(51n SlnGlJ)
J—l
j#L

for i=l'2'eoo’n

where Bij and Gij are the transfer susceptance and the transfer conductance

between the ith and the jth generators, respectively, which are defined by

B,. = Y, .cosf, . G.. = Y, .sing, (3.122)
ij ij ij : ij ij ij
and
a, = [1 - (x,. = x' ]/T'
* di doi (3.123)
B. = (x,. -~ X' )/T'

i~ Yai doi

The superscript " o" denotes the stable equilibrium point of the post-fault
system, so (3.120) and (3.121) applies to the post-fault state,
For the power system without transfer conductances, the following Lya-

punov function has been constructed:

(1/2 z m, ) z Z m, m (m - w )2
i=1 i=1 j=1

v(x)

+

Z 2 B, [E;E, (coss - cos$,.) = (8, - 80 )ECESsins?, )
i=1 §=1 & ij ij 4374

+

Z(a/B)(E -E)2
i=1

Vi (w) + Vb(G, E) + V.(E) (3.124)

where Vk' Vp, and Vg denote kinetic energy, potential energy, and one as-
sociated with internal voltages. From (3.120) and (2.,121), the time deri-

vatives of Vk and Vp are given as follows:
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. -
= = 2 2 z G, 3 Eocosé?, - E.E.cosS,.) (0w, - » )
dt i=1 J—l J +J + ) *
(3.125)
+ E fAB (B ESSind] . = E,E.sing,.) (0, = w,)
i=1 §=1 i3 LN RS I A S D
dvy '
—_— = - z z B, E siné®. - E,.E.siné..) (w, - w.)
dat i=1 j-l 13 td ) * ]
(3.126)
+ 2 2 (dE, /dt) Z B, JE, (cosa - coss, )
i=1 =1 " =
v,
—_ =22 Z (QE. /dt) z B, E (cosG - cosGi.)
dt i=1 =1 J
+ 2 Z (dE, /dt) Z G 55 (SlnG - siné, ) (3.127)
i=1 j—l +J
-2 E (1/8,) (d8;/dt)?
i=1
where w is defined by
w = Z W 2 m, (3.128)

1—1 i=l

The first term in (3.,125) is due to transfer conductances, and is not sign-
definite, The second term of (3.125) and the first term of (3.126) are of
the same magnitude, and of the opposite signs of each other, Similarly,
the second term of (3.126) and the first term of (3.127) are of the same
magnitude, and of opposite signs of each other. Those terms cancell out
with each othef, and do not contribute to the damping rate of V. Conse~

quently, the time derivative of V is given as follows:

dav
—_ = 2 Z z G, (E R cosd - E,E,cos§,.) (w, - w )
at i=1 j=1 * )t
+ 2 X (dE, /at) 2 8 4E; (51n6 - sing; ) (3.129)
i=1 ]=l

n
- 2 ] (1/8,) (dE /at)?
i=1
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The right hand term of (3.129) is not sign-definite, so V in (3.124) is not
a Lyapunov function for the power systems with transfer conductances. Some

correction must be made on V in order to use it as Lyapunov function.

4,2 Time derivative of kinetic energy Vi

In §3, we have developed a method of determining the critical value of
V; This method is based on the time derivative of kinetic energy Vko The
time derivative changes its sign from negative to positive when a system
crosses the boundary of the transient stability region, or when the tran-
sient stability region vanishes. 1In the cases where transfer conductances
are taken into account, the time derivative changes from (3.68) to (3.125),
however,

Define g; and g, as follows:’

n
o_O o]
g; (8, E) = jZlGij (BEjcoss E;E;c0s8; ) (3.130)

gr(arl E) [ g2(6r' E)I 93(61-' E)' ®so0oyg gn(ar, E) ] (3.131.)

then (3.125) can be rewritten as follows:

de _ BVP
— = 2Lgr(6r, E) - —-—-]'wr (3.132)
- dat BSr

or from (3.83),

davy

— =20 £,.(8;, E) + Lg.(Sp, E) 1'w, (3.133)
at

where L = (2ij) is an (n-1)x(n-1) matrix defined as follows:

B n
by ST m(i+l)/kzlmk for i=j

(3.134)

n
- m(i+l)/k§lmk for i#j

The torque fr always acts on the system in the direction which is orthogonal
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. to the equipotential curves, and in such way that it will synchronize the
system, Only this torque exists in the power systems without transfer
conductances. However, there exists a new term Ig, as shown in (3.132) or
(3.133) in the cases where transfer conductances are taken into account,

The sign of (dVk/dt) is determined by the angle which is made by the two
vectors w. and (fr + Lgr), namely, fr is replaced by (fr + Lgr)° Fig. 41
illustrates an example of a trajectory in a relative angular space for a
case where a fault continues. The trajectory crosses the boundary O of
the transient stability region which defined on the basis of fr' The angu-
lar velocity W, is assumed to be orthogonal to the boundary O at the point
C. Since fr make a right angle with 0 at the point c, (dvk/dt) vanishes
if Lgr has no component along W e In general, Lgr has a components along
W ., denoted by LgrA/’ however, so the direction of (fr + Lgr) deviates
from that of fr as shown in Fig,41l. The time derivative (dvk/dt) vanishes
at the point c' at which (fr + Lgr) make a right angle with W .0 Before the
system reaches this point, (fr_+ Lgr) and w, make obtuse angles, and accord-
ingly, (de/dt) takes negative values. Namely, kinetic energy Vk decreases,
which implies that the torque acts in such way that it will keep the system
in synchronism. On the other hand, (fr + Lgr) and W, make accute angles,
and accordingly, (de/dt) takes positive values after the system goes over
the point c'. Hence kinetic energy Vk begins to increase, which implies
that the torque acts in such way that it will separate the system into two
groups. Summing up the above discussion, the time derivative of Vk changes
its sign from negative to positive at the instant when the system goes over
the point c¢' which is usually different from the point ¢, Since the kine=-
tic energy begins to increase if the system goes over the point c', we con-
clude that the point c' is on the boundary of the actual transient stability

-region, and adopt the value of Vp(Gr, E) at this point as the critical value
of V for the first swing.

aAn example will serve to clarify the correction which is made. The 10~
machine power system shown in Fig.42 is studied. The system is disturbed

by a 3-phase short-circuit which occurs at a point near the bus 11, and is
cleared by opening the line connecting the buses 11 and 12 at both terminals,

Fig.43 shows the time variations of V, its components, and (dvk/dt) for the
case where the fault continues. As shown in Fig.43(b), (dvk/dt) changes its

sign from negative to positive at 0,43 sec., The value of Vp at this time is
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7.225. On the other hand, if the new term Lg, is neglected, then (dvk/dt)
varies as shown by the dotted line., 1In this case, (dvy/dt) changes its
sign from negative to positive at 0,46 sec, and Vp takes 7.304 at this in-
stant. If transfer conductances are negligible, then this value will be
used as the critical value. However, the system contains transfer conduc-
tances, so 7.225 is adopted as the critical value. Thus the critical val-

ue of V is determined for the systems with transfer conductances.
4.3 Time derivative of V

In the preceding section, we have derived a method of determining the
critical value for the power systems with transfer conductances. As the
basis of this method, we have used Stability condition 6 and 7 which have
been derived under the assumption that the time derivative of V is given
by (3.71). However, transfer conductances are not negligible in practical
power systems, and the time derivative of V is given by (3.129). Hence
the method of determining the critical value is not able to yield results
of good accuracy by itself,

An example will serve to clarify this fact. In the case of Fig.43,
the critical value is found out to be 7,225, Since V takes 6.667 at 0.26
sec, and 7.341 at 0.27 sec, it is guessed that the critical fault clearing
time exists between 0.26 and 0,27 sec, However, the actual critical clear-
ing time exists between 0.25 abd 0.26 sec as observed from Fig.44(a). In
Fig.44(b), the time variations of V and its components are shown for the
cases where the fault is cleared at 0.25 sec (stable case), and 0.26 sec
(unstable case). V increases monotonously during the fault-on period. In
both cases, the fault is cleared before V reaches the critical value Vere
In spite of this fact, the system remains in synchronism in one case, and
loses synchronism in the other case., V slowly increases after the instant
of fault clearance. In the stable case, V reaches a peak, and decreases,
afterwards. On the other hand, in the unstable case, V increases monoto-
nously, and it becomes greater than Voy after the time 0,39 sec, It should
be noted that V becomes greater than Vo at several times even in the sta-
ble case, V takes its peak value 7,456 at 0.65 sec, and this value is cer-
tainly greater than V.,. However, (Vi + Vp) takes 6,951 at this instant.
If we remember that Stability condition 6 has been derived by comparing (Vk

+ Vp) with Vcr’ then the system remains in synchronism because (Vk + Vp) is
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smaller than V_, in the stable case. In any case, it is not desirable
that V increases after the fault clearance because we can not get an a-
curate estimation in such case,

In order to explain such time variation of V, let us consider the
time derivative of V, It is given by (3.129). The first term is asso-
ciated with Vi, and the second and the thlrd terms are with Vg, The first
term is not sign-definite, and lt takes p051t1ve values after the fault
clearance., The increse in V is owing to this term. Similarly, the sec-
ond term takes positive values during the first swing, and it seems to
increase V as well as the first term. However, we can rewrite (3.129) as

follows:

dav
—_ = 2 Z z G, (E Eo cosd ~ E.E,cos$, . )(w, - @)
dt i=1 j—l 3 ) 13 t
n n
- 2} @Eyan_§a, E; (31n6 - sins,.) (3.135)
. i ij ij
i=1 J—l

2 2 (1/8,) (GE, /dt)2
i=1

where (dEi/dt)o.is defined as follows:

(@E;/dt) = - o, (E; - E ) - B le JEJ(coss - cos§; ) (3.136)
37‘1

Namely, the right hand of (3.136) is the same as that of (3.66). Consider
a case where some generators are accellated owing to a fault, then for

these generators the following inequalities hold during the first swing:

(dEi/dt)o < 0

(3.137)
Z G, .E. (51n6 - sing§,.) < O
451 133 ij

and for other generators the following relations hold:

(dEi/dt)o v 0
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n
Y} G, .E.(sind”, - sin§,.) ~ 0 (3.138)
jop 1373 ij ijt =

From (3.137) and (3.138), the second term of (3,135) takes negative values
during the first swing. The third term is, of course, negative semi-
definite. Thus it is concluded that the increase in V in some interval
after the fault clearance, is due to only the first term of (3.135), and
that we only have to take the first term in consideration.

In §5 of the previous chapter, we have introduced the function Vg in
order to take account of transfer conductances. Following this function,
we will derive a function in the followirgg° We can rewrite (3.125) and

(3.126) as follows:

av, v
— = 21g,_(8,, E)'w_ - —-E-wr (3.139)
at 36

r
av v, ! aV_'dE
2 . —gwr y B (3.140)
at 96, 3E dt

Hénce, the increments of Vyx and Vp in a time interval are given as follows:

te AV
AVk = — dt
tg dt
(3.141)
= Avg(ss ~ 8, E,VE,) - Avk_*p(és ~ 8, E_ v E)
te AV,
avp = 2 at
tg dt
(3.142)
= Avk_*p(és N Ge, E Ee) - Avp+f(65 "N Ge, Es o Ee)
where
‘Se
AVg(S ™ 8, E, W E)) = _g 219, (8, E)'as_ (3.143)
S
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§g W'
AV, (§ ~§ , B _VvVE ) = — dd_, (3.144)
k»p s e 3 e Gs 86r r
E_ av.!
AV (5~ ,E VE) =~ [ —2a (3.145)
P+f( s e’ 73 e’ ~ E. 3E f °
s «

t; and tg are both ends of the time interval, and 65, Ge’ E_, and E_ are
the values of §, and E at the instants tg and t., respectively. The term
AVg denotes the energy which is generated owing to transfer conductances,
AVy,p denotes the energy which is transfered from Vi to Vpr and Vp, ¢ de-
notes the energy which is transfered from Vp to Vg. These terms are de-
termined by the trajectory in (8,, E)=-space, and it does not matter how
long it takes the system to move from (§_, Eg) to (8¢, Eg)o ILet us de-

fine a ratio y as follows:

Y8~ 8, E B |AVk+p/ av, |
(3.146)

1

l - AVg/AV'k_>p

This ratio is one of Avk+p to AVk, and implies that kinetic energy Vk is

transfered to potential energy Vp at rate of y when the system moves from
(65, Es) to (Ge, Ee). It varies with Avg/AVk+p as follows:

y > 1 for Avg/Avk+p > 0

Yy = 1 AVg/AVk+p = 0 (3.147)
< 1 . AV _/Av < 0

Y 9/ kp

If transfer conductances are zero, then the second equation in (3.147)

holds, and accordingly, y i3 equal to 1. Namely, AVk is transfered from
Vk to Vp at the rate 1, On the other hand, if transfer conductances are
not zero, y deviates from 1, that is, the first or the third inequalities
hold. ILets return to Fig.4l. This figure illustrates a trajectory in a

relative angular space for a case where a fault continues, The point c¢'
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is on the boundary of the actual stability region. If the system goes
over this point, then the system will lose synchronism. According to

Stability condition 6, the value of Vp at this point, denoted by Vepr is
adopted as the critical value of V., Assume that the system moves along
the trajectory, reaches the point c¢', and stops there when the fault is

critically cleared, then the following equation holds,

0 = Vk(tc')
(3.148)
Vcr = VP(tc')
= Vp(tcr) + Avk+p(6cr N Gc" Ecr n Ec,) (3.149)
- AVp+f(6cr v Gc" Ecr v Ec')

where (dcr' Ecr) and (Gci, Ec,) are the values of (Gr, E) at the critical
clearing time tcr and the time tc' when the system reaches the point c¢',

respectively. From (3.,146), (3.148), and (3.149), we obtain

Vp(tcr) + Y(Gcr v 6c" Ecr e Ec')vk(tcr)

= V__+ A (s

cr Yp+f cr ¥ 6c" Ber ™ Ecr) (3.150)

> VvV
- cr

where we have used in - deriving the last inequality the fact that AVp+f
takes a negative value during the first swing. Now, let us define a

function as follows:

VB(t) = Vp(t) + YVk(t) + Vf(t) ) (3.151)
where

Yy = \((6r N éc., E "~ Ec.) (3.152)

in which (Gr, E) is not determined yet. If (Gcr, Ecr) is substituded into
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(Gr, E) in (3.152), then

Vglt ) 2 V (3.153)

holds from (3.150) and (3.151) because Vg always takes non-negative values
as is clear from (3.124). 1If a fault is critically cleared, then (3.153)
always holds. Hence, we reach a stability condition for the first swing

stability given as follows:

{Stability condition 8]

If a system satisfies

Vg < V. (3.154)
then it is stable for the first swing, where V., is the value of V,(8r, E)
at the point c¢' where the system crosses the boundary of the transient sta-

bility region under a sustained fault,

It should be noted that the same assumptions as in Stability condition 6
and 7 have been made in deriving this condition, too. Besides, it is ob-
served from (3.153) and (3.154) that this condition may yield results con-
servative compared with actual stability. Lastly, it is impractical to
use Yy which is obtained by substituting (§.,, Eoy) into (S, E) in (3.152)
because tg, is evidently unknown in the stage of estimation. Now let us
return to Fig.43(b). In the period between tg and t,r, (dVy/dt) takes ne-
gative values while (3Vp/38y)'wy takes positive values,!which implies that
Vx decreases, and that its energy is transformed into Vp, In the stage of

estimation, we make an approximation of y as follows:

Y &~ Y(8g ™ g, Eg v Ec') (3.155)
The instant tg is not generally equal to the critical clearing time tgr,
so there is some difference between this approximation and y used in (3.

153) and (3.154). Fig.45 shows some time variations of Vg and its compo-

nents for the same case in Fig.43. The value of y is 1.388, Vi is first
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zero, so V and VB take the same value at 0.0 sec, The difference between
them become larger with increase in Vi. The critical value Vo is 7.225,
VB takes 6,609 at 9.23 seq, and 7.297 at 0.24 sec, and accordingly, the
critica} clearing time is estimated to be 0,239 sec. Since the actual cri-
tical clearing time exists between 0.24 and 0,25 sec, the estimation re-
sult is adequately accurate, Fig.46!shows the time variations of VB and
its components for the case where the fault is cleared at 0.24 sec. The
value of y is the same as that in Fig.45, i.e., 1.388, The function V de-~
signated by the dotted line increases after the fault clearance. On the

other hand, V, decreases monotonously after the clearing time, These facts

B
imply that the transfer conductances have been taken into account well by’
using the function Vv, instead of V.

B

4,4 Conclusions

In this section, we have developed some methods of taking account of
transfer conductances which have been neglected in constructing V and in
determining its critical value. If there are some transfer conductances,
generators receive additional torques owing to them. In order to correct
these torques, some corrections have been made in determining the critical
value of V. The time derivative of Vy changes its sign from negative to
positive at the point where the system crosses the boundary of the trans-
ient stability region defined on the basis of the equipotential curves if
transfer conductances are negligible, but it changes its sign at a point
different from the above point if transfer conductances are not negligble,
We "adopt the value of Vp at this point as the critical value of V. On the
other hand, V increases after the instant of fault clearance owing to trans-
fer conductances, again. Since this increase has wrong influence on the
accuracy of estimations of the critical fault clearing time, we have intro-
duced a new function Vg in order to remove this influence. It is generated
by multiplying some ratio on Vi in V. As an example, we have applied these
method to an estimation of critical fault clearing time in a case where a

fault occurs in a l0-machine power system, and have obtained an good result.
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Table 12, Generator parameters of l0-machine system,
[ Té
Unit H X X X o
d d d Case 1 Case 2
1 500.0 0.0200 0.0060 0.0190 7.00 1.75
2 34.5 0.2106 0.0570 0.2050 4.79 1.20
3 24,3 0.2900 0.0570 0.2800 6.70 1.68
4 26.4 0.2950 0.0490 0.2920 5.66 1.42
5 34.8 0.2540 0.0500 0.2410 7.30 1.82
6 26,0 0.6700 0.1320 0.6200 5.40 1.35
7 28.6 0.2620 0.0436 0.2580 5.69 1.42
8 35.8 0.2495 0.0531 0.2370 5.70 1.42
9 30.3 0.2950 0.0697 0.2820 6.56 1.64
10 42,0 0.1000 0.0310 0.0690 10.20 2,55
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§5. Numerical example

In this section, the transient stability of a l0-machine power system
is studied, The line diagram of the system is shown in Fig.47, and the
data on its generators are provided in Table 12, It is assumed that this
system is disturbed by a 3-phase short-circuit which occurs at a terminal
x of a transmission line x-y, and is cleared by opening the line at both
the terminals., Two different methods are used to analyze the transient
stability, that is, the conventional method based on simulations and Lya-
punov's direct method. These methods differs markedly in their approach-
es, but both of them can be used to compute the critical fault clearing
time. Hence, this familiar transient stability measure is used as a basis
of comparison. Two sets of d-axis transient open-circuit time constants
are used in order to make some investigations on the influence of internal
voltages on the stability. The time constants are shown in Table 12, The

sets are refered as Case 1 and Case 2,

5.1 Procedure of estimation

The procedure for estimating the critical clearing time is shown in

the flow chart of Fig.déh The main steps are as follows:

[Step 1] Read the necessary data on the system, i.e., those on transmis-
sion lines, buses, and generators.

[Step 2] Compute the load flow for the prefault system,

[Step 3] Compute the reduced admittance matrices between the generators
by eliminating the buses without generators, for the fault and
the post~fault systems.

[Step 4] Compute the stable equilibrium point for the post-fault system.

[Step 5] Integrate the fault system equations step by step, and compute
the rotor angles, the rotor speeds, and the internal voltages:
§(t), w(t), and E(t),

[Step 6] Examine whether the system has or not reached the boundary of
the transient stability region, whether the transient stability
region has or not vanished by checking the sign of the time de-
rivative of kinetic energy Vies If the time derivative chénges
its sign from negative to positive, then go to Step 7, and if

not, return to Step 5.
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[Sstep 7] Compute the critical value Vcr’ which is the value of the poten-
tial energy vb at the instant when the time derivative (de/dt)
changes its sign.

[Step 8] Compute the value of the Lyapunov function Vv(t).

[Step 9] Compare V(t) and vcr’ If v(t) is greater than Vcr’ go to Step
10, and if not, then return to Step 8.

[Step 10] Print the critical clearing time.

We can get an estimation of the critical clearing time for a fault through
these steps. The first three steps need no explanation. The stable equi-
librium point of the post-fault system is necessary in calculating the

value of V. It is computed in Step 4 by solving the following equations:

n
P. - )Y EEsin(§,, +0,.) = C (constant) (3.156)
mio 0y i3 43
- ' - - L i =
Ecai Eqi (xdi xdi)ldi 0 (3.157)

for 1i=1,2,44e,n

These equations are nonlinear, and are solved with Newton-Raphson method
iteratively (Appendix C). Four or five iterations can yield results of
good accuracy. In Step 5, the system equations (3.1) and (3.2) are numer-
ically integrated step by step, and the values of ¢'(t), w(t), and Eéi(t)
are calculated, where the integration step length At is 0.0l sec in our
studies. From these values, §(t), w(t), and E(t) are obtained, where §,
E, . §', and E&i are related with each other as shown in Fig.31. Fig°49
shows the time variations of the internal voltages for a fault 11-12 in
the l0-machine system, where the fault is cleared at t = 0.25 sec. The
internal voltages are not the state variables, so theix variations are
discontinuous at the clearing time when the admittance matrix changes from
one for the fault system to one for the post-fault system. This disconti-
nuousness is not desirable because the value of V which calculated with §,
‘w, and E, also varies discontinuously at the clearing time., In order to
remove this discontinuousness, we calculate them with the post-fault ad-
mittance matrix even in the fault-one period. After this manipulation,
the internal voltages vary continuously as denoted by the dotted lines., In

constructing the Lyapunov function V, we have assumed that each internal
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voltage lags behind the g-axis of each generator by constant angle ¢i all
the time. This assumption is satisfied to an extent. Each internal vol-
tage angle deviates a little from a constant angle ¢i' and correspondingly,’
Ei oscillates a little, Howoever, these deviations have little influence on
the time variation of V, hence we can use this function as Lyapunov func-
tion so far as transfer conductances are negligible. 1In Step 7, as the
critical value of V, we use Vcr which denotes the value of Vp at the inst-
ant when the time derivative (de/dt) changes its sign from negative to
positive under a sustained fault. We can replace Vcr by Vér defined in
(3.117), but we use vcr in orxder to reserve some stability margin mentioned
in §3.4. 1In Step 8, V is used as Lyapunov function, but it will be replac-

ed by V, for those cases where transfer conductances are not negligible, In

B

this study, transfer conductances are not negligible, so Vg is used as well

as V. The method of producing Vg has been described in §4.

5.2 Results by simulations

Firstly, the conventional approach based on simulations are applied
to the transient stability analysis of the lO-machine system. The system
equations (3.1) and (3.2) are integrated step by step to yield | the time
variations of the internal voltages, where damping torques of generators
are assumed to be zero in this study. By observing these time wvariations
we jugde whether the system is stable or not for a given fault. If the
system is stable, the fault c¢l2aring time is delayed, and if not, then it
is advanced. By iterating these manipulations, the critical clearing time
is'obtained° It usually takes 1 or more times for the iteration to con-
verge,

Fig°56\and 51 show the tim® variations of the internal voltages for
eight fault locations and two cases of time constants, respectively, 1In
each fiqure, two cases of time variations in which a fault is cleared at
an instant nearest to the critical one, are shown. The difference of
clearing time between these two cases is 0,01 sec. In one of them, the
system keeps synchronism for thXe first swing, and in the other case, the
system loses synchronism. Wwe call them stable case and unstable case,
and denote by real lines and Xotted lines, respectively. From these fig-

ures, we can observe several {¢atures as follows:
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Table 13,

Critical fault clearing times obtained
by simulations,

(a) Tc'ioi= normal value
Clearing times(sec) Unstable
Fault
stable unstable generators
11 - 12 0.25 0.26 2
15 - 14 0.38 0.39 3
17 - 18 0.42 0.43 4
18 - 17 0.46 0.47 1
24 - 16 0.37 0.38 1
30 - 27 0.44 0.45 8
34 - 29 0.44 0.45 1
38 - 15 0.44 0.45 1
7
(b) Téoi: a quater of normal value
Clearing times (sec) Unstable
Fault
stable unstable generators
11 - 12 0.17 0.18 2
15 - 14 0.32 0.33 1
17 - 18 0.33 0.34 4,6
18 - 17 0.34 0.35 1
24 -~ 16 0.24 0.25 6
30 - 27 0.35 0.36 8
34 - 29 0.35 0.36 1
38 - 15 0.26 0.27 1
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1) Step-out generators vary with fault location, for instance, no.2 gen-
erator steps out for fault 11-12 while no.3 generator steps out for
fault 15-14,

2) Step-out generators vary ilso with values of d-axis transient open-
circuit time constants T&oi’ for instance, only no.4 generator steps
out in Case 1 while no.d and 6 generators step out in Case 2. for
fault 17-18,

3) Decrease in magnitudes of internal voltages are conspicuous in the
generators which step out in the unstable case, for instance, E; de-
creases very much for fauwlt 11-12,

4) Decrease in magnitudes of internal voltages are more conspicuous in
Case 2 than in Case 1, for instance, E; decreases from.0,961 to .,
0.712 in Case 1, and to J.598 in Case 2; where a fault is cleared at
0.25 sec and 0.17 sec, respectively.

5) The critical clearing ti= is shorter in Case 2 than in Case 1, for
instance, it is 0.25 sec in Case 1, and is 0.17 sec in Case 2 for

fault 11l-12,

The results by simulations are summarized in Table 13!(a) and (b). The cri-
tical clearing time exists in ranges of 0.25 ~ 0.46 sec and 0.17 % 0.35

sec in Case 1 and 2 respectively. In the tables, the critical clearing
times also shown for the case where field flux linkages are assumed to be
constant. This case can be interpreted as one where all T! are infinite-

doi
the critical clearing time is shortened

-l

ly large. With decreases in ~30i’
very much,

' In Case 2, we can see th second type of instability for almost all
faults indicated in Table 12, Namely, some internal voltages decrease much
in magnitude to such extent t>at the transient stability region vanishes,

As an example, we take the cise of fault 11-12; and observe the progress of
the second type of instability. Under this fault, no.2 generator suffers
large disturbance, and its in:érnal voltage decreases much in magnitude. In
Fig.52, the time variations o&f internal voltages are shown. Fig.Szkc)

shows the time variations of ¥>) at the stable equilibrium point and the un-
stable equilibrium point whicX corresponds to the first swing step-out mode.
The difference of §,; between these two points is an index which represents
an extent of the transient stadility region. If these points join, then the

transient stability region vai=ishes, Fig.Sﬂ(a) and (b) show the time vari-
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ations of the angles and magnitudes of the internal voltages for the case
where the fault 11-12 is cleared at 0.17 sec, In this case, no.2 genera-
tor seems to remain in synchronism with other generators during the first
swing. The angle §,; increases, takes a peak value 1,626 rad at 0.7l sec,
and decreases, afterwards. However, §,; decreases only to 1,093 rad by
1.68 sec, and begins to increase again. Similarly, the magnitude E; de-
creases from 0.961 p.u. to 0.598 p.u. by 1.28 sec, and increases, after-
wards. However, E, increases only to 0.600 p.,u., by 1,61 sec, and begins
to decrease again., With decrease in E;, the stable and the unstable equi-
librium points approach each other as is observed from Fig.52(c). The di-
fference of §5; between these points is initially 2.238 rad, but it de-
creases to 0,768 rad by 1,28 sec, It increases to 0.780 rad by 1.6l sec
with increase in Ej, but it begins to decrease, afterwards. The stable
and the unstable equilibrium point join after a while, and accordingly,
the transient stability region vanishes. Before that instant, no.2 gener-
ator receives some synchronizing torque, but afterwards, it is accellated
to step out. Thus the system loses synchronism owing to the second type of
instability. The progress of the instability is very slow in this case, so
we have erroneously judged that the system is stable in the case where the
fault is cleared at 0.17 sec, In order that the system keeps synchronism,
the fault must be cleared at 0.16 sec. In the case where the fault is
| cleared at 0.18 sec, the progress of the instability is rapid. The magni-
tude E; decreases rapidly, and it reaches 0,558 p.u., at 0.84 sec, when the
transient stability region vanishes. After this instant, no.2 generator
is accellated, and steps out. It should be investigated for other faults
whether the second type of instability does occur or not. Table 14/ shows
the time when the vanishment of the transient stability occurs. From the
table, it is observed that the transient stability region vanishes in the
unstable case for all faults, which implies that the second type of insta-
bility is dominant in Case 2 of d-axis transient open-circuit time con-
tants. Besides, it is observed that the transient stability region van-
ishes for five faults of all faults even in the stable case, The vanish-
ment of the transient stability region means that the system will lose its
synchronism soon, so the system is not stable for the fault clearing time,
In order that the system is stable, the fault should be cleared at a time

eariiéfﬂfhén'itﬁand accordingly, some correction must be made on Table 13,
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Table 14, Vanishment of transient stability region
for eight cases of fault location where
Tyoi is normal for all generators.

Stable case Unstable case

Fault
vanish? when? vanish? when?
11 - 12 yes >2.00 yes 0.84
15 - 14 yes 1.52 yes 1.16
17 - 18 no - yes 0.98
18 - 17 yes 1.74 yes 1.28
24 - 16 no. - yes 1.32
30 - 27 no - yes 1.14
34 - 29 yes >2.,00 yes 1.22
38 - 15 yes 1.48 yes 1,22

(Time: sec)
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5.3 Results by Lyapunov's direct method

Secondly, Lyapunov's direct method is applied to the transient stabi-
lity analysis of the lO-machine power system. In this method, the system
equations (3.1) and (3.2) are integrated step by step for a given fault,
where the fault is not cleared, to yield the time variation of the Lyapu-
nov function V. In this study, transfer conductances are not negligible,
so Vg is calculated as well as V. The instants when these functions reach
the critical value V.y are adopted as the estimations of the critical fau-
1t clearing time, The critical value V., is defined as the value of the
potential energy Vp at the instant when the time derivative of the kinetic
energy Vi changes its sign from negative to positive, The integration of
(3.1) and (3.2) is continued till that instant.

Fig.53 and 54! show the time variations of V and Vg, and the critical
value Vi, for the eight cases of fault location in Case 1 and 2 of tran-
sient open-circuit time constants, respectively, The functions V and Vg
are nearly equal to zero at the instant when each fault occurs. They in-
crease monotonously during the fault-on period. Namely, the total energy
stored in the system increases with time, In order that the system keeps
synchronism, the fault must be cleared before these functions reach Veore

From these figures, we can observe several features as follows:

1) The critical value varies with fault locations, for instance, 'Vcr is
7.225 for fault 11l-12, and 28,246 for fault 15-14, in Case 1.

2) The critical value varies also with values of d-axis transient open-
circuit time constants Téoi' for instance, Vcr for fault 11-12 is 7,
225 in Case 1, and 3,116 in Case 2, Vcr usually decreases with de-
crease in Téoi"

3) VB takes greater values at each time than V in this study, which is
owing to the fact that y defined by (3.146) and (3.155) takes values
greater than l,vfor instance, vy is 1;388 for fault 11-12 in Case 1,

4) As a result of 3), VB yields smaller estimations of the critical fault
clearing time than V, for instance, Vg yields 0.239 sec while V yields
0.268 sec for fault 11-12 in Case 1,

5) The difference of estimation between V and VB is more conspicuous in

Case 2 than in Case 1, for instance, the difference for fault 11-12 is

0.029 sec in Case 1, and 0,047 sec in Case 2, which is owing to the
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fact that y takes 1.388 in Case 1, and 1,814 in Case 2.

The first feature corresponds with the first one observed in §5.2 from the
time variations of the internal voltages, that is, the critical value var-
ies with the step-out generators. As for the second feature, an example
will serve to clarify its cause., Fig.55 shows the time variations of V
and its components for three cases of transient open-circuit time constants,
where the fault is 11-12. Two of them are Case 1 and Case 2. The remaining
one is the case where all the time constants are infinitely large, in other
words, all the internal voltages are constant., We refer this case as Case
0. The internal voltages decrease more rapidly with decrease in the time
constants. The kinetic energy Vk increases monotonously with time, and it
takes almost the same values at each time for all the cases, which implies
that all generators receive almost the same acceleration. On the other hand,
the variations of Vb and Vf differ markedly with the cases., The potential
energy Vp initia;ly increases monotonously with time, but it takes a peak
value, and decreases, afterwards. The peak value decrease from 15.471 to
7,417, and from 7.417 to 3.132,.and the time when Vp takes the peak wvalue
decreases from 0.50 sec to 0.44 sec, and 0.44 sec to 0.4l sec with the
changes from Case O to Case 1, and from Case 1 to Case 2., These facts mean
that the transient stability region becomes narrower and shallower with de-
crease in the time constants, Consequently, the critical value V., decreases
from 14.753 to 7.225, and from 7.225 to 3.115 with the changes of the time
constants, The term Vf initially increases with time, and takes a peak val-
ue, but it oscillates, afterwards. Its value at each time becomes larger in
sequence of Case 0, 1, and 2. Since it represents the magnitude of the devi-
ations in internal voltages, the above fact means that the internal voltages
decrease more in Case 1 than in Case 0, and in Case 2 than in Case 1. 1In
Case 2, Vf takes values comparable with Vp° The remaining three features
are concerned with transfer conductances. In general V yields optimistic
results, and Vg yields pessimistic results compared with the actual transient
stability.

Table 15(a) and (b) summarizes the results by Lyapunov's direct method.

Several features on this method are observed from these tables as follows:

1) The function V which does not take account of the transfer conductances,

yields optimistic results for all faults in both Case 1 and 2. Its ex-
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Table 15. Critical fault clearing times estimated by
Lyapunov's direct method (sec).

(a) Téoi: normal value

Fault Y Ver Tog T., TA.
11-12 1.388 7.23 0.24 0.25 0.30
15-14 1.102 28.85 0.37 0.38 0.41
17-18 1.420 28.77 0.42 0.42 0.47
18-17 1.403 36.17 0.45 0.46 0.50
24-16 1.413 39.71 0.38 0.37 0.45
30-27 1.317 29.49 0.44 0.44 0.47
34-29 1.314 33.00 0.43 0.44 0.46
38-15 1.429 33.14 0.47 0.44 0.65
(b) Téoi: a quater of normal value

Fault Y Vcr Tes Tcr T;r
11-12 1.814 3.12 0.14 0.17 0.30'
15~-14 1.227 16.26 0.30 0.32 0.41
17-18 2.044 16.06 0.28 0.33 0.47
18-17 1.936 18.47 0.30 0.34 0.50
24-16 2.205 20.52 0.22 0.24 0.45
30-27 1.723 16.73 0.31 0.35 0.47
34-29 1.685 19.11 0.31 0.35 0.46
38-15 2.345 16.20 0.25 0.26 0.65

Topt critical clearing time obtained by simulations.

Tér: critical clearing time for cases where Tdoi 1S
infinitively large, that isg, field flux linkages
are kept constant,

Teg® Critical clearing time estimated by the direct

method.
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tent is more conspicuous in Case 2 than in Case 1, For fault 38-15,
for example, the result is greater than that by simulations by 0,07
sec in Case 1, and by 0.10 sec in Case 2,

2) The function Vg which takes account of the transfer conductances is
able to yield results of good accuracy compared with V. In Case 1,
the results are verxy accurate, and are different from those by simu-
lations only by 0,01 sec except for fault 38-15., 1In Case 2, Vg has
yielded somewhat conservative results compared with those by simula-
tions, but the difference between them still remains within 0.05 sec
even in this case.

3) The critical value V, varies with fault location. It exists in the
ranges of 7.23 v 39,71 and 3.12 v 20,52 in Case 1 and 2, respective-
ly. ‘It also varies with transient open-circuit time constants, name-
ly, in Case 2, V., decreases to about a half of that in Case 1,

4) The ratio y varies with transient open-circuit time constants. In
Case 2, its value is beyond 2.0 for several faults whereas it remains

under 1.5 for all faults in Case 1.

The conservative nature observed in 2) is due to Stability condition 6 used
as the basis of determining the critical value V... 1In Case 2, the inter-
nal voltages decrease to such an extent that the second type of instability
occurs., The conservative nature is conspicuous in such cases as this., It
should be emphasized, however, that the direct method has yielded relative=-

ly accurate results in this case,

5.4 Conclusions

In this section, we have made some transient stability analysis of a
10-machine power system, The Lyapunov function, and the methods of deter-
mining the critical value, and of taking account of transfer conductances
developed in §2, 3, and 4 have been applied to this analysis. The results

are summarized as follows:

1) The original Lyapunov function V can not take account of the transfer
conductances, so it has yielded somewhat optimistic results compared
with the actual stability in the two cases of transient open-circuit
time constants,

2) The function V_, has bean able to take account of the transfer conduc-

8
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tances, and has yielded adequately accurate results whose difference
with the actual critical clearing time is within 0.0l sec except one
fault case in Case 1 of transient open-circuit time constants.

3) With decrease in transient open-circuit time constants, the internal
voltages come to decrease more rapidly, and as the result, the tran-
sient stability of the system is degraded markedly.

4) 1In Case 1 of transient open-circuit time constants, the internal vol-
tages do not decrease so much to cause the second type of instability
uﬁder the load condition used in this study. In this case, the usual
type of instability is dominant, and the direct method has yielded re-
sults of good accuracy.

5) 1In Case 2 of transient open-circuit time constants, the internal vol-
tages decrease enough to cause the second type of instability. The di~
rect method has somewhat conservative results compared with the actual
stability of the system. This conservative nature is due to Stability
condition 6 which is used as the basis of determining the critical va-
lue of the Lyapunov function; and it is conspicuous in the case where
the internal voltages decrease rapidly.

6) The progress of the second type of instability is sometimes slow, and
accordingly, the system seems to be stable for the first swing, How-
ever, it may constitute one cause of the phenomenon where the system
loses synchronism for the second or latter swings while it keeps syn-

chronism for the first swing,

Thus the variations of field flux linkages of generators have significant
infiuences on the transient stability of the system, so it is very impor-
tant to take account of their influence in the transient stability analy-
sis. We have applied Lyapunov's direct method to this analysis, and have

obtained some results of practical’significance°
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Chapter 1V

TRANSIENT STABILITY ANALYSIS OF MULTIMACHINE
POWER SYSTEM VIA LYAPUNOV'S DIRECT METHOD:
DYNAMICS OF AVR & EXCITATION SYSTEMS

§1. Introduction

In this chapter, we are concerned with the transient stability analy-
sis of multimachine power systems in which dynamics of automatic voltage
regulators and excitation systems'of génerators are incorporated in their
system representation,

In Chapter III, we have made some investigations on Lyapunov's direct
method applied to the transient stability analysis of power systems, where
only dynamics of field flux linkages of generators have been incorporated
in their system representations, and have developed it to the point where
it can yield results of practical significance. The transient stability
evaluated with this representation has proved to fall to some extent com-
paréd with that evaluated with the conventional system representation in
which each generator is represénted. by a constant voltage behind a tran-
sient reactance. This transient stability is concerned with native gener-
ators in which no control equipment is installed. Some stabilizing cont-
rol equipments have recently come. into action to enhance the transient sta-
bility , however, and accordingly, actual systems have some stability mar-
gin besides the stability evaluated with the above system representation.
This fact moves us to analyze how much is the transient stability enhanced
by such stabilizing equipments. In this chapter, we incorporate dynamics
of automatic voltage regulators and excitation systems of generators in the
system representation, and develope Lyapunov's direct method based on this
representaion,

Lyapunov's direct method consists of two main parts, that is, the con-
struction of Lyapunov functions,and the determination of its critical value.

Firstly, the former part is investigated. There are several works on
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the méthod of constructing Lyapunov functions for power systems in which
some voltage regulators are installed in generators., In 1968, M.W. Sid-
digee found a Lyapunov function for a one machine connected to an infin-
ite bus system in which the generator is installed with a forced voltage
requlator through trial and error [23]. M.A. Pai and V. Rai constructed
the same function with a systematic method based on a generalized Popov
criterion in 1974 (28], This type of regulators do not use the terminal
voltages as feedback signals. V.K. Verma et al. constructed a Lyapunov
function for a one machine power system in which automatic voltage regu-
lator is installed in the generator with the variable gradient method in
1975 [29]. T. Taniguch and H, Miyagi constructed another Lyapﬁnov func-
tion with a method based on a Lagrangean function in 1977 [30]. However,
it is very difficult to apply their construction methods to multimachine
power systems., In §2, we systematically construct a Lyapunov function
on the basis of Theorem 3 for a multimachine power system in which gene-
rators are all installed with automatic- voltage regulators and excita-
tion systems modeled with third orxder transfer functions,

Secondly, the latter part, i.e., the determination of the critical
value is investigated. There has been few works made on this subject for
the system under consideration. In §3, we first make some investigation
on the equipotential curves of the system, define the transient stabili-
ty region, and observe how does the region vary with internal voltages.
Next, we investigate how high automatic voltage regulator gains are al-
lowed according to the generalized Popov criterion., Lastly we check the
applicability of the method of determing the critical value developed in
the preceding chapters.

Thirdly, we try one generalization of Lyapunov's direct method to
power system in which generators are installed with general and differ-
ent types of excitation system in §4, This trial is motivated by the
fact that the generalized Popov criterion imposes  somewhat strict const-
raint on automatic voltage regulator gains, We propose a pseude-Lyapunov
function, and make some considerations on its applicability to the tran-
sient stability analysis.

lastly, a transient stability analysis of a lO-machine power system
is made by Lyapunov's direct method developed in this chapter, and its
effectiveness is investigated by comparing results obtained by the direct
method with those obtained by the conventional method,.
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§2. Construction of Lyapunov function [74,75]

In this section, a Lyapunov function is systematically constructed on
the basis of Theorem derived in §2 of chapter II. The outline of the meth-
od was shown in the process of constructing a Lyapunov function for the
system represented by the conventional model. We follow the method, of
course, with some changes which are necessary to the system in which dyna-
mics of automatic voltage regulators and excitation systems are taken into
account. We begin in this section with a derivation of the system equations

of the system.

2.1 System equation

In transient stability analysis, an n-machine power system in which dy-
namics of automatic voltage regulators and excitation systems are taken into

account, is described as follows [65,66]:

dazs! ds! n
i i .
m, + di —_— = Pmi - Z Yi.EiE.51n(6i. + ei.)
at? dt j=1 *3 *+ J J
(4.1)
ag! .
-— ] - L - - [} 2
e (L/Th0s) [Begs = By = (Kgg ~ %gi)1g;]
(4.2)
—2f _ . /T )IE, +K_E. - K. (V -v..)]
at - ai ai ai di ai' refi ti
(4.3)
el
dt B (1/Tei)[xéiEai Eei]
(4.4)
dEss
- (L/Tg;) [Kg3XKeiFBai ~ KgiBei = (Tei/Tqi)Bgj!
(4.5)

for i = 1,2,...,n
where, . for generator i,
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Pt mechanical power input,

m, s angular momentum constant,
di : damping power coefficient,
Y

ijlﬁ" : post-fault transfer admittance between the ith and the jth
1]
generator nodes (obtained after reduction of a network retain-
ing only generaterx nodes),

: complement of ¢ij' i.e., eij = 1/2 - ¢ij'

ij
Eiéﬁi ¢ internal voltage,
6..:6.—6.'

ij i 3

Eéilﬁi : voltage related with the internal voltage as in Fig.3l, and
Gi indicates a rctor angle relative to a reference frame rotat-
ing at synchronous speed,

E_._.: excitation voltages,

fdi

i,., : d=-axis current,
di

Xqi 7 xé,; d-axis synchronous, transient reactances,
i i

Té .: d-axis transient open-circuit time constant,

oi

Ea" Eei’ Edi: state variables of excitation system shown in Fig. 56,
i

Kai' Kei' Kdi: gains of automatic voltage regqulator, excitator, and

damping circuit, respectively,

., T ., T..: time comstants of automatic voltage regulator, exci-
el

T .
ai di
tor, and damping circuit, respectively,

Vrefi: reference voltaze of automatic voltage regulator,

and Tl' the time constant of detective circuit, is assumed to be zero. The

terminal voltage of the ith generator Vti is represented as follows:

© °

- w1
i - By T IXy

- !
By = 3%y

Y, .E, .
L 133 (4.6)

e~ e

for i = 1,2,,..,n

In order to construct a Lyazunov function, three basic assumptions are nec-

essary as follows:

1) Each internal voltage lags behind the g-axis of each generator by a
constant angle ¢i all :he time [64].

2) The transfer conductars in the reduced admittance matrix are negli-

gible °
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3) The magnitude of the ith terminal voltage can be approximately ex-

pressed by

n

N ' + °
Ve, N Eg + xdijzlyijchos(aij 855 (4.7)

where this equation is derived in Appendix D,

Under these assumptions, (4.1) v (4.5) change to the following equations:

d26i das, n oo o
m, +d, —= = ) B, . (E0E9sins®., - E.E,.sins,.)
142 14t 2 13713 ij i’j ij
j#L (4.8)
dEi o)
— = ) -
" (1/T555608 3) (Begs ~ Eggy)
(o]
- ' - — st -
(L/Tao1) (L = (xg5 = %5308, 1(8; - E))
2 (o]
- ' R | -
(l/Tdoi)(xdi xdi)jZlBijEj(cosdij cossij)
jAL (4.9)
dEai (o) (o)
at =- (l/Tai)[(Eai - Eai) + Kai(Edi - Edi)
(o]
L -
A+ xy B IR (B - BN
1 (o]
1] -
+ (Kai/Tai)xdijZlBij(cosGij cossij) (4,10)
j#i
ei o o
. (L/T ;) [K; (Byy = Byy) = (B - Eg;)] (4.11)
dEdi (o) o
. (L/Tg3) [K 3 Kgs (Byy = Byy) = Kyy (Bgy = Egy)
O .
= (Tgy/Tg3) (Bgy = Egy)d

(4.12)
for i = 1,2,.4.,n .

where the superscript " o" denotes the stable equilibrium point of the

post-fault system, and accordingly, (4.8) ~ (4.12) apply to the post-fault
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system. Egs.(4.8)v(4.12) in the state space notation are given as follows:

X = Ax - BF(o0)
(4.13)
g = C'x
where
0 Kim-1) O 0 0 0
) —M-lonn 0 0 0 0
0 0 -H; 0 Hy 0
A =
0 0 -H3 -H1+ 0 -Hs
0 0 0 Hg ~Hy 0
0 0 0 H8 -Hg -H10
- - (4.14)
. . r -
0 0 G (n-1)m 0
-M" Ty O 0 0
0 ®nn 0 Inn
B = C =
0 -Bnn 0 0
0 0 0 )
0 0 0 0
in which
M = diag(ml, m2' cooyp x“-n)
D = . diag(dl, d2' coo0yg dn)
13 (n-1)
Kh (n-1)
=I(n-1)(n-1)
) (4.15)
G(n-1)m [ I(n-1)(n-1) -T(n-1)(m-n+1) !
131 (n-1) 01 (m~n+1)
Tnm =
~I(n-1)(n-1) T(n-1)(m-n+1)

and Hi(i=l,2,...,10); a, and B are n xn matrix of diagonal form whose ele-

ments are defined as follows:
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hyj = (/) )1 = (x4, = x3.)B, ]

hpi = l/'I‘('ioicos¢i

i = Ky (1 + %53843)/Ts

i = Mg (4.16)
hsi = X /T hgi = Kg;Kei/Teg

hei = Kei/Tei hoi = K'di/Tei

hqg =.l/Te; hyjoy= 1/T4,

o = (xgy = %330/ Tgos Bi = X 3%33/Tas

for i = 1,2,.4e,n

The row vectors 1 and 0 in (4.15) have all their elements equal to unity

and zero, respectively. The number m is defined by
m = n{n-1)/2 ' (4.17)

The state vector x is a (6n-1l) dimensional vector consisting of six vec-

tors as follows:
x = [ 6;, w', AE', AEA, AEé, AEé 1! (4.18)

where the elements of these vectors are defined by

Q

Gri = 61(i+l) - 61(i+l) for L = l'zloco'n-l
wi = 51 : for i = 1,2,999;1‘1
AE, = E; - E; for i = 1,2,...,n
o (4.19)
AE ., = E , - E_, for 1 =1,2,.,00,n
axr al al
AE . = E . - Eo. for i = l,2,oooyn
el el el
O PR
AEdi = Edi - Edi for 1 = 1,2,,.0,n

The nonlinearity F(o) is a (m+n) dimensional vector consisting of two vec-

tors as follows:

F(o) = [ £f1(0)', £2(0)' 1’ (4.20)

where f; (o) and £,(0) are m and n dimensional vectors defined by
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. (o] o_0O o
- = .B.sin(o, + §..) - ing.
f1x (9) ,Bij[El j in(o, 13) EiEj51n61j] (4,21)

for 1=1,2,004,n-1, j=i+l,c.0,n,

x=1,2,¢.0.,m,
where k is related with i and j by
k = (i-1)n - i(i+1)/2 + j, (4.22)
and f,(0) is an n dimensional vector{ defined by
n

f2i(0) = ) B,
i 551 ij

J#i

o
B.(cosd,. - cosS§, .
3 i3 13) (4.23)

for i=1,2,...,n.

The output o is an (m+n) dimensional vector defined by

o
Gg. = § -6 for k=1,2,...,m
k i- i- r<r [ At 4

] ] (4.24)
O‘k = Ei bt E: fOr k=n\+l'.00’m+n'

where k is related with i and j by (4.22) for k=1,2,...,m. Eq.(4.13) des-
cribes the multimachine power system as a multivariable dynamical system

of the form as shown in Fig.d.

2.2 Stability check of syst2m

The transfer matrix W(s} for the linear part of the system is written

as‘follows:

C'(sI - A)‘:B

W(s) =

T [s(sI + ¥1D)1 " In~1p 0

3 A'l(s3el + szez + se3 + gy)
Wi (s) 0
= (4.25)
0 Wz (s)
where A and ei(i=1,2,3,4) ar® n xn matrices defined as follows:

A(s) = s*T + s3y = s?yy + sy3 + vy (4.26)
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Yy = Hy + Hy + H7 + Hjyp
Y2 = Hy(Hy + Hy + Hyg) + Hy(H7 + Hyg) + H7Hjg + HsHg
Y3 = Hy (HyH7 + HyHjo + HyoHy + HsHg) + HyHyH;qo + HyH3Hg

Yy = (HjHyH7 + HpHgHg)H)q
and

81 = 0

€y = a(Hy + Hy + Hyg)

(4.27)

€3 = G(HQH7 + HyHy1g + HpgHy + H5H8) - BH2H6

Ey = (O.Huﬂy - BH2H6)H10
For the system to be stable, there must exist matrices N and Q such that
Z(s) defined by (2.18), that is,

Z(s) = (N + Qs)W(s) (4.28)

is positive real. In this problem, N is chosen as follows:

N = (4.29)
Onm Onn

The inequality in (2.14) is equivalent to the following inequalities:
fix(o)ox > O for all oy in R (4.30)
and k=l'2,ooo'mo

Howéver, the inequalities are satisfied not for all o) in R, but for some

ranges of 0y as follows:

ominf_okf,os andof_“kiomax forosio
or (4.31)
Omin 2 9% 20 and Jg < Ox < Opax for gg > 0
where
o) s
Gmln s -7 - (Gij + 6ij)
o) S
] o
Os = aij - Gij
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and
S 0,0 .

Gij = sin‘l(EibjSLndzj/EiEj)
As observed from (2,22), ¥(o)'No has an influence on the time derivative of
V(x). Hence, it is desirable to make its influence zero by letting q = <,
However, this selection of q causes a polefzero cancellation between (N +Qs)
and W(s) because Wj(s) has a pole at s = 0. In order to avoid the pole-zero
cancellation, we give q a finite value in constructing the Lyapunov func-
tion, and once it is obtained, we let q - =,

The function Vj(0g) in (2.15) is chosen as follows:

m g

I [ fix(o)doy
=1 0

Vi (0)

= 2 z B..[E.E.(cosﬁ?. - cos§, )
ijtiy ij ij (4.32)

- (8., - 6?.)E?E?sin6?.]
i) 13 1) 1]

The function Vj (o) is not positive for all o, but for a range of o. Ac-
cordingly, the global stablility of the system can not be concluded with
this function. It is possible, however, to estimate the domain of attrac-
tion by using the Lyapunov function obtained with this function., It should
be noted that Vj(0) can take negative values in the vicinity of the origin
if Ei = EZ is not satisfied for all Ei' where i=1,2,...,,n. This fact may
have significant influence on the stability of the system, but its influ-
ence is assumed to be negligible. The partial derivative of V; (o) are gi-

ven as follows:

A
o 0_0 o
—_— = gin(o, + §;.) -~ E E.sin§, .
- Bij[EiEj ( X lJ) 13 in 13]
k for k=1,2,..0,m,

av, n . (4.33)

—_— = ) B"Ej(cossi‘ - coséi,)

do,  j=1 - ] )

j#L for k=m+l,...,m+n,

that is,

W1(0) = I(pen)(men) F(O) (4.34)
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From this equation, we obtain
Q = I(m+n)(mt+n) ) (4.35)

By substituting (4.29) and (4.35) into (4.28), Z(s) is given as fol-

lows:
(L/q+s)T' (s(sI +M 1D)] IM 1 0
Z(s) = :
| 0 s(sI + a)'IB
i -Zl(S) 0
= (4,36)
i 0 Z3 (s)

The conditions for 2Z(s) to be positive real are

1) 2Z(s) has elements which are analytic for Re s > O,

2) 2*(s) = zZ(s*) for Re s > 0,

3) 2'(s*) + Z(s) is positive semi-definite for Re s > 0.
Since Z(s) is a direct sum of Zj;(s) and Z,(s), those are investigated in-
dependently of each other, The first two conditions clearly hold for both
2y1(s) and Z;(s). For condition 3) to be satisfied, it is sufficient in
this case to show that Z; (jw) + Z;(—jw) is positive semi~-definite for each
scalar' w, where i = 1,2, After some manipulation, those are found out to

be as follows:

d;, - m/q

2T'diag( ————— )T (4.37)
m2w2 + d?
i i

Z1 (jw) + 2] (~jw)

£1308 + £p5u" + E3502 + Eyj
2wdiagl ]
A4 () A (~3w)

27 (jw) + 23 (~jw)

(4.38)

where £; (i=1 ~ 4) is an n xn matrix defined by
€1 =€)
€2 = —e1Y2 + €2Y] ~ €3

€3 = €1Yy ~ €2Y3 + €3Y2 = €4Y)

Ey = ~€3Yy + €4Y3
Both the right hands of (4.37) and (4.38) are positive semi-definite if the
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following conditions are satisfied:

q > my/d; for i=1,2,...,n, (4.40)
and
13 2 O, g2i 2 O €31 > 0O, Eyi > O,
for i=1,2,...,n. (4.41)

Under these conditions, Zj(s), 22(s), and accordingly, Z(s) are positive

real, and the system is stable according to Theorem 3.

2.3 Solution of matrix equations

If the inequalities in (4.40) and (4.41) are satisfied, then the sys-

tem is stable, and there exists a Lyapunov function as follows:
V(x) = x"Px + 2V () (4.42)

where P is a (6n-l)x(6n-1) positive definite symmetric matrix satisfying

the following matrix equaticas:

PA + A'P - L'

PB = CN' + A'CQ' = IW (4.43)

' = [ L)
WW, = QC'B + B'Q

where I and W, are (6n-1)x (m*n) and (m+n)x(m+n) matrices. Since 2(s) is a
direct sum of Z;(s) and Zp (3}, P can be expressed as follows:
Py ]

P = (4.44)
0 ™

-

where P; and P, are (2n-1) x(2n-1) and 4n x 4n matrices, and are related with
Z1(s) and 2;(s), respectivelf.

The transfer matrix W) (3) is rewritten as follows:

Wy(s) = Cl(sI - Ay)71By (4.45)
where
0 K 0 G
A = 3 = cy = (4.46)

o -M"lp M~1p 0



Since CiBl = 0 holds, (2.20) reduces to

PjA; + APy = - LjL
(4.47)
] t ]
P1B) = 1Ny + A1y
Py and Lj are partitioned as follows:
P11 P2 L1
P21. P22 L12

where P13, Pio, P21, P22, L71 and Ljp are (n-1)x(n-l), (n-l) xn, n X (n-1),
nxn, (n-1) xm, and n xm matrices, respectively. Substituting (4.46) and

(4.48) into (4.47) gives

0 = - L;iL]; v (4.49)
P11K' - P;oM7ID = 0 (4.50)
P1K' + KP1p = PooM !D - DM~1Py5 = - LypLi; (4.51)
P1oM~lr = (1/9)G (4.52)
PyoM~IlT = T (4.53)

These equations are the same as (2.62) ~ (2,66), and their solutions are

given as follows:

KP11K' = (1/q)D + pDUD
KPy5 = (1/qQ)M + pDUM (4.54)
Pjoo = M + uMUM

where U is an n Xxn matrix with all elements equal to 1. The scalars p and

H must satisfy

n
p 2 - (/@) ] 4
i=1

n d.m (4.55)

i1
w-p > -1/}
i=1 di - mi/q

for P; to be positive definite matrix, and satisfy
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n-1 n (d;my -=dsmi) 2 n d.m,
i) 11 i'i
(u*)2 Z Z - u* 2 -1<0
i=1l =i+l 4(di—mi/q) (dj -mj/q) i=l 4 -mi/q
(4.56)
for (4.51) to be satisfied, where u* is defined by
U* =y = p. (4.57)
The transfer matrix Wp(s) is rewritten as follows:
Wo(s) = Cy(sI - Ay) 1B, (4.58)
where
-H; O Hy O a I
-H3 -H 0 -Hg -B 0
Ay = 3 * B2 = Cz = (4.59)
0 Hg -Hy 0 0
0 Hg -Hg -Hjg 0
Since Z,(s) is positive real, Z;(s) + Zi(-s) is factorized as follows:
Zp(s) + 2Zp(-s) = Y3(-s)Y¥s(s) (4.60)
where
v2E1i s(s + §1i) (s + Tpji) (s + L3i)
Y, (s) = diagl ] (4.61)
i Aj (s)
in which g3, %2i, and £3j are determined by
1508 + Ea5u + B30 + Eyj
2 2 2 (4.62)
= £13 (02 + £13) (02 + £23) (w2 + £33)
Yo (s) has a minimal realization (A, By, Ljy), that is,
Y,(s) = Ly(sI - Ay) !B, (4.63)

where Ly is an 4n xn matrix consisting of four matrices as follows:

. ) ' 1 1
Lz = (L21, L22, L23, L2u)'

(4.64)

The matrices Lj1, Lo, Lp3, and Ly, are n xn diagonal matrices defined by

L) = diag(f1j)
1

Lpp = diag(22)
1
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Ly3 = diag(23;) Loy = diag(fyj) (4.65)
i i

and their elements 233 v %,; are determined by solving the following equa-
tions
_Ail. = T, for i=1,2,...,n, (4.66)

where Ai, li’ and T, are 4 x4 matrix and 4 dimensional vectors, respective-

ly, defined as follows:

Aj11 = af
M1z = -By
- Ai13 =0

Aiy =0

cAi21 = aj(hyj + hyj + hjyg4)
Aigp = -ajh3i = Bi(hy; + hy; + hyoz)
Aiz3 = -Bjhgj
Ai2y = -Bjhgj
Aigl = aj(hyjhyi + hyjhiej + hygjhy; + hgjhgi) - Bjhyihgs
Aigz = -ajhgj (hyj + hyes) = Bj(hyjhyy + hyjhigs + hygihyj)
Aiz3 = -ajh3jhgj -~ Bihgj(h1j + hygj)

Aigy = = (ajhgj + Bijhjj)hgj (4.67)
CAjy1 = (ajhyihgy = Bjhojhgi)hygj
Ajy2 = = (ajh3; + Bjhyj)hyihyo;

Aiy3 = = (ajhszj + Bijhjj)hgihyof
Aigy = O

Tii = v2E13 (C1i + G2i + T3i - Y1i)
Toi = Y2811 (L1if2i + £2i03i + T3il1i - Y2i)

(4.68)
T3i = Y2811 (L1i%2i%3i - Y3i)
Tyi = Y2811 (=Yui)
2i = (R1i, 22is 23is 24i) (4.69)

for i=1,2,eee,n,

The matrix L; is related with P, by
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PoBy + APy = = Lply (4.70)

By solving this equation, we obtain

P33 P3y P35 Pg3g

Py3  Pyy  Pys  Pug .
Py = ' (4.71)
Psg3 Psy Pss Psg

| P63  Peu Pgs Pgs

J

where Pij (i, = 3,4,5,6) is an n xn diagonal matrix defined by

Pij = dﬁ?g(pijk) for i,j=3,4,5,6, (4.72)
k=l’2,ooo,n,

and its elements are determined by solving the following equations:

rkpk = vk for k=l,2,ooo,n’ (4073)

in which Fk, Py s and v, are 10 x 10 matrix and 10 dimensional vectors, res-—

pectively, defined as follows:

[ 2n, 2n3 O 0 0 0 0 0 0 o |
0 hy+ hy -hg ~-hg  hy 0 0 0
-h, 0 hy+hy; hg 0 hy 0 0 0
0 hs 0 hy+hyg O 0 hy 0 0 0
0 0 0 0 2h, -2hg -2hg O 0 0
T = 0 =-hp, O 0 0 hyth, hg =-hg <-hg O
0 0 0 0 hs O hy+hjg 0 ~hg ~-hg
0 0 -2h, O 0 0 0 2h; 2hg O
0 0 0 -hp O hs 0 0 hy+hyy hg
| o 0 0 0 0 0 2hg O 0 2hyo |k

P = (P33ks P3uks P35ks P36ks Putks Pu5ks Pugke Pssks Psekr Peek)

<
i

k = Gixfixe Lixfaks L1k%3ke L1k2uke L2k%2ks
Lokf3ks Laxfuks 23k%3kr L3kfuks Lukiuk)

for i=1,2,..4,n (4.74)

Thus P; and P, and accordingly, P are obtained,
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2,4 Lyapunov function

An expression for the Lyapunov function can be obtained by substitut-~

ing (4.18), (4.48), and (4.71) into (4.42) as follows:

V(x) = [8), w', AE', AEl, AE!, AE}]| P13 P10 O 0 0O 8

P23 Ppp 0 0 0 0 |l
0 0 P33 P3y P35 P3gll AE
0 0 Py3z Pyy Pys Pyg || AE,
0 0 Ps3 Pg, Pgs Psg |l AE
0 o

Pg3 Pey Pgs Pee || AEq |
+ 2V1(0)

= 1 [ '
GrPllsr + 26rP12w + w'Prow + 2V; (o)
' ' ' '
+ AE'P33AE + AEanuAEa + AEeP55AEe + AEdPGGAEd
+ Z(AE'PanEa + AE'PasAEe + AE'P36AEd

+ ] ]
AEaPusAEe + AEansAEd

+ AE!P5gAE,)
(4.75)

Now the Lyapunov function is obtained, we let g + = because q is introduced

only in order not to cause a pole-zero cancellation between (N +Qs) and

W(s) as mentioned before. Substituting (4.32) into (4.75), and expanding

and‘rearranging the terms in (4.75), we obtain the following expression:

V{(x)

(/2 m,) ) mm, (w, - w.)
i=l T i=1 =1+t

n n
(u* = u) Cf mw)2+ ol § a8, - 69 + mw,1)2

+
i=1 i=1l
th t o o 0_0 [e]
+ ) ) B, .[E.E.(cos8;. - cosé,,) - (5. - 6°.)E°E sins®.]
. . ijiT3 ij ij ij i3°7iT5 ij
i=1l j=1
th O, 2 o 2
+ izl{Paai(Ei - E)+ Puui(Eai - Eai)
. - w2 2 . s )
+ pssl(Eei E, ) pGSL(Edi Edi)
+ 2(E, - EX)[payi(E . = E ,) + (E_. - EC.) + . (E,. - EO
i 7 Bp) P3uilBg ai’ T P35ilBg; T Hgy) T P3silBg; T Egy
(o} O O
* 2B ; = By) [PusilByy - Ep) + Puei(Byy -~ Eg;)l
(o] (o]
+ 2P561(Eei - Eei)(Edi - Edi)} (4.76)
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where

: n
p,o=-1/)m, (4.77)

The first and the second terms in (4.76) represent kinetic energy. If
damping torques of generators are uniform, then we can choose p* to be
equal to Hoe The scalar p in the third term is an arbitrary non-negative
scalar. It is chosen to be zero because the term narrows and complicates
the estimation of the transient stability of the system, The fourth term
represents potential energy which is stored in the system owing to some
deviations of rotor angles of generators from those at the stable equili-
brium point. The potential energy plays an important role in defining the
transient stability region of the system. The fifth term is a new term
which is related with the field flux linkages and the variables of the ex-
citation systems.

In those cases where damping torques are uniform or zero, (4.76) re-
duces to

n
(1/2 Z m, ) ) Z m, m, (0, - ws )2
i=1 i=1l j= =1*

V(x)

! o 0._0 [e]
+ Z Z 5 [B4E, (coss - cos§,.) - (8,. - 6,.)E E,sins,.]
im1 3—1 ij ij 137715 i3
t 0,2 o 2
. - + - -
+ izl [pP33i(E; = E;) Pyui(E_; Eai)
. - 9 2 . - w2 12
* pssilBy; = Byy)T + PeeilBy; - Eyy)
+ 2paui(E. - EX)(E . - E° o) +2 (B, - ES)(E , - E°.)
Panils; = 5508, P35i i’ Wei T Fei

(o] (o] (o]
+ 29351(Ei E) (Ed. - E ) + 2pys5i (E ai Eai) (Eei - Eei)

(o] (o]
s . - - + . - . L, - .
+ 2pygi (B E® i) (Byp E ;) * 2PseilEy; - E)(By, - ELL)]

= Vk(w) + Vé(é, E) + Vf(E, Ea' Ee' Ed) (4.78)

where p is chosen to be zero. Vk’ Vé, and Vf denote the kinetic energy,

the potential energy, and the new term, respectively. The time derivatives

of V., Vb, and V_ are written as follows:

k £
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_.}_‘.=-(1/Zd)z de(m - w)?
dt i=1 i=1 j=1
1 on (4.79)
+ B. E E sxns - E,B,siné, , . = W,
1§1 321 N {E5Sing; o) Gy - )
v
—_ = - B, E E 51n6 -~ E,.E.sin§, .) (w, - w.
at 121 le ¢ 3 i) 13)( i 3
(4.80)
+ 22 (aE, /at) ZB JE, (cos6 - coss, )
i=1 =1 13 .
av Z Z
_—= = 2 (dE. /dt) B. .E, (cosé - cosé, ,)
dt =1 j=1 133 +
N ] ] . (4.81)
- izl [L15(B; = E)) + 23(E ; -~ E ) + 235(E_, - E,)
*+ Iyi(Ey, - Ed - V2811 £23(0)12

The first term of (4.79) is due to damping torques of generators, and it
is non-positive., A part of the kinetic energy is dissipated by damping
torques. The second term of (4.79) and the first term of (4.80) are of
the same magnitude and of the opposite signs of each other, which implies
that there is some exchange of energy between the kinetic energy and the
potential energy. These terms do not contribute to the damping rate of
V. Similarly, the second term of (4.80) and the first term of (4.8l) are
of the same magnitude and of the opposite) signs of each other. There is

some exchange of energy between Vp and V., too., The second term of (4.81)

£
is due to field flux linkages and excitation system variables. It is non-
positive regardless of their time variations. As a whole, V dampens ac-—

cording to

av
— - -] a,) - d;d, (w; - w,)?
dt i=1 i=l j= =1"
S 0 (o] (o]
-_izl [215(B, - E)) + 225 (E ai = Bay) * Rai(E - E))
+ ZL‘,i(Edi - Ed - Y28y f2i(0‘)]2

(4.82)

while Vk and Vp, Vp and Vf are interacting with each other, respectively.
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2.5 Conclusions

In this section, we have constructed a Lyapunov function with a sys-
tematic method based on a generalized Popov criterion for the multimachine
power systems in which dynamics of automatic voltage regulators and exci-
ters are taken into account. There is some difference between this new
Lyapunov function and the Lyapunov function derived in §2 of chapter IIX
for the power system in which only dynamics of field flux linkages are ta-
ken into account, in several points as follows:

1) The new function consists of three terms, that is, kinetic energy Vv, _,
potential energy VP' and a new term Vf.

2) The kinetic energy Vk is same in both the functions.

3) The potential energy Vp is same in both the functions, and it is a
function of field flux linkages as well as relative rotor angles of
generators.

4) The new term Vf is a function not only of field flux linkages, but al-
so of state variables in the excitation systems.

5) The damping rate of V consists of two terms. One of them is due to
damping torques of generators, and the other is due to some devia-
tions in excitation system state variables.

Thus the obtained Lyapunov function is characteristic of the power systems
in which dynamics of excitation systems are taken into account., In the fol-
lowing sections, the transient stability of the system is investigated on

a basis of this function.

§3. Critical value of Lyapunov function

In this section, we make some investigation on the critical value of
the Lyapunov function constructed in the preceding section, We can deve-
lop almost the same discussion as in chapter III. We begin in this section

with a description of basic equations,

3.1 Model and basic equations

If damping torques of generators and transfer conductances of reduced
admittance matrices are zero, then the motion of the ith generator is des-

cribed as follows:
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dzs’ 2 (o} o
m, -~ = z B, . (ECEosiné.. - E,E.sin§,.)
i g2 ij i) ij i3 i)
dEi (o) o
— 3 ' - - ' - - -
” (l/Tdoicos¢.)(E i E .) (l/T .)[l (xd x )B ](Ei Ei)
- ' - -
(l/TdOl)(xdi x ) XlB JEJ(cosG coséij)
37‘1
ai o o
at - _(l/Tai)[(Eai.-Eai)-bxhi(Ed )-+(l-+xd1Bll)K (Ei'-Ei)]
n
- (Kai/Tai x! leB JE (cosd - cosdij)
J#L
ei o o
at B (l/Tei)[Kéi(Eai.-Eai) - (Eei.-Eei)]
dEdi (o] (o) o
. (L/Tg ) (K3 Kqs (Bay = Bay) ~Kyy (Bey By = (Tg3/Tyy) (Bygy ~Eg;)d
for i=1,2,.4..,n (4,83)

The superscript " o" denotes the stable equilibrium point of the post-~fault
system, and (4.83) applies to the post~fault system;

A Lur'e type Lyapunov function has been derived for the system in (4.
83) in the preceding section as follows:

V(x) (1/2 z m,) z X mm, (0, - Wy )2

i=1 i i=1 j~l

1]

+
[l e b=

I e~18

B, . [E.E, (cos§®, - coss,.) - (6,. - 6°.)E°Esins®, )
ij i) ij ij ij i3°7175 ij

i=1l j=1
+ rzl [p33i(E, ~ES)2 + pyyi (E -£2)2
i=1 1 1 al al
+ pssi (B -E:i)z *+ PesilEy; _Egi)z
+ 20343 (E; ~E{) (B, ~E0.) + 2p35y(B; - E)) (B ; ~EQ,)
+ 2p36j (E; - E‘;) (Eg; = EZi) + 2pys5; (E_; - EZi) (Egy - E:i)
+ 2pyei (B, - E:i) (Ey; - Egi) + 2psei(E -E:i) (Eg; = Egi)l
= vk(m) + vp(cs, E) + Vf(E, Ea, Ee, Ed) (4.84)
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where Vk’ Vp' and Vf denote kinetic energy, potential energy, and the new
term related with internal voltages and excitation system state variables,

respectively., Their time derivatives are given as follows:

dav, n
=~ - 3. Z B, (E Ej sm6 - E,E.siné, ) (w; - w,) (4.85)
dt i=1 j=1 * J 1J J
av
L2 - . z z B (E E 51n6 - E,E.sinf,.) (0w, - w,)
dt i=1 J-l 13 13 1 J (4.86)
+ 2 2 (dE. /dt) z B E (cosG - cosGi.)
i=1 j=1 * ]
dav
L S 2 z (aE, /dt) 2 B, E (cosG - cosGi.)
dt i=1 j=1 i3 J (4.87)
n *
=2 ) [958, =ED) + 2,5(E_, ~E0.) + 235 (E_, -Eo.)
P T 2133 Tai 31 i T Yei
+ lui(Edi-Egi) - Y2g14 fzi(o)]2

The right hand term of (4.85) and the first term of (4.86) are of the same
magnitude and of opposite signs of each other, which implies that there
exists some exchange of energy between Vk and Vp. Similarly, the second
term of (4.86) and the first term of (4.87) are of the same magnitude and
of opposite signs of each other. There exists some exchange of energy be-
tween Vp and Vf, too. Those terms do not contribute to the damping rate

of V. As a whole, V dampens according to

dav n
(o] (o] (o]
— =-27 [2i(B, =E;) + 23i(E_, =E_.) + %3i(E_, -E_.)
at i=1 1 lo al al , el el (4. 88)
+ 843 (Eg; ~E3;) = V2813 £24(0)]

while Vk and Vp, VP and Vf are interacting with each other, respectively.

3.2 Transient stability region

If §; is chosen as reference, Vp in (4.84) can be treated as a func-

tion of aan—l) dimensional vector Gr and an'n dimensional vector E as fol-

lows:

= ’ 4.
Vp Vp(Gr E) (4.89)
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Fig.57. Equipotential curves of 3-machine
system: E = (1.0, 1.0, 1,0) poUcs

- 218 -



where

$
r

‘(521, 631, ceay 6nl)

]

E (El ’ Ez P oeep En )

Fig.57| shows an example of Vp(&r, E) in an{(n-1) dimensional relative angu-
lar space|for a 3-machine power systems. The curves C;, C2, ... are equi-
potential curves yielded by

V(6. B) = G i=1,2,...,n (4.90)

where E is treated as parameters, and E = (1.0, 1.0, 1.0)' in this figure.
The function Vb takes the minimum value at the point S. The points Uj, Us,
«+. are saddle points. The curves O, Oy, ... are those which go through
Uy, Up,...., and are orthogonal to equipotential curves, respectively. If
Ci takes small values, then the corresponding equipotential curves are
closed, and surround the point S. With increase in magnitude of Ci’ equi-
potential curvej goes outside, and reaches the lowest saddle point U; when

Ci takes the value defined as follows:

Vgl =V (8u1, E) (4.91)

where §,;; is the relative angle vector at U;, If C; is greater than vy,
then the corresponding curve is not closed any more. With more increase in
magnitude of Cj, the equipotential curve reaches the saddle points U, Uz,

.ee in sequence according to

V2 = Vp(5u21 E)

l

Vu3 v, (Su3, E) (4.92)

where 8y, Suzs +.. are the relative angle vectors at Ué, U3, ees, respec—
tively.

From (4,83), each generater receives a torque as follows:

£, = B E.E.sind - E.E,sind§, . 4,93
2(31313)_ (4.93)
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The fi defines an n dimensional vector £

£

[ fl, fz, ©cooy fn ]' (4094)

The sum of all torques denoted by T is given as follows:

’ — n
£ = J £

i
I e~

= 0 . (4.95)

Eq. (4.95) implies that the center of angular velocities u defined by
w = JIme/}mn ~ (4.96)

does not receive any torque, and accordingly, it is kept constant all the

time, that is,
@ = constant (4.97)

This fact implies that each torque does not contribute to the acceleration
of the center of angular velocities, but that each torque has only influ-
ence on relative behaviors of generators. There is a relation between the
torque £ and the potential enerqgy function Vp as follows; the partial deri-

varives of Vb with respect to relative angles are given by

v n

E = 27 B, . (E;E.sin§, . - E?E?sin&i.) (4.98)
364, j=1 13 3 3 3 3

= -2fi i#1
which gives

v
P - . 2fr (4.99)
36

r

where fr is a reduced torque of (n-1l) dimension defined as follows:
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fr = [.fz, £3, 000y £, 1 (4.100)
The direction of (BVé/BGI) is orthogonal to the equipotential curves, and
its magnitude is proportional to the gradient of the equipotential curves.
Eq.(4.99) shows that the system receives the torque which always acts on
it in the direction orthogonal to the equipotential curves,

Let us return to Fig.57, The torque fr is parallel with the curves
O1s O3, «+. Oon them. Those curves enclose the region in which the stable
equilibrium point S exists. In this region, fr acts on the system in such
way that it will confine the system in this region, The system will lose
synchronism if it crosses one of the curves 01, O3, ... from the inside to
the outside of the region because fr will acts in such way that it will se-
parate the system from the curve, afterwards. The transient stability re-~
gion is defined by the region which is bounded by the curves 0;,05, ... in
a wide sense that the system receives the synchronizing torque in it. Thus
the transient stability region is defined in the same way as for the power

systems which were investigated in the preceding chapters.

3.3 Variation of equipotential curves

The potential energy function Vp contains internal voltages as its
variables, so the equipotential curves yielded by (4.90) vary with internal
voltages. Fig.sg shows some examples of the equipotential curves for the
3-machine power system in Fig.57, where some of Ey1, E2, and E3 are increas-
ed from 1.0 p.u. to 1,2 p.u. Fig,58(a) shows the equipotential curves in
the case where only E; is increased to 1.2 P.u. The equipotential curves
move inwards while the saddle points Ui, Uz, Uz, and U, shift a little out-

wards. The value of Vb at each saddle point varies as follows:

Vui : 3.608 >  4.010

3.854 ~» 5.117

‘:<
N

(4.101)

Vg3 ¢ 10.139 -+ 11.401

13,032 > 13.437

s
r

while V, is nearly equal to zero at S.| Thus V,; increases with the
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increase in Ep. In particular, the increase in Vyj is conspicuous for U3
and Ujz whicﬁ are corresponding to the step-out of no.2 generator. This
fact implies that the increase in Ej makes it difficult for no.2 generator
to step out by raising the saddle point which corresponds its step-out. In

Fig.58(b), only Ej3 is increased to 1.2 p.u. Similarly, V,; varies as fol-

lows:
Vur 3.608 > 5.022
Vu2 3.854 > 4,288
(4.102)
Vuz 3 10.139 -+ 10.572
Va3 13.032 > 14,801

while Vb takes a value nearly equal to zero at S. 1In this case, the in-
crease in Vi is conspicuous for Uj and Uy which are corresponding to the
step-out of no.3 generator, and makes it difficult for no.3 generator to
step out. In Fig.58(c), E, and E3 are increased to 1.2 p.u. while Ej is

kept at 1.0 p.u. In this case, Vyji varies as follows:

Vul 3.608 5.523
: 5.650
Va2 @ 3.854 -~ (4.103)
Vu3 : 10,139 + 11.934
Vuy : 13,032 -+ 14,946

The increase in V,; is almost same for all saddle points U, Uy, U3, and
Uy, and makes it difficult for both no.2 and 3 generators to step out.
Summing up the above observations, we conclude that some increase in a
internal voltage enhance the transient stability of the corresponding
generator, On the other hand, in the cases where some internal voltages
are decreased, the transient stability region gets narrower and shallower
as observed from Fig.3ﬂ in chapter III,

Whether some internal voltages are increased or decreased depends on
the gains of the automatic voltage regulators installed in the generators
of the system., If the gains are low, then the internal voltages will de-
crease owing to some fault, and conversely, if the gains are high enough,
the internal voltages will increase., Then how high gains are allowed for

the system in (4.83) by the guneralized Popov criterion ?
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For the system in (4.83) to be judged to be stable according to the
generalized Popov criterion, the inequalities in (4.41l) should be satis-

fied. Those inequalities are rewritten as follows:

€i1i = a3 > O (4.104-a)

€2i = MiKai + mpi 2 O (4,104-b)

E3i = n3iK§j_§ + m‘iKai +nsy > O (4,104~c)

Sui = neikZ; + nziK . + Mgy > 0O (4.104-q)
where

nii = Bjhpjhej - 203hijhg;

nai = aj(hfy + h%; + hios)

n3i = (ajhsihgi = Bihpihgi)hsihgi

nyi = @i [2h5ihgj (hyihyi +hoihygs +hygihyi) —hpjhlihgs

' x(hy; +h73)] + 8] (hIgg ~hyjhys - hyshys ~hgshyi)hoshes

N5 = ai(hﬁih'zli +h53nfos +hfoihhs)

nei = ~(azh3j +Bihij)hoshishgihgihygy

n7i = =—lai(hyi +hyi)h3i+ B8] (hyihyi +hyihyi +hoihyi)]

Xhzihsih%Oi

ngi = aji(hyihyihyoi)?
and |

h3i = hgi/Ky; = (L= xyB /Ty,

hsi = hsi/K; = /T

B; = Bi/Kai = xéi/Tai.

The inequalities in (4.104-a) and (4.104-b) are satisfied for normal gener-
ators, so we only have to investigate the remaining inequalities. From (4.

104-c) and (4.104-d), we obtain two conditions as follows:

A

€3imin Kai 2 &3imax (4.105-a)

and

A
~
1A

Euimin X Kyj Eyimax (4.105-b)
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where

2 ' DT )T L+ ' 2
E3imi . (xledl dlr.ﬂ- dOJ.) ei (xdiTa' +xd1Td01)
imin
- ' 2
xdlelKéleOLle
- .l TZ +T2 +T2 ]
- . (x5 =X ) 31 T30 5955
= L [(x Tz—"" T )T .+ (x T . +x'.T' .)T2 ]
di“di X3 ai doi’ Tei di ai di doi’ "di
*pt  +x_.T .
Eaimin X33 ai T *¥qi ot T ¥ai e
imin 2
X..T._.
xdlxéx 3 di
- Y2} .. cos
Eyj n Geas = %a5) "3019%;
imax 2

ei ®aiTas * X3 01 ¥ ¥aiTes!
In (4.105), £3imin and E4imin 332 both negative for normal generators, so
the left hand inequalities are satisfied because K,j is usually positive,
On the other hand, £3ipax and Iiimax are both positive, and accordingly,
Kai should be smaller than thes® values. As an example, let us take a 10~
machine power system in Fig.59, vhere its genrator parameters are provided
in Table 16-| The variations cf I3ipax and Eyimax for no.2 generator are
shown in Flg.60L The value of Iimax increases monotonously with the time
constant T ai’ and conversely, == value of Euimax decreases monotonously.
As is clear from the figure, Ziinax is always smaller than £3ip,4. From

the above cons:.derat:.ons, (4,123 reduces to

o
IA

K, < Esimax (4.106)

Since Eyjmax takes its maximum calue when T,; and Tej are both zero, let

Tair Tei = O, then (4.106) is sumplified as follows:

0 2 Kai 2 Kajmax™5%i ' (4.107)
where

Kaimax = :: x:h

]
Xai

The coefficient K, jn.x is the axsimum value of K,; allowed by the genera-
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Fig, 59, Configuration of 1l0-machine system,
Table 16. Generator parameters of l0-machine system.
: ’ ' Exciter
Unit H X3 x4 X3 Tao & AVR
1 500.0 0.0200 0.0060 0.0190 7.00 K, = 1.000
2 34.5 0.2106 0.0570 0.2050 4.79 X, = 1.000
3 24.3 0.2900 0.0570 0.2800 6.70 Kq = 0.004
4 26.4 0.2950 0.0490 0.2920 5.66 T, = 0.020
5 34.8 0.2540 0.0500 0.2410 7.30 T, = 0.040
6 26.0 0.6700 0.1320 0.6200 5.40 Ty = 0.500
7 28.6 0.2620 0.0436 0.2580 5.69 T, = 0.0
8 35.8 0.2495 0.0531 0.2370 5.70 2= 7.0
9 30.3 0.2950 0.0697 0.2820 6.56 E_,~ 0.0
10 42.0 0.1000 0.0310 0.0690 10.20
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Unit Kaimax

2,333
2,695
4.088
5.020
4.080
4.076
5.009
3.699
3.232
2,226

Table 17,

Value of Kaimax‘
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lized Popov criterion, and it is determined only by d-axis synchronous and

transient reactances x.., x'..
di di

generators in the system. The maximum allowable gain Kiimax varies with

Table 17 shows the value of Kyjmax for all

generator, but remains in a range of 2.0 v 6.0. These values are somewhat
unsatisfactory. In practical power systems, the gain of automatic voltage
regulator is sometimes set at an value higher than these values. In those
cases, the inequality in (4.107) is not satisfied, and accordingly, we can
not produce the Lyapunov function given by (4.84).

It may be useful to elucidate from what the inequality in (4.107) ori-
ginates in order to know whether the internal voltages are increased or not
by the automatic voltage requlators with the gains allowed by the generali-
zed Popov criterion. First of all, let T3, Tej * O, then the variations
of the terminal voltages of the generators are directly transmitted to the

excitation voltages, and (4.83) reduces as follows:

d25. o 0_0 o
m, Z .(E.E.sinG.. - E.E.sin§, )
i 2 -1 i3 1) 1] 1]
dt =1
(4,108)
dEi n
—_— = - a* E - E ) - 8* B, E (cos6 - cosé, .)
at ( z1 i3 +J
3#1
_where
* = - p_—~ ]
a¥ [1 (xd X3 )B +(1+xdl ll)KaLK ./cosé, ]/Td°1
x = - [ - ]
Bi (xdi xdl xdl alK /cos¢ ) /T doi

Eq.(4.108) is formally equivalent to (3.65) and (3.66), and is equivalent
to them if K,; is zero. With increase in Kaiv B; decreases monotonously,
and at last, it comes to take negative values while a; always takes posi-
tive values. It is clear from (3.30) that the following condition should
be satisfied for the system to be judged to be stable according to the ge-

neralized Popov criterion:

This condition is clearly equivalent to the following condition:
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X, = x4,
Kk, < = A e, (4.110)
ai -— X! i
di
Thus we obtain the same condition as (4.107). Namely, (4.107) originates
from (3.30).
Next let us investigate whether the internal voltages are increased
or not by the automatic voltage regulators with the gains satisfying (4.

107). We can rewrite the second equation in (4.108) as follows:

“dEi (o} E o]
— = - qa,.(E, - E]) - B, B, .E.(cos6., - cosS§, .)
at itri i lj=l ij 3 ij ij
: j#L
n (4,111)
[] (o] ] o
- ai(Ei - Ei) + BijZlBijEj(COSGij - coséij)
j#L
where
' ' 1
@ = K Keg (b + %3;845)/T501°05¢;
L ' '
By = K, i%ei%317 301995

The first and the second term are the same as those in (3.66). The second
term is due to the armature reaction of the ith generator, and it causes
the internal voltages to decrease during the first swing as investigated in
detail in the preceding chapter. The third and the fourth terms are due to
the-voltage regulation of the ith generator. The second and the fourth
terms are of opposite signs, so the voltage requlation cancells out with
the armature reactions; and suppresses the decrease in the internal vol-
tages owing to the armature reactions, If K,; is zero, a; and B; are both
zero, and only the first two terms exist. With increase in Kiir B; gets
greater, but as far as (4.107) is satisfied,

Bi j._Bi (4.112)
holds, and the internal voltages decreases during the first swinag owina to

the armature reactions, yet.' In order that the internal voltages increase
during the first swing,
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Bi > B. (4.113)
or equivalently,

X,. = x.
K, > —9-14;'—.—-9-1-'-c05¢i (4.114)
di

should be satisfied, where Kéi:is set 1,0, This condition is contrary to
(4.107) . Namely, the internal voltages are not increased during the first
swing so far as (4.107) is satisfied. This conclusion will hold in the
cases where Tai and Tei are not zero because (4.106) is more strict than
(4,107), that is, because Kai allowed by (4.106) is lower than that by (4.
107).

3.4 Method of determining critical value

The automatic voltage regulator is classified into two groups referred
as low gain regulator and high gain regulator according to whether its gain
satisfies (4.106) or not. 1In the cases where all generator in a system are
installed with low gain regulators, almost the same discussions as those in
§3.3 of chapter III hold to this system,

The time derivatives of Vi and Vp in (4.85) and (4.86) are rewritten

as follows:

de v
— = - B W, (4.115)
dt 248
r
dv oV V. dE
-2 = B, + 2 (4.116)
dat as T 3E dt
r
Hence the increments of Vk and Vb in a time interval are given as follows:
. t 4dv
v, = [°—Fat
ts dt
(4.117)

- &V, (8, v 8, BV E)

and
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av = [te—d—:-dt
s (4,118)
= AV, (5%, EgVE) - AV (8 V8 , E_VE)
where
5, AV
&V, (8 8, B VE) = js ;;-P-da , (4.119)
S
| E_ 3V .
(8 V8., ESVE) E - Ee —= &E , (4.120)
s OE

t and t, are both ends of the time interval, and § st Ge' Es' and E_ are

the values of 6 and E at the instants t and t . respectively, The term

Avk+p denotes the energy which is transfered from Vk to Vb, and the term
Avp+f denotes the energy which is transfered from Vp to Vf in the time in-

terval. These terms are determined by the trajectory of the system in the
(Gr, E)-space, and it does not matter how long it takes the system to move
from (GS, Fs) to (Ge, Ee).

Fig.61] shows an example of system trajectory in a relative angular
space for a case where a fault continues. The system crosses the boundary
of the transient stability region at the point c. Over this point, the
torque fr which is related with Vp by (4.99) acts in such way that it will
accellate the system, and will separate it from the transient stability re-
gion. In order that the system stays in synchronism during the first swing,
the fault must be cleared in such time that the system can not go over the

point c. We make here two assumptions as follows:

1) The system moves along the sustained fault trajectory even in the pe-
riod after the fault clearance,
2) The internal voltages vary in the same way as for the sustained fault

case even in the period after the fault clearance.

The former assumption is satisfied to some extent in large power systems.
On the other hand, the latter assumption is not satisfied so well as the
former one. If a fault is cleared, the internal voltages do not decrease
so much as in the case where the fault is on, so this assumption gives a

somewhat strict stability condition as will become clear in the followings.
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Under these assumptiops, let us consider a case where a given fault is
cleared at an instant. If the fault is cleared at an instant later than
the critical clearing time, the system will move along the sustained
fault trajectory, and go over the point c. Conversely, if the fault is
cleared at an instant earlier than the critical clearing time, then the
system will move along the trajectery, but will not reach the point c.
Now, let us consider the case where the fault is cleared just at the cri-
tical clearing time., The system will move along the trajectory, reach
the point ¢, and stop there, Hence, in this case, we obtain two relations

as follows:

vk(tc) = vk(tcr) - Avk»?(5cr'°6c' Ecr":Ec)
(4.121)
= 0
Vp(tc) = vp(tcr) + Avkép(écr'vdc, Ecrn:Ec) (4.122)

- n n
AVp+£(6cr 6c’ Ecr Ec)

where (acr' Ecr) and (Gc, Ec) are the values of (Gr, E) at the critical

clearing time tcr and the time tc when the system reaches the point c, res-

pectively. From (4.121) and (4.122), we obtain

Vk(tcr) + vp(tcr) = vcr + Avwf(écr'\: Gc, EcrmEc) (4.123)
where
v = Vv _(t)
cx P c (4.124)
= vp(sc, E_)

Since the internal voltages decrease during the first swing, the second

term in (4.123) takes some positive value, i.e.,

> 0 4,125
Avp+f(6cr'”6c' Ecr'hEc) > ( )

From (4.123) and (4.125), we get

4,126
vk(tcr) + vp(tcr) > v, ( )



This inequality suggests us that the system remains in synchronism for the

first swing if the fault is cleared in such way that

Vk(t) + Vp(t) < Voo (4.127)

holds, and leads us to a stability condition as follows:

[Stability condition 8]

If a system satisfies

V <V (4.128)
cr

then it is stable for the first swing, where Vcr is the wvalue of Vp(Gr, E)

at the point c where the sustained fault trajectory crosses the boundary

of the transient stability region,

This condition is similar to the stability condition 6 which was derived
in §3.4 of chapter III. In (4.128), (Vi + VP) has been replaced by V in
order to reserve some stability margin mentioned in deriving the stabili-
ty condition 6., We can use this condition as the basis of estimating the
critical fault clearing time by using Vo, as the critical value of the
Lyapunov function V.

In order to apply the stability condition 8, we have to look for the
point c. The time derivative of Vk is given by (4.115), which is the same
as (3.113). Hence the same discussions as those after (3.113) in §3.4 in
the previous chapter hold true. Namely, the time derivative of Vi changes
its sign from negative to positive at the instant when the system crosses
the boundary of the transient stability under a sustained fault. Accord-
ingly, the critical value V_, can be obtained by calculating the value of
Vp(Sr, E) at that instant. This method of determining the critical value
is very simple, and needs no calculation of saddle points, so it is able
to get rid of the usual difficulty accompanying its calculation. As an
example, let us take a case where a 3-phase short-circuit occurs at a point
near the bus 1l in the lO-machine power system shown by Fig.59, The fault
is cleared by opening the line connecting the buses 11 and 12 at both ter-

minals. Fig.62 shows the time variations of V, its components, and (dVk/
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dt) for the case where the fault lasts, where V has been modified in order

to take account of the transfer conductances as follows:
v(t) = Vp(t) + YVk(t) + Vf(t) (4.129)

in which y was defined by (3.146) and (3.155). The influence of the trans-
- fer conductances has been already investigated in detail in 54 of chapter
I1I, and the discussions and results in the section apply as it is to the
system under study only by replacing Vf in (3.124) by that in (4.84). As
shown in Fig.62(b), (dvk/dt) changes its sign from negative to positive at
/0.44 sec, This instant coincides with that when the system crosses the
boundary of the transient stability region. The critical vélue Vcr is ob-
tained by taking the value of VP at the instant, VCr is!9.123,in this
case. Since V defined by (4.129) takes!9,116 and{9.997 at 0.26 and 0.27
sec, respectively, it is gquessed that the critical fault clearing time ex-
ists between 0.26 and 0.27 sec. In FigJ63, the time variations of relative
rotor angles are shown for the two cases where the fault is cleared at 0.26
sec and 0.27 sec. This figure verifies the above guess. Namely, if the
fault is cleared at 0.26 sec, the system keeps synchronism, and conversely,
if the fault is cleared at 0.27 sec, then the system loses synchronism.
Thus Lyapunov's direct method yields very accurate result in this case.

The stability condition 8 certainly applies to the systems where their
generators are all installed with low gain requlators satisfying (4.106).
'It should be noted, however, that this condition is based only on (4,125)
except for the two assumptions made on the system behaviors, and that it
does not matter whether the time derivative of V is negative semi-definite
or not if Vf is some positive definite (or semi-definite) function of the
internal voltages and the excitation system variables, If (4.125) is sat-
isfied, then the stability condition 8 holds true even in the cases where
automatic voltage requlators do not necessarily satisfy (4.106). On this
basis, we will try one generalization of Lyapunov's direct method to power

systems which are installed with high gain voltatage regulators in the next

section,

3.5 Conclusions

In this section, we have some investigations on the critical value of
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of the Lyapunov function constructed in §2, The transient stability region
was defined on the basis of the torque applied to the system by treating
the internal voltages as parameters. By investigating the transient sta-
bility region and the behaviors of the internal voltages, we have obtained
some results as follows:

1) The transient stability region gets wider and deeper with increase in
the internal voltages, and conversely, gets narrower and shallower
with decrease in the internal voltages.

2) In order that V in (4.84) can be yielded, automatic voltage requlator
gains should be smaller than certain values which are determined by
d-axis synchronous and transient reactances X317 xéi.

3) The internal voltages are not increased during the first swing if all
generators in the system are installed with low gain requlators satis-
fying (4.106).

Bearing these natures in mind, we have derived a stability condition con-
cering with the first swing stability. This condition is similar to the
stability condition 6 derived in the previous chapter. On this basis, the
critical value Vcr has been introduced. It is defined by the value of po-
tential energy V? at the point where the system crosses the boundary of the
transient stability region, which is obtained by checking the sign of the
.time derivative of kinetic energy Vk under a sustained fault. Since it
needs no calculation of saddle points, it is able to avert the difficulty

which we sometimes experience in calculating those points,

§4, One generalization of Lyapunov's direct method to power systems with

high gain regulators

In the preceding sections, we have constructed a Lyapunov function for
the power system described by (4.1) ~ (4.5) on the basis of the generalized
Popov criterion, and have determined its critical value concerning with the
first swing stability. However, automatic voltage regulator gains should
be set somewhat low values for the system to be judged to be stable accord-
ing to the generalized Popov criterion, and for V in (4.84) to be calculat-
ed. The transient stability of the system can not be so much so far as we
use automatic voltage requlators with gains allowed by the criterion. In
view of these facts, we are moved to generalize Lyapunov's direct method to

power systems in which some or all generators are installed with high gain
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requlators,

4,1 Model and basic equations

An n-machine power system in which each generator is installed with

some automatic voltage regulators, is described as follows:

azs! - as! n
m, + di-—4£ = Pmi - z Y..EiE.sin(Gi. + ei.)
dtz dt j=1 1) J J J
(4.130)
dB’ .
_.ﬂ__ = ' - ] - - ' :
= (L/Th0i) [Beas = Bgs = (Rqy = %33)ig4)
(4.131)
for i=1,2,.0.4n
|Eqs. (4.130) and (4.131) are the same as (4.1) and (4.2). If each

generator is installed with automatic voltage regulators shown by Fig.54,
then each excitation voltage is controlled by (4.3) ~ (4.5). 1In this sec-
tion, we use excitation systems as shown in Fig/64. Each gain of automatic
voltage regulator is enlarged to 100.0, where we add power system stabiliz-
ers as shown in Fig/)65 in order to keep the system dynamically stable. The

dynamics of the excitation systems are described as follows:

dE_.
dil = - (l/Tai)[Eai + KaiEdi - K'aiEpi - Kai(vrefi - Vti)]
(4.132)
EEEi = (/T ,)I[K .E_, - E .]
at el el al el
(4.133)
dEq3
w (/T 3) [R3i%eiBai ~ Kaifei = Tei/Tai)Bq;]
(4.134)
dE, . .
'ji%i = /T ) By ¥ Py = Pregs)]

(4.135)
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it 7

== (W/Te ) Begy + (P = Pregy)]
at
(4.136)
dE ci
—£52 - . =T _.)/T? . . - ) - . .
at [(Tpll p21)/Tp11](Ef11 Ef21) (l/Tpll)Epc1
(4.137)
where
Eeai = | EBors if 05 > Eoy
Ecoi. O3; < Eoi
o.. ) otherwise
L 31
(4.138)
B = [ Eow if o, > E i
<
Ep2i %i < Fpai
g,. otherwise
| 4i
in which
93; = Efgoi T Bei
(4.139)
41 = Tp2i/To1i) g1y ~ Bepy) + Epey

The ceiling value Ecli has significant influence on the transient stability
of the system. The transient stability is improved very much with increase
in Ecli in a range 3,0 v 10,0 p.u., but not so much beyond 10,0 p.u. In
this section, we set'Ec)j =7.0 p.u. As in 51, let us make three basic as-
sumptions as follows: A
1) Each internal voltage lags behind the g-axis of each generator by a
constant angle ¢i all the time,
2) The transfer conductances in the reduced admittance matrix are negli-
gible,
3) The magnitude of the ith terminal voltage can be approximately express-—
ed by
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n
L ] . P s 2 )i
Veg M OE; o+ xdijzlYijchosis-” + 8i3)] (4.140)

Under these assumptions, (4.130) ~ (4.137) change to the following equa-

tions:
d26i ddi a 0_0 o)
m, + d, —= = ) B, (E.E.sind, - E,E.sins,.) (4.141)
g2 g . ij it ij i3 ij
dEi (o)
—— = ] -
— (1/Td lcos¢ )(E i Efdi)
O
- t - - -
(L/Ti i) [L = (xg, = x%,)B, 1(E; - E)) (4.142)
n
- ] -
/Tl ;) gy = x4) ZlB EJ(cosé coss; 1)
dEai (o) (o) (o)
. /T ) DBy =Egy) = Ky (Byy " Bgy) + Ky (B —E )
o (4.143)
(o}
- -x! - - ' -
K ; (1-x}.B.)E, ES 2~ K xhs JZlBijEj(cosaij coss, )]
ei o o
at B (l/Tei)[Kéi(Eai - Eai) - (Eei - Eei)] (4.144)
dEdi o (o) o
= (1/Tg3) [K 1 Kq3 (Bag mBpy) = Kgy (Bgy ~Egg) = (T 4/Tg) (Egy =Egi)]
' (4.145)
dEgys
-;Z—— = - (/7 ) UE,, -E fll Z B, (E EJSlnG - E;E;sind, )]
(4.146)
dE n
£21 _ o 00 . O .
== /T, ) U(E,, -E_,.) .Z Blj(EiEj51nGij EiEj51nGij)]
dt j=1
(4.147)
dEgci 2 o (o]
P [OTo1s ™ Tp2i) Tp2id L Bgyy “Bgyy) = (Bppy —EBgyy)]
o (4.148)
- (l/Tpli)(Epci - Epci)

for i=l'2'ooo'n
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where the superscript " o" denotes the stable equilibrium point of the
post-fault system, and accordingly, (4.141) ~ (4.148) apply to the post-
fault state,

By rewriting (4.141) ~ (4.148) in the state space notation, and by
applying the generalized Popov criterion, the system in (4.141) ~ (4.148)
proves to be stable under some conditions. However, the conditions on
automatic voltage regulator gains expressed by (4.4l) are included in the
conditions, so such high gains used in this section can not be allowed by
the generalized Popov criterion, again, and accordingly, a ILur'e type Lya-

punov function in (2.21) can not be constructed.

4,2 Pseudo-Lyapunov function

Since it is impossible to construct a Lyapunov function on a basis

of the generalized Popov criterion, let us introduce a pseudo-Lyapunov

function as follows:

n n n
v(x) = (1/2izlmi)_zl jzlmimj(mi - mj)z
+ E % B..[E.E.(cosé?. - cosé6, )
i=1 3=1 i i3 ij ij

- (8., - 62.)E°ESsins® 1
ij 13771735 ij

n
- 192
e_Z (@, /B;) (E; - E))

+
i=1
= Vk(m) + Vb(é, E) + Vf(E) (4.149)
where Vk, Vb, and Vf denote the first, the second, and the third terms, res-

pectively. The first term represents kinetic energy, and depends on rela-
tive rotor angles. The second term represents potential energy which is
stored in the system owing to some deviations of rotor angles from those at
the stable equilibrium point., The third term represents a magnitude of de-
viations in internal voltages., The € is a scalar, If ¢ is 1.0, then V(x)
in (4.149) reduces to that in (3.67) .which has been derived for the system

in which no voltage regulation is taken into account. For the time being,

k

let us set €¢ = 1 for brevity's sake, The time derivatives of V , Vp, and Vf
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. are’'given as follows:

av,
. z 2 B, (E E, 51n6 - E;E.sind, . ) (w, - w.) (4.150)
dt i=1 j—l J ] 3 * J
av
= - Z Z B (E E 51n6 - EiE.simS..)(wi - w.)
dt i=1 J-l i] ] = J
(4.151)
+ 2 Z (aE, /dt) Z B, E (cosG - cos§, )
i=1 j=1 ij 1
dirf
— ==2 z (GE, /at) ZB JE, (cosG - coss, .)
at i=1 j=1 13 J
(4.152)

2 Z (1/8;) (4B, /dt) (dE, /dt) .
i=1

where damping torques of generators are assumed to be zero, and (dEi/dt)f

is defined by

(dEi/dt)f = - ai(Ei - Ez) - Bi'leijEj(COSsz - cosGij)
? (4.153)
The right hand term of (4.150) and the first term of (4.151), the second
term of (4,.,151) and the first term of (4.152) indicate that there are some

k
the time derivative of V is given as follows:

exchange of enerxgy between V. and Vb, Vb and Vf, respectively. As a whole,

av

—'=-22(UBH®/&Hﬁ/&) (4.154)
dt o i=l

If there is no voltage regqulation, (4.142) reduces to (4,153), and the,
right hand term of (4.154) becomes negative semi-definite. However, this
term is usually not negative semi-definite but non-sign definite. Hence,
V(x) in (4.149) is not Lyapunov function. This fact has no significant in-
fluence in applying V(x) in (4.149) to Lyapunov's direct method as will get

clear in the followings,
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4,3 Method of determining critical value

Since VP(G, E) in (4.149) is the same as one in (4.84), the discuss-
ions made in §3.2 holds as it is for the system described by (4.141) ~ (4.
148). We define the transient stability region in the same way as in the
section, Namely, in Fig.55, the transient stability regidn is defined by
the region which is bounded by the curves 03, 0, O3, and Oy. In this
region, the torque fr defined by (4.100) acts in such way that it will
confine the system in the region., The transient stability region varies
with internal voltages E as illustrated by Fig.56. It gets wider and deep-
er with increases in the internal voltages,

Similarly, the discussions made in §3.4 hold as it is in this study,
too. ILet us follow them in order to clarify the base on which we depend
in using V(x) in (4.149). The time derivatives of Vv, and Vp in (4.150)

k
and (4.151) are rewritten as follows:

de oV
_k _ __P, (4.155)
at a6 T :

r
av v 3V _ dE
—P . P, 4+ —P__ (4.156)
at 86 _ o 3E dt

‘From these equations, the increments of Vk and VP in a time interval are

given as follows:

awv, = [ —Ea

(4.157)

[
|
o
<

(Gs v Ge’ l':s mEe)

€, av
av = J & —£at

t_ dt
s

(4.158)

Avk+p(dsm6e, EsmEe) - Avwf(éswde, Es'\aEe)
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Y
fault trajectory

. Fig.66, Trajectory in relative anqular
' - space: sustained fault.
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where

§ oV
’ = e —PB
BV, (8 v 8or E_VE) = [ as_ (4.,159)
§ 238
xr
Ee,BV
BV (8 v8s ECVE) = - fE —EaE aE , (4.160)
S

ts and’te are both ends of the time interval, and Gs’ Ge' Es' and Ee are

the values of dr and E at the instants ts and te' respectively. The term

k

AVp+f denotes the energy which is transfered from V_ to Vf in the time in-

terval. These terms are determined by the trajectory of the system in the

AV'k_)_p denotes the energy which is transfered from V, to Vp, and the term

(Gr, E)-space, and it does not matter how long does it takes the system to
move from (Gs, Es) to (Ge, Ee).

Fig.,66 shows an example of system trajectory in a relative angular
space for a case where a fault continues. The system crosses the boundary
of the transient stability region at the point c. Over this point, the
torque fr which is related with Vp by (4.99) acts in such way taht it will
raccelerate the system, and will separate it from the stability region. In
order that the system stays in synchronism during thg first swing, the
fault must be cleared in such time that the system can not go over the po-
int ¢, We make here two assumptions as follows:

1) The system moves along the sustained fault trajectory even in the pe-
riod after the fault clearance.
2) The internal voltage vary in the same way as for the sus;ained fault
case even in the period after the fault clearance.
The former assumption is satisfied to some extent in large power systems.
On the other hand, the latter assumption is not satisfied so well as the
former one; particularly, in the cases where the excitation voltages are
intensively controlled through such high gain automatic voltage regulators
as in this study, which brings some uncertainty to a stability condition
derived under the above assumptions., Let us consider a case where a given
fault 'is cleared at an instant. If the fault is cleared at an instant la-
ter than the critical clearing time, the system will move along the sus-
tained fault trajectory, and go over the point ¢, Conversely, if the fault

is cleared at an instant earlier than the critical clearing time, then the
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system will move along the trajectory, but will not reach the point c. Now
let us consider the case where the fault is cleared just at the critical
clearing time. The system will move along the trajectory, reach the point

¢, and stop there., 1In this case, the following two relations hold:

Vk(tc) = vk(tcr) - Avk»p(scrqlac' Ecrq’Ec)
(4.161)
= 0
Vp(tc) = Vp(tcr) + Avk->p(6cr"'6c' Ecr'\:Ec)

(4.162)

- A (8, %8s E__VE)

vp+f cx c r

where (§ , E ) and (6 , E ) are the values of (8 , E) at the critical
cr’ Tcr c c r
clearing time tcr and the time tc when the system reaches the point ¢,

respectively. From these equations, we obtain

(5 6

Vk(tcr) + Vp(tcr) = Vcr + Avp+f or o! Ecr“'Ec) (4.163)
where
Vcr = Vp(tc)
(4.164)
= Vp(Gc, Ec)
We assume here that
Avp»f(scrl\'sc' Ecr'\'Ec) > 0 (4.165)

holds. This inequality implies that some energy is dissipated from the
sum [Vk + Vp] after the clearance of the fault, and that [Vk + Vp] can
be treated as Lyapunov function during the first swing, From (4.163) and

(4.165), we obtain a inequality as follows:
Vk(tcr) + Vp(tcr) > Vcr (4.166)

Since [Vk + Vp] monotonously increases during the fault-on period, and
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the inequality in (4.166) holds in the case where the fault is critically
cleared, the system reamins in synchronism for the first swing if the

fault is cleared in such time that

Vk(t) + Vp(t) < Vcr (4.167)

holds. ©On this basis, we get a stability condition as follows:

[Stability condition 9]

| If a system satisfies

vV <V (4.168)
cr

then, it is stable for the first swing, where Vér is the value of VP(GE' E)
‘at the point c where the sustained fault trajectory crosses the boundary of
"the transient stability region. .
The inequality in (4.168) is more strict than that in (4.167) by evf which
can be adjusted by varying €. The second assumption made on the system
behavior is not satisfied so well as the first one, Namely, there is some
difference of variation in the internal voltages between the case where the
fault is sustained and the case where the fault is critically cleared. The
internal voltages are not so much enhanced in the latter case as in the for-
mer case, so the critical value defined by (4.164) gives somewhat optimis-
tic results compared with actual transient stabilities., The term er has
been introduced in order to cancel a part of critical value Vcr which is
brought in excess owing to the above fact. We now have no systematic meth-
od of determining an appropriate value of € at hand, yet. Some systematic
method should be developed, but it is left as a future problem. In this
study, we set ¢ = 1 for trial, and apply the stability condition 9 to some
transient stability studies. The critical value Vcr'can be approximately
given by the value of Vp at the instant when the time derivative of Vk
changes its sign from negative to positive under a sustained fault. As an
example, let us take a case where a 3-phase short-circuit occurs at a point
near the bus 1l in the l0-machine power system shown by Fig559, where all

generators are installed with the excitation system in Fig.64. The fault is

- 249 -



V (pu)

dvidt

0-

(b) Time derivative of Vj

Fig.67.

L v Vi
A Ver
20+ i
10
0 N 1 L 1 1
0 05 1.0
time (sec)
(a) V and its components
100
0
=100
[ 2 1 1 1 | 1 L n 1 1 .
0 0.5 1.0
time (sec)

Method of determining critical value

of V in case where voltage regulator

gains are high,

- 250 -~



cleared by opening the line connecting the buses 1l and 12 at both termi-~
nals, Fig.l67 shows the time variations of V, its components, and (dvk/dt)
for the case where the fault lasts, where V has been modified in ordex to

take account of the transfer conductances as follows:
v(t) = Vp(t) + Yvk(t) + evf(t) (4.169)

in which y has been defined by (3.146) and (3,155), and is equal to 1.222
in this case., As éhown in Fig.67(b), (de/dt) changes its sign from nega-
tive to positive at 0.43 sec. This instant coincides with that when the
system crosses the boundary of the transient stability region., The criti-
-cal value Vcr is given by the value of Vp at the instant, and is equal to
22,101 in this case., V defined by (4.169) takes 20,921 at 0,31 sec, and’
22,540 at 0.32 sec, so the critical clearing time is estimated to be 0.317
sec, In Fiqg.68, the time variations of relative rotor angles are shown
for two cases where the fault is cleared at.0.32 sec and 0,33 sec, respec-
tively. Since the system keeps synchronism in the former case while it
loses synchronism in the latter case, the actual critical clearing time e-
xists between 0,32 sec and 0.33 sec. Hence the above estimation proves to
be adequately accurate, In the next Section, we apply the stability con-
dition g9 to transient stability studies for a range of faults which occur

in the l0-machine power system, and investigate its applicability.

4.4 Conclusions

In this section, we have tried one generalization of Lyapunov's di-
rect method to power systems in which all generators are installed with
high gain automatic voltage regqulators. Since it is impossible to const-
ruct a Lyapunov function on the basis of the generalized Popov criterion,
we have introduced a pseudo-Lyapunov function V. This function is charac-
terized as follows:

1) It consists of three terms, that is, kinetic energy Vk’ potential en-
exrqgy Vp, and a new term er.
2) The kinetic energy Vk and the potential energy Vp are the same as
those for the power system in which all generators are installed with
low gain voltage regulators,
3) The new term er is a function of field flux linkages only.
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4) The time derivative of V is given by (4.154), which is not sign-defi-

nite,

5) Hence V is not a Lyapunov function for the system under investigation.
In spite of these facts, it is possible to use this function in judging the
first swing stability of the system if

1) The system moves along the sustained fault trajectory even in the pe-

riod after the fault clearance,

2) The internal voltages vary in the same way as for the sustained fault

case even in the period after the fault clearance,

3) The inequality in (4.165) holds,
are satisfied. The last two assumptions are not satisfied so much as the
first one, however, Bearing this fact in mind, we have derived the stabi-
lity condition 9, V in (4.168) can be adjusted by varying € in order to
cancel some uncertainty of the above three assumptions. The critical val-
ue Vcr can be obtained by taking the value of Vb at the instant when the
time derivative of Vi in (4,150) changes its sign from negative to positive
under a sustained fault. We have not got an appropriate method of deter-
mining €, yet, so some method should be developed in the future. 1In the
next section, we set ¢ = 1 for trial, and apply the stability condition 9

to a transient stability study of a lO-machine power system.

§5, Numerical example

In this section, the transient stability of a lO0-machine power system
is studied. The line diagram of the system is shown in Fig.69, and the
data on its generators are provided in Table 18, It is assume that this
system is disturbed by a 3-phase short-circuit which occrus at a terminal
x of a transmission line x-y, and is cleared by opening the line at both
the terminals., Two different method, i.e., the conventional method based
on simulations and Lyapunov's direct method, are used to compute the cri-
tical fault clearing time. This familiar transient stability measure is
used as a basis of comparison, Two sets of automatic voltage regulator
gains, refered as Case 1 and Case 2, are used in order to make their in-
fluence on the transient stability clear. All the automatic voltage re-
gulator gains are set 1.0 and 100.0 in Case 1 and Case 2, respectively,
where power system stabilizing signals are added to all the excitation sys-

tems in the latter case in order to keep the system dynamically stable.
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Fig.69. Configuration of 10-machine system.,

Table 18. Generator rarameters of l0-machine system,

Unit H X, xé Xy réo
1 500.0 0.2200 0.0060 0.0190 7.00
2 34.5 0.2106 0.0570 0.2050 4.79
3 24.3 2.2300 0.0570 0.2800 6.70
4 26.4 2.3350 0.0490 0.2920 5.66
5 34.8 0.2540 0.0500 0.2410 7.30
6 26.0 3.$700 0.1320 0.6200 5.40
7 28.6 0.2420 0.0436 0.2580 5.69
g~ 35.8 --| 0.2495 0.0531 0.2370 5.70
9 30.3 .2350 0.0697 0.2820 6.56

10 42.0 2.1200 0.0310 0.0690 10.20
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5.1 Procedure of estimation

the £

[Step

[Step

- [Step

{Step
{Step

[Step

[Step

[Step
[Step

The procedure for estimating the critical clearing time is shown in

low

1]
Zi

3]

4]
5]

6]

7]

8]
o]

chart of Fig.70. The main steps are as follows:

Read the necessary data on the system, i.e., those on transmis-
sion lines, buses, and generators,

Compute the load flow for the prefault system,

Compute the reduced admittance matrices between the generators
by eliminating the buses without generators, for the fault and
the post-fault system,

Compute the stable equilibrium point for the post-fault system.
Integrate the fault system equations step by step, and compute
the rotor angles, the rotor speeds, the internal voltages, and
the excitation system state variables: §(t), w(t), E(t), Eo(t),
Eq(t), Eg(t).

Examine whether the system has or not reached the boundary of
the transient stability region by checking the sign of the time
derivative of kinetic energy Vix. If the time derivative chang-
es its sign from negative to positi?e, then go to Step 7, and
if not, return to Step 5.

Compute the critical value vcr' which is the value of the po-
tential energy Vp at the instant when the time derivative (dVk
/dt) changes its sign.

Compute the value of the Lyapunov function V(t).

Compare V(t) and V. ,. If V(t) is greater than V.., go to Step
10, and if not, then return to Step 8,

[Step 10] Print the critical clearing time.

We can get an estimation’ of critical clearing time for a fault through

these steps. The first three steps need no explanation, The stable equi-

librium point of the post-fault system is necessary in calculating the

value of V, It is computed in Step 4 by solving the following equations:

n
P.~- )Y EE,in(6,, +6,.) = C (constant) (4.170)
mi j=1 ij i) ij ij
- Bl o - w! )i = 4,171
Brai ~ Bqi 7 gy 7 *ai)ias 0 (4.171)
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where

(o]
Erai = Erai t Kai¥eiVreri = Ves!

for i=l,2,.ee,n

These equations are nonlinear, and can be solved with Newton-Raphson meth-
od iteratively (Appendix C). Four or five iterations can yield results of
good accuracy. In Step 5, the system equationsiare nume:ical}y‘}ntgg:atgd
with Runge-Kutta-Gill(R.K.G.) method, where the integration step length At
is set 0.001 sec because each excitation system includes some elements with
short time constants such as 0,02 and 0.04 sec. Egs.(4.1l) ™ (4.5) and (4.
130) v (4.137) are used as system equations in Case 1 and Case 2, respect-
ively. Steps 6 and 7 serve to determine the critical value vcr’ Step 8
serve to compute a Lyapunov function, where V in (4.129) and (4.169) are

adopted as Lyapunov function in Case 1 and Case 2, respectively.

5.2 Results by simulations

Firstly, the conventional approach based on simulations are applied to
the transient stability analysis of the l0-machine power system. The sys-—
tem equations (4.1) ~ (4.5) are integrated step by step in Case 1, and (4.
130) ~ (4.137) are in Case 2 in order to yield the time variations of the
internal voltages, where damping torques of generators are assumed to be
zero in this study. By observing these time variations we judge whether orxr
not the system is stable for a given fault., If the system is stable for a
clearing time, then it is delayed, and if not, it is advanced. By iterat-
ing these manipulations, the critical fault clearing time is obtained, It
usuallly takes 4 or more times for the iteration to converge.

Fig.'71 and :72 show the time variations of the system variables for two
cases of automatic voltage regulator gains. In each figure, results for 8
different fault locations are shown, where each fault has kteen cleared at
such an instant that if it is delayed by 0.0l sec, then the system gets un-

stable. From these figure, we can observe several features as follows:

1) System variables vary conspicuously in generators near each fault lo-
cation: for example, for fault 11-12,
a) Rotor angle 6, swings very much with respect to other generators;

b) 1Internal voltage E; deviates much compared with other generators;
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Table 19,

(a) Kai= 1.0

Critical fault clearing times obtained
by simulations,

Clearing times(sec) Unstable
Fault
stable unstable generators
11 - 12 0.26 0.27 2
15 - 14 0.38 0.39 3
17 - 18 0.43 0.44 4
18 - 17 0.47 0.48 5
24 - 16 0.39 0.40 1
30 - 27 0.45 0.46 8
34 - 29 0.45 0.46 9
38 - 15 0.49 0.50 1
(b) Kai:
Clearing times (sec) Unstable
Fault stable unstable generators °*|-
11 - 12 0.32 0.33 2
15 - 14 0.40 0.41 3
17 - 18 0.47 0.48 4
18 - 17 0.49 0.50 5
24 - 16 0.48 0.49 1
30 - 27 0.48 0.49 8
34 - 29 0.48 0.49 9
38 - 15 1,22 1.23 1
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2)

3)

c) Terminal voltage Vitp deviates very much while those of other gen-
erators are kept almost constant;

d) Similarly, excitation system variables Eaz, Efdz, and Ep, deviate
very.much compared with those of other generators.

Step-out generators vary with fault location although those do not va-

ry so much between Case 1 and Case 2, for example, no.2 generator steps

out for fault 11-12 while no.3 generator steps out for fault 15-14.

There are some differences of time variations in internal voltages,

terminal voltages, and excitation system variables between Case 1 and

Case 2: for example, for fault 11-12,

a) The internal voltages except E; almost constant in Case 1, but
those vary violently with time in Case 2, namely, increase initial-
ly, decrease subsequently, and increase again, ... ;

b) The terminai voltages except for Vt, are almost constant in Case 1
while those vary serratedly corresponding to the internal voltages;

c) The outputs of automatic voltage regulators Egjare violently varied
in Case 2, namely Ez, does not reach even 1.0 p.u. in Case 1 while
it takes values greater than 100.0 p.u., which is corresponding to
the fact that E, and V¢, increase even in the fault-on period;

d) The excitation voltages Efgji do not vary so much in Case 1 while
those vary very much and reach the ceiling values Ecli in Case 2;

e) The stabilizing signals Epj are added to the automatic voltage re-
gulators in Case 2. Epy also reaches the limit values 0.5 p.u..and
-0.50 p.u, almost all the time,

These facts are corresponding to the fact that thé first swing stabili-

ty has been more improved in Case 2 than in Case 1.

The critical fault clearing time obtained by simulations are shown in Table

:19, where those for the case where no voltage regulation is made, refered as

Case
lows:

1)

2)

0, are also shown. From this table, we can derive some features as fol-

The critical clearing time varies with fault location:

a) It exists in a range of 0.25Vv0.46 sec in Case 0;

b) It exists in a range of 0.26 v 0,49 sec in Case 1;

c) It exists in a range of 0.32%v1.12 sec in Case 2.

The critical clearing time increases with increases in automatic vol-

tage regulator gains:
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a) It increases for all faglt locations; for example, for fault 1ll-
12, it increases from 0.25 to 0.26 sec in Case 1, and from 0.25
to 0,32 sec in Case 2,

b) The increase in critical clearing time is not so much, and re-
mains in a range of 0.00'#0.05 sec for all faults in Case 1.

c) The increase in critical clearing time is relatively much, and

extends to a range of 0.0270.87 sec for all faults in Case 2.

We have thus obtained the critical fault clearing times for all fault lo-
cations in both Case 1 and Case 2, These results are used as a basis of

evaluating results obtained by Lyapunov's direct method.

5.3 Results by Lyapunov's direct method

Secondly, Lyapunov's direct method is applied to the transient stabi-
lity analysis of the l0-machine power system, In this method, the system
equations (4.1) v (4.5) or (4.130) v (4.137) are integrated step by step for
a given fault, where the fault is not cleared, to yield the time variation
of the Lyapunov function V in (4.129) ~ (4.169), The instants when V
reaches the critical value V., is adopted as an estimation of the critical
fault clearing time. The critical value V., is defined as the value of
the potential energy Vp at the instant when the time derivative of the ki-
netic energy Vi changes its sign from negative to positive, Hence, the
integration of the system equations is continued till that instant.

Fig,7§1and 7Z]show the time variations of V and its components, and
Ver for the eight cases of fault location in Case 1 and Case 2 of automa-
tié voltage regqulator gains, respectively, where V in (4.129) and (4.169)
has been used in Case 1 and 2, respectively. The function takes a value
nearly equal to zero at the instant when each fault occurs. It increases
monotonously during the fault-on period. Namely, a total energy stored in
the system increases with time. In order that the system keeps synchro-
nism, the fault must be cleared before V reaches Ver. From these figures,

we can observe several features as follows:

1) There are some differences of time variations of V and its components
between Case 1 and Case 2:
a) Vi increases monotonously with time, It generally takes smaller

value at each time in Case 2 than in Case 1, which implies that
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2)

3)

b)

c)

the énergy which will split the system is suppressed by increas-
ing the regulator gains.

Vp takes greater value at each time in Case 2 than in Case 1,
which implies that the transient stability region gets deeper
with increase in the regqulator gains.,

V¢ does not take so much values, and has no significant influence
on V in Case 1, On the other hand, it takes relatively large

values, and its influence on V is not negligible,

V, as a whole, takes greater value at each time in Case 2 than in

Case 1.

There are two features concerning with the critical value:

a)

b)

Vgor varies with fault location; for example, it takes 9.12 for
fault 11-12, and 31.37 for fault 15-14, in Case 1,
Vor varies with automatic voltage regulator gains; for example,

it takes 9.12 in Case 1, but 22.10 in Case 2 for fault 11l-12,

In Case 2, V reaches Vo, at an instant later than in Case 1 for all
faults.

These features clarify how is the transient stability of the system im=-

proved by increasing the automatic voltage regulator gains,

Table 20(a) and (b) summarizes the results by Lyapunov's direct meth-

od. Several features on this method are observed from these tables as

follows:

1)

2)

3)

The

direct method yields results very close to those obtained by the

simulations:

a)

b)

c)

The
a)
b)
The

The difference between the results by the two methods remains in

a range of 0,007 0,02 sec for all faults in Case l. o

The difference between the results by the two methods remains in

a range of 0,007 0,02 sec for all faults except for fault 38-15,

in Case 2,

There are four faults for which the direct method yields optimis-
tic results by 0.02 sec in Case 2,

critical value varies with fault location:

Vor exists in a range of 9.127v42.66 in Case 1.

Voy exists in a range of 22,107 165,45 in Case 2.

ratio y varies with fault location, too:
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Table 20, Critical fault clearing times estimated by
Lyapunov's direct method (sec).

(a) Kyi: 1.0

|
Fault Y Vcr Tes Tcr T;r i
11-12 1.398 9.12 0.26 0.26 0.25
15-14 1.085 31.37 0.37 0.38 0.38
17-18 1.396 32.58 0.44 0.43 0.42
18-17 1,345 39.23 0.47 0.47 0.46
24-16 1.327 42,66 0.39 0.39 0.37
30-27 1,272 32,60 0.46 0.45 0.44
34-29 1.265 35.93 0.45 0.45 0.44
38-15 1.349 38.56 0.51 0.49 0.44

(b) Kais 100,0

Fault Y vcr Tes Tcr T;r
11-12 1,222 22.10 0.31 0.32 0.25
15-14 0.997 5).65 0.40 0.40 0.38
17-18 1.116 57.33 0.48 0.46 0.42
18-17 1.087 72.26 0.51 0.49 0.46
24-16 0.997 99.73 0.50 0.48 0.37
30-27 1,068 59.21 0.48 0.48 0.44
34-29 1.041 70.29 0.50 0.48 0.44
38-15 0.967 165.45 1.17 1.22 0.44
. Tes: critical clearing time estimated by the direct method.

method,

T.,: critical clearing time obtained by simulations..

T2.: critical clearing time for cases where Kj is zero,
that is, no voltage regulation is made,
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a) Y exists in a range of 1.085 % 1.398 in Case 1,

b) vy exists in a range of 0,967 v 1,222 in Case 2.

c) vy decreases with increase in the regulator gains; there are four
faults for which y takes values smaller than 1 in Case 2 while it

takes values greater than 1 for all faults in Case 1.

These features verify that the direcf method works well, and can take ac~-
count of the improvement of the transient stability due to automatic vol-
tage regulators to an extent. We have no systematic method of determining
e, however, and we set € = 1 in Case 2 for trial, Table ;21 shows how does

the result vary with €, which is summarized as follows:

4) The result gets smaller with increase in ¢ for all faults;

a) The difference between the results by the two methods remainé in
a range of 0.00 v 0,02 sec for all faults except for fault 38-15,
and there exists only one fault for which the direct method gives
an optimistic result when € is set 1.5,

b) The difference between the results by the two methods extends to
a range of 0,00 v 0,04 sec for all faults except for fault 38-15,
but there exists no fault for which the direct method gives an
optimistic result,

c) It seems better to set € = 1,5 in stead ob 1.0 in this study.

The results thus vary much according to €. Since the above feature holds
only to this system, so it is indispensable to develope a systematic meth-

od of determining an optimal €.

5.4 Conclusions

In this section, we have made some transient stability analysis of a
10-machine power system, where all generators in the system are installed
with automatic voltage regulators., Two Lyapunov functions,and the method
of determining their critical value developed in §2, 3, and 4 have been

applied to this analysis. The results are summarized as follows:

1) The transient stability of the system is improved by installing auto-
matic voltage regulators:
a) The improvement is not so much if all regulator gains are set 1,

and remains in a range of 0,00 v 0,05 sec for all faults.
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Table 21.

Influence of € on estimation of
critical fault clearing time by
Lyapunov's direct method. (sec).

Fault €=1.0 =1.5 €=2.0
11-12 0.31 0.30 0.29
15-14 0.40 0.39 0.37
17-18 0.48 0.47 0.45
18-17 0.51 0.50 0.49
24-16 0.50 0.48 0.47
30-27 0.48 0.46 0.44
34-29 0.50 0.48 0.45
38-16 1,17 1.12 1.08
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2)

where

3)

b)

The

The improvement is comparatively much, and extends to a range of
0.02 ~ 0,87 sec for all faults if all regulator gains are set 100,

direct method yields in general results very close to those ob-

tained by the simulations:

a)

The difference between the results by the two methods remains in

_ a range of 0,00 v 0,02 sec for all faults in the case where all

b)

a)

b)

c)

regulator gains are set l.
The difference between the results by the two methods remains in
a range of 0,00 ~ 0,02 sec for all faults except one fault in the

case where all regulafor gains are set 100,

different Lyapunov functions have been used:

V in (4.129) has been used in the case where all regulator gains
are set 1, and has worked well in the analysis.

V in (4.169) has been used in the case where all regulator gains
are set 100, and has worked well to an extent in the analysis,
where € has been set 1.

The result by the direct method varies much for all faults when
€ varies from 1 to 1.5, and to 2 in the latter case. so its se-
lection has significant influence on the accuracy of the direct
method,

Automatic voltage regulators have thus significant influence on the tran-

sient stability of power systems. We have applied Lyapunov's direct meth-

od to its analysis, and have obtained some results of practical signifi-

cance
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Chapter V

SUMMARY AND CONCLUSIONS

In this thesis, we have made some investigations on Lyapunov's direct
method with a view to applying it to the transient stability analysis of
multimachine power systems,

in Chapter II, three basic problems associated with Lyapunov's direct
method have been studied with the power system representation in which each
generator is represented by a constant voltage behind a transient reactance.
Firstly, a systematic method of constructing an appropriate Lyapunov func-
tion has been developed. A generalized Popov criterion has been derived.

It is applicable to more general power system model than that by Moore and
Anderson. After the method proposed by Willems, a Lur'e type Lyapunov func-
tion has been systematically constructed on the basis of our generalized
Popov criterion, Three parameters contained in it have been varied, and
corresponding Lyapunov functions have been investigated. From the investi-
gation, they have been so chosen that it yields the energy integral func-
tion derived by Aylette, and it has been adopted as Lyapunov function in our
transient stability studies, Secondly, some investigations on the critical
value of the Lyapunov function have been made, From the physical consider-
ation on the system behavior in the transient period, it has been found out
that it is useful to adopt a critical value which corresponds to the first
swing stability, and that it is possible to get rid of the well-known con-
servative nature of the direct method by using this critical value. One
method of determining this critical value has been developed. It need no
calculation of unstable equilibrium points, and can calculate the critical
value in adequately short time. As a result, the problem associated with
the calculation of the usual critical value has been solved as well., Third-
ly, the influence of transfer conductances on the Lyapunov function and its
critical value has been studied., It has significant influence on them, and
accordingly, on the estimation of critical fault clearing time. The method

of counting in their influence have been developed. Lastly, the transient

- 281 -



stability analysis of a l0-machine power system has been made by Lyapunov's
direct method, and its results have been compared with those obtained by
simulations. The results have been very close to those by simulations, The
methods developed in this chapter have worked very well. It has been con-
cluded that the direct method is very useful for the transient stability
analysis of the power systems which is represented as in this chapter,

In Chapter III, some investigations have been made on Lyapunov's di-
rect method applied to the power system representation in which dynamics of
field flux linkages of generators are incorporated. A Lur'e type Lyapunov
function has been constructed on the basis of the generalized Popov criter-
ion, The function is similar to that obtained in the preceding chapter but
for a few points. The transient stability region has been defined in the
same way as for the system with constant field flux linkages. Its varia-
tion with interanl voltages has been studied. The transient stability re-
gion gets narrow with decrease in internal voltages, and the system gets
liable to lose synchronism, There is a possibility for the system to lose
synchronism owing to the vanishment of the transient stability region it-
self, and the second type of instability has been introduced. The methods
developed in Chapter IL of determining the critical value for the first
swing stability and of counting in the influence of transfer conductances
have been generalized a little in order that those get applicable to this
system representation., The total of them has yielded the results of good
accuracy in the transient stability analysis of the l0-machine power system,

In Chapter IV, some investigations have been made on Lyapunov's direct
method applied to the transient stability analysis of the power system in
which automatic voltage requlators and thyristor exciters are installed in
génerators° The generalized Popov criterion has guaranteed that Lyapunov
functions could be contructed for those cases where automatic voltage regu-
lator gains are relatively low, such as 0 "v. 10, Under this constraint, a
Lur'e type Lyapunov function has been systematically constructed,'and it
has been applied to the transient stability analysis of a l0-machine power
system., Lyapunov's direct method has yielded results very close to those
obtained by simulations. The transient stability is improved very much by
using high gain voltage regulators, but those are often greater than those
allowed by the generalized Popov criterion. We have generalized the direct

method to high gain systems by introducing a pseudo Lyapunov function and
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by applying our method of determining the critical value for the first swing
stability. The results of the transient stability analysis have been accep-
table,

In conclusion, we have succeeded in getting rid of the three troublesome
problems pointed out in Chapter I from Lyapunov's direct method to some ex-
tent, Its conservative nature and the difficulty accompanying the calcula-
tion of the critical value have been almost completely rehoved. The const-~
raint on the system representation has been released to an extent, that is,
the dynamics of field flux linkages have been almost completely incorporated,
and the dynamics of automatic voltage regulators and excitation systems have
been incorporated in those cases where automatic voltage requlator gains are
relatively low. We hope that this work would contribute more or less to the
development of Lyapunov's direct method, and that it would be a help in im-
plementing this method as a useful tool of analizing the transient stability

of practical power systems at various stages of system planning and operation.
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appendix A

Derivation of Eqs.(2.68), (2.75), and (2.77)

§1, Derivation of (2.68)

Consider a matrix equation as follows:
XT = Opp (A1)

where X is an unknown symmetric n xn matrix, T is an nxm matrix defined
in (2.30), and Oph, is an nxm matrix with all zero elements., The matrix
T contains m = n{(n-l)/2 columns, each of which only contains two nonzero
elements, 1 on the ith row and -1 on the jth rxow, so that any (i,j) pair
is included. Hence, all elements on the same row of X are equal. More-
over, since X is symmetric, it follows thal all elements of X are equal.
Accordingly, a necessary and sufficient condition for a symmetric matrix

X to be a solution of (Al) is that it has the following form:

where x is a scalar constant, and U is an nXn matrix with all its ele-

ments equal to 1 {33],

§2., Derivation of (2.75)

Consider a matrix as follows:

D/q + pDUD M/q + pDUM

p* (a3)

]

M/q + pMUD M + uMUM

where P* is a 2n X 2n matrix. If M and p are zero, P* is positive definite

because the following inequalities hold:

(&', wl| D/q MWa || §

M/q M w

n
2 2
izl[(di/q)si + (2m /)8 0, + mw] )
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n
A m (8;/a + wy)?

2
i=1
(a4)
> 0
and
n
det P¥ = .]-[ (mi/Q) (di - mi/Q)
i=1
(A5)
> 0

P* may not be positive definite if u and p are not zero, however., After

some manipulation, we obtain

n
I m, (di -mi/CI)

i=1 1 1
det P* = - (p+ ——)(p~u- )
R P .
qi=l i'=l d, -m,/q qi=l i i=l 4, -m./q
i~ i i~

(26)
As observed from this equation, det P* is in a quadratic form of p, and
if

< p < u+ =~ (A7)
i=1 di -'mi/q

is satisfied, then det P* is positive., Since P* is positive definite if
4 and p are zero, it is positive definite also for u and p which satisfy

(A7). Eg.(A7) is equivalent to the following inequalities:

1
p > - n
qzdi
i=1
(A8)
poe 2= n d.m
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§3, Derivation of (2,77)

Consider a matrix as follows:
Z2* = 2(D - M/q) + p*(DUM + MUD) (A9)

where Z* is an n xn|matrix. If p* is zero, then Z* is positive definite
because (2.47) holds. The determinant of 2* is given by
a0
det 2* = 27 I (4, - m,/q) (alo)
. i i
=1
which is, of course, positive. 2* may not be positive definite for non-

zero u*, After some manipulation, we obtain

det 2* = A(u*)24% Bu* + C (All)
where
n D n-1 n (dim. - djmi)2
A= -2 1@ ~m/a) [ ] ]
i=1 i=1 j=i+l 4(di - mi/q)(dj - mj/q)
n n n dimi
B = 20 I (4, -m/q) }
i=1 * Y i=14d, - m/
p i i q
n B .
c = 2" } (d, -m/q
. i i
i=1

As observed from this equation, det Z* is in a quadratic form of p*, and
if

As)2+Bux +Cc > 0 (A12)
is satisfied, then det zZ* is positive. Since 2* is positive definite if

Hu* is zero, it is positive definite also for p* which satisfies (Al2).

Eq.(A12) is equivalent to the following inequality:

n-1 n (d.m, - d.m.)2 n d,m,
w2 § ] 2= -t ——=— -1 <0
Si=1 j=i+l 4(di -m./q) (dj -mj/q) i=1 di—mi/q
(A13)

Eq.(2.77) is thus derived [36].
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Appendix C

‘Calculation of Equilibrium Point

In applying Lyapunov's direct method to transient stability analyses,
it is necessary to calculate a stable equilibrium point of a system in a
post-fault operating state, The equilibrium point is obtained by soving

the following equations:

g1i = (Pm1 - Pe1)/my = [Pp(i+l) — Pe(i+l)l/m(i+l) = O
for i=1,2,..0,n-1, (C1)
92i = Efdi - E§i - (xgi - x8idigi = O ' (c2)
g3i = Eaj + KaiEdi = Kai(Vyefi = Vi) = O (C3)
gui = KejEai = Eg3 = O (c4)
gsi = (KgiKei/TeilEaj - (K3i/Teji)Eei = (1/T@i)Egqi = O
(C5)

fOr i=l'2,...lnl

where damping torques of generators are neglected. From (C3) v (C5), we

obtain
Eai = Kgi(Vyefi — Vti) (ce)
Eeil= KaiKei (Vrefi = Viji) (c7)
Eq; = O (c8)
and
g2i = [E?di + KaiKei (Vrefi = Vti)] - Eéi - (xgi - xéi)idi

= 0 (C9)

Hence the stable equilibrium point can be obtained by solving (Cl) and
(C9). In the followings, we derive necessary relations for solving
these equations.,
Voltages and currents of generators are related by
° n ° . .
I; = .X Y;qudj for i=1,2,..0,n (C10)
j=1

where Y' is the admittance matrix which relates I and éqd behind g-axis
reactance xq. Since E_,. is parallel with the g-axis of the ith machine,

qdi
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1! in the ith

3= fei(m/2-81)
h 8 1
n [ ]
) .J'Z].YiqudiLTT - (835 +843)

machine frame is given as follows:

(C1l)

From this equation, we get the d- and g-axis components of the ith machine

as follows:

ldi = Re Ii
)
= - Y'.E ..cos(S.. + 6..)
=1 di ij ij
. st
i, = ImI,
qi i
a ]
= .z Y, EqdiSln(Gij + eij)
3=l
Since Eqdi is defined by
= ' S, B
Elai Eg ¥ Cqi ™ *ailai

we can get two

lows:

Ay = fy

q Bld

i + £
q

(C12)

(C13)

(C14)

equations by substituting (c14) into (C12) and (Cl3) as fol-

(Cl15)

(Cl6)

where A, B are n xn matrices, and £3, fq are n dimensional vectors defined

by
' ' ’
A.. = Y,.(x , - x..)cos(§,. + 8,
ij 13( aj dJ) ( ij
A.. = Yf.(x . - x'.)cose.. + 1
ii ii qa di ii
] 1]
B,. = Y..(x . =-x_,.)sin(§,. + 6,
ij 13( qj dJ) ( 1]
n o,
., = - Y. .E . . . ..
fdl X JJEchos(dlj + 613)

j=1
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n
v L
£. = Y..E _.sin(6,. + 8,.)
qi jZl 13 qdj 13 1)

Currents id and iq are obtained by solving (Cl5) and (Cl6). The terminal
voltage of the ith generator is defined by

Vti = Eqdi - quiIi (Ccls8)

and the d- and the g-axis of components of the voltage are given as fol-

lows:

vy = Re Gfi = x i (C19)

Vgi T ™ Vg T Bl - myia (€20)
The magnitude of the terminal voltage is given by

Ve, = (V3 o+ véi)l/2 (c21)
The active power of the ith generator is given by

Pei = Boailqy (©22)

= [E('Ii + (x . - x 1

' 3 3
. D E T &
gi dl) di’ “qi
We now have derived all necessary equations, so we next linearize

them in the followings. Egs.(Cl5) and (Cl6) are linearized as follows:

(Aa)ig + g(Ald) = Af, (C23)
b = (AB)iy + B(Aig) + af, (C24)
where
(BR)i, = 5148
(8B) i 4 ‘= S,A8
, (C25)

MEy = S308_ - TlAEq

) [ ]
Af = SLAS - THAE

q 3% T "2%%g
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In (C25), S;, S2, S3, and S, are n X (n-1) matrices, and Tp,

matrices defined as

S1i(3-1) =

S1i(j-1) =

S2i(j-1) =

S2i(j-1) =

S3i(j-1) =

S3i(j-1) =

Ski(3-1) =

Sui (j-1)

T1ij

T2ij

follows:

n

[ ] 1 . N
- Zlyik(qu'-xdk)SIn(Gik + eik)l
kAL

dk

]
Y. . . —x_.)sin(6.. + 68, .)i._.
ij""qj dJ) ¢ ij lJ) daj

L 1 .
kZlYik(x " xdk)cos(éik + eik)ldk
k#L

T L] .
- ij(xq - xqj)cos(di. + el )1dj
E ' e
Y..E .sin(6§,, + 9., )
k=1 ik gk ik ik
k#i
L T
- Y,..E .sin({( + 6,.)
1] qJ i 1)

Yf.sin(&.. + 6..)
13 1] 1)

where i=1,2,...,n,

j=2'3'.oo’n

By substituting (C25) into (C23) and (C24), we obtain

Big = UIAS_
M = U3pS
where
Uy =
U = A”lm

A"l(s3 - sy1)

- UsAE
2%

- ULAE'
+%q

S9 + Sy + BUj

U, = Ty, = BUy
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for j =1

for 3 # 1

for j

for j # i

for j =1

for j #1i

for j

for § # i

(C26)

(C27)

(C28)

(C29)



Egs. (C19) v (C21) are linearized as follows:

Bvgg = Egibig (C30)
bvg, = AE;i - xéiAidi (C31)
AVti = (vdiAvdi + vinvqi)Vti (C32)
By substituting (C27) and (C28) into (C30) ~ (C32), we obtain
AV, = UsAS_ + UGAE; A (C33)
where
Us = diaglx ;v,./V, )Us - diag(xéivqi/vti)ul 30
Ug = diaglx ;vy /v, )0, + diag(xéivqi/vti)uz + diag(v ;/V,,)
Eq. (C22) is linearized as follows:
AP, = [AEéi + (xqi-xéi)Aidi]iqi 5,
+ [Eéi + (xqi-xéi)idi]Aiqi
From this equation, we obtain
AP, = UpAS_ + UBAE; (C36)
where
U7 = diag[(xqi-xéi)iqilul + diag[Eéi + (xqiu-xéi)idi]U3
Ug = diag(i_;) - diag[;xqi-xéi)iqi]uz (c37)
+ diag[E;i + (xqi-xéi)iai]Uu'

After all these manipulations, (Cl) and (C2) are linearized as follows:

] L
bgy = (391/38 )88 + (3g)/9E))AE] (C38)
L} ]
Agy, = (agg/aér)ASr + (agz/aEq)AEq (C39)
where
391/36, = - K'vlug
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3g1/3E' = - Kk'M"lug
q (C40)
. L .
392/35r = - dlag(xdi-xdi)Ul - dlag(KaiKEi)Us
) . L] .
Hagz/BEq = -I+ dlag(xdi-xdi)uz - dlag(KaiKei)Us

Since (C38) and (C39) are obtained, it is easy to solve (Cl) and (C9)
iteratively by the well-known Newton-Raphson method. The value of Gr and
Eé at the stable equilibrium point can be obtained by interating the fol-

lowing equation:

t -1
5, Gr_ 3g1/38 a91/3Eq g

1 ] )
E . E . 9 3s 3 oE .
a | (i+1) a | 92/88,  392/3Eg | | 92 | 4
(c41)
- where the subscript " (i) " denotes the iteration number. The initial wval-

ues of Gr and E; are set as follows:

r = %m-11 (ca2)

Eq = lnl

where o(n—l)l and lnl are (n-1l) and n dimensional column vectors with all
the elements equal to zero and unity, respectively. A sufficiently accu-
rate solution of the stable equilibrium point can be obtained in 4 or 5

iterations,
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Appendix D

Approximation of Terminal Voltage

The terminal voltage of the ith generator is given as follows:

£ ) o R ' o
., = . - LI,
ti El del i
(D1)
Y n o L]
= R | -
= Ei ixy; 'g YijEj for i=1,2,..,.,n
J_.
From this.equation, it is observed that Gti is in a circle with its cen-
ter at éi and radius r; as in Fig.A, where
n
= ' i=
r, X33 jzl YijEj for i=1,2,...,n (D2)

If r; is small, then the magnitude of eti can be approximated by project-

ing ﬁti onto éi as follows:
n
, ,
Ve M By b oxy, jzl ¥;;Ejc0s (8, + 6, ) (D3)

Fig.B shows an example of variation of Vti and its approximation by (D3)
with ¢i’ where Ei and r; are set 1,0 and 0.2 p,u., respectively, The
maximum approximation error is given by (r§/2), and is equal to 0.02 p.,u.
in this case, which is adequately small, Eq.(D3) can thus yield an good

approximation of V.; in those cases where r; is small,

- 293 -



(pu.)

Vii

Im
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