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ABSTRACT

A method of differential very-long-baseline interferometry
(DVLBI) for a precise orbit determination of a geosynchroﬁous
satellite is anglyzed and proved by experiments. Taking
advantagés of a very-long-baseline ipterferometry (VLBI) as a
passive and preqise observation system, we'sucpessfully applied
it to tracking a geosynchrdnqus satellite aimgng at highly
atcurate orbit determination. The effective exclusion of
systematic observation errors became possible by a differential
method using quasars as reference radio sources. |

A DVLBI experiment with inter—continentalubaselines
successfully achieved a satellite position accuracy of_g few
meters, which is higher than that obtained by cénventional

radio tracking methods by more than l-order.

Covariance analyges show that a DVLBI applied‘tq satellite
signals with wide bandwidth in dual frequencies can performﬁa
position accuracy of better than 1 m for a geosynchronous
satellite.

The DVLBI techniques are useful not only for tracking
spacecrafts in various orbits, but also for developing
diffgrential obsery#tion systems for navigation, geodesy and

radio monitoring.
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CHAPTER 1 INTRODUCT ION

Over thousands of spacecrafts are orbiting in not only
near earth but also in geosynchronous orbits these days(lz(z).
In order to accomplish each spacecraft mission, one of the most
fundamental requirements is to determine the spacecraft orbit
with sufficient accuracy using various tracking ( or orbital
measurement ) methods. Thg requirement on the accuracy is
getting higher and higher as human activities and missibn goals
in space become more and more complexed.and sophisticated.
From a practical viewpoint, other requirements are growing to
reduce the cost and burden of tfacking operations at earth
stations by, for example, attaining sufficient tracking data in
short observation spans. V

Satellites especially in the geosynchronous orbit have
been and will be also used as crucial components of space
systems, for example, for navigations of other spacecrafts or
mobile stations on the earth's surface and for space VLBI (
Very-Long-Baseliné Interferometry ?(3) where a satellite itself
becomes an observation platform of the VLBI. 1In those syétems,
satellites positions are required to be determined very
precisely; For'éxample, the Tracking and Data Relay Satellite
System (TDRSS)(4)(5) of the USA uses two geosynchronous

satellites, approximately 130 degrees apart in longitude, and



track Iow‘orbit satellites around the earth and to relay
telecommunication data between'such satellites and a mission
control station on the earth. In this system it is essentially
important to determine the TDRS's position as accurate as
possible, as if it is an earth station with the height of the
geosynchronous orbit to support some kind of earth observation
satellites. TFor example, the satellite for the Ocean
Topography Experimeﬂt (TOPEX)(G), which may be tracked by the
TDRS, should be determined with an altitude accuracy of less
than 10 cm. This means that the TDRS orbital position should
be determined with an accuracy of about less than a few meters
to satisfy the requiremeht. Satellite systems which use
geosynchronoﬁs satellites for navigations of airplanes, ships
and small mobile stations on the ground also require the
accuracy of meter-order in the position of the satellites.
One of the most widely used tracking methods for
geosynchronous satellites is a ranging method which measures
the distance between a tracking station and a satellite by a
propagation time of ranging tones or pseudo-noise PCM codes
which modulate a carrier transmitted from the tracking'station
and retransmitted from the satellite. Usually more than two,
distantly located tracking stations are required, in which each
station should havé up-link capability (or active-radio
capability in the sense that signal transmissions from the

earth stations are necessary) and calibration facility. The



resolution of less than a meter in range measurements has been
attained, but it is not easy to obtain absolute range
observables with that accuracy because of various errors due to
propagation media effects and equipment delays both at the

earth stations and on the satellite. Actually, the most highly
attained accuracy of the position of a geosynchronous satellite
is about several tens of meters so far(?),

Furthermore, in such "active" methods, the operations at
earth stations should be coordinated so that the transmitting
signals do not make any conflicts on the satellite nor any
interferences to other space telecommunication links.

On-the other hand, from the viewpoint of the effective
usages of radio frequencies and satellite orbits in space, it
is interhationally requeSted(s) to monitor space radio stations
which uses various radio waves under the more and more'crowded
radio environment in space, In the monitoring of space radio
stations; it is fundamentally recommended that a monitoring
statioﬁ has a capability to track any space radio station (that
is, spacecraft ) and identify it by "passive' methods (or
receive-only methods). Because, the monitoring should be
carried out independently to the operations of spacecrafts.and
it is not welcomed to transmit other, especially strong, radio
waves, such as radar signals, for the purpose.

We can use antennas which have narrow beams to detect the

incident angles of the radio waves from spacecrafts(g), but we



cannot always expect high accuracies of the observations
because of the limitations of.antenna beam, insufficient signal
strength and propagation media effects. Sometimes optical
observation methods can be used(lo), but they are easily

af fected by weather conditions and the observation are limited
to the period when the reflected light is detectable against
the background optical brightness of the sky.

We study on aﬁd develop '"passive" tracking methods which
only feceive signals from spacecrafts or, more generally, radio
sources and attain required effective observables with respect
to the orbits or the positions and velocities of the radio
sources. We especially notice a.modern interferometric method,
very-long-baseline interferometry (VLBI), whose techniques have
recently been develobed drastically. and its high capabilities
have been proved in astrometry, astronomy and geodesy(ll)(lz).
Some of those VLBI techniques have also been applied in the
deep space navigation fields especially by groups in JPL(13).

VLBI has many advantages if it is successfully used for
tracking geosynchronous satellites. Because the VLBI ié a
passive method which needs no uplink capabilities énd it can
observe any kind of radio wave ( even noise emissions from an
oﬁ—board transponder ) transmitted or ehitted from a
spaqecraft. By using highly stable atomic frequency standards
at observation stations, the observed signal can be integrated

for about 10 minutes to lead to a high signal-to-noise ratio,



which means that we can obtain highly precise VLBI observables,
for example, a delay observable with an accuracy of several
centi-meters even when the radio wave is fairly weak. On the
other hand, the data reduction processes are complexed and
time-consuming so far. In addition to it, the VLBI observables
usually contain various systematic errors because of system
noises,‘propagation media effects, system equipment delays and
clock errors.

A differential VLBI (DVLBI) technique‘’*) can remove
common bias errors in adjacent VLBI observations betweeﬁ a
spacecraft and a natural rgdio souéces ( ﬁsually we use

-extra-galactic radio sources with precisely known angular
position ).. It means that VLBI Becomes a self-calibrated
tracking system by a differential technique. It would be ideal
to use reference radio sources which are seen very deériy to
the objective satellites and to use long orthogonal baseline
vectors. In actual situations, however, those conditions are
not always satisfied nor the angular positions of such
reference radio sources are error-free. Therefore, it is
importaﬁt to optiﬁize tracking geopetry, quasar selection,‘and
observation schedule, or sometimes to combine different tyﬁes
of tracking methods under a given actual cénditiona

The purposes of our study are twofold; one'is to
theoretically develop a new interferometric technique, DVLBI,

which can be used to track a satellite in the geosynchronous



orbit to determine the orbit very precisely as well as to
analyze errors and observabilities for various tracking
strategies. The other is to experimentally prove the above
technique and discuss applications of them to orbit
determination of satellites in other orbits and to differential
measurement systemé for geodesy and radio moni%oring systems
from both the earth and space.

In Chap. 2 we review orbit calculation and determination
systems, then analyze the relation between observations and
orbit determination accuracy. Though this is one of old
subjects in navigétion technology it is useful - to review the
problem to develop the VLBI techniques. Particularly, we
develop a concept of information contents of tracking data(ls).
It is effectively used to evaluate the usefulness of various
tracking methods and to optimize them.

In Chap. 3 we analyze the VLBI and DVLBI methods applied
to navigations on geosynchronous satellites in some detail.

Chap. 4 is devoted to description on our experiment(14)
where a real-time VLBI system was used to track a Japaq's
Experimental.Communication Sateliite (C3) by a DVLBI method.
The obtained DVLBI observables were added to conventional range
and angle data tq-lead an orbit determination with an accuracy
of 200 m'in'terms of the satellite position.

In Chap. 5 we describe in detail fhe RRL~-JPL joint

experimenp(le)cl7), where intercontinental baselines were used



to track a communication satellite (DSCS II, USA) located above
the Paéific Ocean. In this experiment, we successfully proved
the advantages of the DVLBI method by attaining an accuracy of
a few meters in satellite position determination.

Chap. 6 is for applications of DVLBI methods not only fo
navigation of satellites in other orbits than the
geosynchronous one, but also to passive radio monitoring in
ground and space communication systems. Differential
observation methods with navigation satellites are'also
discussed aiming at applications to navigation and geodesy.

Chap. 7 gives conclusion,
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CHAPTER 2 ACCURACY OF ORBIT DETERMINATION AND INFORMATION

CONTENTS OF TRACKING DATA
2.1 Orbit Determination
2.1.1 Orbital Motion of Spacecraft

The equation of motion of a spacecraft may generally be

written with an inertial coordinate system in the form

r=£(x £ t, pg, ) (2.1)
where
T spacecraft position vector from the central
body
I : spacecraft velocity vector
T : spacecraft acceleration vector
t time variable '

Bse : vector of dynamic parameters
A uniform time, such as the solgr system barycentric dynamical
time (TDB or ET, ephemeris time), is usually used as the time
-variable in ephemeris calculation not only of satellitesAbut
also of the moon and planets. Ih the case of a satellite orbiting

around the earth, the right-hand side of Eq.(2.1) is written as

LCE E tip ) =E (X, t R )+ (1, t, By )

=g
*EI4 0zt pg ) L (8, )
tEp Ctpp ) v Lp (t, pp ) (2.2)

where

10



f . acceleration by the earth's gravitation

=g
including the nonspheric effects

ib acceleration by bodies including the sun
and the moon

id : atmospheric drag effect

£, : solar radiation pressure effect

ET accele?ation by thrust of the spacecraft

iR : random acceleration due to gas leaks from

the reactign control systems of the spacecraft
or to other unmodeled effects |
Bgs Bypr Bg» By» Bp» PR
dynamic parameters pertaining to the above
accelerations
There are also the effect of tidal variation of the earth's
gravitational field, the_earth's albedo effect,  and
gravitational effects by some other planets, on a satellite
motion. But they are very small and negligible in almost all
earth orbiting satellites including geosynchronous one which we

have a major concern.

Earth's Gravitational Acceleration

In the case of a spacecraft orbiting around the earth, the
first term in Eq.(2.2) has the major effect. It is usually

written as

11



2u \!

f
-8 - g dr

(2.3)

~
2]
ct
o]

~
]

where U is the generalized potential function of the earth

and is written as

n=1 m=0 r
( Cnm cos mA + Snm sin mA )} (2.4)
where
M : gravitational constant of the earth
r,<p,9L : radius, latitude and longitude of spacecraft

relative to the earth

R mean equatorial radius of the earth

E
an(sin<#) : associated Legendre function of the first kind

C and S : tesseral harmonic coefficients
nm nm - T

Usually the zonal harmoﬁic coefficient Jn is defined as

J = - Cn (2.5)

n (0]

which represents the potential characteristicé that depénd only
on spacecraft latitude (4:). Since the harmonic coefficients

Cnm and Snm are caused'by the nonspherocity of the earth, they
become much smaller at the higher orders than the second ( J2

or Czo). In the case of a geosynchronous satellite, however,

high order tesseral coefficients have significant effect due to

12



resonance effect of the satellite's synchronous motion to the

earth's rotation.

Point-Mass Gravitational Acceleration by Bodies in the Solar

System
The acceleration ib which is caused by bodies such as
moon, sun and so on ( which are treated as point masses ) is

written as

et

£.(z, ¢, Z My (2.6)

where
k : number of bodieé considered
}lk : gravitational constant of the body k
Iy ¢ vector from the central body to the k;fh body
The second term in the right hand side of Eq.(2.6) reflects the
k-th body's gravity effect on the central body. In the case of
a satellite around the earth, it is usually sufficient to

include the effects of the moon and the sun.

Atmo spheric Drag

The contribution of atmospheric drag to the acceleration

of the satellite is generally given by

240z, 2, £, py) = “;LPVR Vo (2.7
m

13



where

CD aerodynamic- drag coefficient of the satellite

A : effective cross-sectional area of the
satellite

m : satellite mass

f) : density of the atmosphere at the satellite

position
L ]
Y.R =X "QE xr -
relative velocity of the satellite to the
atmosphgre rotating with the earth
g_)E : angular velocity vector of the earth

The effect of the atmospheric drag is significant in the case

of a near-earth satellite.

Solar Radiation Pressure

The solar radiation pressure acceleration f .k is given as

N o= 74
£.(x, t, p) =V Py —— Ry (2.8)

where

eclipse factor; =] in sunlight, =0 in shadow

o

solar radiation pressure at the satellite
position

reflectivity coefficient
A . reference area
uﬁit vector in the direction from the sun to the

satellite

14



The solar radiation pressure effect becomes more significant in
the case of a satellite of which the orbit is higher and has
larger area reflecting the sunlight. It is, however, not
always easy to make a precise model of the solar radiation
pressure. Because not only the attitude of a satellite with
respect to the sunlight is not constant, but also the solar
radiation pressure sometimes has components which are not

parallel to Es due to a complexed structure of the satellite.

Acceleration by Spacecraft Thrust

The acceleration gT by thrust of a spacecraft should be
included because a spacecraft usually has subsystems to control
its orbit and attitude. The thrust produced by reacpion
control equipment ( gas;jet thruster, ion engine, and .so on )
in occasions of orbit and attitude maneuvers isogiven using an

impulsive or a continuous thrust model with parameters Brp-

Random Acceleration

The- remaining acceleration ;R.represents random
accelerations ( or process noise ) which are difficult to be
described by deterministic models. Accelerations by gas leaks
from a reaction qontrol subsystem (which uses gas-jet
thrusters) sometimes becomes significant in the case of a

spacecraft which goes through deep space in a very long

voyage(l).

When we actually calculate the spacecraft motion we should

15



evaluate each term in a given orbital condition in order to
include every significant terms and fo neglect meaningless
terms. It is of course imporfant to make accurate dynamic
models pertaining to each terms and to evaluate the effects of
the errors in those dynamic parameters.

Eq.(2.1) can'be numerically integrated (§pecia1
perturbation methodcz)(a)) from an initial orbital condition of

a spacecraft ( EO’.iO' to ), or it can also be solved

analytically with a perturbative method (general perturbation

method(4)(5)). Generally speaking, the numerical integration
methods can easily include various perturbative accelerations
which can be modeled, but they need large size of computer
programs and much computing time. On the other hand, the
general perturbation methods are fast in calculation time and

effective in the case of spacecraft which do not require highly

accurate orbital managements.

2.1.2 Spacecraft Ofbitai Measu&ements

The orbital motion of a spacecraft can be measured by
various methods such as range measurements, range-rate-
measurements, viewing angle measurements, optical measurements,
radar measurements, differential range (.or VLBI )
measurements and so on. All of those measurements supply
geometrical information of a spacecraft position with respect

to a specified station where the tracking equipment exists, or

16



supply information of the satellite's velocity vector. The
observation equations are generally written in the form
z(t)=g (L L, t, pps ) * R (2.9)

where

z ( t ) : vector consisting of orbital

measurement data or orbital observables

at time t
g : model of the observables
Bops ¢ model parameters of the observation
systém
n : observation noise vector

It is generally desirable that observables z ( t ) have small
errors and have high sensitivity to the orbital motion r and r

of a spacecraft, and have small sensitivity to errors of model

parameters Eobs'

Observables
Fig. 2.1 shows an example of geometry of tracking a

spacecraft from two earth stations. Let us show definitions of

some typical orbital observables.
A range observable Pi is defined as
Py =lPl =Nz -yl (2.10)
where
I i - Position vector of an earth station i

pj_f range vector

17
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Spacecraft/

Earth

Station /’

Earth Station 2

Earth

Fig.2.1 Geometry of spacecraft tracking from earth statioms
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A range rate observable Pi is defined as

L 4 1 L] L ]

Pi= g Pir( - X)) (2.11)
where .

isi velocity vector of the earth station i

A differential range observable P4 1s defined as

Pa = P1 - Py (2.12)
A summed range observable P 1s defined as
Pe= P + Py , (2.13)

Inertial Coordinate System

In order to describe the motion of a satellite around the
earth, it is common to use an inertial coordinate system of
which the origin is the center of the eérth. The x-axis is in
the earth's equatorial plane and in the diregtion of the
vernal equinox (T). The z-axis is aligned to the earth's spin
axis and the y-axis is selected to make the right hand
coordinate system.

However, the earth's equatorial plane and the spin axis is
not fixed in the inertial space due to the precession and the
nutation of the spin axis. Therefofe, the mean or the true
equatorial plane aqd spin axis at an epoch time are usually
referred. The conversions between different coordinate systems
are made using coordinate conversion matrices based on the

models of the precession and the nutation of the earth(e)(7).
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Position of Earth Station

The position of an earth sﬁation is usually given using a
reference ellipsoid of the earth. Fig. 2.2 shows a concept of
station position description. The position of an earth station
S is defined by, for example, (A,%, H) or (u, v,A),
where
geodetic longitude

geodetic latitude

m e

geodetic height

=4

spin radius
v : height from the equatorial plane

In Fig. 2.2 the ZE—axis which is the principal axis of
the given reference ellipsoid does not always coincide with the
actual spin axis of the earth. Because the latter moves
irregularly around the ZE-axis due to hydrodynamic effects of
the surface and internal substance of the earth. This is
called the polar motion. The polar motion is usually described
by two angular parameters (xp, yp) (as shown in Fig. 2.3) which
represent the deviation of the instant spin axis from the
averaged axis' obtained for the period from 1900 to 1906‘(this
averaged spin axis is called CIO: Conventional International
Origin).

At an arbitrary time, the position of an earth station is

given in the inertial coordinate system with the true

equatorial plane at that time by using the geodetic station
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S : Earth Station

Xg

(Greenwich)

Reference Ellipsoid

Fig.2.2 Station location description
(XE’YE’ZE) : Coordinate system fixed to the.earth
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Spin Axis
Zg (C10)

Equator

- ¢

CIO: Conventiona International Origin

Fig.2.3 ©Polar motion
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location data by considering the earth's spin (rotation) and
the polar motion. However, since the angular velocity of the
earth's spin is not constant we must use the universal time
system UT1 instead of UTC which is a uniform time system and is
used in our daily life. UT1l represents the actual rotatiop of
the earth.

Consequently, in order to describe the position of an
earth éfation in the inertial coordinate system, we convert the
position vector from the earth-fixed (XE, YE’ ZE),system using
polar motion data and UT1l to the inertial system. If we need
to convert a position vector from one inertial system to
another one, we use coordinate conversion matrices based on the
precession and nutation of the earth's spin axis between these
epochs. The precession and nutation of fhe earth's spin axis
are caused by the gravitational torque induced by the éuh, the

moon and the planets.

2.1.3 Orbit Determination

Supbose that model parameters Pge in Eq.(2.1) and Pobs in
Eq.(2.9) are given. The state Vectérs of the spacecraft r 'and
i at an arbitrary time t are determined by Eq.(2.1) from
initial state vectors I, and io at an epoch time to( Fig.2.4 ).
Then the observation vector z(t) is also given by Eq.(2.9) from

‘ go'and iO‘ It means that the r, and io can be obtained from



XYZ : Inertial coordinate system

Fig.2.4 Orbital motiom of satellite
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Eq.(2.9) when z(t) have indebendent components of which the

dimension exceeds that of the
determiﬁation is a process in
r and i at a specified epoch
data ( tracking data ) of the

usually the case that some of

state vectors.

»
which spacecraft's state vectors

The orbit

time are estimated from observed
spacecraft's motion. It is

the model parameters of Bse and

Pops 2Fe also simultaneously estimated in orbit determinations.
It is af least theoreticaily possible to estimate such
parameters from observed data which depend on them.

The most popular and fﬁndamental method of orbit

determination is the weighted least-square method(4)(5).

The
state vector x, at an epoch time t, are estimated as gb that
minimizes a cost function F(x,) ;o

N T
F(xg) = i%{ﬁ(ti) - 2(t5, Xg, to) §) Wy
SECPIEENCHEY to)) (2.14)
where ’

t; : observation time (i=1,2,...,N)

2, observation vector calculated from the
initial state vector X5 of the spacecraft at
%o

( )T matrix transpose
w -weighting matrix

The weighting matrix is usually given by

_ T, -1
W, = (Ex (;n;%) ) (2.15)
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(21)

because it gives the minimum covariance estimates , where
Ex ( ) : expectation
n; : observation noise vector corresponding to the

observation vector g(ti)

When each observation noise is independent, Wi is given as

([ -2 3
0iy
0.t 0
i2
W, o= (2.16)
-2
0 Glm
. /
where crij is the standard deviation of the observation noise

corresponding to the j-th component of g(ti).
Eq.(2.14) is generally nonlinear, so it is usually
linearized to solve. That is, the calculated observation

vector 2z, can be expressed as

2(t5, Xgr to) = 2 (ty, By +ax, t)
= Z,(t;, Xy, tg) + A; Ax (2.17)
where
gb : 1initially assumed state vector
Ax ! small deviation of the state vector
z; : calculated observation vector based on Eb
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22, ~

R t=t

observation partial matrix

Using Eq.(2.17), Eq.(2.14) becomes

N
F(ax) = ), (Azg - A,4x)7 W, (Az, - 4, Ax )
1= (2.18)

where
AEi = E(ti) - '__z\_'c(ti) : observation residual vector
According to Eq.(2.18) we obtain an equation of AXx which makes

F(Ax) minimum in a matrix form as

’ ,

)
17, a,) 17, az,
Wz A2 : Wz Az,

Ax = .

Lwi Ay ‘LmAﬁi,

/

or it is rewritten as

AW Asx = JWaz _ (2.19)
where AW is the Square-root matrix of W, that is, W = JTVT Jw.
Eq.(2.19) is sometimes called normal equation. It is also
derived from a linearized observation equation

Az = AAx +n
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of generally this is written as

z=Ax+n (2.20)
Eq.(2.19) is solved as
ax = (ATwa) 1aTwaz (2.21)

Ax is a correction to an initially assumed state vector 20’ )
we obtain EO + Ax as a more accurate guess of the state
vector at time tye The above process is rgpeated to obtain an
estimate of the state vector with a required accuracy. This is
called a differential correction method of orbit determinationm.
It is one of typical batch processing methods where all of the
tracking data are processed at one time.

On the other hand, various sequential filtering methods
have been developed(s) to estimate the state vector at time t.
One of them is Kalman filtering method which is theoretically
equivalent to a least square method applied to.a dynamical
system. Those sequential filtering methods are effective in
deep space navigétions and various numerically stable
algorithms have beeﬁ developed(g)(lo)(ll). In the case of
Earth orbiting satellites, however, batch processing methods
are satisfactorily used.

We have several computer programs for orbit determination
in Radio Research Laboratory (RRL). The Definitive Orbit
Determination Opérating System (DODS)(lz) was first introduced
from NASA in 1974 in a satellite control experiment using ATS-1

(Applications Technology Satellite 1). After that RRL has
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developed two operational orbit determination programs for
Japan's experimental geosynchronous satellites CS(Experimental
Communications Satellite(ls)) and BSE (Experimental Broadcasting
Satellite(14)). Another program was also developed for orbit
determination studies. It is named KODS (Kashima Orbit
Determination Software(ls)(16)) with a small program size and
a sufficient accuracy for a geosynchronous satellite. The
author has developed DVODP (Delta-VLBI Orbit Determination
Program) by improving KODS so that it can process VLBI
observables in addition to range, range rate, angles and
range-sum observables and it has functioﬁs to estimate not only
satellite state vector but also observation biases and some of
model parameters and to evaluate effects of model parameter

errors (Appendix A).

2.2 Accuracy of Orbit Determination

2.2.1 Covariance Analysis and Simulations

We should know the accuracy of an orbit determination in
order to cbrrectly grasp the uncertainty of the obtained .
spacecraft state and to evaluate the efficiency of a tracking
method by which the observation data are obtained. If the true
state vector of a spacecraft is given by some other method, it

is easy to evaluate the accuracy of an orbit determination. It
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is, however, not usually given. So we use following two

(17) and.numerical simulations.

methods; covariance analyses
In a covariance analysis, we calculate an expected

covariance of an estimated state vector as

c, = Ex {&-x)& - §0>T} (2.22)
where

CX covariance matrix

% ‘estimated state vector

X5 true state vector

In the case of a least-square method of an orbit determination,

.2 - Xy is given by Eq.(2.21) as
2 -x,= ax = W) haTvaz (2.23)

Then Eq. (2.22) becomes

Ex( ax A_}ET)

(ATway 1aTw Ex( Az azT ) wa(aTwa)~

Cx

1]

1

(2.24)
Suppose that the observation residual vector Az contains only
observation noises, then

Ex( Az az') = Ex(an®) = w1

(2.25)
Consequently we obtain a general expression of the covariance

matrix

c. = (aTway™t = ( o o, ) (2.26)

P i7j
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In many cases the estimated state vector X behaves as a
Gaussian random vector of which the probability density

function PX(E) is written as
2 1/2 -1 {f .17, -1
N2 e yti2

exp(- = X Cx

5 x) (2.27)

P .(x) = ( (2T)
where N is the dimension of the state vector z[ Cx represents
an error ellipsoid, that is, a quadratic equation

KTCX-lg = ¢, c: constant (2.28)
makes an equi-probability N-dimensional ellipsoid with respect

to a vector x. Fig.2.5 shows an example of two-dimensional

error ellipsoid ( ellipse ). The diagonal components 612,

0&2 s e e oy th of CX give rough measures of the size of the
ellipsoid.
To evaluate the error ellipsoid more precisely, we can use
. 2 2 2 .
the eigen values 010 , 050 s e e e Gho of Cx’ which

correspond to the principal axes of the ellipsoid. The eigen
values are obtained as the diagonal elements of a diagonalized
covariance matrix. A covariance matrix can be diagonalized by a

linear transformation of the state vector X as

x =KX (2.29)
where

X : transformed state vector

K : orthogonal transformation matrix

The diagonalized covariance matrix CX which corresponds to X is
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Fig. 2.5

Two-dimensional error ellipsoid
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010 0
cX-= (xTaTwak)"1 = . (2.30)
0 2
L Tyo )

By Eq.(2.24) we evaluate the error covariance of the state
vector at the epoch time fo. The error covariance Cxt

propagated to an arbitrary time t is derived as

_ ) T
Cxt = Ex( ax(t) &ax(t)" )
x X T
= EX A_:g(to) Ag(to)
0%y 9 x4
GRS 2x \T
= C (2.31)
x0
’050 ’3_75_0
where
Xy ¢ x at t0
Cxo : Cx at to

Using Cxt we can evaluate the propagated effect of the
estimation error of the state vector at the epoch time.

As is. described above, we can évaluate the accuracy of an
orbit determination by the covariance matrix C,. One of the
usefulness of the: covariance analysis is that Cx can be
calculated using only observation partial matrix A and

observation noise covariance matrix W-l; or in other words, no
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actual'obéervations are needed. The matrix A depends on a
tracking strategy, that is, observafion types and schedule. We
will further look into this point in the next section.

Numerical simulation is another method to evaluate the
accuracy. In this case we make simulated observation data
which include possible observation errors of bias and random
types. Though this method requires a process to create
simulated observation data, it gives us more detailed
information in specific orbit determination cases.

It would be recommended to use a covariance analysis
method to obtain a general concept of the accuracy and to carry
out a lot of simulations to get detailed information in a

specified case.

2.2.2 Bias Errors and Model Parameter Erroré
The covariance analysis described ébove can show the
effect of random noises in observation data. Actually,
however, observation data may have some bias errors. According
to Eq(2.21) we can evaluate the effect as
sx, = (ATwa)MaTw Az, (2.32)
where v
Ax, : errors in the state vector due to
| observation biases

Az, : vector of observation biases

The observation biases are usually estimated as well as the
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spacecraft state vector in an orbit determination;

Other important factors affecting the accuracy of an orbit
determination are possible model errors in the orbit dynamics
and observation systems. In the least-square orbit
determination method, the state vector is estimated so thap it
gives the minimum difference between actual obsgrvation data
and calculated values which are obtained using models of the
orbit d&namics and the oﬁservation system ( see Sec. 2.1.3).
Consequently, model errors and calculation errors lead to
erroneous estimates. . »

Observation equatiops which inciude'errors in model

parameters can be linearized around nominal values and written

as
z=AX+By+n (2.33)
where
z linearized observation vector ( z in
Eq.(2.20) )
y : vector of errors of model parameters
( errors in vectors Pge in Eq. (2.2) and
Pobs in Eq.(2.9) )
A : observation paftial matrix with respect to
the state vector x
B - : observation partial matrix with respect to
X
n observation noise vector

35



If we assume that Ex( y ) = 0, then the vector % given by
R=x2, K = AW aTw (2.34)

is an unbiased estimate vector: 2 becomes the least square

estimate vector in Eq.(2.21) when y = 0. The covariance matrix

C, is calQulated as

%>

T

I3

‘Cc = Ex ( (

-x )

-E)

IX>

= Ex { ( Kl(A§+BX+E)'§)(K1(A§+BX+E)’§)T}

= Ex { Kl(BX+g)(BX+£)TK1T }

_ T T ‘ T, T, T
= Kl Ex(nn™) Kl + KlB Ex (yy') B K1
= c_+ sc.sT? (2.35)
X y
where
c, = (ATwa)™' (already defined by Eq.(2.26))
8§ =KB = (aTwa)~1aTws
c, = Ex(yy’)

Eq.(2.35) means that the covariance matrix which includes model
parameter errors has an additional term SCyST to the original
Cx' The term SCyST represents the effect of model parameter
errors. It’is sometimes called "consider covariance', because

the model parameter errors are not estimated but they are only

considered in evaluation of covariance of the state vector.
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Eq.(2.35) can be slightly generalized and written as

¢, = (a"wa) taTw( Ex(anT) + chBT +c waTaTway ™t (2.30)
where Cn represents a covariance due to errors such as
numerical calculation errors which do not depend on observation
noises nor model parameter errors. Therefore, by calculating
Cc we can include effects of not only observation noises and
modeling errors but also numerical erro?s in the evaluation of
accuracies of various orbit determination systems(ls). From
the viewpoint of the information content of the observation
data,'the terms BCyBT and én in Eq.(2.36) degrade the

information contents. This concept is further discussed and

studied in the next section.

2.2.3 Evaluation of Observation Residuﬁls

In the least-square method of an orbit deter@inatioh {see
Eq.(2.21)), we expect that the observation residual Az becomes
random corresponding to the observation noises (see Eq.(2.25))
after the iterative correction Ax converges. In the
estimation process, if we have not fully used the information
contained in the observation data, the observation residuals
would show.a slightly different feafures. We can
quantitatively evaluate the characteristics of the observation
residuals by a chi-square ( 7(2) test. It is well known that
a set of random variables (xl, Xosreons xN) with variance

( 012, Géz,..., th) show a chi-square statistics. That is,
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if we-define a 7(? as

X 2 X 2 . X 2
7L2 = __12 + __22+ cee -+ -—I-\I2 (2.37)
0, o, Oy

then we have

Ex ( %% ) =k ! (2.38)
where k is the degree of freedom of the set of random
variables.

In our case, 7L2 of the observation residuals is
defined as
N
2 Aziz
xXT = Z —_—3 . (2.39)
. Vi
i=1

where N is the total number of observation data, Azi is i-th
observation residual and V12 is variance of i;th observation
noise (or the i-th diagonal component of the matrix given by
Eq.(2.25), where each Aﬁzi is assumed to be independent). Then
>we expect | .

Ex ( X% ) = N-M " (2.40)
where M is the number of the estimated parameters, therefore
N-M is the degree of freedom of the observation residuals.

Usually we define a normalized chi-square cg? by

N 2
9 1 Azi
g = 2: 5 (2.41)
X N-M - V.
. i=1 i
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If we fully used the information contained in the observation
data by using a correct weighting matrix and appropriate
physical models, C%; reaches 1.0. But if we used, for
example, wrong viz, that is, wrong weighting matrix W_l, then
C&_exceeds 1.0 or becomes smaller than 1.0. Therefore, we can
check q; after the least-square iterative estimation has
converged in order to copfirm whether we used a correct
weighting matrix and whether we used appropriate physical
models. This chi-square test of the observation residuals is
useful to correct our erroneous a priori knowleage:of fhe
observation noise. Because it is usually.the case that our a
priori evaluation is an overestimate or underestimate of the
observation.noise when we start é least-square estimation with

a weighting matrix based on these a priori knoWledge.

2.3 Sensitivity and Information Contents of Observations

2.3.1 Sensitivity and Observability

In the covariance analysis desgribed in Sec.2.2.1 it was
shown that’ the .observation partial matrix A plays an essential
role. This matrix represents the sensitivity of observations
with respect to the elements of a state vector. It is useful
to define the column vectors 21, Bgy een, ay of the matrix A.

Then linearized observation predictions are written as
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(a4

IN

ag -.- 2y ) X

= a1%) * 2%y T AN

where N is the dimension of the state vector x and X1, X9,

+ .- (2.42)
- Xy is the elements of x. Eq.(2.42) means that the

observation vector z is represented as a linear combination of

the column vectors. Therefore, if one of them,, for example,

a.

24, is independent from the others and has a large magnitude in

a certainly normaliéed sence, then the observation vector has a
high sensitivity to the element Xy

For example let us consider i case where an angular
position of a deep space spacecraft is derived from a VLBI

observation(lg).

Fig.2.6 (a) shows a geometry of VLBI
observations. By a VLBI observation the signal delay ( or

excess path d ) is derived. The observation equation is

d = BeS + n (2.43)
where
B : Dbaseline vector
S unit vector in the direction to the
spacecraft
n : observation noise (error)

Let us define a state vector x which represents the angular
position of the spacecraft as

49, cosd

I
I

(2.44)

ad
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Radio Source

Station 2

(a)

Station 1

(b)

Fi1g.2.6. Geometry of VLBI observation(a), and sensitivity
of observation(b)
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where .
A : small deviation from a nominal right
ascension CL.of the spacecraft
A0 : small deviation from a nominal deélination 8
of the spacecraft

then a linearized observation equation is

Ad = Ax + n (2.45)
where
Ad : deviation from a nominal observation d
A=—— =B"%¢ — =8B e(uyv) =( Bu BV ) (2.46)
°x 2x :

where u, v are unit vectors shown in Fig.2.6(b), and Bu’ Bv
are the components of the baseline vector B in the u-v plane
which is perpendicular to the line-of-sight or vector S.
Therefore, the component of the baseline vector perpendicular
to the line-of-sight represents the sensitivity of VLBI delay
observation with respect to the angular information of a radio
source.

From the viewpoiht of estimation of the state vector,
another important concept is observability. The obser;ation
system (2.20) or (2.33) is said to have an observability if the
state vector x can be definitely determined from the

observation vector z. As is clear from Eq.(2.21) or Eq.(2.34)

the system has an observability when the matrix ATWA is normal or
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det(ATWA) # 0. Because of the numerical instability or
limitation to the accuracy of calculations, even if det(ATWA) #

O the observability is not actually kept when one or some of

T

eigen values_of A"WA reach zeros, or det(ATWA) becomes very

small. It corresponds that the error ellipsoid becomes very
large in one or some directions in the N-dimensional space.

So it is practical to use various methods to evaluate

system observability(zo):

of the matrix A'WA. If some of them are less than a given

One of them checks the eigen values

threshold value, which is ﬁsually selected near zero, the
corresponding elements of the state vector are quit to be
est imated.

One of other methods evaluates the orthogonality of column
vectors of weighted (normalized) obseréation bartial vectors,
that is, the column vectors of matrix AWA. Eq:(2.18) is
rewritten as

F(ax) = || AWaax -{waz |l (2.47)
The estimates vector Ag which makes F( Ag) minimum is given by
an orthogonal projection of vector JWUAE on to the plane
which is spanned by the column vectors of 2,10 Bgos ...,‘ng
of the maﬁrix fJWA (Fig.2.7). The‘i-th element X5 of the state
vector x corresponds to the column vector 2,4+ It means that
the independency-of each column vector is important to estimate

each element separately, or if some of the column vectors are

not independent from the others the corresponding state
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Hwa ax -faz|

Plane spanned by

'{§w1’ Qyoreccr éwN}

Fig.2.7 Parameter estimation by orthogonalrprojectidn‘
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elements cannot be estimated. In an actual orbit determination
program, the independency of the column vectors is tested
through Schmidt's orthogonalization method(le). If the
orthogonal component of a column vector to the other vectors is
 less than a given threshold, the corresponding element of the

state vector is rejected from the estimation process.

2.3.2 ‘Inform#tion Contents of Observations
Through a least-square estimation'process, uncertainty of
a state vector is reduced ﬁy information which is brought by
observation data. In other words, observations bring some
information of the state vector. We can evaluate the quantity
of the information by the mutual information defined as(zz)(ZS)
L v

I(x;z) = 1/2 log det(C_C ") - (2.48)

where

I(x;z) : mutual information which is brought by

observations z with respect to the state

vector x
Co @ covariance of x before the observations
C : covariance of x after the observations

In the right hand side of Eq.(2.48), the term ( det(C,C 1) )/2
represents the ratio of error ellipsoids before and after the

observations. For example, in a simple case where

%12 0
Co = S (2.49)
o ¢
ON
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o2 o] ENE R
c = U . (2.50)
o @ o (2,90

.then the, information content is given as

. N . o S
I(x;2z) = 2. (log 06.‘¥'log g. ) T (2.51)
== &~ i i
-oi=1 . . s .
. . ’ o ' N
Generally speaking, observations bring information and Z:log 01

N -
1=1
is less than 21108'0611.SO,I(E;E);iS_PQSitive' :
=1 ' ‘
. Using the concept of information content we .can . -

quantitatively evaluate the usefulness of observations, which
(24)

is sometimes‘uééful to optimize observation strategy
It can be said that an estimation process is optimum. when

it completely -utilizes the information which is brought by ..
observations. If there are some errors in observation models
used in an estimation procegs, we cannot fully uée the
information content. The effects of model parameter errors and
-numerical calculation errors are given in Eq.(2.36) by a
covariance matrix which includés these effects. The

.,degradation of the information is given by gomparing.the mutual
information of erroneous model estimation with that of an .

" error-free estimation. That is,

Ly o (2.52)

p”DI_=Hl/2 1og_det(Cch,
shows information degradation by errors.in the observation. ;.
equation. Using Cx ( Eq.(2.26) ) andyCc ( Eq.(2.36) ), DI
‘becomes d )

>
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[w]
]

T T T -1
1/2 log det[Cx{Cx + CxA W(BCyB + Cn)WA Cx} ]

' T T T}—l]
1/2 log det[{lx + C,ATW(BC B! + C_ WA

T T T{ |-1
1/2 1og[det{1x + ch W(BCyB + Cn JWA }}
(2.53)
where Ix is unit matrix. Because of model parameter error

covariance C_ and numerical calculation error covariance C
T

n’
det {IX + CXATW(BCyB +C_ )WAT} becomes larger than 1, which
means that the information-content DI is negative, or in other
words, the information is degraded‘by the model errors.

When there are errors in some model parameters, we should
reweight the observations in order to optimally utilize the
information content. In a system withdut model errors
( Eq.(2.20) ) it is optimum to select weighting matrix as
W= {EX(EBT)}_l in the sense that the weight gives the minimum

covariance of the estimates(zl).

For a system which has model
parameter errors ( Eq.(2.33) ), it is optimum to use a

reweighting matrix as

- T.-1,T
WR = WA(JX+SleS1 Y TA°W (2.54)
where

W, : reweighting matrix

_ -1
Jx .= Cx

_ T
S1 = A"WB

N
The estimates vector x is given by
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. = T -1,T
zZ K2 = (A WRA). A WR (2.55)

and

Ex { K2(BX + E)}
K,B Ex(y) + K2 Ex(n) (2.56)

Ex(X - x)

1]

2

Therefore, if Ex(y) = Ex(n) = O then 2 becomes unbiased

estimate. The covariance is given as (Appendikx B)

T

Ex {<§-§>(%-§>T} = Ky Ex {<Bz+_q>(Bx+g>T} K,
T 1 T

Kz(BCyB +W )K2

c, + scysT
= Cc (2.57)

The above reweighting'process can be said optimum because it
gives the same covariance matrix as is given by considering
information degradation by model parameter errors ( Eq.(2.35)).

In the above discussion we do not completely utilize the
information content of the observations. If we successfully
estimate all the model parameters and the state vector we can
use all the information. However, it is practically difficult
because of numerical instabilities. On the other hand we can‘
stably estimate parts of the paraméters‘alternatively. That
is, first, half of the parameters are estimated with the other
parameters fixed, then using the estimafed parameters as known
the other parameters are estimatéd, and so forth. By an

analysis using the concept of information content, we can show

that the alternative estimation process is theoreticaliy
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equivalent to the simultaneous estimation if the former process

converges (Appendix C).
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CHAPTER 3 VLBI METHODS FOR TRACKING GEOSYNCHRONOUS SATELLITES

3.1 Introduction to VLBI

3.1.1 General Concept and Brief History of VLBI

A VLBI uses two receiving stations which are usually
separatéd ovef thousands.kilometers. Each station has
independent frequency standard ( for example, a hydrogen maser
frequency standard) which is used to make local frequency
signals and various timing references in order to sample and
record the received signdl. Fig. 3.1 shows a general concept
of VLBI. The received signal from a radio source is
down~converted into a baseband signal of a baﬁdwidth, for
example, of 2 MHz and sampled, formatted ( or coded-by'adding.
receiving time-tag, receiving frequency information, and so
on), and recorded on a magnetic tape. The magnetic tapes of
the recorded signals at the two stations are sent to a data
processing center. By correlating the reproduced signals,
delay and delay rate observables are derived. Through various
calibratioa fo; receiving system délays, propagation media
effects, clock errors and so on, geometric delay and delay rate
observables are obtained. These observables contain
information of radio source position and station locations ( or

baseline vector ). "Actually, observations at many frequency
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channels ( each of which has bandwidth of, for example, 2 MHz )
are simultaneously conducted and the data are synthesized to

(1)

lead to effectivély widebahd observations The propagation
delays through ionized media ( ionosphere, earth's
magnetospheric plasma, and interplanetary plasma) are corrected
by observations at dual frequencies (usually 2 GHz and 8 Gﬁz).

A VLBI system was first developed in 1967 in the east
coast of the U.S.A. using so-called "Mark-I" digital recording
system by groups in NRAO(National Radio Astronomical
Observatory), MIT(Massachuéetts Institute of Technology) and
Cornell University(z). Aftér that a NRAO group improved the
Mark-I recording system to a ”Mark-IIﬁ system early in
1970'5(3). The most recently developed system is "Mark-III"
(4)(5) by the east coast group, which has beeh widely used
since 1980 especially in earth's crustal dynamics projects.

In the west coast of the U;S.A., groups iA JPL( Jet
Propulsion Laboratory) and CALTECH(California Institute of
Technology) have also developed VLBI systems named Block 0(6)
and Blogk 1(7). Their newest Block II correlater system(a) is
now undér development. These systems have been used not only
in astrometry and geodesy but also in clock synchronization
between Deep épace‘Network stations, in measurements of polar
motion and UTl(g?, and in navigation of spacecrafts especially

in deep space orbits.

On the other hand, in Japan RRL developed an experimental
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(10)

VLBI s&stem "K-I'" in 1976 and a real-time VLBI system

"K—II"(ll) in 1980. RRL also developed the newest system

'lK_IIIII(lz)

~in 1983 which is compatible with Mark III system.
The K-III system has been used since early 1984 in Japan-US
joint experiments under the Crustal Dynamics Project (CDP),

NASA. ’

3.1.2 Applications of VLBI for Tracking Spacecrafts

VLBI systems have been developed originally for astronomy,
astrometfy, and geodesy. However, the advantages of a VLBI
which is a passive method and gives highly accurate observables
of geometribal delay and delay rate have also been noticed in
the field of spacecraft naVigation. For example, in early
1970's, a geosynchronous satellite ATS-3 was observed by a VLBI
method using baselines in the U.S.A. in addition to range and

range-rate measurements(ls).

Using the obtained VLBI
observables; an accuracy of 70m. 100m in the satellite position
was attained. In RRL, using K-I VLBI system a geosynchronous
'sgtellite ATS-1 was tracked in 1977 using a baseline 125 km

long in Japaﬁ(14).

Those were, however, essentially
experiments to show the possibility of VLBI in the navigation
field. |

With practical purposes to obtain highly accurate tracking

data of spacecrafts, JPL has developed various VLBI teéhniques

and demonstrated~them'especia11y in deep space navigation
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field(ls). In the deep space navigation, the required accuracy
of spacecraft's position determination has been growing as
mission goals have become more and more sophisticated.

However, the conventional radio tracking methods of ranging and
Doppler (range rate) measurements have become insufficiehtJ
because they generally cannot supply highly accurate angular
information ( or position information in the plane
perpendicular to the line-of—sight(le)(l7)). Especially,
angular information of spacgcraft declination, which is derived
from the amplitude of diurnal variation of Doppler measﬁrements
due to the earth's rotation, suffers seribus errors when the
declination becomes nearly zero (this is usually called a =zero
declination problem). In additibn to that, it takes from
several weeks to months to derive effective observables
(angular position accuruacy of 250 to 500 nano—radiahé).from

Doppler measurements(ls)(ls).

Fig. 3.2 shows a concept of
position determination accuracy of a spacecraft in deep space
by range and Doppler measurements. In Fig. 3.2 an error
ellipse in the plane perpendicular to the line-of-sight is
shown. it is elongated in the'direction of declination (or
north-south) and has much larger size than the position error
in the line-of-sight. The spacecraft position in the direction
of the line-of-sight can be determined with an accuracy of less

than hundreds meters because conventional range measurements

can supply the accuracy.
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A VLBI can supply highly accurate angular information by
much less period of observation (from several tens of.minutes
to hours) than thét of Doppler measurements. Demonstrations of
VLBI tracking of Voyager I and II spacecrafts proved an angular

accuracy of about 50 nrad(ls)(lg)(zo).

In the field of
geosynchronous satellite tracking by VLBI methods with a
purpose of precise orbit determination, we made the first.

t(21) on CS (Jaﬁan's Medium-Capacity Communication

experimen
Satellite for Experimental Purposes, launched in 1977) by a
DVLBI method (see Chapter 4) with a baseline 46 km long; A JPL
group made an analysis on VLBI tracking method for
geosynchronous sa;eliite‘by aSsuming truly long baselines(zz).
In the case of VLBI observations of spacecraft signals, it is
required to develop methods of processing narfowband signals.
Because the spacecraft signals have not always so wideband
characteristics as those of signals from natural radio stars.
We study further on this point in the next section. After the
CS experiment JPL and we carried out a joint experiment<23)(24)
of tracking a geosynchronous satellite by a DVLBI method with

inter-continental baselines (Chapter 5).

N

3.2 VLBI Data Processing
3.2.1 Signal Analysis of VLBI

Here we describe basic concept of VLBI signal processing

and signal—to—noise ratio which is important to evaluate the
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accurécies of VLBI observables. Fig. 3.3 shows a concept of
VLBI signal flow. Observed signals at the VLBI stations 1 and
(2)

2 are written in the freqtency () domain as

x () =T S(w) + Ty N (W)

(3.1)
xo(w) = T, 8" (W) +IT, No(w)
where
. J .
5'(w) = S(w) exp| ~i{w(T+En| -1 Py
, (3.2)
2 _ 2 _ 2 _ 2 _
o] =] = [ = " - 2
and
§i(a1) : observed signal at VLBI station i
Tai‘ . : radio source signal temperature at station i
_Tsi : systém noise temperature at station i

S(w), S8'(w): normalized radio source signal
"N.(w) : normalized system noise at station i
T :vsighal delay time
T : delay rate

¢b. : fringe phase

Eq. (3.2) means that the signal observed at VLBI station 2 is
delayed by’(ft*”%t) from the signal observed at the other
station. The fringe phase ‘#0 is caused by the difference of

phase shifts due to receivers at the VLBI stations. The delay
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model'(qf+'5t), where a linear variation of the delay with
respect to time is assumed, is usuélly valid for a short
observation duration or for a short baseline. If necessary,
however, we can use more accurate models of the delay.

"We can obtain the delay and delay rate by correlation
processing of the observed signals given by Eg.(3.1). First,
we counter-rotate the phase of the signal 52(03) by using

predicted delay and delay rate. That is,
X" (W) = X,(W) exp{iw(% +'£-t)}

=E2 S(w) exp[-ico{_(fz:—%) + (%-%)t} - 1430]
+ JTog 52(@ ), exp{iw(.%+%t)}.

= \[Taz S(w ) exp{-iw(A'z:+A'.tt) - i‘PO}
*J—'r:z No'(w)

= {Tap 500 emp-1p) + T W) (3.9)

where
o A
T predicted delay
~
f% predicted delay rate
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and we define AT, A'E , 52'(w) and ¢'1 as

AT = T - %
At = T - ¢
Ny'(w) = N, exp {1w(?: +Tt )} (3.4)

b, = w(aT+att ) + P,

Then the cross-correlated signal vector (or cross-spectral

function) between 51(0)) and 52'(0{) is written as
R(&) = x,(@)x, F(w)
=J'T_al_1~:; s(w)sF(w) exp {ia)( ac + 4ét) + i<i>o}
+[T 1Tz l(w)s*(w) exp {iw( aT + A'z:t) + 14>0}
#|Ta1Tsz S@ON ¥ () +[T T N, (w)n, '*(w) (3.5)

* : complex conjugate

where

The last three terms in the last right-hand side of Eq.(3.5)
vanish in a time-averaging (or we call this signal integration)
process becausé they are correlated vectors between essentially
independent (non-coherent) noise terms. The first term

represents the cross~-correlation of the coherently received
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signalé, where the amplitude is the qoherent signal power and
the phase is the correlated phase (sometimes it is called

fringe phase). The correlated phase #H.(Eq.(3.4)) gives the
corrections AT and A’E‘ to the predicted VLBI observables %

and 'E through next equations

AT = o , t=0 (3.6)
ow
AT =%¥i’— (3.7)

then we obtain T (= %+ AT ) and '2‘(= %+A’E) from Eq.(3.4).
The cross-correlated vector R(w ) given by Eq.(3.5) is
usually integrated both within a frequency bandwidth and a time
period to reduce the contribution of the noises: The
signal-to-noise ratio '(SNR) of the integrated cross-correlated

vector is given as(z)

T .T
SNR = al a2

TslTaZ + TalTSZ + TslTsz

2BT (3.8)

where
B : observation bandwidth
T : integration time.
Since 2B is a sample frequency, 2BT is the data number in the

integration period. The variance of the correléted phase
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A
estimate 4’1 is given as

.2 1 ) 2 (3.9)
¢ SNR '

In Eq.(3.8) it is assumed that the coherency of the received

signals are completely kept through the VLBI signal proce;sing.
Actually, however, the received signals are converted into
video signals and sampled and digitized. 1In the above
procesées some of the coherency is lost and the effect can be

and‘L for the

1 2
stations 1 and 2, respectively. Therefore, a more praétical

described by coherence loss coefficients L

formulation of SNR is

L,L, T ,T_, 2BT
SNR_ = 12 ala2 (3.10)
LaTs1Taz * F1Ta1Tsa * Ts1Ts

Using Eq.(3.10), we bbfain a SNR formulation for quasar

observations (where Tsl’ Tsz > Tal’ Taz ) as

' 'TalT‘z
SNR; (quasar) = [L,L, —2= 32 opT ©(3.11)
, : T .T
sl s2

On the other hand, in the case of spacecraft signal
observations where the relations ?sl’ TSz & Tal’ Taz are

satisfied, we obtain

SNR. (spacecraft) = 2BT (3.12)
L .
T T -
: sl s2

LiTax LoToo

When we observe a tone signal transmitted from a spacecraft it
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is effebtive to use a local phase model(s) to raise SNR. That
is, the observed tone at a VLBI station is correlated with
predicted noise free tone model (local phase model). By
differentiating the correlated phases at two VLBI stations the
fringé phase between the spacecraft tones received at the two
stations is obtained. 1In the process of the correlation using

a local phase model, SNR is written as

LP
SNR; (local phase model) = —S_ 28T _ (3.13)
. P
N
where
L : cohérence loss cqefficient
‘ Ps : spacecraft tone power
PN : noise power in the pass-band

3.2.2 Derivation of VLBI Observables

The geometric observables 7 and % in VLBI are given as
‘slopes of the phase of a cross-spectral function with respect
to angular frequency and time ( see Eqs.(3.6) and_(3.75 Y. The
cross-spectral function is obtained as a Fourier transform of a
cross-correlation function in time domain. In a usual VLBI
signal processing, the received signals at many observation
frequencies are sampled and digitized, then they are

cross-correlated in time domain with short integration time for
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a few seconds. In the cross-correlation pfocess,lphase
rotations by predicted delay and delay rate are applied. The
obtained cross—coirelation function is Fourier transformed into
frequency domain to give a cross-spectral signal vector
§jk(a’3' tk) at an angular frequency an and time t. This is
defined as '

\ ‘&)J.'f'B' /2 tk'f"]"."/z
_S_Jk(wJ, tk) = ;—'-;-’ | B_(w) do dt (3.14)
wJ._—B'/z tk-T'/z

where B' is a receiving bandwidth, and T' is a few second of
integration time. Eq.(3.14) is rewritten in a form

b = Po * O (AT +atr) + P (3.15)

njk
where
4>0 : Zfringe phase at (a)j, tk) = (0,0)

é

The delay and delay rate observables T and T are derived by

n jk . phase noise due to receiving system noise.

k
typical methods hdave been developed : one is a coherent phase

using cross-spectral vectors §jk at many coj and t,.. Two
method and the other is a phase trdcking method.

(i) Coherent Phase Method (2)

In Eq.(3.15) it is expected that every §jk at various an
and t, has the same phase qbo except random noise ‘?njk when
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the predi‘cte'd delay and delay rate coincide with the true
values of them, that is, AT = 4’?.:=.0 (see Eq.(3.4)). This
means that a vector-sum of §ji§ becomes the largest when AT =A'E'
= 0, I’n'.order to get AT = aT = 0, we can equivalently
elimina.te AT and A'i in Eq.(3.15) by counter-phase'rotatibn
using their estima'.tes A'? and A‘/'t\ as )
§jk exp {-iwj( A%-+ A%tk)} = .S_jk exp [ i<1>0
: +iwj{(4'2:—4"t\) + (Afz':-A%)tk}
+ i4>njk] . .
: A Q
The coherent phase method gives optimum estimates of AT and AT
which eliminate the residual ( AT - 4% ) and (AT - &% ).
This is done by searching A‘? and 4@ which maximize the'

following summed cross-spectral vector -S—S s

m .2 ’ . A . )
’S‘X = j§1 151 §jk exp{—le( AT + AT Fk)
(1) & % s [ {("c’ﬁ %)
= exp(i .. exp| iw,; AT -4
L = B = L I |
. o~ '
+ (A‘t—a'c)tk} + i4>njk] . (3.16)

Fig. 3.4 shows the vectors S, in (W, tk) plane. At first,
-S—jk do not lie in the same direction because the predicted

delay and delay rate do not coincide with the true counterparts
of themv(_Fig.3.4(_'a))_. The counter rotation of the phase~by-;the
optimum A"f and A'/z:'\ aligns the vector - —S-jk in the direction of

which the average phase is qSO (there still remains the effect of
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(a)

(b)

Fig.3.4 Cross-spectral vectors in (®, t)-plane

(a) With residual delay and delay rate
(b) Without residual delay nor delay rate
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A O
phase noise 4>n k! Fig.3.4(b)). From AT and aTt we obtain

the estimates of delay fe: and delay rate ’?: as

N ~ o~
T = T + avT
~ ~ ~ (3.17)
T = T + AT

A o
Let us discuss the accuracies of the estimates 47T and a<T.

Define a vector §A.as the right-hand side of Eq.(3.16)

excluding the term exp(iqSO) ,

S, = JZk S.. exp {-uoj( X + oyt ) + 1¢njk} (3.18)
where
~
x = 4T - AT
~ . } (3.19)
y = 4T - 4&T

A S .
When the AT and At are effectively estimated, both x and y

approach to zeros and we can write

I §A"-_ J-stjk cos {-.'wj( X + ytk) + njk}
'——,JstJk[ {-wj( X + yt,) +$f>njk}2 / 2]

(3.20)

) O . . L.
Since at and 4T are obtained as those which maximize

Eq.(3.20), we obtain the equivalent relation which gives x and

y as

2 ..
Z"k ik { -w ( x + ytk) + ¢njk} % minimum (3.21)

This is a'weighted least-square method to solve x and y.
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In other words, x and y are solved through a linear fitting to

“the data 9bnjk'A Eq. (3.21) is rewritten in a matrix form

T

(Hx -2 ) S (HX -2 ) —> minimum (3.21")

where

H = ?j wjtk (2 x (mxl)) (3.22)
’X

x = (1x2) (3.23)
~ y ’
[ |

z =] Poik (1x (mxf)) (3.24)
[ - 0

S = Sik ( (mxf) x (mx L) ) (3.25)

0

The covariance matrix C of the estimates x is given by
c = (a¥su)"t uT {cov(ﬁbnjk)} “lp @Tsmy7t, (3.26)
\’ 0
-1 _ ' 2
{cov(_<}>njk)} = (SNRjk)
0 s

. -1 . .
where { cov(<#njk)} is given by Eq.(3.9) and SNRJ.k

corresponds to cross-spectral signal vector §jk‘
In Eq.(3.21) Sjk is used as a weighting factor. It should
be, however, replaced by (SNRjk)z from the viewpoint of the

optimum estimation where the covariance matrix is

71



’ A S
minimi‘zed(zs). That is, A% and AT should be obtained by

% (SNRjk)z exp-{—icuj( x ytk)% — minimum (3.27)

J.k
. A -
Then the covariance matrix of the estimates AT and 4t is given

by

C = H SNR.
‘ J

R H . (3.28)
TT

As a simple application of Eq.(3.28), let us calculate the
variance of At where only AT is estimated with fixed A‘E: .
In this case we can use a linear fitting function ( Cojx + co)

in Eq.(3.21),where ¢H is a constant. Then we obtain

w, 1

H = : ' (3.29)

X (3.30)

"
M/
: "
o
Nt

C

According to Eq.(3.28), the covariance matrix becomes
-1

%co J ’
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1

ijzsNRjz S SNR.2 - (X fojsx\m.z)2

Jj v J J
2 2
2. SNR, -2 W_SNR,
§ J j 9 J
' 9 5 (3.31)
- J®.SNR. 23 @ _SNR,
A A IS
J J
When SNRj = SNR (j=1,2,...,m), we obtain a simple expression

A
for the variance of the -delay estimate A7 from the (1,1)
element of matrix Coco 28

1 1

2 2
G‘ = O/\ =
o % SNR? ;wjz - m(Z Coj/m)z
J J
or
5 1 1 _ |
0. = 5 5 (3.32)
&
SNR® @ ..
w 2= X(w, -T)%, D= W /nm
eff : J . J
J J
where

a)eff is effective angular frequency distribution.

A similar expression for the variance of the delay rate

estimate is derived as

2
0. = - (3.33)
&% sNRZ w2 T .2 )

¢ ., _ L
Tefffzk(tk't)' t’%?k/ﬂ

Eqs. (3.32) and (3.33) agree with those which were obtained by

other linear fitting methods to the cross-spectral phase with
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respect to angular frequency and time(z)(26).
It should be noted, however, that the expression in
Eq.(3.28) is more general for the covariance of simultaneous

delay and delay rate estimates.

(ii) Phase Trackiﬁg Me thod

The phase of a cross-spectral vector §jk(Cdj, tk) given
in Eq. (3.15) rotates in time because of residual delay rate A%.
In a phase tracking method the phase of §jk at an angular

frequencyco‘j is tracked and is fit by a sinusoidal function. As is

clear from Eq.(3.15), the angular frequency of the fitted
sinusoidal function is expected to be a{jai. .Fig.3.5 shows
phase trackings at two angular frequencies a)l and 6)2. The
accuracy of the estimated A% is equivalent to that obtained by

coherent phase method.

A delay estimate is obtained in the phase tracking method,

for example, from a fit pair of phases at a)i and a)j
as
A~ Plos, t) - Ple,, ty) 2T N
AT = J: kK SRS S (3.34)
W, - W, W, - W,
J 1 J 1

( N : integer )
where the second term means an ambiguity. We can also use

. ' ~
many angular frequency points o4, a>2,....,com to estimate 4T
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A7 - Dw,t) - Plw,, t)
2 1 d Pwe.t)
AT =

< w, dt

Fig.3.5 Correlated phases tracked at two frequencies
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by a linear fitting to phases ‘#(coj, tk). by weighting
according to the accuracy of each phase data. This process is
fundamentally same as that in the coherent phase method.

The phase tracking method is essentially useful in a DVLBI
data‘processing. Suppose that the DVLBI observations are made
at two angular frequencies a>1 and G)z, for example, in the
case of a spacecréft.which transmits two tonés at these
frequencies. Hereafter we only éonsider AT estimation. The
cross-spectral phases(or fringe phases) at agl and a)2 are

written for a satellite obsevation as

¢sl(t) - ‘Pso * <zbIl * wl 4‘7.‘5 * <}Ssnl(t)

} (3. 35)
Pealt) = Pgp + Prp * @5 8%+ Pypp(®)

where
qbsi(t) ;. cross-spectral phase at a’i
qbso : cross-spectral phase independent to
'frequency

951 phase rotation by the receiving instrument

i
at a’i‘
4?5 : satellite delay (residual delay from a
prediction)
qbsni : phase noise at

We obtain similar expressions for a quasar observation as

Par(t)

| ¢q0 + 4’11 + e, A'Z'q + ¢qnl(t_) (3. 36)
P2t T

P * Prz + @, &g+ Pt

qn2
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~where the subscript '""q" indicates quasar. A delay estimate

A%g for the satellite observation is given by Eq.(3.34) as

~ A‘#I +A<f:~sn
AT. = AT+ (3.37)
S S e, - w
2 1
where
abp = P,- Ppy
: (3.38)
A‘Psn = ¢ sn2 ~ ¢ snl
”~
A quasar delay estimate A'Z'q is similarly given  as
~ ap_ 4P
AT = 4T+ 1+ an (3.39)
Woy=- &9y
where
Aqsqn = qbqnz - qsqnl (3.40)

and A#& is assumed to be the same as that in the satellite

observation. A DVLBI delay observable 4%, which is defined

as the difference between 42% and 45%, is

A'Z‘s - A’c‘.‘q

1

~
AT
abp - aP

= AT - A'l'q + Sn qn (3.41)

s
a>2 - o>l

The last term of Eq.(3.41) contains only random errors due to
receiver system noises and so on,Awhich can be reduced by
attaining a sufficient SNR and a lot of obser&ations.

The effect of A#& vanishes, or in other words, systematic
phase rotations in receiving equipment do not affect the

DVLBI delay observable.
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On the other hand, we obtain a different result in the
coherent phase method. First, in the case of satellite
observation, the residual phases A¢g1 and A4 s2 are

defined using Eq.(3.35) as

A
1= Par(t) - P - Py - ®p 8T

@, ar, - AT+ P ()

A

(3.42)
A
A<Psz = ¢s2(t) - 4>sO - CibIl - 60242'8
AN
= @, a%, - 4T+ 1) + AP
where
app = P, - cpn (3.43)

"~
ATg : satellite delay estimate

A
In the coherent phase method, AQ:S is estimated by minimizing

a weighted square-sum, that is,

2 2 2 2 .
SNR_, A4>sl + SNR 44>32 —> minimum (3.44)

~
Substituting Eq.(3.42) into Eq.(3.44) we solve 4?¥;as

. :
AT, = AT  + AT + A'CIS (3.45)

where

2 2
@ w
i = SNR, %@ Py + SNRLT W, P (3.46
ns SNR_ .2 .2 + SNR 2.2 46
sl 1 s2

2

- SNR_, 2w, ap,
A’tIs = 5 > (3.47)
SNR_;“w ;© + SNR_," w, A
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A
The quasar delay estimate Atq is obtained by a similar

process as

A
= + AT  + 4T 3.48
A'cq A'C'q A nq 4 Iq ( )
2 2
P SNR 1“0 Py *+ SNR T W, an2 (3. 40,
nq 2. . 2 2, . 2 :
SNR 1" w;" + SNR ,“w,
: SNquzwz 4P,
A‘Z:Iq= ) 3 (3.50)
SNR "Wy + SNR %0,

Using Egs.(3.45) and (3.48), DVLBI delay observable is written

as

AT = &Y, - A’tq + A'Z'ns - A?:nq + 42‘IS - A?.'Iq (3.51)

The term ( A?Cns - Aftnq ) is inheren%ly random, but the term
( AT Is = étIq ) has usually a systematic component.' ‘The
latter term only vanishes when SNR is independent to angular
frequencies col, &)2 for both satellite and quasar
observations.

In a DVLBI between a satellite and a quasar, it is usually
the casé where observed signals are completely different.
Because satellite signals have usually narrowband
characteristics and the power spectrum is not flat. It means
that the SNR depends on frequency in a passband and the phase

tracking method would be more effective than the coherent phase

method.
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3.3 Tracking a Geosynchronous Satellite by DVLBI Method

3.3.1 Principle of DVLBI Method

The delay observables obtained by a VLBI contain both
systématic ( or bias ) errors and random errors. Random
errors, for example, due to receiver noises and random
fluctuations of probagation media, may be reduced by longer
integration times and by smoothing of many observations. The
systematic errors, however, must be corrected by suitable
calibrations. A DVLBI calibrates systematic errors by
eliminating them using radio sources with precisely known
positions.

Figure 3.6 shows a geometry of DVLBI observations of a
quasar and a satellite. The delay observable ﬁ;q obtained by
a quasar observation is given as

N . .

't'q= ’C'q+ nq (3.52)
where ’Cq is the geometrical delay and nq is the error
which consists of systematic and random errors. The 'tq is
'~ given as

¢ T = SeB .  (3.53)
where

c velpcity of light

unit vector in the line-of-sight to the quasar

S
B : baseline vector formed by two stations which

receive the same phase of the radio wave emitted
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* Quasar

Station 1

X Satellite

X2
Station 2

Fig.3.6 Geometry of DVLBI observation
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by the quasar

) N\
The delay observable for the satellite T is given by

S
-~
T, = Tg+ ng (3.54)
To = Py - Py (3.55)

where P, and Py correspond to the propagation times which
are required for the same phase of the radio wave transmitted
by the satellite to arrive at the stations 1 and 2
respectively. The term ng means errors of systematic and

random for the satellite observation.

A
In the DVLBI method, we take the observable Zb which is

A ”
the dif ference between ’Zq and ‘zs , that is,
Py
Ty, = Py = Pp = Ty + By - g (3.56)

When the observations of the quasar and the satellite are made
under nearly same conditions (with small separation angle
between radio sources and with small separatién time between
observations), the systematic errors in ng and nq are
eliminated in %o' . Since ‘t‘q .in the right-hand side of
Eq.(3.56) is precisely known, we can obtain the geometrical
delay observable Py~ Py for the satellite. The remaining

random errors are decreased by sufficient integration time and

are smoothed out through many similar observations.
3.3.2 Sensitivity of DVLBI Observable

Let us study on the sensitivity of a DVLBI observable to

geometrical parameters. In Eq.(3.56), the term Py - Py is
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written as

Py =Py =z -2 01 -l &-x (3.57)
where
r satellite position vector where the satellite
transmitted the signal which is observed by VLBI
X5 position vector of station i which receives the

signal transmitted by the satellite at r.
Using Eqs.(3.53) and (3.57), the sensitivity equation of DVLBI

~
delay observable 1:0 is given as

. A
¢ AT, = (Byy = Byy )AL+ (S - py, )eAx

- (S8=-p;, )eAx) - B-AS (3.58)
where '
A A A . 3 .
Ayto variation of ‘tb due to variations (or errors) in
geometrical parameters'
Piy ¢ unit vector pointing to the satellite

at station 1
Ar : variation of satellite position
Aéi : error in station(i) location
AS error»in quasar position
The first term of the right-hand side in Eq.(3.58) shows
that a DVLBI delay observable is sensitive to the satellife
position deviation in the direction of the differenced vector
( Boy = Pyy )- Figure 3.7 shows ( Poy - glu ). As is clear
from Fig. 3.7 a DVLBI delay observable has information on

position deviation in the plane which is nearly ( completely in
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Radio Source

EQ : Averaged line-of—sight

Fig.3.7 Sensitivity of delay observable with respect to
radio source position
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the case of infinite radio source ) perpendicular to the
line-of-sight. 1In other words, the DVLBI delay observable
gives angle information as described in Sec. 2.3.1. If we need
complete angle information on the radio source, another
baseline vector which has component perpendicular to the plane
spanned by B and Piy ( or Boy ) 1is required.

The terms including ‘351 (i=1,2) show the sensitivity

Y
of T to station location errvors. In DVLBI observations,

o
since separation angle between a quasar and the satellite is
selected small, the vector ( S - Piu ) in Eq.(3.58) is nearly
perpendicular to the line-of-sight to tﬁe'quasar or the
satellite at station‘i. Consequently, the components of
station location errors projected on to that perpendicular
plane may affect the DVLBI delay obser?able. Besides geodetic
errors, we also treat modeling errors,in UT1l and poldr'motioh
as factors which cause station loéatioA errors. Because those
errors cause systematic errors in calculation of station
positions in an inertial coordinate system.  The UT1 error
causés station location errors along with station motions by
the earfh's spin. That is, the sensitivity of ‘%o to UT1
error depends on orientation of a baseline. Figure 3.8 shows
two cases of satellite obserVations,uone is sensitive to UT1
error and the other is not. Iﬁ the DVLBI geometry shown as the
case (b) in Fig. 3.8, contributions by Agc_l and A_}gz

eliminate each other.
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Satellite

(a) B : ' perpendicular to the spin axis

DVLBI delay observable is affected by 4x, and Ax,

X
UT1 Error

Satellite

(b) B : parallel to the spin axis

DVLBI observable is insensitive to 4x, and 4x,

Fig.3.8 Sensitivity of VLBI delay to UTl correction error
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The remaining term Be¢AS shows the sensitivity to the
quasar position error. It is clear that the position error in
the direction of B3 which is the perpendicular component of
B to the line-of-sight affects a DVLBI delay observable.

The delay observable has information on the parameters to
which the observable has sensitivity. We are sometimes
interested in estimating both satellite position (orbit) and
station locations, because we are not always given exact
station location data. According to the above seqsitivity
analysis, we can estimate station position componenfs in the
plane perpendiculaf fo the line-of-sight. 1In other words, we
hardly expect any information of station position components in

the line-of-sight direction.

3.3.3 DVLBI as Tracking Method for Geosynchronous Satellite

As is shown in Sec. 3.3.2, a DVLBI delay observable has
information on satellite position components in the plane
nearly perpendicular to the line-of-sight. On the contrary,
range or summed range observables defined in Sec. 2.1.2 have
complementary sensitivity. That is, in Fig. 3.7 a range
observable at station i has sensitivity to the satellite
position component in the direction of Biu and a summed range
obtainedvby observations at stations 1 and 2 has sensitivity to

the satellite position component in the direction of ( Piy +
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Pou ); In the case of a geosynchronous satellite, a delay rate
observable of a DVLBI is not .so useful as a delay observable,
because the delay rate is very small. Due to the same reason,
the range rate observable is not used for a geosynchronous
sateilite.

A combination of DVLBI observations and ‘range or summed
range observations gives complete information on a satellite
three dimensional position vector. Using these observables at
different observation times we can determine the satellite
orbit. However, from the viewpoint of highly accurate orbit
determination, there are disadvahtages to use various types of
tracking data. Because,‘each type of tracking method contains
errors in its observation model parameters. This factbléads to
a large number of model parameters which have possible efrors
in an orbit determination process.

The DVLBI delay observables obtained by apprbpriateb
baselines can supply complete observability with respect to a
geosynchronous satellite orbit. Let us discuss a basic concept
of the observability. With two different baseline vectors,
DVLBI delay observables supply position informat ion of a
geosynchronous satellite in the plane perpendicular to the
radial vector. Because. an averaged line-of-sight (EQ in
Fig.3.7) for a baseline on the earth is neérly in the direction
of the satellife's radial vector. Figure 3.9 shows small

position deviation vectors Aw and Av which are
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A

Descending
Node ) Satellite
_________ : Orbit

Satellite orbit
¥ projected on X-Y
plane

Ascending
Node

XYz
r

Qo
e
i

: Inertial coordinate system
: Satellite's radial vector
Right ascension of ascending node
: Satellite's longitude
‘ ¢ Orbital inclination
(av, Aw): Satellite position deviation

Fig.3.9 ‘Géosynchronous satellite orbit and small position
deviations observed by DVLBI
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perpendiéular to the radial vector and can be observed by
DVLBI. Aw and Ay are parallel to the. earth's equatorial
plane and to the spin axis, r.espectively. Aw and

AV are given from a satellite's position deviation in the
inertial frame ( AX, AY, AZ ) through a linear
transformation as,

aAw -sinf cos@ 0 AX

= (3.59)
AV : 0 0 1 AY
AZ

where @ 1is the satellite's longitude in the inertial
coordinate system.

On the other hand, the position of a geosynchronous
satellite in the inertial frame is easily described by

coordinate transformation from an orbit plane- coordinate system

as
X X
y|= 6|y - (3.60)
z 0 '

where (x, .y) is the satellite position in an orbital plane
coordinate system (see Fig. 3.10), and G is a transformation
matrix given as
_ cos(W+8f) -sin(w+K) i sing)
G = sin(aw +Q) cos(w+0) -i cosSL (3.61)

i sinw i cosw 1
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E : Eccentric anomaly

Fig.3.10 Description of satellite position in orbital
plane coordinate system
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where
| ® : argument of perigee
) : right ascension of ascending node
i : inelination ( assumed to be small in the case of a
geosynchrenous satellite_)
and they are three of'six'Keplerien orbital elements of the
satellite. The satellite position (x, y) in the orbital plane

are given by the‘remaining three Keplerian elements as

a(cosSE - e)
‘ (3.62)
aq’l - e2 sinE

X

y

where

a : semi-major axis

E : eccentric anomaly

e : eccentricity
In the case.of a geosynchronous satellite;‘the eccentricity is
also small. So O is epproximately written as

6z Q+ o +M (3.63)

Awhere M is the mean enomaly which has following relation with

e and E,

"M = E - e sinE (3.64)
Using Eqs.(3.61) and (3.62) in Eq.(3.60), (X, Y, Z2) are written
as functions of Keplerlan elements By partial
dlfferentlatlons of the (X, Y, Z) we obtain expressions for

( AX, AY, AZ ) in Eq.(_3.59). Then we get finally
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(derivation is shown in Appendix D)

3
Aw - —nt, sinM(2 - e cosM), 1,
2
M 3 . K3 . (3
Av 1(s1nP - 7;—nt cosp ), 1(cosF sinM - sinw ), i cosp,
1 - e cosM, 1 - e cosM, -i cosp sinP, (Aa \
a Ae
a.AMO
i cosF , 0, sinF - e sinw
adw
aAQ
La Al J
(3.65)

il

where [ is defined as P W+ M, e and i are assumed to
be small ( it is usually true in a geosynchronous satellite ).

M is mean anomaly at the epoch time, and n is the mean

0
motion. Eq.(3.65) shows that a pair of observables (Aw, AvV)

has different sensitivities to the six orbital elements. In
other words, a complete observability with respect to the
orbital elements is assured by sets of ( aw, AV). observables

at several (at least three) observation times.
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3.4 Errors in DVLBI Delay Observable

3.4.1 VLBI Hardware System Erfors

A DVLBI delay observable has errors which are inherent to
the hardware system. They are SNR error (or errors caused by
system noises inclqding sky noise, antenna noise and thermal
noises in receiver system), system delay error, and clock

error.

SNR Error

In the coherent phase method (Sec. 3.,2.2) to estimate VLBI
delay observables, SNR error of a delay observable is given by
Eq.(3.32). SNR is given by Eq.(3.11) for a quasar observation,
and by Eq.(3.12) or Eq.(3.13) for a satellite observation,.
Since these errors are independent, SNR error fér a DVLBI delay

observable is written.as

Tap ® = Oq” * Tls (3.66)
where | l
(TAED SNR error of DVLBI delay observable
q}« :. SNR error of quasar delay observable
G}g : SNR error of satellite delay observable

In the phase tracking method (Sec. 3.2.2) to estimate a
VLBI delay observable, the same discussion mentioned above is

possible, except that in Eq.(3.32) the effective angular

frequency G)eff should be calculated using &Ji and ﬁoj in
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Eq. (3.34). In the case of DVLBI tracking of a geosynchronous

satellite, 02% is usually much smaller than °2£Q» because
the signal power of a satellite is much stronger than those of

quasars.

System Delay Error

Signal delays which are caused in equipment at VLBI
stations are not the same nor time-invariant.
In a DVLBI a constant system delay is successfully removed.
However, time-variable system delay remains due to a time
difference between observations of a satellite and a quasar.

It is written as

AZ . = Db AT . (3.67)
where
b = '%STZ - 'ESTI : rate of the system delay difference

between VLBI stations
KZST : DVLBI delay error due to system delay rate
iESTi ¢ rate of system delay at station i'
AT : observation time difference between satellite
and quasar

Since AT is about 10 to 15 minutes in typical DVLBI

observations(21)(23>, if b = 0.1 psec/sec ( 1 psec = 10_12

sec ) then AtST. is less than 0.1 nsec ( 3 cm of equivalent

light pass).



Clock Error

Though a clock offset at a VLBI station directly causes a
delay offset ( delay bias ), it is removed by a DVLBI method.

However, a difference of clock rate between the VLBI stations

remains as

. Af
AT

AT ( (3.68)

where

AI% : DVLBI delay error due to difference of station

clock rates difference

Af/f : difference of clock rates

The clock rate ( Af/f) has the same effect as the geometrical

delay rate in a VLBI, so it is usually estimated as well as the
delay observable.

13 , then AI% becomes less than 0.1 nsec (3

If the delay rate is estimated with an

accuracy of 10~

cm).

3.4.2 Propagation Media Errors

Propagation media errors which are caused by calibration
errors of delays due to the troposphere, the ionosphere and

other ionized media such as the earth's magnetospheric plasma

and the solar wind plasma. In order to satisfy an accuracy

requirement of several centi-meters in delay measurements for

geosynchronous satellite tracking, the effects of the.troposphere

and the ionosphere are significant.
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Tropospheric Delay Calibration Error

The delay due to the troposphere (especially for a "dry"
component, which means an ideal troposphere without water
vapor) can be calibrated using a theoretical model of radio
wave propagation(27) through the troposphere. The excess path
due to water vapor (''wet' component of the troposphere) is
‘ (28)(29)

sometimes measured with a water vapor radiometer

Calibration errors are caused in systematic( or bias ) and

random manners. The systematic error can be written as(zg)
o2 /1 12 5 1 1 T .
T ksin Tsl ) sin qu O‘TZI. * sin Tsz ) sin qu GTZZ
(3.69)
where _
O‘T : systematic calibration error in DVLBf delay
observable due to the tropoSphere
‘rsi : satellite elevation angle at station i (i=1, 2)
Tﬁi : quasar elevation angle at station i (i=1, 2)
O, 4 ¢ Systematic calibration error in the zenith

at station i (i=1, 2)
Eq.(3.69) means that a difference between elevation angles of
satellite and a quasar causes delay error in DVLBI'observable,
and the error becomes larger as the elevation angles become
lower. This should be considered in making an observation

schedule of DVLBI measurements.
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The random error caused by irregular structures of the

troposphere is written as

2 ETR 1\ 2
qTr ) sin T * sin T’ G‘Trzl
o sl ql
1 \? 1\ 5
+ —;;———- + ;;;———— OuTrzz (3.70)
S s2 q2

where
CrTr : random error in DVLBI delay observable due to the
troposhere
cxfrzi random tropospheric delay in the zenith at
station i (i=1,2)
The effect of the random errors are reduced by an averaging

effect by using many observations. Further considerations are

made for an actual observation geometry in Chapter 5.

Ionospheric Delay Calibration Error

The ionospheric delay calibration error can similarly be
divided into two types, systematic and random, errors. The
systematic calibration error can be written as

2 _ . ' _ } } 2 2
G.I = [ f(.?Cl) {g(_'f‘sl) g( ‘x:ll) G-IZI
2 2
f[2x) {6 T - 8C Ty} ] 0,2 (3.70)

where
(Tiz systematic calibration error in DVLBI delay
observable due to the ionosphere
f : solar-zenith angle factor
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QCi : solar-zenith angle at station i (i=1, 2)

g : elevation angle factor
7§i : satellite elevation angle at station i (i=1, 2)
. : quasar elevation angle at station i (i=1, 2)
qu q

systematic calibration error in the zenith
at station i (i=1, 2)
Eq.(3.71) is based on a simple model of the ionosphere where
the total electron content in the line-of-sight to a radio
source depends on elevation angle and solar-zenith angle at the

station. The factor f and g are empirically given, for

example, as(zg)
£(%X) = 0.2 + 0.8( cos X )2/3 (3.72)
ey = [{Cr, +1,)% -2 cos?T } 1/2
- {( R, + by )? - r2 cosza"} 1/2]/ ( hy - by )
 (3.73)

where Re is the earth's mean radius, h1 and h2 are the lower
and upper limits of a constant charged-particle density model
of the ionosphere. The numerator of Eq.(3.73) approximates the
ray path length in the modeled ionosphere, therefore g(d‘)
gives the excess-path ratio to the zenith path,

o

separation angle between the satellite and a quasar becomes

becomes larger as elevation angle becomes lower and fhe
larger, which should also be considered to make a DVLBI

observation schedule.

The random error caused by irregular structures of the
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ionosphére.is given as
02 = 2 {ed T + P T} Oy
+ 12X {87 (M) ()} Orpga”  (3:78)

where
O_Ir : random error in DVLBI delay observable due to
the ionosphere
Cyirzi random ionospheric delay in the zenith

at station i (i=1, 2)

The ionospheric total electron content in the zenith at a
station i is calculated using an ionosphericﬁmodel or based on
measurements such as Faraday rotation of the polarization angle
with a beacon radio wave from a geosynchronous satellite.

In order to directly obtain the ionospheric delay in the
line-of-sight to a radio source, it is effective to make
observations at two different frequency bands,.such as 2 GHz

and 8 GHz. The ionospheric delay at a frequency £, is given

i
as
40.3
'tfi = —3 NT (3.75)
c £,
i
where
'tfi ionospheric delay (sec)
¢ : velocity of light (m/sec)
Nop " : total electron content ( m_z)

Using measured data of the ionospheric delay, for example, by
VLBI observations at two frequencies fl and f2, NT is

obtained as
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1 1

NT = c ( Tfl - ’sz )/ 40.3(¢( 5 - 5 ) (3.76)
£ f
1 2
We can derive next relation for the accuracy of NT’
2 2
c f £
_ 1 *2 2 2
Gyr = p) 5 (0 + O™ (3.77)
40.3 £ - f
2 1
where kai is the standard deviation of Z}i. This means

(YNT bécomes larger as the frequency difference becomes
smaller. So we cannot practically obtain accurate NT in the
case of observations at frequencies which are close to each

other.

Delay Errors Due to Other Ionized. Media

The magnetospheric plasma, solar wind plasma and
interstellar plasma causé errors in DVLBI delay observable,
especially in quasar obsérvations. However, in.the case of
tracking a geosynchronous satellite those errors can be

neglected(zg).

3.4.3 Geometric Errors

Here we discuss two geometric errors in DVLBI. One of
them is station location error and the other is position error
of reference radio sources (quasars). The station location
error described as Ax; 1in Sec. 3.3.2 contains geodetic
station location error and modeling errors of UT1 and polar

motion. It is written as
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Ax; = A; Axg, (3.78)
cos §; . - sin 6, O
A, = sin'ei cos ei 0 (3.79)
0 0o 1
Aui
A’—‘-silr- Awi = A’—‘-gi + A-}iui +'A_}_<_pi (3.80)
av,

where
Agi . station(i) location error in the inertial
coordinate system
Ai : coordinate conversion matrix
ei : longitude ( right ascension ) of station i
A}—‘-si : station(i) location error in the local

coordinate system (Fig. 3.11)

Auy, AV, Avi : components of Ags in the local (u, w, V)

i
coordinate system

A_)ggi : geodetic station(i) location error

Azui : station(i) location error due to inaccurate
UT1 model

Ax station(i) location error due to ina;ccurate

polar motion model

A-’Egi represents errors in station coordinates described
using a reference ellipsoid of the earth. It has been reduced
to the order of a meter or less using various satellite

tracking data or VLBI observations, especially in the ‘case of
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- Greenwich

Fig.3.11 Local coordinate system to describe station
location errors
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important earth stations in the world.

For example, positions

of DSN (Deep Space Network, NASA-JPL) stations have been

estimated using tracking data of deep space spacecrafts with

such accuracies (30) .

. is written as
A§ul

Ax . =T At
=ui - —~u u

[
>
5

where

(3.81)

(3.82)

UT1 error conversion vector

=u
Atu : UT1l error
coe : rotation rate of the earth
u, distance of station i from the earth's spin

axis

The UT1 error is effective only in w-component (Fig. 3.11) of

station location error.

Aépi is written as

A?fpi =P, 4ap

-v; cos ).i
pP. = vy sini..i
uy cos?.i

Ax
P

Ayp

>
ro
i

where
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(3.83)
vy cosk.i
vy cos'ki (3.84)
-u., sinA,
i i
(3.85)



conversion matrix of polar motion errors

P,
i
AD polar motion modeling error with components
Axp »andAyp (see Fig.2.3 for definition)
v height of station i from the earth's

equatorial plane

The magnitude of Ap is less than tens of centimeters, but

they directly cause station location errors.

DVLBI delay error due to a quasar position error is given

in Eq.(3.58) ( Sec. 3.3.2) and is written as
A?:qe = BrAS
B AT (3.86)

where
At'e : delay error due to quasar position error

By ! projection of baseline vector B on the

plane perpendicular to the 1iﬁe—of-sight to

the quasar

AT : error of quasar angular position (rad)

Eq.(3.86) can be rewritten in more general form as

G“qe = B_;.G"‘. (3.87)
where
Ghe : delay error due to quasar position error
0} . quasar angular position error
¢.,. = 20 cm when By = 8000 km and

For a numerical example, qe

G} = 25 nrad ( 5.2 arcsec).
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CHAPTﬁR 4 CS TRACKING EXPERIMENT BY DVLBI

AND RANGE AND ANGLE MEASUREMENTS

4.1 Introduction

RRL was involved in satellite control experiments as well as
research and development in satellite communication systems and
studies:on radio propagation by gsing Japan's first experimental
communication satellite (CS, Fig.4.1)(l) from 1978 to 1985. 1In
the CS prdgram RRL developed a tracking station (at Kashima Space
Research Center) which measures the slant range and viewing

angles of the satellite(z).

In contrast to an established way of
tracking a geosynchronous satellite by two or three earth
stations which are geometrically apart from each other and are
equipped with orbit measurement facilities, RRL'é one-station
.tracking system was much more economical and easy to operate.

| On the other hand, various differential tracking methods
(including differential ranging and differential VLBIj had been
tried by JPL in the field of deep space navigations(s). We
noticed that the differential VLBI (DVLBI) would also be
effective to tracking of a geosynchronous satellite. In 1981

planning began for the first DVLBI experiment to be conducted in

1982 to measure the CS orbit more accurately than conventional
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radio tracking methods. The experiment had three goals: i) to
demonstrate the capability of DVLBI method applied to tracking a
geosynchronous satellite, 2) to determine the orbit with higher
accuracy than that obtained by ranging and angle measurements,

3) to study on VLBI techniques which would be useful as a passive
monitoring methods of geosynchronous radio stations from a
viewpoint of space monitoring techniques for the efficient usages
of the orbital resources in space communication services.

The available VLBI system then was the real-time VLBI system
K-II (SeC.S.l.l) with the baseline 46 km long between Kashiha and
Hiraiso stations, RRL. Though the baseline was not long, K-II
system had a capability to detect the time delay with the highest
accuracy of 0.1 nsec and it could receive the CS' transponder
noise in the 4 GHz band. The differential VLB; obsérvations of
CS and several quasars were conducted(4)(5) for 17 hours, while
the ranging and angle measurements were made simultanheously.

In this chapter, we first describe the system of the
experiment, then analyze sensitivities and accuracies of the
tracking data (range, angle and DVLBI). After that the method of
derivation of geometrical delay observables from the DVLBI data
is shown and discussions of orbit determination based on the

obtained observation data are given.
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4.2 System of Experiment

4.2.1 Range and Angle Measurement System

Fig.4.2 shows the tracking (range and angle measurement)
system for CS at Kashima station. The slant range between CS and
the C-~band antenna is measuredvby a conventional radio ranging
method using a ranging tone of 100 kHz via 6/4 GHz TT&C
(Tracking; Telemetry and Command) link. The range resolution is
about 1 m. The viewing angles are obtained by thé use of a 30/20
GHz band 13m dish antenna which can receive the CS K~band beacon
(19.45 GHz) in an auto-tracking antenna driving mode. Fig.4.3
shows the frequency allocations of CS. In order to obtain a
desired acéuracy of orbit determination-(satellite position
determination accuracy Qf about.-1 km) for satellite c¢ontrol
experiments on station keeping, attitude keepiné and despun
antenna pointing, detailed calibrations of the tracking system
and careful treatment of the observed data were needed. 1In
particular, there were many problems to be solved concerning the
angle measurements(ﬁ). Because, the 13m dish antenna was
installed on the top of a tower-like building (Fig.4.4) and tHe
angle data were easily affected by thermal distortions not only
of the antenna structure but also of the building és well as by
the refractions due to the propagation media.

Tﬁrough orbit determination studies using these radio

tracking data, it was found that the azimuth angle data of CS
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during night time Had quality with an accuracy of about 1.0x10—3

~0.5x1073 degrees(7).

That is, the angle errors became the
smallést during night time, suffering from the least atmospheric

refractions and thermal distortions due to the sunlight.

4.2.2 K-II VLBI System

The K-II real-time VLBI system(s).was originally developed
to measure the tropospheric phase scintillations of radio waves
in the frequency bands 4 GHz and 32 GHz_Py the use of Japan's |
Experimental Communication Satellite (ECS)(Q). In our experiment
we used the system with the observation frequency 4 GHz, because
CS had the downlink channels in that .band (Fig.4.3). Fig.4.5
shows the outline of the K-II system (4 GHz bagd) and Table 4.1
summarizes its main features. The two stations at Kashima and
Hiraiso are connected via a microwave ground link, by which the
digitized and formatted observed signal at Hiraiso are
transmitted to Kashima. At Kashima station the raw data of the
two stations are correlated on the real-time base and integrated
for every 10 msec by using fringe stopping functions calculated
based on the predicted delay rate. The obtained complex
correlation function of every 10 msec are recorded on a computer
tape with the time code, predicted delay and delay rate,
bit-shifts number; and the other necessary information. The post

data reductions to get delay and delay rate are conducted later.
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Table 4.1 K~II VLBI system

Stations Kashima. Hiraiso
Longitude ( East, deg ) 140.662675 140.621737
Latitude ( North, deg ) 35.9542028 * 36.3679429
Geodetic height ( m ) 77.1346 71.6750"
Reference ellipsoid SAO-C7 : Re = 6378.142 km

f = 1/298.255
Baseline length ( m ) 46057. 433

VLBI System ' Kashima Hiraiso
Receiving antenna 26 m 10m
Antenna gain 58.9 dB 48.9 dB
System noise 111 X 130 X
Receiving frequencies CH1: 4031 , CH2: 4041 , CH3: 4061,

( MHz ) CH4: 4091 , CHS5: 4131
Bandwidth , ) 2 MHz/CH
Samp ling rate 4 Mbits/sec
Frequency standard cesium . rubidium
( stability 10 sec ) (2.5x107%2) (< 1.6x16"12)
Data transmission Raw data of Hiraiso are transmitted to

Kashima via a microwave data link

Correlator ' Real-time correlator, Lag 32 bits,
Integration 10 msec

Clock synchronization using 1 sec pulses exchanged via the
microwave link

Clock calibration using JJY with the accuracy + 1 msec
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The observation bandwidth is 2 MHz per channel and the maximum
number of observation channels is five. Each channel is

sequentially alternated every 100 msec.

4.2.3 Observation Strategy

The experiment was scheduled on July 16 to 17, 1982.

Fig.4.6 shows the geometry of CS tracking by K-II VLBI and the
conventional ranging and aqgle measurements. At Kashima we used
three antennas, that is, the 26m antenna for K-II VLBI, the 10m
antenna for ranging and the 13m antenna for angle measurements.
CS was stationed at longitude 135 degrees east and it had orbital
inclination of 0.27 degrees becauée the north-south station
keeping maneuvers had been stopped to save fuels.

The DVLBI observations and range and angle measu}ements were
planned to be conducted for at least 24 hours. Fig.4.7 shows the
originally planned DVLBI observation schedule which intended to
carry out 13 sets of observations using 11 quasars. The actual
observations were successfully made for 17 hours using 7 quasars.
Fig.4.8 éhows the.viewing angles of the quasars and CS at the-
center of éach observation period at Kashima. Quasars with more
than 1 Jy (1 JY ='1O_26 W/msz) of correlation flux density were

selected. Though some gquasars were seen angularly apart from CS

by more than 10 degrees, they were used because of their strong

fluxes.

119



Fig.4.6 Geometry of CS t-racking by K~-II VLBI
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One set of observations consisted of three consecutive
ten-minutes of observations, that is, first a quasar was
observed, then CS, and again the quasar. It means that the CS
observation was sandwiched between the quasar observations. This
method was effective to calibrate.the CS observation by using the
quasar observations. The first few minutes in each ten minutes
pass were kept to point the receiving antenna to the
corresponding radio source. The VLBI observation data were
recorded for 45 seconds in .the case of a quasar observation, and
for 20 seconds in the case of CS. The recordings were made
during the last part of the ten-minutes pass, when the antennas
completely tracked the radio source. We used two observation
channels‘(CHz and CHé in Table 471) of K-II.

| The real-time correlator controlled the bit—shifts.of one of
the signals received at the two stations and correlafed them to
produce cross-correlation function. Then it stopped the fringe
phase rotation (which is caused by a delay rate due to the
baseline vector change with the earth's rotation) using a
quantized fringe;stopping function based on a predicted delay
rate. The result is a complex cross-correlation function, which
is then infegrated for every 10 msec. In the case of quaéar
observations, the fringe-stopping function of 10-levels of
quantization was ﬁsed. In the case of CS observations, no fringe
stopping was applied and the correlation function was directly

integrated for every 10 msec, because the delay rate in a CS
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observation was very small (less than * L">x10_11

Y. This is due to
the observation geometry in which the baseline is short and the
difference between the longitude of the baseline vector and that
of each object radio source (CS or a quasar) is small. Fig.4.9
shows the predicted delay and delay rate for the CS observations.

The cesium clock at Kashima station was calibrated by using
Japanese broadcast standard time- (JJY) to UTC within the error of
+ 1 msec. The clock accuracy of + 1 msec was sufficient for
time-tagging of the DVLBI observables. Because.the delay
observable suffers no meaningful change in 1 nsec since the delay
rate is small as descrived abové.

The clock synchronization between the stations Kashima and
Hiraiso, which is needed for correlation processing, was
conducted within the error of 0.1 micro-seconds by the method of
transmitting pulses of 1 Hz via the microwave data link. This
was sufficient to obtain a meaningful correlation in about 4

micro-seconds window of the real-time correlator.

4.3 Sensitivity and Accuracy of Observables

4.3.1 Sensitivity of Range, Azimuth Angie and DVLBI Observables
In the CS experiment; we obtained three different kinds of

tracking data, range, angles (azimuth and elevation) and

differentinl range (DVLBI). Here we show that these observableé

are complementary each other.

124



}J.SEC

-100.0L

(T)

-100.5

Delay

-101.0

[}
oy
N

x10

&)

Delay Rate
o
i

1 ! 1 ] L] 1

=50 % 12 18 24
1982.6.16 UT cs

Fig.4.9 Predicted delay and delay rate for CS observations

125



Range
The range observable is defined in Eq.(2.10) (Sec.2.1.2).

The range variation ASP due to a small position deviation Ar

of CS is easily derived from Eq.(2.10) as

Ap= _pu.-A_;'_ ‘ (4.1)
where ‘Pu is the unit vector along the slant range vector.p
from Kashima staticn to CS. According to Eq.(4.1) Pu

directly represents the sensitivity of the range observable with
respect to the CS position deviation. Fig.4.10 shows the radial
and cross-track components of .Pu' where the along-track ( or
in-track) component is negligigle. The range data have the major
sensitivity to a radial position deviation of CS, as is

intuitively expected.

Azimuth Angle

Fig.4.11(a) shows the definition of azimuth angle (Az) in a
topocentric coordinate system, where N, E and Z stand for the
unit vectors in the directions of north, east and zenith,

respectively.” The azimuth angle is defined as

Az

1
3
o
=

(=) (4.2)

where

)
=
n
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According to Eq.(4.2) we obtain

(1+tan®az )Baz = (8P, Py - P, 2Py PP (a3)

where APE and APN are written as

AP, = Ap-E=E-ar }

APN= Af'ﬁ"E'AE

(4.4)

where Ar 1is a small deviation vector of the satellite.

position. Substituting E.q.(4.4) into Eq.(4.3) we obtain

_ 1 P L P

E - - =
1 + tan2Az pN - PNz -

Raz

where the slant range p is used to convert AAz into
position deviation of the satellite in fhe~1eft—hand side of
Eq.(4.5). Fig.4.11(b) shows the components of ?he sensitivity
vector P,y for CS observed at Kashima station. It is clear
that the azimuth angle observable has the major sensitivity to the
along-track position deviation of CS. Using an approximate value
for the range }9 = 37200 km, an azimuth angle variation AAz =

0.5x10—3.degrees cbrresponds to the along-track deviation Ar =

-220 m of CsS.

DVLBI Observable

A general formulation for the sensitivity of a DVLBI delay

‘observable (differential range) is already given in Sec.3.3.2
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(Eq.(3;585). Fig.4.12 shows the normalized sensitivity vector
p, = (Byy - Boy)/ I Byy - Bpyll for a CS observation by K-II VLBI
system. Since K-II VLBI has only short baseline, the magnitude
of the sensitivity vector is small, that is, | py, - Poull =
9.36x10"%. However, the VLBI observable has the major
sensitivity to the remaining cross-track position deviation of
CS. Denote the accuracy of the DVLBI delay observable as C;,
then corresponding satellite cross-track position deviation 0}0
is given as (see Eq.(3.58) and Fig.4.12)

1
- 0. =11000 (4.6)
9.36x10"2x0.977 k3 T

Qre =

Eq.(4.6) means that we need an accuracy of about 10 cm (0.3 nsec)
for the DVLBI observable with K-II VLBI system in order fo obtain
a resolution to a cross-track position deviatiog of 100 m for CS.
Figs.4.10, 4.11 and 4.12 show the complementary feature of
sensitivity vectors.for‘the range, azimuth angle and DVLBI
observables. In other words, these observables as a whole have
sensitivities to three-dimensional satellite deviation from a
nominal position in the geosynchronous orbit. Therefofe; we can
determine the satellite orbit using several sets of these
observables. The elevation angle data are less accurate than the
azimuth angle dafa because they are easily affected by
propagation media for which we have no highly precise calibration

method.
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4.3.2 Accuracy of Range, Azimuth Angle and DVLBI Observables

Conéerning the range and azimuth angle observables, we show
fundamental performance of the fracking system at Kashima station
under the nominal operational condition for CS. As for the DVLBI
observable, we discuss SNR error and systematic errors in

differential observations.

Range

Table 4.2 shows the nominal link parameters for ranging of
CS in the C-band TT&C channel at Kashima station. The estimated
range accuracy éorresponding to signal to noise ratio is 0.17 m
for the 100 kHz ranging tone. The practically obtained accuracy
of the range data is about 0.5 to 1.0 m. The ranging syétem is
frequently calibrated using a collimation facility 3.6 km apart
from the station. However, the range data have errors due to the
propagation media effects and tpe delay caused in the satellite
transponder. We usually remove the former error using a physical
‘models of the ionosphere and the troposphere. Concerning the
latter error, we use the data obtained on the ground before the

launch of the satellite.

Azimuth Angle

The 13 m dish antenna system has a pointing angle detection

mechanism of which the measured performance is + 0.0068 degrees
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Table 4.2 Link parameters for CS ranging

Uplink
Carrier frequency 6175 MHz
Earth station transmitter power 43 dBm
Feeder loss 2.0 -dB
Antenna gain 53.5 dB
Propagation loss : 200.6 dB
Polarization mismatching loss 0.5 dB
Satellite antenna gain ) ) 33 dB
Satellite down converter loss 15.2 dB
Receiver input power -88.8 dBm
Receiver noise : . ' -=167.8 dB/Hz
C/NO 79.0 dBHz

Downlink
Carrier frequency 3950 MHz
Satellite transmitter power ) 16.4 dBm
Satellite antenna gain ’ 29.7 dB
Propagation loss : . - 196.6 dB
Polarization mismatching loss . 0.3 dB
Earth station antenna gain '51.1 dB
Receiver input power ' -99.7 dBm
Receiver noise -179.3 dBm/Hz
C/N0 : 79.6 dBHz:
Modulation loss -13.0 dB
.(Telemetry, Range tone, Noise)
Range tone demodulation bandwidth -0.8 dBHz
Range tone S/N . 65.8 dB
Range tone phase error 3::10-4 rad
Range accuracy (100 kHz tone) ' 0.17 m
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and 1'0.0065 degrees fbr azimuth and elevation angles,

respectively(lo).

The electrical tracking performance of the
auto—tracking system is about 0.001 deg(rms) for both azimuth and
elevation angles with the signal input power higher than ~110 dBm
at the receiver input(lo). Since the nominal signal level of the
19.45 GHz CS beacon at Kashima is about -90 dBm to -95 dBm, the
auto-tracking system electrically supplies the incident angle
information with an accuracy of 0.001 degrees(rms). The actually
obtained angles are not necessarily the same as the geometrically
defined angles due to refractions through the propagation media,

to angle offsets of the driving axis and to deformations of the

antenna beam caused by the gravitational and thermal effects.

DVILBI Observable

(i) SNR Error in CS Observations

In a VLBI observatioﬁ, estimated delay has a random error
due to SNR (defined in Sec.3.2.1). The radio source signal
temperature (it is also called antenna temperature) Tai in

Eq.(3.8) is given as
T .= — SGiC. (4.7)

where
A : wavelength of the receiving signal
k : Boltzmann's constant

S : flux density of a radio source
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G. : receiving antenna gain of the station i (i=1,2)
C. : polarization matching coefficient at the station i

(0 sci<~ 1)
Eq.(4.7) is applied to the case where one of the orthogonal
polarizations is received. Suppose 4 GHz of the receiving
frequency and assume Ci=l, then Ta' is written in decibel form as

1

T,; 4B(K) = -67.9 + G, dB + S dB(J_) (4.8)

ai

Thé effective radiation power of the 4Glz transponder noise
(with no communication signals) of CS is approximately 46.7 dBm.
It gives the flux density af 31.0 dB(Jy) at the earth stétions.
Therefore, let S=31.0 in Eq.(4.8) and consider that the
receiving polarizations are matched to that of the CS radio wave
at the VLBI stations (plus 3 dB in Eq.(4.8)), we obtain the antenna
temperature Tc of the CS observation as‘

T, dB(K) = -33.9 + G dB . T (4.9)

The antenna temperatures of Kashima and Hiraiso are given by
Eq.(4.9) using the antenna gains for those stations (Table 4.1).
That is, TC (Kashima) =25.0 dB(K) and Tc (Hiraiso) =15.0 dB(K).
The SNR of CS Observations is given by Eq.(3.8) using these
antenna femperatures, the system noise temperatures of the two.

stations (Table 4.1), and the channel bandwidth B = 2 MHz, as

: 1
SNR dB = 25.2 + — T dB(sec) (4.10)
2 .

where we assumed 60% loss of SNR due to K-II hardware system from
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the theoretical value given by Eq.(3.8).
Suppose 10 sec of the integration T, then SNR is 30.2 dB.

PaS
This gives the delay estimation accuracy T = 0.30 nsec (9.0 cm)

T
with the effective bandwidth (aoeff) of 0.5 MHz by Eq.(3.32).
Since the flux of the radio wave from CS is strong, we obtain the
desired accuracy of delay estimate (recall the description just

after Eq.(4.6)) with the integration for 10 sec when we only

consider the system noise error.

(ii) SNR Error in Quasar Observations

In the case of quasars, using the antenna gains in Table
4.1, the antenna temperatures given in Eq.(4.8), and the
bandwidth B = 2 MHz, SNR 'is calculated as

1 .
SNR dB = -5.8 + S dB(Jy) + — T dB(sec) (4.11)
2

Since the correlation flux density of a quasar is mostly a few
Janskies, we need much longer integration time than that of CS

- observations and much wider observation bandwidth to improve the
SNR.

As an example, we take the quasar 3C273 of which the
correlation flux density is fairly strong, that is, in Eq. (4.8) S
is approximatelyils dB(Jy). If we take 30 sec of integration

N

time, SNR becomes 14.6 dB, which gives q; = 11 nsec (3.3 m)

with the effective bandwidth of 0.5 MHz. In order to 'obtain the
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higher accuracy of the delay estimation, we should integrate the
correlation function for a longer time and obtain a wider
effective bandwidth.

Fig.4.13 shows SNR and accuracies of delay and delay rate
estimates. Using Fig.4.13 we obtain SNR from the correlation
flux density of a quasar for an integration time T. The accuracy
of a delay estimate is evaluated by the SNR for an effective
bandwidth ¢

eff" The accuracy of a delay rate estimate is

evaluated by the SNR for an effective integration time T For

rms’

example, an observation of 3C273 with an effective bandwidth of
A
20 MHz gives Q; = 0.3 nsec with the integration for 30 sec.

(iii) Errors due fo System Delay, Clock and Propagation Media

As described in Sec.3.4.1, errors dué to the system delay
variation and the drift in clock rate between observations of the
satellite and a quasar are negligible for our goal to obtain
delay observable with an accuracy of a few centimeters,

In differential VLBI observations using K-II VLBI, delay due
to propagation media (ionosphere and ‘troposphere) are also
negligible, because the baseline is.so short that those effects

are eliminated with an accuracy of a few centimeters.

(iv) Geometric Errors

Quasar position errors are negligible in the case of K-II

VLBI system due to its short baseline. As for the station
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location errors described in Sec.3.4.3, the contributions of UT1
errors and polar motion errors are again negligible due to the
shortness of the baseline. The remaining station location errors
is due to uncertainty of the geodetic station locafion data.
Denote the station location errors Ax, and Ax, for the
stations 1 and 2, respectively. The angles between the
line-of-sight of CS and the station location error vectors Aﬁl’
A§2 are defined as 81 and 92, respectively, and the
separation angles between CS and a quasar at the two station are
Ael and 462, respectively (Fig.4.14). Then the delay

observation error A'Z.'s is written according to Eq.(3.58) as

cAT

1]

{cos(Ae2 + Aez) - cos 62 } sz
1

- {cos(@1 + Ael)_ - cos 61} Ax

Ax, sin 6,00, - Ax, sin el-ael (4.12)

.
el

where the separation angles Ael and Aez are assumed to be
small in the DVLBI observations. 1In the most conservative

evaluation of cA’Z‘.‘S, we treat Axl and sz as random

errors with standard deviations G‘gl and (Ygz.’ respectively.
Then the delay error O-'cs due to station location errors -Axl
and sz is written as
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2 2 _a8 2 2 2 2
e T, = 61 O'gl + 4B, T (4.13)
As a numerical example, suppose 461 = 492 = 10 degrees and G-gl

= G-gz = 20 cm, then we get c G-’C’S = 4.9 cm ( G’-tS = 0.16 nsec).

4.4 DVLBI Data Processing

1SN

.4.1 Method and Results of Delay Estimation

Typical two methods to derive VLBI observables are described
in Sec.3.2.2. 1In the K-II VLBI experiment; we adopted the
coherent phase method, because we observed wideband radio signals
from both CS and quasars and aimed to utilize the whole
information in the observation bandwidth.‘

The complex correlation function which is integrated by the

real-time correlator of K-II system for every 10 msec and

recorded on a magnetic tape (Raw Data Tape) is written as,

At
Roxy (£4» %) = CiZ Co x(t+T)y(t- T, )I(L) (4.14)
ty
where
Roxy complex correlation function at the time ti
C. : a coefficient multiplied to the complex correlation

i
function when it is recorded on a magnetic tape
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C2 . coherence loss by infinite clipping (=2/7C )

x(t) : received signal at Kashima station
y(t) : received signal at Hiraiso station

TTb : delay by bit-shifts (1 bit = 250 nsec)

f(t) : fringe-stopping function (% exp {—iCORF'Zi(t—ti)} )

GQRF . observation radio frequency (4 GHz band)

<

Ty predicted delay rate at t,

At

E: : integration for At ( = 10 msec) from ti
t

1
Denote the normalized complex correlatidn function ny(zz), it is
described as

R, (T) = Ry (2 )Cs/( At € Cy) (4.15)
where C3 is the correction factor for quantization of the
fringe-stopping function. The normalized cross-spectral function
is obtained by integration of the Fourier-transformed and

phase-rotated cross-correlation. function as

1 4T W (T-T)
t.
i

where
Cuk-= 27 Bk/32 : video frequency, B = 2 MHz, k = 0,1,..,31
t. : start time of the integration

F [ny(_'c )] : Fourier transform of ny(?_' )

3} : predicted delay
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“iw, (T - Ty)
e : phase rotation for a fractional bit
correction which is necessary to correct a
quantization error of bit-shift ’Cb

AT
Z : integration for AT from ti ( AT=1 sec)

t

The cross-spectral data are obtained and recorded on another
magnetic tape using an offline software (program "FTAPE" in
Fig.4.15).

Denote the delay residual AT, the delay rate residual AY% and
the delay acceleration residual Aﬁf, then the estimates for them
are given as those which make fhe following coherence function (

or normalized correlation amplitude) Xc maximum, that is,

N /0\ ﬁ . ) 'Yy :
(AT,A‘E,A’C)=[AT.4‘E,A’Z'] max(Xc)] (4.17)
1 Lihas: 1
X = Z S_.(W,t) exp | -i a)z_\:r.-+wo(A'tt + — AT t2)
C Tw Xy 2
B
(4.18)

where (Eq.(4.18) corresponds to Eq.(3.16))

T ; integration time

wB bandwidth '
W, : observation frequency (CH2: 4041 MHz, CH3: 4061 MHz)
/Y] video frequency (0~2 MHz)

integration over the time span T
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g
2; : integration with respect to the video frequency

bandwidth GUB

The optimum delay and delay rate are obtained using the program
""TGET" shown in Fig.4.15. 1In our data reductions, T is 30 sec
for quasars and 20 sec for CS. In fact, the effective
integration time for each channel is the half of T, because the
observations were alternated every 100 msec between Channels 2
-and 3. In the case of CS-ébservations, since the correlated
flux density is strong enough, the above integration time is
sufficient. It is better to integrate the quasar signals for
longer time, but there exists practically a limit to it due to
the instabilities of the frequency standards at the two stations.
We processed all thé data by the aone mentioned method and
obtained the delay and the delay rate estimates T = % + A'/Z;
and ’E‘ = % + A'/f; for CS and quasars. Typical
cross-spectral in the CS and quasar observations are shown in
Figs.4.16 and 4.17. The delay estimates for CS and quasars in
terms of. residuals from the corresponding predictions are shown
in Fig.4.18. Table 4.3 summarizes the coherences (Xc in
Eq.(4.18)).and the accuracies of the delay estimates. As is
expected by the evaluation in Sec.4.3.2, the accuraéy of the CS
delay estimates is 0.3 nsec. . In the case of quasars, it is in

the range of 10 ~ 140 nsec.
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The residuals from the predictions are shown.

The bars are

standard deviations, and A~D mean the observation periods.
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Table 4.3 Accuracy of delay estimates

Position of objects
Observacion Objects ( 1950.0 ) Coherence (flux Jy) Delay
number accuracy
right declination (nsec)
ascension
2-10 Ccs 0.412 (1240) 0.3
2 P0949+00 09 49 24.800 0 12 24.00 0.00078 (2.3) 140
3 P1055+01 10 55 55.330 1 50 03.35 0.00092 (2.8) 130
4 3C273 12 26 33.248 2 19 43.26 0.0093 (28 ) 11
5 3C279 12 53 35.835 -5 31 08.03 0.0029 (8.7) 38
6 DW1335-12 13 35 00.200 =12 42 10.00 0.00086 (2.6) 130
8 NRAOS530 17 30 13.538 =13 02 45.93 0.0017 (5.1) 63
9,10 3C454.3 22 51 29.521 15 52 54.30 0.0046 (14) 23
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4.4.2 Estimation of System Delay

Fig.4.18 shows the differences of the delay estimates
between Channels 2 and 3, which are caused by the difference
between the hardware performances of these channels. In the case
of CS observations, they are pretty stable. The averages of them
in the four time periods A, B, C and D in Fig.4.18 are 152.46
nsec, 151.32 nsec, 151.56 nsec and 149.68 nsec, resbectively.

We assume that these delay differences for CS can be also
applied to the quasars. Using these channel differences we can
convert Channel 3 delay estimates to those which are equivalent
to Channel 2 delay estimates. They are shown in Fig.4.19. ¥e
consider that the predicted delays for quasar observations are
error free, then Fig.4.19 gives the estimates for the
differential system delay between the two Stations in Channel 2.
Exc}uding the time period A which contains few data points, the
differential system delays 'rB, ’ZC and 'tb for the time
periods B, C and D, respectively, are obtained by averaging the
data shown in Fig.4.19. The results are summarized in Table 4.4.

Correcting the estimated deiay using the differential system
delays which were obtained above, we finally obtained the DVLBI
delay observables for CS. The derived delay observables m;y have
some bias error. Because the system delays in the observations
of CS and quasars were not actually the same due to the |
difference between the power spectra of those signals., Suppose

that the differences of the system delays between a CS
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The data which are converted using the differential delay
between the two channels are added. The broken line stand for
the average in each period. (e ): not used in averaging.

Table 4.4 System delay of Channel 2

Time period System delay (msec) RMS (nsec)
A% ’t; = TB —
B : T = -2913.51 29
c T, = -2907.96 23
D T, = -2918.18 25

* Tg is used in the period A.
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observation and a quasar observation are denoted d and d

2
for Channels 2 and 3, respectively. The error ds of the

3

differential system delay estimate of Channel 2 is given by

d, = (dy + dg)/2 ' (4.19)
That is, the system delay estimate from the data shown in
Fig.4.19 has the error ds' This problem would be solved using;
for example, phase track%ng method if we had obtained much higher
SNR of the observations. In our experiment, ﬁowever, SNR wés
limited due to mainly instgbilities of the clocks at both
observation stations. Therefore, the possible bias error should

be estimated in the orbit determination by the aid of other

tracking data.
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4.5 Orbit Determination and Accuracy Analysis

4.5.1 Orbit Determination

Orbit determinations were carried out using the tracking
data obtained in the CS tracking experiment. Fig.4.20 shows
the finally derived data points. The angle data in the night
time were used (see Sec.4.2.1). In the orbit determination,
the observation bias of the DVLBI observables and the solar
radiation reflection coefficient of the satellite (the
satellite cross-section multiplied with this coefficient is
effective to the solar radiation pressure) were also estimated
simultaneously. .The bias of the DVLBI observables was
introduced because of the reason mentioned in Sec.4.4.2. The
range and angle measurements had been calibrated using an
optical observation method(e). We used the éystem parameters
which have been updated through orbit determinations which were
operationally performed in the CS project since then.

Table 4.5 summarizes the results of ofbit determination
with four accuracy models of DVLBI observables, Case 1 to Case
4. The same weights for the range and angles observables were
used in all cases, which agreed with their actual
characteristics. Cases 2 and 3 show that the estimated
satellite positidn approaches to that of Case 1 as the assumed
DVLBI delay accuracy becomes worse, while the estimates of the

delay bias and the solar radiation reflection coefficient
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Table 4.5 Result of orbit determination

Orbit Determination

Case 1 Case 2 Case 3 Case &
Observation Weight y
. .
Range 0.52 m
Az imuth Angle 0.98 x lO_3 deg
-2
Elevation Angle 0.85 x 10 ~ deg
DVLBI Delay not used 16.7 nsec 3.33 nsec 1.0 nsac
(5.0 m) (1.0 m) »(0.3 m)
Estimated Paramecers.
DVLBI Delay Bias (nsec). —_— -83.79 -83.82 -83.66
Solar Radiation ' .
Reflection Coefficient 1.5084 1.5083 1.5071 1.5060
Satellite Position
at Epoch Time Deviation ?38? Case 1
Ve N
X  (km) 41918.261 -0.002 © -0.030 ~0.055
- Y (km) -4528.804 0.013 0.188 0.409
-194.197 -0.037 -0.496 -0.992

Z  (km)
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change only slightly. In other words, the DVLBI observables
become almost meaningless if their accuracy is lower than about
3 nsec. Fig.4.21 shows the observation residuals of the range
and the DVLBI delay data for Case'4, where the standard
deviation of DVLBI delay residuals is about 1 nsec (0.3 m),
Therefore it appears that the DVLBI observables obtained in our
experiment might be effegtive to improve the orbit
determination accuracy. However, the expected accuracy of the
DVLBI observables was about 25 nsec as is shown in Fig.4.19,
So it would be reasonable to consider that the small residuals
in Fig.4.20 are obtained because of the small amount of DVLBI
observables and that our DVLBI data are not useful for a
precise orbit determination. Significapt causes of the
insufficiency of the DVLBI data are; 1) low accuracy of the
delay data due to small SNR in the quasar observatiohé,”and 2)
low sensitivity of the DVLBI delay observable to the satellite
orbit due to shortness of the baseline. In the next section,
covariance analyses show effects ‘of some improvement in these

two points.

4.5.2 Accuracy Analysis
Table 4.6 summarizes the results of the covariance
analysis using six models. The DVLBI data were not used in

Case a, DVLBI data with different models of accuracy were used
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Table 4.6 Result of covariance analysis

Covariance Analysis
Case a Case b Case ¢ Casa d Case e Casa f=*
Observation Weight\¥ L,
v~
Range 0.52 m
Azimuth Angle 0.98 x 10-'3 deg
-2
Elevation Angle 0.85 x 10 ~ deg
DVLBI Delay (nsec) none ° 16.7 3.33 1.0 1.0 . 3.33
(m) (5.0) (1.0) (0.3) (0.3) (1.0)
Parameter Uncertainty
- S
~—
Solar Radiation 0.003
Reflection Coefficient _
Earth's Gravity 0.04 km3/sec2
Constant
Station Location (m) 1.0 1.0 1.0 1.0 0.5 1.0
Satellite Position Accuracy
Parameter uncertainties
are not considered
Ty (m) 47 46 33 18 18 2.9
& (m) 158 158 146 128 128 17
T2 (m) 455 446 318 129 129 20
Parameter uncertainties
are considered .
Tye @ 47 46 54 96 51 8.8
c (m) 173 172 170 367 220 65
Oﬁz’c (m) 469 459 463 510 278 28
Information Content
of DVLBI Observables 0 0.13 2.09 6.74 6.74 23.6

* DVLBI delay observables are replaced by those obtained by two
baselines shown in Fig.4.22
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in Caseés 5, ¢, d, and a model with smaller uncertainties in

station locations was used in Case e. Simulated DVLBI data

obtained by two baselines by three stations shown in Fig.4.22
(Kashima, Wakkanai and Yamagawa; they are all in Japan) were

used ‘in Case f.

Case d means that if we truly obtain the DVLBI data with
an accuracy of 1 nsec¢, we can expect nearly 100 m accuracy of
the orbit determination except the effect of the uncertainties
in model parameters. In that case, we can expect 300 m
accuracy, considering the effect of uncertainties in the model
parameters including 50 cm uncertainties in the station
locations, which is shown in Case e. In Case d, the satellite
position accuracy which considers the effect'of the parameter
uncertainties is not improved from Cases a, b and c, in spite
that the better accuracy of the DVLBI data is éssumed. This is
because the uncertainties in the VLBI station locations affect
more in Case d than in the other cases. Case f shows a
possibility of precise orbit determination.with an accuracy of
-nearly 70 m by a combination of the conventional radio tracking
and DVLBI with two baselines nearly 1000 km long.

The information content Ic which is defined by (see
Eq.(2.48))

1, =1/2 * logyC | Pol / 121 )
is also shown in Table 4.6, where P is the 6—dimensioha1

covariance matrix of the estimated position and velocity of CS,
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and | 'l denotes the determinant of a matrix. PO stands for
the covariance with no DVLBI observables in the orbit
determination. Ic is a measure of the information content of
the DVLBI observableé, because it represents the reduction of
an erfor ellipsoid by the information brought by them. It is
quantitatively clear that the more information' is brought by
DVLBI as its observables ére the more accurate. Case f shows
that DVLBI delay observables with longer baselines contain much
larger amount of information even if the delay accuracy is
about 3;3 nsec than that in a short baseline with a higherb
delay accuracy.

We used the range and the angle data obtained by the
conventional radio.tracking method as well as DVLBI data. 1In
such a case, many types of tracking methods involved increase
the number of parameters, such as calibration factors and
observation system parameters, of which the uncertainties easily
degrade the orbit determination accuracy.  On the other hand,
the DVLBI observables have an advantage that they are

"essentially free from bias errors or they can be éalibrated by
themselves. "The station locations are also obtained b§
appropriate VLBI observations of quasars. So it would be
better to use only DVLBI observables using truly long baselines
to determine the orbit of a geosynchronous satellite with a
high accuracy.

In our_experiment, the insufficient quality of the DVLBI
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delay observables is mainly due to the low accuracy of delay
estimates in the observations of quasars. In order to obtain
much better quality of quasar delays, some improvement which is
effective to increase SNR would be required in the VLBI system.
For example, a hydrogen maser frequency standard Qould be .
effective to achieve much longer integration time. It would
also be important to use a phase calibration system which make
possible to perform a bandwidth synthesis with observations in

different frequency channels.

4.6 Conclusion

The geosynchronous 'satellite CS was tracked using a
differential VLBI method. Since the baselinevwas shorfbénd the
“data quality of quasar observations were not sufficient, the
obtained DVLBI delay observables were not actually useful to
improve the orbit determination accuracy. However, orbit
determinations and covariance analysis using various error
models showed the possible effectivgness of DVLBI with a delay
accuracy of better than 1 nsec, even with a short baseline'46
km long, in accurate orbit determination of geosynchronous
satellites. A covariance analysis also shows that a DVLBI
with long and independent baselines is very effective for an

accurate orbit détermination. Therefore, the goal 1) was fully
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reachéd. Though the goal 2) was not completely attained, we
obtained many fundamental points for an effective DVLBI. The
goal 3) was also achieved by showing the possible effectiveness
of a DVLBI method which can be applied to noise emissions from
a geésynchronous satellite and suppllies information to

determine the orbit.
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CHAPTER 5 RRL-JPL DVLBI EXPERIMENT TO TRACK A GEOSYNCHRONOUS

SATELLITE

5.1 Introduction

The effectiveness of a DVLBI method to track a
geosynchronous satellite was shown in the CS experiment
(Chapter 4). However, in that experiment there were some
problems which hampered the thorough proof of the advantages of
the DVLBI method. They were the shortness of the baseline, the
poor quality of the DVLBI delay observables, the insufficiency
of observability of DVLBI due to the single baseline, and
additional model errorsA(including observﬁtion bias e;rqrs) due
to the inclusion of other tracking méthods (that is, ranging
and angle measurements). The nécessity to use truly long
baselines which supply sufficient observability and data
quality was seriously recognized.

On the other hand, a group in JPL had also applied a DVLBI
method to tracking a US geosynchronous satellite (DSCS-I1),
which is aBove the Pacific Ocean, with three baselines spanned
by earth stations at Goldstone in California, Canberra in
Australia and Guém Island (1)(2). They attained nearly 30 m
position accuracy of the satellite. The accuracy was

limited mainly by the high system noise temperatﬁre and the
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instability of the frequency standard at Guam station.

Under those background, a planning of a joint experiment
between RRL and JPL began in late 1982 while the author had
stayed'at JPL. The goal of the experiment was mainly to
demonstrate the capability of the DVLBI method to attain an
accuracy of a few méters of satellite position determination.
The technical agreement on the joint experiment was negotiated
and signed by both RRL and JPL in 1984.

In this chapter, the system of the experiment is described
first, then the sensitivity of the DVLBI observables and
observation strategy are discussed. Following the description
on the data processing, we discuss in detail the orbit

(3)(4)

determination and its accuracy

5.2 System of Experiment

5.2.1 Earth Stations and VLBI System

The observation geometry of the RRL-JPL joint experiment
to track the éeosynchronous satellite DSCS-I1 is showﬁ in
Fig.5.1. The VLBI stations are at Kashima (RRL, Japan),
Goldstone (DSN:Deep Space Network, USA), Canberra (DSN,
Australia) and Owens Valley (OVRO:Owens Valley Radio
Observatory, California Institute of Technology, USA). Among

the baselines spanned by these stations, three baselines with
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Fig. 5.1 Geometry of RRL-JPL experiment on DVLBI tracking of
DSCS-II, June 1984
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Kashima, Canberra and Goldstone (or Owens Valley) are important
because they are not only long (7000 to 10000 km) but also
different each other in directions. This means we can fully
take advantages of the DVLBI to measure the orbital motion of
the satellite (see also Sec. 3.3.2). The main features of the
VLBI stations are shown in Table 5.1.

The Block-0 VLBI backend system(s) which was developed by
JPL was ﬁsed in the experiment. The observation bandwidth is 2
MHz per channel and two channels with nearly 8 MHz apart in
frequency were used to observe the satellite and quasar signals
.alte;nati%ely in a 2 GHz frequency band. The two channels
_weré‘alternatea every 1 second and the received signals were
sampled, digitized and formatted, and recorded on a video tape
at each station.

At Kashima station, RRL, we used 26 m anténna and K-III
VLBI system, both of which were controlled by a computer
HP-1000, for signal reception and down-conversion into an
intermediate frequency band. A set of Block-0 backend system
- shipped from JPL was used to digitize and record observation
signals. As shown in Fig.5.2, we also used a frequency counter

to measure the carrier frequency of the satellite,

The carrier frequency information was used to construct a phase
model of the satellite tone signal in the correlation

processing of the satellite signal (see Sec. 5.4.1).
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Table 5.1

VLBI receiving station specifications

Location

Aperture

‘Antenna System

Staion Spin Radius East Long. Z-Height m Efficiency Temp.
km deg km ' K

Kashima 5169.055 140.6627 3724.118 26 0.57 125
RRL,Japan
Canberra 5205.251 148.9813 -3674.749 64 0.55 35
DSN,Australia
Goldstone  5215.484 243.2051 3660.957 26 0.55" 35
DSN,USA )
Owens 5085.449 241.7173 3838.603 40 0.55 120
Valley
OVRO,USA

DSN:Deep Space Network, NASA

OVRO:Owens Valley Radio Observatory, California Institute of Technology
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Fig. 5.2 VLBI system at Kashima station

The CH2 local signal frequency was changed to 249.56 MHz for
two and half hours in the mid of 24-hour observation period
(see also Fig.5.3) in order to make the frequency separation
between the two channels narrower.
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We also obtained the ionospheric total electron content
data at Tokyo from a section at RRL. The data were derived
from the Faraday rotation measurements of the 136 MHz beacon
from a geosynchronous satellife ETS~II (Engineering Test

Satellite Type II, Japan).

5.2.2 Geosynchronous Satellite and Its Signal

We needed a geosynchronous satellite which could be seen
at all stations and transmitted signals in the 2 GHz and/or 8
GHz bands to which the VLBI system could_bé applied. The
DSCS-II is the only satellite which satisfies the condition.
It transmits 2 GHz signal and is_stationed at the longitude 180
degrees east with an orbital inclinatiaon angle of about 3.5
degrees. Fig.5.3 shows the signal spectrﬁm in the 2 GH;
frequency band of DSCS-II and the receiving channel.assignment.
In order to make easy to resolve an ambiguity (the ambiguity is
decreased as the frequency separation becomes small between the
two observation channels; see Eq.(3.34) and also Sec.5.4.1),
Channel 2 was assigned to observe the - 2nd harmonic tone for
about two and a half hours during the total 24 hour observation
span. Thé satellite has a subcarrier with the frequency 1:024
MHz, which is modulated by telemetry signal. The subcarrier
modulated the phése of the main carrier of the frequency 2277.5
MHz. The satellite signal S(t) is written as(l)

S(t) = A cos( 95c(.t)_ + b a, sin ¢S(t) ) (5.1)
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Fig.5.3 S-band spectrum of DSCS-II and VLBI observation channel

assignment
(CH 1 and CH 2; CH 2 used instead of CH 2 during a part

of the observation period for ambiguity resolution)

Table 5.2 Receiving power estimation of the + 4th harmonic tones
at Kashima station

DSCS-II
Transmitter Power 31.27 dBm
Antenna Gain 4 dB
Feeder Loss -5 dB |
EIRP 30.27 dBm
Modulation Loss -36.48 dB
+ 4th Hammonic Power -6.48 dB
Propagation Loss (Free Space) ’ -191.3 dB
Atmospheric Attenuation -1 dB
Kashima Station
Antenna Gain , 53 dB
Receiver Input Power -145.8 dBm
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where

¢c(t) =Wt + <P0 carrier phase

a)c : carrier angular frequency
‘f’s( t) = a)st : subcarrier phase

aJS . subcarrier angular frequency

b : modulation index (a constant 0 € b$ XL/2)

ay

The rate at which the telemetry bit transition is occurred is

telemetry signal bit (+1 or -1)

much less than the subcarrier frequency. So over a time
interval where the telemetry bit is fixed_at some value a, the
signal can be described as.

S(t) = AJO(ba) cos ¢c(t)<

+ 2A cos 4'>c(t) Z J (ba) cos nw_t
n:even .

- 24 sin ¢, (t) X J (ba) sin nw_t - (5.2)
n:odd :

The function Jn(n:even) assumes only positive values over the
range of argument value allowed here. On the other hand, the
function Jn(n:odd) is an odd function. Therefore, even when
there exist telemetry transitions, the even harmonics
experience.only a change in amplitude. So we can call them
tones which can be observed by VLBI stations and are correlated
with phase models which are created for each stations (we call
these as local phase models). Table 5.2 shows the receiving

power of the + 4th harmonic tones at Kashima station.
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5.2.3 Quasars and Observation Window

In order to fully take advantage of a DVLBI method, we
should use quasars which are viewed angularly close to the
satellite. However,'quasars which have enough correlation flux
density and can be used as reference radio sources are limited
in numbers and do not necessarily distribute uniformly in the
sky. Therefore, we must use several quasars, even though their
separation angles from the satellite were not small enough, as
long as they came into the observation window. Fig.5.4 shows
the obsefvation window with respect to the major three VLBI
stations (Kashima, Canberra and Goldstone) and quasar
candidétes for the reference sources. The observation window
moves with the period of 24 hours along the axis of right
ascension in Fig.5.4. Since the satellite has finite distance
from each VLBI station, it is viewed at each station in
slightly different angular position in the observation window.
In Table 5.3 are summarized the quasars which were actually
used in the experiment. We discuss the optimization of the

observation schedule in Sec. 5.3.3.
5.3 Observation Strategy

5.3.1 Sensitivity of Delay Observables

As shown in Sec.3.3.2 the sensitivity of a DVLBI delay
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Table 5.3 Quasar position in the J2000 coordinate system (JPL catalog)

Quasar

Right ascen_ion

Hour Min Sec

Deg Arc min Arc sec

Declination

P0O106+01
CTA26
P0420-01
DW0742+10
P0823+033
0J287
P1055+01
3C279
OR103
P1741-038
P2145+06
3C454.3

01 08 38.77103
03 39 30.93767
04 23 15.80076
07 45 33.05976
08 25 50.33862
08 54 48.87516
10 58 29.60529
12 56 11.16656
15 04 24.97976
17 43 58.85607
21 48 05.45869
22 53 57.74794

01 35 00.3199
01 46 35.7970
01 20 33.0648
10 11 12.6891
03 09 24.5159
20 06 30.6377

0I 33 58.8205
05 47 21.5271
10 29 39.1975
03 50 04.6162
06 57 38.6060

16 08 53.5627
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observable with respect to a satellite position is evaluated
using the sensitivity vector (vector difference between unit
vectors which direct to the satellite at a pair of VLBI

stations). Table 5.4 shows the sensitivity vectors for the
three major baselines in our experiment. These vectors are
described in the earth's body-fixed coordinate system (Xb, Yb,

Zb), where Zb is in the earth's spin axis and X, is in the

b
intersection of the equaterial plane with the Greenwich
meridian plane. Though the satellite DSC87II has an orbital
inclination of about 3.5 deérees, the sensitivity vecters were
evaluated neglectiné it (the inclination has not large effect
on our sensitivity»evaluation). As is clear in Fig.5.5, the
sensitivity in the Xb—axis, Yb—axis and Zb—axis corresponds to
the satellite position change in the redial, along-track and
cross—-track directions, respectively. The three.baselihes have
the major sensitivities in the aieng—track and the cross-track
directions with the magnitude of about 0.2. 1In other words, a
satellite motion of 5 m in one of those directions gives a
DVLBI delay observable change of 1 m for the corresponding
baseline. As is discussed in the next section, it would be
possible to attain an DVLBI delay aecuracy of 1 m, so we can
expect to determine the satellite orbital position with a

few meters accuracy (we already discussed in Sec.3.3.3 that the
radial component of the satellite position can also be

determined by VLBI delay observables).
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Kashima

j

s
Canberra
Cross Track
X W
Fig. 5.5 Sensitivity of DVLBI observables DSCS-IT\} Along Track

with three inter-continental baselines

u
Radial
_Table 5.4 Sensitivity vectors of DVLBI delay observable
Components of ' Baselines °
the sensitivity" Kashima Goldstone Kashima
vector . -Goldstone -Canberra —-Canberra
xb 0.003 - 0.004 0.001
Y, - ' 0.201 - 0.187 - 0.014
z, 0.006 0.188 - 0.194

Underlines show major components
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5.3.2 Observation Model and Errors

A general description on errors in a DVLBI delay
observable is already given in Sec.3.4. Here we evaluate some
significant errors in the RRL-JPL DVLBI observation system. As
is described in Sec.5.3.1, each baseline spanned by the VLBI
stations in Japan, Australia and USA has almost the same
sensitivity of the delay observables to the spacecraft position
change. For example, aboﬁt 20 cm of delay change corresponds to
1 m in the spacecraft ppsit;on change. Therefore, ip is
required to use a precise observation model whiéh gives the
delay observable with. the total accuracy of less than 1 m in

order to fit the spacecraft orbit within a few meters error.

(i) SNR Error

Concerning the three baselines formed by stations'Késhima,
Canberra and Goldstone, we can evaluate SNR error in the DVLBI
delay observable as shown in Table 5.5. The error in the DVLBI
delay observable is mainly determined by a reference quasar

with a low correlation flux density.
(ii) System Delay and Clock Errors

These errors are removed in a DVLBI delay observable and

negligible in our experiment.
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Table 5.5 SNR error in DVLBI d

elay observable

Observation Condition

Bandwidth (1 channel) B =2 MHz
Effective Bandwidth (2 channels) 5.8 MHz
Integration Time T = 600 sec
.Coherence Loss Factor L=0.5
DSCS-1I Observation
Station ' ' Kashima Goldstone Canberra
S/C Signal (dBm) -145.8 -146.0 -138.0
System Noise (dBm; -114.6 -120.0 -120.0
SNR 956 1770 4360
Delay Error{(cm) 0.86 0.47 0.19
(with respect to model tone)
Baseline
Kashima Goldstone Canberra

-Golds tone ~Canberra -Kashima

Delay Error (cm) 0.98 0.51 0.88
Quasar Observation (Flux density : S Jy)
SNR 40.0 S 182.0 S 98.3 S
Delay Error(cm) 21/8 4.5/8 8.4/s
( $=0.2 Jy: 105 22.5 42 )
( 5=5.0 Jy: ' 4.2 0.9 1.7 )
DVLBI Delay Error (cm)
$=0.2 Jy: 105 22.5 42
$=5.0 Jy: 4.3 1.0 1.9

1 Jy = 10-26 watt m_2 Hz
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(iii) Propagation Media Errors

The tropospheric delay errors can be evaluated using
Eqs.(3.69) and (3.70) if an observation geometry is given.
Here we use a model of typical quasars set, which is shown in
Fig.5.6. 1In Fig.5.6, three quasars a, b and ¢ have different
declinations. Table 5.6 shows the calculated DVLBI delay
errors due to the tropospheric delay correctiqns (where the
tropospheric delay correction errors in the zenith are assumed
4 cm for a systematic delay and 2 cm for a random delay). The
errors for the baselines which include Goldstoﬂe.station become
large, because of the low elevation anglerf the satellite at
Goldstone, which consequently leads to the large separation
angle between a quaéér (cases a and b in_Fig.5.6) and the
satellite,

The ionospheric delay errors can be evaluated usiﬁg'
Eqs.(3.71) and (3.74). Let us take the case a in Fig.5.6 (or
in Table 5.6) with the Kashima-Goldstone baseline. In this
case, the source separation angles at both stations are large
and the sgtellite's elevation angle at Goldstone is low, so we
can evaluate a conservative delay error. If we use the
solar-zenith angles ’X,l =x2 = 40 , then we obtain a DVLBI
ionospheric delay systematic error 0& = 33 cm (with a zenith
systematic delay correction error G}Z = 50 cm) and a random
error (Th = 93 cm (with a zenith random delay correction error

th = 20 cm).
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Table 5.6 DVLBI observations with a typical quasars set
and tropospheric delay correction errors

DVLBI observation model

Elevation angle (Elevation difference between quasar

Sources and satellite, degree )
Kashima . Goldstone . Canberra °
Quasars : :
a (OR103) 48 (17) 23 (10) 38 (1)
~ b (P1055+1) 38 (7 . 21 ( 8) 44 (7)
c (P1510-08) 30 (1) 12 ( 1) 52 (15)
Satellite 31 . 13 37

Tropospheric delay correction errors

Delay correction error (cm)
Quasar : Systematic error ( Random error )

Kashima-Goldstone Goldstone-Canberra Canberra-Kashima

a 7.9 (11.3) 7.5 (11.3) 2.4 (6.6)
b 6.7 (11.7) 6.7 (11.4) 1.5 (6.7)
c 1.5 (14.2) 2.1 (13.8) 1.6 (7.0)
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(iv) Sfation Location Error, UT1l Error and Polar Motion Error

In the Table E.1 (Appendix E), we used two models for
station location errors which are 1 m in model 1 and 10 m in
model 2. In our expeiiment, however, we can expect
small. 'station location errors (about 10~-20 cm) for all the
stations, ' Because all the stations ‘have been used
as base stations in géodeéic and astrometric observations using
VLBI and their coordinates have been precisely determined.

A typical model of errors in UT1 and polar motion is also
given in Table E.l. The UT1 correction error of 0.6 méec
corresponds to a station location error.of about 23 cm assunming
5200 km for the spin radius of the station. Polar motion
correction error of 47 nrad corresponds to a station location

error of about 30 cm.

(v) Quasar Position Error

The DVLBI delay error due to a quasar .position error is
not negligible when the baselines are long. As is described in
>Sec.3.4.3, the error ié about 20 cm for the intercontinental

base;ines in the RRL-JPL experiment.

5.3.3 Observation Schedule
Three 24-hour DVLBI observations of DSCS-II were planned
in late June 1984 considering the availability of the

sensitivity stations. We carried out two rehearsals pfior to
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the actual observations. Fig.5.7 shows a summarized schedule
of the experiment. It is desirable to perform observations of
the satellite and of a reference quasar in a short period.
However, it takes a certain time to slew antennas between. radio
sources. In our experiment the satellite and quasars
observations were alternated every 15 minutes, where nearly 10
minutes_of effective observation period for each source was
obtained.

Since the number of quasars which can be used as reference
radio sources is limited and the quasars do not distribute
uniformly in the sky, we have to make an bptimum observation
schedﬁle. In order to select the best quasar from those in the
observation window at an each obsérvation epoch, we should take
into consideration the following errors which are dependent on
a quasar selection as; the SNR error, the propagatidn.ﬁedia
error, the station location error and the quasar position
error. Fig.5.8 shows an example of error evaluations for a
candidate set of quasars, where the SNR errors, the
tropospheric delay correction errors and the station location
errors ;re shown by bar graphs at yhe beginning time of each .
observation, The SNR errors were calculated using the'sﬁme
parameters which were used in Table 5.5 except that the
coherent loss coefficient L=0.7, the integration time T=300 sec
and the 34 m antenna at Canberra station were assumed. The

tropospheric delay correction errors were calculated using

185



June 1984
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

-
(geiggis) > Delta-VLBI Observations
Test-2 I 1T III
{3 hours) - —

(01:00~-00:45 UT each)

Fig. 5.7 Tests and three 24-hour DVLBI observations
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o-TZI = 'O—TZZ = 4 cm in Eq.(3.69) and the station location
errors were calculated using G.gl = G’g2 = 10 cm in Eq.(4.13).
Fig.5.9 shows the finally selected quasars for the 24-hour

observations.

5.4 Data Processing

5.4,1 Derivation of Delay and Delay Réte Observables

The recorded signal at a pair of VLBI stations were
processed by Block O correlator at California Institute of
Technology (CALTECH). In the case of a quasar observation, the
recorded signals with 2 MHz bandwidth were directly correlated.
The correlated phase at tlie center of the passband and the
correlated amplitude were obtained every 1 second for each
observation channel. The correlated phases were tracked, or
were fit, to give smoothed phase data at every 60 seconds for
each channel (see Fig.3.5 in Sec.3.2.2 (ii) phase tracking
‘method). We obtained fhe delay rate observable from the phase
rotation rate in time, and we obtained the delay observable
from the differenced phase of the two channels (see Eq.(3.34)).

The delay rate observable has no ambiguity, but the delay
observable may have cycle ambiguities thch correspond to the
spanned bandwidth of the two channels (that is, about 8 MHz in

the ordinary observation mode, and 2 MHz in the speciai
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observation mode; see Fig. 5.3). The both observables have
some systematic bias caused by instrumental phase

delays and clock errors. They were corrected by using a priori
knowledge of the quaear position and the baseline vector
(Sec.5.4.2 (v)).

In the case of a DSCS observation, the spacecraft signal
consists of tones. Therefore, the recorded signal at each
station and a numerically constructed tone based on the
predicted frequency for each station (local phase model) were
correlated (see Sec.3.2.1). The local phase model for each
station was constructed by using an approximation with 2 nd
order polynomials in time based on the measured carrier
frequency at Kashima station. That is, the observed tone
frequency was approximated by

£(t) = £y + £yt + £t (5.3)
where f(t) is the frequency at time t. The coefficients fO’ fl
and f2 were derived from the measured frequency of the
satellite carrier signal. The Doppler frequency-shift were
‘taken into consideration for each station by using an initial
knowledge for the state vector of DSCS. Fig. 5.10 shoWs the
measured frequency of the carrier signal received at Kashima
station. The difference between the observation and the
prediction was caused by the instability of the satellite’s
oscillator. The phase of the received spacecraft tone was

measured every 1 second with respect to the local phase model

through the correlation processing. Then the difference of the
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Fig. 5.10 DSCS-II carrier frequency measured at Kashima
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measured phases at the two receiving stations gave the

correlated phase which is written as

t_pl t"pz
. Coi(s)ds - Coi(s)ds + 4)1

A to to
py + P
T (pgpy) Wy (k- ——2) + $, (5.4)
where

g>(aoi,t) : difference of measured tone phases

coi : tone angular frequency of the observation

channel i
propagation time of a radio signal between
the satellite and station i (see Fig.3.6)
qbi : differential phase due to instruments at the

stations
The satellite delay observable 'ZS is obtained from
‘(p(col,t) and SO(wz,t) by the same process given in
Eq.(3.34) as ' ' '

p(w,,t) - Plw,,t)

T. =
S Wy (t*) - W (t*)
qﬁ - qb 2m7C
= (py - Py) * *2 L " + " (5.5)
a)z(t ) _wl(t ) w2(t ) _wl(t*)
where
p; +p
o=t - 1_____2 2 (5.6)

and m is an integer. The first term of Eq.(5.5) means the

propagation delay of the satellite signal, the second term

192



instrumental delay which is the same as that in quasar
observations, and the third term ambiguity. The delay rate
observables were derived in the same process as Eq.(5.5)
replacing So(coi,t) with its rate S;)(a)i,t). The delay and
delay rate observables were obtained every 30 seconds for.each

baseline.

5.4.2 Pre-Processing of.Raw VLBI Observables

By using the Block O correlator and the related phase
tracking software, we obtained the raw VLBI observables; They
consisted of delay and delay rate data at every about 30
seconds for the satellite, and at every about 60 seconds for a
quasar. Prior to the usage of these observation data in an
orbit determination program, we perforﬁed the pre-processing
of the raw data, which smoothed and compressed them into much
smaller number of data. Then we made various corrections (for
example, propagation media delay corrections), resolved the
ambiguity, and derived the differential observables (that is,
calibrated the DSCS data by the quasar data). The
pre—procéssing and the orbit determination were carried out
independently at RRL and JPL by using the different software
systems. We describe the pre-processing at RRL. Fig.5.11

shows the outline of the pre-processing.
(i) Smoothing

Each 10 minute-observation period has 10~20 points of raw

data (every 30 or 60 seconds). These data points were
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smoothed by the program "DVEDT" using 2nd order polynomial
fitting function and compressed into one observable at the
center of the period. Bad data points which had large deviation
from the fit data were rejected in the smoothing process. The
standard deviations of the raw delay data with respect to phe
fit data were about 1 nsec for the DSCS delays, and 1~10 nsec
for the'quasar delays. As is described in Sec.5.3.2, the SNR
error depends on the correlation flux density of the observed
radio éource and the perfoymance of the VLBI system. So the
raw data have a wider range of deviations in the quasar

observations than those in the satellite 6bservations.

(ii) Media Corrections

If we can observeAthe satellite and quasars with the same
viewing angles at every VLBI stations, we do not need én&
corrections of the propagation media (ionosphere and
troposphere). Because these effects are cancelled by taking
differential observables. However, it was not the actual case.
in our experiment.

We-corrected the ionospheric effect by using the total
electron content data. They were obtained at the VLBI
stations, or at observation sites located nearby to them, by
Faraday rotation measurements of the beacon signals in the 136
MHz band from three geosynchronous satellites (ETS-II at Tokyo,

Japan, ATS-1 at Canberra and ATS-3 at Goldstone). The zenith
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total electron contents, which were derived from the Faraday
rotation measurements, were mapped into the actual viewing
directions of DSCS satellite and quasars‘®). Fig.5.12 (a)~(d)
show the delays caused by the ionospheré in each observation
pass at fhe four VLBI stations. These ionosphere calibration
data were providea by JPL. !

The tropospheric delay congists of the delays caused by
the '"dry'" component of the troposphere which has no water vapor
and the "wet'" component, that is, water vapor in the
troposphere. For Kashima and Owens Valley, the'predicted
zenith delays for both the components based on the
meteorological data were used. For the other stations, the
empirically obtained seaéonal models were used to calculate the
zenith delays. The zenith delays were mapped to the
line-of-sight directions using the following formula developed

by C.C.Chao (7).

P = : 2 . (5.7)
0.00143
sin EQ +

tan E{ + 0.0445

where P is the delay in the line-of—sight, Pz is the zenith

delay, and EQ is the elevation angle of the line-of-sight.

The tropoépheric delays are also shown in Fig.5.12 (a)~-(d).
In the actual pre-processing by the program DVEDT, the

satellite observation data file and the quasar observation data
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file were created first from the smoothed and sorted
observation data file (Fig.5.11). These observation data files
contain not only observation data, but also calculated (or
predicted) observation values and bther informations such as
elevation angles at each stations, standard deviations of the
raw data, and so on.

The predicted observables for quasars were calculated by
the program KAPRI in the K-III VLBI system(s). The station
coordinates (Table 5.1) and the quasar catalog (Table 5.3),

were used in KAPRI.

(iii) Station Antenna Axis Offset Correction

We corrected the VLBI delay observation déta obtained by
the baselines which include Goldstone station. Because, the
two driving axes (elevation and azimuth driving ‘axes) of the 26

m antenna do not intersect as shown in Fig.5.13.

(iv) Spacecraft Antenna Offset Correction

The phase center of the S-band antenna of DSCS-II
satellite is 1.74 m apart from the.center of mass (Fig.5.14).
Therefore,.the observed delay data were corrected in order.to
derive the delay data with respect to the center of mass. That
is, .

Tobs - Teorrecteqa T 1:74 C (5.8)
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Fig. 5.14 DSCS-II antenna correction
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where 'tobs is the observed delay, < is the

corrected
corrected delay, and C is the correction coefficient given for
each baseline as

C = -0.64 nsec/m for Kashima/Canberra baseline,

= -0.64 nsec/m for Owens Valley/Canberra baselineé,

1

0.00 nsec/m for Kashima/Owens Valley baseline,

= ~0.62 nsec/m -for Goldstone/Canberra baseline,

0.02 nsec/m for Goldstone/Owens Valley baseline.
The coefficient C can be considered as a constgnt; because the
observation geometry changes littlé since the'sateilifé antenna
offset is very small'compared with the distance between the

satellite and each VLBI baseline on the earth.

(v) Derivation of Systeh Delay and Formation of DVLBI Delay
Observables

The system delay 'tsys, which is caused by clock offset
and instrumental delays at VLBI stations, was derived from the
difference between corrected observation delay ‘tobs’ and
predicted delay {rprd’ both for a quasar observation.
However, the observed delay may have cycle ambiguity. So we

have

(5.9)

where n is an integer for the ambiguity, B is the frequency

203



separation between.the two channels at which the VLBI
observation wefe performed. Figs.5.15 (a)~(e) show raw
(Q:Obs - 'tprd ) data, where qrobs means the raw observation
delay corrected with only dry part of the tropospheric delay.
The observations were carried out with narrower (about 2 MHz)
inter-channel freqhenpy separation from 12:301to 14:30 UTC, so
the SNR decreased to result in lafger delay data fluctuations
in that period. Figs.5.16 (a)~(e) show the system delays for
the five baselines, where the ambiguity is resolved, the
antenna axis offget of Goldstone station is corrected, and all
the propagation media delays are corrected.

The DVLBI delay observables of the satellite were formed
by subtracting the system delays from the satellite delay
observables. The data points of the quasars and the satellite
did not coincide, so the system delays at the satellite data
points were obtained by a linear interpolation. Fig.5.17 shows

all the DVLBI observable points obtained.

.(vi) Ambiguity Resolution

In the éase of the quasar observations, it is easy to
resolve cycle ambiguities. Becéuse, the quasar delay was
roughly estimated without ambiguity byAcorrelating a single
channel observation signal which spreads over the whole 2 MHz
bandwidth.

On the other hand, ambiguities in the satellite delay
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estimates should be resolved carefully. Because, the delay
estimates derived from the satellite tones (see Eq.(5.5))

are totally ambiguous and we are not necessarily given an
accurate predictions. Therefore a few consecutive steps were
taken to resolve the ambiguities. Fig.5.18 shows the process.
First, we estimated the satellité orbit using unambiguous‘
delay-rate observables, with an initially given satellite state
vector which was predicted by the DSCS-II control center

based on an orbital elements obtained by routinely performed with
‘conventional radio tracking data.

An simulation had revealed the expected accuracy of the
orbit obtained at each Step(l). They are also shown in
Fig.5.18. At each step, the DVLBi delay observables of which the
ambiguity is largér than the accuracy of the orbif obtained at
the previous step are added. It should be noted thatftﬁe DVLBI
data of the short baseline of Goldstone and Owens Valley
stations had a significant role not 6nly to resolve the
ambiguity of the long baseline data, but also to raise the
orbit accufacy from a few km to nearly 100 m, even though the
number of the observables was smaII:

The data obtained with narrower separation of observafion
frequencies (during 12:30 to 14:30 UTC) were also useful to
make sure the correct resolutioh of‘émbiguities. Because those
data had four-times larger ambiguity for every baseline and

they had smaller difficulties in ambiguity resolution at each
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step. Fig.5.19 shows ambiguous (O-C) and ambiguity-resolved
(0-C) for Kashima-Canberra baseline with respect to the
initially given orbit.

We tried to resolve the ambiguity directly from the
initially given orBit using the data during 12:30 to 14:30. 1In
that case, the ambiguous data points were tried to be connected

smoothly to the points with larger ambiguity < = 448 nsec

amb
(see Fig.5.19). The connected data points may have a certain
bias which is ""ramb (where‘m is an integér). The number is to
be estimdted in the orbit determination.- It is, however, not

only a tedious process but also full of risk to connect

incorrectly some of data points.

5.5 Orbit Determination

5.5.1 Satellite Dynamic Model

In order to determine a geosynchronous satellite orbit
with an .accuracy of a few meters, we should use a dynamic model
precise enough. That is, the satellite orbit which is
calculated.based on the model must have an accuracy of less
than 1 meter at least within 24 hour-period (one ofbital
revolution). Table 5.7 shows accelerations acting on a
geosynchronous satellite and their approximate effects on the

satellite position during an orbital revolution. We considered
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Table 5.7 Significant accelerations on a geosynchronous satellite

Acceleration Approximate

Force km/sec2 effect

* Earth's point mass gravitation 2x10™ Nominal orbit

Earth's non-spherical gravitation

* Harmonic components lower than or equal

to the 8th order . 108 30 kn
Harmonic components higher than -13 ’

8th order 10 - 20 cm
* Sun'e gravitation . 3x10“9 3 km
* Moon's gravitation 6x10-9 6 km
* Solar radiation pressure . 10710 1 km
+ Earth's tidal effect 10743 20 cm
+ Large planet (Jupiter) lO-LA . é cm
+ Relativity effect 107 lm

* Forces considered in both programs of DPODP (JPL) and DVODP (RRL).
+ Forces considered only in DPODP.
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all tﬁe,perturbative accelerations which result in at least 1 m
position deviation of the satellite during 24 hours. There are
two significant factors which should be evaluated carefully.
The first, the eartﬁ's gravitational constant is directly
effeétive to the earth's gravitational acceleration. The
effect of the possible uncertainty of its value on the orbit
determination was taken into consideration in a covariance
analysis. The other is the solar radiation pressure
acceleration. The acceleration can be modeled using an
appropriate solar radiation reflection model whose parameters

can be estimated in an orbit determination.
5.5.2 Precise Orbit Determination with DVLBI Delay Observables

(i) Data Weighting

Each DVLBI observable has an error which is a combination
of SNR errors of quasar and satellite observations, propagation
correction errors, station location errors, UTl and polar
" motion errors, and quésar position errors. In order to obtain
a minimum variance estimates, we use the standard deviation of
the error as a weighting factor in an orbit determination. We
can most probably evaluate the standard deviation of the delay

observables by a following formula,

2
Cri = (Ts/c i2 + (rﬁ i2 (5.10)

where Cri'is the standard deviation of the i-th delay’
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observable, crs/ci is noise of the satellite observation,
qi is noise of the quasar observation. G-s/ci and eri may
be calculated by a formula,

2 _ 2 2
Q" s/cior qi ~ Qsxe” + O

for the satellite or a quasar (5.9)

where (YSNR is the SNR error of the delay observable (given by
Eq.(3.32)), and Cxpz represents the propagation'megia effects
at the corresponding stations.

It is not easy to make a theoretical formulation of (sz,
because this must reflects the systematic and random conditions
of the troposphere and the ionosphere for all the stations
involved. Therefore, we used practically useful two
formulations, one of which considers 052 as a conséaﬁt which
is adjusted to the actual observation data (RRL method), and
the other considers the low elevation effect (JPL method) using
a elevation scaling factor. The JPL's formulation, which
consider; O—s/ci and O’qi in Eq.(5.10) as a whole, is written

as

18

O; = Qp 1+ 2 ) | (5.11)

(1 + E'Qmin

where Q7 is a constant which is determined based on the actual

observation fluctuations, and Eﬁmin is the minimum elevation

angle given in degree in the observation scan.
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These two formulations are not practically so different,
because the elevation factor of JPL's formulation shows little
elevation dependence except at elevations lower than 10 degrees
as shown in Fig.5.20. As is described later, we found that (Ib
= 1,0 m is appropriate for the DVLBI delay observables obtained

in our experiment.

(ii) Results of Orbit Determination

Orbit determination were carried out with the DVLBI data
by using independent orbit determination programs DVODP (RRL)
and ODP (JPL). Fig.5.21 shows typical observation residuals in
a RRL's orbit determination. The delay observation residuals
are almost within 3 nsec (about 1 m of .differential path
residuals). This indicates about 2 m of standard dev%ation of
estimated satellite position by a covariance analysis where
effects of model uncertainties are not included.

Orbit determinations with different conditions with
respect to solve~for parameters, UT1l and polar motion data,
observation weights, and satellite dynamic model were carried
out to evaluate these effects. Table 5.8 summarizes the
conditionslof these orbit determinations and Fig.5.22 shows
estimated satellite positions at the epoch time (01:00 ET July

27, 1984, the beginning edge of the observation period) for

these orbit determination cases.
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Table 5.8

Orbit determinations with a variety of conditions

Solve-for
Case Parameters Note
Orbit Determination Program:DVODP (RRL)
State vector UT1l & Polar Motion : IRIS
A G Data weight: Observation Data SNR
r No relativity
Orbit Determination Program:0DP (JPL)
B State vector UT1l & Polar Motion : BIH rapid service
.Gr Data Weight: g Ob ( 0p = 1 m)
No relativity
Orbit Determination Program:0DP (JPL)
o State Vector " UT1 & Polar Motion : BIH smoothed
Data Weight: g 06
State vector
D G,G,G Same as Case C
r x’ Ty
Same as Case C
State vector Only z-heights (four stations) estimated
E Station Coordinates%* Solar Radiation Reflection Factors:
nominal values (G_=0.797, G =G =0.0)
r Xy
State vector Same as Case C
F G,G,G Observation Data: data’set F
r x’ Ty
State vector Same as Case C
G Gr’ Gx’ Gy Observation Data: data set G
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DVODP weighted the observation data according to SNR
errors and ODP weighted them based on the observation accuracy
evaluation O=g¢g (Yb, where CYb =1m and g is a factor
shown in Fig. 5.20. ‘

Solve-for parameters were satellite state vector and solar
radiation pressure factor (Gr for one dimension parallel to the
sun-to-satellite vector, GX and Gy for the other dimensions) in
almost all cases. Station coordinates (heights from the
equatorial plane) were also. estimated in Case E. 'Cases F and G
are orbit determinations with independent data sets which were
obtained by dividing the data points as shown in Fig.5}17.

Fig.5.22 shows that the scattered estimated satellite
positions are almost within several meters, which indicates the
satellite position accuracy including the model errors is

almost several meters at the epoch time.

(ii) Covariance Analysis

A more general evaluation of orbit determination accuracy
was conducted by a covariance analysis which consider modeling
errors as well as observation errors. Table 5.9 shows the
error modei and effect of each component on the determined.
satellite position. Fig.5.23 shows the over-all satellte
position uncertainties over the observation period. The
position uncertainties at the edge of the observation period is

consistent with the results shown in Fig.5.22, which indicate
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Table 5.9

Significant factors for an orbit determination with

meter-order accuracy of a geosynchronous satellite

Factors

s/c positibn error
at the center of the
observation arc

Noise
Or errors

Earth's gravitational co?ftan
(nominal: 398600.448 km™/sec™)

Solar radiation pressure model
nominal G_: 0.9
¢ 0.0

0

Station location

+Errors uncorrelated in three
components for the 4-stations

+UT1 and polar motion errors
included

Troposphere correction
(zenith)

Ionosphere correction
(zenith)

Observation noise
+ Following components included:
SNR error

Day: 50 cm
Night: 10 cm

2

0.02 km>/sec 70 cm

(5x107%)

0.
0.
0
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that wé.used a reasonable error models in the covariance
analysis.

Considering the model errors, the satellite position was
estimated with an acéuracy of about 4 m at the center of the
obsefvation period. It should be noted that the position is
absolutely referred to the extra-galactic refeérence frame.

The significant.error sources are modeling error of the
solar radiation pressure factor, ionospheric correction error
and observation error including the quasar position errors. In
order to attain higher accuracy, for example 1 m accuracy of
the satellite position, we have to improve at least these three
sources. The ionospheric delay would be corrected precisely if
we can observe dual frequency signals as is usually conducted
in geodesic VLBI observations. The observation errors would be
much reduced by wideband observations, if a wideband satellite
signal is available. The solar radiation pressure model would
be improved by using more precise observation data obtained by
dual-frequency and wideband observations.

The effects of‘géneral relativity and the solid earth tide
are the order of about or less than 1 meter. Thereforé, we
cannot neglect these effects if we aim at the orbit

determination accuracy of 1 m or higher.

226



5.6 Conclusion

An orbit determination with ah accuracy of a few meters on
a geosynchronous satellite was successfully performed by using
a DVLBI method. We took an advantage of the high observability
obtained by the inter-continental, orthogonal baselines
including one short baseline for resolving ambiguities in delay
observables. We also used-the accurate knowledge of-statioq
coordinates which have been obtained through previous VLBI
observations and spacecraft trackings.

Since the satellite was not designed to be tracked by
DVLBI, the observations were conducted.with single frequency (2
GHz band), which caused ionospheric delay calibration error, .
one of the major error sources. The effective bbservation
bandwidth was also limited to about 8 MHz, which caused the
insufficient observation accuracy, especially in quasar
observations. By improving these factors, we can expect a
satellite position determination accuracy of about 1 m or
better; assuming that the solar radiation pressure model is

improved by using high quality observation data.
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CHAPTER 6 APPLICATIONS

6.1 Tracking of Satellites in Various Orbits

The DVLBI is a useful tracking method for spacecrafts not
only in the geosynchronous orbit but also in various other
orbits. We already mentioned advantages of DVLBI in deep space
navigations in Sec.3.1.2, where delay observables.wepe used to
determine the angular position of a spacecraft. A wideband
spacecraft signal is desirable for the DVLBI to obtain precise
delay observables. For example, the spacecraft GALILEO, which
is to be launched in 1986 by USA fo explore Jupiter and its
satellites, will transmit coherent tones at the X-band with the
maximum frequency separation of 38.25 MHz(l). On the bfher
hand, even a narrowband signal can give useful information of
the angular velocity of a spacecraft. That is, the delay rate
observable obtained by DVLBI observing a narrowband signal
represents the spacecraft velocity which is perpendicular to
the line;of-sight(z). Fig.6.1 shows two typical orbits with .
large angular velocities which can be detected by a narrowband
DVLBI.

The DVLBI method can also be applied to highly elliptical

earth orbits(3). In this case, satellites reach so high
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altitude'that differential VLBI observations with quasars are
possible with similar conditions as the case of a
geosynchronous satellite. Generally speaking; when the
altitude of a satellite becomes the higher, the smaller becomes
the relative angular velocity of the satellite with respect to
quasars. As was already mentioned, the differential
observations give a full advantage when the satellite and a
quasar are observed under the same conditions of VLBI stations
and propagation paths. Therefore, the DVLBI with ‘quasars as
reference radio sources would be the optimum for deep space
orbits in the above mentioned sense, if there exists an
appropriate quasar which is angularly near to the satellite.

In the case of low-altitude orbits, for example altitude
of 1000 km ~ 2000 km, a satellite passes through the sky in
several tens of minutes. A VLBi with rather sheort baséiines
which provide mutual visibilities can be applied to a satellite
in such orbits. However, in low-altitude orbits the
conventional range and Doppler measurements with much simpler
facilitigs than those of a VLBI give a sufficient accuracy in
the orbit determination.

The VLBI method would be also useful to calibrate an.
conventional tracking system. TFor example, in an ordinary
tracking system for a geosynchronous satellite, the observation

biases due to tracking equipment both in the satellite and in
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the eafth stations can be estimated using precise orbit
ephemerides obtained by a DVLBI method. A DVLBI can take
advantages that it is a receive-only method without any
transmitting facility and can basically be applied to various
sateliites as long as they radiate signals within‘the frequency

bands which can be observed by the VLBI system.

6.2 Differential Tracking Methods with Navigation Satellite

System

In our DVLBI experiments to track geosynchronous
satellites, we used quasars as reference radio sources, because
their angular positions are precisely known and because they
radiate wideband noise which can be observed by VLBI. The
radiation power of a quasar, however, is very weak (it is

-26 watt/msz). Therefore,

usually a few Jansky, 1 Jansky = 10
we need a large and effective antenna with low-noise receiver
system and é highly stable frequency standard at each VLBI
station to obtain sufficient signal-to-noise ratio (see‘
Sec.3.2.1).

On the other hand, if there are spacecrafts transmitting
radio signals from precisely known orbifs we may also use them

as reference radio sources. In this case a small antenna would

be sufficient to receive satellite's strong signals and we do
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not necessarily need a hydrogen maser frequency standard
because a short integration time is sufficient to give a
necessary signal-to-noise ratio.

The Global Positioning System (GPS)(4) can be used for
such purpose, because 18 navigation satellites are tc be put on
six different orbits (Fig.6.2) and several navigation
satellites can be seen at any time from any point on the earth.
Since the GPS satellites transmit navigation signals, we can
use the satellites as reference radio sources in 4 differential
tracking method similar to DVLBI. Fig.613 shows a concept of a
differential GPS method applied to tracking of a high-altitude
earth satellite(s). Using a pairiof GPS receivers, we can
measufe a differential range of each GPS satellite and of
high-altitude satellite, where the latter satellite is assumed
to have equipment to transmit the same signal as the.GPS
satellites. If the orbits of the GPS satellites are precisely
known, we can calibrate the differential range measurements by
them. Therefore, we can determine the high-altitude satellite
orbit using the calibrated differential ranges with an accuracy
equivalent to that of the GPS satellites.

Varioﬁs types of GPS receivers have been developed
especially in USA(G). Many of them can derive the differential
range (or differéntial'phase) observables through a signal
processing without Qecoding the modulated navigation

information of GPS. That is, such receivers can derive
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observébles independently to the navigation information being
broadcasted from the GPS satellites. Some of them reproduce
carrier tones and clock phase without decoding the navigation
signals modulated bf a pseudo-noise code (GPS uses a
spread-spectrum modulation with PN-code).

Fig.6.4 shows a concept of differential tracking of a
low-altitude earth safellite by the use of GPS. In this case,
the low-altitude satellite has a GPS receiver and differential
ranges with respect to a fixed GPS receiver on the earth were
obtained. Using precisely known GPS satellites orbits and the
receiver position on the ground, we can determine the
low-altitude satellité orbit by the differential range
observablés. In other wofds, the low-altitude satellite orbit
is determined with respect to GPS receivers on.the ground.
Thoﬁgh the receivers exist on the ground and on the satellite,
the tracking geometry of Fig.6.4 is the same as that of DVLBI.
The GPS satellites correspond to VLBI stations, and a GPS
receiver on the ground corresponds to a reference»radio source
b(quasar). |
The accuracj of the GPS satellite orbit determination plays an
important role in this tracking concept. For example, if we
would like to determine the low-altitudevsatellite position
with an accuracy of 10 cm, we need GPS.satellite position with
an accuracy of better than about 1 m(7).

When a pair of GPS receivers are located on the gfound,'we
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can obtain felative positions of these receivers using
differential measurements (Fig.§.5)(8). This means that we can
obtain the position of one of the GPS receivers if the other
one's position is known. This differential measurement method
is useful for geodesy, navigations and for other practical
purposes. We can obtain a precise position data (for example,
an accuracy of a few centimeters in the case of less than 100
km distance between the receivers) by using only small and
handy GPS receivers with a short observation time.

The, high accuracy (about lm ~-10m) of GPS satellite
positions are also necessary in this system. In order to
attain the required accuracy of the GPS satellites, we need
many tracking stations globally distributed all over the earth

(7).

at precisely known locations The differential observables
obtained by GPS receivers can also be used to determine the

orbit of the GPS satellites.

6.3 Radio Monitoring by Interferometric Methods

We can use an interferometric method such as a VLBI to
monitor radio emissions from both the earth's surface and the
-space; because suéﬁ method can passively receive various types
of radio signals and gives information of the location of the

radio sources. The radio monitoring techniques are necessary
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and useful not only for locating harmful interference radio
sources in various radio communication systems, but also for
detecting some kind of distress or emergency signals from
mobile radio stations including airplanes, ships, cars, and so
on. As quasars in our DVLBI observations, some reference radio
sources would be also useful in such monitoring system for
calibration of the syétem or for a differential estimation
processing,

Fig.6.6 shows a concept of a radio monitoring system for
space frem the ground by DVLBI method. In order foleover wide
range of orbits and frequency bands, the monitoring system
should have too much capability to be practically implemented.
Therefore, it would be neeessary to select some important
orbits and frequency bande. Fig.6.7 sho@s a concept of an
interferometric radio monitoring system with satellites
including space stations or geosynchronous space platforms. In
this case, some reference radio.sources on the ground would
also be useful to locate interference or emergency signals from

"the surface of the eafth or from low-altitude satellites.
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CHAPTER 7 CONCLUSION

A new precise tracking method for a geosynchronous
satellite was analyzed and proved through experiments. The
method is a differential very-long-baseline interferometry
(DVLBI) ‘using quasars as reference radio sources. The analysis
showed not only the observability and the sensitivity of the
DVLBI observables in determination of a geosynchronous
satellite orbit but also significant errors in the process of
observations and in the models of satellite dynamics and
observations. Computer programs for precise orbit
determination and for pre-processing the observation data were
newly developed.

In the first DVLBI experiment, a Japan's geosynchronous
satellite CS was tracked. Since the baseline was short and the
data quality of quasar observations were not sufficient, the
obtained DVLBI delay observables were not actually useful to
improve the orbit determination accuracy from that attained by
conventional range and‘angle measurements. However, orbit
determinations and covariance analysis using various error.
models showed the possible effectiveness of a DVLBI with a
delay accuracy of better than 1 nsec, even with a short
baseline in accurate orbif determination of geosynchronous

satellites. A simulation shows that DVLBI with two baselines
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1000 km'long will furnish a prospective method of precise
tracking of a geosynchronous satellite for an orbit
determination with an accuracy of several tens of meters.

The next DVLBI experiment with much better observation
geomefry, that is, with inter-continental baselines was
performed with collaboration of RRL and JPL aiming to determine
a geosynchronous sateilite orbit with a few meters position
accuracy. The accuracy of the derived delay data was better
than 1 nsec for the satellite, and was 1~10 nsec for the
quasars.b The dif ferential VLBI observables were derived by
subtracting systematic observation biases from ﬁhe raw
satellite VLBI observation data, where the systematic
observation errors were obtained from the raw quasar VLBI data
and the corresponding calculated values. In order to correct
remaining systematic errors, which were caused by the
propagation media, we used the ionosphere total electron
content data and a tropospheric delay model for each station.

Orbit determinations with the DVLBI observables were
‘performed by independeﬁt programs of RRL and JPL. A typical
delay residuals were almost within 3 nseé (1 m) for ali
inter-continental baselines and obtained satellite positions at
an epoch time agreed within a few meters. A covariance
analysis shows that a formal error of the satellite position at
the center of the 24-hour observation period is about 2.5 m. A

more realistic evaluation of the accuracy was obtained by a
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consider-covariance, where uncertainties in the satellite
dynamic model and the observation model were considered. The
consider-error of the satellite position is about 10 m and 4 m
at the edges and the center of the observation period,
respectively. It should be noted that the satellite posit.ion
was determined with respect to the quasar frame without any
biases by the DVLBI.

The attained accuracy of an orbit determination of a
geosynchronous satellite is.much better than that of
conventional methods. A position estimation accuracy with an

Aerror of less than 1 m for a geosynchronous orbit can be
attained if an optimization, espepially in satellite. signal
transmitting system, is made. That is, if a satellite has a
transmitting capability of signals with wider bandwidth in dual
frequency bands, we can obtain much more precise obsér;ables
which can be used to solve satellite dynamic parameters such as
solar radiation pressure model more accurately, and
consequently we can determine the satellite orbit with a better
accuracy.

The differential VLBI technique is important not only for
direct appiications to precise tracking of spacecrafts iﬁ
various orbits and to precise calibrations of conventional
tracking systems,.but also for indirect effect for development
of various differential observation systems, for example,
differential GPS systems for naQigation and geodesy. The

passive interferometry is also a prospective technique for
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radio monitoring systems to detect harmful interference radio
signals or distress (emergency) signals which are transmitted

not only from the earth's surface but also from the space.
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APPENDIX A Development of Precise Orbit Determination

Program for DVLBI (DVODP)

A.1 Background

RRL had already developed a compact and precise orbit-
determination program (XODS) mainly for a geosynchronous
satellite. It has an enough accuracy for orbital calculations
for station and attitude keeping maneuvers of geosynchronous
satellites and for antenna .pointing controls both of the
satellites and earth stations in ordinary space communication
systems. However, we need a more accurate orbit determination
program in an experiment (see Chap.5) where one of goals is to
attain an accuracy of a few meters in satellite position
determination by using a differential VLBI (DVLBI).

Therefore the author developed a new, high'ly precise orbit
determination program for the DVLBI experiment (DVODP:

DVLBI Orbit Determination Program ) by revising KODS.

A.2 Main Features of DVODP

Fig.A.1l shows the computation flow in DVODP which has two
modes of célculations. The OD mode is for orbit determination
and the EG mode is.for ephemeris generation, that is,
predictions of safellite position, orbital elements, viewing
angles, range and range rate, and so on. Table A.l summarizes

main features of DVODP. The improvements were made mainly in
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three parté. First, the accuracy of orbit generation was
improved. This is essentially done by using double-precision
variables for calculation of perturbative accelerations which
are treated with single-precision variables in KODS. Second,
the functions in parameter estimation were improved. In DVODP
we can estimate arbitrary combination of solve-for parameters
up to 20. Finally, the function of covariance analysis were
improved to include the effect of errors in model parameters

(consider-parameters).

A.3 Validation and Utilization of DVODP

DVODP was validated by comparison with results calculated
by JPL's highly accurate orbit determination program(z). DVODP
was effectively used in orbit determinations for DVLBI

experiments on CS (see Chap.4) and on DSCS (see Chap.5).
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Table A.1l Main features of DVODP

Item

Dvaop

Coordinate System

Coordinate system for orbit generation Epoch-true sidereal system

Time system for orbit generation
Input orbital elements

urc .
Keplerian elements or state vector-

Conversion between true-of-date and

body-fixed systems

Orbit Generation
Integration method

Perturbations

Accuracy of orbit generation
. Luni-solar ephemerides

With UT1 and polar motion

Modified special perturbation method 1)

Earth's non-sphericity,

Sun and moon's gravity

Solar radiation pressure
(calculated in double precision)

Less than 1lm in satellite position error
Double precision

Orbit Determination
Tracking station number
Number of observation data
Tracking data types

Estimated (solve-for) parameters

Covariance Analysis
Covariance of solve-for
parameters
Covariance including the
consider parameters' errors

Less than 10

Less than 300

Range, Range rate, Azimuth-and Elevation Angles,
Surmed range, Differential range and Differential
range rate (with arbitrary baseline)

Orbital elements, Solar radiation reflection
coefficient, Earth's gravitational constant,
Observation biases (for range, Azimuth angle,
Summed range, Differential range), Station
locations (less than 3 stations)

Arbitrary combinations of these solve-for
parameters
Covariance matrix

Covariance matrix including consider covariance
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APPENDIX B Reweighting the Observables

It is optimum to use a reweighting matrix WR for a system
which has errors in model parameters, because a reweighting
matrix correctly evaluate the information of the observables
degraded by the parameter errors. Using WR given in Eg. (2.54),
we can derive Eq.(2.57) as follows:

E {(%-5)(2—3)"’} = &, 3¢ 8" + vl T

T

T -1 T -1
A WR (BCyB + W ) WRA (A WRA) (B.1)

where -
T -1 _ Tn T,-1 ,T }-1
(A WRA) {.A WA (Jx + SlcyS1 ) AWA
= —1 T "1
Jx (Jx + Slcysl ) Jx
_ -1 T
= JX + SCyS
=c_ +scst=c¢ . (B.2)
X y c ‘ .
and
Ty _ ATo, T.-1 ,T
A WR = A"WA (Jx + SleSl ) AW

-1 ,T

T
JX (Jx + SleSl ) Jx JX ATW
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Substituting (B.2), (B.3) and (B.4) into (B.1l) we obtain the

desired result as

E %(%-5.)(2—5)% -cc.~

-1 T -
Jx (SleS1 + Jx) Jx

T -1
SCyS + Jx

T
CX + SCyS

= cC | (B.5) or (2.57)
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APPENDIX C Alternative Estimation of Large Dimensional

Parameters

There is an idea to alternatively estimate one of divided
parts of a large dimensional parameters in order to avoid
numerical instabilities. Here we show that the alternative
method is equivalent tq the other method where the whole
parameters are simultaneously eétimated from the viewpoint of
fhe mutual information.

Let us start from the observation equation (2.33)
(Sec.2.2.2),

zZz=AX+By+n (C.1)
In this equation, we treat paraﬁeter vector x and y as two
parts of parameters which are to be estimated. First, estimate

X with y fixed. Then we obtain covariance matrix as (see

Eq. (2.35))
c_=c_+sc's 1T (c.2)
cxX b4 Xy X )
where
_ T -1 _ -1
Cx = (A"WA) = JX
T -1 ,T
Sx = Jx A" WB
Cy’: covariance matrix of errors in ¥
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L A
and using X? instead of (§—§)T in Eq.(2.35) we obtain
A T] _ ' T.§= ,
Ex§ (x-x)y g— EX§K1(B}1 + n)y 8,Cy (C.3)

Second, estimate y with x fixed. The covariance matrix with

respect to y is,similarly obtained as

T
C =C_+ S .C_'S C.4
cy y X y f )
where
T -1 -1
C = (B"WB =J
y ( ) y
s. =J "1t BTya
y y
Cx' . covariance matrix of errors in x
and we also obtain
A T _ ,
EX {(zfz)g E = SyCX (C.5)

If the alternative estimation is repeated and cbnverges,

then Egs.(C.2) and (C.4) should come to be

ox Cx + chcysx (C.6)

(@]
1

c, + 8,0, 8.7 | | o (C.T)

CCY ycxy
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and Eqs.(C.3) and (C.35) should become

Ex <%-5>XT§ = By {@-&N&-z)rp} = §.C,

v (C.8)
E, {(§-X>§T§ = E_ { (ﬁ—z)(S-E)T} = 8,Cey (.9
EQS-(¢-8) and (C.9) algo lead the relation
chcy = chS;T . (C.10)

Using Egs.(C.6)~ (C.9) we obtain the covariance matrix C(xy)
of x and y after the convergence of the alternative estimation

as .
" A ~ T
CixyyExq| 2% [<§-§> <§-x>T]

A

-y

“

e S.C C c s T
cX x’cy cx cxX'y

T
L syccx Ccy Ccy X Ccy

(C.11)

On the other hand, if we simultaneously estimate X and y,

we obtain covariance matrix ny as
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T -1 -1

ny = = (C.12)

This is easily obtained by replacing A with ( A B ) in, for
example, Eq. (2.26).
From the viewpoint of information content, the determinant

of a covariance matrix is important. The determinant of C

(xy)
is calculated as
T T, T T
Cex chsy ch—ccxsy Sk chsy
|C(xy)l= =
T
Ccysx Ccy ' 0 ) Ccy
_ LT T
- |ccx|.|1n 8,78, | |Cey | (C.13)

where In means the unit matrix with the same dimension as ch‘

We obtain the determinant in another way as

cX.
lc(xy)l’=

cy"x Ccy cy’x “y
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= I ch"llm - sxTSyTI'ICcyl (C.14)

where I, means the unit matrix with the same dimension as Ceve

We can define a constant ¢ according to the Egs.(C.13) and

(C.14) as _
= Te T _ To T -
c=|1, -stsT| = |1, -5, 5, | (C.13)
Using Eqs.(C.6) and (C.10) we obtain
_ T T
Cex = Cx * chsy Sy
then
- _ Ts T\-1
ch = Cx (In Sy Sx ) o (C.16)

(C.17)

Substituting Egs.(C.16) and (C.17) into Eq.(C.14).and using
Eq.(C.15), Eq.(C.14) becomes '

I C(xy)I - lcx|10y|.c—1 = ( |Jx|1Jy|.c y~L (C.18)

Next, the determinant of ny is calculated as
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Jx JXSX Jx--JxSXSy stx
lcxyl = =
S 0 J
JY y JY y
EESEANEANTAREYN P
) X y n Xy
= (o - ]a,]- et (C.19)
X y :

' . Te T| _ _ T =| _
where the relation l In - Sy SX I = |(In sty) I In SXSyl
is used.

Egs.(C.18) and (C.19) show that the determinants of C(xy)
and ny are the same, that is, the mutual information is the

same in both methods of alternative and simultaneous estimation
of large dimensional parameters.

It should be noticed, however, that the above derivations
were based on an assumption that the alternative estimation

method successfully gives cohverged estimates.
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APPENDIX D Sensitivity of DVLBI Delay Observable to

Keplerian Orbital Elements of a Geosynchronous Satellite

Typical DVLBI delay observables (w,v) shown in Fig.3.9 are
related with the satellite position coordinates (X,Y,Z) by,
Eq.(3.59), where they are expressed in small deviation form.
The satellite position in.the orbital plane is expressed in the
(x,y) coordinates (Eq.(3.62)) and they are éonverted into the
inertial coordinate system by the conversion matrix G
(Eqs.(3.60) and (3.61)) which contains three orbital elements
to determine the orientations of the orbifal plane and the
apsides.

By differentiating the relatéd equgtion, though the
process is tedious, we obtain the expression (3.65) as follows:

Differentiating Eq.(3.60), we obtain

AX X AXx
AY = 4G y + GJlay (D.1)
AZ 0 0

where the first term is calculated using Eq.(3.61) as

X -x sin( +£L) - y cos(@w +§)
AG vy |= X cos(w +£)) - y sin(w +)
z i (x cosw-y sinw )
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-x sin(w +§2) - y cos(w +50) i ( x sinw sinSl+ y coswsin{l)
x cos(w+£)) - v sin(w +5)) i (-x sinwcosfl- y cosw cosfl)

0 X sinw + y cosw

(D.2)
and (Ax, Ay) in the second term are calculated using
Egs.(3.62) ~~ (3.64) as

AX =4Aa cos E - a sin E- AE - a.de }
Ay =4a sin E - a-e sin E + a cos E-AE (D.3)
where
3
AE = Ae sin E +AMO - nt (D.4)
2a

and we used a condition e<< 1 which generally holds for a
geosynchronous satellite. In Eq.(D.4), n is the mean motion

and M0 is the mean anomaly at the epoch time (t=0), that is,

M = nt + My (D.5)

Using Eqs.(D.3) and (D.4) we obtain

3
AX cos M + ——nt sin M —(1+sin2 M) -sin M 4a
2
3 .
Ay sin M = —nt cos M -sin M (e- cos M) cos M aAe
2
LaAMO‘
(D.6)
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Substituting Egs. (D.2) and (D.6) into (D.l) we obtain the

desired expression (3.63).
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APPENDIX E Nondynamic Analysis of the Position Estimation

Accuracy of a Geosynchronous Satellite

Ih order to grasp a general idea on the accuracy of
satellite's position estimation by DVLBI delay ‘observations, we-
can use a simple, nondynamic model of the DVLBI observation
geometry. That is, in the observation window, we neglect the
satellite's position deviations ffom the geosynchronous
position'due to the orbital inclination, to the eccentricity
and to various perturbations, as long as we aim roughly to
obtain a general concept of the determination accuracy of the
satellite angulér position 'in the observation window (or in the
(v,w)-plane in Fig.5.5). 1In actual observations, quasar
observations were carried out every 30 minutes over 23 and a
half hours, so the total of 47 points of quasar observations
were performed (see 5.3.3). However, we take a simple model of
eight quasars which enter into the observation window. Fig.E.1l
shows the quasar positibns in the observation winddw for this
sampled observation model. Using these quasars we obtain DVLBI
delay observables with three baselines spanned by Kashima,
Canberra and Golds;one stations. Strictly speaking,
simultaneously obtained VLBI observables by these three
baselines are redundant, but we assume to obtain independent

observables by processing the observation signals received at
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diffenrent time for each baselines.

The linearized observation equation is given by Eq.(3.58)
where the station location error is given by Eq.(3.78). Based
on the observation equation we can evaluate the estimation
error including the effect of model parameter errors using
Eq.(2.35)(1). The results are shown in Fig.E.2, where error
ellipses.of the satellite position estimation in the |
(v,w)-plane, are depictedmfor several models for model
parameter errors. Table E.} summarizes the models of
observation errors and model parameter errors. We used é very
simple model of the observation error G;DVLBI consisting of
two components; one corresponds to the system noise error (

)

corresponds to propagation media errors, clock errors, and so

Ggyg’® SNR error) and the other constant one ( T const

on. That is, .
Covier- = Tone * Teonst. (E.1)

As is expected from the baseline geometry and the
observation accuracy, the error ellipsoids tend to be elongated
in the direction perpendicular to the Goldstone-Canberra
baseline; In other words, the sate%lite position can be
determined the most accurately in the direction of that
baseline.

Fig.E.2 shows results of accuracy evaluation for station

location estimation for Kashima by the use of the same
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observations given in Fig.E.1l. 1In this case the satellite
position uncertainty is considered as one of model parameter
errors (a model of satellite poéition uncertainty is included
in Table E.l). According to the observation equation
Eq.(3.58), the sensitivity vector of the DVLBI delay observable
to a position change,AA§i of the VLBI station i is given by

). In a usual DVLBI observation geometry, however, this
sensitivity vector is small and nearly perpendicular to the
line-of-sight. In other words, the DVLBI delay observables
have only a little information of station position components
in the plane perpendicular to the line-of-sight, and have
little information of the component in the direction of the
line-of-sight. Therefore, it is not necessarily effective to
estimate station locations using DVLBI delay observations. 1In
Fig.E.2, case (d) shows some degradation of the éccuracy due to
removal of quasars which have a little larger sinsitivity
vectors than those of other quasars. . That is, in the case (d),
quasars 5 and 8 in Fié.E.l are reﬁoved and two quasars which
are at the same point as 1 are inéluded (without change in the
total quasar number). Therefore, the error ellipse (d) becomes

a little larger than (b).

Reference
(1) Shiomi,T., Analysis on AVLBI navigation on a
geosynchronous spacecraft, JPL Engineering Memorandum 314-314,

July 1983.
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Fig. E.1 A model of quasars set in the observation window



a without
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b model-1
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Fig. E.2 Error ellipses of satellite position estimation
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Fig. E.3 Error ellipses of station location estimation for Kashima
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