Study of Interchange Instabilities and

Anomalous Transport Based on
Reduced Two-Fluid Model

Hideo Sugama

1988



Study of Interchange Instabilities and
Anomalous Transport Based on

Reduced Two-Fluid Model

Hideo Sugama

1988

DOC

1988




Abstract

In this thesis, theoretical studies of interchange instabilities and anoma-
lous transport in a stellarator/heliotron plasma, are reported. We derive the
reduced two-fluid model in order to describe high temperature large aspect
ratio toroidal plasmas. Our new model is more general than the conven-
tional reduced MHD (RMHD) model. It contains diamagnetic drifts and ion
parallel motion, which are neglected in RMHD, and it is applicable to both
stellarator/heliotron and tokamak. Based on the reduced two-fluid model,
we study stabilizing effects of the ion diamagnetic drift on the ideal inter-
change instability both analytically and numerically. Improvement of beta
limit due to the ion finite Larmor radius stabilization is discussed in the case
of Heliotron E. Considering a low beta plasma, in which ideal interchange
modes are stable, we study the resistive interchange instabilities coupled to
the electron diamagnetic drift under the electrostatic assumption. These re-
sistive electrostatic instabilities are considered as candidates to explain the
edge turbulence observed in stellarator/heliotron plasmas. Linear growth
rates are given as a function of collision frequency and mode structures are
shown. Nonlinear time evolution of the ideal and resistive interchange modes
are numerically investigated. We show that ion diamagnetic drift lowers the
saturation level of the ideal interchange modes and decreases the kinetic
energy distribution on higher harmonic modes. In the simulation of the elec-
trostatic turbulence driven by the resistive interchange modes coupled to the
electron diamagnetic drift, we find the condensation of the mode energy to
the m = 0 mode accompanied with the production of the stationary radial
electric field, which is not seen in the resistive interchange mode driven tur-
bulence based on the RMHD model. The decrease of the energy distributed
over the high poloidal mode numbers due to the energy condensation to the
m = 0 mode is expected to improve the particle confinement.

We give a new formulation of renormalized theories to describe strong tur-
bulence and the resultant anomalous transport. In our formulation, consid-
ering the general model equation with convective nonlinearity, we derive the
exact integral equation for the nonlinear propagator, from which the renor-
malized expression of the propagator is obtained by the iterative method
and the one-point (coherent) and two-point (incoherent) renormalized theo-
ries are given in a unified manner. We apply our formulation to the RMHD
and the reduced two-fluid equations. For both models, the wavenumber



spectrum of the pressure or density fluctuations and the turbulent diffusivity
are obtained. The results based on the latter two-fluid model seem to be
appropriate for explaining the edge turbulence in Heliotron E.

ii



Ackhowledgements

It is a great pleasure to thank Emeritus Professor Koji Uo and Professor
Atsuo liyoshi for affording me the opportunity to study fusion plasma and
write this thesis.

I would like to express my special gratitude to Professor Masahiro Wakatani
for teaching and guiding me over the several years. Without his patient en-
couragement and many productive suggestions, this thesis would not have
been completed.

[ am very grateful to Doctor Kimitaka Itoh and Doctor Katsumi Kondo
for their useful comments and suggestions on the manuscript.

I would like to acknowledge helpful discussions with Doctor Akira Hasegawa
and Doctor Benjamin A. Carreras during their visit to Kyoto.

I wish to thank Doctor Yuji Nakamura, Katsuji Ichiguchi and Masatoshi
Yagi for their support in computational work and useful discussions. I am
also indebted to Doctor Hiroyuki Okada and Takeshi Suzuki for helping me
in using a computer system to type this thesis.

Finally, I thank all members of Plasma Physics Laboratory in Kyoto
University for their warm friendship and support.

iil



Contents

Abstract
Acknowledgements

1 Introduction

2 Reduced Two-Fluid Model
2.1 Introduction . . . . . . . . . o v i it e e e e e e e

2.2 Two-Fluid Equations . . . ... ... ....... [P
2.3 Reduced Two-Fluid Equations . . . . .. ... ... ... ...
24 Conclusions . . ... ... ... e

3 Ion Diamagnetic Drift Effects on .

Ideal Interchange Instabilities
3.1 Imtroduction . .. ... ... ... ... . ... ...
3.2 Model Equations and Linear Theory . .............
3.3 Numerical Results. . . . ... ... ...............
34 Conclusions . . ... ... .. e e
3.A Derivationof Eq.(3.38) . . . . ... ... ... . . ...
3.B Magnetic Flux, Curvature and Rotational Transform

due to External Helical Fields . . . .. .. ... ........

4 Linear Theory of Resistive Interchange Modes
Coupled to Resistive Drift Waves
4.1 Inmtroduction . . . ... ... .. . ...
4.2 Model Equations and Linear Stability Analyses . ... .. ..
43 Numerical Results. . . ... ... ... ... .. .......

iv

27
27
29
36
39
40

43



44 Conclusions . .. ... . ..

5 Nonlinear Evolution of Interchange Instabilities
5.1 Imtroduction . . . ... .................
5.2 Nonlinear Evolution of the Ideal Interchange Mode .
5.3 Nonlinear Evolution of the Resistive Interchange Mode

.....

.....

Coupled to the Electron Diamagnetic Drift . . . . ... .. ..

54 Conclusions . . . ... ... . .. ..

6 Formulation of Renormalized Theories
6.1 Introduction . .. ... .................
6.2 Formulation of Renormalized Theories . ... .. ..
6.2.1 One-point renormalized theory. . ... ... .
6.2.2 Two-point renormalized theory ... ... ..
6.2.3 Clump lifetime approximation . . ... .. ..
6.3 An Application of the Renormalized Theories

to the Vlasov Equation . . . . . ... ... .......

6.4 Conclusions . .. ... ... ... .

7 Anormalous Transport Driven by
Resistive Interchange Mode Turbulence
7.1 Introduction . . ... ..................
7.2 Resistive Interchange Mode Turbulence

by Reduced MHD Model . . . .. ... .........
7.3 Resistive Interchange Mode Turbulence

Coupled to Resistive Drift Waves . . . ... .. .. ..
74 Conclusions . . .....................

7.A The Parity Conservation in the Reduced MHD Model
8 Concluding Remarks

References

.....

.....

.....

.....

63
63
64

66
68

78
78
80
80
83
86

89
96

97
97

99

104
111
113

115

119



Chapter 1

Introduction

In magnetically confined plasmas inhomogeneities of magnetic fields, cur-
rents, pressure, density and temperature cause a variety of instabilities, which
give limitation to stable plasma confinement and also produce complex dy-
namical behavior of the plasmas. Fluid models such as magnetohydrodynam-
ics (MHD) have made the most successful contributions to the theoretical
research of the magnetized plasmas including those spatial inhomogeneities.
Analyses of equilibrium and stability based on the ideal MHD equations are
one of the basic methods in designing a magnetic configuration of a new de-
vice. The reduced MHD (RMHD) model,[1-B] which was derived from the
full MHD equations, is also useful in the theoretical description of plasma
dynamics including the effects of nonlinearity and dissipation. However the
MHD model does not include kinetic effects such as finite Lamor radius
(FLR) effect, Landau damping and particle trapping. These phenomena be-
comes important in the high temperature rare collisional plasmas. In this
thesis, we concentrate our attention on the FLR effect, which can be included
through diamagnetic drifts of ions and electrons in the two-fluid model. One
of main topics in this thesis is to study the effects of the ion and electron
diamagnetic drifts on interchange instabilities which are driven by pressure
gradients combined with bad magnetic field curvature.

Construction of the reduced fluid model based on the two-fluid equations
and its application to stability analysis of interchange modes in stellara-
tor/heliotron conﬁguration[4]'[ ] are presented in the first part of this the-
sis. Our new model is more general than RMHD. It contains diamagnetic
drifts and ion parallel motion, which are neglected in RMHD model, and



it can describe both tokamak and stellarator/heliotron plasmas. After the
derivation of the reduced two-fluid equations, we will use them to investigate
the interchange instabilities, which degrade plasma confinement in stellara-
tor/heliotron configuration. As an example, stabilizing effects of the ion
diamagnetic drift on the ideal interchange instability are examined. We will
also study the resistive interchange instability including the electron diamag-
netic drift effect. These instabilities with properties which are not predicted
by the ideal or resistive single fluid MHD equations are considered to be the
cause of turbulence and the related anomalous transport in high temperature
plasma. .

The anomalous transport is a problem of great interest both experimen-
tally and theoretically.lG] The transport phenomena are directly related to
the dependence of the particle and energy cofinement time on the plasma
parameters and therefore the reliable estimation of them are essentially im-
portant in the future reactor design. Since the measured microscopic fluc-
tuations in a plasma show strong turbulence character e.g. broad spectra of
wavenumbers and frequencies,m"[gl the perturbative approach of quasilin-
ear or weak turbulence theories fails to describe them and the turbulence
theories treating the strong nonlinearity are required. Theoretically it is im-
possible to explain the observed transport in terms of classical collisional
mechanisms, which is-called anomalous transport. Many efforts have been
made to explain it based on turbulence theories in these years. For esti-
mating the transport coefficients theoretically, we usually use mixing length
arguments[23] in which a diffusion coefficient is given by D ~ +v/k? using
a perpendicular wavenumber k; and a linear growth rate of the concerning
instability 7 as characteristic space and time scales. We also use dimen-
sional analysis technique based on scale transfomation symmetries of the
basic nonlinear equations.[lol‘[M] In the approaches to the strong plasma
turbulence, the renormalized theoriestB}151-[26] quantitatively describe the
macroscopic statistical averages of the fluctuations. By using the renormal-
ized theories, diffusion coefficients enhanced by the turbulent fluctuations
are derived, which is comparable with the anomalous transport observed in
experiments. In the renormalized theories discussed in this thesis, the two-
point correlation: or incoherent structure called j“clumps’llg] is ‘considered,
which enables one to calculate the wavenumber or frequency spectra of the
fluctuations. In the second part of this thesis, we give a new formulation
of the renormalized theories and apply it to the analyses of the turbulence
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driven by the resistive interchange instabilities in stellarator/heliotron. We
will show how the electron diamagnetic drift makes the parameter depen-
dence of the turbulent diffusivity different from that obtained by the RMHD
model.

This dissertation is organized in the following manner. In Chapter 2, the
reduced two-fluid equations are derived and their general properties are dis-
cussed. The significant difference between the one-fluid MHD equations and
the two-fluid equations is that in the latter the generalized Ohm’s law and
the ion gyroviscosity are contained to describe the electron and ion diamag-
netic drifts correctly. In the derivation of the reduced two-fluid equations,
we consider application to stellarator/heliotron. Our model also includes
the evolution equation of the ion fluid velocity along the magnetic field line,
which makes it possible to describe the ion acoustic wave. It is shown that
our model conserves the total energy in the case of no dissipation. Reduced
fluid models such as RMHD, Hasegawa- ~Wakatanil?”] and Hasegawa-Mima
equatlons[28] are derivable as limiting forms of our model.

In Chapter 3, we study the stabilizin %eﬁ'ects of the ion diamagnetic drift
on the ideal mterchange 1nstab1hty[29] =311 poth analytically and numerically
based on the reduced two-fluid model. Using the sheared-slab geometry
and the method of asymptotic. matching, analytical expressions of the linear
dispersion relation and the stability criterion are obtained. The analytical
results for the slab geometry are checked by the numerical calculation for
the cylindrical plasma using the shooting method. Inprovement of beta limit
due to the ion FLR stabilization of the ideal interchange mode is discussed.

In Chapter 4, the resistive 1nterchange instabilities coupled to the elec-
tron diamagnetic drift are studied. 321 Here we consider a low beta plasma,
in which ideal interchange modes are stable and the electrostatic approxi-
mation is applicable. These resistive electrostatic instabilities are considered
as candidates to explain the turbulence observed in the peripheral region of
stellarator /heliotron plasmas. Linear growth rates are given as a functlon of
collision frequency and mode structures are shown.

In Chapter 5, time evolution of the nonlinear ideal and resistive inter-
change modes, which are studied in Chapter 3 and Chapter 4, respectively,
are numerically investigated. By using single-helicity calculations, nonlinear
saturation of the ideal interchange modes are studied. We show the ion dia-
magnetic drift effects on the saturation level and the poloidal mode number
(m) spectrum of the fluctuation energy. The multi-helicity calculations of the
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electrostatic turbulence driven by the resistive interchange modes coupled to
the electron diamagnetic drift are given. We find the condensation of the
mode energy to the m = 0 mode accompanied with the production of the
stationary radial electric field, which is not seen in the resisitive interchange
mode driven turbulence based on the RMHD model.

In Chapter 6, our formulation of renormalized theories is presented. Con-
sidering the general model equation with convective nonlinearity, we derive
the integral equation for the nonlinear propagator, from which the renor-
malized expession of the propagator is obtained by the iterative method and
the one-point (coherent) and two-point (incoherent) renormalized theories
are given in a unified manner. Our formulation is based on the real space
representation instead of the wavenumber space. We also discuss the clump
lifetime approximation[lS]"[M] to the solution of the two-point renormalized
equation. An application of the renormalized theories is illustrated by using
the Vlasov-Poisson equations and the results obtained by Dupreells]‘[lsl are
reproduced.

In Chapter 7, the resistive interchange mode driven turbulence is studied
analytically using the renormalized theories given in Chapter 6. We apply the
formulation to the RMHD equations and the the reduced two-fluid equations
in Chapter 4. For both models, the wavenumber spectrum of the pressure or
density fluctuations and the turbulent diffusivity in a stellarator/heliotron
plasma are obtained.

Finally in Chapter 8, concluding remarks are given. Main results and
future studies relating to this thesis are discussed.



Chapter 2

Reduced Two-Fluid Model

2.1 Introduction

In this chapter, the reduced two-fluid model, which describes the dy-
namics of large aspect ratio toroidal plasmas including tokamak and stel-
larator /heliotron, is derived and its properties are discussed. Strauss de-
rived the reduced magnetohydrodynamics (RMHD) equations for tokamak
plasmasll]'[2] from the full MHD equations by the ordering in terms of the
inverse aspect ratio, € = a/ Ry, where a and R are the minor and major radii
of the torus, respectively. He also obtained the RMHD equations for stellara-
tor plasmas[3], using the stellarator ordering where the expansion parameter
is A = €'/, Here ) denotes the ratio of the magnitude of the external helical
magnetic field to the toroidal magnetic field. RMHD is a set of simple nonlin-
ear equations, which includes only three field variables, i.e., stream function
(or electrostatic potential), poloidal magnetic flux and pressure; however
RMHD can describe much of dynamics which the full MHD equations do.
As the shortest time scale of RMHD, the shear Alfven dynamics is included;
therefore, the phenomina which occur in a shorter time scale than the shear
Alfven wave, such as compressional Alfven dynamics, are eliminated. The
ion accoustic waves, which propagate dominantly in the direction of the mag-
netic field, are not included in RMHD since the flow along the magnetic field
lines can be decoupled from the shear Alfven dynamics. Furthermore, two-
fluid dynamics such as drift waves cannot be treated in RMHD based on the
one-fluid model. For studying turbulent fluctuations driven by these drift



waves or kinetic unstable modes, we need extension of RMHD. Here we
construct a new reduced fluid model to include the ion and electron diamag-
netic drift motion as important kinetic effects in high temperature plasma by
keeping two-fluid nature of plasma. The reduced two-fluid model presented
in the following sections have the four field variables, where the flow along
the magnetic field lines is added to the three field variables in RMHD.

In Sec.2.2, we discuss the two-fluid equations, from which our reduced
model is derived. In Sec.2.3, the derivation of the reduced two-fluid model
is presented and the properties of that are discussed. In Sec.2.4, conclusions
are given.



2.2 Two-Fluid Equations

Here we assume that the plasma consists of electrons and protons. By
taking the first and second order moments of the Boltzmann equation for
each species of particle, the continuity and momentum equations for electron
and ion fluids are given in the following expressions,

6(;‘3 + V- (nev.) =0 (2.1)

8 »,
neme('a_t'-l-”e.v)ve+v'Pe=_nee(E+'c—XB)+F (2.2)
] + V- (nv;) =0 (2.3)

ot

n,-m,-(%+v;-V)v;+V-P;=n;e(E+%'—xB)—F (2.4)
where n, is the particle density, v, the fluid velocity, P, the pressure tensor,
mg the mass, a(= e, 1) the species label, —e the electron charge, +e the ion
charge. F and B are the electric and magnetic fields, respectively, and F
represents the friction force i.e. the momentum transfer per unit volume and
unit time due to collisions from the ion fluid to the electron fluid.

It is convenient to use the average fluid velociy » and the current density
J as in the MHD description instead of using »; and v.. Here we neglect the
electron inertia since m,./m; < 1. We consider the phenomina which occur
sufficiently slower than plasma oscillations and therefofe we can assume the
quasineutrality condition, n. = n; = n. Thus the average velocity » and the
current density J are written as

nym;v; + NeMeVe ~

v ~ v; (2.5)

nym; + neme

and
J = niev; — neev, = ne(v; — v.), (2.6)

respectively. From Eqs.(2.5) and (2.6), the electron fluid velocity v, is given
by '

V=0 — —{ - (2.7)



From Egs.(2.1) and (2.3) and the quasineutrality condition, we obtain

on _
ot
Then Eqs.(2.6) and (2.8) yield

-V : (nv) = =V - (nv.). (2.8)

V.J=0. (2.9)
The friction force F is given by
F = ne(md) +n.J 1) (2.10)

where 7 is the electrical resistivity and the subscripts || and L refer to direc-
tions parallel and perpendicular to the magnetic field line.
We assume that the pressure tensors P,(a = e, ) take the form

P, = P.l }

P.=Pl+N (2.11)

where | is the unit tensor and the scalar pressure P, = nT,. Here T, is
the temperature assuming the isotropic thermalization. [y denotes the ion
gyroviscousity tensor, which is assumed to be determined by P;, B and v
here. The expression of [1,; will be given in the next section, since its explicit
form is not required here. The gyroviscosity is due to the gyromotion of the
particles and remains in the collisionless limit. The electron gyroviscosity
is negligible because of small gyroradii of electrons. Collisional viscosity is
smaller than the gyroviscosity for both electrons and ions. Inclusion of Mg
becomes essential when the effect of the ion diamagnetic drift is considered.
Adding Egs.(2.2) and (2.4) gives

0 1
nm.-(E+0-V>v+V(Pe+P;)+V-ﬂg;=EJXB (212)
by assuming charge neutrality. Eq.(2.2) is rewritten as

1 1 :
E + -C—'ve x B+ EVPC = n“J” +md,. (2.13)

Here Eqs.(2.5), (2.10) and (2.11) are used and the electon inertia terms are
neglected. Equation (2.13) is called the generalized Ohm’s law in which,
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compared with the usual Ohm’s law in MHD, the average fluid velocity v is
replaced with the electron fluid velocity v, and the electron pressure P, is
included, which is related to the diamagnetic drift motion.

In order to obtain a closed set of equations describing the two-fluid
plasma, we need Maxwell’s equations and two equations of state connect-
ing the pressures with the density. In summary of the two-fluid model, the
plasma is descried by n, v, v, J, E, B, P., P: as functions of the position
z and the time ¢ governed by the equations

on

5= -V . (nv)=-V-. (n@e) (2.14)
0 1 '

nm; a-i—v-V ‘U+V(Pc+-Pi)+V'ngi=EJXB (2.15)

41 : 1
E+-v.x B+ —VP.=nJ)+n.J, (2.16)

J
—e T 2.17
D=0~ — (2.17)
B

aa_tz_CVXE’ V-B=0 (2.18)
477’,7 =V xB (2.19)
P.=f(n), P = fi(n) . (2.20)

where the displacement current term dE /8t is neglected and the Ampere’s
law (2.19) is employed, which is consistent with the quasineutrality condition
or Eq.(2.9). The equations of state are represented by Egs.(2.20). Hereafter
we may assume that the electron and ion fluids obey the ideal gas law and
Egs.(2.20) take the form

P, =Cunl* (a=c¢e,1i). (2.21)

Here, if the changes of state are adiabatic, then C, = exp[(S — Sp)/C,] =
const. and vy, = C,/C,, where C, is the specific heat at constant volume,
C, 1s that at constant pressue, S and Sy are the entropy and its standard

9



point, respectively. All these quantities are given for each species o and
assumed to be constant. In the case of the isothermal process, we may take
Co = T4 = const. and 9, = 1. Examining the two-fluid equations (2.14)-
(2.20), we note that, three field quantities n, v, and B are sufficient to
determine uniquely the momentary state of the system and the other field
quantities P, P, J, v., and FE are represented by the above three quantities
at every instant of time, which is similar to the usual MID equations. Then
the evolution of the system is principally described by Eqs.(2.14), (2.15)
and (2.18). The quantities n, v and B have seven field components and
also the equations include nonlinear terms. Thus it is impossible to solve
them analytically. Since the equations include several charactristic times
which have different orders of magnitude each other, it is not simple to solve
them numerically. In order to make the equations tractable, the reduction
of numbers of field quantities will be possible without lossing low frequency
physical processes occurring in a strong toroidal field. The procedure will be
explained in the next section.

The equation of energy balance is obtained from Egs.(2.14)~(2.20) as
follows

df . (1, B
dt/ a’m{ nm;v +§r—+n\lf.(n)+n\lle(n)}
= —/dS { nm;v*v + n¥;(n)v + n¥.(n)v. + Po + ;- v
+ Pve+ B x B} 5/Vd%{n,,.],ermJj_}+/vd3mng; . Vo

(2.22)

where the compressmn or internal energy per single particle of species « is
given by

Vo) = - [ fa(n)d() f° ") e

If we use Eq.(2.21),-Eq.(2.23) is rewitten as

P,
L A1)
U= T (Ya # 1)

Paln(nfno) (o =1, no = const.) .-

(2.24)

The left-hand 51de of Eq.(2.22) expresses the rate of change of the total energy
in the volume V, which consists of the kinetic energy of the fluid motion, the

10



magnetic energy, the ion and electron internal energy. The first and second
terms in the right-hand side are interpreted as the energy flows through the
surface S and the energy dissipated in the volume as Joule heat, respectiverly.
The last term is associated with the change of the internal energy related to
the gyromotion and, in the next section, we will discuss that it vanishes in
the order of our interest.

11



2.3 Reduced Two-Fluid Equations |

Here we use a coordinate system as shown in Fig.2.1 with the metric
ds?® = dr® 4+ r?d6® + (1 + z/ Ry )?dz? (2.25)

where z = rcosf, 2 = —Ry( and ( is the toroidal angle. In order to derive the
reduced equations, we employ the ordering[3]'[33] in terms of the expansion
parmeter A defined by ,

A= €ll? (2.26)

where € = a/Ry < 1 is the inverse aspect ratio, a and R, are the minor and
major radii, respectively. We assume that the uniform toroidal magnetic
field Byz is of the zeroth-order, the helical field is of the first-order, and
the following quantities such as the curvature of the field lines, the pressure
gradient, the current and the magnetic field produced by this current are of
the second-order. The magnetic field is given by

B z+VP4+V x A

0
1+4+z/Ry
= By +V®+(B? — Byz/Ry): + VA X 2 (2.27)

where 2 is the toroidal unit vector, ® is the potential for the helical field,
which satisfies
V=0 (2.28)

and A is the vector potential for the magnetic fields produced by the plasma
currents. In Eq.(2.27) we used

VxA=Bf;4+VAx3 (2.29)

where Bf = 2.(V x A), A = #- A and the derivatives with respect to
z are eliminated since 8/8z = O(A?) for all quantities except the potential
®, which is discussed in detail later. From the Ampere’s law (2.19) and
Eq.(2.27), we obtain the current density J in the lowest order

=< = S (VB x 3— V2 Aj
J 47TVxB 4W(VB x z— Vi Az). (2.30)

In the equation of motion (2.15), it is assumed that V(P.+P,), v and 8/8t
are O(e) = O(A?) and that the force due to gyroviscosity V - Il ; is O(€?) =

12



O(X*). Then Eq.(2.15) yields the pressure balance for MHD equilibrium in
O(e)
Vi (Pc + P, + 4B—°Bf’) =0 (2.31)
T

where Eq.(2.30) is used. Taking the inner product of Eq.(2.15) and B, we
have

s,
B - V(Pc + P.) = —nym; By (gt- + vy - V_L) Uy = Byz - (V . l'lg,-) (2.32)
where vy = v - b, b = B/B and ng denotes the O()°) part of the density n.

Equation (2.32) is valid to O(e?). From the outer product of Eq.(2.15) and
B, we obtain the perpendicular current density

B
Ji=ZxK (2.33)

where

K=c _V(Pe+P.-)+V-|'|g,-+nm,-(%+‘v-V)v] (2.34)

The total current density is written as
J=cB+J, (2.35)

where 0 = B-J/B?. Substituting Eq.(2.35) into Eq.(2.9) and using Eq.(2.33)
yield
VB? x B B
B'VU=——B4—"K:{-§§'VXK . (236)
where we used K - V x B = 0 which is derived from Egs.(2.15) and (2.19).
We can write

n=ng+f (2.37)

P,=Pyu+ B, (a=e,i) (2.38)

where ng and P.o = noTao are the lowest order quantities or the volume-
averaged values of the density and the pressure respectively. Here we assumed
that ng and P are O(X°) and that 7 and B, are O()\?). This ordering is
slightly different from the conventional one used in RMHD and should be

13



treated carefully when it is applied to the equation where density or pressure
is contained without being differentiated.

The electric field E is represented in terms of the electrostatic potential
¢ and the vector potential A as

104
E=-V¢-——. (2.39)
The parallel component of the generalized Ohm’s law (2.16) is
P 194
B- - = J 2.40
v (noe 4’) ( e + ||) (2.40)

where higher order terms than O(\!) are neglected Here it is assumed
that ¢ and 5 are O(X?) as well as A and J. From Eq.(2.16) we have the
perpendicular component of the eletron fluid velocity

B
Vel = B x W (2.41)
where oA
W=c (v VE 1 . ) (2.42)

In the same way as Eq.(2.35), we can write
v.=aB +v. (2.43)

where o = B - v./B?%. The continuity equation (2.14) gives

V-.v, = ( 0 + v, - V) Inn. (2.44)
ot
From Eqgs.(2.41)—(2.44) we obtain

VB’ x B B w ]
B.Va—T W+§ VXW"'I;? -VxB-— (at+ve V)lnn.
(2.45)

From Eqs.(2.17), (2.30), (2.31), (2.41) and (2.42) we have
Doy = —3 x V - (2.46)

L= Boz noe '

14



v, = —5xV (qs + i) , (2.47)

in O()?). Equations (2.17) and (2.30) yield the parallel components of the
electron fluid velocity and the current density of O()?)

J

V| = Boax = y) — n—O”e, (2.48)
Cc

Jj= Byo = —Ev'iA (2.49)

In the lowest order of our ordering, the magnetic field becomes uniform
and we use the expression for the gyroviscosity obtained by Braginskii,[34]'[36]
which is given as '

BB W (14 B5) + (1 4+ 88) - W x 5} (2.50)

[«

Ny =

where w, = eB/m;c is the ion cyclotron frequency and W denotes the rate-
of-strain tensor defined by

Ova L 0% _ 25 .0 (2.51)

Wap =
p Ozg + 0z, 3

It is found that Eq.(2.50) gives I ; : Vo = 0 and therefore no contribution
to dissipation or internal energy. In our ordering Eq.(2.50) is reduced to

P
2wci

Ny =

[VIF(1-22)—2V. Vi F+2{( x V)2 +2(s x Vo )} (2.52)

where F is the stream function for the ion fluid velocity which is given as

F= 3% (qs + —1?—) (2.53)

Nnpe
from Eq.(2.47). Divergerce of (2.52) gives

i‘ _V?LF) —vl-(ﬂvlvlF) —33%xV, (wi) Vv (2.54)

ct ct

VN, = vl(

where we neglect the inhomogeneity of the magnetic field so that w, =
eBy/m;c.
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Equations (2.32), (2.36), (2.40) and (2.45) have the same form as the
magnetic differential equation

B-VF =G (2.55)
where F' and G are expanded in powers of A as follows
F=XF® 4 $¥F® L X pW .. (2.56)

G=XG® 4 XG®W ..., . (2.57)

Here P, is omitted in Eq.(2.32) because VP, = 0. Since the helical field
V® contains a rapid variation in the z direction, the scale length of which
is of the order of the minor radius a. Therefore F' and G generally contain
this rapid variation and the slowly varying part, the scale length of which is
of the order of the major radius Ry. Then we may write

& = &(r, 6, ) (2.58)
F=F(r,0,3z) (2.59)
G = G(r,6,%,2) (2.60)

where Z and z are used to represent the rapid and slow variations along the
longitudinal direction. Here we assume that the z-derivative is expanded as

%, 0

— 42—

0z t 0z
F and G are assumed to be periodic functions with respect to Z over the
toroidal pitch length 27 Ry /N where N = O(e™?) is the toroidal pitch number.

From the lowest order of Eq.(2.55) we have

(2.61)

OF®
055 =0 (2.62)
which yields
| F® = FO)(r, 8, 2) (2.63)
Equation (2.55) gives in O()%)
- F®
By gz +V. 8.V, FP =G® (2.64)
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where we used Eqs.(2.61) and (2.63). Averaging Eq.(2.64) with respect to Z
over the toroidal pitch length 27 Ry/N, we find

G® =0 (2.65)

where the averaging operator is defined by

_ N 2rRg [N . .
f(r,0,2) = -%—Ro/o dzf(r,0,%,2). (2.66)
In Eq.(2.65) we have used
Vd=Vo=0. (2.67)

Equation (2.64) is integrated to give

FO(r0,%,2) = _B;o /02 dzZ[V L ®(r, 0, ) - VL FP(r, 8, 2) — GO(r,6, 3, 2)]
+ H®)X(r, 8, 2) (2.68)

where H(3)(r,9, z) is not specified here. From Eq.(2.55), we have in O(\*)
OF W) OF @

By——+ By —+ V- VF®O+VAx:-VF? =G®  (2:69)
which is averaged with respect to Z to yield
Bo 65(2) +VAx:-VF® - G®
= -%_‘VT(S—)
= Bovq> v / d5V. & -V, F@ FV<1> .V / d5G®

(2.70)

where Eq.(2.68) is substituted. By using Eqs.(2.28) and (2.67), we can prove
the following equation

Vd-V / szl‘D VLF("’)———V{(V@ x V / dzq>) x 3+ VF®,
L (2.11)
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From Eqs.(2.70) and (2.71), we obtain

B-VF? GO - Lvo.v / Reo) (2.72)
Bo 0
where 5
B-V=Byy +Vyxi-V=BY) (2.73)
v=A+ qu» x V / d5® - (2.74)

Since in Eqs.(2.32) and (2.40) there are no terms corresponding to G(3)
in Eq.(2.57), we immediately find from Eq.(2.72)

5 o .
nom; (3t + Boz x V- V) y=-V(P+P) (2.75)
10A P,
par vl (¢ - —) m (2.76)

where Eqs.(2.47), (2.54) and (2.73) are used. Hereafter the indices for the
order of A-expansion are sometimes omitted.

In Eqs.(2.36) and (2.45) the term corresponding to G®) come form the
first term in the RHS, which has the expression

VB2 x B
—r—

Here C also has the common form

.c. | (2.77)

C = Vyx+ 0()\Y) (2.78)
where x is O()?) and satisfies
' B - Vy = O(M). (2.79)

Since Eq.(2.79) has the form of the magnetic differential equa.tlon we obtain
from (2.68)

x®(r,0,%,2) = _Bi /z dZV 1 8(r,6,7) - V1 x@(r,6, 2) +w®(r, 6, z) (2.80)
. o YO
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where w(® denotes an arbitrary function of O()®) which is independent of 7.
We find that the contribution of Eq.(2.77) to the right-hand side of Eq.(2.72)

is
B x B @ . 2% B @)
(—-—VB x=. Vx) — —-1; Vo . V/o dz (—VB X2, Vx)

Bt B?
1 2 s
= ——2-VxxVQ+—2-Vxx VB (2.81)
By B}
where |_|__
2z |V[? '
Q= E + Bg . (2.82)

Equations (2.27), (2.28) and (2.80) have been used in the derivation of
Eq.(2.81). The contributions from other terms in Egs.(2.36) and (2.45) are
O()\*) and written as

B nom;c [ 0 2 . ~
ﬁv x K = Bo (at'l'ZXVF V)V_LF— B VJ_-(zXVR-VVJ_F)
(2.83)
_. = — 2.8
5 VxW B ((% ym V )B (2.84)
w
- _ B
5 -VxB Bosz( ) VB~ (2785)

The last term in the right-hand side of Eq.(2.83) comes from the gyroviscos-

ity term of (2.54). Then using Eqs.(2.81)-(2.85) and applymg Eq.(2.72) to
Eqs.(2.36) and (2.45), we obtain

J . 1 . ~
nNom; (E'*‘ZXVF'V) V?LF—’w—a'Vl(zXVP.VV_LF)

1 .
= 'EBOVIIJII +V(P.+P)xVQ-2 (2.86)

0 c . B, i BP
[at EZ*V(¢"noe)'V] (ETE)

_ c di nic®_, BP
- Boz ( noe> V- V” (U” noe) i V Bo

(2.87)

19



where we used the relation Inn = Inng +1n(1 + 7i/ng) =~ 7i/ne + const.
According to the equation of state (2.21), the density and the pressure
are related by

Py =7Taoft (o =e,1) (2.88)

where T, = Pao/no = const. Equation (2.88) is required to close the set of
equations. Its validity should be examined by experimental results.

- Now we have obtained a closed set of the reduced two-fluid equations
which consist of

7] .~
nom; | 57 + '—C'-?:' xV¢-V ]y =-V(P.+F) (2.89)
ot By .

9 3
nom; (—+ ExVF- v) ViF -2V, .(:x VB-VV,F)

ot »
. e |
= ZBOV"J” +V(P.+P)xVQ-2 (2.90)
104 P,
prrad (¢ - noe) —m (2.91)

By no 0€ 4w “LB_O
(2.92)
where
P, =4 Taoft (@ =e,i) (2.93)
F=— (qs + 5 ) (2.94)
0 Np€
L B,

P.+P=-—-B* 2.9

+ 47rB (2.95)



Jy = —EViA (2.96)

9 1 . o
V" = 5; + FOV’(,b xz-V (2.97)
Y= A+—LViI>xV/2dE<I>-£ (2.98)
230
[vep
Q= Ro iy Mt - (2.99)

From Eqs.(2.89)-(2.99), we find
9
ot

= —mJi —m (—|VLBB|)

t ePe + i-Pc' 72 Bﬂ2
— VJ_ . {nom (’U" + |VJ_F| )‘U + [7_()2—'70 (l) + __.__] ve.l.}
o 8w

3 P tR N 2
(e 6+ [VLFP) + (B [94p) + T 00 (%)}
0

-V {f’ivn +P. (Uu - EJL) } — Vi(pJy) + V- (%%—VLA)

Vo { - p(Bt BV x 2} 4 Vo { S (B2 - )V x 1)
0

T'LoCBo

' 0
V- F
4+ Vi {nom (at

C
+vg - V_L) V_]_F} (Z’L )2V_L : (BﬁV_LBﬂ);
(2.100)

where v, is given by Eq.(2.46) and

vg = —3 x V. (2.101)
By

Integrating Eq.(2.100) and assuming that there is no contribution from the
boudary surface, we have the equation of energy balance

i e Peo + %P (71>
. /d3 {""m (of +1VLFP) + 2 (B’”+|V A + T °( )}
4 2 No

= —/d3:c {n"Jﬁ+nL_ (ﬁ'V*Bﬁl) }, (2.102)
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which corresponds to Eq.(2.22). It is seen that the total energy in the left-
hand side consists of the kinetic, magnetic and internal energy and the right-
hand side represents the Ohmic dissipation. _

We can derive several limiting forms from the reduced two-fluid equations.
Here we employ the normalization of quantltles usually used in RMHD which
is written as

t = (afevy)t, r = ar, z = Ryz,
vV = €vUa0, ¢ = (eaUABo/C)¢, $ = ¢'/2aB,®, (2.103)
B.+ B = (eB}/am)p, A=caBoA, nc*/(4meavg)=1n, | -

where vq = By/+/4mngm; is the Alfven velocity and the variables in the right—
hand side represent the nondimensional normalized quantities. From this
normalization the reduced two-fluid equations are expressed in the following
forms

8
(at + vg - V) Wy=-Vp (2.104)
(%+ TR V) ViF -0V, - (3x Vp-VVLF) =V Jj+Vpx VQ. 2
| (2.105)
57 = Vil — aep) —mdj (2.106)

/3 7 (6t toE V) P= e VQ=Vy(y —aJy) + mVip (2.107)

where . ._
F=¢+o;p, - v, =2 X VF, )
vg =% x Vg, VL =% %X V(¢ — a.p),
o
Vi= o +Vgx:-V, =4+ V<1>xv/dz<1> 3
Ji=-Vi4, Q=22 4|VOPE, e (2.108)
‘ "YePeO . 'YtP
Qe = —————0Q; O =————q,
'YePeo + ’Yi})io 'yePeO + 'YtRO

— ’ o 47['(76 e0 +'Yt zO)

*= awy;’ p= .~ B2 )
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Here wy; = \/4mnge?/m; is the ion plasma frequency. . and o; represent the
drift parameters which measure the effects of the electron and ion dlamag-
netic drift, respectively.

In the hrmt of 8 = 0 the equation of parallel flow, Eq.(2. 104) is decoupled
from the other equations (2.105)—(2.107) and they construct the closed set
of equations for the three field variables ¢, A and p. Furthermore in the case .
of @ = 0, the RMHD equations are obtained as :

(gt +v, - V) V_,_qS Vidy + Vp X VQ Z (2.109)
- 04 | |

5 = Ve —mi (2.110)

5 . :

(3t +vg- V)p=‘0. ' | (2.111)

Next let us consider the electrostatic case where 0A/dt is negligible. The-
generalized Ohm’s law Eq.(2.91) yields

T. o ed
Jy= = (-—0' — E) (2.112)

Here an isothermal assumption for electrons (v, = 1) is employed. In order
to study the drift waves it is convenient to use the following normalization

wet =1, z=p,2,
v = c,, e¢/T. = ¢, (2.113)
fifng =7 +n,

where p, = ¢, /wg, ¢, = \/T./m; and 7 represents the stationary part which
has a gradient in the radial direction. Neglecting the ion temperature and
the parallel fluid velocity v, we obtain from Egs.(2.90), (2.92), (2.112) and
(2.113)

(gt-i-szgb v)v ¢——C|:V||(n—¢)+anVQ-2 (2.114)

(-{%+2xV¢-V) (n+7) = ceV (n—¢)+V(n— ,Bl::cc
(2.115)
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where Vii7, Vit x VQ - 7 and V17 are neglected and 1+ f =~ 1 is used.
Here w. = eBo/m.c, v = noe’n/m. and v, = nge’ny/m, are the elec-
tron cyclotron frequency, the parallel and perpendicular electron collision
frequency, respectively. Equations (2.114) and (2.115) are the Hasegawa-
Wakatani equa.tions[27] in the case that the curvature of the magnetic field
is included.

For small 7 the Boltzmann distribution n = ¢ may be assumed due to
Eq.(2.112). Then subtracting Eq.(2.115) from Eq.(2.114) yields

Ve

e

(% +2xVé -V) (Vig—g¢p—7—Q) = V3 ¢. (2.116)

which is similar to the Hasegawa-Mima equation.[281 :

So far the reduced equations have been derived for the stellarator /heliotron
plasmas. If the magnetic scalar potential ¢ is dropped from Eqgs.(2.98) and
(2.99), we can immediately obtain the expressions for the tokamak plasmas.
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2.4 Conclusions

In this chapter, the reduced two-fluid equations have been derived and
their properties are discussed. They are suitable to describe large aspect ratio
toroidal plasmas in stellarator/heliotron or tokamaks. The reduced two-fluid
equatins (2.89)-(2.99) are given by applying the stellarator ordering with
the expansion parameter A = €!/2 to the two-fluid plasma equations (2.14)-
(2.21). They include four field variables, i.e., the electrostatic potential ¢,
the parallel component of the magnetic vector potential A, the pressure p (or
density n) and the parallel fluid velocity vj. The time evolutions of them are
governed by the vorticity equation, the generalized Ohm’s law, the pressure
equation and the parallel component of the equation of motion. The reduced
two-fluid equations conserve the total energy in the case of no dissipation.
Compared with the one-fluid MHD model, the effects of the ion and electron
diamagnetic drift due to respective pressure gradient are included in the
vorticity equation and the generalized Ohm’s law. The parallel ion flow,
which is not included in RMHD, appears in the pressure equation through
the compressibility, which describes the propagation of the ion accoustic wave
along the magnetic field.

In the low beta limit, the parallel ion flow term vanishes in the pressure
equation and the equation of the parallel flow is decoupled from the other
three equations, which construct the closed set of equations for the three field
variables. Furthermore in the case of no diamagnetic drift terms, the three
field equations are reduced to RMHD. In the electrostatic case, assuming
cold ions and no parallel ion flow, the reduced two-fluid model gives the
Hasegawa-Wakatani equations, which consist of the vorticity and density
equations for the two field variables ¢ and n. Furthermore assuming the
Boltzmann distribution for small 7, we can also obtain the Hasegawa-Mima
type equation with the one field variable ¢.

Thus we can state that the reduced two-fluid model derived in this chapter
is a generalized one which includes the various types of reduced fluid mod-
els. In the following chapters, the problems of linear instabilities, nonlinear
behaviors and turbulent transport are studied based on this model.
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Figure 2.1: Coordinate system for the reduced two-fluid model.
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Chapter 3

Ion Diamagnetic Drift Effects
on Ideal Interchange
Instabilities

3.1 Introduction

In this chapter, effects of ion diamagnetic drift on ideal interchange in-
stabilities are studied based on the model equations derived in Chapter 2.
The interchange instability is one of the typical MHD instabilities and it is
driven by pressure gradients combined with bad magnetic field curvature. It
is important especially in stellarator /heliotron configuration since the aver-
age bad curvature or magnetic hill usually appears in the edge region. It
is predicted by the numerical studies based on RMHD that the ideal inter-
change modes with low mode numbers give the beta limit on Heliotron E
plasmas. It was shown that the beta limit depends on the pressure profile
and (B)imit ~ 2% is expected in Heliotron E for p(r) = p(0)(1 — (r/a)?)?,
where (8)jimit is the average beta limit obtained by the ideal MHD stability
analysis.[37] Here our concern is whether the ideal interchange modes can be
stabilized completely or not and how the mode structure is changed by the
effects of the ion diamagnetic drift for (8) > (B)iimit-

In Sec.3.2 the condition for the ion diamagnetic drift required to stabilize
the interchage modes is estimated. We have interest in plasmas with ion
temperature higher than electron temperature and investigate the effects of
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the ion diamagnetic drift purely and neglect the electron diamagnetic drift.
Also the ion parallel flow in the reduced two-fluid equations may not be im-
portant since the interchange mode is localized by the magnetic shear effect
in heliotron configuration. In Sec.3.3 the linearized reduced two-fluid equa-
tions are numerically solved. The dependence of the linear growth rate and
the mode structure on the magnitude of ion diamagnetic drift is given. The
numerical results are compared with the analytical expression. Improvement
of beta limit due to the ion diamagnetic drift is quantitatively discussed in
the case of Heliotron E. Finally conclusions are given in Sec.3.4.

28



3.2 Model Equations and Linear Theory

Since our concern is in the effect of the ion diamagnetic drift on the ideal
interchange instability , we neglect the terms of the electron diamagnetic
drift (. = 0, @ = o) and dissipation (g = n. = 0) in the reduced two-fluid
equations (2.104)—(2.108). As we assume J to be small, the equation of the
ion parallel flow is decoupled from other equations. It is convenient to write
the vorticity equation in terms of the electrostatic potential ¢ instead of the
stream function F. Thus we obtain the model equations which contain three
field variables ¢,A and p as follows

0
(—"+‘UE -V) Vig+Vy-(vp;-VV1) =V Jj+Vpx VQ-2 (3.1)

ot
0
0
—+vE-V|p=0 (3.3)
where
vg=2xV¢ vp; =z x Vp )
Jy=-ViA a = c/awy;
) .
V=g, +V¢x2-V & (3.4)
¢=A+%V<I> X V/zdz(fb-é
0
Q = 2z + [VOP.

/

Here we have used the normalization given in (2.103). Compared with the
RMHD equations the only difference is that the vorticity equation (3.1) con-
tains the term of the ion diamagnetic drift. The magnitude of the additional
term is characterized by the drift parameter .. The interchange instability is
driven by the term of the pressure gradient Vp combined with the magnetic
curvature V{2 in the vorticity equation.

Equations (3.1)—(3.3) conserve the same form of energy as RMHD

d [ 5 [IVig] | VLA _
dt/dx( = —ap) =0 (3.5)
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where we assumed that there is no contribution from the boundary surface.
Let us first consider the equilibrium state where ¢ =0 and 8/0t = 9/0z =
0. From Eq.(2.104), we find the pressure to be a function of the poloidal flux

¥

p=p(¥) (3.6)
Using Eq.(3.6) the vorticity equation in the equilibrium state gives
dp
ViA=-Q-—+G 3.7
A= + G(4) (3.7)

where G denotes the arbitrary function of ¢. The equilibrium equation (3.7)
was first derived by Greene and Johnson and it corresponds to the Grad-
Shafranov equation for the axisymmetric system.

Next we consider the linear stability problem. Linearizing Eqs.(3.1)—(3.3),
we obtain

0
EV1¢1+OZV_L(2? pro-VVl)qSl = —V“()V?LAl +VJ0 X VA1’2A+VP1 xVQ-z
, (3.8)
7741 = —Viods (3.9)
.a_tpl = Vpo X V¢1 -z (310)

where the subscripts 0 and 1 refer to the equilibrium and perturebed quanti-
ties respectively. From these equations we have a linear homogeneous equa-

tion for ¢,
. ¢ .
—_— 2 ——
6t2V’L¢+ 204 5 S¢ (3.11)

where a subsript 1 for ¢ is omitted and linear operators S and A are defined
by '

S¢ = V"oViV”o(}S —>VJ0 X V(V||o¢) 2—=VQx V(Vpo X VdJ . 2) ¥ (3.12)

62

Ap = %vl (3 X Vpo - VV.14). (3.13)

Here we employ the fixed boundary condition i.e. ¢ = 0 at the plasma surface
r = 1. It can be demonstrated that the linear operators S and A have the
following symmetric and antisymmetric properties

| / PrxSé = / LzpSy (3.14)
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/ BryAd = — / PrpAx (3.15)

for any choice of functions ¢ and x subject to the boundary condition. It
can be shown by using these properties that the Lagrangian formulation is
possible and the linear equation (3.11) can be derived by using the variational
principle

" = 3
6 [ Ld=s | dt/d:c

Then the linear equation (3.11) corresponds to the Euler-Lagrange equation
for the variational principle. Using the Legendre transformation for the La-
grangian L yields the conjugate field variable 7 for ¢

9¢

Vi— + 20!¢A

= ¢s¢} =0. (3.16)

- _y2 9% _
=-Vi g aAd (3.17)
Then the Hamiltonian H is written as
H = /d3 {vl +¢s¢}
A _ 2
= 5 / &a {IVlVf(w+aA¢)| +¢s¢} NG

where V7? denotes the inverse operator for the two dimensional Laplacian
V3. It is easily shown that Eq.(3.11) is expressed by the Hamilton’s canonical
eqations and that the Hamiltonian H is constant in time. '

In the case of ¢(z,t) = ¢(2)e™*, Eq.(3.11) can be written as an eigen-
value equation

V2 ¢ + 2iwa A+ Sp =0 (3.19)

where an eigenvalue w and an eigenfunction ¢ are generally complex-valued.
Multiplying Eq.(3.19) by ¢* and integrating in the plasma region give

Kw® = 2aVw—-W =0 (3.20)

where
= l 3 2 —_ 1._ 3 * _]_' 3 *
= 2/d z|Vi¢%, V= 5 /d cd* Ap, W = > /d z4*SH. (3.21)
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Obviously K is a positive real number. Equations (3.14) and (3.15) show
that V and W are real. W corresponds to the energy integral in the ordinary
linear MHD stability analysis. From Eq.(3.20)

|4 A |
= o= 2 —. 3.22
v= "‘K*\/O‘ (%) "% (3:22)
If @ = 0 or in the case of RMHD, the sign of W determines the stability and
this corresponds to the energy principle. However in the case of « # 0, even
when W is negative, the system can be stable if

V2 W
2 — ——
" (I() + = > 0 (3.23)

which is directly related to the finite Larmor radius stabilization of the in-
terchange mode.

Now let us consider the cylindrical configuration where the magnetic cur-
vature due to the toroidicity is neglected but the average magnetic curvature
of the helical field described by d§2/dr is retained, where § is assumed to
depend only on the radial coordinate r. Equilibrium quantities such as po,
Jo, Ap and 1y are also functions of r alone, which is consistent with the
equilibrium ‘equation (3.7). Using a Fourier mode ¢(z) = #(r)e'™®~** in
Eq.(3.19), we obtain the following linear eigenmode equation

a) (£ 14 ) m (1)) ( (9
womwa rdr ) \dr2 " rdr r2 o dr r dr rdr T

£ 1d m dJi dpo d92
= kll(—+-——%)(kxl¢) i P =24, (3.24)

dr?  rdr r dr’ 12 d

From Eq.(3.21) we have
1 dg |?

dr |22

WL T.T' { I
vV = / rdr mdp° {
1 d

W = 7r/0 rdr{ y

K

2
+ %l¢|2} (3.25)
¢

2
+ 2ol - ﬁw} (3.26)

dJ, dpe d2
+(k|| +lc||m 0+m ko )|¢I2}

r dr r2 dr dr
(3.27)
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where ky = m¢ —n and ¢« = —(1/r)(dyo/dr) denotes the rotational trans-
form of the equilibrium field. The first term of the integrand in Eq.(3.27)
represents the stabilizing effect of the magnetic field line bending.

In order to minimize W, we consider the mode localized only in the
neighborhood of the mode resonant surface, r = ry, which is defined by
k= 0or¢=n/m. If we put r — ro = z and k) = kjz, we find

W~ m,/dz {k{ﬁ l%(m)

2 krz .
+ k3phg! |¢|2} > 7r ( ; kzpan') [ dalgp?

(3.28)
where kg = m/ro, py = dpo/dr|;=,, and Q' = dQ/drl, =r,- In the last part,
Schwarz’s inequality is used. From the energy principle, (3.28) means that
in the case of @ = 0 or in the ideal MHD the local mode is stable if and only
if the following inequality is satisfied

4 + k2phQY > 0. (3.29)

This condition is equivalent to the Suydam criterion.38] In terms of the
physical parameters (see Eq.(2.103)), the criterion (3.29) gives

1({d, \° 4rdpdQ
s ————>0. 3.
(dr In ) + B2 dr dr >0 (3:30)

It is noted that the mode number disappears in this expression. Here we are
concerned with the case where the Suydam criterion is violated so that the
system is MHD unstable. The eigemode equation (3.24) is rewritten for the
localized mode as

d¢

(72 + kl’f:cz)—-— + 2kt e == — k3 (ppQ + kifz*)¢ =0 (3.31)

where
V% = = + wyw. (3.32)

Here w,; = akppfy is the normalized ion diamagnetic drift frequency and -+,
denotes the growth rate in the MHD limit o = 0. In deriving Eq.(3.31), we
have neglected the terms of dJy/dr and rd(r~'dp,/dr)/dr in Eq.(3.24) since
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equilibrium quantities, such as Jy and pg, vary slowly in the radial direction.

Equation (3.32) yields
1
W=y [w,.,,' +\/w? — 4'73] (3.33)

which shows that the interchange mode is stabilized by the effect of the ion
diamagnetic drift if
whi > 470. (3.34)

Next let us calculate the eigenvalue 3. If we put z=(0/k{) in Eq.(3.31),
we have
LY 9edd

(£+1) e 262 £t (A= 12 =0 (3.35)
where 2 'y
o .10 Po
= —— = — . 6
A kl,lpoQ (rot)? (3.36)
koo Yo
ky (rot) (3:37)

The assumption that the Suydam criterion is violated implies A > 1/4. This

eigenvalue problem is studied by Kulsrud(30! using the method of the asymp-
totic matching. The boundary conditions that ¢ vanishes at £ = 0o deter-
mine the largest eigenvalue v, which is given by

po= H(4X)
_ 2 1. e 1 —mujay 3
= 16.exp{— [3a,rgI‘(1+§zu)-—argI‘(1+zu)-—tan (em™ )—4—%]}
u
(3.38)

where u = v/4XA —1 and g < 1 is assumed. Equation (3.38) is derived in
Appendix 3.A. Equations (3.36)-(3.38) yield the largest eigenvalue -y,

(=po)%'
Yo = T‘oLIH (4 (7‘0[,')2 . (339)
Thus the stability condition (3.34) is rewritten as
arkgpg (=pp)
>2H [ 4 . 3.40
rot! >2H (rot')? (3.40)
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This condition shows that high m modes can be stabilized more easily than
low m modes. From Eqs.(3.31) and (3.32), we find that the profile of the

eigenfunction is unchanged with increasing c.
Equation (3.10) gives

Pr=———== (3.41)

which shows that in the MHD limit @ = 0 the phase difference betweem
p1 and ¢ are m/2 since w=ivy, whereas for large o the eigenfrequency w

approaches w,; and results in p; ~ —(1/a)¢ which implies the Boltzmann
distribution of ions under the isothermal assumption.
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3.3 Numerical Results

_ In this section we solve the linear eigenmode equation (3.24) numerically,
which is given below again

. mdpo (2 1d m? m [ d [1dpg d (¢
(‘*’ ‘““75) (mﬁa‘r—z)‘ﬁ‘““{ ar ( d)}{d— (‘)}

&? 1d m? m dJy m? dpg dQ
=t (i - T ) - WD - AT (o)
Here the parallel wavenumber is
ky=mi—n. . (3.43)

Since we consider a currentless plasma, we put Ag = Jo = 0 and the rotational
transform : is determined only by the external helical fields. As is shown in
Appendix 3.B, the average magnetic curvature may be written in terms of ¢

as
dQ2 Nel d

&= Tz
where [ is the pole number, N is the toroidal pitch number and € is the inverse
aspect ratio. In the numerical integration of the eigenvalue problem, we used
the shooting method to satisfy the boundary condition for an appropriate
eigenvalue. Here we employed the fixed boundary condition at » = 1 where
the eigenfunction ¢ vanishes. Using the fact that the eigenfunction has the
form ¢ o 7™ in the neighborhood of r = 0 for the poloidal mode numer m,
the equation is integrated from r ~ 0 to » = 1. The eigenvalue w is obtained
by adjusting the solution to satisfy the boundary condition at » = 1 based on
a root-finding subroutine called Brent’s method. The results of the shooting
method were also compared with those obtained by solving the initial value
problem of the linearized equations (3.8)—(3.10). '

For the Heliotron E plasmas we put | = 2,N = 19,¢ = 0.1 and the
minor radius of the torus a = 20cm. The rotational transform due to the
external helical fields is assumed as « = 0.51 + 1.69r%®°. We also assume the
equilibrium pressure to take the form

po(r) = (B(0)/2€)(1 — r*). (3.45)

(3.44)
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We studied the stability of this equilibrium against the m = 1/n = 1 mode,
which is the most dangerous mode in Heliotron E since it has the mode
resonant surface at the middle of the plasma minor radius, r = 0.61, and low
m modes are more unstable than high m modes as seen in Sec.3.2. Figure
3.1 shows the profile of the rotational transform and the location of the
m = 1/n = 1 mode resonant surface. The stability beta limit determined by
the Suydam criterion (3.29) at » = 0.61 is 8(0) = 1.62%.

Figures 3.2 and 3.3 present plots of the numerically obtained linear growth
rate (Ro/va)y for the m = 1/n = 1 mode versus the central beta value
F(0) and the drift parameter & = c/awy;, respectively. The results of the
analytical treatments for the slab geometry given in Sec 3.2 are also plotted
for comparison in Fig.3.2. We see that the analytical expressions for the
localized modes agree with the numerical results for the cylindrical geometry
in the dependence of y on $(0) and o though the difference in the magnitude
of v occurs due to the nonlocal properties of the eigenfunction as is seen
later in Figs.3.6 and 3.7. It is noted that the analytical treatments become
more applicable as the poloidal mode number m increases because the radial
width of the eigenmode is inversely proportional to m as is given by Eq.(3.59).
When £(0) becomes near the Suydam limit, the mode structure in the case
of @ = 0 is localized sharply in the vicinity of the resonant surface and
the growth rate becomes close to that given by Eq.(3.39). According to the
results of the shooting method we find that the stability beta limit determined
by the m = 1/n = 1 ideal interchange mode in the ideal MHD case of o =
0 is #(0) = 2.2%. This value is determined in the numerical calculation
using 10,000 meshes equally devided in the radial direction. Its value seems
to decrease close to the Suydam limit if we use smaller mesh sizes near the
mode resonant surface. Figure 3.4 shows the stability beta limit as a function
of the drift parameter . The beta limit can be improved by including the
effect of the ion diamagnetic drift and its value becomes 8(0) = 5.1% in the
case of & = 0.5 which corresponds to the deuterium plasma with the average
density n = 10¥%¢m™2 and the minor radius a = 20 cm.

Figure 3.5 shows the contour of the eigenvalue w in the complex w-plane
for 0 < o < 0.6 and S(0) = 5.5%. It is found that, for the unstable region
v = w; > 0, the eigenvalues obtained by the shooting method also draw a
quarter of the circle w? + w? = 42 as predicted from Eq.(3.33) where w, and
w; are the real and imaginary parts of w, respectively. Here v, denotes the
linear growth rate in the ideal MHD limit @ = 0. In Figs.3.6 and 3.7 we have
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the contours and the profiles of the eigenfunctions ¢, p; and A;, respectively,
which are numerically obtained for « = 0 and & = 0.5 at B(0) = 4.5%.
Here the interchange mode is unstable for & = 0 and stable for « = 0.5. As
expected from Eqgs.(3.9) and (3.10), p; and A; have the same phase and the
phase difference between ¢ and p, is /2 for the MHD unstable case, which
goes to 7 as the ion diamagnetic drift stabilizes the interchange mode. This
relation corresponds to the realization of the Boltzmann distribution for ions
provided that the temperature is constant. We see from Fig.3.7 that the
profiles of the eigenfunctions do not depend much on the drift parameter o
compared with the phase differences, which is already explained by the local
mode analyses in Sec.3.2. We note that the eigenfunction ¢ has the peak at
the mode resonant surface and its radial width is of the same order as the
plasma minor radius. In spite of this fact, the local mode analyses given in
. the previous section are still useful to explain the numerical results obtained
for the low mode number.
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3.4 Conclusions

We have studied the stabilizing effects of the ion diamagnetic drift on the
ideal interchange instabilities in a helical system both analytically and numer-
ically. Our model equations differ from the RMHD for high beta stellarator
plasmas with 8 ~ ¢ in that the vorticity equation has the term corresponding
to the ion diamagnetic drift, the magnitude of which is characterized by the
drift parameter @ = c/aw,;. The Lagrangian or Hamiltonian formulation is
shown for the linearized equations of our model though the energy principle
for the linear stability is not available. The local mode analysis gave the sta-
bility condition (3.40) which states that the interchange mode is stabilized if
the magnitude of the ion diamagnetic drift frequency becomes greater than
twice the linear growth rate in the ideal MHD or oz = 0 case. ThlS result
is equivalent to that obtained by Rosenbluth et al.29 or Kulsrud.B0 The
eigenvalue problem was numerically solved for the model configuration of
Heliotron E by using the shooting method. The m = 1/n = 1 interchange
mode, which is the most dangerous one in the Heliotron E configuration, was
examined. The eigenfunction ¢ has the peak at the mode resonant surface
and its radial width is of the same order as the plasma minor radius when
the beta value is much larger than the Suydam limit. However the dispersion
relation given by the local mode analysis agree with those obtained numeri-
cally in the dependence of the eigenvalue w on the central beta value 3(0) and
the drift parameter . The local dispersion relation can be applicable to low
poloidal mode number cases with reasonable accuracy especially for smaller
beta values close to the Suydam limit. The phase difference between ¢ and
p1 is w/2 for the ideal MHD unstable mode. When the ion diamagnetic drift
is included, the interchange mode is stabilized by the increase of o and the
phase difference goes to 7 at the marginal point, which implies the realiza-
tion of the Boltzmann distribution for ions under the isothermal assumption.
This is an explanation of finite Larmor radius stabilization for the .inter-
change mode. In the Heliotron E model configuration with the equilibrium
pressure profile of the form p(r) = p(0)(1 — (r/a)?)?, then the stability beta
limit determined by the m = 1/n = 1 ideal interchange mode is (0) = 2.2%
in the ideal MHD case & = 0. It is improved up to B(0) = 5.1% in the case of
o = 0.5 which corresponds to the deuterium plasma with the average density
n = 10¢m™2 and the minor radius a = 20cm.
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3.A Derivation of Eq.(3.38)

The method of asymptotic matching is applied to the eigenmode equation
d%¢ .
(+1)— et 26— +(A—p2)gp=0 (3.46)

with the boundary conditions that ¢ = 0 at ¢ = oo. Since Eq.(3.46) is
invariant with the transformation £ — —¢&, both the even and odd modes
exist. Multiplying Eq.(3.46) by ¢* and integrating over the whole region

yield |
/_de{(em)lgfg —.(/\—u2£2)|¢|2}

oo 2
| de {\s%*g 8 +(3-2) 18P+ || + u2£2|¢12}
= o. (3.47)

_¢

Here if we use the following inequalities

/_“ds{d—z

dg
> d€ |u€ l91°| >

+u2€2|¢|2} > /_ d52| ?u&ﬁ*
l [ aeuee

1

—u [ delgf  (3.48)

then we find

and that y — +0as A — 1/4 4+ 0. We assume that ) is close to 1/4 so that
p# < 1. In the region 0 < £ <« 1/p, we have Eq.(3.46) as

d¢

¢
(€ +1)— i +2g 2 —v(v+1)p=0 (3.50)
where we have used A = —v(v + 1) and defined
' 1 1 :
=——4 —i 3.51
v 5 + 51U (3.51)
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u=vAr—1. (3.52)
The solution to Eq.(3.50) is given by

¢ = AP,(i€) 4+ BQ,(if) ' (3.53)

where P, and Q, are the Legendre functions. For the even mode, the condi-
tion d¢/d€]¢=0 = 0 yields

S bRl eroom(@) o
Substituting this into Eq.(3.53) we have the asymptotic form
¢ = const.£ M2 cos [g— log & + %u log2 + 2argT (1 + %zu) —arg I'(1 + iu)
—tan~!(e™™/?) — g] (3.55)
for 1 € £ < 1/p. Similarly for the odd mode we use ¢|¢=o = 0 to obtain
o (G g) o= () s
and for 1 K€ £ 1/p
¢ = const.£ M2 cos [%logf + %u log2 + 2argT (1 + %zu) —arg['(1 + u)
+ tan~ (e ™/?) — éw] (3.57)

4
In the region of £ > 1, Eq.(3.46) is written as

¢ .49

227 . 2¢2] 4 — .
Ed62+2§d§ V(v +1)+p2€ p=0. (3.58)
Its solution vanishing at £ = +co is given by
¢ = £V K, 41 a(pf). (3.59)

For 1 € £ € 1/p Eq.(3.59) takes the form

1
¢ = const.£ /2 cos glogf—%- g—logg —argl (1 + Ezu) + %J . (3.60)
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By comparing Eqs.(3.55) with (3.60) for the even modes

p = 16exp {% [3 arg I’ (1 + %zu) —arg [(1 + iu) — tan™!(e""*/?)
3
-7t mr]} (3.61)

is obtained, where n =0, —1,—2,--- since u — +0 as u — +0. Similarly by
comparing of Eqs.(3.57) with (3.60) for the odd modes

2 1
p = 16exp {— [3 arg ' (1 + Ezu) — arg I'(1 + 4u) + tan~!(e”™*/?)
u
5
-7t mr] } - (3.62)
is obtained, where n = 0,—1,—2,.-- for the same reason as in Eq.(3.61).

The largest value of 4 is given for n = 0 in the even mode as

= 16exp {g [3 arg’ (1 + %zu) — arg (1 + tu) — tan}(e™™*/?) — % ]}
u .
(3.63)
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3.B Magnetic Flux, Curvature and Rotational
Transform due to External Helical Fields

The scalar potential for the external helical fields ® is subject to the
Laplace’s equation as stated in Sec.2.3

V29 = 0. (3.64)

Since the uniform toroidal field and the other fields independent of z are
separable from the helical fields, the general solution to Eq.(3.64) is given by

o0

=Y i 1, Ii(phr) sin(lf — phz + ¢y,) (3.65)

l==o00 p=1

where I; is the modified Bessel function and ¢;, denotes an arbitrary phase
angle. In terms of the major radius of the torus Ry and the toroidal pitch
number N, we can write h = N/Ry. In this Appendix all quantities are
represented by the physical parameters instead of the normalized ones. From
Eq.(2.98) we have the magnetic flux due to the helical fields as

by = 2BOV<I> xv/ dz® - 3
= 2BO Z (I)IP mp Il (ph.f‘) (phf‘) COS[(I - )9 + ¢Ip - ¢mp]'
l,m,p

(3.66)

The scalar potential for the magnetic curvature due to the helical fields is:
obtained by Eq.(2.99) as

Ve[
Q, =
h Bg
Im
= Bg ,E D1 @rmpp”h® |1 (phr)I, (phr)+( zhzrz)fz(th‘)Im(phr)]
7L,P

x cos[(I = m)8 + d1p — Pynp)- (3.67)

It is seen from Eqs.(3.66) and (3.67) that both 1, and Q5 depend only on r
if we consider the case where, for each p; ®;, # 0 only for a single value of

43



I such as in a helically symmetric system. Then we can write the rotational
transform due to the helical fields as

Ry d
w(r) = —@03%. (3.68)

Furthermore if we assume that ®;, # 0 only for p = 1 and a single value of [
then we find from Eqgs.(3.66) and (3.67)

19}

- _ 1 '
Y = 2B, Ii(hr) I (hr) (3.69)
_ RO [ 12 2 h1ld, 6 , _
Using Eqs.(3.68) and (3.70) we obtain
d% h 1d, ,
O TR ) (3.71)
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Figure 3.1: The profile of the rotational transform and the location of the
m = 1/n = 1 mode resonant surface.
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Figure 3.2: Growth rate of the m = 1/n = 1 ideal interchange mode as a
function of the central beta value #(0) for « = 0 and a = 0.5. Solid lines are
obtained by the shooting method for a cylindrical configuration and dashed

lines are given by Eqgs.(3.33) and (3.39).
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Figure 3.3: Growth rate of the m = 1/n = 1 ideal interchange mode at
B(0) = 5.5% as a function of the drift parameter o = c/awy;.
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Figure 3.4: Stability beta limit 5.(0) determined by the m = 1/n = 1 mode
as a function of the drift parameter « = ¢/aw,;.
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Complex w-plane

-0.3

Figure 3.5: Locus of the eigenvalue of the m = 1/n = 1 mode at §(0) = 5.5%
in the complex w-plane with increasing a. The eigenvalue is normalized as
Rowfvs = w.
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Figure 3.6: Contours and profiles of the eigenfunctions ¢, p; and A; of the

m = 1/n = 1 mode for §(0) = 4.5% and o = 0. Dashed lines denote the
contours with negative values.
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Figure 3.7: Contours and profiles of the eigenfunctions ¢, p; and A; of the

m = 1/n = 1 mode for #(0) = 4.5% and « = 0.5. Dashed lines denote the
contours with negative values.
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Chapter 4

Linear Theory of Resistive
Interchange Modes Coupled to
Resistive Drift Waves |

4.1 Introduction

In the previous chapter we have discussed the stabilizing effect of the ion
diamagnetic drift on the ideal interchange instability. Even if the ideal MHD
modes are stable, the resistive MHD instabilitiest3?! such as tearing mode,
rippling mode and resistive interchange mode or drift waves destabilized by
trapped electrons, toroidal effect and resistivity exist. They have usually
smaller growth rates than the ideal modes and play an important role in the
relaxation phenomina such as sawtooth oscillations and disruptions or in the
anomalous transport observed in magnetically confined systems.

Here our concern is in the resistive interchange mode, which is supposed
to be a cause of turbulence and the resultant anomalous transport in the edge
region of stellarator /heliotron. In this chapter we study the linear theory of
the resistive interchange modes coupled to the resistive drift waves under the
electrostatic approximation by using the Hasegawa-Wakatani equations in-
cluding the average magnetic curvature given in Sec.2.3. This approximation
is valid in the edge region where the beta value is low. Chen et al.[401-142]
showed that the resistive drift waves are stable in slab geometries with mag-
netic shear, while they become unstable in toroidal geometries. Here it is
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found that, if the average magnetic curvature due to the helical fields is in-
cluded, the radially localized instability occurs even in slab geometries by the
coupling of the resistive interchange mode and the resistive drift wave. Par-
allel ion motion becomes important in the region far from the mode resonant
surface and contributes to the localization of the drift wave. However it is
shown that in our model the average magnetic curvature causes the localiza-
tion of the mode around the resonant surface and therefore the ion parallel
motion is neglected in our model.

This chapter is organized as follows. In Sec.4.2 we linearize the Hasegawa-
Wakatani equations with the average magnetic curvature to obtain the linear
eigenmode equation and derive the dispersion relation analytically by using
the slab approximation. In Sec.4.3 the eigemode equation is solved numeri-
cally and compared with the analytical results. Finally conclusions are given
in Sec.4.4.
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4.2 Model Equations and Linear Stability'
Analyses B |

We consider low frequency electrostatic perturbations in an inhomoge-
neous collisional plasma in a magnetic field with curvature and a shear. We
assume electrons to be isothermal. Ions are treated as a two-dimensional
cold fluid where parallel ion motion is neglected. Here we use the Hasegawa-
Wakatani equations generalized into helical systems where the average mag-
netic curvature due to the helical field exists, which are given in Eqs.(2.114)
and (2.115) and written again,

. | 1, .
(b—t-+sz¢1_V)Vi¢=;Vﬁ(n—¢)+anVQ-z_ (4.1)

(%+2 X V¢-V) (n+7)= %Vﬁ(n—¢)+V(n—¢) x V-2 (4.2)
where v = v, /w. and the normalizations described in (2.113) are used.
Since we have the nonzero average curvature without considering a toroidal
geometry, we employ a cylindrical plasma model where all the stationary
quantities such as 7@, Q and the magnetic flux ¢ depend only on the radial
coordinate r. The perpendicular diffusion term in Eq.(2.115) is neglected
since v € f is assumed. If there is no stationary electrostatic potential,
linearizing Eqs.(4.1) and (4.2) and expressing n and ¢ in terms of the Fourier
mode with a frequency w poloidal and toroidal mode numbers m, n, we obtain
the linear response of the density perturbation n to the electrostatic potential

¢,

k= iv(wee —wy)

¢ | (4.3)

ki — iv(w — wy)

and the linear eigenmode equation

_61_2_+1.i_m_2 ¢
dr?  rdr 12 ‘
1 [(1 _ Mg_) - iyw ¢ (4.4)
w w

- kit — wv(w — wy)

where ky = (p,/Ro)(mt — n), wie = (m/r)(—dn/dr) and wy = (m/r)(dQ/dr).

Wye is the normalized electron diamagnetic drift frequency and w, /kg = dS2/dr
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corresponds to the normalized magnetic curvature drift velocity, where kg =
m/r is the normalized poloidal wavenumber.
Here we assume a radialy localized mode around the resonant surface

r = ro, which enables us to use a slab approximation. We use z = r —ry and
k| = kjz in Eq.(4.4), which yields

d? £z? —iz%n

dz2¢ z? — iz} =0 (4:5)
where :
S C) (46)
ki
=1 ey (4.7)
w
— wg(w*c — wg) + kg (48)

o(w—wy)

Since Eq.(4.4) is invariant with the transform z — —z, both even and odd
eigenmodes exist. For z > |zg| Eq.(4.5) can be written as

d? izhn) ,
(g -6+ ) 4= ()

Its solution which vanishes at z = +o0 is given by

¢ = ' 2 HP (ig?z) (4.10)
where Hgl) is the Hankel function and A is defined by

A — = = —izhn. (4.11)

S QSN

Here the real parts of £/2 and X are assumed to be positive. In the region
|zr| € z < |€]7Y/? Eq.(4.10) takes the form

. 2-AEA2 P E-A2
— p—iA7/[2 A A+1/2 —A+1/2 . 12
p=e cosec( W){I‘()\-Fl)x ———I‘(—A-{-l)z } (4.12)
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For 0 < z < |za||n/€|*/* we have Eq.(4.5) as

(d2 L7 U )¢=0 (4.13)

2 " 32 _ g2
dz? = z2 —1iz%

The solution to Eq.(4.13) is

¢=(r?-1)" "{4PL () + B@L(")} (4.14)

where P! and Q! are the Legendre functions and we defined 7 = ze™"/*/zp
and p(p + 1) = —iz%n. The last relation gives

L (1 . )”’" 1 |
p=2A g = (4 icpn) 5 (4.15)
For the even mode, the condition d¢/dz|,=o = 0 yields
B —24e=imu/? 2 T )2
—_—= —imaf2 4.16
AT T(=1/2—-p/2)T(3/2+p/2) °°S( 2 ) (4.16)
and for the odd mode, the condition ¢|,=o = 0 gives
B 2e~tmu/2 2 U
Z_ e~ hI2, 4.17
A T(—p/2TQ+p/2) wsm( ) ) (4.17)

Here we assumed

' 3
—Z<argmg<% (4.18)
in deriving Eqs.(4.16) and (4.17). The asymptotic form of Eq.(4.14) in the

region |zp| < z < |zg||n/€|M? is written as

¢ — W_lle[ (”+1/2)2p —ir(p+1)/4 —p—lmp.+1
I'(p)
Dp=1/2) B T(u+2) | opetinnftn o
—_ e g 7 Kok irpfd p .
+{ I(—u—1)  AT(u+3/2) ©RT
(4.19)
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Since Eqs.(4.12) and (4.19) coincide with each other in the overlapped region
where both the equations are valid, we obtain the following equation

o= tn=2gin(s[2-3/0) gu+1/2, 201 T(=p+1/2)T(u)(—p —1/2)
“R T(u+1/2)T(—p — DT(u + 3/2)

X {1 + w%cot(wu)} = 1. (4.20)

In order to justify the method of asymptotic matching used above, we must
require the inequalities, |¢]}/? < |zg|™? and |€]}/? < |n|/?, to hold. It is
difficult to solve Eq.(4.20) analytically. However approximate results may be
obtained in the weakly collisional limit ¥ < 1. In this case we may assume
|z%] < 1 and therefore |u| < 1 from Eq.(4.15), which gives

B —iz . (4.21)

We focus on the even mode for which we find from Eq.(4.16) and |u| < 1

(4.22)

Substituting this into Eq.(4.20) we obtain approximately the dispersion re-
lation

51/2 — %et31r/4an (4.23) )

where zg, £ and 1) were defined in Eqs.(4.6)—(4.8) and we assumed Realé!/? >
0 and —7/4 < argzp < 37/4. We also assumed

€] < Inl < |za]7 (4.24)

Equation (4.23) reduces to the algebraic equation of the fourth degree in w.
In the limit v — +0, the solution to Eq.(4.23) is written as

T2V wWo(Wee — wy)?

Y e R e — w2t FD)

(4.25)

It is noted that £ o< 1% 7 o v~ ! and |zg|™ o« »~2 in this limit, which
is consistent with Eq.(4.24). Since we may assume w.. > w,(2 + kZ) for
geometrical parameters and expeimental parameters of Heliotron EO) under
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ke < 1, localized unstable modes are predicted from Eq.(4.25). We find
from Eqs.(4.3) and (4.25) that the ratio of the amplitude of the density
perturbation to that of the electrostatic potential is proportional to »~! and
the phase difference between them approaches to 7/2 at the mode resonant
surface.

The reason why the localized modes exist is because the average mag-
netic curvature causes the narrow and deep potential well around the mode
resonant surface in Eq.(4.5), which is approximated in the inner region |z| <

|zr||n/€|H? as

2

U~ ﬁ ~ e~ ™tz pné(z) (4.26)
where —m/4 < argzg < 37 /4 is used. It is shown by Eqs.(4.8) and (4.25)
that the absolute value of 7 can be large for small v if w, # 0. Assuming
that the eigenfunction ¢ is constant in the inner region we find that the
potential well of Eq.(4.26) yields the jump in the logarithmic derivative of the
eigenfunction across the inner region and its value is given by me~*"/*zpn. In
the outer region |z| > |zg||n/€['/? we have the eigenfunction as ¢ o« e*¢'/*=
and the jump of the logarithmic derivative as —2£1/2 where Realé!/? > 0
is assumed. Equating the above two values we obtain the same result as
Eq.(4.23).
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4.3 Numerical Results

In order to check the analytic expressions for the growth rates obtained
in Sec.4.2, the eigenmode equation (4.4) was numerically solved in the cylin-
drical geometry. We used the shooting method to obtain the eigenvalue
w = w, + tw; and the eigenfunction ¢ in the same way as in Sec.3.3. The
results of the shooting method were also checked with those obtained by
solving the time evolution of the linearized versions of Eqs.(4.1) and (4.2).
We employed the boundary condition that ¢ = 0 at the surface of the plasma
r = a. It was found from the numerical results that in the weakly collisional
limit » < 1 the eigenfunction is localized around the mode resonant sur-
face therefore both the eigenvalue and eigenfunction are insensitive to the
boundary conditions at » = 0 and r = a and the slab model gives a rea-
sonable approximation to derive the dispersion relation. In the numerical
calculation the same magnetic configuration as in Sec.3.3 was used.. We as-
sumed p,/a = 1/50 and the background density of the form n(0) exp(—2r2).
This density profile is chosen to keep w,. independent of r, but we found
that the profile does not affect the mumerical results for the sharply local-
ized mode in the weakly collisional case. From these parameters we estimate
wg/w.e = O(€). Figure 4.1 shows plots of the both numerically and analyti-
cally obtained eigenvalues w/w,; versus the collision frequency vj/w,. for the
m = 1/n = 1 mode. It is seen that the analytical results agree with those
obtained by the shooting method especially in the dependence of w, and w;
on V. The magnitude of w, is of the same order as that of w; and it lies
between w, and w,. in the case of vy /we. ~ 107* or 107° which is the typical
value for the peripheral plasma of Heliotron E ECRH experiments where the
electron density is ny < 1013¢m™3, the electron temperature T, ~ 10eV and
the strength of the magnetic field B ~ 2T. The contours and the profiles of
the electostatic potential ¢ and density perturbation n obtained numerically
for the m = 1/n = 1 mode at vy/w.. = 107* are given in Fig.4.2. We
find that the eigenfunctions are localized around the mode resonant surface
r=0.61a as expected in the analysis in Sec.4.2 and that the phase difference
between n and ¢ is about /4.
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4.4 Conclusions

We have studied the linear stability of an inhomogeneous collisional plasma
in a magnetic field with curvature and shear against low frequency electro-
static perturbations. The analysis using the slab approximation predicted
the existence of the radially localized instability, which was confirmed by the
numerical calculation in the cylindrical geometry. It was found that in the
weakly collisional limit ve))/we. < 1, the linear growth rate v = w; is propor-
tional to the collision frequency v, the eigenfrequency w, is of the order of
the curvature drift frequency w, which is smaller than the electron diamag-
netic drift frequency by a factor of ¢ = a/ Ry and the phase difference between
the electrostatic potential ¢ and the density fluctuation n approaches to 7/2
at the mode resonant surface.

For example, if we consider the peripheral plasma in Hehotron E and
take ve)/wee ~ 10™* or 1073, then we have the eigenfrequency in the region
Wy < Wy ~ w; < W, and the phase difference lies around 7/4. These results
form a strlklng contrast to those of the MHD resistive interchange mode with

=0, w; x v / and the phase difference being constantly /2.
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Figure 4.1: Real and imaginary parts of the eigenvalue w/w,; versus collisional
frequency v /wc. for the m = 1/n = 1 mode. The solid lines are obtained
by the shooting method for a cylindrical configuration and dashed lines are
given by Eq.(4.23).
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Figure 4.2: Contours and profiles of the eigenfunction ¢ and n of the m =
1/n = 1 mode for v, /w.. = 107%. Dashed lines denote the contours with
negative values.
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Chapter 5

Nonlinear Evolution of
Interchange Instabilities

5.1 Introduction

In this chapter we study numerically the nonlinear evolution of the two
types of instabilities described in Chapter 3 and Chapter 4, where linear
properties are discussed.

In Chapter 3 we explained that the linear growth rate of the ideal in-
terchange mode is reduced by including the ion diamagnetic drift. Here we
investigate how the nonlinear evolution of the unstable mode changes by in-
cluding the ion diamagnetic drift term in Sec.5.2. Especially our concern is
in its effects on the saturation level of the fluctuation. We use single-helicity
assumption or consider only higher harmonics produced by the mode cou-
pling. |

In Sec.5.3 we show the numerical results of the electrostatic turbulence
caused by the resistive interchange modes coupled to the resistive drift waves,
the linear stability of which is analyzed in Chapter 4. This type of turbu-
lence may occur in stellarator/heliotron plasmas and it might be related
to the anomalous transport observed in the edge plasma of Heliotron E
As a model for the electrostatic turbulence, we use the Hasegawa-Wakatani
equations including the electron diamagnetic drift and the average magnetic
curvature terms.

Finally conclusions are given in Sec.5.4.
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5.2 Nonlinear Evolution of the Ideal
Interchange Mode

In Chapter 3 linear structures of the ideal interchange modes were inves-
tigated. In order to examine nonlinear evolution of the unstable interchange
mode, we assume that initially only the m = 1/n = 1 mode is excited
since the stabilization of the ion diamagnetic drift is the weakest for this
mode. We can include only the single helicity modes with helical symmetry
in a cylindrical plasma and follow the nonlinear evolution of them consis-
tently. First it grows exponentially with the linear growth rate and the
higher harmonics of (m,n) = (2,2),(3,3),-:+ will be excited through the
nonlinear beating between the modes with finite amplitude. In addition we
include (0,0)—mode which corresponds to the quasilinear effect in the real
space. Here Eqs.(3.1)-(3.3) are numerically solved by using finite difference
scheme and Fourier expansions. The ideal MHD case & = 0 and the case
of o = 0.5 are particularly examined. In the numerical calculation, ¢, A
and p are Fourier-expanded with respect to the variables 6 and z such as
¢ = T nPmn expli(mb — nz/Ry)]. Finite differences are used in the radial
variable 7. The potential ¢,,, can be obtained from the vorticity (V3 ¢)mn
by the numerical integration using the recursive procedure. A predictor-
corrector method is used in the time evolution of the system. Since we
consider a cylindrical plasma surrounded by the perfectly conducting wall,
we use the fixed bounary conditions that ¢ = A = p =0 at r = a. We give
initial perturbation only to m = 1/n = 1 mode. Fourier modes with m <7
are included.

Figures 5.1 and 5.2 show the time evolution of the total kinetic energy and
the energy of each mode for @ = 0 and o = 0.5 respectively. Here we used the
rotational transform ¢ = 0.51 + 1.69(r/a)*® and the pressure profile p(r) =
p(0)(1 = (r/a)?)? with B(0) = 5.5% for equilibrium. In the case of Fig.5.2,
modes with m > 2 are linearly stable by the ion diamagnetic drift effect
as discussed in Chapter 3. We see that after the linear growth phase, the
fundamental mode and the other higher harmonics saturate at t ~ 40(Ro/v4)
for « = 0 and at t ~ 60(Ro/v4) for o = 0.5. Fig.5.3 shows the kinetic energy
spectrum versus the harmonic mode number in the saturation state. We note
that there is no kinetic energy of m = 0/n = 0 mode for o = 0 because of
parity conservation in RMHD model (see Appendix 7.A). It is shown that -
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by including the ion diamagnetic drift the saturated kinetic energy level is
lowered down to about 30% and the contributions from the higher harmonic
modes to the total kinetic energy are decreased. This may be explained by
the stabilizing effect of the ion diamagnetic drift, which is stronger for higher
mode numbers as seen from the linear dispersion relation (3.33) in Chapter
3. Figures 5.4 and 5.5 show the contours and the profiles of the electrostatic
potential ¢ and the pressure p in the saturation state for « = 0 and o = 0.5,
respectively. We find from both figures that the saturation occurs when the
pressure gradient around the mode resonant surface at ¢ = 1 almost vanishes,
which implies reduction of the source of the interchange instability.

65



5.3 Nonlinear Evolution of the Re51st1ve
 Interchange Mode Coupled to the
Electron Diamagnetic Drift

' Here we study the electrostatic turbulence driven by the resistive inter-
change modes coupled to the electron diamagnetic drift based on the numer-
ical calculations of the Hasegawa-Wakatani equations (4.1) and (4.2). This
may be the model for the turbulence in the peripheral region of a stellara-
tor/heliotron plasma. From Eqs.(4.1) adn (4.2) we have the equation of the
energy balance

o /d3 (lvl¢|2 ) /d3 (nV¢ X %.Vn— -IV”(n— )| ) (5.1)

where the contributions from the surface integral are neglected by assuming
the fixed boundary. The first and second terms of the integrand in the right-
hand side denote the energy source from the density gradient and the sink
due to the Ohmic dissipation, respectively. In the stationary turbulent state
these two terms are balanced on the average.

In the numerical calculation the same methods as in Sec.5.2 are used.
Assuming the cylindrical plasma surrounded by the perfectly conducting wall,
we employ the fixed boundary conditions that ¢ = n = 0 at the surface
r = a. The rotational transform is given by ¢(r) = 0.51 + 0.39(r/a)? which
simulate the inner core of Heliotron E. The mode number is selected within
|m| < 20 and |n| < 10 which has its resonant surface between ¢ = 0.5 and
¢ = 0.9. The total mode number is 111 including m = 0/n = 0 mode. In
order to maintain the constant background density gradient as an energy
source and avoid the quasilinear flattening of the density, the m = 0/n = 0
component of the density fluctuation ngqg is kept zero. The viscosity uV4¢
and the diffusion D, V3 n are introduced in the right-handes of Egs.(4.1) and
(4.2), respectively, to assure damping for high m modes, which is required
for the realization of the stationary turbulence. The parameters used in the
calculations are p,/a = 1/40, ¢ = a/Ry = 1/13, v = v /wee = 1/(7.5 x 103),
Dy =5x10"* and g =5 x 10~*. Here D, and u suppress higher modes of
m > 12 ~ 15. The magnetic flux v, and the curvature term Q are calculated
in the same way as in Chapter 4. Initial small perturbations are given to
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m = 2/n =1 and m = 3/n = 2 modes since these two modes are dominant
low m mode instabilities in the assumed model configuration.

Figure 5.6 shows the time evolution of the total kinetic energy and the
energies of m = 0/n =0, m = 2/n =1 and m = 3/n = 2 modes. The latter
two modes are shown to demonstrate nonlinear behaviors. The m =0/n =0
mode also saturates after the nonzero odes do. Figure 5.7 shows the wave
energy spectrum versus the poloidal mode number,m, integrated over the
toroidal mode number, n for T' = 5 and T' = 6. Both spectra show that
an almost stationary state is achieved though a small variation still exists.
After the saturation the m = 0 mode becomes dominant, indicating the
condensation of the mode enrgy to m = 0. The saturated kinetic energy
levels for m = 1 to m ~ 12 ~ 13 are comparable while those with higher
modes share less energy. Figure 5.8 shows the time evolution of the contours
of the electrostatic potential. The most interesting result is that the equi-
potential surface is closed around the magnetic axis near the ¢ ~ 0 region.
This is clearly seen in Fig.5.9, where the radial profile of the dominant mode
$oo is shown. A positive electric field is obtained in 0.2 < r/a < 0.8. The
energy transfer to the m = 0 mode and the generation of the stationary
radial electric field by the ¢o(r) potential observed in our calculations are
not seen in those of Carreras et al.2%] based on the RMHD model since
the RMID equations conserve the parity (see Appendix 7.A). The decrease
of the energy distributed over the high poloidal mode numbers due to the
energy condensation to the m = 0 mode is expected to improve the particle
confinement.
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5.4 Conclusions

We have studied the nonlinear evolution of the ideal and resistive in-
terchange modes, including the effects of the ion and electron diamagnetic
drifts, respectively. The single-helicity nonlinear calculations showed that
the ion diamagnetic drift lowers the saturation level of the ideal interchange
modes and decreases the contributions from the higher harmonic modes to
the total kinetic energy. This is consistent with the linear dispersion relation
in Chapter 3 which states that the stabilizing effect of the ion diamagnetic
drift is stronger for higher mode numbers.. We also see that the saturation
is related to the flattening of the pressure profile around the mode resonant
surface. _

By the multi-helicity nonlinear calculations using the Hasegawa-Wakatani
equations, we find that in the saturation state the m = 0 mode becomes
dominant and the stationary electrostatic potential ¢oo(r) is generated. This
result predicts a zonal flow in the edge plasma region. The decrease of the
energy distributed over the high poloidal mode numbers due to the energy
condensation to the m = 0 mode is expected to i 1mprove the particle confine-
ment. These results are not obtained by the RMHD.2% The generation of
the axisymmetric potential ¢oo(r) based on the self-organization process has
been discussed by Hasegawa and Wakatani.[43] Another implication of our
result is that the ¢oo(r) potential produces a shear flow predominantly in the
poloidal direction. There is a possibility that this shear flow produces the
secondary instability and makes the characteristics of the turbulence more
complex.

Here we studied global properties of turbulent plasma by using a realistic
cylindrical plasma model. There is a microscopic point of view relating to
the anomalous transport due to the electrostatic turbulence. We will present
the theoretical analyses of the electrostatic turbulence in Chapter 7 based on
the renormalized theories formulated in Chapter 6. ‘
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Figure 5.1: Time evolution of kinetic energy of the nonlinear m = 1/n =1
mode in the case of a = c/aw,; = 0.
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Chapter 6

Formulation of Renormalized
Theories

6.1 Introduction

In experiments of magnetically confined plasmas, particle and energy
transports usually exceed estimations based on Coulomb collisions or the
neoclassical transport theory. An typical example is so-called anomalous
transport in tokamaks.!8] In order to understand mechanism of anomalous
transport, many theoretical efforts were directed to study linear stability of
microscopic instabilities, in particular drift waves, and resultant enhanced
diffusion based on the quasilinear theory. Recently it is recognized that this
approach is not successful to explain the anomalous transport, since charac-
teristics of the obsreved fluctuations are similar to the strong turbulence in
neutral fluids.l6]

Several approaches are pursued to develop turbulent transport theory dur-
ing these ten years. Mixing length argument[23] is used widely to evaluate the
magnitude of transport coefficient, which is based on the linear eigenmode
analysis of instability. Connor and Taylor[m]’[ll]'[M] introduced scale invari-
ance theory to derive parametric dependence of anomalous transport. Yagi
et al.l13] discussed inter-relation between the mixing length argument and
the scale invariance theory. However, both theories have a lack of quantita-
tive evaluation or it is difficult to determine absolute magnitude of turbulent
transport. '
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Another approach to overcome this point is renormalized theory, which
was developed by Dupreells]'llsl and Diamond et al.l20-125] In this the-
ory, original equations in real space are Fourier transformed into those in
wavenumber space and nonlinear terms are renormalized by iteratively sub-
stituting the field driven by the direct beating of the test wave (k) and back-
ground wave (k') into the wave field with k” =k-k'. To make a closure of
the nonlinearly driven fields, Diamond et al. have used the semi-quantitative
correlation time corresponding to the nonlinear propagator.

In this chapter we present a new formulation of the renormalized theory
applicable to both fluid model equation with convective nonlinearity and the
Vlasov equation. Our formulation has a similarity to the renormalized theory
by Dupree,[lsl which treated phase space dynamics described by Vlasov-
Poisson equations. It is based on the statistics of random phases between
the Fourier modes of the initial electric field, and nonlinear propagator is
expanded with respect to the electric field in the form appropriate for strong
turbulence. Without using the wavenumber space, we derive a renormalized
equation in the real space for a model nonlinear equation with characteristics
associated with fluid descripton of plasma dynamics.

This chapter is organized as follows. In Sec.6.2 we formulate the renor-
malized theories for a general model equation. In Sec.6.2.1 we show the
model equation and give the one-point renormalized theory. In Sec.6.2.2
the two-point renormalized theory is presented. In Sec.6.2.3 we discuss the
clump lifetime approximation for the solution of the two-point renormalized
equation. In Sec.6.3 we apply the renormalized theories to the Vlasov equa-
tion and show that the results obtained by Dupree are reproduced by our
formulation. Finally conclusions are given in Sec.6.4.
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6.2 Formulation of Renormalized, Theories

6.2.1 One-point renormalized theory

For explanation of one-point renormalization, we consi.dep the following
equation:

(5 + 002,09+ o) flaut) = s(art). (6.1

Equation having the form (6.1) appears frequently in fluid models for plasma
dynamics such as the MHD equations. Here, v(,t) is a given random func-
tion which is stationary in time and f(z,t) and s(z,t) are also random func-
tions. It is assumed that V-v= (v) = (f) = 0, where (-) means statistical
average. « denotes a time-independent nonrandom differential operator such
that ac = 0 where c is a constant. Equation (6.1) may also correspond to
the Vlasov equation, which is discussed in detail in Sec.6.3. Under the initial
condition, f(t = ty) = 0, we obtain the solution to Eq.(6.1)

flz,t) = /t:dTU(t,T)s(z,f)

t
= / dT/dz'g(t, 2,2 )s(2, 1), (6.2)
to
where ¢ is the Green’s function or the kernel of the one-point propagator U
defined as a random operator which satisfies the following equation:

(-gt- +v(=,t) -V + oz) U(t,to) =0, (6.3)

with

Ul(to,t0) = I. (6.4)
Here I is an identity operator, which is expressed in terms of the Green’s
function as g(%o,%0;®,2') = §(2—=2'). Hereafter the space variable  is some-

times omitted for simplicity. Let us consider a random function, F(z,t),
which is defined by

F(t) = U(t, o) F (to)- (6.5)
From the definition of the one-point propagator U,
0
(E-H’(t) -V+a) F(t)=0 (6.6)
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is obtained. Taking the statistical average of this equation yields

(% + oz) (F(2)) +{o(t) VE() =0.

(6.7)
We devide F into an average part, (F), and a deviation from it, F,
F=(F)+F. (6.8)
Substituting Eq.(6.8) into Eq.(6.6) and using Eq.(6.7), we obtain
3} -
(E +v(t)-V+ oz) F(t) = —v(t) - V(F(t)) + (v(t) - VF(2)). (6.9)

The solution is given by

F@) = U(t,to)ﬁ‘(to)—/t: drU(t,7) (17(T)°V(F(7'))—(‘D(T)'VF‘(T»)

- [ 4rU(t,) (o(7) - V(U(r,t0)) = {o(r) - VU (73 0) Fit).

(6.10)

Here, it is assumed that F(to) is nonrandom and therefore F(to) = 0. Insert-

ing Eqgs.(6.5) and (6.10) into Eq.(6.8) and eliminating F(¢,), we obtain the
following integral equation for the propagator U:

U(t,to) = (U(t,t0))
- /t‘ drU(t,7) (v(r) - V(U(7,0)) = (0(r) - VU (7, 10))).

(6.11)
In order to solve Eq.(6.11), we use an iterative method which' yields the

expression of the propagator U appropriate for studying strong turbulence
problems:

U(t o)
= Wit t) - [ Ut )o(r) - VU (r, )
+ [ dr [ (U, 7)o VWG, Dho(r) - V(U o)
- /tt dr to’ dr' (U, 7)) (o(r) - V(U (7, 7))o(r")) - V(U (', o)

(6.12)
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When only the first-order term of the expansion series is retained, it is equiv-
alent to the equation given by Dupree.[15] Since the random function »(¢)
is assumed stationary in time, we can write (U(¢,t0)) = (U(t — to)). B
truncating the expansion to the first-order,

t—t

Ultyte) = Ut~ 1) = [ dr(U(@)o(t =) - VU (E~to— 7)) (6.19)

is found. If we assume that the integrand is nonzero only in a small time
interval, 0 < 7 < 7,., where 7,. denotes the autocorrelation time of v(t — 7)

and that V{U(t—t,—7)) does not change significantly during this interval,[19]
we can use the following Markovian approximation,

U(t,10) = (Ut~ 1)) = [ [ dr((nho(t = 1] - V(0 (¢~ 10). - (614)

Substituting this equation into Eq.(6.3) and averaging over the random vari-
ables, we obtain

(%—V-D-V+a) (U(t —10)) =0, (6.15)
where D represents turbulent diffusion tensor defined by .
D= / ” dr (U () o) (t — 7). (6.16)
0 — _—°F

Here an arrow shows the operand of the averaged propagator (U). We note
that D has the form of quasilinear diffusion tensor generalized into the case
of strong turbulence. Equation (6.16) reduces to the quasilinear diffusion

tensor if we replace the averaged propagator (U ) by the linear propagator
U® which is defined by

(58? * a) v =0, (6.17)
with
U0 =0) = (6.18)

If we replace the propagator U by the averaged propagator (U) in Eq (6.2)
and set ¢t — g — oo, we have

t—t

oy = [ arwe=mstn) = [ drumste - )
[ drwm)s(e - ) (6.19)

R
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which denotes the coherent part of f and it is called the nonlinear coherent
response to s. When (U) is replaced by U, f° reduces to a linear response.
From Eqgs.(6.15) and (6.19), we obtain

(% ~V-D-V+ a) Fe) = s(t). - (6.20)
This is the one-point renormalized equation for Eq.(6.1).

Nonlinear convection term is renormalized in the turbulent diffusion term.
Turbulent diffusion tensor D is given by Egs.(6.15) and (6.16), which are
represented in the real space. '

In the one-point renormalized theory, a nonlinear dispersion relation!®H15-(17)
is derivable by substituting the coherent response of (6.19) into other equa-
tions, e.g., Poisson equation, which is needed to close the system with Eq.(6.1).
This dispersion relation shows that the frequency spectrum for a given wavenum-
ber has the form of a delta function and only the mode having the largest
growth rate survives damping due to the turbulent diffusion.

6.2.2 Two-point renormalized theory

We now consider the evolution of the two-point function, f(1)f(2) =
f(zl,t)f(zlg,t). Using Eq.(6.1), we obtain
((’% +v(1): Vi +v(2) - Va+ (1) + a(Z)) F()F(2)
= f(1)s(2) + f(2)s(1) = 5(1,2) ~ (6.21)

With the initial condition, f (to) = 0, the solution to this equation is given
by

ALDF@,8) = /t: drU (1,1, )U(2,t,7)S(1,2, 7), (6.22)

where U(1) and U(2) are the one-point propagators already defined by Eqs.(6.3)
and (6.4) and U(1)U(2) represents the two-point propagator which satisfies

(% (1) Vi +0(2) - Vo + 1) + a(2>) U(L,4,t0)U (2,1, %) = 0,
(6.23)
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with ' .
U(l,to,to)U(2,t0,t0) = I (624)

Comparing Eqs.(6.23) and (6.24) with Egs.(6.3) and (6.4), we find that they
have similarities except the dimension of the space variables. Thus the for-
mulation in Sec.2.1 is usable provided that the following relations are taken

into accout: .
z— (21,2;) = (1;2),

V — (V4, V),

v(2) — (v(1),v(2)),

U—-UQ)U(2),

a(e) = a(l) + «(2).
We obtain the integral equation for the two-point propagator U(1)U(2) cor-
responding to Egs.(6.11),

o

(6.25)

/

U(L,t,t0)U(2,,0)
= (U(1,1,t0)U (2,1, 1))
—/ttd'rU(l,t,T)U(z,t,'r)
x [(v(1,7) - Vy +0(2,7) - V2)(U(1, 7, 10)U (2, 7, o))
—((0(1,7) - Vi +0(2,7) - V2)U(Q1, 7, 8)U (2,7, %0))],  (6.26)
and the iterative scheme gives:
ULt to)U(2,t,t)
= (U(l’t)tO)U(2;t:t0)>
- [[arw,,nu )
x (v(1,7) - Vi +0(2,7) - Vo) (U (1, 7,80) U (2, 7, o))
+ [Car [ arw ey
x (v(1,7') - Vi +0(2,7) - Vo )(UQ1, 7, 1)U (2, 7, 7))
x (v(1,7) - Vi+0(2,7) - Vo )(U(L, 7,20)U(2,7,%0))
- t'df [ ar v, nug,n)

0

X ((v(1,7) - Vi +v(2,7) - Vo )(UQ, 7, YU (2, 7, 7))

84



x (0(1,7") - Vi +0(2,7") - V2)(U (1, 7, t0)U (2, 7', o))
b, - ~ (6.27)
We can use an expression (U(1,t,%0)U(2,%,t0)) = (UU)(1,2,t—1to) by assum-

ing a stationary turbulence. Keeping only the first-order of Eq.(6.27) and
using the Markovian approximation, we obtain

U(LtatO)U(z’t:tO)
= (UU)(I, 2,t bl to)
- /0 P A (U1, 7)) o(L,t = 7)) - Vi + (U2, 7))0(2,t — 7)) - V3]
x (UUY(1,2,t —to). (6.28)

Here we used the relation U(¢)c = ¢, where c is a constant. Substituting the
above equation into Eq.(6.23) and averaging it, we obtain

(?)Qt' — 2 Vi:D(i,5) -V +a(l) + a(2)) (UUY(1,2,t —t5) =0, (6.29)
where -
D(i,g) = [ dr(UG (it =) (630)

Averaging Eq.(6.22), we have

Fanfe) = [ drUu),2t-n(S1,27)

to

- /0 T Uy, 2,7)(S(1, 2, — 1)

1¢

/ooo dr(UU)(1,2,7)(S(1,2,t = 7)).  (6.31)

From Egs.(6.29) and (6.31), we obtain

(% = % Vi D(ij) - Vi+a() + a(z)) (f(L,0F(2,0) = (5(1,2,1)),
T (6.32)
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which is called the two-point renormalized equation. Here, we note that
Eqgs.(6.15) and (6.20) give

(% CVyD(1,1)- Vi — V- D(2,2)- Va +a(l) + a<z>) (UL (E,)
_o . (6.33)
and

(% —V;:-D(1,1)-V, = V,-D(2,2) - Vo + (1) + a(2)) (Fe(1,1) fo(2, 1))
= (F(L,0s(2,8) + FDs(1) = (SW20). (639
These equations yield ’
(Faf@Y) = [ U NNsw2t-)
7 aru @, e NS 2= ).

R

(6.35)

We note that ( f f) is propagated by the averaged two-point propagator
(UU) while (f¢f¢) by the product of the averaged one-point propagator
(UY(U). This difference comes from the cross diffusion terms of D(1,2) and
D(2,1) which depend on the relative separation between two points and
take into account of the incoherent property in the two-point renormalized
theory. Dupreells] defined the incoherent (clump) correlation function by

(ff)incoherent = (ff) - (fcfc)

6.2.3 Clump lifetime approximation

We will describe an approximation for the two-point function (6.31),
which is the solution to the two-point renormalized equation (6.32), based on

the clump lifetime. This expression was given by Dupree (18] and has been
frequently used by Diamond et al.[211-124] '
It is convenient to introduce centric and relative coordinates 1] (24,2-)
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in place of two-point coordinates (2, ;) :

1
+= 5(314'932), =@ — B
1

=4+ @& o=, — -&_.
M 2

Using the above transformation of the coordinates yields

3. Vi-D(,5):Vi= 3, 0 0

52 Dur 52
1,7=1,2 ny=-=+,~ z,

(6.36)

e (6.37)

where
D+ D++ —[D(l’ 1) + D(]') 2) + D(za 1) + D(2, 2)])

D1z = 5[0(1, 1) — D(2,2) F (D(1,2) — D(2,1))], (6.38)
D-=D__=D(1,1)+D(2,2) - D(1,2) — D(2, 1).

We define a reciprocal of the correlation length for (v(1)v(2)), ko, which is in-
terpreted as a representative wavenumber of the turbulence. From Eq.(6.30),
D(1,2) and D(2,1) vanish when ko|2-| > 1, and (UU) is approximated by
(UY(U). When kolz—-| < 1, we find

D(l,]) - D(:B_'_), D+-—>D—+ - 07 }

6.39
D+ - D(z+)7 D-— 0; ( )

where D(z.) corresponds to the value of Eq.(6.16) at # = @... In the limit of
kolz-| < 1, we assume that D;_, D_; are negligibly small, #, dependence
of D_ is negligible, and «(1) + a(2) ~ a4(24) + a—(2-). Based on these
assumptions, we find from Eqs.(6.29) and (6.37) that (UU) is apprommated
by the product of (U;) and (U-) :

(UU(2)) = U)(U-),  (640)

where (U,) and (U-) are the propagators which describe the centric and
relative motion of the two points respectively and satisfy the following equa-
tions:

(—6% B 32+ "Dy 32+ + O‘+) (Us(®)) =0, (641)
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ot Oe_ Oz _
Uslt=0)) =1, (U_(t=0)) =1I. (6.43)

Here, the turbulent diffusivity, D, = D(2,), is the same as that for the one-
point propagator, but the turbulent diffusivity, D_, vanishes as ko|®—| — 0
and this describes the correlation of two points at small distance.

Clump lifetime 7,4(2_) is defined as follows.181211-(24] First we follow
the orbits of two points backward in time with the initial distance |2_| <
k3!, Usually, the orbits diverge and the average distance between the two
points becomes the order of the correlation length k;! at ¢ = —7,. For
convenience, we introduce the kernel of the propagator (U.) or the Green’s
function g,(#_|2’) which satisfies

o 0 0 'y
(E Y N a_) g(z_|z") =0, (6.44)

(2 _ 9 p .0 . a_) (U_(2)) = 0, (6.42)

with an initial condjtion
gi=o(@-|2) = §(z~ — 2_). (6.45)

Assuming that g(z_|2") = g:(2’_|2-) based on the time reversibility of the
statistics for v(t), we can write the mean square relative separation as

(@2(-1)) = (U-()e2 = [ delgi(m_oL)e”
= [delePg (el le-) = (22 (1)), (6.46)
where z_(2) is the relative separation at ¢ = ¢ with the initial condition that
#_(t = 0) = #_. By using the above relations, the clump lifetime 74(2_) is
defined by '
k3 =2 (t = 14)) = 1. (6.47)

Dupree and Diamond et al. have used the clump lifetime 74(2_) to describe
the solution (6.31) approximately as

(F(1)F(2)) = ra(=-)(5(1,2)) (6.48)

where (f(1)f(2)) and (S(1,2)) are independent of time, since a stationary
turbulence is considered.
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6.3 An Application of the Renormalized
Theories to the Vlasov Equation

In this section we discuss the application of the renormalized theories pre-
sented in Sec.6.2 to the Vlasov equation as an example. For convenience we
take the plasma as a gas of electrons, while ions are considered as a homoge-
neous positive background with charge density ne. We consider the strongly
turbulent plasma that the behavior of the electric field E(@,t) is turbulent
and treated as a random function. The distribution function f (2,v,1) is
devided into the average part fo = (f) and the fluctuating part f

f(z,v,1) = fo(v) + f(=,v,1) (6.49)

where f, is independent of the position # and the time ¢ since we assume the
turbulence to be homogeneous in space and statiorary in time. The dynamics
of the system may be described by the Vlasov equation

0 G, 7,
! +oe oo~ E(z,t) . %] f(=,0,t)=0 (6.50)
and the Poisson’s equation
-6—6— - E(=,t) = 47rne/d3vf(z v,1) (6.51)

where the electrostatic approximation is taken and the average distribution
function fy cancels the background positive charge due to ions. The Vlasov
equation (6.50) can be rewritten by Eq.(6.49) as

aat+'v %——E(zt) a]f(z'vt)— E(z,t)-

6f0(v) .
o (652)

It is found that the above equation has the same form as Eq.(6.1) by taking
the following relation into account

z— (2,v),

\% —>((8/8:c,6/6v),

v(z:t) - (0) _(e/m)E(z) t)) )
a—v-0/0,

f(z)t) - f(z)”’t))

s(=,t) — (e/m)E(=,t) - dfo(v)/0v |

89

) (6.53)




where the electric field E(e,t) is a random function with the statistical
average (E) = 0. According to Eqs.(6.3) and (6.4) the one-point propagator
U is defined by

0 0 e 0
E.*-v.%_;n—E(z’t)”a_v U(t,to) =0 (6.54)
with

The kernel of the propagator U or the Green’s function g is given by

g(ta tO; z,7, 2’7 vl)
= §[z — Z(t,t0; &, v')]6[v — T(, to; @', v')]
= §[=' —=(to,t; 2, v)]6[v' — T(to,t; 2, )] (6.56)

where Z(t, to; ', v') and B(¢,o; ®', ') are the solutions to the following dif-
ferential equations

dz do e
- =7 —_ = —— z 57
2 -3, Z=-IE@ (6.57)

with the initial conditions
i(t = to) = 2’, ﬁ(t = to) = ‘U’. (658)

In Eq.(6.56) we used the fact that the motion given by Eq.(6.57) conserves
the volume in the phase space, which is found from

0 d& 0 (dv 0 0 e .
The integral equation and its expansion for the propogator U are immediately
obtained from Eqgs.(6.11) and (6.12)

U(t)tO)
= (U, %))

+ %/ﬂ: drU(t,7) (E(:B,T) . a%(U(T, t0)) — <E(w,f) : %U(ﬂ to)>)
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= (Ul t) + = /t' drU(t, ) E(a, ) - %(U(,r,to»
+(2) [Lar [ W B ZOC B 500

- (%)2 /t: dr t: dr'(U(t, 7)) <E(c,7’) . %(UET, ) E(=, 7")> : %(U(T,ato»
deeneen , ~ (6.60)

The expansion in Eq.(6.60) coincides exactly with that given by Dupree
(see Eq.(4.1) in Ref.[15]) up to the first-order with respect to the electric
field. Dupree obtained this result by considering the interaction between
test and background waves in the Fourier space by assuming the random
phases among intial Fourier modes. On the other hand, Eq.(6.60) is derived
systematically by applying the iterative scheme to the integral equation for
the propagor U in the phase space representation.

Truncating the expansion to the first-order and using the Markovian ap-
proximation yield

(%+v.%_§;.o.%)(U(t—to))=0 | (6.61)
and ' 2 o
0= (L) [7arunNE®EE =) (6.62)
0 ) < .

which correspond to Eqs.(6.15) and (6.16), respectively. Here the homoge-
neous and stationary turbulence is considered and also in order to reproduce
the Dupree’s results it is convenient to take the Fourier transform as follows

(Ba, B, 1)) = [ s [ Sos st BE)(bw).  (6:69)

Sustituting Eq.(6.63) into Eq.(6.62) gives

D=(-r-i—)2 (;"37’“)3 g—;i(EE)(k,w)%g(k,w,v) (6.64)

where R denotes the real part of the complex variable and g(k, w, v) is defined
by

g(k, w,v) = e~ = /oo dre®T(U(r))e'* =, (6.65)
0
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From Eq.(6.19) the coherent part of the distribution function fe is obtained
as
0 fo(v)
ov

F@ot)== /0  dr(U(n)E(z,t — 1) - (6.66)

Replace f in the Poisson’s equation (6.51) with the nonlinear coherent re-
sponse f¢ given by Eq.(6.66), and use B = —V¢ and (U(7))E(=,t — ) -
dfo(v)/0v =~ ((U(7))E(®,t — 7)) - 0 fo(v)/Ov. By using Fourier transforma-
tion with respect to # and ¢, we get the nonlinear dispersion relation

k2 /dsvg(k w,v)k afo('v)

=0 (6.67)
where wpe = /4mne?/m is the electron plasma frequency. The nonlinear
dispersion relation determines the frequency w = w(k) and thus the one-
point or coherent renormalized theory gives the discrete frequency spectrum
at fixed k represented by

(EE)(k,w) = 21({EB)(k)b[w — w(k)]. (6.68)

By eliminating the nonlinear term Eq.(6.54) gives the linear propagator U,
which is defined by

7] )
— v — | UY®H) = .
(at+v 62)U (t)=0 (6.69)
with the initial condition U¥)(¢ = 0) = I. Then we find
U(l)(t)eik-z — eik-(:c—vt). (6.70)l

If we use U instead of (U), we obtain the linear response from Eq.(6.66)
and the linear dispersion relation from Eq.(6.67), where g(k, w, v) is replaced

by

g(l)(k’w’,v) — e—ik-:c/ d,reiw‘rU(l)(,r)eik-:E
’ 0

= == ,: e BTN G

Similarly Eq.(6.64) reduces to the quasilinear diffusion tensor
e\ 2
DL — 1 ( ) = )S(EE)(k)cS[w(k) k), (6.72)
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where Eqs.(6.68) and (6.71) are used.

Dupree described the resonance broadening by using the following approxnnatlon [15]
Neglecting » dependence of D in Eq.(6.61) we find

(U(t))eik-z - eik-(z—vt)—%kk:Dt:’. (6.73)
By substituting this into Eq.(6.65) we obtain

Ro(k,w,v) = /Ooo dt cos[(w — k - v)t] exp [—%kk : Dts] . (6.74)

This function has a peak at w — k- v = 0 and goes to zero for |w — k -
v| > kw = (kk : D/3)!/3, where w is the width' of the velocity along k at
which particles interact with waves. The finiteness of w corresponds to the
resonance broadening.

Now let us apply the two-point renormalized theory to the Vlasov equa-
tion. The two-point renormalized equation is given from Eq.(6.32) as

(%Hl et 5 T 5w D 61) (Fa,nfe ) = (s1,2)
| T (6.75)
where 1 = (23, 1), 2 = (22,v,) and
(5,2) = S(FEE) -2 4 (g oo
~ (D12 + Dar) : ( )6f o(v2) (6.76)

6‘01 81’2

05 = (2) [T ar G, MNEes Bt~ 7))
_ (%)2 a3k dw

@y | T EE R, w)e ™ 00—k, —w,v;).

(6.77)

From Eq.(6.31) and the clump lifetime approximation (6.48), the stationary
solution of Eq.(6.75) is written as

(Fi@) = [ daruu),2,)s0,2)
~ (2=, v-)(5(1,2)) (6.78)
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where the averaged two-point propagator (UU) is defined by

0 0 0
<b7+”1'5'z—1+ r-ywnin Z a D - 90 )(UU>(12t)—O

22 1,7=1,2
(6.79)
Then the centric and relative coordinates are introduced as in Eq.(6.36)

1 1
2y = 5(%1 +23), v4= ‘2'("’1 +v3) } (6.80)

T_ =2 — &, V- =1 — Da.

According to Eq.(6.40) for small #_, v_, (UU) is factorized into the product
of (U;) and (U-), which satisfy

0 d d ) '

(F+oe i g e g | (T =0 (68D
0 ] 2 )

(E-’_‘L.K_K'D-'K) (U-@t)) =0 (6.82)

where D4 = D(v,) and
D_ = Dll + D22 - D12 —_ D21
e\2 [ &k [dw
- (r_n-) /(271.)3 (EE)(k w)2Rg(k,w, v4)[1 — cos(k - =_))].

(6.83)

The clump lifetime 7.; can be calculated in the following way. For simplicity
we consider a one-dimensional plasma turbulence. The kernel of (U_) or the
Green’s function g;(z_,v_|z’,v.) satisfies

3, 0 %) o by
(Bt +v_ - _D_a _) gi(z—,v_|z,v ) =0 (6.84)

with the initial condition

gi=o(z—,v-|z_,v.) = 6(z- — z)6(v= — .). (6.85)
Assuming the time reversibility of the statistics of the electric field yields

ge(z—,v_|zl, vl ) = g_i(zL, =’ |z, —v_). (6.86)
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Using Eq.(6.83) the relative diffusivity D_ is approximated by
_~kiz’D (kolz-] < 1) (6.87)

where k, represents the typical wavenumber of the turbulence. The clump
lifetime 74 is defined by

(fz(_rcl) I, ‘l)...)) = (52—(7?:1) Ty —U—)) = ]‘70—.2 (6'88)

where Z_(t,z_,v.) is the relative distance in the z_ direction at ¢ = ¢ be-
tween the two points in the phase space which have a relative separation
(z—-,v-) at t = 0. Equation (6.86) is also used in Eq.(6.88) to obtain the first
equality. Taking the following second moments of Eq.(6.84) we find

PN
5722 (1) = 2(z-()v-(1))

0 ,_ — =2
g(z_(t)v_(t)) = (72(t))
5 (72(1) = %D-).

~

(6.89)

J

By using Eq.(6.87), Eq.(6.89) is solved to give the solution for k3(z%) < 1
and t > 7

(T2 () = -;- 72 (0) + 27_(0)7_(0) 7o + 292 (0)72] exp(t/7o) (6.90)

where 7, = (4k2D)~'/3. From Eqs.(6.88) and (6.90) we obtain
0

3
( ) ~ T0 In kg(xz. —2r_v_Ty + 21127'(?) (6 91)
Tl\= =) = (for argofln > 1) '
0 ( otherwise ).

This clump lifetime plays a key role in the two-point renormalized theory
presented in this chapter and its applications will be shown in Chapter 7.
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6.4 Conclusions

The exact integral equation (6.11) to determine time evolution of the
nonlinear propagator has been derived for the general model equation (6.1)
with convective nonlinearity. The iterative scheme has been applied to the
integral equation to obtain the approximate expression (6.12) of the prop-
agator which is appropriate for studying the strong turbulence. The first
order of this expasion is exactly equivalent to Eq.(4.1) in Ref.[15]. Dupree
treated the Vlasov equation and derived the expansion form of the propa-
gator by considering interaction between test and background waves in the
Fourier space based on the random phases among initial Fourier modes. We
have considered the model equation (6.1) in the real space and obtained the
integral equation with respect to time. A systematic derivation of the ex-
pansion form for the propagator, which is more straightforward than that
in Ref.[15], has been given. Using this expression, we have developed the
one-point (coherent) and two-point (incoherent) renormalized theories repre-
sented with the real space coordinates. The clump lifetime approximation for
the solution of the two-point renormalized equation was also described. In
this approximation the correlation function of the fluctuation is given by the
product of the clump lifetime and the source term in the two-point equation.

The renormalized theories have been applied to the Vlasov equation and it
is found that Dupree’s results!1ob18] are reproduced. The one-point (coher-
ent) theory has shown the generalization of the quasilinear diffusion theory
into the case of the strong turbulence by including the resonance broadening.
However, it is remarked that in the one-point theory the frequency spectrum
at fixed wavenumber takes the form of delta function, which is the same as in
the linear and weak turbulence theories. In the application of the two-point
theory, the expression of the clump lifetime is given in the relative phase
space coordinates.

In the next chapter the renormalized theories will be applied to the
reduced fluid equations in order to obtain the wavenumber spectrum and
the turbulent diffusivity for estimating the edge turbulence and the related
anomalous transport in toroidally confined plasmas.
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Chapter 7

Anormalous Transport Driven
by Resistive Interchange Mode
Turbulence

7.1 Introduction

In this chapter we apply the renormalized theories developed in Chapter
6 to the reduced fluid models in order to study the edge turbulence and the
anomalous transport such as observed in Heliotron E. We consider turbu-
- lence driven by the resistive interchange modes which are destabilized by
pressure gradients and bad magnetic curvature. We treat two types of re-
duced fluid equations 'to describe low frequency electrostatic perturbations
in an inhomogeneous collisional plasma confined by a magnetic field with
curvature and shear. One is the RMHD equations in the electrostatic limit
and the other is the Hasegawa-Wakatani equations which include the effect of
the electron diamagnetic drift. By using the two-point renormalized theory
and the clump lifetime approximation, wave number spectra and turbulent
diffusivities are obtained. This approach has been taken by Diamond et al.
in the analyses for the resistivity-gradient-driven turbulence?2! and the ion
temperature-gradient-driven turbulence.[24]

This chapter is organized as follows. In Sec.7.2 and Sec.7.3, the wavenum-
ber spectra and the turbulent diffusivities are calculated by applying the
two-point renormalized theory and the clump lifetime approximation to the
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RMHD equations and the Hasegawa-Wakatani equations, respectively. Fi-
nally problems of this approach are discussed and conclusions are given in
Sec.7.4.
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7.2 Resistive Interchange Mode Turbulence
by Reduced MHD Model

We will apply the renormalized theories and the clump lifetime approx-
imation in Sec.6.2 to the resistive interchange or g mode turbulence based
on the reduced MHD model and obtain the wavenumber spectrum and the
turbulent diffusivity.

The reduced MHD model in the electrostatic limit consists of the pressure
convection equation:

6 . dpo
(6t+v V)p__v’dm’ (7.1)
and the vorticity equation:
Bm—c(a-l- V) ¢——&V¢+VprQ z. (7.2)
B, \ 0ot

Here ¢ is the electrostatic potential and p = py + 5 the total pressure, where
= (p) and § are the average and fluctuating parts, respectively. The
velocity v is approximated by the E x B drift velocity:

v = —_,B%w x 2, (7.3)

and V" = (Bo/Bo) - V where By is the static sheared magnetic field and

= | Bo|. In Eq.(7.2), V2 represents the average curvature of the magnetic
ﬁeld hne[3] [33], pm is the average mass density, ¢ the light velocity in the
vacuum and 7 the resistivity. The pressure py and § are assumed to depend
only on the local radial coordinate z. We apply the renormalized theory
to the pressure equation (7.1) since Eq.(7.1) has the same form as Eq.(6.1).
From Eq.(6.20), we obtain the one-point renormalized equation:

0 dpo

where $° represents the coherent part of § and the turbulent diffusion tensor
D is given by Eq.(6.16). The two-point renormalized equaiton is obtained
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from Eq.(6.32) as follows:

(%‘ 2 Vi'D(i,j)°Vj) (B(1)8(2)) = 5(1,2), (7.5)

t,7=1,2
where the source term in the right-hand side is defined as

c dpy O .
S5(1,2)= ————(¢(1)p(2 1 e2). 7.6
(1,9 = 5B G2 + (1 0 2) (1:6)
Hereafter we assume dpo/dz to be negative and constant for simplicity since
our concern is in the localized turbulence. From Eq.(6.48), the approximate
solution to the two-point renormalized equation (7.5) can be expressed by
using the clump lifetime as

(B()A(2)) = ra(=-)S(1,2). (7.7)

As discussed in Sec.6.2.3, we introduce the Green’s function g,(2_|2".) which
is defined by
%) 7, 5,

(.a_t. - ED_a__) gi(z_|2") = 0, (7.8)

with the same initial condition as Eq.(6.45), where the only (z, z)-component
of the relative diffusion tensor, D_ = (D_),,, is retained and the other
components are assumed to be negligible. From Eq.(6.38), we find that D_ is
an even function with respect to z_ and vanishes at z_ = 0. We approximate
D._ in the limit of small |z_| as

1
D_~D (gkgxxi + k3,2 + kgzzz) , , (7.9)

where ko, ko, and ko, are the representative wavenumber in the z, y and z
directions respectively and D is the (z, z)-component of Eq.(6.16). We define

the relative separation between two points normalized with the correlation
scale |ko|™! byl24] -

R2(t) = k22 (1) + K, 02 (2) + k.22 (2). (7.10)

Using Eqs.(6.46) and (7.9) and takihg the second moments of Eq.(7.8), we
have P v
2 (R2(1) = 2K, D(R(1)). (7.11)
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Solving the above equation with the initial condition R (t = 0) = k2,22 +
k3,2 + k3,22, we obtain

(RL(t)) = (kgoo2 + koyy2 + ko, 22 ) exp(2k5, Dt). (7.12)

The clump lifetime 7, is defined by (R%(t = 74)) = 1 and the resulting
expression of 74 is

1 1 2,2 4 12,2 4 12,2
ra(e_)={ 28D " (ka,zz e kg,z?.) (Fos= + Bopy~ + koyo= < 1)
0 (k3,22 + k3, v + k3,22 > 1).
(7.13)
Except the small region denoted by k% 22 + k3,2 + k3,22 < 1, the clump

lifetime vanishes and it is assumed that the source term in the right-hand side
of Eq.(7.7) varies slowly in this region. Thus we can approximate Eq.(7.7)
with ‘

(B(1)B(2)) = Ta(=-)S°, (7.14)
where S° is the value of source term S(1,2) at #_ = 0. Thus the two-point
correlation function of the pressure fluctuation, (#(1)7(2)), depends on the
relative coordinate _ only through the clump lifetime 7, given by Eq.(7.13).
By integrating Eq.(7.14) over #_ and performing Fourier transform with
respect to y- and z_, the wavenumber spectrum is given by

(0 = [ kosdo- [dy- [ do_em PR (5(1)5(2))
= So/kOIdx_/dy_/dz_e_ikvyf_i""‘Td(z_)
4780

_ _ 7.
D ) (7.15)

where k = (ky, k.),

1) = [ pdpdo(80) (V1= 7 = peos™ ), (7.16)

B = \J(ky[koy)? + (ks /koz)?. (7.17)

and
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Further integration over k, yields the k,-spectrum,

= [ L 2 () ()]

These results are the same as those given by Sydora et al.123) The essential
point in these approximations is that the #_ dependence of the two-point
correlation function and the k dependence of the wavenumber spectrum are
determined only by the clump lifetime. It is directly related to the propagator
describing the evolution of the fluctuation and therefore the same propagator
gives the same form of the wavenumber spectrum independent of the form
of the function s(=,t) in Eq.(6.1).

Next we calculate the turbulent diffusivity D. Up to now, we treated the
pressure equation (7.1) only, but hereafter we need to consider the vorticity
equation (7.2). The time evolution of the kinetic energy defined by

_1r ¢ ?
Ex = §/d ZPm (FOV.Lfﬁ) , (7.19)
is obtained from Eq.(7.2):
d
P = / d’z [pvz— = —(Vn¢) ]

d
- fou o a5 ypm_k——k.,lw} (7.20)

where P, and $k stand for the Fourier components with the wavenumber
k = (ky,k;) and k) = k- Bo/Bo. The first term in the right-hand side
represents the change of the energy caused by the convective motion in the
presence of the effective gravity corresponding to the average curvature due
to the helical magnetic field and the second term the sink of energy by the
Ohmic dissipation. We consider the stationary state, d{(Eyx)/dt = 0. Hence
we balance the first term with the second term in the right-hand side of
Eq.(7.20) as
k2 .
' ; C;Qkypk = ngngﬁk- (7.21)

Here we used ky =~ k,(z—z2(k))/L, =~ ky/(Lskos), where z,(k) is the position
of the mode resonant surface defined by k(z = z,(k)) = 0. The relation
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(7.21) shows that the phase difference between ¢ and py is /2. It is
related to the parity conservation in the reduced MHD model Egs.(7.1) and
(7.2) with respect to the (y, z)-space (see Appendix 7.A). From Eqs.(7.6)
and (7.21), we obtain

$ = 15 (-8 [ s

c\2( dpo\ [dQ 22 -
~ 2|—= Lk .
(Bo) ( dz) (dm) 0= ) (2n )2( BP)k (7.22)
where § denotes the imaginary part of the complex valuable. Substituting
this into Eq.(7.15) yields

o 525 (2) &) gome_

Integrating both sides of this equation over k, we obtain the turbulent diffu-
sivity

o o) )
_ 4(2%) n( Z’;") (2—2) 2. (7.24)

In the case of toroidal configuration, z-axis corresponds to the minor radial
direction, y-axis the poloidal direction and z-axis the toroidal direction, re-
spectively In this case, L, = Rq/s, where R is a major radius, g a safety
factor, s = (r/q)(dg/dr) a shear parameter of the magnetic field and ra
minor radius. Thus Eq.(7.24) is expressed as

rdq —rdpo dQ
p=wf(3) (FE) (%) {2

where Dy = (c2po/B2)n is a classical diffusion coefficient, ¢ = r/R an in-
verse aspect ratio. Eqs.(7.24) and (7.25) agree with the result of the scale
invariance method (121 or D = v/k?-type mixing length argument. (23] The
constant factor 4 obtained by the two-pomt renormalized theory is not as
large as that obtained by Carreras et al. [25] by combining the one-point re-
mormalized theory with the marginal stability analysis including dissipations
to suppress high mode number instabilities.
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7.3 Resistive Interchange Mode Turbulence
Coupled to Resistive Drift Waves

Here we apply the renormalized theory given in Chapter 6 to the Hasegawa-
Wakatani equations which describe the resistive interchange mode coupled
to the resistive drift wave. The model consists of the electron continuity
equation:

)
( +v- V) n* = n”V"(n ——d)*)-l-p,c,Vln noxVg*2+p,c,V(n*—¢*)xVQ-2,

ot
(7.26)
and the vorticity equation:

a .
(6t +uv- V) Vig = mVij(n" — ¢*) + p,c.Vn* x VQ - 2. (7.27)

Here n* and ¢* are normalized density fluctuation and normalized electro-
static potential defined by

n* =In(n/np) = In(1 + 7i/ng) ~ 7i/ng (7.28)
and
" =ed/ T, (7.29)
where n = ng + 7i is the total density, ng = (n) the average part and 7i the
fluctuating part. The velocity v is the same as Eq.(7.3) and is written as

v = —p,c,Vd)* X 3, . - (7.30)

Ky = Te/(meve)) is a diffusion coefficient along the magnetic field line, v
a parallel electron collision frequency, p; = ¢,/w. an effective ion Larmor
radius, ¢, = (T./m;)'/? an ion sound velocity, w,; an ion cyclotron frequency
and p,c, = cTe/(eBy). In our model, the generalized Ohm’s law in the elec-
trostatic limit is employed and the electron motion along the field line is
included; however, the ion parallel motion is assumed negligible.

The one-point and two-point renormalized theories in Chapter 6 are ap-
plicable to the density equation (7.26), which can be written in the form of
Eq.(6.1):

0 2, . dQOY dQ dlnng\ 0 2\
(6t+v -V - n||V"+p,c,dx 6y)n = (p,c,(dz + T )83/ n“V")qﬁ.

(7.31)
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The one-point renormalized equation for Eq.(7.31) is obtained from Eq.(6.20)
as

3} 2 d 0\ .. dQ dlnng) 0 2\ e
(a ~V-D-V—gV|—pscs Iz 55) n* = (p,c, (d:c + Iz ) 3y K"V") o*,
(7.32)

where n*c is the coherent part of n* and D has the same form as that defined

by Eq.(6.16). It is useful to define Raynolds number as the ratio of the non-

linear perpendicular diffusion term to the parallel diffusion term{2111221124);
4 72

Re = DRosls _ T2 (7.33)

2 )
Koy T

where 7, = (k2,D)™! is the nonlinear coherent time, 73 = (k,%y/k3,L2)™" the
parallel diffusion time and ko., koy, Ls and D are the same as those in Sec.7.2

(see Eq.(7.9)). By using Eq:(6.32), the two-point renormalized equaiton be-
comes

[(% — Y Vi:D(,5) - Vi — my(Vi + Vﬁz)] (n*(1)n"(2)) = 5(1,2),

ij=1,2
(7.34)
where the source term in the right-hand side is

50,22 [pee, (T4 2522 - W ) + (102

(7.35)
Here we assumed that dQ/dz and dlnng/dz are constants and that correla-
tion function such as (n*(1)n*(2)) and (¢*(1)$*(2)) are independent of the
centric coordinates y4 = (y; + 32)/2 and z4 = (21 + 23)/2 because of trans-
lational symmetry in the y and z directions. It is noted that the operator
in the left-hand side of Eq.(7.34) is the same as that studied by Diamond
et al. in the analyses for the resistivity-gradient-driven turbulence (221 and
the ion temperature-gradient-driven turbulence.[?4] In Eq.(7.34), the parallel
diffusion operator can be written as

K"(Vﬁl + Vﬁz) = ~HI %(kﬁl + kI2|2)

= -u % 5 e = 2,00 + (2~ 2, (R))
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= —ﬂnz [2(fv+—w (k))*+ -m‘2]

_ Ky 1 02
~ 12 (2A2 + = 2) L (7.36)
where z4 — z,(k) is replaced with the radial scale of correlation A. From
Eqs.(6.44) and (6.45), Green’s function is defined by

o 8,590 _ ”n( 2, 1 )32
> 62:_D_0z_ 7 24° + 3%-) 3 gi(= lz_)—O (7.37)

with g;—o(2_|2L) = 6(2- — "), where the components of the relative diffu-
sion tensor D_ except D_ = (D_.),, are assumed to be negligible. Taking the
moments of Eq.(7.37) by multiplying #2 or 42 and using Eqs.(6.46), (7.9) and
(7.10) yields the differential equation for the normalized relative separation
between two points:

Zam o - 22 =0 (39)
with the initial conditions:
(RL(t=0)) = B,e? + k3,02 + K22 = B2, (7.39)
and 5 2
2
B—t(RZ(t)) =—R? + %(m2 +z2). (7.40)
t=0 [ d
Here z_ denotes z_(t = 0). Solving these equations, we have
(RA(t)) = Ae™+' + Be*-t, (7.41)
where 1
us =~ (1 +1/1+4 2Re™? ) , (7.42)
1 0
A= —(R? —u_R? 7.43
— (g —ur), (7.43
and |
1

B =

2 4 2
(w2 = 242 )

Uy — U

_ ) . (7.44)
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Since uy > 0 > u_, we approximate the solution with the dominant term:

(R%(t)) = Ae*+t. (7.45)
Thus from Eq.(7.43), |
A= Clok], - 40 + (1 + @)k, + k2, y2 + k,22), (7.46)
and
-1 A / -1
o= Re CEI+ 1+ 2Re (7.47)

1+ 1+ 2Re" 2y/1+ 2Re™?

are obtained. Eq.(7.45) and (R2(t = 74)) = 1 give the clump lifetime,

1

Te

ra(®-) (argofln>1)
0 ( otherwise ).

(7.48)
We fined that, in the large Reynolds number limit, @ — 0 and C — 1 from
Eq.(7.47) and the clump lifetime given by Eq.(7.48) coincides with that given
by Eq.(7.13) since the parallel diffusion is neglected in this limit and the two
Green’s functions defined by Eqs.(7.8) and (7.37) become identical. Thus, as
mentioned in Sec.7.2, the wavenumber spectrum of the density fluctuation
has the same form as that given by Eq.(7.15) in this limit. However, when
the Reynolds number is small, the parallel diffusion term becomes important
and makes the clump lifetime at #_ = 0 finite in contrast with the case
of the large Reynolds number. The approximate solution to the two-point
renormalized equation is given by

(n*(D)n*(2)) = 7q(=-)S°, (7.49)

where the same approximation as in Eq.(7.14) is employed. Using Eq.(7.49),
we obtain the wavenumber spectrum:

(n*n*) = /d—Z;/dy_/dz..e"""”""‘”'(n‘(l)n*(Z))
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SO/dxf/dy_/dz_e"'k”y‘""k”'fd(z_)

8771,.S0
= < F(k), (7.50)
(1 +1/1+2Re™ ) koyko:
where
F(k) = dpJo(Bp/VC
(k) CAka\/(Ha)C/ pdpJo(Bp/VC)
(Ve it =G T4 - 8), (151
with

€ =1-Cakd, -40* = /(k,/koy)? + (kz/ko.)?2. (7.52)

As mentioned above, this has the same form as Eq.(7.15) when Re — oco.

In order to evaluate the turbulent diffusivity D, we use the following
time evolution equation of the fluctuation energy obtained from the model
equations (7.26) and (7.27),

d
—(En + EK)

dlnn *a¢ * *
= /d3 [mcs 2n a—y—'fann(" - ¢ )lz}

d2k dlnn . ‘ " *
(7.53)

where
. 1 3 *2 —_ 1 3 2

Since the stationary turbulence is considefed, d((E,)+{(Exk))/dt = 0. Hence
we balance the first term with the second term in the integrand of Eq.(7.53),

dlnng - k2 " . |2
PsCs (— T ) k,S(dpnty) = K"_l}nygsz - %1% (7.55)
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where we used kyj =~ k,/(Lko.). In contrast to the reduced MHD model, our
model equations (7.26) and (7.27) do not have the symmetry of the parity in
(y, z)-space and therefore the phase difference between ¢}, and nj, is different
from 7 /2. Tt is assumed that :

n} = Rpdpe ™k, (7.56)
where Ry, is a real function and 6y, denotes the phase difference. Substituting
this into Eq.(7.55) and assuming that |Rg| < 1, we obtain

LA 1
kypscs(—dlnng/dz)sin 6k W,k Tk SN0

Ry ~ (7.57)
where w,, = k,p,¢,(—dInng/dz) is the electron diamagnetic drift frequency
and 7y = L2kZ,/(xk2) the parallel diffusion time for the mode with the
wavenumber k. |Rg| < 1 means that 6 is not close to zero. Nonlinear
calculations of our model equations confirm |Ry| < 1 or |¢3| > [n},| for the

case of dQ/dz > 0.32143] From Eqs. (7.35), (7.56) and (7.57), we obtain

dlnn d?k
0 __ _ 0 w, %
S* = 2pscs ( __da: —) (27r)2k W SH{(P" ")

+2h7||/( k”§R<¢* *>

dlnn dQ dinng\ L2kZ d%k
= 92022 (- 0 _ 220 = 0] Zs™0z *owy 2
= 2p%c? ( T dm) ( - ) Py o) (n*n*), sin® 6g,.

(7.58)

where sin 6 > Ry, cos &y, is assumed and the second term proportional to &y
becomes small for |Rg| < 1. Substituting this into Eq.(7.50), we obtain

. 167S°F(k dlnng dQ
() = *—]() et (-25re - &)
(1 +1+ 2Re"1 kOkaz T
dIn No Lz d2kl - . 2
X (— - ) Drp ) @y (n™n*) s sin® 6pr. (7.59)

Integrating the both sides of this equation over k, we obtain the turbulent
diffusivity

dlnn dQ dlnn
D = 2.2 ( 0 —_—— — 0
p,cs( dz dz) ( dz ) K| ( /koy kO, P (k) sin® 5"’)

109




dinn dQ dlnng\ L2
2.2 0 0 s 12
= .6
4pic; ( - m) ( - ) I sin 6k0, (7 O)

where we assumed that sin? 63 = sin® 6, by using a representative phase
difference 6y, and Re > 1, which is consistent with |R| < 1. In a cylindrical
configuration, this is expressed as

_ ¢ (rdg\™> (=rdny  dQ\ [-r dno\ . ,
D—4Dd(52 (q dr) (no o o dr ) oo Ok, - (7.61)
Usually the scale length of the density gradient is shorter than that of
magnetic curvature in stellarator/heliotron or |(r/ng)(dno/dr)| > |rd/dr|.

Then Eq.(7.61) reduces to
-2 2
(Cﬂ) (2@) sin? 5. (7.62)

¢?
D=4Dy4=
e qdr ny dr

€

which is identical to the results of Yagi et al.12] obtained by applying the
scale invariance argument to Eqs.(7.26) and (7.27) with VQ = 0. We will
examine a different assumption for the relation between n}, and ¢y, ie.,
|Rg| ~ 1. In this case,

212
o tan %k ~ kypuc, (_dlnno) L2k,

= . 7.63
d.'l: K'"k?, «kTdk ( )

By using Eqs.(7.35), (7.63) and |Rg| ~ 1 and assuming that |dlnng/dz| >
|dQ2/dz], the source term beocmes

k2 &k )

S0 = 2k nggx VE (n*n*)g (1 + 2sin? —2’3) . (7.64)
where k| =~ ko, /(L,ko.) is used. It is remarked that 7.5° in Eq.(7.50) is pro-
portional to Re™ in this case and Eq.(7.50) gives only the Reynolds number.
It is impossible to estimate the turbulent diffusivity and the fluctuation level
within the context of the renormalized theorg in Chapter 6. A similar ex-
ample was discussed by Terry and Diamond[?ll for the resistive drift wave
turbulence and an additional assumption was introduced to determine the
turbulent diffusivity.
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7.4 Conclusions

The clump lifetime approximation to obtain the solution of the two-point
renormalized equation was employed to evaluate the wavenumber spectrum
and the turbulent diffusivity in the resistive interchange mode turbulence de-
scribed by the ordinary reduced MHD model and the resistive drift and the
resistive interchange mode turbulence by the reduced two-fluid model. The
form of the wavenumber spectrum is essentially determined by the clump life-
time and thus depends only on the form of the propagator for the fluctuation.
In addition to the clump lifetime approximation, the second equation, which
determines the relation between the electrostatic potential and the pressure
or density fluctuation, is required for the calculation of the turbulent diffu-
sivity. In order to obtain this relation, Lee and Diamond et al 124 relied on
the argument such as the balance between the dominant terms in the en- -
ergy evolution equatlon, whlch is essentially the same as the mixing length
estimation. Terry et al.122] gave an approximation that the mode structure
satisfies the relation between the pressure and the potential involved in the
reduced MHD equation.

In the reduced MHD model, we followed Lee and Diamond to obtain the
relation between the electrostatic potential and the pressure fluctuation. We
used the fact that the phase difference is 7/2 due to the parity conservation
with respect to the (y, z)-space. The resulting expression for the turbulent
diffusivity agrees with that obtained by the mixing length argument or the
scale invariance approach as for the parameter dependence. A constant factor
in the expression of turbulent diffusivity, which cannot be determined by the
scale invariance, is about 4 by the two-point renormalized theory. This value
is smaller than that obtained by Carreras et al. by combmlng the one-point
renormalized theory with the marginal stability analysis. 25

In the Hasegawa-Wakatani equations, which include the electron paral-
lel motion and variable phase difference between the potential and density
fluctuation, the loss of parity conservation makes it difficult to determine
the diffusivity in contrast with the case of the reduced MHD model. The
equation relating the potential to the density fluctuation cannot be obtained
only by the balance between the terms in the energy evolution equation and
the additional consideration about the phase difference is required to obtain
the diffusivity. Since experimental data of the edge turbulence show that the
typical phase difference lies between zero'and /2, the Hasegawa-Wakatani
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model is more promising to explain the observed edge turbulence in Heliotron
E than the RMHD model.

Though the two-point renormalized theory for studying turbulent diffu-
sion developed in Refs.[21]-[24] is systematic and quantitative, the second
equation giving the relation between the different fluctuations required for
calculating the turbulent diffusivity is still heuristic. We need further study
for this point. :
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7.A The Parity Conservation in the Reduced

MHD Model
Equations (7.1) and (7.2) can be written as
95 - Fia, (7.65)
ot '
where ( )
#lz,y, 2,1 ]
F(z,y,2,t) = 7.66) -
@059 | (2 nd (7:69)
and F represents a nonlinear operator on €
= (V¢xz .V +g¢‘3’°)
F[&] = ¢ N (7.67)
Lo —Vd) 2-VVig— —V _4a%
pmc \ Bo dz Oy

Now, we define a parity operator P by -
P[#] = [ P §$’_y’ ) ] . (7.68)
—(V.L¢)(x) —-Y, —z)

Eqs.(7.67) and (7.68) give
FP=PF. (7.69)

From Eq.(7.69), we have

gtpf F[P%)|, - (7.70)

for an arbitrary solution #(z,y, z,t) of Eq.(7.65). Thus, we find that
P¥ =¥, (7.71)

is valid at arbitrary time if it is satisfied at initial time because of the unique-
ness of the solution with respect to the initial condition. For Fourier modes
{ﬁk’ ¢k}a we obtain

Pk = P_k = P}, = (real function)

¢, = —¢_g = —¢}, = (pure imaginary function), (7.72)
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from Eqs.(7.68) and (7.71). Thus, we find that the phase diference between
Pr. and ¢y, is 7/2. .

The parity conservation (7.69) is related to the facts that the full MHD
equations are invariant with respect to the reversal of directions for magnetic
field B, current 7 and electric field E:

(B,3,E) - (—B,—3j,—EB), (7.73)

and that the system under consideration is invariant with the transform of
variables, (y,z) — (—y, —z), since we have assumed that py and © depend
only on z. It is noted that the invariance with respect to (7.73) is not valid
in the generalized Ohm’s law and therefore the symmetry like Eq.(7.69) does
not exist in the model equations (7.26) and (7.27). This is related to the
appearance of the terms with (n* — ¢*) in Eqs.(7.26) and (7.27).
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Chapter 8

Concluding Remarks

In this thesis we have studied linear and nonlinear properties of the ideal
and resistive interchange instabilities based on the fluid descriptions of the
toroidally confined plasma. As a fluid model we have derived the reduced
two-fluid model which can correctly describe the ion and electron diamag-
netic drift. These effects are not included in the single fluid MHD model
but they are not negligible in the high temperature plasma produced in the
present and future large devices. Our model for the large aspect ratio toroidal
plasmas applicable to both stellarators and tokamaks obeys the physically
reasonable energy balance law and has several familiar reduced fluid models
such as RMHD, Hasegawa-Mima and Hasegawa-Wakatani equations as limit-
ing forms. Thus we can remark that our model is a general and self-consistent
one which deserves further analytical and numerical studies.

Based on the reduced two-fluid model, the stabilizing effects of the ion
diamagnetic drift on the ideal interchange instabilities have been studied
both analytically and numerically. We have found that the dispersion re-
lation and the stability criterion obtained by the local mode analysisi agree
with the results of the numerical calculation using the shooting method. The
stabilization by the ion diamagnetic drift is related to restoring the Boltz-
mann distribution for ions under the isothermal assumption. As an example
Heliotron E currentless plasma with the equilibrium pressure profile of the
form p(r) = p(0)(1 — (r/a)?) is considered. It was shown that the stabil-
ity beta limit determined by the m = 1/n = 1 ideal interchange mode is
B(0) = 2.2% in the ideal MHD case with no ion diamagnetic drift effects. It
can be improved up to B(0) = 5.1% if those effects are included in the case
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of the deuterium plasma with the average electron density 7. = 10%%cm™3.

By using Hasegawa-Wakatani equations including the average magnetic
curvature of the helical field lines, we have found the resistive interchange
instability coupled to the electron diamagnetic drift. This instability may
explain the turbulence observed in the peripheral region of the Heliotron E
plasma,[ ] We have derived the dispersion relation for this localized instabil-
ity by the sheared slab approximation, which is compared with the numerical
calculation in the cylindrical geometry. It was shown that in the weakly col-
lisional limit the real part of the eigenfrequency approaches to the curvature
drift frequency and the imaginary part or the linear growth rate is propor-
tional to the collision frequency. In this limit the phase difference between
the density perturbation and the electrostatic potential goes from w/4 to
n/2. It is interesting to compare these results with those obtained by the
MHD model. In the MHD model the resistive interchange instability has the
growth rate proportional to the 1/3 power of the collision frequency and the
phase difference is always /2.

The nonlinear evolution of the ideal and resistive interchange instabilities
has been studied numerically. It was shown by the single-helicity nonlinear
calculations that the ion diamagnetic drift lowers the saturation level of the
ideal interchange modes and decreases the contributions from the higher
harmonic modes to the total kinetic energy. These results are consistent
with the linear dispersion relation which states that the stabilizing effects are
stronger for higher mode numbers. The saturation is related to the flattening
of the pressure profile around the mode resonant surface. By the multi-
helicity nonlinear calculations using the Hasegawa-Wakatani equations, we
have studied the electrostatic turbulence driven by the resistive interchange
modes coupled to the electron diamagnetic drift. We have seen that in the
saturation state the m = 0 mode becomes dominant and the stationary radial
electric field is generated. This may be explained by the self-organization
process[43] and the production of the m = 0 mode is not obtained by the
conventional RMHD model. The decrease of the energy distributed over the
high poloidal mode numbers due to the energy condensation to the m = 0
mode is expected to improve the particle confinement. The radial electric
field produces the E x B shear flow in the poloidal direction , which may
cause the secondary instability and make the characteristics of the turbulence
more complex. These promblems are the subject of future studies.

We have presented the systematic formulation of the renormalized theo-
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ries for the strong plasma turbulence. In our formulation we have considered
the general model equation which includes the convective nonlinearity and
derived the exact integral equation for the nonlinear propagator, from which
the renormalized expansion of the propagator is obtained naturally by the
iterative procedure. Based on this expansion, the one-point and two-point
renormalized theories were given in a unified manner. The clump lifetime
approximation to the solution of the two-point renormalized equation was
explained. As an example, the renormalized theories were applied to the
Vlasov equation. We found that the Dupree’s results such as the resonance
broadening and the clump lifetime in the phase space were reproduced.

Using the renormalized theories and the clump lifetime approximation,
we have estimated the wavenumber spectrum and the turbulent diffusivity in
the resistive interchange mode driven turbulence based on the conventional
RMHD model and the Hasegawa-Wakatani model. We have found that the
wavenumber spectra of the pressure or desity fluctuation take the similar
forms in the both models while the turbulent diffusivities are different from
each other. In the RMHD model the turbulent diffusivity is proportional to
the product of the pressure gradient and the magnetic curvatuare. On the
other hand in the Hasegawa-Wakatani model that is roughly proportional to
the second power of the density gradient and therefore larger by the order of
the aspect ratio €*! = Ry/a. These predictions shoud be compared with the
results of the numerical simulations or experiments in future studies. The
phase difference between the density (or pressure) and potential fluctuation
is 7/2 in the RMHD model. Since experimental data of the edge turbu-
lence show that the typical phase difference lies between zero and /2, the
Hasegawa-Wakatani model is more promising to explain the observed edge
turbulence in Heliotron E than the RMHD model. In our derivations of the
wavenumber spectrum and the turbulent diffusivity, several heuristic and
qualitative arguments such as balancing between the dominant terms in the
energy evolution equation are included in order to obtain the relation between
the electrostatic potential and the pressure (or density) fluctuation. We re-
mark that furthur developments of the renormalized theories are required to
describe the plasma turbulence and the resultant anomalous transport with
more quantitative accuracy. .

Finally we will comments several points of implications of our results
to the present or future experiments in helical systems. First is that the
ion diamagnetic drift (or ion finite Larmor radius) effect might improve
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stability against the interchange modes in high 7; and low density plas-
mas. In Heliotron E, comparison between a plasma with T; = 1 ~ 2keV
and i, = 2 ~ 3 x 103¢m=3 and a plasma with T; = 400 ~ 500¢V and
fie = 5 ~ 6 x 10133¢m™2 is possible to study the ion diamagnetic drift stabi-
lization of the interchange modes. Second is that reduction of the density
gradient in the magnetic hill region will be essential to decrease the anoma-
lous transport driven by the resistive interchange turbulence in the future
devices. Third point is that the radial electric field could modify the prop-
erties of turbulence and there is a possibility that the anomalous transport
may be controlled by it. We hope that future experimental studies will reveal
these points.
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