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　　　　　　　　　　　　　　　　　　Abstract

　　In this thesis, theoretical studies of interchange instabilities and anoma-

lous transport in ａ stellarator/heliotron plasma are reported. We derive the

reduced two-fluid model in order to describe high temperature large aspect

ratio toroidal plasmas.　Our new model is more general than the conven-

tional reduced MHD (ＲＭＨＤ)ｍｏｄｅｌ.It contains diamagnetic drifts and ion

parallel motion, which are neglected in RMHD, and it is applicable to both

stellarator/heliotron and tokamak. Based on the reduced two-fluid model,

we study stabilizing effects of the ion diamagnetic drift on the ideal inter-

change instability both analytically and numerically. Improvement of beta

limit due to the ion finite L armor radius stabilizationis discussed in the case

of Heliotron Ｅ. Considering a low beta plasma, in which ideal interchange

modes are stable, we study the resistiveinterchange instabilities coupled to

the electron diamagnetic drift under the electrostatic assumption. These re-

sistive electrostatic instabilities are considered as candidates to explain the

edge turbulence observed in stellarator/heliotron plasmas.　Linear growth

rates are given as a function of collisionfrequency and mode structures are

shown･ Nonlinear time evolution of the ideal and resistiveinterchange modes

are numerically investigated. We show that ion diamagnetic driftlowers the

saturation level of the ideal interchange modes and decreases the kinetic

energy distribution on higher harmonic modes. In the simulation of the elec-

trostatic turbulence driven by the resistiveinterchange modes coupled to the

electron diamagnetic drift, we find the condensation of the mode energy to

the ｍ ＝Ｏ mode accompanied with the production of the stationary radial

electric field,which is not seen in the resistiveinterchange mode driven tur-

bulence based on the RMHD model. The decreeise of the energy distributed

over the high poloidal mode numbers due to the energy condensation to the

ｍ ゛ O mode is expected to improve the particle confinement｡

　　We give a new formulation of renormalized theories to describe strong tur-

bulence and the resultant anomalous transport. In our formulation, consid-

ering the general model equation with convective nonlinearity, we derive the

exact integral equation for the nonlinear propagator, from which the renor-

malized expression of the propagator is obtained by the iterative method

and the one-point (coherent) and two-point (incoherent) renormalized theo

ries are given in a unified manner. We apply our formulation to the RMHD

and the reduced two-fluid equations.　For both models, the wavenumber
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spectrum of the pressure or density fluctuations and the turbulent diffusivity

are obtained. The results based on the latter two-fluid model seem to be

appropriate for explaining the edge turbulence in Heliotron Ｅ，
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Chapter l

Introduction

　　In magnetically confined plasmas inhomogeneities of magnetic fields, cur-

rents, pressure, density and temperature cause ａ variety of instabilities, which

give limitation to stable plasma confinement and also produce complex dy-

namical behavior of the plasmas. Fluid models such as magnetohydrodynam-

ics (MHD) have ｍ�ｅ the most successful contributions to the theoretical

research of the magnetized plasmas including those spatial inhomogeneities･

Analyses of equilibrium and stability based on the ideal MHD equations are

one of the basic methods in designing ａ magnetic configuration of ａ new de-

vice. The reduced ＭＨＤ(ＲＭＨＤ)ｍｏｄｅｌ,[1]‾【3】which was derived frｏｍ the

full MHD equations, is also useful in the theoretical description of plasma

dynamics including the effects of nonlinearity and dissipation. However the

MHD model does not include kinetic effects such as finite Lamor radius

(FLR) effect, Landau damping and particle trapping. These phenomena be-

comes important in the high temperature rare collisional plasmcis. In this

thesis, we concentrate our attention on the FLR effect, which can be included

through diamagnetic drifts of ions and electrons in the two-fluid model. One

of ｍａｉ!1topics in this thesis is to study the effects of the ion and electron

diamagnetic drifts on interchange instabilities which are driven by pressure

gradients combined with bad magnetic field curvature･

　　Construction of the reduced fluid model bcised on the two-fluid equations

and its application to stabili留 analysis of interchange modes in stellara-

tor/heliotron ｃｏ�iguration【4】'【】arepresented in the first part of this the-

sis. Our new model is more general than RMHD. It contains diamagnetic

drifts and ion parallel motion, which are neglected in RMHD model, and

　　　　　　　　　　　　　　　　　　　　　1



it can describe both tokamak and stellarator/heliotron plasmas. After the

derivation of the reduced two-fluid equations, we will use them to investigate

the interchange instabilities, which degrade plasma confinement in stellara-

tor/heliotron configuration.　As an example, stabilizing effects of the ion

diamagnetic drift on the ideal interchange instability are examined. We wiU

also study the resistive interchange instability including the electron diamag-

netic drift efFect. These instabilities with properties which are not predicted

by the ideal or resistive single fluid MHD equations are considered to be the

cause of turbulence and the related anomalous transport in high temperature

plasma.　　　　　　　　　　　　　　　　　　　　ト　　　　　　　ト

　　The anomalous transport is ａ problem of great interest both experimen-

tally and theoretically.t^l The transport phenomena are directly related to

the dependence of the particle and energy cofinement time on the plasma

parameters and therefore the reliable estimation of them are essentially im-

portant in the future reactor design. Since the measured microscopic flue-

tuations in a plasma show strong turbulence character ｅ･g･ broad spectra of

wavenumbers and frequencies,[7]‾【9】the perturbative approach of quasilin-

ear or weak turbulence theories fcdls to describe them and the turbulence

theories treating the strong nonlinearity are required. Theoretically it is im-

possible to explain the observed transport in terms of classical coUisional

mechanisms, which is called anomalous transport. Many efforts have been

made to explain it based on turbulence theories in these years.　For esti-

mating the transport coefficients theoretically, we usually use mixing length

argｕｍｅｎts(2311nｗhich a diffusion coefficient is given by に)～７/岨ｕsi咄

ａ perpendicular wavenumber ^ i and ａ linear growth‘rate of the concerning

instability ７ as characteristic spa£ｅ and time scales. We also use dimen-

sional analysis technique based on scale transfomation symmetries of the

basic nonlinear ｅqｕａtｉｏｎs.(μ)]‾11411nthe ap roaches to the strong plasma

turbulence, the renormalized tｈｅｏries【6】,[15]-【S6】quantitativelydescribe the

ｍａ£roscopic statistical averages of the fluctuations. By using the renormal-

ized theories, diffusion coefficients enhanced by the turbulent fluctuations

are derived, which is comparable with the anomalous transport observed in

experiments. In the renormaJized theories discussed in this thesis the two

point correlation or incoherent structure しalled屁lｕｍｐｓ418]is considered,

which enables one to calculate the wavenumber or frequency spectra of the

fluctuations. In the second part of this thesis, we give ａ new formulation

of the renormalized theories and apply it to the analyses of the turbulence
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driven by the resistive interchange instabilities in stellarator/heliotron. We

will show how the electron diamagnetic drift makes the parameter depen-

dence of the turbulent difFusivity different from that obtained by the RMHD

model.

　　This dissertation is organized in the following manner. In Chapter 2，the

reduced two-fluid equations are derived and their general properties are dis-

cussed. The significant difference between the one-fluid MHD equations and

the two-fluid equations is that in the latter the generalized Ohm's law and

the ion gyroviscosity aie contained to describe the electron and ion diamag-

netic drifts correctly. In the derivation of the reduced two-fluid equations,

we consider application to stellarator/heliotron.　Our model also includes

the evolution equation of the ion fluid velocity along the magnetic field line,

which makes it possible to describe the ion acoustic wave. It is shown that

our model conserves the total energy in the case of no dissipation. Reduced

fluid models such as ＲＭＨＤ，Ｈａｓｅｇａｗａ-Ｗａｋａtａｎｉ【271andHasegawa-Mima

equations[28]are derivable as limiting forms of our model.

　　In Chapter 3，we study the stabilizina effects of the ion diamagnetic drift

on the ideal interchange instability[29ト【3】both analytically and numerically

based on the reduced two-fluid model.　Using the sheared-slab geometry

and the method of asymptotic matching, analytical expressions of the linear

dispersion relation and the stability criterion a】reobtained. The analytical

results for the slab geometry are checked by the numerical calculation for

the cylindrical plasma using the shooting method. Inprovement of beta limit

due to the ion FLR stabilization of the ideal interchange mode is discussed･

　　In Chapter 4， the resistive interchange instabilities coupled to the elec-

tron diamagnetic drift are studied.【"^2' Here we consider ａ low beta plasma,

in which ideal interchange modes are stable and the electrostatic approxi-

mation is applicable. These resistive electrostatic instabilities are considered

as candidates to explain the turbulence observed in the peripheral region of

stellarator/heliotron plasmas. Linear growth rates are given as a function of

collision frequency and mode structures are shown･

　　In Chapter 5， time evolution of the nonlinear ideal and resistive inter-

change modes, which are studied in Chapter 3 and Chapter 4，respectively,

are numerically investigated. By using single-helicity calculations, nonlinear

saturation of the ideal interchange modes are studied. We show the ion dia-

magnetic drift effects on the saturation level and the poloidal mode number

(m) spectrum of the fluctuation energy. The multi-helicity calculations of the
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electrostatic turbulence driven by the resistiveinterchange modes coupled to

the electron diamagnetic drift are given.　We find the condensation of the

mode energy to the ｍ ° Ｏ mode accompanied with the production of the

stationary radial electric field,which is not seen in the resisitiveinterchange

mode driven turbulence based on the RMHD ｍｏｄｅｌ｡

　　In Chapter 6，our formulation of renormalized theories is presented. Con-

sidering the general model equation with convective nonlinearity, we derive

the integral equation for the nonlinear propagator, from which the renor-

malized expession of the propagator is obtained by the iterative method and

the one-point (coherent) and two-point (incoherent) renormalized theories

are given in a unified manner.　Our formulation is based on the real space

representation instead of the wavenumber spcice. We also discuss the clump

lifetime approximation[18]‾【24】to the solution of the two･point renormalized

equation. An application of the renormalized theories is illustrated by using

the Vlasov-Poisson equations and the results obtained by Dupree【15】‾[18]are

reproduced.

　　In Chapter 7，the resistiveinterchange mode driven turbulence is studied

analytic cdly using the renormalized theories given in Chapter 6. We apply the

formulation to the RMHD equations and the the reduced two-fluid equations

in Chapter 4. For both models, the wavenumber spectrum of the pressure or

density fluctuations and the turbulent difFusivity in ａ stellarator/heliotron

plasma are obtained｡

　　Finally in Chapter 8，concluding remarks are given.　Main results and

future studies relating to this thesis are discussed.

４



Chapter ２

Reduced Two-Fluid :Ｍ:odel

2．1　　Introduction

　　In this chapter, the reduced two-fluid model, which describes the dy-

namics of large aspect ratio toroidal plasmas including tokamak and stel-

larator/heliotron, is derived and its properties are discussed.　Strauss de-

rived the reduced magnetohydrodynamics (RMHD) equations for tokamak

plasmas【1】‾【2】fromthe full MHD equations by the ordering in terms of the

inverse aspect ratioげ＝ａ/R0, where a and Rq are the minor and major radii

of the torus, respectively. He also obtained the RMHD equations for stellara-

tor plasmas【3】,using the stellarator ordering where the expansion parameter

iｓλ＝･.1/2 Hereλdenotes the ratio of the magnitude of the external helical

magnetic fieldto the toroidal magnetic field･ RMHD isａ set of simple nonlin-

ear equations, which includes only three fieldvariables, i.e.,stream function

(ｏr electrostatic potential), poloidal magnetic flux and pressure; however

RMHD can describe much of dynamics which the full MHD equations do･

As the shortest time scale of RMHD, the shear Alfven dynamics is included;

therefore, the phenomina which occur in ａ shorter time scale than the shear

Alfven wave, such as compressional Alfven dynamics, are eliminated. The

ion accoustic waves, which propagate dominantly in the direction of the mag-

netic field,are not included in RMHD since the flow along the magnetic field

lines can be decoupled from the shear Alfven dynamics. Furthermore, two-

fluid dynamics such as drift waves cannot be treated in RMHD based on the

one-fluid model. For studying turbulent fluctuations driven by these drift

５



waves or kinetic unstable modes, we need extension of RMHD. Here we

construct ａ new reduced fluid model to include the ion and electron diamag-

netic drift motion as important kinetic effectsin high temperature plasma by

keeping two-fluid nature of plasma. The reduced two-fluid model presented

in the following sections have the four field variables, where the flow along

the magnetic fieldlines is added to the three field variables in RMHD｡

　　In Sec.2.2, we discuss the two-fluid equations, from which our reduced

model is derived. In Sec.2.3, the derivation of the reduced two-fluid model

is presented and the properties of that are discussed. In Sec.2.4, conclusions

are given.
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2。2　Two-Fluid Equations

　　Here we assume that the plasma consists of electrons and protons.　By

taking the first and second order moments of the Boltzmann equation for

ｅａ£hspecies of particle, the continuity and momentum equations for electron

and ion fluids are given in the following expressions。

　　　　　　　　　　　　　　昔十▽･("e'O。)＝ｏ　　　　　(2.1)

fd
°▽)・ｅ十▽・Pe= -n^e

(e十yｘ.召)十Ｆ

(d
・∇)tﾀi十∇・V

c×.Ｂ)
一Ｆ

(2.2)

(2.3)

(2.4)

where Tlais the particle density, Va the fluid velocity, Pa the pressure tensor,

rria the mass, α(゜e, i) the species label, －ｅthe electron charge, 十e the ion

charge. Ｚ and .Z7are the electric and magnetic fields,respectively, and Ｆ

represents the friction force i.e. the momentum transfer per unit volume and

unit time due to collisionsfrom the ion fluid to the electron fluid｡

　　Itis convenient to use the average fluid velociy t? and the current density

Ｊ as in the MHD description instead of using tﾀiand Ve- Here we neglect the

electron inertia since ＴＴＸｅ/TTli哨l 1. We consider the phenomina which occur

sufficiently slower than plasma oscillations and therefofe we can assume the

quasineutrality condition, He ニHi °ｎ. Thus the average velocity t? and the

current density Ｊ are written as

njm,-t>,- + ngiTieVg

n:nii + n.Tn.
2 1?i

and

J≡n;et>; － n.ev. = ne(tﾀi － 17e)，

(2.5)

(2.6)

respectively. From Ｅqs･(2.5) and (2.6), the electron fluid velocity Ve is given

by

tﾀｅ＝tター

７

Ｊ

一
九e

(2.7)



From Ｅｑs･(2.1)and (2.3) and the quasineutrality condition, we obtain

　　　　　　　　　　首＝－▽・(ｎ司＝－▽・invA･

Then Ｅｑs･(2.6)and (2.8) yield

▽・Ｊ 一

一

0

｡

(2.8)

(2.9)

The friction force ｊ'is given by

　　　　　　　　　　　　　Ｆ＝田面11J11十肛Ｊ｣.)　　　　　　　　　(2●10)

where 77is the electricalresistivity and the subscripts II and 上refer to direc-

tions parallel and perpendicular to the magnetic fieldline･

　　We assume that the pressure tensors Pq(q; = e,i) take the form

　　　　　　　　　　　　　　　;y二謝

十口

い　　　　　　(2.11)

where l is the unit tensor and the scalar pressure 凡＝ｎ几.Ｈｅrｅ几is

the temperature assuming the isotropic thermalization. ｢1がdenotes the ion

gyroviscousity tensor, which is assumed to be determined by Pi,Ｂ　ａnd t7

here･ The expression of nがwill be given in the next section, since its explicit

form is not required here. The gyroviscosity is due to the gyromotion of the

particles and remains in the collisionlesslimit. The electron gyroviscosity

is negligible because of small gyroradii of electrons･ CoUisional viscosity is

smaller than the gyroviscosity for both electrons and ions. Inclusion of 口が

becomes essential when the efFect of the ion diamagnetic driftis considered･

　　Adding Eqs.(2.2) and (2.4) gives

▽)t7十▽(八十乃)十▽・｢1が＝1ＪＸＢ

by assuming charge neutrality. Ｅｑ･(2.2)is rewritten as

17十乱。 X Ｂ十念▽八゜り||｀り|十ｒiｘＪｉ-

(2.12)

(2.13)

Here Eqs.(2.5), (2.10) and (2.11) are used and the elector!inertia terms are

neglected. Equation (2.13) is called the generalized Ohm's law in which,

８



compared with the usual Ohm's law in MHD, the average fluid velocity l is

replaced with the electron fluid velocity l?ｅand the electron pressure 八is

included, which is related to the diamagnetic drift motion･

　　In order to obtain ゛ closed set of equations describing the two-fluid

plasma, we need Maxwell's equations and two equations of state connect-

ing the pressures with the density. In summary of the two-fluid model, the

plasma is descried by ｎ，t7，17e，Ｊ，｡E, B。瓦，乃as functions of the position

ｚ and the time l governed by the equations

　　　　　　　　　　　　昔
＝－▽・(nv) = -▽・(ｎｖ.)　　　　(2.14)

旦
＆
ぐ　
匹 tﾀ十▽(八十乃)十∇・｢^gi = -J X B

17十二t7
　　Ｃ

。×｡召十去▽八＝7711JII十吼LJよ

　　　　　　　Ｊ
　　　ty。＝t7一石

∂.召

-
∂1

一

一 －Ｃ▽X E ∇・.召 ＝０

(2.15)

(2.16)

(2.17)

(2.18)

　　　　　　　　　　　　　　　ザＪ＝▽χ●Ｂ　　　　　　　　(2.19)

　　　　　　　　　　　　八＝八in),　乃＝μｎ)　　　　　　　(2.20)

where the displacement current term∂Ｚ/∂t is neglected and the Ampere's

law (2.19) is employed, which is consistent with the quasineutrality condition

or Ｅq･(2.9). The equations of state are represented by Ｅｑs･(2.20).Hereafter

we may assume that the electron and ion fluids obey the ideal gas law and

Ｅｑs･(2.20) take the form

　　　　　　　　　　　　凡＝(:乙や(α＝φ)●　　　　　　　(2.21)

Here, if the changes of state are adiabatic, then Ｑ = exp[(Ｓ－So)/Ｑ]＝

const. and ‰＝Ｇｐ/Ｃ。where Ｃ。is the specific heat at constant volume,

らis that at constant pressue, Ｓ and Ｓｏare the entropy and its standard

　　　　　　　　　　　　　　　　　　9



point, respectively.　All these quantities are given for ｅａ£hspecies a and

cissumed to be constant. In the case of the isothermal process, we may take

Ｃ。= Ta = const, and 7a = 1- Examining the two-fluid equations (2.14)-

(2.20), we note that, three field quantities ｎ，1。 and B are sufficient to

determine uniquely the momentary state of the system and the other field

quantities八, Pi, J, ce, and ｌ; are represented by the above three quantities

at every instant of time, which is similar to the usual MHD equations. Then

the evolution of the system is principally described by Ｅｑs･(2.14),(2.15)

and (2.18).　The quantities ｎ，t7 and j7 have seven field components and

also the equations include nonlinear terms.　Thus it is impossible to solve

them analytically.　Since the equations include several charactristic times

which have different orders of magnitude each other, it is not simple to solve

them numerically. In order to make the equations tractable, the reduction

of numbers of field quantities will be possible without lossing low frequency

physical processes occurring in a strong toroidal field. The procedure will be

explained in the next section.

　　The equation of energy balance is obtained from Ｅqs･(2.14)-(2.20) as

follows

　　ﾐｋＬ ｄ３１[Inmy十岩ヤ叱㈲十四面)}

　　＝　－J
ｓ
ｄｓ゛
/I 2十四面)t･十n*e(n)t>e十八17十口が・t7

　　　　　十Ｐｅでｅ十ぶFZｘめ-L瓦{771断＋77⊥乃}二片d3ｚ｢l」 : ▽tﾀ

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(2.22)

where the compression or internal energy per single particle of species αis

given by

　　　　　　　　　皿。(ｎ)＝－卜(ｎ)べ1)＝Jツ・　(2.23)

If we use Eq･(2.21),Eq･(2.23) is rewitten as

ｎ重ａ
-

-

(７．≠1)

10

(2.24)

瓦
-
‰－１

瓦hl（ｎ/no）ぐy．゜1, no ° const.).

The left-hand side of Eq.(2.22) expresses the rate of change of the total energy

in the volume ｙ，which consists of the kinetic energy of the fluid motion, the



magnetic energy, the ion and electron internal energy. The firstand second

terms in the right-hand side are interpreted as the energy flows through the

surface Ｓ and the energy dissipated in the volume as Joule heat, respectiverly･

The last term is cissociated with the change of the internal energy related to

the gyromotion and, in the next section, we will discuss that it vanishes in

the order of our interest.

．
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2。３　Reduced Two-Fluid Equations

　　Here we use ａ coordinate system as shown in Fig.2.1 with the metric

　　　　　　　　　　ゐ2＝＆2十ｒ2dθ2十(1十ｚ/凡)2臨2　　　　　(2.25)

where x二ｒｃｏse、Ｚ＝－沢oぐａｎｄぐis the toroidal angle. In order to derive the

reduced equations、 we employ the ordering[31'【33】in terms of the expansion

parmeterλdefined by　　　　　　｡

λ≡61/2 (2.26)

where ６ヨａ/瓦≪l is the inverse aspect ratio,ａ and Rn are the minor and

major radii, respectively.　We assume that the uniform toroidal magnetic

field BqZ is of the zeroth-order, the helical fieldis of the first-order, and

the following quantities such as the curvature of the fieldlines, the pressure

gradient, the current and the ｍ昭netic fieldproduced by this current are of

the second-order. The magnetic fieldis given by

.召　＝ …．召o
l十ｚ/裁）

£十▽Φ＋▽xA

　　　　　　　　　　= Boz十▽Φ十(が- Box/Ro)z十▽A X z　　(2.27)

where z is the toroidal unit vector, Φis the potential for the helical field,

which satisfies

　　　　　　　　　　　　　　　　　　∇2Φ＝O　　　　　　　　　　　　　(2.28)

and A is the vector potential for the magnetic fieldsproduced by the plasma

currents. In Ｅq･(2.27) we used

　　　　　　　　　　　　　∇χＡ＝が£十∇ｙ1χ£　　　　　　　　　(2.29)

where Bβ゜j'(▽X A), A = z゜A and the derivatives with respect to

ｚ are eliminated since ∂/∂z = 0(λ2)for aU quantities except the potential

Φ, which is discussed in detail later.　From the Ampere°s law (2.19) and

Ｅq･(2.27), we obtain the current density Ｊ in the lowest order

Ｊ＝嘉∇×.Ｂ＝み(∇ＢβＸ　Ｚ－∇ｔ4拝　　　(2.30)

　　In the equation of motion (2.15), itis assumed that ∇(几十乃),t･ and ∂/∂l

are 0{e) = 0(λ2)ａｎｄthat the force due to gyroviscosity ∇'Ｈがis 0(e2)゜
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○

(:)

(λ4).ＴｈｅｎEq.(2.15) yields the pressure balance for MHD equilibrium in

(6)

▽１(八十乃十念召β)＝０ (2.31)

where Ｅｑ･(2.30)is used. Taking the inner product of Eq.(2.15) and B, we

have

j7･▽(八十乃'dt･十り.･▽上)tﾉ|にjo£･(▽･nが) (2.32)

where V＼＼°‘ｌ
'
6,6 ° .Ｂ/Ｂａｎｄ”o denotes the Ｏ(λ°) part of the density ｎ.

Equation (2.32) is valid to 0(e2). From the outer product of Eq.(2.15) and

B, we obtain the perpendicular current density

　　　　　　　　　　　　　　　　　Ｊ⊥＝T

ﾀ

Fχ瓦　　　　　　　(2.33)

where

瓦＝ﾘ▽(几十乃)十∇･ngi十(d十t･ ･▽)t･|

The total current density is written as

J＝(ｙＢ＋Ｊ１

(2.34)

(2.35)

where a = B･J/52. Substituting Eq.(2.35)into Eq.(2.9) and using Eq.(2.33)
yield

Ｂ・▽(７＝
▽召2 XB

(2.36)

(2.37)

召4

where we used ji:・∇X JB = O which is derived from Eqs.(2.15) and (2.19)

　　We can write

n = no十八

　　　　　　　　　　　八＝八〇十八(α＝φ)　　　　　(2.38)

where no and 八〇= nnToo are the lowest order quantities or the volume-

averaged values of the density and the pressure respectively. Here we assumed

that no and 八o are 0(A°) and that n and Pa are Ｏ(λ2). This ordering is

slightly different from the conventional one used in RMHD and should be

　　　　　　　　　　　　　　　　　13



treated carefully when it is applied to the equation where density or pressure

is contained without being differentiated･

　　The electric fieldl7 is represented in terms of the electrostatic potential

φand the vector potential Ａ as

Ｚ＝－∇φ－

づどづ

where

W = cl

VeX

一

一

一

一

j7

一召2

▽φ－
ｙ旦
十

In the same way as Ｅｑ･(2.35)

From Ｅｑs･(2.41)-(2.44) we obtain

召・▽α 一

一

▽召2ｘj7

-
召4

・lｙ＋
Ｂ

一
召2

17e・＝

１∂Ａ

(2.39)

+77ＭI

＋η．Ｊ・

）

Inn.

(2.40)

Here it is assumed

(2.41)

(2.42)

(2.43)

(2.44)

+17e・▽ In ｎ．

(2.45)

(2.46)

C∂t゛

The parallel component of the generalized ｏｈｍ°slaw (2.16) is

べ
1∂y1

一一
Ｃ∂t

where higher order terms than 0(A*) are neglected.

thatφａｎｄりare 0(A2) as well as A and Ｊ. From Ｅ(1･(2.16)we have the

perpendicular component of the eletron fluidvelocity

ＸＷ’

１∂λ

一一
Ｃ∂１

we can write

tJe = OcB + Ve・

where a = B゜vjB＼ The continuity equation (2.14) gives

∇･・。＝－(jlF＋17e ･ ∇)

▽xW- yヽ－(jy

From Ｅｑs･(2.17),(2.30), (2.31), (2.41) and (2.42) we have

な９(ゆ一之



　　　　　　　　　t7⊥＝Tま£×▽
(φ十

rioel '　　　(2.47)

inO(λ2). Equations (2.17) and (2.30) yield the parallel components of the

electron fluid velocity and the current density of ｏ(λ2)

Ve＼＼=召oα゜tﾉ||一
･^11
-
Tine

JII＝召o(y＝－jﾌｼ▽1/1

(2.48)

(2.49)

　　In the lowest order of our ordering, the magnetic field becomes uniform

and we use the expression for the gyroviscosity obtained by Braginskii,[34]‾[36]

which is given as

｢1が
-

-

只

4ωc≪

{6･ＸＷ・(I+ 66)十(|＋66)･Wx6} (2.50)

whereωci = eBlrriiC is the ion cyclotron frequency and Ｗ denotes the rate-

of-strain tensor defined by

　　　　　　　　　呪，＝七十器－か。,▽・tﾀ　　　(2.51)

It is found that Ｅｑ･(2･50)gives ｎが:▽t) = 0 ゛nd therefore no contribution

to dissipation or internal energy. In our ordering Eｑ･(2.50) is reduced to

　ｎｊ＝長[∇lF{＼-zz)-2∇上▽上F + 2{{z×▽XV||)Z十雛×▽塙|)}](2.52)

where Ｆ is the stream function for the ion fluid velocity which is given as

Ｆ 一

一

三

召o

φ十‘゛

　　Tine

from Eq.(2.47). Divergerce of (2.52) gives

▽゜｢1９1

(2.53)

＝▽上(豆▽if)-▽⊥･(ま∇⊥∇よf＼-zz×▽上(ま)･▽｣.りII (2.54)

where we neglect the inhomogeneity of the magnetic fieldso that ωci＝

e召oIｖfliC.
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　　Equations (2.32), (2.36), (2.40) and (2.45) have the same form as the

magnetic differentialequation

　　　　　　　　　　　　　　　　召●▽Ｆ＝Ｇ

where Ｆ and G are expanded in powers ofλas follows

　　　　　　　　　　Ｆ＝？Ｆ(2)十λ3F(3)＋λ４Ｆ(4)十‥・

　　　　　　　　　　　　　Ｇ＝λ3G(3)＋λ4G(4)＋‥・.

(2.55)

(2.56)

(2.57)

Hｅrｅ瓦o is omitted in Eq.(2.32) because∇八〇= 0. Since the helical field

▽Φcontains ａ rapid variation in the ｚ direction, the scale length of which

is of the order of the minor radius a. Therefore Ｆ and Ｇ generally contain

this rapid variation and the slowly varying part, the scale length of°which is

of the order of the major radius Ro. Then we may write

(ｘ)＝Φ(ｒ,θｊ)

F = F{r,θ,z,z)

G = G(r,θ,z,z)

(2.58)

(2.59)

(2.60)

where z and ｚ are used to represent the rapid and slow variations along the

longitudinal direction. Here we assume that the ^-derivative is expanded as

卜居 (2.61)

F and G are assumed to be periodic functions with respect to z over the

toroidal pitch length 2ttRo/N where N ＝０(c‾1)is the toroidal pitch number.

From the lowest order of Eq.(2.55) we have

召0 ＝０ (2.62)

(2.63)

召0 (2.64)

∂ir(2)

-
∂j

whichyields
　　　　　　　　　　Ｆ(2)＝Ｆ(2)(り丿

Equation(2.55)givesinＯ(λ3)

十▽．Φ・∇．Ｆ(2)＝Ｇ(3)

　　　16

∂Ｆ(3)

-
∂j



where we used Ｅｑs･(2.61)and (2.63). Averaging Eq.(2.64) with respect to ｊ

over the toroidal pitch length IttRJN, we find

　　　　　　　　　　　　　-　　　　　　　　　　　　　Ｇ(3)＝O　　　　　　　　　　　　　(2.65)

where the averaging operator is defined by

　　　　　　　　　－　　　　　　　　　∫{r,e,z)

In Ｅｑ･(2.65)we have used

召0 ＋召0

一

一

じ削ｌ゛
dzfir,θ z,z) (2.66)

(2.69)

N

-
2'kRo

　　　　　　　　　　　夥＝∇ｉ＝O　　　(川

Equation (2.64) is integrated to give

Ｆ(3)(「,9,z,z｣＝　Ｔま万祠∇｣-(I)(りｊ)゜∇｣-Ｆ(２)(り丿‾Ｇ(3)(りｊ･ｇ)]

　　　　　　　　十が3)(ｒ,θ,ｚ)　　　　　　　　　　　　　　　　　(2.68)

wheＴｅＨ(3)(ｒ,θ,２)isnot specified here. From Ｅｑ･(2.55),we have in Ｏ(入4)

＋▽(1)・▽Ｆ(3)十▽Å×£・∇Ｆ(2)＝Ｇ(4)

∂Ｆ(4)

-
屁

召0

∂/r(2)

-
∂Ｚ

which is averaged with respect to z to yield

十▽y1×£・▽/r(2)一瓦可
∂Ｆ(2)

-
∂Ｚ

　　　　＝　－‘V$ ･ Vi^(3)

　　　　べ▽Φ・∇ト∇・(I)・∇・ir(2)一TA7∇Φ・∇ト・(3)

　　　　　　　　　　　　　　　　　　　　　　　　　(2.70)

where Ｅｑ･(2.68)is substituted. By using Eqs･(2.28) and (2.67), we can prove

the following equation

∇(1)・可沁∇１(I)・∇１Ｆ(2)＝－1▽{(∇(I)×∇が�Φ)・£}×£・▽/r(2)

　　　　　　　　　　　　　　　　　　　　　　　　　. (2.71)
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From Eqs･(2.70) and (2.71), we obtain

where

－･▽Ｆ(2)＝百萌－Tん▽Φ･▽い(3)

－゜▽゜jo云十yφ×£･∇

φ≡y1十
１。

-
２召0

≡召O∇11

▽ΦｘyfdiΦ･£.

(2.72)

(2.73)

(2.74)

　Since in Ｅｑs･(2.32)and (2.40) there are no terms corresponding to Ｇ(3)

in Ｅｑ･(2.57),we immediately find from Ｅq･(2.72)

三
民

旦
出
イ
、
　
四

1∂y1

一一
Ｃ∂t

一

一

£×▽φ･▽

－▽|| φ－

　　　　　　　　　　。　　。

1ﾉ||＝－▽||(八十乃)

八
-
rioe

一切I-^11

(2.75)

(2.76)

where Eqs.(2.47), (2.54) and (2.73) are used. Hereafter the indices for the

order of λ-expansion are sometimes omitted.

　　In Eqs･(2.36) and (2.45) the term corresponding to Ｇ(3)ｃｏｍｅform the

firstterm in the RHS, which has the expression

▽召2×.召

Here Ｃ also has the common form

召4
Ｃ (2.77)

　　　　　　　　　　　　　Ｃ＝▽χ十〇(λ4)　　　　　　　　　　(2.78)

where x is 0(λ2) and satisfies

　　　　　　　　　　　　　B-∇x = o(λ4)●　　　　　　　　　　(2.79)

Since Ｅｑ･(2.79)has the form of the magnetic differential equation we obtain

from (2.68)

X(3)(ｒ,θ,z,z) =
T

Ｕ）▽｣.Φ(「,e,z｣･▽｣.ｘ(2)(ｒ,θ,ｚ)十ω(3)(ｒ,θ,ｚ)(2.80)
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whereω(3)ｄｅｎｏtｅsan arbitrary function of Ｏ(λ3)ｗhich is independent of z.

We find that the contribution of Eq.(2.77) to the right-hand side of Eq.(2.72)

is

(ｙjjﾘjj!･･∇ｘ)(4)一TA7▽(I)･∇か(ｙjﾘJj!･･▽＼(3)

where

＝一生£’▽χ×▽Ω＋
　　召o

こ£・▽χ×∇召β

召0

Ω＝ 可し

(2.81)

(2.82)

Equations (2.27), (2.28) and (2.80) have been used in the derivation of

Eq.(2.81). The contributions from other terms in Eqs.(2.36) and (2.45) are

(:)(λ4)alldwritten as

j7十£×▽Ｆ▽)∇汐一回∇・(£×∇八▽▽１Ｆ)

　　　　　　　　　　(2.83)

余▽⊥･(£×∇八･∇▽⊥Ｆ)

一

一

1jo▽IIJII十▽(凡十八)×∇Ω･£

旦
況
―

n
－
no

-

∇Ω－∇||

19

愉

し｡－

(2.85)

(2.86)

･^11
-
noe

　り1C2　2召β
)
－７匹

　　　　(2.87)

nnrriiC

　召0

T
;
F･▽ｘｗ＝Tま(j7一昔▽1)が　(2.84)

-J7; ･▽×.z7＝TAf£×∇(φ一合)･▽Ｂβ、

The last term in the right-hand side of Eｑ･(2.83) comes from the gyroviscos‘

ity term of (2.54). Then using Eqs.(2.81)-(2.85) and applying Eq.(2.72) to

Ｅｑs･(2.36)and (2.45), we obtain

nomi(jlF十ｊｘ∇ｊ･・▽)▽１Ｆ－

妙一卜喬戸|

エＴん八紳一余）



where we used the relation In ｎ＝ln "0 十ln(l十n/no) ~ n/no 十const.

　　According to the equation of state (2.21), the density and the pressure

are related by

　　　　　　　　　　　゛凡＝・y。Taofi {a = e,i)　　　　　　(2.88)

where 710 = Pao/^o = const. Equation (2.88) is required to close the set ｏｆ

equations. Its validity should be examined by experimental results.

　　Now we have obtained ａ closed set of the reduced two-fluid equations

which consist of

旦
＆
ぐ　
Ｒ
　
陶

n07ni
(農

十でま£×▽φ･▽卜||＝-▽||(八十八)

十ｊｘ▽Ｆ'∇) ２
⊥
∇ Ｆ－∃二々上゜｢八∇八'▽▽｣丿)

一

一 ﾆjo∇|IJII十▽(八十只)×▽Ω・£

1∂ｙ4
否否゜‾∇11

と
馬

匹
ド

where

=-

“゛（φ一念）

(贈)

吼こ

Tま£×▽(φ一余)･▽Ω－∇||

瓦＝‰几o八

Ｆ＝ 三

角

　～　　～几十乃

(2.89)

(2.90)

- '7ll'^ll

召β

一馬

t711－

(α＝ej)

φ十‘゛

　　rine

－一隻が

‾　　47「

20

訃

(2.91)

が
瓦
　
牡

(2.92)

(2.93)

(2.94)

(2.95)

771C2
-
47『



∂

－
∂1

JII＝-ぶ7∇ひ

是･十でん∇φ×£･▽

φ≡ｙ1十止▽ふ×▽トヽ･£

　　　　　-　：　　　Ω＝茫十脊

From Eqs.(2.89)-(2.99),we find

旦
陶
ぐ )2}

(2.96)

(2.97)

(2.98)

(2.99)

＝一蛸卜り・｢こ|▽」ダ|)2

　－▽・{警叫刊▽ノ12}むり趾ｋヂIn
n/ 87r卜。}

　－▽||{如|十凡GII一念}}－∇||(φJII)十▽｣｡･(古ｷ･∇ﾊﾞ)

　－▽１･{Tまφ(凡十八)▽ｎｘ4＋∇i･{瓦ﾙ瓦(理一耳)▽ｎｘ£}

where tﾀeJ.is given by Eq.(2.46) and

Vr =

ユ£×∇φ．

馬

▽上・(が▽・Ｂβ)，

　　　　　　　　(2.100)

(2.101)

Integrating Eq･(2.100) and assuming that there is no contribution from the

boudary surface, we have the equation of energy balance

ｄ
一
ぷ皿｛ 叫刊▽

　＝　－

上F12）

かりり1司十叫(郵∇．が|)2}
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(2.102)

nom,-

-



゛!lichcorresponds to Ｅｑ･(2.22).It is seen that the total energy in the left-

hand side consists of the kinetic, magnetic and internal energy and the right-

hand side represents the Ohmic dissipation｡

　　We can derive several limiting forms from the reduced two-,fluidequations.

Here we employ the normalization of qｕやntitiesusually used in RMHD which

is written as

t = (a/evA

V =ｅｖＡ‘り、

)ち

凡十Pi = (e5oV47r)p,

ｒ＝ａ「

φ＝(ｃｃｕａＢo/c)φ

　A = eaBoA,

　　　　　　Z = RqZ.

　　　Φニ(1/2a召o(1)，

ηc2/(47r6atﾉλ)･＝力，

(2.103)

whereり゜Bo/V4石lorrii is'the Alfven velocity and the variables in the right-

hand side represent the nondimensional normalized quantities.　From this

normaliz ation the reduced two-fluid equations are expressed in the following

forms

ば
･1･・・肋

(罵
十り'マ

)

゛/11ニT▽|lp　　　　　　　　　(2.104)

F -a;▽・･ (z X▽ｐ’▽▽．Ｆ）＝▽|ljil＋▽ｐｘ▽Ω’j

弘

-
∂Z

一

一 ▽||(φ－ＯＣｅＶ)－7711JII

(2.105)

(2.106)

1キβ (IL＋Ｑ.1)が･＝一叫･▽ｎ－▽1巾|に祠I)＋り・▽1p　(2.107)

一

一

　　･y。八〇

・y。八〇十・y,乃o叫

Ｃ　　　　　。

　　　　●　　　　㎜Ω= 2x + ＼▽Φ12，

αi＝

β＝

7,乃o

tｅＰｅ〇十･y,乃o
μl

をr収八〇十･yiPio)

　　　司

22

(2.108)

　　β

where

Ｆ＝φ+ OCiP,　　　　　　・１＝£×∇Ｆ，

1ﾀＥ゛£×∇φ，　　　　　VeX･＝jｘ▽(φ－Ｏ£ｅＰ)，

∇11＝j十≒▽φ×£・∇，φ＝,Ａ＋1▽Φ×▽Jo・£，

JII＝－▽1ｙ1

αｅ

α＝-
　　ａ叫i



Here uipi =χjAirriQe^ﾌ石711s the ion plasma frequency. αｅａｎｄαirepresent the

drift parameters which measure the effects of the electron and ion diamag-

netic drift, respectively.　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ヤ

　　In the limit ofβ＝O the equation of parallel flow, Eq.(2.104),is decoupled

from the other equations (2.105)-(2.107) and they construct the closed set

of equations for the three field variables φ, A and ｐ. Furthermore in the case二

〇fα＝O， the RMHD equations are obtained as　　　　　　　　　　　　づ

旦
＆
ぐ

十?｣.･▽
)▽1φ＝∇|IJII十∇ｐｘ∇Ω･£

首

＝－∇||φ- 'Til-^11

(農

＋・Ｅ'∇

)

p＝O'

(2.109)

(2.110)

(2.111)

　　Next let us consider the electrostatic case where ∂j4/∂tis negligible. The

generalized Oh�ｓ law Ｅq･(2.91) yields

φ
面

｛
廣　
恥
五
『
　
I
I

S
"

(2.112)

Here an isothermal assumption for electrons (･yｅ＝1)is employed. In order

to study the drift waves it is convenient to use the following normalization

ωｃμ゜ち

V = C,V,

h/rio = n -{■n,

　　a5= p.a5,

eφ/71＝φ，

｜

(2.113)

｀゛hereｐ，　＝　ｃＪＷｃｉ，ｃ，　＝
ｊＴｅ|ｍｉ

and n represents the stationary part which

has a gradient in the radial direction. Neglecting the ion temperature and

the parallel fluid velocity tﾉ11，we obtain from Ｅqs･(2.90), (2.92), (2.112) and

(2.113)

　　　(jy十£ｘx

(jy十£×▽φ･▽

φ･▽)▽1φ＝な▽知－φ)＋▽に▽ｎ･i　(2.114)

(・＋司＝野∇細－φ)＋∇(－φ)・▽ｎ･j＋轟▽Ｄ

　　　　　　　　　　　　　　(2.115)
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where▽In,▽iiｘ▽Ω゜z and∇111 are neglected and l十β2 1 is used.

Hereω'ce = eBo/ｒｒｉｅｃ，ｌノell° riQe^mlme, and 1ノｅこnoe^?7±/me are the elec-

tron cyclotron frequency, the parallel and perpendicular electron collision

frequency, respectively.　Equations (2.114) and (2.115) are the Hasegawa-

Wakatani ｅqｕａtｉｏｎs127]inthe case that the curvature of the magnetic field

is included.　　　　　　　　　　　　　　　　　　　　　　十

　　For small 7711the Boltzmann distribution ｎ ＝φmay be assumed due to

Eq.(2.112). Then subtrax:ting Eｑ･(2.115) from Ｅｑ･(2.114) yields

　　　　(jy
十£×▽φ・▽

)
(▽1φ－φ－ii－Ω)＝一良▽1φ(2.116)

which is similar to the Hasegawa-Mima ｅqｕａtｉｏｎ,【281

　　So far the reduced equations have been derived for the stellarator/heliotron

plasmas. If the magnetic scalar potential (1)is dropped from Ｅｑs･(2.98) and

(2.99), we can immediately obtain the expressions for the tokamak plasmas.
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2。４　Conclusions

　　In this chapter, the reduced two-fluid equations have been derived and

their properties are discussed. They are suitable to describe large aspect ratio

toroidal plasmas in stellarator/heliotron or tokamaks. The reduced two-fluid

equatins (2.89)-(2.99) are given by applying the stellarator ordering with

the expansion parameter λ＝61/2 to the two-fluid plasma equations (2.14)-

(2.21). They include four field variables, i.e･，the electrostatic potential φ，

the parallel component of the magnetic vector potential yl, the pressure ｐ (ｏ｢

density ｎ｣and the parallel fluid velocity t;||.The time evolutions of them are

governed by the vorticity equation, the generalized Ohm's law, the pressure

equation and the parallel component of the equation of motion. The reduced

two-fluid equations conserve the total energy in the case of no dissipation･

Compared with the one-fluid MHD model, the effects of the ion and electron

diamagnetic drift due to respective pressure gradient are included in the

vorticity equation and the generalized Ohm's law.　The parallel ion flow,

which is not included in RMHD, appears in the pressure equation through

the compressibility, which describes the propagation of the ion accoustic wave

along the magnetic field｡

　　In the low beta limit, the parallel ion flow term vanishes in the pressure

equation and the equation of the parallel flow is decoupled from the other

three equations, which construct the closed set of equations for the three field

variables. Furthermore in the case of no diamagnetic drift terms, the three

field equations are reduced to RMHD. In the electrostatic case, assuming

cold ions and no parallel ion flow, the reduced two-fluid model gives the

Hasegawa-Wakatani equations, which consist of the vorticity and density

equations for the two field variables φand n. Furthermore assuming the

Boltzmann distribution for small 7711,we can also obtain the Hasegawa-Mima

type equation with the one field variable φ｡

　　Thus we can state that the reduced two-fluid model derived in this chapter

is ａ generalized one which includes the various types of reduced fluid mod-

els. In the following chapters, the problems of linear instabilities, nonlinear

behaviors and turbulent transport are studied bcised on this model.
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Figure 2.1: Coordinate system for the reduced two-fluid model･
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Chapter ３

１０ｎDiamagnetic Drift Effects

on Ideal Interchange

Instabilities

3．1　　Introduction

　　In this chapter, effects of ion diamagnetic drift on ideal interchange in-

stabilities are studied based on the model equations derived in Chapter 2･

The interchange instability is one of the typical MHD instabilities and it is

driven by pressure gradients combined with bad magnetic field curvature. It

is important especially in stellarator/heliotron configuration since the aver-

age bad curvature or magnetic hill usually appears in the edge region.　It

is predicted by the numerical studies based on RMHD that the ideal inter-

change modes with low mode numbers give the beta limit on Heliotron Ｅ

plasmas. It was shown that the beta limit depends on the pressure profile

and〈β〉li。it～2% is expected in Heliotron Ｅ for p(ｒ)＝ｐ(O)(1－(ｒ/ａ)2)2，

where〈β〉limitis the average beta limit obtained by the ideal MHD stability

analysis.【37】Hereour concern is whether the ideal interchange modes can be

stabilized completely or not and how the mode structure is changed by the

effects of the ion diamagnetic drift for〈β〉＞〈β〉ｓl･

　　In Sec.3.2 the condition for the ion diamagnetic driftrequired to stabilize

the interchage modes is estimated. We have interest in plasmas with ion

temperature higher than electron temperature and investigate the effects of
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the ion diamagnetic drift purely and neglect the electron diamagnetic drift･

Also the ion parallel flow in the reduced two-fluid equations may not be im-

portant since the interchange mode is localized by the magnetic shear effect

in heliotron configuration. In Sec.3.3 the linearized reduced two-fluid equa-

tions are numerically solved･ The dependence of the linear growth rate and

the mode structure on the magnitude of ion diamagnetic driftis given. The

numerical results are compared with the analytical expression. Improvement

of beta limit due to the ion diamagnetic driftis quantitatively discussed in

the case of Heliotron Ｅ. Finally conclusions are given in Sec.3.4･
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3．2　1V【odel Equations and Linear Theory

　　Since our concern is in the effect of the ion diamagnetic drift on the ideal

interchange instability ，we neglect the terms of the electron diamagnetic

drift(cug゜0, a゜(li)・nd dissipation (η|゜771°O)in the reduced two-fluid

equations (2.104)-(2.108). As we assume βto be small, the equation of the

ion parallel flow is decoupled from other equations. It is convenient to write

晦ｅvorticity equation in terms of the electrostatic potential φinstead of the

stream function F. Thus we obtain the model equations which contain three

fieldvariables φ,A and ｐ as follows

(jy
十む･∇

)∇1φ十∇⊥･(り,･∇∇⊥φ)＝∇‖JII十▽pｘ▽Ω･z
(3.1)

jﾄ1＝－▽||φ

ｉ十”ｓ’▽ ｐ＝０

(3.2)

(3.3)

where

　　　　　　Ve = Z×∇φ　　　　　　　　　Vn: = az×∇p

　　　　　　jll＝－∇1j　　　　　　　　　　α゜ｃ/ａω'pi

　　　　　　∇II °
jy
十▽φ）ｄ・▽　　　　　　　　　　　　(3.4)

　　　　　　φ＝y1＋1∇Φ×∇J）・£

　　　　　　　　　　-　　　　　　Ω＝2ｚ十|▽$|2.

Here we have used the normalization given in (2.103). Compared with the

RMHD equations the only difference is that the vorticity equation (3.1) con-

tains the term of the ion diamagnetic drift. The magnitude of the additional

term is chara£terized by the driftparameter α. The interchange instability is

driven by the term of the pressure gradient ∇ｐcombined with the magnetic

curvature▽Ωin the vorticity equation.

　　Equations (3.1)-(3.3) conserve the same form of energy as RMHD

行叫さヂ陽啓一勺＝， (3.5)



where we assumed that there is no contribution from the boundary surfa£ｅ･

　　Let us firstconsider the equilibrium state where φ＝O and ∂jdt＝∂/∂ｚ＝

O. From Ｅ(1･(2.104),we find the pressure to be ａ function of the poloidal flux

φ

　　　　　　　　　　　　　　　　p = pW　　　　　　　　　　　　　　(3●6)

Using Eｑ･(3.6) the vorticity equation in the equilibrium state gives

∇い＝べ十Ｇ(φ) (3.7)

where Ｇ denotes the arbitrary function ｏｆ盛Ｔｈｅ equilibrium equation (3.7)

ｗａs五rst derived by Greene and Johnson and it corresponds to the Grad-

Shafranov equation for the axisymmetric system.

　　Next we consider the linear stability problem. Linearizing Eqs.(3.l)-(3.3),

we obtain

ヰ▽1φ1十α∇バ£×∇po･∇∇｣｡)φ1＝－∇Ilo∇IM十▽ゐ×▽y11･£十▽plｘ∇Ω･£

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(3.8)

　　　　　　　　　　　　　　　　jl

Fy11＝－▽|loφ1　　　　　　　　　　(3.9)

戻p1＝▽poｘ∇φ1・£ (3.10)

where the subscripts o and l refer to the equilibrium and perturebed quanti-

ties respectively. From these equations we have a linear homogeneous equa-

tion for φ1，

　　　　　　　　　　　　話▽1φ＋2α．4話＝ｓφ　　　　　(3.11)

where ａ subsript l for φis omitted and linear operators Ｓ and ノtare defined

by　　　　　　　　　　　　　　　尚

　励≡▽|lo∇1∇Iloφ－∇ゐ×∇(∇|loφ)・£－∇Ω×∇(∇poｘ▽φ・£)・z (3.12)

　　　十　＼　　Aφ≡1▽｣.・｢£×▽po・∇∇｣.φ).　　　　　　　　(3.13)

Here we employ the fixed boundary condition i.e.φ士O at the plasma surface

r = 1. It can be demonstrated that the linear operators Ｓ and ノthave the

following symmetric and antisymmetric properties

卜ｆｘｘＳφ＝J d?⇒ｓｘ
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I ＳｘｘＡφ＝－トｈφ．4ｘ (3.15)

for any choice of functions φand ｘ subject to the boundary condition. It

can be shown by using these properties that the Lagrangian formulation is

possible and the linear equation (3.11) can be derived by using the variation al

principle

Jｔｏ

ＬｄｔΞ6
I．(JIぷ/d3ｚ1{ ―卵

百
　
孔

｝

＝０ (3.16)

Then the linear equation (3.11) corresponds to the Euler-Lagrange equation

for the variational principle. Using the Legendre transformation for the La-

grangian£yields the conjugate field variable 7r for φ

　　　　　　　　　　i＝－∇1誉－α．4φ

Then theHamiltonian耳iswrittenas

亙　＝

一

一

１
一
２

･優
2

十φ励

｝

/d3づ|▽上▽ｴ2(7r十α．4φ)12十φ励

(3.17)

(3.18)

where▽ｴ２ denotes the inverse operator for the two dimensional Laplacian

▽■. 11 is easily shown that Ｅｑ･(3.11) is expressed by the Hamilton's canonical

eqations and that the Hamiltonian ∬is constant in time.　十

　　In the case ｏｆφ(ｚμ)ニφ(ｚ)ｅ‾i“，Ｅｑ･(3.11) can be written as an eigen-

value equation

　　　　　　　　　　　　　ω2∇1φ+ 2iujα．4φ十ぶφ＝O　　　　　　　　(3.19)

where an eigenvalueωand an eigenfunction φare generally complex-valued･

Multiplying Eq･(3.19) byφ*and integrating in the plasma region give

　　　　　　　　　　　　　　瓦ω''-2aVω一叩＝O　　　　　　　　(3.20)

where

瓦＝
L/゛d3ｚl▽｣.φ|2

V=-
[cPx.<f>'Aφ，ｗ＝χJd？⇒゛ｓφ･(3.21)
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Obviously K is ａ positive real number.　Equations (3.14) and (3.15) show

that ｙ and w are real. w corresponds to the energy integral in the ordinary

linear MH Ｄ stability analysis. From Ｅｑ･(3.20)

ω＝αト証言者 (3.22)

Ifa = O or in the case of RMHD, the sign of W determines the stability and

this corresponds to the energy principle. However in the case ｏｆα≠O，even

when Ｗ is negative, the system can be stab!e if

　　　　　　　　　　　　　　α2(TE)2十誓＞O　　　　　　　　(3.23)

which is directly related to the finite L armor radius stabilization of the in-

terchange ｍｏｄｅ･

　　Now let us consider the cylindrical co�iguration where the magnetic cur-

vature due to the toroidicity is neglected but the average magnetic curvature

of the helical field described by d^ldr is retained, whereΩis assumed to

depend only on the radial coordinate ｒ. Equilibrium quantities such as Po,

ゐ, ^0 and φo are also functions ofｒ alone, which is consistent with the

equilibrium ‘equation (3.7).　Using ａ Fourier mode φ(ｚ)＝φ(r)e'"'θ―inzin

Ｅq･(3.19), we obtain the following linear eigenmode equation

･一竹)(ドジヅト巾F(贈)}
＝≒(工作卜尚(ｙ)一畔争

From Ｅｑ･(3.21

耳　＝　7「
ｊ

ｙ
万
一
２

　
＝

　
ｙ

W＝7「
ｊ

we have

rdr <好づり

畔剖
�ｒ

｛

八
リ
ぐ旦
＆

rr? dpo dQ
一一
ｒ2 d「
営φ 3｡24）

(3.25)

dφ

－

d『

2
十回|φ12べyj:|φ12｝　　　(3.26)

≒(姉い‥7誓づﾔﾂ
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where k＼＼= m£一ｎ and １＝－(1/ｒ)(dφoIdｒ) denotes the rotational trans-

form of the equilibrium field. The firstterm of the integrand in Ｅｑ･(3.27)

represents the stabilizing effect of the magnetic fieldline bending｡

　　In order to minimize Ｗ， we consider the mode localized only in the

neighborhood of the mode resonant surfax;e,r = ro, which is defined by

た||゜0 or i゜nlm. If we put ｒ－ To °ｚ and た||゜kl＼x,we find

W 2 Trro

　
　
Ｑ
＝

　
　
た

ｔ　
　
　
Ｚ

　
　
ｄ

　
／

ふ袖)|≒T雨叫|φ12}≧″o( 讐十φμ)/剣φ12

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(3.28)

where kθ= "i/ro, Po゜伽o/dｒlｒ＝ｒｏ and９!　＝ ｄｆｌ/ｄｒ|r=ro. In the last part,

Schwarz's inequality is used. From the energy principle, (3.28) means that

in the case of a = 0 or in the ideal MHD the local mode is stable if and only

if the following inequality is satisfied

讐
十kjp'M' > 0. (3.29)

This condition is equivalent to the Suydam criterion.【38】Interms of the

physical parameters (seeＥｑ･(2.103)),the criterion(3.29) gives

旦
加
乱
、

lｎ

く)2

＋
47r伽odΩ

＞0. (3.30)

It is noted that the mode number disappears in this expression. Here we are

concerned with the case where the Suydam criterion is violated so that the

system is MHD unstable. The eigemode equation (3.24) is rewritten for the

localized mode as

　　　　　　(哨十巾2)息＋2胎鸞一垢(印'＋胎2)φ＝o　(3.31)

where

　　　　　　　　　　　　　　ｊ＝一ω2＋ω。iω●　　　　　　　　　　　(3.32)

Hereω＊i°αkep'o is the normalized ion diamagnetic drift frequency and ７０

denotes the growth rate in the MHD limit α゜O. In deriving Eq.(3.31), we

have neglected the terms oiｄＪｏ/ｄｒａｕd�(ｒ‾1伽o/dｒ)ldr in Ｅq･(3.24) since
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equilibrium quantities, such as Jn and Po, vary slowly in the radial direction.

Equation (3.32) yields

ω－ 1ﾚ。i士χ/こjﾌﾆﾌらj］ (3.33)

which shows that the interchange mode is stabilized by the effect of the ion

diamagnetic driftif

　　　　　　　　　　　　　　　　鴫＞4娑　　　　　　　　(3.34)

　　Next let us calculate the eigenvalue ^"l.If゛e put ｚべ7o/M)Ｏｎ Ｅｑ･(3.31),

we have

　し　　　

(ぐ2＋1)卒十鴻十(λ‾μ2ぐ2)φ゜o　　　(3.35)

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●where

λ＝－

几刀0

　垢Ω'

＝一一
　(ｒo£/)2

μ －　　　一一一一－
　A;,,　（ｒoz’）

(3.36)

(3.37)

The assumption that the Suydam criterionis violated implies λ> 1/4. This

eigenvalue problem is studied by Ｋｕlsrｕd【30】usingthe method of the asymp-

totic matching. The boundary conditions that φvanishes at £= ±00 deter-

mine the largest eigenvalue ７ｏwhich is given by

μ -
一

一
一一

耳伺

16exp {1[3 argr (1十かｕ)¬arg r(1十同一tａｎ-1(ｅ-”/2)-ｼ]}

　　　　　　　　　　　　　　　　　　　　　　　　(3.38)

where ｕ ≡φ瓦‾二1 andμ≪1 is assumed.　Equation (3.38) is derived in

Appendix 3.A. Equations (3.36)-(3.38) yield the largest eigenvalue ７0

　　　　　　　　　　　　7o = roし″Ｈ(4yｽﾞjM?!).

Thus the stability condition (3.34) is rewritten as

４

(一垢)Ω'

(ｒo£/)2

(3.39)

(3.40)
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This condition shows that high m modes can be stabilized more easily than

low ｍ modes. From Ｅｑs･(3.31)and (3.32), we find that the profile of the

eigenfunction is unchanged with increasing α.

　　Equation (3.10) gives
　　　　　1m

pl＝一一－
　　　　　ω『

(3.41)

which shows that in the MHD limit α＝O the phase ぷfference betweem

Pi and φare 7r/2 sinceω゜i・j whereas for large αthe eige�requencyω

approa£heｓω，iand results in ｐ１２ －(1/α)φwhich implies the Boltzmann

distribution of ions under the isothermal assumption.
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３．３ Numerical Results

　　　Inthis section we solve the linear eigenmode equation (3.24) numerically,

which is given below again

ω2－ωα竺

　　　　『

　　　－　　　－

瓢嘉回 耶づげ陪）
≒(嘉作ﾄﾂﾞ)(ｙ)41･7訃

Here the parallel wavenumber is

as

ん||＝ｍ£－ｎ

dａ　　Ｎ(E 1 d
Ji^L　　ｊＶＩ二・　しφＦニ丁戸屁(尚)

Poir) = (β(0)/2c)(1－ｒ2)2
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φ
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ｒ
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42）

(3.43)

(3.44)

(3.45)

dｒ dｒ

Since we consider ａcurrentless plasma, we put Ao ＝ゐ＝O and the rotational

transform L is determined only by the external helical fields. As is shown in

Appendix 3.B, the average magnetic curvature may be written in terms of 乙

where l is the pole number, N is the toroidal pitch number and eis the inverse

aspect ratio. In the numerical integration of the eigenvalue problem, we used

the shooting method to satisfy the boundary condition for an appropriate

eigenvalue. Here we employed the fixed boundary condition atｒ ° 1 where

the eigenfunction φvanishes. Using the fact that the eigenfunction has the

formφ(ｘ ｒ゛in the neighborhood ofｒ ° O for the poloidal mode numer ｍ，

the equation is integrated from ｒ 2 0 toｒ＝1. The eigenvalue ωis obtained

by adjusting the solution to satisfy the boundary condition atｒ ° 1 based on

ａ root-finding subroutine called Brent°s method･ The results of the shooting

method were also compared with those obtained by solving the initial value

problem of the linearized equations (3.8)－(3.10)｡

　　For the Heliotron Ｅ plasmas we put l = 2,N = 19,e = 0.1 and the

minor radius of the torus a = 20cm. The rotational transform due to the

external helical fieldsis assumed as 乙＝0.51＋1.69ｒ2.5.Ｗｅ also assume the

equilibrium pressure to take the form



We studied the stability of this equilibrium against the ｍ = 1/n = 1 mode,

which is the most dangerous mode in Heliotron Ｅ since it has the mode

resonant surface at the middle of the plasma minor radiusげ＝0. 6 1，and low

ｍ modes are more unstable than high m modes as seen in Sec.3.2. Figure

3.1 shows the profile of the rotational transform and the location of the

m = 1/n = 1 mode resonant surfa£ｅ.The stability beta limit determined by

the Suydam criterion (3.29) at r = 0.61 is β(0) = 1.62%･

　　Figures 3.2 and 3.3 present plots of the numerically obtained linear growth

rate {RqIり)７ for the ｍ = 1/n = 1 mode versus the central beta value

β(O)ａｎｄthe drift parameter a = c/aWpi, respectively. The results of the

analytical treatments for the slab geometry given in Sec ３･2 are also plotted

for comparison in Fig.3.2.　We see that the analytical expressions for the

localized modes agree with the numerical results for the cylindrical geometry

in the dependence of７ on β(0) and a though the difference in the magnitude

of 7 occurs due to the nonlocal properties of the eigenfunction as is seen

later in Figs.3.6 and 3.7. It is noted that the analytical treatments become

more applicable as the poloidal mode number ｍ increases because the radial

width of the eigenmode is inversely proportional to ｍ as is given by Ｅ(1･(3.59)･

Whenβ(0) becomes near the Suydam limit, the mode structure in the case

ｏｆα＝O is localized sharply in the vicinity of the resonant surfa£ｅand

the growth rate becomes close to that given by Eq.(3.39). According to the

results of the shooting method we find that the stabilitybeta limit determined

by the ｍ = 1/n = 1 ideal interchange mode in the ideal MHD case of α＝

O is β(0) = 2.2%. This value is determined in the numerical calculation

using 10,000 meshes equally devided in the radial direction. Its value seems

to decrease close to the Suydam limit if we use smaller mesh sizes !lear the

mode resonant surface. Figure 3.4 shows the stability beta limit as a function

of the drift parameter α. The beta limit can be improved by including the

effect of the ion diamagnetic drift and its value becomes β(0) = 5.1% in the

case of a = 0.5 which corresponds to the deuterium plasma with the average

density ｎ＝1013cm－3 and the minor radius ａ＝20 cm.

　　Figure 3.5 shows the contour of the eigenvalue ωin the ｃｏｍｐｌｅｘω-plane

for O ≦α≦0.6 andβ(0) = 5.5%. It is found that, for the unstable region

７≡ωi＞O， the eigenvalues obtained by the shooting method also draw ａ

quarter of the circleω?十ω.･ = 7o as predicted from Ｅq･(3.33) whereωΓ and

a;,-are the real and imaginary parts ofω, respectively. Here 70 denotes the

linear growth rate in the ideal MHD limit ａ ° O. In Figs.3.6 and 3,7 we have
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the contours and the profilesof the eigenfunctions φ,Pi and ^1, respectively,

which are numerically obtained for α＝O and α几= 0.5 at β(0) = 4.5%.

Here the interchange mode is unstable for α＝O and stable for α = 0.5. As

expected from Ｅｑs･(3.9)and (3.10), pi and Ai have the same phase and the

phase difference betweenφand Pi is 7r/2 for the MHD unstable case, which

goes to 7r clSthe ion diamagnetic drift stabilizes the interchange mode. This

relation corresponds to the realization of the Boltzmann distribution forions

provided that the temperature is constant.　We see from Ｆｉｇ･3.7that the

profiles of the eigenfunctions do not depend much on the drift parameter α

compared with the phase differences, which is already explcdned by the local

mode analyses in Sec.3.2. We note that the eigenfunction φhas the peak at

the mode resonant surface and its radial width is of the same order as the

plasma minor radius. In spite of this fact, the local mode analyses ･given in

. the previous section are stilluseful to explain the numerical results obtained

　forthe low mode number.
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3。４　Conclusions

　　We have studied the stabilizing effectsof the ion diamagnetic drift on the

ideal interchange instabilitiesin a helical system both analytically and numer-

ically. Our model equations differ from the RMHD for high beta stellarator

plasmas with β⌒･'ｄｎthat the vorticity equation has the term corresponding

to the ion diamagnetic drift, the magnitude of which is chara£terized by the

drift parameter α゜c/awpi. The Lagrangian or Hamiltonian formulation is

shown for the linearized equations of our model though the energy principle

for the linear stabilityis not available. The local mode analysis gave the sta-

bility condition (3.40) which states that the interciiange mode is stabilized if

the magnitude of the ion diamagnetic drift frequency becomes greater than

twice the linear growth rate in the ideal MHD or α＝Ｏ case. This result

is equivalent to that obtained by Rosenbluth et aL【29】or KulsrudJ^Ol The

eigenvalue problem was numerically solved for the model ｃｏ�iguration of

Heliotron Ｅ by using the shooting method. The ｍ = 1/n = 1 interchange

mode, which is the most dangerous one in the Heliotron Ｅ configuration, was

examined. The eigenfunction φhas the peak at the mode resonant surface

and its radial width is of the same order as the plasma minor radius when

the beta value is much larger than the Suydam limit. However the dispersion

relation given by the local mode analysis agree with those obtained numeri-

callyin the dependence of the eigenvalueωon the central beta value β(0) and

the drift parameter α. The local dispersion relation can be applicable to low

poloidal mode number cases with reasonable ａ£cura£yespecially for smaller

beta values close to the Suydam limit. The phase difference betweenφand

Pi is 7r/2 for the ideal MHD unstable mode. When the ion diamagnetic drift

is included, the interchange mode is stabilized by the increase of a and the

phase difference goes to 7r at the marginal point, which implies the realiza-

tion of the Boltzmann distribution forions under the isothermal assumption.

This is an explanation of finite Larmor radius stabilization for the inter-

change mode. In the Heliotron Ｅ model configuration with the equilibrium

pressure profile of the form p(ｒ)＝p(O)(1－(ｒか)2)2， then the stability beta

limit determined by the ｍ = 1/n = 1 ideal interchange mode is β(O)＝2.2％

in the ideal MHD case a = 0. It is improved up to β(0) = 5.1% in the case of

α゜0.5 which corresponds to the deuterium plasma with the average density

ｎ＝1013cm－3 and the minor radius a = 20cm.
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3．Ａ Derivation of Ｅｑ・(3.38)

The method of asymptotic matching is applied to the eigenmode equation

　　　　　　　　(ぐ2＋1)今＋2ぞ咎十(λ－μ2ぐ2)φ＝o　　(3.46)

with the boundary conditions that φ＝O at ^ = ±00. Since Ｅｑ･(3.46)is

inねriant with the transformation .^→－ぐ，both the even and odd modes

exist. Multiplying E(1･(3.46) byφ･ and integrating over the whole region

yield

戊面{(ぐ2＋1)

＝

副

＝　0.

dφ

一面

肺
百
　
ぐ

－(λ－μ2ξ2)|φ12

十加｢十(1－λ)|φ12十

Here if we use the following inequalities

ぶ｛ 邸百
＞

－

then we find

戊面
旦
面
　
渥

十μで圖2

り ＞

－ ご

邸
百

2

十μ2ξ21φ12

｝

＞

－ 戊

λ-1幻

面2

(3.47)

＝りン|φ12　(3.48)

(3.49)

and that μ→十〇ａsλ→1/4十〇. We assume that λis close to l/4 so that

μ≪1， In the region O ≦ぐ≪1/μ, we ｈａ:veＥｑ･(3.46)as

　　　　　　　　　(ぐ2＋1)燧＋2ぐ寧一雨･＋1)φ＝o　　　(3.50)

where we have used λ＝－zﾉ(μ＋1)ａｎd defined

u = ―
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１
一
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　　　　　　　　　　　　　u = ＼/4て二‾i●　　　　　　　　　　　　　　　(3.52)

The solution to Ｅｑ･(3.50)is given by

　　　　　　　　　　　φ＝ｙ1瓦(可)十丿吼(司)　　　　　　　(3.53)

where八and Qu are the Legendre functions. For the even mode, the condi-

tion dφ/d哉＝o＝O yields

１
一
２

　
　
＝

λ
万 ｒ(一|)r(1十;)ｅ‾i7『l'/2＝;{i 一 cot (苦

Substituting this into Ｅｑ･(3.53)we have the asymptotic form

(3.54)

φ＝　constで1/２COS
じloμ十かlog

2＋2 argr
(1十ｼう-arg r(1十紬)

－tａｎ-1(ｅ－/2)一万| (3.55)

for l≪ぐ≪1/μ. Similarly for the odd mode we ｕsｅφ|と＝oニOto obtain

1＝寺(卜釦(ト

and for 1 ≪ぐ≪1/μ

φ　＝　ｃｏｎs収‾1/2 COS

y)ｅ‾“(“1)/2＝;{i十tan(f)} (3.56)

かogξ十-≪log2 +
2 arg r

In the region ofぐ≫1， Ｅq･(3.46) is written as

(1十-iuj
- arg P(1十㈲

ぐづ白水十首一(巾＋1)十μ2ぐ2]φ＝o

Its solution vanishing atぐ゜+OO is given by

　　　　　　　　　　　φ＝CI/2瓦＋1/2(μぐ)

For l ≪ぐ≪1/μＥｑ･(3.59) takes the form

φ= constｲ-1/2COS
にloμ＋110g 9

7 argr
(1十ｼｕ)十
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(3.58)

(3.59)

．
亙
２
　

(3.60)



By comparing Eqs･(3.55) with (3･60) for the even modes

μ゜16exp{|[3 ゛lgr
(1ｻ知‘)-argr(l十㈲‾tilll‾1(ｅ‾”/2)

　-ﾄﾅﾍﾟ}

爪謡な

(1＋1辿)一are

　-17r＋ｎﾖ}

　　　　　　　　　　　　　　一牡十則|　　　　　　　　　　　　(3.61)

is obtained, where ｎ = 0,-1,-2,…sinceμ→十〇ａｓｕ→十〇. Similarly by

comparing of Eqs･(3.57) with (3.60) for the odd modes

μ　゛　16 exp
{jl3
arc P
(1十-iuj

- arg r(1十如)十tａｎ-1(ｅ-゛/2)

(3.62)

is obtained, where ｎ ＝O,－1，－2,‥・for the same reason as in Ｅｑ･(3.61)

The largest value of μis given for ｎ ＝O in the even mode as

μ＝16 exp {jl 3 are「 (1十-iuj - arg「(1十同一tａｎ-1(ｅ-゛/2)-ﾄ｣}，

　　　　　　　　　　　　　　　　　　　　　　　(3.63)
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３．Ｂ Magnetic Flux, Curvature and Rotational

Transform due to External HelicalFields

　　The scalar potential for the external helical fields Φis subject to the

Lapla£ｅ゛sequation as stated in Sec.2.3

　　　　　　　　　　　　　　　　∇2(D＝O●　　　　　　　　　　　　　(3.64)

Since the uniform toroidal field and the other fields independent of z are

separable from the helical fields,the general solution to Ｅｑ･(3.64)is given by

(1)゜ΣΣΦipli{phr)sm{lθ一禎ｚ十ら) (3.65)

where //is the modified Bessel function andφl。denotes an arbitrary phase

angle. In terms of the major radius of the toruｓＲｏ and the toroidal pitch

number N, we can write /l＝N7馬ln this Appendiχ all quantities are

represented by the physical parameters instead of the normalized ones. From

Ｅq･(2.98) we have the magnetic flux due to the helical fields as

　仇＝去∇Φ×∇トヽ・2

　　　＝一去Σ＾Ip＾ｍｐ―II(phr)Im(phr) COS[(l-m)θ十わーφ。。]･

　　　　　　　　l.m.p

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(3.66)

The scalar potential for the magnetic curvature due to the helical fieldsis

obtained by Eq.(2.99) as

Ω入　＝

|▽Φ12

･･　･･･I
　珂

　　゜
ふぶ

　　　　　　　Ｘ ＣＯＳ[(/- m)e十らーφ。]，　　　　　　　　　　　　　(3.67)

It is seen from Ｅｑs･(3.66)and (3.67) that both ぬａｎｄ叫ｄｅｐｅｎｄonly on ｒ

if we consider the case where, for ｅａ£hp,-Φ1．≠Oonly for ａ single value of
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/ such as in a helically symmetric system. Then we can write the rotational

transform due to the helical fields as

　　　　　　　　　　　　４(ｒ)＝一文誉　　　　　(368)

Furthermore if we assume that Φ1．≠O only forｐ °ｌ and ａ single value of/

then we find from Eqs.(3.66) and (3.67)

叫

仇＝一往Ii{hr)Il{hr)

一

一 平(剛十(1十ム)が(則卜一浪jyま(ｒ‰)

-＝-
ｄｒ　　　IＲ0

１

-

r2
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ま(ｒ‰)･

(3.69)

(3.70)

(3.71)

が叫1

-2珂

Using Eｑs･(3.68) and (3.70) we obtain
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Figure 3.1: The profile of the rotational transform and the location of the

m = 1/n = 1 mode resonant surfa£ｅ.
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Chapter ４

Linear Theory of Resistive

Interchange]Ｖ[ｏｄｅｓCoupled to

Resistive Drift Waves

4．1　　Introduction

　　In the previous chapter we have discussed the stabilizing effect of the ion

diamagnetic drift on the ideal interchange instability. Even if the ideal MHD

modes are stable, the resistive MHD instabilities【39】suchas tearing mode,

rippling mode and resistiveinterchange mode or drift waves destabilized by

trapped electrons, toroidal effect and resistivity exist. They have usually

smaller growth rates than the ideal modes and play an important role in the

relaxation phenomina such as sawtooth oscillations and disruptions or in the

anomalous transport ｏ!)sｅrｖｅｄin ｍ昭netically ｃｏ�inedsystems｡

　　Here our concern is in the resistiveinterchange mode, which is supposed

to be a cause of turbulence and the resultant anomalous transport in the edge

region of stellarator/heliotron. In this chapter we study the linear theory of

the resistiveinterchange modes coupled to the resistive drift waves under the

electrostatic approximation by using the H asegawa-Wakatani equations in-

eluding the average magnetic curvature given in Sec.2.3. This approximation

is valid in the edge region where the beta value is low. Chen et a1.[40]－【42】

showed that the resistive drift waves aie stable in slab geometries with mag-

netic shear, while they become unstable in toroidal geometries.　Here it is
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found that, if the average magnetic curvature due to the helical fieldsis in-

eluded, the radially localized instability occurs even in slab geometries by the

coupling of the resistiveinterchange mode and the resistive drift wave. Par-

allelion motion becomes important in the region far from the mode resonant

surface and contributes to the localization of the drift wave. However it is

shown that in our model the average magnetic curvature causes the localiza-

tion of the mode around the resonant surface and therefore the ion parallel

motion is neglected in our model｡

　　This chapter is organized as follows. In Sec.4.2 we linearize the Hasegawa-

Wakatani equations with the average magnetic curvature to obtain the linear

eigenmode equation and derive the dispersion relation analytically by using

the slab approximation. In Sec.4.3 the eigemode equation is solved numeri-

cally and compared with the analytical results. Finally conclusions are given

in Sec.4.4.
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４．２　]ＶＩ:odel Equations　and　Linear　stability

　‥　　　Analyses　　エ　　　　　　　　･･･.　・・　　　・　･.

　　We consider low frequency electrostatic perturbations in an inhomoge-

neous collisional plasma in ａ magnetic field with curvature and ａ shear. We

assume electrons to be isothermal. Ions are treated as ａ two-dimensional

cold fluid where parallelion motion is neglected. Here we use the Hasegawa-

Wakatani equations generalized into helical systems where the average mag-

netic curvature due to the helical fieldexists、which are given in Ｅqs･(2.114)

and (2.115) and written again　　　　　、

ダ　G･＋ｈφφｿ∇)奴φ＝1∇知二φ)＋▽いyｎ･仁(り)

乱･＋ｈ∇φ,･▽)(･i
+ n) =知物－φ)＋▽(いφト゛･j　㈲)

whereμ＝μell/ωce and the normalizations described in (2.113) are used.

Since we have the nonzero average curvature without considering a toroidal

geometry, we employ ａ cylindrical plasma model where all the stationary

quantities such as n, fi and the magnetic flux ■0depend only on the radial

coordinate ｒ.　The perpendicular diffusion term in Ｅｑ･(2.115) is neglected

sinceμ≪βis assumed. If there is no stationary electrostatic potential,

linearizing Eqs･(4.1) and (4.2) and expressing ｎ and φin terms of the Fourier

mode with a frequency ωpoloidal and toroidal mode numbers ｍ, n, we obtain

the linear response of the density perturbation ｎ to the electrostatic potential

φ，

　＿伺一加(ω・ｅ－ωｇ)

71‾ん卜加(ω一弓)φ

and thelinﾌeiでTodヅｕａtｉｏｎ

　　　(
戸＋7ぶ‾７

)φ

　　≒卜
尚

一心)
|(1‾失二と い卜

UJφ

(4.3)

(4.4)

where k＼＼゚ (ρ・/j?o)(加£-n),ω・ｅ°(ｍ/ｒ)(‾ｄｎ/ｄｒ) andωｇ°(ｖfilｒ)(da/ｄｒ)'

ω。eisthe normalized electron diamagnetic drift frequency and ωｇ/fce　＝ｄａ/ｄ「
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corresponds to the normalized magnetic curvature drift velocity, where kg =

mlr is the normalized poloidal wavenumber.

　　Here we assume ａ radialy localized mode around the resonant surface

r = ro, which enables us to use ａslab approximation. We use ｚ = r-ro and

ん||＝たいin Ｅｑ･(4.4)･which yields

where

d2　　　ひ2－iｘ＼ｒ]
ぷφ－７ご碑こ仁ｏ

　　　2＿μ(ω‾ωｇ)ノ
　　a;凡一　　　曜

ぐ＝1－ａﾉ|＊:ｅ‾‰十り

　　　　　　　　ω

77＝
ωg(a;.e - i^g)　　2

　ω（Ｑノー叫）
十だθ

(4.5)

(4.6)

(4.7)

(4.8)

Since Ｅｑ･(4.4)is invariant with the transform ｚ →－ｚ， both even and odd

eigenmodes exist. For ｚ ≫＼xr＼ Eq.(4.5) can be written as

心
φ＝０ (4.9)

Its solution which vanishes atｚ＝十oo is given by

　　　　　　　　　　　　　　φ＝ｚl/2戻1)(ぞ/2ｚ)　　　　　　　　　　　(4.10)

where H＼ is theH ankel function and λis defined by

　　　　　　　　　　　　　　jχ2 －
1
＝一ix%r].　　　　　　　　　　　(4.11)

Here the real parts ofぐ1/2 and A are assumed to be positive. In the region

|祠≪ｚ≪|ぐに1/2 Eq.(4.10) takes the form

φ＝ｅ-“φＣＯＳｅＣ(ｋ){琵でヰGZ“1/2一琵笠でj≒2.-A+l/2|
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For O ≦ｚく|祠|η/ぐ11/2 we have Eq.(4.5) as

The solution to Ｅq･(4.13) is

d2　　i4η
-＋-一一dx^　　岬一咄１

φ ＝０

φ＝(･'2－1)1/20弓(・) + BQl{褐

(4.13)

(4.14)

where弓and Ql^ are the Legendre functions and we defined r = xe-"｢I'lxR

andμ(μ+ 1) = -ixlr]. The last relationgives

For

.=A-5= 1－砥り)
2

the even mode, the condition dφ/dら＝o＝O yields

召

－＝
y1

　　　　　-2ie-*'"'l^

r(-i/2 －μ/2)r(3/2十μ/2)

一

一

y
ｃｏs(苧)ｅ-i7｢″/2

and for the odd mode, the conditionφlｚ。o＝O gives

Here we assumed

-

　　7「一i＜ａrg xr ＜

で
sin(子)ｅ‾i7゛μ/2

等

(4.15)

㈲6）

(4.17)

(4.18)

in deriving Eqs･(4.16) and (4･17). The asymptotic form of Ｅｑ･(4.14)in the

region lりll≪ｚ≪|ら||η/ぐ11/2 is written as

φ　＝　7r‾1/2Å

バ

£なりと4∠ﾖり

･2μｅ‾i゛(μ＋1)/4ｚi″‾lｚμ＋1

94ﾌﾟ1-1/2) 5_rｸﾞ+

3/2)J ^｣
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Since Ｅｑs･(4.12)and (4.19) coincide with each other in the overlapped region

where both the equations are valid, we obtain the following equation

　　　　　2-4M-2“(,i/2-3/4)eM+l/2 2u+i
r(―μ＋1/2)r(μ)r(‾μ‾1/2)　ダ

　　　　　　　　　ｅ　　　　　　　　秘　r(μ＋1/2)r(－μ－1)r(μ＋3/2)

×{1＋7rｌｃｏt(7Γμ)}＝1 (4.20)

In order to justify the method of asymptotic matching used above, we must

require the inequalities, |ぐ11/2≪|らにl and lξ11/2≪同1/2，to hold. It is

difficultto solve Eq.(4.20) analytically. However approximate results may be

obtained in the weakly coUisional limit V≪1. In this case we may assume

ｌ福|≪1 and therefore lμ|≪1 from Eq.(4.15), which gives

μ２－心 (4.21)

We focus on the even mode for which we find from Eq.(4.16) and lμ|≪1

B　2i

－～－
A TT

(4.22)

Substituting this into Ｅq･(4.20) we obtain approximately the dispersion rｅ°

lation

ぐ1/2＝;ｅ゛/4ｚ朗 (4.23)

where Xr, か

O and ―7r/4< arg xr く37r/4. We also assumed

|ぐ|≪＼v＼≪|な｢2 (4.24)

Equation (4.23) reduces to the algebraic equation of the fourth degree in ω･

In the limit zﾉ→十〇，the solution to Eq.(4.23) is written as

7r2 1ﾉ　UJg{<jJ^e ―ω９)２

ωごω９十七-一一
４た卜。一哨(2十ぐ

(4.25)

It is noted that ξcｘ u°,ri ex zノーland M-' oCIノ－2in this limit, which

is consistent with Eq.(4.24).　Since we may assume ω・ｅ＞ω9(2十り) for

geometrical parameters and expeimental parameters of Heliotron Ｅ１９]under
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kg < 1, localized unstable modes are predicted from Eq.(4.25).･We find

from Ｅｑs･(4.3) and (4.25) that the ratio of the amplitude of the density

perturbation to 晦ａt of the electrostatic potential is proportional to ,ﾉｰl and

the phase difference between them approaches to 7r/2 at the mode resonant

surface.

　　The reason why the localized modes exist is because the average mag-

netic curvature causes the narrow and deep potential well around the mode

resonant surfa£e in Eq.(4.5), which is approximated in the inner region 1^1 ≪

lｚ釧77/ぐ11/2 as　　　　　　　＼

　　　　　　　　　　　び万言与ｼ元丿7｢ｅ‾‘’/4゛が(゛)　　　　(4°26)

where -7r/4 < axgXR < 37r/4 is used. It is shown by Eqs.(4.8) and (4.25)

that the absolute value of 77 can be large for small U if UJg≠O. Assuming

that the eigenfunction φis constant in the inner region we find that the

potential well of Eq.(4.26) yields the jump in the logarithmic derivative of the

eigenfunction across the inner region and its value is given by 7re-"｢/4ｚ｣Ill-In

the outer region 1=^1≫lｚRI177/ぐ11/2 we have the eigenfunction as φ(ｘｅ±41/2ｓ

and the jump of the logarithmic derivative as －2ぐ1/2 where Realぐ1/2＞0

is assumed.　Equating the above two values we obtain the same result as

Ｅｑ･(4.23)･
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4．３　Numerical Results

　　In order to check the analytic expressions for the growth rates obtained

in Sec.4.2, the eigenmode equation (4.4) was numerically solved in the cylin-

drical geometry.　We used the shooting method to obtain the eigenvalue

ω＝叫.十沁i and the eigenfunction φin the same way as in Sec.3.3. The

results of the shooting method were also checked with those obtained by

solving the time evolution of the linearized versions of Eqs.(4.1) and (4.2)･

We employed the boundary condition that φ＝O at the surface of the plasma

r = a. It was found from the numerical results that in the weakly collisional

limitμ≪1 the eigenfunction is localized around the mode resonant sur-

face therefore both the eigenvalue and eigenfunction are insensitive to the

boundary conditions at ｒ ＝O and ｒこａ and the slab model gives ａ rear

sonable approximation to derive the dispersion relation.　In the numerical

calculation the same magnetic configuration as in Sec.3.3 was used. We as-

sumedＰ≫/ａ　＝1/50 and the ba£kground density of the form ｎ(O)ｅｘP(－2ｒ2)･

This density profile is chosen to keepω，ｅ independent of ｒ，but we found

that the profile does not affect the mumerical results for the sharply ｌｏｃふ

ized mode in the weakly coUisional case. From these parameters we estimate

ω97ω・･,e= 0(e). Figure 4.1 shows plots of the both numerically and analyti-

cally obtained eigenvalues ω/ωc≪versus the collision frequency μell/ωcefor the

m = 1/n = 1 mode. It is seen that the analytical results agree with those

obtained by the shooting method especially in the dependence ｏｆωΓand ωｉ

on z411. The magnitude ofωΓ is of the same order as that of叫and it lies

between ujg andω・ein the case of z411/ωｃｅ＾“'10‾4or 10‾5 which is the typical

value for the peripheral plasma of Heliotron Ｅ ECRH experiments where the

electron density is no ≦10"cm-^ the electron temperature 刄～lOey and

the strength of the magnetic field B^2T. The contours and the profiles of

the electostatic potential φand density perturbation n obtained numerically

for the ｍ = 1/n ゛ ｌ mode at z411/ωce ゛ 10‾4 are given in Fig.4.2.　We

find that the eigenfunctions are localized around the mode resonant surface

r=0.61a as expected in the analysis in Sec.4.2 and that the phase difference

between ｎ ａｎｄφis about 7r/4.
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4。４　Conclusions

　　We have studied the linear stability of an inhomogeneous coUisional plasma

in a magnetic field with curvature and shear against low frequency electro-

static perturbations.　The analysis using the slab approximation predicted

the existence of the radially localized instability, which was confirmed by the

numerical calculation in the cylindrical geometry. It was found that in the

weakly coUisional limit z41小ﾉｃ．≪1， the linear growth rate ７ ° ωiis propor-

tional to the collision frequency 心||μhe eigenfrequency “ﾉｒis of the order of

the curvature drift frequencyωg which is smaller than the electron diamag-

netic drift frequency by ａｆａ£torｏｈ＝ａ/Ｒｏ and the phase difference between

the electrostatic potential φand the density fluctuation n approaches to 7r/2

at the mode resonant surface｡

　　For example, if we consider the peripheral plasma in Heliotron Ｅ and

take fell/ωｃｅ⌒゛10‾4or 10‾5， then ゛ｅ have the eige�requency in the region

‰＜ωΓ⌒･’ωi＜ω，ｅ and the phase difference lies around 7r/4. These results

form ａ striking contrast to those of the MHD resistive interchange mode with

ωΓ＝O･ωi（ｘμj3 and the phase difference being constantly 7r/2.
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Chapter ５

Nonlinear Evolution of

Interchりnge Instabilities

５。１　　Introduction

　　In this chapter we study numerically the nonlinear evolution of the two

types of instabilities described in Chapter 3 and Chapter 4， where linear

properties are discussed｡

　　In Chapter 3 we explained that the linear growth rate of the ideal in-

terchange mode is reduced by including the ion diamagnetic drift. Here we

investigate how the nonlinear evolution of the unstable mode changes by in-

eluding the ion diamagnetic drift term in Sec.5･2. Especially our concern is

in its effects on the saturation level of the fluctuation. χA^euse single-helicity

cissumption or consider only higher harmonics produced by the mode cou-

pling｡

　　In Sec.5.3 we show the numerical results of the electrostatic turbulence

caused by the resistive interchange modes coupled to the resistive drift waves,

the linear stability of which is analyzed in Chapter 4. This type of turbu-

lence may occur in stellarator/heliotron plasmas and it might be related

to the anomalous transport observed in the edge plasma of Heliotron E.[9]

As ａ model for the electrostatic turbulence, we use the H asegawa-Wakat ani

equations including the electron diamagnetic drift and the average magnetic

curvature terms｡

　　Finally conclusions are given in Sec.5.4.
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５．２　Nonlinear Evolution of the Ideal

　　　　　Interchange:Ｍ:ode

　　In Chapter 3 linear structures of the ideal interchange modes were inves-

tigated. In order to examine nonlinear evolution of the unstable interchange

mode, we assume that initially only the ｍ = 1/n = 1 mode is excited

since the stabilization of the ion diamagnetic drift is the weakest for this

mode. We can include only the single helicity modes with helical symmetry

in ａ cylindrical plasma and follow the nonlinear evolution of them consis-

tently. First it grows exponentially with the linear growth rate and the

higher harmonics of (m,n) = (2,2), (3, 3),-.゜wiU be excited through the

nonlinear beating between the modes with finite amplitude. In addition we

include (0,0)―mode which corresponds to the quasilinear effect in the real

space. Here Ｅｑs･(3.1)-(3.3)are numerically solved by using finite difference

scheme and Fourier expansions.　The ideal MHD case α＝O and the case

of a = 0.5 are particularly examined. In the numerical calculation, φ, A

and ｐ are Fourier-expanded with respect to the variables θand ｚ such as

φ＝Σｍ,ｎφmnexp[i{m9一ｎｚlRo)]. Finite differences are used in the radial

variable ｒ. The potential φmn can be obtained from the vorticity (▽1φ)ｍｎ

by the numerical integration using the recursive procedure.　Ａ predictor-

corrector method is used in the time evolution of the system. Since we

consider ａ cylindrical plasma surrounded by the perfectly conducting wall,

we use the fixed bounary conditions that φ= A=p = Oatr = a. We give

initial perturbation only to ｍ＝ﾕ/n= 1 mode. Fourier modes with m ≦7

are included.　　　　　　　　　　　　　　　　　　　　　　　　　　　　ニ

　　Figures 5.1 and 5.2 show the time evolution of the total kinetic energy and

the energy of ea£ｈmode forα＝O and α= 0.5 respectively. Here we used the

rotationcd transform i = 0.51 + 1.69(ｖia)2.5and the pressure profile p(ｒ)＝

ｐ(O)(1－(ｒ/ａ)2)2 with β(0) = 5.5% for equilibrium. In the case of Fig.5.2,

modes with m ≧g are linearly stable by the ion diamagnetic drift effect

as discussed in Chapter 3. We see that after the linear growth phase, the

fundamental mode and the other higher harmonics saturate ａＵ～40(丑ｏＮａ)

forα＝Ｏ and ａt忿⌒･'60(j?oかλ)forα＝O･5. Fig.5.3 shows the kinetic energy

spectrum versus the harmonic mode number in the saturation state. We note

that there is no kinetic energy of ｍ ° 0/n ° Ｏ mode for α゜O because of

paiity conservation in RMHD model (see Appendix 7.A)ﾚIt is shown that
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by including the ion diamagnetic drift the saturated kinetic energy level is

lowered down to about 30% and the contributions from the higher harmonic

modes to the total kinetic energy are decreased. This may be explained by

the stabilizing effect of the ion diamagnetic drift, which is stronger for higher

mode numbers as seen from the linear dispersion relation (3.33) in Chapter

3. Figures 5.4 and 5.5 show the contours and the profiles of the electrostatic

potentialφand the pressure p in the saturation state forα゜O and α゜0.5,

respectively. We find from both figu!:esthat the saturation occurs when the

pressure gradient around the mode resonant surface at 乙＝１ almost vanishes,

which implies reduction of the source of the interchange instability･
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５．３ Nonlinear Evolution of the Resistive

Interchange Mode Coupled to the

Electron Diamagnetic Drift

　Here we study the electrostatic turbulence driven by the resistiveinter-

change modes coupled to the electron diamagnetic drift based on the numer-

ical calculations of the Hasegawa-Wakatani equations (4.1) and (4.2). This

may be the model for the turbulence in the peripheral region of ａ stellara-

tor/heliotron plasma. From Eqs.(4.1) adn (4.2) we have the equation of the

energy balance

／ｄ
一
ぷ

|▽上φ12

-
／　
＝ ｎ▽φ×£・▽政一！

　　　　　　　　　Zﾉ

|▽||(ｎ－φ)|う(5.1)

where the contributions from the surface integral are neglected by assuming

the fixed boundary. The first and second terms of the integrand in the right-

hand side denote the energy source from the density graxiient and the sink

due to the Ohmic dissipation, respectively. In the stationary turbulent state

these two terms are balanced on the average｡

　　In the numerical calculation the same methods as in Sec.5.2 are used.

Assuming the cylindrical plasma surrounded by the perfectly conducting wall,

we employ the fixed boundary conditions that φ＝ｎ＝O at the surface

ｒ°α･The rotational transform is given by t{r)゜0.51十〇｡39(ｒ/ａ)2 which

simulate the inner core of Heliotron Ｅ. The mode number is selected within

lml＜20 and 同＜10 which has its resonant surface between i = 0.5 and

L = 0.9. The total mode number is 111 including m ＝O/ｎ＝Ｏ mode. In

order to maintain the constant ba£kground density gradient as an energy

source and avoid the quasilinear flattening of the density, the m = 0/n°０

component of the density fluctuation "00 is kept zero.　The viscosityμ▽1φ

and the diffusion j)・▽１ｎ are introduced in the right-handes of Ｅqs･(4.1) and

(4.2), respectively, to assure damping for high m modes, which is required

for the realization of the stationary turbulence. The parameters used in the

calculations areｐｊａ＝1/40， 6 = a/i?o = 1/13, V = V。||/ω。。＝1/(7.5×103)，

に)・＝5×10‾4 and μ＝5×10‾4. Here ｌ)・ａｎｄμsuppress higher modes of

ｍ≧12～15. The magnetic flｕχφo and the curvature term fi are calculated

in the same way as in Chapter 4. Initial small perturbations are given to
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m = 2/n = 1 and ｍ = 3/n = 2 modes since these two modes are dominant

low ｍ mode instabilitiesin the cussumed model configuration｡

　　Figure 5･6 shows the time evolution of the total kinetic energy and the

energies of m = 0/n = 0, m±2/n = 1 and ｍ = 3/n = 2 modes. The latter

two modes are shown to demonstrate nonlinear behaviors. The ｍ ＝O/ｎ＝０

mode also saturates after the nonzero odes do. Figure 5.7 shows the wave

energy spectrum versus the poloidal mode number,m, integrated over the

toroidal mode number, ｎ for 71 ＝5 and 71 ＝6.　Both spectra show that

an almost stationary state is achieved though a small variation stillexists.

After the saturation the ｍ ° Ｏ mode becomes dominant, indicating the

condensation of the mode enrgy to ｍ ゛ O.　The saturated kinetic energy

levels for ｍ = 1 to m ~ 12～13 are comparable while those with higher

modes share less energy. Figure 5.8 shows the time evolution of the contours

of the electrostatic potential. The most interesting result is that the equi-

potential surfa£eis closed around the magnetic axis near theφ2 0 region.

This is clearly seen in Fig.5.9, where the radial profile of the dominant mode

φ00is shown. A positive electric fieldis obtained in 0.2≦ｒ/α≦0.8. The

energy transfer t６ the ｍ ° Ｏ mode and the generation of the stationary

radial electric fieldby the φ00(r) potential observed in our calculations are

not seen in those of Carreras et al.【25]based on the RMHD model since

the RMHD equations conserve the parity (see Appendix 7.A). The decrease

of the energy distributed over the high poloidal mode numbers due to the

energy condensation to the ｍ ° O mode is expected to improve the particle

confinement.
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５。４犬　Conclusions

　　χNe have studied the nonlinear evolution of the ideal and resistive in-

terchange modes, including the effects of the ion and electron diamagnetic

drifts, respectively.　The single-helicity nonlinear calculations showed that

the ion diamagnetic driftlowers the saturation level of the ideal interchange

modes and decreases the contributions from the higher harmonic modes to

the total kinetic energy. This is consistent with the linear dispersion relation

in Chapter 3 which states that the stabilizing effect of the ion diamagnetic

driftis stronger for higher mode numbers.犬We also see that the saturation

is related to the flattening of the pressure profile around the mode resonant

surface｡

　しBy the multi-helicity nonlinear calculations using the H asegawa-Wakat am

equations, we find that in the saturation state the m = 0 mode becomes

dominant and the stationary electrostatic potential φoo(ｒ)isgenerated. This

result predicts ａ zonal flow in the edge plasma region. The decrease of the

energy distributed over the high poloidal mode numbers due to the energy

condensation to the ｍ ＝O mode is expected to improve the particle confine-

ment. These results are not obtained by the RMHD･【25】The generation of

the axisymmetric potential φoo(ｒ)baｓｅｄon the self-organization process has

been discussed by Hasegawa and Wakatani.【431 Another implicatior! of our

result is that the φ00(r) potential produces a shear flow predominantly in the

poloidal direction.　There is ａ possibility that this shear flow produces the

secondary instability and makes the characteristics of the turbulence more

complex｡

　　Here we studied global properties of turbulent plasma by using a realistic

cylindrical plasma model. There is ａ microscopic point of view relating to

the anomalous transport due to the electrostatic turbulence. We will present

the theoretical analyses of the electrostatic turbulence in Chapter 7 based on

the renormalized theoriりsformulated in Chapter 6.
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Chapter ６

Formulation of Renormalized
Theories

６．１ Introduction

　　In experiments ｏｆmagnetically confined plasmas, particle and energy

transports usually exceed estimations based on Coulomb collisions or the

neoclassical transport theory.　An typical example is so-called anomalous

transport in tokamaks.【"1 In order to understand mechanism of anomalous

transport, many theoretical efforts were directed to study linear stability of

microscopic instabilities,in particular drift waves, and resultant enhanced

diffusion based on the quasilinear theory. Recently it is recognized that this

approach is not successful to explain the anomalous transport, since charac-

teristics of the obsreved fluctuations are similar to the strong turbulence in

neutral fluids.【61

Several approaches are pur

ing these ten

magnitude of transport coefficient which is based on the linear eigenmode

analysis of instability. Connor and Taylor【10】.[11],[14]introduced scale invari-

ance theory to derive parametric dependence of anomalous transport. Yagi

et al.【131disｃｕssed inter-relation between the mixing length argument and

the scale invariance theory. However, both theories have a lack of quantita-

tive evaluation or it is difficult to determine absolute magnitude of turbulent

transport.

iproaches are pursued to develop turbulent transport theory dur-

years. Mixing length argument【23】is used widely to evaluate the



Another approach to overcome this point is renormalized theory. which　　　i^LXiV^Ull^^JLhｔｔｐ：／／ｗｗw．.ｃｏm．.ｘ.ｘ卜ｗ・λ工ｕ ・・ｌ・Ｑ ＦＸ／↓・iu XiJ 1.卜xiyji. Xよhttp://www.wよＪ.･●λiX＼≪Xl

was developed by Dupree【15】‾【１８１ and Diamond et al.【20】－【25】In this the-

ory, original equations in real sｐａ£eare Fourier transformed into those in

wavenumber sｐａ£ｅand nonlinear terms are renormalized by iteratively sub-

stituting the fielddriven by the direct beating of the test wave (ゐ) and back-

ground wave (fc')into the wave field with k”＝χ1十几'.To make ａ closure of

the nonlinearly driven fields,Diamond et al.have used the semi-quantitative

correlation time corresponding to the nonlinear propagator｡

　　In this chapter we present ａ new formulation of the renormalized theory

applicable to both fluid model equation with convective nonlinearity and the

Vlasov equation. Our formulation has ａsimilarity to the renormalized theory

by Dupree,【15】which treated phase space dynamics described by Vlasov-

Poisson equations.　It is based on the statistics of random phases between

the Fourier modes of the initial electric field, and nonlinear propagator is

expanded with respect to the electric fieldin the form appropriate for strong

turbulence. Without using the wavenumber spa£e, we derive a renormalized

equation in the real space forａ model nonlinear equation with characteristics

associated with fluid descripton of plasma dynamics｡

　　This chapter is organized as follows･ In Sec.6.2 we formulate the renor-

malized theories for ａ general model equation.　In Sec.6.2.1 we show the

model equation and give the one-point renormalized theory.　In Sec.6.2.2

the two-point renormalized theory is presented. In Sec.6.2.3 we discuss the

clump lifetime approximation for the solution of the two-point renormalized

equation. In Sec.6.3 we apply the renormalized theories to the Vlasov equa-

tion and show that the results obtained by Dupree are reproduced by our

formulation. Finally conclusions are given in Sec.6.4.
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６．２ Formulation of Renormalized Theories

6.2.1　One-point renormalized theory

　　For explanation of one-point renormaliz ation, we consider the following

equation:

(ｽﾞ“(り)T▽‾1'゜)/(？卜ｓ(り)'　　(?)

Equation having the form (6.1) appears frequently in fluid models for plasma

dynamics such as the MHD equations. Here, v(x,t) is a given random func-

tion which is stationary in time and ∫(ｚ

tions. It is assumed that ∇･t7＝〈t?〉＝く

砂
力
and s{x,t) are also random func-

＝O， where 〈･〉means statistical

average.αdenotes ａ time-independent nonrandom differentialoperator such

that ac = 0 where ｃis a constant. Equation (6.1) may also correspond to

the Vlasov equation, which is discussed in detail in Sec.6.3. Under the initial

condition, fit = to)゜0, we obtain the solution to Ｅq･(6.1)

/(ｚμ)＝トｕ(もt)s(x,7･)

　　＝J:ｊＴ
Ｊ
ｄ＊’ｇ(ち７;２･,x')six',T), (6.2)

where !7is the Green's function or the kernel of the one-point propagator び

defined as a random operator which satisfiesthe following equation:

(j
Fふv(x,t)･∇十α)び(りo)＝o， (6.3)

with

　　　　　　　　　　　　　　　即oμo)＝7●　　　　　　　　昨4)

Here 7 is an identity operator, which is expressed in terms of the Green°s

function as g(to,to;3B,x')= 6(x―x'). Hereafter the space variable ｚ is some-

times omitted for simplicity. Let us consider ａ random function, F(x,t),

which is defined by

　　　　　　　　　　　　　F{t) =び(りo)F(to).　　　　　　　　　　　(6.5)

From the definition of the one-point propagator び，

jW十呻)･∇十a] F{t) = 0
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is obtained. Taking the statistical average of this equation yields

旦
＆
ぐ

り 〈F{t)〉十〈呻)･▽Ｆ(り〉＝O.

We devide F into an average part,〈Ｆ〉,and ａ deviation from it,Ｆ

　　　　　　　　　　　　　　Ｆ＝く目十Ｆ●

Substituting E(I･(6.8)into Eq･(6.6) and using Eq･(6.7), we obtain

(6.7)

(6.8)

(jy十1･(z)･▽十ﾃﾞ)｣師)＝一呻)･▽〈j･(z)〉十〈叩)･▽m〉･　(6.9)

The solution is given by

m゜び9μ0)j(fo)‾ＪｌｄＴＵ(り‘)(”(7')゜∇〈j･(７)〉‾〈v{r)'▽ﾀﾞ(７)〉)

　　＝　－ｄＴＵ(ち７)(ふ(7-)･▽〈び(リo)ト㈲７)･∇び(リo)〉)Ｆ(4))･

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6●10)

Here, it is assumed that F{to) is nonrandom and therefore 夕(fo)＝0.1nsｅrt-

ing Eｑs･(6.5) and (6.10) into Ｅq･(6.8) and eliminating F(to), we obtain the

following integral equation for the propagator び:

　　び(りo)＝〈び(りo)〉

　　　　　　　　－ＪｌｄＴＵ(ちr) (v(t) ･▽〈び(リo?〉- {v{r)・∇び(リo》)。

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6.11)

In order to solve Ｅq･(6.11), we use an iterative method which yields the

expression of the propagator びappropriate for studying strong turbulence

problems:

　　び(リo)

＝〈び(り0)〉－
でおくび(ち７)〉v{r)･∇〈び(リ0)〉

　十ｊｌｄＴＥｄＴ’〈び(t、Ｔ’)〉1ﾀ(７')･▽〈び(フッ)〉tﾀ(7-)･▽〈び(リo)〉

　－JLdTJLdT’〈び(い)〉(r(r)･▽〈びiT,T'))viT')〉･∇〈び(Ｔ’、to)〉

＋……
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When only the first-order term of the expansion seriesis retained, it is equiv-

m by Dupree.[15]Since the random function v(t)alent to the equation given by Ｄ

is assumed stationary in time, we can write〈び(りo)〉＝〈び{t - to)〉･ By

truncating the expansion to the first-order,

び(り0)＝〈びit-to)〉Jo゛ｄｒ〈!7(T))v(t-T)･▽〈び(1べ0－7-)〉(6.:13)

is found. If we assume that the integrand is nonzero only in ａ small time

interval, 0 < r <""ｏｏwhere Tac denotes the autocorrelation time of l巾－7-)

and that ▽〈び(トto-r)〉does not change significant!y during this intｅrｖal,【15】

we can use the following Markovian approximation,

び(りo)゜〈びひ-to)〉‾[ぐ・〈び{T))v{t-Tか▽〈び(t-to)〉. (6.14)

Substituting this equation into Ｅｑ･(6.3)and averaging over the random vari-

ables, we obtain

友一▽・Ｄ・▽十α 〈び(忿ぺo)〉＝0，

where Ｄ represents turbulent diffusion tensor defined by

Ｄ≡J＞〈び(７)〉〈呻)1巾－7-)〉.

(6.15)

(6.16)

Here an arrow shows the operand of the averaged propagator 〈び〉.We note

that Ｄ has the form of quasilinear diffusion tensor generalized into the case

of strong turbulence. Equation (6.16) reduces to the quasilinear diffusion

tensor if we replace the averaged propagator 〈び〉by' the linear propagator

び(z)ｗhich is defined by

with

ａ
一
＆

ぐ
わ） び(j)(0＝O，

び(f)(1＝0)＝7.

(6.17)

(6.18)

If we replace the propagator びby the averaged propagator 〈び〉in Ｅq‘(6.2)

and set t-to→∞, we have　　　　　　　　　　　　　　　　　　　■

jｃ（1）＝
レ〈び{t-r･)〉s(･ｒ)＝ｽﾞ　ゐ･〈び(ｒ)〉s(t

- r)

レ･〈び(７)〉s(t
- t)
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which denotes the coherent part of / and it is called the nonlinear coherent

response to ｓ. When 〈び〉is replaced by び(z)，ｆ　ｌｅduces to ａ linear response･

From Ｅｑs･(6.15) and (6.19), we obtain

　　　　　　ダニ　匯－▽・Ｄ・∇十リガ(1)゜ｓ(坏ニ　　　　(6.20)

This is the one-point renormalized equation for Eq.(6.1)｡

　　Nonlinear convection term is renormalized in the turbulent diffusion term.

Turbulent diffusion tensor D is given by Eqs.(6.15) and (6.16), which are

represented in the real space｡

　　In the one-point renormalized theory, ａ nonlinear dispersion rｅｌａtｉｏｎ【6】.[15]-[17]

is derivable by substituting the coherent response of (6.19) into other equa-

tions, e･g･, Poisson equation, which is needed to close the system with Eq.(6.1)･

This dispersion relation shows that the frequency spectrum for a given wavenum-

ber has the form of ａ delta function and only the mode having the largest

growth rate survives damping due to the turbulent diffusion.

6.2.2　T"wo-point renormalized theory

　We now consider the evolution of the two-point function, /(l)/(2)Ξ

∫(ｚl,び{x2,t). Using Eｑ･(6.1),we obtain

　　　(農十可1)・▽i+t>(2)・∇2十a(l)十α(2))/(1)7(2)

　　　　　　　　　　＝即)s(2)十∫(2)s(1)≡5(1,2)　　　　　. (6.21)

With the initial condition, nto)゜O， the solution to this equation is given

by

　　　　　　μ1μ)∫(2μ)＝ＪＬｄＴＵ(1,ち７)び(2,ちr)5(l,2,r),　　(6.22)

whereび(1) andび(2) are the one-point propagators already defined by Eqs.(6.3)

and (6.4) andび(1)ひ(2) represents the two-point propagator which satisfies

　　(jy
4‘T,(l)゜▽1“(卵▽24°司1)゛嶮))び(1μμo)び(2'ワo)゜0'

　　　　　犬　　　　　　　　　　　　　　　　　　　　　　(6.23)
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with　　　犬　　　　ニ

　　　　　　　　　　　　び(1μojo)び(2joμO)＝5.　　　　　　　　　(6.24)

Comparing Eｑs･(6･23) and (6.24) with Eqs･(6.3) and (6.4), we find that they

have similarities except the dimension of the space variables. Thus the for-

mulation in Sec.2.1 is usable provided that the following relations are taken

into accout:

　　　　　　　　　　　　　ｚ→(≪1,≪2)≡(1>2),

　　　　　　　　　　　　　▽→(▽1,∇2)，

　　　　　　　　　　　　　可ｚ)→(≪(l).tﾀ(2))，　　　　　　　(6.25)

　　　　　　　　　　　　　し→び(1)び(2),　　

|　　　

｡

　　　　　　　　　　十　α(ｚ)→α(1)十a(2).

We obtain the integral equation for the two-point propagator び(1)び(2) cor-

responding to Eqs.(6.11),

　　び(1μjo)び(2μμo)

　　　＝〈び(1,りo)び(2,りo)〉

　　　-
fdrUil,ち７)び(2,ち７)　　　　　　　　　　　　　　　　　十

　　　　　　to

　　　　　　　×[iv{l,T)・▽1十v{2,r)・▽2)〈び(1,リo)び(2,リo)〉

　　　　　　　－〈(f(l,r)・∇1十tﾀ(2,r)･▽2声(1,リo)び(2yΓμo)〉]，　(6.26)

and the iterative scheme gives:

　　び(1μjo)び(2μμo)

　　＝〈び(1μμo)び(2jjo)〉

　　　　一ト〈び(1,ち７)び(2μ丿)〉

　　　　　to
×
　
面
　
×
　
×

　
で
　
　
＋

　
兪
　
×

で

(・(1,7-)・∇i + v(2,t)･∇2)〈び(1,なo)び(2,リo)〉

レ〈び(1バノ)び(2μ／)〉

{vil,r')･▽1十v(2,r')・▽2)〈び(り'レ)び{2,r',r)〉

iv{l,T)・∇1十可2,t)･▽2)〈び(1,リo)び(2,リo)〉

jレ〈び(1,ち７)び(2,ち７)〉

〈(t7(l,7-)・▽1十t,(2,r)・▽2)〈び(1, ７･,r')び(2, 7-ぐ)〉
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　　　　　　　×(V(1,T″)'▽1+V(2,T″)‘∇2)〉くび(l,r',<o)び(2, 7'″μo))　へ

　　　　十‥‥‥‥　　　　　　　　　　　　　　　　　　　　(6.27)

We can use an expression〈び(1μμo)び(2,t,to)〉＝〈びび〉(1,2μ一to)hy assum-

ing a stationary turbulence.　Keeping only the first-order of Ｅq･(6.27) and

using the Markovian approximation, we obtain

　　び(1μμo)び(2μμo)

　　　＝　田ＵＷＸダJ.Ａ.-tf.)

　　　　×〈びび〉(l,2,t-to)･　　　　　　　　　　　　　　(6.28)

Here we used the relation び(t)c = c, where ｃis ａ constant. Substituting the

above equation into Ｅｑ･(6.23) and averaging it, we obtain

　(jy

Ti,
Ξ

,2

▽‘゜Ｄ(り)゜∇j十司1)十(゛(2)

)

〈びび〉(l,2,t-to)

二

〇'(6°29)

where

D(り)≡J＞〈び(j,７)〉〈t･(りMj,t-r)〉

Averaging Eｑ･(6.22), we have

(6.30)

〈fiht)m,t)〉＝ｽﾞ‰〈匹〉{l,2,t-T)〈5(1,2, r)〉

　　　　　　‰,0
　　　　　＝Ｊｏ ｄｒ〈びび〉(l,2,r)〈5(1,2,i －7-)〉

　　　　　り匠〈びび〉(l,2.r)〈S(l,2,t-r)〉.　　(6.31)

Prom Eqs.(6.29) and (6.31), we obtain

　(jy
二石
,2

▽バ)(り)゜▽け司1)十゜(2)

)
〈f{ht)f{2,t)〉

ﾆ

〈S(l,2,t)〉'

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6.32)
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which is called the two-point renormalized equation. Here, we note that

Eqs.(6.15) and (6.20) give

G
一一▽1 ･ D(l.l).▽1－▽2･D(2.2)･▽2＋α(1)＋α(2))〈び(1μ)〉〈U{2,t)〉

and

＝０ (6.33)

(公一▽1･Ｄ(1,1)･∇1－∇2･D(2,2)･▽2十α(1)ナα(2))〈戸(1μ)戸(2μ)〉

＝〈ni,t)s{2,t)十n2,t)s{i,t)〉≡〈ＳＣ(1,2μ)〉.　　(6.34)

These equations yield

〈戸(1μ)/Ｃ(2μ)〉＝JﾌﾞdT{U{l,r)〉〈び(2,r)〉〈ＳＣ(1,2μ－7-)〉

　　　　　り訣〈ひ(り)〉〈び(2.r)〉〈SHl,2,t-T)〉･

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6.35)

We note that 〈Ｈ〉is propagated by the averaged two-point propagator

〈びび〉while〈戸戸〉by the product of the averaged one-point propagator

〈び〉〈び〉.This difference comes from the cross diffusion terms of D(l,2) and

D(2,l) which depend on the relative separation between two points and

take into ａ£count of the incoherent property in the two-point renormalized

theory.　Dupree【181 defined the incoherent (clump) correlation function by

〈∬〉ill。。h。ｉ。t≡〈∬〉－〈Jcfc〉･

6.2.3　Clump lifetime approxiraation

　χNe will describe an approximation for the two-point function (6.31),

which is the solution to the two-point reno】:malized equation (6.32), based on

the clump lifetime. This expression was given by Dupree 【18】and has been

frequently used by Diamond (ltal.【21】‾【24】

　It is convenient to introduce centric and relative coordinates 【19】(ｚ十,ｚ－)
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in place of two-point coordinates (a5i,a52):

ｚ＋＝
１(ｚｌ＋ｚ２)･as-

= aji

　　　　　１

Ｚ２

１

　　　　　　　　　　　ｚｌ＝ｚ＋＋ｉｚ‾’　ajo = SB十‾iｚ‾゜

Using the above transformation of the coordinates yields

where

Σ

ij=l,2

▽,・Ｄ(り)・▽j＝

｜

D-ﾄ≡Ｄ-Ｈ.≡jD(1,1)十D(l,2)十D(2,1)十D(2,2)]，

Ｄ士=,=≡1[D(l,l)-l:)(2,2)干(Ｄ(1,2)－Ｄ(2,1))]，　　

I

D-≡Ｄ一一≡D(l,l)十D(2,2)-D(l,2)-D(2,l).

(6.36)

(6.37)

(6.38)

We define ａ reciprocal of the correlation length for〈r(l)t,(2)〉丿o, which is in-

terpreted as ａ representative wavenumber of the turbulence. From Eq.(6.30),

D(l,2) and D(2,l) vanish when ko＼xJ≫1， and 〈びび〉is approximated by

〈び〉〈び〉.Whenたo|a5-[≪1, we find

　　　　　　　　　に甘心T゛]優こ　　(6.39)

where Ｄ(Ｚ十) corresponds to the value ｏｆＥｑ･(6.16) at as = aj十.In the limit of

をOIZ-|≪1, we assume that Ｄ＋－，Ｄ-＋ａre negligibly small, Ｚ＋ｄｅｐｅｎｄｅｎＣｅ

of Ｄ－ is negligible, and α(1)十q;(2) ~ a十(Ｚ十)十α_(a5_). Based on these

assumptions, we find from Eqs.(6.29) and (6.37) that〈びび〉is approximated

by the product of〈び＋〉ａｎｄ〈び_〉：

　　　　　　　　　　　　〈び(1)び(2)〉２〈ら〉〈びｰ〉，　　・　　　　　.　　　・　　(6.40)

where〈ひ十〉ａｎｄ〈びｰ〉are the propagators which describe the centric and

relative motion of the two points respectively and satisfy the following equa-

tions:
∂

－
∂1

-

∂

-

∂Ｚ十

D十
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∂　　∂

－一一
∂t　　∂Ｚ＿

D-･会十α-)〈び-it)〉＝o，

〈帛＝O)〉＝け-it = 0)〉＝7

(6.42)

(6.43)

Here, the turbulent diffusivity,Ｄ十＝Ｄ(ｚ＋)，iｓthe same as that for the one-

point propagator, but the turbulent diffusivity,Ｄ－，vanishes as んolｚ－|→0

and this describes the correlation of two points at small distance.

　　Clump lifetime tJxJ) is defined as folloｗs.【18】.121]-【241First we follow

the orbits of two points backward in time with the initial distance ｌｚ＿|≪

樗1. Usually, the orbits diverge and the average distance between the two

points becomes the order of the correlation length た5‘lat f ＝一句.　For

convenience, we introduce the kernel of the propagator 〈に〉or the Green's

functioIV　ｇt(ｚ－lｚ!.)which satisfies

∂

－
∂1

-

∂

-
∂Ｚ_

Ｄ_
よ十α-＼gt{x-＼x!)＝o

(6.44)

with an initial condition

　　　　　　ユ　　　　み=o(a5-|a5!-)＝δ(ｚ＿－ｚ詐　　　　　　(6.45)

Assuming that み(ｚ－ｌｚ!)＝み(ｚ!Ia5_)based on the time reversibility of the

statisticsfor v(t), we can write the mean square relative separation as

〈琵(哺〉≡〈び-it)〉姥.≡/dｚり((a5-|a5!)ｚ2

　　　　°/＆!゛％(゛!|゛-)゜〈゛坤)〉に　　　(6.46)

where aj_(i) is the relative separation at l ＝i with the initial condition that

ｚ坤＝O)二z_. By using the above relations, the clump lifetime 亀(ｚ－)is

defined by

　　　　　　　　　　　　垢〈ｚ坤＝頑〉＝1●　　　　　　(6.47)

Dupree and Diamond et al. have used the clump lifetime 句(ｚ－)tｏ describe

the solution (6.31) approximately as

　　　　し　　　〈7(1)/(2)〉＝Ｑ(ｚ－)〈5(1,2)〉　　　　(6.48)

where〈/(l)/(2)〉ａｎｄ〈5(1.2)〉are independent of time, since ａ stationary

turbulence is considered｡
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6．３　An Application ｏｆ the Renormalized

　　　　Theories to the Vlasov Equation

　　In this section we discuss the application of the renormalized theories pre-

sented in Sec.6.2 to the Vlasov equation as an example. For convenience we

take the plasma asａ gas of electrons, while ions are considered asａ homoge-

neous positive background with charge density ne. We consider the strongly

turbulent plasma that the behavior of the electric field E(x,t) is turbulent

and treated as ａ random function. The distribution function y](z,tﾀ,t) is

devided into the average part ふ≡〈j〉and the fluctuating part j｀

　　　　　　　　　　　∫{x,tリ) = /o(・)十/(ｚ,1リ)　　　　　　　　(6.49)

where /ois independent of the position ｚ and the time Z since we assume the

turbulence to be homogeneous in space and statiorary in time. The dynamics

of the system may be described by the Vlasov equation

　　　　　　　　ljy
＋17・
こーこー(ｚμ)・ヱ;ﾄ{x,v,t)

= O　　(6.50)

and the Poisson's equation

こ･臥ｚ、t)
= Airne
/ d＼f{x､り) (6.51)

where the electrostatic approximation is taken and the average distribution

function /o cancels the background positive charge due to ions. The Vlasov

equation (6.50) can be rewritten by Eq.(6.49) as

∂

－
∂Z
＋17

∂

-
∂Ｚ
－こE(x,t)･み (6.52)

It is found that the above equation has 吟ｅsame form as Ｅq･(6.1) by taking

the following relation into account

▽→(∂/∂ｚ,∂/∂17)，

v{x,t)→{0,-{e/m)E{x,t)),

α→1ﾀ･∂/∂ｚ，

5(ｚμ)→μｚ,り)，

ｓ(り)→(ｅ/ｍ)耳り)・∂yo(17)/∂17
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where the electric field E{x,t) is a random function with the statistical

average〈.ｇ〉= 0. According to Eqs.(6.3) and (6.4) the one-point propagator

びis defined by

∂

一次

　　　∂

＋17 ・ -
　　　∂Ｚ

－ま耳ｚｊ)･み｣び(りo) ＝０ (6.54)

with

　　　　　　　　　　　　　　　びito,to) = I-　　　　　　　　　　　　(6.55)

The kernel of the propagator びor the Green°s function !7 is given by

　　　　　　　　ジ(ちto',x,v,x',v')

　　　　　　　　　＝　δ[ｚ－・(ち4);ｚ″,．″)]δ[・-v{ちio;≫', v')]

　　　　＝　δ[ｚ″ － x{to,t]X,tﾀ)]δ[tﾀ' -v{to,t]x,v)]　　　　　(6.56)

where ｉｉ゛(ち忿o;ｚ″,v') and ｉ｀(ちfo;ｚ″,v') are the solutions to the following dif-

ferential equations

　　　　　　　　　　　言:

= 1',　昔＝－こ耳・ｊ)　　　　(6.57)

with the initial conditions

　　　　　　　　　　ｉ‘{t = to) = x',　　v(t = to) = v'.　　　　　　　(6.58)

In Eq.(6.56) we used the fact that the motion given by Ｅｑ･(6.57) conserves

the volume in the phase space, which is found from

∂

-
∂Ｚ

(句
＋

∂

-
∂17
ぽ 一

一

∂

-
∂Ｚ
17＋
こ･(一景耳和))＝o

(6.59)

The integral equation and its expansion for the propogator びare immediately

obtained from Ｅqs･(6.11) and (6.12)

び(りo)

　＝〈び(りｏ)〉

　　　ｅ　　ｔ　　統L

　　　7ｎ　10

d7-び(りｰ)(ｚ(ａ･,７)･こくび(飛o)〉－〈E{x,t)･こび(リo)〉)
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一

一
くび fo)〉

　
面
でｙこ

ｍ
ぐ　
＋

力
でｙと

ｍ
ぐ

＋……

十こJI
。
ｄｒ〈び(ち７)〉耳ｚ､７)・

レ〈び(t、ｔ')〉E{x,t')・j1

£〈び(リo)〉

〈び{r',r)〉E{x,t)･みくび(『

Jtnくび(り･)
べ

4))〉

jl

〈び(Ｔ’、ｔo)〉

(6.60)

The expansion in Eq.(6.60) coincides ｅｘａ£tlywith that given by Dupree

(see Ｅq･(4.1) in Ref.[15D up to the first-order with respect to the electric

field.　Dupree obtained this result by considering the inter a£tion between

test and ｂａ£kground waves in the Fourier space by assuming the random

phases among intial Fourier modes. ０ｎ the other hand, Ｅｑ･(6.60)is derived

systematically by applying the iterative scheme to the integral equation for

the propagor びin the phase space representation｡

　　Truncating the expansion to the first-order and using the Markovian ａＰ'

proximation yield

and

ぼ ＋t7 公一j1･Ｄ･こ)〈びit - to)〉＝O　　(6.61)

Ｄ≡(こ)才・〈び(７)〉〈E(t)E{t - t)〉　　　　(6.62)

which correspond to Ｅｑs･(6.15)and (6.16), respectively. Here the homoge-

neous and stationary turbulence is considered and alsoin order to reproduce

the Dupree°s results it is convenient to take the Fourier transform as follows

〈耳り)耳ｚソ)〉＝ 借 ヰ tfc(z-a;')-K‘At-‘″)〈.ＥＥ〉(ｋ、ω)、　(6.63)

Sustituting Eｑ･(6.63) into Ｅｑ･(6.62) gives

Ｄ＝(ま)勺脳膿くEE)(k,ω)恥(1,ω,・) (6.64)

where Ｒ denotes the real part of the complex variable and !7(fc,ω,≪)isdefined

by

!7(X･,ω,t･) = e-*ﾘﾌ ｄｒｅ‘゛〈び(７)〉ｅ‘&夙　　　　　(6.65)
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From Ｅｑ･(6.19)the coherent part of the distribution function y'cis obtained

　　　　　　　/>,り)＝剽）･〈び(７)〉ｊ･(ｚμ一小驚)。　　(6.66)

Repla£ｅﾌﾞin the Poisson°s equation (6.51) with the nonlinear coherent re-

sponse f^ given by Eq.(6.66), and use ｌ; ＝－▽φａｎｄ〈び(７)〉E(x,t-T)・

∂yo(ｉ)/∂c ~ (〈び(7゛)〉Ｚ(ｚμ－7-))・∂Mv)l∂17.By using Fourier transforma-

tion with respect to X ａｎｄちwe get the nonlinear dispersion relation

　　　　　　　　　　　1－ｉ?4ﾄJ d？司(ゐ,ω,v)h･ ｡!9か!＝O　　　(6.67)

whereωｐｅΞχ/石ぷe^/m is the electron plasma frequency.　The nonlinear

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●dispersion relation determines the frequency ω ＝ω(fe) and thus the one-

　　　　　　●point or coherent renormalized theory gives the discrete frequency spectrum

at fixed ゐrepresented by

　　　　　　　　　　　伊Ｅ〉(ん,ω)= 27r〈－Ｅ〉(ん)脳－ω(叫　　　　　　(6.68)

By eliminating the nonlinear term Ｅｑ･(6.54)gives the linear propagator び(z)，

which is defined by
∂

－
∂Z
＋tﾀ・

∂

-
∂Ｚ

び(゛)(り＝０ (6.69)

with the initial condition び(z)(Z＝O)＝7.Ｔｈｅｎ we find

　　　　　　　　　　　　　　　び(z)ひ)ｅ４‘ｚ＝ｅはHx一脚).　　　　　　　　　　　(6.70)

If we ｕｓｅび(z)instｅａｄof〈び〉,we obtain the linear response fcom Ｅｑ･(6.66)

and the linear dispersion relation from Ｅｑ･(6.67), where !7(ん,ω,-D)is replaced

by

!7(゛)(&'?'゛)゜　ｅ‾‘&'゛
､Jo

び(゛)(7')ｅｉ１１２;

　　　　　　　－　　　　　　　－

6.64) reduces t，

ＤＱ£＝7r(こ)２

－i（ω－

j

・t･十i6）　　　
（6→十〇）

Similarly Ｅq･(6.64) reduces to the quasilinear diffusion tensor

伊－〉(ん)δ[ω(X･)－X･ ・17]

(6.71)

(6.72)
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where Ｅｑs･(6.68)and (6.71) are used.　　　　　　　　犬

　　Dupree described the resonance broadening by using the following approximation.[151

Neglecting tﾀdependence of Ｄ in Ｅq･(6.61) we find

　　　　　　　　　　　　　〈び(り〉Ｊｋ‘ｚ＝ｅ‘kix-vt)-^kk:Dt^　　　　　　　(6.73)

By substituting this into Ｅｑ･(6.65)we obtain

均(ん,ω,・)＝じ・os[(山一１･v)t＼expﾄ1a:D13卜　　　(6.74)

　　This function has ａ peak at ω-k'V = 0 and goes to zero 公〕IIω-k ・

刎≫kw≡(ｋｋ:Ｄ/3)1/3，ｗherｅ句is the width‘of the velocity along k at

which particles interact with waves. The finiteness of w corresponds to the

resonance broadening｡

　　Now let us apply the two-point renormalized theory to the Vlasov equa-

tion. The tｗｏ‘pointrenormalized equation is given from Ｅq･(6.32) as

(Ｄ･
∂

-

∂≫!

+ V2 ・

∂

-

∂Ｚ2

－Σ

　i,j=l,2

∂

-
∂Vi

where l = (aJl.-Ol),2= (352,tﾀ2)and

〈5(1,2)〉 一

一

戸り

ｰ

こ〈/(1)耳2)〉

(D12十D2l):

〈∫(l,i)/{2,i)〉＝〈5(1,2)〉

　　　　　　　(6.75)

∂foM
-
∂tﾀ2
十(1･→2)

dfoit･1)覗胎)

∂171　　　∂t?2

D.i

＼mJ Jo〈び0>)〉〈E(xi,t)Ei≪３，t－７)〉

＝に)ﾂ⑤贈こー〉(りﾉ)ｅ‘゛(゛‾’j)g(-ん,-ω,gj)

(6.76)

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6.77)

From Ｅｑ･(6.31) and the clump‘lifetime approximation (6.48), the stationary

solution of Ｅq･(6.75) is written as

㈲㈲）〉＝
レ･〈匹〉(l,2,r)〈5(1,2)〉

Tcl{X-,V-)〈S(l,2)〉
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where the averaged two-point propagator 〈びび〉isdefined by

∂

－
∂Z
+171

∂

-

∂Ｚ1
＋t72 ・ -

∂Ｚ２ 二,万,2

足
'Ｄ丿足)〈びび〉(1'2μ)゜o°

　　　　　　　　　　　(6.79)
Then the centric and relative coordinates are introduced as in Eq.(6.36)

tl-＝
1(ｚl十り)，ｔト＝1㈲＋172)

JB_ = Xi -X2, tJ_ = t>l ―・2･

｝

(6.80)

According to Ｅｑ･(6.40) for small ｚ－，17-，〈びび〉isfa£torized into the product

of〈ら〉and〈ひｰ〉, which satisfy

(ト，浪一浪

(Ｄ一会一差

where Ｄ十= D{v十) and

　Ｄ＿　＝　D11＋D22 － D12 － D21

"

-

Ｄ＋

Ｄ_

足） 〈ら(0〉＝0

〈に(り〉＝０

(6.81)

(6.82)

(こ)勺仏膿〈ＥＥ〉(ｋ，ω)2均(ん,ａﾉ,り)[1
－ cos(fe･ aj_)]

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(6.83)

The clump lifetime Td can be calculated in the following ｗａy･For simplicity

we consider ａ one-dimensional plasma turbulence. The kernel of〈び_〉or the

Green°ｓfunction gt{x-,v-＼x'_,吐) satisfies

戻“一元－え胎元 gt{x-,v-＼x'_ 吐） ＝０ (6.84)

with the initial condition

　　　　　　　ｇt=o(x-,v-＼x'_,v'_) = 5(x一一x'_)8{v一一こ)･　　　　(6.85)

Assuming the time reversibility of the statisticsof the electric field yields

　　　　　　　　gt{x-,vJx'_,吐)＝!3-tixL,一吐lｚ－,－Ｌ)･　　　　　(6.86)
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Using Eq.(6.83) the relative difFusivity £)_is approximated by

　　　　　　　　　　I>_~ゆえ1)　(伺祠≪1)　　　　　(6.87)

where ko represents the typical wavenumber of the turbulence. The clump

lifetime t^ is defined by

　　　　　　　〈a;!.(-rd,a;_,t;_)〉＝〈xi(re。2_,-U_)〉＝鰐2　　　(6.88)

where ・-(ちx_, V-) is the relative distance in the X- direction at i ＝Z be-

tween the two points in the phetse space which have a relative separation

(x-, u_) at i = 0. Equation (6.86) is also used in Ｅｑ･(6.88) to obtain the first

equality. Taking the following second moments of E9･(6.84)゛ｅ find

jy
〈遮(1)〉＝2〈ｉ坤)乙(り〉

農〈・-{t)v-{t)〉＝〈遮(り〉

羞〈遮(り〉＝2〈1)-〉

｜

(6.89)

By using Eｑ･(6.87), Eq.(6.89) is solved to give the solution for A;g〈丈〉≪1

and t≫' To

〈遮(1)〉＝1[xi(O) + 2z_(0)l7_(0)ro + 2vI{0)t^]・ｘp(･/7b)　(6.90)

where 7-0= (4幡∂)-1/3.ＦrｏｍEqs.(6.88) and (6.90) we obtain

　　　　　　　　　　　　Tnln
に

(ｚ!－ 2ｚ－とtq+ 2v!可)|
　　　　　rJx-,v_)゜

|　　　　　

(for arg ofIn ＞1)　　　　(6.91)

　　　　　　　　　　　　　O　　　　( otherwise ).

This clump lifetime plays ａ key rolein the two-point renormalized theory

presented in this chapter and its applications wiU be shown in Chapter 7.
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６。４　Conclusions　　　　し　　　　　　　　　つつ

　　The exact integral equation (6.11) to determine time evolution of the

nonlinear propagator has been derived for the general model equation (6.1)

with convective nonlinear ity. The iterative scheme has been applied to the

integral equation to obtain the approximate expression (6.12) of the prop-

agator which is appropriate for studying the strong turbulence.　The first

order of this expasion is exactly equivalent to Ｅｑ･(4.1)in ＲｅＥ[15].Dupree

treated the Vlasov equation and derived the expansion form of the propa-

gator by considering interaction between test and ｂａ£kground waves in the

Fourier ｓＰａ£ｅbased on the random phases among initial Fourier modes. We

have considered the model equation (6.1) in the real space and obtained the

integral equation with respect to time. Ａ systematic derivation of the ex-

pansion form for the propagator, which is more straightforward than that

in Ｒｅｆ･[15],has been given.　Using this expression, we have developed the

one-point (coherent) and two-point (incoherent) renormalized theories repre-

sented with the real space coordinates. The clump lifetime approximation for

the solution of the two-point renormalized equation was also described. In

this approximation the correlation function of the fluctuation is given by the

product of the clump lifetime and the source term in the tw。point equation｡

　　The renormalized theories have been applied to the Vlasov equation and it

is found that Dupree's results【15],【18】arereproduced. The one-point (coher-

ent) theory has shown the generalization of the quasilinear diffusion theory

into the case of the strong turbulence by including the resonance broadening･

However, it is remarked that in the one-point theory the frequency spectrum

at fixed wavenumber takes the form of delta function, which is the same as in

the linear and weak turbulence theories. In the application of the two-point

theory, the expression of the clump lifetime is given in the relative phase

space coordinates。

　　In the next chapter the renormalized theories will be applied to the

reduced fluid equations in order to obtain the wavenumber spectrum and

the turbulent diffusivity for estimating the edge turbulence and the related

anomalous transport in toroidally confined plasmas.
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Chapter ７

Anormalous
by Resistive

Turbulence

Transport Driven
Interchange]Mode

7．1　　Introduction

　　In this chapter we apply the renormalized theories developed in Chapter

6 to the reduced fluid models in order to study the edge turbulence and the

anomalous transport such as observed in Heliotron Ｅ. We consider turbu-

lence driven by the resistive interchange modes which are destabilized by

pressure gradients and bad magnetic curvature.　We treat two types of re-

duced fluid equations‘to describe low frequency electrostatic perturbations

in an inhomogeneous coUisional plasma confined by ａ magnetic field with

curvature and shear. One is the RMHD equations in the electrostatic limit

and the other is the H asegawa-Wakat ani equations which include the effect of

the electron diamagnetic drift. By using the tｗｏ‘pointrenormalized theory

and the clump lifetime approximation, wave number spectra and turbulent

difFusivities are obtained. This approach has been taken by Diamond et al.

in the analyses for the resistivity-graxlient-driven turbulence[22]and the ion

temperature-gradient-driven tｕrbｕｌｅｎｃｅ.124]

　　This chapter is organized clSfollows. In Sec.7.2 and Sec.7.3, the wavenum-

ber spectra and the turbulent diffusivities are calculated by applying the

two-point renormalized theory and the clump lifetime approximation to the
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RMHD equations and the Hasegawa-Wakatani equations, respectively. Fi-

nally problems of this approach are discussed and conclusions are given in

Sec.7.4.
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７。２　Resistive Interchange :Ｍ:ode Turbulence

　　　　by Reduced ：Ｍ:ＨＤ:Ｍ:odel

　　We will apply the renormalized theories and the clump lifetime approx-

imation in Sec.6.2 to the resistiveinterchange ０１９mode turbulence bcised

on the reduced MHD model and obtain the wavenumber spectrum and the

turbulent difFusivity.

　　The reduced MHD model in the electrostaticlimit consists of the pressure

convection equation:

(jy
十tﾀ･∇

)･=一心昔

and the vorticity equation:

匹

召o
台＋tﾀ・▽ ∇1φ＝－

言･∇|φ＋∇餌∇９･i

(7.1)

(7.2)

Hereφis the electrostatic potential and ｐ＝po十戸the total pressure, where

po＝〈ｐ〉and j5 are the average and fluctuating parts, respectively.　The

velocity 17is approximated by the E X B drift velocity:

V = ― T

ま▽φ×£，
(7.3)

and▽II = (Bo/Bo) ･∇where Bo is the static sheared magnetic field and

召o≡|｡Bo|. In Eq.(7.2),▽Q, represents the average curvature of the magnetic

field nne【3】'[33]，ρmis the average mass density, ｃ the light velocity in the

ｖａ£uum and 77 the resistivity. The pressure Po and Ωare assumed to depend

only on the local radial coordinate ｚ.　We apply the renormalized theory

to the pressure equation (7.1) since Eq.(7.l) has the same form as Ｅq･(6.1).

From Eq.(6.20), we obtain the one-point renormalized equation:

j7

－∇・D・∇

)

ｆ＝－t４

首

こoherent part ｏｉｐ　ａnd the tｕ]

. The two-point renormalize

　　　　　　99

(7.4)

where p" represents the coherent part ｏｉｐ　ａndthe turbulent diffusion tensor

D is given by Ｅ(l･(6.16). The two-point renormalized equaiton is obtained



from Ｅｑ･(6.32) as follows:

Ｇ
- Σ▽･・Ｄ(り)・▽j

t,i=i,2

〈j(1)斑2)〉= 5(1,2)

where the source term in the right-hand side is defined as

　　　　　　　　5(1,2)゜Tま昔み〈φ(ツ(2)〉十(1←･2)

(7.5)

(7.6)

Hereafter we assumｅ ｄｐｏ/ｄｘ　tｏbe negative and constant for simplicity since

our concern is in the localized turbulence. From Ｅｑ･(6.48), the approximate

solution to the two-point renormalized equation (7.5) can be expressed by

using the clump lifetime as

　　　　　　　　　　　　〈p(l)p(2)〉＝句(ｚ－)ｓ(1,2)･　　　　　　　　(7.7)

As discussed in Sec.6.2.3, we introduce the Green's function 9t(ｚ－lｚ!) which

is defined by

　　　　　　　　　　(jy

－
か

一

浪j

9tise-＼x!)＝o，　(78)

with the same initial condition as Eq･(6.45), where the only (x, x)-component

of the relative diffusion tensor, D-≡(Ｄ－)ｚｚ， is retained and the other

components are assumed to be negligible. From Ｅｑ･(6･38), we find that ｌ)-iｓ

an even function with respect to ｚ－ and vanishes at x_ = 0. We approximate

D_in the limit of small l._l as
｡

1)＿ごz:'G硫μ4･暗記十硫祀) (7.9)

where kox丿Oj, and ko^ are the representative wavenumber in the ｚ，!/ and ｚ

directions respectively and D is the [x. a;)-component ofＥｑ･(6.16).We define

the relative separation between two points normalized with the correlation

scale ＼ko＼-'byt24ト

　　　　　　　　　疋(･)≡硫μ(i)十岐屹(り十硫遜(昨　　　(7.10)

Using Eｑs･(6.46) and (7.9) and taking the second moments of Eq.(7.8), we

have　　　　　　　　　　　　　　　　　　　　　　し

　　　　　　　　　　　みRl(t)ト2唸Ｄ〈疋(0〉･　　　　　(7.11)
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Solving the above equation with the initialconditｉｏｎ杷.(1＝O)＝砥遜十

橘μ/三十kLzl, we obtain

　　　　　　　〈疋(0〉＝(昿遜十岐ｚ＋砥ｚこ)ｅｘp(2昿扨).　　　　(7.12)

The clump lifetime 句iｓ defined by 〈Rl{t = r,,)〉＝l and the resulting

expression of 711is .:.・

rci(a5-)

and

一

一

１

h1(昿£十帰ｼ五十硫£
)

　　　　０

ノ
ダ

(応召.十岐吐十硫逆＜1)

(応遜十岐屹十硫逆>1),
　　　　　　　　　(7.13)

koxdx-
/而-ﾄ-ｅ-‘りｰ-‘゛-〈p(l)p(2)〉

Ｊ
ｋｏｉｄｘ一/而-/臨-ｅ一岫＝一白-rd(a5-)

豆
ぶ騨
罵ﾌﾞ(岫

Ox　　Oj/　Oz

β＝ (≒μoy)2十叫/‰)2.
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(7.15)

(7.16)

(7.17)

2klD

Except the small region denoted by 砥遜十岐沢十砥遜く1 , the clump

lifetime vanishes and it is assumed that the source term in the right-hand side

of Eｑ･(7.7) varies slowly in this region. Thus we can approximate Ｅｑ･(7.7)

with

　　　　　　　　　　　　φ(1)β(2)に涙ｚ－)So，　　　　　(7.14)

where s°is the value of source term 5(1,2) at 35- = 0. Thus the two-point

correlation function of the pressure fluctuation,〈p(l)p(2)〉,depends on the

relative coordinate a･- only through the clump lifetime Td given by Eq.(7.13)･

By integrating Eｑ･(7.14) over a_ and performing Fourier transform with

respect to !/- and ｚ-，the wavenumber spectrum is given by

　　　　く菌１≡

　　　　　　　－　　　　　　　－

　　　　　　　－　　　　　　　－

whereん≡(≒,u

m=r ｐｄｐＪｏ(βρ)(ｊ‾二‾戸一ｐｃｏs-1ρ)



Further integration overんｚ yields the ≒゜spectrum,

〈邱〉≒≡

凧，

-た03/

－２ ｊ左
‰
ぐ　
ゐ

　
１
　

－

(7.18)

These results are the same as those given by Sydora et al.【23】Theessential

point in these approximations is that the X- dependence of the two-point

correlation function and the k dependence of the wavenumber spectrum are

determined only by the clump lifetime. It is directly related to the propagator

describing the evolution of the fluctuation and therefore the same propagator

gives the same form of the wavenumber spectrum independent of the form

of the function s{x,t) in Ｅｑ･(6.1)｡

　　Next we calculate the turbulent difFusivity D. Up to now, we treated the

pressure equation (7.1) only, but hereafter we need to consider the vorticity

equation (Ifl).Ｔｈｅtime evolution of the kinetic energy defined by

　　　　　　　　　恥

is obtained from Eq.(7.2):

≡1yd3印。｢Tん▽｣｡φ)2，

余恥＝/占卜ら言-?ﾝ(∇IIφ)21

(7.19)

　　　　　　　＝坤｣鎬八太う轟八－誤|φ引, (7.20)

where jA; and φ}gstand for the Fourier components with the wavenumber

ゐ゜(≒丿z) and k＼＼= k・Bo/召o. The first term in the right-hand side

represents the change of the energy caused by the convective motion in the

presence of the effective gravity corresponding to the average curvature due

to the helical magnetic field and the second term the sink of energy by the

Ohmic dissipation･ We consider the stationary state, d〈召刄〉/dt= 0. Hence

we balance the first term with the second term in the right-hand side of

Eq･(7.20) as

　　　　　　　　　　｡　ｃ　ｄＵ，
２
i_S_φ１　　(7.21)

Here we used k‖２≒(ｚ－ｚ２(ん))/瓦-K/i£丿Ox), where Xs{k) is the position

of the mode resonant surface defined by ん||(X=ら(ゐ))＝O. The relation
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(7.21) shows that the phase difference betweenφ1 and pk is 7｢/2／ It is

related to the parity conservation in the reduced MHD model Eqs.(7.1) and

(7.2) with respect to the (!y,2)-spa<:e (see Appendix 7.A). From Eqs.(7.6)

and (7.21), we obtain

5°　＝　２

　　　２２ (釧尚尚 綱引謳く菌k- (7.22)

where ｇ denotes the im昭inary part of the complex valuable. Substituting

thisinto Eq.(7.15) yields

く菌1＝
87r/(fe)
-
Dko丿oｚ

三

召o
2(唐 ソト差

＆
ぐＩ 昌〈節〉k'-

(7-23)

Integrating both sides of this equation over k, we obtain the turbulent diffu-

　●　●sivity

p　＝

一

一

(石士郎顛⑤荒唐Ｉ(･))

牡叫郎彫 (7.24)

In the case of toroidal configuration, i-axis corresponds to the minor radial

direction, !/-axis the poloidal direction and 2:-axisthe toroidal direction, re-

spectively. In this case, 瓦＝Ｒq/ｓ， where Ris ａ major radius, 9 a safety

factor, ｓ ≡{r/q){dq/dr) a shear parameter of the magnetic field and ｒ ａ

minor radius. Thus Ｅｑ･(7.24)is expressed as

に） 一

一 41)ズ
r ｄｑ

一一

ｑ　ｄｒ

－２

-rdpo
一一
）

Po dr

　dΩ

ツ (7.25)

where Del = (心）o/｣Bi)riis ａ clcissicaldifi:usioncoefficient, 6 = r/R an in-

verse aspect ratio. Ｅｑs･(7.24)and (7.25) agree with the result of the scale

invariance method【12】ｏrに)゜７/岨-type mixing length argument.【23】The

constant factor 4 obtained by the two-point renormalized theory is not as

large as that obtained by Carreras et aL[25]by combining the one-point re-

mormalized theory with the marginal stability analysis including dissipations

to suppress high mode number instabilities.
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7．3 Resistive Interchange :Ｍ:odeTurbulence

Coupled to Resistive Drift‘Waves

　　Here we apply the renormalized theory given in Chapter 6 to the Hasegawa-

Wakatani equations which describe the resistiveinterchange mode coupled

to the resistive drift wave. The model consists of the electron continuity

equation:

瓦十勿・▽

and

"＊二K11∇a(ｎ＊一φ＊)＋みら▽In no ｘ▽φ＊゜£十Ｐ≫ｃ，▽(ｎ＊‾φ＊)×▽Ω‘£･

(7.26)

the vorticity equation:

　戻(jy十t7 ・▽)∇1φ ニり|▽|吋－φ＊）十Ｐ≫ｃ．∇ｎ＊×▽Ω・£.　(7.27)

Here n* andφ* are normalized density fluctuation and normalized electro-

staticpotential defined by

　　　　　　　　　　ｎ＊≡ln(nino) = ln(l十n/no) =！hino　　　(7.28)

and

　　　　　　　　　　　　　　　　φ＊≡ｅφ/瓦　　　　　　　　　　　　(7.29)

where ｎ ≡no十n is the total density, no ≡〈ｎ〉the average part and n the

fluctuating part. The velocity 17 is the same as Ｅｑ･(7.3) and is written as

　　　　　　　　　　　　　■o = ―ＰｓＣ，▽φ＊χ乱　　　　　　　　　　　(7.30)

≪,l= Tj{m。z411)is a diffusion coefficient along the magnetic field line, zﾉ。|ｌ

ａ paraillel electron collision frequency, p.Ξｃｓ7ωｃｉ an effective ion L armor

radius,らΞ(Ｔ。/mi)1/２ an ion sound velocity, ωd an ion cyclotron frequency

andPｓＣｓ≡cTe/(e5o). In our model, the generalized oh�s law in the elec-

trostatic limit is employed and the electron motion along the field line is

included; however, the ion parallel motion is assumed negligible･

　　The ｏｌ!e-point and two-point renormalized theories in Chapter 6 are apy-

plicable to the density equation (7.26), which can be written in the form of

Ｅq･(6.1):

∂

－
∂Z
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The one-point renormalized equation forＥｑ･(7.31)is obtained from Ｅｑ･(6.20)

乱･－▽･o･▽-・ll∇卜ｙ，首品） 琵
一

？
司
Ｊ

　
り
け

旦
匈

where ｎ＊cis the coherent paxt of n* and Ｄ has the same form as that defined

by Ｅｑ･(6.16). It is useful to define Raynolds number as the ratio of the non-

linear perpendicular diffusion term to the paiallel diffusion termt21]･[22]･【24】:

＿伺ぷ　Ｑ
－-一一Rｅ≡
　　　　－たい|1　７i

(7.33)

where ７;=≡(んね1))‾1 is the nonlinear coherent time･ 711≡(紹ｚllμむ司)‾l the

parallel diffusion time and KQx) n-Oy
j£ｊ
and に? are the same as those in Sec.7.2

(see Ｅｑ･(7.9)). By using Eｑ･(6.32), the two-point renormalized equaiton ｂｅ“

comes

∂

－
∂Z

- Σ▽i・Ｄ(り)

≪J=1,2

▽j－≪ll(▽11十▽12)〈n*(l)n-(2)〉=5(1,2),

　　　　　　　　　　　　　　　　　　(7.34)

where the source term in the right-hand side is

　ｓ(1･2)゜

ﾚ

ふ

(誓い今戸)み
－gl測1

1

〈φ･(l)n-(2)〉バl4->2)ト

　　　　　　　　　　　　　　　　　　　　　　　　　　　　(7.35)

Here we assumed that dQldx and din riQldx are constants and that correla-

tion function such as 〈n*(l)n*(2)〉ａｎｄ〈φ＊(1)φ＊(2)〉are independent of the

centric coordinates !/十≡(!/1十!/2)/2 and ｚ十Ξ(ｚl＋ｚ2)/２ because of trans-

lational symmetry in the !/ and ｚ directions.　It is noted that the operator

in the left-hand side of Eq･(7.34) is the same as that studied by Diamond

et al･ in the analyses for the resistivity-gradient-driven tｕrbｕｌｅｎｃｅ【22】and

the ion temperature-gradient-driven turbulence.【24] In Eq.(7.34), the parallel

diffusion operator can be written as

　　　≪ll(∇11＋∇12) = -≪llΣ(幡十啼)

　　　　　　　　　　　　　ん

一

一

‾バ;|| Σ1ﾙ[(・1－ら(1))2＋隔ぺ,(&))2]

ゐ　ｊ
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一

一

勁[2(り･－ｚ,(ん))2十ｼこ]
－･･llΣ

　　　２－昔(2△2十ｼ!)こ，

b) is repla£ed with the radial scale of correlatio

6.45)･Green's function is defined by

ｐ一浪一畿(2△2十ｼ亡)器卜(ｚ-|範)＝０

　　　　　　　　　２一司k2△‘十ヤり超，　　(7.36)

where ｚ十一Xs(k) is repla£ed with the radial scale of correlation △. Prom

Ｅqs･(6.44) and (6.45), Green's function is defined by

　　My
一浪ｐ一浪一苔(2△2＋1遜)こいt{xJx!.)＝o，(737)

with 9t＝o(ｚ－lｚ!.)＝δ(ｚ－－ｚ!), where the components of the　ｔｅlativediffu-

sion tensor Ｄ－ except £)-≡(Ｄ一臨are assumed to be negligible. Taking the

moments of Ｅq･(7.37) by multiplying 遜ｏr沢ａｎｄ using Eqs･(6.46), (7.9) and

(7.10) yields the differential equation for the normalized relative separation

between two points:

jW〈砥(り〉一万jy〈疋(z)〉一之〈疋(り〉＝ｏ

with the initial conditions:

and

〈Rl{t = 0)〉＝硫沢十暗吐十硫遜≡疋，

ヨ手疋十手(4△2十に.).
t＝0　　７i

Here aj_ denotes a_(i = 0). Solving these equations, we have

　　　　　　　　　　　　　　　〈庭(り〉＝yle゛＋゛＋召ｅ゛-゛，

where

and

y1＝

召

Ｕ土二 汁擢雨戸)，

t。o

‾“‾瓦

ぐ）

＝轟O　＋疋－jy〈疋(1)〉
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(7.39)

(7.40)

(7.41)

J

(7.42)

(7.43)

(7.44)



Since tj＋＞0＞ｕ－， we approximate the solution with the dominant term:

　　　　　　　　　　　　　　〈疋(り〉２ yle"+*.　　　　　　　　　　　(7.45)

Thus from Eq.(7.43),

　　　　　　Å＝ｃ[α応・4△2十(1十α)昿遜十鳩沢十昿遜]，　　(7.46)

and

　　　　　　Re-^　　　　　　　　　1 + ＼/l + 2Re二i

α≡

1＋χ/i‾7111こ二？　　

ｃ≡　

2ﾂﾞﾐiてf2Re二T

are obtained. Eq.(7.45) and〈・!(t = Te/)〉＝1 give the clump lifetime,

ソｚ-）

〕 　　　7i　　　　　　　　　　　　　　　　　　l
1十φて‾玉Ｆ戸1

{

ｃ[�恚゜4△2十(1十゜)吃逆

　　　　　　　　　　　(arg ofIn ＞1)

０ ( otherwise )

(7.47)

十鳩必十紘£]

}

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　(7.48)

We fined that, in the large Reynolds number limit, α→Ｏ and Ｃ →1 from

Eq.(7.47) and the clump lifetime given by Eq.(7.48) coincides with that given

by Ｅｑ･(7.13)since the parallel diffusion is neglected in thislimit and the two

Green's functions defined by Ｅｑs･(7.8)and (7.37) become identical. Thus, as

mentioned in Sec.7.2, the wavenumber spectrum of the density fluctuation

has the same form as that given by Ｅｑ･(7.15)in this limit. However, when

the Reynolds number is small, the parallel diffusion term becomes important

and makes the clump lifetime at ｚ－ ＝O finitein contrast with the case

of the large Reynolds number. The approximate solution to the two-point

renormalized equation is given by

　　　　　　　　　　　　　くｎ＊(1)ｎ＊(2)に祠ｚ－)So，　　　　(7.49)

where the same approximation as in Eq.(7.14) is employed. Using Eｑ･(7.49)･

we obtain the wavenumber spectrum:

〈rCn*〉ゑ;
り柚些

△
／ dｚ_ｅ一向y一一iknZ ―〈ｎ＊(1)ｎ＊(2)〉
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where

with

＝ｓo/な=･/而-ﾄ-ｅ一＼k≫!i)_―ｉｆｃｊＺ一句(ｚ-)

一

一

が瓦十恥）

／　
＝

　
心
／　
＝

where

8'7でＴ．ＳO

F(峠

民益

PｓＣ，

(

-

(7.50)

(7列

(い １＋２Ｒｅ‾1 んoμoｚ

F(k) =　ｃ△ｋこjてててﾌｮi: ｐｄｐＪｏ(βρ/｀/Ｆ)

　　　　×(yＦ二‾戸一丿マ‾戸二万ｃｏｓ-1φニ‾戸二戸)
>
(7.51)

　　　　　　ξ２≡1 - Cakl・4△2　　β=
^|{Klhyy十(臨μoｙ　　(7.52)

As mentioned above, this has the same form as Eq.(7.15) when Ｒｅ→cｘ)｡

　　In order to evaluate the turbulent difFusivity に),we use the following

time evolution equation of the fluctuation energy obtained from the model

equations (7.26) and (7.27),

d3りρ,cjと尹ｎ＊芳一剛▽11(ｎ＊－φ＊)121

／１
一
９
４

)ら９(φi心)一個14－な卜

　　　　　　　　　(7.53)

d3a;ｎ＊2

Since the stationary turbulence is

恥≡いべ(▽⊥φ)2

considered, d{〈Ｅ〉十〈£瓦〉)/冶＝0.Ｈｅｎｃｅ

we balance the firstterm with the second term in the integrand ofＥｑ･(7.53),

A;β(φInlk)
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where we used ^11- 1;y/(Ｌ，kOx)-In contrcistto the reduced MHD model, our

model equations (7･26) and (7.27) do not have the symmetry of the parity in

(!/,ｚ)゜spaceand therefore the phase difference betweenφi and nl is different

from 7r/2.It is assumed that　　　　　　　　　　　　　　　　　。

　　　　　　　　　　　　　　　４＝４φle-%　　　　　　　　　　　(7.56)

where Rだis ａreal function and Su denotes the phase difference. Substituting

this into Eq.(7.55) and assuming that ＼Rk＼≪1，we obtain

　　　　　　＼
Ｒえ'２≒ρsCj-d＼

でjど奥

sｉｎ４ ニこiRiy函召iｼﾞ　(7.57)

whereω４≡kyp,Cs{-dlnno/dx) is the electron diamagnetic drift frequency

and Tdk≡司んむ/(gllんj)tｈｅ parallel diffusion time for the mode with the

wavenumber k･141≪1 means that 4 is not close to zero.　Nonlinear

calculations of our model equations confirm 141≪1 or Iφil≫K＼ for the

case ｏｉ６£ljdｘ＞O.【32】'【43】FromＥqs･(7.35), (7.56) and (7.57), we obtain

s°
一

一

づ)ソ

呻R〈φ＊ｎ＊〉A，

ぺ牛響々)(一響
司吃
-
ﾊﾞ;||

／ 謳くn'n*
A; sin^ ４

(7.58)

where sin 6u >ＲｆｃｃOS4 is assumed and the second term proportional to μ:||

becomes small for l沢だ|≪L Substituting this into Ｅｑ･(7.50),we ottain

〈n*n*〉k　＝
167r5°i^

Integrating the both

diffusivity

に）＝　ρ?ｃ?

叫

／仇
刄
汀ぐ

ｆ。 (7.59)

皆(ん)sin24)

１十ﾂﾞﾐi‾ﾌﾐぶぷコ)たoyたOz

sides of this equation overゐ, we obtain the turbulent

d＼n Tin

一 臨

-

dΩ

一心

-

） 司

-

K||

din no

一心
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dΩ

-
dr

lj

･sin^ 4，

一ｒdno

一一no＆

－ｒ drio

一一
no dr

sin^ ４0

)≒

in^ ４0

冊

゛ω*k'^dk

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

心

where we assumed that sin^４ ２ sin^ 4o by using a representative phase

difference 6^ and Re ≫1, which is consistent with ＼Rk＼≪1. In ａcylindrical

configuration, this is expressed as

(器

Usually the scale length of the density gradient is shorter than that of

magnetic curvature in stellarator/heliotron or l(小o)(dno/dｒ)|≫＼rda/dr＼.

Then Ｅq･(7.61) reduces to

j）
一

一 4Dj

which is identical to the results ofYagi et al.ll2]obtained by applying the

scale invariance argument to Ｅｑs･(7.26) and (7.27) with▽Ω゜O. We wiU

examine ａ different assumption for the relation between n|. and φi，i.ｅ･，

|・λ;|～1.In this case,

2 tan
今
'たらpjら

(-!!?ﾁﾞ£

By using Eqs･(7.35)･(7.63) and ｌＢ-ｋ|゛ｌand assuming that ＼d＼nno/ｄｘl＞

＼dCl/dx＼,the source term beocmes

5°= 2k||晨廣〈n*n*〉だ(1＋2 sin"^
昔

where l;|1ら:Oy/{L,kox) is used. It is remarked that rcS°in Ｅq･(7.50) is pro

portioned to Ｒｅ‾lin this case and Ｅq･(7.50) gives only the Reynolds number.

It is impossible to estimate the turbulent difFusivity and the fluctuation level

within the context of the renormalized theor　in Chapter 6.　Ａ similar ex-

ample was discussed by Terry and Diamond【11】for the resistive drift wave

turbulence and an additional assumption was introduced to determine the

turbulent diffusivity.



7．４　Conclusions

　　The clump lifetime approximation to obtain the solution of the two-point

renormalized equation was employed to evaluate the wavenumber spectrum

and the turbulent difFusivityin the resistiveinterchange mode turbulence de-

scribed by the ordinary reduced MHD model and the resistive drift and the

resistive interchange mode turbulence by the reduced two-fluid model. The

form of the wavenumber spectrum is essentially determined by the clump life-

time and thus depends only on the form of the propagator for the fluctuation･

In addition to the clump lifetime approximation, the second equation, which

determines the relation between the electrostatic potential and the pressure

or density fluctuation, is required for the calculation of the turbulent diffu-

sivity. In order to obtain this relation, Lee and Diamond et al.[24]relied on

the argument such as the balance between the dominant terms ･in the en-

ergy evolution equation, which is essentially the same as the mixing length

estimation. Terry et al.l22]gave an approximation that the mode structure

satisfiesthe relation between the pressure and the potential involved in the

reduced MHD equation｡

　　In the reduced MHD model, we followed Lee and Diamond to obtain the

relation between the electrostatic potential and the pressure fluctuation. We

used the fa£tthat the phase difference is 7r/2 due to the parity conservation

with respect to the (!/,ｚ)-sｐａｃｅ.The resulting expression for the turbulent

diffusivity agrees with that obtained by the mixing length argument or the

scaleinvariance approach as for the parameter dependence. Ａ constant factor

in the expression of turbulent difFusivity,which cannot be determined by the

scale invaiiance, is about 4 by the two-point renormalized theory. This value

is smaller than that obtained by Carreras et al. by combining the one-point

renormalized theory with the marginal stability analysis.[25]

　　In the H asegawa-Wakat ani equations, which include the electron paral-

lei motion and variable phase difference between the potential and density

fluctuation, the loss of parity conservation makes it difficultto determine

the diffusivity in contrast with the case of the reduced MHD model. The

equation relating the potential to the density fluctuation cannot be obtained

only by the balance between the terms in the energy evolution equation and

the additional consideration about the phase difference is required to obtain

the diffusivity. Since experimental data of the edge turbulence show that the

typical phase difference lies between zero-and 7r/2, the H asegawa-Walcat ani
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model is more promising to explain the observed edge turbulence in Heliotron

Ｅ than the RMHD ｍｏｄｅｌ｡

　　Though the two-point renormalized theory for studying turbulent diffu-

sion developed in Refs.[21卜[24]is systematic and quantitative, the second

equation giving the relation between the different fluctuations required for

calculating the turbulent difFusivityis stillheuristic. We need further study

for this point.
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7．Ａ The Parity Conservation in the Reduced

Ｍ:ＨＤ:Model

Equations (7.1) and (7.2) can be written as

where

*(x,!J,Z,t) = 臨
and Ｆ represents a nonlinear operator on !ｉ

Ｆ[１]≡

三
Bo
▽φ×£･▽j5十言言

召0

-

ＰｍＣ
Tま▽φ･ｄ･▽▽1φ一管▽aφ－

Now, we defineａ parity operator Pby

　　　　　　　j’[１]

Ｅｑs･(7.67)and (7.68) give

From Eq.(7.69), we have

-

-

-

　p(x,-!/,－ｚ)

－(▽1φ)(ｚ,四,－ｚ)

FP = PF.

(7.65)

(7.66)

dＱ卵

一一
心∂!/

(7.67)

(7.68)

(7.69)

　　　　　　　　　　　　　　乱“＝ｊ'[.Ｐｉ]，　　　　　　　　(7.70)

for an arbitrary solution sP(x,!'j,z,t) of Eq.(7.65). Thus, we find that

　　　　　　　　　　　　　　　●Ｐ･i＝１;，　　　　　　　　　　　　(7.71)

is valid at arbitrary time if it is satisfied at initial time because of the unique-

ness of the solution with respect to the initial condition. For Fourier modes

{飢,φfc}, we obtain

　　　　　　飢＝j4＝段＝(real function)
77

　　　　　　4＝－φ４＝－φi＝(pｕrｅヽimaginary function),　　　(゜2)
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from Eqs.(7.68) and (7.71). Thus, we find that the phase diference between

pu and ４ is 7r/2･

　　The paiity conservation (7.69) is related to the fa£tsthat the full MHD

equations are invariant with respect to the reversal of directions for ｍ昭netic

field B, current i and electricfield .ｇ:

　　　　　　　　　　　(Ｂふ粕→{-B, -j,一司，　　　　　(7.73)

and that the system under consideration is invariant with the transform of

variables, (!/,ｚ)→(一!/,－ｚ)，sｉｎｃｅwe have assumed that Po and Cl depend

only on ｚ. It is noted that the invariance with respect to (7.73) is not valid

in the generalized ｏｈｍ°slaw and therefore the symmetry Uke Eq.(7.69) does

not exist in the model equations (7.26) and (7.27). This is relate^ to the

appearance of the terms with (n* ―φ＊)ｉｎＥqs･(7.26) and (7.27)･

114



Chapter ８

Concluding Remarks

　　In this thesis we have studied linear and nonlinear properties of the ideal

and resistive interchange instabilities based on the fluid descriptions of the

toroidally confined plasma. As a fluid model we have derived the reduced

two-fluid model which can correctly describe the ion and electron diamag-

netic drift. These effects are not included in the single fluid MHD model

but they are not negligible in the high temperature plasma produced in the

present and future large devices. Our model for the large aspect ratio toroidal

plasmas applicable to both stellarators and tokamaks obeys the physically

reasonable energy balance law and has several familiar reduced fluid models

such as RMHD, Hasegawa-Mima and H asegawa-Wakat ani equations as limit-

ing forms. Thus we can remark that our model isａgeneral and self-consistent

one which deserves further analytical and numerical studies.

　　Based on the reduced two-fluid model, the stabilizing effects of the ion

diamagnetic drift on the ideal interchange instabilities have been studied

both analytically and numerically.　We have found that the dispersion re-

lation and the stability criterion obtained by the local mode analysisi agree

with the results of the numerical calculation using the shooting method. The

stabilization by the ion diamagnetic driftis related to restoring the Boltz-

mann distribution for ions under the isothermal assumption. As an example

Heliotron Ｅ currentless plasma with the equilibrium pressure profile of the

form ｐ(ｒ)＝ｐ(O)(1－(ｖia)2)is considered. It was shown that the stabil-

ity beta limit determined by the ｍ ° 1/ｎ ° 1 ideal interchange mode is

β(0) = 2.2% in the ideal MHD case with no ion diamagnetic drift effects.It

can be improved up tｏβ(0) = 5.1% if those effects are included in the case

　　　　　　　　　　　　　　　　　　　115



of the deuterium plasma with the average electron density "e ＝1013cm‾3｡

　　By using Ｈ asegawa-Wakatani equations including the average magnetic

curvature of the helical field lines, we have found the resistive interchange

instability coupled to the electron diamagnetic drift. This instability may

explain the turbulence observed in the peripheral region of the Heliotron Ｅ

ｐｌａｓｍａ.[91We have derived the dispersion relation for this localized instabil-

ity by the sheaied slab approximation, which is compared with the numerical

calculation in the cylindrical geometry. It was shown that in the weaJdy col-

lisional limit the real pait of the eigenfrequency approaches to the curvature

drift frequency and the imaginary part or the lineal growth rate is propor-

tional to the collision frequency. In this limit the phase difference between

the density perturbation and the electrostatic potential goes from 7r/4 to

ｉr/２. It is interesting to compare these results with those obtained by the

MHD model. In the MHD model the resistive interchange instability has the

growth rate proportional to the l/3 power of the collision frequency and the

phase difference is alwａｙｓｉｒ/２｡

　　The nonlinear evolution of the ideal and resistive interchange instabilities

has been studied numerically. It was shown by the single-helicity nonlinear

calculations that the ion diamagnetic drift lowers the saturation level of the

ideal interchange modes and decrecises the contributions from the higher

harmonic modes to the total kinetic energy.　These results are consistent

゛ith the linear dispersion relation which states that the stabilizing effects are

stronger for higher mode numbers. The saturation is related to the flattening

of the pressure profile around the mode resonant surface.　By the multi-

helicity nonlinear calculations using the H asegawa-Wakat ani equations, we

have studied the electrostatic turbulence driven by the resistive interchange

modes coupled to the electron diamagnetic drift. We have seen that in the

saturation state the ｍ ＝Ｏ mode becomes dominant and the stationary radial

electric field is generated.　This may be explained by the self-organization

ｐrｏｃｅss【431and the production of the ｍ ＝O mode is not obtained by the

conventional RMHD model. The decrease of the energy distributed over the

high poloidal mode numbers due to the energy condensation to the ｍ ＝0

mode is expected to improve the particle confinement. The radial electric

field produces the .ｇｘ,召sheai flow in the poloidal direction ，which may

cause the secondary instability and make the characteristics of the turbulence

more complex. These promblems are the subject of future studies｡

　　We have presented the systematic formulation of the renormalized theo
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ries for the strong plasma turbulence. In our formulation we have considered

the general model equation which includes the convective nonlinearity and

derived the exact integral equation for the nonlinear propagator, from which

the renormalized expansion of the propagator is obtained naturally by the

iterative procedure.　Bcised on this expansion, the one-point and two-point

renormalized theories were given in a unified manner.　The clump lifetime

approximation to the solution of the two-point renormalized equation was

explained.　As an example, the renormalized theories were applied to the

Vlasov equation. We found that the Dupree's results such as the resonance

broaxiening and the clump lifetime in the phase space were reproduced･

　　Using the renormalized theories and the clump lifetime approximation,

we have estimated the wavenumber spectrum and the turbulent difFusivityin

the resistive interchange mode driven turbulence based on the conventional

RMHD model and the Hasegawa-Wakatani model. We have found that the

wavenumber spectra of the pressure or desity fluctuation take the similar

forms in the both models while the turbulent difFusivitiesare different from

each other. In the RMHD model the turbulent diffusivityis proportional to

the product of the pressure gradient and the magnetic curvatuare.　０ｎ the

other hand in the H asegawa-Wakat ani model that is roughly proportional to

the second power of the density gradient and therefore larger by the order of

the aspect ratio 6‾1＝Ｒｏ/ａ.These predictions shoud be compared with the

results of the numerical simulations or experiments in future studies. The

phase difference between the density (ｏr pressure) and potential fluctuation

is 7r/2 in the RMHD model.　Since experimental data of the edge turbu-

lence show that the typical phase difTerence lies between zero and 7r/2, the

H asegawa-Wakat ani model is more promising to explain the observed edge

turbulence in Heliotron Ｅ than the RMHD model. In our derivations of the

wavenumber spectrum and the turbulent difFusivity,several heuristic and

qualitative arguments such as balancing between the dominant terms in the

energy evolution equation areincluded in order to obtain the relation between

the electrostatic potential and the pressure (ｏrdensity) fluctuation. We re-

mark that furthur developments of the renormalized theories are required to

describe the plasma turbulence and the resultant anomalous transport with

more quantitative accura£y･

　　Finally we will comments several points of implications of our results

to the present or future experiments in helical systems.　First is that the

ion diamagnetic drift (ｏr ion finite Larmor radius) effect might improve
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stability against the interchange modes in high 7; and low density plas-

mas. In Heliotron Ｅ，comparison between a plasma with 71 ＝1～2秘ｙ

and He = 2～3×W^cm-^ and a plasma with 7; ＝400～500ey and

馬＝5～6×1013cm‾3 is possible to study the ion diamagnetic drift stabi-

lization of the interchange modes. Second is that reduction of the density

gradient in the magnetic hiU region win be essential to decrease the anoma-

lous transport driven by the resistive interchange turbulence in the future

devices. Third point is that the radial electric field could modify the prop-

erties of turbulence and there is ａ possibility that the anomalous transport

may be controlled by it. We hope that future experimental studies willreveal

these points.
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