技術論文

希釈イオン液体による絶縁性試料の SEM-EDX 分析 ― 火山灰への応用 ―

澤 龍¹, 今 宿 晋¹, 河 合 潤¹, 味喜 大介², 東 野 達³

エタノールで1 wt% に希釈した 1-ethyl-3-methylimidazolium acetate を絶縁性試料の走査型電子顕微鏡 (SEM)観察における帯電防止剤として用いた.その上で、微小領域における元素分析をエネルギー分散型 X 線分析(EDX)で行った.絶縁性試料として火山灰を用いたところ、従来の炭素薄膜を蒸着する帯電防止法 と同様に 10 µm²の微小領域で粒子の元素組成の違いを判別することができた.また、粒子径が 10 µm 以下 の火山灰については帯電防止処理を行わなくても鮮明な二次電子像が得られたが、粒子径が 20 µm 以上の火 山灰については鮮明な二次電子像を得るためには帯電防止処理が必要であることが分かった.

1 はじめに

イオン液体は 25℃ 前後において液体状態でイオンのみ から構成される流体であり,空気や水に対して安定に存在 するイオン液体が発見されて以降,注目されるようになっ た. 1989 年に Igarashi と Yotsuyanagi は,空気や水に対し て安定に存在するイオン液体を初めて報告した. それは パーフルオロオクタン酸イオンと第四級アンモニウムイオ ンから成るイオン液体であった¹⁾. 当時はあまり注目され なかった²⁾. 三年後,1992 年に Wilkes と Zaworotko によっ て,水溶性のテトラフルオロホウ酸塩(1-ethyl-3-methylimidazolium tetrafluoroborate)³⁾が報告され,イオン液体 に関する研究が盛んに行われるようになった.イオン液体 は不揮発性,不燃性,イオン伝導度が高いという特徴を有 する.イオン液体の発見は1914年の Walden までのさかの ぽることができるとも言われている⁴⁾⁵⁾.

一般的に絶縁性試料を走査型電子顕微鏡(SEM)で観察 するためには、観察前に金属や炭素などの導電性の薄膜を 真空蒸着あるいはイオンスパッタリングで、数十ナノメー トル成膜して、SEM 観察中の帯電を防ぐ必要がある.近 年、イオン液体を絶縁性試料の SEM 観察における帯電防 止剤として利用できることが報告されている^{6)~13)}.このイ オン液体を用いた帯電防止法は、絶縁性試料をイオン液体 中に浸漬させる方法で、従来の真空蒸着やイオンスパッタ リングを用いる帯電防止方法と比べて、非常に簡便であ

る.しかし,文献^{6)~13)}で報告されたイオン液体を用いる帯 電防止方法で観察されている SEM 像は 100 um 以上の低分 解能であり^{6)~13)}, それより微細な SEM 観察を行った報告 はなかった. これはイオン液体の粘度が高く微細構造中に 入りこまないためである. 著者らはイオン液体 1-ethyl-3methylimidazolium bis [(trifluoromethyl)sulfonyl] amide ≿ trimethyl-*n*-hexylammonium bis [(trifluoromethyl)sulfonyl] amide をアセトンあるいはエタノールで濃度 10⁻² wt% に希釈して, 絶縁性試料上に数マイクロリットル滴 下することで、5 µm の空間分解能まで鮮明な SEM 像を得 ることに成功した¹⁴⁾. また, S などの元素を含まないイオ ン液体, 酢酸 1-エチル-3-メチルイミダゾリウム (1-ethyl-3methylimidazolium acetate, 以後 EMI-CH3COO と略す, 構 造式を Fig. 1 に示す)¹⁵⁾をエタノールで 10⁻² wt% に希釈し た溶液を有孔虫に滴下して、イオン液体の成分元素である 炭素、窒素及び酸素以外の元素分析が可能であることを実 証した¹⁴⁾. 有孔虫は単一組成であったために, 微細領域に おける元素分析を行う必要はなかった. そこで、本研究で

Fig. 1 Structural formula of the ionic liquid 1-ethyl-3-methylimidazolium acetate (abbribiated as EMI- CH_3COO in the present paper)

[®] E-mail : imashuku.susumu.2m@kyoto-u.ac.jp

¹ 京都大学大学院工学研究科材料工学専攻:606-8501 京都府京 都市左京区吉田本町

² 京都大学防災研究所附属火山活動研究センター: 891-1419 鹿 児島県鹿児島市桜島横山町 1722-19

³京都大学大学院エネルギー科学研究科エネルギー社会・環境科 学専攻:606-8501 京都府京都市左京区吉田本町

は、数マイクロメートルオーダーで組成が変化する試料と して火山灰を選んだ.火山灰は、主に絶縁性物質で構成さ れる各種鉱物やガラスから成る組成で大きさはマイクロ メートルからミリメートルのオーダーの範囲の径の粒子の 混合物である.そこで、希釈したイオン液体 EMI-CH₃COO を用いて火山灰の帯電防止処理を行い、微小領域における 元素分析を行った.

2 実 験

2.1 試料

観察に用いた試料は桜島で異なる時期に採取された火山 灰5 試料であり. 試料 A~E と名付けた. それぞれの火山 灰の採取時期等を Table 1 にまとめた. 導電性のカーボン 両面テープで試料台にとりつけた. イオン液体 EMI-CH₃COO をエタノールで 1 wt% に希釈した溶液をおよそ 2^{5k+5U} 1 μ L, 爪楊枝を用いて火山灰試料に付着させた後, SEM 像 観察を行った.

 Table 1
 Volcanic ash samples collected at Sakurajima volcano

Sample	Sampling date	Source crator
А	April 4th, 2011	Showa
В	April 24th, 1995	Minamidake
С	March 12th, 2011	Showa
D	February 18th, 2011	Showa
E	December 3rd, 1997	Minamidake

2・2 試料観察及び分析

試料の観察は走査型電子顕微鏡(SEM,日本電子,JSM-5610LVS)を用い,加速電圧を15 kV に設定して,ビーム 電流 85 pA,真空度 10⁻³ Pa で二次電子像及び反射電子像 を観察した.この走査型電子顕微鏡に当研究室でシリコン ドリフト検出器(Ourstex,SDD system)を付加し¹⁶⁾,エ ネルギー分散型 X線(EDX)分析装置として元素分析も 行った.主要元素組成が異なる粒子は反射電子像を用いて 見つけ(重元素は反射電子が強い),EDXの測定時間は100 秒とした.

3 結果と考察

3・1 絶縁性試料の粒子径と得られた二次電子像の関係

絶縁性のナノ粒子は炭素や金属の導電性薄膜を成膜しな くても、帯電せずに鮮明な SEM 像を得ることができる場 合がある.そこで、まず帯電防止処理を行っていない火山 灰試料 A の様々な径の粒子を SEM 観察して、どの粒子径 以上で帯電防止処理を必要とするかを調べた、粒子径が 10 µm から 70 µm までの試料 A を SEM 二次電子像観察し た結果を Fig. 2 に示す.(a),(b)及び(c)に示したよう に、粒子径が 20 µm 以上では表面は帯電によって白くなっ ているが.一方,(d)に示すように粒子径が 10 µm では帯 電せずに鮮明な画像を得ることができた.以上の結果か ら、粒子径が 20 µm 以上の絶縁性試料については、鮮明な 二次電子像を得るためには帯電防止処理が必要であるが、 粒子径が 10 µm 以下の絶縁性試料は本実験に用いたビーム 電流では帯電防止処理を行わなくても鮮明な二次電子像を

Fig. 2 Secondary electron images of various sizes of volcanic ash particles in sample A as received (without ionic liquid): (a) particle diameter 70 μ m, (b) 50 μ m, (c) 20 μ m, and (d) 10 μ m

Fig. 3 Secondary electron images of volcanic aerosol particles in sample B, particle diameter of 70 μ m: (a) as received, (b) with ethanol diluted EMI-CH₃COO (1 wt%) treated, (c) enlarged image of (b), indicating the points 1 and 2 corresponding to the EDX spectra in Fig. 4

Fig. 4 SEM-EDX spectra of sample B treated by the ethanol diluted EMI-CH₃COO (1 wt%) Spectra (1) and (2) correspond to Fig. 3 (c).

得ることができることが分かった.小さな試料では電荷が カーボン両面テープへ逃げるためである.

3・2 火山灰試料に対する希釈イオン液体による帯電防 止効果

3・1 より粒子径が 20 µm 以上の絶縁性試料について, 5 µm 以下の空間分解能で SEM 像(二次電子像)観察する ためには帯電防止処理を行う必要があることが分かった. そこで,火山灰試料 B の中で粒子径が 70 µm の粒子を選 び,エタノールで 1 wt% に希釈した EMI-CH₃COO を滴下 して,帯電防止処理を行い,SEM 像観察を行った.その結 果を帯電防止処理を行っていない SEM 像と併せて Fig. 3に 示す(二次電子像).(a)と(b)を比較して分かるように, 希釈イオン液体によって帯電防止処理を行うことで,帯電 による画像の流れがなくなり,鮮明な画像を得ることがで きた.以上の結果より,これまで報告した化石試料や岩石 鉱物試料と同様に¹⁴⁾¹⁷⁾,火山灰試料についても希釈イオン 液体による帯電防止処理によって SEM 観察中における帯 電を防ぎ,鮮明な画像を得ることができることが分かっ た.

3・3 微小領域における元素分析

次に,希釈 EMI-CH₃COO を滴下した粒子径が 20 μm 以 上の火山灰の反射電子像を観察することで,組成が異なる 領域を見つけ出し,その周辺の 10 μm² 領域を EDX により 点分析することで,微小領域における元素分析の可能性を 検討した. Fig. 3 (c) に示した領域 1 及び 2 の EDX におけ る点分析の結果を Fig. 4 に示す. Fig. 4 から分かるように 領域 1 では, Al, Si, Ca, Mn, Fe の特性 X 線のピークが 観察された. 領域 2 では,領域 1 で観察された元素に加え て Mg の特性 X 線のピークが観察された. EDX のピークの 強度比から重量比を推定すれば,領域 1 は輝石である¹⁸⁾. 以上の結果,希釈 EMI-CH₃COO を火山灰試料に滴下する ことで,5 μm 離れた微小領域の組成の違いを EDX によっ て判別することに成功した.

同様の点分析を他の火山灰試料(試料 C, D, E) につい ても行った. Fig. 5 に希釈 EMI-CH₃COO を滴下した試料 C, D 及び E の二次電子像を, Fig. 6 にそれぞれの火山灰試

Fig. 5 Secondary electron images of (a) sample C, (b) sample D, and (c) sample E, treated by the ethanol diluted ionic liquid EMI-CH₃COO (1 wt%) Positions 3-8 correspond to the spectra (3) – (8) in Fig. 6.

料の微小領域を EDX で点分析した結果を示す. Fig. 6 (a) から分かるように領域 3 では, Na, Al, Si, K の特性 X 線 のピーク, 領域 4 では, Al, Si, K, Ca, Fe が観察された. Fig. 6 (b) に関しては, 領域 5 では, Na, Mg, Al, Si, Ca, Fe, 領域 6 では, Al, Si, K, Ca, Fe が観察された. Fig. 6 (c) の領域 7 及び 8 では, Mg, Al, Si, Ca, Fe の特性 X 線のピークが観察されが, Si に対する Mg あるいは Fe の ピークの強度比が領域 7 と 8 では異なっていた.

以上より,火山灰 C, D, Eについても希釈 EMI-CH₃COO を滴下することで 10 μm² 微小領域における元素分析を行 うことができた.

4 結 論

エタノールで1wt% に希釈した EMI-CH₃COO を滴下し た火山灰試料の微小領域における元素分析を行った. 粒子 径が異なる火山灰を SEM 観察したところ, 粒子径が20 µm 以上の粒子については, 5 µm の空間分解能で鮮明な二次 電子像を得るためには帯電防止処理が必要であるが, 粒子

Fig. 6 SEM-EDX spectra of (a) sample C, (b) sample D, and (c) sample E, treated by the diluted ionic liquid

Spectra (3) - (8) correspond to Fig. 5.

径が10 µm 以下の粒子については帯電防止処理を行わなく ても鮮明な二次電子像を得ることができた. 粒子径が 20 µm 以上の火山灰試料は希釈 EMI-CH₃COO を滴下する ことで, 5 µm の空間分解能で鮮明な SEM 像を得ることが でき, EDX により点分析したところ, 10 µm² 領域ならば 粒子の組成の違いを判別することができた. 以上より,炭 素や金属の導電性薄膜を絶縁性試料に成膜する従来の帯電 防止処理を行わなくても, エタノールで1 wt% に希釈した EMI-CH₃COO を数マイクロリットル滴下する帯電防止処 理を行えば絶縁性試料の微小領域の元素分析が可能である ことが実証できた.一般的に鉱物は化学組成の他に,光学 顕微鏡から観察される肉眼的特徴,屈折率及び偏光性など の光学的特徴から総合的に同定される.あるいはマイクロ X線回折が必要である.そのため,今回用いた方法だけで は鉱物の同定は行えないが,光学顕微鏡では観察できない 微小な鉱物粒子の鉱物種分析に有用である.

長期にわたってイオン液体を常用した場合, SEM 内部が 炭素などのイオン液体を構成する元素成分で汚染されない か,という点は,指摘されているが,本研究で用いた希釈 イオン液体を用いれば,その量は微量であり,2年間常用 しているが,現在のところ問題はない.

文 献

- S. Igarashi, T. Yotsuyanagi: Proceedings of the Symposium on Solvent Extraction, Sendai, p. 51 (1989).
- 2) 山口仁志: ぶんせき (Bunseki), 2007, 608.
- J. S. Wilkes, M. J. Zaworotko : J. Chem. Soc., Chem. Commun., 1992, 965.
- 4) P. Walden : Bull. Imper. Sci (St. Petersturg), 1914, 1800.
- 5) 酒井俊人, 臼井政利, 山田好美: 住友化学, **2003**, 26.
- 6) S. Kuwabata, A. Kongkanand, D. Oyamatsu, T.

Torimoto: Chem. Lett., 35, 600 (2006).

- 7) 桑畑 進, 鳥本 司:表面科学, 28, 322 (2007).
- S. Arimoto, M. Sugimura, H. Kageyama, T. Torimoto, S. Kuwabata : *Electochim. Acta.*, 53, 6228 (2008).
- 9) 桑畑 進, 鳥本 司:表面技術, 59, 801 (2008).
- 10) M. Inoue, M. Suganami, Y. Hahimoto, T. Iyasu, H. Saito, K. Moriguchi, T. Tanaka : J. Surf. Anal., 18, 105 (2011).
- Y. Ishigaki, Y. Nakamura, T. Takehara, N. Nemoto, T. Kurihara, H. Koga, H. Nakagawa, T. Takegami, N. Tomosugi, S. Miyazawa, S. Kuwabata : *Microsc. Res. Tech.*, 74, 415 (2011).
- 12) Y. Ishigaki, Y. Nakamura, T. Takehara, T. Shimasaki, T. Tatsuno, F. Takano, Y. Ueda, Y. Motoo, T. Takegami, H. Nakagawa, S. Kuwabata, N. Nemoto, N. Tomosugi, S. Miyazawa : *Microsc. Res. Tech.*, 74, 1024 (2011).
- 13) 奥山誠義,佐藤昌憲,赤田昌倫:繊維学会誌, 67, 47 (2011).
- 14) 澤 龍, 今宿 晋, 一田昌宏, 河合 潤: 表面科学,
 32, 15 (2011).
- 15) N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers : *Green Chem.*, **11**, 646 (2009).
- 16) 石井秀司,河合 潤:X線分析の進歩,37,281 (2006).
- 17) S. Imashuku, T. Kawakami, L. Ze, J. Kawai: *Microsco. Microanal.*, 18, 365 (2012).
- 18) 久城育夫,都城秋穂: "偏光顕微鏡と造岩鉱物",
 p. 111 (1971), (共立出版株式会社).

SEM-EDX Analysis of Insulator Specimens by Diluted Ionic Liquid — Application to Volcanic Particles —

Long ZE¹, Susumu IMASHUKU^{®1}, Jun KAWAI¹, Daisuke MIKI² and Susumu TOHNO³

[®] E-mail : imashuku.susumu.2m@kyoto-u.ac.jp

¹ Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto-shi, Kyoto 606-8501

² Sakurajima Volcano Research Center, Disaster Prevention Research Institute, Kyoto University, Sakurajimayokoyama-cho, Kagoshima-shi, Kagoshima 891-1419

³ Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto-shi, Kyoto 606-8501

(Received May 29, 2012; Accepted July 20, 2012)

Ethanol diluted (1 wt%) ionic liquid 1-ethyl-3-methylimidazolium acetate is used in order to avoid the charge-up of insulator specimen for scanning electron microscope (SEM) analysis. SEM-EDX analysis is additionally performed for the specimen treated by the ethanol diluted ionic liquid. As an example of the insulator specimen, we analyze volcanic ash particles, and succeed to discriminate the elemental composition difference of a specimen surface within 10 μ m² micro area. Though a clear secondary electron image of the volcanic ash particle of which diameter is less than 10 μ m can be obtained without electric conductive treatment, particles of diameter larger than 20 μ m are needed to be treated by the diluted ionic liquid to avoid the charge-up effects.

Keywords: SEM-EDX; micro area; insulator; volcanic particle; diluted ionic liquid.