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THEORY OF C-CATEGORIES TOWARD EQUIVARIAXT ALGEBRAIC K-THEORY 

By Masahilw NIWA 

The notion of a C-category -a category with an action of a group 

C- was needed to make algebraic K-theory equivariant one. Though 

various notions have been used so far , the relations with them have 

not been explained explicitly yet . Beginning by introducing the 

notion of a C- ca tegory from point of \·ie"' of Galois desc<..:n t in 1 i near 

categories , I deal comprehensively with various notions of 

C-categories and establish the comparison in the complete form. It is 

important for us to study simultaneously the limit categories 

together with C-categories and C-functors. The objects to appear in 

text are as follows . 

C-category C-functor limit category 

a category C with a c- a morphism of Galois descended category 

descent datum descent data l:luC 

a pseudo functor a pseudo nat . transf . 

ex . c-- Cat c~ Cat -
a fibered category a cartesian functor representation categ. 

over C; 'Y D -+ c over c; D-- D/ Carte( H, D) or 
'\. I 

c Car tc ( r:;JJJ,, D) 

a lax functor a lax nat. transf. lax limit over c 

a (strict) functor a nat. transf . b. Hex ( . ) or 

ex c --t Cat c~ Cat H ex ( . ) -
an Oc0

P-category a nat . transf. 8(C/H) 

8 0 op 
c -- Cat Oc0P~ Cat 
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§1. Int roduct i on : The no t i on of C-catcgor i cs 

In order to introduce the notion of C-catcgorics L. e . categories 

on which the group C acts , I think, we are asked to fit it to the 

following problems . One of them is the problem of Galois desc 0nt. Let 

BIA be a Galois extension of rings (or a Galois c o,·erjng B- A of 

schemes) of Galois group c. I shall consider the notion of a linear 

category wit l1 a Galois descent datum of Galois group C originated in 

A . Grothendieck (sec ~ . S . Ri,·ano[18]). Let L l>c an A-l.i.ttC<ll' c at e gory 

and LB denotes the B-linear category deduced from L by extension of 

scalars from A to B. In the Galois case Lhe usual datum of descent on 

LB relative to BIA reduces to the following datum by using the 

isomorphism B ®AB rv 1J B 

For each sEC there is an equivalence of categories 

exs : Ls - Ls 
and for each pair s, tee there is a natural isomorphism 

a t : ex t ~ ex oex t s, s s 

satisfying coh eren ce conditions 

(exs*at, u )o as, Lu = (as , t*exu)oast,·u 

for any s, t ,ueC. Further the usual descended category can be 

rewritten in the following form by the Galois descent datum (ex ,a t) s s , 
on L 8 . The descended category 6CLB has as objects the pairs 

(X, (..l.s) seC) ''here X is an object of L 8 and ..l.s : X-- ex5 X is an 

isomorphism of LB for each seC such that 
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(e = the identity clement of C) 

exs(A.t) • A.s = (as , t.>x • A.st 

The morphisms of 6cLB are defined to be morphisms of L8 ~ommuting all 

A. s · It is shown that the descended category 6CLB is an A-linear 

category which is equivalent to the original L. ([18]) 

Watching these data \,le find the fact that the descent situaUon 

may be formulated in the form independent of the ring e"Xlension BIA 

and of the linearity of the categories . So leaving theory of linear 

categories we interpret abstractly tl1e descent data as the data 

toncerning any categories and any groups , and then we reach the 

notion of a category with a C-descent datum (or a C-category) . This 

i s the starting point o f our theory of C-categories . However wl1 e n we 

give the definition we had better normalize the data so that the 

equivalences and the natural isomorphisms corresponding to the 

identity e l ement e of Care the identities . 

Definition 1.1. Let C be a fixed group whose identity element is 

denoted bye and l et C be a category . A datum (exs' as,t) is called a 

C-descent datum on C if for eac h element s of C ex is an equivalence s 
of categories 

exs : c ---+ c 
and for each pair s, t of elements of C a ~ is a natural isomorphism s , 1:-

a t : ex t ---+ ex o ext s , s s 

sati sfying 

exe = Ide (= the identity functor of C) 

(s E C) 

(s, t, u e C) 



'"here ULCt. denotes the identity natur-al transfornmtion of the functor 
s 

Ct. • s 
Then 1-.'e call (C ; cx. ,a L) a category "'ith a G-descent datum or a s s , 

G- category . 

The notion of G-functors is obtained by applying the notion of 

morph isms of data o f descent to the Galois desrent case . Together 

with the notion of G-natural transformatiotts between them us 2-arro"s 

1.:e ha\·e a 2-catego1·y denoted by Des(G) . 

Def ini t i on 1.2. A G- f uncto r of G-catego r ics 

(c / . I I ) 
--+ ,cx.s , as , t 

consists of a functo r F C --+ c 1 of the underlying categories and a 

natural isomorph ism for e very sEC 

TI S 

s u ch t hat 

F oCi. --+ et.
1 

oF s s 

ne = £dF 

( a~ ' t *F) o n s t = ( cx. ~ * n t) o ( n s * cx. t) o ( F* a s ' t) ( s , tee) 

wh ere £dF d enot s t h e ident ity morphi sm o f t h e fu nctor F . 

A G-natural transformation of G-functors 

t : ( F,n s) --+ (F 1 ,n~ ) 

is de f i n ed to be a natural tran sformation t F --+ F 1 of functors 

satisfying the condi t ions 

( cx.1 * t) o n = n 1 o(t *cx.) (se C ) s s s s 

We can also define the descended category ~GC only from the datum 

in De f inition 1.1 . 

Def ini t i on 1 .3. For a category with a G- descen t datum (a G- category) 

(C ; cx.s , as , t) the descended category ~GC is defined as follows ; An 
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object of ~GC is a pair (X, ().s}sEG) consisting of an objec t X 

of C and for every seG an isomorphism of C 

A : X - ex. X s s 
such that 

Ae = £dx 

cx.s().t)o).s = (as, t)Xo).st 

A morphism of ~GC 
I I f : (X, (As) ) --+ (X , (As) ) 

(s,teG) 

is a morphism f : X --+ x 1 of C such that for any seG 

).~of = cx.s(f)o).s . 

Thus we have got the abstract formulation for Galois descent. 

Another problem required for theory of G-categories is that of 

representation theory. For a ring A what relations are there between 

a category C of A-modules and a category C of module over the group 

ring A[G] of a group G over A ? Under certain a nice circumstance C 

turns to be the functor category Fun(G,C). On the other side 

when the G-descent datum (cx.s,as,t) of a G-category Cis trivial say 

cx.s = Ide 

for any s ·EG, the descended category ~GC is equivalent to the functor 

category Fun(G,C) . Thus this second problem is reduced as a special 

case to the first problem about Galois descent . At the same time 

theory of G-categories gets some advantage from the techniques in 

theory of representations . For instance induction theory (= abstract 

formalism of representation theory) will be generalized to theory of 

G-categories for finite Gin § 6 . 

The other problem is about an usual G-category C £. e. a group 
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I 
I 

C actig on C as a strict functor. ~c call it a split C-catcgory in 

order to distinguish it from the notion of our C-catcgory in ~hi~h C 

acts on C as a pseudo functor. As a spliL C-catcgory provides a 

C-spacc under the classfying space functor this notion of 

C-catcgories has been treated so far by many authors in equi,ariant 

algebraic K-theory. [5], [11], [19] etc.·· · · 

I shall give in § 1 . the procedure of constructing a split 

C-category from our (pseudo) C-category . Tllis is carried ouL by using 

the Giraud construction [7] through the notion of fibered categories 

over c . (The resulting one is called the split version.) This 

construction makes C-categories the ones to which theory of C-spaces 

in algebraic topology can be used effectively . I must note that e,·en 

though we are handling split C-categories from the· first it is 

important to apply the above construction to them by thinking of them 

as our C-categories . Because the subject of theory of C-categories is 

not the relation of a C-category C with the H-fixed category cH for a 

subgroup H of C, but it is that of C with the descended category 

6 HC . I show also in § 4 that for C spthe split version of C the 

both categories 6HCsp and (Csp)H are equivalent to the original 

descended category 6 HC . The useful ness of such procedure is found 

for instance in the work of Shimakawa [19] about the construction of 

infinite C-deloopings of symmetric monoidal (split) C-categories. 

I shall now give the organization of this paper . First we shah· 

in § 2 that the notions of our C-categories and C-functors are 

equivalent to those of fibered categories over C and cartesian 

functors over c . The idea of using fibered categories over C in 
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cqui,·nri~1nl u)geln·aic 1\.-theor~ is dlll.~ tn Fer"ih1i,'h-h';lll [G][2G]. The~ 

u~ed the Le1·m of stable C-gra<.led caLegoric.:s . But I think that to 

formulate C-categories in theory o f fibcred c:1tegorics is appropr i ate 

for t h e na Lure~ of Lhe theory . :'1orel)\·e r "hen a f i bcrc'u c:a tcgory D ovc r· 

G is ussociate<.l 'ith a C-category (C ;cx ,a t) it is sh,n,·n lhat the.: 
3 s , 

representati o n ca t e gor y Rep(G,D) uf FrCihlich-'''all ( LbL<l · ) is 

If the situation is exchanged lo a s ubgroup H of C, the above 

representation categories (relative to H) become delicate to deal 

with . In particular this is the case when applied to induc tion theory . 

So I introduce in § 3 a new r e pres e ntation category which is natural . 

It is shown that this new representation category is equivalent to the 

old one . This result turns out to be important later . (§ 4, § 8) 

a-categories could be interpreted as pseudo functors from the 

category G to the 2 - category Ca t of small categories . We get the 

notions of lax C-categories and split C-categories by replacing the 

pseudo functors by weaker lax functor and by stronger (strict) 

functors . Afte r noting that the descended category of a C-category is 

equ ival e nt to a lax limit over C, I investigate the relation of 

C-categories with split C-categories . The content is such as 

mentioned in the above third problem . (§ 4) 

As a next topic we shall study C-categories with further 

structures . The equivariant version of a category with some 

structures (e.g. an exact C-category) goes through in the simple and 

natural form in our theory of C- categories . For a pseudo functor we 

may only exchange the target Cat with relevant 2 - category . The 
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inheritance of structure in question to the limit categories (e.g. 

the descended category) can be proven in n natural way . By way of 

illustration exact C-categories arc explained in § 5. Fundamental 

}lrocess is similar for symmetric monoidal C-categories and simplicial 

C-categories which are not dealt with in this paper . 

It is shown in § 6 that for finite G a fibered category over C 

induces a Mackey functor in representation theory . By means of the 

notion of the new representation category in § 3 our formulation sucl1 

as Mackey property and projection formula becomes much simpler . This 

result generalizes the work of Dress-Kuku [3] . 

I n § 7 we s hal l discuss about the connection between C-categories 

and Oc-categories . The latter is the other notion like a G-category . 

An Oc- category is the one given a category for each subgroup H of C 

in a compatible manner and it is a main question to rediscover them 

up to homotopy as the H-fixed category of a certain C-category . This 

shall be done parallel to the work of Elmendorf [4] about the 

relation between C-spaces and Oc- spaces . The classifying space of our 

construction U from Oc-categories to split C-categories reduces to 

the Elmendorf construction C. 

In the last section we shall study adjoint relations between 

functors connecting various notions of C-categories . This resarch 

seems to become usefull for applications of C-categorics . 

Fi nally note that I establish definite relations between all 

C- categories which appeared or unappeared in papers subject to 

equivariant algebraic K-theory . Our theory of C-categories provides a 

comprehensive and natural treatment of categories with group actions . 

-9 -



IL is expected that this theory is used noL only for Lhe equivariant 

theory of algebraic K- theory, but also for many fields pertaining to 

group actions on categories. But it is the poinL at issue to face a 

difficull problem called homotopy 'Li.mi-t probLem by R.Thornason [24] 

when ~e are going lo use rich tools in algebraic topology. This is 

one of Lhe most importanl queslions following this paper itl theory of 

C-categories. 

() Fix some notations. Let C be a group. h'e can regard C as a 

category, denoted the same letter c . The category C has only one 

object · and the morphisms of C are elements of the group c . For two 

elements s , t of C the composition of s with t is denoted by ts . The 

opposite category C0 p in which the composition of s with t is st is 

- 1 equivalent to C by the correspondence s ~ s . 

§ 2. Catego r i es wi th C- d esce nt data and f i bered ca t egor i es orer G 

Regarding a group G as a category G with only one object · and 

with elements of Gas morphisms, we can think of a C-category (= a 

category with a C-descent datum) in § 1 as a pseudo functor from G to 

the 2-category Cat of small categories . Then by the classical 

relation between pseudo functors and fibered categories follot~ing 

Grothendieck (Cf . SGA[21)) a G-category provides a fibered category 

over c . The notion of fibered categories is fruitfull and oecomes a 

key stone of the development of our theory . Furlher ~e show that 

C-functors are correspondent to cartesian functors of fibered 
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categories . Since our in t crest i s in d c s c en L theory , i L i s m or l' 

important to establish the correspondence bctheen those limit 

categories; the descended category of a C-category and the 

representation category of a fibcred categor) over c. Tl1e notion of 

representation categories is a generalization of that of categories of 

representation modules and is due to F . Fr6hlich-C . T.C.Wall [6]. 

Since a group is a groupoid (= a category whose morphisms are all 

isomo1·phlsms) as a category, the isomorphism of calt:'gorics bet"·ccn C 

and c0 P given by s -+ s- 1 gives us the transition of the discusion 

belo~ to pseudo opfunctor and cofibered categories and all the 

arguments become equivalent . 

Def ini tion 2.1 (SGA [21]). For a category F over £, n : F ~ £ 

a morphism m X ~ Y of F is said to be a cartesian morphism if for 

any object Z over n( X) the assigment q~m oq provides a bijection 

HomF , £d(Z ,X ) - HomF , n(m) (Z ,Y ) 

where Ld denotes t h e identity morphism of x(m) and 

HomF, g (X,Y) = { f e HomF( X, Y) ; x(/) = g } 

Note that every isomorphism is obviously a cartesian morphism . 

A category F is prefibered over £ if for any morphism 

g ~ ~ n of £ and any object Y of F over n there are an object X of 

F over ~ and a cartesian morphism f X ~ Y of F O\' e r g . 

F or x F ~ £ is said to be a fibered category over E if it is 

prefibered over E and the compositions of cartesian morphisms are 

cartesian . 

Def ini t i o n 2 . 2 . Given tHo fi be red categories o\·er E , x : F ~ E and 

n 1 : F 1~ E, a functor u : F ~ rl is said to be a cartesian functor 
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over E if it is a functor O\' Cr E £. e . Jt = Jt 
1
o u and l t se nd s cartesian 

mo rphisms of F to c artesian morphisms of F 1
• No t a that if F i s a 

groupoid the latter condition is unncccesary. 

CartE(F,F 1 ) denotes the category of carte sian funct o rs fr om F to 

F 1 over E and natural transformations t 

Jt I \. t X ) = £dJt ( X ) 

for any object X in F. 

u-. ul satisfying 

Given a fibered category Jt : F -. E and an obj ect l; o f E Lhc 

-1 fiber Jt (~) of Jt at ~ is defined to be a category whose o bj ec ts are 

objects X of F such that n(X} = ~ and whose morphisms arc morphisms f 

of F such that n(f) = £d~ · Consider the correspondence which 

specifies the fiber n- 1 (~) for an object ~of E and the functor 

-1 -1 
Jt (n) ~ Jt (l;) determined by the prefiberedness of F for a morphism 

l; ~ n of £ . Then it follows from the fibercdness of F that there is 

a natural isomorphism satisfying certain coherence conditions belt~een 

that functor correspondent to the composition of morphisms of E and 

the composition of those functors . Thus we obtain a pseudo functor 

from £0 P to Cat . (Such datum is called a cleavage in SGA[21] .) 

Conversely the Grothendieck construc tion makes a fibcred cate gory 

over E from a pseudo functor £ 0 p ~ Cat. 

We wi 11 observe precisely on these details in the case of E = C . 

De finiti o n 2.3 ( F r o h 1 i c h - \v a 11 [ 6 ] ) • Take a fibercd category 

y : D ~ Cover c . A morphism I of D such that y(f) = s (seC) is 

called a morphism of grades . Ker D denotes the unique fiber y-l( ·) 

of y. This category is equivalent to CartG(l,D) where 1 denotes the 

ponctual category (= the category with only one objec t and one 
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morphism) . To be more precise the obje~ts of Ker Dare equal to lhP 

objects of D and lhe morphisms of Ker D are morphisms of D of grade e 

where e is the identity element of c . Let (y
8

,c
8

, t) be the normalized 

cleavage defined by the fibered structure of y. (C/.[21]) Explicitly 

for every seC there is an equivalence of categories 

y : Ker D ~ Ker D s 

such that ye = IdKer D and for every pair s, t e G there is a natural 

isomorphism of grade e 

0 s,t 

such that 

= Ld -0 s , e y
8 

- 0 e , s (s e G) 

cs , tu o(ct,u*Ys) = cst,u o( yu* c s , t) (s , t , u e G) 

A set of morphisms of transport ( ~s ,X is given as follo~s . For an 

object~of D a nd s e G one has a cartesian morphism of grade s 

~ s ,X 

cor respo nd i n g to a mo r phism of grade e £d y X ~ y x. And they s s 
sati s f y t he fol l owing properties . 

a ) For a n y object X of D 

~e ,X = i dx 

b) For any morphism v : X ~ x 1 of Ker D and s e G 

v o ~s ,X = ~s ,X 10 y s(v) 

c)For any object X of D and s , t e G 

~s, X 0 ~t,y8X = ~st ,Xo(cs , t) X 

Note in general that for a category F over £ a fibered structure 

determines a normal ized cleavage and a sel of morphisms of transport, 

and conversely that one of a normalized cleavage and a set of 
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morphisms of transport determines the other and a fibered category 

structure . The correspondence between pseudo functors and fibered 

categories is well-known, but i n order to describe the equivalence 

between limit categories cartesian morphisms ~ X ' s turn to be s, 

useful!. 

De f i n i ti o n 2 . 4. ( Fro h 1 i c h- \v a 11 [ G ] ) . The 1 i m i t category of a f i be red 

category y : D --+ C is given by the category of cartesian sections 

Rep D (= Rep(C,D) ) = Cartc(C,D) 

This is called the representation category of a fibered category D 

over c. The terminology comes from the following fact . ~hen y (or D) 

is trivial £ . e . y = pr1 : D = G X C--+ G, 

Rep D ~ Fun(C , C) 

where Fun(C,C) is the functor category from C to C whose objects are 

C- representations in c . 

Let us write down explicitly the category Rep D. An object of 

Rep D is a pair (X, ~) where X is an object of D and ~ is a group 

homomorphism G--+ AutDX s uch that ~(s) is an aut omorphi sm o f grade s 

for any sec. A morphism (X, ~) --+ ( X 1 , ~ ' ) of Rep Dis given by a 

morphism f : X --+ x' of D of grade e such that 

~ 1 (s ) o f = fo ~(s) (s e C) 

Under those definit ions we have 

Theor e m 2.5. (1) Let C be a category with a C-descent datum 

(as,as,t) (=a C-category in §1 ) . Th en there is a fibered category D 

over C satisfying equivalences of categories 

Ker D ~ C , 

(2) If y D --+ C is a fibered category over G then Ker D has a 
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C-descen t da turn satisfying all equi ,·alcttce 

llcKer D ~ Rep D 

P1·oo f. ( 1) \oJe will construct a category D w i Lh the des i.red properties . 

Take ob D = ob c . For two objects X, Y 

ll HomD(X, Y) = seC HomD,s(X, Y) 

HomD , s( X, Y) = Homc(X , C( _ 1Y) (the morphisms of grade s) 
s 

The composition of morphisms 

HomD,s(X, Y) X HomD , t(y, 

is defined as follows . For f 

Z) _, HomD, ts(X , 

X --+ C( _
1

Y and 
s 

Z)' 

g : 

(J, g) I-+ g <> J 

y._.. C( z -1 t 
- 1 

(a -1 -1) 
s , t C( z g of 

= 

Thus one has a category D over c . 

-1 -1 s t 

C( lz 
( ts)-

Next td e Homc(C( _ 1x, C( _ 1x) defi nes a mo r phism of grade s in D 
s s 

~s,X C( -1 X ~ X 
s 

and it is easily shown that a set { ~ X } satisfies the conditions s , 
similar to (a) ~ (c) which are satisfied by { ~s,X } in Definition 

2. 3. 

So put 

- 1 
~'s = C( -1 ' cs t = (a -1 -1) ' ~s ,X = ~s ,X 

S I t 1 S 

t h e n it I S ,·erified that ( y , c t) is a normalized clea, ·age of D and s s , 

{ ~ s ,X } is a set of morphisms of transport . It is clear that 

C = Ker D. 

To construct an equivalence bel~een llcC and Rep D take an object 

{X, (A
5

)) of 6cC · Forse G put 
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r 

rn ( S ) = ~ X o .A - 1 
~ ·s, s 

then cp(s) is an autmorphism of X of grade s and cp C -+ AutDX is a 

grou p homomorphism as follows; 

rn (st) = ~ .A 1 ~ "'st, X o (st)-

= l;s,X o l;t y X o(a_1 -1>x o .A -1 -1 
' s t 's t s 

= ~ 0 f;t y xo(X -1(.A -1 ) 0 .A -1 ""s,X , s t. s t 

= l;s,X o .As -1 0 l;t,x o "'c 1 

= cp(s) o cp( t) 

Thus we have an object (X , cp) of Rep D. As regards morphisms if 

(X , (.As)) , (X 1 , (.A~)) are objects of 6 cC and v : X -+ x ' is a morphism 

of grade e such that 

.A
1 

o v = ex ( v) o .A s s s ( s E C) ' 

putting 

cp(s) ( resp . cp l ( s)) = ~ X o "' - 1 ( res p . s, s 
I 

~ X'o .A -1) ·s, s 
k'e have 

cp'(s) £;. x'O 0 v = s , 
I 

"'s 
-1 0 v 

= ~ x;o y (v) o ).. -1 s , s s 

= V o ~ X o ·s , "'s -1 

= v oc:p(s) 

Thus we obtain a functor 6 CC -+ Rep D. It is possible to follow 

up the converse of the above construction and so we have an 

equ i valence of categories 

Rep D ~ 6 CC 

( 2) Given a fibered category y D-+ C Hith a normalized cleavage 

(ys ' cs, t) put 
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( c - 1 
[ 

- I ) 
- 1 

, ..; 

(;;-·[ \J I 
I 
... 'J .... 

; it ,... .. .. 1 ( --. ... ' !J • • 1 . ' :t•. 

111 I~\, ... r· ,') . 1 : ~ ~' · .,;, .. . 

~ j II I ' I . , . 

,. •Jl c .. t • 

Tbcor~m 2.6 . ( 1 ) Let b : B --+ G a c atego ry O \ e r G. .\ c art e s ian 

n fUll CLo r 

"F : (y : D--+ C) --+ (y 1 : Dl--+ G) 

of fibered categories over G induce s naturally a fun c tor 

Ca rtc(B, F) : Cartc(B , D) --+ Caric( B, D1 ) 

In par ticula r we have natural functors 

Ker F 

Rep t 

Ker D --+ Ke r D1 

Re p D --+ Re p D1 

a nd 

\ . 
. ( . 

(2 ) Wh en providig a C-descent datum on Ker D (resp . Ker D1
) by 

Theorem 2 . 5 (2), Ker }:' o f (1) turns Lo be a C-functo r o f C-c a tegor i es . 

( 3) Give n a G-functor 

F : (C; ~s ' a
8

, t) --+ (C1
; ~~ , a;, t) 

of C-categories , F exte nds to a cartes ian functor 

"F : (y : D--+ C) --+ ( y 1 : D1 --+ C) 

Hhere y : D --+ C ( resp . y 1 D 1 --+ C) is a fibe r e d c ate go r y O\·e r G 

as s ociate d to (C; ~s .as , t ) (res p . (C~ ~~~a: , t)) by Theorem 2 . 5 . 

Proof. ( 1 ) The functor Cartc(B , t) is given by 

( B -E.... D) 1---+ (B "F oP. D 1 ) . 

Take B = 1 ( r esp . C) , a nd the result for Ker ( resp . Rep) follows . 

( 2 ) We can wr ite d own t h e conditions o f b eing a cartes i a n f uncto r by 
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using the cleavages of fibered categories in theory of fibered 

categories (Cf. Gray (9]p33) . This implies that the restriction of a 

cartesian functor to the fibers Ker satisfies the conditions of the 

definition of a C-functor . 

{3) Let us construct a cartesian functor P : D ~ D1 from a C-functor 

F : C ~ c'. For an object X of D put }X = FX . If m X ~ Y is a 

morphism of grade s in D there is a morphism n : X ~ ~ -lY of c. s 
~ Let Pm : }X~ FY be a morphism of grades of D1 corrcspondent to the 

following composition in c' 

FX Fn Fo ~ -1 Y s 
It follows easily from the conditions of the definition of a 

C-functor and the fact used in {2) that the functor t defined above 

becomes a cartesian functor . 

F£b(G) denotes the 2-category of fibered categories and cartesian 

functors together with 2 - arrows which are defined to correspond to 

2-arrows of Des(C) in § 1 under the correspondence of Theorems 2 . 5 , 

2 . 6 . Then F£b(G) is 2-equivalent to Des{C) and we may identify the 

two 2-categories . 
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§ 3. Chan ge o f groups 

In this section I shall give the definitions and properties 

of the representation categories for a group II exchanged from c . 

AL first we state the definition of Rep(H, D) given by 

Fr6hlich-Wall [6]. But this is inconvenient from the lack of 

functoriality . So ~e adopt a new definition of the 

representation categories 

Rep(/1, D) = Cartc<G!H, D) 

For 11 = G, Rep(G , D) = Rep(G, D) and for geueral H there is an 

equivalence 

Rep ( H, D) ~ Rep ( /1, D) 

For H = {e} this equivalence has the form 

Ker D ~ Car ~( Gle, D) 

and plays an important role in the next section . 

Lemma and De fin i tion 3 . 1. (1) For a fibered category 

y : D--+ Gover G with a normalized cleavage (ys' cs,t) and a 

group homomorphi sm h : H --+ G the category over H 

pr1 : II ><c D --+ H 

is a fibered category over H and 

Rep(H 'Xc D) ~ Cartc(H , D) 

holds . This category is denoted by Rep( H, D) . 

(2) For a G-category (C; a ,a t) and homomorphism h : H--+ G s s, 
(C; ah(s) , ah(s) , h(t)) is a H-category . This descended category 

is denoted by 6 11C . 

Proof. (1) We shall discribe in term of cleavages . We may take 

(yh(s) , ch(s), h( t)} as a normalized cleavage for H X eD--+ H. To 
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show the latter category equivalence consider the diagram 

H 'Xc D _
7 

D 

1
19 __ .--;· l'Y 
I • • 
I ~ • 

H h C 

The correspondence between functors 

g : H _____,.. D and g : H _____,.. H X cD 

such that g( ·) = ( ·, g( · )) , g(s) = (s, g(s)) gin?s the desired 

equi \·alcnce . 

2) Trivial. q . e.d . 

Theorems 2 . 5 , 2 . 6 in the previous section can be 

immediately generalized to the present case .Lct H be u subgroup of c . 

Proposition 3.2. (1) ~hen a G- category (C; as ' as, t> and a 

fib e red category D --+ C over C are under the correspondence in 

Theorem 2 . 5 there is an equivalence 

ll11C ~ Rep( H, D) 

(2) A cartesian functor t D _____,.. D1 over C of fibered categories 

over C (resp . a C-functor F c _____,.. C1 ) induces functors in a natural 

way 

Rep(H, t) I : Rep(H , D) _____,.. Rep(H,D ) 

(resp . llHF : llHC _____,.. llHC 1
) 

We shall here provide some notations of categories which occur 

from a group c . These categories play a central role from now on . 

De f i n i t i on 3 . 3. For a (left) C-set S the category S has elements of 

S as objects and the morphisms of S from x to x ' are elements a of C 

such that ax = x '; £ . e . ob § = S , mor g =e x $ . There is a functor 

0 : s ------ c 
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on objecLs o ( x) = · for x E S = ob S 

on morphisms o(x (a,x) ax) = a for x E S, a E c. 

Thus we have a category over c . (~ot fibered!) We often use the 

categories GIH for subgroups H of c. In special cases 

GIG - C 

Cle = · IC (=the comma caLegory of C under ·) 

The latter is also equal to the one called the translation category 

n of c. 

'''e use these notions to define a new representation categor~ . 

Le mma and De fini t i on 3.1. For a f i be red category y : D - C o\·er C 

and a (left) C-set S Lhere is an equivalence 

Carte(~, D) ~ Cart Sec(~ XeD) 

where Cart Sec($ XeD) is the category of cartesian sections of a 

fibered category pr1 : g XeD~ ~ · Define for S = C!H 

Rep(H, D) = Cartc(C/H , D). 

Pr oo f. Similar to Lemma 3 . 1. 

Since GIG = C we have Rep(C, D) = Rep(C, D). In general we will 

show Rep(H, D) ~ Rep(H, D) . 

Theo r em 3.5. For a fibered category y : D ~Gover G and a 

subgroup H of C there is an equivalence of categories 

Carte< G! H, D) 
II 

Rep(H , D) 

Carte( H, D) 
II 

Rep(H, D) 

Pro o f. We shall first define a canonical funcLor 

~ : Cartc(C/H, D) ~ Cartc(H, D) 

Assign on objects 
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\

G I H _lf... D ) \" -- 'f _( !c)- ~ D ) 
-~ / ~ ~ / 

G G 

'- ( k(r~~ h, ell)) 

k (ell) 

cp(k) 

''here ( h, eH) : eH -+ heH = ell for h E l/. 

( G/ H ~A D) l p I (H 
\ = ---,z-r 

p( k) I ) 

.t.cp(A) D 
cp(k'f 

(.p ( A) = A eH : k ( ell) ~ k I ( ell) 

On the other side a functor 

~ : Cartc(H, D) ~ Cartc(G//1, D) 

Also on morphisms 

is not canonical . This is determined for each choice of 

representatives 

1/1 ( u) 

'"here (g, g./l) : g . H ~ 99.H = 9 .H , 
. L L L J 

morphism~(u)(g,9iH): y
9 

__ 1 u(·) ~ 
L 

following commutative square 

t;g_-l,u(·) 
--L u( . ) 

-1 
hence 9 99 E II and the 

j i 

y
9 

.-lu( ·) is determined by the 
J 

1 
-1 

u( 9 J 99£) 

v ( ) ~J.-l,u( ·) 
Y9 .-lu· 

J 

u ( . ) 

accomplished by the fact that t;
9 

.-l ,u( ·) is a cartesian morphism. 
J 

Assign on morphisms 
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lH 
u D) I ~( ~(c!H ~,( u) l D) J.~ }1/r { ~ r 

I 
U" t/r(U1 f 

Hhere for each gill € ob CIH 

l/l(p.)g.H = 1'g.-1(p.) y
9

._ 1 u(·) -- y
9

._ 1 u (·) 
I, I, t, L 

Then it l.. s clear that rn o ,,, = Id D). Also there is a natural .... "~' Carte( H, 

transformation 

" : Idcartc(C/11, D) - "' o cp 

For (C/H ~ D) e ob Cartc(C/H, D) a morphism 

Tlk : k ~ 1/rocp(k) 

of Cartc(C/H, D) is given as follows . For gi,H € ob Gill 

\ n k ) g . H : k ( g L II ) - y g . _ 1 k ( eH ) = ( 1/r o cp ( k ) ) ( g £ H ) 
t, t, 

is defined by the commutative triangle 

obtained by the cartesianness of ~g.- 1 , k(eH) ' 
t, 

Since k(gi- 1, giH) is an isomorphism nk is an isomorphism for any 

k . The naturality of n is shown from the following commutative 

diagram 

k( g .H) 
'L 

k(g.-1) 
t, k ( eH) ~£--1;..;.__-

1 AeH 

k 1 (eH) ~i.:_L_ 

Y
9

._ 1k(eH) 
t, l 1' g £- 1 ( A ell ) = 

y 
9 

. _ 1 k 1 
( eH ) 

L 

deduced from any morphism A : k - k l of Cartc(C/H , D) . 

Note that since (nk)eH = Ld the image of n by cp is the identity 
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and that n is the ide ntity on the image of 1/f. These> shoh' that c.p is 

l e ft adjoint to+ · Further as n is a natural isomorphism c.p is inve1se 

to 1/f . Therefore we hav e the desired e quivalence of categories . q.e . d . 

It is more important 1-1hen H = e . Though i L is a special case of 

the above theorem we shall her e renote it to take advantage in Lhe 

next sect i on . 

Coro ll ary 3.6 . Let (C; C(s' a
8

, i) be a C-category a nd y : D ~ C the 

as soc ia led f i be red category over C . Then LheJ·e exists an <.:qui ntJ ence 

of categories 

c 

Proof. We shall write explicitly the fun c tor c.p and the quasi-inverse 

functor 1/f in spite o f a special c ase of the theore m. The functor 

c.p : Ca r t C ( C I e , D) c 

is given by 

(c!e 
k D) (k(e)) 
.l. A k7(~) k' 

and the functor 

"' : c Cartc(G/e, D) 

is given by 

(~M) • ( Cl e 
I}_( X) 

' D) ~t~r) l 

t..•here 

+(X ) (resp . + (Y)) 
(

y -lY ) ( resp . a .J, ) 
y -1 -lY a g 

1/f(M)a = ya-1(M) 

Remark that t h e c hoi ce o f representatives does not occur , hence 1/f is 

also canonical . The rest of the proof is as in Th eorem 3 .5. q.e.d. 
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§ 4 . Sp li t C-cate gor i e s 

I mentioned in § 2 that a C-category was considered as a pseudo 

functor from C to Cat . 2-functors from a category to a 2-category are 

classified primarily to three classes --- lax , pseudo and strict 

f unctors by means of conditions relative to compositi o ns (e . g . a t s, 

i n a C- category) . It i s a main object in this section to give Lhe 

relations between those notions of 2-functors on c . First itis s hown 

('"": that a lax colimit of a C-category is equi\'alent Lo the dcscend0d 

category . And we shall state the relation of C-categories hith spliL 

C-categories (= strict functors from C to Cat) . For this we may use 

the Giraud construction (Giraud [7]) which associates a strict 

functor on C with a fibered category over c. Remark tl,at applied to a 

pseudo functor the one called the Street first construction or 

Kleisl i rectification which sends lax functors to strict functors is 

equi val e n t to the Giraud construction. A split C-category has Lwo 

kinds o f limit categories ; the descended category considered as a 

pseudo G-category and t h e category which consis~s of C-fixcd objec~s 

a nd C- fi xed morphi sms . It is also shown Lhat those are cqui,al e 11L only 

for the C-category deduced fr om a fiber e d c at .-.,gc >r·y n,,.,. c. h· (· 1,1'gin 

by defining various 2- functors 

De f i n i t i on l . 1 • 

a : E C 

~ttj a. [ l1 i .-3.1H 

I •.l 

~ : .:t . 
- ---t (..J 

cd Lrl ) - - • a. 

.;-.: { t>: : -- a ! I- ) ~ r C ' ) r ' • • h 

1 i L : 1 ~ - ~-~ 1 ; · , ~. • r ( 

.. 
!.. (l L.~ \ (_l ) 
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• C• I 
0 v • - - '·. , :.. ' 0 .• ( ( t. ) 

;:, ' l 

r,)r· , <k ~l it.le r1Lity morphism Lela : a----. a o f E and eac h composi Li on 

a -L b ~ c of morphisms of E such that the follo~o.· ing diagrams of 

1-arro~s of C commute ; 

( .d) (tl JJ.uL,t (Xt,bO(X .-- --

/b:I:(X(~ 

J) v' ::; • :. 
(.( ( d ) • (.( ( 8 0 t ) 

Further a lax functor ex is cal led a pseudo functor if 1 = id a 
for any object a of E and p. t is an isomorphism for every composable s, 

pair (s,t) of morphisms of£, And also a pseudo functor ex is called a 

strict functor if p. t = id for any composable pair (s,t) of s , 
morphisms of £, Regarding the 2-category C as a category by 

forgetting the 2-arrows this turns to be an usual functor from £ to c . 
Now Cat denotes an 2-category in ~hich objects are small 

categories , 1-arrows are functors and 2-arrows are natural 

transformations . 

Definiti o n 4. 2. A G-category was a pseudo functor from G to Cat. A 

lax functor G ~ Cat is called a lax G- category and a strict 

functor G ~ Cat is cal led a split G-category. A strict functor 

satisfying cx(s) = Ld for all s e G is called a trivial G- ca tegory . 

Then 

a trivial G-category ===} a split G-category 

==} a G-category ~ a lax G-category 

-26 -



and further by the result of § 2 

a G-category ~ a fibered category over G 

Now we Hill define various G-functors . Though they corespond to 

l ax natural transformations , pseudo natural transformations and 

(usual) natural transformations we ~rile down explicitly 

Definiti on -1. 3. Let ex, ex' G----. Cat be tHo lax C-calcgori es . A 

lax C-functor t ex ---.ex ' is a funct or 

of categories together Hith a natural transformation 

F oex(s) ex 1 (s) o F 

to each s E C and a natural trasformation 

i, : F* 1 ----. ( t ~ * F) o n e 

such that the following diagrams of functors commute; 

F oex(s-t) 
F*~ t n *ex(t) 

__ ..::;s_...., ~ F o ex ( s) o ex ( t) --=s'-----

I 
~st*F 

ex 1 (s} o f oex( t) 1 ex
1
(s)*nt 

ex 1 (s) o ex 1 ( t) o F 

When i = Ld and n s is a natural isomorphism for every s e G, such 

functor was called a G-functor (Cf . § 1) . Further when ns = id 

for every s e G , it ' s called a split C-functor . This is a (usual) 

natural transformation bet~een (usual) functors from C to Cat . 

At first we shal l see that the limit categories fo r lax and 

pseudo G-categories coincide . 

Theorem 4.4. Let ex : C ~Cat be a pseudo functor L. e . putting 

ex( · ) = C , ex (s) = exs and ~s , t =as, t (C; exs ' as , t) is a C-category . 

Then we have an equivalence 
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~~here t:.cC is the des ce nded catc>gory of a C-category c. 

Proof. Consider the forgetful functor 

j e:.cc ~ c, (X, (As)) 1-- X 

Then for each t E C a natural isomorphism 

j ( t) j j, J( t) (X , 
-1 

O:to -- (As) ) = At 

is defined and the following a), b) hold . 

a) J (e) = Ld J 

n b) j( tu) 0 (at, u-l*J ) = j( t) 0 (o:t*J( u)) 

a) is followed by Ae = Ld · b) is deduced from the facts; 

(a } -1 

{ j ( t U} o ( at ' U- 1 * j ) } ( X ' ( As ) ) = ( o: to: UX t ' U X 

X) 

and the conditions t'ith respect to (As} in the definition of t:.cC 

(see 1.8) . 

o:S(At)o AS = (as, t} X0 Ast' 

Now given any category C 1 and a functor k 

with a natural isomorphism 

k ( t) 0: ok ~ k s 
to each t E C such that conditions 

a} k( e) = idk 

-1 
b} k ( tu) o (at, u * k) = k ( t) o ( o: t * k ( u) ) 

are satisfied . Then define a functor 

L : C 
1 
--t t:.CC 

-1 
on objects L(Y) = (k(Y), (k(s)y ) } , 

C 
1
- C Logether 

Y E ob C 

on morphisms L(Y ~ yl) = k(g), 9 E mor C 

then one has 
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k = j o l.. 

k(s) = J (s)*l.. 

These facts show that the descended category ~cC is a lax limit for a 

lax functo r a : G ~ Cat . q . e.d. 

We shall now describe the relation between C-categories (or 

equ ivalently fibered categories over Gin the view of § 2) and split 

C-categories . This is the main theme of this section. 

Let Spl..£t(C) (resp . Pseudo(G)) denotes the category of split 

C- categories (resp . C-categories) and split C-functors (resp. 

C-functors) . We will regard the 2-category FLb(G) in§ 2 (resp. 

Des(C) in § 1) as a category by forgetting the 2-arrows . We know 

Pseudo(C) = Des(C) and Spl..it(C) C Pse·udo(C) 

We verified in § 2 

Des ( C) ~ F £b ( C) 

Remark t hat the equ ival ence Des(C) ~~ F£b(C) constructed essentially 

i n 2 .5, 2. 6 is got f rom t h e usual Grothendieck construction 

- Fi b( C) by exchanging the compositions c0 P ~ C . 

Restr i ct i ng this functor to Spl..it(C) we have a functor 

$ : Spl..it(C) - Fib(C) 

An object of the essential image of $ is called a split fibered 

category over c . (all c t are identities . Cf . § 2) We shall s , 

construct a functor opposite to $ . 

Begin with a C-category (C; a , a t> or equivalently a pseudo s s , 
functor a : C ~Cat such that a(·) = C, a(s) =as . This corresponds 

to a fi bered category y : D ~ C with a normalized cleavage 

(ys' cs , t) by Theorem 2 . 5 . Recall that ys = a _ 1 s 
' c t = s , 



-1 
(a _ 1 _ 1 ) Define 

t IS 

Csp = Cartc(G/e, D) 

exsp G - Cat 

on objects cxsp(·) = csp 

cxsp(s) ~ D) .--.-... 
/ 

on morphisms (G/e (G/e __Ll_. D) 

( u ) ( n (us) ) ~"here n1 : .1- ( a, u) f.--+ .1- n ( a, us ) 
au n(aus) 

for a morphism (a, u) u -- au of Gle 

Take another G-category (C 1 ;ex~, a~,t) and the associated fibered 

category 'Y I : D I -- G . For a cartes ian functor r : D - D/ 0\ er G 

a functor Fsp : Csp -- c'sp is defined by tah:ing the composition 

with }: . Then 

Lemma 4.5. 
sp . 

ex l.S a strict functor , hence (Csp; exsp(s)) is 

G-category and Fsp is a split G-functor . 

Proof. For any s,t E G, any k : G!e-- D and u E ob Gle 

hence 

(ex s p ( s t) k) ( u) = k ( us t) = (ex s p ( t) k) (us) 

= {exsp(s) (exsp( t)k)} ( u) 

Further the actions on morphisms are similar, therefore 

cxsp(st) = exsp(s)o exsp(t) 

On the other hand for (k : G/e-- D) E ob Csp and any s E G 

ex1 s p ( s) o Fs p ( k) = ex 1 s p ( s ) ( to k) = to k ( s) = Fs p ( k ( s) ) 

= Fs p o ex s p ( s ) ( k ) 

which implies Fsp is a split G-functor. 

Therefore one has a functor 

S : Fib(G) - SpLit(G) 
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on objects 

on morphisms 

S(y 

S(t D- c'sp) 

Also ysp Dsp - G denotes the (split) f i be red category O\·er G 

associated to the split G-category (Csp; asp(s)) by Theorem 2.5 . 

De f in i t i o n 4 . G. C
sp sp , a , 

are called respectively the split version of C, a , y : D- G and 

F : C- C1 where F is the restriction of t to the fibers . 

For those objects the following lheorem is fundamental. This is 

essentially due to Giraud[?] . Here we shall use the resulls of§ 3 to 

give another proof over the base c. 

Theo rem 4. 7. (1} There is a functor 

cp : <l:lo S(D} = Dsp- D 

which is a fiber equivalence over G. 

(2) S is right adjoint to (J:l, 

Proof. (1) Consider the equivalence ~ in the proof of Corollary 3.6. 

Csp = Cartc(G/e , D) ~ C 

Put Ys = as-1 : C- C and ys = asp(s- 1 ) 

object (k : G/e- D) of Csp one has 

ys o ~(k) = Ysk(e) 

~ o ys(k) = k(s- 1 ) 

However there are morphisms of D 

~s , k(e) ysk(e) - k(e) 
-1 k(s- 1 ) k(e) k(s , s ) -

lvhich are isomorphisms . Since ~s,k(e) is a cartesian morphism there 

is an isomorphism 
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To \ · e r i f y that ~ s , k ' s de f i n c a n a t u r a l i s o m o r ph i s 1:1 

!;; : s Y s " cp----. <p o Ys 

La l\ c a morphism ). : k __, k 1 of Csp = Carf.c(G/t3, D) and sec the 

ass j gnements by y s " cp and cp o y 
3 

Ys o cp().) ::. (yS).<~ 

(). -1 
s 

)' _/' ( 6) - 1'
3

k I ( (,) ) 

k(s- 1 ) ~ k 1 (s- 1 )) 

Then it follows from the commutative diagram 

y
3
k(e) k( e) k(s- 1 ) 

J Y s).e ~ ).e t ).s- 1 

y
8

k 1 (e) ----.. k 1 (e) t---- k 1 (s- 1 ) 

that ~s is a natural transformation . 

Thus (cp, !;;s) is a G-functor from csp to c . 

Theorem 2 . 6 that t h ere is a cartesian functo r 

It folloHs from 

But the restriction of ~ to the fibers is cp which is an equivalence 

of categories by Corollary 3 . 6 . It follows from [21] Proposition 6 . 10 

that the cartesian functor ~ is a fiber equi valence . 

(2) (1) implies that there is a natural transformation 

ell o S ----.. J d Fib ( G) 

wh ich is denoted by the same letter ~ · 

Con sider + in the proo f of Corollary 3 . 6 . Take y
3 

and y
3 

as in 

(1) . Here we assume that C (or~) is split . That is 

Yst. = Yt " Ys 

For any object X of C and any u € ob G!e 

y 8 o 1/f( X ) = (u r---+ Y(su)-1 X) 

t/1 o y
8

(X) = ( u 1--+ yu-1y
8
-1 X) 
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n 

Similarily for morphisms. So 

1/1 0 ,., s 

Thus '"e have a natural transformation 

IdSpLi.t(C) ----.S o <1> 

All that remains is to show the commulalivily of the following 

two trj angles 

CfloSocJ> 

<I>*Y ~*<I> 
ell £d <I> 

s 0 $ 0 s 

1/I*Y ~(p 
s £d s 

Both of them are obtained from the fact 

cp 0 1/1 = fd : c - c 
by reducing the problem to that on fibers. 

Coro ll ary ~.8 . Let the notations be as above . There are equivalences 

Csp ~ C 

sp 
~::.cc ~ t::.cc 
Rep(C , Dsp) ~ Rep(C, D) 

Proof. Theorem 4 . 7 ( 1) implies 

(ysp)-1( . ) ~ ,.,-1(.) 

Cart Sec(C , Dsp) ~ Cart Sec(C , D) 

However we knO'-' 

Csp = Ker Dsp = (ysp) - 1 ( · ) 

C = Ker D = ,.,- 1
( · ) 

t::.cCsp Z Rep(C, Dsp) = Cart Sec(C , Dsp) 
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t:,.cC ~ Rep( C 1 D) = Cart Sec( C 1 D) 

Th ese show the desired r esu lts . q . e.d . 

Next ~e shall state the results for subgroups H of c . To do this 

for a split C-category (C; ~3 ) £. e . a func tor~ : C ~Cat 1 ~( · ) = 
C1 ~(s) = ~ we define another litnit category diff e rent fr om th e s 
descended category t:,.cC · 

Oefitliti o n ~.9. For a split C-cate g o ry (C; ~8 ) and a s ubgroup H o f C 

Lh e /1- fj xed c ate gory c11 is define d to b e a c ul. <' g ory t.:h i c~ lt ~·onsi !->l S o f 

n 11- fixed objects and II - fix e d mo rpld s ms o f c . 
A k e y r esult is f ollo wing . 

Pr o po s i t i o n -1.10. For a f ilH ' l't.'d t: a l. t•gury y 

Proof. It is cl ear from the defi n itions . 

I.-, , .. 

Corollary 4.11. Let ( C; ~s~ a
8 1

t) be a (no t necessar ily split) 

() C-categoy a nd y :D ~ C be the associated f ibered category over c. 

C
sp sp 

I ~ I Dsp and ysp d e n o t e as above . Then there are e qul\alenccs of 

categor ies for a subgroup H of C 

6 HC ~ ( Cs p ) H ~ t:. H ( Cs p) 

Proof. It follows from Proposition 3 . 2 1 Theorem 3 . 5 and 

Proposition 4 . 10 thaL 

~ Rep(H , D) 

( Csp)/1 
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Cartc<H, Dsp) ~ Co,rtcUI, D) 

t-·hich implies as in Corollan· 1.8 

Remark -1.12. E\·en Lhough (C; cxs' a
8

, t) is split.. an equivalence 

6HC ~ ell 

does not hold generally, because ~ : Csp ~ C does not become a 

split C-functor . The above corollary shows if a split.. C-caLegory C 

comes from a fibered category over C i.,.e. C = Cartc(C/e, D) an 

equi\'alence 

6HC ~ cH 

holds . 

§ 5. Exact G-categor i es 

We have cosidered actions of G on any categories until the last 

section . The definition of G- categories for categories '~ith certain 

additional structures is as follows. 

As a C-category is regarded as a pseudo functor from G to Cat, we 

may replace only Cat by an adquate 2-category consisting of 

categories with certain additional structures , functors and natural 

transformations preserving the additional structures . Other objects 

which we don't handle in this paper, but which are important.. for 

algebraic K-theory; symmetric monoidal G-categorjes , simplicial 
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C-ca tegor ies and ca t..egor i es lv i t..h ac Lions of l.h' O li. i nds of groups etc . 

all are done ~ell by this method. In this section ~e deal in exact 

C-categories and state lhe commutativity of Quillen's Q-construct..ion 

with descended categories as a main result . 

D~ f i niti o n 5 .1. A C- cat..egory (C; a , a 4 ) is an addiLi'c (resp. s s, (. 
abelian resp. exact) G-category if Cis an additive (resp. abelian 

resp . exact) category and for every seC a
8 

is an additive (resp. 

exact resp . exact) functor . 

Then an old limit category of a C-category taken in Cat is also a 

new limit category taken in the 2-category of categories with certain 

additional structures . 

Propo s i t i o n 5.2. Let (C; a , a t) be an additive (resp . abelian s s, 
resp . exact) C- category, y : D ~ C be the fibered category over G 

associated to (C; a ,a t) by Theorem 2 . 5 and 8 : E ~ G be any s s, 
groupoid over c. Then Carte(£ , D) turns to be an additive (resp . 

abelian resp. exact) category in the natural manner . 

Proof. The category Cartc(E, D) has as objects functors n : E ~ D 

satisfying y o n = 8 and as morphisms natural transformations 

t : n ~ n' of grade e between those functors . 

To show that Carte(£ , D) becomes an additive or abelian category 

according to D additive or abelian , we have to check the abelian 

group structure of hom sets , the existence of a 0-object and 

cop r oducts , the existence of kernels and cokernels , an isomorphism of 

coimage with image and so on . The definitions of the desired objects 

may work in obvious t'ay by applying the correspondent constructions 

to the images of £ , This procedure of proofs is long but.. routitte , so 
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we will omit the details . 

With respect to an exact C-category C our proof is as follo~s. 

Embed C into A (= the category of left exact functors on C0 P to the 

category Ab of abelian groups ) as a full subcategory . Then A has a 

C-descent datum h'hich is an 0xtension of lhc one of c. B ---+ C 

denotes the fibered category over C associated to the C-catcgory A. 

The former result sho~s Carte(£, 8) is an abelian category. Further 

it is easy to sho~ the existence of an embedding 

Carte(£, D) ~ Carte(£, B) 

and that the category in the left side is closed under extensions in 

the category in the right side . It follo~s from Quillen [17] that 

Carte(£ , D) is an exact category . q.e.d . 

By the results of § 4 we have easily 

Coro ll ar y 5.3. Let (C ; a ,a t) be an additive (resp . abelian resp . s s, 

exact ) C-category , y : D ---+ C be the associated fibered category 

over C and H be a subgroup of c. Then various limit categories 

~He ' Rep (H , D) , Rep( H, D) , (Csp)H and ~Hcsp 

are all additive (resp . abelian resp . exact) categories in natural 

manners . 

~ow ~e shall state the relation ~ith Quillen's Q-construction 

for exact categories . 

Theorem 5 . ..1. Let (C; <X ,a t) be an exact C-category, y : D----+ C s s, 
be the associated fibered category over C by means of Theorem 2 . 5 and 

8 : E ---+ C be any groupoid over c . Then 

(1} The category QC has a natura l structure of C-category . 

(2) If :Y : Q1D---+ C denotes the fibered category over C associated 
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lo the e-category QC, then lhere exists an equivalence of categories 

Pr oo f. (1) We shall define a naturale-descent datum (a ,a t) on QC. s s, 
Note that the category QC has the same objects as C and morphisms 

X ----+ X 1 in QC are i so m or ph i s m c 1 asses o f ( X .- Z >----+ X/ ) , \\here 

- ( resp . >-----------+) denotes an admissible epimorphism ( resp. an 

admissible monomorphism) . Here define an cndofunctor for each s e e 

a : QC s QC 

whose function on objects is the same as as and ~hich sends a 

morphism 

an isomorphism class of (X ~ Z ~ X1 ) 

of QC to a morphism 

as(j) as( t) 
an isomorphism class of (asX asZ asX 1

) 

of QC . We should remark that as as is an exact functor for every 

s e e the image by a of an admissible epi (resp . an admissible mono) s 
is so . Also for s ,t e e 

(as , t) X: astX ~ as(atX) 

on X e ob QC is given by an isomorphism class of 

= 

and it is seen immediately that a t 's satisfy the conditions of a s , 

e-descent datum . 

(2) The objects of the category Q Carte(£, D) are functors 

n : E----+ D o,·er e and a morphism t : n----+ n 1 of Q Carte(£, D) is an 

isomorphism class of 

( n ~ >----+ n') 

in Carte(£, D) namely for each object a of E an isomorphism class of 
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diagrams 

( n (a} ~ (a} n1 (a}) 

such that for any morphism m a ----+ b of E a diagram 

n (a} ~ (a} n 1 (a) 

1 n ( m) 1 ~ ( m) l n1 <m) 

n <b) ~ ( b} n 1 (b) 

is commutative . On the other hand the objecls of CarLe(£, QJD) 

consist of functors n : E --+ QJD . The objects of QJD ure same as 

the objects of D and an isomorphjsm ln QJD reduces to an isomorphism 

in D. As E is a groupoid the functor ~ is identified with a functor 

E ----+ D. 

Next let us cosider a morphism t 

consists of morphisms of QC 

for all a € ob E , which are compatible for every morphism of £ . That 

is to say it is given by an isomrph sm class of diagrams 

Cn<a> - xt( a ) ~ n (a) ) 

for each a E ob E such that a diagr am 

n(a) x'"t( a } ~' ( a ) 

1 ~( m) 1 1 n 1 
( m) 

n<b> x'"t(b) n' <b> 

is commutative for every morphis m m a ----+ b of £ , Since E is a 

groupoid t he morphisms which appeared above are all isomorphisms, 

hence we can use Xt(a) ' s to make a functor x : E----+ D such that 

x( a ) = Xt(a) for any a E ob £ . Thus the mor phisms of Carte(£, Q1D) 

reduce to morphisms of Q Carte(£, D) , too . The desired equivalence of 
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caLegories will follows. 

From this theorem we deduce the commutativity of Q-construction 

with taking various limit categories of various G-categories 

cosidered so far . 

Corollary 5.5. Let (C; ~s,as, t), y : D ~ G, QC and yf 

be as in Therorem 5 . 4 . If His a subgroup of C then 

( 1 ) QRep(H , D) rv Rep(H, QJD) fV 

( 2 ) Qb.HC '""-' t::.HQC ,...; 

( 3) QRep(H, D) 'V Rep(H, QJD) '""-' 

( 4 ) (QCsp)H '"V Q(Csp)H rv 

Proof. (1) Take E = H in Theorem 5 . 4 . 

( 2) follows from equivalence t::.HC ~ Rep( H, D) and ( 1). 

(3) Take E = C/H in Theorem 5.4. 

(4) From (3) , Proposition 4 . 10 and Theorem 4.12 we obtain 

(QCsp)H = ( QCartc< Cl e , D))H 

"" (Cartc(C/e, QfD)) H 'V 

= Carte< Cl H, QfD) 

~ QCartc( C/H, D) 

- QCartc< Cl e, D)H 

= Q(Csp)H q.e.d. 
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§ 6. Induction t heory de du ce d f r om a C-category 

The representation category Rep(H, D) cosidered in § 3 was an 

analogue to the category of H-representations in Ker D. So we can 

chase the analogous formulation of representation theory of finite 

groups . 

We can proceed with the arguments by defining restricLion and 

induction functors for Rep(H, D). The approach of Frohlich-Wall[6) 

~ was in such manner . But in this approach the definitions depend to 

choices of representatives of cosets with respect to subgroups, hence 

it is troublesome to check naturality. Therefore we will use 

Rep( H, D) = Ca rtc(C/ H, D) . 

This makes the argument functorial and formal . 

We shall only refer to Mackey property and projection formula 

wh ich are fundamental tools in representation theory . These results 

generalize the results for trivial C-categories of Dress-Kuku[3] to 

general C-categories which is not neccesarily split . 

In this section we assume the group C is finite or profinite. We 

~ consider the category sfin of finite C-sets and C-maps . To an object 

S of sfLn i . e . a finite C-set S, we assign a category S whose 

objects are elements of Sand whose morphisms x ~ y (x,y e S) are 

represented by pairs {g, x) such that gx = y as in § 4 . Further to a 

morphism (a C-map) ¢ : S ~ T of s f in we assign a functor c 
¢ s- r 
= 

(

x ) (¢(x) ) 1 ( g ,x) l------7 1 ( g , ¢(x)) 

x 1 ¢(x1 ) 
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where gx = x 1 hence g ¢(x) = ¢ (gx) = ¢(x 1
) . 

Let (C ; ~X , a t ) be a n exacL G-category and y : D - G the s s, 

associated fibered category over G by means of Theorem 2 . 5. ExLend 

the definition of Rep( Jl, D) for subgroups H of G Lo oujects of sfLn . 

Rep ($ , D) = Ca r te ( ~ , D) 

It follo~s fr om ProposiLion 5 . 2 that the category Rep($ , D) is an 

exact category for any $ . We shall now define restriction and 

induction functors bet~een them . 

Def inition 6.1. For a morph ism ¢ : 5 - T o f sfin there arc exact 

functors between Rep(S , D) and Rep( T, D) 

¢* 
Re p(T , D) Rep ($ , D) 

¢* 

¢* (!. n D) = (5 no:_ ~ D) 
= 

na me l y 

--!.L..n--+, D) : (I(g,x)) 1---+ (" '•;:::,¢(x)) 
x ' n ( ¢ (x 1 )) 

wh e re x ,x es and geG s uc h that gx = x . 

<t>_l !;(x) 
XE¢ ( y} 

$ ~( g, x} 

where y,y'eT and g eG such that g y = yl. We can take x , x l eS such that 

gx = x ' b y exchanging appropriately an order of @ if neccesary . Hence 

* ¢ i s de t ermined u p t o a natur al isomorphism. 

We not e that ¢* (resp . ¢* ) is corresponding to r estriction (resp . 

induction ) . 
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Proposition 6.2. (1) For a composition S ~ T _i__. U of morphisms 

of sf in 
G 

( 1/1 0 ¢}* = ¢* 0 'it* 

( 'it 0 ¢)* .-v * * - 1/1 0 ¢ 

(2) If S llT denotes the copt"oduct (= disjoint uni o n) o f Sand Tin 

sfin there is an equivalence 

Rep ( S ll T, D) ~ R<.:.P { S, D} x. !<~ - i : T: D) 

I 0 ) T " :1 n; r' "1~ I 1 ! •., ll tf, : --:-

I. , , .._ IT r<o.\ 
'i> t • , ,_~ 1 •t.: I v -c:: ,--, (' -., 

. .. _ , \ .... J ~,. 

Sil T ~ D) 1----+ (niS 

gives the desired equivalence . 

g--- D, nl~ 

(3) follows from the first formula of (1). 

I' !., 

T --- D) = 

. 
•. tl 

Proposition 6.3 (Pull-Back Formula) . Let s1 , s2 and T be objects of 

sftn and ¢ 1 : s 1 - T and ¢ 2 : s 2 - T be maps of sftn . :"-1al<e a 

pull-back diagram 

V'z 

1 
T 

where s 1 Xr s 2 = ((a,b) I aes1 , bes2 , ¢ 1 (a) = ¢ 2 (1)} 

1/'1 $1 X T Sz ------+ sl' (a, b) t- a 

(a,b) t----+ b 

Then there is a natural isomorphism 
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') r rnn c t o t· s fr om Rc;.;( $ 1 , D) t o Rep(S2 , D). In o th e r h'O rd s th e 

cliug ram 

* 
Rep(S1 Xr Sz, D) ___ti_z > RepCS2 , D) 

i (1/11)* 

* 

1 (¢2)* 

Rep(S1 , D) ( ¢1) Rep(T, D) 

is commutative up to natural isomorphi s m. 

Pr oo f. For geC, y,y 1 eS2 such that gy = yl and 

( s1 ~ D) e ob Rep( s 1 , D) t1.;o kinds o f assigncments ar e given as 

follOI-lS; 

I(g .• )~ 
e_1 n ( x > 

XE¢1 ( ¢2 ( y)) 

( ( <t>z > * o * ~D): 1 <B n(g,x) (¢1) )(S1 

y' $ n ( x 1 ) 
x'e¢1-1(¢2(y')) 

y ~-1 n(l/!1(z)) 

l(g,y) 
ZEI/Iz ( y) 

* (1/11)*)($1 ~D): l e n(g,z) <<wz> 0 ~ 

-
yl $ -1 n(l/'1(z ' )) 

z ' etf'z (y') 

Now for y e s2 
-1 

xe¢ 1 C<t> 2 Cy)) ~ <t> 1 <x> = <t> 2 (y) {::::::;> (x,y)e s 1 X r s 2 
-1 

~ X= 1/1 1 (z), ZEI/Iz (y} 

hence there is a natural isomorphism 

Re mark 6.~. Propositions 6 . 2 and 6 . 3 show that the fun c tor 

Rep( -, D) : s~Ln ~ Exact categor£es 

makes a Mackey functor . 

If subgroups H, K of C satisfy 
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H < K, (K H) < (I) 

and a G-map <I> GIH --+ GIK is the natural projection then we write 

res(H, K) = <I>* 

£nd(H , K) * = <I> 

Also if 

~ = conjugation by s -1 
Gl(sHs ) ~ G!H 

t.:e ~-oTi te 

Under these notations we have 

Coro ll ar y 6.5 (Double Coset Formula} , If H, K are subgroups of 

finite index in G then there is an isomorphism of functors 

res(H , G) o ind(K, G) "" 

(£) 
s 

-1 -1 £nd(sKs nH, H)oc
8

ores(Kns Hs , K) 

~here s varies on a set of representatives of double cosets of H'GIK . 

Proof 

diagram 

G!H 

in t-lhich 

GIH 

'''e may only 

>< GIK 
GIG 
! 

GIK 

X GIK = 
GIG 

apply Proposition 6 . 3 to the following pull-back 

Gill 

l 
GIG 

Finally we shall express projection formula. For i = 1,2,3 let C. 
t. 

be an exact G- category andy. : D.~ G be the associated fibered 
t. t. 

category over c . An exact pairing 

compatible with the respective G-descent data defines a fiber pairing 

over G 
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which induces an exact pairing 

Rep(S, D1 ) X Rep($ , Dz) ~ Rep($, D3 ) 

for each object S of Sbin , Then 

Propo s i t ion 6.6 (Projection Formula) . For any morphism </J : S ---+ T 

of sfin the follo~ing diagram commutes up Lo natural isomorphism 
G 

</J * X Ld 
Rep(T, D1 ) X Rep($, Dz) Rep($, D1 ) x Rep ( s, D2 ) _ t pairing 

Rep($ , D3 ) 

pairing _! ¢* 
Rep(T, D1 )X Rep(T, Dz) Rep(T, D3 ) 

Proof. (X, Y) ~ X® Y denotes the pairings . Then '"e may express 

the induced pairing as 

(

x ) (~(x) ® n(x) ) 
~: j ( 9 • X) J----7 ll; ( 9, X)® n ( g • X) 

x 1 ~(x 1 )® n(x') 

~ where gEG x,x1 E$ such that gx = x 1 • 

Now for an object (~ : T---+ D1 , n : ~---+ Dz) of 

Rep( T, D1 ) X Rep($, D2 ) let ~ 1 : T ---+ D3 ( resp . ~ 2 
denotes the result of left round (resp . right round) in the diagram 

of U; , n) . Then ~ 1 , ~ 2 are described as follows ; 

~~:(J~g,y) ~ 
~ ( y) ® ( ~1 n ( x) ) 

X€¢ ( y) 

l 
l; ( yl ) ® @_1 n (x 1)) 

x ' E¢ (y ' ) 
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@_ 1 (l;{¢(x))®rf(x)) 
XE¢ ( y) 

1 
<f) U;(¢(x 1 ))@n(x/)) 

x 1 e¢-l(y/) 

for a morphism (g,y) : y - y/ of T. nut it follOh'S from the 

bilinearity of the pairings that there is a naLural isomorphism from 

~1 to ~2. 

§ 7 . Oc-ca t egori es 

We shall consider in this section the last notion of C-caLegories 

which we should handle . The one providing a caLegory for each 

subgrou p H of G in a compatibl e manner, which is called an 

Oc- category , is also related with various notions of C-categories 

studied in § 1 ~ § 4 . A fundamental problem is to construct from 

given Oc-category 8 a split C-category C such that the H-fixed 

category c H is homotopy equivalent to the given category 8(G/H) on 

~ C/H . This construction from Oc-categories to split C-categories is 

sent by the classfying space functor B to Elmendorf construction 

which is a functor from Oc-spaces to C-spaces with analogous 

properties . (CJ . [4)) 

Definition 7 . 1 ( [4) ). The category Oc of canonical orbits has as 

objects canonical orbits GIH where H varies on subgroups of G and as 

morphisms C-maps between them . A morphism 

¢ : GIH - GIK (HI K < C) 
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corresponds to an element JK e (C/K)H L.c. 

Hom
0 

(C/H , C/K) = (C/K)H 
c 

By an Oc-category we shall mean a (strict) functor 

0 op --+ Cat e 
An Oe -functor of De-categories is a natural transformation of 

functors o~P ~ Cat . Oe-Cat denotes the category of De-categories 

and De-functors . When we want to consider FLb(C) , $pL£t(CI etc . as 

categories we should forget the 2-arrows of them. 

De- categories can be obtained as follows . 

Def ini ti on 7.2 . We define a functor 

~ : FLb( e ) ~ De-Cat 

as follows; for an object y 

~ (y) 

of Oe-Cat is given by 

D ~ e of Fib(e) an object 

on objects e/ H 1-------+ Rep ( H, 

on morphisms 

where¢* is the restriction functor of Definition 6 . 1 

¢*(elK --L D) = (C/H t. • i 1 D) 

explicitly if ¢(aH} = aJK then ¢*(~)(aH ) = ~(a!K) . Since the 

restriction fu nctors ¢* are natural with respect to cartesian 

functors of fibered categories over e we can get the correspondence 

on morphjsms of ~ . Further L denotes the composition of functors 

L = ~ o tt> : S p L Lt ( C) -------+ 0 e-Cat 

'{e have also another De- categories from split C-categories . 
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De fini t i on 7.3. Define a functor 

I : Sp~it(G) ~ Oc-Cat 

For a (strict) functor ~ : G ~ Cat an Oc-category 

I(a) Ocop ~ Cat 

is given as follows; 

on objects GIH ~ (a( ·))H =the H-fixed category of a(·) 

on morphisms 

where the functor I(a)(¢} assignes 

(
~(f) X ) 

l a(J)u 

~(f)Y 

Note that fEC is given by ¢(aH) = afK, hence f is determined modulo 

K, but since objects and morphisms of a( ·)K are K- fixed the functor 

I( ~ )( ¢ ) does not depend on a choice of representative f . Further for 

any K- f i xed object or morphism x an object or morphism a(J)x is 

H- fixed as follows ; 

~(h)~(f)x = ~(hf)x = ~(fk)x = a(f)a(k)x = a(J)x 

where hEH and k (E K) is given by J- 1HJ c K. 

We obtain by Corollary 3 . 6 an equivalence 
/V 

~ : Cartc(G/e, $(a)) ~ a( · ) 

and by Proposition 4.10 

Cartc(C/H , ct>(~)) ,-.../ Cartc(G/e, CJ,(o::) ) H 
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~ . 
t• • 

Since one has 

Hom0 (C/e, Cle) = (G/e)e = G 
G 

) ~ 1 i! C '"' 1
t :;c.>J ', r 1 l 'l! 

the category B(G/e) has a structure of a split C-category. Thus we 

have a functor 

K : Oc-Cat ~ Sp~Lt(C) 

K(8) = (8(G/e); 8(s)) 

The funclor 

K o 'f' : F i.b (C) - Sp ~ i, t (G) 

is nothing but the modified Giraud constructionS (see § ·1) . In spite 

of very nice properties of the functor S the solitary K does not go 

~ell through . For instance 

K(8)H and 8(GIH) 

have no relation . So we need another funtor from Oc-Cat to Sp~Lt( G). 

I constructed a functor from FLb(G) to SpLLt(G) different from the 

Giraud construction S in my e alier paper [16] § 3 . This was the one 

,,·hich decomposes through Oc-Cat . We will use the modified one to 

construct the desired functor . 

De fini t i on 7.5 • . \functor 

U : Oc-Cat - SpLi.t(C) 

is defined as follows . Given a Oc-category 

8 : Ocop - Cat 

take a functor 
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lr ()Gop - Cat 

where Oc = (G/e}/Oc is the 

p (G/e)/Oc- Oc 

lf is the composition 

and a lax colimit over Ocop 

u 8 = Lax ce~imit lf 
Oc 

comma category of Oc under C/e , 

is the fogetfull functor and 

8 op ~ op 0 op ~ Cat 
o P : vc ----+ G ~ 

~ote that there is a fibered category u8 over Oc associalcd to the 

functor 'lr : Ocop - Cat by Grothendioecl{ construclion . \ve shall 

write down explicitly the split G-category 

U(8) = (u8 ; os) 

The category u8 has as objects triples (X, G/H, x) where G/Heob Oc, 

xeG/H ( a pair (G/H, x) represents an object of Oc such that 

G!e ~ C/H, ¢(a) = ax and X e ob 8(G/H).A morphism 

(X, G/H, x) - (Y, G/K, y) 

of u
8 

is given by a pair (a, q ) where a : GIH ----+ C/K is a morphism 

of Oc such that a(x) = y (such a provides a morphism of Oc ) and 

q : X- 8(a)Y 

is a morphism of the category 8(GIH). The action os on u8 (seC) is 

given as follows; 

(

(X , G/H , x) ) 
1 ( a,q} 

(Y , G/K, y} 

> 
( 

(X, G/ H, s -
1 
x) ) 

l (a,q) 

-1 
(Y , G/K, s y) 

The assignment on morphisms of the functor U is defined in obvious 

manner by means of the naturality of lax colimits . 

The functor U provides the desired homotopy property . 

Theorem 7.6. For an Oc-category 8 : Ocop - Cat and a subgroup H 
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of G t here is a homotopy equi \'al e nce of ('::\ t egor i cs 

(U
8

)H ~ 8(G/H) 

Proof. We shall first define a subcategory v11 of (u 8 >11 . The objects 

of v 11 consist of triples (X, G/H, eH) where X e ob B(G/H) and the 

morphisms of v 11 consist of pairs (idC//1' q) where q: X---+ Y i s a 

morphism of B{C/ H) . Th e n it is clear that the category v 11 is 

isomorphic to 8(G/H) and we identify v 11 with B(G/11) . We shal l next 

construct a right adjoint functor 

to the inclusion functor 

£ : 8(G/H) = VH ~< u
6

)H 

Let (X, G/K, y) be any object of (u
8

) 11 . Since X e ob B(G/K) and 

y e (G/K)H = Hom0 (G/H, G!K) 
G 

we have 

8 ( ¢y ) X E ob B(G/H) 

where ¢ Y : GIH ---+ G!K is a morphism of Oc corresponding to y . Hence 

define 

k(X, G/ K, y) = (B(¢ y ) X, G/H , eH) 

Then it ' s clear k o £ = I d . Also there is a natural tran s formati o n 

n : £ o k ~ Id 

n (X , G/ H, y) = (¢y , £dB(¢y)X) : {8(¢y)X , G/H , eH)---+ (X , G/K, y) 

It is easily verified that k is right adjoint to £ . Thus we have the 

desired homotopy equivalence . 

Finally we shall note the relation with the work of Elmendorf [4] . 

Consider the classifying space functor 

B : Cat Top 
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h·bere Top denotes the category of ce rtain nlc ·c· IPpologit·:tl -.p:uv~ as 

usual. 

Propo s i t i on 7.7. Suppose G is a finiLc group . 

( 1) ThE' t'las~d fyj llg spac~~ fun cLo r D s c11ds a sp l i l G-category ( 1·e:sp . 

an OG- cat.c.:go1·y) Lo a C- s pace ( resp. n11 OC spnc;t') , h<; IIC't.! 1 hct ·<~ 1 ~. a 

functor 

···----+ 0 - . 1)/f (.' • ' • ) G -"P'-• ·'-' ~' 

(2) Tht> image o f ot.r ! { •·esp. K, resp . U) b~ lhe classifying spac·~ 

funcLor B is Elmendorf ' s Cl> (resp. D, resp . C), h ~ IlC'< ' lh e~·c a1·~ 

cc,mmutati\·e diagrams up :..o h o:notopy f o r U ) 

I 
K 
u 

C-spaces D 
c 

Proof. (1) and the statement for K of (2) are Lrivial . Since 

B(CH) = (BC)H 

for any split G-category C and any subgroup H of G, one has the 

statement for J of (2) . The remaining fact that U becomes a 

categorical Elmendorf construction L.e. 

is verified as follows . By Thomason's Homotopy Colimit Theorem [23] 

B(U8 ) ~ hocoL6~ B(B(G/H)) 
De 

because UR is given by a lax colimit over Oc0 P . On the other hand 

Elmendorf ' s definition o f C using the tt;o-sidcd bar construction is 

shot.:n to be nothing but a homotopy co llmi t ovc,.r ()Cop on simplicial 
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sets level. Since taking a homotopy colimit commutes the geometric 

realization functor by Bousfield-Kan[l] the result "' ill follo'l-.'. q.e.d. 

§ 8 . Propertie s of functors connectin~ var iou s notion s of 

C-categor i es 

Ir1 this last section '1-.'e arc going to study properties especially 

adjoint properties of functors providing the relations between 

various notions of G-categories which have been treated with until 

the preceeding section. 

Since Des(C) and Pseudo(C) are equivalent to f£b(C) it is 

sufficient to study the following triangle; 

F£b(C) 

L 
I 
K 
u 

$~ 

Recall the functors 

~ = the modified Grothendieek construction 

(see § 4 and Theorem 2 . 5) 

S = K o 'f' = the modified Giraud construction (see § l) 

'f' 

L = 

I 

K 

u 

(D ~C)~ (C/H ~ Cartc(C/H, D) (see § 1) 

'f'o~ 

(C ~Cat)~ (C/H ~a( · )H) (see § 7) 

(0 op~ Cai) ~ (fl(C/e); B(s)) (see§ 7) c 
(Ocop~ CaL)~ (U 8 ; bs), u8 = La5 8BL£mLt ~(see§ 7) 

c 



First I<C note that Lhe functor S is r-ighL adjoinl to Lhe functor-

¢as shown in Theorem 1.7 (2) . ~ext we shall show Lhat the functor K 

is left adjoint and left inverse to the functor I. 

Propos i tion 8.1. (1) K o I = IdSpLit(C) 

(2) There is a natural Lransformation 

JJ. : I do -cat 
G 

I o K 

(3) The functor K is left adjoint to the functor I. 

Proof. (1) Trivial 

(2) For a Oc-category 8 : Ocop - Cat the functor 

B(pH) : 8(GIH) - 8(C/e) 

correspondent to the natural projection pH 

induces a functor 

C/e -- C/H, p11 (a) = all 

p.GIH : 8(G/H) - 8(C!e)H 

which is natural for GIH E ob Oc0 P. Thus we have a natural 

transformation 

JJ. : I do _ Ca t ------4 I o K 
c 

(3) It follows from the definition of JJ.c/H that JJ.c/ e = Lds(C/e) 

hence 

K + p. = LdK 

On the other hand if B = I(a) for a split C-category a G -- Cat 

then 

= i.-d 
'I H a(·)'- a( · ) 

hence 

p. * I = Ld I 

These facts imply that K is left adjoint to [ . q . e.cL . 
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Putting two adjoint properties together we obtai n 

Propo s ition 8.2. (1) There is a natural i somorphism 

I o S 

of functors fr om FLb(G) to Or-C~L· .... 
,, . , 

0 ;... 0 t 1 

p r· (I',) r. { 1 ) 1 ... ll!) 

T'! (; D:: c.. j ~ i '. . } . 1 ') t : • l ' 1 ' . "' - I . \ : i . · > ., ) l. : ! : . · 'II j ! I C .l ' 

"I'~ I ~ -- ·-~ tr 0 r- I l 

,. ' . ... ) . Ti._· l'f -..u1 • 

I' 
. ~ 

FLb(G) ..L SpL Lt(G) ..L 

s l 

'I'. 

which imply that tl> o K is l eft adjoint to I o s . Together with ( 1) He 

obtain t h e r e sult. 

We s hall now state the properties relating to the functor U hhi c h 

are obtained from Theorem 7 . 6 . 

Proposition 8.3. (1) There is a natura l transformation 

n : I o u I do -Ca t 
G 

( 2 ) There is a natural transformation 

: u nc/e K 

( 3 ) There is a natural trans f ormation 

~ : U o I 

(l) n *I=I*~ : [ o U o i I 

Proof. (1) Consider a functor 

k (U
8

) ll ~ B i G/H) 

in the proof o f Theorem 7 . 6 , which sends an object (Y , G/ H, y ) of 
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(U 8 )11 to an object 8(¢!/)Y of 8(Gill) Hhcre ¢!1 : GIN--+ GIK is the 

morphism of Oc corresponding to y e (GIK) 11 • Putting k = nciH , it ' s 

easily seen that nGIH is natural for GIH e ob Oc
0

P, hence we have a 

natural transformation 

n : I o u ---+ r do -cat 
G 

( 2 > nc1 e = K * n : u = K o 1 o u K 

( 3) ~ = K * n * J : U o I = K o l o U o J ---+ K o !d o J = K o J = let 

(4) Consider 

I * ncle loU--+ foK 

Hhich is of the form 

( (I * ncle> e>ciH : (U8)H-- 8(Gie)H 

for 8 e ob Oc-Cat and Gill e ob Oc· it is clear that if 8 = !(~) for 

~ e ob $pL£t(G) then 

((I* ncle>e>ciH = nciH 

This implies the result. q.e.d . 

\~e note here that there are no adjoint relations containing the 

functor U such as the functor Kin Propositions 8.1 and 8.3. We need 

to turn to the arguments up to homotopy. We s hall finally slate a 

part of outline of homotopy theory of G-categories . 

The category Oc-Cat has a structure of 2-category. Let 8, 8 1 be 

0 t · 0 op ---+ C t d t c-ca egorleS G -- a an , t 1 be 0C-functors from 8 to 8 1 • 

A 2-arro~ A : t--+ t 1 of Oc-Cat is defined as folloHs; To each 

object GIH of Oc and each object X of 8(GIH) assign a morphism 

AGIH, X : tGIH(X) ---+ t~IH(X) 
of B1 (GIH). Th ey satisfy the following conditions . For any morphism 

u : X--+ Y of 8(GIH) 
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I 
LC/11( u) 0 :A.G/H , X = :A.C/11, Y 0 Lc/H( u} 

and for any mo1phism ·P: C!K ---t CIH of Oc a diagram 

I3'(¢)(A.C//l,X) I I 

/3/(¢) tC!Il(X) 
II 

ic;xB(<P) (X) 

commutes . 

t> (<P)Lc!i/X) 
II t;; K/3 ( ¢) (X} 

When regarding the ~ateguries FLb(C), SpLLi(C) and Oc-Cat as 

2-ca tcgur i es one has the follo1.:ing facts about 2-arrO"'-'S. 

Lemma 8. -1. The functors ¢l, \fJ, S, L, I , K and U pt·cscr\'t~ l he 

respective 2-arrows . 

Suppose the group C is finite from no1-1 on . 

Let t , t 1 be morphisms from a to a 1 of SpLLt(C) (resp. of Oc-Cat> . 

tis said to be C-homotopic (resp . Oc-homotopic) Lo t 1 if Bt is 

C-homotopic ( resp. Oc-homotopic) to Bt 1 . [a, a 'lc ( resp . [a, a 1 J0 C) 

denotes the set of C-homotopy classes (resp . Oc-homotopy classes) of 

morphisms from a to a ' of SpLLt(C) (resp . of Oc-Cat) . 

Lemma 8. 5. ( 1) The functors I I K and u preserve c- or Oc-homotopies. 

(2) A morphism A. : a ---+ a I of SpL-i,t(C) is a C-homotopy equivalence 

if and only if J(A.) : !(a) ---+ J(al) is a Oc-homotopy equivalence . 

Proof. (1) is obtained from Proposition 1 . 7 and [4] . 

( 2) is obtai ned from the ~o.•e 11-lmo~o.m fact Lha t a C-map f of certain 

nice C-spaces is a C-homotopy equivalence if and only if the 

restriction 1 11 of f to the H-fixed spaces is a homotopy equivalence 

for carh II < c . q.e.d. 

Pro pos ition 8.6 . (1) For any object a of SpLit(C) a morphism 

t : U o I (a) ---+ a -a 

of SpLLt(C) is a C-homotopy equivalence . 
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(2) For any object 8 of De- Cat two morphisms 

( U * 11) 8 , ( ~ * U) 8 : U o I o U( 8) ==: U( 8) 

of SpLLt(e) are e-homotopic . 

(3) There is a bijection 

(o: , U(B)Je "" [IIo:), 81 0 e 
for o: e ob SpL£t(e) and 8 e ob Oe-CaL . 

Proof. (1) is obtained from Proposition 7.7 , Propositio n 8.~ (4) nnd 

(l Lemma 8 . 5 (2) . 

(2) is obtained from (1) , Theorem 7 . 6, Prop0sition 7 . 7 nnd 

Proposition 8 . 3 (4) . 

(3) can be verified as in (1) Theorem 2 by using (1), (2), 

Propositon 8 . 3 (1) and Lemma 8 . 5 (1) . 

Let t , t 1 be morphisms (£ . e . cartesian morphisms) from y to yl of 

Fib(e) . t is said to be fiber homotopic to t 1 over G if Bt is fiber 

homotopic to Bt 1 over Be . 

By the classifying space functor B a fibered category y : D ~ e 
over G provides a Dold fibration (= a map fiber homotopic to a 

Hurewicz fibration) 

By : BD -----+ Be 

(see [ 15) IV 2) , hence the functor ¢ preserves homotopies . But in 

general \1-' and S don't preserve homotopies because BCarte(e//1 , D) 

isn ' t homotopy equivalent to l.he space of fiber maps from B(G//1) to 

BD over Be . (Thomason's Homotopy Limit Problem [24]) Therefore on the 

present stage we have no more statements about homotopy theory of 

F £b( G) . 

Department of ~1athema tics , Faculty of Education , Shiga University 
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