THEORY OF G-CATEGORIES TOWARD EQUIVARIANT ALGEBRAIC K-THEORY

By Masahiko NIWA

The notion of a G-category — a category with an action of a group
G — was needed to make algebraic K-theory equivariant one. Though
various notions have been used so far, the relations with them have
not been explained explicitly yet. Beginning by introducing the
notion of a G-category from point of view of Galois descent in linear
categories, I deal comprehensively with wvarious notions of
G-categories and establish the comparison in the complete form. It is
important for us to study simultaneously the limit categories
together with G-categories and §-functors. The objects to appear in

text are as follows.

G-category G-functor limit category

a category € with a &-| a morphism of Galois descended category
descent datum descent data a,C

a pseudo functor a pseudo nat. transft.

@ ! G — Cat G 1. Cat
a fibered category a cartesian functor representation categ.
cver G; v ¢ D > G over G; D — D’ CartG(H,D) or

N
G Cart (G4, D)

a lax functor a lax nat. transf. lax limit over &
a {strict) functor a nat. transf, AH&(-) or

« 1 & — Cat ¢ T Cat al )7

an Ocop—category a nat. transf. BIG/H)

B 0P — cat 0P T, cat
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1. Introduction: The notion of G-categories

In order to intrcduce the notion of G-catcgories {.e. categories
on which the group & acts, I think, we are asked to fit 1t to the
following problems. One of them is the problem of Galois descent., Let
B/A be a Galois extension of rings (or a Galois covering 8 — A of
schemes) of Galois group &. I shall consider the notion of a linecar
category wilh a Galois descent dalum of Galois group & originated in
A.Grothendieck (see N.S,Rivana[l1l8]). Let L be an A-lincar category
and LB denotes the B-linear category deduced from I by extension of
scalars from A to B. In the Galois case the usual datum of descent on
LB relative to B/A reduces to the following datum by using the
isomorphism B8 ®AB = -EI—B

For each s€(G there is an equivalence of categories

and for each pair g, t€f there is a natural isomorphism

. —

satisfying coherence conditions

e = ¥
(“s*at,u] (a uu)oa

Ao, tu s, t st,u

for any s,t,u€ef. Further the usual descended category can be

}

rewritten in the following form by the Caleois descent datum (as,as ¢
1

on LB' The descended category ACLB has as objects the pairs

{X,(AS} ) where ¥ is an object of LB and Xg N asX is an

s€el
isomorphism of LB for each g&€G such that



A, = de (e = the identity element of GJ
g X den, = (aS’ AR
The morphisms of &CLB are defined to be morphisms of Lg commuting all
Xge It is shown that the descended category éGLB is an A-linear
category which is equivalent to the original L.([18])
¥Watching these data we find the fact that the descent situation

may be formulated in the form independent of the ring extension B/A
and of the lincarity of the categories. So leaving theory of linear
categories we interpret abstractly the descent data as the data
toncerning any categories and any groups, and then we reach the
notion of a category with a G-descent datum {(or a G-category). This
is the starting point of ocur theory of G-categorics. However when we

give the definition we had better normalize the data so that the
equivalences and the natural isomorphisms corresponding to the

identity element ¢ of & are the identities.
Delinition 1.1, Let & be a fixed group whose identity element is

denoted by e and let ¢ be a category. A datum {as, y is called a

Cg,t

G-descent datum on ¢ if for each element g of & oy is an equivalence

of categories

oy C — C

and for each pair s,t of elements of & ag 4 is a natural isomorphism
]

: —_ L]
Zg,t Xgt Xg® X¢

satisfying

X, = fdc {=z the identity functor of &)
. £da5 = dg . {g € G}

- * o o
(as*at’u}e 2y 1y (as,t uu) Tyt (s, t, u € G)



vhere ida denotes the identity natural transformation of the [unclor
[

U
Then we call (C; as’as,t} a category wilh a G-descent datum or a
G-category.

The notion of G-functors is obtained by applying Lhe notion of
morphisms of data of descent to the Galois descent case. Together
with the notion of £-natural transformations between them as Z2-arrows
we have a 2-calegory denoted by Des(G).

Definition 1.2, A G-functor of g-categories
(Fing) @ (Ciograg ) — (¢ialial )
consists of a functor F : ¢ — €7 of the underlying categories and a

natural isomorphism for every seG

g : Fnc(s — O:;OF
such that
g ~ 1"‘i)"
S ’ o
(al (¥Flen (o ¥n,deln Yo )elF¥a, ) (s, teq)

where LdF denots the identity morphism of the functor F.
A G-natural transformation of G-functors
t : (Fyng) — (Flyal)
is defined to be a natural transformation ¢ : F — F’ of Functors

satisfying the conditions

! i /
(as*tions = nso(t*asi {s€qG)

We can also define the descended category AGC only from the datum
in Definition 1.1

Definition 1.5, For a category with a G-descent datum (a G-category)

{C;as,as t} the descended category AL is defined as follows; An
1



object of AGC is a pair (X, (a consisting of an object X

s}sEC)
of € and for every sg€§ an isomorphism of C
Ag P X — aSX

such that

Ay, = idy
x (Xpleag = {as,t}x°*st (35, teq)
A morphism of anC
Frox ) — x7a))
is a morphism Ff ! X — x! of ¢ such that for any seG
?

rgof = as(f)oxs ;

Thus we have got the abstract formulation for Galois descent.

Another problem required for thecry of C-categories is that of
representation theory. For a ring A4 what relations are there between
a category € of A-modules and a category C of module over the group
ring A[G)} of a group G over A ? Under certain a nice circumstance ¢
turns to be the functor category Fun(€,C). On the other side
when the G-descent datum (as’as,t) of a G-category € is trivial say

@, = Idc
for any gs€G, the descended category AGC is equivalent to the functor
category Fumn(G,C). Thus this second problem is reduced as a special
case to the first problem about Galois descent. At the same time
theory of G-categories gets some advantage from the techniques in
theory of representations. For instance induction theory (= abstract
formalism of representation theory)} will be generalized to theory of
G-categories for finite G in § 6.

The other problem is about an usual G-category € i.e. a group



G actig on € as a strict functor., We call it a split G-category in
order to distinguish it from the notion of our S-category in which G
acts on £ as a pseudo functor. As a split G-calegory provides a
G-space under ilhe classfying space functor this notion of
G-categories has been treated so far by many authors in equivariant
algebraic K-theory.(5],[11],[19] etc. - - -

I shall give in § 1, the procedure of constructing a split
G-calegory from our (pseudo) G-category. This is carried out by using
the Giraud construction [7] through the notion of fibered categories
over &. {The resulting one is called the split version.) This
construction makes {-catcgories the ones to which theory of §-spaces

in algebraic topology can be used effectively. I must note that even

though we are handling split G-categories from the first it is
important to apply the above construction to them by thinking of them
as our G-categories. Because the subject of theory of f-categories is
not the relation of a §G-category € with the KF-Tixed category CH for a
subgfoup d of &, but it is that of ¢ with the descended category

AHC. I show also in &% 4 that for ¢ SPthe split version of C the
both categories AHCSP and (CSp)H are equivalent to the original

descended category a,C. The useful ness of such preocedure is found

H
for instance in the work of Shimakawa [19] about the construction of

infinite G-deloopings of symmetric monoidal (split) G-categories.

I shall now give the organization of this paper. First we show
in § 2 that the notions of our G-categories and G-functors are
equivalent to those of fibered categories over £ and cartesian

functors over §. The idea of using fibered categories over § in



equivariani algebraic K-theory is due to Frihlieh-Wall [6][26]. Thes
used the term of stable G-graded categoriecs, But I think Lhat to
formulate G-calegories in theory of fibecred categorics is appropriate
for the nature of the theory. Moreover when a fibered category D over

G 1s assocciated with a G-category (Cia ., a Yy itis shown that the

s, t
representation category Rep(G,DP) of Frdhlich-Wall (ibid.) is
equivalent Lo our descended category AGC.

If the situation is exchanged to a subgroup # of G, the above
representation categories (relative to }) become delicate to deal
with, In particular this is the case when applied to¢ induction theory.
So I introduce in § 3 a new representation category which is natural.
It is shown that this new representation category is eguivalent to the
old one, This result turns out to be important later. (§ 4, § 8)

G-categories could be interpreted as pseudo functors from the
category 6 to the 2-category Cat of small categories. We get the
notions of lax G-categories and split G-categories by replacing the
pseudo functors by weaker lax functor and by stronger (strict)
functors. After noting that the descended category of a G-category is
equivalent to a lax limit over G, I investigate the relation of
G-categories with split G-categories. The content is such as
mentioned in the above third problem. {(§ 4)

As a next topic we shall study G-categories with further
structures. The equivariant version of a category with same
structures (e.g. an exact G-category) goes through in the simple and
natural form in our theory of G~categories. For a pseudo functor we

may only exchange the target Cat with relevant 2-category. The



inheritance of structure in question to the limitl categories {(e.g.
the descended category) can be proven in a natural way. By way of
illustration exact G-categories are explained in § 5. Fundamental
process is similar for symmetric monoidal G-categories and simplicial
G-categories which are not dealt with in this paper.

It is shown in § 6 that for finite & a fibered category over &
induces a Mackey functor in representation theory. By means of the
notion of the new representation category in § 3 ocur formulation such
as Mackey property and projection formula becomes much simpler. This
resull generalizes the work of Dress-Kuku [3].

In & 7T we shall discuss about the connection between G-categories
and OG—categories. The latter is the other notion like a G-category.
An Oc—category is the one given a category for each subgroup ¥ of §
in a compatible manner and it is a main question to rediscover them
up to homotopy as the K-fixed category of a certain {G-category. This
shéll be done parallel to the work of Elmendorf [4] about the
relation between {-spaces and Oc—spaces. The classifying space of our
construction U from Oc—categories to split G-categories reduces to
the Elmendorf construction C.

In the last section we shall study adjoint relations between
functors connecting various notions of G-categories. This resarch
seems to become usefull for applications of G-categories.

Finally note that T establish definite relations between all
G~categories which appeared or unappeared in papers subject to
equivariant algebraic K-theory. Our theory of G-categories provides a

comprehensive and natural treatment of categories with group actions.



It is expected that this theory is used not only for the equivariant
theory of algebraic K-theory, but also for many fields pertaining to
group actions on categories. But it is the point at issue to face a
difficult preoblem called homotopy limit problem by R.Thomason [24]
when we are going to use rich tools in algebraic topology. This is
one of the most important questions following this paper in theory of
L-categories.

Fix some notations. Let G be a group. We can regard G as a
category, denoted the same letter . The category { has only one
object - and the morphisms of & are elements of the group &. For two
elements g,t of & the composition of s with ¢t is denoted by ts. The
opposite category 6¢°P in which the composition of 5 with ¢t is st is

equivalent to & by the correspondence g « 3_1.

§ 2. Categories with G-descent data and (ibered categories over G
Regarding a group § as a category G with only one object - and

with elements of &4 as morphisms, we can think of a G-category (= a
category with a G-descent datum) in § 1 as a pseudo functor from 4 to
the 2-category Cat of small categories. Then by the classical
relation between pseudo functors and fibered categories following
Grothendieck (Cf. SGA{[21]) a G-category provides a fibered category
over §. The notion of fibered categories is fruitfull and becomes a
key stone of the development of our theory. Further we show that

G-functors are correspondent to cartesian functors of fibered



categories. Since our inlterest is in descent theory, it is more
important to establish the correspondence between Lhose limit
categories; the descended category of a {-category and the
representation category of a fibered category over . The notion of
representation categories is a generalization of that of categories of
representation modules and is due to F.Frdéhlich-C.T.C.Wall [B].

Since a group is a groupoid (= a category whose morphisms are all
isomorphisms) as a catcgory, the isomorphism of categories betwecn 4
and GOp given by g +— s_l gives us the transition of the discusion
below to pseudo opfunctor and cofibered categories and all the
arguments become equivalent,

Definition 2.1 (SGA [21]), For a category F over E, m ! F — E
a morphism m : X — Y of F is said to be a cartesian morphism if for
any object Z over m(X) the assigment ql—meq provides a bijection
Homp . (Z,X} = Homp —(my (Z,Y)
where {d denotes the identity morphism of =n(m) and
Homp (X,v) = { f € Homp(X,Y) 5 n(f) = g}
Note that every isomorphism is obviously a cartesian morphism,

A category F is prefibered over E if for any morphism
g ! & — p of E and any object Y of F over n there are an object X of
F over £ and a cartesian morphism f : X — v of F over g.

Forn: F— E is said to be a fibered category over E if it is
prefibered over F and the compositions of cartesian morphisms are
cartesian.

Definition 2.2, Given two fibered categories over E, nm : F — E and

! Fl— E, a functor 4 : F — F/ is said to be a cartesian functor



over £ if it is a functor over £ i.@¢. m = n’s 4 and it sends cartesian
morphisms of F to cartesian morphisms of F’. Note that if F is a
groupoid the latter condition is unneccesary.

CartE(F,F’) denotes the category of cartesian functeors from F to
F’ over £ and natural transformations ¢ : u — u’ saotisfying

ntg) = ddexy

for any object X in F.

Given a fibered catcgory nn ¢ F — E and an object & of E ihe
fiber m—l{g) of m at £ is defined to be a category whose objects are
objects X of F such that n(X}) = £ and whose morphisms are morphisms f

of F such that n(f)} = id Consider the correspondence which

£
specifies the fiber npl(g) for an object & of E and the functor
n_l{n) — n_l{g) determined by the prefiberedness of F for a morphism
E — n of E. Then it follows from the fiberedness of F that there 1is
a natural isomorphism satisfying certain coherence conditions between
that functor correspondent to the composition of morphisms of E and
the composition of those functors. Thus we obtain a pseudo functor
from EOP to Cat. (Such datum is called a cleavage in SGA[21]1.)
Conversely the Grothendieck construction malkes a fibered category
over F from a pseudo functor E°P o cat.

We will observe precisely on these details in the case of E = G.
Definition 2.3 {Frchlich-Walll6]), Take a fibered category
Yy + D — G over §. A morphism f of D such that y(f) = 5 (s€Q) is
called a morphism of grade 5. Ker D denctes the unique fiber y_l(-}
of y. This category is equivalent to CartG{I,D} where 1 denotes the

ponctual category (= the category with only one objecct and one



morphism). To be more precise the objects of Ker ) arc equal to the
objects of D and the morphisms of Ker D are morphisms of J of grade e
where ¢ is the identity element of &. Let (?s’cs,t) be the normalized
cleavage defined by the fibered structure of v.{Cf.[21]1) Explicitly
for every g€ there is an equivalence of categories

vy ¢ Ker D — Ker D

such that Yo T rdker D and for every pair g,t € &G there is a natural

isomorphism of grade e

Cg,t - Ti*¥g ™ Ygt

such that
ey ¢ = Ld?s 2 e, g (s € &)
Cs,tu°(ct,u*?s} cst,ao{?u*cs,t) (s,t,u € G)

A set of morphisms of transport | } is given as follows. For an

3

X cs, X

objectAof D and s € § one has a cartesian morphism of grade s
E’s,)( : ?sx = X

corresponding to a morphism of grade e id : YSX — ?SX- And they

satisfy the following properties.

a) For any object X of D

Se,x T tdy
b} For any morphism » : X — x’ of Ker D and s € @
uo%S‘:X = E"S:X’ors(v]
c}For any object X of D and s5,t € &
)

Ss,x°Ft, v x T (

E’St:xo CS’ t° X
Note in general that for a category F over E a fibered structure

determines a normelized cleavage and a set of morphisms of transport,

and conversely that one of a normalized cleavage and a set of



morphisms of transport determines the other and a fibered category
structure. The correspondence between pseudo functeors and fibered
categories is well-known, but in order to describe the equivalence
between limit categories cartesian morphisms gg’ s turn to be

X
usefull.

Definition 2.4 (Fréhlich-Wall[6]), The limit category of a Tibered
category v ¢ D - G 1s given by the category of cartesian sections ;

Rep D (= Rep(G,D) ) = Cart,(G,D)
This is called the representation category of a fibered category D
over £. The terminoclogy comes from the following fact. When ¢ {(or D)
is trivial i.e. ¥ = pry D=4ax C — 4G,

Rep D 2 Funl(G,C)
where Fun{G,C) is the functor category from G to ¢ whose objects are
G-representations in C.

Letus write down explicitly the category Rep D. An object of
Rep D is a pair {X, @) where X is an object of D and ¢ is a group
homomorphism & — AutpX such that @(s) is an automorphism of grade s
for any s € 4. A morphism (X, ¢) — (X’,w’) of Rep D is given by a
morphism f @ X — X’ of D of grade e such that

o/ ‘s)ef = fogpls) (s € G)

Under those definitions we have

Theorem 2.5, (1) Let £ be a category with a G-descent datum
(as’as,t) {= a G-category in §1 ). Then there is a fibered category O
over & satisfying equivalences of categories

Ker Dx C , Rep D = &p0

(2) If v : D — & is a fibered category over ¢ then Ker D has a



Li-descent datum satisfying an equivalence
aGKer D ¥ Rep D
Proof, (1) We will construct a category p with the desired properties,
Take ob D = ob €. For two objects X, Y
_ 1L
HomD(X, Y) = Sed HomD,S(X, Y)

Hom (X, Y = Hom.{X, Y) {the morphisms of grade g)
D’S C 5_1

The composition of morphisms

1 a
HomD,S{X! Y X homD’th, Z} i HomD,tS(X’ Z): {fi g) — g f
is defined as follows. For f ! ¥ — ¢« _1Y and g ! Y — o —IZ
s t
-1
o -1{g) {a -1 ,-1)
gef X L, @ _47 ~E % 12 —s ot ® _1 _1Z
3 s t s 't
= o 12
(tz) L

Thus one has a category [ over §.

Next id € Homc{u X = _IX} defines a morphism of grade s in D
s s

Eg,x F ¥ X — &
2
and 1t is easily shown that a set { gs ¥ } satisfies the conditions
»

similar to {(a) ~ (c) which are satisfied by { %s ¥ } in Definition

2.3,
So put
Vg T & gy Cg = la g —1’_1' S5, 7 bs,x
o ¥ t ; o H 4
then it (s verified that (ys, e t) is a normalized cleavage of D and

{gs ¥ } is a set of morphisms of transport. It is clear that

To construct an equivalence between aGC and Rep D take an object

(X, (AS)} of 5cC For s € G put



pl{g) = £g,x° Aol
then ¢@(s) is an autmorphism ol ¥ of grade s and ¢ : G — Auth is a

group homomorphism as follows;

1

H

plst) Est,,ii°*(st}_

=1

* Est,x °(Cs,t}x °(05,t)x o ay-lg-1

= E, po & ola _ IRV T
8, X t,?sX + 1 e 1'x% ¢ 1(_' 1

e ¥ b=

= £ s £ oot_(l_}")\_ﬁ
S;X t)"}’sx t;l Sl tl

= Eg,xcrgle &y xoayl
= @ls) e p(t)
Thus we have an object (X, ) of Rep D. As regards morphisms if

(X, (AS}},{X’,{A;)} are objects of ALC and v : X — X' is a morphism

of grade ¢ such that

Asouzastv)o,\s (s € &),
putting
! - o 1 - I _
w{g) {(resp. o' (g}) = ES,X Xg 1 (resp. gs,xroks 1)
we have
/ - ’
P (g)e v = E—'s,x"’*31°”

£, gt vglulea -l
= vekg g ag-l
= pepls)

Thus we obtain a functor &GC — Rep D. It is possible to follow
up the converse of the above construction and so we have an
equivalence of categories

Rep D X 4.0
{2}y Given a fibered category | D — & with a normalized cleavage

(v ) put

s’ s, t



Yhen ane has o G-descen! ddn
erpdivalence hetveen .:»._:K;'.“ D ound Regp Doz Throngh e dbn D1YL0 w0
We o chall nons <hen thay S-Tunctors  oviespond Lo carlesia
Conctory winder the covrespendenc s Lelveen G-oa! geries and Fibered
cawegollies over 4 1o Theorem 2,3,
Theorem 2,6, {1} Let L ¢ B — & a category over . A cartesian
functor
Fi(y:D—G) — (v : D/ — &)
of fibered categories over & induces naturally a functor
Cart (B, F) : Carty(B, D) — Cartn(8, D)
In particular we have natural functors
Ker F : Ker D — Ker D’ and
Rep F : Rep D — Rep D’
(2) When providig a G-descent datum on Ker D {(resp. Ker 0’y by
Theorem 2.5 (2), Ker F of {1) turns to be a -functor of G-categories.
(3} Given a &-functor
F ool ag, as,t) — (¢’ a;, aé’t)
of G-categories, F extends to a cartesian functor
F:i(y:D—G — (v/ : D/ — 0
where v 1 D — & {resp. v/ : D/ — ¢) is a fibered category over &
associated to (L as’as,t) (resp. (€% «’,a’ ,)) by Theorem 2.5.

S s, L
Proof, (1) The functor CartG(B, F) is given by

(B 24 D) — (B £28 p7).
Take B = 1 {(resp. G}, and the result for Ker (resp. Rep) follows.

{2) We can write down the conditions of being a cartesian functor by



using the cleavages of fibered categories in theory of f{ibered
categories {Cf. Gray [91p33). This implies that the restriction of a
cartesian functor to the fibers Ker satisfies the conditions of the
definition of a &-fTunctor,
{3) Letus construct a cartesian functeor F : D — p’ from a G-Tunctor
F : C — ¢'. For an object x of D put FX = FX. If m ¢ X — Y is a
morphism of grade g in D there is a morphism n @ X — as—lY of C.
Let Fm ¢ FX — FY be a morphism of grade s of D’ correspondent to the
following composition in ¢

Fx LR pee -1 v LEb al-1aFY
It follows easily from the conditions of the definition of a
G-functor and the fact used in (2) that the functor F defined above
becomes a cartesian functor, q.e.d,

Fib{(G) denotes the 2-category of fibered categories and cartesian
functors together with 2-arrows which are defined to correspond to
2-arrows of Des(&) in § 1 under the correspondence of Thecrems 2.5,
2.6. Then Fib(G) is 2-equivalent to Des{{) and we may identify the

two 2-categories.



§ 3. Change of groups

In this section I shall give the definitions and properties
of the representation categories for a group } exchanged from G&.
At first we state the definition of Rep(H, D) given by
Frohlich-wWall [6]. But this is inconvenient from the lack of
functoriality. So we adopt a new definition of the
representation categories

Repl(H, D} = Cart (G/H, D)
For H = G, &eplG, D) = Repl(G, D) and for general H# there is an
equivalence

Rep(H, D)~ Replil, D)
For H = (e} this equivalence has the form

Ker D X Car%((.‘__/-__g, D)

and plays an important role in the next section.

Lemma and Definition 3.1, (1) For a fibered category
¥ ¢ D — & over § with a normalized cleavage (ys, Cg t) and a
group homomorphism A ! H# — &4 the category over ¥

pri ¢ #H Xo D — X
is a fibered category over ¥ and
Rep(i Xpn D) = Cart (H, D)
holds. This category is denoted by Repl(#, D).

(2} For a G-category (C; o _,a } and homomorphism h ! # — G

5 8, ¢t
(C; ah(s)’ahis),h(t}} is a H-category. This descended category
is denoted by aHC-
Proofl, (1) We shall discribe in term of cleavages. We may take

(Yh(S)’Ch(s},h(t)) as a normalized cleavage for H :KCD — H. To



show the latter category ecquivalence consider the diagram

H Xog D ——— D

2
119 .- g l'r

H R > G

The correspondence between functors
g : H— D and g : 4 —s H X oD
such that g{-) = (-, g(-)), glg) = (g, gls)) gives the desired
equivalence.
2 Trivial. qg.e.d.
Theorems 2.5, 2.6 in the previous section can be
immediately generalized to the present case.Let } be a subgroup of (.
Proposition 3.2, (1) When a G-category (&) o as,t} and a
fibered category D ~— & over { are under the correspondence in

Thecrem 2.5 there is an equivalence

sy ® Repli, D)

(2) A cartesian functor F ! D —s D} over { of fibered categories
over G (resp. a G-functor F : € —— £/) induces functors in a natural
way

Rep(H#, FY : Repl#d, D) — Rep(i,D’)
(resp. ApF @ b€ — AHC’}

We shall here provide some notations of categories which cccur
from a group &. These categories play a central role from now on.
Definition 3.3. For a (left) &G-set S the category § has elements of
S as objects and the morphisms of 5 from z to z’/ are elements g of &
such that gz = z/; i.e. ok g = Sy mor § = GX§S. There is a functor

g ! 5 — G



on objects olz) = - for =z € 5 = ob §
on morphisms ole “2EL, g4) = a for £ € 5, a € G,
Thus we have a category over &. (Not fibered!) We often use the

/H# for subgroups ¥ of &. In special cases

&

categories

oy

ﬁéﬁ =
G/le = -/G (= the comma category of & under -}
The latter is also equal to the one called Lhe translation category
of G.

We use these notions to define a new representation category.
Lemma and Definition 3.4. For a fibered category v : D — & over §
and a (left) -set $ there is an eguivalence

Cartpls, DY % Cart Sec(S XoD)
where Cart Sec(g XCD) is the category of cartesian sections of a
fibered category pry ¢ g XGD —_— g. Define for 5 = &G/H

Rep(H, D) = Cartp(G/H#, D).
Proof. Similar to Lemma 3.1.
. Since gég = 4 we have Rep(&G, D) = Rep{G, D). In general we will
show Rep(l, D) % ReplH, D).
Theorem 3.5. For a fibered category v : D — § over § and a
subgroup # of & there is an eguivalence of categories

Cartclf{_:;/__.i{, D) =~ Cartcl{lh‘, D)

Rep(H, D) Rep(H, D)

Proof. We shall first define a canonical functor

p . CartC{G/H, Dy —— CartG(H, D}

Assign on objects



()

G/ X p " g 9Lk L p
&G G
) klell)
plk} (lh) — ( lk(h,GH)
: kel

where (h, eH) : el — hel = eli for h € |
k { &)
(ggg iA*D)F—ﬂ—a(H 1w(iTD)
k' ol k7
p{a) = Xy - kleld) — k/{el)}

On the other sidc a functor

W D)

is not canonical.

CartctH, Dy — Cartc( G/l

representatives { g; }LEI of G/H.
I _ﬂ_q D géﬁ_.ﬂgu).hp
~y
G
A ?g__lu{-)
ylu) lg —s b
g .H ¥ flu(-)
J Qj_
where (g, g, #) g — gl = g,
morphism w(u)(g,giH) Y _quls) — Vg

i
following commutative square

. g'-llu(‘),. .
?91'1u( ) i > u( )
: wlg
: . Qj g9
Y
vy opul) gpmlouled, (.
9 .
J
accomplished by the fact that S -1, ul-
J

Assign on morphisms

i,

hen -
ce g,

J

)

Also on morphisms

This is determined for each choice of

Assign on objects

lggi € }{ and the

_qul-) is determined by the

)

i

is a cartesian morphism.



U {u)
T vrendl) |—"”—¢(G/H I D)
o =i 0 )t a St

where for each g, H € ob G/H

i) = v, o_qflw) vy, _qulr) — v, _qu )
QLH 9'1'.1 91'.1 gﬂl

Then it is clear that ¢ oy = Also there is a natural

Id s >
CartC(H, D)
transformation

— Yt o @

A Tdggpy (QLE, D)
For (G/H * D) € ob Cartc(__L_ D) a morphism
Ry Lok ¥eolk)
of Cartc(géﬁ, D} is given as follows. For gﬂH € ob gég

ink)g,H Coklg H) —— rg__lk(eh’} = (t#uc.a(k})(giﬂ)
L L

is defined by the commutative triangle

k(giﬁ) \k(g.i—l,gi'm
: - k(eH)
M E 'Lk(eH)

i
obtained by the cartesianness of Egi—l,k{eﬁ)'

Since k(gi—l, giH) is an isomorphism Ny is an isomorphism for any

k. The naturality of p5 is shown from the following commutative

diagram
kig.-1) E_ _
(g ) ——L s k(en) —ZTh kel
i 9;
l rg. H l A eH l ?Hi—l(leﬁ) = yep( )
k’{g 1)

’{g H)—L " gk (en) —8i2L

deduced from any morphism x : k —— k/ of CartG(G/ y D).

Note that since (nk}eH = id the image of p by ¢ is the identity



and that 5 is the identity on Lhe image of . These show that ¢ is
left adjoint to y. Further as np is a natural isomorphism ¢ 1is inverse
to . Therefore we have the desired equivalence of categories. g.e.d.

It is more important when ¥ = e. Though itis a special case of
the above theorem we shall here rencote it to take advantage in the
next section,

Corollary 3.6, Let {({; « a L} be a G-category and ¥y 3 D — G the

asscciated fibered category over . Then there exists an cquivalence
of categories

@ : CartniG/le, D) -2 L.
Proof, We shall write explicitly the functor ¢ and the quasi-inverse
functor ¢ in spite of a special case of Lhe theorem. The functor

@ Cartc(gég, D) — ¢
is given by

(G/e "%—I4 D) — (kif) )

= k7 k' (&)
and the functor

¥ 1 C — Cart (G/e, D)

is given by

(i) (222 e )

where
@ a a
(X)) (resp. ¥(Y)) : (¢ 9)  — + (resp. i) }
ga
l\(r[.u}a = Ya—l(#)

Remar)k that the choice of representatives does not occur, hence ¥ is

alsc canonical. The rest of the proof is as in Theorem 3.5. g.e.d.



§ 4. Split G-categories

I mentioned in § 2 that a G-category was considered as a pseudo
functor from & to Cat. 2-functors from a category to a 2-category are
classified primarily to three classes —— lax, pseudo and strict
functors by means of conditions relative to compositions {e.g. g ¢
in a G-category). It is a main object in this section to give Lhe
relations between those notions of 2-functors on G. First it s shown
that a lax colimit of a G-category is equivalent to the descended
category. And we shall state the relation of G-categories with split
G-categories (= strict functors from & to Caqt}. For this we may use
the Giraud construction (Giraud [7]) which associates a strict
functor on G with a fibered category over &G. Remark that applied to a
pseudo functor the one called the Street first construction or
Kleisli rectification which sends lax functors to strict functors is
equivalent to the Giraud construction. A split G-category has two
kinds of limit categories; the descended category considered as a
pseudo G-category and the category which consists of G~Tixed objects
and §-fixed morphisms. It is also shown that those are equivalent only
for the G-category deduced from a fibered catltegory over S0 We bhedin
by defining various 2-functors
Delinition 1.1, For a valtegory £ and 2-cvalegory €, oo layx Tunchor

@ ! F —— €

18 w0 pair of Tunctions which nssign an objeet wlial o C 1o «on-h
object @ of E and an l-arrow altl 1 wla) ~— «lz} of € '3 cach
morphism ¢ 1o —— & of E together wilh Z2-arroves of £

i Vol id ) — i

‘a L1ty L)



vt e L e i ute (L)
Pe .

for cach identity morphism Lda i a — a of F and each composilion

a t b —=— ¢ of morphisms of E such that the following diagrams of

l-arrows of C commute;

Fra I .
oo t) e—dbda® ooy TEr i iyl i )

ol idy N
zb*a[zThhﬂahhhhhi l :4//,/~f67;3*;a
wl L)
“ o ]
wlveset) Yrsvl wlwlew{sget)
l Hyes, t l xtwitng ¢
u, S*a(t}
a{vosleal t) : cafvlew!slewll)
Further a lax functor o is called a pseudo functor if ty id

for any object a of E and Hoo g is an isomorphism for every composable
pair (s, t) of morphisms of E. And also a pseudo functor « is called a
strict functor if T id for any composable pair (s,t} of
morphisms of E£. Regarding the 2-category C as a category by
forgetting the 2-arrows this turns to be an usual functor from E to C.

Now Cat denotes an 2-category in which objects are small
categories, l-arrows are functors and 2Z-arrows are natural
transformations.
Definition 4.2, A G-category was a pseudo functor from &§ to Cat. A
lax functor § —— Cat is called a lax G-category and a strict
functor § —— Cat is called a split G~category. A strict functor
satisfying wl{s) - id for all 5 € & is called a trivial G-category.

Then

a trivial G-category == a split G-category

—>» a L-category —= a lax {-category



and Turther by the result of § 2
a G-category & a fibered category over &
Now we will define various -functors. Though they corespond to
lax natural transformations, pseudo natural transformations and

(usual) natural transformations we write down explicitly

Definition 4,3. Let a, o/ : § —— Cat be two lax G-categories. A
lax &-functor t : o ——x’ is a functor
F=t, @ al) — /()

of categories together with a natural transformation

g * Fo(s) —— a’lsg)eF

to each g € 6§ and a natural trasformation
i Fte —— (f Flean,

such that the following diagrams of functors commute;

F¥p n_¥oft)
Foo{st) —S:t, Fea(s)leo(t) —2—— s o/ (3)o Foct{t}
l Mot l m’(s}*nt
!
af (st)e F uSi*F — a’{s)ect/ (L)oo F
When i = {d and g is a natural iscmorphism for every s € G, such
functor was called a G-functor (€f. § 1). Further when ng id

for every s € G, it’s called a split G-functor. This is a (usual)
natural transformation between (usual) functors from § to Cat.

At first we shall see that the limit categories for lax and
pseudo G-categories coincide.
Theorem 4.4, Let ¢ ¢ § — Cat be a pseudo functor i.e. putting

() = €, (s} = w_ and Bg, ¢ = Qg ¢ (C; o

s ) as,t) is a f-category.

S

Then we have an equivalence

Lac &Lmit o A AGC

._..27_



where bGC is the descended category of a G-category C.
Proof. Consider the forgetful functor
J o ¢GC —_— i, (X:{:LS)) — X
Then for each t € G a natural isomorphism
. . . . . o -1

is defined and the following a),b) hold.

a) jle) = Ldj
b) Fltu) e (at,u_ ¥7) = J0t) o Lo ¥g(u))
a) is followed by A, = id. b} is deduced from the facts;
(a ) -1 A, 7t
. _1 . 1 — t,U, X tU.
{J(tu)O(at,u *J);(X, (*s)) = (mtaux — " oy X ——— X)
-1 -1
' i ' ) oplag, ) X¢ :
{7l t) (at*J(u))}{X’ (As)) = (atmux _ atX _ ¥

and the conditions with respect to (AS) in the definition of ApC

{see 1.8).
Now given any category C/ and a functor k : C,——ﬁ C together

with a natural isomorphism
k(t) : a8°k —_— K
to each t € G such that conditions
a) kle) = Ldk
b) k(twela, 718 k) = k(e)e (a,bklu))

are satisfied. Then define a functor

L ¢l —— 2L 1
on objects t{Y) = (k{Y}, (k(S]Y— 1), Y € ob C
on morphisms (Y 2> v/) = xlg), g € mor O

then one has



k = jal

k(s) = jls)¥xi
These facts show that the descended category ﬁGC is a lax limit for a
lax functor o ¢ G — Cat. q.e.d.

We shall now describe the relation between G-categories {or
equivalently fibered categories over § in the view of § 2) and split
G-categories., This is the main theme of this section.

Let Sptit(G) (resp. Pseudo(l}} denotes the category of split
G-categories (resp. G-categories) and split G-functors (resp.
G-functors}). We will regard the 2-category Fib{(G) in & 2 (resp.
Des!&) in § 1) as a category by forgetting the 2-arrows. We know

Pseudo(G) = Des{G) and Split(G) C Pseudol(G)
We verified in § 2

Des(G) =~ Fib(G)
Remark that the equivalence Des{g) X, Fib{G) constructed essentially
in 2.5, 2.6 is got from the usual Grothendieck construction
Pseudo{GOp) —— Fib{&) by exchanging the compositions Gop — G .
Restricting this functor to SplLit{G) we have a functor

® : Split(G) —— Fib{QG)
An object of the essential image of ¢ is called a split fibered
category over &. (all cg, ¢ are identities. Cf. § 2) We shall
construct a functor opposite to o.

Begin with a G-category (C; « ’as,t) or eguivalently a pseudo

S8

functor o : G —— Cat such that () = €, wx(s) = o This corresponds

to a fibered category v : D — § with a normalized cleavage

(?S, Cs,t} by Theorem 2.5. Recall that Yy = as_1 p Cg,t T



-1

(a -1 _1) . Define
t y 5
c®P = Cart.(G/e, D)
«°P 1 ¢ — cat
on objects «“ Py = P
,
on morphisms a“Pls) @ (6/e I D) s (G/e —Os D)
) nus)
where n’ l(a,u)) — ! onla,us)
al nlaus)
Tor a morphism {(g,u) : ¥ — au of G/e

Take another G-category {C’;aé aé t) and the asscociated fibered

L L
category y’ ) J—— &. For a cartesian functor F @ ) — D/ over §
a functor FSp : CSp iy

—s is defined by taking the compositicn

with F. Then

Lemma 1.5. aSp is a striet functor, hence (CSp; aSp{s)) is a split
G-category and FSp is a split G-functor.

Proof, For any s,t € G, any k : géﬁ — D and u € ob G/e

(«"Plst)k) (u)

klust) = ("Pt)k) (us)

1P () (&SPt k) Y ()

hence
Plst)k = «"Pls)(o"Pt)k)

Further the actions on morphisms are similar, therefore
«“Pist) = «®P(s)e «°P(¢)

On the other hand for (k : gig — D) € ob CSP and any 8 € §
o’ SP(5)o FSP(k) = «/®P(s)(Fok) = Fek(s) = F°P(k(s))

= F°Pe o®P(s) (k)
which implies F°P is a split G-functor. qg.a.d.
Therefore one has a functor

S ¢ FiblG) —— SplLitlG)



on objects  Sly : D — G) = (C°P; o®Ps))

on morphisms S(F : D — D’) = (F°P . ¢SP , '5Py
Also ?sp : D°PY — (¢ denotes the {split) fibered category over §
associated to the split G-category (CSp; aSp(s}} by Theorem 2.5.
Delinition 4.6, CSp, uSp, rSp : D°P — g and F°P . PP, ¢r®P
are called respectively the split version of €, @, v ¢ D — & and
F : ¢ — ¢’/ where F is the restriction of F to the fibers.

For those objects the following theorem is fundamental., This is
essentially due to Giraud[7]. Here we shall use the results of § 3 to
give another proof over the base ¢.

Theorem 4.7. (1) There is a functor
 t woesS(D) = P —— p

which i1s a fiber equivalence over .
{2) § is right adjoint to o.

Proof, (1) Consider the equivalence ¢ in the proof of Corollary 3.6.

c°P = cartplgle, D) E— C

o [ -1
Put v, = x,-1 1 € — C and Tg = & Pis™

object (k : G/e — P) of CSp one has

Csp _— Csp. For any

Yoo plk) = Ysk(e)
— _ -1
P o ?S{k) = kis 7}

However there are morphisms of D

Eg kle) + Ygkle) — k(e)
k(s,s™h) ¢ kis™h — k(e
which are isomorphisms. Since £ xle) is a cartesian merphism there
¥

is an isomorphism

-1
by g ¢ kls 71— v kle)



To verify that tg k’s define a natural isomorphisn
H
§3

take a morphism 1 @ k — k7 of c®P = CartG(G/e, D) and sec the

—

Yoo — Doy,
L) e

assignements by Yoo and @ e vy
P

Psk(e) — rsk/{e}}

- - . -1 / -1
¢ a}S(l) = (a1 kis ) — k'(s )

Y. oo wla) = (}'SA

8 (=

Then it follows from the commutative diagram

yokle) —— kle) e—— k(s ")

l Yste l o l rgT1

rsk’{e) — kM e) —— k’(s-l)

that tg is a natural transformation.
Thus (¢, ;S) is a G-functor from CSp to €. It follows from
Theorem 2.6 that there is a cartesian functor

¢ : D°F

~— D
But the restriction of ¢ to the fibers is ¢ which is an equivalence
of categories by Corcllary 3.6. It follows from [21] Propesition 6.10
that the cartesian functor ¢ is a fiber equivalence.
(2) (1) implies that there is a natural transformation
oS — ldpip(g)

which is denoted by the same letter ¢.

Consider ¥ in the proof of Ceorollary 3.6. Take Yg and ?; as in
{1). Here we assume that ¢ (or «) is split. That is

Yst = Tt %s
For any object X of ¢ and any ¥ € ob G/e

?Sow(x) -1 x)

W an{X)

{y — Y(S'U,)

(1 }— Yu—lys-l X}



Similarily for morphisms. So
Ygo ¥ = ¥o v,
Thus we have a natural transformation
ldgpiiticy P eew
All that remains is to show the commutativity of the following

two triangles

PeSe

et
e e

i
m*/ N’ﬁm
¢ ¢
S s
wy' N@a
5 L S

Both of them are obtained from the fact
poy = I 1 C —— C

by reducing the problem to that on fibers. G.-e.-cd.

Corollary 4.8. Let the notations be as above. There are eguivalences

P = ¢

sp .,
AGC ot AGC
SPy A~

Rep(G, D7) & Repl(G, D)

Proof, Theorem 4.7 (1) implies
-1 -1
(PP x T )

o~

Cart SeelG, D°F) » cart Seclc, D)
However we know

¢ = ger p°P = (°P)71(.)
C = Ker D = ?—1(-}

2. C5P % Reptc, D°P) = cart Secta, D°F)

S P



AL X ReplG, D) = Cart SeeclG, D)
These show the desired results. q.e.d.

Next we shall state the results for subgroups ¥ of G. To do this
for a split G-category (C; as} i.e. a functor @ | § — Cat , o(:) =
C, wis) = o, We define another limit category different from the
descended category ARG
Definition 4.9. For a split g-category (£; o) and a subgroup # of &

s
the H-Tixed category CH is defined te he a category which consisisorl

H-Tixed objects and Y-fixed morphisms ol &.

A key result is following.
Proposition 4.10, For a libered catedgory v @ D —s & over § andd o
subgroup ¥ of & the natural functor

SuPtG(G/H; DY ——a Cartcfﬁfz: D)

induced hy the nalurnl projecilon G/ —— G770 provides wn Jsomorphism
af categorics

Cart (G/E, D) - Cart,(G/e, p)¥
Proof, It is clear from the definitions.
Corollary 4.11. Let (&) o, as,t} be a {(not necessarily split}
GC-categoy and p D — &£ be the associated fibered category over 4.
CSP, usp, 0°P and ?Sp denote as above. Then there are equivalences of

categories for a subgroup ¥ of G

I~ Sp H ~ Sp
Prool, It follows from Proposition 3.2, Theorem 3.5 and
Propesition 4.10 that

5,C % Rep(d, D) ® Rep(H, D) = Cart (G/H, D)
2 (oSPHH



. . - s . .
On the other side since ¢ @ D P p was a fiber equivalence we have

cartptd, DY) x Cartplil, D)

which implies as in Corollary 1.8

SP A .
A;{c Fa A‘I;C of . 2 do
Remark 4.12, Even though (&; o, a, t) is split an equivalence
PO
AHC ~ C
does not hold generally, because ¢ : CSp —— ¢ does not become a

split &-functor. The above corollary shows if a split G-category ¢
comes from a fibered category over ¢ f.e. C = CartG(G/e, D) an
equivalence

s, = o
helds.

§ 5. Exact G-categories

We have cosidered actions of ¢ on any categories until the last
section. The definition of G-categories for categories with certain
additional structures is as follows.

As a f-category is regarded as a pseudo Tunctor from § to Cat, we
may replace conly Cat by an adquate 2-category consisting of
categories with certain additional structures, functors and natural
transformations preserving the additional structures. Other objects
which we den’t handle in this paper, but which are important for

algebraic K-theory; symmetric monoidal G-categories, simplicial

—



G-categories and categories with actions of two kinds of groups ete.
all are done well by this method. In this section we deal in exact
G-categories and state the commutativity of Quillen’s Q-construction
with descended categories as a main result.

Delfinition 5.1. A G-category (& %1 @ t} is an additive {resp.

3,
abelian resp. exact} G-category if ¢ is an additive {resg. abelian
resp. exact) category and for every s € & o is an additive {regp.
exact resp. exact) functor,

Then an old limit category of a G-category taken in Cat is also a
new limit category taken in the 2-category of categories with certain
additional structures,

Proposition 5.2. Let (C; g as,t) be an additive {(resp. abelian
resp. exact) G-category, v ¢ D — G be the fibered category over §
associated to (C; as’as,t) by Theorem 2.5 and g : E — § be any
groupoid over &. Then CartG{E, D) turns to be an additive (resp.
abelian resp. exact) category in the natural manner.

Proof. The category CartC(E, D) has as objects functors n @ E — D
satisfying ve¢ n = g and as morphisms natural transformations

t : n — n! of grade e between those functors.

To show that CartC{E, D) becomes an additive or abelian category
according to D additive or abelian, we have to check the abelian
group structure of hom sets, the existence of a 0-object and
coproducts, the existence of kernels and cokernels, an isomorphism of
coimage with image and so on. The definitions of the desired cbjects

may work in obvious way by applying the correspondent constructicens

to the images of E. This procedure of proofs is long but routine, so



we will omit the details.

With respect to an exact G-category € our proof is as follows.
Embed £ into A (= the category of left exact functors on c®P to the
category Ab of abelian groups ) as a full subcategory. Then A has a
G-descent datum which is an extension of the one of €. B — C
denotes the fibered category over & assocliated to the &-category A.
The Tormer rcesult shows CartC(E, B} is an abelian category. Further
it s easy to show the existence of an embedding

Cart (E, D) —— Cart,(E, B)
and that the category in the left side is closed under extensions in
the category in the right side. It follows from Quillen [17] that
CartC(E, D) is an exact category. q.e.d.

By the results of § 4 we have easily
Corollary 5.3, Let (C; ms’as,t) be an additive (resp. abelian resp.
exact) &-category, vy ¢ D — € be the associated fibered category
over § and X be a subgroup of . Then various limit categories

a,Cs Replil, D), Rep(H, D), (CSP)# and AHCSP
are all additive {resp. abelian resp. exact) categories in natural
manners.

Now we shall state the relation with Quillen’s Q-construction
for exact categories,

Theorem 5.4, Let (C; as’as,t) be an exact G-category, y : D — &
bhe the associated fibered category over & by means of Theorem 2.5 and
€ : E — ¢ be any groupoid over &. Then

(1) The category QC has a natural structure of G-category.

{(2) 1If v : QfD —— & denotes the fibered category over § associated

o B



to the G-category @QC, then there exists an equivalence of categories

Q CartG{E, DY & CartG(E, QID}

Proof, (1) We shall define a natural G-descent datum (o _,a

5 s,t) on QC.

Note that the category Q€ has the same objects as ¢ and morphisms

X — X; in QC are isomorphism classes of (X « Z > > X’), where
~—— {(resp. ) denotes an admissible epimorphism (resp. an
admissible monomorphism), Here define an endofunctor for each s € &

ES P RC — Q¢

whose function on objects is the same as o and which sends a
morphism
an isomorphism class of (X «i— 7>t x/)
of QC to a morphism
@ () x (i)

an isomorphism class of (aSX w2 aSZ,- S uSX’)

of QC. We should remark that as g is an exact functor for every
s € 4 the image by o of an admissible epi {resp. an admissible mono)
is so. Also for sg,t € G
(ag ¢y + agX — aglaX)
on X € ob QC is given by an isomorphism class of

a
= r T
(aStX “— aStX>—~§——4 as(atx})

and it is seen immediately that g 's satisfy the conditions of a

s, t
G-descent datum.

(2) The objects of the category Q CartG(E, D) are functors

n - E — D over 4 and a morphism £ ! n — n’ of Q CartG(E, D) is an
isomorphism class of

(n «—— t »—— /)

in CartG(E, D) namely for each object @ of E an isomorphism class of

— B



diagrams

(n{a) «—— tla) >—— n/(a))
such that for any morphism m : ¢ — b of E a diagram
nla) «—— tla) — n’(a)
l nim) lg{m) l n’ (m)
alb) «—— tlb) ——— 0/ (b)
ig commutative. On the other hand the objects of CartG{E, QfD}
consist of functors 5 ;| E — QfD. The objects of QfD are same as
the objects of D and an isomorphism in QfD reduces to an isomorphism
in D, As E is a groupeid the functor 5 is identified with a functor
E — D,
Next letus cosider a morphism ¥ : § — ﬁ’ of CartG{E, QfDB. This
consists of morphisms of QC
tla) : fla) —— 7/(a)
for all a € ob E, which are compatible for every morphism of E. That
is to say it is given by an isomrphsm class of diagrams
(Ala) «— Xf(a) — 1 {(a))
for each @ € o0b E such that a diagram
Tla) «—— Xg(, ) = 7'(a)
lﬁ'h{l} l l'ﬁ"(m}
ni{b) w——r xf(b} —— F/(b)
is commutative for every morphism m : ¢ — b of E. Since E is a
groupoid the morphisms which appeared above are all isomorphisms,
hence we can use Xf(a)’s to make a functor x : E — I} such that
x(a) = Xg(q) for any a € ob E. Thus the morphisms of CarthE, QfD)

reduce to morphisms of Q CartG{E, D), too. The desired equivalence of



categories will follows.

q.e .

From this theorem we deduce the commutativity of Q-construction

with taking various limit categories of various G-categories

cosidered so far.

Corollary 5.5.

be as in Therorem 5.41.

(1) QReplH, D) % ReplH, QfD)

(2) QAHC ~ bHQC

(3) QReplH, DY % Repli, QD)

(1)  (QcSPy# ~ q(csPy¥

Proorl. {1) Take £ = F in Theorem 5.4.

Let (¢; as’as,t}’ Y

D — Gs QC and }’f

If # is a subgroup of ¢ then

(2) follows from equivalence Ayl = Rep(¥#, D} and (1).

{3)
(1)

Take E = G
From (3),

(QcSPy# =

mn

R

B4

/H in Theorem 5.4.

Proposition 4.10 and Theorem 4.12 we obtain

pyyf

(Cartglg/e, QD))"

(QCartG(C/e,

Cartc(gégs QfD}
QCart (G/H#, D)
QCartc(Qig, D)H
Q(csSPy#A

QfD — G



§ 6. Induction theory deduced from a G-category

The representation category Repl(H, D) cosidered in § 3 was an
analogue to the category of H-representations in Ker D. So we can
chase the analogous formulation of representation theory of finite
Eroups.

We can proceed with the arguments by defining restriction and
induction functors for Rep{H, D). The approach of Fréhlich-Walll[6]
was in such manner. But in this approach the definitions depend to
choices of representatives of cosets with respect to subgroups, hence
it is troublesome to check naturality. Therefore we will use

Rep(H, D) = Cart,(G/H, D).

This makes the argument functorial and formal.
We shall cnly refer to Mackey property and projection formula
which are fundamental tocols in representation theory. These results

generalize the results for trivial G-categories of Dress-Kukul[3] to
general G-categories which 1s not neccesarily split.

In this section we assume the group § is finite or profinite. We
consider the category Séin of finite §-sets and G-maps. To an object
S of Séin i.e. a finite §-set 5, we assign a category S whose
objects are elements of § and whose morphisms  — y {(z,yv € S) are
represented by pairs (g, )} such that gz = vy as in § 4. Further to a
morphism {(a -map)} ¢ ¢ S — T of Séin we assign a functor

$ 15— T

T ¢lx)
l(g;x) — l(9,¢($))
z/ ${x!)



where gz = z’/ hence g ¢(xz) = ¢l(gz) = ¢l(z’').
Let (C; Oy dg t} be an exact {-category and y : D — (G the
associated fibered category over & by means of Theorem 2.53. Extend

an_

the definition of EEB(H, D) for subgroups # of & to objects of SG

ReplS, D) = CartplS, D)
It follows from Proposition 5.2 that the category Rep(S, D) is an
exact category for any S. We shall now define restriction and
induction functors between them.
Delinition 6.1, For a morphism ¢ : S — T of Séin there are exact

functors between Repl(S, D) and Rep(T, D}

Rep(T, D) Rep{S, D)
oF
6 (T —2— p) = (s -22&, p)
namely
T ni¢(z))
4 (I —Ims D) l(g,:c) — | Jatgea)
<’/ alel{z’))

where z,x €S and ge§ such that gz = z .

¥ @__1 ;(:’J)
ced T {y)
o¥(s —E by l(g,y) —_— l ® tig,x)
y t{xz’)

©_y
o/e¢ " (y’)
where v,y /€T and ge{ such that gy = y/. We can take z,z/€S such that

gz = x/ by exchanging appropriately an order of @ if neccesary. Hence
X . . .
¢ 1s determined up to a natural isomorphism.
X . . . .
We note that ¢y {resp. ¢ } is corresponding to restriction (resp.

induction}.



Proposition 6.2, (1) For a composition S . r ¥,y of morphisms
of Séin
(\5‘° ¢')t = ¢*°\,[‘*
X ~t * ¥
(Yo @) = ¥ o ¢
{2) If SLLT denotes the coproduct (= disjoint union) of S and T in

Sétn there is an equivalence

Rep(SUT, D} & ReplsS, Dix Ropil, !

(31 TE o morphisa e T o T ls oan imemorg hlma ?i’: gy byl
o
isomevphian »f categorics
by ¢ Repll, D) B JIpls, D
Prool, {1} ia olong

(n ¢ 8T — D) —— (nlS : S — D, pll : T — D)

gives the desired equivalence,
(3) follows from the first formula of (1).

Proposition 6.3 (Pull-Back Formula), Let §;, S, and T be objects of
Séin and by ¢ 81 —— T and $o 82 —— T be maps of Sgin. Make a

pull-back diagram

St Xp S — 3
[ |+

where S1 Xy Sp = [la,b)| a€Sy, beS,y, ¢;(a) = #,(b)}
¥1 ¢ Sy Xy Sp —— Sy (a,b) +— a
¥5 1 Sy Xp Sy —— Sy, la,b) V> b

Then there is a natural isomorphism

(80 0 (80" 2 (vp) T e (4,

— 43 —



of Tunctors [rom Rcy(Sl, D Lo Rep(Sz, DY. In other words the

diagram
— (W)t e
Rep(S) Xy Sy, D) —Y¥2le—\ Rep(s,, D)
T (¥ )y ] (6,) 4
= (1) e
Rep(Sl, D) 21 — Rep(T, D)

is commutative up to natural isomorphism.

Proof, For ge€d, y:y’esz such that gy = y/ and
(5, 2, D) e ob Rep(Sl, D) two kinds of assignements are given as

follows;

xe€dy (enly))
((#5) g ° (¢1)*}(81 —s p): l(g,y) — l ® n{g,x)

v/ @ _ nlz’)
T/edy 1{¢2(y’3)
y D_4 niy{2))
ZE'\E"Z (!/)
(('J"z}*° (1#1)*)(31 _n_’ D): J(Q’;y) > @ J?(g;Z)
z'€yoq (y")
Now for v € 32
$€¢1‘1(¢2{-y)) < ¢1(€E) = '\ibz{y) &> lac,y)e 31 xr 32
<::;" T = IP]_(Z), ZG'Ifz,l{y) )
hence there is a natural isomorphism
@ ) = @ iy (z)) G-e.d.
z€dy (e5(y)) zey ~ly)

Remark 6.4. Propositions 6.2 and §.3 show that the functor

Rep(-—, D} : Sétn — FExact categories

makes a Mackey functor.

If subgroups #, K of 4 satisfy



T

and a G-map ¢ : G/H — &/K is the natural projection then we write
res(Hi, K) = ¢y
¥
Also if
¥ = conjugation by s : G/(SHS_I) — G/H
we write Ccg < vy
Under these notations we have

Corollary 6.5 (Double Coset Formula}, If }, X are subgroups of

finite index in G then there is an isomorphism of functors

res(i, G} o indlK, G) =
%? Lnd(sks_lnH, H)ocsores(Kns*le, K)

where g varies on a set of representatives of double cosets of ING/K.
Proof ¥We may only apply Proposition 6.3 to the following pull-back
diagram

G/ X G/K —— G/l

'f/G l
Gk —m— G/G
in which
e x ok = L orisksTt A g e-d.
G/G se€ENG/K
Finally we shall express projection formula. Fer i = 1,2,3 let Ci

be an exact G-category and v, ! Dt ~——— & be the associated fibered
category over (. An exact pairing
compatible with the respective G-descent data defines a Tiber pairing

over



Dy ¥ Do — D
1 a 2 3
which induces an exact pairing
Rep(S, D)X Rep(S, Dy) —— ReplS, Di)
for each object S of Sétn. Then
Proposition 6.6 (Projection Formula), For any morphism ¢ 1 § — T

of Séﬂn the following diagram commutes up to natural isomorphism

P ¢* X id I
. lpairing
id X ¢ l Rep(S, Dj)
o l ¥
e R pairing T
Rep(T, Dy) X Rep(T, Dy) —  Rep(T, Dg)
Proof, (X, Y) —— X®Y denotes the pairings. Then we may express

the induced pairing as

o Elz) @ nix)
g J(g,mi b l E{g,c)® nig,x)
o Ez'Y® nlz”)

where geG z,z’ €S such that gz = z/.

Now for an object (% : L — Dy 0t § — Dy} of
Rep(T, DIJXEEE(S, Dy) let ty : I — Dy (resp. &, @ I — Dj)
denotes the result of left round {resp. right round} in the diagram

of (&, n}. Then £1s &gy are described as follows;

¥ E{y) @ ( @1 ni{<))
TEP {y)
£yt i(g,y) I l
v/ EHy’) & | -1 nlxz”’))
7€ {y’)



y ®_1 (Ele(x) )@ nlx))
zedp  (y)

;2: l(gsy) —r l
¥/ D _4 (Ele¢lz’ )@ nlz”))
x’e¢ “ly/)
for a morphism (g,y) : y — ¥” of I. But it follows from the

bilinearity of the pairings that there is a natural isomorphism from

¢y to &y, q.e.d.

& 7. Oc—categories

We shall consider in this section the last notion of G-catedories
which we should handle. The one providing a category for each
subgroup # of & in a compatible manner, which is called an
Oc—category, is also related with various notions of C-categories
studied in § 1 ~ § 4, A fundamental problem is to construct from
given Oc—category g a split G-category € such that the F-fixed
category CH is homotopy equivalent to the given category B(G/H) on
G/H. This construction from Oc—categories to split G-categories is
sent by the classfying space functor B to Elmendorf construction
which is a functor from Op-spaces to G-spaces with analogous
properties, (Cf. [4])
Definition 7.1 ([4]), The category Cq of canonical orbits has as
objects canonical orbits G/H where }§ varies on subgroups of & and as
morphisms (G-maps between them. A morphism

¢ : G/H —— G/K (#, K < &)

i



corresponds to an element fK € (G/K)H i@,
Hom, (G/#, G/K) = (G/K)#
G
By an OG-category we shall mean a (strict) functor
0P — cat
An oc—functor of Oc—categories is a natural transformation of
. . op —p— _ _ s
functors OG i Cat. OG Cat denotes the category of OG categories
and Oc—functors. When we want to consider Fib(G), SpLit{G) ete. as

categories we should forget the 2-arrows of them,
OG—categories can be obtained as follows.

Definition 7.2, We define a functor
Y o Fib(G) —— On=Cat

as follows; for an object vy : D — § of Fib(G) an object
v(r) 2 0P —— cat

of On=Cat is given by

on objects C/H +—— ReplH, D) = Cartcfgégy D}
on morphisms G/ H Rep(H, D)

Lol —| 1

G/ K Rep(K, D)

where by is the restriction functor of Definition 6.1

s (/K =55 D) = (g/H —+2& D)
explicitly if ¢(a#) = afK then ¢,(¢)(all) = glafK). Since the

restriction functors ¢, are natural with respect to cartesian
functors of fibered categories over { we can get the correspondence
on morphisms of ¥. Further L denotes the composition of functors

L =%ed : Split(G) —— Opy-Cat

We have also another Q.-~categories from split G-categories.

G



Delinition 7.3, Define a functor

I ¢ SpLit{(G) —— OG—Cat

For a {(strict) functor w : G — Cat an OG*category
Ho) = 0.°P —— cat
is given as follows;
on objects G/H +—— (a(-))H = the H-fixed category of «f-)
on morphisms G/ H w( )
l ) [ T I lex) (@)
G/K «( )R

where the functor I(x){¢) assignes

X o f)X
l u| b—m—— l o(f)u
Y x{f)Y
Note that fe§ is given by ¢(aH) = afK, hence F is determined modulo

K, but since objects and morphisms of a(-)K are K-fixed the functor
I{x){¢) does not depend on a choice of representative f. Further for
any K-fixed object or morphism z£ an object or morphism «{f)z is
H-fixed as follows;

e{hlel(fle = clhfle = alfk)z = alNalk)zs = «( Mz
where heHd and k (€ K) is given by f_lyf c K.

We obtain by Corollary 3.6 an equivalence

@ Cartcfgég, dl{a) ) = al )

and by Proposition 1.10

Cartc(giﬂ, Glo)) = Cartc(gégr ¢(u))y

el i ~ |

Bubl s ¢ is not o wplit G=Tuncior *he Tunctor [ oia dI0Teront Trom the

HE TSR N PR S L = Vel



Menl owe Shall consider Lo constiuet split G-valoegoricos From

OG-cthegtn'iua.
PDelinition 7.1, Tiven au Ot rgony

2 Cp Y == Cat
Since one has

HomOC(G/e, G/e) = (6/e)® = G
the category B{G/e) has a structure of a split G-category. Thus we
have a functor

K @ Op-Cat —— Split(G)

K(B) = (BplG/e); Bls))
The functor

Ke ¥ © FiblQ) —— Split(&)
is nothing but the modified Giraud construction 8 {see § 4). In spite
of very nice properties of the functor S the solitary K dees not go
well through. For instance

k()% and g(ar/a)
have no relation. So we need another funtor from Oq-Cat to SpLit{G).
I constructed a functor from Fib(4) to SptLit(G) different from the
Giraud construction § in my ealier paper [16] § 3. This was the one
which decomposes throucgh Og-Cat. We will use the modified one to
construct the desired functoer,
Definition 7.5. A functor

U i Op-Cat —— SplLit(Q)
is defined as follows, Given a Oc—category

8 1 0.°F —— Cat

take a functor



where DG = (C/e)/OG is the comma category of OG under §/e,

p (G/e)/OC — Op is the fogetfull functor and

P . 5OP 0.°P

g is the composition B o po o G — Cat

P

—
and a lax colimit over OCO
UB = Lazacgﬁimtt 3
G
Note that there is a fibered category Uﬂ over GG associated to the

functor § : Gcop —— Cat by Grothendioeclk construction. We shall
vrite down explicitly the split G-category

uisy = (U8; 63)
The category Ug has as objects triples (X, G/H, z) where G/Heob Ops
w€G/H ( a pair (G/H, x) represents an object of UG such that
G/le 2— G/i, #(a) = ax ) and X € ob B(G/H).A morphism

(X, G/H, z} —— (Y, G/K, ¥)
of Up is given by a pair (o, q) where ¢ : G/H — &/K is a morphism
of Op such that o(z) = y {such o provides a morphism of UG ) and

q ¢ X —— Blo)Y
is a morphism of the category B{G/H). The action 5, on Ug (seqG) is

given as follows;

(X) G/H} :.C) {X! G/H: S_I:C)
8g l {o,q) | —— l(o,q)
(v, C/K» ¥) (v, G/E, s 1y

The assignment on morphisms of the functor v is defined in obvious

manner by means of the naturality of lax colimits,
The functor U provides the desired homotopy property.

Theorem 7.6, For an Oc—category g OCOP —— Cat and a subgroup 4

e 5 —



of & there is a homotopy equivalence of categories

(UB)H ~ B(G/H)

Proof. We shall first define a subcategory VH

of VH consist of triples (X, G/H, el) where X &€ ob ${(&/H) and the

of (US)H. The objects

morphisms of Yy consist of pairs (idG/H’ g) where g : X — Y is a
morphism of g{&G/H). Then it is clear that the category VH is
isomorphic to 8(&/4) and we identify Vi with g(46/H). We shall next
construct a right adjoint functor

)H

k (UB —F Vg = BLG/H)

to the inclusion functor
i B{(G/H)Y = Vi — UB)H
£
Let (X, &/K, y) be any object of (UB}H. Since X € ob 8(G/K) and

y e 6/ = Hom, (6/H, G/K)
G

we have
3(¢y}x € ob E(G/H)
where ¢y P G/ — G/K is a morphism of OG corresponding to y. Hence

define

k(X, G/K, y} = (B(¢y)X; G/H, eH)

Then it’s clear ko i = Jd. Also there is a natural transformation
n o+ ik — [d
! ]

It is easily verified that k¥ is right adjoint to i. Thus we have the
desired homotopy equivalence. qg.e.d.
Finally we shall note the relation with the work of Elmendorf [4].

Consider the classifying space functor

B ! Cat —— Top

— 52—



where Top denoles the category of certain nice luapologicval spaces as
usual.
Proposition 7.7, Supposc & is a [{inite group.

(1) The classilying space functor B scnds a split G-vategory {resp.

an Oc—category} to a G-space (resp. an Oc—spauo), henee there is

functor
B Splills) —— O-spacey
{rowp.s B GC"Cdi wer——— OG~dpauas)

{(2) The image ol ouvr [ {(resp. K, resp. U) by the classifying space
functor B is Elmendorf’'s & {(resp. D, resp. C), hence theve arc

cemmutative diagrams { up Lo homotopy for U )

Sptit{Q) £

(—-—-—-u--OG

5 E

e ———— :
L-spaces D OG"spaces

-Cat

—_—

c
Proof, {1y and the statement for X of {2) are trivial. Since
B¢ty = (Be)#
for any split G-category € and any subgroup ¥ of &, one has the
statement for [ of (2). The remaining fact that ¢ becomes a
categorical Elmendorf construction i.e.
Bely ~ CoB

is verified as follows. By Thomason’s Homotopy Colimit Theorem [23]

B(UE} = hoch&E B(8{(G/H})
&
because Uﬁ is given by a lax colimit over UGOP. On the other hand
Elmendorf’s definition of € using the two-sided bar construction is
op

shown to be nothing but a homotopy ceolimit over DG on simplicial



scls level. Since taking a homotopy colimit commutes the geometric

realization functor by Bousfield-Kan[1l] the result will follow. g.e.d.

§ 8. Properties of funclors connecting various notions of
G-categories
~ In this last section we are going to study properties especially
adjoint properties of functors providing the relations between
various notions of G-categories which have been treated with until
the preceeding section.
Since Des(G) and Pseudo{G) are equivalent to Fib{6) it is

sufficient to study the fecllowing triangle;

Fib{(G)
P SN
L
Oq-Cat - SpLit(G)
¥
™ Recall the functors
d = the modified Grothendieck construction

(see § 4 and Theorem 2.5)
S = KoeW = the modified Giraud construction (see § 4)

¥ (p X Q) —— (G/H — Cart (G/H, D) (see § 1)

L = Yo

I (6 -2 cat) —— (G/H — af ) (see § 7)
(0.°P—Es cat) — (8(a/e); 8(s)) (see § 7)

U o (oCOP_Eﬁﬂ Cat) —— (UB; 6.0 U, = Lagcgglimét F (see § 7)



First we note that the functor 5 is right adjoint to the functor
¢ as shown in Theorem 1.7 (2). Next we shall show that the functor K
is left adjoint and left inverse to the functor J.

Proposition 8.1. (1) Kel = IdSplLth)
{2) There is a natural transformation
w i ddg —gar — 7K
{3} The functor X is left adjoint to the functor .
Proof, (1) Trivial
{2) For a OG—category 8 OGOp ~——— Cat the functor
Blpy) + BlCG/H) — B(G/e)
correspondent to the natural preojection py * Gle — G/H, pH(a) = all
induces a functor
gyt BLGIH) —— 8(G/e)¥
which is natural for G/H € ob O F. Thus we have a natural

G
transformation

a -7

— [ e K

Y0,-Cat
{3) It follows from the definition of Besu that Bofo = ﬂdB(C/e) ,
hence

K * u = LdK

On the other hand if § = 7{x) for a split G-category o ' & —— Cat

then
& m A Y A
Bosy T otd ol )7 —— ol -)
hence
} ¥ = {
i 7 Ldf
These lacts imply that £ is left adjoint to . G.e.d.



Putting two adjoint properties together we obtain
Proposition 8.2, (1) There is a natural isomorphism
st
Y —— [ 5
of functors from Fib{&) to On-Cat.
(2) The composed funclor pe f o 1ol wljoint to the Tunctor P,

Proorl, (1Y Tt p 00 D — G e an objoct of FirtoY, T falloes Trem,

Proposilion 1,10 that ther . 1 an lwomorphlam in Lo
T . o
l 'r I } T lr L I }
H N . - Ll 1. . [
which s natural [fov v 2 L Fextl). Thie result Tollows,

(2 Cansider the compositiones of two hinds of adjoint functors
b x

Fib(G) __!S___, Split(G) $ OqCat
which imply that d e K is left adjoint to [eo 5. Together with (1) we
obtain the result. qg.e.d.

We shall now state the properties relating to the functor # which

are obtained from Theocorem 7.6.
Proposition 8.3. (1) There is a natural transformation

n @ JTet) —— rdOG—Cat
(2) There is a natural transformation

Mote P YK

(3) There is a natural transformation

£yl * g it (Q)
_. I
_.

{(4) n ¥ [ = T ¥ & JelUa]
Proof, (1Y Consider a functor
ko W —— peg/)

in the proof of Theorem 7.6, which sends an object (Y, G/H, y)} of

—



!Uﬁ)H to an object B(¢y)Y of g(&/H) where ¢y PG/ — G/K is the

morphism of Oq corresponding to y € (G/K)H

o —_ : t
» Putting k = ey it's
easily seen that N/ is natural for G/H € ob OGOP, hence we have a

natural transformation

n el — rdOG-Cat

{(2) 2a/e K*¥ np U= Kelol K
(3) &= KX px [ 1 Ue] = KoJolUo] —ms Kofdol = Kol = [d
{4} Ceonsider
I ¥ npjp b ol —> [k
which is of the form
LY nesedsdaoru
for 8 € ok Oqp=Cat and &/H € ob O it is clear that if g = [{a)} for

(Us’H — B(G/e) ¥

x € ob Split{&) then
(T * nesdelern = Mo
This implies the result. G-

We note here that there are no adjoint relations containing the

functor & such as the functor X in Propositions 8.1 and 8.3. We need

to turn to the arguments up to homotopy. We shall finally state a

part of outline of homotopy theory of G-categories.

The category OG~Cat has a structure of 2-category. Let g, 8’ be

- . op — / _ /
OC categories OC Cagt and t, t’ be OG functors from g to g7.
A 2-arrow a ! t — t* of OG—Cat is defined as follows; To each
object &G/d of Og and each object X of f(G/H) assign a morphism
. . ,
rerw, x ¢ o teratX) — to X
of s'(a/i). They satisfy the following conditions. For any morphism

U X — v of B{G/H)



/ —
terut@ ° 2gry, x T e/, v o tesat
and for any morphism ¢ ! G/K — G/H of OG a diagram
/
B (¢)

(a )
/ G/, X / 4
] (énfC/H(X) —s f (é}ﬁG/H(X)
A
G/K, B{¢}X /
tC/KB(élix) tG/KB(é)(X}
commultes.

When regarding the categories Fik{G), Split{C) and OG-Cat as
2-categories one has the following facts about 2-arrows.
Lemma 8.4. The funclors o, ¥, S, L, I, K and U prescrve the
respective Z-arrows.

Suppose the group G is finite from now on,

Let £, t’/ be morphisms from « to «/ of SprLit(G) {(resp. of Op~Cat) .
t is said to be L-homotopic {resp. OG—homotopic) to t/ if Bt is

G-homotopic (resp. O,-homotopic) to Bt’. [e, a’]c {resp. o, a’]o )
G

denotes the set of G-homotopy classes {(resp. Ocﬂhomotopy classes) of
morphisms from « to «f! of Split{G} (resp. of On-Cat) .
Lemma 8.5. (1) The functors [, K and U preserve G- or OG—homotopies.
{2) A morphism a : @« —— @’ of SplLit{G} is a G-homotopy equivalence
if and only if J{x) : I{a) — I{x/} is a OG—homotopy equivalence,
Proof, {1} is obtained from Proposition 7.7 and [4}].
(2) is obtained from the well-known fact that a G-map Ff of certain
nice G-spaces is a G-homotopy equivalence if and only if the
restriction f” of Ff to the K{-fixed spaces is a homotopy equivalence
for cach }I < G. G.e. .
Proposition 8.6, (1) For any object @ of Split{&G) a morphism

L, P Ue ) — o

of Split(G) is a G-homotopy equivalence.



{(2) For any object 8 of OC—Cat two morphisms
U{B)

——
——p

(U * plp, (& * U)ﬁ DU e e UlB)
of SpLit(G) are C-homotopic,

(3) There is a bijection

for w € ob Split(&) and B € ob OC—Cat-

Proof. (1) is obtained from Proposition 7.7, Proposition 8.5 (4} and
Lemma 8.5 (2},

{2} is obtained from (1}, Theorem 7.6, Proposition 7.7 and
Proposition 8.3 (4).

{3} can be verified as in [4] Theorem 2 by using (1)}, (2},

Propositon 8.3 (1) and Lemma 8.5 {(1)}). qg.e.d.

Let t, t/ be morphisms (i.e. cartesian morphisms) from ¥ to 3/ of
Fib(Q). t is said to be fiber homotopic to t/ over ¢ if Bt is fiber
homotopic to Bt’over BQG.

By the classifying space functor B a fibéred category v ¢ D — &
over { provides a Dold fibration {= a map fiber homotopic to a
Hurewicz fibration)

By : BD —— BG
(see [15]]V2) ,hence the functor ¢ preserves homotopies. But in
general ¥ and S don’t preserve homotopies because BCath(gég: D)
isn’t homotopy equivalent to the space of fiber maps from B(G/H) to
BD over B4&4. (Thomason’s Homotopy Limit Problem [24]) Therefore on the
present stage we have no more statements about homotopy theory of
FiblG).

Department of Mathematics, Faculty of Education, Shiga University
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