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ABSTRACT 

\Ve present and study simple mathe1natical models which exhibit a transi­

tion fron1 stationary periodic patterns to defect chaos in electro-hydrodynamic 

convection of nematic liquid crystals. A nonlinear phase equation is derived from 

our models, whose method follows the Cross-Newell theory. The stability anal­

ysis of norn1al rolls and weakly nonlinear analysis near the phase instability are 

d veloped on the basis of the phase equation . Pat tern evolution and statistical 

properties in the regi1ne of defect chaos are also discussed with the aid of numer­

ical si1nulations of a con1putationally efficient model which we worked out. 
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l.Introd uc tion 

Let us consider a two-dimensional system in which spatial periodic patterns are 

fonned . These systems often exhibit weakly disordered structures such as topo­

logical defects i.e. the point singularities in the phase fields associated with the 

periodic patterns. In the first stage of the ordering process, the periodic patterns 

are locally formed and a defect appears at the point connecting two periodic pat­

terns with identical orientation but slightly different wavelengths. Since defects 

are topologically stable in two-dimensional systems [1], the motion of a defect is 

well-defined until it vanishes on collision with an anti-defect i.e. the defect with 

an opposite topological number. Therefore, defects should play important roles 

in the late stage of ordering process [2-9]. On the other hand, defects can also be 

created spontaneously through the instability of periodic patterns. In that case, 

if unstable periodic pat terns are reorganized after the defect creation, the system 

still retains its unstable nature and such a state is called deject chaos or defect 

t-urbulence. Since defect chaos has weakly disordered spatial structures, this may 

be classified into weak turbulence rather than developed turbulence[IO]. 

Defect chaos seems to be a new n1ode of motion. \Ve therefore try to clarify 

the nature of defect chaos by exploring the following specific problems: 

(1) Finding scenarios for the transition to defect chaos. 

(2) Describing the pat tern dynamics. 

(3) Characterizing statistical properties of defect chaos. 

It would be necessary to approach these problems both experimentally and 

theoretically. \Vhen a theorist tries to solve a problem, he needs a n1odel which 

has both quantitative predictability and practical computability. 

R cently, the complex Ginzburg- Landau equation has been studied by Coullet 

et al. [11, 12] as a model for defect turbulence. This rnodel equation describes the 

behavior near the Hopf bifurcation [13-16], and the defect is then defined as a 

singularity of te1nporal phase or propagative phase[17,18] . However, the non-linear 

int ractions and d stabilization of waves emitted fron1 the defects are important 

ingredi nts of th clynan1ics in this kind of oscillatory medium[l9], so that its 
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behavior should be rather different and more complex as compared to that of 

non-oscillating systems which is of our main concern. A coupled-map-lattice 

( C:WIL) approach, which was first proposed by Kaneko, also gives a useful model 

for studying spatia-temporal chaos, and several essential features of transition and 

statistical properties were exhibited[20-22). However, it is difficult to know what 

physical processes are expressed by CML, that is, the correspondence between 

CwiLs and real phenomena remains quite abstract and indirect. 

As implied above, theoretical research for defect chaos remains poor for the 

lack of a suitable model. On the contrary, experimental works were developed to 

a considerable extent by working with electro-hydrodynamic convections (EHC) 

of nematic liquid crystals ( LC)[23-31]. 

Nematic liquid crystals, which consist of elongated molecules, are a fluid with 

an orientational order described by the director. They have thus anisotropic 

properties whether they are in or out of thermal equilibrium, and show a rich 

variety of patterns when A. C. electric fields are applied, as systematically studied 

by Kai and his coworker[24). Let us sketch the system behavior near the onset of 

convection. On increasing the voltage in the conduction regime below a critical 

frequency, a stationary roll pattern appears with a preferred direction due to the 

anisotropy(32-34]. If the preferred direction of the rolls is normal (or oblique) to 

the direction of the directors the rolls are called normal rolls (or obliq'ue rolls), 

and the norn1al rolls are also called the vVilliams domains (vVD) (28]. \Vhich 

type of the rolls appears depends on the frequency; for example, the nonnal 

rolls are formed beyond a frequency called the Lifshitz point. Increasing the 

voltage further in the normal roll regime, one finds a secondary bifurcation to the 

fluctuating vVilliams domain (FvVD) as named by Kai(23]. In this regime, where 

the basic roll structure i still retained, a dynamic steady state is maintained 

through the creations and annihilations of defects. F\VD is nothing but ~efect 

chaos. We thus wish to investigate the nature of FWD theoretically. 

First of all, we n1ust consider which model is the best fitted to our present 

study. Although the tudy based on the n1icroscopic models may make quan-
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titative predictions, some of them do not satisfy the computability condition 

Inentioned before. Indeed, in EIIC, it is difficult to treat such basic equations 

in EIIC analytically or numerically[35). Thus, one of the main purposes in the 

present paper is to construct a suitable model for defect chaos in EHC of NLC. 

Since defect chaos appears on a macroscopic scale, we want to express it 

with a macroscopic description which is suitable also for the description of roll 

patterns. Our approahes are twofolds. One is called the method of the amplitude 

equation which is mathematically justified. If we are concerned with the regime 

near the onset of convections, it would be possible to simplify the dynamics into 

the dynamics of the amplitude of the critical Inode[36,37). Though the amplitude 

equation in EH C was derived by Bodenschatz et al. [38), it can never de.=cribe the 

transition between \VD and F\VD. This implies that some higher order terms 

becon1e essential beyond a finite distance apart from the onset of convection. 

One may therefore expect that the transition to defect chaos could be described 

by taking account of such terms. Actually, however, it is very difficult to calculate 

higher order terms, and the n1ethod of the amplitude equation does not seem to 

appropriate for describing defect chaos. 

nother approach i~ a phenomenological one in which some important effects 

are heuristically taken into the equation. In that approach, we can predict no 

quantitative details but we are only concerned with universal features of the phe­

nomena. How to construct a phenomenological model equation is the following. 

vVe first study experin1ental facts about the onset of convections and try to know 

th type of bifurcation b checking the continuity of transitions onset frequency 

and codimen ion. It is known that the transition to vVD occurs through a su­

percritical stationary bifurcation. Second, we take account of son1e in ariance 

prop rties to be require under the transformations such as tran lation, reflection, 

rotation and th Galilei tra.nsforn1ations. A model in EHC should satisfy the first 

two symmetries. Finally so111e ~iinplicity of the model should be demanded; for 

exa.n1pl , th ord r of th spatial derivatives or dynamical variables which ap­

pear in th 1nodel ~hould not b too high. However, too simplified 1nodels could 
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not capture the phenomena, and therefore it is not always easy to require sim­

plicity from a certain guiding principle. Such difficulty makes contrast with the 

case of the amplitude equation method for which a simple form can be obt ained 

by the scaling hypothesis. vVe must thus make trial and error until we obtain a 

reasonable model. Unfortunately, a simple model for EHC which was presented 

by Pesch and Kramer can not exhibit the transition to defect chaos although 

their model equation can explain some behaviors such as the normal roll-oblique 

roll transition. [39) vVe must thus extend their model so that it may describe efect 

chaos. In section 2 we will present the Pesch- Kramer model supplemented \vith 

drift terms[40), and the equation for the drift field which is induced by the defor­

rnations of rolls will be determined by the requirements of the symmetries and 

simplicity. 

The irnportance of drift effects was first pointed out by Siggia and Zip­

pelius(41 ,42). In the systems under stress free boundary conditions, a large scale 

horizontal flow (drift) becomes a relevant dynamical variable because the Galilei 

syrnmetry must be satisfied by the system. On the other hand, Cross showed 

that skewed varicose instability is caused by the drift effects under rigid bound­

ary conditions[43]. This fact is so mew hat mysterious because the drift flow is not 

a relevant dynamical variable in the case of rigid boundary conditions . In this 

case, however, the drift effects play two roles. First, the drift terms produce non:­

linear tern1s including higher order spatial derivatives. Second, the same effects 

cause nonlocality because the pressure field in a incompressible fluid is nonlocally 

d termined and the drift flows have a part coming from the pressure gradient . 

As we will argue in section 5, skewed varicose instability occurs as a results of 

this nonlocality[43,44] . 

vVe now introduce the analysis based on our own models. A necessary condi­

tion for the appearance of defe t chaos is that the normal rolls become unstable 

at a fin it distance apart frorn the convection onset . In that case, the type of 

instability should be a long wavelength in::,ta.bility (phase instability) because 

the loca l order rnust be retained. Then, one n1ay ask whether or not the phase 
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gradient remains bounded when the phase instability occurs. If the phase gra­

dient remains bounded and exhibits chaotic behaviors, then this state may be 

called phase turbulence whose notion was first proposed by Kuramoto[4.5] . vVc 

notice that phase turbulence appears only when the temporal symmetry breaks 

down. As other possibilities, phase deformation may lead to a stable pat tern, 

or otherwise amplitude deformation may be caused leading to spontaneous cre­

ation of defects. In order to understand such behaviors, we must make a weakly 

non-linear analysis. 

Phase dynamics which describes the deformations of rolls is a powerful tool for 

studying these problems: it not only gives the descriptions of the slow relaxation 

to a stable state, but also determines the marginal stability lines on which the 

phase instability takes place('16]. Although the standard phase dynamics does not 

describe the behavior beyond the marginal stability lines, Kuramoto improved it 

by de eloping a weakly nonlinear anal sis for phase instabilities[4 7]. 

In section 3 we will derive the phase dynamics for our n1odel equations 

following the Cross-Ne\vell approach[44]. In section 4, we will argue the linear 

stability analysis of normal rolls based on the linearized phase equation. \Ve will 

classify the types of the phase instability by specifying the most unstable mode, 

as was done by Busse for the Rayleigh-Benard convections[48,49], and determine 

' hich type of instability leads to defect chaos. In section 5, a nonlinear phase 

equation will be derived from a weakly nonlinear analysis, and we will argue the 

behavior beyond the phase instability with the use of this equation. 

Discus ions based onl on the stability analysis can not give a definite answer 

to the question \ hether or not our n1odels serve as suitable n1odels for defect 

chaos. \Ve are thus l d to their numerical simulations. In cornputer si1nulation of 

PD E, ho\ ever, we always have the question of reliability. On the other hand we 

have also models such a. c lluar autoinata(50] and CNILs which are free from such 

proble1ns. Thes n1odels are n1ore suitable to treat numerically; their simulations 

rnay b looked upon a tho- of the real phenomena the1nselves. Such a view 

was advanc d strongly by Oono and Puri in their paper: They say ' 1Vature gives 
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physicist phenomena, not equation" [51,52] . If we are concerned with universal 

macroscopic properties which are independent of microscopic details, we prefer to 

simulate a computationally efficient model. It would therefore be an important 

step in our theory to construct such a CML model that could describe the same 

universal behavior as a PDE model does. The problem of constructing a best 

Cr lL is quite difficult to solve in general. Still, Oono and Puri presented a 

method to construct a CML model corresponding to a PDE model in spinodal 

decomposition problems[51 ,52]. Although their method has never been justified 

n1athematically, it is expected to apply to many other problems. 

In section 6, we will present a C:NIL version of our model and carry out its 

numerical simulations so that we m ay study pattern evolution and statistical 

properties. vVe will focus on the temporal variations of the number of defects , 

because the t erm defect chaos comes from their chaotic variations, implying the 

in1portance of investigating their statistical properties[27,30]. In the final section , 

a few additional comments will be given. 



2. Phenomenological Models 

A typical example of phenomelogical equations in convective systems is the Swift­

Hohenberg equation which was derived from the Boussinesq equation under some 

approximations[53]. Let us explain their model equation. Consider the situation 

that steady periodic rolls are super-critically formed in an isotropic system. Let 

the vertical velocity be denoted by w. Then, the form of the equation for w is 

constrained by the following two requirements. First, the equation must exhibit 

a super-critical steady bifurcation at R = Rc and the critical wavenumber kc 

must be finite. Second, the equation must satisfy the Euclid symmetry and be 

invariant under the transformation w ---1- -w. \Ve further require the simplicity 

such that the heighest order of the spatial derivatives should be minimal. Then 

the model equation takes the form: 

(2.1) 

where 6 = 8'l: + 8~ and R is a control parameter which corresponds to the 

temperature gradient. 

This model equation has a potential such that the system relaxes to one of its 

minima. Since the minima of the potential are degenerate due to the rotational 

symmetry involved, its rela.-xational dynamics has a very long time scale and 

the system often relaxes to non-trivial steady patterns with grain boundaries by 

the influence of latenal boundaries. Detailed simulations of this n1odel equation 

which were performed by Greenside and Coughran also show such behavior [54]. 

Th re are some variants of the Swift-Hohenberg equation[39,55-5 ] . In par­

ticular, P sch and Kramer pre~ented as a phenomenological model of EHC an 

anisotropic version of the Swift-Hohenberg equation(39] : 

tu = Rw- w3 + Dw, 
(2.2) 

H re 7]1 and 7]2 are ani ~otropi paran1eter , and R is a control parameter corre­

sponding to the voltage of th applied electric field. This model eqHation is the 
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sin1plest model of those taking account of the anisotropy. We now rev1ew the 

behavior of this model equation near the onset of convections(39]. 

vVithout external forces, the fluid remains in a rest state w = 0. vVhen A. C. 

electric fields are applied and the voltage reaches a critical value, convections set 

in . This fact implies that the rest state w = 0 becomes unstable against the 

disturbance with non-zero wavevector. \tVe thus analyse the linear stability of 

the rest state. Denoting the growth rate of the disturbance around the uniform 

state w = 0 by A, we obtain from the model equation eq.(2 .2) 

A(k, <p) = R- (k 2
- 1)2 - T]1k4 sin4 <p- 2r]2k 4 sin 2 <pcos2 <p, 

= R- 1 + 2k 2 - k4 (1 + 2TJ2 sin 2 
<p + (TJl - 2rJ2) sin 4 <p) 

(2.3) 

where k = (k cos <p k sin <p) (k ~ 0) is the wavevector of the disturbance. Consider 

the situations in which the directors in the rest state are aligned in the x-direction. 

Then, the growth of disturbances in the y-direction is inhibited. This fact is 

explained by the condition fJl > 0 and we will assume this condition below. The 

critical wavevector kc and the control parameter Rc at which the convections 

occur are determined from the condition that the maximum value of A becomes 

positive. The magnitude of the critical wavevector should be finite or zero so 

that the system may remain stable. Therefore, for arbitrary <p, the parameters 

fJl and fJ2 n1ust satisfy the inequality: 

(2.4) 

This condition i reduced to 

172 ~ 0 or TJ 1 - 2 17 2 - TJ i ~ 0 . (2.5) 

\tVe will assu1ne thi condition below. Then we obtain the following results: If 
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T)2 :::; 0, 

where 

T)l - 2r;2 - r;~ 
T)l - 2r;2 

and 
. 2 T)2 

Sln i.pc = -
2 T)l - T)2 

The critical control parameter Rc is then expressed as 

On the other hand, if r;2 ~ 0, 

max .A( k <p) = .A( kc, <f>c) 
k , 

=R, 

where 

and 

In this case, the critical control parameter Rc is determined as 

Rc = 0. 

(2 6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

These results show that r;2 = 0 corresponds to the Lifshitz point: r;2 < 0 holds 

for the oblique roll regi1ne, whereas r;2 > 0 holds for the normal roll regime[39). 

vVe may thus interpret r; 2 as the di tance from the Lifshitz point. Since we are 

concerned with the normal roll regin1e, r;2 > 0 will be assumed below. 

The Pesch-Kramer model also ha.s a potential. Therefore, the d nam1cs 1s 

relaxation a! tending to the roll olu tion which n1inimizes the potential, and its 

time scale is much shorter than that for an isotropic system due to the uniqueness 
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of the potential minimum. Since we found that their model equation is too simple 

to describe defect chaos, we consider a more complex model; a model supplmented 

with drift tenns, which is writ ten as 

w + CU · V)w = Rw- w 3 + Dw, (2.12a.) 

A ( )2 8 4 8 28 2 D = - 1 + 6 - T]l y - 2 7]2 X y . 

The drift field 0 is induced by the deformation of the rolls . The equation 

for 0 can be determined by the following requirements(.59). The first is that 

the drift field U determined adiabatically by the vertical velocity w. Second, 

it must be invariant under the transformations : (1) x --+ -x Ux _,. -Ux, (2) 

y - -y, Uy ___, -Uy and (3) w - -w. The third requirement is that the 

equation should include spatial derivatives at most up to the third order and 

the powers of w up to the second order. Finally the drift field should satisfy 

the incompressibili y condition. From these requirements, the equation can be 

writ ten in the forn1 

Ui = 8i[aiw
2 + ~ {bijw8Jw + Cij(Ojw)

2
}] 

-- --

J 

+ ~ hijWOi8}w- 8ip, 

J 

\l. u = 0. 

(2.126) 

(2.12c) 

Her , the uffixes i j · · · represent x or y, and we introduced an auxiliary field 

p which represents effective pressure. Although many parameters appear in 

eq .(2 .12), they are not actually indepedent because eq.(2.12) is invariant un­

der th transfonnation: (1)a.l _,. a.1 + v1, b1 --+ 61 + v1 (2)a.2j --+ a2j + V2j, 

b2j --+ b2j + V2j, ( 3) a.3j --+ a.3j + V3j b3j --+ b3j + V3j where v1, v2j and V3j are 

arbitrary constants. Th refore we can set a.y = byj = Cyj = 0 without loss of 

g nerality, and if the drift atisfies the rotational sy1n1netry, 'v\e can further set 

ax = bxj = Cxj = 0 and hij = h. 
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We now further simplify the model so that the analysis may become easier. 

vVe treat w as a complex field W. One may then interpret Re(W) as the vertical 

velocity. We also assume ax = 6xj = Cxj = 0. Then the model equation becomes 

w + (0. v)vv = RW- IWI 2 w + bw, 

D = -(1 + 6) 2 
-r;18y 4

- 2r;28x28y 2
· 

Ui = :L hij(W*8i8}W + c.c)- OiP, 
J 

\7. u = 0. 

(2.13a) 

(2.136) 

(2.13c) 

\Ve will call this model ~Iodel(A). If the drift is approximated as isotropic , then 

we obtain an even simpler model equation: 

vv + (0. v)~v = Rvv- IWI 2 w + bw, 

D = -(1 + 6) 2
- 7]10y 

4
- 27]20x 28y '2. 

Ui = h(vV*8i6vV + c.c)- OiP, 

v. 0 = 0. 

\Ve will call this model l\Iodel(B). 

(2.14a) 

(2.146) 

(2.14c) 

vVe can also expre s the drift tern1s in different forms such as an integral 

representation and a vorticity representation. Let us consider these expressions 

for l\rlodel(B) only. (Similar arguments can apply to rvlodel( ~) . ) \\ e first explain 

the integral representation. The pressure field p is determined by the Poisson 

equation derived from eqs.(2.14b) and (2.14c): 

(2.15) 

This quation shows that the pressure field is determined nonlocally. Substituting 

eq.(2 .15) into eq.(2.14b) we can obtain an integral repre entations for the drift 
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field: 

U; = L j d2x' P;j(X- X')h(W*8j6 W(X') +c. c), 
J 

where Pij is defined as 

Pij(i) = bij(i)- fJi8jG(i), 

6G(i) = 5(i). 

(2.16) 

(2.17) 

vVe next explain the vorticity representation. From eq.(2.14c), we can express 

the drift field U in tenns of a stream function 'ljJ as 

(2.18) 

and 'ljJ is related to the vertical vortici y ( through ( 

eq.(2.1 L1b), we obtain the vorticity equation: 

- 6lj;. Then, from 

-6'1/J = hz(VW* x V 61¥ + c.c) (2.19) 

This expression is a standard form for the drift terms[55-58). 

vVe can easily find that the drift terms do not contribute to the amplitude 

equation in the lowe t order calculation. Therefore, our models have stable roll 

solutions at lea t near the onset of convections. The behavior at a finite distance 

apart from the onset of convection must still be considered. \Ve will investigate 

it in a few se tions below. 
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3. Phase Dyna1nics 

The phase dynamics in convection problems was first presented by Pomeau 

and Nianneville[46], and they derived a linear phase diffusion equation. In the 

Pomeau-l'vianneville theory, a reference state or the background wavevector is in­

troduced, which means that there is one phase dynamics for each reference state. 

Since the dyna1nics should be independent of the reference state, the phase equa­

tion must be free from the reference state chosen or invariant under an arbitrary 

change of the reference state. Obviously, the linear phase equation can not sat­

i::;fy this requirement. A non-linear theory must therefore be develo.ped. As one 

possible approach, a simple extension including higher order terms may be con­

sidered. In that case the phase equation can be invariant under an infinitely 

small change of the reference state. If we require the invariance under a finite 

change of the refer ence state however, we need the infinite order terms. In order 

to a oid this difficulty Cross and _ ewell presented an more efficient approach , 

in which the phase is defined to be independent of the reference state[44 60,61) . 

In this section, ,,.e consider the phase dynamics for ~Iodel( A) follo'' ing the 

Cross-Newell theory. This equation has a family of stationary periodic solutions 

and these are analytically expressed as 

vVs =A( k)eiB , 

e =f. i + <p, (3.1) 

where k2 = k; + k~, k = (kx ky) i the wavevector of the rolls and <p IS an 

arbitrar constant. 

vV now investigate the local stability of the roll solutions, i.e. the tability 

for the local disturbance. The local disturbance rneans the disturbance for a pair 

of rolls which i extended periodically when the rolls are infinitly aligned. Thus, 

th space of th loca l disturbanc is defined as 
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and the inner product (f, g) for f, g E V as 

r27r r27r 
( f, g) = j 

0 
de ( f 1 g 1 + f 2 g 2) =---= Re j 

0 
de f * · g, (3 .2) 

where /1 = Re(f), !2 = Im(f), g1 = Re(g) and g2 = Im(g). The local stability 

of the solution Ws is determined by the linear equation for the local disturbance 

u = L 0 · u , (3.3) 

where the operator La is defined as 

~ ~ 2 ') 
La . u = R u + Do u - 2 I vVs I u - ws~ u *' 

Do= -(1 + k28e) 2 - TJ1k~oi- 2TJ2k;k;a:. 
(3.4) 

The operator La is semi-negative definite and has a zero eigenvalue. Then the 

corresponding neutral mode ~o satisfies 

La· ~o = 0, (3.5) 

and its adjoint vector ~6 is identical with the original neutral mode due to the 

Iermiticity of La: 

(3.6) 

vVe can easily check ~o = 8e vVs. This in1plies that the roll solutions are neutrally 

stable against the disturbance corresponding to a space translation and stable 

against the other local disturbances . Note that the existence of the neutral mode 

st ms from the translational symrnetry. Borrowing a field-theoretical term[62], 

we may thus call the neutral n1ode the Goldstone n1ode. 

Since the local stability of the roll solutions is guaranteed, we now investigate 

large scale behavior. vVe first notice that there are two characteristic scales of 

length in the systen1: one is the wavelength of periodic patterns and the other 
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is the system size. Since we are concerned with the system of large aspect ratio 

Jl-l, it is appropriate to introduce a scaled coordinate system (8, X, T), where e 
is a periodic coodinate representing the local structure, and CX, T) are th e large 

scale coodinates such that X = px, T = pi and J-L ~ 1. Then a field f on space 

( e' }() is expressed by 

f = f(B, X)= L /j(X)i!!j(B), (3.7) 
) 

where i!!j is an eigenvector of La and { i!!j} forms a complete set of basis in V. 

Further, the space derivatives are substituted as 

fJ· = k ·fJ 8 + 'lfJ~ t z ,.. ) ) 

fY = __i_ 
J fJ ~Yj. 

(3 .8) 

Let us consider the dynan1ics of the disturbance p( e, X) around a stationary 

solution Ws. Since the components Pi (X) (j # 0) decay rapidly, the relevant 

dynamical variable in the long term behavior is only po(X) . This is nothing but 
__. 

a phase variable which represents the large scale variation of the wavevector k. 

However, it is not very easy to derive directly dynamics of po. Thus the local 

wavevector k(X, T) and the phase 8( ...rY T) such as ki = 8~8 are introduced and 

the dynamics of phase 8 will be derived. vVe express the deformation of the rolls 

as 

__. __. iB __. 
vV = A(k(.X, T))e + p(B, X, T), (3.9) 

where p is the part of deformation which can not be absorbed into the local 

wavevector fCf, T), and satisfies 

( <P b p) = Po ( ...rY, T) = 0. (3.10) 

Sin e p 1s p rturbativelly determined, we expand it in the form: 

(3.11) 

vVe ubstitut qs .(3. ) (3.9) and (3.11) into the model equation and arrange the 
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terms according to various powers in f-L· In this way, we obtain the equation at 

order J-L: 

(G + tJ(l) · k)fJo W = D1 W + Lop(l), 

U(l)_ ~Q. J:l/;.j/ 8 f:l . 
i -- L JJz{mU[Um - Uzp , 

l ,m 

v . t}(l) = 0 
' 

(3.12a) 

(3.126) 

(3.12c) 

where 0 = J-LtJ(l) + · · · and iJ = Do + J-Lfh + · · ·. Finally, the inner product of 

<I?6 with this equation yields the phase equation of the form: 

(:3 .13a) 
t) 

(3 .136) 
l ,m 

v. u = 0, (3.13c) 

where we dropped unnecessary shoulder notions, and the expressions for the 

tensors Ctij and f3itm are calculated to give 

.... '> ') 8A 2 1 (Al) (A2) 
et"(k) = 'Y(k~- 1)8 .. + 4(k~ -1)k·k ·-- + 4k·k· + 7]10:" + 7]?0: .. 

2) lo.J t) 2 J 8 k ~ A 2 t J ZJ ~ 2) ' 

J 

(3.14) 

vV note that q.(3 .13) has nonlocal property which is inherited from the 
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original model equation. Let us clarify the nonlocal nature by eliminating the 

supplemental field p from eq.(3.13). After elimination, we obtain an integral 

representation of the phase equation : 

ZJ 
(3.15) 

U; =- L j d2x' P;j(X- X')· /3jim(k')iJI8mG(X'), 
jim 

where k' = k(i'), and the projection operator Pij was defined by eq.(2.17) . \Ve 

can further eliminate the drift field U and rewrite the phase equation only in 

terms of the phase field : 

G = L. j d2x'Q;j(X, X')O;OjG(X'), 
'ZJ 

Qij(X x') = CYij(k)8(x- X')+ L k,(i)Ptm(x- i')f3mij(k'). 
(3.16) 

lm 

The above equation makes contrast with the phase equation in the case of free 

boundary conditions. (see section 7.) 

Recalling ki = Oi8, we note further that eq.(3.16) is non-linear. Although it 

is difficult to solve this equation in general, it provides some useful informations . 

. As a few exan1ples, the linear stability analysis and the weakly nonlinear analysis 

near the phase instability are easily carried out on the basis of this equation. 

Th se will be shown in the next two sections. 
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4. Linear Stability Analysis of N orn1al Rolls 

Linear stability of a normal roll solution W, is generally determined by the linear 

equation: 

u = L · u, ( 4.1 ) 

which is obtained by substituting W = W, + u into the model equation and 

lin arizing it in u. The dynamics of this equation is under the control of the 

eigenvalues of the operator L, although long calculations would be needed to de­

rive all eigenvalues of L. Since we are especially interested in the phase instability 

or the mod ulational instability, we focus on the long-wavelength modes and work 

with the phase equation[36,46]. 

The normal roll solutions of the phase equation eq. ( 3.16) are expressed by 

8 = k0 x up to an arbitrary phase constant. Let us now argue the stability of 

this solution. Substituting 8 = k0 x +¢into eq.(3.16) and linearizing it in¢, we 

obtain a linear phase equation : 

if>= La?/Ji{)j,P + ko 'Z. f3Jim J d2x'Pxj(X- i')OdJmrP(i'), (4.2) 
ij ilm 

where a~j = CYij(ko) !33m = /3ilm(ko) and ko = (ko, 0). From this equation, the 

growth rate .A( ij) for the phase disturbance with wavevector q is derived as 

(4.3) 

where ~~xx = f3~xx - f3~xy> and the xpressions for a~j and f3f1m are listed up as 
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follows: 

f3~xx = 6hxxk{A2
- 2k~(k6 -1)} , 

(3~1JY = 2hxy koA 
2

, 

f3~xy = 4hyxk{A2
- k6(k6 -1)}, (4.4) 

f3~xy = f3~xx = fJ~yy = f3~xy = 0 · 

ote that the growth rate .A( q) is nothing but the long-wavelength part of the 

eigenvalues of L, and therefore short-wavelength instability such as cross roll 

instability or oblique roll instability can not be investigated by the analysis based 

on the phase equation. 

Let us classify the types of the phase instability by specifying the most un­

stable directions[4 49]. Setting qx = q cos 73 and qy = q sin 73, \Ve rewrite eq. ( 4. 3) 

as 

.A(q) = -d(73)q2
, 

d(73) = a~x cos 2 73 + a~Y sin 2 
{) + kosin2 73(~~xx cos2 73 + (J~YY sin 2 73), 

= a sin 4 
{) + b sin 2 

{) + c, 

where a, b and c were set as 

o -o 
a = ko(f3xyy- f3xxx), 

-o o o 
b = kof3xxx + ayy - axx' 

0 
c = axx 

(4.5) 

(4.6) 

H re w may interpr t d( 73) a.s a diffusion constant in the direction making angle 

{) fro1n the x-direction. The growth rate .A( q) is not regular at if= 0 as shown 

by q.(4.3). Therefore, \ e can not expand .A(ij) like .A(q) = ~ij Dijqiqj + · · ·. 
This i1nplies that th diffusion constants in these systems are not well-defined. 

Howev r, wh n we con ider th disturbance with one direction, the diffusion 
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constant in this direction beco1nes well-defined as expressed by eq.( 4.5). \Ve can 

thus define the most dangerous direction {)* and the diffusion constant in this 

direction as 

'!3* = arg mind( v)' 
{) 

d* = d({)*), 
(4.7) 

Then the phase instability occurs when the phase diffusion constant becomes 

negative, i.e. d* < 0, and the type of the phase instability is called 

{ 

the Eckhaus instability, if '13* = 0; 

zigzag instability, if '13* = 1r /2; 

skewed varicose instability, otherwise. 

vVe notice that if the drift terms are absent, the skewed varicose instability never 

occurs because a = 0. 

vVe now investigate the conditions for the phase instability. Let us restrict 

ourselves to the rolls with the wavevector ko = (1, 0) at the onset of convections. 

In that case a band c in eq.(-! .6) are calculated from eq.(4.4) as 

a= 2R(h- h'), b = 2Rh' + 2TJ2 - 4, c = 4, ( 4.8) 

where h 

results: 

hxy and h' = 3hxx - 2hyx· These expressions give us the following 

[1] The Eckhaus instability does not occur, 

[2] The zigzag instability occurs when R > -TJ2/ h under the condition 

h<O and I • 2 - TJ? 2 - T}'> 
h 2::mrn(h, R ~ 2h- R ~), (4.9) 

[3) The ske\ved varicose instability occurs when 

(4.10) 

under the condition 

2 - TJ? 2 - TJ? 
h' < n1in( h, R ~, 2h- R ~). (4.11) 

Then, either eqs.( 4.9) or ( 4.11) should hold in order that norn1al rolls n1ay 
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become unstable at R~ > Rc = 0. If we consider :Niodel(B) in which the isotropy 

of the drift field was assumed,i.e. hij = h1 = h, the relevant instability is only the 

zigzag instability because eq. ( 4.11) do not hold, and the zigzag instability occurs 

beyond R~ = -r12 / h when the condition h < 0 is satisfied. A recent experiment 

by N asuno and Kai[31] seems to support the fact that the normal rolls become 

unstable through the zigzag instability except that the type of instability of 

normal rolls turns into the skewed varicose instability at R~ > R~. vVe must thus 

consider Niodel(A) so that we may explain this experimental fact . vVe obtain the 

results: the necessary and sufficient condition for the occurence of the change of 

the instability type is that the inequalities 

h1 < 2h < 0 and 0 < 7]2 < 2, ( 4.12) 

are satisfied. In this case R~1 is calculated as 

•) 
II ""'- 1]'!. 

Rc = 2h- h1 
( 4.13) 

So far, we focused on the local behavior in the phase space, i.e. the behavior 

near the most irnportant stationary solution. \Ve now look into global structures 

in the phase space so that we may understand completely the system behavior. 

In particular, we investigate the stability of all normal roll solutions and consider 

the tability diagram in the space ( R, kx). This corresponds to the Busse balloon 

in the case of the Rayleigh- Benard convection[49]. \\ e show two examples from 

several types of stability diagran1s. The first is the stability diagran1 for 1'Iodel(B) 

und r th condition h < 0 which is shown in fig.1(a). The analytic expressions 

of the marginal stability line~ are derived from a~x = 0 and a~Y + kof3~yy = 0 so 

that R n1ay atisfy R = Rz ( k) for the zigzag instability and R = RE ( k) for the 

Eckhaus instability, wh re 

( 4.14) 
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Second, we show the stability diagram for the case that the change of the in­

stability type occurs. (see fig.1 (b) .) The analytic expressions of the marginal 

stability lines are the same as the first example, and the line on which the type of 

instability changes from the zigzag instability into the skewed varicose instability 

is expressed as 

R = R (k) = (k2- 1)2 P + Jp2 + 16(2h - h')(k2- 1)2 
s + 2h- h' ' (4.15) 

p = 2- 7]2- 4(k 2
- 1)h", 

where a parameter h" = (3hxx- hyx)/2 was introduced. These stability diagrams 

are quite sin1ilar to the one obtained by Nasuno and Kai (see fig .1(c).), and show 

that stable domains are bounded in the space (kx, R). Therefore, the solution 

\vith a nat'ltral wavenumber which may be different from the wavenumber at the 

onset, becomes unstable. The system behavior should then be determined by 

the nonlinear property. In the next section, we consider the weakly nonlinear 

analysis near the phase instability. 

Note that there are other types of stability diagrams in general, of which the 

transition through the skewed varicose instability would be of great interest. In 

the present paper, we '"ill not treat this case, but concentrate on the transition 

through the zigzag instability. 
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5. Weakly Nonlinear Analysis 

In weakly nonlinear analysis, non-linear terms are perturbativelly taken into ac­

count. In the present case, the distance c; from the onset of the phase instability 

is regarded as a small parameter. Since the phase instability is related to a neg­

ative diffusion constant in the phase equation the phase dynamics approach can 

be considered as a weakly nonlinear analysis. This idea was first presented by 

K uramoto(45,4 7]. Following Kuramoto we will derive the phase equation near the 

zigzag instability. \Ve first notice the scaling form of phase ¢ when c; ---r 0. Since 

the Fourier basis are the eigenvectors of the linear operator L, the corresponding 

eigenvalues CJ' are characterized by the wavevector q like CJ' = CJ'( qx, qy). Then, for 

c; = -a~Y - kof3~Y?J - 0, the scaling relation holds in the form 

(5.1) 

This implies that the phase satisfies the following scaling form for c; ---r 0: 

A..( . ) - -;( 1/2 2 ) If' X, y, t - <p eX, c y, c t . (5.2) 

Let us now look into some symmetry properties of the phase equation. The phase 

equation rnust be invariant under the transformations: (l)x ~ -x, ¢ ~ -¢, 

(2)y ~ -y and (3)¢ ~ ¢ + ¢o, where ¢o is an arbitrary constant. From these 

requirernent , the ph a -e equation near the zigzag instability can be written as 

. ') -l 2 ? 2 
¢ = -c:8y ~¢- D48y ¢ + D8x ¢ + g(8y¢)~8y ¢ 

+ sl(8x¢)8y 2¢ + s2(8y¢)8x8y¢, 
(5.3) 

although the la t tenn wa. ov rlooked in I uramoto s paper(47 ,63]. The coef­

ficients of this equation ca.n be calculated from the phase equation eq.(3.16). 

-26-



Substituting 8 = kox + ¢ into O:ij and f3itm, we obtain the expansions: 

o 8aii o 8aii o 8aii o 2 
O:ij=O:ij+(-8k) 8x¢+(8k) 8y¢+(()k2) (8y¢) ···, 

X V Y 

/3 . = (39 + (8f3itm)of) ~ + (f)f3itm)oD ~ + (8f3itm)o(fJ ~)2 ... 
tlm tim fJk X'f' fJk Y'f' ()k2 y'f' · 

X y y 

(5.4) 

\Ve expand formally Pij as 

~2 u ~ ? ~ 4 
pIX = 1 - ()'2 : 

8 2 = 1 - lvf- + o/f + ' .. l 

X y 

~ 8x8y ~ ~ 3 
P xy = -

8 2 8 2 = -lvf + Jvf + · · · , 
X+ V 

(5.5) 

8? 
A y A2 A4 

Pyy = 1 - [J? f)? = lvf - M + · · · , 
x + y 

where we introduced an operator 1 = Ox/ Oy rv c112
. Substituting 8 = kox + ¢, 

eqs.(5.4) and (5.5) into eq.(3.16), we obtain the coefficients of the phase equation 

eq.(3.3) in the form: 

o -o o 
D = O:xx + ko(f3xxx- f3xyy), 

= ( OO:yy )0 + k ( 8/3xyy )0 
g 8k 2 0 8k 2 ' y y 

= ( OO:yy )0 + k ( D{Jxyy )0 + (30 
1 8kx 0 8kx xyy> 

(5.6) 

( OO:xy)o (OO:yx)o o o 
S'J = 8k + 7Jk - f3xyy + f3yxy> 

y y 

Not that th ph a equation is nonlocal in general. However, if we restrict 

our lves to the neighborhood of the zigzag instability, nonlocality becomes neg­

ligible in the low st ord r ~ pansions in c . Furthennore when we focus on the 

roll solution with th onset ' av vector, \\ e n1ay put ko = 1 in eq.(5 .6). The 
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coefficients in eq ( 5. 6) are then expressed as 

D =4, 

g = 6(1 + ryl) - 4h7]2 > 0, 

sl=4(l+7J2), 

S2 = 2(4+37]2). 

(5.7) 

vVe now investigate the behavior of the solution of eq.(5.3) in further detail. 

vVhen c; is positive, the solution ¢ = canst. becomes unstable and the disturbance 

in the y direction grows. As a result, the x-dependence of¢ may be neglected at 

first, and we obtain the equation: 

(5.8) 

This equation is also expressed as 

(5.9) 

where u = 8y¢. Equation(5.9) is identical to the Ginzburg-Landau equation for a 

conserved order parameter 'l.l as it arises in spinodal decornposition[64). A similar 

phase equation was discussed by Brand and Deissler in the problem of confined 

states[65,66), and also by Riecke in parametrically excited standing wave[67]. 

Since the sign of the coefficient g is positive, the bifurcation is supercritical, 

and u = ±~ \\ hich minimizes the potential gives the stable states . Though 

the uniform states u = ±~will not be realized in general due to its violation 

of the conservation law, the boundedness of the phase deformation will be ensured 

at least. vVhat is expected to occur is the formation of kink-antikink pairs and 

th ir dynarni s with very long time scale[68]. Note that kink-antikink patterns 

in u impli s zigzag pat terns in conv~ctive rolls . 

vV n xt con icier the effect of the variation in the x-direction and investigate 

th stability of the unifon11 states u = ±~. Then we obtain the following 
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results: If g > 9c, the zigzag roll remains stable because the uniform states u = 

±VfE]g are stable. On the contrary, if 0 < g < gc = 3s~/8D, the uniform states 

u = ±VfE]g become unstable against the disturbance with direction slightly 

different from the y-direction. The dynamics is essentially two dimensional as 

for the dynamics associated with the skewed varicose instability in the Rayleigh­

Benard convection. It would be necessary to investigate in further detail such 

two-dimensional dynamics for a full understanding of the system behavior. 

In our model, the value gc is calculated from eq.(5.7), and it turn out to be 

9c = (5.10) 

This expression sho'' s that g > 9c holds for sufficiently small 7]2 and that 0 < 

g < gc holds for sufficiently large "72. This implies that the stable zigzag roll 

appears sufficiently close to the Lifshitz point \vhile defect creation through the 

instability of the zigzag roll occurs far from the Lifshitz point. These results are 

consistent with experiments, and therefore there is a possibility that defect chaos 

occurs in the case 0 < g < gc. This will be checked by numerical simulations in 

the next section. 
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G. Numerical Simulations 

In this section, the behavior of !vfodel(B) will be investigated numerically. vVhen 

a PDE is defined in a finite domain D , we must impose boundary conditions. 

The most realistic ones are [.55) 

Wlan = (ii · V)Wian = 1/Jian = 0, (6.1) 

where ii is the unit vector normal to the boundary. Since it is difficult to 

simulate the PDE model directly, we follow Oono and Puri[51 ,52) and take a 

C'NIL model corresponding to the vorticity representation of ~'lodel(B) . Oono 

and Puri presented the essential idea that the local and global processes can be 

separated. Let us define a cell dynamics of a complex variable vV( i, j) on each 

cell in the the square lattice of the size 1\f x N: 

v:Rwn 
vVn+l = -------------~ , (6.2a) 

(Re-'2R6.t + IVVnl2(1- e-2RLH))2 

where 6.t is the time increment in each step. This map was obtained through 

the integration of the ordinary differential equation: 

vVe next connect the maps on different cells in the following manner: 

vVn+l = VVn+l- (Un+l. V)Wn+l + DvVn+l , 

D = -(~t){(l + 6) 2 + 1]10y 
4 + 27]20x 

2
8y 

2
}, 

Un+l = (oy?/Jn+l -Ox?/Jn+l), 

-6.1/Jn+l = (6.t)h.:(V11V~+l X V Lil1Vn+l + c.c). 

( 6.2b) 

(6.2c) 

( 6.2d) 

Here, we us d cl rivative notations although we replaced the spatial derivative by 

the cell-to-e ll difference with the space increment 6.x. \\ e also introduced a real 
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variable ?j;( i, j) corresponding to the vertical vorticity. The boundary condition 

is given by a discrete version of eq.(6.1), and then we solve exactly eq.(6.2d), a 

discretized poisson equation, by using sine transforn1ations. 

N un1erical si1nulations are carried out with parameter values: N = 63, !:::.. t = 

0.1, f::..x = 1.0, 171 = 0.6, 172 = 0.3 and h = -1.0. The normal rolls should become 

unstable beyond Rc = -172/ h, and the transition to defect chaos is expected 

because the inequality g < Yc is satisfied. (g = 10.8 and 9c = 18.49) The initial 

condition we assun1ed is a periodic variation in x with small fiuct uations. Its 

\\avenun1ber is 211 x 10/AT(= 0.997 · · ·) and very close to ko = 1. This choice 

seerns suitable because the roll \\ ith wavenumber k0 = 1 shows the fastest initial 

growth. For R = 0.5, we found that the roll solution is stable except that it 

is slightly defonned near the boundaries. The effect of the boundary seems to 

be weak con1pared to isotropic systems. For R = 1.0, the roll solution becon1es 

unstable and starts to deforn1 spontaneously and slowly. \Ve can see the fonnation 

of defects after the appearance of the zigzag pattern at an early stage. A dynamic 

steady state is established after a. rnnnber of creations and annihilations of defects. 

A tin1e evolution of patterns in the steady state is seen in fig. 3. This shows 

that the n1otion and spontaneous creation of defects are the n1ost in1portant 

ingredients in our pattern dynan1ics. \i\ e identify such a state as defect chaos 

because the ten1poral change of the nun1ber of defects shows aperiodicity as seen 

in fig . 3. 
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Fig.2 Pattern evolutions at ever) 100 steps; (1)---+ (3). The contours Re(VVs) = 0, 

where lVsis interpolated b) spline interpolation. 
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\Ve will now argue so1ne statistical properties of the ten1poral variation of 

the nun1ber of defects. The quantities dn = Lij IH'IOn(i,j)l jJ\T 2
, (1 ~ n ~ T = 

2 x 103 ) for R = 1.0 and R = 1.5 were calcula.ted. Vie expected that the low 

frequency property of the quantity dn \vill be identical to that of the number of 

the defects. In fig. 4, the spectra S( w) of the quantity dn are shown, where 

T 2 

S(wj)= ~Ldne2r.iw;n 
n=l 

J 
Wj=10·T' 

. T 
(1 ~ J ~ 2- 1). 

These spectra seen1 to ha\ e t\\ o characteristic regi1nes: 

{ 
S( w) rv canst. 

S( w) rv w -a 

Here 2 < a < 3 is satisfied. 

1 0 -9 

1 0 
-1 

~ 
:::J 
c:: 1 0 -a 
f-' 
L) 
w 
o... 1 0 -s 
tl) 

1 0 -10 

for w ~ w1; 

for w1 << w ~ w'2. 

-6 
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~ 
;::::J 
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Fig.4 Log-log plots of spectra S(w) for (a)R = 1.0 and (b)R = 1.5. These spectra 

''ere calculated fron1 the a\ erage over five san1ples. The straight lines show 

S( w) rv w5f'2. 
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vVe ftnd further that the cross-over frequency w 1 between the two regimes, 

which corresponds to the inverse of the correlation time, becomes large with R . 

This irnplies that the correlation time diverges at the onset of the zigzag insta­

bility. No physical interpretation for these spectral behavior has been presented 

yet. vVe still need to investigate their statistical properties in further detail. 

7. Concluding Re1narks 

In the present paper \Ve investigated analytically and numerically the Pesch­

Kramer n1odel supplemented \vith drift terms, and showed that this model ex­

hibits a transition frorn stable periodic pat terns (\VD) to defect chaos ( F\VD). 

In this final section we will give three comments on (1) the Rayleigh-Benard 

convections, (2) an extension to the case of free boundary conditions, and (3) 

futur problems. 

( 1) Our n1odels can aLo describe the Ray leigh- Benard convections when the 

anisotropic pararneters are set as 7]1 = TJ2 = 0. In that case the roll solutions 

do not become unstable because the property hij = h > 0 is always satisfied(55). 

On the other hand, experiments and analysis based on the Boussinesq equation 

how that the rolls become un able at a finite di tant apart from the onset of 

convection and that the t pe of the instability at the moderate Prandlt number 

is the skewed varicose instability(49 69 70) . If we wish to explain phenomelog­

ically this fact the model equation must include more non-linear terms such 

as jvVj 2 6 W and j\7Wj 2 TV. Indeed, Greenside et al. worked with a modified 

wift-Hohenberg equation upplemented with the drift tern1, and confirn1ed the 

transition to a chaotic state(5 ] . 

(2) vV assun1ed that the drift field 1s adiabatically induced by the defor­

rnations of th rolls. Ho\\ ever if we consider the system under free boundary 

conditions the drift flow beco1nes a rele ant dyna1nical variable by virtue of the 

Galil i sy1nmetry. E n in the ca e of rigid boundary conditions, it \VOtdd be 

n1ore suitable to start with the ca e of free boundary conditions a far as the 

tin1 scale of the drift flow (horizontal tin1e scale) become long. In fact, in 
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the Raylejgh-Benard convections with low Prandlt number, the breakdown of 

the Galilei symmetry at the upper and lower plates is weak, and therefore the 

horizontal time scale is long. In the case of EHC also, Kai et al. showed that 

the horizontal time scale becomes the same order as the vertical time scale when 

Lhe frequency of the applied electric fields is relatively high and close to the crit­

ical frequency[71]. In these cases, we can expect that the dynamics of the drift 

b comes relevant. 

Recently, Kaiser et al. derived an amplitude equation for EHC under free 

boundary condiLions and showed the direct transition frorn a convectionless state 

to defect chaos[72]. vVe can easily extend our models with the Galilei symmetry 

and develop the phase dynamics for an extended model. The phase equation 

takes the form: 

(7.la) 
t) 

Ui + 0. vui = L dtm(k)8tmUi- Lf3itm(k)8d3m8- DiP, (7.lb) 
lm lm 

\1. u = 0. (7.lc) 

This equation is an extended version of the phase equation with the Galilei sym­

metry in e sentially one-dimensional systems, where the pressure field was not 

introduced[73-76]. 

(3) A nun1ber of problems on defect chaos remain to be unsolved, of which 

the following three are particularly important: The first question is the value 

of the ontrol parameter R a.t which the tran ition to the chaotic state occurs. 

This question rnay be related with the problem of spatio-temporal intermittent 

transition(77- 0] . The second problem is how to describe the motions of defects in 

the def ct chaos regin1e. lthough n1any researches on the defect motions were 

pr s nt d[2-9, 1 2], they are concerned with nonchaotic systems. The third 

probl m is to understand the spectral characteri tics for the temporal variation 

of the numb r of clef cts . Further reports will be devoted to these subjects. 

-35-



References 

1. N.D. Niermin, Rev.Niod.Phys. 51 592 (1979). 

2. E.D. Siggia and A. Zippelius, Phys.Rev. A24 1036 (1981). 

3. NI.C. Cross, Phys.Rev. A25 1065 (1982). 

4. Y. Pomeau, S. Zaleski and P. l'v1anneville, Phys.Rev. A27 2710 (1983). 

5. E.Dubais-Violette, E. Guazzelli and J. Prost, Phil.N1ag.A48 727 (1983) . 

6. K. Kawasaki, Prog.Theor.Phys.Suppl. 79 161 (1984). 

7. K. Kawasaki Prog.Theor.Phys.Suppl. 80 123 (1984). 

G. Tesauro and i\I.C. Cross, Phys.Rev. A34 1363 (1986). 

9. E. Bodenschatz, \\. Pesch and L. Kramer, Physica D32 135 (1988). 

10. P. i\Ianneville , Dissipative structures and lVeak Turbulence 

(Academic Press, ew York, 1990) 

11. P. Coullet and J. Lega, Europhys.Lett.7 511 (1988). 

12. P. Coullet L. Gill, and J. Lega, Phys.Rev.Lett. 62 1619 (1989). 

13. K. Stewartson and J.T. Stuart, J.Fluid 1viech. 48 529 (1971). 

14. A.C. Newell, Lectures in Appl.i\1Iath. 15 157 (1974). 

15. Y. Kuramoto and T. Tsuzuki, Prog.Theor.Phys. 52 1399 (1974). 

16. Y. Kuramoto, Chemical Oscillations, vVaves, and Turbulence (Springer, 

Berlin , 1984) 

17. P. Coullet, S. Fauve and E.Tirapegi, J.Phys. (paris), Lett46 787 (1985). 

1 . P. Coullet, C. Elphick L. Gill and J. Lega, Phys.Rev.Lett. 59 8 4 (1987). 

19. Y. Kuran1oto and S. Koga, Prog.Theor.Phys. 66 10 1 (19 1) . 

20. I\. I aneko, Prog.Theor.Phys. 72 4 0 (1984). 

21. K. Kaneko, Physica D34 1 (19 9). 

22. K. I aneko, Physica D 3 7 60 ( 1989). 

23. S. Kai and K. Hirakawa, Solid.State.Comm. 18 1573 (1976). 

24. S. Kai and K. Hirakawa Prog.Theor.Phys.Suppl. 64 212 (1978). 

25. S. Kai, N. Chizun1i, and I. Kohno, Phys.Rev. A40 6554 (1989) . 

26. S. Kai and vV. Zimmern1ann, Prog.Theor.Phys .Suppl. 99 458 (1989). 

-36-



27. S. Kai, N. Chizumi and Nl. Kohno, J.Phys.Soc.Jpn. 58 3541 (1989). 

28. A. Joets and R. Ribotta, .J.Phys. (paris) 47 595 (1986). 

29. I. Rehberg, S.Rasenat and V. Steinberg, Phys.Rev.Lett. 62 756 (1989?) . 

30. S. Nasuno, Dr. thesis, Tohoku University, (1990) (in Japanese). 

31. S. N asuno and S. Kai, Instabilities and Transition to Defect Turbulence in 

Electrohydrodynamic Convection of Nematics, preprint (1990). 

32. R. Williams, J.Chem.Phys. 39 384 (1963). 

33. E.F. Carr, 1'v1ol.Cryst .Liq.Cryst. 7 253 (1969). 

34. W. Helflich, J.Chem.Phys. 51 4092 (1969). 

35. P. G. de Genne, The Physics of Liquid Crystals (Clarendon, Oxford, Eng-

land) ( 197 4). 

36. A.C. Newell and J. \Vhitehead, J.Fluid 1\Iech. 38 279 (1969). 

37. L.A. Segel, J.Fluid :.\'fech. 38 203 (1969). 

3 . E. Bodenschatz \\. Zimmermann and L. Kramer, J.Phys. (paris) 49 1875 

(19 ) . 

39 . vV. Pe ch and L.Eramer, Z.Phys. B63 121 (1986). 

40. S. Sasa, Prog.Theor.Phys. 83 824 (1990). 

41. E .D. Siggia and A. Zippelius, Phys.Rev.Lett. 47 835 (1981). 

42. A. Zippelius and E.D. Siggia Phys.Fluids 26 2905 (1983). 

43. M.C. Cross, Phys.Rev. A27 490 (1983). 

44. l'vi.C. Cro sand A.C. Newell Physica lOD 299 (1984). 

45. ""~{. Kuratnoto and T. Tsuzuki, Prog.Theor.Phys . 55 356 (1976). 

46. Y. Pomeau and P. ~Ianneville J.Phys. (paris), Lett40 609 (1979) . 

47. Y. Kuramoto, Prog .Theor.Phys. 71 1182 (1984). 

4 . F.H . Busse and R.J\1. Clever, J.Fluid Mech. 91 319 (1979). 

49. F.H. Busse, Rep.Prog.Phys 41 1929 (1978). 

50. S. vVolfram, Rev.l'v1od .Phys55 601 (1983). 

51. Y. Oono and S. Puri Ph;s.Rev.Lett. 58 836 (1987). 

52. Y.Oono and S.Puri Phys.Rev. A38 434 (1988). 

53. J. Swift and P.C.Hohenberg, Phys .Rev. A15 319 (1977). 

-37-



54. H.S. Greenside and vV.i\·1. Coughram Jr., Phys.Rev. A30 398 (1984). 

55. P. Manneville, J.Phys. (paris), Lett44 903 (1983). 

56. P. Manneville, J.Phys. (paris) 44 759 (1983). 

57. H.S. Greenside and 1\ti.C. Cross, Phys.Rev. A31 2492 (1985). 

58. H.S. Greenside, :rvl.C. Cross, and W.lVI. Coughran, Jr, Phys.Rev.Lett. 60 

2269 (1988). 

59. S. Sasa, Prog.Theor.Phys. 84 1008 (1990). 

60. A Pocheau, J .Phys. (paris) 50 2059 (1989). 

61. A.C. Newell,T.Passot, and 1\ti.Souli, Phys.Rev.Lett. 64 2378 (1990) . 

62. Y. Kuramoto, Prog.Theor.Phys.Suppl. 99 244 (1989). 

63. T . Ohta, Prog.Theor.Phys. 73 1377 (1985). 

64. J.S. Langer, Ann .Phys.(N .Y.)65 53 (1971). 

65. H.P. Brand and R.J. Deissler, Phys.Rev. A41 5478 (1990). 

66. H.P. Brand and R.J. Deissler, Phys.Rev.Lett. 63 508 (1989). 

67. H. Riecke, Europhys.Lett.ll 213 (1990). 

68. K. Kawasaki and T . Ohta, Physica 116A 573 (1982). 

69. G. Ahlers and D.S. Cannell, Phys.Rev.Lett. 54 1373 (1985). 

70. M.S. Heutmaker and J.P. Gollub, Phys.Rev. A35 242 (1987). 

71. S. Kai, 1\ti. Takada and K. Hirakawa, J .Phys .Soc.Jpn. 45 2051 (1978). 

72. M. Kaiser, W.Pesch and E.Bodenschatz, NJ ean Flow Effects in the Electro-

Hydrodynamic Convection in Nematic Liquid Crystals preprint (1990) . 

73. P. Coullet and S. Fauve, Phys.Rev.Lett. 55 2857 (1985). 

74. U. Frish, Z.S. She and 0. Thual, J.Fluid l\IIech. 168 221 (1986). 

75. B.I. Shraiman, Phys .Rev .Lett. 57 325 (1986). 

76. S. Fauve and E.vV. Bolton and M.E. Brachekt, Physica 29D 202 (1987). 

77. K. Kaneko, Prog.Theor.Phys. 74 1033 (1985). 

78. H. Chate and P. l\tianneville, Phys.Rev.Lett . 58 112 (1987). 

79. H. Chate and P. l\tlanneville, Physica D 32 402 (1988). 

80. S. Ciliberto and P. Bigazzi, Phys.Rev.Lett. 60 286 (1988). 

Sl. G. Goren, I.Procaccia, S. Rasenat and V. Steinberg, Phys.Rev.Lett. 63 

-38-



1237 ( 1989). 

82. S. Nasuno, S. Takeuchi andY. Sawada, Phys.Rev . A40 3457 (1989). 

-39-


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053

