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ABSTRACT

We present and study simple mathematical models which exhibit a transi-
tion from stationary periodic patterns to defect chaos in electro-hydrodynamic
convection of nematic liquid crystals. A nonlinear phase equation is derived from
our models, whose method follows the Cross-Newell theory. The stability anal-
ysis of normal rolls and weakly nonlinear analysis near the phase instability are
developed on the basis of the phase equation. Pattern evolution and statistical
properties in the regime of defect chaos are also discussed with the aid of numer-

ical simulations of a computationally efficient model which we worked out.
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1.Introduction

Let us consider a two-dimensional system in which spatial periodic patterns are
formed. These systems often exhibit weakly disordered structures such as topo-
logical defects i.e. the point singularities in the phase fields associated with the
periodic patterns. In the first stage of the ordering process, the periodic patterns
are locally formed and a defect appears at the point connecting two periodic pat-
terns with identical orientation but slightly different wavelengths. Since defects
are topologically stable in two-dimensional systems [1], the motion of a defect is
well-defined until it vanishes on collision with an anti-defect 1.e. the defect with
an opposite topological number. Therefore, defects should play important roles
in the late stage of ordering process [2-9]. On the other hand, defects can also be
created spontaneously through the instability of periodic patterns. In that case,
if unstable periodic patterns are reorganized after the defect creation, the system
still retains its unstable nature, and such a state is called defect chaos or defect
turbulence. Since defect chaos has weakly disordered spatial structures, this may
be classified into weak turbulence rather than developed turbulence[10].

Defect chaos seems to be a new mode of motion. We therefore try to clarify
the nature of defect chaos by exploring the following specific problems:

(1) Finding scenarios for the transition to defect chaos.
(2) Describing the pattern dynamics.
(3) Characterizing statistical properties of defect chaos.

It would be necessary to approach these problems both experimentally and
theoretically. When a theorist tries to solve a problem, he needs a model which
has both quantitative predictability and practical computability.

Recently, the complex Ginzburg-Landau equation has been studied by Coullet
et al.[11,12] as a model for defect turbulence. This model equation describes the
behavior near the Hopf bifurcation [13-16], and the defect is then defined as a
singularity of temporal phase or propagative phase[17,18]. However, the non-linear
interactions and destabilization of waves emitted from the defects are important

ingredients of the dynamics in this kind of oscillatory medium[19], so that its
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behavior should be rather different and more complex as compared to that of
non-oscillating systems which is of our main concern. A coupled-map-lattice
(CML) approach, which was first proposed by Kaneko, also gives a useful model
for studying spatio-temporal chaos, and several essential features of transition and
statistical properties were exhibited[20-22]. However, it is difficult to know what
physical processes are expressed by CML, that is, the correspondence between
CMLs and real phenomena remains quite abstract and indirect.

As implied above, theoretical research for defect chaos remains poor for the
lack of a suitable model. On the contrary, experimental works were developed to
a considerable extent by working with electro-hydrodynamic convections (EHC)
of nematic liquid crystals (NLC)[23-31].

Nematic liquid crystals, which consist of elongated molecules, are a fluid with
an orientational order described by the director. They have thus anisotropic
properties whether they are in or out of thermal equilibrium, and show a rich
variety of patterns when A.C. electric fields are applied, as systematically studied
by Kai and his coworker[24]. Let us sketch the system behavior near the onset of
convection. On increasing the voltage in the conduction regime below a critical
frequency, a stationary roll pattern appears with a preferred direction due to the
anisotropy[32-34]. If the preferred direction of the rolls is normal (or oblique) to
the direction of the directors, the rolls are called normal rolls (or obligue rolls),
and the normal rolls are also called the Williams domains (WD)[28]. Which
type of the rolls appears depends on the frequency; for example, the normal
rolls are formed beyond a frequency called the Lifshitz point. Increasing the
voltage further in the normal roll regime, one finds a secondary bifurcation to the
fluctuating Williams domain (FWD), as named by Kai[23]. In this regime, where
the basic roll structure is still retained, a dynamic steady state is maintained
through the creations and annihilations of defects. FWD is nothing but defect
chaos. We thus wish to investigate the nature of FWD theoretically.

First of all, we must consider which model is the best fitted to our present

study. Although the study based on the microscopic models may make quan-
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titative predictions, some of them do not satisfy the computability condition
mentioned before. Indeed, in EHC, it is difficult to treat such basic equations
in EHC analytically or numerically[35]. Thus, one of the main purposes in the
present paper is to construct a suitable model for defect chaos in EHC of NLC.

Since defect chaos appears on a macroscopic scale, we want to express it
with a macroscopic description which is suitable also for the description of roll
patterns. Our approahes are twofolds. One is called the method of the amplitude
equation which is mathematically justified. If we are concerned with the regime
near the onset of convections, it would be possible to simplify the dynamics into
the dynamics of the amplitude of the critical mode[36,37]. Though the amplitude
equation in EHC was derived by Bodenschatz et al.[38], it can never describe the
transition between WD and FWD. This implies that some higher order terms
become essential beyond a finite distance apart from the onset of convection.
One may therefore expect that the transition to defect chaos could be described
by taking account of such terms. Actually, however, it is very difficult to calculate
higher order terms, and the method of the amplitude equation does not seem to
appropriate for describing defect chaos.

Another approach is a phenomenological one in which some important effects
are heuristically taken into the equation. In that approach, we can predict no
quantitative details but we are only concerned with universal features of the phe-
nomena. How to construct a phenomenological model equation is the following.
We first study experimental facts about the onset of convections and try to know
the type of bifurcation by checking the continuity of transitions, onset frequency
and codimension. It is known that the transition to WD occurs through a su-
percritical stationary bifurcation. Second, we take account of some invariance
properties to be require under the transformations such as translation, reflection,
rotation and the Galilei transformations. A model in EHC should satisfy the first
two symmetries. Finally, some simplicity of the model should be demanded; for
example, the order of the spatial derivatives or dynamical variables which ap-

pears in the model should not be too high. However, too simplified models could
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not capture the phenomena, and therefore it i1s not always easy to require sim-
plicity from a certain guiding principle. Such difficulty makes contrast with the
case of the amplitude equation method for which a simple form can be obtained
by the scaling hypothesis. We must thus make trial and error until we obtain a
reasonable model. Unfortunately, a simple model for EHC which was presented
by Pesch and Kramer can not exhibit the transition to defect chaos although
their model equation can explain some behaviors such as the normal roll-oblique
roll transition.[39] We must thus extend their model so that it may describe efect
chaos. In section 2, we will present the Pesch-Kramer model supplemented with
drift terms[40], and the equation for the drift field which is induced by the defor-
mations of rolls will be determined by the requirements of the symmetries and
simplicity.

The importance of drift effects was first pointed out by Siggia and Zip-
pelius[41,42]. In the systems under stress free boundary conditions, a large scale
horizontal flow (drift) becomes a relevant dynamical variable because the Galilei
symmetry must be satisfied by the system. On the other hand, Cross showed
that skewed varicose instability is caused by the drift effects under rigid bound-
ary conditions[43]. This fact is somewhat mysterious because the drift flow is not
a relevant dynamical variable in the case of rigid boundary conditions. In this
case, however, the drift effects play two roles. First, the drift terms produce non-
linear terms including higher order spatial derivatives. Second, the same effects
cause nonlocality because the pressure field in a incompressible fluid is nonlocally
determined and the drift flows have a part coming from the pressure gradient.
As we will argue in section 5, skewed varicose instability occurs as a results of
this nonlocality[43,44].

We now introduce the analysis based on our own models. A necessary condi-
tion for the appearance of defect chaos is that the normal rolls become unstable
at a finite distance apart from the convection onset. In that case, the type of
instability should be a long wavelength instability (phase instability) because

the local order must be retained. Then, one may ask whether or not the phase
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gradient remains bounded when the phase instability occurs. If the phase gra-
dient remains bounded and exhibits chaotic behaviors, then this state may be
called phase turbulence whose notion was first proposed by Kuramoto[45]. We
notice that phase turbulence appears only when the temporal symmetry breaks
down. As other possibilities, phase deformation may lead to a stable pattern,
or otherwise amplitude deformation may be caused leading to spontaneous cre-
ation of defects. In order to understand such behaviors, we must make a weakly
non-linear analysis.

Phase dynamics which describes the deformations of rolls is a powerful tool for
studying these problems: it not only gives the descriptions of the slow relaxation
to a stable state, but also determines the marginal stability lines on which the
phase instability takes place[46]. Although the standard phase dynamics does not
describe the behavior beyond the marginal stability lines, Kuramoto improved it
by developing a weakly nonlinear analysis for phase instabilities[47].

In section 3, we will derive the phase dynamics for our model equations
following the Cross-Newell approach[44]. In section 4, we will argue the linear
stability analysis of normal rolls based on the linearized phase equation. We will
classify the types of the phase instability by specifying the most unstable mode,
as was done by Busse for the Rayleigh-Bénard convections[48,49], and determine
which type of instability leads to defect chaos. In section 5, a nonlinear phase
equation will be derived from a weakly nonlinear analysis, and we will argue the
behavior beyond the phase instability with the use of this equation.

Discussions based only on the stability analysis can not give a definite answer
to the question whether or not our models serve as suitable models for defect
chaos. We are thus led to their numerical simulations. In computer simulations of
PDE, however, we always have the question of reliability. On the other hand, we
have also models such as celluar automata[50] and CMLs which are free from such
problems. These models are more suitable to treat numerically; their simulations
may be looked upon as those of the real phenomena themselves. Such a view

was advanced strongly by Oono and Puri in their paper: They say ” Nature gives
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physicist phenomena, not equation”[51,52]. If we are concerned with universal
macroscopic properties which are independent of microscopic details, we prefer to
simulate a computationally efficient model. It would therefore be an important
step in our theory to construct such a CML model that could describe the same
universal behavior as a PDE model does. The problem of constructing a best
CML is quite difficult to solve in general. Still, Oono and Puri presented a
method to construct a CML model corresponding to a PDE model in spinodal
decomposition problems[51,52]. Although their method has never been justified
mathematically, 1t i1s expected to apply to many other problems.

In section 6, we will present a CML version of our model and carry out its
numerical simulations so that we may study pattern evolution and statistical
properties. We will focus on the temporal variations of the number of defects,
because the term defect chaos comes from their chaotic variations, implying the
importance of investigating their statistical properties[27,30]. In the final section,

a few additional comments will be given.




2. Phenomenological Models

A typical example of phenomelogical equations in convective systems is the Swift-
Hohenberg equation which was derived from the Boussinesq equation under some
approximations[53]. Let us explain their model equation. Consider the situation
that steady periodic rolls are super-critically formed in an isotropic system. Let
the vertical velocity be denoted by w. Then, the form of the equation for w is
constrained by the following two requirements. First, the equation must exhibit
a super-critical steady bifurcation at R = R. and the critical wavenumber k.
must be finite. Second, the equation must satisfy the Euclid symmetry and be
invariant under the transformation w — —w. We further require the simplicity
such that the heighest order of the spatial derivatives should be minimal. Then

the model equation takes the form:
W= Rw—w?— (14 A)%w, (2.1)

where A = 9% + 83 and R 1s a control parameter which corresponds to the
temperature gradient.

This model equation has a potential such that the system relaxes to one of its
minima. Since the minima of the potential are degenerate due to the rotational
symmetry involved, its relaxational dynamics has a very long time scale and
the system often relaxes to non-trivial steady patterns with grain boundaries by
the influence of latenal boundaries. Detailed simulations of this model equation
which were performed by Greenside and Coughran also show such behavior [54].

There are some variants of the Swift-Hohenberg equation[39,55-58]. In par-
ticular, Pesch and Kramer presented as a phenomenological model of EHC an

anisotropic version of the Swift-Hohenberg equation[39]:

w = Rw—wa-%-f)w,
) , (2.2)
D=—(1+24)"—md,* - 21.06,°8,".

Here n; and 7, are anisotropic parameters, and R is a control parameter corre-

sponding to the voltage of the applied electric field. This model equation is the
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simplest model of those taking account of the anisotropy. We now review the
behavior of this model equation near the onset of convections[39].

Without external forces, the fluid remains in a rest state w = 0. When A.C.
electric fields are applied and the voltage reaches a critical value, convections set
in. This fact implies that the rest state w = 0 becomes unstable against the
disturbance with non-zero wavevector. We thus analyse the linear stability of
the rest state. Denoting the growth rate of the disturbance around the uniform

state w = 0 by A, we obtain from the model equation eq.(2.2)

Ak, ) = R— (k* = 1)" — gk*sin ¢ — 2myk* sin? g cos? ¢, (2.9
= R—1+2k" — k*(1 + 2nsin ¢ + (1 — 2m2) sin' ) ’

where k = (k cos @, ksing) (k > 0) is the wavevector of the disturbance. Consider
the situations in which the directors in the rest state are aligned in the z-direction.
Then, the growth of disturbances in the y-direction is inhibited. This fact is
explained by the condition 7; > 0, and we will assume this condition below. The
critical wavevector k. and the control parameter R, at which the convections
occur are determined from the condition that the maximum value of A becomes
positive. The magnitude of the critical wavevector should be finite or zero so
that the system may remain stable. Therefore, for arbitrary ¢, the parameters

71 and 7 must satisfy the inequality:
1+ 2nysin® @ + (1 — 272) sin* ¢ > 0. (2.4)
This condition is reduced to
m>0 or g —2m—1n; >0. (2.5)

We will assume this condition below. Then we obtain the following results: If
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max A(k, ¢) = Alke, )
¢P

_9 (26)
—R-14 T
m — 2m2 — 1
where
Y TSkl ek S S S, T (2.7)
’ m = 22 ’ m =2
The critical control parameter R, is then expressed as
73 .
Ri=——no—, 2.8
’ m =22 — ;3 (28)
On the other hand, if n, > 0,
rax Ak, @) = Ak, ¢c)
® (2.9)
=R,
where
k=1  and sin® ¢, = 0. (2.10)
In this case, the critical control parameter R, is determined as
R.=0. (2.11)

These results show that 2 = 0 corresponds to the Lifshitz point: 72 < 0 holds

for the oblique roll regime, whereas 15 > 0 holds for the normal roll regime[39].

We may thus interpret 7, as the distance from the Lifshitz point. Since we are

concerned with the normal roll regime, 72 > 0 will be assumed below.

The Pesch-Kramer model also has a potential. Therefore, the dynamics is

relaxational tending to the roll solution which minimizes the potential, and its

time scale 1s much shorter than that for an isotropic system due to the uniqueness
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of the potential minimum. Since we found that their model equation is too simple
to describe defect chaos, we consider a more complex model; a model supplmented

with drift terms, which is written as

u)+(ﬁ-6)w = Rw — w® + Dw, (2.12a)
D=—(1+24) —md,* - 20:0.%8,".

The drift field U is induced by the deformation of the rolls. The equation
for U can be determined by the following requirements[59]. The first is that
the drift field U determined adiabatically by the vertical velocity w. Second,
it must be invariant under the transformations : (1) z — —z,U; — —Uy, (2)
y — —y, U, — =Uy, and (3) w — —w. The third requirement is that the
equation should include spatial derivatives at most up to the third order and
the powers of w up to the second order. Finally, the drift field should satisfy
the incompressibility condition. From these requirements, the equation can be

written in the form

Ui = 35[(1,‘102 + Z{b,’jwafw + c;j(a,-w)z}]
i

+ Z hijwd;0}w — dip, (2.12b)
J
V-U=0. (2.12¢)

Here, the suffixes ¢, --- represent z or y, and we introduced an auxiliary field
p which represents effective pressure. Although many parameters appear in
eq.(2.12), they are not actually indepedent because eq.(2.12) is invariant un-
der the transformations: (1)ar — ay + vi, b1 — by + v1 (2)ay; — ag; + vy,
ba; — baj + voj, (3)asz; — asj + vsj, by; — bs; + v3;, where vy, vo; and vs; are
arbitrary constants. Therefore, we can set a, = b,; = ¢,; = 0 without loss of
generality, and if the drift satisfies the rotational symmetry, we can further set

az = byj = czj = 0 and hj; = h.

~12-
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We now further simplify the model so that the analysis may become easier.
We treat w as a complex field W. One may then interpret Re(W) as the vertical

velocity. We also assume a; = b;j = c;; = 0. Then the model equation becomes

W+ (U - V)W = RW — |W|* W + DW, (2.13a)
D=-1+0)" —md,* - 2m8:°0,".
Ui=Y hij(W*3:0}W +c.c) — dip, (2.13b)
i
V.U =0 (2.13c¢)

We will call this model Model(A). If the drift is approximated as isotropic, then

we obtain an even simpler model equation:

W+ (U -V)W = RW — |W|* W + DW, (2.14a)
D=—(1+24)=md,* —21:8,%9,".

Ui = A(W*G; AW + c.c) — dip, (2.14b)

V.U =0 (2.14c)

We will call this model Model(B).

We can also express the drift terms in different forms such as an integral
representation and a vorticity representation. Let us consider these expressions
for Model(B) only. (Similar arguments can apply to Model(A).) We first explain
the integral representation. The pressure field p i1s determined by the Poisson

equation derived from eqs.(2.14b) and (2.14c):

Ap=hY_ 8i(W AW + c.c). (2.15)

This equation shows that the pressure field is determined nonlocally. Substituting

eq.(2.15) into eq.(2.14b), we can obtain an integral representations for the drift

=13=
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field:

U; = Z/dzmlpij(f— FYR(W*0; AW () + c.c), (2.16)
i

where P;; is defined as

(2.17)

We next explain the vorticity representation. From eq.(2.14c), we can express

the drift field U in terms of a stream function P as
U = (8y%, —0:1), (2.18)

and v is related to the vertical vorticity ¢ through ¢ = —AY. Then, from

eq.(2.14b), we obtain the vorticity equation:
—AY = h:(VW* x VAW + c.c) (2.19)

This expression is a standard form for the drift terms[55-58].

We can easily find that the drift terms do not contribute to the amplitude
equation in the lowest order calculation. Therefore, our models have stable roll
solutions at least near the onset of convections. The behavior at a finite distance
apart from the onset of convection must still be considered. We will investigate

it in a few sections below.
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3. Phase Dynamics

The phase dynamics in convection problems was first presented by Pomeau
and Manneville[46], and they derived a linear phase diffusion equation. In the
Pomeau-Manneville theory, a reference state or the background wavevector is in-
troduced, which means that there is one phase dynamics for each reference state.
Since the dynamics should be independent of the reference state, the phase equa-
tion must be free from the reference state chosen or invariant under an arbitrary
change of the reference state. Obviously, the linear phase equation can not sat-
isfy this requirement. A non-linear theory must therefore be developed. As one
possible approach, a simple extension including higher order terms may be con-
sidered. In that case, the phase equation can be invariant under an infinitely
small change of the reference state. If we require the invariance under a finite
change of the reference state, however, we need the infinite order terms. In order
to avoid this difficulty, Cross and Newell presented an more efficient approach,
in which the phase is defined to be independent of the reference state[44,60,61].

In this section, we consider the phase dynamics for Model(A) following the
Cross-Newell theory. This equation has a family of stationary periodic solutions

and these are analytically expressed as

I/V_’ = A(E)eia,
9:;'5"'90; (3.1)
A(R) = (R = (K* = 1)? = nqukf — 2mk2k2)5,

where k* = kI + kZ, k= (kz, ky) is the wavevector of the rolls and ¢ is an
arbitrary constant.

We now investigate the local stability of the roll solutions, i.e. the stability
for the local disturbance. The local disturbance means the disturbance for a pair
of rolls which is extended periodically when the rolls are infinitly aligned. Thus;,

the space of the local disturbance is defined as

Vo= {u|u=u +iuyuy,us € L*(0,27); u(8) = u(f + 27)}

-15-
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and the inner product (f, g) for f,g € V as

2r

(frg) = /0 T d8(frg1 + fag) = Re /0 dbf* g, (3.2)

where fi = Re(f), fo =Im(f), g1 = Re(g) and g» = I'm(g). The local stability
of the solution W, is determined by the linear equation for the local disturbance

w.
i=Lo-u, (3.3)

where the operator ]:0 1s defined as

Lo-u=Ru+ Dou—2|W,|* u— W2,

= 9 (34)
Do = ~(1+k%8p)" — mky05 — 2mhkzkyd;.

The operator Lo is semi-negative definite and has a zero eigenvalue. Then the

corresponding neutral mode ®q satisfies
ﬁ’U : (I’O = O) (35)

and 1ts adjoint vector @s 1s 1dentical with the original neutral mode due to the

Hermiticity of Lo:

ol = @. (3.6)

We can easily check &g = dyW,. This implies that the roll solutions are neutrally
stable against the disturbance corresponding to a space translation and stable
against the other local disturbances. Note that the existence of the neutral mode
stems from the translational symmetry. Borrowing a field-theoretical term[62],
we may thus call the neutral mode the Goldstone mode.

Since the local stability of the roll solutions is guaranteed, we now investigate
large scale behavior. We first notice that there are two characteristic scales of

length in the system: one is the wavelength of periodic patterns and the other
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is the system size. Since we are concerned with the system of large aspect ratio
w1, it is appropriate to introduce a scaled coordinate system (8, )?,T), where 4
1s a periodic coodinate representing the local structure, and (""(", T) are the large
scale coodinates such that X = pZ, T = pt and p € 1. Then a field f on space
(8, X) is expressed by

[=106,%)=3_£(X)2;), (3.7)
J

where ®; is an eigenvector of Ly and {®;} forms a complete set of basis in V.
Further, the space derivatives are substituted as

O; = k;0g + ;ta';,

a (3.8)

Let us consider the dynamics of the disturbance p(8, )Z’) around a stationary
solution Wj. Since the components pj(X.) (; # 0) decay rapidly, the relevant
dynamical variable in the long term behavior is only po(X). This is nothing but
a phase variable which represents the large scale variation of the wavevector k.
However, it is not very easy to derive directly dynamics of pg. Thus, the local
wavevector k(X T) and the phase ©(X,T) such as k; = 8!0 are introduced and
the dynamics of phase © will be derived. We express the deformation of the rolls

as
W = AKX, T))e + p(6, X, T), (3.9)

where p 1s the part of deformation which can not be absorbed into the local

wavevector k(X,T), and satisfies

(@}, p) = po(X,T) = 0. (3.10)
Since p is perturbativelly determined, we expand it in the form:

p=pup) + 7o) 4 (3.11)
We substitute eqs.(3.8),(3.9) and (3.11) into the model equation and arrange the
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terms according to various powers in g. In this way, we obtain the equation at

order pu:
(© +TW . K)ogW = D\W + Lop™, (3.12a)
U,-(l) = — Zﬁizmafafn@ — 0ip, (3.12b)
Im
v =, (3.12¢)

where U = pU(M) 4+ ... and D = Dy + uDy + ---. Finally, the inner product of
@8 with this equation yields the phase equation of the form:

O+ - k—Za,J )8;0;0, (3.13q)
Zﬂzlm 015 O - ()zp, (3136)
V-T=0, (3.13¢)

where we dropped unnecessary shoulder notions, and the expressions for the

tensors a;; and fB;, are calculated to give

I 2 2 A2
s (F) = 20K = 1)8ij +4(K* ~ 1)k-kj%k7 Lkl + maf + ol
Al dA* 1
i) = k36165, + 4k3k; 7 T g
o419 _ (o2 4 ap2p2 A 1 s a0 Ly s
1_1 ( k T yak-, A2)61x5]1;+(2}» -+ }"z' ya]‘, A")
A 1 9A? 1
v ’3 3 . .
+ (Skoky + 4kEky Gy iy + 4k3ke 5 F)‘S‘y‘sﬂ’
- OAZ
Bitm(k) = 2himki A* (6t + 2kmbki 5 ok A»)
,0A? 1
+2;1L,JA Simki(26j1 + kF = o Az)
(3.14)

We note that eq.(3.13) has nonlocal property which is inherited from the
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original model equation. Let us clarify the nonlocal nature by eliminating the
supplemental field p from eq.(3.13). After elimination, we obtain an integral

representation of the phase equation :

9 i} (3.15)
Ui = - Z/ d*z'Pij(Z — Z') - Bjim(K')310mO(Z"),

where k' = 1::(:3:"), and the projection operator P;; was defined by eq.(2.17). We
can further eliminate the drift field U and rewrite the phase equation only in

terms of the phase field :

0= Zfdgl"Qij(_‘, z')0;0;0(%"),
v B (3.16)
Qij (%, &) = cij(k)8(F — &) + ) _ ki(Z) Pum (& — &) Brmis (k).
im

The above equation makes contrast with the phase equation in the case of free
boundary conditions. (see section 7.)

Recalling k; = 9;0, we note further that eq.(3.16) is non-linear. Although it
is difficult to solve this equation in general, it provides some useful informations.
As a few examples, the linear stability analysis and the weakly nonlinear analysis
near the phase instability are easily carried out on the basis of this equation.

These will be shown in the next two sections.
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4. Linear Stability Analysis of Normal Rolls

Linear stability of a normal roll solution W is generally determined by the linear

equation:

uw=1L-u, (4.1)

which 1s obtained by substituting W = W, + u into the model equation and
linearizing it in u. The dynamics of this equation is under the control of the
eigenvalues of the operator L, although long calculations would be needed to de-
rive all eigenvalues of L. Since we are especially interested in the phase instability
or the modulational instability, we focus on the long-wavelength modes and work
with the phase equation[36,46].

The normal roll solutions of the phase equation eq.(3.16) are expressed by
© = koz up to an arbitrary phase constant. Let us now argue the stability of
this solution. Substituting © = kgz + ¢ into eq.(3.16) and linearizing it in ¢, we

obtain a linear phase equation :

¢ = Za?j&'aj(ﬁ + ko Z _?lm/-dzz'sz(:E' - &)010me(T), (4.2)
i

im

where a?j = aij(Eg), B, = ﬁilm(i“g) and kg = (ko,0). From this equation, the

growth rate A(§) for the phase disturbance with wavevector ¢ is derived as

M) == ol —ko Y (625 — %) im0 m
1) jim (43)

2
T3 0 2
= —angﬁ - aquz - koq_g(ﬂgqug + ﬂzyyqz):

where g2 = % — ﬂgzy, and the expressions for agj and ﬂ?lm are listed up as
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follows:

1
o), =2(3k2 -1) - —24_—=0 agy = 2(kd — 1) + 2ki7,,

ozgy = a =0,
ﬂm = 6h, k{A2 —2k3 (k2 = 1)}, 0., = dhyok{A? — k(K2 —1)}, (44)
:z:yy = thykoA

ﬂxzy - ﬂyxr - 5yyy - ﬂsz

Note that the growth rate A(§) is nothing but the long-wavelength part of the
eigenvalues of L, and therefore short-wavelength instability such as cross roll
instability or oblique roll instability can not be investigated by the analysis based
on the phase equation.

Let us classify the types of the phase instability by specifying the most un-
stable directions[48,49]. Setting ¢, = gcosd and ¢, = gsin ¥, we rewrite eq.(4.3)

as

M) = —d(¥)q’,
d(¥) = a%, cos’ I + a y Sin 29 + kosin® 9(8°,, cos? ¥ + ﬂxyy sin® ¥), (4.5)
= asin® ¥ + bsin’ 9 + ¢,

where a, b and ¢ were set as

a= ko(ﬁxyy 1:.1::0)

= kofB°_, + ozyy ol (4.6)
0

€= Qgg,

Here we may interpret d(?) as a diffusion constant in the direction making angle
¥ from the a2-direction. The growth rate A(§) is not regular at § = 0 as shown
by eq.(4.3). Therefore, we can not expand A(q) like A(§) = 3_;; Dijqiqj + -

This implies that the diffusion constants in these systems are not well-defined.

However, when we consider the disturbance with one direction, the diffusion
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constant in this direction becomes well-defined as expressed by eq.(4.5). We can
thus define the most dangerous direction ¥, and the diffusion constant in this
direction as
Je = arg min d(1), (47)
dy = d(9.),
Then the phase instability occurs when the phase diffusion constant becomes

negative, i.e. dy, < 0, and the type of the phase instability is called

the Eckhaus instability, if 4, = 0;
zigzag instability, if 4, = 7/2;
skewed varicose instability, otherwise.
We notice that if the drift terms are absent, the skewed varicose instability never
occurs because a = 0.
We now investigate the conditions for the phase instability. Let us restrict
ourselves to the rolls with the wavevector ko = (1,0) at the onset of convections.

In that case, a, b and ¢ in eq.(4.6) are calculated from eq.(4.4) as
a=2R(h—h'), b=2Rh" +2n —4, c=4, (4.8)

where h = h;y, and h' = 3hzz — 2hy,. These expressions give us the following
results:

[1] The Eckhaus instability does not occur,

[2] The zigzag instability occurs when R > —n;/h under the condition

9 _ 2~ 1
h<0 and  h'>min(h, —2 2h — R”~), (4.9)
[3] The skewed varicose instability occurs when
R2R? —2(4h —4h' +2 — )R+ (2 — 12)° > 0, (4.10)
under the condition
2—1n 2 —
h' < min(h, R"' 2h — R’”). (4.11)

Then, either eqs.(4.9) or (4.11) should hold in order that normal rolls may
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become unstable at R, > R. = 0. If we consider Model(B) in which the isotropy
of the drift field was assumed,i.e. h;j = h' = h, the relevant instability is only the
zigzag instability because eq.(4.11) do not hold, and the zigzag instability occurs
beyond R. = —n;/h when the condition h < 0 is satisfied. A recent experiment
by Nasuno and Kai[31] seems to support the fact that the normal rolls become
unstable through the zigzag instability except that the type of instability of
normal rolls turns into the skewed varicose instability at R > R.. We must thus
consider Model(A) so that we may explain this experimental fact. We obtain the
results: the necessary and sufficient condition for the occurence of the change of

the instability type is that the inequalities
B <2h <0  and 0<m <2, (4.12)

are satisfied. In this case R.' is calculated as

2—m
2h — '

R = (4.13)

So far, we focused on the local behavior in the phase space, i.e. the behavior
near the most important stationary solution. We now look into global structures
in the phase space so that we may understand completely the system behavior.
In particular, we investigate the stability of all normal roll solutions, and consider
the stability diagram in the space (R, kz). This corresponds to the Busse balloon
in the case of the Rayleigh-Bénard convection[49]. We show two examples from
several types of stability diagrams. The first is the stability diagram for Model(B)
under the condition h < 0, which is shown in fig.1(a). The analytic expressions
of the marginal stability lines are derived from a2, = 0 and ozgy + kg[)’gyy =0so
that R may satisfy R = R,(k) for the zigzag instability and R = Rg(k) for the
Eckhaus instability, where

k2—1 2
N = (B2 1) 1
Rok) = (= 1) = e — &

(K —1)2(Tk? = 1)
(3k2—1)

b

(4.14)

Rp(k) =
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Second, we show the stability diagram for the case that the change of the in-
stability type occurs. (see fig.1(b).) The analytic expressions of the marginal
stability lines are the same as the first example, and the line on which the type of
instability changes from the zigzag instability into the skewed varicose instability

1s expressed as

p+/p?+16(2h — B)(k? —1)2

. N (L2 2
B =R,(k) = (k" —1)"+ 2h — h! ’ (4.15)

p=2—m—4(k* —1)n",

where a parameter A" = (3hyr —hyz)/2 was introduced. These stability diagrams
are quite similar to the one obtained by Nasuno and Kai (see fig.1(c).), and show
that stable domains are bounded in the space (k;, R). Therefore, the solution
with a natural wavenumber, which may be different from the wavenumber at the
onset, becomes unstable. The system behavior should then be determined by
the nonlinear property. In the next section, we consider the weakly nonlinear
analysis near the phase instability.

Note that there are other types of stability diagrams in general, of which the
transition through the skewed varicose instability would be of great interest. In
the present paper, we will not treat this case, but concentrate on the transition

through the zigzag instability.
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5. Weakly Nonlinear Analysis

In weakly nonlinear analysis, non-linear terms are perturbativelly taken into ac-
count. In the present case, the distance € from the onset of the phase instability
is regarded as a small parameter. Since the phase instability is related to a neg-
ative diffusion constant in the phase equation, the phase dynamics approach can
be considered as a weakly nonlinear analysis. This idea was first presented by
Kuramoto[45,47]. Following Kuramoto we will derive the phase equation near the
zigzag instability. We first notice the scaling form of phase ¢ when £ — 0. Since
the Fourier basis are the eigenvectors of the linear operator I:, the corresponding
eigenvalues o are characterized by the wavevector ¢ like ¢ = (¢, ¢;). Then, for

€= —agy — koﬁgyy — 0, the scaling relation holds in the form

U(Qr;@y) ::52&(593751IEQy)' (5-1)

This implies that the phase satisfies the following scaling form for ¢ — 0:

8(z,y,1) = d(ez,e'/ 7y, %), (5:2)

Let us now look into some symmetry properties of the phase equation. The phase
equation must be invariant under the transformations: (1)z — —z,¢ — —¢,
(2)y — —y and (3)¢ — ¢ + ¢o, where ¢ is an arbitrary constant. From these

requirements, the phase equation near the zigzag instability can be written as

¢ = —c0,’¢ — D10, ¢ + D¢ + (0,6)° 0, ¢

, (5.3)
4‘31(8x¢)ay~¢‘+‘52(ay¢)0tay¢s

although the last term was overlooked in Kuramoto’s paper[47,63]. The coef-

ficients of this equation can be calculated from the phase equation eq.(3.16).
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Substituting © = koz + ¢ into ay; and By, we obtain the expansions:

daij Do o

aij = i + () ”¢+(6k1) y¢+(ak‘;)(ay¢)2”" (5.4)
alm 0177’), 8Zm )

Bim = Bl + (G026 + (0,6 + (L (3,007

We expand formally f’,-j as
. o2
— —1_ — 1 _ nr2 4

Pex 1 a., a., =1 M +M + -,
) 6.0, L
ny=—8§+33=_M+M3+”" (5.5)
. o2 o
Pyy‘—‘l—ag_ﬁggzM“—M4+

where we introduced an operator M = Oz/0y ~ € /2 Substituting © = koz + ¢,
eqs.(5.4) and (5.5) into eq.(3.16), we obtain the coefficients of the phase equation
eq.(3.3) in the form:

D= ag‘:r: + kO(B:(z]:xx - ﬂgyy)’

— ao‘yy 04 0ﬁryy 0
ba, aﬂ,,. (5.6)
= (G20 + ka2 + By,
8ax Oaryg
S2 =( Bkyy) ( y )0 a;yy +:3y;z:y1

Note that the phase equation is nonlocal in general. However, if we restrict
ourselves to the neighborhood of the zigzag instability, nonlocality becomes neg-
ligible in the lowest order expansions in €. Furthermore, when we focus on the

roll solution with the onset wavevector, we may put kg = 1 in eq.(5.6). The
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coefficients in eq(5.6) are then expressed as

D=4,
g= 6(1 + 7)1) —4h7)2 > 0,
(5.7)
S1 = 4(1 + 772);
Sy = 2(4+37]2)

We now investigate the behavior of the solution of eq.(5.3) in further detail.
When ¢ is positive, the solution ¢ = const. becomes unstable and the disturbance
in the y direction grows. As a result, the z-dependence of ¢ may be neglected at

first, and we obtain the equation:
6 =—c0,"0 — D10, 6 + 9(3,6)°3,%¢. (5.8)
This equation 1s also expressed as
. 5 2 L 3 2
u=—8, (cu— 9 + D48y u), (5.9)

where u = 0y¢ . Equation(5.9) is identical to the Ginzburg-Landau equation for a
conserved order parameter u as it arises in spinodal decomposition[64]. A similar
phase equation was discussed by Brand and Deissler in the problem of confined
states[65,66], and also by Riecke in parametrically excited standing wave[67].

Since the sign of the coefficient g is positive, the bifurcation is supercritical,
and u = #+/3¢/g which minimizes the potential gives the stable states. Though
the uniform states u = £+/3¢/g will not be realized in general due to its violation
of the conservation law, the boundedness of the phase deformation will be ensured
at least. What is expected to occur is the formation of kink-antikink pairs and
their dynamics with very long time scale[68]. Note that kink-antikink patterns
in u implies zigzag patterns in convective rolls.

We next consider the effect of the variation in the z-direction and investigate

the stability of the uniform states v = +1/3¢/g. Then we obtain the following
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results: If g > g., the zigzag roll remains stable because the uniform states u =
:i:\/?m are stable. On the contrary, if 0 < g < g. = 3s3/8D, the uniform states
u = +./3¢/g become unstable against the disturbance with direction slightly
different from the y-direction. The dynamics is essentially two dimensional as
for the dynamics associated with the skewed varicose instability in the Rayleigh-
Bénard convection. It would be necessary to investigate in further detail such
two-dimensional dynamics for a full understanding of the system behavior.

In our model, the value g, is calculated from eq.(5.7), and it turn out to be

2
ge = ﬁ-}—;ﬂ (5.10)
This expression shows that ¢ > g. holds for sufficiently small 1, and that 0 <
g < g. holds for sufficiently large 7. This implies that the stable zigzag roll
appears sufficiently close to the Lifshitz point, while defect creation through the
instability of the zigzag roll occurs far from the Lifshitz point. These results are
consistent with experiments, and therefore there is a possibility that defect chaos
occurs in the case 0 < g < g.. This will be checked by numerical simulations in

the next section.
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6. Numerical Simulations

In this section, the behavior of Model(B) will be investigated numerically. When
a PDE is defined in a finite domain D, we must impose boundary conditions.

The most realistic ones are [55]
Wlap = (7 - V)Wlap = $lap = 0, (6.1)

where 7 1s the unit vector normal to the boundary. Since it is difficult to
simulate the PDE model directly, we follow Oono and Puri[51,52] and take a
CML model corresponding to the vorticity representation of Model(B). Oono
and Puri presented the essential idea that the local and global processes can be
separated. Let us define a cell dynamics of a complex variable W(i, j) on each

cell in the the square lattice of the size N x N:

VRW,

(Re—2RAt 4 W, |3 (1 — e—2RAY))?

Wogt = , (6.2a)

where At is the time increment in each step. This map was obtained through

the integration of the ordinary differential equation:
W = RW — W W.

We next connect the maps on different cells in the following manner:

Whyr = ~n+1 - ((7"+1 . 6)’1;17,‘“ + .[)Wn+1, (6.20)
D= —(A0){(1+ 8)* +md,* + 2m0.70,7},

Uns1 = (By¥nirr —Octnss), (6.2¢)

— Aty = (ADRE(VW L x VAW, + c.c). (6.2d)

Here, we used derivative notations although we replaced the spatial derivative by

the cell-to-cell difference with the space increment Az. We also introduced a real
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variable 9(1, j) corresponding to the vertical vorticity. The boundary condition
is given by a discrete version of eq.(6.1), and then we solve exactly eq.(6.2d), a
discretized poisson equation, by using sine transformations.

Numerical simulations are carried out with parameter values: N = 63, At =
0.1, Az = 1.0, 53 = 0.6, 72 = 0.3 and h = —1.0 . The normal rolls should become
unstable beyond R, = —#/h, and the transition to defect chaos is expected
because the inequality ¢ < g. is satisfied. (g = 10.8 and g, = 18.49) The initial
condition we assumed is a periodic variation in z with small fluctuations. Its
wavenumber is 27 x 10/N(= 0.997---) and very close to kg = 1. This choice
seems sultable because the roll with wavenumber kg = 1 shows the fastest initial
growth. For R = 0.5, we found that the roll solution is stable except that it
1s slightly deformed near the boundaries. The effect of the boundary seems to
be weak compared to isotropic systems. For R = 1.0, the roll solution becomes
unstable and starts to deform spontaneously and slowly. We can see the formation
of defects after the appearance of the zigzag pattern at an early stage. A dynamic
steady state is established after a number of creations and annihilations of defects.
A time evolution of patterns in the steady state is seen in fig. 3. This shows
that the motion and spontaneous creation of defects are the most important
ingredients in our pattern dynamics. We identify such a state as defect chaos

because the temporal change of the number of defects shows aperiodicity as seen
in fig. 3.

|

~
T T
e

NUMBER OF DEFECT

A A
0 500 1000 1500 2000
TIME

Fig.3 Temporal change of the number of defects.
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We will now argue some statistical properties of the temporal variation of
the number of defects. The quantities dn = 3=, [Wion(i, )| /N2, (1<n<T=
2 x 10%) for R = 1.0 and R = 1.5 were calculated. We expected that the low
frequency property of the quantity d,, will be identical to that of the number of
the defects. In fig. 4, the spectra S(w) of the quantity d, are shown, where

Stuy) = |2 3 dyeteion 2
T n=1 ' ’ (6.3)
wj = (151'5-123—1).
These spectra seem to have two characteristic regimes:
S(w) ~ const. for w < wy;
{ Siw; ~w %  for w K ul) <L ws. (64)

Here 2 < a < 3 1s satisfied.

—
=3

T/ T T ' A T
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Fig.4 Log-log plots of spectra S(w) for (a)R = 1.0 and (b)R = 1.5. These spectra
were calculated from the average over five samples. The straight lines show

S(w) ~ w2,
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We find further that the cross-over frequency w; between the two regimes,
which corresponds to the inverse of the correlation time, becomes large with R.
This implies that the correlation time diverges at the onset of the zigzag insta-
bility. No physical interpretation for these spectral behavior has been presented

vet. We still need to investigate their statistical properties in further detail.

7. Concluding Remarks

In the present paper, we investigated analytically and numerically the Pesch-
Kramer model supplemented with drift terms, and showed that this mode] ex-
hibits a transition from stable periodic patterns (WD) to defect chaos (FWD).

In this final section, we will give three comments on (1) the Rayleigh-Bénard
convections, (2) an extension to the case of free boundary conditions, and (3)
future problems.

(1) Our models can also describe the Rayleigh-Bénard convections when the
anisotropic parameters are set as 7 = 73 = 0. In that case, the roll solutions
do not become unstable because the property h;; = h > 0 is always satisfied[55].
On the other hand, experiments and analysis based on the Boussinesq equation
show that the rolls become unstable at a finite distant apart from the onset of
convection and that the type of the instability at the moderate Prandlt number
is the skewed varicose instability[49,69,70]. If we wish to explain phenomelog-
ically this fact, the model equation must include more non-linear terms such
as |[W|* AW and [VW|* W. Indeed, Greenside et al. worked with a modified
Swift-Hohenberg equation supplemented with the drift term, and confirmed the
transition to a chaotic state[58].

(2) We assumed that the drift field is adiabatically induced by the defor-
mations of the rolls. However, if we consider the system under free boundary
conditions, the drift flow becomes a relevant dynamical variable by virtue of the
Galilei symmetry. Even in the case of rigid boundary conditions, it would be
more suitable to start with the case of free boundary conditions as far as the

time scale of the drift flows (horizontal time scale) becomes long. In fact, in
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the Rayleigh-Bénard convections with low Prandlt number, the breakdown of
the Galilel symmetry at the upper and lower plates is weak, and therefore the
horizontal time scale is long. In the case of EHC also, Kai et al. showed that
the horizontal time scale becomes the same order as the vertical time scale when
the frequency of the applied electric fields is relatively high and close to the crit-
ical frequency[71]. In these cases, we can expect that the dynamics of the drift
becomes relevant.

Recently, Kaiser et al. derived an amplitude equation for EHC under free
boundary conditions and showed the direct transition from a convectionless state
to defect chaos[72]. We can easily extend our models with the Galilei symmetry
and develop the phase dynamics for an extended model. The phase equation

takes the form:
O+T k= aij(k)30;0, (7.1a)

i
U; +U- V—}U,' = Z d,m(E)almU,- — Z,@gm(z)&am@ — Oip, (7.1b)
im Im

— —

V.U =0. (7.1¢)

This equation is an extended version of the phase equation with the Galilei sym-
metry in essentially one-dimensional systems, where the pressure field was not
introduced[73-76].

(3) A number of problems on defect chaos remain to be unsolved, of which
the following three are particularly important: The first question is the value
of the control parameter R at which the transition to the chaotic state occurs.
This question may be related with the problem of spatio-temporal intermittent
transition[77-80]. The second problem is how to describe the motions of defects in
the defect chaos regime. Although many researches on the defect motions were
presented(2-9,81,82], they are concerned with nonchaotic systems. The third
problem is to understand the spectral characteristics for the temporal variation

of the number of defects. Further reports will be devoted to these subjects.
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