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Chapter 0. Generation of Organic Radical Ions m Rigid 
Solutions by Radiolysis 

In spite of the importance of organic radical ions as an intermediate of various chemical 

processes, experimental studies are relatively scare because of their high reactivity. In rigid 

media, however, such species can be produced in situ by radiolysis or photolysis and 

various spectroscopic studies can be carried out. In our laboratory a radiolytic technique 

has been used for generation of radical ions since the pioneering work by Shida and Hamill 

[Shida and Hamill (1968a, b, c)]. We will explain briefly the essential feature of the 

radiolytic method [Hamill (1968), Shida and Iwata (1973), Shida et al. (1984), Shida 

(1988, 1991)). 

Materials consisting of elements of the first three rows of the periodic table interact with 

photons of energies of the order of 1 MeV mainly to cause inner shell ionization and the 

Compton effect. Typical such photons are "f-rays from 60Co. With these events highly 

energetic electrons are ejected which, in turn, excite and ionize molecules of the system. In 

condensed matter the ionized molecules and the counterpart electrons arc quickly 

deactivated and the whole system is thennalized within picoseconds. If we consider a 

system consisting of solute and matrix molecules with a molar concentration ratio of, say, 1 

to 103, the direct ionization effect on solute molecules is negligibly small because the 

excitation by the high energy electrons is non-selective and roughly proportional to the 

molar fraction. Thus, the radiolytic effect at this stage is mainly regarded as the ionization 

of the matrix molecule M. 

M + r -7 M+ + e-, (0.1) 

Subsequent processes depend on the chemical character of the matrix molecule, which can 

be utilized for the selective generation of the radical cation or anion of the solute molecule 

as will be described below: 

For the generation of radical anion of solute molecules 2-methyhetrahydrofuran 

(MTHF, C5Huf)) is used as the matrix. The major processes upon '¥-irradiation are as 

follows. 

C5Huf) + r -7 C5H100+ + e-, (0.2) 

(0.3) 
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e- + s ~ s-, (0.4) 

where S denotes the solute molecule. Electrons ejected by reaction (0.2) move through the 

rigid solution until they encounter a solute molecule having a sufficiently high electron 

affmity to yield the corresponding radical anions-. On the other hand, the positive charge 

of the matrix molecule in reaction (0.2) suffers an ion-molecular reaction (0.3). The 

MTHF matrix is suitable for optical studies because it forms a transparent glassy solid at 77 

K. However, it is not necessarily suitable for the ESR study since the ESR signal of the 

solute radical anion is easily masked by the overlapping signal due to the neutral radical 

•CsH90 produced by reaction (0.3). 

The matrix molecules used for the generation of radical cations comprises alkyl halides 

such as CC/4 [Shida and Hamill (1966a, b)], sec-butyl chloride, Freons such as CFC/3 

[Shida and Kato (1979)], and the 1:1 mixture of CFC/3 and CF2BrCFzBr (Freon mixture, 

FM) [Grimison and Simpson (1968)]. The major processes that occur under y-irradiation 

can be summarized as follows. 

RX + y ~ RX+ + e-, (0.5) 

e- + RX ~ (RXt ~ R• + x-, (0.6) 

RX+ + S ~ RX + s+, (0.7) 

where the alkyl halide is denoted by RX (X= halogen). Reaction (0.6) represents that the 

electron ejected from a matrix molecule by y-irradiation reacts with another matrix molecule 

to cause dissociation of the carbon-halogen bond in RX. The positive charge in RX+ is 

transferred intermolecularly to the solute moleculeS. If the ionization potential of Sis 

lower than that of the matrix molecule (e.g., I.P.(CFCl3) = 11. 8 e V), the radical cation of 

solute generated in reaction (0.7) is stabilized in the matrix. For the optical measurements 

BuCl or FM is used for the matrix substance because they forms a glassy solid at 77 K, 

whereas a polycrystalline CFC/3 matrix is not convenient for the optical study. Instead, it 

was found to give a fairly well resolved ESR spectra of solute cations [Shida and Kato 

(1979), Shida et al. (1980)]. Since then a number of ESR spectroscopists have utilized the 

Freon matrices for ESR studies of various radical cations. The advantageous feature of 

CFC/3 matrix is little disturbance from byproduced neutral radical CFC/z• because of the 

extreme anisotropy of hyperfine interaction fluorine atom [Shida et al. (1991)]. The 

methods described here have been used throughout our experiments discussed later. 

Using the radiolytic method, we have investigated several novel radical ions such as 

monoions of organic high-spin molecules as described in Chapter 1. 
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Chapter 2 is devoted for the analysis of the Jahn-Teller effect inC~+. For the analysis 

of the Cf4+ system it is essential to use the permutation inversion (PI) group theory. The 

brief explanation of the PI group theory is given in Appendix A. The PI group theory is 

used also in the analysis of the internal rotation of the two methyl groups in CH30CH3+ 

[Matsushita eta/. (1990a)] (see the last section of Appendix A). 
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Chapter 1. ESR Study on Organic Ions of High-Spin States: 
Monoanion and Monocation 
of m-Phenylenebis(phenylmeth ylen e) 

Introduction 

Since the first discovery of an organic quintet molecule [Itoh (1967), Wasserman eta/. 

(1967)], organic high-spin molecules have been studied almost for a quaner of a century. 

It has now been firmly established that the spin alignment in these neutral high-spin 

molecules is dictated by the topology of then-electron network [Itoh (1978)]. Based on the 

topological symmetry, efforts to obtain organic ferromagnets are continued. 

With the intention of discovering new aspects of such high-spin molecules, we have 

studied charged high-spin molecules [Matsushita et al. (1990b)]. The charged system is 

potentially interesting not only from the experimental but also from the theoretical 

viewpoint, since the spin alignment of the charged system cannot be easily predicted in 

contrast to the neutral systems [Yamaguchi et al. (1987)]. As a prototype of charged 

polycarbenes a monoanion [Marsushita eta/. (1990b)] and a monocation of m

phenylenebis(phenylmethylene) (I±•) have been generated for rhe first time, and the ground 

state has been characterized by ESR. 

. . 
~ 

Historical background of the study of organic high-s pin molecules 

The ground electronic state of most organic molecules is singlet. Because usual organic 

molecules are nor so symmetric, most of the molecular orbitals are non-degenerate. In the 

usual 32 point groups, the highest degeneracy of molecular orbitals is three so that the 

maximum spin quantum number is 3/2 according to Hund's rule. The only exception is 

C6o which belongs to Jh point group [Kroto er al. (1985), Kratschmer et al. (1990a, b), 

Ajie et al. (1990)). An example of the orbital degeneracy is the triplet ground state of 

pentachlorocyclopentadienyl cation [Breslow et al. (1964)]. 
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A theoretical work on organic high-spin molecules was made by Higuchi in 1963. He 

calculated the fine-structure parameters for several aromatic high-spin hydrocarbons which 

were hypothetical at that time [Higuchi (1963a, b)]. One of these hypothetical molecules 

was experimentally detected in 1967 by K. Itoh (1967) and by Wasserman et al. (1967). 

The molecule, m-phenylenebis(phenylmethylene) (1) (m-PBPM), is quintet in the ground 

state and its fine-structure parameters are in a reasonable agreement with the value predicted 

by Higuchi (1963a, 1970). 

The high spin multiplicity of m-PBPM, which may appear curious considering its low 

symmetry, can be accounted for by the simple HUcke! MO theory: In early 1950s Longuet

Higgins pointed out that in terms of LCAO-MO theory of n-electron systems (1950) an 

alternant hydrocarbon has at least N- 2T non-bonding molecular orbitals (NBMO's) where 

N denotes the number of carbon atoms in the conjugated system and T the maximum 

number of double bonds occurring in any resonance structure (1950). According to his 

argument there should be just one electron in each NBMO in the ground state, and if there 

are two or more such electrons, their spins will be parallel according to Ilund's rule. This 

is an accidental degeneracy in view of the point group but has some mathematical meaning 

within the simple LCAO-MO approximation. What determines the orbital degeneracy of 

NBMO is the structure of secular equations for n-MO's, that is, the sequence of carbon 

atoms forming the conjugated system. Such an arrangement of atoms may be called 

topologically symmetric. In this sense the orbital degeneracy of NBMO is called 

"topological degeneracy" [Itoh (1978)]. In m-PBPM there are two non-bonding n-orbitals 

and two in-plane n-orbitals at the two carbene sites. Since the energy difference between 

then-orbital and NBMO may be small, there can be four nearly degenerate orbitals so that 

the ground state is quanet. 

Based on the guiding principle of topological symmetry, Prof. ltoh's group have studied 

a series of high-spin aromatic polycarbenes which includes; benzene-! ,3,5 tris

phenylmethylene (2) (S = 3) [Takui and Itoh (1973)], 3,3'

diphenylmethylenebis(phenylmethylene) (3) (S = 3) [Teki et al. (1985)J, m

phenylenebis[(diphenylmethylen-3-yl)methylene] (4) (S = 4) [Teki el al. (1983, 1986)], 

and the undecet aromatic polycarbene (5) (S = 5) [Fujita et al. (1990)]. Recently they 

reported the polycarbene with S = 6 (6) [Furukawa et al. (1991)]. 

2 3 
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5 

The static magnetic susceptibility of the nonet terracarbene was measured by Prof. 

lwamura's group [Sugawara et al. (1984, 1986)]. Prof. Itch's group have also studied 

related compounds where high-spin excited states lie close to the ground state. For 

example, biphenyl-3,3'-bis(phenylmethylene) (7) was found to have the first excited triplet 

and the second excited quintet states, which are located above the singlet ground state by 

only 20 and 60 cm-1, respectively, in the conformation favored at below 140 K [ltoh 

(1978)). Recently, the spin density disrribution in its first excited triplet state was 

experimentally determined by the single-crystal lH-ENDOR measurement of the excited 

state [Okamoto et al. (1990)]. 

~ 
©v© 

7 

Spin alignment in organic high-spin molecules with both unpaired nand non-bonding 

elecrrons of carbene has been studied by several methods. The Hubbard Hamiltonian 

lHubbard (1963)] gives correct prediction for the ground-state spin multiplicity and for the 

elecrronic structure of the highest spin state [Teki et al. (1987a)]. The Hubbard model was 

also used in the analysis of the ferromagnetic properties of an ideal one-dimensional 

polymer, m-polydiphenylcarbene (8) [Nasu (1986)]. 

8 
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However, it fails to predict low-lying excited states with lower spin multiplicities because 

the Hubbard Hamiltonian commutes with Sz but not with S2. Another popular approach is 

to assume the Heisenberg Hamiltonian. This Hamiltonian has been applied to some rc-

electron networks by Ovchinnikov (1978) for the prediction of their ground-state spin 

multiplicity on the basis of a theorem given by Lieb and Mattis (1962). When applied to 

organic high-spin molecules with both unpaired rc and n electrons, this Heisenberg model 

predicts spin states correctly not only for ground states but also for low-lying excited states 

[Teki et al. ( 1987b)]. This is because the Heisenberg Hamiltonian commutes with S2 as 

well as Sz. Thus, the Heisenberg model can explain consistently the features of the spin 

alignment, i.e., the sequence of the spin states, the relative magnitude of their energy gaps, 

and their spin density distributions. Klein et al. showed that the prediction of the ground 

state via the simple VB model (the isotropic Heisenberg spin Hamiltonian) is in remarkable 

agreement with the experimental evidence [Klein (1982), Klein et al. (1982), Alexander and 

Klein (1988)]. 

In the powder pattern first derivative ESR spectra, observed peaks are usually assigned 

to "canonical peaks" which arise from singularities of the absorption intensity that occur at 

turning points corresponding to the principal axes of g, hyperfine, and fine-structure 

tensors. Under cenain conditions, however, an additional singularity occurs at an extra 

turning point at a certain direction which lies off the principal axes [Neiman and Kivelson 

(1961)]. This causes a extra peak called "extra line", or "off-axis line". In the series of 

organic high-spin molecules studied by Itch's group, an extra line was reponed first in the 

K-band powder pattern spectrum of the septet molecule [Teki et al. (1985)). Teki has 

derived the general conditions for the occurrence of extra lines of fine structure by the third

order perturbation calculation [Teki ec al. (1988)]. In general, extra lines tend to appear 

with an increase of Sand of fine-structure energy, and with a decrease of microwave 

frequency. It was shown that for high-spin systems of S > 1 extra lines commonly appear 

at the X-band with comparable intensity with normal canonical peaks, which was found to 

be the case in the monoanion and monocation of m-PBPM [Matsushita et at. (1990b)]. 

At the end of this section, some other works on high-spin organic molecules will be 

mentioned. Wasserman er al. detected quintet and septet nitrenes isoelectric with the quintet 

and septet polycarbenes lquintet dinitrene (9) (1967), septet trinitrene (10) ( 1968) ]. Kothe 

et at. studied the powder pattern spectrum of a quanet radical, 1,3,5-

benzenetriyltris[bis(biphenyl-4-yl)methyl] (11) (Rcibisch et al. (1972), Brickmann and 

Kothe (1973)]. The high-spin organic molecules reported so far are very reactive so that 

they are stable only when doped in a solid matrix at low temperatures. Recently, however, 

Rajca reponed the 1 ,3-connected polyarylmethyl quintet tetraradical (12) which is stable at 

195 Kin THF solution [Rajca (1990a, b)]. Recently, Rajca has synthesized the 1,3-

connected polyradical with up to 10 unpaired electrons (S = 5) [Rajca (1991)]. 
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Ex perimental 

1,3-Bis(cx.-diazobenzyl)benzene (1,3-BDB), which is the precursor of m-PBPM, was 

synthesized by a standard method in the literature [Murahashi et al. (1972)]. 

\ 

The radiolytic technique was used for the generation of the radical ions of 1,3-BDB (see 

Chapter 0). For the generation of the radical anion 2-methyltetrahydrofuran (MTHF) was 

used as the matrix and sec-butyl chloride (BuCl) was used for the generation of the radical 

cation. Commercial MTHF was purified by distillation followed by contacting with Na-K 

alloy in a vacuum line. 1,3-BDB was dissolved in MTHF or BuCl to a concentration of 5 

- 10 mM and sealed off in Suprasil cells for ESR and optical measurements after 

degassing. The solution frozen at 77 K was y-irradiated by 60Co to a dose of = 1019 eV/g. 

The radical anion or cation of 1 ,3-BDB produced by y-irradiation was photolyzed to 

generate the corresponding monoion of m-PBPM using a USHIO halogen lamp (1000 W) 

with TOSHIBA cut-off glass filters, R-62, 0-55, andY -51. 

The ESR measurement was perforrned with a JEOL PE-2X spectrometer equipped with 

an Air Products LTR-3 refrigerator at Kyoto University and a Bruker ESP 300 

spectrometer equipped with an Oxford ESR 910 temperature controller at Osaka City 

University . The IH-ENDOR measurements were carried out with a Bruker ESP 300/350 

spectrometer with an Oxford ESR 910 temperature controller at Osaka City University. 

Cary 14RI and Cary 171 spectrophotometers were used for the optical measurements. 

The simulations of ESR spectra were carried out with a HIT AC M660K at Osaka City 

University Computer Center and a FACOM M-780/30 at the Data Processing Center of 

Kyoto University. 
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Results and discussion for a monoanion of m-PBPM (m-PBPM- ·) 

1. Formation of the radical anion of 1,3-BDB. The solution of 1,3-BDB in 

MTI-IF becomes a glassy solid at 77 K with purple color (see curve 1 in Figure 1.1). The 

color is ascribable to the nn*-transition of the diazo group with E = 254 at Amax = 530 nm 

[Itoh eta/. (1968)]. According to the recipe described in Chapter 0, the radical anion of 

1,3-BDB was produced by -y-irradiation. The generation of the anion was confirmed by the 

optical absorption spectrum before and after -y-irradiation: the band at 530 nm diminished 

upon irradiation, and an intense absorption sets in at about 500 nm, increasing sharply 

toward shorter wavelengths (Figure 1.1). The absorption was accompanied with feeble 

absorptions appearing throughout the visible and near-IR regions. If the electron had not 

been scavenged by 1,3-BDB, one must observe the well-known absorption band due to the 

matrix-trapped electron in the same spectral region [Shida (1988)]. Thus, the absorption 

appearing after -y-irradiation is regarded as due to the radical anion of 1,3-BDB. To 

reinforce this inference, the following subsidiary experiment was also carried out: a 

sufficient amount of alkyl halides such as CF2BrCF2Br was dissolved(::::: 100 mM) along 

with 1,3-BDB, and exactly the same procedure as that without the halides was repeated. 

Since the halide denoted by R.X scavenges electrons efficiently by the dissociative electron 

attachment, R.X + e- ---7 R• + x- (see Chapter 0), it was expected that the optical change 

observed for the 1,3-BDB/MTHF solution would be suppressed drastically by the 

competition for the electron, which was indeed found to be the case. 

The X-band ESR spectrum after -y-irradiation showed signals in a range of 0.32- 0.34 

T. This signals are attributed to the radical anion of 1,3-BDB superimposed on the signals 

due to the by-produced neutral radicals of the matrix (see the inset of Figure 1.2). 

With the dose given and with the known G value of the total scavengeable electron 

[Shida (1988)], the concentration of the radical anion of 1,3-BDB was estimated as to be "" 

1.5 mM; that is, conversion from the neutral 1,3-BDB to the radical anion was roughly 15 

% under the present experimental condition. 
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2. Formation of m-PBPM-·. When they-irradiated 1,3-BDB/MTHF solution was 

photolyzed with A> 620 nm, several new peaks appeared in the ESR spectrum over a wide 

range of 0- 0.6 T (Figure 1.2). This change indicates the generation of a new high-spin 

molecule. By analogy of the photolytic denitrogenation of the parent 1,3-BDB molecule 

[Itoh (1967)], the observed spectral change is most plausibly associated with the following 

reaction. 

hv 

( 1.1) 

1,3-BDB 1,3-BDB - · m-PBPM-' 

Since the change was not observed for the sample containing the alkyl halide with 1,3-

BDB, it was confirmed that the final product of reaction (1.1) is negatively charged. 

Funhennore, since only the doublet and the quartet is allowed for the spin multiplicity of 

m-PBPM-·, the fine structure observed at 0-0.6 T must be associated with m-PBPM-· in 

the quartet state. Parallel measurements of optical spectra also showed a remarkable change 

upon photolysis; i.e., the intense absorption at A< 500 nm was replaced with new 

absorption bands throughout the whole range of the near-UV to near-IR region, the major 

band being Amax = 500 nm. This optical change can be associated with the formation of m

PBPM~ upon photolysis. 
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Figure 1.1 Electronic absorption spectra of 1,3-BDB/MTHF solutions at 77 K: 

1, Before )'-irradiation. 

2, After )'-irradiation. 

3, Same as 2, but followed by photobleaching with A. > 620 nm. 

Optical path length 1.5 mm. 

11 



0.0 

H H 

0.32 0.34 

0.1 0.2 0.3 0.4 0.5 0.6 

Magnetic Field (T) 

F igure 1.2 X-band ESR spectrum for a '¥-irradiated and subsequently 

photobleached 1,3-BDB/MTHF solution at 77 K. Prior to photobleaching 

with A. > 620 nm, the spectrum showed only the signal at 0.3 -0.35 T and 

the doublet due to the hydrogen atom produced in the quartz cell by irradiation. 

A reduced-scale spectrum at this stage is shown in the inset. Upon photo 

bleaching several new peaks appeared in the ESR spectrum over a wide range 

of 0- 0.6 Tin addition to the above-mentioned spectrum. The new peaks are 
assigned to the spin quartet m-PBPM-. 
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3. Analysis of the X-band ESR spectrum of m-PBPM-·. To confirm that the 

ESR spectrum arises from a spin-quartet state of m-PBPM-· , we performed the spectral 

simulation based on the following spin Hamiltonian. 

:H = gf3S·H + D[sl- S(S + 1)/3] + E(Sx2
- s?) (1.2) 

The Hamiltonian corresponding to a particular orientation of the magnetic field was 

diagonalized to obtain the resonant field and transition probability. Note that the transition 

probability depends on the third Euler angle X so that it is necessary to average the 

transition probability over the whole 2rc angle of X· However, since the integration over 

2rt is equal to the average of transition probability at X and that at X+ rr(2, calculations at 

only two points of X are necessary (see Appendix B). Then, the spectrum was summed up 

over the whole spherical angle of 4rc to get the powder-pattern spectrum. On account of 

symmetry of the fine-structure tensor, it is necessary to integrate only one eighth of the 

sphere. The number of orientations necessary for the simulated spectrum is 14,560. We 

assumed the Gaussian line-shape with common line-width of 3.6 mT for all the transitions. 

The best fit parameters were found to beg = 2.003 (isotropic), D = +0.1200 cm- 1, and 

IE I = 0.0045 cm- 1. The sign of D was determined from the effect of Boltzmann factor on 

the relative intensity of ESR transitions (see below). The microwave frequency was equal 

to 9.188 GHz with which the experiment was performed. Figure 1.3 shows the angular 

dependence for random orientation (bottom) as well as the simulated spectrum (middle) 

obtained by the above best fit parameters. For the sake of convenience the principal axis 

transitions X and Y are labeled under the assumption of E > 0. Except for the masked area 

of 0.3-0.4 T, the agreement is excellent between the observed and simulated spectra. It 

should be noted that an off-axis extra line denoted by A in Figure 1.3 appears as expected 

for the case of half-integral spins and that the off-axis extra line is a key absorption peak in 

the spin multiplicity assignment (Teki et al. (1988)]. The appearance of the off-axis extra 

line assures that the observed fine-structure spectrum arises from a quartet spin state. The 

observation of the extra line in this work is the first example of extra lines from organic 

high-spin systems with half-integral spins. 

The sign of D can be determined by the effect of the thermal population among the 

sublevels of the quartet state upon the relative intensity of ESR transitions. In the present 

work the intensity of the high-field X-axis canonical absorption at =0.44 Twas compared 

with the low-field one ar ""0.22 T (see Figure 1.3). The intensity of the absorption was 

calculated by double integration of the first derivative peaks. The high-field X-absorpuon 

at 9.5 K is 1.9 times as strong as that at 1.4 K when normalized by the low-field X 

absorption. This result indicates unequivocally that the sigh of Dis positive. 
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F igure 1.3 Observed and simulated X-band ESR spectra for the quartet state 

of m-PBPM-. The angular dependence of resonant fields for random orientation 

is shown at the bouom. Symbols A and F denote the off-axis extra line and the 

"forbidden" bands corresponding to the transitions with ~ms = ±2 and -1 .3. The 

parameters used for the simulation are v = 9.188 GHz, g = 2.003 (isotropic) , 

D = +0.1200 cm- 1
, and 1£1 = 0.0045 cm-1

• 
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4. Spin m ultiplicity of t he ground state of m-PBPM- ·. In order tO see 

whether or not the quartet state is the ground state, the temperature dependence of the 

intensity of the quartet signal was examined. Figure 1.4a shows a representative spectrum 

exhibiting the low-field X andY-axis canonical absorptions of the anion along with several 

absorptions due to the quintet m-PBPM denoted by Q. For the measurement of the 

temperature of the sample the signal intensity of the neutral m-PBPM was used as an 

internal standard of the temperature. Because not all the 1 ,3-BDB is converted to irs anion 

by y-irradiation, the neutral m-PBPM can be produced by UV photolysis of the remaining 

1,3-BDB [Itoh (1967)] together with the monoanion. To avoid the anifact due to the 

instrumental difference experiments were performed using both a JEOL PE-2X 

spectrometer with an Air Products LTR-3 refrigerator and a Brukcr ESP 300 spectrometer 

with an Oxford ESR 910 temperature controller. The temperature dependence of theY-axis 

peak of the anion obtained by the two instruments are shown in Figure 1.4b. The solid 

curves are calculated by the Boltzmann distribution in the sublevels of the quartet and the 

doublet states [Teki ec al. (1986)]. The parameter LlE denotes the energy gap of E(quartet) 

E (doublet). In the calculation for the curve denoted by LlE = -oo the population in the 

doublet state was totally ignored. The scattered but essentially linear plots fits to the case of 

ilE = -oo which signifies E(quartet) « E (doublet). The possibility of I LlE I < 1 cm- 1 can be 

ruled out because if so, the effective exchange interaction between the quartet and the 

doublet states should becomes significant and the eigenstate should not be described as a 

pure quartet nor a pure doublet state and the ESR spectrum should exhibit a characteristic 

feature different from those associated with a pure quartet or a pure doublet state. Since the 

present ESR spectrum can be analyzed unambiguously in terms of a pure quartet state, 

I ilE I must be much larger than"" 1 cm-1. Thus, we can safely conclude that the ground 

state of the monoanion is quartet. 
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Figure 1.4 a. Typical ESR spectrum used for the calculation of the temperature 

dependence of the intensity of theY -axis canonical peak due to the quartet anion. The 

signals due ro neutral quintet are indicated by Q. The temperature was calibrated by the 

intensity of the neutral quintet signals at ::::::0.25 T. The symbols X andY denote the X 
andY -axis canonical peaks of the quartet anion. 

b . Temperature dependence of the intensity of the ESR signal of the Y -axis canonical 

peak shown in the upper spectrum. The triangles are experimental data measured with 

a JEOL spectrometer. Since the line-shape of the peak does not change with temperature, 

the intensity was calculated by the derivative peak height. The circles indicate data mea

sured with a Bruker spectrometer and the intensity was calculated by doubleintegration of 

the first derivative spectrum. The plot obtained by the double integrals is almost the same 

as that obtained by the derivative peak heights. Solid curves are the calculated temperature 

dependence for several values of Ll£ =£(quartet) -£(doublet). All the experimental and 

theoretical intensities are nomalized at T = 4.2 K. 
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5. lH-ENDOR spectra of m-PBPM-·. In order to investigate the spin density 

distribution in the quanet ground state of the monoanion, lH-ENDOR measurement was 

carried out for the monoanion in the glassy solution of MTHF at 1.8 K. 

Since the ENDOR study of single crystalline samples provides the angular dependence 

of the hfcc's, the principal values of the hfc tensor and the orientation of the principal axes 

relative to the crystalline axes can be determined precisely. However, for a randomly 

oriented sample of high-spin molecules the ENDOR measurement is usually feasible only 

for the direction of principal axes of the fine strUcture tensor because ESR peaks in the first 

derivative mode correspond to the turning points of the angular dependence of the resonant 

field which, in turn, correspond to the direction of the principal axes of the tensor. In some 

cases, the angular dependence of the resonant field yields an extra turning point at a 

magnetic field different from those corresponding to the principal axes. This gives rise to 

an off-axis extra line in the powder-pattern spectrUm [Teki er al. (1988)) (see the angular 

dependence and the peak denoted by A in the simulation of Figure 1.3). In such a case it 

may be possible to observe the ENDOR signal corresponding to the extra turning point 

also, which was indeed observed in the present study (see below). In this context it is 

reminded that, in principle, ENDOR signals can be observed at any magnetic field if the 

ESR intensity and the condition of relaxation are favorable. 

The ENDOR spectral pattern of high-spin molecules depends on the electron spin 

sublevels investigated: Under the high-field approximation the lH-ENDOR frequency vis 

given by 

v= v0 -ams ( 1.3) 

where v0 is the Zeeman frequency of free proton and the symbols a and ms denote the zz 

component of the hyperfine interaction tensor expressed in frequency units and the electron 

spin quantum number, respectively. Eq. (1.3) is valid for I a ms I s; v0 . For integral spin 

states, there are two characteristic ENDOR spectral patterns: One is that obtained by 

pumping the transition between ms = 0 and ±1. In this case all the signals due toms= 0 

state collapse into a single peak at Vn and only the signals due tOms = ±1 state appear at 

frequencies apart from v0 . Since the separation from Vn is equal to a forms = 1 and -a for 

ms = -1, the hfcc of each proton can be easily determined from the spectrum (see Scheme 

l.la where a model system having two protons of hfcc's of a1 > 0 and a2 < 0 with I a1 I > 

I a2l is assumed.). The other is associated with ESR transitions involving states of ms :t: 0 

and is more complicated than the former since the ENDOR signals due to both the upper 

and the lower electron spin sublevels appear at frequencies different from v0 . The 

resolution of hfcc's of the latter, however, is higher than the former because the separation 

of the ENDOR signals from Vn is greater. Scheme 1.1 b shows an example for the 
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Scheme 1.1. The schematic pattern of the lH-ENDOR spectra of high-spin s tates. The 

model system having two protons of hfcc's of a1 > 0 and a2 < 0 with I a1 I > I a2l is 

assumed. The typical patterns for integral-spin states are shown in Schemes 1 a and b and 

those for half-integral spin states are shown inc and d. Schemes 1 a, b, c, and d represent 

the patterns for the transitions from ms = 0 to 1, 1 to 2, -1/2 to 1/2. I /2 to 3/2. 

respectively. 
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transition from ms = 1 to 2. For half-integral spin states also. there are two characteristic 

ENDOR patterns: One is that obtained by monitoring the transition between ms = -1(2 and 

1/2. In this case the ENDOR spectrum is symmetric with respect to v0 and the hfcc can be 

determined from the separation of the pair of the signals located symmetrically with respect 

to v0 , although the sign of the hfcc cannot be determined from this spectrum (see Scheme 

l.lc). The other patterns are asymmetric as is shown in Scheme 1.1d for the transition 

from ms = 1/2 to 3/2. Since the proton having the hfcc of a gives two peaks at v0 - 3/2 a 

and Vn- 1(2 a, the sign of a can be determined from the paired sets of the ENDOR signal in 

this case. In most actual cases the electronic spin functions cannot be regarded to be fully 

quantized along the external magnetic field because of the breakdown of the high-field 

approximation due to the non-negligible electron spin-spin interaction. As a result, analysis 

of the ENDOR spectra becomes more complicated than in the case of the high-field 

approximation discussed above. 

The lH-ENDOR spectra of the monoanion were measured by monitoring the X, Y, Z

axis canonical peaks and the off-axis extra line denoted by A in Figure 1.3. The ENDOR 

signal corresponding to the Z-axis direction could not be detected because the ESR intensity 

was too weak. Figure 1.5 shows the ENDOR spectra observed by monitoring the four 

different ESR peaks. Since the ENDOR signals were very weak, each spectrum was 

obtained by accumulating the signals over hundreds of scans. It should be noted that the 

ENDOR spectra obtained by monitoring ESR transitions from ms = 1/2 to 3/2 sublevels 

(Figures 1.5c and d) are approximately symmetric with respect to v0 in accordance with the 

explanation above. The ENDOR signals due to the individual founeen protons cannot be 

completely separated. The inhomogenity in a glassy solution will prevent the complete 

selection of the orientation by monitoring the canonical peaks or the extra-line. Therefore, 

we are forced to a semi-quantitative argument in the following. 

The neutral m-PBPM has four singly occupied molecular orbitals (SOMO's), two of 

which are the non-bonding n-orbitals and the other are the in-plane n-orbitals at the two 

divalent carbon atoms [Itoh (1967, 1978)]. Therefore, the excess electron of the anion 

could occupy either the 1t or then-orbital. If it occupies then-orbital, the spin density in 

then-system will be halved. On the other hand, if the excess electron resides on then

orbital, the spin density of then-electron system would be essentially unchanged but one of 

then-orbitals be fully occupied by two electrons and the other remain singly occupied. 

For the comparison of the hfcc's of the quanet anion with the neutral quintet m-PBPM, 

the difference of the electron spin multiplicity must be taken into account. According to the 

projection theorem [Rose (1957)], the isotropic hfcc of a state with the total electron spin 

angular momentum S is represented as 

( 1.4) 
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where ai denotes the isotropic hfcc of the ith nucleus and Pi is the spin density at the 

position of the nucleus. The anisotropic pan also contains the projection factor 1(2S. 

Thus, the relation between the hfcc of quanet and quintet states is given as follows. 

a;(quanet) = ~ p;~qu~et~ a;( quintet) 
3 p; qumtet 

( 1.5) 

From eq. (1.5) the hfcc's of the protons of the anion will be 2/3 of those of the quintet 

molecule if the excess electron occupies one of the two n-SOMO's, whereas they will be 

4/3 if the electron occupies the n-orbital. 

The hfcc's of all the fourteen protons of the neutral m-PBPM have been fully analyzed 

using single crystalline samples to reveal that the isotropic hfcc's are in the range of -8.0 to 

+3.6 MHz and that the magnitude of the anisotropic pan is within :::4 MHz [Takui eL a/. 

(1989)]. Therefore, the isotropic hfcc's of then-anion will be in the range of - 5.3 to +2.4 

MHz and the maximum (negative) value of the hfcc including the anisotropy will be =-8 

MHz. In the case of n-anion the isotropic part will span a range of -11 to 5 MHz. 

In all the four observed ENDOR spectra of the quartet anion, the maximum absolute 

values of hfcc's are less than 10 MHz and most of the intensities are within a few MHz 

around Vn as is seen from Figure 1.5. The orientations of the anion which were pumped in 

the ENDOR measurements correspond to the X and Y-canonical axes and to the direction of 

8 = 38° for the extra line [Teki el al. (1988)] (see Figure 1.3). Although the hfcc of the Z

direction could not be observed due to the feebleness of the ESR intensity, the result of the 

observed spectra of the three different directions indicates that the isotropic component 

decreases upon charging, which leads to the conclusion that the excess electron occupies 

most probably then-orbital. 
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Figure 1.5 1H-ENDOR spectra of m-PBPM-• in glassy solid of MTIIF. 

The measurements were performed at 1.8 K. The magnetic field employed 

and the number of scans in each measurement were as follows: 

a. 207.8 mT (Y -axis canonical peak of the transition from ms = -3/2 to - 1/2 

sublevels) with 400 scans. b . 233.3 mT (X -axis canonical peak of the transi
tion from ms = -3/2 to -1/2 sublevels) with 321 scans. c. 291.3 mT (X and 
Y -axis canonical peaks of the transition from ms = -1/2 to 1/2 sublevlcs) 
with 400 scans. d. 397.0 mT (extra-line of the transition from ms = -1/2 to 
1/2 sublevels) with 301 scans. 
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6. ESR spectrum of the 13C isotopomer. When the excess electron in the anion 

occupies the 7t-orbital, the spin density of the n-orbital should remain essentially the same 

as that of the neutral quintet m-PBPM and the two divalent carbon atoms in the anion will 

have nearly the same isotropic hfcc. In order to see whether this is the case or not, we have 

prepared an isotopomer in which one of the two divalent carbon atoms is substituted by 

13C. All the canonical peaks and the off-axis extra line are broadened by the unresolved 

hyperfine splitting due to 13C. TheY-axis canonical peak at 200 mT of the l3C isotopomer 

appears less acute bell-shaped with a larger line-width than the unsubstituted (see Figure 

1.6). 

According to the above discussion on the 7t-anion the spin density at both divalent 

carbon atoms, 12C and 13C, should be nearly the same. Therefore, the observed peak 

should split into a doublet due to the hyperfine splitting of the single 13C. This is indicated 

by the two dotted components with an assumed hyperfine splitting of 3.0 mT (see the left 

pattern of Figure 1.6b). On the other hand, if the excess electron resides in then-orbital, 

the spin density at one of the two divalent carbon atoms with a closed-shell structure will be 

zero whether the atom is 12C or 13C and the density at the other atom with an open-shell 

structure will be essentially the same as the quintet m-PBPM whose hfcc of the divalent 13C 

atom is known to be :::::3.5 mT [Teki et al. to be published.]. Therefore, in this case of n

anion the observed peak should comprise, with an equal intensity, a singlet and a doublet. 

In the right pattern of Figure 1.6b a singlet and the two components of the doublet are 

shown in dotted lines where the hyperflne splitting of the doublet is assumed to be 3.0 mT 

in conformity with the left pauem of Figure 1.6b. The integrated intensity of the singlet is 

the same as that of the doublet and they are halved relative to the integrated intensity of the 

doublet in the case of the 7t-anion above. The observed peak coincides with the former case 

and not with the latter case, which reenforces the conclusion of the previous subsection that 

the 7t-anion is favored over then-anion. The anisotropic component of the hfcc is totally 

neglected in the analysis of the Y-axis canonical peak at :::::200 mT. However, because all 

the other X and Y-axis canonical peaks can be regarded as comprising the two components 

with a separation of :::::3.0 mT, the isotropic part of the hfcc's of the two divalent carbon 

atoms are considered to be approximately equal, which is consistent with the conclusion of 

then-anion. The neglected anisotropic components of the hfcc could not be analyzed 

because the hyperfine splittings were not resolved enough for the analysis. The line-shape 

of all the Z-axis canonical peaks could not be analyzed since the signals were too weak. 

Since the accurate hfcc cannot be obtained from the above argument based on the line

shape of the ESR signal, we attempted to observe the 13C-ENDOR signal. I Iowever, the 

signal to noise ration was too small to detect the signal. 
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Figure 1.6a. ESR spectrum of 13c substituted m-PBPM-• in which one of 

the two divalent carbon atoms was replaced by 13c. The spectrum of the un

substituted is also shown for comparison. 

b . Synthetic peaks consisting of 12C isotopomers. Left; the one corresponding 

to the spectrum of the 7t-anion of 13C isotopomer which has a single 
13c hfcc 

of 3.0 mT. Right; the one corresponding to the spectrum of the n-anion of 
13c 

isotopomer which has 13c hfcc's of 0 mT and 3.0 mT. 
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The isotropic hfcc of the divalent nc atom of the anion is expected to be nearly equal to 

that of the neutral m-PBPM which is :::3.5 mT [Teki et al. to be published.], whereas the 

isotropic hfcc of the divalent 13C atom of diphenylmethylene (DPM) is reponed as 173.3 

MHz (6.184 mT) [Brandon et al. (1965)]. Since the spin density of then-orbital ofDPM 

and m-PBPM is essentially the same, eq. (1.4) predicts that the isotropic hfcc of the 

divalent 13C atom of m-PBPM is 1/2 of that ofDPM, which agrees with the observation. 

Thus, the semi-quantitative argument here works fme in the neutral systems. However, the 

isotropic hfcc of the anion of :::3.0 mT does not agree with the estimation based on eq. (1.5) 

which predicts that the hfcc of the anion should be 4/3 of that of the neutral m-PBPM, i.e., 

:::4.7 mT. Plausible reasons for the discrepancy are an incomplete separation of the rt-

orbitals and n-orbitals and the change of the C-C-C angle at the divalent carbon atom upon 

charging which should change the ratio of s-p mixing in the in-plane n-orbital. 

7. Conformation of m-PBPM-·. Since the fine structure parameters of the anion 

are now determined as D = +0.1200 cm-1 and IE I = 0.0045 cm-1 and the excess electron 

is in the p-orbital, we can discuss the conformation of the anion by comparing the fine 

structure parameters with those of diphenylmethylenc (DPM) and m-PBPM: We employ a 

semi-quantitative expression for the fine structure tensor that was used for the determination 

of the conformation of the nonet tetracarbene [Tek:i et al. (1986)]. I n ordinary non

degenerate electronic states the fine structure tensor D is expressed by the electron spin-spin 

interaction, because the second order perturbation of the spin-orbit imeraction is usually 

negligibly small in hydrocarbons. When the electronic state of the molecule is 

approximated by a single electronic configuration, the ij component of the fine structure 

tensor is given by eq. (1.6) [Higuchi (1963a)]. 

D·· = _ { e21i2 ) 2!(25- 2)! 
'
1 2m 2c2 (25)! 

X I (p{I)q{2}- q{I)p{2) 13it2)t2 -5Tt220jj lp{I)q{2}) 
p,q ft2 

i, j =X, Y, Z (1.6) 

where p(i) and q(i) are the molecular orbitals occupied by the i'th electron. In aromatic 

polycarbenes such as m-PBPM, the one-center n-rt interaction at a divalent carbon atom is 

dominant in comparison with other combinations of spin-spin interaction [I Iiguchi (1963a, 

b)]. Neglecting the latter, eq (1.6) becomes 

Du = [5(25- I)r
1 I Pk(uk· ct • u k-l );j (1.7) 

k 
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where 

The subscript k runs over all the divalent carbon atoms and the symbol Pk denotes the spin 

density of then-electron at the kth divalent carbon atom. The tensor d represents the fine 

structure tensor due to the one-center spin-spin interaction between n and n -electrons at a 

divalent carbon atom. The orthogonal matrix Uk transforms the principal axes of the tensor 

d at the kth divalent carbon atom to the molecule fixed axes. The tensor d can be 

approximated as DopMIPDPM. where DoPM and PDPM are the fine structure tensor and the 

n-electron spin density on the divalent carbon atom of diphenylmethylene, respectively. 

Thus, we obtain the semi-empirical expression for the fine structure tensor [Teki eta/. 

(1986)], 

i, j =X, Y, Z ( 1.9) 

Since a simple LCAO-MO calculation gives the spin densities of PDPM = 2/5 and Pm-PBPM 

= 0.4040, the ratio Pm-PBPMIPDPM can be regarded as unity. We must take into account 

the projection factor [S(2S- 1)]-1 which is 1 for the triplet DPM, 1/3 for the quartet anion, 

and 1/6 for the quintet m-PBPM. Since the excess electron of the anion occupies then

orbital, then-electron spin density will be reduced to Pk::::: Pm-PBPMI2. 

If the conformation of the anion remains the same as that of the neutral m-PBPM which 

is known to assume Conformation A shown below [Itch (1978)], the orthogonal matrices 

Uk's should be almost the same as those of the neutral m-PBPM. Noticing that the 

projection factor of the anion is twice as large as that of m-PBPM together with the relation 

of Pk(anion)::::: Pm-PBPMf2, we find Du(anion) = Dij(m-PBPM). Thus, the fine structure 

parameters of the anion would have to be close to those of the neutral m-PBPM, i.e., D = 
+0.07131 cm-1 and IE I = 0.01902 cm-1 [Itch (1967)). However, the observed 

parameters of the anion are far from those of m-PBPM. The I E/D I value for the anion, 

0.038, which is the measure of the deviation from the axial symmetry of the tensor, is also 

quite different from that for m-PBPM, i.e., 0.2667 (see Table 1.1). 

A B 
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However, if the conformation of the anion is in a trans-trans type as depicted in B, the 

two one-center interaction tensors at the divalent carbon atoms are roughly parallel so that 

the sum in eq. (1.9),2, (PJPoPM) (Uk·D DPM.uk· 1)iJ, will be close to 1/2 x 2DoPM:::: 
k 

DoPM· Since the projection factor [S(2S- 1)]- 1 is 1 for DPM and 1/3 for the anion, the 

fine structure parameters of the anion will be about 1/3 of those of DPM. The fine structure 

parameters ofDPM are D = +{).40505 cm-1 and IE I = 0.01918 cm-1 with the I EJD I 
value being 0.04735 [Brandon et al. (1965)]. From these values the parameters of the 

anion are estimated as D:::: D(DPM)/3 = +0.135 em 1, IE I :::: I E(DPM) I /3 = 0.0064 cm-

1, and I EJD I :::: I EJD(DPM) I = 0.0047, which arc close to the experimental values for the 

monoanion, D = +0.1200 cm-1, IE I = 0.0045 cm- 1, and I EJD I = 0.0038 (see Table 

1.1 ). 

Using the fact that the fine structure tensor of aromatic polycarbenes can be 

approximated as the superposition of the one-center interaction at each divalent carbon atom 

and the p-electron spin density of the anion is about one half of that of m-PBPM, the 

conformation of the anion is now suggested as to be in a trans-trans type such as B. 

Table 1.1 Comparison of D, IE I, and I EJD I of monoions of 

m-phenylenebis(phenylmethylene) (m-PBPM) with those of cliphenylmethylenc (DPM) and 

the neutral m-PBPM. 

s D lEI IEJD I 

(cm- 1) (crn- 1) 

diphenylmethylene (DPM)a 1 +0.40505 0.01918 0.04735 

m-pheny lenebis(phen y lmeth y lene) 2 +0.07131 0.01902 0.2667 

(m-PBPM)b 

monoanion of m-PBPMc 3/2 +0.1200 0.0045 0.038 

rnonocation of m-PBPM conformer rd 3/2 +0.1350 0.0040 0.030 

ditto conformer nd 3/2 +0.1285 0.0055 0.043 

aBrandon et al. (1965). 

bitoh (1967). 

cMatsushita et al. (1990b). 

dMatsushita et al. to be published. 
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Results and discussion for a monocation of m-PBPM (m- PBPM+•) 

1. Optical and ESR spectra. The solution of 1,3-BDB in BuCl becomes a glassy 

solid at 77 K with purple color (see curve 1 in Figure 1.7). The color is ascribable to the 

mt*-transition of diazo group withE= 254 at Amax = 530 nm [Itoh eta/. (1968)]. From the 

value of c:, we can estimate the concentration of the dissolved 1,3-BDB as 5- 10 m\1. The 

samples were ')'-irradiated at 77 K. As described in Chapter 0 the major products of the 

reactions upon ')'-irradiation are the butyl radical, the chloride anion, and the radical cation 

of 1,3-BDB. It is emphasized that high energy 'Y photon does nor cause violent radiolysis 

to extensive fragmentations of the solvent and the solute but result mostly in thermal 

ionization of the solute by the intermolecular charge transfer (see reaction (0.7)). The 

possibility of formation of dication is ignorable because of the Coulombic repulsion 

between two positive charges. The electron absorption spectrum at this stage is shown in 

curve 2 of Figure 1.7. Since the butyl radical and the chloride anion are colorless in the 

observed region, the spectrum in curve 2 is attributed to the radical cation of 1,3-BDB, 

although part of the nn*-transition due to the intact 1,3-BDB (curve 1) is superposed. The 

absorption spectrum of curve 2 has a characteristic peak at 630 nm in contrast to the 

absorption spectrum of ')'-irradiated 1,3-BDB in MTHF solution, which exhibits strong 

absorption at A< 500 nm and feeble absorption in the near-IR region (see curve 2 in Figure 

1.1). The difference between the two spectra clearly indicates that the species produced by 

')'-irradiation in BuCl is different from that in MTHF and reenforces the assignment that the 

former is the radical cation and the latter the radical anion of 1 ,3-BDB. A further 

confirmation of this assignment of 1,3-BDB+· was made by running a parallel optical study 

of a solution of 1,3-BDB ( ""10 mM) plus triethylamine (TEA, ""100 mM) in BuCl; since 

TEA is known to be an efficient positive charge scavenger [Shida et al. (1984), Shida 

(1988, 1991)], the yield of the absorption in curve 2 of Figure 1.7 should be suppressed 

drastically, which was indeed observed. 

The X-band ESR spectrum after ')'-irradiation showed signals in a range of 0.32-0.34 

T as shown in the inset of Figure 1.8, which is consistent with the formation of the spin

doublet 1,3-BDB+· and the butyl radical. 

When the ')'-irradiated sample exhibiting the optical spectrum in curve 2 of Figure 1.7 

was photolyzed with A> 620 nm, several new ESR signals appeared in the range of the 

magnetic field 0-0.6 T (see Figure 1.8). Concomitantly, the optical spectrum changed 

from curve 2 to 3 in Figure 1.7. The appearance of new ESR signals indicates the 

formation of a new high-spin species. Since these signals did not appear in the experiment 

of the 1,3-BDB + TEA/BuCl system, the new signals are associated with a high-spin 

species originating from the radical cation of 1 ,3-BDB. By analogy of the photolytic 
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denitrogenation of the parent 1,3-BDB molecule [Itoh (1967)], the observed spectral 

change is accounted for by the following series of reaction. 

hv 

( 1.1 0) 

1,3-BDB 1,3-BDB +· 

Since y-irradiation of BuCl solution at 77 K should lead solely to the monocation of the 

solute molecule, and since photon energy in reaction (1.10) is less than :=::2 eV, there is no 

possibility of the photoionization to the dications of 1 ,3-BDB or m-PBPM in reaction 

(1.10). Since only the doublet and the quanet is allowed for the spin multiplicity of nz

PBPM+·, the fine structure observed at 0-0.6 T must be associated with m-PBPM+· in the 

quanet state_ The accompanying optical change from curve 2 to 3 in Figure 1.7 is, thus, 

attributed to the formation of quanet m-PBPM+·. Since the optical absorption spectrum 

shown in curve 3 is different from the corresponding spectrum of the anionic system of 

MTHF solution, the spin quanet species generated in BuCl must be different from that in 

MTHF even if the ESR spectrum in Figure 1.8 resembles to some extent the spectrum of 

the monoanion of m-PBPM. The resemblance will be discussed later involdng the pairing 

theorem of conjugated n-electron systems [McLachlan (1959, 1961), Kourecky (1966)]. A 

closer analysis of the observed ESR spectrum in Figure 1.8 reveals that there are two 

conformers of m-PBPM+· as will be discussed in the following section. 
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Figure 1.7 Optical absorption spectra of 1,3-BDB/BuCl solution at 77 K: 

1, Before )'-irradiation. 

2, After )'-irradiation. 

3, Same as 2 but followed by photolysis with A. > 550 nm. 

Optical path length 1.5 mm. 
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F igure 1.8 X-Band ESR spectra for a 'Y-irradiated and subsequently 

photolyzed 1,3-BDB/BuCl solution at 36 K. Prior to photolysis the spectrum 

showed only the signal at 0.32 -0.34 T, which is shown in the inset, and the 

doublet due to the hydrogen atom produced in the quartz cell by 'Y-irradiation. 

Upon photolysis several new peaks appeared in the ESR spectrum over a wide 

range of 0- 0.6 T. The new peaks are assigned to the spin quartet state of m 

PBPM+·. 
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2. Ana lysis of the X-band ESR spectrum of m-PBPM+ ·. As in the case o f 

the monoanion of m-PBPM [Matsushita et al. (199Gb)], the ESR assignment was 

confirmed by the simulation based on the following spin Hamiltonian. 

( 1.2) 

The Hamiltonian corresponding to a particular orientation of the magnetic field was 

diagonalized to obtain the resonant field and the transition probability. Then, the spectrum 

was summed up over one eighth of the whole spherical angle to get the powder-pattem 

spectrum (see Appendix B). The totall3,000 orientations were sampled and a common 

Gaussian line-width of 4.0 mT was assumed. 

After several trials of simulation we concluded that the observed spectrum is a 

superposition of two spin-quartet constituents having slightly different fine structure 

parameters. The spectrum at the bottom of Figure 1.9 shows the constituent spectra and the 

one in the middle is their superposition. For the sake of convenience the principal axis 

transitions X andY are labeled under the assumption of D > 0 (which was found tO be the 

case (see below)) and E > 0. In the superposed spectrum the low and the high-field pairs 

of theY-axis canonical peaks coincide accidentally and the corresponding pairs of the X

axis peaks show a doublet structure. These features are in a good agreement with the 

observed spectrum. Likewise, the other pairs of the X andY-axis peaks and "forbidden" 

transitions of lwzs = ±2 and ±3 marked by F as well as the off-axis extra lines denoted by 

A altogether give a satisfactory agreement with the observed spectrum. However, the 

predicted Z-axis canonical peaks are not seen in the observed spectrum because the low and 

the middle-field peaks are hidden by the signals of by-produced triplet carbenes and doublet 

radicals, respectively. The high-field Z-axis peaks also cannot be distinguished from the 

noise because of the weak intensity. In order to confirm the generation of the two 

conformers, the high-field Z-axis canonical peaks were disclosed by averaging the signals 

over 100 times of scans. The detected spectrum is shown in Figure 1.10, where the base 

line correction was carried out. The spectrum reveals the anticipated doublet feature of the 

Z-axis peak. Once the peak positions of the high-field Z-axis canonical peaks are known, 

the fine structure parameter D can be determined accurately. Since the fine structure 

parameters of the two conformers are very close, the difference of the conformations must 

be small to rule out such a distinct difference as the cis-trans isomerism. 1L might be that the 

two conformers are different in the degree of planarity and/or the bond angles at the divale nt 

carbon atoms. The intensities of the two conformers are nearly equal. The best fit 

parameters are found as to beg = 2.003 (isotropic), D = +0.1350 cm- 1, and IE I = 0.0040 

cm- 1 for confonner J and g = 2.003 (isotropic), D = +0.1285 cm- 1, and IE I = 0.0055 

cm- 1 for conformer II. The sign of D was determined from the effect of Boltzmann factor 
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on the relative intensity of ESR transitions (see below). The parameters are found to be 

close to those of the anion of m-PBPM (g = 2.003 (isotropic), D = +0.1200 cm- 1, and 

IE I = 0.0045 cm-1) [Matsushita ec a/. (1990b)]. 

As is mentioned for the spectrum of the monoanion, the off-axis extra lines in the 

powder-pattern spectrum should be characteristic of the spin multiplicity and the fine 

structure parameters [Teki eta/. (1988)]. Figure 1.11 shows the calculated angular 

dependence of resonant fields and powder-pattern first derivative ESR spectra for 

conformers I and II. The off-axis extra lines denoted by A assure that the observed fine 

structure pattern, indeed, arises from the spin-quartet species. 

At temperatures as low as 1.4 K the relative intensity of ESR transitions in the quartet 

state should depend sensitively on the thermal population among the sublevels. As the 

temperature is lowered, the intensity of transitions between higher sublevels should become 

weak relative to those between lower sublevels. The intensity of the high-field Y-axis 

canonical peak was compared with that low-field peak for the randomly oriented sample. 

The intensity was calculated by double integration of the first derivative spectrum. From 

the temperature dependence of the intensity ratio of the high-field to the low-field Y-axis 

peak, the sign of D was determined to be positive. Since the relative intensity of the low

field X-axis canonical peak of conformer I to that of conformer II does not change with the 

temperature, the ground state of both I and II must be the same, which was found to be 

quartet as will be discussed in detail in the next section. The same temperature dependence 

of I and II also implies that the sign of D is the same for the two conformers: If the sign of 

D were different, the order of sublevels must be reversed, and the low-field X-axis peak of 

one conformer would be due to the transition between the highest two sublevels of the 

quartet state, whereas that of the other conformer would be the transition between the 

lowest sublevels. 
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Figure 1.9 Observed and simulated X-band ESR spectra for the quartet state 

of m-PBPM+·. The symbol Tin the observed spectrum indicates the signals due 

to by-produced triplet carbenes. Microwave frequency employed is 9.175 Gllz. 

Symbols A and F in the simulated spectra denote the off-axis extra line and the 

"forbidden" transition with ~ll\ = ±2 and 3. The parameters used for the simulation 

are g = 2.003 (isotropic), D = +0.1350 em·', and IE I = 0.0040 em·' for 

conformer I and g = 2.003 (isotropic), D = +0.1285 em 1
, and IE I = 0.0055 em·' 

for conformer II, and the ratio of conformer I to II is 1:1. The spectrum at the 

bottom shows the simulated spectra of conformer I (solid line) and II (dotted line) 

and the spectrum in the middle is the superpotition of the two. The sign of D was 

determined from the temperature dependence of the ESR spectrum (see the text). 
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Figure 1.10 Observed X-band ESR spectrum around the high-field Z- axis 

canonical peak of m-PBPM+·. The spectrum was obtained by accumulating 

the signals over 100 times of scans and the base line correction was carried out. 

Mocrowave frequency is 9.56262 GHz. The doublet structure of the Z-axis 

peak clearly shows the formation of two conformers of m-PBPM+·. 
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F igure 1.11 Calculated angular dependence of resonance fie lds and powder
pattern first derivative ESR spectra for conformers I and II of m-PBPM+·. 

Microwave frequency is set to be 9.175 GHz. The parameters are g = 2.003 

(isotropic), D = +0.1350 cm· 1
, and IE I = 0.0040 cm·1 for conformer I 

and g = 2.003 (isotropic), D = +0.1285 cm·1
, and IE I = 0.0055 em . J for 

conformer ll. Ocx denotes the angle corresponding to the extra line. 
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3. Spin multiplicity of the ground state of m-PBPM+·. To determine the spin 

multiplicity of the ground state of m-PBPM+·, the temperature dependence of the intensity 

of the quartet signal was examined by monitoring the low-field Y-axis canonical peak (see 

the spectrum in Figure 1.12). The intensity was calculated by double integration of the first 

derivative peak. For the measurement of the temperature of the sample the neutral m

PBPM was used as an internal standard of the temperature as in the case of the anionic 

system. In brief, they-irradiated sample was photolyzed to produce the neutral m-PBPM 

from the remaining 1,3-BDB by the well-known denitrogenation [Itch (1967), Teki et al. 

(1986)]. To get a proper intensity of m-PBPM for the comparison with that of the 

monocation shown in Figure 1.12a, the yield of m-PBPM was controlled by using visible 

light with A.> 510 nm instead of UV light. By obtaining both m-PBPM and its cation in 

this way, the temperature of the sample was calibrated referring to the signal intensity of m

PBPM. The observed intensity is represented by circles in Figure 1.12b. The 

approximately linear plot indicates that the ground state is quartet. 

In order to exclude definitely the possibility that the ground state is doublet, the 

temperature dependence of the signal was calculated for several values of 6e = r::(quanet)

e(doublet) as indicated by solid lines in Figure 1.12b. In the calculation for the curve 

denoted by 6e = -oo the population in the doublet state was totally ignored. The curve of 

6e = -oo corresponds to the case that the ground state is quartet. Thus, from the observed 

temperature dependence, it is safely concluded that the ground state of m-PBPM+· is 

quartet. 

4. lH-ENDOR spectra of m-PBPM+'. The neutral m-PBPM has four SOMO's, 

two of which are the non-bonding rr-orbitals and the other two are the in-plane n-orbitals 

localized at the divalent carbon atoms [Itoh (1967, 1978)]. Therefore, there are two 

possibilities for the cation, that is, a rr- and n-cation as in the case of the anion. In the case 

of the rr-cation, the spin density of the rr-orbital will be about one half of that of the neutral 

m-PBPM, whereas it will be almost the same as that of m-PBPM for then-cation. To 

compare the hfcc of the quartet cation with that of the quintet m-PBPM, the difference of 

the spin multiplicity must be taken into account. According to the projection theorem [Rose 

(1957)], the hfcc is proportional to p/25 where S denotes the total electron spin quantum 

number and pis the spin density. Therefore, for then- and n-cation the hfcc of the protons 

will be 2/3 and 4/3 of those of m-PBPM. 
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Q 

Figure 1.12 a . Typical ESR spectrum used for the calculation of the 

temperature dependence of the low-field Y -axis canonical peak of the quartet 

state. The symbols X and Y indicate the low-fie ld X and Y -axis canonical peaks 

of the quartet cation. The signals due to the neutral quintet are denoted by Q. l11e 

temperature was calibrated by the intensity of the signal of the neutral m -PBPM 

at ==0.26 T. 
b. Temperature dependence of the intensity of the ESR signal of the low-field Y

axis canonical peak. T he circles are experimental, and the curves are the calculated 

for several values of ilc = e(quartet) - £(doublet). All the experimental and 

theoretical intensities are normalized at T = 4.3 K. 
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lH-ENDOR spectra were measured by monitoring the X, Y-axis canonical peaks and 

the off-axis extra line. The ENDOR signals were weaker than those of the monoanion in 

MTHF and clear spectra were obtained only for the three ESR peaks at 202.5 mT, 281.4 

mT, and 396.1 mT (see Figure 1.9). Since all the three peaks consist of the peaks due to 

conformers I and II, the observed ENDOR signals are superposition of the signals due ro 

conformer I and those due to conformer II. The weak ENDOR signals were accumulated 

over several hundred scans to obtain the spectra shown in Figure 1.13. The measurements 

were carried out at 3.0 K. Since the hfcc due to each proton cannot be distinguished, only 

a semi-quantitative discussion can be made as in the case of m-PBPM-·. Each spectrum is 

quite similar ro the corresponding lH-ENDOR spectrum of the anion. The hfcc's of the 

protons of the cation should, therefore, be very close to those of the anion. The spin 

density of then-orbital of the cation is about one half of that of m-PBPM as in the case of 

the anion; The hfcc's of the cation are within 9 - 10 MHz in all of the observed spectra and 

most of those are within 2 MHz. They are about 2/3 of those of m-PBPM, which are 

reported as aiso = -8.0- 3.6 MHz and I aaniso I $4 MHz [Takui et al. (1989)]. Thus, it is 

concluded that the hole in the cation is in the n-orbital. 

The close agreement of the hfcc's of the anion and the cation is consistent with the 

conclusion that both the anion and the cation are of n-type ions, because the pairing 

theorem [McLachlan (1959, 1961), Koutecky (1966)] should hold good in larger n

systems [Weissman eta!. (1957), Boer and Weissman (1958), Carrington et al. (1959)]. 

The difference in the optical absorption spectra of the anion and the cation does not 

contradict the agreement of the hfcc's, because both of the electronic ground and excited 

states are involved in the absorption spectrum whereas the hfcc is determined by the spin 

density distribution of the electronic ground state. 

The observed ENDOR spectra of Figure 13a, b, and c correspond to the orientation of 

the principal Y -axis, X and Y axes ( 8 = 0°), and the direction of the extra-line [Teki et a!. 

(1988)] (8 = 37°), respectively. Although the observed ENDOR spectra are the 

superposition of the signals due to conformer I and conformer II, the hfcc's in the three 

different directions agree fairly well with those of the monoanion. Therefore, the 

orientations of each hfcc tensor of the two conformers should be close to each other and 

also close to that of the monoanion. Thus, we can expect that the conformations of the two 

conformers of the cation and the conformation of the anion are basically similar. Then, the 

fine structure parameters of the cation should be close to those of the anion, which was 

indeed observed. The conformation of the cation will be discussed further in a later 

section. 
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Figure 1.13 1H-ENDOR spectra of m-PBPM+• in glassy solid of BuCJ. 

The measurements were performed at 3.0 K. The magnetic field employed 

and the number of scans are as follows: a. 202.5 mT (Y -axis canonical peak 

of the transition from ms = -3/2 to -1/2 sublevels) with 530 scans. b. 281.4 mT 

(X and Y -axis canonical peaks of the transition from ms = -1/2 to 1/2 sublevels) 

with 337 scans. c. 396.1 mT (extra-line of the transition from ms - -l/2 to 1/2 

sublevels) with 340 scans. 
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5. ESR spectrum of the 13C isotopomer. If the hole of the cation resides on the 

singly-occupied n:-orbital, the spin density of the two n-orbitals must be essentially the 

same as that in m-PBPM and the isotropic hfcc's of the two divalent carbon atoms are 

approximately equal. In order to ensure the assignment of the n:-cation, we examined a 

13C-labeled isotopomer in which one of the two divalent carbon atoms is substituted by 

13C. Figure 14 compares the low-field Y andX-axis canonical peaks of the 13C 

isotopomer with those of the 12C isotopomer. Each peak of the 13C isotopomer is 

broadened by the unresolved hyperfine splitting due to 13C. The broad bell-shaped peak of 

the 13C isotopomer indicates that the hfcc's of the two 13C atoms are approximately equal 

(see Figure 1.6b and the corresponding discussion on the anion). If the hole occupied the 

n-orbital, the spin density of one of the two n-orbitals should vanish and the hfcc of that 

carbon atom must be very small whereas the other carbon atom has essentially the same 

hfcc as that of the neutral m-PBPM, 35 mT [Teki et al. to be published.], except for the 

difference of the spin projection factor l/2S. The superposition of the two components 

never reproduces the unresolved bell-shaped peak (see Figure 1.6b). Thus, the ESR 

spectrum of Be isotopomer indicates that the hole of the cation is in the n:-orbital, which is 

consistent with the result of lH-ENDOR measurements described above. 

We attempted to observe the 13C ENDOR spectrum to determine the hfcc of 13C. 

However, we failed to detect the signal because of low signal to noise ratio. 

6. Conformation of m-PBPM+·. The fine structure tensor of aromatic 

polycarbenes can be represented approximately as a superposition of the one center spin

spin interaction of n-n: type at each divalent carbon atom [Higuchi (1963a, b)]. Therefore, 

the fine structure tensor is determined mainly by the relative orientation of the one-center 

interaction tensors and the spin density at the divalent carbon atoms. Since the fine 

structure parameters and the electronic structure of the cation are now determined, we can 

estimate the conformation of the cation by considering the relative orientation of the one

center interaction tensors: Since the one-center interaction tensor can be approximated by 

the fine structure tensor of diphenylmethylene (DPM), the semi-quantitative expression for 

the fine structure tensor is given by eq. (1.9) [Teki et al. (1986)]. 
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Figure 1.14 The ESR spectrum of 13c substituted m-PBPM+· in which one 

of the two divalent carbon atoms was substituted by 13c. The spectrum of 
12c · · 1 h f · 1sotopomer IS a so s own or companson. 
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i, j =X, Y, Z ( 1. 9) 

where the subscript k runs over all the divalent carbon atoms and DoPM denotes the fine 

structure tensor of DPM. The symbols Pk and PDPM represent the spin density of the 1C

electron at the kth divalent carbon atom and that at the divalent carbon atom of 

DPM,respectively. The onhogonal matrix Uk transforms the principal axes of the tensor 

DoPM at the kth divalent carbon atom to the molecule fixed axes. Since a simple LCAO

MO calculation gives the spin densities of PDPM = 2/5 and Pm-PBPM = 0.4040, the ratio 

Pm-PBPMIPDPM can be regarded as unity. Table 1.1 compares the fine srmcture parameters 

of the monoions with those of DPM and m-PBPM. If the conformation of the cation was 

the same as that of the neutral m-PBPM which is known to be a cis-trans type as shown in 

Conformation A [Itoh (1978)], the fine structure tensor of the cation would be 

approximately equal to that of m-PBPM, because in the 1C-cation then-electron density 

would be halved but the projection factor [S(2S- 1)]-1 should be doubled against the 

quintet m-PBPM (the factor is 1/6 for the quartet and 1/12 for the quintet). On the other 

hand, when the conformation of the cation is of a trans-trans type where the two one-center 

interaction tensors are roughly parallel, the fine structure parameters are estimated as 1/3 of 

those of DPM, because the sum in eq. (6) L, (pJpoPM)(Uk·D DPM.uk·
1
),1 would be 

k 

approximately equal to D oPM and the projection factor [S(2S- 1)]-1 is 1/6 for the quartet 

and 1(2 for the triplet DPM. The experimentally determined values for both of the two 

conformers are closer to the latter value of DopM/3 = +0.135 cm- 1 and I Eo PM I /3 = 

0.0064 cm-1 (see Table 1.1). The I E/D I ratio, which is the measure of the deviation from 

the axial symmetry of the tensor, also suppons the latter case; the ratio is 0.030 for 

conformer I and 0.043 for conformer II and they are close to that of DPM, 0.04735, but far 

from that of m-PBPM, 0.2667. Thus, the conformation of the cation is plausibly in a 

trans-trans type as indicated by Conformation B. 

. 
~ 

A B 
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Conclus ion . 

We have detected for the flrst time negatively and positively charged high-spin 

molecules and have shown that the ground state of the monoanion and of the monocation of 

m-PBPM are both quartet. A suggestion of the possible reversal of the order of spin states 

upon charging [Yamaguchi et al. (1987)) was not substantiated in both the monoanion and 

monocation of m-PBPM. From the lH-ENDOR measurements the hole and the excess 

electron in the cation and the anion are found to reside in the non-bonding n-orbital. The 

result is compatible with the ESR measurements of the monoions of l3C substituted 

isotopomer. From the fine structure parameters and the electronic state the conformations 

of the ions are considered to be in a trans-trans conformation in contrast to the cis-trans 

conformation of the neutral m-PBPM [Itoh (1978)). The result of the present study should 

be significant for elucidating the relation between the excess charge and the spin alignment. 

In order to clarify the difference between electron attachment and removal and to make a 

more detailed discussion on the electronic structure of charged high-spin systems, 

experimental and theoretical studies of smaller n-conjugated systems are now in progress. 
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Chapter 2. 

Introduction 

ESR Study of a Non-Rigid Jahn-Teller Active 
Cation: CH4+· 

The Jahn-Teller distortion (Jahn and Teller (1937)] of C~ has been subject to a number 

of theoretical studies [Coulson and Strauss (1962), Arents and Allen (1970), Dixon 

(1971), Meyer (1973), Paddon-Row eta/. (1985), Takeshita (1987), Frey and Davidson 

(1988), Marinelli and Roche (1990), Reeves and Davidson (1991)]. Experimentally, direct 

spectroscopic observation of CfLt+• in the gas phase has not been made so far except for 

the photoelectron spectroscopy [Al-Joboury and Turner (1964, 1967), Brehm and 

Puttkarner (1967), Baker eta/. (1968), Pullen er al. (1970), Brundle eta/. (1970)] and a 

coincidence spectroscopy utilizing the Coulomb-explosion [Yager era/. (1986)]. 

Theoretical studies have been tested by comparison with the line profile of the first 

photoelectron peak of methane [Rabalais era/. (1971), Takeshita (1987), Marinelli and 

Roche (1990)] and with limited information of ESR [Knight et al. (1984), Paddon-Row et 

a/. (1985)]. Some time ago Knight er al. have detected the radical cation in the neon matrix 

and reported the isotropic hyperfine coupling constants (hfcc's) of the protons [Knight et al 

(1984)]. In this chapter we will analyze the ESR spectroscopic data in detail on the basis of 

the dynamic Jahn-Teller distortion of the radical cation. 

First, we briefly recapitulate the previous communication by Knight eta/. in 1984. The 

spectrum of CH2D2+• is an isotropic niplet-quintet with I Aiso(2H) I = 121.7(3) G and 

I Ais0 (2D) I = 2.22(6) G (see Figure 2.1). The central peaks of the triplet family shift each 

other slightly due to the second order effect of the two protons of a large hfcc of 121.7 G. 

As discussed in the previous paper, the spectrum indicates unambiguously that the cation 

has a C2v symmetry with the electronic state of2Bl symmetry, the unpaired electron 

occupying dominantly the 2py orbital of the carbon atom (the molecule fixed axes are 

defined in the figure in Table 2.1). The C2v structure with a 2B 1 eleco·onic state is also 

favored by theoretical calculations [Knight eta/. (1984), Paddon-Row ec a/. (1985), Frey 

and Davidson (1988)]. In particular, it was shown that among the three possible CH2D2+· 

conformers of C2v symmetry the one having two shorter C-D bonds in the nodal plane of 

the 2py orbital has the lowest vibrational zero-point energy [Paddon-Rower a/. (1985), 

Frey and Davidson (1988)]. The calculated hfcc's, I Aiso(2H) I = 137 G and I Aiso(2D) I 
= -2.6 G, are in a good agreement with the experimental values [Knight et al. (1984)]. As 

for CR4+• an isotropic quintet with I Aiso I = 54.8(2) G was recorded at 4 K which is 
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close to the weighted average of the hfcc's of CH2D2+• ( [2 x 121.7 - 2 x 14.6)/4 =53.6 

G). This proximity was considered as due to some dynamic averaging of the four 

hydrogen atoms in Cli4+•. However, the question of the averaging mechanism was left 

open [Knight et al. (1984)]. 

In this chapter we will resolve this unanswered question of Cf-4+•. All the deuterated 

radical cations will also be studied both experimentally and analytically. The main pan of 

the chapter will be divided into three sections, i.e., the systems of CH2D2+•, Cf-4+· and 

CD4+· , and CH3D+• and CD3H+·. The reason for staning with CH2D2+• is twofold; 

firstly, the previous paper on CH2D2+• [Knight eta/. (1984)] was a shon communication 

without detailed discussions. Secondly, the CH2D2+• system provides an easy access to 

the analysis of the other systems in terms of the permutation-inversion group theory. The 

third section on the deuterated systems is added for the sake of the integrity of the study on 

the methane cation. 

Experimenta l 

All the experiments were carried out by the group of Professor L. B. Knight, Jr. in 

South Carolina. The basic design of the formation and trapping of the methane cation in 

the neon matrix is described elsewhere [Knight et al. (1984), Knight (1986)]. In brief, 

approximately 0.1 % methane in neon gas purchased from Matheson (research grade) is 

introduced into an open-tube resonance lamp with a continuous neon flow of 3 seem 

powered by a microwave generator. The predominant output of this power source occurs 

at 16.8 eV, which is well above the ionization energy of the methane molecule. The lamp 

is a 9-mm o.d. quanz tube whose open end is located 5 em from the deposition target. The 

target is a round copper rod (1/8" diameter and 1-1/2" long) with the deposition side 

slightly flattened. The rod is cooled by an Air Products' liquid helium Heli-Tran cryostat. 

The temperature of the target is maintained at approximately 3 K. After the deposition of 

photoionized methane and cocondensing neon atoms the target is transferred to the ESR 

cavity by use of a hydraulic lifter. The ESR spectrometer is a Varian E-109 system with 

the 102-4 microwave bridge. An Air Products' temperature controller and digital 

thermocouple readout is used (Model APD-E) with which the temperature of the ESR 

measurement is covered from approximately 4 to 11 K. Weak ESR background signals 

due to H20+ [Knight and Steadman (1983)], CH3, and other foreign species are 

unavoidably observed. However, these impurity signals can be easily identified to extract 

the genuine signals due to the methane cation. 
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Results and discussion 

Introductory remark 

Since CH4+• is a non-rigid system with four equivalent hydrogen atoms, the 

permutation-inversion (PI) group [Longuet-Higgins (1963), Bunker (1979), Dyke (1977)] 

is to be used for the analysis of ESR spectra. Another fundamental basis for the analysis is 

the assumption that the wavefunction of the radical cation can be approximated as the 

product of the rovibronic, the electron spin, and the nuclear spin wavefunctions, 

<l>total = <l>rve <l>es <l>ns· (2.1) 

According to the statistics of equivalent particles, the total wavefunction of the molecule 

must be antisymmetric and symmetric with respect to odd and even permutations of 

fermions and symmetric for both permutations of bosons. When the irreducible 

representation of the PI group satisfying this requirement is denoted by f(A), the restriction 

of the symmetry of the total wavefunction is expressed as 

ftotal = f(A), (2.2) 

which can be rewritten as 

f rve®f es®f ns ~ f(A), (2.3) 

Since both the Fermi-Dirac and the Bose-Einstein statistics impose no restriction on the 

inversion operation, two irreducible species are equally permissible in which the characters 

of permutation-inversion operations differ (see, e.g., B1 and B2 for G4, A1 and B1 for Gg, 

and A 1 and A1 for G24 in Tables 2.1, 2.3, and 2.5, respectively) [Longuet-Higgins 

(1963)]. 

In the static magnetic field it is convenient to take the electron and the nuclear spin 

projections along the space-fixed axis parallel to the field. Space-fixed spin functions are 

invariant with respect to the inversion of the spatial coordinates of all particles (electrons 

and nuclei) in the molecule, so that only the permutation effects of permutation-inversion 

operations must be considered [Hougen (1976)]. Since the electron spin wavefunctions are 

not affected by nuclear permutations, the space-fixed electron spin functions are totally 

symmetric. Thus, the space-fixed nuclear spin functions must be subject to the restriction, 
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r rve®r ns ::::> r(A), (2.4) 

In the following analysis we assume that there is no accidental degeneracy in rovibronic 

states and the separation between each rovibronic state is much larger than the Zeeman 

splitting. Then, the hyperfine interaction between the different rovibronic states can be 

neglected and the hyperfine Hamiltonian maoix can be set up for each rovibronic state. 

Thus, the observed ESR spectrum should be expressed as a superposition of the ESR 

spectrum originating from each rovibronic state with the weight of the Boltzmann factor. 

Furthermore, we neglect the anisotropic component of the hyperfine tensor because the 

observed spectra appear almost isotropic. 

The symmetrized representation of the nuclear spin function and the hyperfine 

Hamiltonian are compiled in Tables 2.2, 2.4, 2.6, and 2.10. For a given symmetry rand 

a given nuclear spin quantum number J the relative phase of nuclear spin functions among 

M sublevels has been chosen so that the operation of the totally symmetric ladder operator 

I± on an M sublevel leads toM± 1 sublevels with positive coefficients. Similar Tables for 

the nuclear spin function are given in literatures [Hougen (1976), McConnell eta/. (1955)). 
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We first reanalyze the ESR spectrum of CH20£.+• reponed earlier [Knight er al. (1984)] 

(see Figure 2.1). Since the spectrum reveals clearly the second order shift in the central 

region of spectrum, the analysis should be made in terms of the symmetrized nuclear spin 

functions. The use of the symmetrized functions makes also the evaluation of the rotational 

energy from the ESR intensity much more lucid [McConnell (1958)). 

3530 3550 3406 3426 3282 3302 

Magnetic Field (Gauss) 

Figure 2.1 ESR spectrum of CH2D2+· isolated in neon matrix at 4 K. The vertical 

expansion is 4 times greater for the wing quintets relative to the central region. The lowest 

field component of the background impurity species, H20+· is indicated. The magnetic 

field position of ge occurs at 3421.2 G. 
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Having two Hand two D atoms CH2D2+• belongs to the complete nuclear permutation

inversion (CNPI) group Gs (= s2 X s2 X r) where Sn denotes the nuclear permutation 

group of degree nand r represents the inversion group. However, out of the total eight 

elements only four are "feasible" in the sense of Longuet-Higgins for the rigid cation 

having the C2v symmetry [Longuet-Higgins (1963), Bunker (1979)]. Therefore, we can 

analyze CH2D2+• by the molecular symmetry group G4 which is a subgroup of the CNPI 

group and is isomorphous to the point group C2v [Hougen (1962,1963)). The characters 

are given in Table 2.1. According to the Fermi-Dirac and the Bose-Einstein statistics, the 

allowed irreducible representations of the total wave function of CH2D2+• are either B1 or 

B2 (see the character for the operation of (12)(34) in Table 2.1). 

(2.5) 

that is to say, 

(2.6) 

where the rovibronic part is separated into the electronic, vibrational, and rotational 

wavefunctions by the Born-Oppenheimer approximation. Since the electronic and the 

vibrational parts are, respectively, of 2B 1 and of A 1 symmetry at low temperatures below 

:::10 K [Knight et al. (1984)], we have, 

(2.7) 

The nuclear spin functions to be designated by I r; ht. MH; lD, MD) are given as the 

product of the symmetrized spin functions for the two protons and the two deuterons given 

in Table 2.2. Therefore, r ns can be A1, A2. B1, and B2 so that the restriction of eq. (2.7) 

requires that the the rotational states of A 1 or A2 symmetry be associated with the nuclear 

spin functions of symmetries of A1 and A2 (Case 1 below) and that the rotational states of 

B1 or B2 symmetry with the spin functions of symmetries of Bt and B2 (Case 2). 

Case 1 

Case2 

frot fns 

(2.8) 
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Table 2.1 Character table of G4 used for rigid CHzDz+• [Bunker (1979)] . 

z (b) 

x (a ) 

G4 E (12)(34) (12)* (34)* 

C2v E c2b O"ab a bc 

Equiv. rot. RO RbTC Rcrc Rare KaKc 

A1 1 1 1 1 ee 

A2 1 1 - 1 -1 lb 00 

81 1 - 1 - 1 1 fa eo 

8 2 1 -1 1 - 1 l c oe 
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Table 2.2 Symmetrized operators and nuclear spin functions used for CH2D 2 + • 

of G4 symmetry. 

Symmetrization of the set of operators {Xt. X2) and {X3, X4)a. 

x"' = x, + x2 
X81 = x,- X2 

x"• = X3 + x4 
X8 2 = X3 - X4 

Symmetrized representations of the hyperfine Hamiltonian b. 

Symmetrized nuclear spin functions with the notation of I nucleus; r. J, MJ). 

I H;A,; 1, 1) = I aa) 
IH;A1;1,0)=-1 (la.B>+I.tJa)) 

{2 

I H;A,; I, -1) = 1/3.8> 

I D; A I; 2, 2) = II 1) 

I D;A,; 2, 1) = -k( I 0 1) +II 0)) 
{2 

I D; At; 2, 0) = -b( II - I)+ l-1 1) + 21 0 0)) 
{6 

I D; A I; 2, -1) = -b( I 0 -1) + l-1 0)) 
{2 

ID;A,;2,-2)= l - 1 - 1) 

ID;A,;O,O)= -b{l l - 1)+1-11)-2100)) 
{6 

IH;B ,;0,0)= -1 (la.B> - If3a)) 
{2 

I D; B 2; 1, 1) = -b( - I 0 1) + ll 0)) 
fi 

ID;B2;1,0)= -b{ lt - 1) - l - 11)) 
fi 

I D;B2; 1, -I)= -b( I 0 - 1) - l - 1 0)) 
{2 

a xi is the hyperfine interaction operator T j or the nuclear spin operator l j. 

b-rhe anisotropy of T tensor is neglected in the present analysis and only the Fermi term 1j 

is considered. 
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Since we assume that the separation of rotational states are much larger than the Zeeman 

splitting, the hyperfine interaction between different rotational states is neglected. Thus, 

the hyperfme Hamiltonian is blocked out for each rotational state. In order to evaluate the 

hyperfine coupling energy of a non-degenerate rovibronic state, it is convenient to compute 

the expectation value of the Fermi interaction operator TJ in the hyperfine Hamiltonian in 

Table 2.2 with regard to the non-degenerate rovibronic coordinate. Then, we have the spin 

Hamiltonian consisting only of totally symmetric operators as follows, 

where the non-zero isotropic hyperfine coupling constants are 

A (H'/'1 = (rve; r rvc IT f-H'/' 1 I rve; r rvc) 

A (D ).41 = (rve; r rvc IT f-D '/' 1 I rve; r rvc) 
(2.1 0) 

The Hamiltonian matrix is diagonal with respect to the quantum numbers J for Hand D 

because the spin Hamiltonian commutes with J(H)2 and J(D)2. Then, we only have to 

evaluate the spin Hamiltonian matrix element for each J(H) and J(D) block using the 

symmetrized nuclear spin functions given in Table 2.2. The matrix elements of the first 

term in eq. (2.9) is represented as follows (the quantum numbers forD are omitted for 

brevity). 

(a;JH,M/1 I Jispin(H) I CX,}Ji,MH) = + l.M/1 A;s}J!) 
2 

({3;Jfi,MH I Jispin(H) I {3;JH,MH) = -lM/1 A isJH) 
2 

(a;lH,M HI Jispin(H) I f3;J11,MH + 1) = fJ/I(Ju + 1)- M 11 (M H + 1J A isJ..H) 

({3;1 Ji,M H I Jispin(H) I a; lu,M 11 - 1) = Y lu VH + 1)-M H (Mil- 1 J A isJH) 

where a and f3 represent the electron spin function, and A;s0 (H) is given as below. 

A isJH) = l_ A (H)A 1 

2 

(2.11a) 

(2.11 b) 

(2.11c) 

(2.11d) 

(2.12) 

The non-zero matrix elements of the second term of eq. (2.9) are obtained by replacing the 

symbol H in eqs. (2.11) and (2.12) with D. 
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Eqs. (2.13) are reproduced from Table 2.2 which will be used in the calculations of 

both Cases 1 and 2 below. 

IA1; fH-1, MH; fo=2, Mo) = I A1; fH-1, Mn) I A1; fo=2, Mo) 

IA1; ffp1, Mn; fo=O, Mo) = IA1; fH-1, Mu) IA1; fo=O, MD) 

IB1; fiFO, MH; fo=2, Mo) = IB1; fu=O, Mu) IA1; fo=2, Mo) 

IB1; fiFO, MJ-I; fo=O, Mo) = IB1; fn=O, Mu) IA1; fo=O, Mo) 

I B2; fJ-I=1, MH; fo=1, Mo) = I A1; fJ-I=1, Mu) IB2; fo=1, Mo) 

Case 1 (Trot= A1 or A2); 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

(2.13f) 

In this case the nuclear spin functions can be of A 1 and A2 symmetries. The spin 

Hamiltonian has three blocks which are expanded in terms of the functions of (2.13a), 

(2.13b) and (2.13c). Once the spin Hamiltonian matrix is blocked out, it is straightforward 

to obtain the resonant fields for the ESR transition correct to the second order 

approximation which are given in eqs. (2.14)- (2.16). Since the hfcc of the D atoms is 

two orders of magnitude smaller than that of the H atoms, the second order effect of the D 

atoms has been ignored in the analysis of spectrum in Figure 2.1. The three-armed fork at 

the top of Figure 2.2 indicates the resonance fields corresponding to the set of f11 = 1, M11 

= -1, 0, 1 correct to the second order approximation. The upper two stick spectra in 

Figure 2.2 with the notation of A1 correspond to eqs. (2.14) and (2.15) and the next one 

with A2 to eq. (2.16). It happens to be that the resonance field corresponding tofu= 1, 

Mn = 0, fo = 2, Mo = -2 is approximately the same as the field corresponding tofu= 0, 

Mu = 0 (which is shown by the single stick spectrum with the notation of 81 to be 

discussed in connection with eq. (2.18) below). The sum of the stick spectra of A 1 and A2 

is also shown for Case 1. 

Nuclear spin states of A 1 with ]j 1 = 1 and f D = 2: 

H = Ho- A iso(H) M11- - 1- A iso(H'f [fH (fu + 1)- M 1/J- A iso(D) MD 
2H0 

with Mn = -1, 0, 1, and Mo = -2, -1, 0, 1, 2 
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Nuclear spin states of A 1 with J H = 1 and J D =0: 

with MH = -1, 0, 1 (2.15) 

Nuclear spin states of A2 with lH = 0 and Jo = 1: 

H = H o - A iso(D) MD with Mo = - 1, 0, 1 (2.16) 

Case 2 (Trot= B1 or B2); 

In this case the spin Hamiltonian is blocked into three parts corresponding to eqs. 

(2.13d)- (2.13f). The resonant fields for the ESR transitions are given by eqs. (2.17)-

(2.19). The lower half of Figure 2.2 demonstrates the spectral components and the sum as 

in the upper half. 

Nuclear spin states of B1 with lH = 0 and lo = 2: 

H = H o - A iso(D) MD with Mo = -2, -1, 0, 1, 2 (2.17) 

Nuclear spin states of B1 with Ju = 0 and lD = 0: 

H=Ho (2.18) 

Nuclear spin states of B2 with ii-1 = 1 and Jo = 1: 

with MH = -1, 0, 1, and Mo = - 1, 0, 1 (2.19) 
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( r rve ~ 81) 8 1 
0 2 II II 

or a2 
0 0 81 
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I 
I 

82 1 1 Ill I I: Ill 
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Total Sum 
I I I I j j 

Magnetic Field 

Figure 2.2 ESR spectral pattern of CH2D2+·. 
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Due to the symmetry restriction of eq. (2.7) the rotational ground state of the A 1 

symmetry must be associated with the nuclear spin states of A1 and A2. Likewise, the first 

rotationally excited state of B1 must be combined with the nuclear spin states of B1 and B2 

and so on. In order to estimate the energy of the rotational states we refer to the rotational 

constants of CH2D2+• calculated for an optimized geometry [Takeshita (1987)], which are 

A= 128 GHz, B = 114 GHz, and C = 72 GHz. The correspondence of the abc and xyz 

axis systems is abc= xzy (see Table 2.1). Thus, if the rotation of CH2D2+• were 

completely free as in the gas phase, the rotational energy levels should be nearly of the 

oblate type and the three lowest excited rotational states of symmetries of B 1, A2, and B2 

are estimated at about 180, 190, and 250 GHz above the ground state. The symmetry 

species of the rotational angular momentum J and the symmetry of the rotational states 

labelled by Ka and Kc are shown in Table 2. 1. Since the observed ESR spectrum is the 

superposition of spectra associated with each rotational state, the Boltzmann distribution at 

4 K must be taken into account, the result of which turned out to be that the gross 

population summing up both B1 and B2 rotational states (Case 2) amounts only to ca.15 % 

of that of A 1 and A2 states. Therefore, the Boltzmann-weighted spectrum should be 

modified so as to reduce the intensity of the transitions involving rotational energy levels of 

B1 and B2, e.g., the transitions corresponding to the highest field manifold among the total 

seven central peaks belonging to the family of MH = 0 be much weaker than the lowest 

field manifold. However, the spectrum of CH2D2+• [Knight et al. (1984)] shows that the 

highest field manifold of the central peaks is only slightly weaker than the lowest giving the 

approximate intensity distribution of 1:2:4:4:4:2:1 which is just equal to the intensity ratio 

obtained by the simple sum of the ESR spectral patterns of the rotational levels with an 

equal weight (compare Figure 2.1 with the bottom of Figure 2.2). This fact implies that the 

population difference between the ground and the first rotationally excited states is not such 

that as predicted by the rotational constants calculated for the ion in the free space but that 

the rotational energy levels corresponding to Cases 1 and 2 are almost equally populated in 

the solid matrix. Therefore, it should be interpreted that the effective rotational constants in 

tl1e matrix are much larger than those in the free space. Since the observed ESR spectrum 

does not show any significant anisotropy of the g- and the hfc tensors at 4 K [Knight, et al. 

(1984)), however, we conjecture that CH2D2+• is rotating to annihilate the anisotropy in 

the ESR rime scale but the influence of the crystalline field prevents depiction of the rotation 

as completely free as in the gas phase. On the other hand, the present result indicates that 

the wavefuncrion of the cation in the matrix can be meaningfully labelled by the irreducible 

species of group G4. In this context we cite relevant references dealing with the rotation of 

methane in rare gas matrices as studied by infrared absorption spectroscopy [Cabana et al. 

(1963), Frayer and Ewing (1968), Jones et al. (1986)] and by theoretical analyses [King 

and Hornig (1966), Nishiyama and Yamamoto (1973), Miller and Decius (1973)]. As for 
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methane isolated in the neon matrix the possibility of a highly hindered rotation has been 

suggested [Jones eta/. (1986)]. 

In conclusion, the observed spectrum of CH2D2+• [Knight eta/ (1984)] is now 

understood in detail. The above argument in terms of the molecular symmetry group G4 is 

not necessary in so far as CH2D2+• is distorted permanently to C2v· However, as 

mentioned in the beginning our main subject is the non-rigid~+· and the above 

treatment of CH2D2+• in terms of the molecular symmetry group can be immediately 

extended for the analysis of the main subject. 

Although not mentioned in our previous paper [Knight eta/ (1984)], the spectrum of 

~+· at temperatures between 4- 11 K exhibits weak but definite lines in addition to the 

major quintet lines reported as shown in Figure 2.3. The weak lines change continuously 

and reversibly up to about 11 Kat which the matrix softens. In this section we will analyze 

these lines and will conclude that the origin of the additional lines is due to the removal of 

the degeneracy of the rovibronic wavefunction on account of the nuclear hyperfine 

interaction. 

The primary feature of the spectra in Figure 2.3 is the quintet due to the four equivalent 

protons which are indicated by M; = 2, 1, 0, -1, -2. Besides the quintet the unwanted 

methyl radical denoted by Me appears throughout the whole temperature region. The signal 

due to the water cation is also seen at about 4 K but it disappears rapidly with the 

temperature (in fact, this reversible water signal may be called the most sensitive 

"thermometer" in this temperature region [Knight et al. (1983)]). Hereafter, we will ignore 

these two foreign signals. Then, the essential spectral features intrinsic to CJ4+• can be 

summarized as; 

(i) the quintet appears at all the temperatures tested, and the change in the line width with 

temperature is rather small although sharpening at higher temperatures is slightly 

noticeable. 

(ii) "extra" lines appear at 3335- 3350 G and at 3425- 3440 G between theM; = ±1 of 

CB4+• and the methyl lines. They are very broad at 4.2 and 6.4 K but start to reveal a 

doublet feature at 7.4 K up to the highest temperature measured. The separation between 

the doublet becomes smaller with temperature and at 11.1 Kit merges almost into a singlet. 

The behavior of these "extra" signals is completely reversible with respect to the 

temperature. 
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4.2 K 

6.4;\r-

7.4;\r-

8.5/\r--
9.5~ -{V 
10.6~~ 
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Me 
/ 

3278 3330 3350 

0 

Me 

3386 

Magnertic Field (Gauss) 

-1 

3440 

Figure 2.3 ESR spectra of CH4+· isolated in neon matrix at 4.2- 11.1 K. 

-2 

3495 

The vertical scale of the central region is reduced to 1/6.3 relative to the other pans. 

The signals due to the methyl radical are indicated by the symbol Me. The background 

signal due to H20+· disappears with the temperature. 
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In the rest of this subsection we will focus on the above spectral fearures. We first 

investigate the effect of the J ahn-Teller distortion from T d to C2v. and then the effect of the 

distortion to other symmetries although the latter will be ruled out eventually. 

There are two possible shufflings that make the four hydrogen atoms dynamically 

equivalent; one is the tunneling between the two C2v structures which are interconverted 

with a common single C2 axis as shown in Scheme 2.1; the other is the tunneling involving 

the six equivalent C2v as shown in Scheme 2.2. We will analyze the two possibilities 

separately to conclude that the observed spectral change is compatible with the latter 

shufflings but not with the former. 

1 2 2 3 

1 3 

1 X 
4 2 

1 2 

X 
3 4 

Scheme 2.1 Scheme 2.2 
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1) Tunneling Between the Two C2v Structures 

The molecular symmetry group for the system executing the tunneling in Scheme 2.1 is 

Gg which is isomorphous with the point group D2ct of the order of 8. From Table 2.3 the 

nuclear spin statistically allowed symmetry species for the total wavefunction must be A 1 or 

B1 because the operations (12)(34) and (14)(23) must have the character of+ 1. Thus, the 

direct product of 1 rve and 1 ns must include A 1 orB 1 by eq. (2.4 ). Since the symmetry 

species for 1 ns given in Table 2.4 are A 1, B 1, B2, and E with A2 being missing, the 

possible combinations are restricted as in eq. (2.20), 

f'rve f'ns 

Case 1 A1 or B1 A1 and B1 (2.20) 

Case2 A2 or B2 B2 

Case 3 E E (Note that E®E=A1+BI+A2+B2) 

From the correlation diagram between G4 and Gg in Scheme 2.3, the A1 state in the 

rigid system of G4 is to split into A 1 and B2 states by tunneling, and the A2 state into A2 

and B 1 states. However, the B1 and B2 states do not split but become doubly degenerate 

with the symmetry of E. We assume that there is no accidental degeneracy in the non-rigid 

system and the separation between the neighboring rovibronic levels is much larger than the 

electron Zeeman energy so that the hyperfine interaction between the different rovibronic 

levels can be neglected. Then, the ESR spectrum can be determined from the hyperfine 

Hamiltonian for each rovibronic state. In the following we will analyze the above three 

cases. 

Scheme 2.3 Correlation among symmetry species of G 4, Gg, and G24. 
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Table 2.4 Symmetrized operators and nuclear sp in fun ct ions used for CH4 + • 

of Gg sy mmetry. 

Symmetrization of set of operators {XJ, X2, X3, X4}a 

XA' = x, +Xz+X3+ X4 

X82 = X 1- Xz + X3- X4 

xE .. = Y2 (x3- x4) 
xE, = Y2 (-x, + Xz) 

Symmetrized representation of hyperfme Hamiltonianb 

:Hntc = l S · {TA1 ·lA1 + T 82
• 182 + T E.r • 1£• + T £1. 1£1 } 

Symmetrized nuclear spin functions of the four protons 

IA,;2,2}= laaaa} 
I A,; 2, I} = _I (I {3aaa} + I af3aa} +I aaf3a} +I aaaf3>) 

{4 

I A 1; 2, 0} = ...1... ( I af3af3> + I f3af3a} + I f3aaf3> +I af3{3a} + I aaf3{3) + I f3{3aa}) 
{6 

I A 1; 2, - 1} = _I ( I af3{3{3) + I f3af3{3) + I f3{3af3> + I f3{3{3a}) 
{4 

IA,;2,-2}= 1{3{3{3[1) 

I Bz; I, 1} = l (- 1 f3aaa} -I af3aa} +I aaf3a) +I aaaf3>) 
{4 

IBz;l,0}= - 1 (laaf3f3> - lf3f3aa}) 
V2 

I B z; 1, -1} = - 1 ( I af3{3{3) + I f3af3{3) -I f3{3a[J) -I f3{3{3a}) 
{4 

I E:r; 1, I}= _L (-1 aaf3a) +I aaa/3}) 
V2 

I Ex; I , 0) = - 1 ( I af3af3) - I f3af3a} + I f3aa{3) -I af3{3a}) 
{4 

I E:r; 1, - 1) = _I ( I f3{3a{3) -I f3{3{3a}) 
Y2 

I Ey; 1, 1) = _I (I {3aaa} -I af3aa)) 
V2 

I Ey; I, 0} = _I (-I af3a{3) + I f3af3a} + I f3aa{3) -I af3{3a}) 
{4 

I Ey; 1, - 1} = _L (-1 af3{3{3) +I f3af3{3)) 
V2 

I A 1; 0, 0) = - 1- (-I af3a{3) -I f3af3a} -I f3aaf3) -I af3{3a) + 21 aa[3{3) + 21 [3{3aa)) m 
I B 1; 0, 0} = _1 ( I af3a{3) +I {3af3a) -I f3aaf3> -I af3{3a}) 

axi is the hyperfine interaction operator T j or the nuclear spin operator l j. 

1>-rhe anisotropy of T tensor is neglected in the present analysis and only the Fermi tcnn 1[ 

is considered. 
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Case 1 (r rve = A1 or B1) and Case 2 (r rve = A2 or B2); 

In both cases the rovibronic levels are non-degenerate so that only the totally symmetric 

Fermi term has a non-zero expectation value given in eq. (2.21) (see also the symmetrized 

hyperfine Hamiltonian in Table 2.4). 

A AI= (rve; r rve I T/1 I rve; r rve) (2.21) 

The isotropic spin Hamiltonian for these non-degenerate rovibronic states becomes, 

nr. -.lAAIS· JAI flspm- 4 (2.22) 

According to Table 2.4 the spin Hamiltonian matrix consists of the three blocks of A 1 

symmetry with J = 2, A 1 symmetry with J = 0, and B1 symmetry with J = 0 in Case 1, 

and one block of B2 symmetry with J = 1 in Case 2. The non-zero matrix elements in each 

block are determined by the operator S·JA1 and are exactly the same as those given in eq. 

(2.11) except for the constant Aiso· 

(a;J,M, I :J/spin I a;J,M,) = + .l M J Aiso 
2 

({3; J,M J I :J/spin I {3; J,M J) = - ~ M J A iso 

(a;J,M, I :J/spin I {3;J,M, + 1) = fT(J + 1)- M,(MJ + 1) A;50 

({3;J,M, I :J/spin I a;J,M,- 1) = fT(J + 1)- M,(M,- 1) A iso 

where 

A . - .lA AI 
ISO-

4 

(2.23a) 

(2.23b) 

(2.23c) 

(2.23d) 

(2.24) 

The resonant fields for the ESR transitions to the second order correction becomes as 

follows. 

Nuclear spin states of A 1 symmetry with J = 2 (Case 1) 

H = Ho -A;50 M1 --1-A;s/ [J(J + 1)- M}) 
2Ho 

with M; = -2, -1, 0, 1, 2 
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Nuclear spin states of A1 symmetry with J = 0 and of B1 symmetry with J = 0 (Case 1) 

H=Ho (2.26) 

Nuclear spin states of B2 symmetry with J = 1 (Case 2) 

. 
H = Ho- A· M 1 - _j_ A · 2 [1 (1 + 1) - M1

2
] 

ISO 2HQ ISO • • 

. withM; =-1,0, 1 (2.27) 

Case 3 (T rve =E),· 

Considering that the direct product of E for the rovibronic part and E for the nuclear spin 

part contains A 1, B 1, A2, and B2, and that A 1 and B 1 are allowed by the nuclear spin 

statistics, the total wave functions without the electron spin part must be in either form of 

eq. (2.28). 

PA 1 = k (I rve;Ex) I ns;Ex) + I rve;Ey) I ns;Ey)) 

Ps 1 = k {I rve;Ex) Ins; Ex)- I rve; Ey) Ins; Ey)} 

(2.28) 

The matrix elements of the isotropic hyperfine Hamiltonian are calculated by evaluating the 

expectation value of the Hamiltonian with the above PA 1 or Ps1, and it can be shown that 

the elements are of the same forms as those in eq. (2.23) with J = 1 (see eq. (2.29)). In the 

evaluation of the matrix elements not only the Fermi term of A 1 symmetry but also that of 

B2 symmetry have non-zero expectation values as shown by eq. (2.31). 

(a;l,MJ I J-4y-c I a;l,MJ) = + lM1 Aiso 
2 

(/3; J,M J I J-4zJc I /3; J,M 1) = _l M 1 Aiso 
2 

(a;J,M 1 l .?!hfc I f3;J,M1 + 1) ='I 1(1 + 1)- M 1 (M1 + 1) Aiso 

(f3;J,M1 I J-4zrc I a;J,M1 - 1) = YJ(J + 1)- M J (M1- 1) Aiso 

where 
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with 

A AI =(rve;Exl rt'lrve;Ex) = (rve;Ey I rt'lrve;Ey) 

A 82 = (rve; Ex I rl2
1 rve;Ex) = (rve; Ey I rl2

1 rve;Ey) 

The resonant field for the ESR transition is 

with]= 1 andMJ=-1,0, 1 

(2.30) 

(2.31) 

(2.32) 

Thus, it is predicted that the rovibronic states of A 1 or Bt symmetry treated in Case 1 give 

ESR spectra of J = 2 and 0, and those of A2 or B2 symmetry in Case 2 give the spectrum 

of J = 1 both with the hfcc of AA 1/4, whereas the rovibronic states of E symmetry in Case 

3 yield the spectrum of J = 1 with a different hfcc of (AA I + AB2)J4. To the first order 

approximation the separation among the quintet components in Case 1 is equal to the 

separation among the triplet components in Case 2, that is, AA IJ4. However, due to the 

second order shift the former is larger than the latter on account of the larger value of J(J + 

1) . Therefore, the M1 = ±1 lines of the triplet in Case 2 must appear slightly to the right 

(high field side) of the M1 = ±1 signals of the quintet in Case 1 as shown in Figure 2.4. 

Meanwhile, another triplet in Case 3 is associated with a different separation (AA l + 

AB2)f4 from those in Cases 1 and 2. If the latter separation is smaller than AA l/4, we 

could correspond them to the "extra" lines between the M1 = ±1 of J = 2 states of CH4+• 

and the methyl lines which were mentioned in item (ii) above. However, this possibility 

can be denied because in the observed spectrum we do not see any sign of the appearance 

of the M1 = ±1 lines of the triplet expected in Case 2 which should appear to the right (high 

field side) of the M1 = ±1 lines of the quintet in Case 1 by a distinguishable amount of 

separation of L1 - 1- A iso 
2 [I (1 + 1)- M }] = 1.8 G. Thus, the tunneling between the two 

2Ho 

C2v structures is ruled out. 
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Figure 2.4 ESR spectral pattern of CILt+· of Gs symmelry. 
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2) Tunneling Among the Six C2v Structures 

We will next consider the tunneling among the six equivalent C2v structures shown in 

Scheme 2.2. The molecular symmetry group of the system is G24 which is isomorphous 

with the point group T d of order of 24. According to Table 2.5 the symmetry of the total 

wavefunction must be A1 or A2 and from Table 2.6 the relation between r rve and I'ns is 

restricted as follows. 

Case 1 

Case 2 

Case 3 

r rve I'ns 

(2.33) 

The nuclear spin state of F1 symmetry is missing in CH4+•, but the F1 state is permissible 

for CD4+• as will be shown later by referring to Table 2.7. The parenthesis in Case 3 

above is intended to call attention to this point. 

From the correlation table between G4 and G24 shown in Scheme 2.3, A1 state in the 

rigid configuration will split into A1, E, and F2 states, whereas A2 state splits into A2, E, 

and F1 states . Similarly, B1 andB2 states split into F1 and F2 states. As in the previous 

section, we assume that there is no accidental degeneracy and the hyperfine interaction 

between different rovibronic states can be neglected. Thus, the ESR spectrum can be 

predicted from the hyperfine Hamiltonian for each rovibronic level using the symmetrized 

nuclear spin functions given in Table 2.6. The analysis can be made in a similar way as 

before. 
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Table 2.5 Character table and direct product table of G 24 of non-rigid 

CH4+ · . 

1 2 2 3 

1 3 4 2 

X 
4 2 

X 1 3 

\_1 4 
X 2 3 

3 4) 
X 1 2 

"-.__/ 

G24 E 8 (123) 3 (14)(23) 6 (1423)* 6 (23)* 

A1 1 1 1 1 1 

A2 1 1 1 -1 - 1 

E 2 -1 2 0 0 

FI 3 0 - 1 1 - 1 

F2 3 0 - 1 -1 1 

G 24 A1 A2 E Fl F2 

AI AI A2 E Ft F2 

A2 A2 At E F2 Fl 

E E E At+ {A2} + E Fl +F2 Fl + F2 

Ft F1 F2 Fl +F2 At + E+ {FI}+F2 A2+E+ F 1+ F2 

F2 F2 Ft F1 +F2 A2+ E+F1+F2 A1 +E+{FJ}+F2 
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Table 2.6 Sym metrized operators and nuclear sp in functions used for CH4 + • 

of G24 symmet r y. 

Symmetrization of set of operators {XJ , X2. X3, X4}a 

XA 1 =Xi+ Xz + X 3 + X4 

XF2
" = Xi- Xz + X3- X4 

xFz, =-XI+ Xz + XJ- X4 

xFz. = x 1 + Xz - x 3 - x4 

Symmetrized representation of hyperfine Hamillonianb 

:JfJ.Jc = l S . {TAl. I"'' + ~2x . 1Fzx + TF21 • t z1 + ~2, . yFz.} 

Symmetrized nuclear spin functions of the four protons [Hougen (1976)]. 

IAi;2,2)= laaaa) 
I A 1; 2, 1) = -1 (I {3aaa) +I a{3aa) +I aa{3a) +I aaa/3)) 

Y4 
I A 1; 2, 0) = _1 ( I af3af3) + I {3a{3a) + I {3aaf3) + I a{3{3a) + I aa{3{3) + I {3{3aa)) 

16 
I A 1; 2, -1) = _1 ( I af3{3f3> + I {3af3f3> + I {3{3af3> + I {3{3{3a)) 

Y4 
I A!; 2, -2) = lf3f3f3P> 

IFzx; 1, 1) = ...L {-1 {3aaa) +I a{3aa) -I aa{3a) +I aaaf3)) 
Y4 

I F zx; 1, 0) = -1 { I a{3af3> -I {3a{3a)) 
Y2 

I F zx; 1, -1) = _1 ( I af3{3{3) -I {3af3{3f3> + I {3{3af3> -I {3{3{3a)) 
Y4 

I Fzy; 1, 1) = _L {I {3aaa) -I a{3aa) -I aa{3a) +I aaaf3>) 
Y4 

IF zy; 1, 0) = k ( I {3aaf3> - I af3{3a)) 

I F zy; 1, -1) = ~ (-I a{3{3{3) +I {3af3{3{3) + I {3{3a{3) -I {3{3{3a)) 

IF2z; 1, 1) = -' (-I {3aaa) -I a{3aa) +I aa{3a) +I aaaf3)) 
Y4 

IF zz; 1, 0) = -1 ( I aa{3{3) -I {3{3aa)} 
Y2 

IF 2z; 1, -1) = ...L {I af3{3{3) + I {3af3{3f3> -I {3{3af3> -I {3{3{3a)) 
Y4 

I Ea; 0, 0) = - 1- { 21 aaf3{3) + 21 {3{3aa) -I a{3af3> -I {3a{3a) -I {3aa{3) -I a{3{3a)) m 
I Eb; 0, 0) = - 1 (I a{3af3) + I {3af3a) -I {3aaf3) -I af3f3a)) 

a x i is the hyperfine interaction operator T i or the nuclear spin operator l j. 

brhe anisotropy of T tensor is neglected in the present analysis and only the Fermi term 1j 

is considered. 
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Case 1 (T rve = A1 or A2); 

Since the rovibronic level is non-degenerate and the associated nuclear spin function is 

of A1 symmetry with 1 = 2, the spin Hamiltonian and the matrix elements are exactly the 

same as in eqs. (2.22) and (2.23). The resonant field for the ESR transition is 

H=H0 -A· M 1 -_L_A· 2 [1(1+ 1)-M1
2] 

ISO 2HQ ISO 

with1=2M,=-2,-l,O, 1,2 (2.34) 

with 

A iso = 1. A AI and A AI = (rve; r rve I T/ 1 I rve; r rve) 
4 

(2.24,21) 

Case 2 ( r rve =E); 

Since the symmetry of the total wavefunction must be A 1 or A2, the total wave functions 

without the electron spin part are given by, 

'PA1 =A (I rve;Ea) I ns;Ea) + I rve; Eb) Ins; Eb)) 

'PA2 =if (I rve; Ea) Ins; Ea)- I rve; Eb) Ins; E b)) 

(2.35) 

Since the accompanying nuclear spin functions of E symmetry have 1 = 0, there is no 

hyperfinc interaction in these levels. The resonant field for ESR transition is just equal to 

the field corresponding to the Zeeman interaction, 

H = llo (2.36) 

From the triply degenerate rovibronic states of symmetry of F1 and F2 a total 

wavefunction of A2 and of A 1 symmetry is constructed, respectively, as follows (see the 

direct product table in Table 2.5). 
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(2.37) 

Being not a simple product of the rovibronic and the spin pans, the calculation of the matrix 

elements of the hyperfine Hamiltonian is a little bit complicated. However, it can be shown 

that the matrix elements are of the same forms as those in eqs. (2.29a)- (2.29d) but the 

constant is to be replaced from that in eq. (2.29) to that in eq. (2.38). 

(2.38) 

where 

A At= (rve; Ftx I T/• I rve; Ft) and A F2 = (rve; Ftx I T1F2Y I rve; Ft 2) (2.39) 

for the rovibronic state of F1 symmetry and 

(2.40) 

for the rovibronic state of F2 symmetry. 

The resonant field for the ESR transition is given by, 

with]= 1 andM;=-1, 0,1 (2.41) 

Thus, the rovibronic state of A1 or A2 symmetry in Case 1 gives the ESR spectrum of J = 2 

with the hyperfine coupling constant of AA 1/4, and the rovibronic state of E symmetry in 

Case 2 gives the spectrum of J = 0. All the J =1 spin states are associated with F1 or F2 

rovibronic states in Case 3 to give a different hfcc of (AA 1 + 2AF2)/4. These spectral 

features are schematically shown in Figure 2.5 under the assumption that the hfcc for Case 

3 is smaller than that for Case 1. 

71 



Ha 
1st-order 

rns J Ia !MJ = 2 11 - 1 -2 

Case 1 
I 

( rwe ~ A1) A1 2 I ~ 
I 

or A I 

2 

Case 2 

( rrve =E) E 0 

I 
1st-order 

Case 3 I 
I 

(rwe ~ A1) F2 1 
11 

I 

or A 2 
I 

Sum I I Il l II 
Magnetic Field 

Figure 2.5 ESR spectral pattern of Cfi4+• of G24 symmetry .. 

72 



The spectral pattern is consistent with the observed spectra. In particular, the 

appearance of the "extra" lines is now understood as due to the triplet originating from Case 

3 discussed above. It is notewonhy that the separation between the two manifolds of MJ = 
-1 originating from Cases 1 and 3 is smaller than the separation between the manifolds of 

M1 = + 1 on account of the second order shift (see the horizontal arrows in Figure 2.5), 

which is in agreement with the observed spectra. Since the rotational energy gap in the 

local C2v structure should be very small as judged from the result of the analysis of 

CH2D2+•, the thermal population of 1 05 = F2 states is considered to be enough to give an 

observable intensity of the transitions at 4 K. The apparent disappearance of the "extra" 

lines at 4 K is, therefore, considered as due to an extreme line broadening in the part of 2 

AF2 at 4 K probably owing to an increased inhomogeneity of the medium at the low 

temperature. As for the splitting of the "extra" lines into doublets and the gradual widening 

of the hyperfine splitting with the temperature fun her considerations are needed. At present 

we conjecture that the gradual change of the hyperfine splitting with the temperature may be 

a reflection of some crystalline field effect which cannot be dealt with the present molecular 

symmetry group theoretic analysis. A method of extending the molecular symmetry group 

theory to treat molecules in crystalline fields has been proposed [Miller and Decius (1973)]. 

However, since the experimental information about the crystal field of the methane cation in 

solid neon is scarce [Jones et al. (1986)], we will not go further at the moment. 
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The ESR spectra of CD4+• at 2.8 K and 6.5 K are shown in Figure 2.6. The equally 

spaced 9lines with Aiso(D) = 7.9 G are comparable with the quintet of Cf4+· because 

Aiso(D) = 7.9 G corresponds to 52 G on the H scale. The good correspondence implies 

that a similar averaging process to that in CJ-4+• is operative in CD4+• also. However, 

since the second order shift is so small in the latter, i.e . .Aiso2f2Ho == 0.01 G, we cannot 

distinguish J in the same M1 manifold. In a remarkable contrast to CI-i1+• the "extra" lines 

with different hfcc's do not appear in the spectra which prevents similar analyses to those 

made for Cf4+·. However, the deviation of the intensity pattern from the nonnal 

1:4:10:16:19:16:10:4:1 ratio at 2.8 K gives a useful clue for unveiling the averaging 

process in CD4+•: Since the symmetry of the total wavefunction of CD4+· must be A 1 or 

A2, the nuclear spin state must be restricted by the symmetry of the rovibronic state as is 

summarized in Table 2.7. The non-zero isotropic hfcc's in the fourth column of Table 2.7 

can be detennined from these rovibronic states, and the spectral pattern is given as in the 

fifth column. The hfcc's of the F1 and F2 nuclear spin states can be different on account of 

the additional component of AF2. If this value of AF2 is very sensitive to the crystalline 

field and subject to broadening due to the inhomogenity of the field as the component of 

AF2 in Cf4+• at 4 K, the ESR lines originating from the F 1 and F2 nuclear spin states are 

spread out and only the lines of A1 and E spin states should be observed. Under such a 

circumstance the observed spectral pattern would be the Boltzmann-weighted average of the 

two states. However, if the effect of the thennal population is negligible, the intensity ratio 

will be given by just the sum of the patterns originating from the nuclear spin functions of 

symmetries of A 1 and E, and we will have the intensity ratio of the statistical, or the high

temperature limit, i.e., 1:1:4:4:7:4:4:1:1. This ratio turned out to be close to the observed 

intensity pattern at 2.8 K. The approximately nonnal intensity ratio of 

1:4:10:16:19:16:10:4:1 at 6.5 K is regarded as similar to the dwindling of the contribution 

of AF2 in the case of CI-4+· . The behavior of the F1 and F2 nuclear spin states could be 

different from that of CI-4+· , because the tunneling could be very sensitive to the 

crystalline field so that the change in the (zero point) vibrational energy could cause a 

significant change in the additional tenn of AF2 in the F1 and F2 states. Thus, it is 

understandable that the extra transitions with a different hfcc cannot be observed in co4+• 

contrary to the case of CI-4+· . 
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Figure 2.6 ESR spectra of CD4+· isolated in neon matrix at 2.8 K and 6.5 K. 

The background signals due to H20+· almost disappear at 6.5 K. 
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Table 7 The ESR intensity pattern predicted for each rovibronic state of CD4+•. 

rrve rns 
a 

rtotal non-zero Aiso ESR intensiti: Eattern 

A1 or A2 A1 (J = 4, 2, 0) A1 or A2 AAl 1 : 1,: 2: 2: 3 : 2: 2: 1 : 1 

AAl 
·. 

E E (J = 2, 0) A1 and A2 2:2:4:2:2 
-...I I 

0\ 
... 

F1 or F2 F1 (1= 1) andF2(1=3,2, 1) At andA2 AAl and AF2 •1 :2:4:4:4:2:1 

aHougen (1976). ::, 



On the possibility of D2d or C3v distortion of CH4+· and CD4+ · 

In the preceding section we have shown that the observed ESR spectra can be accounted 

for by the tunneling among the six C2v structures. In this section we will examine the 

possibility of the tunneling among C3v and ~d structures. This is a necessary procedure 

because the argument on Cf4+• and CD4+· in terms of G24 is, in principle, compatible not 

only with the C2v but also with the C3v and D2d distortion. Likewise, the argument on 

CH2D2+• in terms of G4 does not necessarily exclude the possibility of the C3v distortion. 

It will be concluded, however, that these possibilities can be ruled out most probably by 

referring to the experimental ESR spectra of CH3D+• and CD3H+•. Before proceeding to 

these systems we will enumerate pieces of counter evidence to the mentioned possibilities. 

If the most stable structure of CR4+• and/or CD4+• were D2d distorted and an averaging 

took place among the equivalent D2d structures, the electronic structure of the local 

minimum would be different from that of CH2D2+•, which has been shown definitely tO be 

of 2Bt symmetry [Knight et al. (1984)). If the electronic state of the stable structure were 

different from that of CH2D2+•, it would be difficult to account for the excellent agreement 

of the averaged hfcc's of CR4+• and CD4+• with that of CH2D2+• on the H-scale. 

Moreover, theoretical calculations of CI-4 +• indicate that the D2d structure corresponds to 

one of the saddle points on the potential surface of Cf4+• [Paddon-Row et al. (1985), 

Takeshita (1987), Frey and Davidson (1988)]. 

If only the spectra of CH2D2+•, Cf4+•, and CD4+• were available, we could not 

conclude exclusively that the averaging in Cf4+• be among the C2v structures because the 

tunneling among the "C3v" structures in Scheme 2.4 could also average the hfcc's of the 

two protons and the two deuterons of CH2D2+•. The vertical C-H bond in (A) and the 

vertical C-D bond in (B) are assumed to be the C3 axis of the C3v ion. 

Therefore, one might have to worry about the possibility that the same C3v tunneling were 

operative in Cf4+· also. However, the following examination of this C3v mechanism for 

CH2D2+• eliminates the possibility: Since the experimental values of CH2D2+• are 

Aiso(2H) = + 122 G and I Aiso(2D) I = 15 G on the H-scale, the H-scale hfcc of the three 

basal "protons" in (A) must the -15 G if Aiso(2D) of CH2D2+• is negative and the hfcc of 

the proton on the C3 axis be +259 G because the average of the hfcc's of the two protons in 

the system (A) must be equal to the observed hfcc of +122 G of CH2D2+· . Likewise, for 

the case of Aiso(2D) > 0 the three basal "protons" and the top proton must have hfcc's of 

+15 G and +229 G, respectively. Similarly, in the system (B) the three basal "protOns" 

must have the hfcc of+ 122 G and the H-scale hfcc of the deuteron on the C3 axis must be 

-152 G for the case of Aiso(2D) < 0 and be -92 G for the case of Aiso(2D) > 0. All these 

cases predicting hfcc's of +259, +229, -152 , and -92 G for the top "proton" are 

obviously unacceptable. 
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... 

(A) 

(B) 

Scheme 2.4 

The ESR spectra of 12CH3D+• at 8 K and 13CH3D+• at llK are shown in Figure 2.7. 

Although not shown, we also have observed the spectrum for CD3H+•. Both spectra of 

CH3D+• and CD3H+• indicate that the three protons and the three deuterons are equivalent 

in the ESR time scale. However, these spectra cannot be associated with a rigid C3v 

structure because the H-atom scale hfcc's of the two isotopomers are so different each other 

as shown in Table 2.8 that the rigid structures of the two isotopomers would have to be 

unnaturally different. Therefore, we should regard the systems as non-rigid as in the cases 

of Cfi4+• and CD4+· and. consider an averaging process. If we consider tunnelings among 

the C2v structures shown in Schemes 2.5 and 2.6, which are drawn under the assumption 

that the shorter bond length of C-D in CH2D2+• is retained in CH3D+• and that the longer 

bond length of C-Hin CH2D2+• is retained in CD3H+• [Paddon-Row et al. (1985)], the 

three protons and the single deuteron in CH3D+• should be associated with the hfcc's of 

(122 x 2-15)/3 = 73 G and -15 G, respectively, in reference to CH2D2+·. These are in a 
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good agreement with the observed values in Table 2.8. Likewise, for CD3H+• we should 

assign (122- 15 x 2)/3 = 31 G to Aiso(3D) and+ 122 G to Aiso(H), which are also in an 

excellent agreement with those in Table 2.8. Therefore, it is concluded that both CH:>D+· 

and CD3H+• undergo the tunneling among the three equivalent C2v structures. The 

conclusion of the C2v local minimum for all the isotopomers is consistent with the 

experimental result of the coincidence spectroscopy utilizing Coulomb-explosion [Yager er 

al. (1986)] and with recent theoretical predictions [Meyer (1973), Paddon-Row era/. 

(1985), Takeshita (1987), Frey and Davidson (1988)]. With all these results we now 

recognize that all the tunneling processes operating in all the isotopomers are pseudo

rotation [Paddon-Row er al. (1985)]. Recently, the symmetries of the ground vibronic 

states are investigated by Reeves and Davidson (1991). 

Scheme 2.5 Sch eme 2.6 
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3300 3350 3400 3450 3500 

Magnetic Field (Gauss) 

Figure 2.7 ESR spectra of 12CH3D+· and 13CH3D+· isolated in neon matrix at 8 K 

and 11 K, respectively. The spectrum of 12CH3D+· consists of a widely spaced quartet 

due to the three equivalent protons. Each quartet line shows a triplet hyperfine pattern 

associated with the deuteron (/ = 1). The spectrum of 13CH3D+· reveals 13C (I = 1/2) 

hyperfine doublets. 
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Table 2.8 Isotropic hyperfine coupling constants (hfcc's) of the radical 

cation of methane in neon matrices 

H JYl 13C 

CH4+· 55 A.i = +19 

Aii = +ll 

CH3D+• 76 -13 17 

CH2D2+• 122 -15 

CD3H+· 125 30 

CD4+• 52 

in units of Gauss. 

ao hfcc on H atom scale. 

The group theoretic analysis for CH3D+• and CD3H+• goes just like in the other cases; 

the appropriate molecular symmetry group for these systems is G6 whose character table is 

given in Table 2.9. The symmetrized operators and nuclear spin functions for CH3D+· are 

given in Table 2.10. 

In the following we will analyze the non-rigid system of CH3D+•, representatively. 

The symmetry of the total wavefunction must be A 1 or A2 and the relation between r rve 

and r ns becomes as follows. 

Case 1 

Case 2 

r rve rns 

A 1 or A2 

E 

A t 

E 

(2.42) 

As in the analysis of the other systems the above two cases will be treated separately. 

Since the spin function of the deuteron in CH3D+• is totally symmetric, we only need to 

concentrate our attention on the three protons in CH3D+•. 
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Table 2.9 The character table of G6 of non-rigid CH3D+· and CD3H +·. 

(123) (12)* 
G6 E 

(132) 
(23)* 
(13)* 

Al 1 1 

A2 1 -1 

E 2 - 1 0 
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Table 2.10 Symmetrized operators and nuclear s pin functions used fo r C H3 D + • 

or G6 symmetry [Freed (1965), Clough and Poldy (1969)). 

Symmetrization of set of operators {Xt. X2. X3}a 

where 

Xt\1 = X t + X2 + X3 

XE~ = X t + e X2 + e*X3 

XEo = Xt + e*X2 + eX3 

e = exp(21Ii/3) 

Symmetrized representation of hyperfine Hamiltonianb 

:JfJ.Jc = l s . { r I • It\ I + -rE~ . IEb + T Eb . IE~} 
3 

Symmetrized nuclear spin functions of the three protons 

I At; 3(2, 3(2.) = I aaa) 
I A 1; 3(2, 1(2.) = _1 ( I f3aa) + I af3a) + I aa,B)) 

ff 
I A 1; 3(2, -1/2) = -1 ( I a/3,8) + I f3af3) + I f3f3a)) 

{3 

I A 1; 3/2, - 3(2.) = I /3/3[3) 

I Ea; 1/2, 1/2) = _l (-I f3aa) - e I af3a)- e* I aa/3)) 
f3 

I Ea; 1/2, - 1/2) = _1 ( I a/3,8) + e I f3af3) + e* I f3f3a)) 
ff 

I Eb; 1/2, 1/2) = _1 (-I f3aa) - t * I af3a) - e I aa/3)) 
{3 

I Eb; 1(2, - 1(2.) = _1 (I a/3,8) + e* I f3af3) + e I f3f3a)) 
ff 

a xi is the hypcrfine interaction operator T j or the nuclear spin operator l j. 

1>-rne anisotropy of T tensor is neglected in the present analysis and only the Fermi 

term Tt is considered. 
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Case 1 (r rve = A1 or A2); 

For the non-degenerate rovibronic states the spin Hamiltonian is given by eq. (2.43). 

(2.43) 

with 

A AI= (rve; r rvc I T/ 1 I rve; r rvc) 
" 

(2.21) .. 
The matrix elements of the Hamiltonian is given eq. (2.23) by substituting J = 3/2. The 

resonant field for the ESR transition including the second order correction is 

H = Ho- A;50 M 1- - 1-A;so2 [l{J + 1)- M}] 
2Ho 

with J = 3/2 and M1;::: -3/2,-1/2, 1/2,3/2 

where 

A . -lAAI 
ISO-

3 

Case 2 (rrve =E); 

(2.44) 

(2.45) 

For the doubly degenerate rovibronic states, the total wave functions (except for the 

electron spin pan) must have either of the following forms. 

'PA 1 = * (I rve;Ea) I ns;Ea) + I rve;Eb) Ins; Eb)) 

'f'A2 = k (I rve;Ea) I ns;£0)- I rve; Eb) Ins; Eb)) 

(2.46) 

The matrix element of the hyperfine Hamiltonian again has the same form as eq. (2.29) to 

give an usual expression for the resonant field including the second order correction. 

However, the hfcc given in eq. (2.49) is different from Aiso in eq. (2.45). 
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H = H 0 - Aiso M J - _.1_ Aiso 
2 

4Ho 

with M1 = -1/2, 1/2 

where 

Aiso = .L(A AI- 2A E) 
3 

Aiso = .L(A AI+ 2A E) 
3 

and 

for lf'AI 

A A1 = (rve; Ea I Tl1 I rve; Ea) = (rve; Eb I T/1 I rve; Eb) 

A E = (rve; Ea I T/b I rve; Eb) = (rve; Eb I Tr&. I rve; Ea) 

(2.47) 

(2.48) 

(2.49) 

The transitions of the states with J = 1/2 and M1 = ±1/2 will split into doublets by a 

separation of 2/3 AE. Thus, the situation is the same as the tunneling rotation of the methyl 

group attached to a Cor 0 atom having 2p unpaired electron, where the ESR transitions of 

the states with J = 1/2 and M1 = ±1/2 split into doublets at very low temperatures [Freed 

(1965), Clough and Poldy (1969), Davidson and Miyagawa (1970)). 

The notable feature in the spectrum of CH3D+• is that the J = 1/2 lines is apparently 

missing; the positions of the four triplets at 3301.8, 337 6.3, 3452.4, and 3530.5 G are in 

good agreement with the prediction by eq. (2.44) which are 3301.8, 3376.3, 3452.4, and 

3530.2 G, respectively (J = 3/2, Aiso = 76.2 G). Therefore the four triplets arc associated 

with the four sublevels of the proton spin functions of J = 3/2 and should have equal 

integrated intensity. Because the outer two triplets are slightly broader than the inner two, 

the peak height of the outer triplets in the derivative spectrum is smaller than that of inner 

two. A probable explanation of the apparent disappearance of the signals associated with J 

= 1/2 states is that the additional hfcc of AE is subject to the broadening due to the static 

inhomogeneity of the crystal field just as the hfcc of the F2 nuclear spin states of CB4+· 
and/or to the broadening due to the state-mixing between the two states in eq. (2.46), 

which is just like the tunneling rotation of the methyl group [Clough and Poldy (1969), 

Matsushita et al. (1990a)]. The broad hump on the right hand side (the higher-field side) of 

the inner two triplets associated with J = 3/2 and MJ = 1/2 states might be the broadened 

signals of J = 1/2 states. 
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A comment on the hfcc of 13C 

We have measured the hfcc of 13C from the ESR spectra of I3CH3D+· and 13Cf-:4+·. 

From the spectrum of 13CH3o+• shown in Fig. 7 the hfcc of 13C is determined as Aiso = 
17 G. The other 13C containing species, 13Cf4+· , shows an anisotropic feature in the 

ESR spectrum. The anisotropy is approximately axially symmetric and the hfcc's are A.t = 
+ 19 G and All=+ 11 G. Since the completely isolated Cf4+· system described by G2-1 

group must have an isotropic hfcc of nc, the observed anisotropy is due tO the crystal field 

of the neon matrix. 

Con cl usion 

The apparently anomalous behavior of the ESR pattern of c~+· in the neon matrix can 

be elucidated by considering the tunneling among the six equivalent C2v structures. All the 

deuterium substituted cations, i.e., CH3D+•, CH2D2+·, CD3H+•, and CD4+• have also 

been studied, the result of which indicates that the Jahn-Teller distortion to a C2v 

conformation is common to all the radical cations of substituted and unsubsrituted 

methanes. In CH3D+• and CD3H+• tunnelings among the three equivalent C2v structures 

take place. The hyperfine coupling constant of 13C has been obtained from the study of 

13CH3D+· and 13Cf4+· . 
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Appendix A Molecular Symmetry Group 

A brief outline of the concept of molecular symmetry group will be given following the 

textbook by Bunker (1979). The molecular symmetry group was first proposed by 

Longuet-Higgins [1963] and panicularly useful for non-rigid systems such as the hydrogen 

fluoride dirner [Dyke eta/. (1972)], the water dirner [Dyke (1977)], and the methane-HCl 

complex [Ohshima and Endo (1990)]. Matrix isolated molecules in static crystal fields 

have also been studied by way of the MS group [Miller and Decius (1973)]. 

1. Permutations and permutation groups 

Permutation: (abc · · · yz) 

The symbol (abc · · · yz) represents a permutation that replaces a by b, b by c, c by d, 

... , y by z, and z by a. 

Example: 

A permutation operation (123) on the three protons in a CH3F molecule. 

---- -- --- - --- -= [Xl, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3] 

= [X3, Y3, Z3, Xt, YJ, ZJ, X2, Y2, Z2]. (A. I ) 

In eq. (A.l) (Xi, Yi, Zi) are the initial space fixed coordinates of proton i and (X;, Y;, Z;') 

are the coordinates of proton i after the permutation has been performed. 

The permutation group: Sn 

A set of all possible permutation operations of n objects satisfies the group axioms. It is 

called the permutation group of degree nand denoted asSn. There are n! elements in Sn 

and the group is said tO have order n!. 
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Example: 

S3 = {E, (12), (23), (31), (123), (132)}. (A.2) 

The group axioms: 

1. The groupS is closed with respect to an operation denoted by 0 • 

"'a, b 3 S, a ob = c 3 S 

2. The identity: E 3E 3 S, such that a o E =E o a= a 

3. The reciprocal: a-1 3a-1 3 S, such that a o a-1 = a-1 o a= E 

4. The operation o is associative: (a o b) o c =a o (b o c) 

The CNP (complete nuclear permutation group) group of a molecule: GCNP 

The CNP group of a molecule is a group which contains all possible pennutations of 

identical nuclei in the molecule. If the molecule has a chemical fonnula of AtBmCn · · · , 

the CNP group is the direct product group, 

G CNP = Sf® Sm ® Sn ® . . ·, 

and the order of the group is/! x m! x n! x · · ·. 

Examples: 

CH3F 

H2Ch 

C2li1 

G CNP = SJ. 

G CNP = S 2 ® S2. 

c cNr = s2 ® s4. 
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2. The invers ion operation a nd permutation-inversion groups 

The inversion operation : E* 

The inversion operation E* is defined as the operation of inverting the spatial 

coordinates of all particles (nuclei and elecrrons) in a molecule through the molecular cenrer 

of mass. When we use the space fixed (X, Y, Z) axis system with origin at the molecular 

center of mass, we can write 

(A.7) 

T he invers ion group: 'E = {£, E*} 

A permutation invers ion operation: p* 

Since the inversion operation E* commutes with any permutation operation P , we can 

write the permutation inversion operation asP*. 

PE* = E*P = P*. (A.8) 

The CNPI (complete nuclear permutation inversion) group: GCNPI 

The CNPI group of a molecule is a group which contains all possible permutations of 

identical nuclei in the molecule with and without inversion and is the direct product group 

of the complete nuclear permutation (CNP) group and the inversion group. The order of 

CNPI group is twice as many as the CNP group. 

G CNPI = GCNP ® 'E . (A.9) 

Examples: 

C2H.t G CNPI = G CNP ® 'E 

= s2 ® S4 ®'E. (A.l 0) 
GCNPI = G CNP ® 'E 

= s2 ® 'E = {£, (12), E*, (12)* J. (A.ll) 
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3. The molecula r Hamiltonian and its tr ue symmetry 

The molecula r Hamiltonian : J-f 

J-f= 'I+ V + :Hes + J-fns· (A.l2) 

where 

T. kinetic energy 

V: electrostatic potential energy 

Jf:.s: interaction energy of the electron spin magnetic moments 

:Hso electron spin-electron orbit S • L 

9-fsr electron spin-rotation (nuclear motion) S •N 

:Hss electron spin-electron spin S •S 

~5: interaction energy of the nuclear spin magnetic moments 

Jlnso nuclear spin-electron orbit I ·L 

~sr nuclear spin-rotation l •N 

.?fnsns nuclear spin-nuclear spin l j•]•lj 

Jlnses nuclear spin-electron spin S •T •Ij 

2 
I Q~)v~~ ~uad nuclear quadrupole 

m=-2 

The space fixed MCM (molecular center of mass) axis sys tem: (X, Y, Z) 

Separation of the kinetic energy of the center of mass 

The kinetic energy operator 'Tin an arbitrary space fixed (X, Y, Z) axis system is given 

by 

(A.l3) 

where lis the total number of all the nuclei and electrons in the molecule We introduce the 

space fixed MCM (X, Y, Z) axis system parallel to the (X, Y, Z) system; 
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and 

Xr =Xr + Xo, 

Yr=Yr+Yo, 

Zr = Zr+ Zo, 

(A.14) 

(A.15) 

(A.l6) 

where (Xo, Yo, Zo) are the coordinates of the molecular center of mass in the (X, Y, Z) 

axis system. To separate the translational kinetic energy we choose the set of 3/ 

independent variables as 

(A.l7) 

The coordinates X I, Y I, and ZI can be eliminated because of the center of mass condition, 

I 

mtXt=- L mrXr 
r=2 

with similar equations for Y1 and Z1. Then, we get 

where 

and M is the total mass of all the electrons and nuclei in the molecule. 

I 

M= L mr 
r = I 
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The full symmetry group of the molecular Hamiltonian 

The exact Hamiltonian of an isolated molecule commutes with (or is invariant to) all of 

the following operations: 

(a) any translation of the molecule along a space fixed direction, 

(b) any rotation of the molecule about a space fixed axis passing through the center of 

mass of the molecule, 

(c) any permutation of the space and spin coordinates of the electrons, 

(d) any permutation of the space and spin coordinates of identical nuclei, 

(e) the inversion of the coordinates of all the particles (nuclei and electrons) in the center 

of mass of the molecule, and 

(f) time reversal. 

Each set of operations (a) to (e) forms a corresponding true symmetry group; 

(a) the translational group GT, 

(b) the spatial rotation group K(spatial), 

(c) the electron permutation groupS ~e>, 

(d) the complete nuclear permutation group GCNP, and 

(e) the inversion group 'E. 

Each of these groups is called a true symmetry group of the molecular Hamiltonian since 

elements of the group commute with the exact molecular Hamiltonian. The full 

Hamiltonian group Gfull is the direct product of the above five groups: 

Grull = GT ® K(spatiaJ) ® s~e) ® GCNP ® '£ 

= GT ® K(spatial) ® S ~e)® GCNPJ (A.23) 

Symmetry labels (i.e., irreducible representation labels) obtained by using Grull or a 

subgroup of it are called true symmetry labels. In particular the true symmetry labels 

obtained by using the group GCNPI or the molecular symmetry group (a subgroup of 

GCNPI) are useful for analyzing a non-rigid system, rotation-vibration coupling, and so on. 

The five subgroups of Grull and symmetry labels of the complete wavefunctions in these 

groups are summarized in Table A.l. 
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Table A.l The true symmerry groups of the Hamiltonian of an isolated molecule 

Symmetry group Fundamental concept Symmerry label 

of the complete wavefunctions 

GT Uniform space Linear momentum vector k 

K(spatial) Isotropic space Total angular momentum F, mF 

s~c) 
Indistinguishability The antisymmetric 

of electrons representation r<c)(A) 

GcNP 
Indistinguishability The antisymmetric 

.,. .. of identical nuclei representation r<=NP(A) 

'E Conservation of parity Parity± 

r<c)(A): The character is (+1) under even permutations and (-1) under odd permutations. 

r<=NP(A): The character is (-1) for nuclear permutations that involve odd permutation of 

fermion nuclei and ( + 1) for all the other nuclear permutations. 

Note that the symmetry label of the complete wavefunctions inS ,~c) and GcNP is restricted 

by the Fermi-Dirac and Bose-Einstein statistics. 

Basis fun ctions and bas is function symmetry 

In the space fixed MCM (X, Y, Z) axis system we can separate the translational kinetic 

energy and obtain the internal Hamiltonian .?f.nL· 

(A.24) 

where 

.11inL = 'lim + V + :Hcs + ?Ins (A.25) 

A suitable choice of the (3/- 3) coordinates in .?f.m makes the major part of .?~m to be 

separable into independent five parts, i.e., the rotational, vibrational, electronic, electron 

spin, and nuclear spin Hamiltonians. 

(A.26) 

where 

(A.27) 

The remaining part of the Hamiltonian .?{'contains all the terms that spoil the separation of 

coordinates. Note that a part of the internal kinetic energy is also contained in .?f' since it 
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spoils the separation of rotational, vibrational, and electronic coordinates (see eqs. (A50)

(A52), (A59), (A 71)- (A 73)). As a result of the separation of coordinates in .?!Pnr we can 

write 

0 0 0 "'0 Hint <I>int = Eint '*'int 

where 

<I>Pnt = <I> rot <l> vib <l>clec <l>ss <I>nsns 

EPnt = Erot + Evib + Eclec + Ess + Ensns 

(A.28) 

(A.29) 

(A.30) 

The eigenfunctions of the separable and approximate Hamiltonian .?!Rtt form basis 

functions for the diagonalization of the true :nfnt· Each component function of¢ ?nr can be 

classified in the true symmetry groups of the molecular Hamiltonian to give basis function 

symmetry labels. The basis. function symmetry is summarized in Table A.2. 

Table A.2 Basis function symmetry 

GT 
K(spatial) 

SAc) 

GCNP 
f--.-·-.. 

'£ 

<I> rot <l>vib <be lee I 

s s s 
D(N) I 

I 

s s r<c) 
clcc 

I 
I 

rCNP I 
rve I -· 
± I 

S: totally symmetric representation. 

N : rovibronic angular momentum. 

S: electron spin angular momentum. 

I : nuclear spin angular momentum. 

F: total angular momentum. 

F = J + I 

J = N + S 

<I>cspin 

s 
D(S) 

r<e) 
espin 

s 
+ 

<bnspin 

s 
D(l) 

s 
rCNP 
-~...0...... 

+ 

(A.31) 

(A.32) 

Fermi-Dirac and Bose-Einstein statistical restrictions 

r~~~c ® r~~pin ::) r<c)(A) 

r~ ® r;~n::) rcNP(A) 
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<t>?nt 
s 

D(F) 

r<c)(A) 

rcNP(A) 

± 



4. The rovibronic coordinates 

The space fixed NCM (nuclear center of mass) axis sys tem: (~. TJ, 0 
Separation of the electronic and nuclear kinetic energy 

When we change the coordinate system in the internal kinetic energy 'lfm from the space 

fixed MCM (X, Y, Z) axis system to the space fixed NCM (~. TJ, 0 axis system parallel to 

the (X, Y, Z) system, we can separate the electronic and nuclear kinetic energy. 

(A.35) 

2 I 

'Ye=-.JL I 
2me i=N+ 1 

( 
a2 a2 a2 ) 

a~;a~j + dTJ;dTJj + at;;a(j 

(A.37) 

where nuclei are labeled 1 ,2, ... , N and electrons are labeled N + 1, N + 2, ... , /. The 

total mass of all the nuclei in the molecule is denoted MN; 

(A.38) 

The kinetic energy is completely separable into a nuclear part 'TN and an electronic part 'Tc in 

the (~. TJ, 0 system. 

The molecule fixed ax is system: (x, y, z) 

The molecule fixed axis system (x, y, z) has the origin at the nuclear cen ter of mass and 

an orientation away from the(~. TJ, 0 axis system that is detennined by the nuclear 

coordinates (~2. 112. S2> · ···~N. TJN, (N). It is introduced to facilitate the separation of 

the rotational and vibrational coordinates. The Euler angles e, l/J, and X are used to define 

the orientation of the (x, y, z) axis system relative to the ( ~. TJ, 0 axis system: 
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(Xi) (~i) 
~: =[R] t: (A.39) 

where 

( 

cos 8 cos </> cos X- sin </> sin X 
R = -cos e cos </> sin X- sin </> cos X 

sin e cos</> 

cos 8 sin ¢ cos X + cos </> sin X -sin 8 cos X ) 
-cos e sin ¢ sin X+ cos </> cos X sin 8 sin X 

sin e sin </> cos e 
(A.40) 

Electronic kinetic energy operator 'Te does not change its form upon a rotation of the axis 

system R, where the Euler angles are defined purely by the nuclear coordinates. 

(A .41) 

On the other hand, the electronic coordinates are introduced back into the expression for 'TN 

in the (x, y, z) axis system. 

Summary of the four Cartesian axis systems 

(a) The space fixed axis system: (X, Y, Z) 

The (X, Y, Z) axis system is fixed in space with an arbitrary origin. 

(b) The space fixed MCM (molecular center of mass) axis system: (X, Y, Z) 

The (X, Y, Z) axis system is taken to be parallel to the (X, Y, Z) axis system with the 

origin at the molecular center of mass. The coordinates of the molecular center of mass in 

the (X, Y, Z) axis system are designated (Xo, Yo, Zo). This axis system is introduced to 

separate the kinetic energy of the molecular center of mass. 

(c) The space fixed NCM (nuclear center of mass) axis system: (~, 17, 0 
The(~, TJ, 0 axis system is taken to be parallel to both the (X, Y, Z) and (X, Y, Z) axis 

systems but with the origin at the nuclear center of mass. The coordinates of the nuclear 

center of mass in the (X, Y, Z) axis system are designated (XNcM, YNcM, ZNcM)· This 

axis system is introduced to separate the nuclear and electronic kinetic energy. 
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(d) The molecule fixed axis system: (x, y, z) 

The (x, y, z) axis system has the origin at the nuclear center of mass (as for the(~, 77, 0 
axis system) but has an orientation away from the(~. T], t;) system. The orientation is 

determined by the nuclear coordinates and the Euler angles 8, <p, and x are used to define 

the orientation of the (x, y, z) axis system relative to the(~. T], 0 axis system. This axis 

system is introduced to facilitate the separation of rotational and vibrational coordinates. 

Changing to rovibronic coordinates I. Diatomic molecule 

For a diatomic molecule we label the two nuclei 1 and 2 and then electrons 3, 4, ... , n + 

2. The molecule fixed (x, y, z) axis system is fixed so that the z axis points from nucleus 1 

to nucleus 2. This defines the two rotational variables 8 and ¢. We choose X= 0 to define 

the location of the x andy axes. As a result the coordinates are changed form (~2, 772, 

(z, ... ,(n + 2) to (8, ¢, R, X3, y3, z3, ... , Zn + 2), where R is the internuclear distance. In the 

new coordinates 'TN becomes as follows. 

where 

and 

] : the rovibronic angular momentum operator 

L: the electronic angular momentum operator 

the three components of J in the molecule fixed axis system (x, y, z) 

(A.42) 

(A.43) 

fx = ih esc 81._ +cot 8 L 2 (A.44) 
a¢ 

fy =- ih ~ (A.45) ae 
12 = L 2 (A.46) 

commutatOrs 
[lx. fy] =- ih cot 8 fx- ih Lz, [ly. fz] = (11 , fx] = 0 (A.47) 

97 



commutators for the three components of L in the (x, y, z) axis system 

where 

( Lcz, Lp] = ih I, cczpyL"t 
'l 

a, /3, y = X,)', Or Z 

cczf3r = + 1 

=-l 

=0 

if af3r are cyclic (i.e., xyz, yzx, or zxy). 

if af3yare anticyclic (i.e., zyx, yxz, or xzy). 

otherwise. 

(A.48) 

Note that x and z components of J do not commute with x andy components of L for a 

diatomic molecule. 

The rovibronic Schrodinger equation of a diatomic molecule in the new coordinate 

system is represented as 

['Trot+ 'Tvib + 'Tc + V(R,XJ,)'3, ZJ, ... ,Zn+2}-Ervc]<I>rvc(R, e, t/>,X3,)'3, ZJ, ... ,Zn+2}=0 

(A.49) 

where 

'Trot= - 1-[Vx- Lx'f + ~e (ly- Ly) sin B(ly- Ly)] 
2pR 2 sm 

(A.50) 

(A.51) 

and%, is given in eq. (A.41). This Schrooinger equation docs not separate into 

independent rotational (8, ¢),vibrational (R), and electronic (x3, y3, Z3, ... , Zn + 2) parts 

because of (a) the occurrence of both Rand the electronic coordinates in V, (b) the 

occurrence of R in 'TroL (centrifugal distortion), and (c) the occurrence of La in 'TroL 

(Coriolis coupling effects on the electrons). We can achieve a separation of rotation by 

neglecting La and by setting R = Re (the equilibrium internuclear distance) in 7'roL· The 

approximate rigid rotor rotational kinetic energy operator is 

o_ 1 [2 I1·e] 'Trot- lx + -.- y Slll ly 
2pRc 2 Sin e (A.52) 

The separation of the vibrational and electronic coordinates is achieved by making the 

Born-Oppenheimer approximation. 
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Changing to rovibronic coordinates II. rigid nonlinear polyatomic 

molecul es 

In this section we will change coordinates in the Schrooinger equation for a rigid 

nonlinear polyatomic molecule from (~2. 112. ,2, ... ,,,)to the rovibronic coordinates (8, 

¢, x. Q1, ... , Q3N - 6. XN + 1, ... , Z[), where the (3N- 6) Q, s are the vibrational normal 

coordinates. As a result of this 'TN will be expressed in terms of(], L, Q 1, ... , Q3N _ 6· 

?1, ... , P3N _ 6) where P, =- ih CJ/CJQ,. This coordinate change is made so that the sum of 

'TN and the internuclear potential function VN (this arises after making the Born

Oppenheimer approximation) is separable with least approximation into a pan depending 

only on 1 and into (3N - 6) parts each involving one Q, and associated P,. This coordinate 

change leaves the form of rze unchanged as shown in (A.41). The two central parts of the 

coordinate change to the rovibronic coordinates are the Eckart equations !"Eckart ( 1935)] 

which define the Euler angles, and the l matrix which defines the normal coordinates. 

For the equilibrium nuclear configuration we usually choose the principal axes of inenia 

as the molecule fixed (x, y, z) axes. This choice simplifies the rotational kinetic energy. 

The equilibrium nuclear coordinates (Xje, Yic, z{') for each nucleus i are determined from 

the following principal axis conditions. 

I m; xf yf =I m; yf zf =I m; zf xf = 0 (A.53) 
i i i 

To determine the Euler angles (i.e., the orientation of the (x, y, z) axes) for an arbitrarily 

distoned nuclear configuration we use the Eckart equation, 

I m; r ;c X r ; = 0 
I 

The three components of this equation are 

and 

I m; (xf Yi- yf x;) = 0 
i 

I m; (yf z;- zf y;) = 0 

I m; (zf X;- xf z;} = 0 

(A.54) 

(A.55) 

(A.56) 

(A.57) 

The reason why we use the Eckart axis system rather than the principal axis system for a 

distorted configuration is that the use of the Eckart axis system approximately eliminates the 

coupling between rotational and vibrational coordinates. In order to separate the rotational 
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and vibrational kinetic energy, we must eliminate the the vibrational angular momentum 

J vib (L m; r ,.e x v;) because there is a Coriolis coupling of it to the rovibronic angular 

momentum] which will spoil the separation of the variables. Though we cannot 

completely eliminate lvib, the Eckan condition makes it small. 

The 3N x (3N- 6) l matrix defines the relation between the normal coordinates Q, and 

the Cartesian displacement coordinates Llai( = ai- a/:·): 

3N-6 

vm; Lla; = . I, lai,r Q, (A.58) 
r =l 

where a= x, y, or z. The l matrix is chosen in such a manner that the internuclear potential 

function VN separates into (3N- 6) harmonic oscillator potential functions in the lowest 

power of the Q, (the harmonic oscillator approximation). The l matrix is determined by the 

equilibrium nuclear geomeuy (the B matrix), the nuclear masses (the M matrix), and the 

potential function (the F matrix). 

Using the Eckan equations and the l matrix the nuclear kinetic energy 'TN in the 

rovibronic coordinates becomes as follows [Watson (1968)] 

where 

(A.59) 

J.1 = [/']-1 (A.60) 

The /' matrix is given in Sec. 11-2 (eq. 10) of Wilson, Decius, and Cross 

(1955). The /' matrix is almost, but not quite, equal to the instantaneous 

inertia matrix /. 

] : the rovibronic angular momentum 

L: the electronic angular momentum 

p: the vibrational angular momentum (not quite equal to the quantum mechanical 

counterpan of l vib) 

3N- 6 

Pa= L C~sQrPs (A.61) 
r,s =I 

where the C~s are Coriolis coupling constants 
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and 
h2 ~ 

U =-- ..l...J Jl.aa 
8 a 

(A.62) 

The expression of the three components of I in terms of Euler angles are as follows. 

lx =- ih (sin X 1._- esc 8 cos x l_ +cot 8 cos x ~() ) a8 a¢ ox (A.63) 

ly =- ih (cos X 1._ +esc 8 sin X l_- cot 8 sin X ~a ) a8 a¢ ox (A.64) 

and 

(A.65) 

The three components obey the commutation relations 

(A.66) 

where a, /3, r= x, y, or z. Note that these commutation relations arc anomalous in that 

they differ from the normal ones by a change in the sign [Klein (1929), Van Vleck (1951 ), 

Curl and Kinsey (1961), Freed (1966), Brown and Howard (1976a, b)]. In a space fixed 

coordinate system components of I are given by 

J ~ = - iii I Tlj -- Sj -' ( a a ) 
j = 2 at;j aru 

(A.67) 

and cyclically for 171 and J (; They obey the normal commutation relations, 

(A.68) 
v 

where (J, -r, v = ~' ry, or t;. The components of the electronic angular momentum operator 

L have the normal commutation relations even in the molecule fixed axis system (see eq. 

(A.48)). 

101 



The Jla{J elementS can be expanded as Taylor series in the Qr as 

(A.69) 

with 

(A.70) 

where Je is the moment of inertia matrix for the equilibrium configuration. In the exact 

nuclear kinetic energy operator (A.59), if we neglect the dependence of J.laf3 on the 

Qr,neglect Pa, La and U, we obtain 

(A.71) 

This approximate nuclear kinetic energy operator separates into a rotational kinetic energy 

term and 3N- 6 vibrational kinetic energy terms. The neglected terms are such as 

(the centrifugal distortion) (A.72) 

and 

(the Coriolis coupling) (A.73) 

These terms spoil the separation of the rotational and vibrational coordinates in 'TN. 

The transformation properties of the Euler a ngles and J 
For a rigid nonlinear polyatomic molecule each nuclear permutations and the inversion 

operations has the effect of a certain kind of rotation of the molecule fixed axes (x, y, z) 

and this rotation is called an equivalent rotation. If we find the equivalent rotation 

corresponding to a permutation or permutation inversion operation, the transformation 

properties of the Euler angles are easily deduced. From the transformation propenies of 

Euler angles we can derive those of Jx, Jy, and Jz by using eq. (A.64), (A.65), and (A.66). 

The results are listed in Table A.3. 
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Table A.3 The transformation properties of the Euler angles and 

the components of the rovibronic angular momentum J 

Ran R/3 

e n- e e 
ifJ ifJ+n ifJ 

X 2n- 2a- X x+f3 

lx lx cos 2a +lysin 2a lx cos f3 +lysin f3 

ly lx sin 2a- ly cos 2a - lx sin f3 + ly cos f3 
lz -]z lz 

Ran is a rotation of the molecule fixed (x, y, z) axes through n radians 

about an axis in the xy plane making an angle a with the x axis (a is 

measured in the right handed sense about the z axis). 

R/3 is a rotation of the molecule fixed (x, y, z) axes through f3 radians 

about the z axis (/3 is measured in the right handed sense about the z 

axis). 

5. T he molecular symmetr y (MS) grou p 

The definition of the MS group and its relation to the CNPI group is summarized by 

Bunker (1979): The CNPI group for a molecule can be used to classify the rotational, 

vibrational, and electronic wavefunctions. The irreducible representation for a molecule in 

an electronic state in which there are two or more symmetrically equivalent nuclear 

equilibrium structures, between which tunneling produces no observable splittings, this 

classification scheme is more detailed than necessary. To symmetry label the energy levels 

as much as is necessary, that is in order to distinguish between energy levels that are 

distinguishable experimentally, it is sufficient to use a particular subgroup of the CNPI 

group. This subgroup, called the molecular symmetry group, is obtained from the CNPI 

group by deleting all "unfeasible" elements. An unfeasible element is one that interconvens 

symmetrically equivalent equilibrium nuclear structures that are separated by an insuperable 

barrier in the potential energy function on the time scale of the experiment. Feasible 

elements maintain an equilibrium form as itself or interconvert forms between which 

tunneling (such as by torsion or inversion) produces observable splittings. If we are 

interested in considering two or more electronic states at once to study interactions or 

transitions between them, the definition of a feasible element must be extended. 
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Examples: 

The CNPI group of the following four molecules, CH3F, NF3, NH3, and BF3, is 

ccNPI = s3 ® 'E = Gl2· (A.74) 

G 12 = (E, (12), (23), (31), (123), (132), E*, (12)*, (23)*, (31)*, (123)*, (132)*) 

(A.75) 

The MS group of each molecule is determined as follows. 

(i) CH3F. There are two symmetrically equivalent nuclear equilibrium srructures. In 

one of the two structures numbering of the three protons is clockwise around the C- F axis 

and in the other that is anticlockwise. 

Since no tunneling between them is observed, elements that interconvert the clockwise and 

anticlockwise forms are unfeasible; E*, (12), (23), (31), (123)*, and (132)*. Thus the MS 

group of CH3F is 

C3v(M) = (E, (123), (132), (12)*, (23)*, (3 1)*}. (A.76) 

which is called C3v(M) since it is isomorphic to the molecular point group C3v 

(ii) NF3. For this pyramidal molecule there are two symmetrically equivalent 

equilibrium structures. Since the inversion splittings are not observed in this molecule, 

elements that interconvert the two structures are unfeasible. Thus, the MS group of NF3 is 

the same as that of CH3F, C3v(M). 

(iii) NH3. Since splittings due to inversion tunneling are observed in NH3, all the 

elements of its CNPI group are feasible. Thus, the MS group of NH3 is the same as its 

CNPI group, G 12· 

(iv) BF3. Since the molecule has the planar equilibrium configuration, there are no 

different symmetrically equivalent nuclear equilibrium structures. Thus, the MS group of 

BF3 is the same as its CNPI group and called D 3h(M) since it is isomorphic to D 3h· 
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6. Near symmetry group 

A near symmetry group is a group whose elements do not commute with the exact 

Hamiltonian of an isolated molecule itself but rather they commute with a certain part of it. 

The molecular point group and the molecular rotation group are important near symmetry 

groups. 

The molecular rotation group 

The molecular rOtation group of a molecule consists of all Euler angle transformations 

that leave the rigid rotor Hamiltonian of the molecule invariant. Therefore, each element of 

the molecular rotation group has no effect on the vibronic coordinates and spin coordinates 

The terms which couple the rotational coordinates to the vibronic or spin coordinates (e.g., 

centrifugal distortion, Coriolis coupling, and spin-rotation interaction) will not necessarily 

be invariant under the operations of the molecular rotation group and they can break this 

near symmetry. Only three rotation groups appear in the molecular rotation group: 

(i) A spherica l top; K(mol) 

The rigid rotor Hamiltonian for a spherical top is 

(A.77) 

The symmetry label is J and each J level has a (21 + 1)-fold k degeneracy and (21 + I)-fold 

m degeneracy where k is the quantum number of the molecule fixed lz component and m is 

that of the space fixed J (component. 

(ii) A symmetric top; Doo 

The rigid rotor Hamiltonian for a symmetrical top is 

(A.78) 

where Z is A for a prolate top and C for a oblate top. The character table of the spin double 

group Doo2 is given in Table A.4 together with the species of lx, ly. and lz and those of 

symmetric top functions I J, k, m). The species of the J a are determined by using the 

Table A.3 and those of I J, k, m) are determined by the following equations. 

Rz/31 J, k, m) = eik/31 J, k, m) (A.79) 

and 

Ran I J, k, m) = ei1Cl e-2ika I J, - k, m) (A.80) 

105 



Table A.4 The character table of Doo2 and the species of J a and I J, k, m) in the group. 

E 2Rze ooR an R2n 2Rz2tr+£ K 

1/ 1 1 1 1 1 0 (J even) 
1:- 1 1 -1 1 1 fz 0 (J odd) 

II 2 2cos £ 0 2 2 cos£ (Jx, ly) 1 

!l 2 2 cos 2£ 0 2 2 cos 2£ 2 

<I> 2 2 cos 3£ 0 2 2 cos 3£ 3 

£1/2 2 2 cos (f/2) 0 -2 -2 cos (c/2) 1/2 

£3/2 2 2 cos (3c/2) 0 -2 -2 cos (3£:/2) 3/2 

Es12 2 2 cos (Sc/2) 0 -2 -2 cos (Sc/2) 5/3 

The last column shows the symmetry species of I J, k, m) as function of K = I k I. 

(iii) An asymmetric top; D2 

The rigid rotor Hamiltonian for an asymmetric top is 

(A.81) 

and the character table of the spin double group D 22 is given in Table A.5. 

Table A.S The character table of the group D22 and the species of J a and 

those of asymmetric top functions I J KaKc) in the group 

E 

1 

Rcn I R2rr 

2 ! 1 

A 1 1 1 1 ee 

8 0 1 1 -1 -1 1 10 eo 

-~:__l_~_-jl~_l__; -·· 
E1[2 2 0 0 0 -2 half-integralJ 

K0 = I ka I and Kc = I kc I , where k0 and kc are the quantum number of J a and 

lc, respectively. The molecule fixed a, b, and c axes are determined from the 

moment of inertia so that I aa <I bb <Icc· The rotational constants satisfy the 

relation of A > B > C. 
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The molecular point group 

The effect of an operation of the molecular point group is rotations and reflections of the 

3N- 6 

vibronic variables (vibrational displacements { L1ai = v 1 . I. lai,r Q,} and the electronic 
m, r=l 

coordinates {ri}) in the molecule fixed axis system [see Sec. 5.5 in Wilson, Decius, and 

Cross (1955)]. Thus, the molecular point group is a symmetry group of an electronic and 

vibronic Hamiltonians. The molecular symmetry group is used for labeling the electronic 

and vibronic states and it can be used for studying the vibronic interactions. However, 

since the Euler angles and nuclear spin coordinates are unaffected by the operation of the 

molecular point group, interactions between the vibronic variables and the rotation or 

nuclear spins (e.g., the centrifugal distortion, Coriolis coupling, and spin-orbit coupling) 

can break this symmetry. 

For a rigid nonlinear molecule the molecular point group and the molecular symmetry 

group is isomorphic. Before the birth of the molecular symmetry group [Longuet-Higgins 

(1963)] Hougen defined the "full molecular point group" for nonlinear rigid molecules by 

combining molecular point group operations and rotations [Hougen (1962, 1963)]. It is 

shown that the elements of the group are permutations of identical nuclei in the molecule 

with or without inversion. This group is, in fact, the MS group of rigid nonlinear 

molecules. Bunker and Papou~ek extended the definition of the molecular symmetry group 

to linear molecules and introduced the "extended molecular symmetry (EMS) group" 

(1969). 

Example: 

H20 (see Table A.6) 

the molecular point group the molecular symmetry group 

C2v C2vCM) 

E E 

c2b (12) 

~oo E* 
~be (12)* 
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The relation between the MS group and near symmetry groups 

Each operation 0 of the molecular symmetry group of a molecule can be written as the 

product of three component operations which commute each other: 

where 

(A.82) 

Oa operates on vibronic variables 

and is an element of the molecular point group (for a rigid molecule), 

Ob operates on the Euler angles 

and is an element of the molecular rotation group, 

Oc operates on nuclear spin coordinates 

and is an element of nuclear spin permutation group. 

An identity operation of each near symmetry group is denoted as£, RO, and Po, 

respectively. 

E = £R0po 

(12) = c2~brcP12 
E* = O'a~crcPo 

(12)* = CfbcRarcP12 

(A.83a) 

(A.83b) 

(A.83c) 

(A.83d) 

The effect of each operation in eq. (A.83a) was illustrated in Figure A.l. 
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b b 

C2b e a~@' > f3 ~ .. a a 
1 (+c) ..S 2 

1 2 
f3 a 

n (12) 

b b 

P12 f3 
a ¢=:=1 a a 

2 1 2 1 
f3 a 

Figure A.l The effect of successive operations of C2b (rotation of vibronic 

coordinates by n radian around the molecule fixed b axis), Rbn (rotation of molecule 

fixed axes by nradian aboutb axis), andp12 (nuclear spin permutation). A series 

of these operations is equivalent to the nuclear permutation operation ( 12). The two 

hydrogen atoms are numbered 1 and 2 and their displacements from the equilibrium 

position are shown by the arrows. The nuclear spins of hydrogen atOms are 

represented a and {3. An electron above the plane of the page is represented by<±>. 

and that below the page is represented by e. 
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The g and u labels in a centrosymmetric molecule 

The molecular point group of a centrosymmenic molecu le contains the operation i. The 

corresponding operation in the molecular symmeuy group, 0;, can be wrinen as the 

permutation inversion operation of 

0 i = (AA')(BB')(CC') · · · (NN')* (A.84) 

where AA', BB', CC', , NN' are all pairs of identical nuclei located symmetrically about 

the nuclear center of mass (in its equilibrium nuclear configuration). Since this molecular 

symmetry group operation Oi does not change the Euler angles, it is related with the 

molecular point group operation i by 

0 i = iROP(AA')(BB')(CC}··(NN')· (A.85) 

Thus, the molecular point group operation i is a true symmetry operation of the rovibron ic 

Hamiltonian and it gives the g and u labels on rovibronic states. The g and u labels are near 

symmetry labels that are spoiled by interactions including the nuclear spins. 
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7. The transformation properties of the rota tiona l a nd t ransla t ional 

coordina tes, the polari zability tensor , and the electric dipole moment. 

The transformation properties of the rotational and translational coordinates (R and T), 

the polarizability tensor (a), and the electric dipole moment (M) under the effect of 

elements of the MS group are summarized as follows: 

R : being the same as ] . 

T: being the same as J for permutations and having opposite sign for permutation 

inversions. 

a: A symmetric product of the corresponding components of T. 

M: Its components are taken in a space fixed axis system because it represents the 

response of a molecule to the external field. For example, its t; component is 

given by 

(A.86) 

Since the summation is taken over all particles in the molecule, it has the 

character(+) for permutations and(-) for permutation inversions. Its 

irreducible representation is shown by f* in the following example of a 

character table. 

Example: 

Table A.6 The character table of C2v(M): H20. 

b 

~l?'"'= . a 
HI H2 

C2v(M) E (12) E* (12)* 

C2v E c2b (jab O"bc 

Equiv. rot. RO R hJt R cJt RaJt 

Al 1 1 1 1 Tb aaa. abb. a ce 

A2 1 1 - 1 -1 Jb lXac r* 
Bt 1 -1 -1 1 fa Tc abc 

B 2 1 -1 1 -1 f c Ta aab 
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8. An example of the application of the MS group; 

Effects of the internal rotation of methyl groups on ESR spectra 

The idea of the PI group proposed by Longuet-Higgins was applied to the study of the 

internal rotation of a methyl group by Freed (1965). He used the group consisting of cyclic 

permutations of methyl protons, i.e., G3,. {E, (123), (132)}, which is isomorphic to the 

group C3. Using the G3 group he analyzed the nuclear spin and the internal rotational 

functions and explained the equally spaced septet ESR lines of the methyl group. We 

applied the method to the two equivalent methyl groups in the radical cation of 

dimethylether [Matsushita et al. (1990a)]. If the radical is completely isolated, its MS 

group would be G36, the character table of which is given in Table A.? [Bunker (1979)]. 

When the methyl groups are approximated as C3 rotors the rotational kinetic energy 

(including the internal rotation of methyl groups) becomes as follows [Lin and Swalen 

(1959), Swalen and Costain (1959), Myers and Wilson (1960)]. 

where 

A = - 1-
2 Iy 

8=_1_ 
2 Iz 

C=-1-
2 Ix 

r = 1 - 2 :l 2 I Clh 
y "'Y I 

y 

r z = 1 - 2 Az 2 I CH3 

fz 

P 
_ 'l Ic113 

y- ll..y 
f y 

P 
_ 'l lc//3 

z - ll..z 
fz 

(A.87) 

(A.88a) 

(A.88b) 

(A.88c) 

p 1 and P2 are momenta associated with the internal rotation angles a, and a2 which are 

defined to increase on rotating the methyl groups clockwise viewed outward; ly and lz are 

the direction cosines between they and z principal axes and the top axes, where we put ly = 
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Uyh = -Uyh and lz = Uzh = Uzh· The principal axes and the angles 0:1 and 0:2 are shown 

in the figure in Table A.7. 

However, in our experiment using the solid matrix at very low temperature, the overall 
rotation of the radical is prohibited as is known from the anisotropic feature of the ESR 

spectrum. Then, the operations of the group G36 which are accompanied by the rotation of 

the molecule fix axes are unfeasible for the radical isolated in a solid matrix. Eliminating 

the unfeasible elements we obtain the group G9, which is the direct product group of the 

two G3 groups, i.e.,{£, (123), (132)} ® {£, (456), (465)}. Correspondingly, the 

rotational kinetic energy operator contains only the internal rotation of the methyl groups. 

(A.89) 

Using the G9 group and eq. (A.89), we have analyzed the ESR spectrum of CH30CH3+· 

at 14 K (see Figure A.2) and investigated the interaction between the two methyl rotors 

[Matsushita et al. (1990a)]. The spectrum at 14 K is essentially a superposition of the ESR 

transitions between molecular eigenstates. However, the spectrum changes drastically with 

temperature and at higher temperatures the spectrum shows a septet with the binomial 

intensity ratio of 1:6:15:20:15:6:1. This spectral change is explained as due to dephasing 

between the rotationally degenerate levels, which is caused by the thermal contact with the 

lattice. The density operator formalism was used to simulate the spectra (see Figure A.2). 
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Table A.7 The character table of G36: CH30CH3 (with tunneling rotation) 

b (z) 

Ht~ ~'-. 
H4 

74 .. a(y) ~ ~c(x)) ' c1 ... 

al }tl A H6 ·a2 

H3 

..... ..... 

.j::. 

G 36 IE (123)(456) (14)(26)(35)(78)* (123)(465) (132) (142635)(78)* (14)(25)(36)(78) (142536)(78) (23)(56)* 

2 3 2 4 6 3 6 9 

E uiv.rot. RD RO R/" RD RO R/" Rbrr. Rbrr. R/' 

Al 1 1 1 1 1 1 I 1 1 Tb,Oaa.abb.acc 

A2 1 1 1 1 1 1 -1 -1 -1 TcJa.abc 

A3 1 1 -1 1 1 -1 1 1 -1 lb,Oac.r* 

A4 1 l -1 1 1 -1 -1 -1 1 TaJc.aab 

£1 2 2 2 -1 - 1 -1 0 0 0 

£2 2 2 -2 -1 - I I 0 0 0 

£3 2 -1 0 2 - 1 0 2 -1 0 

£4 2 -1 0 2 - 1 0 -2 1 0 

G 4 -2 0 -2 I 0 0 0 0 



OBS. SIM. 

14 K 
60 MHz 

26 K 100 MHz 

42K 200 MHz 

54 K 275 MHz 

100 G 

Figure A.2 Observed ESR spectra of CH30CH3 +· in the temperature region of 

14- 54 K (the left column), and the corresponding simulated spectra (the right column). 
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Appendix B Powder-Pattern ESR Fine Structure 

Spin Hamiltonian 

The spin Hamiltonian used for the analysis of ESR spectra of high-spin organic 

molecules comprises the electron Zeeman and the fine structure terms. The anisotropy of 

the g tensor is usually negligibly small for hydrocarbons. Then, the spin Hamiltonian is 

described as follows. 

:Jf= gf3S ·H + S·D ·S (B.l) 

In the analysis of the Hamiltonian it is convenient to take spin projections along the static 

magnetic field so that the electron Zeeman term have a simple form, gf3S2II. In the {x, y, 

z} axis system where z is parallel to the static magnetic field, the representation of the fine 

structure term becomes as follows; 

- 2 
S·D·S =Dzz Sz 

+Dzx Sz Sx + Dxz Sx Sz + Dzy Sz Sy + D yz Sy Sz 

+Dxy Sx Sy + Dyx Sy Sx 
+DxxS/+Dyy S/ 

=Dzz S/ 

(B.2) 

+ Dxz (Sx Sz + Sz Sx) + Dyz (Sy Sz + Sz Sy) + Dxy (Sx Sy + Sy Sx) 

+l(Dxx +Dyy)(S/ + S/)+l(Dxx-Dyy)(Sx2
- S/) 

2 2 

where we use the relations of Dij = Dji and tr D = 0. Finally we get 
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The transformation of the principal axis system {X ,Y ,Z} to the laboratory axis system {x, 

y, z} is represented by the orthogonal matrix R. 

(B.4) 

( 

cos 8 cos <I> cos X - sin <I> sin X cos 8 sin <I> cos X + cos <I> sin X 
R = -cos 8 cos <I> sin X - sin <I> cos X -cos 8 sin <I> sin X + cos <I> cos X 

sin 8 cos <I> sin 8 sin <I> 

-sin 8 cos X ) 
sin 8 sin X 

cos 8 

(&:~ 

Using the transformation matrix R, the fine structure tensor in its principal axis system is 

transformed to that in the laboratory axis system by 

(B.6) 

Each component of the fine structure tensor in the laboratory axis system is represented by 

the three principal values and the three Euler angles as follows. 

Dx.x- D YY = D xx (cos28 cos2<1> cos 2x- sin2<1> cos 2X- cos 8 sin 2<1> sin 2x) 

+ Drr (cos28 sin2<1> cos 2X- cos2cp cos 2x +cos 8 sin 2¢ sin 2x) 
+ Dzz sin28 cos 2X 

Dxy = D xx (-1. cos28 cos2<1> sin 2x + l sin2<1> sin 2x -1 cos 8 sin 2<1> cos 2x) 
2 2 2 

+Dr r {-l cos28 sin2<1> sin 2x + l cos2cp sin 2X + l cos 8 sin 2¢ cos 2x) 
2 2 2 

+ Dzz (- ~ sin28 sin 2x) 

Dxz = D xx {l sin 28 cos2<j> cos X-} sin 8 sin 2<1> sin x) 
+Dr r lt sin 26 sin2$ cos X+ t sin 6 sin 2$ sin x) 
+ Dzz (- ~ sin 28 cos x) 

Dyz = D xx (-}sin 28 cos2<j> sin X-} sin 8 sin 2<1> cos x) 
+Drr(-~ sin28sin2cp sinx+~sin8sin2<!> cosx) 

+ Dzz (}sin 28 sin x) 
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Since the fme structure tensor is traceless, the three principal values of the tensor can be 

represented by the two parameters D and E as follows. 

Dxx =-I}+ E, Dyy =- ~ -E, D72= 2.D 
3 

D =Dzz-l.(Dxx + Dyy) = 1D72 
2 2 

E = l.(Dxx- Dyy) 
2 

-

(B.l2) 

(B.13) 

(B.14) 

Substituting eq. (B.l2) to eqs. (B.7)- (B.ll), we finally get the following expressions of 

the components of the fine structure tensor. 

(B.15) 

Dxx- D y y = [(D - E cos 24>) sin28 + 2 E cos 24>) cos 2X- 2 E cos 8 sin 24> sin 2X 

(B.l6) 

Dxy =- E cos 8 sin 24> cos 2X _1. [(D-E cos 24>) sin28 + 2 E cos 24>) sin 2X 
2 

Dxz = _l (D-E cos 24>) sin 28 cos X- E sin 8 sin 24> sin X 
2 

Dyz =- E sin 8 sin 24> cos X+ l.(D- E cos 24>) sin 28 sin X 
2 

(B.17) 

(B.18) 

(B.l9) 

These equations, combined with the formula of fine structure term eq. (B.3), are used to 

construct the spin Hamiltonian when the clirection of the magnetic field in the principal axis 

system is given by the three Euler angles. The powder-pattern spectrum can be obtained by 

integrated over the three Euler angles. 
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Transition probabili ty 

When the direction of the static magnetic field is taken to be z direction, the penurbation 

oscillating magnetic field is located in the xy-plane. The transition probability is the 

average of the orientation of the perturbation field in the xy-plane. If the anisotropy of the 

g tensor is neglected in the Zeeman interaction with the perturbation field, the transition 

probability, P, is simply determined by the expectation value of the component of S parallel 

tO the perturbation field. 

P •~m ; ~L l<n I S(x) I m ~2dx 

-if {Kn I S(x) I mlf + l<n I S(x + 7t/2) I m )f )dx (8.20) 

where 

S(x) = Sx cos X + Sy sin X (8.21) 

S(x + rr./2) = -Sx sin X + Sy cos X (8.22) 

When we use the equation 

l(n I S(x) I m~2 + l(n I S(x + rr./2) I m~2 = l(n I Sx I m~2 + l<n I Sy I m>F , (8.23) 

the transition probability is found to be independent of X· 

(8.24) 

If we use the ladder operators, it is expressed as 

(B.25) 

where we use the relations 

(8.26) 
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Thus, the integration over 2rt is equal to the average of the modulus squared of s+ and s_ 
(eq. (B.25)). The use of eq. (B.25) instead of the integration greatly reduces the 

computational time. However, it should be emphasized that eq.(B.25) is valid only when 

the anisotropy of the g tensor is negligibly small. 

The expression for resonance field and the transition probabilities derived from a 

perturbation treatment up to the third-order are given in the literatures [Teki era/. (1985, 

1986, 1988)]. The expression is valid for the anisotropic g tensor. 

In the present work ESR spectra of the quartet mono ions were calculated by 

diagonalizing the spin Hamiltonian of eq. (B.1). The computer program for the 

diagonalization and construction of the powder-pattern spectrum is listed in the following. 
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Computer program for the s imulation of powder-pattern ESR fine s tructure 

c 
c 
c 
c 
c 
c 
c 

ESR POWDER PATTERN OF HIGH-SPIN MOLECULE 
QUkqTET.FORT DATE=91 .08.2 0 

ESR SIMULATION PROGRAM 
OF MULTIPLET STATE (2S+l = 3,4, ... ,11) 

C DIRECT DIAGONOLIZATION OF SPIN HAMILTONIAN 
c 
C GAUSSIAN INHOMOGENEOUS LINE BROADENING 
C CURVES OF ABSORPTION AND 1ST DERIVATIVE ARE OBTAINED AS RESULTS 
C OPTION 1 . ANGULAR DEPENDENCE OF RESONANT FIELD 
C OPTION 2. MAGNETIC FIELD DEPENDENCE OF EIGEN STATES 
c .......... . ................................... .... . .. . .. . ..... .. . .. . . . . 
c 

c 
IMPLICIT REAL* 8 {A-H , O-Z) 

DIMENSION SXA(720) , CXA (720) , SXP (360 ), CXP(360) 
DIMENSION ABZ(2003) , DER(2003) ,XAH{2003) 
DIMENSION E (ll) , HFIT(55) , PTR(55) , BF(55) 
REAL*4 ABD(2003) , DRV(2003) , XMF(2003) 

C*OPT2* DIMENSION . RZE1(1300) , RZE2(1300) , RZE3(1300),RZE4(1300) 
c 

c 

c 

c 

CHARACTER TITLE*64 

COMPLEX*l6 H{ll,ll) , HH{ll , ll),F{ll) 
COMPLEX*l6 SZ(ll , ll) , SX(ll , ll),SY(ll,ll) , SZZ(ll,ll),SXXYY(ll,ll) , 

SXY (11 , 11) , SZX (11 , 11) , SZY (11 , 11) 

PARAMETER(PI=3.14159265358) 
PARAMETER{BETA=l3 . 99612E- 4 , CMIV=29 . 97930) 
PARAMETER(K= 11) 

C **** DATA FOR INTEGRATION **** 
LIM=2 
THETA=PI / 2 . 
PHI=PI/2 . 
IOX=260 
JOX=25 

CALL INTGPM{LIM, IOX, THETA, SXA, CXA , JOX , PHI , SXP , CXP) 
TITLE= 'M-PBPM CATION II ' 

C ** * * DATA FOR OUTPUT CHART **** 
AH=OOOO.O 
PH=S . OOOOO 
ZH=7000 . 00 

MH= {ZH-AH)/PH+l . OOl 
SPAN=20.0 
HEIGHT=l5 . 0 
LEDER=l 

C **** SPECTROSCOPIC DATA **** 
FREQ=9 . 17500 
MS= 4 
GVALUE=2 . 003 
DCM=0 . 1285 
ECM=0 . 0055 
WIDTH= 40 . 0 

c ********* * ** * ********** ******* 
CALL DCSMTX (SZ , SX , SY, SZZ , SXXYY , SXY, SZX , SZY , K, MS) 
DD=CMIV*DCM 
EE=CMIV*ECM 
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c 

c 

c 

BI=GVALUE*BETA*AH 
DB=GVALUE*BETA*PH 
DGAUS=2./(WIDTH**2) 
DCUT=12./DGAUS 

WRITE(6,1200)TITLE 
IF(LIM.GT.O) WRITE(6,1201) 
IF(LIM.EQ.1) WRITE(6,1202) IOX 
IF(LIM.EQ.2) WRITE(6,1203) IOX,JOX 
WRITE(6,1211) FREQ,MS 
WRITE(6,1212) GVALUE , DCM,ECM 
WRITE(6,1213) WIDTH 

AH1=AH 
DO 11 KH=1,MH 

ABZ(KH)=O. 
XAH(KH)=AH1 
AH1=AH1+PH 

11 CONTINUE 
DO 12 I=1 ,MS-1 

BF(I)=FREQ 
12 CONTINUE 

DO 13 I=MS,MS*(MS-1 )/2 
BF(I)=0.01 

13 CONTINUE 

C START OF DOUBLE INTEGRAL 
c 

c 

DO 21 I0=1 ,IOX 
SA=SXA (IO) 
CA=CXA ( IO) 
CCA=CA**2 
SSA=SA**2 

DO 22 J0=1,JOX 
SB=SXP(JO) 
CB=CXP(JO) 
C2B=CB**2-SB"'*2 
S2B=2.*SB*CB 
CALL DCFMTX( DD , EE ,CA,SA, CCA, SSA,C2B, S2B, 

SZZ , SXXYY, SXY , SZX, SZY , K,MS,H) 

C*OPT2* B1=BI 
C*OPT2x DO 101 KH=1,MH 
C*OPT2* CALL DCHMTX(B1,SZ,H,K,MS,HH) 
C*OPT2* ILL=1 
C*OPT2* CALL CHOQRD(HH,K,MS,E,F,1E-6,ILL) 
C*OPT2* RZE1(KH)=E(1) 
C*OPT2* RZE2(KH)=E(2) 
C*OPT2* RZE3(KH)=E(3) 
C*OPT2* RZE4 (KH) =E(4) 
C*OPT2* B1=B1+DB 
C*OPT2* WRITE(6,1019) XAH(KH),RZE1(KH),RZE2(KH),RZE3(KH),RZE4(KH) 

1019 FORMAT(2XF7.2 , 2X4(4E12.4)) 
101 CONTINUE 

NTR=O 
DO 191 I=1 ,MS-1 

NTR=NTR+1 
BI=BF(I) 
J=I+1 
CALL FITMF(BI , I , J , FREQ,GVALUE , BETA,SZ,H , HH,K,MS,E,F,FITH) 
HFIT(NTR)=FITH 
CALL PRTRS (HH, K,MS,I,It1 , SX, PTR(NTR)) 
BF(NTR)=BI 
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191 CONTINUE 
DO 192 I=1,MS-2 
DO 192 J=I+2,MS 

NTR=NTR+1 
BI=BF (NTR) 
CALL FITMF(BI,I,J,FREQ,GVALUE,BETA,SZ,H,HH,K,MS,E,F,FITH) 
IF(FITH.LT.O.) FITH=-FITH 
HFIT(NTR)=FITH 
CALL PRTRS(HH,K,MS,I,J,SX,PTR(NTR)) 
BF(NTR)=BI 

192 CONTINUE 
CALL ADDABZ(HFIT,PTR,NTR,DGAUS,DCUT,SA,AH,MH,PH,ABZ,DER) 

C*OPT1* ANGLE=90.*(FLOAT(I0)-0.5)/IOX 
C*OPT1* WRITE(10,1929) ANGLE, (HFIT(III),III=1,NTR) 

1929 FORMAT(11F9.2) 
22 CONTINUE 
21 CONTINUE 

c 
C DATA OUTPUT 
c 

c 

WRITE(10,1200) TITLE 
DO 788 I=1,MH 

WRITE(10,1299) XAH(I),DER(I) 
788 CONTINUE 

DO 789 I=1,MH 
ABD(I)=ABZ(I) 
DRV(I)=DER(I) 
XMF( I)=XAH(I) 

789 CONTINUE 

C FORMAT STATEMENTS 
c 

1200 FORMAT(//5XA64) 
1201 FORMAT(/5X'POLYCRYSTALLINE CALCULATION ' /) 
1202 FORMAT(1X'THERE ARE'I4,' COMPONENTS IN THE THETA DISTRIBUTION FUNC 

-TION'/) 
1203 FORMAT(1X'THERE ARE'I4, ' COMPONENTS IN THE THETA AND'I4, ' IN THE P 

-HI DISTRIBUTION FUNCTIONS'/) 
1211 FORMAT(21X'MICROWAVE : 'F7.4, I GHZ '/26X ' 2S+1 = ',I2) 
1212 FORMAT(29X'G = ',F6.3/29X'D = ',F7.4,' CM'/29X'E = ', F7.4 ,' CM ' /) 
1213 FORMAT(11X'INHOMOGENEOUS LINE BROADENIG = ' F6.1 ,' GAUSS'//) 
1299 FORMAT(2XF10.3 ,2(2XE14 .7)) 

STOP 
END 

C"***** 
C****** 

**'lc**** 

c 

c 

c 

SUBROUTINE DCSMTX(SZ ,SX, SY,SZZ,SXXYY,SXY, SZX,SZY , K,MS) 

IMPLICIT REAL*8 (A-H,O-Z) 
COMPLEX*16 SZ(K,MS),SX(K,MS) , SY(K,MS) , SZZ (K,MS) , SXXYY(K ,MS), 

SXY(K,MS),SZX(K,MS) , SZY(K ,MS) 

DO 11 J=1,MS 
DO 11 I=1,MS 

SZ(I,J)=CMPLX(O.,O . ) 
SZZ(I,J)=CMPLX(O.,O.) 

11 CONTINUE 
DO 12 I=1,MS 

SZ(I,I)=CMPLX(FLOAT(MS+1-2*I)/2.,0.) 
SZZ(I,I)=CMPLX(FLOAT((MS+1-2*I)**2)/4.,0.) 

12 CONTINUE 

DO 21 J=1 ,MS 
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c 

c 

DO 21 I=1,MS 
SX(I,J)=CMPLX(O.,O.) 
SY(I , J)-CMPLX(O.,O.) 

21 CONTINUE 
J=MS-1 
L=J 
DO 22 I=1,MS-1 

S=SQRT(FLOAT(J*(J+2)-L*(L-2)))/4. 
SX(I,I+1)=CMPLX(S,O .) 
SX(I+1,I)=CMPLX(S,O . ) 
SY(I,I+1)=CMPLX(0.,-S) 
SY(I+1,I)=CMPLX(O. ,S) 
L=L-2 

22 CONTINUE 

DO 31 J=1,MS 
DO 31 I=1,MS 

SXXYY(I,J)=CMPLX(O.,O.) 
31 CONTINUE 

J=MS - 1 
L-J · 
DO 32 I=1,MS-2 

S=SQRT(FLOAT((J*(J+2)-L*(L-2)) *(J*(J+2)-(L-2)*(L-4))))/8. 
SXXYY(I , I+2) =CMPLX(S,0.) 
SXXYY(I+2 ,I) =CMPLX(S , 0.) 
L=L- 2 

32 CONTINUE 

CALL DCABBA(SX,SY,K,MS,SXY) 
CALL DCABBA(SZ,SX,K,MS,SZX) 
CALL DCABBA(SZ,SY,K,MS,SZY) 
RETURN 
END 

C****** 
C****** 

c 

c 

SUBROUTINE DCABBA(A,B,K,N, C) 

IMPLICIT REAL*8 (A- H, O-Z) 
COMPLEX*16 A(K,N),B(K,N),C(K,N),Z 

DO 11 J=1,N 
DO 11 I=1 , N 

Z=CMPLX ( 0. , 0.) 
DO 12 L=1 ,N 

Z=Z+A(I , L)*B(L,J)+B(I,L)*A(L,J) 
12 CONTINUE 

C(I , J)=Z 
11 CONTINUE 

RETURN 
END 

C****** 
C****** 

c 

SUBROUTINE DCFMTX(DD , EE,CA,SA,CCA,SSA,C2B,S2B, 
SZZ,SXXYY,SXY, SZX,SZY, K,MS,FS) 

IMPLICIT REAL*8 (A-H , O-Z) 

******* 

***** ** 

COMPLEX*16 SZZ(K,MS) ,SXXYY(K ,MS) , SXY(K, MS),SZX(K,MS) , SZY(K,MS) , 
FS(K,MS) 

c 
DZZ=DD*(CCA-1 . /3.)+EE•SSA*C2B 
DXXYY=DD*SSA+EE*(CCA+1)*C2B 
DXY=-EE*CA*S2B 
DZX=(-DD+EE*C2B)*CA*SA 
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DZY=-EE*SA*S2B 
c 

DO 11 I=1,MS 
DO 11 J-=I,MS 

FS(I,J)=l.S*DZZ*SZZ(I,J)+0.5*DXXYY*SXXYY(I,J)+DXY*SXY(I,J)TDZX*S 
ZX(I,J)+DZY*SZY(I,J) 

11 CONTINUE 
A=-0.5*DZZ*(MS**2-1)*0.25 
DO 12 I=1,MS 

FS(I,I)=FS(I,I)+A 
12 CONTINUE 

RETURN 
END 

C****** 
C****** 

c 

c 

SUBROUTINE DCHMTX(B,SZ,H,K,N,HH) 

IMPLICIT REAL*8 (A-H,O-Z) 
COMPLEX*16 SZ(K,N),H(K,N),HH(K,N),Z 

DO 11 I=1, N 
Z=B*SZ(I,I)+H(I,I) 
HH(I,I)=Z 

11 CONTINUE 
DO 12 I=1,N-1 
DO 12 J=I+1,N 

HH(I,J)=H(I,J) 
12 CONTINUE 

RETURN 
END 

C"***** 
C****** 

SUBROUTINE ADDABZ(HFIT,PTR,NTR,DGAUS,DCUT,SA,AH,MH,PH,ABZ,DER) 
c 

c 

IMPLICIT 
DIMENSION 

AH1=AH 

REAL*8 (A-H,O-Z) 
ABZ(MH),DER(MH),HFIT(NTR),PTR(NTR) 

DO 11 I=1,MH 
SUMA=O. 
SUMD=O. 
DO 12 J=1,NTR 

DH=AH1-HFIT(J) 
DHSQ=DH**2 
IF(DHSQ.GE.DCUT) GOTO 12 
FACT=PTR(J)*EXP(-DGAUS*DHSQ) 
SUMA=SUMA+FACT 
SUMD=SUMD-DH*DGAUS*FACT 

12 CONTINUE 
ABZ(I)=ABZ(I)+SA*SUMA 
DER(I)=DER(I)+SA*SUMD 
AH1=AH1+PH 

11 CONTINUE 
RETURN 
END 

C****** 
C****** 

c 

c 

SUBROUTINE PRTRS(HH,K,MS,I,J,SX,PROB) 

IMPLICIT REAL*8 (A-H,O-Y) 
IMPLICIT COMPLEX*16 (Z) 
COMPLEX*16 HH(K,MS),SX(K,MS) 
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ZD=CMPLX (0., 0.) 
ZU=CMPLX (0., 0.) 
ZA1=HH(1,I) 
ZB1=HH(1,J) 
DO 11 M=2,MS 

ZA2=HH(M,I) 
ZB2=HH(M,J) 
ZSX=SX(M-1 , M) 
ZD=ZD+DCONJG(ZA1)*ZSX*ZB2 
ZU=ZU+DCONJG(ZB1)*ZSX*ZA2 
ZA1= ZA2 
ZB1=ZB2 

11 CONTINUE 
PROB=REAL(Z0)**2+IMAG(ZD)**2+REAL(ZU)**2+IMAG(ZU)**2 
RETURN 
END 

C****** ******* 
C*** *** ******* 

SUBROUTINE FITMF(BI,I,J,FREQ,GVALUE,BETA,SZ,H,HH,K,MS,E,F,FITH) 
c 

c 

IMPLICIT REAL* 8 (A-H , O- Z) 
COMPLEX*16 SZ (K,MS), H(K,MS),HH(K, MS ), F(MS) 
DIMENSION E (MS) 

BFIT=BI 
CALL DCHMTX (BFIT , SZ , H, K,MS , HH) 
ILL=1 . 
CALL CHOQRD(HH,K,MS,E , F,1E-6,ILL) 
DTR=FREQ-E(I)+E(J) 
DMF=DTR 

11 DTR1=DTR 
BFIT=BFIT+DMF 
CALL DCHMTX(BFIT,SZ,H, K,MS,HH) 
ILL=1 
CALL CHOQRD (HH , K,MS , E, F , 1E-6 , ILL ) 
DTR=FREQ-E(I)+E(J) 
BDRV=DMF/(DTR1- DTR) 
DMF=DTR*BDRV 
IF(ABS (DMF) .GE . 0 . 0001) GOTO 11 
FITH=BFIT/(GVALUE*BETA) 
BI=BFIT 
RETURN 
END 

C****** 
C****** 

c 

c 

SUBROUTINE INTGPM(LIM,IOX,THETA,SX,CX,JOX,PHI,SXP,CXP) 

IMPLICIT REAL *8 (A-H , O-Z) 
DIMENSION SX(IOX) , CX(IOX),SXP(JOX) , CXP(JOX) 
PARAMETER(PI=3 . 14159265358) 

IF(LIM . LT.1) GO TO 16 
ANGLE=PI/2 . 
QUANG=ANGLE/FLOAT(IOX) 
CEANG=-QUANG/2 . 
DO 11 J=1, IOX 

CEANG=CEANG+QUANG 
SX(J)=SIN(CEANG) 
CX(J)=COS(CEANG) 

11 CONTINUE 
IF(LIM . LT . 2) GO TO 26 
QUANG=ANGLE/FLOAT(JOX-1) 
CEANG=O . 
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DO 21 J=1,JOX 
SXP(J)=SIN(CEANG) 
CXP(J)=COS(CEANG) 
CEANG=CEANG+QUANG 

21 CONTINUE 
GO TO 99 

16 IOX=l 
SX(1)=SIN(THETA) 
CX(1)=COS(THETA) 

26 JOX=1 
SXP(1)=SIN(PHI) 
CXP(1)=COS(PHI) 

99 RETURN 
END 

C****** 
C****** 
C CHOQRD LEVEL=l DATE=90.03.03 
C#NUMPAC#CHOQRD REVISED ON 1986-09-29 

SUBROUTINE CHOQRD(ZA,KA,N,E,ZF,EPS,IND) 
IMPLICIT REAL*8 (A-H,O-Y) 
IMPLICIT COMPLEX*16 (Z) 
DIMENSION ZA(KA,N),E(N),ZF(N) 
DATA DMACH/2.D-16/ 
CDABS1(Z)=DABS(DREAL(Z))+DABS(DIMAG(Z)) 

10 IF(N . LT.l.OR.N.GT.KA.OR.EPS.LE.O.DO) GO TO 300 
NM1=N-1 
NM2=N-2 
IF(N .LE.2) GO TO 90 
DO 80 K= l,NM2 
KP1=K+l 
E(K)=ZA(K,K) 
S=O.DO 
DO 20 J=KP1,N 

20 S=DREAL(ZA(K,J))**2+DIMAG(ZA(K,J))**2+S 
R=CDABS(ZA(K,KP1)) 
S=DSQRT(S) 
ZT=S 
IF(R.GT.O.DO) ZT=ZA(K, KP1)*S/R 
ZA(K,KP1) =ZA (K,KP1)+ZT 
ZF(K)=-DCONJG(ZT) 
H=(R+S)*S 
IF(H.EQ.O.DO) GO TO 80 
T=O.DO 
DO 60 I=KP1,N 
ZT=O.DO 
DO 30 J=KPl,I 

30 ZT=ZA(J,I)*ZA(K,J)+ZT 
IF(I . GE.N) GO TO SO 
IPl=I+l 
DO 40 J=IPl,N 

40 ZT=DCONJG(ZA(I , J))*ZA(K, J)+ZT 
SO ZF(I)=ZT/H 
60 T=DCONJG(ZF(I))*ZA(K,I )+T 

U=T*O.SDO/H 
DO 70 J=KP1,N 
ZF(J)=ZA(K,J)*U-ZF(J) 
DO 70 I=KPl,J 

70 ZA(I,J)=DCONJG(ZF(I))*ZA(K,J)+DCONJG(ZA(K,I))*ZF(J)+ZA(I,J) 
80 ZA(K,K)=H 
90 E(N)=ZA(N,N) 

ZA(N, N)=1.DO 
IF(N . EQ . 1) GO TO 290 
E(NM1)=ZA(NMl,NMl) 
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ZF(NM1)=DCONJG(ZA(NM1,N)) 
ZF(N)=O.DO 
ZA(NM1,NM1)=1.D0 
ZA(NM1,N)=O.DO 
ZA(N,NMl)=O.DO 
IF(IND.EQ.O.OR.N.EQ.2) GO TO 140 
DO 130 L=1,NM2 
K=NM1-L 
KP1=K+1 
H=-ZA (K, K) 
ZA(K,K)=1.DO 
IF(H.GE.O.DO) GO TO 120 
DO 110 J=KP1,N 
ZS=O.DO 
DO 100 I=KP1,N 

100 ZS=ZA(K,I)*ZA(I,J)+ZS 
ZS=ZS/H 
DO 110 I=KP1,N 

110 ZA(I , J)=DCONJG(ZA(K,I))*ZS+ZA(I,J) 
120 DO 130 I=KP1,N 

ZA(K,I)=O.DO 
130 ZA(I,K)=O.DO 
140 GN=DABS(E(1)) 

DO 150 J =2 ,N 
150 GN=DMAX1(CDABS1(ZF(J-1))+DABS(E(J)),GN) 

IF(GN.EQ.O.DO) GO TO 290 
DEL=DMAX1(EPS,DMACH)*GN 
K=N 

160 L=K 
170 IF(CDABS1(ZF(L-1)) . LT.DEL) GO TO 180 

L=L- 1 
IF(L.GT.1) GO TO 170 

180 IF(L.EQ.K) GO TO 230 
W=(E(K-1)+E(K))*0.5D0 
R=E(K)-W 
X=DSIGN(DSQRT(DREAL(ZF(K-1))**2+DIMAG(ZF(K-1))**2+R*R),R)+W 
EE=E(L)-X 
E(L)=EE 
ZFF=ZF (L) 
R=DSQRT(EE*EE+DREAL(ZFF)**2+DIMAG(ZFF)**2) 
J=L 
GO TO 200 

190 R=DSQRT(E(J)*E(J)+DREAL(ZF(J) )**2+DIMAG(ZF(J))**2) 
ZF(J-1)=ZS*R 
EE=E(J)*C 
ZFF=ZF(J)*C 

200 C=E(J)/R 
ZS=ZF(J)/R 
W=E (J+1)-X 
E(J)=(DCONJG(ZFF)*C+DCONJG(ZS)*W)*ZS+EE+X 
E(J+1)=C*W-DCONJG(ZFF)*ZS 
IF(IND . EQ.O) GO TO 220 
DO 210 I=1,N 
ZT=ZA(I,J+1) 
ZA(I,J+1)=ZT*C-DCONJG(ZS)*ZA(I,J) 

210 ZA(I,J)=ZA(I,J)*C+ZT*ZS 
220 J=J+1 

IF(J.LT.K) GO TO 190 
ZF(K-1)=E(K)*ZS 
E(K)=E(K)*C+X 
GO TO 160 

230 K=K-1 
IF(K.GT.1) GO TO 160 
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J=N 
240 L=l 

II=l 
JJ=l 
DO 260 I=2,J 
IF(E(I) .GT.E(L)) GO TO 250 
L=I 
GO TO 260 

250 JJ=L 
II=I 

260 CONTINUE 
IF(II.EQ.JJ) GO TO 280 
W=E{JJ) 
E(JJ)=E{II) 
E (II) =W 
IF(IND.EQ .O) GO TO 280 
DO 270 I=l, N 
ZT=ZA (I, JJ) 
ZA(I,JJ) =ZA( I,II) 

270 ZA(I,II)=ZT 
280 J=II-1 

IF(J.GE.2) GO TO 240 
290 IND=O 

RETURN 
300 IND=30000 

RETURN 
END 
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