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Abstract 

To estimate changes in regional cerebral blood flow (rCBF) without arterial 

sampling in the study of functional-anatomical correlations in the human brain, using 

1SQ-Iabeled water and PET, a standard arterial input function was generated from the 

input function in 10 normal volunteers with dose calibration and peak time normalization. 

The speed and volume of injection were precisely controlled with a mechanical injector. 

After global normalization of each tissue activity image, the standard arterial input 

function was applied to obtain estimated CBF images. Relative changes in estimated 

rCBF to whole brain mean CBF(D.Fest) and those in regional tissue activity (D.C) were 

compared with true relative rCBF changes (D.F) in 40 pairs of images obtained from 6 

normal volunteers. D.Fest correlated well with D.F, whereas D.C consistently 

underestimated D.F. This noninvasive method simplifies the activation studies and 

provides the accurate estimation of relative flow changes. 

Key words: positron emission tomography, cerebral blood flow, activation study, 

methodology 



3 

Introduction 

Positron emission tomographic (PET) measurements of regional cerebral blood flow 

(rCBF) with intravenously administered 150-labeled water are well suited to the study of 

functional-anatomical correlations within the human brain (1,2]. Quantification of the 

change in rCBF from an initial resting state is important for the expression of regional 

neuronal activation (3]. The measurement of rCBF with PET usually requires serial 

arterial blood sampling to accurately determine the arterial input function of the tracer. 

For functional brain mapping, however, the calculation of absolute blood flow values 

may not be required. Instead, relative changes in rCBF can provide substantial 

information about the cerebral responses to neurobehavioral tasks [3]. Therefore, the 

measurement of relative changes in cerebral blood flow without arterial sampling would 

be preferable. 

Fo r wide cl inical application, noninvasive and simplified techniques for 

quantifying relative changes in rCBF have been sought by other investigators [1,3].The 

near-linear relation between radiotracer concentration and rCBF implies that the 

distribution of radiotracer concentration closely approximates the rCBF distribution [2]. 

However, relative changes in simple radiotracer concentration underestimates relative 

rCBF changes in the gray matter, which is the main concern of activation studies (2,3]. 

Fox et al (1] proposed a method for correcting the underestimation of rCBF for a region 

of interest, but not on a pixel-by-pixel basis. In the present paper, we show that 

correction for the nonlinear relationship between radiotracer concentration and rCBF is 

essential for quantification of relative changes in CBF. We present a method that can 

account for this non linearlity in estimating relative CBF changes over the whole brain 

without arterial sampling. The technique utilizes a standard arterial input function and a 

reference table for the calculation of blood flow (4] . 
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Theory 

CBF Measurement 

Measurement of CBF was performed by an adaptation of Kety's diffusible 

auto radiographic method [ 4-6]. The regional change in cerebral radiotracer 

concentration is described as 

dCT(t) 
dt 

= EFCa(t)- EFCT(t) - ACT(t) 
~ ( 1) 

where Cr(t) is the tissue concentration of H215Q measured by PET, Ca(t) is the arterial 

concentration of H215Q measured by blood sampling, F is the regional blood flow, ~is 

the partition coefficient of water between brain and blood, and A is the physical decay 

constant of 15Q. E is the extraction fraction of the tracer between capillaries and tissues 

[5, 6]. 

PET value C obtained by the scan from t = t1 tot= t2 is 

l
t2 

C = _ 1_ F Ca(t) * exp[- (F/~ +A)] dt 
t2 - t 1 t 1 

(2) 

where * indicates convolution. Here, we assumed the extraction fraction was equal to 

unity [5]. The "look-up" reference table function F = G(C) was generated to relate F to C 

[4], and applied to the PET images of radioactivity pixel-by-pixel to calculate rCBF. 



Measurement of Relative Change in rCBF 

Global normalization 

s 

In an activation study, the primary concern is to locate and quantitate rCBF 

changes induced by the activation paradigm [7], because global (whole-brain) CBF is 

not significantly affected by passive sensory stimulation [8, 9] or motor tasks [1 0, 11 ]. 

The fluctuation of global CBF (gCBF) between successive scans in the current study 

(the mean within-subject coefficient of variation was 5.1 %) was similar to that observed 

in previous studies [8-11 ]. The fluctuation could be caused by technical problems such 

as insufficient temporal sampling of arterial blood, or by failure to correct the delay and 

dispersion of the input function [6, 12, 13]. Physiological factors, such as the variation of 

P aC02, might also have contributed [11 ]. The effect of fluctuation of gCBF was 

effectively abolished by multiplying each pixel by a correction factor calculated as the 

scan gCBF divided by the true mean gCBF [1,7-1 0]. This method, global normalization, 

has been proved to allow quantitative comparison of the relative regional increase in 

radiotracer concentration and blood flow induced by selective stimulation [1 ]. This 

process assumes that scan-to-scan fluctuation equally affects every pixel used for 

calculation of gCBF and that the contribution of the activated region to the variation in 

gCBF is small relative to that of gCBF [9]. 

Relative change in rCBF 

In the neurobehavioral task batteries, we consider state 1 (control) and state 2 

(activation) of the same subject. The reference tables of each state are G1 (C) and 

G2(C), respectively. The simple radiotracer concentrations at one pixel are C1 and C2 

.The corresponding rCBFs F1 and F2 are F1 = G1 (C1) , F2 = G2(C2) . The global 

means of CBF in each state are F1g and F2g . Using F1g and F2g , F1 and F2 are 

expressed as: 



F1 =YF1g 

F2=(y+6Y}F2g 
(3) 

6 

where variable y represents the CBF of state 1 relative to F1g, and y+6y of state 2. The 

relative change in CBF, ~F. is expressed with radiotracer concentrations and reference 

table functions of each state as follows: 

Similarly, C1 and C2 can also be expressed as: 

C1 = xC1 9 

C2 = (x + 6x)C29 

F1g 
where g = ­

F2g . 
( 4) 

(5) 

where variable x represents the radiotracer concentration relative to the global 

concentration in state 1. With Equation 5, Equation 4 is expressed as: 

A fractional increase propagation function H(C) is defined as 

H(C) = dG/G 
dC/C 

(6) 

(7) 

which is the ratio of the fractional increase in the CBF to the fractional increase in the 

measured radiotracer concentration. 

For a small 6C, 

G(C + 6C) = G(C) + G(C)6CCH(C) = G(C)(1 + ~H(C)) 
(8) 
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Therefore, if ilx is small, this relationship may be applied to the numerator of Equation 

6: 

G2((x+ilx} C2g) =G2(xC2g+il(xC2g} ) 

(9) 

where H2 is the fractional increase function at state 2. 

Using this expression for the numerator of Equation 6, ilF can be expressed with a 

fractional increase propagation function H2 as 

noting that 

il(xC2g) = ilx 

xC2g x 

(1 0) 

since C2g is constant. Moreover, C1 g and C2g are considered to be constant, 

G1 (xC1 g), G2(XC2g). and H2(XC2g) are the functions of x. Thus 
~ ~ 

G1 (xC1g) =G1 (x), G2(xC2g) =G2(x) :systematic normalized reference table function 
~ 

H2(xC2g) =H2(x) :normalized increase propagation function. 

~ Using this notation, ilF is expressed as 

where 

~ 

ilF = g~2(x) (1 + ~x-H2(x)) - 1 
G1 (x) 

= J(x) (1 +il/H2(x))- 1 

(11) 



.,.... 

J(x) = g~z(x) 
G1 (x) 

.,.... 
G2(x) 

= F~ .,.... 

G1 (x) 

F1g 

8 

(12) 

J(x) is the ratio of the relative blood flow of consecutive scans to the corresponding 

relative concentration of radiotracer (x) . If G1 and G2 are linear, ..... .,.... 

G1 (x) = G2(x) = x 
F1g Fzg 

~ l\F - ~X 
then J(x) = 1. If, in addition, H2(x) = 1, then - x. This is not the case, however, 

as washout of the radiotracer causes nonlinearity between C and F. When the relative 

(I change in CBF, 6F, is estimated by the relative change in radiotracer concentration, 

6C- 6x h . . - x, t e systematic error 1s 

6C-6F = ¥(1 - H2(x)J(x)) + (1 - J(x)) (13) 

In this paper, we propose a standard reference table function Gs(C), which was 

derived from the standard arterial input function obtained from measured arterial curves 

in 10 normal subjects. In this method, radiotracer concentration images are globally 

normalized to Cs, which is the standard global mean of radiotracer concentration 

determined independently. Gs(C) was then applied to the normalized images. 

Estimated relative change in rCBF is then expressed as: 

6 F _ Gs(a2C2) - Gs(a1 C1) a 1 = _s_ 
est- Gs(a1 C1) where C1 g 

Using the definitions of C1 and C2 given in Equation 5, Equation 14 may be expanded 

as: 

6 F _ Gs((x + 6x)Cs)- Gs(xCs) _ Gs((x + 6x)Cs) _ 1 
est - Gs(xCs) - Gs(xCs) (15) 

If 6x is relatively small, Gs((x + 6x)Cs) may be approximated in terms Hs(xCs) using a 

derivation and notation similar to those used in simplifying G2((x + 6x)C29) in Equations 

6-8: 
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~Fest =(1 + ~x Hs(xCs))- 1 = ~xHs(x) (16) 

The systematic error in estimating ~F by ~Fest is expressed as follows using Equation 

11 : 

~Fest -~F = ~x (Hs(x)- H2(x)J(x)) + (1 - J(x)) . (17) 

~ ~ 

This error is small when H2(x) is well approximated by Hs(x) and when J(x) is 

close to unity. Since delay and dispersion of the arterial input function affect the shape 

of the reference table [5), strict control of the speed and volume of injection was 

attempted to increase the reproducibil ity of the input functions. In that situation, J(x) 

would be near unity, because relative blood flow of consecutive scans corresponding to 

the same relative concentration of radiotracer (x) is expected to be the same. In 
~ 

addition, variability in H2(x) would be small, because the shapes of the reference tables 

are probably simi lar, even interindividually. A standard input function can be generated 

by averaging the input functions after dose calibration and peak time normalization. 
~ 

Using the standard input function, a standard reference table Gs(x) can be calculated, 
~ ~ 

where C5 is selected to fit Hs(x) to the mean H2(x) at each x. To quantitate the 

relative change in rCBF noninvasively, tissue activity images are globally normalized 

with a = Cs/Cg, then the standard reference table F = Gs(C) is applied to generate 

normalized CBF images of states 1 and 2. The activation-induced change in rCBF is 

then obtained by pixel-by-pixel subtraction of the normalized CBF images of state 

1 (control) from that of state 2( activated). 

Materials and Methods 

Tomograph Characteristics 
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The PCT-3600W system (Hitachi Medical Co., Japan) was employed for PET 

scanning (14]. This system simultaneously acquires 15 slices with a center-to-center 

interslice distance of 7 mm. All scans were performed at a resolution of 9 mm full width 

at half maximum (FWHM) in the transaxial direction and 6.5 mm in the axial direction. 

Field of view and pixel size of the reconstructed images were 256 mm and 2 mm, 

respectively. Tomographic transmission data,using a standard Ge-68/Ga-68 plate 

source, was obtained before all emission measurements. 

Subject Preparation 

Ten normal volunteers (all men, aged 20-25 years) were studied. Six of them 

participated in an activation study involving a finger-movement paradigm and PET. The 

remaining four participated in other activation studies, and their arterial radiotracer 

activity curves were used on ly to obtain the standard arterial input function. Written 

informed consent was obtained from each subject using forms and procedures 

approved by the Ethical Committee of Kyoto University Faculty of Medicine. 

A catheter was placed in the cubital vein of the subject's right arm and the 

brachial artery of the left arm. The subject lay in a resting state, with eyes closed, and 

the room was quiet and dimly lit. No attempt was made to control the subject's thought 

content. During scanning, the head was immobilized with an individually molded head­

holder. 

Behavioral States 

Two scans were acquired while the subjects were at rest; no stimulation was 

given and no task was performed (state 1, control). Two to four scans were performed 

while the subjects moved the fingers in the right hand (state 2, activation). A total of 31 

measurements were performed, including 12 control states and 19 activation states. 



1 1 

Tracer Techniques 

Scan acquisition of 90 seconds was initiated at the start of tracer injection. Data 

were collected on six consecutive frames of 15 seconds each. The sinograms were 

added to make one static PET image. 

H215Q was injected into the right cubital vein ( 6 ml in 15 seconds ) with an 

automatic injector. Arterial blood samples were obtained manually from the left brachial 

artery every 3 to 5 seconds after the radiotracer was injected until scanning was 

completed to obtain the arterial input curve. The volume and activity of residual 

radiotracer in the syringe were measured and corrected for decay to obtain the injected 

dose. 

Data Analysis 

Reference table 

The reference table function G(C) was calculated from Equation 2, using the 

measured arterial input function. The arterial activity curve Ca(t) was determined by 

multiple blood samplings starting from t = 0 with linear interpolation between measured 

points. For each CBF value from F = 0 to 130 ml/min/1 00 g in steps of 0.2 flow units, the 

average tissue activity, C, was calculated from Equation 2. The relation between blood 

flow and tissue radiotracer concentration (reference table) was approximated by a 4th 

order polynomial equation for each scan. J(x) and H(x) were obtained from G(C), global 

CBF, and global radiotracer concentration. Global radiotracer concentration (Cg) and 

global CBF (Fg) were determined for each scan. First, a template for each subject was 

obtained from the tissue activity image of the initial resting state. The template consisted 

of all pixels having 30% or more of the maximum activity in the 15 slices. This 30% cut­

off method can effectively eliminate nonbrain structures, such as the cranium and 
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ventricles. This was confirmed by direct comparison of the template and the magnetic 

resonance images of the brain in each subject. Fg and Cg were then calculated for each 

scan by averaging the values of all pixels in the template. 

Standardization of arterial input function 

Arterial input function data were obtained from all 10 subjects, including the six 

involved in the finger-movement paradigm. Two series of arterial samplings were 

performed while subjects were in a resting state, during which no stimulation was given 

and no task was performed. 

The arterial input function was normalized to correspond to an injected dose of 

10 mCi of H21SQ. Each dose-normalized arterial input function was shifted to the mean 

peak time. These shifted curves were averaged to obtain the standard input function. A 

standard reference table was calculated as, described earlier. 

Determination of Cs and Gs(Cs) 
.-... 

Whi le Hs(C) is determined by Gs(C), Hs(x) depends on Cs. For accurate 
....... ....... 

estimation of the mean H(x) by Hs(x) in a wide range of x, Cs was chosen to minimize 

the mean absolute error in the range of x ( 0 -1.5 ). The standard global mean of blood 

flow (Fs) was defined as Fs = Gs(Cs). 

Calculation of relative change in rCBF with standard reference table(L1Fest) 

To determine the systematic errors in relative changes of rCBF (~ F) by the 

re lative changes in radiotracer concentration (~C) and by the relative changes 
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estimated with the standard reference table method (D.Fest) , D.C, D.F, and D.Fest were 

calculated using the following equations: 

D.C a2C2-a1 C1 
a1C1 

D.F = ~2G2(C2)- ~2G1 (C1) 

~2G1 (C1) 
D.Fest = Gs(a2C2)- Gs(a1 C1) 

Gs(a1 C1) 

where a1 = Cs!C1g. a2 = Cs!C2g. 

r Since measured CBF images were globally normalized to 50 ml/min/1 00 g, 

~1 = SO/F1g. ~2 = SO/F2g. 

Results 

Mean value of J(x), the ratio of relative CBF to the corresponding relative tissue 

radiotracer activity x, over-all with in-subject control -activat ion study pairs, was 

distributed in the range of 0.992 to 1.006 with a coefficient of variation less than 1.678% 
...... 

over a range of x from 0.1 to 1.5. Figure 1 and Table 1 show the reproducibi lity of H(x) 

over a range of x from 0.1 to 1.5. The increase propagation factor at the global mean of 
...... 

radiotracer concentration (H(1 )) was 1.21 ± 0.04 (mean± SD) . 

The standard arterial input function obtained from the 10 subjects is shown in 

Figure 2. Peak time of this curve was 36 seconds, peak value 3133 nCi/ml, and delay 

time 20 seconds. 

The standard reference table was calculated from the standard arterial input 

function and Equation 2, and was fit to a 4th order polynomial , 



Gs(C) = 3.1454 x 10-2 + o.17082C + 1.7565 x 1o-4c2 

-1.5639 x 1o-7c3 + 5.2443 x 1o-10c4 

14 

Maximum and mean error in terms of absolute value in the range of Gs ( 0 - 130 

ml/min/1 00 g ) were 0.26 and 0.09 ml/min/1 00 g, respectively. 
~ ~ 

H5{x) was well fit to the mean of H{x) over a range of x from 0.1 to 1.5 when Cs 

was 237 nCi/ml (Table 1 ). The standard global mean of CBF, Fs = Gs(Cs) , was 50 

ml/min/1 00 g, which was almost equal to the mean of gCBF calculated with the 

measured input function (49.5 ± 7.9, mean± S.D.). 

Table 2 shows a systematic underestimation of ilF by ilC ( p < 0.01; ANOVA), as 

reported by Fox et al [1 ]. This underestimation was observed in the low, middle, and 

high flow range( F = 30, 50, 70 ml/min/1 00 g ). The underestimation increased as ilF 

and F increased. The ilFest was an accurate estimate of the true ilF without the 

systematic underestimation found with ilC over a range of ilF from 0 to 40% at variable 

flow values ( F = 30, 50, 70 ml/min/1 00 g) (Tables 2 and 3). 

Discussion 

The present method permits accurate estimation of changes in rCBF with H21SQ 

and PET noninvasively using a standard input function. Fox et al [2] and Herscovitch et 

al (12] reported that the nearly linear relation between C (regional tissue radioactivity) 

and F (regional CBF) inherent in the PET/autoradiographic model indicates that 

changes in rCBF will be closely approximated by changes in C. Fox et al (1] expressed 

the relation between C and F as: 

F = a(C)2 + b(C) 

where a and b are constants determined for each scan using a reduced polynomial 

regression. They further showed that when changes are expressed as fractional 

changes from initial control measurement, relative changes in rCBF(ilF) can be 

calculated with those in tissue activity (ilC) with the equation 
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where 

a = 1 + b (b -N+ 4afc} 
2afc • 

and fc is the rCBF within the region of interest (ROI) during the control state. 

Therefore, a should depend on the scan, the subject, and the flow values in each 

ROI. Fox et al [1] showed that a is relatively constant across the subjects in the ROI 

taken in the striate cortex. For estimation of relative blood flow change, they used the 

mean value of a P,) from the initial control scans from 8 normal volunteers, and 

estimated flow change as: 

.1Fest = .1C +.1C(.1C + 1) a. 

Since a is still flow-dependent, to estimate the CBF changes in the ROI other than 

striate cortex, one should know the value of fc, regional CBF in the control state [1 ). This 

process makes it impossible to apply their method on a pixel-by-pixel basis to the whole 

image. The estimation of relative change of rCBF must be restricted to the specific ROI 

whose resting blood flow is already known. 

In this study, we deduced a more general expression of the relation between 6F 

and .1C, Equation 1 0, without any need for knowing fc: 

" .1F = J(x) (1 +.1C H2(x)) - 1 

(': As our results show, J(x) is quite close to unity. Since unity of J(x) means that in 

each individual the same relative radiotracer concentration will accompany the same 

relative CBF values in the consecutive sessions, this result is reasonable. This is 

probably because intra-subject reproducibility of shape and delay of input functions 

between control and activation states is high, and in turn, the normalized reference 

" " tables G1(x) and G2(x) are similar in each individual. The similarity could be due to the 

strict control of speed and volume of injection provided by a mechanical injector. In this 

case, we can simplify Equation 10 as: 
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( 18 ). 

Comparing Equation 18 with Equation 16 shows that the utility of the proposed method 
....... 

for estimating D.Fest depends on the accuracy with which H2(x) is estimated when 

arterial samples are not obtained. As shown in Table 1, the coefficient of variation of 
....... 
H2(x) among subjects is small over a wide range of relative radiotracer 

concentration(0.1-1.5). Therefore, to quantify relative CBF changes, the nonlinear 

relationship between C and F can be systematically corrected with a standard reference 

table. This is in contrast to the fact that absolute quantification of CBF and CBF changes 

need individual arterial input function, because they are quite sensitive to the shape of 

the input function [5, 13, 15]. 

To substitute H2{x) with H5{x), we planned to obtain the standard arterial input 

function and the standard reference table Gs(C), which in turn can generate Hs{x}, 

which was best fit to the mean H(x) by selecting proper C5 . If the method of radiotracer 

injection is constant across the subjects, the delay and the shape of the arterial input 

function are expected to be similar, even interindividually for normal subjects. Mazziotta 

et al (3] reported that by examining the arterial blood time-activity curves in over 10 

normal subjects after a bolus injection of H2 1SQ, both the shape and the tracer 

appearance time were found to be very similar[ 3 ]. In our study, however, the tracer 

appearance time varied from subject to subject. On the basis of these findings, we 

obtained a standard arterial input function from normal volunteers using mechanical 

injection with exact dose measurement. We averaged arterial input functions after dose 

calibration and peak time normalization, to preserve the shape of the input function. 
....... ....... 

As C5 was selected just to fit H5(x) to the mean value of H(x), F5 = G(C5 ) is not 

necessarily the global mean of each scan calculated with the standard reference table. 

If intersubject averaging is attempted, global normalization of each scan calculated with 

a standard reference table should be performed. This will not affect our results, as 
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global normalization is a linear transformation. Similarly, G5 (cx.1 C1) is not necessarily 

equal to P1 G1 (C1 ). We used the normalized CBF value calculated from the measured 

arterial input of state 1 (p1G1(C1)) for comparison of systematic error of ~F by ~Fest at 

different blood flows (Table 2). 

At ~F = 0.3, there was no systematic error for estimation of ~F by ~Fest at a 

wide range of CBF values (Table 2). As relative changes in regional blood flow of 0.3 to 

0.5 are not readily achieved [1]. most ~F measurements are less subject to error. 

The nonlinear count-flow relationship increases as scan time is prolonged, 

because of increased tracer washout. This has a particularly greater effect on the higher 

flow region [3]. To avoid underestimation of relative flow changes by the tissue activity 

changes in the gray matter, scanning for less than 60 seconds from the arrival of the 

tracer to the brain was recommended [ 2,3 ]. although even with 40-second scanning, 

~C underestimated ~F [ 1 ]. In this study, underestimation of ~F by ~C was greater than 

that reported by Fox et al [1]. because our protocol used a longer scanning time. 

Although a shorter scanning time is better to detect relative flow change, longer 

imaging time might be favored as a compromise between statistical noise and detection 

sensitivity [3]. If the injected dose is reduced or the detection sensitivity of the 

tomograph is lower, application of a standard reference table serves to preserve 

detectability of flow changes. Quantification of relative flow changes is particularly 

important when the images are analyzed with ROis because of partial volume effect. 

Correction of delay and dispersion of the arterial input function is essential for 

accurate estimation of CBF [13]. In this study, however, the correction was not 

performed for the following reasons. First, we adopted manual arterial sampling, in 

which external delay and dispersion were negligible. Second, it is impossible to 

measure the internal delay time and dispersion constant with the single-frame 

autoradiographic method. With the dynamic method, mean internal dispersion time is 
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estimated at 5 seconds if blood is sampled at the radial artery [ 13 ], and differences of 

arrival time (" head-to-hand" time lag ) are 3 seconds [ 16 ). However, the correction is 

not practical, as internal delay and dispersion depend on the site of arterial sampling 

(radial artery vs brachial artery) and on the location of the brain region [ 17 ). Finally, 

the failure to correct the delay and dispersion may be acceptable because of the 

relatively long scan acquisition time used [13]. 

Incomplete extraction of water is another cause of the nonlinear count-flow 

relationship [6, 18, 19]. Unfortunately, the different values for the permeability-surface 

area product of water obtained under varying conditions indicated its variability and the 

difficulty in choosing a value for general use [6, 18, 19). Nevertheless, an extraction 

correction may still be beneficial for an activation study to enhance the flow changes in 

the higher flow region, which is our primary concern. The relationship between values 

for CBF measured by PET (F) and the extraction-fraction-corrected CBF (Fcorr) is 

known as: 

Fcorr = F/[1-exp(-PS/Fcorr)] (19) 

where PSis the permeability-surface area product of water [6). Thus, there is no way to 

algebraically solve for Fcorr in terms of F. However, Berridge et al [19) compared 150-

labeled butanol which has E = 1 [18] and 150-labeled water in the identical normal 

volunteers. Instead of Equation 19, they used the equation 

Fcorr = F/[1-exp(-PS/F)). (20) 

They calculated PS by a nonlinear regression fit of the corrected data of 150-labeled 

water with Equation 19 to the measured butanol, resulting in PS = 133 ml/min/1 00 g. 

With Equation 20, the corrected standard reference table Gscorr(C) is expressed as: 

Gscorr(C) = Gs([) J : Extraction-corrected standard reference table 
1 - exp _.E..S._ 

F 

where F = Gs(C). 
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This approach may not be strictly precise, because a PS correction based on 

Equation 20 should be applied to the absolute CBF value. However, with the 

assumption that intrasubject and intersubject variability of global CBF is relatively small, 

and considering that Fs ( 50 ml/min/1 00 g) is close to the mean of the measured Fg 

(49.5 ± 7.9 ml/min/1 00 g), the correction might be justified. 

In the corrected standard reference table Gscorr(C) and its increase propagation 

factors (Figure 3 and Table 4) . the PS value was assumed to be 133 ml/min/1 00 g [19]. 

Much more amplification of L\C is achieved with the PS corrected standard reference 

table than with the uncorrected one. As this amplification is larger in the higher flow 

range, this correction would be of great help in detecting activated foci, which are 

expected to occur in the high flow region. 

Our method cannot assess the changes in global CBF common to the non­

invasive methods proposed previously [ 1,3 ]. Our approach requires strict control of the 

volume and speed of tracer injection. Further, a series of arterial sampling and injected 

dose measurements should be performed on normal subjects to acquire the standard 

arterial input function before any noninvasive studies are performed. 

In conclusion, the standard arterial input function method is feasible for correcting 

the underestimation of re lative changes in CBF in neurobehavioral task batteries. This 

method is particularly useful when the scanning time is relatively long, and when the 

analysis of the data is based on regional analysis. 
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Figure legends 

FIGURE 1. Distribution of increase propagation factors H(x). Variable x is the radiotracer 

concentration relative to the global mean of each measurement. Values are mean ± 

1 SD of 31 measurements. 

FIGURE 2. Standard arterial input function obtained from 10 normal volunteers with 

dose calibration and peak time normalization. 

FIGURE 3. Standard reference table with ( open circles ) and without (closed circles ) 

correction of incomplete extraction of water. PS = 133 ml/min/1 00 g [16] was used. 
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Table 1. Increase propagation factors at tissue concentration of radiotracer relative to 
..... 

global mean from standard reference table (H.(x: )) vs from reference tables calculated 
..... 

with measured arterial input function (H(x)) . 

..... ..... 
1 OOx(%) Ha(X).,. H(x) ( N = 31) 

mean so %Coef.var.( SO/mean x 100) 

10 1.02 1.02 0.005 0.494 

20 1.04 1.04 0.008 0.776 

30 1.06 1.06 0.011 1.013 

40 1.08 1.08 0.013 1.164 

50 1.10 1.10 0.016 1 .451 

60 1.12 1.12 0.019 1.681 

70 1.14 1.14 0.022 1.977 

80 1.16 1.16 0.027 2.311 

90 1.19 1.19 0.032 2.712 

100 1.21 1.21 0.040 3.309 

110 1.24 1.24 0.048 3.859 

120 1.28 1.28 0.057 4.442 

n 130 1.31 1.32 0.077 5.814 

140 1.35 1.36 0.079 5.809 

150 1.39 1.40 0.091 6.512 

*When Cs = 237 nCi/ml. 
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Table 2. Systematic error of 6Fest and 6C at various values of CBF (ml/min/1 00 g) 

where 6F = 0.3. 

CBF 6Fest-6F 6C-6F 

30 0.53 ± 1.62 -3.97 ± 1.36 . 

50 0.00 ± 1.17 -6.66 ±0.96 • 

70 -0.58 +2.13 -9.19 + 1.59 • 

· p < 0.01 (ANOVA) for comparison with 6Fest-6F. 
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Table 3. Systematic error of .0-Fest and .0-C at various values of .0-F(%) 

where F =50 ml/min/1 OOgr . 

.0-F D.Fest-.0-F .0-C-.0-F 

0.1 0.14± 1.71 -1.96 ± 0.84 
. 

0.2 -0.07 ± 0.88 -4.24 ± 0.79 
. 

0.3 0.00 ± 1.17 -6.66 ± 0.96 • 

0.4 -0.26 + 1.34 -9.58 + 1.46 • 
. 

p < 0.01 (ANOVA) for comparison with D.Fest-.0-F. 

28 
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Table 4. Increase propagation factors at tissue concentration of radiotracer relative to 

global mean, with and without PS correction . 

1 OOx(%) 
..... * H.(x) 

..... 
H.(x)PS corrected+ 

10 1.02 0.99 

20 1.04 1.03 

30 1.06 1.06 

40 1.08 1.10 

50 1.10 1.14 

60 1.12 1.18 

70 1.14 1.23 

80 1.16 1.29 

90 1.19 1.36 

100 1.21 1.44 

110 1.24 1.53 

120 1.28 1.63 

130 1.31 1.74 

140 1.35 1.85 

150 1.39 1.97 

*When Cs = 237 nCi/ml. 

+ With assumption that gCBF value is 50 ml/min/1 00 g, correction for incomplete 

extraction was performed. Mean PS value =133 ml/min/1 00 g [19). 
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ABSTRACT 

The steady-state method using 1SQ gas inhalation and positron emission 

tomography (PET) is a simple and practical way of imaging cerebral blood flow 

(CBF) and oxygen metabolism. It has several disadvantages, however, such as 

prolonged examination time, the requirement of steady state, and a large tissue 

heterogeneity effect. To avoid the drawbacks of the steady-state method but 

preserve its simplicity, we applied the PET/autoradiographic method to the build­

up phase during the continuous inhalation of 15Q gas with intermittent arterial 

sampling. A simulation study was performed to determine the optimal scanning 

period, evaluate the delay and dispersion effect of the input function, and 

estimate the tissue heterogeneity effect. To assess the clinical feasibility of the 

proposed technique for the study of oxygen metabolism , sequential 

measurements with the new method and the conventional steady-state method 

were performed in 8 patients. The simulation study showed that a 5-min scan 

started 3 min after the commencement of 1SQ gas inhalation was optimal. With 

the new method, the delay and dispersion effect on CBF was the same as that of 

the conventional steady-state method, but the tissue heterogeneity effect was 

reduced. In 8 patients, CBF values calculated by the new method showed time 

dependency and were slightly higher than those obtained by the steady-state 

method. The oxygen extraction fraction showed no significant time dependency 

and was well correlated with that obtained by the steady-state method. We 

conclude that the proposed method is a simple and acceptable alternative to the 

conventional steady-state method. 
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INTRODUCTION 

The continuous inhalation of 1so labeled C02 and 0 2 (steady-state method) is 

widely used as a simple and practical method to measure regional cerebral blood 

flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of 

oxygen consumption (CMR02) by positron emission tomography (PET) ( 1). The 

method, however, has several disadvantages (2-5). The relatively long 

inhalation period required to achieve steady state (approximately 8 to 10 min) 

exposes subjects to a high level of radiation. Practically, it is difficult to determine 

the time when the tracer concentration has reached the steady state. Fluctuation 

of arterial activity may lead to substantial error in the calculated values, which 

cannot be completely corrected by averaging techniques (2). Finally, the steady­

state method is subject to the effect of tissue heterogeneity (5-7). 

The examination time was shortened by the introduction of an autoradiographic 

method d irectly based on Kety's one compartment model (B) without assuming 

steady state (6, 9, 10). Recently, a combination of dynamic and autoradiographic 

methods was also applied in C1SQ2 inhalation studies ( 11 -13). These methods 

are less subject to the effect of tissue heterogeneity, but are more affected by 

delay and dispersion problems ( 11, 12, 14). Rapid separation of plasma is also 

required for calculation of the OEF ( 10 ). 

Senda et al. (2) applied the autoradiographic method to correct the variation in 

arterial radioactivity concentration in the near steady state. Compared with the 

conventional steady-state method, this method can provide more robust 

parameters despite fluctuation of the arterial input function. However, it has the 

same disadvantages as the conventional method, that is, prolonged examination 

time and tissue heterogeneity effect . Because the algorithm of their method was 

similar to that used in the bolus injection of H2 1SQ, it is applicable to the earlier 

phases in the gas inhalation method, resulting in faster examination and efficient 



SADATO 5 

use of the administered radiation dose. Considering the longer build-up phase 

during continuous inhalation of gas than during bolus administration, a 

reasonable compromise between accuracy of the parameters and simplicity of 

the procedure would seem to be possible. 

The purpose of th is study was to apply the autoradiographic method to the 

build-up phase while preserving the simplicity of the steady-state method. 
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MATERIALS AND METHODS 

Formulas for calculat ion 

Formulas of the new method and the steady-state method are described in the 

Appendix. 

CBF measurement with c tso 2 inhalation 

The regional change in cerebral radiotracer concentration during C 150 2 

inhalation is described as 

d~rt) = FCa(t) - F ~r(t) - ACr(t) = FCa(t) - (~ + A)Cr(t) 

where Cr(t) is the tissue concentration of H21SQ, Ca(t) is the arterial concentration 

of H215Q, F is the regional blood flow, p is the partition coefficient of water 

between brain and blood, assumed as unity in this study , and A is the physical 

decay constant of 1so. 

In the steady state, where dCT(t)/dt = 0, 

F= A 
Ca + .1 
Cr P 

In the new method, PET value T from t1 to t2 is: 

where * indicates convolution, 

k1= F 
' 

k2= ~+A 
' 

assuming Cr(t) = 0. 
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This equation can be used to generate a lookup table, F = G(T), that relates T to 

F, from which CBF is estimated. 

OEF measurement with 1502 inhalation 

The regional change in cerebral parenchymal radiotracer concentration during 

1502 inhalation is: 

dCt(t) =FEC0(t) + FCH(t) - (PF + A)Ct(t) 
dt 

(1 where E is the oxygen extraction fraction(OEF). 

Co(t) is the arterial concentration of 1502, and 

CH(t) is the arterial concentration of H2150. 

In the steady state, 

Cr t + A) - FCH - VbCo(F + A) 
E = p p 

pCo- VbCo(F +A) p 

where Vb is the regional blood volume. 

In the new method, 

,.,.... 

E = Cr - (C1 + C3) 
c2- c1 

........ 

whereCr is PET value from t1 to t2, 

C1 = - 1- v bCo(t)dt l
t2 

t2 - t 1 t 1 
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Tomograph characteristics 

The PCT-3600W system (Hitachi Medical Co., Tokyo, Japan) was employed for 

PET scanning ( 15,16 ). This system simultaneously acquires 15 slices with a 

center-to-center distance of 7 mm. All scans were performed at a resolution of 9 

mm full width at half maximum (FWHM) in the transaxial direction and 6.5 mm in 

the axial direction. Field of view and pixel size of the reconstructed images were 

256 mm and 2 mm, respectively. A transmission scan was obtained before all 

emission measurements. 

Subj ects 

We studied 8 patients, aged 45 to 70 years, who had cerebral infarction (6 

cases), dementia of the Alzheimer type (2 cases), Binswanger's disease ( 1 

case), and epilepsy (1 case). Informed consent was obtained from each subject 

using forms and procedures approved by the Ethical Committee of the Kyoto 

University Faculty of Medicine. The subject's head was immobilized with head 

holders. A small catheter was placed in the brachial artery for blood sampling. 

The subject wore a light, disposable, plastic mask and a nasal cannula through 

which he breathed c1so, C1S0 2 and 1502 produced by a small cyclotron 

(CYPRIS MODEL 325; Sumitomo Heavy Industries, Tokyo, Japan). 

Tracer techniques 

CBV study 

To obtain the fractional regional cerebral blood volume (CBV), bolus inhalation 

of C15Q with 3-min scanning was performed. Arterial samples were obtained 

manually twice during the scanning for calculation of CBV using the following 

formula: 



CBV = PET 100 
RDCA 
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where PET is the PET value, CA is the mean of the decay-corrected radiotracer 

concentration in arterial blood, R is the mean ratio of the small-vessel to large­

vessel hematocrit, equal to 0.85, and D is the density of brain tissue, equal to 1.05 

g/ml ( 10 ). 

CBF and OEF study 

The subjects inhaled a steady supply of tracer amounts of 1502 for 18 min (Fig. 

1 ). Scanning was started simultaneously with the commencement of 150 2 

inhalation. Dynamic scans of 18 consecutive frames ( 1 frame/min ) were 

obtained. After a 15-min intermission, C1SQ2 was inhaled for 18 min for more 

dynamic scans with the same protocol. 

Arterial blood was sampled manually from the brachial artery at 20 sec, 40 sec, 

60 sec, 2 min, 4 min, 6 min,8 min,1 0 min, 12 min,14 min, 16 min, and 18 min after 

the commencement of inhalation. Each sample was collected for 10 to 20 sec to 

average the fluctuations due to the respiratory cycle (2, 17), and activity of 

radiotracer concentrations in whole blood and plasma was measured with a well 

counter. Arterial hematocrit, Pa02, PaC02 , and arterial hemoglobin were also 

measured. 

Data processing 

The arterial activity curves were determined with interpolation between the 

measured points. The reconstructed dynamic images of frames 5-8 and 9-13 

were added to make the late build-up phase images and near steady-state 

images, respectively. For the conventional steady-state method, near steady-
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state images and averaged arterial activities were used. For the new method, 

both late build-up and near steady-state phase images were used to evaluate the 

time dependency of the calculated parameters. 

Data analysis 

Profiles of input functions 

To assess the profile of the input functions Ca(t), C0 (t) and CH(t) from the 8 

patients, each arterial input function was normalized with the mean arterial 

concentration of the presumed steady-state phase (1 0-18 min). The mean and 

standard deviation of 8 curves were plotted at each measurement point (Fig. 2 ). 

Simulation study 

A simulation study was performed with typical arterial input functions 

approximated by the exponential equations: 

Ca(t) = 1 067(1- exp(-t/11 0]) 

Co(t) = 1250(1- exp(-t/50]) 

CH(t) = 400(1- exp(-t/200]) 

The weight contribution of the early build-up phase on the calculated 

parameters was assessed. Consider the C15Q2 inhalation study. If u < t, the 

weight contribution of Ca(u) from u = 0 to ta on PET value Tis a function of ta: 

f• J~' Ca(u)e-k,(t-u)dudt 

h(ta) = - 11 
--------r f~ Ca(u)e-k,(t-U)dudt 
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If h(ta) is sufficiently small, the influence of Ca(t) (t = 0 to ta) on the PET value can 

be ignored. The weight contribution of Co(t) on C2 and CH(t) on C3 was also 

evaluated. 

The effect of the delay and dispersion of the input function was evaluated. The 

measured arterial radioactivity is delayed and dispersed with respect to the 

cerebral arterial activity ( 11,14 ). The effect on the calculated CBF was estimated 

using the following equation. The measured input function Ca(t) is expressed 

with the true input function C~(t) as: 
-(1 + A..)t 

Ca(t + d ) eA.d = C~(t)* (~ - ) 
1: 

l exp[-t] 
where the dispersion function is assumed as 1: 1: ( 11,14), and dis delay of 

the measured arterial curve. True tissue activity Cr(t) and PET value T are 

expressed as: 

Cr (t) = FCa(t+d)exp[A.d]'t + FCa(t+d)exp[A.d](l-'tF/p)*exp[-(F/p+A.)t] 

T = _1_J12 
Cr(t)dt 

t2-t 1 11 

When d and 1: are known, the unique flow F can be calculated by the lookup table 

method: 

F = Gd,,;(T) 

where Gd,t(T) is a lookup table with the correction for delay and dispersion. 

As our method assumes both d and t as null, % error of calculated flow due to 

delay and dispersion is estimated as: 

%error in flow Go,o(Gd,'t-
1 
(F))- F 100 

F 

The same evaluation was performed on the conventional steady-state method. 

In the case of the constant input function, 

Ca(t) = Ca C~(t) = C~ 
I 



C~ =eA.d (1 + /..:t ) Ca 

Measured CBF Fd and true CBF Fare: 

Fd = /... 
_Qg- 1 
CT 

F= /... 
eAd (1 + A.-r.) Ca - 1 

CT 

%error in flow= Fd ~ F 1 00= ( - ---=-"'=----- - 1 ) 1 00 
e-A.d (F + /... ) _ F 

( 1 + A.-r.) 
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The effect of tissue heterogeneity on CBF measurement was assessed with the 

late build-up phase and the steady-state phases. Error in measured flow was 

calculated for a region of interest (ROI) containing varying proportions of two 

tissues with equal partition coefficients of 1 ml/g, but with different flows, 

assuming 20 ml/min/1 00 g for white matter and 80 ml/min/1 00 g for gray matter. 

Per cent underestimation was calculated with the following equation: 

01 d t. t' ga+w(1-a) -G(G-1(g)a+G-1(w)(1-a)) 100 to un eres 1ma 1on = - x 
ga + w(1-a) 

where G is a lookup table from tissue activity to flow, g is the CBF value of gray 

matter, w is the CBF value of white matter, and a is the proportion of gray matter 

in a ROI. 

The statistical noise of CBF images obtained with the new method was 

compared between the build-up phase and the near steady-state phase. In the 

latter phase, there was a tradeoff between better count statistics and more noise 

propagation due to a larger nonlinearity in the count-flow relationship. The 

statistical error in CBF(~CBF/CBF) was estimated as: 

where 

at 
~CBF _ ()T L\T 
CBF 1 T 

T 



at 

()f 

()T 

f 
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aT is the slope of the lookup table ( 18). The term T is an error propagation 

factor from tissue count rate to flow, indicating nonlinearity in the count-flow 

relationship. The statistical noise of the integration ( !l T) was estimated using the 

statistical relationship !l T a ff ( 18). 

Validation study 

With the data obtained from the 8 patients, CBF and OEF images were 

calculated with the conventional steady-state method and the new method. The 

new method was applied to both the late build-up phase and the near-steady­

state phase. The conventional steady-state method was applied to the near 

steady-state phase. Whole brain ROis were taken in the slices 84 mm above the 

orbitomeatal line, including mainly the centrum semiovale, to analyze systematic 

differences in the calculations. ROis were defined in C1SQ2 tissue activity images 

of the near steady-state and projected on the parametric images. When the slices 

showed infarction, slices from the normal hemisphere were used. 
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RESULTS 

Profiles of input fun ctio n 

During C1502 inhalation, arterial radiotracer activity rose steeply during the first 

minute, gradually increased from 1 to 8 min, and reached steady state 

approximately 8 min. During 1502 inhalation, the arterial concentration of 1502 

rose rapidly during the first 2 min and reached steady state at approximately 4 

min, although fluctuation of ± 10 % was observed during the later phase. The 

concentration of H2150 gradually increased during the first 10 min, and reached 

steady state later (Fig. 2). 

Simulation study of parameter calculation 

Weight contribution of early build-up phase 

Table 1 shows the weight contribution of the early build-up phase on the input 

functions on T, C2, and C3 when the scans were performed at the late build-up 

phase. The weight contribution of the first 1 min was as small as 1%. 

Delay and dispersion effect 

Delay and dispersion effects on CBF were equivalent between the methods 

(Table 2). When the delay was 5 sec, overestimation of the calculated CBF at 50 

ml/min/1 00 g was approximately 7%. A 5-sec delay was equivalent to a 2.5-sec 

delay plus a 2.5-sec dispersion (Table 2). 

Tissue heterogeneity effect 

Figure 3 shows error propagation factors plotted against CBF. Nonlinearity 

between flow and tissue activity is most prominent in the conventional steady­

state method, less prominent in the new method at near steady state, and least 

prominent in the new method at the late build-up phase. 
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Figure 4 shows the tissue heterogeneity effect on CBF by the new method with 

different scanning periods. Underestimation of CBF was less prominent with the 

late build-up phase (3-8 min scan) than with the steady-state phase (8 -13 min 

scan and 13-18 min scan). The tissue heterogeneity effect was equivalent with 

the conventional steady-state method and the new method when the same 

scanning period (8 -13 min) was used. 

Statistical errors of CBF 

Statistical errors of CBF, ~CBF/CBF, calculated with the build-up method using 

the late build-up phase and the near steady-state phase were equivalent (Table 

3). 

Validation study 

Table 4 shows the comparison between the new method and the conventional 

steady-state method in 8 patients. Because the whole brain contains a mixture of 

gray matter, white matter, ce rebrospinal fluid, and possibly lesions, the 

differences in the parameter estimates between the two methods indicate the 

overall effect by the new method (2). Time dependency of CBF values was 

observed ( P < 0.01, ANOVA ). CBF values calculated with the late build-up 

phase was 11% higher than those with the near steady-state phase (8-13 min). 

CBF values calculated with the near steady-state phase in the build-up method 

were 2% higher than those with the conventional steady-state method, but the 

difference was not significant. No time dependency of OEF values was observed 

( P > 0.8, ANOVA ). OEF values calculated with the build-up method and the 

conventional steady-state method were equivalent. 
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DISCUSSION 

Our method is categorized as an autoradiographic method with ramped input 

function. lida et al. ( 18 ) performed a systematic study of the shape of the input 

function and the duration of the scan in the autoradiographic method for CBF 

measurement . The bolus method, with sharp peaks and short scanning duration, 

is sensitive to delay and dispersion, but provides a linear count-flow relationship 

with less tissue heterogeneity effect. Dead-time error and accidental coincidence 

could be a problem. Because of the short scanning period, the calculated CBF is 

likely to fluctuate. In contrast, the ramped input function allows a longer scan 

duration , resulting in less sensitivity to delay and dispersion, and a larger 

nonlinearity, causing more effect of tissue heterogeneity. There is no dead-time 

problem. By administering sufficient amounts of H21SQ and scanning for a long 

period, the statistical error in CBF may be negligible. The contribution weights 

cover the whole scan period, providing more stable CBF values ( 18 ). 

To apply the autoradiographic method to the build-up phase, preserving the 

simplicity of the conventional steady-state method, we first analyzed the profiles 

of input function to determine the optimal scan period. Ca(t) and Co(t) showed a 

rapid rise in the first 2 min, later forming a gradual build-up phase. CH(t) showed a 

gradual increase in the first 10 min, while the absolute value was relatively 

small. Rapid change of or low radiotracer concentration in whole blood or 

plasma during the earlier build-up phase could cause measurement error. 

Additionally, in the gas inhalation study, the respiratory cycle may cause 

variation in the tissue as well as arterial activity, particularly in elderly and 

diseased populations (2). These factors are accentuated with intermittent arterial 

sampling because of the limited sampling interval. For these reasons, the early 

build-up phase is not suitable for the scanning period. 
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The tissue radiotracer concentration is determined not only by the current 

arterial concentration but also by its weighted integral ( convolution ) during the 

preceding several minutes, unless steady state is achieved and maintained ( 2 ). 

When the late build-up phase (3-8 min) is adopted for the scanning period, 

calculated parameters of T, C2 and C3 are minimally affected by the input 

functions of the first 1 to 2 min. Because Ca(t) and Co(t) rises steeply in the first 1 

to 2 min , but later becomes less (Fig. 2), intermittent blood sampling at intervals of 

1 to 2 min would be sufficient, and input functions would be interpolated, 

assuming tissue radiotracer concentration at t = 0 is 0. 

Correction of delay and dispersion of arterial input function is essential for 

accurate estimation of CBF ( 11, 14, 18). In this study, however, the correction was 

not performed for the following reasons. First, we adopted manual arterial 

sampling, in which external delay and dispersion were negligible. Second, it is 

impossible to measure the internal delay time and dispersion constant with the 

single-frame autoradiographic method. With the dynamic method, mean internal 

dispersion time is estimated at 5 sec if blood is sampled at the radial artery ( 14 

), and differences of arrival time ( " head-to-hand " time lag ) are 3 sec ( 19 ). 

However, the correction is not practical, as internal delay and dispersion depend 

on the site of arterial sampling (radial artery vs brachial artery) and on the 

location of the brain region ( 20 ). Third , the steady-state method is also subject 

to a delay and dispersion effect because of the short half life of 150 (T112 = 123 

sec). A 5-sec delay of arterial input function causes approximately a 3% 

decrease of the radiotracer activity, resulting in 7.4% overestimation of CBF at 50 

ml/min/1 00 g. This overestimation has not usually been corrected ( 1). Lastly, as 

shown in Table 2, the delay and dispersion effect in the late build-up phase was 

as small as that in the near steady-state phase (8-13 min) and in the later steady­

state phase (13-18 min) with the same scan duration. 
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The limited resolution of the PET scanner and the non li near count-flow 

relationship (Fig . 3) cause systematic underestimation of CBF ( 21 ). With the 

build-up method, the underestimation of CBF because of flow heterogeneity was 

larger in the near steady-state phase than in the late build-up phase (Fig. 4). In 

this study, the heterogeneity of partition coefficient was not considered, because 

the new method was designed to improve the conventional steady-state method, 

which usually uses the fixed value of partition coefficient of water ( 1, 2). 

As shown in Table 4, CBF values calcu lated with the bui ld-up method using the 

late build-up phase were higher than those using the near steady-state phase. 

This time dependency of CBF is caused by delay and dispersion of the input 

function, as well as by the tissue heterogeneity effect ( 12, 14 ). As the former 

factor has the same effect in both the late bu ild-up phase and the steady-state 

phase (Table 2) , the tissue hete rogeneity effect would be the main cause. 

Considering the diseases and older ages of our subjects, the effect of 

nonperfusable space might be large. In contrast, our method provided OEF 

values equivalent to those with the conventional steady-state method without time 

dependency. As expected from equation (15) in the Appendix, OEF is mainly -determined as the ratio of C, and C2, where time dependency might be canceled 

out. 

In conclusion , our method is a simple and practical alternative to the 

conventional steady-state method for obtaining images of oxygen metabolism. 
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APPENDIX 

The algorithm of the new method was presented by Senda et al. ( 2 ). 

CBF measurement with C1 5Q 2 inhalation 

CBF measurement was performed with an adaptation of Kety's diffusible 

autoradiographic method ( 8 ). The regional change in cerebral radiotracer 

concentration during C1SQ2 inhalation is described as 

d~~(t) = FCa(t) - F ~r(t) - ACr(t) = FCa(t) - (~ + A)Cr(t) ( 1 ) 

where Cr(t) is the tissue concentration of H21SQ, Ca(t) is the arterial concentration 

of H21SQ measured by blood sampling , F is the regional blood flow, p is the 

partition coefficient of water between brain and blood, and A is the physical 

decay constant of 1SQ. 

In the steady state, where dCr(t)/dt = 0, 

F= A 
Ca 1 
Cr + P (2) 

In the new method, Cr(t) and Ca(t) need not be constant. 

Cr(t) = k1Ca(t) * e·k2t (3) 

where * indicates convolution, 

k1= F , 

k2= ~+A 

assuming CT(t) = 0. 

PET value T obtained from the scan from t1 to t2 is, 
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(4) 

The arterial activity curve Ca(t) is determined by multiple blood sampling starting 

from the commencement of inhalation with interpolation between measured 

points to create a smooth curve. A lookup table, F = G(T), is then generated to 

relate T to F, from which CBF is estimated. 

OEF measurement with 15Q2 inhalation 

Tissue radiotracer concentration CT(t) is the sum of the tissue activity in proper 

C1(t) and the blood pool activity Cb(t): 

(5) 

The regional change in cerebral parenchymal radiotracer concentration during 

1502 inhalation is: 

d~;(t) = FEC0 (t) + FCH(t) - F ~t(t) - A.Ct(t) 

=FEC0 (t) + FCH(t) - (~ + A.)Ct(t) 

where E is the oxygen extraction fraction(OEF), 

Co(t) is the arterial concentration of 1502, 

(6) 

CH(t) is the arterial concentration of H2150, calculated from the activity of whole 

blood and plasma with C1502 and 1502 inhalation, assuming that all the activity in 

the plasma comes from H2150( 2 ). 

CH(t) = A Cp(t) (7) 

where 

A = (water content of whole blood)/(water content of plasma) and 



SADATO 21 

Cp(t) is H21SQ activity in plasma. 

Constant A can be derived if the packed cell volume (PCV) of the arterial blood is 

measured and the ratio of water between red cells and plasma is assumed 

constant ( 1 ). 

A=1 - 0.245 PCV 

Co(t) = CA(t) - CH(t) 

where CA(t) is 15Q activity in whole blood. 

Ct(t) = (FECo(t) + FCH(t)) * e-k2t 

k2=F +A 
where p . 

(8) 

(9) 

The regional radiotracer concentration in the vascular component Cb(t) is 

where vb is the fractional blood volume. 

In the steady state, all variables are time-independent. 

Cr = Ct + Cb 

or 

= FECo + FCH + Vb( 1 _ E)Co 
F+A 
p 

Cr (F + A) - FCH - VbCo(F + A) 
E = P P 

pCo - VbCo(~ + A) 

In the new method, 

Cr(t) = Ct(t) + Cb(t) 

= (FECo(t) + FCH(t)) * e-k2t + Vb(1-E)Co(t) 

(1 0) 

( 11 ) 

(12) 

= E(FCo(t) * e-k2t - VbCo(t)) +FCH(t) * e-k2t + VbCo(t) (13) 

PET value obtained from t1 to t2 is: 

l
t2 

Cr = - 1 - Cr(t)dt 
t2 - t 1 t 1 
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(14) 

,.... 

E = Cr - (C1 + C3) 
Or, C2- C1 (15) 

(16) 

(17) 

(18) 

The arterial blood is sampled several times during the study starting from t = 0 to 

obtain the Co(t) and CH(t). 
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TABLE 1 Weight contribution of early build-up phase (t = 0 to ta) of Ca(t), Co(t) 

and CH(t) on the calculated parameters T, C2, and C3 obtained from the late 

build-up phase (3- 8 min). F =50 ml/min/1 00 g. 

Ca(t) on T 

Co(t) on C2 

CH(t) on C3 

Phase ( t = 0 to ta) 

0-60 sec 

0.8 

1.2 

0.6 

0-1 20 sec 0-1 80 sec 

4.9 16.6 

6.4 19.8 

3.7 14.2 
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TABLE 2 %overestimation of CBF due to delay and dispersion of Ca(t) 

Build-up method Conventional 
CBF steady-state 
mVmin/100 g 3-8 min 8-13min 13-18mln method 

Delay 3 sec 30 4.5 3.9 4.2 3.3 

50 3.7 3.9 4.1 4.3 

80 5.9 5 .4 5.1 6.0 

Delay 5 sec 30 6.8 6.8 6.0 5.5 

50 6.9 7.1 7.1 7.4 

80 10.2 9.7 9.6 10.3 

Delay 30 6.8 6.0 6.3 5.5 
2.5 sec and 
dispersion 50 6.8 7.1 7.3 7.4 
2.5 sec 

80 10.1 9.6 9.3 10.3 

Dispersion 30 6.8 6.0 6.2 5.5 
5 sec 

50 6.8 7.0 7.2 7.3 

80 10.1 9.4 9.2 10.2 



TABLE 3 Statistical noise of CBF images. 

6CBF/CBF 

CBF Late build-up 

(ml/min/1 00 g) (3-8 min) 

20 0.00054 

50 0.00089 

80 0.00106 

6CBF/CBF was calculated with the relationship 
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Near steady-state 

(8-13min) 

0.00048 

0.00101 

0.00114 

where F is CBF, EP(F) is the error propagation factor at F, and G is lookup table 

from tissue activity to flow. Constant k was omitted in the table. 
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TABLE 4 

In vivo comparison of the calculated parameters for the new method with late 

build-up phase (3-8 min) and near steady-state phase (8-13 min) and the 

conventional steady-state method. 

CBF(ml/min/1 OOg) 

OEF 

CMR02 

(ml02/1 OOml/min) 

Steady-state method New method 

(3-8 min) (8-13 min) 

33.7 ± 12.3 36.6 ± 11 .1 • 33.8 ± 11.5 

0.455±0.102 0.445 ± 0.077 0.440 ± 0.082 

2.68 ± 0.97 2.92 ± 0.80 2.69 ± 0.86 

Values are mean± SD (N = 8). 

* P < 0.01 ( ANOVA ) for comparison with conventional steady-state method and 

near steady state phase of new method. 
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Figure Legends 

FIGURE 1 
Scan and reconstruction protocol for build-up method. 

FIGURE 2 

Mean arterial input functions of 8 patients in CBF study using c1so2 inhalation for 

Ca(t) (A) and 1502 inhalation for Co(t) (B) and CH(t) (C). Each arterial input function 

was normalized with the mean value of steady state, that is, from 10 to 18 min. 

Mean ± SO was plotted at each time point of measurement. 

FIGURE 3 

Error propagation factors from measured tissue activity to CBF by the new method 

with early build-up phase (closed circles) and with near steady-state phase (open 

circles) , and by the conventional steady-state method (open triangles). Error 

propagation factor is systematically smaller in the new method with early build­

up phase (3-8 min) than in the conventional steady-state method, but in the 

steady-state phase (8-13 min), both methods show almost equivalent error 

propagation in the range of 20 to 100 ml/min/1 00 g. 

FIGURE 4 

Effect of flow heterogeneity on CBF measurement by the new method with early 

build-up phase (closed circles) and with near steady-state phase (open circles), 

and by the conventional steady-state method (open triangles). Error in measured 

flow was calculated for a ROI containing varying proportions of two tissues with 

different flows, that is, 80 ml/min/1 00g for gray matter and 20 ml/min/100 g for 

white matter. The partition coefficient was fixed to unity. Note that systematic 

underestimation of CBF is smaller in the late build-up phase than in the steady­

state phase. 



.. 

.... . ....... -...... ~ ,, 

nCitml 
1200 

1000 

800 

600 

400 

200 

build up phase 

, . .. 

near steady state phase 

., 

Arteual1nput curve of 
0-15 C02 and 02 

or---·:.··0:.;'>;.._ __ '-..:.·':.::lO;.._ _ __.• ;:.O';:..J __ ~s;:.O;:.o __ _:· ?:::;~:::o:.., ·no (sec) 
I I dynam1c scans ol 

1 m1n x 181rames 

add lrames 

near steady state scans 
~ oiSm1n x 1 lrame 

Build up phase scans 
ol 5 m1n x I lrame 
lrom 3 m1n to 8 rn1n 

lrom 8 m1n to 13 mrn 

........... .,... . 'l(')oo• . , .... , .... • ... 



.. 

.• .· 

c: 1.2 
10 
Q.) 

E 
Q.) 

1.0 -10 -VI 

>-
-o 
10 0.8 Q.) -VI 

Q.) 
..c: 

0.6 
0 -

..2 
co 0.4 a: 

0 200 400 600 800 1000 1200 

time (sec) 



.. 

.. 

. .. 

c 
111 
G) 

E 
G) -111 
(ij 

>-
-c 
111 
G) -(/) 

G) 
..c 

0 -
0 -111 
a: 

1.2 

1.0 

0.8 

0 .6 

0.4 

· . .. · .·~ .. ,. 

., 

LL~~~~~~~~~~ 
0.2 0 200 4 00 600 800 1000 1200 

time (sec) 



•. .._.. .,· .. ...... .,. t,, # • ,,,, ... • • 

c 
1.2 

('0 

~ 

E 

~ 1.0 ... 
('0 

iii 
> 

"0 
0.8 ('0 

~ ... 
(/) 

~ 
.r. 

0.6 
0 ... 
0 

co 
a: 0.4 

0.2 

o .oJo~~--2-oro--~--4~o-o--~-s'oro--~-s~o:.o~~~1~o~o~o~r-~1200 
time (sec) 

0 

•.,• '1 ~ I 



.... 
0 -() 

!! 

c: 
~ 
nl 
Ol 
nl 
a. 
0 .... 
a. 
.... 
0 .... .... 
w 

5 

4 

3 

2 

0 50 100 

CBF(ml / mln / 100gr) 

150 

- .. ~. ~. , .. ,. ... ......... ... ... -. ... . .... ... ... ... .. 
~oO • •••••''""-"" ~~_..,._., .. ••· -• •-~~ ,,. ..,. n ,.. 



.. 

... . ,# .. , . ... . .... ~· ,_ 

. ' . 

LL 
CD 
u -0 

.... 
0 .... .... 
Cl) 

:.!! 0 

. 
' 

. . 
.. : . 

10 

0 

· 1 0 

-20 

1. 0 
-30 ~---.--=--r::---r--r---,.--.---.--,--...----...-_J 

0 .0 0.2 0 . 4 0 6 0 .8 

ratio of gray matter 

..... . -
... "''" .,. , . 


	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072

