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This thesis is on the studies of ion beam interactions with 

crystal surfaces. The interactions, which include various phenomena 

such as charge-exchange, excitation and energy loss of fast ions, 

are experimentally investigated with the use of ion-surface 

scattering at glancing angle incidence of fast ions on clean single 

crystal surfaces under ultra high vacuum conditions. 

Recently, various kinds of electronic elements are fabricated 

by ion- implantation and ion beam machining, material surfaces are 

modified by ion beam irradiation, and new materials are fabricated 

by ion beam deposition. All these new technologies are based on 

the characteristic behavior of fast ions at a solid surface. Thus 

understanding of the ion-surface interactions is indispensable not 

only for the physics of surface but also for the modern technologies 

where various ion beams are used. 

The interactions of ions with solid surfaces have been one of 

the main subjects in research on ion-solid interactions1
-

15>. Many 

experimental and theoretical studies have been performed on various 

phenomena such as the charge exchange process at solid surfaces1
-
6>, 

the anisotropic distribution of the orbital angular momenta of exited 

states of ions produced by ion- surface interactions 7- 9) and the 

dynamical response of valence electrons to the fast ions traveling 

near surfaces10
-

15>. However, it is often difficult to eliminate bulk 

effects in experimental studies of ion-surface interactions. 

Recently, many studies16
-

32> on the interactions of fast tons 

with the surfaces have been performed with the use of ion-surface 
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Figure 1.1: Schematic illustration of interactions at 
glancing angle incidence of fast ions on crystal surface 

scattering at glancing angle incidence of fast ions on the surfaces 

as illustrated in Fig. 1.1. In relatively recent work, formation of 

coherent excited states of ions which lead to the alignment and 

polarization of emitted photons, has been studied at glancing angle 

incidence of fast ions on flat surfaces of single crystals21>. In these 

and related studies on ion scattering at glancing angle incidence of 

fast ions on clean surface of single crystal, it is expected from the 
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concept of planar channelling of fast ions in crystal33
-

35
> that the 

ions do not penetrate into the target crystal but are subjected to 

specular scattering by the topmost atomic plane of the surface. This 

phenomenon is called specular reflection of fast ions. This ts a 

favorable situation for the study of interaction of fast tons with 

solid surfaces, where a number of complex phenomena associated 

with the penetration of ions through solids can be avoided. 

However, the scattering of ions at the glancing angle incidence 

on a surface of single crystal depends on the incident beam 

direction with respect to the surface atomic rows. Surface 

channeling occurs when the ions are incident towards a low index 

crystallographic axis parallel to the surface. In this case, the 

interaction between ion and surface is slightly complicated because 

subsurface atomic layers participate in the scattering of ions36>. 

In the studies of this thesis the experimental technique of 

ion-surface scattering at glancing angle incidence of fast ions under 

ultra high vacuum conditions has been applied to study the inelastic 

ion-surface interactions. Processes of energy and charge transfer 

between fast ions and crystal surfaces are discussed. The inelastic 

interactions of the ions with the surface take place along a 

well-defined trajectory of ion at specular reflection, and thus the 

resulting energy and charge state of the ion are described by the 

position- dependent stopping powers and charge exchange 

probabilities as in the case of the planar channeling.37
-

39> 
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The outline of this thesis IS as follows: 

Chapter 2 describes the experimental methods; preparation of 

target crystals, experimental setup for ton scattering, and 

measurement of the energy and charge-state distribution of the 

scattered ions. 

In Chapter 3, the characteristic features of the glancing angle 

scattering of fast ions from single crystal surface are shown. When 

fast ions are incident on an atomically flat low-index surface of a 

crystal at a small glancing angle, the interaction of the ions with 

the surface is characterized by a series of correlated smalJ angle 

scatterings with the atoms on the topmost atomic plane of the 

surface. Surface potentials with which the motions of the scattered 

ions can be described are introduced. Characteristic features of the 

angular distribution and energy spectrum of the scattered ions are 

shown. 

In Chapter 4 and Chapter 5, energy losses of the scattered 

tons at glancing angle incidence on single crystal surfaces are 

discussed. In Chapter 4, position-dependent stopping powers of the 

crystal surfaces for MeV H and He ions are determined from the 

observed energy losses of the ions reflected from the surface. The 

results are explained by a sum of the stopping caused by collective 

excitation of surface valence electrons to the fast ion and that due 

to the single ion-electron collisions. In Chapter 5, energy Joss of 

MeV He ions which have surface-channeled along atomic rows on 
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a clean (100) surface of SnTe is studied, and contribution of 

collective excitation of surface valence electrons to the stopping 

powers is extracted from the observed position-dependent stopping 

powers. This agrees well with the result of theories on the 

dynamical response of valence electrons to the fast moving ions. 

In Chapter 6 and Chapter 7, charge-state distributions of the 

scattered ions at glancing angle incidence on single crystal surfaces 

are discussed. In Chapter 6, most of the features of the 

scattering-angle dependence of the charge-state distribution of the 

He ions which are reflected from the topmost atomic layer of the 

crystal are explained in terms of the position-dependent charge 

exchange probabilities which are calculated from Bohr and 

Bohr-Lindhard models. In Chapter 7, a stochastic model of charge 

exchange and energy loss of ions is developed, where inelastic 

interactions are assumed to depend on the distance of the ion from 

the surface. Position-dependent charge exchange probabilities of He 

ions near the surface are derived from the observed charge-state 

distributions and charge-state dependence of the energy losses of 

He tons. 

Chapter 8 and Chapter 9 describe applications of the glancing 

angle scattering of fast ions from crystal surfaces. In Chapter 8, 

scattering phenomena of MeV light ion at crystal surface are 

calculated with the use of a computer simulation of the trajectory 

of the ion at glancing angle incidence on a crystal surface. It is 

found that the yield and angular distribution of scattered ions from 

- 6 -

the surface depend sensitively on the step density on the surface, 

and a new method to detect surface step density by measuring the 

ion yield at glancing angle incidence of MeV ions on the crystal 

surface is proposed. In Chapter 9, process of epitaxial growth of 

PbSe on SnTe (100) is studied with the use of glancing angle 

scattering of MeV He ions. Anomalous broadening of the angular 

distribution of scattered He ions from the surface of PbSe is 

observed at initial stage of the growth. This broadening is ascribed 

to the surface wrinkles caused by a square-net of misfit edge 

dislocations. 
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Chapter 2 

EXPERIMENTAL 

ABSTRACT 
In the present chapter, we describe the experimental methods; 

preparation of target crystals, experimental setup for ion scattering, 

and measurement of the energy and charge-state distribution of the 

scattered ions. 
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2.1. PREPERATION OF TARGETS 
For the study of glancing angle scattering of fast ions from a 

single crystal surface, an atomically clean and low-index surface 

with less number of surface steps is required. Thus the cleavage 

surfaces of alkali halides and the epitaxial single crystals grown on 

the cleavage surfaces of alkali halide are used in the experiments. 

All the crystals used in the present experiments had NaCl type 

crystal structure and the ion scattering experiments were performed 

on the (100) surfaces. The cleaning of the cleavage surfaces and 

epitaxial growth had to be done under UHV conditions. 

2.1.1. The (100) Surfaces of Alkali Halides 
Alkali halide single crystal was cleaved along the {100} 

surfaces in air and the surface with less number of visible steps 

was chosen. The sizes of the crystals used were 30 x 30 mm2 and 

the thicknesses were larger than 5 mm so that the deformation of 

the crystals introduced during the cleavage is as small as possible. 

It was then mounted in a precision 5-axis goniometer in a UHV 

scattering chamber and was heated to 250 o C after the chamber 

was evacuated to the 10-10 Torr range. Alkali halides used in the 

experiments were NaCl, KCl and KBr. 

2.1.2. The (100) Surfaces of SnTe 
Single crystal of SnTe was prepared by epitaxial growth on 

the (100) surface of KCI. On the clean (100) surface of KCl which 

had been prepared by the procedure mentioned in 2.1.1., pure SnTe 

(purity 99.999 %) was evaporated from a tungsten helical filament, 

- 12 -

while the vacuum chamber was kept below 2 x 10-9 Torr and the 

substrate KCl was kept at 250 ° C. In this case the SnTe film grew 

initially in the form of three-dimensional islands on the substrate 

KCI. When the thickness of SnTe was more than 100 nm, the 

islands were connected to form a uniform single crystal film. The 

SnTe crystal thus prepared had NaCl type crystal structure and was 

a well-oriented single crystal. The orientation relationship of the 

SnTe and KCI substrate was 

(100)snTe II (100)Kct' <001>snTe II <001>Kct· 

The (1 00) surface of SnTe showed a clear 1 x 1 structure 

when examined with reflection high energy electron diffraction 

(RHEED). In order to keep the surface clean during the ion 

scattering experiment, and in order to avoid the contamination and 

radiation damage due to energetic ions, SnTe was evaporated 

intermittently on the SnTe(100) surface during the experiment. 

The structure of the (100) surface of SnTe was studied by 

RBS/channeling of MeV He ions.1
) From the analysis of the yields 

of He ion backscattered from the surface, it was found that the 

SnTe(OOl) surface is "bulk-exposed", and that the one-dimensional 

thermal vibration amplitude of the surface atoms is 0.020 nm 

(Debye temperature 118 K) which is a little higher than that of the 

bulk atoms, 0.017 nm (Debye Temperature 138 K). It was also 

shown that the surface relaxation, if exists, is less than + 5 % of 

the bulk interlayer spacing, and that surface rumpling which was 
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observed on the (100) surface of crystal with NaCl crystal structure 

does not exist on the (l.OO) surface of SnTe. 

2.1.3. The (100) Surfaces of Lead Chalcogeoides 
Lead chalcogenide crystals, PbS, PbSe and PbTe, were 

prepared by vacuum epitaxial growth on the (100) surface of SnTe 

which had been prepared by the procedure mentioned in 2.1.2. Pure 

lead chalcogenide was evaporated on the SnTe/KCl kept at 250 o C 

in the vacuum below 2 x 10-9 Torr. These grown crystals were 

good single crystals except for the misfit dislocations on the 

interfaces with substrate SnTe. 2-
4

) The orientation relationship of 

lead chalcogenides and SnTe were 

(100)cbal.ll (100)soTe' <001>chal.JJ <001>snTe' 

The (100) surfaces of the lead chalcogenides showed a clear 1 x 

1 structure when examined with reflection high energy electron 

diffraction (RHEED). 

2.2. MEASURMENT OF ION ENERGIES 
2.2.1. Solid State Detectors 

For the measurement of the energy of several 100's keY to a 

few MeV light ion, solid state detector (SSD) of ion-implantion 

passivated, bakeable type was used. Because the SSD has thin dead 

surface layer, the energy loss, &_, in the dead layer has to be taken 

into account for the accurate energy determination. When the height 

of the output signal of the injected ion with energy, E
0

, is C
0

, the 

- 14 -

energy E of an ion which gives rise to the signal height C in the 

detector is calibrated by the relation, 

c 
E = ( E - E ) . - + EL . 

0 L C (1) 
0 

Table 1 shows the energy losses within the dead layers of the 

SSD's used in the experiments. The losses were calculated from the 

thickness of the dead layer and the stopping powers with the use 

of the Ziegler's tables of stopping powers.5) 

Table 1 

ION ENERGY(keV) 

400 
600 
900 
1200 
1500 
1800 

400 
600 
800 
1000 
1200 
1500 

ENERGY LOSS (keY) 

MH- 016- 050- 100 PD25-11-300AM 
(EG&G ORTEC) (CANBERRA) 

74 17.5 
75 17.2 
70.5 15.7 
65.5 14.2 
60.5 13.0 
56.5 12.0 

15.2 3.1 
12.4 2.7 
10.7 2.3 
9.4 2.0 
8.5 1.8 
7.4 1.55 
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Figure 2.1: Energy spectrum of 0.7 MeV He+ ions 
detected by SSD (PD25- 11-300AM) fabriacated by 
Canberra. Ions were injected from the 4-MV Van de 
Graaff accelerator. 

An example of the observed energy spectra of 700 ke V He+ 

ions from the 4-MV Van de Graaff accelerator is shown in Fig. 

2.1, where the SSD manufactured by Canberra (PD25-11-300AM) 

was used. It is important to know the full width at half maximum 

- 16 -

(FWHM) of the energy spectrum as the energy resolution of the 

detector. The observed energy resolution of the used SSD's for 

various ions are shown in Table 2. 

Table 2 

ION ENERGY(ke V) FWHM (keV) 

MH-016-050-100 PD25-11-300AM 
(EG&G ORTEC) (CANBERRA) 

He+ 700 14 9.5 
1000 15 10.5 
1500 16 11.5 

H+ 700 12 8 
1000 12.5 8 
1500 13 9 

2.2.2. Cylindrical Radial Field Spectrometer 
For the observation of the energy of several 10's keV N+ ions 

a cylindrical radial field spectrometer was constructed. A schematic 

drawing of the spectrometer is shown in Fig. 2.2, and the 

photograph of the inside of the spectrometer is shown in Fig. 2.3. 
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Figure 2.2: Schematic drawing of the cylindrical radial 
field spectrometer. 

Potential V is applied to the coaxial cylindrical electrodes to 

define the radial field. When a sector angle e is rr./.f" 2, the injected 

ions are focused on the field boundaries. The actual sector angle is 

only 119° in order to compensate for the fringing field effects.6> 

The ions which have passed through the spectrometer system are 

detected by a channel electron multiplier. 

- 18 -

Figure 2.3: Photograph of the inside of the cylindrical 
radial field spectrometer. 

The energy E of the detected ton ts proportional to the 

potential V as, 

v 
E = -----

In C '1 I '2 ) 
(2) 

where r
1 

and r
2 

are the radii of the outer and inner coaxial 

cylindrical electrodes, respectively. For the equal entrance and exit 

slit widths w, the energy resolution is given as, 

LiE 
E 

= (3) 
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Figure 2.4: Energy spectrum of 28 ke V N+ ions 
analyzed by the cylindrical radial field spectrometer. 
The ions were injected from an RF ion source. 

with no ~ aberration (in the perpendicular plane), where ~a is the 

angular aberration in the sector plane. The actual dimensiOns of the 

spectrometer were, 

r1 = 78 mm, r2 = 82 mm, w = 0.2 mm. 

- 20 -

The acceptance angle of the analyzer was 2 mrad. In this case the 

energy resolution ~E/E is 0.25 %. An example of the observed 

energy spectrum of 28 ke V N+ ions injected from an RF ion source 

is shown in Fig. 2.4. The FWHM of the energy spectrum is 0.1 

ke V and ~E/E is 0.3 %, which agrees well with that expected from 

the design of the spectrometer. AJthough two sub-peaks which 

consist of the ions reflected from the electrodes are observed in the 

energy spectrum, there is no significant influence of the sub- peaks 

on the measurement of the energy spectra of ions because the 

heights of the sub-peaks are less than 1 % of the height of the 

main-peak. 

2.2.3. Magnetic Spectrometer 
For high-resolution measurement of the energy of several 

1 OO's ke V ions, a magnetic spectrometer was constructed. A 

schematic drawing of the spectrometer is shown in Fig. 2.5. An 

aperture (slit 1) of diameter 0.06 mm as the entrance of the 

spectrometer was installed at 300 mm downstream from the target. 

The ions which have passed through the spectrometer system are 

energy analyzed and detected by an SSD. The velocity v of the 

detected ion is proportional to the magnetic field B as, 

v = Bqsl 
md 

(4) 

where q and m are the charge and mass of the ion, respectively, 

and the dimensions of s, I and d are shown in Fig. 2.5. 
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\ / " / 

....... ___ 
ANALYZING 
MAGNET 

Figure 2.5: Schematic drawing of the magnetic 
spectrometer. 

For equal entrance and exit slit widths w, the energy resolution of 

the spectrometer is 

L1E 4w 
= 

E d' (5) 

where the angular aberrations are neglected. The actual dimensions 

of the spectrometer were, 

d = 30 - 7 4 mm, w = 0.06 mm. 

In this case the energy resolution ~E/E is 0.8 - 0.32 %. 
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500 keV He+ 

. 
.a .... 
ca -

Figure 2.6: Energy spectrum of 500 keY He+ ions 
injected from the 4-MY Van de Graaff accelerator 
analyzed by the magnetic spectrometer. 

An example of the observed energy spectra of 500 ke V He+ 

Ions injected from the 4-MV Van de Graaff accelerator is shown 

in Fig. 2.6. The FWHM of the energy spectrum is 2.5 ke V and 

~E/E is 0.5 % when d is 30 mm. Because the incident He+ beam 

was collimated to 0.02 x 0.02 mm2
, the effective entrance slit width 
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was less than 0.02 mm, and thus the observed width of the energy 

peak was narrower than that estimated from the actual slit width. 

2.3. MEASUREMENT OF CHARGE STATE 
A magnetic charge state analyzer was constructed for the 

measurement of the charge state distribution of scattered ions, where 

the energies of the ions are distributed within a narrow energy 

region. A schematic drawing of the analyzer is shown in Fig. 2.7. 

~ 0.2 mm 
APER TURE 

Figure 2.7: Schematic drawing of the magnetic 
analyzer for measuring the charge state distributions of 
tons. 
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An aperture of diameter 0.2 mm as the entrance of the analyzer 

was installed at 300 mm downstream from the target. The ions 

passing through the aperture were resolved into their charge states 

by the analyzing magnet and detected by an SSD. In order to avoid 

the effect of fluctuation of the intensity of the incident beam in the 

scattering experiment, the magnetic field of the analyzer was 

changed periodically so that the He+ ions and He2+ ions (or neutral 

atoms and total particles) are detected alternately. The energy 

spectra of the groups of ions separated by the magnetic field were 

registered in two memory groups of a multichannel analyzer 

separately. The typical period of change in the magnetic field was 

3 sec and a measurement was performed for 100 periods. 

2.4. EXPERIMENTAL SETUP FOR ION 
SCATTERING 
The experimental setup is shown in Fig. 2.8. A beam of 

momentum analyzed ions from the 4-MV Van de Graaff accelerator 

of Kyoto University was transported through a beam duct of about 

10 m in length. A differential pumping system was installed 

between the accelerator and the UHV chamber in order to separate 

the UHV chamber vacuum in the 10-10 Torr range from the 

accelerator vacuum in the 10-6 Torr range. The beam was 

collimated by a series of slits (SLIT 1 and SLIT 2) to 0.03 mm x 

0.03 mm and to the divergence angle less than 0.2 mrad on the 

target crystal mounted in a goniometer in the UHV chamber. 
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Figure 2.8: Schematic drawing of the experimental 
setup. 
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The scattered ions were chosen by a movable aperture (APERTURE 

1) and they were analyzed by various measuring systems placed 

downstream from the aperture depending on the type of experiment. 

In Fig. 2.8, the magnetic spectrometer is shown. The base pressure 

of the UHV chamber was 3 x 10-10 Torr and the vacuum was 

maintained by a cryogenic pumping system. For degasing, the whole 

vacuum system was heated to 150 o C for 20 hours. 

For the experiments with lower energy ions, the scattering 

chamber similar to the one shown in Fig. 2.8 was connected to the 

30 kV ion separator and the cylindrical radial field spectrometer 

was installed downstream from the target for energy analysis. 

Target crystal was mounted in a high-precision S-axis 

goniometer in the UHV chamber. The goniometer was specially 

designed to have higher accuracy compared with the goniometer 

available commercially. Figure 2.9 shows the schematic drawing of 

the goniometer. It has two high precision rotation mechanisms. The 

target crystal mounted on a copperplate was heated with a sheathed 

heater embedded in the copper plate. 

Orientation of the target crystal relative to the incident beam 

of tons was determined from the angular distribution of the 

scattered ions which could be observed on the fluorescence screen 

downstream the target. Change of the angular distribution of 

scattered He ions is shown in Fig. 2.10 at the incidence of 1.6 

MeV He+ ions on the (100) surface of SnTe. Ions scattered along 
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Figure 2.9: Schematic drawing of the goniometer. 
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Figure 2.10: Distributions of scattered He ions at 
glancing angle incidence on (100) surface of SnTe for 
1.6 MeV He ions incident near the [001] direction. 
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the directions parallel to the crystallographic planes are blocked and 

the characteristic pattern moves as the target is rotated around the 

(100] axis which is normal o the surface. Figure 2.10(a) shows the 

blocking pattern of He ions when the direction of the incident beam 

of ions is parallel to the (010) plane which is perpendicular to the 

surface, where the azimuthal angle of the incident beam is defined 

<l>i = 0. The glancing angle ei of the incident beam of ions to the 

surface plane is defined by the angle of the beam relative to the 

surface plane. 
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Chapter 3 

GLANCING ANGLE SCATTERING 

OF FAST IONS 
FROM CRYSTAL SURFACE 

ABSTRACT 
When fast ions are incident at a small angle on an atomically 

flat low-index surface of a crystal, the ions are reflected from the 

surface. Interaction of the ions with the surface occurs along the 

trajectories which are determined by the glancing angle of the 

incident ions. In the present chapter, we show the characteristic 

features of the glancing angle scattering of fast ions from a single 

crystal surface. 
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3.1. SURFACE POTENTIALS AND TRAJECORIES 
OF IONS 

3.1.1. Specular Reflection of Fast Ions 
At glancing angle incidence of fast ions on an atomically flat 

low-index surface of a crystal, the ions interact only with atoms on 

the topmost atomic plane of the surface. The trajectories of the ions 

are characterized by a series of correlated smalJ angle scatterings 

with the atoms on the surface as in the case of planar channeling 

of fast ions in crystal, 1-
3
) and the critical angle <D c for the scattering 

is equal to that for planar channeling. This phenomenon is called 

"specular reflection of fast ions". The ions are reflected at the angle 

for specular reflection, i.e., eo = ei (es = 2eJ, as shown in Fig. 3.1, 

where the angle of incidence ei, the scattering angle es and the exit 

angle eo are defined. 

The motion of the specularly reflected ion is described 

approximately by the equation of motion of the ion in a continuum 

surface planar potential. In the coordinate system where the ion is 

in the xz-plane and the x-axis is perpendicular to the surface, the 

equation of motion of the ion becomes, 

(1) 

= 0 ' 
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Figure 3.1: Schematic drawing of an ion trajectory and 
the angular distribution of specularly reflected ions at 
glancing angle incidence on a crystal surface. ei is the 
glancing angle of the incident ions, es is the scattering 
angle, and 80 is the exit angle. They are related by es 
= eo+ ei. 
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where M is the mass of the ion and Vp(x) is the continuum planar 

potential. In Eq. (1), change of kinetic energy of the ion on the 

motion is neglected. The continuum surface planar potential Vp(x) 

is defined as 

00 

V/x) = nPJV(Vx2 + R2 )2rrRdR, (2) 
0 

where x is the distance of the ion from the surface atomic plane, 

nP is the atomic density of the surface plane, and V(r) is the 

ion-atom interaction potential.1
•
2
) With the use of the Moliere 

approximation to the Thomas-Fermi screening function for the ion

atom interaction potential, the surface planar potential is expressed 

as 

VP(x) = EJ/!a L- -
1 · exp --' , 2 ~ a. ( fJ.x) 

i =l {Ji aTF 

(3) 

(4) 

where E is ion energy, 'tVa is the characteristic angle for planar 

channeling, Z1 and ~ are the atomic numbers of ion and target 

atom respectively, e is the elementary charge, aTF is the 

Thomas-Fermi screening distance, and ai and ~i are the parameters 

in the Moliere approximation to the Thomas-Fermi screemng 

function. 1
•
2
) The continuum surface planar potential of 
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Figure 3.2: Potential distribution Vp(x) (contours 
labeled in e V) for a fast He ion at glancing angle 
incidence on the (100) surface of SnTe along random 
direction. Trajectory of a 0.7 MeV He ion is shown for 
ei = 5 mrad. 

the (100) surface of SnTe for He ions is shown in Fig. 3.2, where 

Eqs. (3) was used in the calculation. The projected trajectory of a 

0.7 MeV He ion incident at the glancing angle ei = 5 mrad is also 

shown. 
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From Eq. (1), the trajectory of the specularly reflected 1on ts 

described as 

dx 

dz 
= ± (5) 

where the apex of the trajectory is at z = 0. The distance of the 

closest approach of the ion to the surface, xm, is given by 

V (x ) = E 8.2 
p m 1 • 

(6) 

It can be seen from Eq. (5) that the exit angle of the reflected ton 

eo is equal to the angle of incidence ei, i.e., the ion is reflected at 

the direction of specular reflection. 

When the distance xm of the closest approach of the ion to the 

surface is comparable to the Thomas-Fermi screening distance ~' 

the continuum surface planar potential cannot be applied to calculate 

the motion of the ion.1
•
2

> Thus, the critical angle <D c for the specular 

reflection of the ions is approximately given as 

(7) 

For example, at 1 MeV He+ on SnTe (100) surface, aTF is ""0.1 A 
and <D c is ""10 mrad. 
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3.1.2. Surface Channeling 
When the direction of the incident ion beam is nearly parallel 

to low index atomic rows on the surface as shown in Fig. 3.3, 

motion of the ions is affected by the atomic rows. This is called 

"surface-channeling", and we can apply the general principles of the 

interaction of fast ion with orderly arranged atoms developed for 

axial channeling of ions in single crystals. 1•
2

> The motion of the 

surface-channeled 10n is approximately described with the 

continuum row potentials. We choose the Cartesian coordinates 

where the z-axis is parallel to the atomic rows and the x-axis 

parallel to the surface normal. The origin of the coordinates is on 

a surface atom on the surface plane. The equation of motion of the 

ion is written as 

=0 ' 

au(x,y) 

ax 

au(x,y) 
ay (8) 

where M is the mass of the ion, and U(x,y) is the continuum 

potential for the ion. With the use of the continuum row potential 

Va(r) of an isolated atomic row, the potential U(x,y) is expressed 

as, 
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Figure 3.3: Schematic drawing of an ion trajectory and 
the angular distribution of surface-channeled ions at 
glancing angle incidence on a crystal surface. ei and <Pi 
are the glancing and azimuthal angles of the incident 
ions, respectively, and es is the scattering angle. eo and 
<Po are the exit glancing and azimuthal angles. They are 

related by the relations, es = eo + e. and <Ps = <Po - <Pi· 
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00 

U(x,y) = L va( Jx2 + {y +nb }2) ' (9) 
n=-oo 

where b is the distance between the atomic rows on the surface. 

The continuum row potential Va(r) is defined as 

00 

Va(r) = ~ f v( Vr2 
+ z2

) dz , (10) 
-co 

where r is the distance from the row, d is the spacing between 

atoms in the row. With the use of the Moliere approximation to the 

ion-atom interaction potential V, the continuum row potential Va(r) 

is expressed as 

(1 1) 

(12) 

where tp1 is the characteristic angle for axial channeling and ~ is 

modified Bessel function. The potential distribution U(x,y) for a fast 

He ion traveling along the [001] atomic row on the (100) surface 

of SnTe are shown in Fig. 3.4, where Eq. (11) was used in the 

calculation. An example of the projected trajectories of 0.7 MeV He 

ions incident at the glancing angle ei = 2.8 mrad is shown. 
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Figure 3.4: Potential distribution U(x,y) (contours 
labeled in e V) for a fast He ion at glancing angle 
incidence of the (100) surface of SnTe along the [001] 
axis. An example of the trajectories of 0. 7 MeV He 
ions is shown when ei = 2.8 mrad. 

When an ion is incident on the surface at the glancing angle 

ei and the azimuthal angle q,i as shown in Fig. 3.3, from Eq. (8), 

the trajectory of the surface channeling ion is described as 

- 42 -

( ~)2 + ( ~)2 + U(Ex,y) 
U(. U(. = a/ + «t>? . (13) 

It is seen from Eq. {13) that the exit angle of the reflected ions 

measured from the direction of the atomic rows is equal to the 

angle of incident ions measured from the direction of the atomic 

rows as 

a 2 + .4,. 2 = a _2 + .4,. _2 
o '+'o 1 '+', ' (14) 

where the exit glancing angle 80 and the exit azimuthal angle <Po 

are shown in Fig. 3.3. Thus the scattered ions are distributed along 

an arc when they are observed downstream the target crystal. 

3.2. ANGULAR DISTRIBUTIONS 
At glancing angle incidence of a beam of ions at random 

azimuthal angle, i.e., at the "Specular Reflection", the ions are 

expected to be reflected at the direction of specular reflection, i.e., 

85 = 28i (80 = 8J. Figure 3.5 shows an example of the observed 

angular distribution of the reflected He ions at glancing angle 

incidence of 0.7 MeV He• ions on the (100) surface of SnTe with 

8i = 4.6 mrad. The axes of 85 and <l>s are shown in Fig. 3.5. The 

distribution of scattered ions along the es-axis at <l>s = 0 is shown 

in Fig. 3.6(a) and that along the <J>5-axis at 85 = 28i is shown in 

Fig. 3.6{b). The angular distribution of the reflected ions has a 

maximum at the angle for specular reflection (85 = 28i, <l>s = 0). 

However, the observed distributions are broad, showing that the 
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Figure 3.5: Angular distribution of scattered He ions 
from the (100) surface of SnTe at the incidence of 0.7 
MeV He• with glancing angle 4.6 mrad. Specular 
reflection (incidence along random direction). Bright 
spots at bottom of patterns are the residual incident 
beam. es- and <t>s -axes are shown. 

actual crystal surface is not an ideal mirror for the incident ions. 

The broadening of the angular distribution is caused by collisions 

- 44 -

of ions with thermally vibrating atoms (nuclear scattering), electrons 

(electronic scattering) and surface irregularities. In chapter 8, it will 

be shown from Monte Carlo simulation of the trajectories of 

specularly reflected ions from a crystal surface that most of the 

observed broadening is caused by the scattering events at surface 

steps. 

~ 
Cl) 
C1 
CD -c 

0. 7 MeV He+ on SnTe(1 00) 

61 = 4.6 mrad 

4>. = 0 mrad 

0 4 8 12 16 20 
Scattering Angle e.(mrad) 

e. = 9.2 mrad 

-8 -4 0 4 8 
Azimuthal Angle cp.(mrad) 

Figure 3.6: Angular distributions of specularly reflected 
He ions from the (100) surface of SnTe at the 
incidence of 0.7 MeV He+ with glancing angle 4.6 
mrad. (a) The distribution along the 85-axis at <t>s = 0. 
(b) The distribution along the <t>s -axis at es = 28i. 
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Figure 3.7: Angular distribution of scattered He ions 
from the (100) surface of SnTe at the incidence of 0.7 
MeV He+ with glancing angle 4.6 mrad. (011] surface 
channeling. Bright spots at bottom of patterns are the 
residual incident beam. es- and <Ps-axes are shown. 
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At the incidence of ions nearly paraJlel to low index atomic 

rows on a crystal surface, i.e., at the "surface-channeling", the ions 

are expected to be scattered on an arc when observed on a 

fluor(.;.scent screen downstream the cr) stal as shown m Eq. (14). 

Figure 3.7 shows the angular distribution of scattered He ions 

observed on the fluorescent screen at the [011] surface channelmg 

of 0.7 MeV He+ ion~ on the (100) surface of SnTe. A broad arc 

is observed, and the center of the arc Is the proJection of the 

direction of the atomic rows on the screen a~ expected from Eq. 

(14). 

3.3. Energy Spectra 
The specularly reflected ion interacts with the surface along its 

trajectory, and energy transfer between the ion ana electrons occurs. 

As the result, even the specularly reflected ion loses Its kmetic 

energy dunng its mteractlon with the surface. Figure 3.8 shows a 

few examples of the observed energy spectra of the ions specularly 

reflected from crystal surfac ~s. Although the spectrum depends on 

the surface conditions, all of the energy spectra show a sharp peak 

with a tail in lower energy region. 

We will show in chapter 8 that the sharp peak in the energy 

spectrum corresp 11ds to th(.. ions which are reflected from the 

topmost atomic plane ot th surface, and that the ions in the tail 

are reflected from inside the crystals. The i1 ·uknt Ions cannot 

penetrate flat cryst I surface at the angle of mcidence smaller than 

the critic' 1 angk fo. specUlar reflechc n. I lo,vevei , actual crystal 
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Figure 3.8: Energy spectra of 
specularly reflected ions at 
glancing angle incidence on the 
(100) surfaces. (a) 0.7 MeV He+ 
on SnTe, (b) 0.7 MeV He+ on 
SnTe, (c) 0.7 MeV He+ on Ag, 
(d) 0.7 MeV He+ on PbSe, (e) 
1.5 MeV He+ on KBr, (f) 0.2 
MeV H+ on SnTe, and (g) 0.21 
MeV H+ on KCI. The energy 
spectra of He ions were measured 
by SSD, and those of H+ were 
measured by magnetic 
spectrometer. 
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surfaces are not atomically flat, and have many steps. At glancing 

angle incidence of a beam of ions on the surface, some of the ions 

penetrate the surface and reappear from the crystal at the surface 

steps. The energies of these ions are smaller than that of the ions 

reflected from the topmost atomic plane, and the energy spectrum 

of the scattered ions has a tail which depends on the density and 

distribution of surface steps. 

The tail of the sharp peak in the energy spectrum often shows 

characteristic oscillatory structure, for instance, see Fig. 3.8(a). 

When the distance between surface steps is comparable to the wave 

lengths of oscillatory motion of ions in the sub-surface planar 

channels parallel to the surface, the ion penetrating the surface at 

the edge of a up-steps can exit from the surface at the edge of a 

down-step after channeling through the sub-surface planar channel 

as illustrated in Fig. 3.9(b ). The energy loss of the ion during the 

sub-surface channeling is approximately proportional to the number 

of the closest approaches of the ion to the atomic planes. 

Consequently, the energy spectrum shows several well-defined 

peaks as shown in Fig. 3.9(a). Trajectory numbered in Fig. 3.9(b) 

corresponds to the peak numbered in the energy spectrum in Fig. 

3.9(a). Thus the peaks at lower energies in the energy spectra have 

been explained in terms of sub-surface planar channeling. 
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Figure 3.9: (a) Energy spectrum of specularly reflected 
He• ions from the (100) surface of SnTe at the 
incidence of 0.7 MeV He• ions with glancing angle 5.1 
mrad. (b) Typical trajectories of the reflected tons. 
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Figure 3.10: AFM images of the (100) surfaces of 
SnTe single crystals grown at 250 o C. (a) Surface of 
a crystal grown with the rate ""'2 nm/min. (b) Surface 
of a crystal grown with the rate "'0.1 nm/min. 
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The oscilJatory structure of the energy spectrum at its lower 

energy region depends on density and distribution of surface steps. 

This was confirmed by measuring the energy spectra with SnTe 

(100) surfaces with different step densities. We found by the 

observation with the use of an atomic force microscope (AFM) that 

the density and distribution of the surface steps depends on the 

growth rate of the SnTe crystal. In the AFM images of the (100) 

surfaces of epitaxially grown SnTe crystals, many small pyramidal 

hi11ocks with the mean distance between neighboring steps ""50 nm 

were observed on the surface of SnTe crystal prepared at growth 

rate ""'2 nm/min as shown in Fig. 3.10(a). On the other hand, steps 

were hardly observed on the (100) surface when the growth rate of 

SnTe crystal was ""'0.1 nm/min as shown in Fig. 3.10(b). Figure 

3.8(a) shows the energy spectrum of the He ions specularly 

reflected from the stepped surface of SnTe shown in Fig. 3.10(a), 

and Fig. 3.8(b) shows the energy spectrum of the He ions 

specularly reflected from the relatively flat surface of SnTe shown 

in Fig. 3.10(b). The oscillatory structure of the energy spectrum 

depends on the density and distribution of the surface steps as 

expected. 
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Chapter 4 

POSITION-DEPENDENT STOPPING 
POWERS OF THE (100) SURFACES OF 

NaCI-TYPE CRYSTALS FOR MeV 
LIGHT IONS 

ABSTRACT 
Energy losses of MeV H and He ions after interaction of 

clean surfaces of several NaCl-type crystals at glancing angle 

incidence are investigated. From the most probable energy losses 

of the ions reflected from the surface atomic plane, position

dependent stopping powers of the (100) surfaces of NaCl, KCl, 

KBr, SnTe, PbSe and PbTe for MeV H and He ions are 

determined. The results are explained by a sum of the stopping 

caused by the dynamic response of valence electrons to the fast ion 

in vacuum and that due to the single ion-electron collisions. 
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4.1. INTRODUCTION 
At the incidence of fast ions on a flat low-index surface of 

a crystal with a small glancing angle ei, most of the ions are 

reflected at es = 28i, i.e., at the angle of specular reflection. 

Interaction of the ions reflected from the topmost atomic plane of 

the surface is characterized by a series of small angle scatterings 

with the atoms of the surface as in the case of planar channeling.1> 

The ions cannot penetrate the crystal surface when 8
1 

is less than 

the critical angle for specular reflection which is equal to that for 

planar channeling. 

Actual crystal surfaces are not atomically flat. There are many 

steps and point defects. At glancing angle incidence of a beam of 

ions on the surface, some of the ions penetrate the surface and 

reappear from the crystal at the surface steps. 2•3> The energies of 

these ions are lower than that of ions reflected from the topmost 

atomic plane, and as the result, the energy spectrum of the scattered 

ions shows a characteristic structure, which depends on the density 

and distribution of the steps on the surface. 

From the most probable energy losses of the ions reflected 

from the topmost atomic plane of the surface, we have derived the 

position-dependent stopping powers of the (100) surface of SnTe 

for MeV H and He 1ons, which are expressed as,4> 

S(x) = - exp --- , C ( f33x l 
IE 2arF 

(1) 
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where E is the ion energy, x is the distance of the ion from the 

surface atomic plane, C is a constant depending on the ion species 

and the crystal surface, ~~ = 0.3, and ctrr is the Thomas-Fermi 

screening distance. 

The work presented here extends this research on the position 

dependent stopping power of SnTe for MeV light ions to the (100) 

surfaces of several other NaCI-type crystals, i.e., NaCI, KCl, KBr, 

PbSe and PbTe. Comparison of the observed stopping powers with 

the theoretical stopping powers calculated from the dynamic 

response of valence electrons is made to clarify the origin of the 

stopping processes. 

4.2. EXPERIMENTAL 
A single crystal with clean surface, which was mounted in a 

precision goniometer in a UHV chamber (base pressure 2 x 10-10 

Torr), was irradiated by a narrow parallel beam of MeV H+ and 

He+ ions from the 4 MV Van de Graaff accelerator of Kyoto 

University. The beam size was 0.04 mm x 0.04 mm and the 

divergence angle was less than 0.1 mrad. The angle of incidence 81 

of the beam to the crystal surface was less than 8 mrad, and the 

ions scattered at an angle es in the plane of scattering, which 

contains the incident beam and the surface normal, were chosen by 

a movable aperture.4
> 

Acceptance half angle of the aperture was 0.3 mrad. The ions 

chosen by the aperture were resolved into their charge states by a 
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magnetic analyzer and the energy spectra of the ions of each charge 

state were measured with a solid state detector.5) The aperture and 

the detector could be rotated ±25 mrad around the direction of the 

incident beam. The energy resolution of the detector was 13 ke V 

for 1 MeV He ions. Charge state fractions of the scattered ions 

were also measured by this setting. Fractions of the neutral ions in 

the scattered ions were less than 1 % for the present experimental 

conditions, and the energy loss of these ions was not studied. 

The (100) surfaces of single crystals of NaCl, KCl, KBr, 

SnTe, PbSe and PbTe were used as the target: The surfaces of 

alkali halide crystals were prepared by cleavage in air parallel to 

the {100} planes, and the surfaces with less numbers of visible 

steps were chosen and heated to 250 o C under UHV conditions to 

prepare clean surfaces.6
) For PbSe and PbTe crystals, we first grew 

a single crystal of SnTe on the (100) surface of KCl and then grew 

PbSe or PbTe crystal on the SnTe surface by vacuum evaporation 

of pure materials. The epitaxial growth was carried out in a 

vacuum lower than 2 x 10-9 Torr. These grown crystals were good 

single crystals except for the misfit dislocations at the interfaces 

with substrate SnTe.7-
9
) 

4.3. EXPERIMENTAL RESULTS 
Examples of the energy spectra of the reflected ions at 

glancing angle incidence of MeV H+ and He+ ions on the clean 

(100) surfaces are shown in Fig. 4.1, where the energy of the 

incident ions is shown by a vertical line. The spectrum depends 
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Figure 4.1: Examples of energy spectra of the ions 
scattered in the angle of specular reflection at glancing 
angle incidence of MeV ions. 
(a) 0.7 MeV He+ ions on the (100) surface of PbSe. 
(b) 0.7 MeV He+ ions on the {100) surface of NaCJ. 
(c) 1.5 MeV He+ ions on the (100) surface of KBr. (d) 
1.6 MeV H+ ions on the (100) surface of KCI. 
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on the surface conditions, 2.B> however, all of the energy spectra 

show a sharp peak at the energies below the energy of the incident 

ions. The peak, which we call the first loss peak in the following, 

is formed by the ions which are reflected from the topmost atomic 

plane of the surface, while the ions of energies less than the energy 

at the first peak were reflected from inside the crystals. The 

incident ions cannot penetrate the flat crystal surface at the angle 

of incidence smaller than the critical angle for specular reflection. 

The surface penetration occurs only at surface steps. Most of the 

ions penetrated the surface are trapped in the (1 00) planar channels 

parallel to the surface plane before penetrating the surface again, 

i.e., sub-surface planar channeling occurs. Thus the structure of the 

energy spectrum at its lower energy region depends on the 

distribution and density of steps on the reflecting surface plane. 2> 

The energy spectrum of the reflected ions depends also on the 

angles of incidence and of scattering. However, the most probable 

energy loss ~E at the first loss peak IS almost independent of 6i. 

Figure 4.2 shows an example of the dependence of the energy loss 

at the first loss peak on the angle es of scattering in the scattering 

plane at glancing angle scattering of 0.7 MeV He ions from the 

(100) surface of PbSe. The most probable energy loss ~E(6J of the 

ions scattered at the angle for specular reflection (6s = 26J is 

almost independent of the angle ei of incidence as shown in Fig. 

4.3. However, there is a tendency that the loss ~E(6J increases 

slightly with increasing ei for faster ions. 
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Figure 4.2: Dependence of the most probable energy 
loss of ions reflected from the surface atomic plane on 
the angle of scattering es. The angles ei of incidences 
of 0.7 MeV He+ ions on the (100) surface of PbSe are 
shown. 

Summarizing the results of the measured most probable energy 

loss at the first loss peak, Fig. 4.4 shows the energy-dependence 

of the most probable energy losses of H+ and He+ ions specularly 

reflected from various target surfaces at angle of incidence 61 = 5 

mrad. The loss depends both on the ion energy and target. 
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4.4. DISCUSSION 
4.4.1. Derivation of the Position-Dependent 

Stopping Powers 
Since the impact parameters of ion-atom co11isions at specular 

reflection are larger than the Thomas-Fermi screening distance, an 

ion scattered from a surface has suffered a series of smalJ angle 

deflections in their encounters with individual atoms on the topmost 

atomic plane of the surface, and the trajectory of the ion is 

described by the planar continuum potential V(x) as in the case of 

planar channeling of ions in a crystal. A coordinate system is 

chosen with the z-axis parallel to the surface and the x-axis 

perpendicular to the surface in the scattering plane. The equation 

of trajectory of an ion of energy E incident at a smalJ glancing 

angle e i on the surface is derived from 

( 
dx )2 = V(xm) - V(x) 

dz E ' 
(2) 

Vi(x ) = E 8.2 
m 1 ' 

(2') 

where xm is the closest approach distance of the ion to the surface 

atomic plane. 
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The energy Joss of the reflected ions can be written as, 

LlE( Oi) = f S(x) dz , (3) 
traj. 

where S(x) is the position-dependent stopping power at the distance 

x from the surface and the integration is performed along the ion 

trajectory. Substituting Eq. (2) into Eq. (3), we obtain the energy 

loss 

00 

LlE( 8;) = 2/E f S(x) dx . 
xm JV(xm)-V(x) 

(4) 

This is an integral equation of Abel type, and S(x) is solved as, 

S(x) = - V'(x) ldE(O)~ E + j dE1 (~ V(x) sin(u)) du) (5) 
21tE V(x) 

0 
E 

where, 

J1E1(8) 
dJ.E(O) = __ .:._..;_ 

dO 
(5') 

Thus the position-dependent stopping power, S(x), is obtained from 

the continuum surface planar potential V(x) and the observed 

Eli-dependence of the energy loss ~E(8J. 
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In the following, we use the Moliere's approximation for 

Thomas-Fermi screening function, which gives the continuum planar 

potential V(x) as, 

(6) 

where zl is the atomic number of the projectile ion, ~ is the 

averaged atomic number of target atoms, NP is the atomic density 

on the topmost atomic plane, and {a.} = {0.1, 0.55, 0.35} and {~} 

= { 6.0, 1.2, 0.3}. 

When t:\E(8.) is independent of 8i, i.e., t:\E(8
1
) = ~E, it is 

worth noting that Eq. (5) gives a position-dependent stopping 

power, 

d~ V(x) 

S(x) LiE E = --· 
1t dx 

(7) 
3 

a, ( P,x) d L - ·exp --
- LiE • l/la · i=l {Ji aTF = 

1t dx 

We can obtain Eq. (1) when only the exponential term containing 

~3 is retained in Eq. (7). 

As it is seen from Fig. 4.3 that the experimental energy loss 

~E(8J cannot be observed at angle 8
1 

of incidence smaller than 
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about 2 mrad because of the experimental difficulties. Thus the 

experimental losses are extrapolated to ei = 0 for the calculation of 

S(x) with the use of Eq. (5). Three examples of the extrapolated 

t:\E(8.) curves are shown in Fig. 4.5(a) at the scattering of 0.7 MeV 

He from the (100) surface of KCI. The position-dependent stopping 

powers calculated from the curves are almost equal except at the 

distances x larger than about 3.0 A as shown in Fig. 4.5(b ). 

10r-------------------------------------------~ 
I (a) 

0.7 MeV He+- KCl ( 100) 

8 
\ 

~ 6 

\ 
\ 

\ A 
" B "'---._ • -

....... 4 / 
/ C 

----~- • • 

I 
2 ~ i 

{ . 
I 

0~~--------~------~--------~--------~------~ 
0 2 4 6 8 10 

6i ( mrad ) 

Figure 4.5(a): Three examples of the extrapolation of 
the experimental energy loss t:\E(8.)/Zeu2 to ei = 0 at 
the incidence of 0.7 MeV He on the (100) surface of 
KC •. 
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Figure 4.5(b): The position-dependent stopping powers 
So(x) calculated from the extrapolated curves shown in 
(a). 

- 68 -

This shows that the extrapolation procedure does not seriously affect 

the stopping power near the surface. On the other hand, the angle 

of incidence must be smaller than the critical angle ec for specular 

reflection, which is defined as 

Thus the stopping power can be determined only up to the distance 

about a,: from the surface atomic plane . 

One has recourse to the effective-ion-charge model, first 

introduced by Bohr10> and Lamb11>. Brande2
> has shown that the 

stopping power for energetic ions in solid is proportional to square 

of effective-charge of the ions. Thus the position-dependent 

stopping power may also be expressed as, 

(8) 

where Zerr<z) is the effective-charge number of the ion at z on the 

trajectory, and S
0
(x) is the stopping power for proton. The square 

of the effective-charge number of the ions scattered on the surfaces 

is approximated to the mean square charge number of the ions as, 

zl 
z~,(z) = L FqCz) q2 

, 
(9) 

q=l 
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charge Zerl of He ions reflected from various target 
surfaces. 
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where Fq(z) is fraction of the ions with charge qe at z on the 

trajectory. Since the H0 fraction in the scattered ions was less than 

0.03 in the present experimental conditions, Zerr<z) at H+ scattering 

was approximated to unity. At He scattering, on the other hand, the 

charge state of the He ions 1s no more constant along their 

trajectories near the surface. From our study on the charge 

exchange processes of MeV light ions at glancing angle incidence 

on a surface, 13
) it has been shown that rapid change in the charge 

state of the ion occurs on its incoming trajectory to the surface and 

that the mean charge of the reflected ions is almost equal to that 

of the ions at their distances closer than 1.5 A from the surface. 

Thus we approximated Fq(z) in Eq. (9) by the observed fraction of 

the charge state Fq(00), and obtained Zerl from Eq. (9). Figure 4.6 

shows the observed energy dependences of Zcrr2 of He ions 

specularly reflected from various crystal surfaces. They are almost 

on a curve independent of the target material. 

With the use of the Zerr2, S0 (x) was obtained from the 

observed energy losses. Several examples of the derived stopping 

powers, So(x), for H and He ions are shown by thick solid lines in 

Fig. 4.7. These stopping powers S0(x) are approximated to 

exponentially decaying functions of x at the distances larger than 

1 A,4
l however, they deviate from the simple exponential decay at 

the distances closer than 0.5 A from the surface. The deviation from 

the simple exponential decay becomes larger for faster ions, which 

is consistent with the fact that the observed loss .1E(8J increases 

slightly with increasing e. for faster ions. 
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Figure 4.7: Position-dependent stopping powers. 

- 72 -

(b)t.Or---------------, 
1.5 MeV He• - ( 100 ) surfaces 

---expenmental 

10 --- calculated 

4 

o<l: 10 

> 
QJ 

3 

X 40 

0 
V) 

0:: 
10 

w 
3 
0 
Q_ 

50 
<.9 
z 
n:: 
Q_ 

0 
f- 10 V) 

0 1,5 

X ( A ) 
2 2.5 

Figure 4.7: Position-dependent stopping powers derived 
from the experimental energy losses are shown (a) for 
0. 7 MeV He ions, (b) for 1.5 MeV He ions. Calculated 
stopping powers S

0
(x), shown by thin solid lines, are 

compared with the experimental ones. 
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Figure 4.7(c): Position-dependent stopping powers 
derived from the experimental energy losses are shown 
for 0.7 MeV H+ ions. Calculated stopping powers S0(x), 
shown by thin solid lines, are compared with the 
experimental ones. 
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for 1 I) MeV H+ ions. Calculated stopping powers S0(x), 
shown by thin solid lines, are compared with the 
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4.4.2. Comparison with Theoretical Calculation 
Density fluctuation of valence electrons is induced by a fast 

ion traveling near a surface, and the field induced by the fluctuation 

decelerates the ion. 14'
15

> Several theoretical calculations of stopping 

power of crystal surface for ions traveling parallel to the surface 

have been performed. 16
-

18
> In their treatments, a sharp reflecting 

boundary for solid valence electrons has been chosen. Therefore, 

we have to define the position of surface for valence electrons in 

calculating the stopping power. However, the choice of the surface 

position relative to the surface atomic plane affects critically on the 

position- dependent stopping power. 

The theoretical formula of the stopping power of such system 

of electrons, in which electron density changes one-dimensionaJly 

along the surface normal, has been derived by Kitagawa.19
) It was 

derived with the use of a dielectric function for an inhomogeneous 

many-electron gas under the condition of the high frequency 

response which is called the local density approximation. The 

formula for an ion with charge ZPe ts, 

(10) 

(11) 
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2 ( 
aw (X) x-X 

S{s)(x) = J dX T.(s)(X,x) P p 1 ) 
, , 2ax lx-XI w:(x) _ w:(X) 

T,(X,x) = ( ZPe :P(X) r K,( 2jx-X~w/X)) 

T,(X,x) = _ ( ZP e ;/x) r K, ( 2jX -x~ W/X) ) 

' (12) 

(12') 

where m is the electron mass, Ko(x) is the modified Bessel 

function, nv(x) is the density of valence electrons averaged along 

the plane parallel to the surface atomic plane, and w p(x) is the 

plasmon frequency of the localized mode. Sb(x) shows the 

contribution of bulk excitation mode, and S8(x) and Sr(x) are surface 

contributions due to surface mode and reflective mode, respectively. 

The cut-off wave number was equated to w p(x)/ v~x) and V >> 

vf(x) was assumed in deriving Eq. (11). In Eq. (12), dispersion of 

plasma frequencies was neglected and the infinite cut-off wave 

number was chosen. If we choose a semi-infinite uniform 

distribution of valence electrons in Eq. (1 0), the stopping power 

derived from Eq. (10) coincides with those derived from the other 

theories.16- 18> 
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In the stopping power Sc(x) given by Eq.(10}, the contribution 

of single electron-ion collision is not included. The contribution 

of the single collision to the stopping is calculated by the binary 

encounter approximation as, 20
) 

(13) 

where nJx) is the density of the i-th shell electrons averaged over 

surface plane and Ei is the binding energy of the i-th shell 

electrons. In deriving Eq. (13), use has been made of the 

relation 21
> 

' 

L n;(x) ln(2mV2) = n(x) ln(2mJil) , 
; E; E(x) 

where E(x) is the specific energy defined by,21> 

( 
2 )1/2 

E(x) = 'h Cc>(x) = 'h 47t em n(x) . (14) 
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The electron densities nv(x) and n(x) have to be determined to 

calculate Eqs. (10) and (13). An approximate expression for the 

total electron density n(x) was derived from the continuum surface 

planar potential, Eq. (6) with Z1 = 1, using the Poisson equation as 

n(x) (15) 

For the approximate expressiOn of valence electron density nv(x}, 

the wave functions of isolated atoms calculated from the Hartree

Fock approximation were used.22
> Although the nv(x) thus calculated 

is too crude to describe the actual electron distribution at a solid 

surface, we had to content to use this expression of nv(x) since we 

have no other available expression. 

An example of the calculated Sc(x) and S1(x) of SnTe(lOO) for 

1.5 MeV He ion is shown in Fig. 4.8. The theoretical stopping 

power S
0
(x) agree well with the experimental one: It is seen that 

the stopping due to the collective excitation dominates at distances 

larger than about 1 A, while that due to single electron excitation 

does near the surface plane. 

The calculated stopping powers S0(x) of vanous surfaces, 

wntch are shown by the thin solid lines, are compared with the 

ex per unental stopping powers in Fig. 4. 7. The agreement of the 

L k.ulated stopping powers with the experimental ones is good for 
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slower ions, while it becomes poorer for faster ions. The reason for 

this discrepancy is not clarified yet. Perhaps this discrepancy may 

be caused by several approximations made in deriving the 

experimental stopping powers and in the theory: (1) The continuum 

planar potential V(x) used here was calculated from the Moliere's 

approximation to Thomas-Fermi screening function. Ionic character 

of the constituent atoms of the present crystals has to be considered 

in the ion-atom collisions. (2) Elaborate theory of the stopping due 

to ion-atom single collision has to be used in the theoretical 

stopping power. (3) More realistic electron distribution near the 

surface has to be adopted in the numerical calculation of the 

theoretical stopping powers. These are difficult problems for us at 

the moment, and we have to wait for the further studies. 
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Chapter 5 

ENERGY LOSS OF 0.7-MeV He IONS 
DUE TO THE DYNAMIC RESPONSE OF 

SURFACE ELECTRONS 

ABSTRACT 
Energy losses of 0.7-MeV He ions which have surface

channeled along atomic rows on a clean (100) surface of SnTe are 

studied. Energy spectrum of the surface-channeled ions shows a 

few peaks whose energies and heights depend on the angle of 

incidence of He ions, ei. From the ei dependence of the energy 

losses, position-dependent stopping powers of the (100) surface for 

the He ions are determined from the (001] and (011] surface

channeling. The contribution of collective excitation of surface 

valence electrons to the stopping powers is extracted from the 

obtained position-dependent stopping powers. This agrees well with 

the theories where the dynamical response of valence electrons to 

the fast moving ions is taken into account. 
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5.1. INTRODUCTION 
Using glancing-angle scattering of MeV ions from a flat 

crystal surface, it has been shown that the ion loses kinetic energy 

even if it travels outside the solid.1•
2
> The energy losses of the ions 

have been explained by a position-dependent stopping power of the 

(100) surface of SnTe for fast ions in vacuum. The stopping power 

has a form, I) 

(1) 

where x is the distance of the ion from the surface atomic plane, 

C is a constant depending on the ion species and target surface, E 

is the ion energy, 133 is 0.3, and Cl.rf is the Thomas-Fermi screening 

distance. The stopping powers are explained in terms of the 

deceleration in the field induced by collective excitation of valence 

electrons to the charge of the fast moving ion near the surface, and 

of the collisions of the ion with electrons exuding out of the 

surface. 

The trajectories of the specularly reflected ions can be 

obtained by applying the general principles of the interaction of fast 

ion with orderly arranged atoms developed for ion channeling in 

crystal.3
•
4
> Thus the losses of energy of the specularly reflected ions 

are obtained by integrating the position-dependent stopping power 

along ion trajectories. 

- 86 -

In Chapter 4 we have proposed a new method to derive 

position-dependent stopping power of a surface for specularly 

reflected ions at glancing angle incidence on the surface. With this 

method, the position-dependent stopping power was derived 

experimentally only from the dependence of the energy loss &E of 

ions on the angle of incidence on the surface. In the present 

Chapter, we apply this method for the analysis of the energy losses 

of surface-channeled He ions at the (100) surface of SnTe. Then 

the position-dependent stopping powers of the (100) surface for 

0.7-MeV He ions at the [001] and [011] surface-channeling are 

determined. Contribution of the collective excitation of surface 

valence electrons to the stopping powers is extracted from the 

obtained position-dependent stopping powers for surface-channeling 

ions, which can be compared with those derived from the theories. 

5.2. EXPERIMENTAL 
A single crystal of SnTe with a clean {100) surface ·was 

grown epitaxially by vacuum evaporation of SnTe (99.999 % 

purity) on the (100) surface of KCl mounted on a five-axis 

goniometer in a UHV scattering chamber. The (100) surface of the 

grown SnTe crystal was irradiated by a narrow beam of 0.7-MeV 

He• ions from the 4 MY Van de Graaff accelerator of Kyoto 

University. The beam was less than 0.04 mm in diameter and the 

beam divergence was less than 0.1 mrad at the target position. The 

SnTe crystals were grown with growth rates less than 0.5 nm/min 

at 250 ° C. At these growth rates the densities of steps on the {100) 

surfaces were small, which was ascertained directly by the 
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observation with the use of an atomic force microscope as shown 

in Chapter 3.5) Thus the fraction of He ions penetrating the surface 

at the steps was negligible. The base pressure of the UHV 

scattering chamber was 3 x 10-10 Torr. The vacuum of the chamber 

during the epitaxial growth was better than 2 x 10-9 Torr and was 

in the 10-10 Torr range during the ion scattering measurement. 

Figure 5.1: Angular distributions of scattered He ions 
at the [011] surface-channeling on the (1 00) surface of 
SnTe crystal at the incidence of 0.7 MeV He+ ions. 
The glancing angle of the incident ions to the (100) 
surface was 4.8 mrad and the azimuthal angles in the 
figure were measured from the [011] axis parallel to 
the (100) surface of SnTe. 
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Figure 5.1: Angular distributions of scattered He ions 
at the [011] surface-channeling on the (100) surface. 
(f) Random incidence (along a high index axis). 

- 89-



Figure 5.1 shows the angular distribution of scattered He ions 

which are observed on a fluorescence screen downstream from the 

crystal when 0.7-MeV He+ ions scatter at glancing angle incidence 

on the (100) surface of SnTe with various azimuthal angles, q,i, of 

the incident beam relative to the [011] atomic rows. At the 

incidence of ions nearly parallel to low index atomic rows on a 

crystal surface, the ions are scattered on a broad arc as can be seen 

in Figs. 5.1(a)-5.1(e). The arc is formed by the ions scattered from 

the atomic rows, and thus the center of the arc is the projection of 

the direction of the atomic rows on the screen. The arc moves as 

the direction of the rows deviates from the incident beam direction. 

An aperture was placed to select the ions scattered at the 

angle for specular reflection, i.e. , at the scattering angle 8 twice the 

angle of incidence ei in the scattering plane. The acceptance angle 

of the aperture was 0.6 mrad. The ions passing through the aperture 

were energy-analyzed with a magnetic spectrometer. Energy 

resolution of the spectrometer was 8 x 10-3
• Fractions of He2+ and 

He+ in the scattered ions at 0.7-MeV He+ incidence are about 0.7 

and 0.3 respectively, and He0 fraction was less than 10-2
• The 

charge of He ion changes so frequently along its trajectory6
) that the 

energy spectrum of He+ is almost equal to that of He2+. Thus we 

studied the energy losses of scattered He2+ ions at the [001] and 

[011] surface-channeling. 
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5.3. RESULTS AND DISCUSSION 
Figures 5.2 and 5.3 show the examples of the observed energy 

spectra of the [001] and [011] surface-channeled He2+ ions at the 

incidence of 0.7-MeV He+ ions on the (100) surface of SnTe with 

azimuthal angle, ct>i=O. Most of the spectra show a sharp peak at the 

energies about 15 ke V smaller than that of the incident ions. The 

energy at the highest energy peak little depend on the angle of 

incidence as shown in Fig. 5.4. On the other hand, the energies at 

the lower energy peaks depend on the angle of incidence. 
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Figure 5.2: Energy spectra of the [001] surface
channeled He2+ ions at the incidence of 0.7 MeV He+ 
ions on the (100) surface of SnTe. (a) ei = 3.9 mrad. 
The calculated yields at the peaks are shown by bars. 
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Figure 5.2: Energy spectra of the [001] surface
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ions on the (100) surface of SnTe. (b) e. = 6.1 mrad. 
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Figure 5.3: Energy spectra of the [011] surface
channeled He2

• ions at the incidence of 0.7 MeV He• 
ions on the (100) surface of SnTe. (c) e, = 7.9 mrad. 
The calculated yields at the peaks are shown by bars. 

A. Position-Dependent Stopping Powers 
of Atomic Rows 

For a fast ion of energy E traveling in vacuum nearly parallel 

to the [Okl] atomic rows on the (100) surface of SnTe crystal, we 

choose the Cartesian coordinates where the z-axis is parallel to the 

atomic rows and the x-axis parallel to the surface normal. The 

origin of the coordinates is on an atom on the surface. 
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Since the velocity of the ion parallel to the z-axis is approximately 

constant, the equation of motion of the ion projected on the xy 

plane is written as 

(2) 

where M is the mass of the ion, R is the pos1tton of the ion 

projected on the xy-plane and U(R) is the potential for the ion. 

With the use of the continuum row potential U810kll(r) of the [Okl] 

atomic row, where r is the distance from the row,3
> the potential 

U(R) is expressed as 

... 
u£0kll(x,y) = L u~Okl](Jx2 + (y + na[Okl)f) , (3) 

n=-co 

where a10klJ ts the distance between the [Okl] atomic rows on the 

surface. 

The potential distributions UIOklJ(x,y) for a fast He ion traveling 

along the [001] and [011] atomic rows on the (1 00) surface of 

SnTe are shown in Fig. 5.5. Continuum surface planar potential of 

the (100) surface for He ions is also shown for comparison. The 

Moliere approximation to Thomas-Fermi screening function was 

used in the calculation of the potentials. 
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labeled in e V) for a fast He ion at glancing angle 
incidence of the (100) surface of SnTe. AJong the 
[001] axis. Possible trajectories of 0.7 MeV He ions 
which give rise to the specularly reflected ions at e = 
28i are shown. 
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Figure S.S(b): Potential distributions U(x,y) (contours 
labeled in e V) for a fast He ion at glancing angle 
incidence of the (100) surface of SnTe. Along the 
[011] axis. Possible trajectories of 0.7 MeV He ions 
which give rise to the specularly reflected ions at e = 
28. are shown. 
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In order to explain the peaks in the energy spectra of the 

surface-channeled He ions such as those shown in Figs. 5.2 and 

5.3, trajectories of He ions were calculated with the use of Eqs. (2) 

and (3), where the azimuthal angle of the incidence He+ ions to the 

atomic row is zero. The trajectory depends on the angle of 

incidence ei and the impact parameter y of the ion-atomic row 

collision. Figure 5.6 shows two examples of the impact parameter 

dependence of the angle a of scattering for the [011] surface

channeled 0.7-MeV He ions. The ordinate shows the direction of 

motion of the scattered ion relative to the scattering plane, which 

is schematically shown in the inset, and the abscissa shows the 

impact parameter of the ion-atomic row collision. The angles for 

the ion which have penetrated the surface are not shown. When 

the angle a is zero, the ion is reflected at the angle for specular 

reflection. It is seen from Fig. 5.6(a) and (b) that four types of 

trajectories, shown by A, B, C and D, give rise to the specular 

reflection. These trajectories are shown in Fig. 5.5, where they are 

projected on the xy-plane. 

Since the type A trajectory occurs at any angle ei of 

incidence, it is expected that the highest energy peaks in the energy 

spectra shown in Fig. 5.4 are formed by the ions with the type A 

trajectories. It is assumed that the trajectory of type A is governed 

only by an [Okl] atomic row on the scattering plane, since the 

trajectory is in the xz-plane containing the [Okl] atomic row. Thus 

the trajectory of the ion is described by the differential equation, 
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Figure 5.6: Examples of the dependence of the angle 
of scattering relative to the surface plane for the [011] 
surface-channeled 0.7 MeV He ions on the impact 
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projected on the scattering plane, (a) at the incidence 
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dx 
dz 

= 
U!0

klj(Xc) - U!0klj(X) 

E 
(4) 

where xc is the distance of the closest approach of the ion to the 

atomic row and is thus given by ua(Ok!J(xc) = E8i2
• If the energy loss 

of the ion is determined by the stopping power which depends on 

the distance from the [Okl] atomic row, the energy loss ~E(8J of 

the ions along the type A trajectories is given by 

where x is the distance from the surface and SaiOkll(x) is the 

position-dependent stopping power of the [Okl] atomic row for ions 

with the type A trajectory. It is only SaiOkll(x) that is unknown in 

Eq. (5), and thus Eq. (5) is an integral equation of the Abel type 

for SaiOkiJ(x), which is solved as, 

LiE(O) U~0klJ(x) . ) 
---smu 

E 21tE 

(6) 

where ' denotes the differentiation. 
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Extrapolating the observed energy loss ~E(8J to e. = 0 in Fig. 

5.4, and substituting the ~E(8J and UaiOkll(x) into Eq. (6), we obtain 

the stopping powers, SaiOOll(x) and Sa!Oll l(x) of the (100) surface of 

SnTe, for the [001] and [011] surface-channeling 0.7-MeV He 

ions. The same procedure was repeated for the energy losses at the 

incidence along the random orientation and the stopping power 

s<100)(x) of the (100) surface for specular reflection was also 

obtained. The results are shown by solid lines in Fig. 5.7. The 

stopping powers S
3
1001 l(x) and Sa!Olll(x) are decreasing functions of 

x, and are almost equal. 

B. Contribution of Valence Electrons 
to the Stopping Powers 

It is known that the stopping of fast charged particles in 

matter is determined by ion-electron single collisions and by 

collective response of valence electrons to the moving charge. It is 

possible to derive the contribution of the collective response to the 

stopping powers only from the obtained position-dependent stopping 

powers with the following assumptions: 

(1) The contribution of collective excitation to the position

dependent stopping power depends only on the distance from the 

surface. We defined it by Yc(x). 

(2) Stopping power for surface-channeling ions depends both on x 

and y. This position-dependent stopping power SIOkll(x,y) at the 

(Okl] surface-channeling is expressed by 
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(7) 

where Ys(Okl)(x,y) is the contribution of single collisions to the 

stopping. Since the stopping power Sa(Okll(x) derived above is 

obtained for ions with zero impact parameter to the [Okl] atomic 

rows (y = 0), it is related to SIOkll(x,y) by 

(8) 

Similarly the stopping power s<IOO)(x) for specular reflection is 

expressed as 

where Ys(too)(x) is the contribution of single collision to s<too)(x). 

(3) We define rslOkll(r) which shows the contribution of single 

collisions to the stopping power of an isolated [Okl] atomic row. 

Thus Ys[Okll(x,y) and Ys(IOO)(x) are approximated as 

co 

y;okl](x,y) = L r;okl](Jx2 + (y + na[Okl]?) , (10) 
n=-co 

(100)( ) Ys X (11) 
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Since type A trajectory is apart from the neighboring rows, we 

neglect their effects on Sa[Ok!J(x) and retain only the term n = 0 in 

Ys[Okll(x,O) for s a[Ok!J(x). We then obtain an integral equation for 

r s[Ok!J(x) from Eqs. (7), (8), (9), (10) and (11); 

00 

S[Okl1(x,0) - S(lOO)(x) == r;0kl](x) - _ l_ f dyr;0kl1(Jx2 +y2) , (12) 
a[Okl] - co 

The left hand side of eq. (12) is known from the experimental 

stopping powers, thus this is again the Abel type integral equation 

for r s[Okll(r). Equation (12) was solved for the [001] and [011] 

surface-channeling, and r s[OOl)(r) and r s[Olll(r) were derived. Thus the 

contribution Yc(x) of collective response of valence electrons to the 

Stopping power WaS derived from the r s[OOl)(r), r s[Olll(r) and the 

observed stopping powers, and is shown in Fig. 5.8. 

We can also derive the position-dependent stopping powers 

s [OOl l(x,y) and s [Oll)(x,y) from Eqs. (7) and (10) with the use of 

r s[OOll(r), r s[Olll(r) and yc(x) obtained above. The results are shown 

by contours labeled in eV/A in Fig. 5.9. Since the single ion

electron collisions dominate the stopping power near the surface at 

distances less than about 1.5 A, the maxima of the stopping powers 

are on the atomic rows. 
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C. Theoretical Stopping Powers 
Effects of collective excitation of surface valence electrons to 

the stopping power of a metal surface for an ion travelling parallel 

to the surface have been studied theoretically by many authors.7
-tt) 

The experimental Yc(x) derived above can be compared with the 

stopping powers calculated from the theories. Here we utilize the 

formula of stopping power of an inhomogeneous electron gas, 

which was derived by Kitagawa under the condition of high 

frequency response. 11
) The formula of the theoretical stopping power 

is expressed as: 

y c(x) = y b(x) + y j_x) + y r(x) , (13) 

(14) 

,(15) 

(16) 

(17) 
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(18) 

here ZPe is the charge of the ion, wp(x) is the angular frequency of 

the bulk plasmon of the localized mode, nv(x) is the density of 

valence electrons averaged on the yz-plane, m is the mass of 

electron, v is the velocity of ion, and Ko is the modified Bessel 

function. Equation (13) was calculated with the valence electron 

density calculated from the distributions of O-shell electrons of Te 

and Sn atoms using Hartree-Fock wave functions, 12
) and with the 

mean square charge of the reflected He ions for (Zpe)2 (= 3.3e2
). 

Since we have no available electron distribution near the (100) 

surface of SnTe, we used this approximate distribution neglecting 

the binding of the constituent atoms. The calculated Yc(x) is 

compared with the experimentally extracted Yc(x) in Fig. 5.8. 

Agreement of the calculated and the extracted Yc(x) is good 

notwithstanding the crude approximation made in deriving nv(x). 

As for the contribution of single collisions to the stopping, 

Ys(Okll(x,y), we use a formula based on the binary-encounter 

approximation, 13> which was derived with the use of the method by 

Lindhard. 14> Contribution of the single colJisions to the stopping 

power is expressed; 
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(19) 

where, 

lhklJ( ) = (41te2
nlhkl](x,y))

1

(l w x,y ' 
m 

(20) 

where n10kt1(x,y) is the electron density averaged along the (Okl] 

axis. Electron density distribution niOkJJ(x,y) at the (100) surface was 

calculated with the use of Hartree-Fock wave functions. The 

calculated Ys(OklJ(x,O) was added to the Yc(x) calculated above, and 

thus the theoretical stopping powers S
3
10ktl(x,0) for the (001) and 

(011] surface-channeling He ions were obtained. The results are 

shown by broken lines in Fig. 5.7, which agree well with the 

observed stopping powers shown by solid lines. 

D. Energy Spectra of Surface-Channeled He Ions 
In order to explain the peaks in the energy spectra of the 

surface-channeled He ions such as those shown in Figs. 5.2 and 

5.3, trajectories of He ions were calculated and the stopping power 

SIOklJ(x,y) was integrated along the four types of trajectories as 

shown in Fig. 5.5. As we have expected, the type A trajectory has 

the least energy loss, which is approximately 15 ke V smaller than 

the energy of the incident ion. Since the fraction of the ions of a 

trajectory type is inversely proportional to the gradient of the curve 
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at a = 0 in Fig. 5.6, the relative heights of the peaks in an energy 

spectrum were determined as so. It is not shown in Fig. 5.6 but the 

curve crosses the line a = 0 with larger gradients at several impact 

parameters larger than the parameter at the point C. The ions 

incident with such impact parameters have longer trajectories in the 

valleys or near the saddle points of the potential distribution, which 

result in larger energy losses.15
) Furthermore their fractions are 

smaller than those of type A, B, C and D trajectories. Thus they 

were neglected in the calculation of the spectra. 

The calculated energy spectra are shown by bars in Figs. 5.2 

and 5.3, where the yield of ions of type A trajectory is normalized 

to the least energy loss peak in the observed spectrum except for 

that in Fig. 5.3(a). It was not easy to fit the calculated spectra with 

those obtained experimentally at ei smaller than about 3 mrad, an 

example is shown in Fig. 5.3(a). Perhaps this may be caused by 

the experimental uncertainties in ei and the detection angle. 

However, the characteristic features of the observed energy spectra 

are well reproduced. This agreement shows that the derived 

position-dependent stopping powerS S(OOll(x,y) and S(Oll](x,y) and 

thus the contribution Yc(x) of collective response of valence 

electrons to the stopping powers are reasonably accurate. 

5.4. CONCLUSION 
From the energy spectra of reflected He ions at the [001] and 

[011] surface-channeling of 0.7 MeV He+ ions on the (100) surface 

of SnTe single crystal, the position-dependent stopping powers, 
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SI00 1J(x,y) and Sl0111(x,y), of the (100) surface for the (001] and 

[011] surface-channeling 0.7-MeV He ions were determined. Peak 

structure of the energy spectra of the He ions reflected from the 

surface was fairly explained by the stopping powers. Contribution 

of collective response of valence electrons to the position-dependent 

stopping powers, Yc(x), was derived first time from the experimental 

position-dependent stopping powers. This agreed well with the 

theories where the dynamical response of valence electrons to the 

first moving ions is taken into account. 
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Chapter 6 

CHARGE-STATE DISTRIBUTION OF 
MeV He IONS SPECULARLY 

REFLECTED FROM 
A SnTe(lOO) SURFACE 

ABSTRACT 
Charge state distributions of scattered ions were measured at 

glancing angles of incidence for MeV He ions incident on a clean 

(100) surface of a single crystal of SnTe under UHV conditions. 

Most of the features of the scattering-angle dependence of the 

charge state distribution of the He ions which are reflected from the 

topmost atomic layer of the crystal are explained in terms of the 

position-dependent charge exchange probabilities which are 

calculated from Bohr and Bohr- Lindhard models. The increase of 

the He+ fraction of the ions scattered at angles smaller than the 

specular reflection angle is attributed to scattering at surface steps. 

- 117 -



6.1. INTRODUCTION 
For ion transmission through a thin single crystal along a 

planar channel, the energy loss of an ion is determined by the 

position-dependent stopping power.1> We have shown in our 

previous studies that the charge state distribution of the channeled 

ions is also explained with the use of position-dependent 

electron-loss and -capture probabilities, i.e., probabilities which 

depend on the position of ion relative to the atomic planes.2
•
3

> The 

probabilities were calculated with the use of the Bohr and 

Bohr-Lindhard models of electron capture and electron loss. On 

the other hand, a fast ion incidence at a glancing angle on an 

atomically flat crystal surface interacts only with atoms of the 

surface. Its trajectory is described approximately by the motion in 

a continuum planar potential due to the surface atoms as in the 

case of planar channeling of fast ions. The inelastic interaction of 

the ion with the surface takes place along a weJI-defined trajectory 

and thus the resulting excitation of the ion is expected to be 

described by the position-dependent excitation probability. In fact, 

we have shown in Chapter 4 that the energy losses of MeV He and 

H ions, which are specularly reflected from the (100) surfaces of 

NaCI-type crystal, are fairly well explained by position-dependent 

stopping powers.4
> 

In our previous study of the charge state distribution of MeV 

He ions spccularly reflected from a SnTe (100) surface, it was 

shown that the charge state distribution of the specularly reflected 

ions is determined by electron loss and the capture of valence 
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electrons m the tail of the electron distribution at the crystal 

surface.5> Although the charge state distributions of the specularly 

reflected ions were well explained with this model, the dependence 

of the charge state distribution on the angle of scattering could not 

be explained. Now we show that the charge state distributions of 

scattered MeV He ions incidence at glancing angles are explained 

in terms of position-dependent charge exchange probabilities and 

scattering at the surface steps. 

6.2. EXPERIMENTAL PROCEDURE 
A single crystal of SnTe(100) was prepared by epitaxial 

growth in situ by vacuum evaporation on a cleaved (100) surface 

of KCI which had been mounted on a high-precision goniometer 

in a scattering chamber whose base pressure was 3 x 10- 10 Torr. 

A well defined 1 x 1 pattern from the (100) surface of SnTe was 

observed by RHEED. A beam of He ions from the 4 MY Van de 

Graaff accelerator of Kyoto University was collimated by apertures 

to 0.03 mm x 0.03 mm and to a divergence angle less than 0.1 

mrad. For the beam incident at a glancing angle ei with respect to 

the (100) surface of SnTe, the ions scattered at an angle es in a 

plane which contains the incident beam and the normal to the 

surface were chosen by a movable aperture. The acceptance angle 

of this aperture was 0.7 mrad for the scattered ions. The ions 

passing through the aperture were resolved into charge states by a 

magnetic analyzer and the energy spectrum of the ions of each 

charge state was measured by a solid state detector. The fraction 

of He0 was less than 1 % for the present experimental conditions. 
2
> 
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The fractions of He• and He2
• ions in the beam were measured as 

follows. In order to avoid the effect of fluctuations in the incident 

beam intensity, the field of the magnetic analyzer was changed 

periodically so that the He• ions and He2
• ions reach the detector 

alternately. The energy spectra of He• and He2
• ions were 

registered in two memory groups of a multichannel analyzer 

separately. Experimental errors in the observed charge state 

fractions could be reduced considerably by this method. 

6.3. EXPEIMENTAL RESULTS 
When fast He ions are incident on a clean SnTe(100) surface 

at a small glancing angle, ei, the energy spectra of the scattered 

tons have an oscillatory structure.4
) We can identify the ions 

reflected from the surface atomic plane in this spectrum, since the 

ions form a peak in the energy spectrum.7) In the following section, 

the fractions F1 and F2 of He• and He2+ ions in the beam, which 

were reflected from the surface atomic plane, are derived. Figures 

6.1(a) and (b) show the dependences of the ratio F/ F2 on 

scattering-angle for incident 0.67 and 1.5 MeV He• ions, 

respectively. The arrow indicates the angles of specular reflection, 

es = 28i. The observed ratios of the specularly reflected ions are 

connected by chain lines. The observed ratios of the ions are 

connected by broken lines for es < 28i and fine solid lines for es 
> 28i to guide the eye. The ratio of the fractions of ions scattered 

at angles smaller than t!he angle of specular reflection 28i show 

complicated es -dependence, while those at angles larger than 28i are 

almost independent of the angle of scattering es. 
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Figure 6.2 shows the energy dependence of the ratio F/F2 of 

the specularly reflected ions with an incident glancing angle of 4.7 

mrad. The fraction of He+ ions in the specularly reflected beam is 

a steadily decreasing function of He energy. 

6.4. DISCUSSION 

6.4.1. Derivation of the Position-Dependent 
Charge Exchange Probabilities 

We first calculate the impact parameter dependent 

electron-capture and -loss cross sections for He-Sn and He-Te 

collisions with the use of the Bohr and the Bohr-Lindhard 

models.8
•
9

> Although the models are simple, it has been shown that 

they give a good first approximation of the absolute magnitude of 

the cross sections.10> We then average the cross sections over the 

atoms on the (100) surface of SnTe and derived the 

electron-capture and -loss probabilities (per unit length), Qc(x) and 

Q1(x), which depend on the distance x of the He ion from the 

surface. 2•
3

> 

6.4.1.1. Electron-Capture Probability 
In the Bohr-Lindhard modeJ9> of electron transfer in ion-atom 

collision, the process of electron capture of ion is divided into two 

steps; the first step is the release of an electron from the target 

atom and the second step is the capture of the released electron by 

the ion. When a He2+ ion approaches to a target atom with an 

impact parameter P , each of the target electrons experiences the 

Coulomb force 2e2/R2 due to the ion at distance R from it. The 
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release of a target electron takes place when this force exceeds its 

binding force mv1
2/r1 to the target nucleus, where m is the electron 

mass, v1 and r1 are orbital velocity and radius of the target electron, 

respectively. The release distance ~ is defined by the relation, 

= 
r, 

The electron thus released is captured by the ion if its total energy 

is negative. The critical capture distance Rc around the ion, within 

which the released electron can be captured by the ion, is defined 

by the relation, 

where V is the ion velocity. The probability that the released 

electron is captured will be of the order of 4/3(v/rJ(RjV). Thus 

the impact parameter-dependent probability for the ion to capture 

electrons of the target atom can be written as, 

(1) 

and 
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00 21t 

P;(P) = J dr1 J d8A(p)n;(r1)r1 , (1') 
0 0 

= 8(R, - R) , for R, < Rc , 

A(p) = 

l 

R(p) = (p2 
- 2pr1cos 8 + r/) 2 

, 

where P.(P) is the contribution of the i-th shell target electrons, 

p is the impact parameter of He2+ -target atom collision, ni(rJ is the 

projection of the density of electrons in the i-th shell of the target 

atom on the p-8 plane, and 8(x) is a step function. PJp) has a 

maximum at the crossing point }\ = Rc for each respective shell 

electrons. This condition means that the orbital velocity of the 

electron which can be captured is almost the same as the ion 

velocity, i.e. so called velocity matching. 

The dependence of the electron-capture probability per unit 

length for He2+ ion on the position x from the atomic plane of the 

surface is obtained from Pc(P) as, 

00 

(2) 
-oo 

where nP ts the atomic density of the surface plane. 
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6.4.1.2. Electron-Loss Probability 
The electron-loss probability of He+ ions is estimated with the 

use of the Bohr model, s) where the electron loss occurs by two 

processes; one is a collision of the ion with target electrons whose 

velocities are smaller than the ion velocity, and the other is a 

collision of the ion with target nucleus. 

Firstly, the electron loss probability of He+ ion by the collision 

with target electrons is calculated. In the rest frame of the ion the 
' 

ion is subjected to the bombardment of target electrons and the 

momenta of the target electrons are transferred to the electron of 

the He+ ion. When the transferred energy exceeds the binding 

energy of the electron of the He+ ion, the electron is released from 

the He+. Thus the electron-loss probability, by the collision with 

the electrons of the target atom, can be written as a function of the 

impact parameter p of ion-atom collision 

21t 

P/(p) = I:' J dr1 J d8 8(b1 - R) n;(r1) r 1 , 

i 0 0 

(3) 

and, 
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1 

R(p) = (p2 
- 2pr,cos8 + r,2)

2 
, 

where a8 and v8 are Bohr radius and Bohr velocity, respectively, 

v1 is orbital velocity of the electron in the ground state of 

hydrogen- like He+, L: ' shows the sum over the shells in which the 

electron velocity is lower than projectile velocity, i.e. , only the 

electrons with orbital velocities lower than the 10n velocity 

contribute to the electron- loss of He+. Inner shell electrons 

contribute to the screening of target nucleus. 

Secondly, the electron- loss probability of a He+ ion by the 

coJlision with the screened target nucleus can be written as8
> 

(4) 

where Z1 is the atomic number of the target atom. 

The electron- loss probability of a He+ ion is obtained by 

summmg contributions of target electrons and of screened target 

nucleus and averaging the sum in the surface plane as, 
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Figure 6.3: Position-dependent electron-capture and 
-loss probabilities, Qc(x) and Q1(x), for 0.67 and 1.5 
MeV He ions at the (100) surface of SnTe. 
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00 

Ql(x) = nPJdy{Pt(Jx2 + y2) + Pt (Jx2 + y2)} (5) 
- oo 

Figure 6.3 shows the calculated position-dependent 

electron- capture and -loss probabilities of 0.67 and 1.5 MeV He 

ions at the (100) surface of SnTe. The probabilities at one 

monolayer ( 3.14 A ) distance from the surface are less than one 

thousandth of those at 1 A distance from the surface. This shows 

that the region near the point of closest approach of the ions to the 

surface plays an important role in the charge exchange process of 

the ions. 

6.4.2. Charge States of the Specularly Reflected Ions 
A coordinate system is chosen with the z-axis parallel to the 

(100) surface of SnTe and the x-axis perpendicular to the (100) 

surface in the scattering plane. The charge state distribution of the 

scattered He ions traveling along a trajectory x(z) can be 

determined by the following rate equations, where the neutral 

fractions, which are less than a few percent for most of our 

experimental conditions, are neglected for simplicity. 
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(6) 

(6') 

(7) 

where F1(x(z)) and Flx(z)) are the fractions of He+ and He2+ ions 

in the beam at a distance x from the surface, respectively. Using 

F1( -oo) as the initial condition for the fraction of He+, the Eqs. (6) 

and (6') can be solved by integration along the trajectory (x = x(z)) 

as, 

f
s Q (x) , 

F (x(z) ) = c es -s ds 1 + F ( - oo) e -s 
1 o Qc(x) + Q~x) 1 

(8) 

where s is a parameter defined as 

z 

s = J (Qc(x) + Q~x) )dz1 (9) 
- oo 
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If the ion trajectory is a straight line parallel to the surface, i.e., 

x(z) is a constant x, the fractions F1 and F2 are equilibrated and 

become constants ( F1eq and F2eq at z --> oo ) which depend on the 

position x from the surface; 

(10) 

(10') 

Thus the ratio of the fractions at charge state equilibrium can be 

expressed by the charge exchange probabilities as, 

(11) 

Equation (11) was evaluated for 0.67 MeV and 1.5 MeV He+ 

ions at the (100) surface of SnTe crystal, and the results are shown 

by the chain curves in Fig. 6.4. The x-dependence of the ratio 

F1eq(x)/F2eq(x) depends on ion energy. There is a tendency that the 

ratio is larger near the surface and becomes smaller at larger 

distances. 
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For the potential describing glancing angle scattering of MeV 

He ions at a crystal surface, we adopted the continuum planar 

potential as in the case of planar channeling of ions in a crystai. 11> 

The equation of the trajectory of an ion of energy E is, 

d2x = _ _!_ . dV(x) 

dz2 2E dx 
(12) 

V(x) = E f/!a L- -' ·exp --1 
, 

2 ~ a. ( p.x) 
i=t P; aTF 

(13) 

(14) 

where lVa is the characteristic angle for planar channeling, zl and 

~ are the atomic numbers of ion and target atom respectively, e 

is the elementary charge, Cln: is the Thomas-Fermi screening 

distance, and ai and ~i are the parameters in the Moliere 

approximation to Thomas-Fermi screening function. 12> 

The charge state fractions of He ions along trajectories of 

specular reflection, which start at z = -oo and x = oo, were 

calculated and a few examples of the results are shown in Fig. 6.4, 

where the ratios of the fractions F1{x)/F2{x) are plotted against the 

distance x of the ion from the surface. Angles of incidence of the 

He ions are indicated near the curves in mrad. For He+ incident 

( F1(oo) = 1 ) and He2+ incident ( F1(oo) = 0 ) with angles of 
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incidence ei > 3 mrad, the ratios coincide with the chain curve at 

the closest approach of the ions to the surface. Negligible change 

in the ratios occurs on the receding trajectories at distances more 

than 2 A from the surface. At glancing angles less than about 2.5 

mrad, the ratios depend on the initial charge state and do not 

coincide with each other even at the closest approach. The 

following conclusions are drawn from the calculated ratios for 

incident MeV He ions with glancing angles larger than about 2.5 

mrad: 

(A) The charge state fractions of the reflected ions are independent 

of the charge of the incident ions. 

(B) At the closest approach of the tons to the surface, charge 

exchange collisions are so frequent along the trajectories that local 

equilibrium of the charge states is attained. Since the trajectory is 

parallel to the surface at the closest approach and the parallel 

section of the trajectory is longer than the mean free path for 

charge exchange collisions, 1/(Qc + QJ, the fractions of ions are 

equilibriated at the closest approach. 

(C) The charge state fractions of the specularly reflected ions are 

nearly equal to the charge state fractions of ions at one monolayer 

distant from the surface for the receding trajectories. 
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Comparison of the caJculated and experimental ratios of the 

charge state fractions of the specularly reflected ions is made in 

Fig. 6.5, where the calculated 8i-dependence of the ratios FtfF2 are 

shown for incident He+ and He2+. At glancing angles less than 

about 2.5 mrad, the calculated ratio depends on the charge of the 

incident ions. The caJculated ratios agree well with the 

experimental dependence of the ratio on the angle of incidence; the 

ratio is almost independent of the angle of incidence at ei > 2.5 

mrad. The solid line in Fig. 6.3 shows the energy dependence of 

the caJculated ratio for specularly reflected He ions. The agreement 

of the calculated and experimental ratios is good at He ion energies 

lower than about 1 MeV, but becomes poor for higher energy He 

ions. These discrepancies suggest that the present charge exchange 

probabilities are not good enough for quantative analyses, especially 

for He ions of energies larger than about 1 MeV. 

6.4.3. Charge States of the Ions Scattered at Angles 
Deviating from Specular Reflection 

The surface of a crystal is not an ideal mirror for incident 

MeV ions, and the deviation of the direction of scattering from es 

= 2ei is caused by collisions with thermally vibrating atoms 

(nuclear scattering), electrons (electronic scattering) and surface 

irregularities. The angular deviations of an ion due to single 

scattering events by nuclear and electronic scatterings are small and 

take place frequently near the surface. Due to multiple small angle 

scatterings, an ion on a trajectory defined by the glancing angle e. 

is gradually scattered away from the trajectory and finally scattered 
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to the angle es ( ~ 28J. The final trajectory of the ion corresponds 

to the trajectory of a specularly reflected ion incident with a 

glancing angle ei' ( = es - e. ~ e.). Since the ratio F1/F2 is almost 

independent of trajectory for specular reflection as shown in Fig. 

6.5, the observed 85-dependence of F1/F2 at es < 28, cannot be 

explained on the basis of these scattering processes. 

We have shown from a Monte Carlo simulation that the 

angular distribution of scattered ions incident at glancing angles on 

a surface of a crystal is explained by scattering at surface steps.13
> 

Let us consider the effect of steps on glancing angle scattering. If 

the mean separation of the steps on a surface is larger than about 

aj ei, where a0 is the step height, the incident ion interacts with 

only one step. Possible trajectories of ions (incident at a glancing 

angle 8,) scattered at a step are shown in Fig. 6.6. The ions are 

scattered at angles smaller than 2ei at downward steps (cases A and 

B in Fig. 6.6), while they are scattered at angles larger than 2ei at 

upward steps (cases C and D in Fig. 6.6). Ion trajectories were 

calculated by changing the position of closest approach of the ion 

relative to the step for the four cases shown in Fig. 6.6. Using 

these results the charge state fractions along the trajectories were 

caJculated. The solid curves in Fig. 6.7 show the caJculated results 

of the 8
5
-dependencies of the ratios F1/F2 of the ions scattered at 

steps for MeV He+ ions incident at a glancing angle of 5 mrad. 

The dashed curves show the ratios FtfF2 for the specularly reflected 

tons with incident angle ei = es I 2. Except for case A, the ratios 

of the fractions F/ F2 are not much different from the dashed curves. 
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Figure 6.6: Possible trajectories of ions scattered at a 
surface step. A and B show the scattering at a 
downward step where the ions are scattered at angles 
smaller than those of specular reflection. C and D 
show the scattering at an upward step where the ions 
are scattered at angles larger than those of specular 
reflection. The dashed curves show specular reflection 
at a flat surface. 
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Figure 6.8: The trajectories of scattered ions at the 
terraced (001) surface of SnTe. 

The charge state fractions of the ions scattered from a stepped 

surface are thus the weighted sum of the contributions from the 

cases A, B, C and D. It is known that the (100) surface of SnTe 

crystal has the terraced structure as shown in Fig. 6.8, where the 

mean length of these terraces is about 600 A.14> When ions are 

scattered from such terraced surfaces, cases B and D hardly occur 

as shown in Fig. 6.8 because the ions penetrate the crystal surface 

at the steps. Accordingly cases A and C are possible and the 

dependence of F/F2 on angle of scattering must be that given by 

curves A and C in Fig. 6.7. The ratios F/F2 calculated with this 

model are shown by solid lines in Fig. 6.1. Numerical agreement 

is again poor for 1.5 MeV He ions, however, these calculated ratios 

reproduce the observations for incident 0.67 MeV He ions. 
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6.4.4. Charge State Distributions of the Trajectories 
of He Ions at Specular Reflection 

It is interesting to note that the curves labeled by A in Fig. 

6. 7 are related to the change in the ratio of the fractions along the 

trajectory of specularly reflected ions. The trajectories of ions at 

downward steps (case A) and the calculated ratios F/F2 along these 

trajectories are shown in Fig. 6.9 for 0.67 MeV He+ ions incident 

at a glancing angle of e, = 5 mrad. It is seen in the figure that 

the ratio FtfF2 of the scattered ions is equal to that on the trajectory 

of a specularly reflecting ion at the step. After the ions have 

passed above the step, the ratio F/ F2 does not change. This is 

understood from the fact that the charge exchange probabilities are 

small and have no effect on the ion at distances more than the step 

height (3.14 A). 

When the trajectory of an ion is described by the continuum 

planar potential, the distance x0 of the ion from the surface at the 

step and the scattered angle 8s for case A in Fig. 6.6 is related by 

(15) 

where the first and second terms of the right hand side of Eq. (13) 

are neglected in the trajectory calculation, and the trajectory, after 

passing over the step, is assumed to be a straight line. This is a 

reasonable assumption because the errors of es due to these 

approximations are less than 1 % for 0.67 MeV He ions incidence 
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with a glancing angle of 7 mrad. Charge exchange hardly occurs 

along the straight line trajectories, and the charge states of the ions 

at a X 0 distance from the surface at the step are retained by the 

scattered 1ons; 

F 1( Os) F1 (x~ = ---
Fz( Os) F2 (x~ 

(16) 

The solid curves labeled by A in Fig. 6.7 can be derived using this 

relation and Eq. (15). 

Conversely the change in the charge state fractions of the ions 

along the trajectories of specular reflection can be derived from the 

experimental 85-dependence of FtfF2 in Fig. 6.1. Assuming that the 

ions scattered at es < 28i have trajectories as shown in Fig. 6.9 

(case A in Fig. 6.6), the height X0 of the trajectory of an ion at a 

step is obtained from the angle of scattering es with the use of Eq. 

(15). These ratios are plotted against distance x from the surface 

in Fig. 6.10. For comparison, the calculated ratios of the charge 

state fractions along the trajectories receding from the surface are 

shown in Fig. 6.10. Agreement of the calculated and observed ratios 

for 1.5 MeV incident He is poor, however the features of the 

dependences of the observed ratios are similar to those of the 

calculated ratios. Good agreement was obtained for 0.67 MeV 

incident He. 

- 145 -



0.67 MeV He on SnTe ( 100) 

08 

\ 
06 

9;=65mrad 

04 

• + 

0.6 

N 
LL. 91 = 51mrad ..... 
li: 

04 

0.4 9,=33mrad 

02 

0 o~~~~1--~---72--~--~3~~00 

DISTANCE FROM SURFACE X ( .1) 
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6.4.5. Position-Dependent Charge Exchange 
Probabilities 

In the comparison of the calculated and experimental charge 

state fractions in Figs. 6.1, 2 and 5, it is shown that the agreement 

between the calculated and the experimental charge state fractions 

of reflected He+ ions becomes poorer for higher energy He ions. 

A discrepancy between the observed and calculated fractions was 

also observed in the He+ fractions of channeled ions,2
'
3
> where 

position-dependent charge exchange probabilities derived from the 

Bohr and the Bohr-Lindhard models were used as in the present 

analysis. This suggests the limitations of these models for 

quantitative analysis of the experimental data. A more elaborate 

theory must be used for the calculation of the position-dependent 

charge exchange probabilities. 

6.5. CONCLUSION 
We measured the charge state fractions of ions scattered from 

the (100) surface of a SnTe crystal at glancing angles of incidence 

for MeV He+ ions. Most of the features of charge state fractions 

of the reflected ions are explained in terms of position- dependent 

charge exchange probabilities, which are calculated from the Bohr 

and the Bohr-Lind hard models. It is shown that surface steps can 

influence the observed charge state distribution of the scattered ions, 

especially for ions scattered at angles smaller than the angle of 

specular reflection. 
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Chapter 7 

INTERPLAY OF CHARGE EXCHANGE 
AND ENERGY LOSS OF MeV He IONS 

SPECULARLY REFLECTED 
FROM A CRYSTAL SURFACE 

ABSTRACT 
Charge state distributions and energy losses of MeV He ions 

scattered from a clean (1 00) surface of SnTe single crystal are 

studied at glancing angle incidence. A stochastic model of charge 

exchange and energy loss of ions is developed, where inelastic 

interactions depend on the distance of the ion from the surface. 

Observed charge state fractions and energy losses of the reflected 

He ions are explained with the model. Taking account of scattering 

of ions at surface steps, which gives rise to the deflection of ion 

trajectories, position-dependent charge exchange probabilities of He 

ions near the surface are derived from the observed charge state 

distributions and charge state dependence of the energy losses of 

scattered He ions. 
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7.1. INTRODUCTION 
Fast ions incident on an atomically flat crystal surface interact 

only with atoms on the topmost atomic plane of the surface when 

the angle of incidence 8i is small. Their trajectories are described 

approximately by the equation of motion of the ion in a continuum 

planar potential due to the surface atoms as in the case of planar 

channeling of fast ions. 1
•
2> Most of the ions are reflected at the 

angle for specular reflection, i.e. ' at es = 28i, since the ions cannot 

penetrate the topmost atomic plane of the crystal surface when ei 
ts less than the critical angle for specular reflection.3> 

The inelastic interaction of the ions with the surface takes 

place along a well- defined trajectory at specular reflection and thus 

the resulting interaction of the ton IS described by the 

position- dependent interaction probabilities as in the case of the 

planar channeling.1
'2.

4
) In fact, we have shown in Chapter 4 that the 

energy losses of MeV He and H ions, which are specularly 

reflected from the (1 00) surfaces of several crystals, are explained 

by position-dependent stopping powers.5•6> We have also shown in 

Chapter 6 that the charge state distribution of the specularly 

reflected MeV He tons ts explained with the use of 

position-dependent electron-loss and -capture probabilities.7) It was 

shown in the Chapter that the ions scattered at surface steps are 

deflected at the angles deviated from the angle for specular 

reflection and that the charge state of the ion does not change after 

the deflection at the step. 
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Actual crystal surfaces are not atomically flat, and have many 

steps and point defects. At glancing angle incidence of a beam of 

ions on the surface, some of the ions penetrate the surface and 

reappear from the crystal at the surface steps.8•
9
> The energies of 

these ions are smaller than that of ions reflected from the topmost 

atomic plane, and, as the result, the energy spectrum of the 

scattered ions shows a characteristic structure, which depends on the 

density and distribution of the steps on the surface. The energy 

spectra of He ions scattered from a SnTe crystal surface have a few 

well-defined peaks, and the peaks at lower energies have been 

explained in terms of sub-surface planar channeling.3
•8> Thus we can 

identify the ions reflected from the topmost atomic plane of the 

surface from their energies since the specularly reflected ions have 

the least energy loss.3
•
8
•
9
> 

For MeV He ions reflected from the topmost atomic plane of 

the crystal surface, we observed that the energy loss of the 

specularly reflected He2
• ions is about 10 % as large as that of He• 

ions at glancing angle incidence of He• ions on the (100) surface 

of SnTe.5> For the ions transmitted through matter, similar 

differences of energy losses of ions of different charge states have 

been observed when the charge state equilibrium of the ions is not 

attained in the matter: Using thin gas target, Allison et al. 

determined fixed-charge stopping powers for each charge state of 

H and He ions. 10
-

12
) In channeling conditions, where charge 

exchange is greatly reduced, it is possible to observe the ions 

transmitting target without charge exchange. 13- ts) Datz et al. have 
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observed energy losses which depend on the charge state of the foil 

transmitted heavy ions after planar channeling in Au single 

crystals.11> At transmission through very thin solid foils, where it is 

possible to realize charge state non-equilibrium of the transmitted 

ions, 16- 23) Cowem et al. have measured the charge state dependence 

of energy losses of ions passing through carbon foils, and derived 

fixed-charge stopping powers and the energy losses accompanied 

h . d 117-20) 
by electron-transfer with the use of a stoc asttc mo e . 

In the present Chapter, we measure the charge state and 

energy distributions of scattered He ions at glancing angle incidence 

of MeV He ions on the clean (100) surfaces of SnTe. With the use 

of the stochastic model of the charge exchange and the energy loss 

of fast ions in inhomogeneous media, we analysed our experimental 

results of the charge state and energy distributions. 

Position- dependent charge exchange probabilities of He ions near 

the surface are derived from the observed distributions. 

7.2. EXPERIMENTAL PROCEDURE 
Experimental apparatus was the same as that in Chapter 6. So 

only a brief description is given here. The scattered ions from a 

(1 00) surface of SnTe were resolved into their charge states by a 

magnetic analyzer and the energy spectra of the ions of each charge 

state were measured with a solid state detector. The energy 

resolution of the solid state detector was 13 ke V for 1 MeV He 

ions. 
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7.3. EXPERIMENTAL RESULTS 
Energy spectra and charge state fractions of the scattered tons 

at glancing angle incidence of 0.67 MeV "' 1.5 MeV He+ ions on 

the (100) surface of SnTe were measured. Examples of the energy 

spectra of the scattered He+ and He2+ ions at glancing angle 

incidence of 0.7 MeV He+ ions on the clean SnTe(100) surface are 

shown in Fig. 7.1, where the energy of the incident ions is shown 

by a vertical line. The energy spectra of scattered He ions have a 

few well-defined peaks. The highest energy peak is due to the He 

ions specularly reflected from the topmost atomic plane of the 

surface, while the lower energy peaks are due to the ions channeled 

along the (100) planar channels parallel to the surface.3•6·7) Although 

the incident ions cannot penetrate atomically flat crystal surface at 

the angle of incidence smaller than the critical angle for specular 

reflection, surface penetration occurs at surface steps.3•
7
•
8> Thus the 

oscillatory structure of the energy spectrum depends on the 

distribution and density of steps on the reflecting surface plane.3•
8
> 

In the following, we study only the energy loss of the ions 

reflected from the topmost atomic plane. Since we could not 

observed the skewness of the highest energy peak, the peak energy 

was determined by fitting the peak profile to a Gaussian 

distribution. The error in the determined peak energy is less than 

1 %, thus the accuracy of the determined mean energy loss is of 

the order of 0.1 ke V. The observed mean energy loss does not 

depend on the angle of incidence ei, but depends on the scattering 

angle es and the charge state of the scattered tons. 
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Figure 7.1: Energy spectra of scattered He+ and He2+ 
ions at glancing angle incidence of 0.7 MeV He+ ions 
on the clean SnTe(lOO) surface. 
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Figures 7.2(a) and (b) show 8
5
-dependence of the energy losses of 

He ions reflected from the topmost atomic plane at glancing angle 

incidence of 0.67 MeV and 1.5 MeV He ions respectively. The 

energy losses L\E1(8,;8J of the scattered He+ ions and L\Ei0.;0
5

) of 

the scattered He2+ ions are shown by open and filled circles 

respectively. They are connected by lines for the guide of eyes. The 

angles of incidence are shown in the figures, and the angles for 
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Figure 7.2(a): The energy losses, L\E1(8.;0s) (0 ) and 
L\E2(0i;0

5
) (e), of He• and He2+ ions, for the ions 

reflected from the (100) surface of SnTe vs. the angle 
of scattering, for 0.67 MeV He+ incident at glancing 
angles 3.3 mrad, 5.1 mrad and 6.5 mrad. The arrows 
indicate the angles for specular reflection. 
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Figure 7.2(b): The energy losses, ~E1(8i;85) (0 ) and 
~El8i;85) (e), of He+ and He2+ ions, for the ions 
reflected from the (100) surface of SnTe vs. the angle 
of scattering, for 1.5 MeV He+ incident at glancing 
angles 3.5 mrad, 4.6 mrad and 5.7 mrad. The arrows 
indicate the angles for specular reflection. 
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specular reflection es = 28i are indicated by arrows. The losses of 

He2+ ions are larger than those of He+ ions, and the difference of 

the losses is larger at smaller scattering angles. There is a tendency 

in the es -dependence of the energy loss that the energy loss is 

smaller at smaller scattering angles (8
5 

< 28J. This tendency is 

more conspicuous in the energy losses of He+ ions than in those of 

He2+ ions. The difference of the energy losses of He+ and He2+ 

increases at smaller scattered angles. 

The fractions of the reflected He+ and He2+ ions were 

measured and have been analyzed in Chapter 6. The fractions 

depend both on the angle of incidence el and scattering angle es. 
The ratios of the observed fractions F1(8i;85) and F2(8i;8s) have been 

shown in Chapter 6. The ratios of the fractions of ions scattered at 

angles smaller than the angle of specular reflection 28i show 

complicated as-dependence, which was attributed to scattering at 

surface steps in Chapter 6. 

7.4. ANALYSES OF THE RESULTS 

7.4.1. Charge States and Energy Losses 
of Specularly Reflected Ions 

Charge state and energy of the ions at specular reflection at 

a crystal surface change along their trajectories. In order to describe 

the change of states of the specularly reflected ion along its 

trajectory, we define the Cartesian coordinate system, where the 

x-axis is parallel to the surface normal and the scattering is in the 

xz-plane. The origin of the coordinates is on the topmost atomic 
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plane of the surface. For the ions at glancing angle incidence on 

the surface, we now define the probability distribution f.(z,E) for the 

ions with charge +ie and energy E on a trajectory z(x). The 

probability distribution fJz,E) satisfies the following relation, 

J;(z+oz,E) = Q
11

(z)oz · f d(oE){/;(z,E+oE)· w,(z; oE)oz) 
0 
00 

(1) 

+ L Qj;(z) oz · J d(oE)(/j(z,E + ~; + oE) · wiz; oE)oz) , 
j- { 0 

where, 

Q"(z)oz = 1 - L Q;/z) oz , 
j- i 

(2) 

where wJ(z(x);oE) is the probability (per unit path length) of energy 

loss oE of Hei+ ions at the distance X from the surface, o.J(z(x)) is 

the probability (per unit path length) of change of ionic charge 

from +ie to +je at the distance x from the surface on the trajectory 

z(x), and UJ• is the mean energy loss of an ion due to electron 

transfer from ionic charge +je to +ie. Dependence of wj(z;oE) and 

Qilz) on ion energy E is neglected, since the energies of the ions 

we are interested in here are nearly equal to that of incident ions. 

Expanding f.(z+Oz,E), f.(z,E+OE) and ~(z,E+UJi+OE) in Eq. (1) into 

Taylor series at (z,E) and neglecting the terms containing (oz)0 and 

(oEt (n > 1), we obtain a set of partial differential equations for 

the evolution of f.(z,E)'s; 
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where Si(z(x)) is the position-dependent stopping power for the ion 

with charge +ie at distance x from the surf~ce, and is related to 

wi(z(x);oE) as, 

00 

S;(z(x)) = f d(oE)( oE·w;(z(x); oE) ) 
0 

(4) 

The fraction FJz(x)) of the ions of charge +ie at z(x) is expressed 

as, 

00 

F;(Z) = fJ;(z,E)dE , (5) 
0 

and the mean energy <EJz)> and the mean energy Joss ~EJz) of 

Hei+ ions at z(x) are derived as, 

00 

< E;(z) > = 1 
·f EJ;(z,E)dE , 

F;(Z) 0 

(6) 
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i1E(z) = E - <E.(z)> , 
I 0 I 

(7) 

where E0 is the energy of incident ions. The rate equations for 

charge state fractions FJz) are obtained by integrating Eq. (3) with 

respect to E as, 

(8) 

The evolution of the mean energy loss 6Ei(z) of Hei+ Ions along 

z(x) is obtained by multiplying E to Eq. (3) and integrating with 

respect to E, and using Eqs. (5) to (7) as, 

d(F;(z)iiE;(z)) = F .(z)S.(z(x)) 
dz I I 

(9) 

+ L { Qj;(z)F/z)(i1E/z) + ~;) - 0;/z)F;(z) i1E;(z)} . 
j .,.; 

Equations (8) and (9) are similar to those derived by Cowern et 
al. 11-2o) 

7.4.2. Effect of Steps on the Ion Trajectory 
Now suppose an ion of energy E impinges on an atomically 

flat surface of a crystal with a small angle ei relative to the 

surface. If the energy loss of the ion is neglected, the equation of 

motion of the ion is, 
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d 2x dV(x) M- =-
dt2 dx 

(10) 
d 2z M- = 0 ' 
dt2 

where M is the mass of the ion. Since the angle of incidence 8, is 

small, the potential V(x) in Eq. (10) is approximated to the 

continuum planar potential of the surface atomic plane as in the 

case of planar channeling of ion in crystal.1
•
2
> With the Moliere 

approximation to the Thomas-Fermi screening function, the potential 

is expressed as 

V(x) = EJ/1/ L - 1 
• exp --1 

, 
3 a. ( {J.x) 

i=l fJ; aTF 
(11) 

(12) 

where lVa is the characteristic angle for planar channeling, z1 and 

Zz are the atomic numbers of ion and target atom respectively, e 

is the elementary charge, nP is the atomic density of the surface 

plane, a,r- is the Thomas-Fermi screening distance, and ai and ~i 

are the parameters in the Moliere approximation to the Thomas

Fermi screening function. 1•
2

> 

The ion is reflected from the surface and scattered at 8
8 
= 28i 

when the angle of incidence ei is less than lVa· However, actual 
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crystal surface is not an ideal mirror for incident MeV ions, and 

thus the angular distribution of the reflected ions is broadened 

centered at 85 = 28i. The broadening is caused by collisions of ions 

with thermally vibrating atoms (nuclear scattering), electrons 

(electronic scattering) and surface irregularities. We have shown 

from a Monte Carlo simulation of angular distributions of specularly 

reflected ions from a crystal surface that most of the observed 

broadening comes from the scattering events at surface steps. 8•
9> 

Figure 7.3: The trajectories of scattered tons at the 
terraced (100) surface of SnTe. 

On the other hand, we have shown from atomic force 

microscopy of the (100) surfaces of epitaxial SnTe crystal that the 

surface has many small pyramidal hillocks when it is grown at 200 

o C at the growth rates larger than about 1 nm/min and that the step 
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heights are one or two monolayers (3.15 and 6.3 A).24> Possible 

trajectories of the ions at glancing angle incidence on such stepped 

surface are shown in Fig. 7.3. The ions on the trajectories labeled 

by A and B which pass over downsteps are scattered at angles 

smaller than 85 = 28i. The ions on the trajectories labeled C and D 

which pass over upsteps are deflected at angles larger than 28
1
• 

However, only the trajectories A and C are possible on the present 

surfaces because of the small pyramidal hillocks. 7•
24> 

Now consider the trajectories of the type A tons. An ion 

which has passed over a downstep on its outgoing trajectory is 

hardly affected by the continuum surface potential as its distance 

from the surface is larger than the step height (3.15 A), and thus 

the trajectory is approximated to a straight line after it passes over 

the step. Thus we obtain the following relations; 

(13) 

(14) 

where Step position Z5, angle of scattering 85 and the distance X
5 

of 

the ion from the surface at the step position are defined in Fig. 7.4. 

It was assumed in deriving the relations that only the term 

containing a 3 and ~3 is retained in Eq. (11). The error due to this 
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approximation is less than 1 % of 8
5 

for 0.67 MeV He ions at the 

angle of incidence 7 mrad. 

7.4.3. Role of Steps on the Charge State 
and Energy Loss of Reflected Ions 

We have shown in Chapter 4 and Chapter 6 that the 

position-dependent stopping power S.(x) and charge exchange 

probabilities Qij(x) are rapidly decreasing functions of x.5-7) 

Therefore the charge state and energy of the reflected ions having 

the type A trajectories do not change after they pass over 

downsteps, since the distances of the ions on the trajectories are 

more than the step height (3.14 A) from the surface. Thus the 

charge state of the ion scattered at an angle e s ( < 28J is expressed 
as 6) 

' 

(15) 

where e s is related to the position Zs of downstep by Eq. (14). With 

the use of this relation, we have explained the angular dependence 

of the charge state distributions of He ions scattered from the (100) 

surface of SnTe. 

It has been shown in Chapter 4 that the energy loss of the 

tons specularly reflected from the topmost atomic plane on the 

crystal surface is expressed by integrating the position-dependent 

stopping power S(x) along its trajectory z = z(x).5•6) Since the 

energy of the ion does not change after it passes over a downstep, 
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Figure 7.4: The type A trajectories of scattered ions at 
steps, and the evolution of the energy losses of 0.67 
MeV He+ and He2+ ions on the trajectories. The closest 
approach of the ions to the surface are at z = 0. This 
figure is derived with the use of Eqs. (13), (14), (16), 
and of the experimental energy losses of the ions. 
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the energy of the ion reflected at an angle 85 ( < 28J is that of the 

ion at the downstep. Thus the energy loss of the ion scattered at 

es ( < 28J becomes, 

(16) 

where es is related to the position Zs of downstep by Eq. (14). The 

trajectories of type A ions and the energy losses of the ions along 

these trajectories are shown in Fig. 7.4 for 0.67 MeV He+ ions 

incident at a glancing angle of ei = 5.1 mrad. Thus with the use 

of Eq. (16) the evolution of the energy losses of the ions along the 

trajectories of specular reflection can be derived from the observed 

es -dependence of the energy losses. 

7 .4.4. Charge States and Energy Losses 
of Specularly Reflected He Ions 

Now we apply the model in section 7.4.1 to the glancing 

angle scattering of MeV He ions from the (100) surface of SnTe. 

Most of the ions reflected from the (100) surface of SnTe are He+ 

and He2+, and the fraction of He0 ions is less than 1 % at glancing 

angle scattering of MeV He ions from the (100) surface of SnTe. 

We therefore consider only the fractions of He+ and He2+, i.e., F1(z) 

and F2(z). The rate equations for the charge state fractions, Eq. (8), 

reduce to two simultaneous equations and are solved when the 

initial fractions are given. When the fraction of He+ ions in the 

incident He ions is F1'n at x = 00 , z = - 00 , and thus F2in = 1 -

F1 in, Eq. (8) for F1(z) is integrated along the trajectory as, 
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and, 

F 1 (z) = £ Q21 (x
1
) • exp{- [, (Q12 (x

11
) + Q21 (x

11
)) dz 11

} dz 1 

+ F;• ·ex+£ (Q12 (x1
) + Q21 (x

1
)) dz 1

} 

(17) 

(18) 

where the integrations in Eq. (17) are along the ion trajectory z(x). 

For convenience of the following discussion, we define the 

equilibrium charge state fractions of He ions which are attained for 

the ions moving parallel to the surface at the distance x. The 

charge state fractions F,eq(x) of the ions are related to the charge 

exchange probabilities; 

(19) 

where i and j are 1 and 2. 

Integrating Eq. (9) along an ton trajectory with the initial 

condition that ~E.( - 00) = 0, we obtain two relations for the energy 

losses ~E1(z) and ~E2(z) of He ions at z(x) on the trajectory of 

specular reflection; the mean value ~Em(z) of the energy losses on 

the charge states of the He ions as, 
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z 

= J {(S1(x
1)+Q12 (x1)U12 )F1 (z

1
) + (S2 (x1)+Q21 (x

1)U21)F2 (z1
)} dz1

, 

-oo 

(20) 

and the difference ~Elz) of the energy losses of He2+ and He+ as, 

(21) 

· exp - J Q (x 11
) 

2 
+ Q (x 11

) 
1 dz 11 dz 1 

• '( F(z
11

) F(z
11
)) l 

z' 21 Ft (z " ) 12 F2 (z") 

From these relations, ~E1(z) is derived: 

<IE, (z) ~ £[ ( s I (x 1
) F, (z 1

) + Q21 (x 1) u21 F2 (z 1) ) (22) 

( 
F (z') { ' }J · 1 + ;, (z) ·exp - [, ( Q21 (x

11
) + Q12 (x

11
)) dz 11 
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We can obtain similar equation for ~~(z). Equation (22) ts 

rewritten in a simpler form, 

z 

JE,(z) ~ F,~z) · [{M1(z'lPu(z
1
,z) + ~(z 1)P11 (z 1,z)) dz1 

(; ~n (23) 

M .(z 1
) = S.(x1)F.(z 1

) +Q .. (x 1) U .. F .(z 1) 
I I I Jl )I J ' (24) 

(26) 

Mj(z')dz' shows the energy loss of H~+ in the interval (z', z'+dz') 

and is the sum of the energy loss due to the stopping Sj(x') of H&+ 

ions without charge changing and that due to the energy loss Uij in 

the charge-exchange collision in which Hei+ ion changes into Hel+ 

ion. P/z',z) shows the fraction of He ions in the charge state i at 

the position z(x) which were in the charge state j at the position 

z'(x'). They satisfy the following relations; 

(28) 
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7 .4.5. Derivation of Charge Exchange Probabilities 
We write down the position- dependent stopping power for 

specularly reflected ion with unit charge +e by Sp(x). From the 

analogy of the stopping power of bulk material, we express the 

fixed-charge position-dependent stopping power as, 

S/x) = qf ·SP(x) , (29) 

where qje is the effective charge of Hel+ ion. Substituting Eq. (29) 

into Eqs. (20) and (21), we obtain the mean value ~Em(z) of the 

energy losses of He2+ and He+ ions as, 

(30) 

l 

= J {( F1 (z
1)q1

2 
+ F2 (z 1)q/ )SP(x

1
) 

-oo 

and the difference ~Ed(z) of the energy losses of He2+ and He+ as, 

L!Eiz) = L!E2 (z) - L1E1 (z) (31) 

= 
1 

Jz [{ (q 2 - q 2)S (x 1)F (z 1)F (z 1
) 

Fl(z)F2(z) _.. 2 1 P 1 2 

+ Q12 (x
1
) U12F1 (z

1
)
2 

- Q21 (x
1
) U21 ·F2 (z'J' } 

· exp{- [,(Q21 (x 11
) + Q12 (x 11))dz"} ]dz' 

- 172 -

From Eqs. (30), (31) and (8), the charge exchange probabilities 

Qji(x) are derived as follows; 

[ 
d( qf LiE;(Z) -q/ LiE/z)) F; (z) · __,__.=___ _ _ _ ___,:_____:_ 

dz 

+ _F;_(z) ·q2(L!E.(z)- LiE.(z) - U ·) . dFI(z) l 
F .(z) 1 1 1 11 dz 

J 

Qji(x) =----- - ------------

[ ( q / F1 (z) + q,' F2 (z)) ·( LIEj(z) - LIE, (z)) 

+ q 2 U F (z) -q .2U.F .(z) l J }I J I 1r I 
(32) 

where z = z(x), and i;.tj. This shows that we can determine the 

position- dependent charge exchange probabilities Oix) from the 

observed energy losses ~Ei(z) and observed charge state fractions 

Fi(z), if we know the effective charges qje and U,r It is shown in 

Eq. (32) that the charge exchange probabilities are small when the 

difference ~Eiz) of the energy losses is large. 

Because He2+ ion has no electron to surround its nuclear 

charge, its effective charge is +2e, thus q2 = 2, while the effective 

charge of He+ ion depends on the He+ velocity. Now, for 

convenience in the following analysis, we assume q1 = 1. 
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From the kinematics of collision process, 25> the energy loss of 

an ion at electron capture is 

(33) 

where BT and Bp are the (positive) binding energies of the captured 

electron to the target and projectile core, respectively. For the major 

electron capture channel of 0.67 "' 1.5 MeV He2
+ ions colliding 

with Sn and Te atoms,?) BT is the average of the binding energies 

of 4s electrons of Sn and Te atoms, which are 133 eV and 162 eV 

for Sn and Te, respectively26>. Thus we obtain U21 = 0.09 keY. For 

the electron loss process of He+, we assume that the velocity of the 

lost electron relative to the ion is small. Thus the ion energy loss 

on electron loss is expressed as, 

U .!. mV2 
12 ~ 

2 
(34) 

where v is the laboratory-frame velocity of the ion. ul2 is 0.09 

keY and 0.2 keY for 0.67 MeV and 1.5 MeV He ions, respectively. 

Now substituting the values of q1, q2, U12, and U21 into Eq. 

(32), and using Eqs. (15) and (16) to derive Fi(z) and ~EJz) from 

the experimental data and the following relation derived from Eqs. 

(13) and (14); 

= __~!_!__ • 8 ·(28. - 8 ) ·dz 
2a s , s ' 

TF 
(35) 
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Figure 7.5 (a): Experimentally derived 
position-dependent electron-capture probabilities, Q

21
(x) 

for 0.67 MeV He ions at the (100) surface of SnTe. 
For comparison, the calculated position-dependent 
charge exchange probabilities are shown by dashed 
lines, which probabilities are calculated with the use of 
the Bohr and the Bohr-Lind hard models. 
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exchange probabilities are shown by dashed lines, 
which probabilities are calculated with the use of the 
Bohr and the Bohr-Lindhard models. 
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Bohr and the Bohr-Lindhard models. 

- 178 -

we obtain the position-dependent charge exchange probabilities 

Q1z{x) and Q21(x). 

Figure 7.5 shows the obtained charge exchange probabilities 

for 0.67 MeV and 1.5 MeV He ions at the (100) surface of SnTe. 

The obtained charge exchange probabilities in Fig. 7.5 decrease with 

the increasing distance of the ion from the surface. For comparison, 

the calculated charge exchange probabilities are shown by broken 

lines in Fig. 7.5. They were calculated by averaging the charge 

exchange cross sections for He-Sn and He-Te collisions over the 

surface plane. The cross sections were calculated with the Bohr and 

the Bohr-Lindhard models.27
•
28

) Agreement of the calculated and 

observed probabilities is poor, and the calculated probabilities are 

almost four times as large as the observed ones. However the ratios 

of the Q12(x)/Q21(x) are almost equal, giving the same equilibrium 

charge state fractions, Fieq given by Eq. (19). 

7.5. DISCUSSION 

The stochastic model for the probability distribution fJz,E) has 

originally been described by Winterbon29
) and developed by Cowern 

et al. at foil transmission of fast ions.17
- 20) For the better 

understanding of the physical meaning of Eq. (23) for the energy 

loss, ~EJz), we consider two extreme cases. The first is the case 

where the charge-exchange does not occur during specular 

reflection. In this case, both Q12(z) and Q21(z) are zero, and 

Pii(z',z)'s defined by Eq. (25) are, 
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P .. (z17.) = 1 
II 

P;/Z 17.) = 0 , 
(36) 

Thus the energy losses are written down simply as 

z 

LiE;(z(x)) = J qi2 ·SP(z1(x 1))dz
1 (37) 

- oo 

The energy loss of He+j ions is proportional to q{. 

The second is the case where the charge-exchange occurs too 

frequently that the ions are in the charge state equilibrium at any 

point on the trajectory z(x), where the fractions are given by Eq. 

(19). In this case, it is seen from Eq. (25) that 

(38) 

The energy losses of He+ and He2+ ions are the same and are given 

as, 

(39) 

z 

= J {(F~q(z 1)q 12 +F;q(z1)q/)·SP(x1
) 

- oo 
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The actual situations are intermediate between the above two 

extreme cases, and can be solved numerically. 

In deriving the charge exchange probabilities from Eq. (32), 

we assumed that the effective charge q1e of He+ ion is e. This is 

based on the following consideration: In the cases of foil 

transmission of fast He+ ion through foils, the effective charge of 

He+ is generally larger than +e except for low velocity He+ ions 

where the screening effect by the bound electron in He+ is rather 

strong. As the velocity increases, the effective charge becomes 

larger because the ions are subjected to close collisions with target 

electrons. 30
) On the other hand, at glancing angle scattering of fast 

ions from a surface, the impact parameter of ion-atom collisions is 

larger than the Thomas-Fermi screening distance of the collision. 

Thus the contribution of close collisions to the stopping of the ions 

is less than that of the ion in solid, and the nuclear charge of He+ 

is well screened by the bound electron. Similar situation is realized 

at channelling ions in crystal. From the observed stopping powers 

for heavy ions in Au(111) channels, Datz et a!. have shown that 

the screening per electron of the ion, which is defined as (Z1 - qcrr) 

/(number of bound electrons), was about 0.9.13
) This shows that the 

nuclear charge is well screened by the bound electrons for 

channeling ions. 

The charge exchange probabilities derived in the present 

Chapter do not agree with the theoretical ones used in the analysis 

of the charge state distributions of reflected He ions in Chapter 6, 
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Figure 7.6: Equilibrium charge state fractions F1eq(x) of 
1.5 MeV He ions near the (001) surface of SnTe. 
Circles are calculated from the charge exchange 
probabilities derived from the present analysis, while 
the broken lines are calculated from the theoretical 
probabilities. 

but, the equilibrium charge state factions of He ions calculated with 

Eq. (19) for these two sets of probabilities agree as shown in Fig. 

7.6. Due to this agreement, the observed charge state distributions 

were explained in terms of the theoretical probabilities in Chapter 

6. 

- 182 -

7.6. CONCLUSION 
We measured charge state fractions and energy losses of He+ 

and He2+ ions scattered from the (100) surface of a SnTe crystal at 

glancing angles of incidence for MeV He+ ions. Based on the 

model that the deflection of ions from the trajectory of specular 

reflection occurs at surface step, the observed charge state and 

energy losses of He ions were related to those of ions just above 

the step. For the interpretation of the experimental results, a 

stochastic model was formulated to describe the change in the 

charge state fraction and energy loss of ions traveling along a 

surface reflecting trajectory. It was shown from the model that the 

difference of energy losses of scattered He+ and He2+ ions is useful 

to derive the position-dependent charge-exchange probabilities of 

scattered He ions. With the use of the relations of charge state 

distributions and energy losses of scattered He ions derived from 

the stochastic model, the charge exchange probabilities of MeV He 

ions at the (100) surface of SnTe were derived, which depend on 

the distance from the surface plane. 
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Chapter 8 

A NEW METHOD 
TO DETECT SURFACE STEPS BY 

SPECULARLY REFLECTED FAST IONS 

ABSTRACT 
With the use of a computer program for simulation of a 

trajectory of a MeV light ion at glancing angle incidence on a 

crystal surface, scattering phenomena of He ions at the (001) 

surfaces of SnTe crystals were simulated. It is found that the yield 

and angular distribution of scattered ions from the surface depend 

sensitively on the step density on the surface. A new method to 

detect surface step density by measuring the ion yield at glancing 

angle incidence of MeV ions on the crystal surface is proposed. 
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8.1. INTRODUCTION 
Most of the conventional experimental methods for surface 

structure studies are not sensitive to the surface defects except for 

the reflection high energy electron diffraction (RHEED), in which 

the intensity oscillation of the RHEED pattern from GaAs surface 

during its epitaxial growth was interpreted as due to the change in 

density of surface steps. This intensity oscillation is successfully 

applied to the monitoring of the process of molecular beam epitaxy 

of GaAs.1
> 

For energetic tons incident on a crystal surface, it has been 

only the yield of secondary electrons that is known to be affected 

by the surface atomic steps. 2> In our recent experimental studies of 

glancing angle scattering of MeV light ions at the (001) surface of 

SnTe, it has been shown that some of the experimental results 

cannot be interpreted on the assumption of the scattering of ions at 

an atomically smooth surface.3
-s) For the better understanding of 

the experimental results, a computer simulation program for ion 

scattering at crystal surface has been developed.6) From comparison 

of the simulated and the experimental results, it has been concluded 

that by an introduction of steps at the crystal surface, the energy 

spectra of scattered ions and the ion yield at surface channelling 

conditions are well explained.6·7) 

In the present Chapter, the scattering of ions at glancing angle 

incidence of fast He ions at stepped (001) surfaces of SnTe crystal 

is studied using the computer simulation. The relation between the 
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yield of scattered ions and the density of steps is studied and a 

new method utilizing the glancing angle scattering of fast ions is 

proposed for the purpose of characterization of a crystal surface. 

8.2. COMPUTER SIMULATION PROGRAM 
A computer program was developed for simulation of ion 

scattering at glancing angle incidence on a (001) surface of NaCl 

type crystal. The detail of the program will · be explained here. 

The basic function of the program is to trace its energy and 

the trajectory of an ion at a crystal surface. For an ion moving in 

vacuum nearly parallel to a surface at distances larger than aj 2 

from the surface atomic layer, where a
0 

is the interatomic distance, 

the interaction is described by a continuum surface planar potential. 

The potential is defined as 

00 

U(x) = nPJv(Jx2 + R2 )2trRdR, (1) 
0 

where x is the distance of the ion from the surface atomic plane, 

nP is the density of atoms on the surface atomic plane and V(r) is 

the ion-atom interaction potentiaJ.8
) For ions moving in crystal and 

in vacuum at distances closer than aj 2 from the surface, the 

interaction is reduced to a series of isolated binary collisions of the 

ion and atoms. The correlation of the thermal displacements of 

atoms from their equilibrium positions is neglected and the 

displacement of each atom is derived with the use of the isotropic 
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Gaussian distribution defined by the mean square displacement 

calculated from the Debye temperature 8 0 , for which 150 K is 

chosen. 

The interaction between the ion and target electrons 1s 

approximately expressed by an empirical energy loss function,5
> 

dE = _i_ exp (- 0.15x) , 
dz ..[E aTF 

(2) 

where x is the distance of the ion from atomic layer, A is 2000 

MeV312cm-1 and 7700 MeV312cm-1 for H+ and He+ respectively, aTF 

1s the Thomas-Fermi screening distance and E is the ion energy. 

For the ion-atom interaction potential V(r), the analytical 

approximation due to Moliere was employed, to) and the angle of 

deflection in a binary collision is derived with the use of the 

impulse approximation. The ion deflection due to electronic 

scattering is also calculated from the energy loss (derived from Eq. 

(2)): The energy loss is determined continuously along the ion 

trajectory for an ion moving in the continuum potential, and 

between succeeding ion-atom binary collisions for ion moving in 

crystal. The angular deflection of the ion is obtained from the 

energy loss with the use of the impulse approximation in ion

electron collision. Thus the calculated ion trajectory is made up of 

a series of linear hops. 
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The program can handle ion trajectories at the (001) surface 

of NaCl type crystal, but it can easily be modified for other types 

of crystal surface. Surface irregularities, e.g., atomic relaxation, 

rumpling, reconstruction and steps can also be introduced as shown 

in the next sub-section. 

8.3. EFFECT OF SURFACE STEPS 
ON ION SCATTERING 
To specify the direction of motion of an ion, azimuthal angle 

<P measured from the [100] axis parallel to the surface and glancing 

angle 8 measured from the (001) surface plane are defined. The 

energy of incident He+ ions was chosen to be 0.7 MeV, and the 

glancing angles of the ions on the (001) surface of SnTe crystal 

were chosen to be less than the critical angle ec for specular 

reflection, which is determined for the (001) surface with the use 

of the (001) continuum surface planar potential 

E8 2 = U(a ) 
c TF ' 

Oc is 12.2 mrad for 0.7 MeV He tons. More than 5000 ion 

trajectories were calculated for a set of initial glancing and 

azimuthal angles, where the initial ion positions were chosen 

randomly within an imaginary unit cell at 3a
0 

(a
0 

= 3.14 A for 

SnTe) above the surface. For each incident ion, steps of atomic 

height, which were parallel to the [010] axis, were introduced on 

the (001) surface of SnTe crystal. The step separation was random, 

where only the mean separation, Ds, was given to introduce the 
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steps. Upward and downward steps viewed from the incident ions 

were also introduced randomly. 

e I mrod l 
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Figure 8.1: Angular distributions of scattered ions at 
glancing angle incidence of 0.7 MeV He+ ions o.n a 
flat (001) surface of SnTe. (a) Specular reflectl?n; 
glancing angle ei = 10 rnrad, azimuthal angle relative 
to the (1 00] axis <Pi = 100 mrad. (b) Surface 
channelling; glancing angle e. = 10 mrad, azimuthal 

angle <1>. = 0 rnrad. 
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Figure 8.1 shows examples of the calculated angular 

distributions of He ions scattered from a flat (001) surface of SnTe 

when the glancing angle ei of the incident 0.7 MeV He+ ions was 

10 mrad. The angular distribution of scattered ions at random 

incidence is shown in Fig. 8.1(a), where the incident azimuthal 

angle <P. is 100 mrad. The distribution has a maximum at the 

direction of specular reflection e = ei. Due to the multiple nuclear 

and electronic scattering, the scattered ions are not sharply 

distributed at the specular reflection angle. In this orientation of 

the incident He ions, the closest approach of the ions to the surface 

atomic plane derived from the continuum approximation using Eq. 

(1) is 1 A, and thus the incident He+ ions can hardly penetrate the 

surface atomic plane. This is seen in the energy spectrum of 

scattered ions at the specular reflection angle (Fig. 8.2(a)), where 

only a peak is seen at the energy slightly less than the energy of 

incident ions and this is consistent with the fact that no ion 

penetrates the surface atomic layer.5) On the other hand, when <P. 

= 0 mrad, i.e. at the (100] surface channelling condition, the 

scattered ions show an arc pattern due to the reflection of ions by 

the [100] atomic rows (Fig. 8.l(b}}. In this orientation, some of 

the incident ions can penetrate the surface in between the [100] 

atomic rows and the yield of reflected ions decreases. 

In the following, we will be interested only in the ion 

scattering at random incidence on the stepped (001) surface of 

SnTe. At glancing angles less than the critical angle for specular 

reflection, a fraction of incident ions penetrate the surface at steps, 
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Figure 8.2: Energy spectra of reflected ions in a 
window 2 x 2 mrad2 centered at e = 4 mrad and ct> 
= 100 mrad, when the glancing and azimuthal angles 
of incident 0.7 MeV He+ ions are ei = 4 mrad and ct>i 
= 100 mrad respectively (random incidence): (a) On a 
flat (001) surface. (b) On a stepped surface with mean 
step separation Ds = 300a0 • 

because step edges are exposed to the incident ions. Most of the 

ions which have penetrated into the crystal at the step edges are 

trapped in between the (001) atomic planes parallel to the surface, 

i.e. the (001) planar channeling occurs. Some of them can emerge 
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Figure 8.3: Dependence of the reflectivity of 0.7 MeV 
He+ at the (001) surface of SnTe on the step density, 
where the glancing and azimuthal angles of the incident 
He+ ions are 4 mrad and 100 mrad respectively. The 
ions which are trapped in the crystal after travelling in 
the crystal more than 4000a0 are counted as the trapped 
tons. 

out of the crystal mostly at down steps. Thus the energy spectrum 

of the ions scattered from the stepped surface has components with 

larger energy losses as shown in Fig. 8.2(b ), since the ions reflected 

inside the crystal suffer larger energy losses. For the incidence of 
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0.7 MeV He ions with glancing angle e i = 4 mrad, the calculated 

ion reflectivity is shown in Fig. 8.3. In the calculation the tons 

reflectivity was defined as the ratio of the number of scattered tons 

to that of incident ions. For the scattered ions, the ions scattered 

into angles less than 10ei with energies larger than 90 % of the 

incident energy were counted as the reflected ions. The ion 

reflectivity decreases from unity at step density 0 to about 0.6 at 

step densities larger than 10-2/a
0 

as the density increases. 

Not only the ion reflectivity but also the angular distribution 

of scattered ions changes due to the steps. Figure 8.4 shows the 

distributions of He ions scattered in the plane containing the 

incident beam direction and the normal to the (001) surface, i.e. 

along the line connecting the incident beam position and the 

specular reflection position in Fig. 8.1{a). For each curve, 

trajectories of 5000 ions were calculated where the glancing angle 

of incident 0.7 MeV He ions was set at 4 mrad. The distributions 

have maxima at scattering angle e = 4 mrad. As the step density, 

liDs, increases, the full width at half maxima (FWHM) of the 

distribution becomes larger and its peak height becomes smaller. 

From these angular distributions, the step density dependence of the 

yield at the specular reflection angle was obtained and is shown in 

Fig. 8.5. In the figure, the yield decreases steadily with the 

increasing step density and becomes almost independent of the step 

density at the step densities larger than about ajei. 
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Figure 8.5: Dependence of the yield of He ions at the 
specular reflection position on the step density ~liDs~· 
The detector window for accepting the scattered 1ons 1s 
1 x 1 mrad2 • The glancing and azimuthal angles of 
the incident 0.7 MeV He+ ions are -4 mrad and 100 
mrad respectively. The solid line shows the calculated 

yield using Eq. (3). 

The energy spectrum of scattered ions, the ion reflectivity, the 

yield of ions at specular reflection angle and the FWHM of the 

angular distribution depend on the step density. From the 

comparison of the calculated results, it is concluded that the yield 

of ions at specular reflection angle changes most sensitively with 

the step density. 
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Although the calculated results only for the 0.7 MeV He ions 

at glancing angle incidence on SnTe(001) are presented here, similar 

scattering phenomena were obtained in the calculations for 0.5 to 

1.5 MeV He ions. Considering the role of surface steps in the 

scattering process of a fast ion at a solid surface, we expect that 

the similar results will be obtained for crystal surface with other 

crystal structure types and for other ion species . 

8.4. DISCUSSION 
The yield of ions scattered at a specular reflection angle can 

be derived by a simple optical model: Four possible geometrical 

relations of two neighboring steps are shown in Fig. 8.6, which are 

equally probable if the existence probabilities of upward and 

downward steps are equal. For ions incident on the stepped surface 

with glancing angle ei, it is assumed that the terrace area which is 

exposed to the ions reflects the ions at the specular reflection angle 

and that the ions incident at the step edges penetrate in the crystal. 

The ion yield at the specular reflection angle Y(D5 ) is expressed as 

1 -
ao 

( D,> ~·) Ds8i ' 

Y(Ds) 
3 ao ( 2ao > D, > a. ) (3) = 
4 2Ds8i e, e, 

1 
( D, <;,) . 

4 
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A. 

B. 11//////////////'~1 • 

-//-/-,/_...:/'I crystal ///////• 

C. 

D. 

Figure 8.6: Step terrace structures between neighboring 
steps. Four structural types are equally probable if the 
densities of upward and downward steps are equal. 

The ion yield, Eq. (3), is independent of mean step separation, 

os at step separations smaller than ajei, which shows that the 

incident ions are reflected only at the terrace of type B structure 

shown in Fig. 8.6 and that the terraces of other types are not 
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exposed to the incident ions. The ion yield given by Eq. (3) is 

drawn by a solid line in Fig. 8.5. The agreement of the solid line 

with the simulated results is rather good considering the crude 

model used in deriving Eq. (3). 

The simulated results show that the glancing angle scattering 

of energetic ions is affected by the existence of steps on the 

surface. The yield of ions at the specular reflection angle and the 

ion reflectivity are the quantities which are sensitive to the step 

density. These quantities are also easily and quickly measured by 

ion detector. Therefore, it is proposed to use the ion reflectivity or 

yield of ions at specular reflection angle to detect the density of 

surface steps. If the layer-by-layer growth occurs by formation of 

two dimensional nuclei on a surface of a crystal, the step density 

on the surface will change periodically during the growth. Thus 

the yield of scattered ions at glancing angle incidence of MeV light 

ions on the surface will oscillate during the growth of the crystal. 

Although the probe particles are different, this is a method 

equivalent to the RHEED intensity measurement, which is currently 

used to monitor the MBE growth of GaAs or related compound 

semiconductors. 
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Chapter 9 

PROCESS OF EPITAXIAL GROWTH OF 
PbSe ON SnTe (001) STUDIED BY 

GLANCING ANGLE SCATTERING OF 

MeV He IONS 

ABSTRACT 
Process of epitaxial growth of PbSe on SnTe (001) under 

UHV conditions is studied with the use of glancing angle scattering 

of MeV He ions and transmission electron microscopy. An 

empirical relationship of the mean separation of misfit dislocations 

on the PbSe/SnTe interface and the thickness of the layer is derived 

from TEM observation. Anomalous broadening of the angular 

distribution of scattered He ions from the surface of PbSe is 

observed when the thickness of the PbSe layer is between 1 and 

about 20 nm. From the simulation of ion trajectories at glancing 

angle scattering from several model surfaces, this anomaly is 

attributed to the surface wrinkles caused by a square-net of misfit 

edge dislocations. 
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9.1. INTRODUCTION 
Glancing angle scattering of MeV light ions at a crystal 

surface was first studied by a group at the University of Sussex, I) 

and then by a group at UniversitiH Mi.inchen in relation to the 

surface channelling of ions.2
> We have studied the glancing angle 

scattering of MeV H and He ions at SnTe and PbSe (001) surfaces 

under UHV conditions and have shown that most of the ions are 

reflected at the topmost atomic layer without penetrating the crystal 

surface. Thus the closest approach of the reflected ions to the 

surface atoms can be controlled to be less than 0.1 nm by changing 

the angle of incidence of the ions to the surface. We can, 

therefore, study the interactions of the ions which take place outside 

the solid.3-
8> 

In the analyses of the experimental results at specular 

reflection of MeV ions from dean surfaces, 6•
8

> we found that the 

surface steps have considerable effect on the angular distribution, 

energy loss and charge state distribution of the scattered ions as has 

been pointed out by Graser and Varelas.9
> From the computer 

simulation of ion trajectories at glancing angle incidence on a clean 

(001) surface of SnTe, we showed that the quantity which is most 

affected by the surface steps is the yield of ions scattered at the 

angle of specular reflection. We therefore proposed to use the 

glancing angle scattering of MeV ions for the study of surface steps 

in Chapter 8. 10
> If the layer-by-layer growth takes place, it is 

expected that the scattering of ions from the growing surface shows 
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periodic changes as the RHEED intensity oscillations from the 

epitaxial GaAs surface during its MBE growth. 11> 

Epitaxial growth of lead chalcogenide crystals and the misfit 

dislocations formed on the interfaces of the epitaxial bicrystaJs have 

been extensively studied by Mathews12> and Honjo and Yagi 13> with 

TEM. Our preliminary studies of the PbSe/SnTe system have 

shown that the misfit dislocations are formed at the interface and 

that pseudomorphic growth of PbSe takes place when the thickness 

is Jess than about 3 mono layers ( -1 nm). 14•15> Based on these 

studies, we report here on our application of the glancing angle 

scattering of MeV ions to the study of epitaxial growth of PbSe 

crystal on SnTe(OOl) under UHV conditions. 

9.2. EXPERIMENTAL 

The experimental setup is shown in Fig. 9.1. A beam of 0.7 

MeV He+ ions from the 4 MV Van de Graaff accelerator of Kyoto 

University was collimated by a series of apertures to a diameter 

less than 0.03 mm and to a divergence angle less than 0.06 mrad. 

The beam was introduced in a UHV scattering chamber (base 

pressure 3 X 1 o-IO Torr) via a differential pumping section. A 

target crystal mounted in a 5-axis precision goniometer was 

irradiated by the beam at g lancing angles less than 10 mrad ( --0.6°) 

to the surface. For the preparation of target crystals we installed 

two evaporation guns in the scattering chamber. A single crystal 

of SnTe(OOl) was grown first on the cJeavage surface of 30 x 30 

mm
2 

KCI(OOl) and the PbSe crystal (purity 99.99 %) was 
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SnTe 

crystals 
c= ~ 

quarfz -

PbSe 

----

Figure 9.1: Experimental setup for the glancing angle 

scattering of MeV He ions. 

subsequently prepared by epitaxial growth on the SnTe/KCl(OOl) at 

a substrate temperature of 200 ° C. The growth rate of PbSe was 

less than 3 mono layers ( -1 nm) per hour at the first several 

monolayers. Thickness of the epitaxial PbSe crystal was monitored 

with a quartz oscillator microbalance which had been calibrated by 

RBS. The vacuum was better than 2 x 10-9 
Torr during the 
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growth, and most of the measurements were done at a vacuum in 

the 10-10 Torr range. Glancing angle scattering of He ions was 

continuously measured during the growth of the PbSe crystal. 

For the measurement of the angular distribution of the 

scattered He ions in the plane containing the normal to the surface 

and the incident beam, the scattered He ions were selected by an 

aperture of acceptance half angle 0.33 mrad downstream of the 

crystals. The direction of incident He• beam was carefully adjusted 

so that surface channelling does not occur. The yield of ions was 

normalized by the incident ion dose. Energy spectra of the ions 

were measured with a solid state detector (energy resolution was 15 

keY for 0.7 MeV He ions). 

In order to study the dependence of the density of misfit 

dislocations on the thickness of the PbSe layer, TEM observation 

of the bicrystals was done. For the observation, PbSe/SnTe 

bicrystals were epitaxially grown on KCl{OOl) at 200 o C under the 

conventional vacuum in the 10-6 Torr range, since the growth mode 

of PbSe on SnTe is independent of the vacuum during growth. 

The thickness of the evaporated PbSe was monitored with a quartz 

oscillator microbalance. The substrate KCl crystals were dissolved 

in watct and the PbSe/SnTe bicrystals were observed with a 

transmission electron microscope (HU-11, Hitachi). 
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9.3. EXPERIMENTAL RESULTS 

9.3.1 Misfit Dislocations 
Figure 9.2 shows an electron micrograph of PbSe/SnTe 

bicrystal, where a square-net of dislocations is observed. The 

thickness of the PbSe layer is 3 nm. The dislocations are edge 

type and are parallel to the <110> on the (001) interface. The 

square-net of the dislocations is not regular at thin PbSe layers but 

becomes regular at thicker PbSe layers. The mean separations of 

the dislocations were measured at various thicknesses of PbSe 

crystals. The result is summarized in Fig. 9.3. The mean 

separation S(X) of the parallel dislocations decreases with the 

thickness X of the PbSe layer and becomes constant at PbSe 

thicknesses larger than about 15 nm. The observed mean 

separations of dislocations are approximately expressed as, 

ala2 X 3a 
S(X) = (X> _ 2) 

fi(al -a2) 3a2 2 
X-- (1) 

2 

17.1 + 
15.7 [ nm] (X> 0.92) = 

X - 0.92 
, 

where a
1 

(= 0.630 nm) and a2 (= 0.614 nm) are the lattice 

constants of SnTe and PbSe respectively. 

- 208 -

Figure 9.2: An electron micrograph of PbSe/SnTe 
bicrystal, where PbSe is 3 nm thick. Dislocations are 
parallel to the <110> axes on the (001) interface. 
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9.3.2 Angular and Energy Distributions 
of Reflected Ions 

Energy spectra of the specularly reflected He ions from the 

PbSe/SnTe bicrystals of various thicknesses of PbSe layers are 

shown in Fig. 9.4. At the incidence of 0.7 MeV He• ions on the 

(001) surface of the substrate SnTe crystal with glancing angle 5 

mrad, the spectrum shows the multi-peak structure as shown in Fig. 

9.4(a). The highest energy peak (the first peak) is due to the ions 

reflected at the topmost atomic plane and the other peaks are due 

to the ions penetrating the crystal surface. The ions penetrate the 

surface at upward steps and channel through the (001) planar 

channels parallel to the surface, and then emerge from the surface 

at downward steps with larger energy losses. These ions form the 

peaks at lower energies in the energy spectra, which depend on the 

density and distribution of the steps.6•
8
) As the thickness of the 

PbSe crystal increases to about 3 nm, (Fig. 9.4(d) and (e)) the 

energy spectrum was blurred and the multi-peak structure 

disappears. The multi- peak structure appears again when the PbSe 

layer becomes thicker than about 20 nm as seen in Fig. 9.4(f) and 

(g). 

The angular distribution of scattered ions also changed 

drastically with the increasing thickness of the PbSe layer. A few 

examples of the angular distributions of the scattered He ions 

during the growth of PbSe are shown in Fig. 9.5 at 0. 7 MeV He 

incidence with glancing angle 5 mrad. The distributions have a 

peak at es = 2ei, where el is the angle of incidence. We defined 
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Figure 9.4(a)-(c): Energy spectra of specularly 
reflected ions at the incidence of 0.7 Me Y He+ ions on 
the PbSe/SnTe during the growth of PbSe. The 
glancing angle of incident beam was 5 mrad, and the 
azimuthal angle relative to the [100] on the (001) 
surface of SnTe was 50 mrad. Thicknesses of PbSe 
layers are indicated. The inset in (a) shows the 
terraced surface which gives rise to the energy 
spectrum showing the clear multi-peak structure. 
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Figure 9.4: Energy spectra of specularly reflected ions 
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Figure 9.5: Change in the angular distributions of the 
scattered He ions at the incidence of 0.7 MeV He+ on 
the (001) surfaces of PbSe/SnTe during the growth of 
PbSe. The glancing angle of the beam was 5 mrad. 
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two parameters to specify the distributions; these are the peak 

height and the full width at half maxima of the angular distribution 

as shown in Fig. 9.5(a). Dependences of the peak height and the 

full width at half maxima (FWHM) of the angular distribution on 

the thickness of PbSe layer were obtained, and the results are 

shown in Fig. 9.6, where the results of two growth runs are shown. 

The details of the changes in the angular distribution are not equal 

for the different runs of growth, however, the characteristic features 

of the thickness dependences of the two parameters describing the 

angular distribution were common. Drastic change in the angular 

distribution starts at a PbSe layer 1 nm thick and the distribution 

becomes broadest at about 3 nm thick. The distributions from 

PbSe layers thicker than about 20 nm are again very similar to that 

of the ions scattered from the substrate SnTe . 

9.4. DISCUSSION 

9.4.1 Surface Wrinkles due to a Parallel Array 
of Edge Dislocations 

It is known that pseudomorphic growth of PbSe on SnTe 

occurs at PbSe thicknesses less than about 1 nm.15
) The start of 

formation of the misfit dislocations at about a 1 nm thick PbSe 

layer might be related to the sudden broadening of the angular 

distribution. It was not easy to relate the changes in both the 

angular distribution and the energy spectrum that occur at a PbSe 

layer 3 nm thick and the density of misfit dislocations. 
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In order to relate the formation of dislocations and the 

observed change in the angular distribution of scattered ions, we 

first consider the elastic distortion of the PbSe surface. From the 

elastic theory of dislocation in crystal, it is expected that the 

surface of a crystal is distorted by dislocation when it is near the 

surface. 

The shape of the solid surface was calculated following the 

theory developed by Eshelby .16) For the treatment of elastic 

distortion of a rod of radius A with an edge dislocation parallel to 

the cylindrical axis, let us choose the Cartesian coordinate system 

with the origin 0 at the center of the cylinder and with the z-axis 

parallel to the cylinder. The cylinder is infinite in the z-direction 

and is in a state of plane strain in the xy-plane so that the 

z-component of the displacement is zero. If we choose two points 

p
1
(!;

1
,0) and P

2
(!;

2
,0) on the x-axis, where s1 and s2 are related 

by 

then the point P(x,y) on the rod surface satisfies the relations, 

= 
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Suppose that the edge dislocation is eccentric at {;2,0) inside 

the cylinder and the Burgers vector is b = (0,-b). Airy stress 

function x satisfying the boundary condition that the stress is zero 

at the surface is derived as, 11) 

where X = {;1+s2)/2, D = -t-tb/2n:(l-v), and 1-l and v are the elastic 

constants. In the limit of large A, A-s1 = s2-A = X, the Airy 

function becomes 

X = D ·(x +X) ·ln(-'2) + 2D . _X_x...;:_(x_-_X~) 
r r 2 

1 l 

(3) 

where the origin of the coordinate is displaced to the middle point 

of P1 and P2, i.e. on the surface. Thus the dislocation of Burgers 

vector (0, -b) is now at (-X,O) in a semi-infinite solid (x < 0). 

The displacements u(x,y) and v(x,y) which are perpendicular and 

parallel to the Burgers vector are 

1-vf 2 1 dz 
u(x,y) = 2p v xdx- 2p dx ' 

1-vf 2 1 dz v(x,y)=- v zdy--- . 
2p 2p dy 
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Taking account of the boundary conditions, we obtain the 

components of the displacement at the surface as 

b X2 
u(O,y)=----

1t X2+y2 

v(O,y)=!!_[ Xy -tan-t(_I)] . 
1t X2+y2 X 

(4) 

(5) 

The shape of the surface is determined approximately by u 

and it has a maximum at y = 0, i.e. just above the dislocation. 

For a regular array of edge dislocations situated at the depth X 

from the surface, the x-component of the surface displacement 

(perpendicular to the surface) is expressed by the superposition of 

that of individual dislocation as 

n=co 

U(O,y) = L u(O,y+nS) 

bd 

n=- ao 

sinh( 21tX) 
s -------------------

S 21tX 21ty 
cosh(----)-cos(----) s s 
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Figure 9.7: Cross sectional views of the wrinkled 
surf~ces. of :bSe/SnTe bicrystals. The length in the 
x-duectiOn m a vacuum is elongated 100 times as 
large as that parallel to the surface. Thicknesses of the 
PbSe layers are 10 ML (= 3.1 nm), 20 ML (= 6.1 nm) 
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where s is the separation of the edge dislocations. Substituting the 

empirical relation, Eq. (1), into Eq. (6), the surface shape was 

calculated, assuming that the elastic properties of PbSe layer and 

SnTe substrate are equal. Figure 9.7 shows the calculated surfaces, 

U(O,y) - U(O,S/2), of PbSe/SnTe bicrystals at three thicknesses of 

PbSe layers, where the scale of the x- axis in a vacuum is 100 

times as large as that of the x-axis in the crystal. The surface 

protrudes at the dislocations; the protrusion is larger at thinner PbSe 

layers but becomes very small at thicknesses more than about 60 

ML (- 20 nm), where the surface can be regarded as flat. It must 

be noted that the distortion is too large to apply the elastic theory 

of dislocation at thinner PbSe layers. 

There are two mutually perpendicular arrays of edge 

dislocations in PbSe/SnTe bicrystal, thus the (001) surface of PbSe 

has two sets of ridges parallel to the [110] and [110] directions. 

The distorted surfaces shown in Fig. 9.7 are approximately the cross 

sections of the (001) surfaces along the (110) planes in between the 

set of dislocation arrays parallel to the [110] direction. When the 

thickness of the PbSe layer is less than about 5 nm, the surface is 

so wrinkled that the gradient at some parts of the surface becomes 

comparable to the angle of in~idence of the beam to the surface. 

The reflection of ions are thus expected to be affected by the 

wrinkles. 
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9.4.2 Mode of Epitaxial Growth 
of PbSe on SnTe (001) 

It is known that the angular distribution of scattered ions at 

glancing angle incidence of MeV light ions on the SnTe surface is 

affected by the distribution and density of surface steps. Surface 

with high step density gives rise to the broader angular distribution 

of reflected ions, thus yielding the smaller peak yield and larger 

FWHM. 10
> The present observation that the details of the observed 

dependence of the angular distribution on the thickness of PbSe are 

not equal for different runs of growth suggests that the existence of 

steps cannot be neglected in the glancing angle scattering. 

Glancing angle scattering of MeV He ions from thin PbSe 

layers was studied in detail, but we could not detect any periodic 

change in the energy spectra and the angular distributions. This 

finding suggests that the growth of PbSe does not take place as a 

layer-by- layer process as in the cases of MBE growth of some 

semiconductors. 

In order to understand the present thickness dependence of 

scattering from the PbSe surfaces, Monte Carlo simulation of ion 

trajectories at glancing angle incidence of He ions on the wrinkled 

surfaces of PbSe/SnTe was performed. The simulation code we 

used was already developed, 6•
10

) where the motion of an ion is 

described by the continuum planar potential at distances more than 

0.15 nm away from the surface, and by the binary collisions at the 

distances closer than 0.15 nm and inside the crystal. For the 
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energy loss of the ion along its trajectory, the empirical 

position-dependent stopping power formula was used.4> 

The best agreement of the simulated results with the 

observation was obtained from the following model of PbSe growth: 

The initial (001) surface of SnTe has the terraced surface as shown 

in the inset of Fig. 9.4(a) or with only minor variations.6> This 

terraced structure is understood as the remain of the initial island 

growth of SnTe crystal on KCl(OOl). At PbSe thicknesses less than 

1 nm, the surfaces are poor replicas of the SnTe surface, where the 

random steps which increase in number with the PbSe thickness are 

introduced on the terraced surface. The misfit dislocations are 

introduced at PbSe/SnTe interface when the PbSe layer is about 3 

ML and the density of the misfit dislocations is larger at the thicker 

PbSe layers. Thus the terraced surfaces are wrinkled by the 

protrusions at the dislocations as shown in Fig. 9.7. The surface 

wrinkles become smaller when the thickness of PbSe layer is larger 

than about 20 om. The surface of PbSe again becomes a poor 

replica of the initial SnTe surface, where the steps of random 

distribution are superposed on the terraced surface. 

Simulation of ion trajectories at the PbSe surfaces described 

above has been performed, where more than 104 trajectories of He 

Ions are simulated and an angular distribution and an energy 

spectrum are obtained at an angle of incidence. From the results 

of simulation, it is shown that not only the surface steps but also 

the surface wrinkles affect the glancing angle scattering. There are 
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Figure 9.8: Comparison of the simulated and 
experimental peak height and the fu]J width at half 
~axima of the angular distribution of the reflected He 
Ions. Effects of terraced surface and the wrinkles due 
to the square-net of misfit dislocations are considered 
in the simulation. Energy of incident He• ions was 0.7 
MeV. Experimental data are taken from Fig. 9.6(a). 
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two processes at the wrinkled surface with which the angular 

distribution of scattered ions becomes broader and the yield at 

specular reflection decreases: Firstly some of the incident ions hit 

the surface with angles larger than the critical angle for specular 

reflection at the ridges. Such a scattering event results in the large 

angle scattering and penetration of the ions in the crystal which is 

otherwise impossible. The other is that ions penetrating the surface 

at the steps hardly channel through the curved (001) planar channel 

parallel to the surface. 18
) Thus the ion trajectories which give rise 

to the second and third peaks in the energy spectrum cannot be 

allowed. 

Figure 9.8 shows the companson of the results of the 

simulation of angular distributions with the observed results shown 

in Fig. 9.6(a). The simulated results for the surfaces without 

random steps are shown in the figure. Since the surface distortion 

calculated from the elastic theory of dislocation is not correct at 

thinner PbSe layers, the calculated results for the layers less than 

3 nm thick are not shown. Dependence of the angular distribution 

on the thickness of the PbSe layer is well reproduced in the 

simulation. The difference of the details of the observed thickness 

dependence at the different runs of growth as shown in Fig. 9.6(a) 

and (b) can be explained by difference of the density of random 

steps superposed on the terraced surface, e.g. the difference in the 

FWHM at initial SnTe and thick PbSe is mostly due to the steps. 
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Figure 9.9: Examples of the simulated energy spectra 
of specularJy reflected ions from PbSe/SnTe bicrystals, 
where the glancing angle of the incident 0. 7 MeV He 
ions was 5 mrad. Thicknesses of PbSe are (a) 6 nm 
and (b) 25.6 nm. 

The observed change in the energy spectrum of specularly 

reflected ions is also explained with the scattering at the wrinkled 

surface: Two examples of the simulated energy spectra of the He 

ions reflected at the angle of specular reflection, 28., are shown in 

Fig. 9.9 for two typical conditions. The energy resolution of the 

ion detector was not taken into account in the results. The changes 
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in the energy spectra during the growth are well reproduced, i.e. the 

peak structure disappears when the thickness of PbSe layer is less 

than about 15 nm and it appears again when the PbSe layers are 

thicker than about 20 nm thick. 

9.5. CONCLUSION 
Dependence of the mean separation of misfit edge dislocations 

at the interface of PbSe/SnTe epitaxial bicrystal on the thickness of 

PbSe crystal was obtained by transmission electron microscope. 

Glancing angle scattering of 0.7 MeV He ions at the (001) surface 

of PbSe grown on the (001) surface of SnTe was studied during 

the growth of PbSe under UHV conditions. The epitaxial growth 

of PbSe does not proceed by a "layer-by-layer" process. Many 

steps are formed on the surface during the growth, which are 

perhaps formed by random two dimensional nucleation processes. 

The anomalous dependence of the angular distribution of reflected 

He ions on the thickness of PbSe layer was found. Most of the 

changes in the scattering could be explained by the wrinkles on the 

surface of PbSe, which are introduced by the strain field of a 

square-net of misfit edge dislocations near the surface. This is 

confirmed by the simulation of glancing angle scattering of MeV 

He ions at the surfaces. 
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