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ABSTRACT

This paper presents an application of the Peter-Weyl theorem—a key theorem of har-
monic analysis on homogeneous space— to get a new formula for the physical states of the
Kogut-Susskind Hamiltonian model. A physical state is identified with a matrix element of a
suitable representation of the infinite product of the gauge group. The Clebsh-Gordan coefhi-
cients for the physical states are obtained. We deduce a handy formula for the plaquette term
in the Hamiltonian, so that the matrix elements of the Hamiltonian in the physical space
for the (2+1)-dimensional SU(2) model can be calculated without using the Wigner-Iickart

theorem for tensor operators.



1. Introduction

In this paper our aim is to show how to apply the Peter-Weyl theory—the structure
theory of invariant functions on homogeneous space— to analyze the gauge invariant dy-
namics of the Kogut-Susskind Hamiltonian model™™. In this model the configuration space
is the infinite product of gauge groups assigned to each of lattice links. The state space is
defined to be the L?-functions on the configuration space. The model has a large amount of
symmetry— the gauge transformations. This paper presents a new formulation of the gauge
invariant functions. In Section 2 we review the Hamiltonian formalism of lattice gauge theory
and how to specify the physical states which correspond to the gauge invariant functions. To
analyze the gauge invariant functions, one cannot apply directly the Peter-Weyl theory be-
cause a gauge transformation acts on the configuration space as neither right- nor left-action,
considering the configuration space as a topological group. In Section 3 we will show how
to extend the configuration space on which the gauge transformations act as a left-action.
The extended configuration space has an extra right-action which relates the extended con-
figuration space to the original one. We will prove a modified version of the Peter-Weyl
theorem which tells us that a gauge invariant function is nothing but a matrix element of
the suitable representation of the extended configuration space as a topological group. A
collection of matrix elements of suitable irreducible representations spans the gauge invari-
ant functions as a linear space. This is the key point of this paper. By this interpretation
we get a new presentation of the plaquette term as a matrix element. Then we can study
the operation of the plaquette term on the physical states by decomposing a product of two
matrix elements into irreducible components. The decomposition is completely described
by Clebsh-Gordan coefficients. In Section 4 the formula of the Clebsh-Gordan coefficients
for the physical states in (241)-dimensional SU(2) case is obtained. Finally the explicit
formula for the matrix elements of the Hamiltonian in the physical space is deduced from
the Clebsh-Gordan coefficients. In the last section 5 we summarize the results of this paper
and discuss the ring structure of the gauge invariant functions which plays an important role

in our argument.



2. Hamiltonian formalism of lattice gauge theory
2.1. THE KoGUT-SUSSKIND HAMILTONIAN

We begin with the simplest case. Let G be a compact Lie group, especially SU(N). We
fix a basis T of its Lie algebra G(G) such that Tr T*T? = 1§%% where the trace is taken in
the defining representation. We define a quantum mechanics on G: the configuration space
is G, and then the state space is L?(G) with the invariant measure of G. We should prepare

the momentum operator and the position operator.

Define the momentum operators E, ES as

1d ¢ o 1d i, W%
ERf(z) = ;(_e Fgf(:r - exp 1eTY), Tflz) = o “Df(exp (—2eT?) - z)

where f(z) € L*(G). Thus the momentum operator E$, (E) is the infinitesimal form of the

right (left) action on L(G). Define the position operator U,

where 7 is the defining representation. This definition means that the Uis a N x N matrix

of operators and the operation causes to multiply f(z) by a N x N matrix of functions 7(z).

Then the commutation relations are obtained from the definitions, as

[E% BRI =if*""E},  [Ef,Ef]=if*""E], [Ef,Ef]=0

[E%, 0 =0r(T%), [Ef,0]=—7(T*)0U
where [T¢, T#)] = i f*#7T7. We use also the notation 7 for the representation of Lie algebra
G(G) associated with 7.

These rclations show that the EG (Ef) is similar to the angular momentum. This is

more than an analogy, but we will not make further argument here.

Now the Hamiltonian H for the free theory is defined as

H=Y (B} (=) (BF)).

o

(The last equation is from the Peter-Weyl theorem.)
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To know about the dynamics of this simple model, we set a basis of the state space which

diagonalizes H. For this purpose we introduce the Peter-Weyl theorem: "

Theorem (Peter-Weyl). Let G be a compact topological group. Then,

L*(G) = Lin{/ny(a|p|B) ; where n, = dimp, p € D(G)}

where D(G) is a representative set of all irreducible (finite dimensional unitary) representa-
tions of G and {|a>}15a5n9 is a orthonormal basis. The symbol Lin means to take liner hull
and the Upper line means to take closure. The (a|p|ﬁ> stands for the function (a‘p(g)|,6’)
on G

We write (cr|p(g) |ﬁ), in short, as pog which is simply a matrix element of the representa-

tion p. Consequently ,/f,p, s spans a reducible (right) module Lin{ /i pap; 1 < B < n,}

under the right action on L*(G) which is equivalent to the n,-times product of p. Under left

action /n,pap spans a reducible (left) module Lin{,/Mypap ; 1 < a < n,} which is equiv-
alent to the n,-times product of p, the complex conjugate representation of p. This fact and

the reality of 3 (E%)? and 3 (E%)? prove the equation in the definition of H.
o a

A base \/n,pap is specified by three natural labels. The first label specifies the represen-
tation p and the rest two are o and . In the special case of SU(2) we will use the notation
p to express a representation and also the half integer value of the total angular momentum
of p. In this case the eigen value of H with respect to VPoPap is p(p +1). For the labeling
one can use three eigen values of H, E%, and E3 which are non-negative half integers. In
general case the eigen value is given by the formula which contains the highest weight of p
and all positive roots of Lie algebra of G. (See APPENDIX A.) We can see that a higher

representation corresponds to a higher excitation.

Now we proceed to the full (d+1)-dimensional model. Let I' be a d-dimensional (spatial)
cubic lattice: that is I' = Z¢. (Or one may suppose that I' has cyclic boundary.) We use
letters 7 j k [ to refer lattice sites. The lattice I inherits natural metric from R%. Let 7,5 € I’
be called neighboring sites if their distance of two sites is exactly one. Then each site of
lattice has 2d neighboring sites. We write L for a set of all links; the set of all ordered pairs
of neighboring sites. Call (7,7) € L positive (negative) if the unit vector j — i has positive
(negative) component with respect to a fixed orientation on R¢. Then L = Lt U L~ where

L* (L7) is a set of positive (negative) pairs.
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We assign G to each link and denote as Gj; the one assigned to a link (z,7). We call the
infinite direct product [] G;; the extended configuration space C. This space will play
(1.7)EL
an important role in the next section.

Define the configuration space C to be the collection of Gj; for all positive links, that is

We define the state space H to be L?(C) with respect to the infinite product measure.
This space L*(C) is naively the infinite tensor product of L*(G;;) assigned to each positive
link. A typical element f of H is a finite sum of terms each of which is a finite product of

elements in L%(G;;)’s assigned to each positive link.
Similarly, we define the momentum operator Ef; and the position operator fJ,'j for all
(i) e L.
E&fu it (2,7) = (k1) ;

Ejifuu={ Effu if (5,2) = (k1) ;
fri elsewhere,

Ur ) = (k.0
Uiifu=< 0 i (5,9) = (k1) ;
Tk elsewhere,

where each of E}, Ef, U is the same as defined on L*(Gy) for (k1) € L*.

Thus these operators obey the commutation relations below:

[E:,;.’Eft]=0 for (7,7) # (k1)

[B% ,Ef] = if*#7EL,

1}

Uil = (00
) Uar(T®)  #(2) = (8D
[B5 .Ukl = ¢ —2(T*) Uy if (j,1) = (k,1) ;
0 elsewhere.

Now then, we define



the Kogut-Susskind Hamiltonian

H= Y (Ej)?-K) TrUq
(s.5)eL* =
where (E.-‘,;)2 = E(Ef'j)g, K is a coupling constant, U = G,‘jfljkﬂﬂijh for each plaquette
o
if:[? which is by definition, a minimum square of connected four links (7, ), (7, k), (k,1), (, 7).

The summation of [J is taken for all plaquettes.

A basis of H which diagonalizes Y (E;;)? is easily obtained from the basis con-
(i5)eLt
structed for the simplest case, by multiplying finite number of elements assigned to each

positive link.

The Hamiltonian H has a large amount of symmetry due to the remaining (time-
independent) gauge symmetries. To see this, define the (infinitesimal) gauge transformation

at site 2:

where the summation is taken for all j such that (z,j) € L. Then we get [J¥, H] = 0 from
the commutation relations. We say the state f is physical if J¢f = 0 for all @ and 2, and

denote the physical subspace H,p,.

2.2. LABELING THE PHYSICAL STATES

We constructed a basis which diagonalizes the kinetic term Y. (E;;)®. To label a
(i.7)eLt
state we should specify a representation and two base vectors for each positive link. Then

we get a labeling:

Pij y Va Uﬁ)[i.j)eL* (2.1)

where vq, vg are bases of the representation space of p;;. In SU(2) case one can use eigen

values of momentum operators for each label:

DEF L - SN )
](EU) 1 EJ: ¥ L‘J)(f.j)efﬁ (22)
where the same symbol is used in place of its eigen value.
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Let us now attempt to label the physical states. The construction is closely related to

the liner representations of G and their compositions[‘“b].

By definition a physical state is singlet under the operation of J§ which is a generator
of the tensor-product representation of all E{;’s for fixed 7. By fixing orientation we specify
a direction by a integer d = £1,+2,...,%n where —d is the opposite direction of d. To
specify a neighboring site by direction we put a semicolon between site z and direction d.

For example,

n

= 3 By = (B, +ES).

(i,7)eL d=1

Let us refine the labeling (2.1) by composing the representations, connected at site 2, one by
one. The each step is performed by combining labels for two representations p and p’ using
the fact that the tensor product V, ® V, of the representation spaces V,, Vs is decomposed
into irreducible components by the action of the product representation p ® p’ of G. That
1"

is, from two labels |p,v,-,vj>, |p’,v;,,'u;,> we construct new label p,p’,p”,vif,,v}-u
i

s are bases of its

where
the p specifies a irreducible component” of the p ® p’ and the vector v

representation space.

For simplicity we will explain the case d=2. We combine labels of two positive (negative)

links for each site i. Then we have
|p1-;1 3 Pf;'2 3 piil ®pi;2: 'U:: 1 U:@i- ] Pi;—l ’ Pi;—’..’ 3 pi;—] ®pi;"2! Ua_" U,‘;’):

where p;.1®pi.2 (pi;—1®pi.—2) stands for a label of irreducible components. Combine p;.1 ®pi:2
and pi;—1 ® pi;—2. Then,
|Pict > Piz s Pi=1 s Pi—2 5 Pia1 ® pia 5 Pis—1 ® Pis—2

(2.3)
Pis1 ® pi2 ® pis—1 @ Pis—2 , Wan y Whn ),

Using the labeling (2.3), we see that a physical state has a label where p;.1 ® pi2 @ pi. -1 ®
pi;—2 is O-representation and w,» = wg~ is its invariant state.

We shall discuss the (2+1)-dimensional case of SU(2) in detail. For SU(2) any repre-

sentation and its complex conjugate are the same one.

* It is not sufficient to specify the type of representation of the irreducible component, because, in case
of SU(N) (N > 2), the product representation may have many irreducible components which are of
the same type. This difficulty was mentioned in Ref 4. Also see the reference”
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Thus (E:{_d)g = (E:-’_d;d)2 for d = 1,2. Then labeling (2.3)becomes:
[(Bi1)? , (Bia)® 5 (Bia + Bia)® , (Baiey + Bima)®, (30)F, 38, 30,

For the physical states (J;)* = J? = 0. This implies (Ei:3 + Ei2)? = (Biic1 + Ei._2)? because
the product p; ® p2 contains O-representation if and only if p; = B, = p2. Furthermore this
0-representation has multiplicity 1 in p; ® . Thus we need three indices for labeling the

physical states:
|(Ei;1)2 ) (Ei;2)2 ) (Ei;l + Ei;2)2>,‘
or
|pi;ls P12 pi;l?),‘

where p;.4's are the total angular momenta which satisfy the triangle rule:
lpin — pi2] < pinz < pist + pi2.

A graphical presentation of this labeling was developed in Ref 5. (Or another presentation

using Kagomé latticem.)

3. Harmonic analysis on the extended configuration space
3.1. STRUCTURE THEOREMS

The Peter-Weyl theorem is, as we have seen, a structure theorem of the function on a
compact topological group. This theorem can be extended on a compact homogeneous space
G/K for a compact topological group G and its closed subgroup K. We denote D(G,K)
the subset of D(G) each of which element has at least one nonzero K-invariant vector. We
choose a basis {|a) }1<a<n, 5o that the first m/ vectors are K-invariant i.e. p(k)|a) = |a)

for] a< m:;{ and all £ € K. The m‘{" is called multiplicity of p. The statement is

Theorem. Let K be a closed subgroup of a compact group G. Then,

LQ(G/K) = Lin{\/ﬁ(alplﬁ) i where 1<a<n,, 1<8<m’, p € D(G, K)}. (3.1)

The left hand side L*(G/K) means the right K-invariant functions on G and the right one
derives from the original theorem merely by replacing the ket vector with the /-invariant

one. I'urthermore We can extend this theorem to the case L\G/K.
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Corollary. Let K ,L be closed subgroups of a compact group G. Then,

L*(L\G/K) = Lin{\/n,{a|'p|B) ; where 1<agmt, 1<8<m¥, p € D(G,K,L)}  (3.2)

where D(G,K,L) = D(G,K) n D(G, L), and {|c:x>‘r};5,;,_<_,,,p is another basis for L, and
L*(L\G/K) is the closure of a set of right K-invariant, left L-invariant functions i.e.
f(lzk) = f(z) forallz € G, ke K, l€ L.

Proof. We will show only inclusion (C). Let f € L*(G/K\L). We may assume that f
has the form of the right hand side of theorem (3.1):

f(z) = (alp(2)|K)

where |I\’) is a K-invariant vector. Since f is left L-invariant, for any [ € L
f(z) = f(1z) = (a|p(Dp(@)|K) = p(Dar(7|o(2)| K)
¥

From the linear independency of (alp(:c)lK), we have
Play = 0ay Torall 7
This implies
(e|p(l) = (al. I

3.2. EXTENDED CONFIGURATION SPACE

In this subsection we will study the relationship between € and C, and the action of
gauge transformation group on them. Identifying each positive and corresponding negative

links we get, as has been suggested, C from C. Precisely, we define G ytue to be a subgroup
of C.

égluc = {U€eC; Ujj; = Uj; for all possible site indices 7,5}

where we consider the equation U;; = Uj; under the canonical identification G;; = Gj; = G.

Then, we have the equivalence as homogeneous spaces.
C/ Gg!uc =C

where the identification map is give by the extension of the map Gj; x G;; — Gj; such that

(g4, g-) +— g4 - g for cach positive link (i, j).

o



Recall that the gauge transformations, by definition, act on the function space; however,

their finite form are realized by the action on C as

g V. Uy ifk=1i;
Ji@Uu=<{ Uy-g ifl=i;
U otherwise

where {Uni}xner+ is an element of C. (One can see easily that the definition of Ji(g)
coincides with the usual definition of the gauge transformation in the lattice gauge theory,
which is generated by g at the site .) We denote Gyauge the group generated by all Ji(g)’s
for all site i and all g € G. It is very important that J;(g) can be lifted up onto C in such a

factorized form J;(g) as
< = Ui it k=i;
Ji(g)Un = {g % :

U otherwise.

Then we have the following commutative diagram.

112

=Lay é/égfm C

2
[3:0 B
€

- é/éghte C

IR

where 7 is the natural projection.
We denote égauge the group generated by all J;(g)’s for all site i and all g € G, which is
realized as a subgroup of C:

égauge ={UeC; U;; = Uy for all possible site indices 1, j, k}.

This means that the left Gyquge action (as a subgroup) and the action of J;(g)’s on C are the

same. Then we have
égaugc\ é /égfuc = C/Ggaugc
IFrom this relation our main theorem follows.

Theorem. There is I-1 correspondence between gauge invariant functions on C and

both left égangg- and right éy;ue-invar‘iant functions on &

Combining with the corollary (3.2) we get the structure theorem for gauge invariant

functions.
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Structure theorem for gauge invariant functions.
(VA Ofauge |O%e) 5 B € D(C, Gotuer Ggauge)}

is a complete orthonormal basis of gauge invariant functions.

The states |O§’aﬂ‘f‘3€>, |O§IW> are invariant bases for each of (:x'gguc and Ggauge and the index
a distinguishes the Ggayge-multiplicity of p. On the other hand G gye-multiplicity is one. A
representation p € 'D(é, ég!ues C}gaugc) is an infinite product of irreducible representations of
G assigned to each links—but only finite number of them are non trivial, and has invariant

bases for each of Gy and Ggauge-

Proof. Any gauge invariant function f on C has the corresponding both left (;'gwge- and
right ég;ue-invariant function fE fomw on C. The function f belongs to L2 ((f) if and only if
f belongs to L*(C). Then we have

f: € Lz(égauge\é/égfue)-

Apply the corollary (3.2) to the triple of groups g, @g;uc, and G'yauge, then we get the
component expression of f as desired form. The uniqueness of |O§hs> is from the fact
that tensor product of two irreducible representations of G contains, if it exists, unique 0-
component and iOg;ue) is the tensor product of all stable vectors each of which is associated
to the 0-component of the tensor product of the two representations of each positive link

and corresponding negative link. [0

We should notice that C, G"’g;ue, and égauyg are compact groups because the infinite
product of compact groups is also a compact topological group under the product topology.
Furthermore C has the product measure” which is the invariant Haar measure. Thus the

Peter-Weyl theorem is applicable to C.

3.3. IDENTIFICATION OF PLAQUETTE TERM

Through the correspondence between states and functions, the operator {J,-J- is nothing
but the multiplicative operator 7(U;;) on the function space. I"urthermore, the plaquette
term TrUg = ’l‘r(ﬁ,-jﬁjk[j“lj“) ,assigned to the plaquette :Df, corresponds to Trr(ﬁg)

that is a gauge invariant function. Based on the structure theorem for gauge invariant
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functions one can find the expression of this function as a matrix element. Define a rep-
resentation pg of C as the infinite product of representations of G so that we assign the
defining representation to links (i,j),(j,k),(k,!),(1,1) and assign the complex conjugate of the
defining representation to links (j,i),(ky),(1,k),(i,]) and assign O-representation to other links.
We write |Oab,cd> for the stable base of 0-representation component of the tensor product
of the defining representation of the link (a,b) and the complex conjugate of the defining

representation of (¢, d).

Then |Og;ue) is a tensor product Ioa‘j.ji>|ojk,kj>Ioka',(k)lofi,u) and |Ogauge) is a tensor
product ‘O,-J-‘;Q!Ojk,j;)]Ok;,kjﬂou’;k) where we omit the infinite product of stable bases of

O-representations assigned to the other links.

In this case égauge~muitiplicity is also one. The following proposition gives the matrix

element expression of the plaquette term.

Proposition. In the case of SU(N)
TIT(.DCI) = j\f“l (Oga'ugelptl IOgh:e>

Proof. We need more information about ioub,cd)- We write |cr> for the a-th natural base of
the defining representation of SU(N). In the case of SU(2) define [1)" = |2) and [2)" =

—11), otherwise define ]n)‘ = |n> Then we have

N
1 %
|oab.cd> N ﬁé'a)abla>cd

It is easy to see that the right hand side is eliminated by the action of all generators of

tensor-product representation. Furthermore |Oub,cd> has the contraction property:

N
* 1
(ala (ﬁlcdpabﬁcdloab‘cro = —7= Z(Pnb)aw(ﬂcd);j
b /N e i

where p is the defining representation 7(U). We should notice that for the case of SU(2) we
have p = p, then the complex conjugate term (p.4)p., of the right hand side comes from the

twisted definition of |1>* and “2>*.

By definition we have po = pij pj; pjk Pi; Pkt Pk pii Pir- Then, using contraction property,

- 192 -



we get

N* (Ogauyﬂ |P 0 [Osffue>

= N*(03;,i|{Oji3i| { Okt | (O, ik |

X pij Bsi sk Prs PRt Pik Pli Pit|Oij.ji )| Osk k5 Y| Okt ik )| Ot i)

= Y (Pii)arpi (95i)5, 8, (Pik)vi82 (ks Voo 8y (PR1) a8 (P1k )3 s (1 ) 4584 (it 5,

Greek indices

= Y (Pi)ers (P5i)5n (k) 1182 (P ) By (PR 128 (P11 ) oy (i ) 1584 (i)

Greek indices

= Tr (7(Ui;)7(Uje) 7 (Us)7(Ugs) r(Ugd)7(Une) 22 (Ug) 7(Usg) ™)
=Tr7(Up)

To get the last equation, we use the correspondence between L?(C) and L*(C). [

4. Formula of the matrix elements of H
4.1. CLEBSH-GORDAN COEFFICIENTS

It is trivial that the product of two gauge invariant functions is also gauge invariant. But
this implies a non-trivial consequence that the tensor product of two bases of the physical
states which we chose in the previous section would be decomposed into the linear combi-
nation of the same basis. A base of the physical states is a matrix element of a suitable
irreducible representation p of C. Thus the decomposition coefficients are the special case of

the Clebsh-Gordan coefficients of C.

We write simply [ for the function which corresponds to a base of the physical states.
Then the irreducible representation pf of C corresponds to f. (We will omit the tilde for

representations.) We write simply |Oghc) for |O ) and |Ogmtgc> for ‘O_f,{u(fc)

glue

Then we have the matrix element expression:
f=m (OynugCIf’flogtuc

2
where n,r = [ [1 (2pi;a + 1)(20i,-a + 1) = [1[(2pi1 + 1)(2pi2 + 1)]%. (We write simply pi.q
1

1 d=l
for p{d.]

.



We choose another base f'. The product f'- f can be rewritten as

=AY p’( QGHS“’-\’OI |Oghce) Vg ( gaugelpflog:ue>

SV ALTT VAL ( ga.uge| gungelﬂ ® pflogl'ue)loglue>

The state |O§;uge)|oﬁwge) is égmge—inva.ria,nt state of the representation pf’ ® pf. Thus
|Ogauge>|0’;auge> can be decomposed into irreducible @guuge-invariant sta.tes with respect
|O

to the decomposition of p!" @ p! into irreducible representations. For IO the

glue ghm

situation is the same.

Here we restrict ourselves to the (2+1)-dimensional SU(2) case. On SU(2) an irreducible
representation is specified by a non-negative half integer p, and its basis is labeled by a half
integer m (|m| < p). We write |p, m) for this base—the state which has total momentum p

and has z-component m.

An irreducible component of the tensor product of two irreducible representations, is
completely determined by the Clebsh-Gordan coefficients C(p1p2p3; mimams). The state

|plg,m> of the irreducible component p;; of the tensor product p; ® ps is given as

|(p1 + p2)pra,m) = Z C(p1paprz; mamam)|pr,my )| p2, mo)

Ty, Ing

and its inverse relation

|p1,m1)|p2, m2) = Z C(p1paprz;mimam)|(p1 + p2)piz,m)

P12,Mm

where we use the notation (p; + p2)p12 which means pjs-component of the product repre-
sentation p; @ p2. At this time we may not need extra-index for SU(2) to specify which

component of the same class of the representation we choose. The component is unique.

(See APPENDIX B for detailed formula.)

The Clebsh-Gordan coeflicients describe completely the composition of two represen-
tations. But, when one compose more than two representations the order of composition
becomes a problem. For later application we shall consider the composition order problem
for four representations. For the total representation space of the composite representation

p of p1, pa, p3, and p4q, we will choose two bases

{ |((p1 + p2)p12 + (p3 + pa)p3a)p,m) } and  { |((p1 + p3)pia + (P2 + pa)p2s)p, m) }

Pi2,PagMm P13, P2e,m°

Then we introduce the Wigner’s 9j-symbol (the curly brackets) which combines these two

=



bases:

|((p1 + p2)p12 + (p3 + pa)p3s)p, m)

= Z ‘((Pl + p3)p13 + (p2 + pa)p2a)pym)
P13 4024
P1 P2 P12

X \/(2P12+1)(2,034+1}[2pm+1}('.?pw+1} P3 P4 P34

P13 P24 P
(See also APPENDIX B.)

Recall the argument of the labeling for the physical state in Subsection 2.2. A base f of

the physical states corresponds to some |pg-],pi;g,pg‘lg>i. Then we have explicit formulae:

gfue H H‘ Pisd +p:+d d)o 0>

i |
|O£Mge> = Hl(Pi:lZ + Pi;—12)010>
1

= [[1((pia + piz)piaz + (piz—1 + piz—2)pi;-12)0,0)

Then using the 9j7-symbol, we have

| Ogh;c ) ‘ O_{{hf.e )

= [T I ]I(pha + Pisa—a)0,0) ® |(pisa + Pita;—a)0,0)
1 d=1

= [T TT1((Pha + Pisa—a)0 + (pisa + pita;-a))0,0)
1 d=1

f’:d f:+d a4 0

= H H Z ‘((Pu dtPid P+(Pa+d—d+ﬂa+d ~a)p')0, U)v 2p+1)(2p"+1) Pid  Pidd;—d 0

i d=1pp p ,0’ 0

= H H Z \/ e |((p:,d + ,"Ji;d)P F (p£+(i;—f£ + pi+d;—d)ﬂ)01 U>

2 1)(2 1
Sadraeiae (205.a+1)(2pi;a+1)

a3 T it}

AL | Gotatn@ost)

where the sum of f” is taken for all f” of which p! , satisfies triangle rule with p;.q and pl. .



Similarly,

4

[Ofauge)|Oause)

=3 Hl Piqg =5 p’i;wl’l){):o) ® |(P:’;12 =t ,0;';_12]0,0)

2pi2+1 ! " ' 1"

_[|§ b D) Pias (0 s pim12)pdie 050 ).

. \/(op:;w_'_l)[?pm“)|((P;,12 ﬂx.l”)ﬁ",]z (Pa, 12T Pi; 1")!;.12) ) )
ll?

Furthermore,

(Pis12 + pin2)piae = (i + Pia)Pina + (piy + pi2) pisa2) iz

is a composite of four representations. So is (pi. 1, + pii—12)p" 5. We can change even the
composite order of even inner compositions because the coefficients of changing bases have

no dependence on m. Thus, we have
|Ofonae)|Ofusse

. ZH\/ 20! 1241

(2p1241)(2pi02+1)

:l?

X Z |({(P:;1+Pi;1).0 +(pu 2+P-2)P:2]P. 12+((ﬂ:;—1+ﬂi;—l)ﬂ:!,—l+(P$;—2+Pu;-—2)f’::-'z)P::w)Us[}>
p?i'l,p::z,p::'_,,pf:_?

X \/(291;12*1'1)(29-';124*1)(29::1+1)(3»":‘;2+1)\/(2.0:;—12+I)(29i:—12+1)(39 ~1+1)(2pi o +1)
! 1 /) / ! )
Pin Pip Pine Pii—1 Pi—2 Pi-12
X9 Pl Pi2 P2 Pi;—1 Pi=2 Pi;—12
" 1 " i " "
Pii Pip Piie Pi—1 Pi—2 Pinz

= 3" T Veria et D @amat 1)/ Cria D) Cola 1)@ +1) 20 +1)

i
-'oi;l pi;? p;;l? p:;“l ﬂi;_g pi’;—l?

X Pi;1 Pi2 P12 Pi—1  Pi;—2  Pi—-12 |Ogr1ugc
pia Pia piaa) \pii Aia Pl

Then, by combining two formulae and normalizing factors, we get
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Theorem. (Clebsh-Gordan coefficients for the tensor product of physical states)

FoF=" Clrayy"
fﬂ

where C(f' f; f") = H V2P 1) (205 1) 20hao+ 1)V (2061 +1) (2002 +1) (2oin2+1)

f ! I ! | !
Pir Piz Pie Piic1 Pi—2 Pia2

X/ (208 1 +1) (200 241)(2p03241) § Pis1 Pi2 Pis12 Pi:=1 Pi:=2 P12 (s

1" It It 1" 1" 1"
pf;l Pia  Piae Pi—1 Pi—a pi;l?

and the sum of f" is taken for all physical f" of which -"’?;d satisfies triangle rule with p;.q
and p.4 ford =1,2,12.
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4.2. FORMULA OF THE MATRIX ELEMENTS OF H

Now, we will calculate Tr7(Ug) f from the last theorem. We knew that Trr(Un) =

N* (Ogauge|pD[Og,-M); the right hand side is normalized properly. Then set f' as

P:;: = P;;z = P};-: = P};‘z = P;'-.lz = P;‘;—l'z == Pl;-—l e P!J:;—z = P:.l = P;;-'z = P;-,m = ﬂ:-_-rz 5= %
and otherwise p; , = 0. The non-trivial factors are for 7,7, k, [.
For the i-factor, for instance, we have
1 1
I 1 g o 0
42011 41)(2pi24+1) (20i24+1) (2081 +1) (2002 +1) (20{12+1) § Pin  Piz  Piaz Pi-1 Pi-2 Pin2
Py Pla  Pias Pi-t Pimz Pias

D

= /4(2pia+1)(202+1) (20i0241) (200 1 +1) (20012 +1) (20112+1)

Sl el
(__)pt:'2+p|;l+p|;12+2 { pl,lg plll pt’g }

P
Pt a2 +1) Loy ol
Xib ] ) 1
PiyaPia2™ Py Pi=1 705 o P4 =2 \/(2,0.;12+1)(2p.__;+l){2p,,_,9+1}

I 1 7 oe s 7
_— ,01;2+ﬂ:; +pina+s - P12 ﬁ:,l ﬂl,..
— 6P:T12.")|;125P::—Iﬁi:—Ié-p:':-’).Pn—l(_) : Sk \/3(2‘”":1"'1)(29“24'” { 1 1" 1" g
) pi;?. pi;l
Similarly one can calculate the rest j, k,[-factors. Then finally we reproduce the result of

Ref 5 in correction of the sign factor.



Matrix elements for the Hamiltonian in the physical space.

<f,|Hlf> = Z{Pi;l(!’i;l + 1) + pia(piz + 1)} (f’]f) — [{Z(mrﬁf)

)

where (.Mﬁf) = Oy p;m2pk,-n‘5p{;2m;25p.’;-,m;—z

oy P 595.,-2&-.-2 6»!1:;,213;;1:59;;,:3;;: 59;.,-21}5;-: 69;“-1Pk;1 6;0{(;,9!:;2

J_ ’ r f ! r
X /2017203 +11/ 205010/ 2051 H1/ 200+ 2001t 1 (=) Pt F Pt Pzt Praatlta i

X \/gﬂi;1+1\/2ﬁi;?+l\/‘293;2+1\/2:91;12'1-1\/2.0{;1'1'1\/gpl;u-l-l(—)’0""1+p"»?+PJ;?+PJ;12+P:;1+IH;12
{Pi;l? Pin 9:‘;3}{9;’;1 P2 Pj;w}{ﬂj;—’.’ Pinz  Pijl }{Pk;lz Pin Pj;z}
b4
% Piz Pin % Pine P2 17 Pin Phe {7 Pia Py

Y {p;;g A1k SRk } {,01;.-1 PEe s Ehia }(__]Pi:12+.ﬂj:—2+;0j;1+Pk.1‘.’+ﬂl;2+.0!;—1l

1 7 7 1 I i
3 Pra Praz 2 Pz Pip

5. Discussion

We have developed a new method for studying the structure of the physical space by
means of using the Peter-Weyl theorem on the extended configuration space C. The Clebsh-
Gordan coefficients for the decomposition of the tensor product of two physical states in
(2+41)-dimensional SU(2) model is obtained. From the Clebsh-Gordan coefficients we have
deduced the matrix elements of the Hamiltonian without tensor operator calculus. The
essential point of our calculus is that each of the interaction plaquette terms can be identified

with some physical state.

The formulation in Ref 2, 4 is based on C and the state space H is defined to be the infinite
tensor product of ‘p 5. B ‘Ug)’s—triplet of a irreducible representation of G and its two base
vectors—assigned to each positive links as we have seen in Section 2. (In Ref 4 the author
called this space ‘the extended Hilbert space’. But in the present paper the word ‘extended’
has another meaning.) This definition of the state space has an inconvenient property that
the state space is not closed under the operation of the tensor product because the tensor
product of such two states contains generally a component in which different representations
appear at the same link. That is, some component of the product ‘p’ 0k s vb,)lp y Uty vﬁ)
at the link (2, j) includes a state on which the eigen values (E;;)* and (E;;)* do not coincide.
On the other hand the function space L*(C) has a natural ring structure. In that formulation

this ring structure will be lost.

~FR
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Our new formulation stands on C. The corresponding definition of the extended state
space H is the infinite tensor product of |p d v,,)’s——pair of a irreducible representation of
G and one base vector—assigned to each of positive and negative links. In other words ¢
is the direct sum of the representation spaces of the irreducible representations of C. There
different representations can be assigned to the positive link and the corresponding negative
link. It is obvious that the H is closed under the operation of the tensor product. We write
l,o, v) for an element of H which consists the representation p of C and the base vector v of

the representation space of p. We define a projection p from the H to the L*(C) as

B ]p,v) =2 \/_ p‘ulplog!ue

where IO;'IHE) is defined in Section 3 for p € D(f, ég;.ue), and defined to be 0 elsewhere. It

is easy to see that the projection p is a ring homomorphism by using the equation
VALTAVALTS |Ogluc |ngne> Z Wik Joﬂue>

where p" moves all irreducible components contained in p® p'. (One can check this equation
at least for SU(2) case using the decomposition formula in the present paper. For general

case it is'still a conjecture.)

We write L2(C)%seuse for the gauge invariant functions on € and HCseus for G'g,mge-

invariant vectors in . Then the projection p gives the ring isomorphism
FH(Csouse | [Cer(p) = L3(C)Comvse

which gives the background of our calculations.

The map f — |Of;augg) constructed in Section 4 gives a inverse map of p from L?(C)%sauss
to HC=us=. (But it is not a ring homomorphism.) Under above ring isomorphism, we can

study tl g-"l,,_y,;) ® 10é-“ugc) in HComuse,

If once the labeling problem mentioned in the footnote in Section 2.2 is solved, the

extension of our method to SU(N) N > 2 case is straightforward.

— A1
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APPENDIX A

The operator }°  (E% )? is equal to the Casimir element C in the theory of Lie algebra.
The eigen value of C in the irreducible representation p of SU(N) is given by

=(/\,)\+Za)

a0

where A is the highest weight of p and @ moves all positive roots of SU(N).
We can calculate C easily for lower N.

SU(2) case: SU(2) has only one positive root @ = 1 and representation p is specified by
half integer j of which A = j. Thus C = j(j + 1).

SU(3) case: SU(3) has three positive roots (3, ﬁéé), (1,0), and (3 3?) The represen-

tation p is specified by its highest weight (j1,j2). Thus C = ji(j1 + 2) + (52)

And generally, if X' = X then Cy > Cj.

APPENDIX B

We use several properties of the Clebsh-Gordan coefficients, the 6j-symbols, and the

97- symbolsE i

§ Clebsh-Gordan coeflicients

The explicit formula of the Clebsh-Gordan coefficients is

C(p1p2p3imimams) = Om,+ma,ma

% 1[(2p3 +1 )(PS + p1 — p2)(p3 — p1 + p2)!(p1 + p2 — p3)!(ps + m3)!(ps — mg)!
(p1 + p2 + p3+ 1) (p1 — ma)(p1 + m1)!(p2 — ma)l(p2 + m2)

XZ(

| (p2 + p3 +my — v)l(p1 —my +v)!

(p3 — p1 + p2 — )l (ps + m3 — ) (v + p1 — p2 — m3)!

where the sum over v is taken for all integer. (We use the convention for negative integer n

1=0)

e B o



Especially,

il ”
C(P1P20?m1m20) = Om;,—m, 21 + 1 (_)P: ™,

§ 6j-symbol

The definition of the 6j-symbol is

(U + (2 + 73)3) L, ml((G1 + 42)i" + ja)J,m)

=i
= /(27 + 1)(2j' + 1)(= )i Hiatistd {J} 2 g }
3 b g

The 6j-symbol has properties below.

i) Invariance under exchanging two columns
{jl 72 ja}_{.‘ie h js}_{jl 13 le}
& % 5 J B J; h B Nl

i1) Invariance under exchanging two elements of 1st row and corresponding two elements

{jl J2 53}_{-]1 Ja ja}
Ji Jy J3 g1 g2 Bl

of 2nd row.

iii) For special cases

’la {‘h a9 } = (_)51+Jl+.f3 63'_'3_.26‘]"'!?
Ji Jo J3 V(251 +1)(2J; 4+ 1)

{;‘ jed 3 }:(_)I+g+,-+; (l+g+i-N)(1+9-j+J)
F J4+i g+ (27 + 1)(25 +2)(27 +1)(2J + 2)

{ i i+3
T4+ J

(L=g+ji+J)2+9+)+J])
(27 4+ 1)(25 +2)(2J + 1)('2J+ '2)'

e

} = (—)Hotit]

w3

§ 9j-symbol
~99



The definition of the 9j-symbol is

(((1 4 g2)012 + (73 + Ja)73a)J,m|((71 + 73)713 + (G2 + Ja)j24)J,m)

N J2 J12
= V(212 + 12530 + 1)(2j13 + 1)(2724 + 1){ J3  ja Jaa
J13 Jau  J

The 97-symbol has properties below.
9

i
i) Invariance except the sign factor (=)=1 under exchanging two columns or two rows

1 J2 I3 3 g4 18 Je o (42 51 I3
i ok . 2 Ji J J . L ST e
_ J g8 g8 p =A== S g Bor=(=)= (Js 04 T8
L J. Jgc 9 Jv 18 19 Jsg J1 19

ii) For special cases

(91 42 O i3, R —
' ] : (_)J:+Js+}r+]9 J4 s 78

J J&  J5 J6 :6j1,j25j6.j9 - s x : :
. Vi + 125 +1) Lis jr 7
Ldr A3z Ja)

]S R e

CPh P55 Jop = 8518 s O o ]

b gk 7 V(275 +1)(275 + 1)(2j6 + 1)

\ T 8 of

=B



o

10

REFERENCES

. J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975)
. M. Creutz, Quarks, gluons and lattices, CAMBRIDGE UNIVERSITY PRESS.

. S. Helgason, Differential Geometry and Symmetric Space, Academic Press, New York,
1962

. H. S. Sharatchandra, Nucl. Phys. B196, 62 (1982)

. R. Anishetty and H. S. Sharatchandra, Phys. Rev. Lett. 65, 813 (1990)

. G. H. Gadiyar and H. S. Sharatchandra, J. Phys. A: Math. Gen. 25 (1992) 1.85-L88
. B. Ganapragasam and H. S. Sharatchandra, Phys. Rev. D 45, 1010 (1992)

. P. R. Halmos, Measure Theory, Springer-Verlag, New York, 1974

. M. E. Rose, Elementary Theory of Angular Momentum, John Wiley & Sons, Inc., New
York, 1957

. A. Messiah, Quantum Mechanics 2 (Appendix C), North-Holland, Amsterdam, 1962

— 94 -



	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026

