

癌化肥満細胞のプロスタグランジンⅠ₂ とE受容体に関する研究

1993

橋 本 均

緒 言	1
略 語	4
第1章 癌化肥満細胞のPGI2受容体の同定とその情報伝達系の解析	
実験結果	6
第1節 PGI2の受容体結合反応と促進性G蛋白(Gs)を介する	
アデニル酸シクラーゼ活性化の解析	7
第2節 光親和性標識法によるPGI2受容体の同定	15
第3節 PGI2受容体反応の多様性	25
考 察	31
結論	38
第2章 癌化肥満細胞のPGE受容体刺激に対する脱感作の解析	
実験結果	39
考 察	46
結 論	49
実験の部	50
謝 辞	57
引用文献	58

緒言

プロスタグランジン(PG)は、炭素数20個のアラキドン酸などの不飽和脂肪 酸から生成する、微量で強い薬理・生理活性を有する一群の脂肪酸の総称 で、特徴のあるシクロペンテン構造あるいはトロンバン構造を分子内に有す る。生体内ではアラキドン酸に由来するPGが最も多く産生されている。その 産生機構が最近明らかにされている。すなわち、細胞が種々の細胞外刺激を 受容体で受けると、受容体と共役する機構でホスホリパーゼAn、あるいはホ スホリパーゼCとアシルグリセロールリパーゼが活性化し、細胞膜リン脂質 のアラキドン酸を切り出し、アラキドン酸はまずシクロオキシゲナーゼによ り酸素分子の添加反応を受け、次いで各種イソメラーゼ作用により、PGL、 PGE2、PGD2、PGF2a、TxA2など、構造の僅かに異なるPGが多種類生成され る1-5)。生成したPGは細胞外に放出され、自己もしくは周辺の細胞に作用し てその機能を調節する6-8)。その際、大部分のPGの質的・量的情報は、細胞 膜にある受容体に認識され、受容体/G蛋白/エフェクター分子、三者から なる情報伝達系を刺激し、その結果細胞内にセカンドメッセンジャーを生成 する。セカンドメッセンジャー作用により細胞代謝が調節される9。このPG受 容体/情報伝達系の研究は、PGが化学的に不安定なため10)、PGアンタゴニ ストがほとんど開発されていないため、PG受容体の量が少なく不安定で精製 が困難なため11,12)、などの理由で多くの未解決の問題が残されている。

ところで、最近、TxA2¹³)受容体がヒト血小板より精製され¹⁴)、ヒト胎盤、 巨核芽球細胞の受容体遺伝子のcDNAがクローニングされ、遺伝子cDNAから の受容体一次構造が決定された¹⁵)。次いで、TXA2受容体のcDNA塩基配列を

-1-

基にしたホモロジースクリーニングにより、マウス肺のTXA2受容体のcDNA がクローニングされた¹⁶)。さらにその配列を基に、マウス癌化肥満細胞から PGE2受容体のサブタイプの一つ、EP3受容体のcDNAがクローニングされ、 その受容体の一次構造が明らかにされた¹⁷)。しかし、これら以外のPG受容 体の構造については依然不明である。

PGI₂はプロスタサイクリンとも呼ばれ、主に血管内皮細胞でアラキドン酸から生成する強い生理活性を示すPGで¹⁸)、血小板凝集阻止作用¹⁹⁾や血管平滑筋弛緩作用²⁰⁾を有し、その効果がTXA₂作用に拮抗することから注目されている。しかし、PGI₂の受容体研究は、天然のPGI₂が血液中半減期が約5分と不安定なこと、受容体の組織発現量が少ないこと、アンタゴニストが開発されていないこと、などの理由から他のPGに比しても遅れていた。最近、PGI₂の安定誘導体がいくつか合成され、その放射能標識体も使用が可能となった。り、PGI₅受容体の研究が可能となった。

ところで、PG受容体の研究は、生命科学の重要課題である生物の情報伝達 系の解明に寄与するだけではなく、PGを医薬品として開発する応用研究にお いて有効な基礎知見となるものである。すなわち、現在いくつかのPG^{21,22)} およびその誘導体^{23,24)}が医薬品として使用されており、今後、益々PG類を 標的として医薬品開発が行なわれることは明らかである。このPG類の医薬品 開発の問題点は、PGが生体のどの組織でも産生され、同じタイプのPGでも 組織により、あるいは種差・性差・年齢差などの違いにより効果が異なり、 時に相反する効果を示すことがあるという複雑な作用を表わすという事情に よる。そのため、合成されるアゴニスト、アンタゴニストの作用は、組織等 において如何に特異性を高くできるかということであり、そのためにはPG受 容体の構造と機能、情報伝達系、持続的なPG暴露に対する細胞の受容体反応 を介する適応現象である脱感作機構を研究することが重要である。

著者は、マウス癌化肥満細胞P-815細胞が、PGI2とPGE受容体を多量に含 有することに着目して²⁵⁻²⁹、PGI2受容体の情報伝達系、PGI2受容体の同定と PGE2受容体の脱感作について研究を行ない、その研究内容をつぎの2章に分 けて記載した。

第1章では、まず癌化肥満細胞におけるPGI₂受容体の情報伝達系を解析し、 促進性G蛋白(Gs)とカップルし、アデニル酸シクラーゼを活性化するPGI₂に 特異的な受容体の存在を明らかにした²⁷⁻²⁹)。次にこのPGI₂受容体に対する光 親和性標識化合物³⁰)を開発し、PGI₂受容体を同定し、分子量を推定した^{31,32})。 さらに、PGI₂受容体が肥満細胞の機能をどのように調節するのかを明らかに するため、トロンビン³³)およびATP³⁴)による細胞内Ca²⁺動員に対する、PGI₂ 受容体刺激による作用について調べた³⁵)。

第2章では、PGE₁の受容体刺激に対する細胞の脱感作機構に関して解析した。癌化肥満細胞はPGE₁刺激による細胞内 cAMP産生に関して、顕著な脱感 作を起こすことを観察しその機構を解析した³⁶の。脱感作細胞では、PGE₁と 受容体が安定な複合体を形成した状態で存在することを見いだし、この複合 体を部分精製した。その結果、部分精製した複合体中に、分子量60 kDaの新 規なGTP結合蛋白質が検出されたことから、複合体の形状としてPGE₁受容体 -GTP結合蛋白質(60 kDa)を推察し、これが細胞の脱感作に機能することを 示唆した³⁶)。

-2-

略 語

PG	prostaglandin
PGI ₂	prostaglandin I2, prostacyclin
TxA ₂	thromboxan A ₂
Gs	促進性G蛋白
Gi	抑制性G蛋白
Kd	dissociation constant (解離定数)
Bmax	binding maximum (最大結合量)
IC ₅₀	50% inhibitory concentration
cAMP	cyclic AMP
DbcAMP	dibutyryl cyclic AMP
8Br-cAMP	8-bromo cyclic AMP
GTPγS	guanosine-5'-O-(3-thiotriphosphate)
GDPBS	guanosine-5'-O-(2-thiodiphosphate)
dGTP	2'-deoxyguanosine-5'-triphosphate
dGDP	2'-deoxyguanosine-5'-diphosphate
dGMP	2'-deoxyguanosine-5'-monophosphate
cGMP	cyclic GMP
GppNHp	guanylyl-imidodiphosphate
ATPγS	adenosine-5'-O-(3-thiotriphosphate)
AppNHp	adenylyl-imidodiphosphate
APNIC	19-(3-azidophenyl)-20-norisocarbacyclin
[³ H]APNIC	[15-3H1]19-(3-azidophenyl)-20-norisocarbacyclin
15-epi-APNIC	19-(3-azidophenyl)-15-epi-20-norisocarbacyclin

PT	pertussis toxin (百日咳毒素)
IP ₃	inositol-1,4,5-triphosphate
PI	phosphatidylinositol
Fura-2/AM	Fura-2-acetoxymethylester
[Ca ²⁺]i	cytosolic free Ca ²⁺ concentration
BSA	bovine serum albumin
WGA	wheat germ agglutinin (小麦胚凝集素)
GlcNAc	N-acetyl-D-glucosamine
5'-p-FSO ₂ Bz0	Guo 5'-p-fluorosulfonylbenzoilguanosine
SDS	sodium dodecyl sulfate
PAGE	polyacrylamide gel electrophoresis
UV	ultraviolet
OD	optical density
PBS	phosphate-buffered saline
IBMX	3-isobutyl-1-methylxanthine
EDTA	ethylenediaminetetraacetic acid
EGTA	ethylene glycol bis(β -aminoethylether)-N,N,N',N'-tetraacetic acid
PMSF	phenylmethylsulfonyl fluoride
CHAPS	3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid
HEPES	N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]

第1章 癌化肥満細胞のPGI2受容体の同定とそ情報伝達系の解析

おもに薬理学的研究からPGI2受容体が、血小板、血管平滑筋、神経融合細胞37-40)に存在することが知られていた。しかし、PGI2受容体蛋白質の実体、 諸性質をはじめリガンド結合に伴って起こる細胞内情報伝達系等についての 生化学的研究はほとんど行なわれていない。これはPGI2自体が化学的に不安 定性であることや10)、PGI2受容体蛋白質が不安定で失活しやすいなどの理由 による11)。

肥満細胞は、IgE-抗原刺激に応じて細胞外に分泌したヒスタミンやその他 の炎症のメディエーターの作用により、炎症やアレルギーの種々の組織反応 を誘引する細胞である41)。肥満細胞は分泌反応時に、PGなどのアラキドン 酸代謝産物を合成し細胞外に放出する。ところで、肥満細胞のin vitro実験系 で細胞にPGE1、PGI2を作用させると細胞内のcAMPレベルが上昇し、それに より肥満細胞からの炎症メディエーターの分泌が抑制されることが報告され た42-44)。このPGE1のcAMP上昇作用は、PGE1やPGI2が血小板に作用してそ の凝集を強く阻害する作用と似ている。血小板において、PGE1とPGI2がと もにcAMP上昇作用を示す理由が検討されて、PGE1はPGI2受容体に交叉結合 してcAMP上昇効果を発現していることが明らかにされた45)。この知見から、 血小板と同様に肥満細胞においてもPGE1とPGI2による、それぞれの受容体 レベルでの交叉反応による効果が予想された。しかし、肥満細胞における PGI2受容体の存在に関する過去の報告は非常に少なく、マウス癌化肥満細胞 を用い、低濃度のPGI2がPGEよりも強くcAMP生成を高めることが唯一知ら れていた25)。最近、PGI2の安定類縁体の一つイロプロストおよびその[3H]標 識イロプロスト⁴⁶が使用できるようになった。そこで、cAMP生成を起こす PGI₂受容体の存在が予想されるマウス癌化肥満細胞を用い、PGI₂受容体の同 定とその情報伝達系の解析を行なった。

第1節 PGI2の受容体結合反応と促進性G蛋白(Gs)を介する アデニル酸シクラーゼ活性化の解析

〔癌化肥満細胞膜におけるPGI2受容体結合部位の同定〕

図1にPGI₂およびイロプロストの構造式を示す。PGI₂は環状エノールエー テル構造を持っており、不活性な6-keto-PGF_{1α}になるため、非常に不安定で ある。イロプロストは、5員環構造の酸素を炭素に置換して安定化したPGI₂ 誘導体である。

-6-

まず、マウス癌化肥満細胞(P-815細胞株)より粗細胞膜画分を調製し、その 膜画分への[³H]イロプロストの特異的結合について調べた。図2は特異的結合 反応の時間と温度に対する依存性を示したものである。インキュベーション 温度が高くなると結合速度は増加するが、37 ℃では30分以降、結合量が漸減 した。25 ℃、60分において最大結合が得られたので、以降の実験はこの温度 で行なわれた。

Fig. 2. Time course and temperature dependence of $[^{3}H]$ iloprost binding to the membrane fraction.

The membrane fraction was incubated with 20 nM [³H]iloprost at 0 °C (\bigcirc), 25 °C (\bullet) or 37 °C (\blacktriangle) for total binding. Nonspecific binding assay was carried out at 0, 25 or 37 °C, of which 25 °C is shown (\Box). The amounts of bound [³H]iloprost were determined at various time intervals.

Fig. 3. pH and cation dependencies of $[^{3}H]$ iloprost binding. The membrane fraction was incubated with 20 nM $[^{3}H]$ iloprost for 60 min at 25 °C in 50 mM potassium phosphate with indicated pH, containing 1 mM EDTA and 10 mM MgCl₂ (A), or in 10 mM potassium phosphate, pH 6.2, containing 1 mM EDTA and the indicated concentrations of MgCl₂ (\bullet), CaCl₂ (\bigcirc) or NaCl (\triangle) (B). The amounts of bound $[^{3}H]$ iloprost were determined as described in the text.

図3に示すように、[³H]イロプロストの特異的結合反応は、インキュベーションの際の溶液のpHにより異なり、最大の結合量はpH 6.2で得られた。また、特異的結合反応にはCa²⁺またはMg²⁺の二価カチオンが必須であり、ともに10 mMの濃度で最大活性が得られた。しかし、Na⁺イオンは不要であった。

[³H]イロプロストの特異的結合の濃度依存性は、図4Aの挿入図に示すよう に飽和性であり、この結果をScatchard解析した結果から(図4A)、結合部位は 一種類であり、その結合解離定数Kdは10.4 nM、最大結合量Bmaxは1.12 pmol/mg蛋白質となった。さらにHillプロットの結果、Hill係数は1.0となり、 結合には協同性が認められなかった(図4B)。

Fig. 4. Plots of specific [³H]iloprost binding.

The membrane fraction was incubated for 60 min at 25 °C with increasing concentrations of [³H]iloprost (1 to 100 nM). Specifically bound [³H]iloprost was determined (inset). For the Scatchard (A) and the Hill plot (B) were transformed from the value of specific [³H]iloprost binding.

また癌化肥満細胞膜での結合の特異性は、[³H]イロプロストの特異的結合 に対する種々の非標識のPGによる阻害曲線より(図5A)、イロプロスト>PGE₁ >カルバサイクリン=PGI₂-methyl ester>PGE₂ >PGF_{2α}>PGD₂の順に親和性 が高く、PGI₂の類縁体に選択的に親和性が高いことが分かった。既述したよ うに、血小板においてPGE₁はPGI₂受容体にも親和性があることが知られて いる。このことから考えると、癌化肥満細胞においてPGE₁がPGI₂誘導体に 匹敵する高い結合親和性を示すのは、PGI₂受容体への交叉結合の可能性が予 想される。

ところで、癌化肥満細胞にはPGI₂受容体に加えて、またPGE (E_1/E_2 を結合する)受容体も存在することが知られている²⁵)。そこで、PGI₂リガンドの PGE受容体への交叉結合を調べる目的で、[³H]PGE₂結合に対する各種非標識 PGI_2 誘導体の阻害作用について調べた(図5B)。その結果 $PGE_1 \ge PGE_2 \gg 4 \square$ プロスト \ge カルバサイクリン> $PGF_{2\alpha} > PGD_2$ の順となり、イロプロストは、 [³H] PGE_2 の結合部位への親和性は非常に低いことが分かった。以上より癌化 肥満細胞には、PGE受容体の他に、 PGI_2 受容体が存在し、[³H]イロプロスト は、 PGI_2 受容体に選択的に結合していることが明らかとなった。

The membrane fraction was incubated with either 20 nM [³H]iloprost (A) or 5 nM [³H]PGE₂ (B) in the presence of various concentrations of unlabeled iloprost (\bullet), PGE₁ (\blacksquare), PGE₂ (\Box), carbacyclin (\triangle), PGI₂-methyl ester (\times), PGF_{2α} (\blacktriangle) or PGD₂ (\bigcirc). All values were corrected for nonspecific binding and are expressed as percent controls. Specific binding in controls was 1 pmol/mg for [³H]iloprost and 0.5 pmol/mg for [³H]PGE₂.

〔癌化肥満細胞のPGI。受容体とGsとの機能的会合〕

ところで、いくつかのPG受容体は、G蛋白と会合していることが報告され ており、G蛋白と会合する受容体はGTPによりその結合親和性が低下するこ とが知られている。そこで、種々のGTPの誘導体による、結合したイロプロ ストの解離に対する作用を調べたところ、表1に示すように、GTPやその非 水解性誘導体であるGTPγSが解離を促進したが、ATPなどではほとんど解離 しなかった。

Table IEffect of various nucleotides on the dissociation of bound[³H]iloprost from the membrane fraction.

Membrane fractions were incubated with 100 μ M of various nucleotides for 30 min at 25 °C and remaining amounts of bound [³H]iloprost were determined. About 80% of specifically bound [³H]iloprost remained after incubation for 30 min was taken as 100%. All values are means ± S.E. of triplicate experiments.

Nucleotide a	added	Bound [³ H]ilo	prost (%)
None			100	
GTP		65.9	±	1.2
GDP		76.6	±	1.0
GMP		95.5	±	0.69
dGTP		61.1	±	0.66
dGDP		77.0	±	0.76
cGMP		96.8	±	0.83
Guanosi	ine	97.0	±	1.5
GppNH	p	49.7	±	0.92
GTPyS		16.1	±	0.16
GDPβS		18.6	±	0.12
ATP		87.7	±	0.22
ADP		91.1	±	0.52
AppNH	p	88.3	±	0.75
ATPyS		87.7	±	1.1

また、膜画分に結合した[³H]iloprostの解離を促進するGTPγSの効果の用量 依存性を図6に示す。100 μM以上のGTPγSで、結合した[³H]iloprostをほぼ完 全に解離した。

Fig. 6. Effect of GTPγS on the dissociation of bound [³H]iloprost from the membrane fraction. [³H]Iloprost-labeled membrane fractions were incubated in the presence of increasing concentrations of GTPγS for 30 min at 25 °C, and remaining amounts of bound [³H]iloprost were determined. All values

were corrected for nonspecific binding and are expressed as percent of control. Specific binding of [³H]iloprost was 1 pmol/mg.

PGI₂の細胞作用に関しては、血小板においてPGI₂受容体結合はGsを介し てアデニル酸シクラーゼの活性化を起こすことが明らかにされている。癌化 肥満細胞においては、PGI₂が細胞内cAMPの上昇を起こすことは知られてい る²⁵⁾が、その詳細な機構は明らかではなかった。そこで、PGI₂受容体刺激に よる細胞膜アデニル酸シクラーゼの活性化について検討した。その結果、イ ロプロストの存在下において、GTPの濃度依存的にアデニル酸シクラーゼ活 性が上昇し(図7A)、またGTPの存在下で、イロプロストの濃度依存的にアデ ニル酸シクラーゼ活性が上昇した(図7B)。

Fig. 7. Effect of iloprost on GTP-dependent adenylate cyclase activity.

A, smaples contained indicated concentrations of GTP with (\bullet) or without (\bigcirc) 1 μ M iloprost. B, samples contained indicated concentrations of iloprost with (\bullet) or without (\bigcirc) 1 μ M GTP. The samples were assayed for adenylate cyclase activity as described in the text.

これらの実験結果から、癌化肥満細胞には、PGI₂に特異的な受容体が存在 し、受容体はGsと機能的に会合して、アデニル酸シクラーゼを活性化するこ とが明らかとなった。 第2節 光親和性標識法によるPGI2受容体の同定

PGI2受容体の分子量の決定や、一次構造の解析などを目的とした受容体蛋 白質の精製には、効率的な可溶化や精製方法の確立が必要であるが、PGI2受 容体蛋白質は、可溶化やその後のカラムクロマトグラフィーなどの操作によ り、容易に失活してしまう不安定な蛋白質である¹¹⁾。そこで、光照射により 受容体蛋白質と共有結合する、放射性標識安定PGI2誘導体を合成し、それを 用いPGI2受容体の同定と分子量の推定を行なった^{31,32})。

[PGI2受容体に対する光親和性標識化合物の合成]

出発原料として、図8に示した化学的に安定なPGI2類縁体であるイソカル バサイクリンを用い、それに紫外線によって活性化され、蛋白質のアミノ酸 残基と共有結合を形成し得るアジドフェニル基を導入した。

Isocarbacyclin

Phenyl or azidophenyl-functionalized isocarbacyclin analogeus

Fig. 8. Chemical structures of isocabacyclin and phenylor azidophenyl-functionalized isocarbacyclin analogues. 表2に、イソカルバサイクリンおよびそのω鎖にフェニル基またはアジドフェニル基を結合した各誘導体による、[³H]イロプロスト結合に対する阻害曲線から求めたIC₅₀値を示す。

Table II IC_{50} of isocarbacyclin derivertives for binding inhibition of [³H]iloprost in membrane fractions.

PGs	IC ₅₀ (M)
Iloprost	0.93×10^{-8}
Isocarbacyclin	3.2×10^{-8}
Carbacyclin	5.7×10^{-6}
Phenylisocarbacyclin derivertives	
n = 1	16.0×10^{-8}
n = 3	3.2×10^{-8}
Azidophenylisocarbacyclin derivertives	
n = 1, p-N ₃	25.0×10^{-8}
$n = 1, m-N_3$ (15S)-epimer	7.9×10^{-8}
n = 3, m-I (15S)-epimer	5.0×10^{-7}
n = 3, m-I (15R)-epimer	6.3×10^{-6}
APNIC	0.30×10^{-8}
15-epi-APNIC	32.0×10^{-8}

[³H]イロプロスト結合に対する阻害曲線から求めたIC₅₀値で比較すると、 癌化肥満細胞膜のPGI₂受容体は、カルバサイクリンよりもイソカルバサイク リンの方が高い親和性を有していた。そこで、イソカルバサイクリンのアジ ドフェニルまたはヨードフェニル誘導体を各種合成し、それらの[³H]イロブ ロスト結合に対する阻害曲線から求めたIC₅₀値を比較した結果、ω鎖の長さ (n=3)とアジド基を導入する位置(m位)が得られ、n=3, m-N₃の(15S)-epimer である19-(3-azidophenyI)-20-norisocarbacyclin (APNICと略称)がもっとも優れて いることが分かった。APNICの構造式を図9に示す。APNICは表2の結果より イロプロストを上回る高い親和性を有していた。ところで、このAPINCの放 射能標識体の合成を検討した結果、ω鎖フェニルへのヨード(¹²⁵I標識を想定) の導入は親和性の低下を起こしたので、トリチウム標識体の合成を検討し、 15位の炭素の水素をトリチウムに置換した放射性標識体を合成した。また、 15位の炭素の立体配置がR体である、15-epi-APNICの親和性は大きく低下し たことから、トリチウム標識反応によって得られる、15S-および15R-isomer を逆相高速液体クロマトグラフィーにより分離した。

得られた[15-³H₁]19-(3-azidophenyl)-20-norisocarbacyclin ([³H]APNIC) (図9)の 比活性は15 Ci/mmolであった。

[[3H]APNICの癌化肥満細胞膜のPGI2受容体に対する結合の親和性と選択性〕

図10に[³H]APNICの癌化肥満細胞膜への結合の経時変化を示す。特異的結合は10分以内に最大となり、総結合量の約70%が特異的結合であった。

Fig. 10. Time course of [³H]APNIC binding to the plasma membrane.

Plasma membranes (200 µg) were incubated at 30 °C with 13 nM [³H]APNIC for various lengths of time and then assessed for total binding (\bullet) and nonspecific binding (\bigcirc). The amounts of bound [³H]APNIC were determined at the indicated times as described in the text. The specific binding (\blacktriangle) was calculated by subtracting the nonspecific binding from the total binding.

また図11に示すように、[³H]APNIC結合の特異的結合は飽和性であり、 Scatchard解析の結果から、結合部位は一種類で、Kdが4.7 nM、Bmaxが0.58 pmol/mg蛋白質となった。これらの値は、[³H]イロプロストの場合とほぼ一致 した(第1章 考察)。

Plasma membranes (200 µg) were incubated for 60 min at 30 °C with increasing concentrations of [³H]APNIC (0.2 to 100 nM) in the presence (\bigcirc) or absence (\bullet) of 100 µM unlabeled iloprost. Bound [³H]APNIC was determined as described in the text. The specific binding (\blacktriangle) was obtained by subtraction of the nonspecific binding from the total binding at indicated concentrations of [³H]APNIC. The Scatchard plot (B) was transformed from the value of specific binding (\blacktriangle).

第1節でも述べたように、癌化肥満細胞にはPG受容体として、PGI2受容体 以外にPGE受容体が存在している。そこで、APNICがPGI2受容体のみを特異 的に認識しているかどうかを検討するために、[³H]APNICの結合特異性につ いて調べた。

図12Aに示すように[³H]APNIC結合に対して、非標識APNICはイロプロストと同程度に強く結合を阻害したが、PGE₂はほとんど結合を阻害しなかった。 この結果から、APNICはPGI₂受容体に選択的に結合していると考えられた。 また、15R-epimer体である15-epi-APNICは[³H]APINCの結合阻害作用は弱い ものであった。 さらに、APNICのアゴニスト活性について調べるため、APNICが癌化肥満 細胞膜のアデニル酸シクラーゼを活性化するかどうかについて調べた(図12B)。 1 μ M GTP存在下で、APNICは10⁻⁹ M以上で濃度依存的にこの酵素を活性化 し、10⁻⁶ M以上で最大活性となったが、APNICはイロプロストの約80%の活 性化であった。この点を除きAPNIC、イロプロスト、15-epi-APNICのそれぞ れによるアデニル酸シクラーゼの活性化の程度と、[³H]APNIC結合に対する 阻害活性の程度はよく対応した。

Fig. 12. Effects of unlabeled PGs on the dissociation of bound [³H]APNIC from and the stimulation of adenylate cyclase in the plasma membrane.

A, Plasma membranes (200 µg) were incubated with 13 nM [³H]APNIC in the presence of various concentrations of unlabeled iloprost (\bigcirc), APNIC (\bigcirc), 15-epi-APNIC (\triangle), or PGE₂ (\blacksquare). All values were corrected for nonspecific binding and are expressed as a percent of the control as described in the text. B, Plasma membranes (1.9 µg) were incubated with 1 µM GTP in the presence of various concentrations of unlabeled iloprost (\bigcirc), APNIC (\bigcirc), 15-epi-APNIC (\triangle). Cyclic AMP formed was measured as described in the text. これらの結果から、APNICはPGI2受容体に対して、高い親和性と選択性を 有するアゴニストであり、そのPGI2受容体との結合はアデニル酸シクラーゼ を活性化することが分かった。

〔光親和性標識化合物[³H]APNICを用いたPGI。受容体の同定〕

[³H]APNICがPGI₂受容体蛋白質と、光照射により共有結合を形成すること を確認するため、次の実験を行なった。まず癌化肥満細胞膜に[³H]APNICを 結合させた後、GTP γ Sを添加すると[³H]APNICの解離が起こった。しかし細 胞膜に[³H]APNICを結合させ、254 nmの紫外線を3分間照射した後、GTP γ Sを 添加しても[³H]APNICがまったく解離しなかった(表3)。

Table III Effects of GTP γ S and UV irradiation on the dissociation of bound [³H]APNIC from solubilized membrane fractions. Membranes prelabeled with [³H]APNIC and treated or not by UV irradiation were solubilized and further incubated for 10 min at 30 °C in the presence or absence of 500 μ M GTP γ S. The remaining radioactivity was determined as described in the text. All values were corrected for the nonspecific binding.

Treatment	Radioactivit	% Decrease	
riounion	- GTPγS	- GTPγS + GTPγS	
	dp	m	
None	450 ± 2.1	211 ± 8.9	53.1
UV irradiation	388 ± 11	386 ± 6.6	0.5

そこで、[³H]APNICを癌化肥満細胞膜のPGI₂受容体に結合させた後、紫外 線を照射し、SDSポリアクリルアミドゲル電気泳動(SDS PAGE)により蛋白質 を分離した後、X線フィルムに対してフルオログラフィーを約5日間行なった。 その結果、図13Bに見られるように、分子量43 kDaと推定される位置にプロ ードなバンドとして、[³H]APNIC標識受容体が確認された。このバンドは、 [³H]APNICを細胞膜に結合させる際に、GTPγSを添加すると減弱すること、 また非標識のイロプロストを加えるとほぼ完全に消失することから、G蛋白 と共役したPGI₂受容体であることが確認された。尚、電気泳動後のゲルを一 定サイズでスライスにし、その放射活性を測定した結果(図13A)からもGTPγS、 イロプロストの阻害効果が定量的に確認された。

Fig. 13. Photoaffinity labeling of the plasma membrane with [³H]APNIC.

Plasma membranes (200 µg) were incubated for 60 min at 30 °C with 13 nM [³H]APNIC in the absence (lane 1) or presence of 100 µM GTP γ S (lane 2) or 10 µM iloprost (lane 3). The samples were photolabeled and subjected to SDS-PAGE (4–20%) as described in the text. A, radioactivity in the gel slice; •, lane 1; \bigcirc , lane 2. B, fluorography.

つぎに[³H]APNIC結合部位の特異性を調べるために、[³H]APNICを癌化肥 満細胞膜に結合させる際に、過剰量の種々の非標識PGを添加後、光親和性標 識を行なった(図14)。その結果PGI₂の安定誘導体であるイロプロスト、 APNIC、イソカルバサイクリンにより43 kDaのバンドは消失した。また、 PGE₁でも減弱したが、PGE₂、PGD₂、PGF₂ではコントロールとほとんど変 化がなかった。このことから[³H]APNIC標識43 kDa蛋白質は、結合リガンド としてPGI₂(もしくはPGI₂誘導体)を特異的に認識する、受容体蛋白質である ことが分かった。

Fig. 14. Effects of unlabeled PGs on photoaffinity labeling with [³H]APNIC.

Plasma membranes (200 µg) were incubated for 60 min at 30 °C with 13 nM [³H]APNIC in the absence (lane 1 and 9) or presence of 1 µM iloprost (lane 2), APNIC (lane 3), isocarbacyclin (lane 4), PGE₁ (lane 5), PGE₂ (lane 6), PGD₂ (lane 7), or PGF_{2 α} (lane 8). The samples were photolabeled and subjected to SDS-PAGE (4–20%) followed by fluorography as described in the text.

さらに同様の方法により、PGI2受容体の存在が明らかにされているブタ血 小板膜を用いて、その分子量を求めた(図15)。その結果、分子量51kDaのブ ロードなバンドが認められ、このバンドは癌化肥満細胞における場合と同様 に、GTPγSの添加によって弱く、イロプロストの添加によって強く阻害され る性質のものであった。

Fig. 15. Photoaffinity labeling of the plasma membrane of porcine platelets with $[^{3}H]APNIC$.

Porcine platelet plasma membranes (200 μ g) were incubated for 60 min at 30 °C with 13 nM [³H]APNIC in the absence (lane 1) or presence of 100 μ M GTP γ S (lane 2) or 10 μ M iloprost (lane 3). The samples were photolabeled and subjected to SDS-PAGE (4–20%) as described in the text. A, radioactivity in the gel slice; •, lane 1; \bigcirc , lane 2; and •, lane 3. B, fluorography.

第3節 PGI。受容体反応の多様性

肥満細胞は、刺激に応じてヒスタミンなどのメディエーターを放出し、炎 症反応に関与する細胞である。PGI2は血管内皮細胞で産生され、血小板や血 管平滑筋細胞の機能を調節することはよく知られているが、同じく血管の近 傍に多く存在する肥満細胞に対する作用は、ほとんど明らかではなかった。 著者は、癌化肥満細胞にATPとトロンビンの受容体があり、両受容体をアゴ ニスト刺激すると、細胞内の遊離Ca²⁺濃度([Ca²⁺]i)が増加し、その結果ヒス タミン放出が促進されることを見いだした。そこで、[Ca²⁺]i変化を指標にし て、PGI2の受容体刺激で生成するcAMPの効果について調べた。

[Ca²⁺]iの変化を、Ca²⁺蛍光プローブFura 2を用いて測定した結果を図16に 示す。まず、トロンビンで癌化肥満細胞を刺激すると一過性の[Ca²⁺]i上昇が 起こるが、この上昇は細胞外のCa²⁺を除去しても同程度に起こった。しかし 百日咳毒素(PT)を前処置した細胞では、トロンビンによる[Ca²⁺]i上昇が見ら れなくなった。この結果から、トロンビン受容体はPT感受性Gi蛋白を介して、 カルシウム貯留部位からCa²⁺を細胞内に移動させる作用があることが分かっ た。次に、イロプロストを前処置してからトロンビン刺激を加えると、 [Ca²⁺]i上昇反応が阻害された。一方ATP刺激による[Ca²⁺]i上昇は、細胞外 Ca²⁺を除去すると消失したが、PTの前処置では変化しないことから、ATP受 容体を介した細胞外からのCa²⁺流入によるものであることが分かった。この ときイロプロストは、ATP受容体刺激による[Ca²⁺]i上昇をさらに増大させた。

Fura-2-loaded cells (2 x 10^6 cells) were stimulated with 0.5 U/ml thrombin (A) or 100 μ M ATP (B) in buffer (1) or in Ca²⁺-free buffer containing 0.3 mM EGTA (2). Fura-2-loaded cells exposed to 100 ng/ml PT for 3 h were stimulated with thrombin or ATP (3). After fura-2-loaded cells had been preincubated for 5 min at 37 °C with 1 μ M iloprost and 0.5 mM IBMX, the cells were stimulated with thrombin or ATP (4). Thrombin or ATP was added at the time indicated by the arrow. The recordings shown are a representative of three independent experiments that yielded similar results.

次に、イロプロスト作用の経時変化と用量依存性について調べた(図17)。 イロプロストのATPによる[Ca²⁺]i上昇に対する促進作用と、トロンビンに対 するその阻害作用の出現は、共に1分間の潜時期の後出現し、約3分で最大に 達するという共通なものであった。また5分間前処置したイロプロストの効 果は、両刺激に対して同一の効果を示した。これらの結果から、イロプロス トによるPGI2受容体刺激は、産生する共通のセカンドメッセンジャーの働き を介して、トロンビン受容体とATP受容体を介した、[Ca²⁺]i作用を調節する ことが示唆された。

Fig. 17. Time courses and dose dependencies of the effects of iloprost on the thrombin- and ATP-induced increase in $[Ca^{2+}]i$. A, Fura-2-loaded cells (2 x 10⁶ cells) were incubated for the indicated times at 37 °C with 1 µM iloprost and 0.5 mM IBMX. B, Fura-2-loaded cells were incubated for 5 min at 37 °C with the indicated concentrations of iloprost and 0.5 mM IBMX. The cells stimulated by 0.5 U/ml thrombin (•) and 100 µM ATP (•), and the peak $[Ca^{2+}]i$ levels induced by these stimulants were determined as described in the text. The values shown represent percentages of the respective controls and are means \pm S. E. for triplicate experiments. The values of the increase in $[Ca^{2+}]i$ in controls were 631 \pm 29 nM for thrombin and 41.6 \pm 4.1 nM for ATP respectively.

次に、このイロプロストによる[Ca²⁺]i 調節作用のPG特異性を調べた(表4)。 その結果、イロプロストをはじめ、PGE₁、PGE₂のような細胞内cAMP産生を 引き起こすPGの効果は強く、cAMPを産生しないPGF₂ α 、PGD₂にはほとんど 作用が見られなかった。さらに、DbcAMPや8Br-cAMPを添加すると、イロプ ロストと同様な効果が認められた。これらのことから、イロプロストの作用 は、産生されるcAMPの作用を介して発現するものであることが分かった。 Table IV Effects of various PGs, cAMP analogues on the thrombin- and ATP-induced increase in $[Ca^{2+}]i$ and the cellular cAMP level.

After fura-2-loaded cells (2 x 10⁶ cells) had been preincubated for 5 min at 37 °C with or without the indicated agents in the presence of 0.5 mM IBMX, the cells were stimulated with 0.5 U/ml thrombin or 100 μ M ATP. The peak [Ca²⁺]i levels induced by these stimulants were determined as described in the text. The values shown represent percentages of the respective controls and are means ± S. E. for triplicate experiments. For measurement of cAMP, cells (1 x 10⁶ cells) were incubated for 5 min at 37 °C with various PGs in the presence of 0.5 mM IBMX, and then cAMP levels were determined as described in the text. The values of the increase in [Ca²⁺]i in controls were 623 ± 61 nM for thrombin and

 42.5 ± 3.5 nM for ATP respectively.

Addition		Δ[Ca	cAMP		
		Thrombin	АТР		
		% of c	control	pmol/106 cells	
1 μM I	loprost	12.9 ± 4.5	$292~\pm~16$	61.5 ± 2.8	
1 μM Ρ	PGE1	30.3± 6.7	220 ± 16	34.5 ± 3.1	
1 μM P	GE2	60.0 ± 6.3	187 ± 21	23.5 ± 5.6	
1 μM Ρ	PGF _{2α}	83.1 ± 8.2	125 ± 13	4.5 ± 2.1	
1 μM F	PGD ₂	95.0 ± 3.7	112 ± 10	3.8 ± 1.8	
1 mM 1	DbcAMP	32.9 ± 8.2	194 ± 19		
1 mM 8	8Br-cAMP	38.0±10	205 ± 17		

ところで、細胞内カルシウム貯留部位からのCa2+動員による「Ca2+1i上昇の 機構は、ホスファチジルイノシトール(PI)代謝により、ホスファチジルイノ シトール-4,5-二リン酸(PIP2)から特異的ホスホリパーゼC作用で産生される、 イノシトール-1,4,5-三リン酸(IP3)により起こることが知られている。そこで 次に、種々の刺激によるPI代謝回転の亢進に対するイロプロストの作用につ いて、[3日]イノシトール標識細胞を用いて検討した。表5に示すように、トロ ンビンあるいはATPで細胞を刺激すると、ともに[3H]IPaの産生を促進した。 細胞を予め、イロプロストで5分間前処置しておくと、トロンビン刺激によ る[³H]IP₃の産生は強く阻害されるが、一方、ATP刺激による[³H]IP₃の産生は、 逆に強く促進された。NaF+AlClaは、受容体刺激の代わりにホスホリパーゼ にカップルするG蛋白を直接活性化し47)、ホスホリパーゼCの活性化を介し て細胞内Ca2+の上昇を引き起こす48)ことが知られている。癌化肥満細胞にお いても、NaF+AlCla処理は、Ca²⁺イオノフォアのイオノマイシンと同様に [³H]IP₃の産生を亢進した。しかし、これらの受容体を介さない刺激による [³H]IP₃の産生に対しては、イロプロストの前処置は無効であった。

この結果から、イロプロストの作用点は、ホスホリパーゼCの活性化、あ るいはG蛋白によるホスホリパーゼCの活性化ではないことが示唆された。 以上、肥満細胞において、PGI2受容体刺激により産生するcAMPは、他の 受容体刺激により発現するCa²⁺動員を指標にすると、刺激の違いにより全く 逆に調節することがあることを示唆するもので、このメカニズムは不明であ るが、PGI2受容体により肥満細胞の機能が多様に調節されることを示す一例 となる。 Table V Effect of iloprost on the thrombin, ATP, NaF + $AlCl_3$ and ionomycin-induced accumulation of IP_3 .

After [³H]inositol-labeled cells (2 x 10⁶ cells) had been preincubated for 5 min at 37 °C with or without 1 μ M iloprost and 0.5 mM IBMX, the cells were further incubated with 0.5 U/ml thrombin or 100 μ M ATP for 30 sec, or with 20 mM NaF plus 10 μ M AlCl₃ or 1 μ M ionomycin for 5 min. [³H]IP₃ formed was determined as described in the text. The values shown represent percentages of the control and are means ± S. E. for triplicate experiments. The radioactivity of the control was 73.3 ± 2.9 dpm/10⁶ cells for IP₃.

Addition	[³ H]IP ₃ (% of control)			
Addition	None	+ Iloprost and IBMX		
0.5 U/ml Thrombin	237 ± 8.5	5 131 ± 25		
100 µM ATP	205 ± 30	289 ± 25		
20 mM NaF + 10 μ M AlCl ₃	220 ± 4.1	221 ± 5.9		
1 μM Ionomycin	235 ± 7.8	3 233 ± 14		

考察

第1節において著者は、マウス癌化肥満細胞に、PGI2に特異的な受容体が 存在することを明らかにし、その情報伝達系を解析した27)。 癌化肥満細胞膜 への[3H]イロプロストの結合に対する、種々の非標識のPGによる結合阻害の 順序は、血小板に報告されている結果11)とよく一致しており、PGE1に比較 的高い親和性が認められたが、PGE2の親和性はイロプロストの100分の1以下 であった。一方、癌化肥満細胞膜への[3H]PGE2結合に対する阻害作用は PGE1およびPGE2に選択的であった。これらの結果は癌化肥満細胞に、PGI2 およびPGEのそれぞれに特異的な、2種類の異なるPG受容体が存在すること を示すものである。癌化肥満細胞膜における[3H]イロプロスト結合の Scatchard解析より求めたBmax (1.12 pmol/mg蛋白質)は、[3H]PGE2結合のBmax (0.5 pmol/mg蛋白質)の約2倍であり、受容体数においてPGI2受容体がPGE受容 体より多い。またPGI2受容体の存在が報告されているヒト血小板膜 (Bmax= 1.0 pmol/mg蛋白質)11)、マウス神経芽細胞腫とチャイニーズハムスター胎児 脳由来細胞の融合細胞NCB-20の細胞膜 (Bmax=1.28 pmol/mg蛋白質)³⁸⁾、ブタ 大動脈平滑筋膜 (Bmax=0.36 pmol/mg蛋白質)40)などと比較しても、癌化肥満 細胞にPGI2受容体が豊富に存在していることが分かる。予備的な実験で、ラッ ト腹腔肥満細胞を、イロプロストあるいはPGE2で刺激することにより、産生 される細胞内cAMP量を比較したところ、イロプロスト刺激の方がPGE2より も多い結果となった。ラット腹腔肥満細胞を多量に調製することは困難であ るため、受容体の結合実験のデータは得られていない。しかし癌化肥満細胞 と同様に、肥満細胞にもPGI2受容体が存在しており、受容体数はPGI2受容体

- 31 -

がPGE受容体よりも多く、cAMP産生作用とそれに伴う細胞機能の調節作用 においても、PGI2受容体が重要な役割を担っているものと考えられる。

血小板においては、PGI2によってアデニル酸シクラーゼが、GTP依存的に 活性化されることが知られている⁴⁹)。癌化肥満細胞膜からの[³H]イロプロス トの解離が、GTPとその非水解性の誘導体で促進されたこと、イロプロスト がGTP依存的にアデニル酸シクラーゼを活性化したことから、癌化肥満細胞 のPGI2受容体は、血小板の場合と同様にGsを介してアデニル酸シクラーゼと 機能的に会合し、この酵素を活性化して、cAMP産生を促進するものである と考えられる。一方、癌化肥満細胞のPGE受容体もアデニル酸シクラーゼを 活性化する²⁵)。したがって癌化肥満細胞においては、これら2つの異なるPG 受容体がいずれも、cAMPの産生促進系に関与していることになる。

ところで気管、心房や脂肪組織において、PGI2が直接、[Ca²⁺]iの上昇を起 こすことが示唆されている^{50,51})。癌化肥満細胞においては、第3節の結果よ り、イロプロスト単独の刺激によっては、[Ca²⁺]iの上昇は観察されていない。 したがって少なくとも癌化肥満細胞においては、PGI2受容体が直接、Ca²⁺動 因系を活性化する情報伝達系は存在しないものと思われる。

様々な受容体を研究する目的で、光親和性標識リガンドが用いられてい る30)。このようなリガンドの開発においてもっとも重要な点は、母体となる リガンドの構造に修飾を加えて、光親和性標識官能基を導入することにより、 受容体に対する親和性と選択性が低下することを、最小限にすることである。 PGの受容体に対する光親和性標識リガンドは、これまで多くの報告があり、 とくに強力なアンタゴニストが得られ、それを出発原料に利用できるTxA2の 受容体における成功例が多い⁵²⁻⁵⁶。しかしTxA₂以外のPGについては、利用 可能なアンタゴニストがほとんどないこともあって、有効な光親和性標識リ ガンドの開発の例は比較的少ない。報告されているものとしては、PGE₂自体 の α 鎖をazidophenacyl esterに変えたPGE受容体に対する光親和性標識リガンド や⁵⁷)、PGF₂ α の ω 鎖にiodoazidophenyl基を結合したPGF₂ α 受容体に対する光親 和性標識リガンドなどがある⁵⁸)。しかし前者のPGE₂の誘導体では、もとの PGE₂に比べて、受容体に対する親和性が約100分の1に低下しており、後者の PGF₂ α 誘導体の場合でも、PGF₂ α に比べて約10分の1に低下しているなど、親 和性において問題があると思われる。

第2節では、PGI₂受容体に対して親和性と選択性が高く、有効な光親和性 標識リガンドAPNICを開発し³²)、これを用いて癌化肥満細胞および血小板に おけるPGI₂受容体を同定した³¹)。APNICの母体であるイソカルバサイクリン は、PGI₂受容体に対する親和性が高く、化学的にも安定な化合物である。ω鎖 に光親和性標識官能基を導入した理由は、上述のα鎖をazidophenacyl esterに 変えたPGE₂誘導体の親和性の著しい低下の例⁵⁷)から、α鎖よりもω鎖を修飾 する方が有利であると考えられたからである。癌化肥満細胞膜への[³H]イロ プロスト結合に対する阻害作用のIC₅₀の比較から、APNIC (IC₅₀ = 3 nM)は、 母体のイソカルバサイクリン (IC₅₀ = 32 nM)や、イロプロスト(IC₅₀ = 9.3 nM) を上回る高い親和性を有しており、PG受容体に対する光親和性標識リガンド としては、もっとも高親和性を有する化合物の一つであると言える。

[³H]APNICの癌化肥満細胞膜に対する結合のKdは4.7 nM であり、[³H]イロ プロストでは10.4 nMであった。イロプロストは16位のmethyl基の立体配置が 16Sと16Rの2つのstereoisomerの混合物であるが、PGI2受容体に対する親和性

- 32 -

- 33 -

は16S-isomerが高く、16R-isomerの親和性は小さいことが知られている⁵⁹)。実 験に用いた[³H]イロプロストは、16S-isomerと16R-isomerの比がおよそ4:6の 混合物であるので、主にPGI₂受容体に結合する、16S-isomerの[³H]イロプロ ストにおけるKdは、約4 nMである考えられる。この値は[³H]APNICのKd値 とよく一致する。このことは両者のリガンドが、同一の受容体に結合してい ることを示唆するものである。

癌化肥満細胞膜に結合した[³H]APNICの放射活性の約80%が、SDS PAGE後 のゲルの43kDaのバンドから回収されたことから、光照射による親和性標識 反応により、共有結合が形成される効率は、約80%であると考えられる。 APNICのこの値は、TxA2受容体の光親和性標識実験と同等以上である^{52,55})。

[³H]APNICによって、癌化肥満細胞膜に検出された43 kDaのバンドが、非 標識のPGI₂誘導体により選択的に消失することは、このバンドの蛋白質が PGI₂を特異的に結合する蛋白質であることを示している。しかしこれだけで はPGI₂受容体であるとは言えないが、43 kDaのバンドがGTPγSによって減弱 したことは、この蛋白質がG蛋白と会合体を形成する、受容体であることを 強く示すものであり、真にPGI₂受容体であると考えることができる。

ところで43 kDaのパンドは、分子量マーカーと比べても明らかにプロード であるが、この原因は、PGI2受容体がおそらく糖蛋白質であるためであると 思われる。その理由として、癌化肥満細胞に存在するPGE受容体には、予想 されるN-glycosylation siteが2ケ所あること¹⁷)、糖鎖合成酵素阻害剤ツニカマ イシンを用いた実験から糖蛋白質であり、WGA-agaroseに吸着する性質があ ることが明らかになっていること⁶⁰⁻⁶²)、またヒトおよびマウスの血小板の TxA2受容体蛋白質にもN-glycosylation siteが2ケ所あり^{15,16})、WGA-agaroseに 吸着し、精製された蛋白質のSDS PAGE後の染色の結果も、非常に拡がった バンドであること¹⁴⁾などが知られていることによる。

ブタの血小板のPGI2受容体の分子量は、[³H]APNICを用いた結果から、約 51 kDaであった。またヒトの血小板を用いた予備的な実験から、そのPGI2受 容体の分子量は、45 kDaであった。これら3つのPGI2受容体の分子量の違い は、種あるいは組織の違いによるか⁶³、おそらく存在する、糖鎖の分子量の 違いによるものであると思われる。一方PGD2受容体が、りん酸化および脱 りん酸化されることによって、その機能が調節されるということが報告され ており⁶⁴、PGI2受容体も同様にりん酸化される可能性がある。PGI2受容体の 分子量が異なるもう一つの可能性として、りん酸化の有無や程度が違うこと により、SDS PAGEの際に移動度が異なるためであるということが考えられ る。

PGI2受容体の分子量に関する研究には、[³H]イロプロストを用いたtarget size analysisにより、神経融合細胞NCB-20で83 kDaであるという報告65)や、ヒ ト血小板のPGI2受容体をCHAPSで可溶化し、ゲル濾過カラムクロマトグラフィ ーにより調べた結果、150 kDa以上であったという報告がある11)。これらの 推定分子量は、APNICを用いてSDS PAGEにより求めた値よりもかなり大き く、受容体蛋白質と他の何らかの蛋白質との、会合体の分子量が求められて いるのではないかと思われる。

第3節においては、肥満細胞におけるPGI2受容体の役割について、トロン ビンあるいはATP刺激により惹起される細胞内Ca²⁺動員に対する、PGI2受容 体による調節作用について調べた³⁵⁾。PGI2受容体刺激により、トロンビン刺

- 35 -

激時に起こる細胞内Ca²⁺動員およびIP₃産生が阻害された。cAMPにより、IP₃ 産生が低下することが、いくつかの細胞で報告されている⁶⁶⁻⁶⁸)。またトロン ビンによる血小板の活性化が、cAMPにより阻害されることが知られており、 これにはcAMP依存性りん酸化酵素が、ある特定の蛋白質をりん酸化するこ とが関与していることが報告されているが⁶⁹⁻⁷¹)、詳細な機構は明らかにはさ れていない。

一方、ATPによる細胞内Ca²⁺流入に対する、PGI₂受容体による促進作用の 機構は不明である。ATPはおそらくP₂受容体を介してイオンチャンネルを活 性化して、Ca²⁺流入を促進し、IP₃産生を増大させると考えられるが、この際 のIP₃産生は、ionomycinの場合と同様に細胞外Ca²⁺に依存している。しかし ionomycinによるIP₃産生は、PGI₂受容体の刺激により変化がないことから、 Ca²⁺受容体刺激の作用点は、ATPによるCa²⁺流入系に特異的な部位であると 考えられる。

トロンビンあるいはATPは、肥満細胞において異なるCa²⁺系を動員して、 ヒスタミン分泌を促進すると考えられるが、PGI₂受容体刺激による抑制ある いは促進作用は、いずれのCa²⁺動員系が活性化されているかによって異なる ことになる。

PGI2受容体は、刺激に応じて主に血管内皮細胞において産生され、血小板 凝集放出抑制作用や血管平滑筋弛緩作用など、循環動態の恒常性の維持に重 要な役割を果たしていることはよく知られている。また肥満細胞において、 細胞内cAMPの上昇が、ヒスタミンの分泌を抑制することが知られている ⁴²⁻⁴⁴)。本研究において明らかにした、肥満細胞に存在するPGI2受容体の刺激 は、たとえばトロンビンの刺激によって起こる、ヒスタミンなどの炎症メディ エーターの分泌を抑制するものであると考えられる。一例として、炎症アレ ルギーが起こる場合に、血管内皮細胞が産生するPGI2が、肥満細胞のPGI2受 容体を刺激し、肥満細胞からの炎症メディエーターの分泌が抑制されること によって、アレルギー反応が鎮静化するという、細胞間の相互作用の存在が 想定される。

以上、第1章の実験結果は、肥満細胞のPGI2受容体を標的とした、新たな 抗炎症性薬物治療薬の開発における、基礎的な知見となるものと思われる。 結論

第1章においては、癌化肥満細胞におけるPGI2受容体とその情報伝達系に 関して、

- (1) マウス癌化肥満細胞において、Gsを介してアデニル酸シクラーゼを活 性化する、PGI。受容体が存在することを明らかにした。
- (2) PGI2受容体に親和性および選択性の高い、光親和性標識リガンドAPNIC を開発し、これを用いて癌化肥満細胞に分子量43kDaのPGI2受容体を分離・ 同定した。またPGI2受容体の存在が知られているブタ血小板膜では、分 子量51kDaの受容体を同定した。
- (3) PGI2受容体刺激は、細胞内cAMPの増大を介して、トロンビンによる Ca²⁺動員を抑制したが、逆にATPによるCa²⁺動員を促進した。この作用は、 PGI2受容体反応による肥満細胞の機能調節の多様性を示唆するものであ る。

アゴニストによる刺激を受けた細胞が、時間の経過に伴って、そのアゴニ ストに対する反応性が減弱するという現象が観察される場合があり、この現 象は細胞の脱感作と呼ばれている。脱感作は、細胞が連続する刺激に対して 応答を減弱あるいは停止する機構であり、周囲の環境に適応するための生体 の重要な調節反応である。アデニル酸シクラーゼの活性化に関与する受容体 の脱感作については、βアドレナリン受容体でよく調べられている72.73)。肥 満細胞のPG受容体の脱感作については、PGD2受容体のりん酸化と脱りん酸 化が脱感作に関与するという報告があるが64)、PGE受容体での詳しい検討は されていない。

第2章においては、PGE₁による受容体刺激により脱感作が起こる際に、受容体がPGE₁と安定な結合状態となることが見つかり、この安定なPGE₁と受容体の結合体を精製することにより、PGE受容体の脱感作機構を解析することを試みた。

[癌化肥満細胞膜における[³H]PGE₁と受容体の安定な結合状態の形成] 癌化肥満細胞をPGE₁で刺激すると速やかにcAMPを産生し、その細胞内 cAMP濃度の増加は、1分以内に最大となるベル型の変化をしながらもとのレ ベルに戻り、PGE₁が存在するにも関わらずcAMPが産生しない、いわゆる細 胞のPGE₁に対する脱感作が起こる(図18)。

Figure 18. Time course of PGE_1 -induced cAMP accumulation in mastocytoma cells.

Mastocytoma cells (2 x 10⁶ cells) were incubated at 37 °C for indicated time in the presence of 5.5 μ M PGE₁ and cAMP accumulated were measured as described in the text.

図19に示すように、37 °Cにおける癌化肥満細胞膜のPGE受容体の[³H]PGE₁ 結合は、飽和性に増大した。つぎに、10分、60分、120分の時点で非標識の PGE₁を添加して、解離する[³H]PGE₁の量を調べると、10分の場合には90%以 上の解離が見られたが、60分または120分後では約70%が結合したままであっ た。PGE₁に加えてGTP γ Sを添加すると、[³H]PGE₁の解離する量は増大した が、60分、120分で加えた場合では、50%から60%が結合状態にあった。

Fig. 19. Time-course of $[^{3}H]PGE_{1}$ binding to and dissociation from membrane fractions.

 $[^{3}H]PGE_{1}$ (5 nM) with or without (\bullet) excess unlabeled PGE₁ was added to membrane fractions and incubated at 37 °C. 10, 60, or 120 min after the addition of $[^{3}H]PGE_{1}$, unlabeled PGE₁ (5 µM), with (\blacktriangle) or without (\triangle) 100 µM GTP γ S, was added, followed by further incubation. All values were corrected for the nonspecific binding and are expressed as the mean for triplicate experiments with variability at < 3% of the mean.

[[³H]PGE1-受容体結合体の部分精製とその性質]

次に、癌化肥満細胞膜と[³H]PGE₁を、37 ℃で60分間インキュベーション した後、形成される安定な[³H]PGE₁と受容体の結合体を、6%ジギトニンで 可溶化し、Ultrogel AcA44ゲル濾過カラムクロマトグラフィーにより分画した (図20)。その結果、[³H]PGE₁の放射活性は、[³⁵S]GTPγSの結合活性とともに 溶出される、分子量200 kDa以上の画分と、67 kDaの分子量マーカーである BSAよりもやや前に溶出される画分、およびもっとも低分子側に溶出される 画分に分かれた。この最後の画分は、受容体には結合していない遊離の [³H]PGE₁であると考えられる。またBSAよりもやや前に溶出される画分は、 不安定な結合状態にあって、これ以降の精製の操作中に、速やかに減少する ものであった。[³⁵S]GTPγSの結合活性とともに溶出される分子量200 kDa以上 の画分について、さらに精製した。

Fig. 20. Ultrogel AcA44 column chromatography of digitoninsolubilized PGE₁ receptors.

[³H]PGE₁ binding activity was solubilized with 6% digitonin (20 mg of protein/ml) as described in the text and was fractionated on a column of Ultrogel AcA44 equilibrated with the equilibration buffer at the flow rate of 6 ml/h, and fractions of 2.5 ml each were collected. The radioactivity of 100 μ l of each fraction was counted (•). An aliquot of each fraction was assayed for [³⁵S]GTP γ S binding activity (\bigcirc) as described in the text. The line (—) represents the absorbance at 280 nm of each fraction. A shaded box denotes fractions which are pooled and subjected to the next step (Fig. 21).

癌化肥満細胞のPGE受容体は糖蛋白質であり、WGA-agaroseに親和性があることが分かっていることから 62 、つぎにWGA-agaroseカラムを用いて精製した(図21)。その結果、0.2 M GlcNAcによって溶出される画分に[3 H]PGE₁の放射活性と、[35 S]GTP γ Sの結合活性が認められた。

Fig. 21. WGA-agarose column chromatography of PGE₁ receptors. The pooled fractions from the Ultrogel AcA44 column chromatography were applied to a WGA-agarose column equilibrated with the equilibration buffer. The column was extensively washed with the buffer and then eluted with 0.2 M GlcNAc. Fractions of 4 ml were collected and the radioactivities of 100 μ l of each fraction were counted (•). An aliquot was assayed for [³⁵S]GTP_γS binding activity (\bigcirc). The line (—) represents the absorbance at 280 nm. A shaded box denotes fractions which are pooled and subjected to the next step (Fig. 22).

-43-

さらにこの溶出画分を、疎水性カラム担体であるphenyl-Sepharose CL-4Bカ ラムクロマトグラフィーにより精製した(図22)。Lubrol-PXの濃度勾配により 溶出を行なったところ、Lubrol-PX 0.8%の付近に[³⁵S]GTPγSの結合活性とと もに、[³H]PGE₁の放射活性が溶出された。

The fractions of WGA-agarose column eluted with 0.2 M GlcNAc were pooled and applied to a column of phenyl-Sepharose CL-4B which had been equilibrated with the equilibration buffer. The column was extensively washed and PGE₁ receptors were eluted from the column with the gradient of 0 to 1.0% Lubrol-PX in the buffer. The eluate were collected and the radioactivities of 200 μ l of each fraction were counted (•). An aliquot of each fraction was assayed for [³⁵S]GTPγS (O). The line (—) represents the absorbance at 280 nm. 次に、これらの精製によって得られた画分中に存在する、GTP結合蛋白質 を同定するため、[¹⁴C]5'-p-FSO₄BzGuoで標識を行ない、SDS PAGEによりそ の分子量を求めた(図23)。その結果、各精製段階の画分および最終のphenyl-Sepharose CL-4BカラムクロマトグラフィーのLubrol-PXの溶出画分に、分子 量60 kDaの蛋白質が検出された。これらの結果から、PGE₁-受容体結合体 は、脱感作した状態に移行する際、未知の機能をもつGTP結合蛋白質と会合 する可能性があることが示唆された³⁶)。

Samples taken at each purification step were affinity-labeled with [¹⁴C]5'-p-FSO₂BzGuo as described in the text. The affinity-labeled proteins visualized on autofluorography of an SDS polyacrylamide gel are shown.

A, solubilized crude membrane; B, Ultrogel AcA44; C, WGA-agarose; D, phenyl-Sepharose CL-4B.

考 察

第2章においては、癌化肥満細胞のPGE受容体の脱感作について検討した36)。

[3H]PGE1と受容体を長時間インキュベーションすると、安定な結合状態に 移行した。これと同様な結果は、大脳皮質、副腎髄質、赤血球、その他の培 養細胞のPGE受容体においても報告されている74-77)。この[3H]PGE1と受容体 との結合は、非標識の過剰量のPGE1を添加しても解離しないもので、おそら く解離定数および結合定数の比が一定のまま、両者ともに小さくなっている ものと考えられる。さらにGTPγSを添加しても、安定な結合状態が失われる ことはなかった。このことは第1章の実験で示された、PGI2受容体に結合し た[3H]イロプロストの解離が、GTPγSによって著しく促進された結果と比べ て大きく異なるものである。

ー般にG蛋白と会合する受容体においては、GTPやその誘導体を添加する と、受容体の高親和性結合が消失することが知られている⁷⁸)。Gsが関与する アデニル酸シクラーゼ活性化系の場合、まずアゴニストにより受容体が刺激 されると、Gsのαサブユニット(Gsα)から、それまで結合していたGDPが遊離 して、代わりにGTPが結合する。GTPが結合したGsαは活性化状態になり、 受容体やGsのβγサブユニットと解離して、アデニル酸シクラーゼを活性化す る。Gsと解離した受容体は、リガンドに対する親和性が大きく減少して、受 容体からリガンドが解離する。

GTPγSを加えても、安定にリガンドを結合している癌化肥満細胞のPGE受 容体の状態は、通常の受容体-Gs-アデニル酸シクラーゼ系の相互作用の様 式では説明されないもので、アデニル酸シクラーゼを活性化できない状態に あると考えられる。従って、PGE₁刺激による癌化肥満細胞のcAMP産生にお ける脱感作状態への移行と、PGE受容体がPGE₁との安定な結合状態に移行す ることに、おそらく関連があると考えられる。

ところで第1章において、PGE₁がPGI₂受容体にも比較的強い親和性を有している結果を得ているが、図5より10⁻⁷ M以下においては、PGI₂受容体への結合量は小さく、第2章において用いた[³H]PGE₁の数十nMの範囲においては、ほとんどPGE受容体に選択的に結合していると考えられる。

[³H]PGE₁とPGE受容体との結合体の精製過程において、この受容体の蛋白 化学的な性質を知る手掛かりとなる、いくつかの有用な知見が得られた。ま ずゲル濾過カラムクロマトグラフィーによる分画では、[³H]PGE₁の放射活性 は、200 kDa以上の高分子量に溶出されており、おそらくPGE受容体は、それ 以外の蛋白質成分との会合体として存在することが推定された。WGAagaroseカラムに吸着する性質は、糖鎖を有していることを示しており、第1 章の考察で述べたように、これまでの報告と一致する⁶⁰⁻⁶²)。Phenyl-Sepharose CL-4B カラムへの吸着は、この蛋白質が疎水性蛋白質であることを示してい る。調べた範囲において、非イオン性界面活性剤であるLubrol-PXの濃度勾配 による溶出がもっとも有効であったが、高濃度のLubrol-PXではじめて溶出さ れたことから、この受容体の疎水性が高いことが予想される。

各カラムクロマトグラフィーの[³H]PGE₁の放射活性のピークの画分にはい ずれも、[³⁵S]GTPγS結合活性が検出された。このことはPGE受容体が、何ら かのGTP結合蛋白質との会合体として存在することを示唆するものである。 [¹⁴C]5'-p-FSO₂BzGuoを用いた親和性標識実験により、60 kDaのGTP結合活性 を持つ蛋白質と会合している可能性が示唆された。GTP結合蛋白質としては、

- 46 -

- 47 -

Gs、Giなどの分子量がおよそ40-50 kDaのG蛋白や、ras蛋白質⁷⁹⁾などの分子量 が20-30 kDaの、いわゆる低分子性G蛋白⁸⁰⁾がある。Gs、Giは癌化肥満細胞に も存在している^{29,81)}。また最近、モルモットおよびラット肝より、分子量 100 kDaおよび74 kDaのGTP結合蛋白質が見つかっており⁸²⁻⁸⁴⁾、多様な分子量 のGTP結合蛋白質が知られてきている。しかし、60 kDaの分子量のGTP結合 蛋白質の報告はなく、これは新規のGTP結合蛋白質であると思われる。

以上、第2章においては、脱感作状態に移行する際に形成されると考えら れる、PGE受容体と[³H]PGE₁の安定な結合状態を見いだし、その部分精製を 行なうことにより、受容体蛋白質としての性質の一部を明らかにし、脱感作 状態においてPGE受容体が、新規の分子量のGTP結合蛋白質と会合すること を示唆する結果を得た。 第2章においては、癌化肥満細胞のPGE受容体刺激に対する脱感作機構に 関して、

- (1) 癌化肥満細胞にPGE₁を作用させると、細胞内cAMP量は1分以内に最大 となるが、すぐにもとのレベルに戻る、脱感作現象が見い出された。
- (2) そこで、細胞膜画分と[³H]PGE₁をインキュベートし結合反応を調べると、経時的に、PGE₁とGTPγSでも解離しない、安定に結合した[³H]PGE₁結合量が増大した。
- (3) この安定なPGE₁-受容体結合体を6%ジギトニンで可溶化し、種々のカラムクロマトグラフィー (Ultrogel AcA44、WGA-agarose、phenyl-Sepharose CL-4B) により部分精製した。
- (4) 得られた画分には[³⁵S]GTPγSの結合活性があり、[¹⁴C]5'-p-FSO₂BzGuo
 により標識される、分子量60 kDaの新規なGTP結合蛋白質が検出された。

これらの結果から、PGE受容体は脱感作した状態に移行する際、未知の機能を持つGTP結合蛋白質と会合することが示唆された。

実験の部		(=++** (++)	
		[武楽、他]	
		イロプロスト	Amersham Corp.
(1) 動物および試薬		PGE_1 , PGE_2 , PGD_2 , $PGF_{2\alpha}$, PGI_2 -methyl ester,	カルバサイクリン
実験に用いた動物および	『試薬の購入先は、次の通りである。		フナコシ薬品
		GTP、 dGTP、 TTP	ヤマサ醤油
	法水生除助物	GDP, GMP, digitonin	和光純薬
BDF1 マッヘ ゴな血液	信小夫歌 <u>助</u> 初 言如由由玄 <u>东</u> 副止颇知故同如 <u>今</u>	dGDP、cGMP、GppNHp	Sigma
J 7 III. HR	泉御中天雷连副生物即随问租合	GTPYS、GDPBS、ATP、AppNHp、ATPYS	Boehringer Mannheim
〔ラジオアイソトープ〕		ADP	Kohjin
[³ H] イロプロスト (14.1 Ci/mmol)		Fura-2/AM	同仁
Cyclic AMP [125]] assay system		百日咳毒素 (PT)、GlcNAc、WGA-agarose	生化学工業
[³ H]Inositol (80-120 Ci/mmol) 以上、Amersham Corp.		Thrombin	持田製薬
		Ultrogel AcA44	LKB
2		Phenyl-Sepharose CL-4B、分子量マーカーキット	Pharmacia
[5,6,8,11,12,14,15- ³ H]PGE ₂ (185 Ci/mmol)	SDS-濃度勾配ポリアクリルアミドゲル (4-20%)	TEFCO
[5,6- ³ H]PGE ₁ (60 Ci/m	imol)	Prestained molecular weight marker	Bio-Rad
[³⁵ S]GTPγS (65 Ci/mm	nol)	EN ³ HANCE	Du Pont-NEN
5'-p-[guanosine-14C]flu	iorosulfonylbenzoylguanosine (534.2 mCi/mmol)	クリアゾル (液体シンチレーションカクテル)	半井テスク
	([¹⁴ C]5'-p-FSO ₂ BzGuo)	GF/C ガラスフィルター	Whatman
Methylated ¹⁴ C-labeled	molecular weight markers (2-20 µCi/mg protein)	ニトロセルロースフィルター	Schleicher & Schuell
([Methyl- ¹⁴ C] methylated-phosphorylase B, bovine serum albumin,		その他の試薬は、通常の方法で入手可能な最高純別	度品を用いた。
ovarbumin, carbonic annydrase) 以上、Du Pont-New England Nuclear (NEN)		(2) 癌化肥満細胞の維持	
		マウス癌化肥満細胞(mastocytoma P-815)は、Potter博士(National Cancer	

APNICおよび[15-3H]APNIC (15 Ci/mmol)は、小谷野博司博士、 鈴木正昭博士、野依良治博士により合成され、また15位のstereoisomerの 分離は、伊藤誠二博士により行なわれた。

- 51 -

Institute, NIH)より提供されたものを、BDF1マウスの腹腔内で経代維持して

使用した。P-815細胞をBDF1マウスに2×106個を無菌的に腹腔注射し、7日

後に増殖した細胞(約3×108個)を腹腔より回収し、氷冷したPBSで2回洗浄

細胞数の計数には、Coulter社製の細胞数計測機(モデルZ)を用いた。

して実験に用いた。

(3) 癌化肥満細胞の粗膜画分および原形質膜画分の調製

すべての操作を氷冷下で行なった。

P-815細胞を10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 10 mM MgCl₂, 1 mM dithiothreitol, 0.1 mM PMSFおよび20 μ M indomethacinよりなるbufferに細胞濃度 $m_1 \times 10^8$ cells/mlになるように懸濁し、Ultrasonicator (Branson Sonic Power Co.)を用いて超音波破砕を行なった。得られた細胞ホモジネートを1,000 ×g で10分間遠心し、その上清をさらに26,000 ×g で30分間遠心した沈殿を粗膜 画分とし、10 mM potassium phosphate, pH 6.0, 1 mM EDTAおよび10 mM MgCl₂ を含むbuffer (buffer A)に懸濁して用いた。

また原形質膜画分の調製は、粗膜画分を45%(w/v) 蔗糖を含む20 mM Tris-HClに懸濁し、この上に36%(w/v) 蔗糖を含む20 mM Tris-HClを重層し、 66,000×gで60分間遠心して得られた界面をとり、20 mM Tris-HClで洗浄した 画分を原形質膜画分とし、buffer Aに懸濁して用いた。

(4) ブタ血小板の原形質膜画分の調製14,85)

ブタ血液を200×gで15分間遠心した上清を、1,000×gで17分間遠心する操 作を数回繰り返して血小板を調製した。次に血小板を5 mM Tris-HCl. pH 7.4, 5 mM EGTA, 1 mM benzamidine HCl, 0.43 mM PMSFに懸濁した後、超音波破 砕を行なった。得られた細胞ホモジネートを27%(w/v)蔗糖溶液の上に重層し、 66,000×gで60分間遠心した後、界面の画分をとり洗浄し、以下の実験に用 いた。

(5) [³H]イロプロスト、[³H]PGE₂ および [³H]PGE₁結合活性の測定

100 µlのbuffer A中で、癌化肥満細胞の粗膜画分(200 µg)を20 nM [³H]イロプ ロスト(29 nCi)、5 nM [³H]PGE₂(93 nCi)または5 nM [³H]PGE₁(30 nCi)と37 °C、 60分間インキュベートした後、氷冷したbuffer Aを2 mlを加えて反応を停止し、 すぐにGF/C ガラスフィルターを用いて吸引濾過した。さらにbuffer Aでフィ ルターを4回洗浄し、フィルターの放射活性をクリアゾル5 mlを用いて、液 体シンチレーションカウンターにより測定し、これを総結合量とした。非特 異的結合量は、結合反応液に1,000 倍量の非標識のイロプロスト、PGE2また はPGE1を加えることにより測定した。また特異的結合量は、総結合量から非 特異的結合量を差し引いて求めた。

(6) [³H]APNIC 結合活性の測定

100 µlの buffer A中で、癌化肥満細胞の原形質膜画分(200 µg)を13 nM [³H]APNIC (20 nCi)と30 ℃、60分間インキュベートした後、以下上記(5)と同 様の方法により測定した。ただし反応の停止およびフィルターの洗浄には、 MgCl₂を除いたbuffer Aを用いた。

(7) アデニル酸シクラーゼ活性の測定

癌化肥満細胞の粗膜画分(約20 µg)または原形質膜画分(約2 µg)を、50 mM Hepes-NaOH, pH 8.0, 1 mM EDTA, 10 mM MgCl₂, 1 mM dithiothreitol, 1 mM IBMX, 1 mM ATP, 2 mM creatine phosphate, 2 µg creatine phosphate kinase (0.43 units) およびGTPとPGを含む100 µl のbuffer中で、37℃、10 分間インキュ ベートした後、100 µl の10% trichloroacetic acidを加えて反応を停止した。次に 凍結融解を行なった後、1,000 ×gで10分間遠心して上清をとり、水を飽和さ せたdiethyl etherによりtrichloroacetic acidを抽出除去した。得られた標品中の cAMP量をAmershamのcyclic AMP [¹²⁵I] assay systemを用いて測定した。

(8) 光親和性標識実験

癌化肥満細胞または血小板の原形質膜画分(200 µg)をbuffer A中で13 nM [³H]APNIC (20 nCi)と30 °C、60分間インキュベートした後、300,000 ×gで 15分間遠心した沈殿を再びbuffer Aに懸濁し、波長254 nmの紫外線をUV lamp (Vilber Lourmat model VL-6C, Cedex, France)を用いて2 cmの距離から照射した。 その後、再び300,000 ×gで15分間遠心した沈殿を、SDS sample bufferに溶解 し、4-20% 濃度勾配SDS-PAGEを行なった。電気泳動した後、ゲルを Lasky らの方法⁸⁶)によりフルオログラフィーを行なった。すなわちゲルを水で10分 間、dimethyl sulfoxide (DMSO)中で15分 2回 振とうし、次に20%(w/v) 2,5-diphenyl-oxazole (in DMSO) 中で15分間、さらに水で30分 2回振とうした後、 乾燥させ、-80 ℃でX線フィルムに約5日間暴露させた。また、電気泳動後の ゲルを3 mmの幅に切って、Protosolを加えて50 ℃、1時間インキュベートした 後、その放射活性を液体シンチレーションカウンターを用いて測定した。

(9) 可溶化膜画分に結合した[³H]イロプロストの解離に対するGTPγSの作用に関する実験

癌化肥満細胞膜に[³H]イロプロストを結合させた後、buffer Aで洗浄し、20 mM CHAPS および20% glycerolを含むbuffer Aで可溶化し、400,000 ×gで20分 間遠心した。得られた可溶化上清(2 ml)をSuperose 6 HR fast protein liquid chromatography column (1×30 cm) (Pharmacia)により、流速0.25 ml/minの10 mM CHAPSを含むbuffer Aで分画した。高分子量に溶出された画分を集め、その 一部には500 μ M GTP γ Sを添加して、30 °C、10 分間インキュベートした。次 にNegishiらの方法⁸⁷)に従い、可溶化画分の[³H]イロプロスト結合量を測定し た。すなわち、可溶化画分 200 μ IC40 μ Iの20 mg/ml rabbit γ -globulin および 200 μ Iの30% (w/v) polyethylene glycol 6,000を含むbuffer Aを加えて混合し、氷 冷下に10 分間放置後、GF/Cガラスフィルターを用いて吸引濾過し、8% (w/v) polyethylene glycol 6,000を含むbuffer Aでフィルターを5回洗浄し、フィルター 上の放射活性を測定した。

(10) 細胞内Ca²⁺濃度の測定

細胞をHEPES-buffered saline (15 mM HEPES-NaOH, pH 7.4, 140 mM NaCl, 4.7 mM KCl, 2.2 mM CaCl₂, 1.2 mM MgCl₂, 1.2 mM KH₂PO₄, 11 mM glucose) で1×10⁸ cells/mlになるように懸濁し、3 μ M fura-2/AMと37 °C、30 分間イン キュベートした。0.5% BSAを含む HEPES-buffered salineで2回洗浄し、 HEPES-buffered salineに2×10⁶ cells/mlになるように懸濁し、蛍光スペクトル フォトメーター(Jasco, CAF-100)を用いて、励起波長340 nmおよび380 nm、 蛍光波長510 nmにより測定した⁸⁸)。

(11) [³H]IP₃産生量の測定

細胞を1×10⁷ cells/mlになるように懸濁し、2µCi/mlの[³H]inositolと37°C、 2時間インキュペートして細胞を標識した後、HEPES-buffered salineで3回洗浄 し、10 mM LiClを含むHEPES-buffered saline中で37℃、10分間プレインキュベ ート後、試薬を添加して反応を開始した。Trichloroacetic acidを添加して反応 を停止し、[³H]IP₃をBio-Rad AG-1X8クロマトグラフィーを用いて分離し、そ の放射活性を測定した⁸⁹)。

(12) 細胞内cAMP量の測定

癌化肥満細胞(1×10⁶ cells)を0.5 mM IBMXおよびPGを含むPBS 0.5 ml中で、
37 ℃において一定時間刺激し、0.5 mlの10% trichloroacetic acidを加えて反応を
停止した。以下、(7)と同様の方法を用いてcAMPの定量を行なった。

(13) [³H]PGE₁結合受容体の可溶化

癌化肥満細胞粗膜画分をbuffer B (25 mM Tris-malate, pH 5.5, 2 mM EDTA) に40 mg/mlになるように懸濁し、20 nM [³H]PGE₁と37°C、1時間インキュベ ートした後、100,000×gで90分間遠心した。沈殿を6% digitoninを含むbuffer B に懸濁し、4 ℃、1時間インキュベートして可溶化した後、100,000×g、90分 の遠心により可溶化上清を得た。

(14) 可溶化[³H]PGE1結合受容体蛋白質の精製

上記(13)の可溶化上清を equilibration buffer (25 mM Tris-malate, pH 5.5, 2 mM EDTA, 100 mM NaCl, 0.02% digitonin) で平衡化したUltrogel AcA44 カラム (2.9 cm, inner diameter, × 84 cm, 550 ml) により分画した。[³H]PGE₁結合受容 体蛋白質を含む画分を集め、equilibration bufferで平衡化したWGA-agarose カラム(1.5 cm, inner diameter, × 5.5 cm, 10 ml) に吸着させた。カラムを洗浄し た後、0.2 M GlcNAcを含む equilibration bufferにより、[³H]PGE₁結合受容体蛋 白質を溶出した。次にこの溶出画分をphenyl-Sepharose CL-4Bカラム(0.9 cm, inner diameter, × 3.1 cm, 2.0 ml) に吸着させ、equilibration bufferで洗浄した後、

Lubrol-PX 0から 1.0%の濃度勾配により溶出した。

謝 辞

(15) [³⁵S]GTPySの結合活性の測定

上記(14)の各カラムクロマトグラフィーの画分の一部をとり、50 nM [35 S]GTP γ S (0.1 μ Ci)を含む、20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 25 mM MgCl₂, 1 mM EDTA および 0.5 mM β -mercaptoethanol中で37 °C、1時間インキュ ベートした後、[35 S]GTP γ S の結合活性をニトロセルロースフィルター上に吸 引濾過して捕集し、その放射活性を液体シンチレーションカウンターを用い て測定した⁹⁰)。

(16) [¹⁴C]5'-p-FSO₂BzGuoによる親和性標識⁹¹)

上記(14)の各画分を62 µM [¹⁴C]5'-p-FSO₂BzGuo (1 µCi)を含む、75 mM Tris-HCl, pH 7.5, 12.5 mM MgCl₂, 1.5 mM EDTA中で、15 ℃、30分間インキュ ベートした後、SDS sample bufferを加えて反応を停止した。10%のSDS PAGE の後、ゲルにEN³HANCEを処理して、フルオログラフィーを行なった。

(17) 蛋白定量

蛋白定量は、Lowry法⁹²およびBradford法⁹³により行ない、牛血清アルブ ミンを標準蛋白質として用いた。

 (18) SDSポリアクリルアミドゲル電気泳動(SDS PAGE)と分子量マーカー SDS PAGEはLaemmliの方法94)により、10%ポリアクリルアミドゲルまたは
 4-20%の濃度勾配ポリアクリルアミドゲルを用いて行なった。分子量マーカーは、Pharmaciaの分子量マーカーキット、Bio-RadのPrestained molecular weight marker あるいはNENの¹⁴C-標識分子量マーカーを用いた。 本研究に際しまして、終始御親切な御指導と御鞭撻を賜わりました、 京都大学薬学部、市川 厚 教授に慎んで深く感謝いたします。

また、貴重な御助言を頂きました、京都大学薬学部、福井 哲也 助教授、 根岸 学 助手、日本たばこ産業株式会社医薬基礎研究所、八浪 公夫 博士、 神奈川大学理学部、斎藤 光実 教授に深く感謝致します。

本研究の第1章において、有益な御助言を頂きました、大阪バイオサイエ ンス研究所、伊藤 誠二博士に、また光親和性標識化合物の合成を遂行され ました、名古屋大学理学部、野依 良治教授、同学化学測定機器センター、 鈴木 正昭 助教授、同学理学部、小谷野 博司 博士に深く感謝致します。 さらに本研究の一部に御協力頂きました、萩野 涼子 学士、佐伯 容江学士、 藤原 伸子 学士、ならびに教室員の方々に厚く御礼申し上げます。

引用文献

- Murayama, T., Kajiyama, Y., and Nomura, Y. (1990) J. Biol. Chem. 265, 4290-4295
- Becherer, P. R., Mertz, L. F., and Baenziger, N. L. (1982) Cell 30, 243-251
- Rossi, V., Breviario, F., Ghezzi, P., Dejana, E., and Mantovani, A. (1985) Science 229, 174–176
- Nolan, R. D., Danilowicz, R. M., and Eling, T. E. (1988) Mol. Pharmacol. 33, 650–656
- 5) Hannigan, G. E. and Williams, B. R. G. (1991) Science 251, 204-207
- Smith, W. L. and Marnett, L. J. (1991) Biochim. Biophys. Acta 1083, 1–17
- 7) DeWitt, D. L. (1991) Biochim. Biophys. Acta 1083, 121-134
- 8) Sigal, E. (1991) Am. J. Physiol. 260, L13-L28
- 9) Robertson, R. P. (1986) Prostaglandins 31, 395-411
- Andersen, N. H., Hartzell, C. J., and De, B. (1985) Adv Prostaglandin Thromboxane Leukotrien Res. 14, 1–43
- Tsai, A-L., Hsu, M-J., Vijjeswarapu, H., and Wu, K. K. (1989)
 J. Biol. Chem. 264, 61–67
- Watanabe, T., Shimizu, T., Nakao, A., Taniguchi, S., Arata, Y., Teramoto, T, Seyama, Y., Ui, M., and Kurokawa, K. (1991) Biochim, Biophys. Acta 1074, 398–405
- Samuelsson, B., Goldyne, M., Granström, E., Hamberg, M.,
 Hammarström, S., and Malmsten, C. (1978) Ann. Rev. Biochem. 47, 997–1029
- 14) Ushikubi, F., Nakajima, M., Hirata, M., Okuma, M., Fujiwara, M., and Narumiya, S. (1989) J. Biol. Chem. 264, 16496–16501
- Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., and Narumiya, S. (1991) Nature 349, 617–620

- Namba, T., Sugimoto, Y., Hirata, M., Hayashi, Y., Honda, A., Watabe, A., Negishi, M., Ichikawa, A., and Narumiya, S. (1992) Biochem. Biophys. Res. Commun. 184, 1197–1203
- 17) Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A., and Narumiya, S. (1992) J. Biol. Chem. 267, 6463-6466
- Gryglewski, R. J., Korbut, R., Ocetkiewicz, A. (1978) Nature 273, 765-767
- Moncada, S., Gryglewski, R., Bunting, S., and Vane, J. R. (1976) Nature 263, 663–665
- 20) Kadowitz, P. J., Chapnick, B. M., Feigen, L. P., Hyman, A. L., Nelson, P. K., and Spannhake, E. W. (1978) J. Appl. Physiol. 45, 408–413
- 21) Karim, S. M. M. and Filshie, G. M. (1970) Lacet 1, 157-159
- 22) Karim, S. M. M. and Sharma, S. D. (1971) Lancet 2, 47-48
- Suga, H., Konishi, Y., Wakatsuka, H., Miyake, H., Kori, S., and Hayashi, M. (1978) Prostaglandins 15, 907
- 24) Pulkkinen, M. O. (1978) Prostaglandins 15, 161-167
- Yatsunami, K., Ichikawa, A., and Tomita, K. (1981) Biochem. Pharmacol. 30, 1325–1332
- 26) Mizuno, Y., Ichikawa, A., and Tomita, K. (1983) Prostaglandins 26, 785–795
- Hashimoto, H., Negishi, M., and Ichikawa, A. (1990) Prostaglandins 40, 491–505
- Negishi, M., Hashimto, H., Yatsunami, K., Kurozumi, S., and Ichikawa, A. (1991) Prostaglandins 42, 225-237
- Negishi, M., Hashimoto, H., and Ichikawa, A. (1992) J. Biol. Chem. 267, 2364–2369
- Fedan, J. S., Hogaboom, G. K., and O'Donnell, J. P. (1984) Biochem. Pharmacol. 33, 1167–1180

- Ito, S., Hashimoto, H., Negishi, M., Suzuki, M., Koyano, H., Noyori, R., and Ichikawa, A. (1992) J. Biol. Chem. 267, 20326–20330
- Suzuki, M., Koyano, H., Noyori, R., Hashimoto, H., Negishi, M., Ichikawa, A., and Ito, S. (1992) Tetrahedron 48, 2635-2658
- 33) Razin, E. and Marx, G. (1984) J. Immunol. 133, 3282-3285
- 34) Cockcroft, S. and Gomperts, B. D. (1980) Biochem. J. 188, 789-798
- Negishi, M., Hashimoto, H., and Ichikawa, A. (1991) Biochem, Biophys. Res. Commun. 176, 102–107
- 36) Hashimoto, H., Ogino, R., Saeki, H., Yatsunami, K., and Ichikawa, A. (1991) Biochim, Biophys. Acta 1095, 140-144
- 37) Siegl, A. M., Smith, J. B., Silver, M. J., Nicolaou, K. C., and Ahem, D. (1979) J. Clin. Invest. 63, 215–220
- 38) Blair, I. A. and MacDermot, J. (1981) Br. J. Pharmacol. 72, 435-441
- 39) Shepherd, G. L., MacDermot, J., Blair, I. A., and Lewis, P. J. (1981) Clin. Sci. 61, 29P
- 40) Rücker, W. and Schrör, K. (1983) Biochem. Pharmacol. 32, 2405-2410
- 41) Ishizaka, T., Conrad, D. H., Schulman, E. S., Sterk, A. R.,
 Ko, C. G. L., and Ishizaka, K. (1984) Federation Proc. 43, 2840–2845
- Loeffler, L. J., Lovenberg, W., and Sjoerdsma, A. (1971) Biochem. Pharmacol. 20, 2287–2297
- Ichikawa, A., Hayashi, H., Minami, M., and Tomita, K. (1972) Biochem. Pharmacol. 21, 317–331
- 44) Kaliner, M. and Austen, K. F. (1974) J. Immunol. 112, 664-674
- 45) Miller, O. V. and Gorman, R. R. (1979) J. Pharmacol. Exp. Ther. 210, 134–140
- Skuballa, W. and Vorbrüggen, H. (1983) Adv Prostaglandin Thromboxane Leukotrien Res. 11, 299–305
- Blackmore, P. F., Bocckino, S. B., Waynick, L. E., and Exton, J. H.
 (1985) J. Biol. Chem. 260, 14477–14483
- 48) Eberhard, D. A. and Holz, R. W. (1987) J. Nerochem. 49, 1634-1643

- 49) Lombroso, M., Nicosia, S., Paoletti, R., Whittle, B.J. R., Moncada, S., and Vane, J. R. (1984) Prostaglandins 27, 321–333
- Fassina, G., Tessari, F., and Dorigo, P. (1983) Pharmacol. Res. Commun. 15, 735–749
- 51) Vassaux, G., Gaillard, D., Ailhaud, G., and Négrel, R. (1992)
 J. Biol. Chem. 267, 11092–11097
- 52) Kattelman, E. J., Arora, S. K., Lim, C. T., Venton, D. L., and Le Breton, G. C. (1987) FEBS Lett. 213, 179–183
- Zehender, H., Witte, E.-C., Wolff, H.-P., and Patscheke, H. (1988) Biochem. Pahrmacol. 37, 491–495
- 54) Mais, D. E., Yoakim, C., Guindon, Y., Gillard, J. W., Rokach, J., and Halushka, P. V. (1989) Biochim. Biophys. Acta 1012, 184–190
- 55) Mais, D. E., Liel, N., and Halushka, P. V. (1990) Biochem. Pahrmacol. 40, 1457-1461
- 56) Mais, D. E., Bowling, N. L., True, T. A., Naka, M., Morinelli, T. A., Oatis, J. E. Jr., Hamanaka, N., and Halushka, P. V. (1991)
 J. Med. Chem. 34, 1511–1514
- 57) Michalak, M., Wandler, E. L., Strynadka, K., Lopaschuk, G. L., Njue, W. M., Liu, H.-J., and Olley, P. M. (1990) FEBS Lett. 265, 117–120
- 58) Balapure, A. K., Rexroad, C. E. Jr, Kawada, K., Watt, D. S., and Fitz, T. A. (1989) Biochem. Pharmacol. 38, 2375–2381
- 59) Tsai, A.-L., Vijjeswarapu, H., and Wu, K. K. (1988)
 Biochim. Biophys. Acta 942, 220–226
- Watanabe, T., Umegaki, K., and Smith, W. L. (1986) J. Biol. Chem. 261, 13430-13437
- Negishi, M., Ito, S., Tanaka, T., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1987) J. Biol. Chem. 262, 12077–12084
- Yatsunami, K., Fujisawa, J., Hashimoto, H., Kimura, K., Takahashi, S., and Ichikawa, A. (1990) Biochim. Biophys. Acta 1051, 94–99

- 63) Armstrong, R. A., Lawrence, R. A., Jones, R. L., Wilson, N. H., and Collier, A. (1989) Br. J. Pharmacol. 97, 657–668
- Yoshimura, S., Mizuno, Y., Kimura, K., Yatsunami, K., Fujisawa, J.,
 Tomita, K., and Ichikawa, A. (1989) Biochim. Biophys. Acta 981, 69–76
- 65) Leigh, P. J., Cramp, W. A., and MacDermot, J. (1984) J. Biol. Chem. 259, 12431–12436
- 66) Kaibuchi, K., Takai, Y., Ogawa, Y., Kimura, S., and Nishizuka, Y. (1982) Biochem. Biophys. Res. Commen. 104, 105–112
- Takai, Y., Kaibuchi, K., Sano, K., and Nishizuka, Y. (1982) J. Biochem. 91, 403-406
- Alava, M. A., DeBell, K. E., Conti, A., Hoffman, T., and Bonvini, E. (1992) Biochem. J. 284, 189–199
- Fox, J. E. B., Reynolds, C. C., and Johnson, M. M. (1987)
 J. Biol. Chem. 262, 12627–12631
- 70) Kurosawa, M. and Parker, C. W. (1987) Biochem. Pharmacol. 36, 131-140
- 71) Lazarowski, E. R., Winegar, D. A., Nolan, R. D., Oberdisse, E., and Lapetina, E. G. (1990) J. Biol. Chem. 265, 13118–13123
- 72) Harden, T. K. (1983) Pharmacol. Rev. 35, 5-32
- 73) Benovic, J. L., Pike, L. J., Cerione, R. A., Staniszewski, C., Yoshimasa, T., Codina, J., Caron, M. G., and Lefkowitz, R. J. (1985)
 J. Biol. Chem. 260, 7094–7101
- 74) Brunton, L. L., Wiklund, R. A., Van Arsdale, P. M., and Gilman, A. G. (1976) J. Biol. Chem. 251, 3037–3044
- 75) Lefkowitz, R. J., Mullikin, D., Wood, C. L., Gore, T. B., and Mukherjee, C. (1977) J. Biol. Chem. 252, 5295–5303
- 76) Karaplis, A. C. and Powell, W. S. (1981) J. Biol. Chem. 256, 2414–2419
- 77) Yumoto, N., Watanabe, Y., Watanabe, K., Watanabe, Y., and Hayaishi, O. (1986) J. Nuerochem. 46, 125-132

- 78) Gilman, A. G. (1987) Ann. Rev. Biochem. 56, 615-649
- 79) Barbacid, M. (1987) Ann. Rev. Biochem. 56, 779-827
- 80) Burgoyne, R. D. (1989) Trends Biochem. Sci. 14, 394-396
- 81) Takahashi, S., Hashida, K., Yatsunami, K., Fukui, T., Negishi, M., Katada, T., Ui, M., Kanaho, Y., Asano, T., and Ichikawa, A. (1991) Biochim. Biophys. Acta 1093, 207–215
- 82) Udrisar, D. and Rodbell, M. (1990) Proc. Natl. Acad. Sci. USA 87, 6321-6325
- 83) Im, M.-J. and Graham, R. M. (1990) J. Biol. Chem. 265, 18944-18951
- 84) Im, M.-J., Rick, R. P., and Graham, R. M. (1990) J. Biol. Chem. 265, 18952–18960
- Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 345–349
- 86) Laskey, R. A. and Mills, A. D. (1975) Eur. J. Biochem. 56, 335-341
- 87) Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893–6900
- 88) Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
- 89) Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P. and Irvine, R. F. (1983) Biochem. J. 212, 473–482
- 90) Northup, J. K., Smigel, M. D., and Gilman, A. G. (1982) J. Biol. Chem. 257, 11416–11423
- 91) Limbird, L. E., Buhrow, S. A., Speck, J. L., and Staros, J. V. (1983)
 J. Biol. Chem. 258, 10289–10293
- 92) Layne, E. (1957) in Methods in Enzymology (Colowick, S. P. and Kaplan, N. O., Eds.) Vol. 3, pp. 447–454, Academic Press, New York-London
- 93) Bradford, M. M. (1976) Anal. Biochem. 72, 248-254
- 94) Laemmli, U. K. (1970) Nature 227, 680-685